Science.gov

Sample records for acoustic sensor array

  1. Acoustic pressure-vector sensor array

    NASA Astrophysics Data System (ADS)

    Huang, Dehua; Elswick, Roy C.; McEachern, James F.

    2001-05-01

    Pressure-vector sensors measure both scalar and vector components of the acoustic field. December 2003 measurements at the NUWC Seneca Lake test facility verify previous observations that acoustic ambient noise spectrum levels measured by acoustic intensity sensors are reduced relative to either acoustic pressure or acoustic vector sensor spectrum levels. The Seneca measurements indicate a reduction by as much as 15 dB at the upper measurement frequency of 2500 Hz. A nonlinear array synthesis theory for pressure-vector sensors will be introduced that allows smaller apertures to achieve narrow beams. The significantly reduced ambient noise of individual pressure-vector elements observed in the ocean by others, and now at Seneca Lake, should allow a nonlinearly combined array to detect significantly lower levels than has been observed in previous multiplicative processing of pressure sensors alone. Nonlinear array synthesis of pressure-vector sensors differs from conventional super-directive algorithms that linearly combine pressure elements with positive and negative weights, thereby reducing the sensitivity of conventional super-directive arrays. The much smaller aperture of acoustic pressure-vector sensor arrays will be attractive for acoustic systems on underwater vehicles, as well as for other applications that require narrow beam acoustic receivers. [The authors gratefully acknowledge the support of ONR and NUWC.

  2. Vector Sensor Arrays in Underwater Acoustic Applications

    NASA Astrophysics Data System (ADS)

    Santos, Paulo; Felisberto, Paulo; Jesus, Sérgio M.

    Traditionally, ocean acoustic signals have been acquired using hydrophones, which measure the pressure field and are typically omnidirectional. A vector sensor measures both the acoustic pressure and the three components of particle velocity. Assembled into an array, a vector sensor array (VSA) improves spatial filtering capabilities when compared with arrays of same length and same number of hydrophones. The objective of this work is to show the advantage of the use of vector sensors in underwater acoustic applications such as direction of arrival (DOA) estimation and geoacoustic inversion. Beyond the improvements in DOA estimation, it will be shown the advantages of using the VSA in bottom parameters estimation. Additionally, is tested the possibility of using high frequency signals (say 8-14 kHz band), acquired during the MakaiEx 2005, to allow a small aperture array, reducing the cost of actual sub-bottom profilers and providing a compact and easy-to-deploy system.

  3. Acoustic sensor array extracts physiology during movement

    NASA Astrophysics Data System (ADS)

    Scanlon, Michael V.

    2001-08-01

    An acoustic sensor attached to a person's neck can extract heart and breath sounds, as well as voice and other physiology related to their health and performance. Soldiers, firefighters, law enforcement, and rescue personnel, as well as people at home or in health care facilities, can benefit form being remotely monitored. ARLs acoustic sensor, when worn around a person's neck, picks up the carotid artery and breath sounds very well by matching the sensor's acoustic impedance to that of the body via a gel pad, while airborne noise is minimized by an impedance mismatch. Although the physiological sounds have high SNR, the acoustic sensor also responds to motion-induced artifacts that obscure the meaningful physiology. To exacerbate signal extraction, these interfering signals are usually covariant with the heart sounds, in that as a person walks faster the heart tends to beat faster, and motion noises tend to contain low frequency component similar to the heart sounds. A noise-canceling configuration developed by ARL uses two acoustic sensor on the front sides of the neck as physiology sensors, and two additional acoustic sensor on the back sides of the neck as noise references. Breath and heart sounds, which occur with near symmetry and simultaneously at the two front sensor, will correlate well. The motion noise present on all four sensor will be used to cancel the noise on the two physiology sensors. This report will compare heart rate variability derived from both the acoustic array and from ECG data taken simultaneously on a treadmill test. Acoustically derived breath rate and volume approximations will be introduced as well. A miniature 3- axis accelerometer on the same neckband provides additional noise references to validate footfall and motion activity.

  4. Geo-acoustic inversion with a vector sensor array

    NASA Astrophysics Data System (ADS)

    Li, Fenghua; Zhang, Renhe; Sun, Mei

    2012-11-01

    Geo-acoustic inversion has been paid much attention in the last several decades. Various geo-acoustic inversion methods based on hydrophone arrays have been developed. However, few studies on inverting the bottom parameters with a vector sensor array have been performed. In this paper, theoretical analyses and numerical simulations show that in comparison with pressure, the vertical particle velocity has different spatial distribution, which can provide more information for geo-acoustic inversion. Two geo-acoustic inversion methods, based on coherent and incoherent matched field processing with a vector sensor array, have been developed. To establish the validity of the proposed methods, a shallow water experiment was performed in 2009. The experimental data indicates that the uncertainty of the inversion results is decreased by the coherent inversion method with a vector sensor array in comparison with the results obtained by a hydrophone array only.

  5. Bearing estimation with acoustic vector-sensor arrays

    SciTech Connect

    Hawkes, M.; Nehorai, A.

    1996-04-01

    We consider direction-of-arrival (DOA) estimation using arrays of acoustic vector sensors in free space, and derive expressions for the Cram{acute e}r-Rao bound on the DOA parameters when there is a single source. The vector-sensor array is seen to have improved performance over the traditional scalar-sensor (pressure-sensor) array for two distinct reasons: its elements have an inherent directional sensitivity and the array makes a greater number of measurements. The improvement is greatest for small array apertures and low signal-to-noise ratios. Examination of the conventional beamforming and Capon DOA estimators shows that vector-sensor arrays can completely resolve the bearing, even with a linear array, and can remove the ambiguities associated with spatial undersampling. We also propose and analyze a diversely-oriented array of velocity sensors that possesses some of the advantages of the vector-sensor array without the increase in hardware and computation. In addition, in certain scenarios it can avoid problems with spatially correlated noise that the vector-sensor array may suffer. {copyright} {ital 1996 American Institute of Physics.}

  6. Unique gel-coupled acoustic sensor array monitors human voice and physiology

    NASA Astrophysics Data System (ADS)

    Scanlon, Michael

    2002-11-01

    The health and performance of soldiers, firefighters, and other first responders in strenuous and hazardous environments can be continuously and remotely monitored with body-worn acoustic sensors. The Army Research Laboratory's gel-coupled acoustic physiological monitoring sensor has acoustic impedance properties similar to the skin that facilitate the transmission of body sounds into the sensor pad, yet significantly repel ambient airborne noises due to an impedance mismatch. Acoustic signal processing detects physiological events such as heartbeats, breaths, wheezes, coughs, blood pressure, activity, motion, and voice for communication and automatic speech recognition. Acoustic sensors can be in a helmet or in a strap around the neck, chest, and wrist. Although the physiological sounds have high SNR, the acoustic sensor also responds to motion-induced artifacts that sometimes obscure meaningful physiology. A noise-canceling sensor array configuration helps remove motion noise by using two acoustic sensors on the front sides of the neck and 2 additional acoustic sensors on each wrist. The motion noise detected on all 4 sensors will be dissimilar and out of phase, yet the physiology on all 4 sensors is covariant. Pulse wave transit time between neck and wrist will indicate systolic blood pressure. Data from a firefighter experiment will be presented.

  7. Particle velocity gradient based acoustic mode beamforming for short linear vector sensor arrays.

    PubMed

    Gur, Berke

    2014-06-01

    In this paper, a subtractive beamforming algorithm for short linear arrays of two-dimensional particle velocity sensors is described. The proposed method extracts the highly directional acoustic modes from the spatial gradients of the particle velocity field measured at closely spaced sensors along the array. The number of sensors in the array limits the highest order of modes that can be extracted. Theoretical analysis and numerical simulations indicate that the acoustic mode beamformer achieves directivity comparable to the maximum directivity that can be obtained with differential microphone arrays of equivalent aperture. When compared to conventional delay-and-sum beamformers for pressure sensor arrays, the proposed method achieves comparable directivity with 70%-85% shorter apertures. Moreover, the proposed method has additional capabilities such as high front-back (port-starboard) discrimination, frequency and steer direction independent response, and robustness to correlated ambient noise. Small inter-sensor spacing that results in very compact apertures makes the proposed beamformer suitable for space constrained applications such as hearing aids and short towed arrays for autonomous underwater platforms. PMID:24907810

  8. Acoustic emission source location on large plate-like structures using a local triangular sensor array

    NASA Astrophysics Data System (ADS)

    Aljets, Dirk; Chong, Alex; Wilcox, Steve; Holford, Karen

    2012-07-01

    A new acoustic emission (AE) source location method was developed for large plate-like structures, which evaluates the location of the source using a combined time of flight and modal source location algorithm. Three sensors are installed in a triangular array with a sensor to sensor distance of just a few centimeters. The direction from the sensor array to the AE source can be established by analysing the arrival times of the A0 component of the signal to the three sensors whilst the distance can be evaluated using the separation of S0 and A0 mode at each sensor respectively. The close positioning of the sensors allows the array to be installed in a single housing. This simplifies mounting, wiring and calibration procedures for non-destructive testing (NDT) and structural health monitoring (SHM) applications. Furthermore, this array could reduce the number of sensors needed to monitor large structures compared to other methods. An automatic wave mode identification method is also presented.

  9. A methodology for analyzing an acoustic scene in sensor arrays

    NASA Astrophysics Data System (ADS)

    Man, Hong; Hohil, Myron E.; Desai, Sachi

    2007-10-01

    Presented here is a novel clustering method for Hidden Markov Models (HMMs) and its application in acoustic scene analysis. In this method, HMMs are clustered based on a similarity measure for stochastic models defined as the generalized probability product kernel (GPPK), which can be efficiently evaluated according to a fast algorithm introduced by Chen and Man (2005) [1]. Acoustic signals from various sources are partitioned into small frames. Frequency features are extracted from each of the frames to form observation vectors. These frames are further grouped into segments, and an HMM is trained from each of such segments. An unknown segment is categorized with a known event if its HMM has the closest similarity with the HMM from the corresponding labeled segment. Experiments are conducted on an underwater acoustic dataset from Steven Maritime Security Laboratory, Data set contains a swimmer signature, a noise signature from the Hudson River, and a test sequence with a swimmer in the Hudson River. Experimental results show that the proposed method can successfully associate the test sequence with the swimmer signature at very high confidence, despite their different time behaviors.

  10. Source Localization with Acoustic Sensor Arrays Using Generative Model Based Fitting with Sparse Constraints

    PubMed Central

    Velasco, Jose; Pizarro, Daniel; Macias-Guarasa, Javier

    2012-01-01

    This paper presents a novel approach for indoor acoustic source localization using sensor arrays. The proposed solution starts by defining a generative model, designed to explain the acoustic power maps obtained by Steered Response Power (SRP) strategies. An optimization approach is then proposed to fit the model to real input SRP data and estimate the position of the acoustic source. Adequately fitting the model to real SRP data, where noise and other unmodelled effects distort the ideal signal, is the core contribution of the paper. Two basic strategies in the optimization are proposed. First, sparse constraints in the parameters of the model are included, enforcing the number of simultaneous active sources to be limited. Second, subspace analysis is used to filter out portions of the input signal that cannot be explained by the model. Experimental results on a realistic speech database show statistically significant localization error reductions of up to 30% when compared with the SRP-PHAT strategies. PMID:23202021

  11. Embedded Acoustic Sensor Array for Engine Fan Noise Source Diagnostic Test: Feasibility of Noise Telemetry via Wireless Smart Sensors

    NASA Technical Reports Server (NTRS)

    Zaman, Afroz; Bauch, Matthew; Raible, Daniel

    2011-01-01

    Aircraft engines have evolved into a highly complex system to meet ever-increasing demands. The evolution of engine technologies has primarily been driven by fuel efficiency, reliability, as well as engine noise concerns. One of the sources of engine noise is pressure fluctuations that are induced on the stator vanes. These local pressure fluctuations, once produced, propagate and coalesce with the pressure waves originating elsewhere on the stator to form a spinning pressure pattern. Depending on the duct geometry, air flow, and frequency of fluctuations, these spinning pressure patterns are self-sustaining and result in noise which eventually radiate to the far-field from engine. To investigate the nature of vane pressure fluctuations and the resulting engine noise, unsteady pressure signatures from an array of embedded acoustic sensors are recorded as a part of vane noise source diagnostics. Output time signatures from these sensors are routed to a control and data processing station adding complexity to the system and cable loss to the measured signal. "Smart" wireless sensors have data processing capability at the sensor locations which further increases the potential of wireless sensors. Smart sensors can process measured data locally and transmit only the important information through wireless communication. The aim of this wireless noise telemetry task was to demonstrate a single acoustic sensor wireless link for unsteady pressure measurement, and thus, establish the feasibility of distributed smart sensors scheme for aircraft engine vane surface unsteady pressure data transmission and characterization.

  12. A new sparse design method on phased array-based acoustic emission sensor for partial discharge detection

    NASA Astrophysics Data System (ADS)

    Xie, Qing; Cheng, Shuyi; Lü, Fangcheng; Li, Yanqing

    2014-03-01

    The acoustic detecting performance of a partial discharge (PD) ultrasonic sensor array can be improved by increasing the number of array elements. However, it will increase the complexity and cost of the PD detection system. Therefore, a sparse sensor with an optimization design can be chosen to ensure good acoustic performance. In this paper, first, a quantitative method is proposed for evaluating the acoustic performance of a square PD ultrasonic array sensor. Second, a method of sparse design is presented to combine the evaluation method with the chaotic monkey algorithm. Third, an optimal sparse structure of a 3 × 3 square PD ultrasonic array sensor is deduced. It is found that, under different sparseness and sparse structure, the main beam width of the directivity function shows a small variation, while the sidelobe amplitude shows a bigger variation. For a specific sparseness, the acoustic performance under the optimal sparse structure is close to that using a full array. Finally, some simulations based on the above method show that, for certain sparseness, the sensor with the optimal sparse structure exhibits superior positioning accuracy compared to that with a stochastic one. The sensor array structure may be chosen according to the actual requirements for an actual engineering application.

  13. A PARALIND Decomposition-Based Coherent Two-Dimensional Direction of Arrival Estimation Algorithm for Acoustic Vector-Sensor Arrays

    PubMed Central

    Zhang, Xiaofei; Zhou, Min; Li, Jianfeng

    2013-01-01

    In this paper, we combine the acoustic vector-sensor array parameter estimation problem with the parallel profiles with linear dependencies (PARALIND) model, which was originally applied to biology and chemistry. Exploiting the PARALIND decomposition approach, we propose a blind coherent two-dimensional direction of arrival (2D-DOA) estimation algorithm for arbitrarily spaced acoustic vector-sensor arrays subject to unknown locations. The proposed algorithm works well to achieve automatically paired azimuth and elevation angles for coherent and incoherent angle estimation of acoustic vector-sensor arrays, as well as the paired correlated matrix of the sources. Our algorithm, in contrast with conventional coherent angle estimation algorithms such as the forward backward spatial smoothing (FBSS) estimation of signal parameters via rotational invariance technique (ESPRIT) algorithm, not only has much better angle estimation performance, even for closely-spaced sources, but is also available for arbitrary arrays. Simulation results verify the effectiveness of our algorithm. PMID:23604030

  14. Acoustic particle acceleration sensors

    SciTech Connect

    Franklin, J.B.; Barry, P.J.

    1996-04-01

    A crossed dipole array provides a directional receiving capability in a relatively small sensor package and is therefore very attractive for many applications in acoustics. Particle velocity measurements on two axes perpendicular to each other are required to provide the dipole signals. These can be obtained directly using particle velocity sensors or via simple transfer functions using acceleration and displacement sensors. Also, the derivative of the acoustic pressure with respect to space provides a signal proportional to the particle acceleration and gives rise to the pressure gradient sensor. Each of these sensors has strengths and drawbacks depending on the frequency regime of interest, the noise background, and whether a point or a line configuration of dipole sensors is desired. In this paper, the performance of acceleration sensors is addressed using a sensor concept developed at DREA. These sensors exploit bending stresses in a cantilever beam of piezoelectric material to obtain wide bandwidth and high sensitivity. Models which predict the acceleration sensitivity, pressure sensitivity, and natural frequency for this type of sensor are described. Experimental results obtained using several different versions of these sensors are presented and compared with theory. The predicted performance of acceleration sensors are compared with that of pressure gradient arrays and particle velocity sensors. {copyright} {ital 1996 American Institute of Physics.}

  15. Enhanced sensitivity of surface acoustic wave-based rate sensors incorporating metallic dot arrays.

    PubMed

    Wang, Wen; Shao, Xiuting; Liu, Xinlu; Liu, Jiuling; He, Shitang

    2014-01-01

    A new surface acoustic wave (SAW)-based rate sensor pattern incorporating metallic dot arrays was developed in this paper. Two parallel SAW delay lines with a reverse direction and an operation frequency of 80 MHz on a same X-112°Y LiTaO3 wafer are fabricated as the feedback of two SAW oscillators, and mixed oscillation frequency was used to characterize the external rotation. To enhance the Coriolis force effect acting on the SAW propagation, a copper (Cu) dot array was deposited along the SAW propagation path of the SAW devices. The approach of partial-wave analysis in layered media was referred to analyze the response mechanisms of the SAW based rate sensor, resulting in determination of the optimal design parameters. To improve the frequency stability of the oscillator, the single phase unidirectional transducers (SPUDTs) and combed transducer were used to form the SAW device to minimize the insertion loss and accomplish the single mode selection, respectively. Excellent long-term (measured in hours) frequency stability of 0.1 ppm/h was obtained. Using the rate table with high precision, the performance of the developed SAW rate sensor was evaluated experimentally; satisfactory detection sensitivity (16.7 Hz∙deg∙s(-1)) and good linearity were observed. PMID:24577520

  16. Enhanced Sensitivity of Surface Acoustic Wave-Based Rate Sensors Incorporating Metallic Dot Arrays

    PubMed Central

    Wang, Wen; Shao, Xiuting; Liu, Xinlu; Liu, Jiuling; He, Shitang

    2014-01-01

    A new surface acoustic wave (SAW)-based rate sensor pattern incorporating metallic dot arrays was developed in this paper. Two parallel SAW delay lines with a reverse direction and an operation frequency of 80 MHz on a same X-112°Y LiTaO3 wafer are fabricated as the feedback of two SAW oscillators, and mixed oscillation frequency was used to characterize the external rotation. To enhance the Coriolis force effect acting on the SAW propagation, a copper (Cu) dot array was deposited along the SAW propagation path of the SAW devices. The approach of partial-wave analysis in layered media was referred to analyze the response mechanisms of the SAW based rate sensor, resulting in determination of the optimal design parameters. To improve the frequency stability of the oscillator, the single phase unidirectional transducers (SPUDTs) and combed transducer were used to form the SAW device to minimize the insertion loss and accomplish the single mode selection, respectively. Excellent long-term (measured in hours) frequency stability of 0.1 ppm/h was obtained. Using the rate table with high precision, the performance of the developed SAW rate sensor was evaluated experimentally; satisfactory detection sensitivity (16.7 Hz·deg·s−1) and good linearity were observed. PMID:24577520

  17. A smart sensor system for trace organic vapor detection using a temperature-controlled array of surface acoustic wave vapor sensors, automated preconcentrator tubes, and pattern recognition

    SciTech Connect

    Grate, J.W.; Rose-Pehrsson, S.L.; Klusty, M.; Wohltjen, H.

    1993-05-01

    A smart sensor system for the detection, of toxic organophosphorus and toxic organosulfur vapors at trace concentrations has been designed, fabricated, and tested against a wide variety of vapor challenges. The key features of the system are: An array of four surface acoustic wave (SAW) vapor sensors, temperature control of the vapor sensors, the use of pattern recognition to analyze the sensor data, and an automated sampling system including thermally-desorbed preconcentrator tubes (PCTs).

  18. Detection of coffee flavour ageing by solid-phase microextraction/surface acoustic wave sensor array technique (SPME/SAW).

    PubMed

    Barié, Nicole; Bücking, Mark; Stahl, Ullrich; Rapp, Michael

    2015-06-01

    The use of polymer coated surface acoustic wave (SAW) sensor arrays is a very promising technique for highly sensitive and selective detection of volatile organic compounds (VOCs). We present new developments to achieve a low cost sensor setup with a sampling method enabling the highly reproducible detection of volatiles even in the ppb range. Since the VOCs of coffee are well known by gas chromatography (GC) research studies, the new sensor array was tested for an easy assessable objective: coffee ageing during storage. As reference method these changes were traced with a standard GC/FID set-up, accompanied by sensory panellists. The evaluation of GC data showed a non-linear characteristic for single compound concentrations as well as for total peak area values, disabling prediction of the coffee age. In contrast, the new SAW sensor array demonstrates a linear dependency, i.e. being capable to show a dependency between volatile concentration and storage time. PMID:25624226

  19. Self-adapting root-MUSIC algorithm and its real-valued formulation for acoustic vector sensor array

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Zhang, Guo-jun; Xue, Chen-yang; Zhang, Wen-dong; Xiong, Ji-jun

    2012-12-01

    In this paper, based on the root-MUSIC algorithm for acoustic pressure sensor array, a new self-adapting root-MUSIC algorithm for acoustic vector sensor array is proposed by self-adaptive selecting the lead orientation vector, and its real-valued formulation by Forward-Backward(FB) smoothing and real-valued inverse covariance matrix is also proposed, which can reduce the computational complexity and distinguish the coherent signals. The simulation experiment results show the better performance of two new algorithm with low Signal-to-Noise (SNR) in direction of arrival (DOA) estimation than traditional MUSIC algorithm, and the experiment results using MEMS vector hydrophone array in lake trails show the engineering practicability of two new algorithms.

  20. Near-field/far-field array manifold of an acoustic vector-sensor near a reflecting boundary.

    PubMed

    Wu, Yue Ivan; Lau, Siu-Kit; Wong, Kainam Thomas

    2016-06-01

    The acoustic vector-sensor (a.k.a. the vector hydrophone) is a practical and versatile sound-measurement device, with applications in-room, open-air, or underwater. It consists of three identical uni-axial velocity-sensors in orthogonal orientations, plus a pressure-sensor-all in spatial collocation. Its far-field array manifold [Nehorai and Paldi (1994). IEEE Trans. Signal Process. 42, 2481-2491; Hawkes and Nehorai (2000). IEEE Trans. Signal Process. 48, 2981-2993] has been introduced into the technical field of signal processing about 2 decades ago, and many direction-finding algorithms have since been developed for this acoustic vector-sensor. The above array manifold is subsequently generalized for outside the far field in Wu, Wong, and Lau [(2010). IEEE Trans. Signal Process. 58, 3946-3951], but only if no reflection-boundary is to lie near the acoustic vector-sensor. As for the near-boundary array manifold for the general case of an emitter in the geometric near field, the far field, or anywhere in between-this paper derives and presents that array manifold in terms of signal-processing mathematics. Also derived here is the corresponding Cramér-Rao bound for azimuth-elevation-distance localization of an incident emitter, with the reflected wave shown to play a critical role on account of its constructive or destructive summation with the line-of-sight wave. The implications on source localization are explored, especially with respect to measurement model mismatch in maximum-likelihood direction finding and with regard to the spatial resolution between coexisting emitters. PMID:27369140

  1. Surface acoustic wave sensor array system for trace organic vapor detection using pattern recognition analysis

    NASA Astrophysics Data System (ADS)

    Rose-Pehrsson, Susan L.; Grate, Jay W.; Klusty, Mark

    1993-03-01

    A sensor system using surface acoustic wave (SAW) vapor sensors has been fabricated and tested against hazardous organic vapors, simulants of these vapors, and potential background vapors. The vapor tests included two- and three-component mixtures, and covered a wide relative humidity range. The sensor system was compared of four SAW devices coated with different sorbent materials with different vapor selectivities. Preconcentrators were included to improve sensitivity. The vapor experiments were organized into a large data set analyzed using pattern recognition techniques. Pattern recognition algorithms were developed to identify two different classes of hazards. The algorithms were verified against a second data set not included in the training. Excellent sensitivity was achieved by the sensor coatings, and the pattern recognition analysis, and was also examined by the preconcentrators. The system can detect hazardous vapors of interest in the ppb range even in varying relative humidity and in the presence of background vapors. The system does not false alarm to a variety of other vapors including gasoline, jet fuel, diesel fuel and cigarette smoke.

  2. Concepts and Development of Bio-Inspired Distributed Embedded Wired/Wireless Sensor Array Architectures for Acoustic Wave Sensing in Integrated Aerospace Vehicles

    NASA Technical Reports Server (NTRS)

    Ghoshal, Anindya; Prosser, William H.; Kirikera, Goutham; Schulz, Mark J.; Hughes, Derke J.; Orisamolu, Wally

    2003-01-01

    This paper discusses the modeling of acoustic emissions in plate structures and their sensing by embedded or surface bonded piezoelectric sensor arrays. Three different modeling efforts for acoustic emission (AE) wave generation and propagation are discussed briefly along with their advantages and disadvantages. Continuous sensors placed at right angles on a plate are being discussed as a new approach to measure and locate the source of acoustic waves. Evolutionary novel signal processing algorithms and bio-inspired distributed sensor array systems are used on large structures and integrated aerospace vehicles for AE source localization and preliminary results are presented. These systems allow for a great reduction in the amount of data that needs to be processed and also reduce the chances of false alarms from ambient noises. It is envisioned that these biomimetic sensor arrays and signal processing techniques will be useful for both wireless and wired sensor arrays for real time health monitoring of large integrated aerospace vehicles and earth fixed civil structures. The sensor array architectures can also be used with other types of sensors and for other applications.

  3. An intelligent sensor array distributed system for vibration analysis and acoustic noise characterization of a linear switched reluctance actuator.

    PubMed

    Salvado, José; Espírito-Santo, António; Calado, Maria

    2012-01-01

    This paper proposes a distributed system for analysis and monitoring (DSAM) of vibrations and acoustic noise, which consists of an array of intelligent modules, sensor modules, communication bus and a host PC acting as data center. The main advantages of the DSAM are its modularity, scalability, and flexibility for use of different type of sensors/transducers, with analog or digital outputs, and for signals of different nature. Its final cost is also significantly lower than other available commercial solutions. The system is reconfigurable, can operate either with synchronous or asynchronous modes, with programmable sampling frequencies, 8-bit or 12-bit resolution and a memory buffer of 15 kbyte. It allows real-time data-acquisition for signals of different nature, in applications that require a large number of sensors, thus it is suited for monitoring of vibrations in Linear Switched Reluctance Actuators (LSRAs). The acquired data allows the full characterization of the LSRA in terms of its response to vibrations of structural origins, and the vibrations and acoustic noise emitted under normal operation. The DSAM can also be used for electrical machine condition monitoring, machine fault diagnosis, structural characterization and monitoring, among other applications. PMID:22969364

  4. An Intelligent Sensor Array Distributed System for Vibration Analysis and Acoustic Noise Characterization of a Linear Switched Reluctance Actuator

    PubMed Central

    Salvado, José; Espírito-Santo, António; Calado, Maria

    2012-01-01

    This paper proposes a distributed system for analysis and monitoring (DSAM) of vibrations and acoustic noise, which consists of an array of intelligent modules, sensor modules, communication bus and a host PC acting as data center. The main advantages of the DSAM are its modularity, scalability, and flexibility for use of different type of sensors/transducers, with analog or digital outputs, and for signals of different nature. Its final cost is also significantly lower than other available commercial solutions. The system is reconfigurable, can operate either with synchronous or asynchronous modes, with programmable sampling frequencies, 8-bit or 12-bit resolution and a memory buffer of 15 kbyte. It allows real-time data-acquisition for signals of different nature, in applications that require a large number of sensors, thus it is suited for monitoring of vibrations in Linear Switched Reluctance Actuators (LSRAs). The acquired data allows the full characterization of the LSRA in terms of its response to vibrations of structural origins, and the vibrations and acoustic noise emitted under normal operation. The DSAM can also be used for electrical machine condition monitoring, machine fault diagnosis, structural characterization and monitoring, among other applications. PMID:22969364

  5. MEMS Based Acoustic Array

    NASA Technical Reports Server (NTRS)

    Sheplak, Mark (Inventor); Nishida, Toshikaza (Inventor); Humphreys, William M. (Inventor); Arnold, David P. (Inventor)

    2006-01-01

    Embodiments of the present invention described and shown in the specification aid drawings include a combination responsive to an acoustic wave that can be utilized as a dynamic pressure sensor. In one embodiment of the present invention, the combination has a substrate having a first surface and an opposite second surface, a microphone positioned on the first surface of the substrate and having an input and a first output and a second output, wherein the input receives a biased voltage, and the microphone generates an output signal responsive to the acoustic wave between the first output and the second output. The combination further has an amplifier positioned on the first surface of the substrate and having a first input and a second input and an output, wherein the first input of the amplifier is electrically coupled to the first output of the microphone and the second input of the amplifier is electrically coupled to the second output of the microphone for receiving the output sinual from the microphone. The amplifier is spaced from the microphone with a separation smaller than 0.5 mm.

  6. Issues in acoustic vector-sensor processing

    NASA Astrophysics Data System (ADS)

    Hawkes, Malcolm Alistair

    This dissertation examines the ability of acoustic vector sensors to solve the passive direction-of-arrival (DOA) estimation and 3-D localization problems. These sensors measure the three-dimensional acoustic particle velocity vector, as well as the acoustic pressure, at one location. By preserving directional information that is present in the structure of the velocity field, they gain a number of advantages over traditional arrays of scalar sensors, such as hydrophones and microphones. We compute and examine, through the Cramér-Rao bound and beam-forming based methods, the ability of arrays of acoustic vector sensors to estimate direction. We first consider the case of an array in free space then extend these results to account for the presence of a reflecting boundary, such as the seabed or a vessel's hull, located near the array. Next, we derive expressions for the noise correlation structure induced by various ambient noise fields, isotropic and anisotropic, at an acoustic vector sensor array, and use them to examine its localization performance. We then propose a decentralized processing scheme to rapidly locate a wideband target in three dimensions. Finally, we present a general framework for the analysis of errors associated with the estimation of a vector, or system of vectors, that has geometrical interpretations in terms of length, angle, etc. The framework is employed throughout the thesis.

  7. Acoustic sensor networks for woodpecker localization

    NASA Astrophysics Data System (ADS)

    Wang, H.; Chen, C. E.; Ali, A.; Asgari, S.; Hudson, R. E.; Yao, K.; Estrin, D.; Taylor, C.

    2005-08-01

    Sensor network technology can revolutionize the study of animal ecology by providing a means of non-intrusive, simultaneous monitoring of interaction among multiple animals. In this paper, we investigate design, analysis, and testing of acoustic arrays for localizing acorn woodpeckers using their vocalizations. Each acoustic array consists of four microphones arranged in a square. All four audio channels within the same acoustic array are finely synchronized within a few micro seconds. We apply the approximate maximum likelihood (AML) method to synchronized audio channels of each acoustic array for estimating the direction-of-arrival (DOA) of woodpecker vocalizations. The woodpecker location is estimated by applying least square (LS) methods to DOA bearing crossings of multiple acoustic arrays. We have revealed the critical relation between microphone spacing of acoustic arrays and robustness of beamforming of woodpecker vocalizations. Woodpecker localization experiments using robust array element spacing in different types of environments are conducted and compared. Practical issues about calibration of acoustic array orientation are also discussed.

  8. The acoustic vector sensor: a versatile battlefield acoustics sensor

    NASA Astrophysics Data System (ADS)

    de Bree, Hans-Elias; Wind, Jelmer W.

    2011-06-01

    The invention of the Microflown sensor has made it possible to measure acoustic particle velocity directly. An acoustic vector sensor (AVS) measures the particle velocity in three directions (the source direction) and the pressure. The sensor is a uniquely versatile battlefield sensor because its size is a few millimeters and it is sensitive to sound from 10Hz to 10kHz. This article shows field tests results of acoustic vector sensors, measuring rifles, heavy artillery, fixed wing aircraft and helicopters. Experimental data shows that the sensor is suitable as a ground sensor, mounted on a vehicle and on a UAV.

  9. Sensor localization using helicopter acoustic and GPS data

    NASA Astrophysics Data System (ADS)

    Damarla, Thyagaraju R.; Mirelli, Vincent

    2004-09-01

    In this paper we present an algorithm to determine the location of an acoustic sensor array using the direction of arrival (DOA) estimates of a moving acoustic source whose ground truth is available. Determination of location and orientation of sensor array based on the statistics of errors in the DOA estimation is a nonlinear regression problem. We formulate and derive the necessary equations to solve this problem in terms of the bearing estimates of the acoustic source and its location. The algorithm is tested against helicopter data from three acoustic sensor arrays distributed over a field.

  10. Superdirective and gradient sensor arrays

    NASA Astrophysics Data System (ADS)

    Merklinger, Harold M.

    2003-10-01

    During the late 1960s and the 1970s, underwater acoustic investigators examined superdirective and gradient sensor systems in order to enhance submarine detection capabilities for surface ships and maritime aircraft. Simple gradient processing had already been used in both in-air acoustic systems (cardioid and super-cardioid microphones) as well as radio and radar applications. Superdirective techniques were known [R. L. Pritchard, J. Acoust. Soc. Am. 25, 879 (1953)] and sometimes exploited in radar systems. It was quickly demonstrated that simple gradient sensors and modest degrees of superdirective array processing were possible, although self-noise and the ability to calibrate hydrophones limited the processing gains achievable. Circular superdirective arrays were used extensively by the Defence Research Establishment Atlantic for noise directionality measurements in the frequency range 4 Hz to about 1 kHz and considered for naval ASW applications until the superiority of oil-filled conventional arrays became apparent. Nevertheless, the significant theoretical and practical development of spatial harmonic beamforming and direction finding was completed. Although much of this work was not considered classified, neither was it widely published. This presentation will review the concepts developed and progress made. Beamforming, noise mitigation and calibration issues are covered.

  11. In-Flow Acoustic Sensor

    NASA Technical Reports Server (NTRS)

    Allen, Christopher S. (Inventor)

    1995-01-01

    An acoustic sensor for measuring acoustic waves contained in fluid flow flowing over the sensor is introduced. The acoustic sensor reduces any unwanted self-noise associated with the flowing fluid by providing a nose cone having proper aerodynamic properties and by positioning the diaphragm of a microphone of the sensor at a location where any unwanted noise is at a relatively low level. The nose cone has a rounded, blunt or even sharp tip neither of which creates any major disturbances in the flowing fluid which it intercepts.

  12. Microbial sensor cell arrays.

    PubMed

    Melamed, Sahar; Elad, Tal; Belkin, Shimshon

    2012-02-01

    Motivated by the advantages endowed by high-throughput analysis, researchers have succeeded in incorporating multiple reporter cells into a single platform; the technology now allows the simultaneous scrutiny of a large collection of sensor strains. We review current aspects in cell array technology with emphasis on microbial sensor arrays. We consider various techniques for patterning live cells on solid surfaces, describe different array-based applications and devices, and highlight recent efforts for live cell storage. We review mathematical approaches for deciphering the data emanating from bioreporter collections, and discuss the future of single cell arrays. Innovative technologies for cell patterning, preservation and interpretation are continuously being developed; when they all mature, cell arrays may become an efficient analytical tool, in a scope resembling that of DNA microarray biochips. PMID:22176747

  13. Acoustically driven arrayed waveguide grating.

    PubMed

    Crespo-Poveda, A; Hernández-Mínguez, A; Gargallo, B; Biermann, K; Tahraoui, A; Santos, P V; Muñoz, P; Cantarero, A; de Lima, M M

    2015-08-10

    We demonstrate compact tunable phased-array wavelength-division multiplexers driven by surface acoustic waves (SAWs) in the low GHz range. The devices comprise two couplers, which respectively split and combine the optical signal, linked by an array of single-mode waveguides (WGs). Two different layouts are presented, in which multi-mode interference couplers or free propagating regions were separately employed as couplers. The multiplexers operate on five equally distributed wavelength channels, with a spectral separation of 2 nm. A standing SAW modulates the refractive index of the arrayed WGs. Each wavelength component periodically switches paths between the output channel previously asigned by the design and the adjacent channels, at a fixed applied acoustic power. The devices were monolithically fabricated on (Al,Ga)As. A good agreement between theory and experiment is achieved. PMID:26367971

  14. Acoustic signal processing toolbox for array processing

    NASA Astrophysics Data System (ADS)

    Pham, Tien; Whipps, Gene T.

    2003-08-01

    The US Army Research Laboratory (ARL) has developed an acoustic signal processing toolbox (ASPT) for acoustic sensor array processing. The intent of this document is to describe the toolbox and its uses. The ASPT is a GUI-based software that is developed and runs under MATLAB. The current version, ASPT 3.0, requires MATLAB 6.0 and above. ASPT contains a variety of narrowband (NB) and incoherent and coherent wideband (WB) direction-of-arrival (DOA) estimation and beamforming algorithms that have been researched and developed at ARL. Currently, ASPT contains 16 DOA and beamforming algorithms. It contains several different NB and WB versions of the MVDR, MUSIC and ESPRIT algorithms. In addition, there are a variety of pre-processing, simulation and analysis tools available in the toolbox. The user can perform simulation or real data analysis for all algorithms with user-defined signal model parameters and array geometries.

  15. Networked Sensor Arrays

    SciTech Connect

    R. J. Tighe

    2002-10-01

    A set of independent radiation sensors, coupled with real-time data telemetry, offers the opportunity to run correlation algorithms for the sensor array as well as to incorporate non-radiological data into the system. This may enhance the overall sensitivity of the sensors and provide an opportunity to project the location of a source within the array. In collaboration with Lawrence Livermore National Laboratory (LLNL) and Sandia National Laboratories (SNL), we have conducted field experiments to test a prototype system. Combining the outputs of a set of distributed sensors permits the correlation that the independent sensor outputs. Combined with additional information such as traffic patterns and velocities, this can reduce random/false detections and enhance detection capability. The principle components of such a system include: (1) A set of radiation sensors. These may be of varying type and complexity, including gamma and/or neutron detectors, gross count and spectral-capable sensors, and low to high energy-resolution sensors. (2) A set of non-radiation sensors. These may include sensors such as vehicle presence and imaging sensors. (3) A communications architecture for near real-time telemetry. Depending upon existing infrastructure and bandwidth requirements, this may be a radio or hard-wire based system. (4) A central command console to pole the sensors, correlate their output, and display the data in a meaningful form to the system operator. Both sensitivity and selectivity are important considerations when evaluating the performance of a detection system. Depending on the application, the optimization of sensitivity as well as the rejection of ''nuisance'' radioactive sources may or may not be critical.

  16. Acoustic/Magnetic Stress Sensor

    NASA Technical Reports Server (NTRS)

    Heyman, J. S.; Namkung, M.

    1986-01-01

    High-resolution sensor fast, portable, does not require permanent bonding to structure. Sensor measures nondestructively type (compressive or tensile) and magnitude of stresses and stress gradients present in class of materials. Includes precise high-resolution acoustic interferometer, sending acoustic transducer, receiving acoustic transducer, electromagnet coil and core, power supply, and magnetic-field-measuring device such as Hall probe. This measurement especially important for construction and applications where steel is widely used. Sensor useful especially for nondestructive evaluation of stress in steel members because of portability, rapid testing, and nonpermanent installation.

  17. Non-intrusive, high-resolution, real-time, two-dimensional imaging of multiphase materials using acoustic array sensors

    NASA Astrophysics Data System (ADS)

    Cassiède, M.; Shaw, J. M.

    2015-04-01

    Two parallel multi-element ultrasonic acoustic arrays combined with sets of focal laws for acoustic signal generation and a classical tomographic inversion algorithm are used to generate real-time two-dimensional micro seismic acoustic images of multiphase materials. Proof of concept and calibration measurements were performed for single phase and two phase liquids, uniform polyvinyl chloride (PVC) plates, and aluminum cylinders imbedded in PVC plates. Measurement artefacts, arising from the limited range of viewing angles, and the compromise between data acquisition rate and image quality are discussed. The angle range of scanning and the image resolution were varied, and the effects on the quality of the reproduction of the speed of sound profiles of model solids and liquids with known geometries and compositions were analysed in detail. The best image quality results were obtained for a scanning angle range of [-35°, 35°] at a step size of 2.5° post processed to generate images on a 40 μm square grid. The data acquisition time for high quality images with a 30 mm × 40 mm view field is 10 min. Representation of two-phase solids with large differences in speed of sound between phases and where one phase is dispersed in the form of macroscopic objects (greater than 1 mm in diameter) proved to be the most difficult to image accurately. Liquid-liquid and liquid-vapor phase boundaries, in micro porous solids by contrast, were more readily defined. Displacement of air by water and water by heptane in natural porous limestone provides illustrative kinetic examples. Measurement results with these realistic cases demonstrate the feasibility of the technique to monitor in real time and on the micrometer length scale local composition and flow of organic liquids in inorganic porous media, one of many envisioned engineering applications. Improvement of data acquisition rate is an area for future collaborative study.

  18. Non-intrusive, high-resolution, real-time, two-dimensional imaging of multiphase materials using acoustic array sensors

    SciTech Connect

    Cassiède, M.; Shaw, J. M.

    2015-04-15

    Two parallel multi-element ultrasonic acoustic arrays combined with sets of focal laws for acoustic signal generation and a classical tomographic inversion algorithm are used to generate real-time two-dimensional micro seismic acoustic images of multiphase materials. Proof of concept and calibration measurements were performed for single phase and two phase liquids, uniform polyvinyl chloride (PVC) plates, and aluminum cylinders imbedded in PVC plates. Measurement artefacts, arising from the limited range of viewing angles, and the compromise between data acquisition rate and image quality are discussed. The angle range of scanning and the image resolution were varied, and the effects on the quality of the reproduction of the speed of sound profiles of model solids and liquids with known geometries and compositions were analysed in detail. The best image quality results were obtained for a scanning angle range of [−35°, 35°] at a step size of 2.5° post processed to generate images on a 40 μm square grid. The data acquisition time for high quality images with a 30 mm × 40 mm view field is 10 min. Representation of two-phase solids with large differences in speed of sound between phases and where one phase is dispersed in the form of macroscopic objects (greater than 1 mm in diameter) proved to be the most difficult to image accurately. Liquid-liquid and liquid-vapor phase boundaries, in micro porous solids by contrast, were more readily defined. Displacement of air by water and water by heptane in natural porous limestone provides illustrative kinetic examples. Measurement results with these realistic cases demonstrate the feasibility of the technique to monitor in real time and on the micrometer length scale local composition and flow of organic liquids in inorganic porous media, one of many envisioned engineering applications. Improvement of data acquisition rate is an area for future collaborative study.

  19. A Location Method Using Sensor Arrays for Continuous Gas Leakage in Integrally Stiffened Plates Based on the Acoustic Characteristics of the Stiffener

    PubMed Central

    Bian, Xu; Li, Yibo; Feng, Hao; Wang, Jiaqiang; Qi, Lei; Jin, Shijiu

    2015-01-01

    This paper proposes a continuous leakage location method based on the ultrasonic array sensor, which is specific to continuous gas leakage in a pressure container with an integral stiffener. This method collects the ultrasonic signals generated from the leakage hole through the piezoelectric ultrasonic sensor array, and analyzes the space-time correlation of every collected signal in the array. Meanwhile, it combines with the method of frequency compensation and superposition in time domain (SITD), based on the acoustic characteristics of the stiffener, to obtain a high-accuracy location result on the stiffener wall. According to the experimental results, the method successfully solves the orientation problem concerning continuous ultrasonic signals generated from leakage sources, and acquires high accuracy location information on the leakage source using a combination of multiple sets of orienting results. The mean value of location absolute error is 13.51 mm on the one-square-meter plate with an integral stiffener (4 mm width; 20 mm height; 197 mm spacing), and the maximum location absolute error is generally within a ±25 mm interval. PMID:26404316

  20. A Location Method Using Sensor Arrays for Continuous Gas Leakage in Integrally Stiffened Plates Based on the Acoustic Characteristics of the Stiffener.

    PubMed

    Bian, Xu; Li, Yibo; Feng, Hao; Wang, Jiaqiang; Qi, Lei; Jin, Shijiu

    2015-01-01

    This paper proposes a continuous leakage location method based on the ultrasonic array sensor, which is specific to continuous gas leakage in a pressure container with an integral stiffener. This method collects the ultrasonic signals generated from the leakage hole through the piezoelectric ultrasonic sensor array, and analyzes the space-time correlation of every collected signal in the array. Meanwhile, it combines with the method of frequency compensation and superposition in time domain (SITD), based on the acoustic characteristics of the stiffener, to obtain a high-accuracy location result on the stiffener wall. According to the experimental results, the method successfully solves the orientation problem concerning continuous ultrasonic signals generated from leakage sources, and acquires high accuracy location information on the leakage source using a combination of multiple sets of orienting results. The mean value of location absolute error is 13.51 mm on the one-square-meter plate with an integral stiffener (4 mm width; 20 mm height; 197 mm spacing), and the maximum location absolute error is generally within a ±25 mm interval. PMID:26404316

  1. Deghosting in multipassive acoustic sensors

    NASA Astrophysics Data System (ADS)

    Yang, Rong; Ng, Gee Wah

    2004-04-01

    In this paper, we describe a deghosting algorithm in multiple passive acoustic sensor environment. In a passive acoustic sensor system, a target is detected by its bearing to the sensor, and the target location is obtained from triangulation of bearings on different sensors. However, in multi-passive sensor and multi-target scenario, triangulation is difficult. This is because multi-target triangulation results in a number of ghost targets being generated. In order to remove the triangulating ghosts, the deghosting technique is essential to distinguish the true targets from the ghost targets. We suggest a deghosting algorithm by applying Bayes" theorem and the likelihood function on the acoustic signals. A probability related to acoustic signal on each triangulating point is recursively computed and updated at every time stamp or frame. The triangulating point will be classified as a true target, once its probability exceeds a predefined threshold. Furthermore, acoustic signal has propagation delay. The situation yields the triangulating location biased to the bearing of the nearest sensor. In our algorithm, the propagation delay problem is solved by matching the histories of bearing tracks, and yields the unbiased location that has similar emitting times for the sensors contributing to the triangulation point. The emitting times can be derived from detecting times and propagation delays. Performance result is presented on simulation data.

  2. Acoustic calibration apparatus for calibrating plethysmographic acoustic pressure sensors

    NASA Technical Reports Server (NTRS)

    Zuckerwar, Allan J. (Inventor); Davis, David C. (Inventor)

    1995-01-01

    An apparatus for calibrating an acoustic sensor is described. The apparatus includes a transmission material having an acoustic impedance approximately matching the acoustic impedance of the actual acoustic medium existing when the acoustic sensor is applied in actual in-service conditions. An elastic container holds the transmission material. A first sensor is coupled to the container at a first location on the container and a second sensor coupled to the container at a second location on the container, the second location being different from the first location. A sound producing device is coupled to the container and transmits acoustic signals inside the container.

  3. Acoustic Humidity Sensor

    NASA Technical Reports Server (NTRS)

    Shakkottai, Parthasarathy; Kwack, Eug Y.; Venkateshan, Shakkottai

    1990-01-01

    Industrial humidity sensor measures volume fraction of water in air via its effect on speed of sound. Only portion of sensor exposed to sensed atmosphere is pair of stainless-steel tubes, one containing dry air and other containing moist air. Counters measure intervals between reflected pulses. Sensor rugged enough for use in harsh environments like those used to control drying of paper in paper mills, where most humidity sensors do not survive.

  4. Vector Acoustic Sensors for Marine Seismic Surveys

    NASA Astrophysics Data System (ADS)

    Lindwall, D.

    2005-12-01

    Using vector acoustic sensors for marine seismic and geo-acoustic surveys instead of the usual scalar hydrophones allows for acquiring a 3-D survey with the instrumentation and logistics similar to current 2-D surveys. Vector acoustic sensors measure the wave direction directly without the large and cumbersome arrays that hydrophones require. This concept was tested by a scaled experiment in an acoustic water tank that has a well controlled environment with a few targets. The experiment was scaled to the size of the available water tank and the frequency limits of the sensor. The sensor consists of a three-axis accelerometer as well as a hydrophone. The sound source was a standard hydrophone driven by a short 8 kHz pulse. The sensor was suspended in a fixed location and the hydrophone was moved about the tank by a robotic arm to insonify the tank from many locations. During part of the experiment, several floats (acoustic targets) were placed in the tank at diagonal ranges of approximately one meter. The accelerometer data show the direct source wave as well as the target scattered waves and reflections from the nearby water surface, tank bottom and sides. Vector data from single shots show that the wave motion direction can be readily determined for both direct waves and scattered waves. Without resorting to the usual methods of seismic imaging, which in this case would have only been two dimensional and relied entirely on the use of a synthetic source aperture, the three-dimensional volume of the tank environment was imaged. This work was supported by the Office of Naval Research, program element 61153N.

  5. An AUV underwater acoustic array

    NASA Astrophysics Data System (ADS)

    D'Spain, Gerald L.; Lepper, Paul A.; Zimmerman, Richard

    2002-11-01

    An eight-element hydrophone array has been installed within the shroud of an Odyssey IIb AUV. Each array channel is digitized and recorded with 10-kHz bandwidth by an autonomous, PC-104+ data acquisition system. To determine the effects of the AUV body itself on the acoustic field measured by the array, tones at low (200-800 Hz) and mid- (2-8 kHz) frequencies were transmitted in a large water tank to the AUV by a source continuously varying in azimuth but fixed range. Bartlett beamforming for source azimuth using both plane wave replicas and replicas calculated using a 2-D time domain, finite-difference code that accounts for the scattering from the two glass spheres in the AUV shows that (1) not accounting for scattering results in 2- to 6-dB signal gain degradation, but (2) scattering moves the ambiguity surface sidelobes closer to the main lobe location, thus improving localization capability. The effect of scattering from the AUV on an azimuthally isotropic noise field, estimated by averaging over pings at all azimuths, is a decrease in spatial coherence at low frequencies over that in free space, thus increasing detection capability. [Work supported by ONR.

  6. Acoustic velocity sensor for the NRL ABC research platform

    SciTech Connect

    Corsaro, R.D.; Houston, B.

    1996-04-01

    A new research platform has been constructed for general underwater structural-acoustics studies of sensor/actuator coupling mechanisms, and in particular for active acoustic boundary control (ABC) studies. It consists of an array of 15 {open_quote}{open_quote}ABC{close_quote}{close_quote} tiles arranged in a 5{times}3 pattern on a backing structure (an air-backed steel plate). Tiles are 10 inches square, and each tile contains a large area actuator, pressure sensor, and (acoustic particle) velocity sensor. While the actuator and pressure sensor could be constructed of commercially available transducer material, the selection of a suitable acoustic velocity sensor proved more difficult. This paper describes the velocity sensor system selected and its impact on the resulting performance and characteristics of the ABC Platform. {copyright} {ital 1996 American Institute of Physics.}

  7. Optimization of surface acoustic wave-based rate sensors.

    PubMed

    Xu, Fangqian; Wang, Wen; Shao, Xiuting; Liu, Xinlu; Liang, Yong

    2015-01-01

    The optimization of an surface acoustic wave (SAW)-based rate sensor incorporating metallic dot arrays was performed by using the approach of partial-wave analysis in layered media. The optimal sensor chip designs, including the material choice of piezoelectric crystals and metallic dots, dot thickness, and sensor operation frequency were determined theoretically. The theoretical predictions were confirmed experimentally by using the developed SAW sensor composed of differential delay line-oscillators and a metallic dot array deposited along the acoustic wave propagation path of the SAW delay lines. A significant improvement in sensor sensitivity was achieved in the case of 128° YX LiNbO₃, and a thicker Au dot array, and low operation frequency were used to structure the sensor. PMID:26473865

  8. Optimization of Surface Acoustic Wave-Based Rate Sensors

    PubMed Central

    Xu, Fangqian; Wang, Wen; Shao, Xiuting; Liu, Xinlu; Liang, Yong

    2015-01-01

    The optimization of an surface acoustic wave (SAW)-based rate sensor incorporating metallic dot arrays was performed by using the approach of partial-wave analysis in layered media. The optimal sensor chip designs, including the material choice of piezoelectric crystals and metallic dots, dot thickness, and sensor operation frequency were determined theoretically. The theoretical predictions were confirmed experimentally by using the developed SAW sensor composed of differential delay line-oscillators and a metallic dot array deposited along the acoustic wave propagation path of the SAW delay lines. A significant improvement in sensor sensitivity was achieved in the case of 128° YX LiNbO3, and a thicker Au dot array, and low operation frequency were used to structure the sensor. PMID:26473865

  9. Sensor arrays for detecting microorganisms

    NASA Technical Reports Server (NTRS)

    Lewis, Nathan S. (Inventor); Freund, Michael S. (Inventor)

    2000-01-01

    A sensor array for detecting a microorganism comprising first and second sensors electrically connected to an electrical measuring apparatus, wherein the sensors comprise a region of nonconducting organic material and a region of conducting material compositionally that is different than the nonconducting organic material and an electrical path through the regions of nonconducting organic material and the conducting material. A system for identifying microorganisms using the sensor array, a computer and a pattern recognition algorithm, such as a neural net are also disclosed.

  10. Fiber-optic interferometric acoustic sensors for wind tunnel applications

    NASA Technical Reports Server (NTRS)

    Cho, Y. C.

    1993-01-01

    Progress in developing fiber-optic interferometric sensors for aeroacoustic measurements in wind tunnels, performed under the NASA program, is reported. Preliminary results show that the fiber-optic interferometer sensor array is a powerful instrument for solving complex acoustic measurement problems in wind tunnels, which cannot be resolved with the conventional transducer technique.

  11. Seismo-acoustic array installed in Vrancea seismogenic area

    NASA Astrophysics Data System (ADS)

    Ionescu, Constantin; Moldovan, Adrian-Septimiu; Moldovan, Iren-Adelina; Ghica, Daniela

    2010-05-01

    The National Institute for Earth Physics (NIEP) has installed two infrasound networks: a four-element seismo-acoustic array with an 1.2 km aperture (IPLOR) and a three-element array with a 400m aperture (IOANE). Both arrays are installed in Vrancea seismogenic area. Each array element of IPLOR consists of three sensors (a seismic 3C broad-band instrument with 1000V/m/s sensitivity, an accelerometer +/-2g EpiSensor type, and an infrasound Chaparral type sensor) and a 24-bit digitizer (Quanterra Q330). The BB sensors and accelerometers are located in 3 meters deep boreholes, while the infrasound sensors are installed in a plastic 1 mc container connected to a porous flexible pipe or plastic tube (for the central element). Inter-array communication is achieved by radio link (2.4 GHz frequency band) which transmits the data from the six-channel digitizers to the local acquisition system. Each power array element consisted of a 12 V DC source powered by the commercial power line or solar panels. The data acquisition system is based on the Seiscomp3 software; a sampling rate of 100 samples per second is applied for BB seismic instruments and accelerometers, whilst for the infrasound sensor a 20 sps rate is used. Each array element of IPLOR consists of a MBAZEL2007 microbarometer and a 24-bit digitizer. Inter-array communication is achieved by a fiber optic link. The sampling rate is 10 sps. The Vrancea seismo-acoustic array is used to identify and locate events associated with industrial blasts, to detect local and regional events, as well for the complex studies on the Vrancea seismogenic area. Moreover, the array data accelerometers are used in the early warning system for Bucharest. At NIEP, several programs are running to analyze each type of data (seismic and acoustic): for BB seismic data, a software for event detection and characterization, kindly provided by NORSAR, is applied, acceleration data recorded by the episensors are processed with a software developed

  12. Particle sensor array

    NASA Technical Reports Server (NTRS)

    Buehler, Martin G. (Inventor); Blaes, Brent R. (Inventor); Lieneweg, Udo (Inventor)

    1994-01-01

    A particle sensor array which in a preferred embodiment comprises a static random access memory having a plurality of ion-sensitive memory cells, each such cell comprising at least one pull-down field effect transistor having a sensitive drain surface area (such as by bloating) and at least one pull-up field effect transistor having a source connected to an offset voltage. The sensitive drain surface area and the offset voltage are selected for memory cell upset by incident ions such as alpha-particles. The static random access memory of the present invention provides a means for selectively biasing the memory cells into the same state in which each of the sensitive drain surface areas is reverse biased and then selectively reducing the reversed bias on these sensitive drain surface areas for increasing the upset sensitivity of the cells to ions. The resulting selectively sensitive memory cells can be used in a number of applications. By way of example, the present invention can be used for measuring the linear energy transfer of ion particles, as well as a device for assessing the resistance of CMOS latches to Cosmic Ray induced single event upsets. The sensor of the present invention can also be used to determine the uniformity of an ion beam.

  13. Remote environmental sensor array system

    NASA Astrophysics Data System (ADS)

    Hall, Geoffrey G.

    This thesis examines the creation of an environmental monitoring system for inhospitable environments. It has been named The Remote Environmental Sensor Array System or RESA System for short. This thesis covers the development of RESA from its inception, to the design and modeling of the hardware and software required to make it functional. Finally, the actual manufacture, and laboratory testing of the finished RESA product is discussed and documented. The RESA System is designed as a cost-effective way to bring sensors and video systems to the underwater environment. It contains as water quality probe with sensors such as dissolved oxygen, pH, temperature, specific conductivity, oxidation-reduction potential and chlorophyll a. In addition, an omni-directional hydrophone is included to detect underwater acoustic signals. It has a colour, high-definition and a low-light, black and white camera system, which it turn are coupled to a laser scaling system. Both high-intensity discharge and halogen lighting system are included to illuminate the video images. The video and laser scaling systems are manoeuvred using pan and tilt units controlled from an underwater computer box. Finally, a sediment profile imager is included to enable profile images of sediment layers to be acquired. A control and manipulation system to control the instruments and move the data across networks is integrated into the underwater system while a power distribution node provides the correct voltages to power the instruments. Laboratory testing was completed to ensure that the different instruments associated with the RESA performed as designed. This included physical testing of the motorized instruments, calibration of the instruments, benchmark performance testing and system failure exercises.

  14. Carbon nanotube array based sensor

    DOEpatents

    Lee, Christopher L.; Noy, Aleksandr; Swierkowski, Stephan P.; Fisher, Karl A.; Woods, Bruce W.

    2005-09-20

    A sensor system comprising a first electrode with an array of carbon nanotubes and a second electrode. The first electrode with an array of carbon nanotubes and the second electrode are positioned to produce an air gap between the first electrode with an array of carbon nanotubes and the second electrode. A measuring device is provided for sensing changes in electrical capacitance between the first electrode with an array of carbon nanotubes and the second electrode.

  15. Frustrated total internal reflection acoustic field sensor

    DOEpatents

    Kallman, Jeffrey S.

    2000-01-01

    A frustrated total internal reflection acoustic field sensor which allows the acquisition of the acoustic field over an entire plane, all at once. The sensor finds use in acoustic holography and acoustic diffraction tomography. For example, the sensor may be produced by a transparent plate with transparent support members tall enough to support one or more flexible membranes at an appropriate height for frustrated total internal reflection to occur. An acoustic wave causes the membrane to deflect away from its quiescent position and thus changes the amount of light that tunnels through the gap formed by the support members and into the membrane, and so changes the amount of light reflected by the membrane. The sensor(s) is illuminated by a uniform tight field, and the reflection from the sensor yields acoustic wave amplitude and phase information which can be picked up electronically or otherwise.

  16. Tracking sperm whales with a towed acoustic vector sensor.

    PubMed

    Thode, Aaron; Skinner, Jeff; Scott, Pam; Roswell, Jeremy; Straley, Janice; Folkert, Kendall

    2010-11-01

    Passive acoustic towed linear arrays are increasingly used to detect marine mammal sounds during mobile anthropogenic activities. However, these arrays cannot resolve between signals arriving from the port or starboard without vessel course changes or multiple cable deployments, and their performance is degraded by vessel self-noise and non-acoustic mechanical vibration. In principle acoustic vector sensors can resolve these directional ambiguities, as well as flag the presence of non-acoustic contamination, provided that the vibration-sensitive sensors can be successfully integrated into compact tow modules. Here a vector sensor module attached to the end of a 800 m towed array is used to detect and localize 1813 sperm whale "clicks" off the coast of Sitka, AK. Three methods were used to identify frequency regimes relatively free of non-acoustic noise contamination, and then the active intensity (propagating energy) of the signal was computed between 4-10 kHz along three orthogonal directions, providing unambiguous bearing estimates of two sperm whales over time. These bearing estimates are consistent with those obtained via conventional methods, but the standard deviations of the vector sensor bearing estimates are twice those of the conventionally-derived bearings. The resolved ambiguities of the bearings deduced from vessel course changes match the vector sensor predictions. PMID:21110564

  17. Acoustic optic hybrid (AOH) sensor

    PubMed

    Matthews; Arrieta

    2000-09-01

    The ability of laser vibrometers to receive and process acoustic echoes from the water surface above a submerged target is established and evaluated. Sonar echoes from a submerged target are collected from the water surface by a laser vibrometer. Feasibility of this approach to sensing underwater sound is demonstrated. If the acoustic excitation at an otherwise undisturbed water surface is 195 to 168 dB re: 1 microPa, signal-to-noise ratio (SNR), at the vibrometer output, is shown to range from about 46 to 6 dB. Capillary waves and gravity waves at the water surface are expected and shown to have some destructive effect on the process of echo retrieval. A series of experiments to quantify the surface wave effects is described. The wave experiment results are reported. A successful attempt to acquire echoes from a submerged target over a grid of points for further processing into a three-dimensional image is made and described. The data acquisition and beamforming techniques constitute a three-dimensional, acoustic optic, synthetic aperture sonar (SAS). Beamformed images are included. For an aircraft towing acoustic sensors through the water with a mechanical link, this technique holds the promise of increased safety and improved fuel efficiency. PMID:11008811

  18. New Sensors For Flow Velocity And Acoustics

    NASA Technical Reports Server (NTRS)

    Cho, Y. C.

    1991-01-01

    Paper describes two sensor-development programs at Fluid Mechanics Laboratory at NASA Ames Research Center. One program for digital image velocimetry (DIV) sensors, and other program, for advanced acoustic sensors for wind tunnels. DIV measures, in real time, instantaneous velocity fields of time-varying flow or of collection of objects moving with varying velocities. Advanced acoustic sensors for wind tunnels being developed to reduce effects of interference from wind noise, noise from interactions between flows and sensors, flow-induced vibrations of sensors, deflections of accoustic waves by boundary layers induced by sensors, and reflections from walls and sensor supports.

  19. Wireless Sensor Array Network DoA Estimation from Compressed Array Data via Joint Sparse Representation.

    PubMed

    Yu, Kai; Yin, Ming; Luo, Ji-An; Wang, Yingguan; Bao, Ming; Hu, Yu-Hen; Wang, Zhi

    2016-01-01

    A compressive sensing joint sparse representation direction of arrival estimation (CSJSR-DoA) approach is proposed for wireless sensor array networks (WSAN). By exploiting the joint spatial and spectral correlations of acoustic sensor array data, the CSJSR-DoA approach provides reliable DoA estimation using randomly-sampled acoustic sensor data. Since random sampling is performed at remote sensor arrays, less data need to be transmitted over lossy wireless channels to the fusion center (FC), and the expensive source coding operation at sensor nodes can be avoided. To investigate the spatial sparsity, an upper bound of the coherence of incoming sensor signals is derived assuming a linear sensor array configuration. This bound provides a theoretical constraint on the angular separation of acoustic sources to ensure the spatial sparsity of the received acoustic sensor array signals. The Cram e ´ r-Rao bound of the CSJSR-DoA estimator that quantifies the theoretical DoA estimation performance is also derived. The potential performance of the CSJSR-DoA approach is validated using both simulations and field experiments on a prototype WSAN platform. Compared to existing compressive sensing-based DoA estimation methods, the CSJSR-DoA approach shows significant performance improvement. PMID:27223287

  20. Wireless Sensor Array Network DoA Estimation from Compressed Array Data via Joint Sparse Representation

    PubMed Central

    Yu, Kai; Yin, Ming; Luo, Ji-An; Wang, Yingguan; Bao, Ming; Hu, Yu-Hen; Wang, Zhi

    2016-01-01

    A compressive sensing joint sparse representation direction of arrival estimation (CSJSR-DoA) approach is proposed for wireless sensor array networks (WSAN). By exploiting the joint spatial and spectral correlations of acoustic sensor array data, the CSJSR-DoA approach provides reliable DoA estimation using randomly-sampled acoustic sensor data. Since random sampling is performed at remote sensor arrays, less data need to be transmitted over lossy wireless channels to the fusion center (FC), and the expensive source coding operation at sensor nodes can be avoided. To investigate the spatial sparsity, an upper bound of the coherence of incoming sensor signals is derived assuming a linear sensor array configuration. This bound provides a theoretical constraint on the angular separation of acoustic sources to ensure the spatial sparsity of the received acoustic sensor array signals. The Crame´r–Rao bound of the CSJSR-DoA estimator that quantifies the theoretical DoA estimation performance is also derived. The potential performance of the CSJSR-DoA approach is validated using both simulations and field experiments on a prototype WSAN platform. Compared to existing compressive sensing-based DoA estimation methods, the CSJSR-DoA approach shows significant performance improvement. PMID:27223287

  1. On Modeling Eavesdropping Attacks in Underwater Acoustic Sensor Networks †

    PubMed Central

    Wang, Qiu; Dai, Hong-Ning; Li, Xuran; Wang, Hao; Xiao, Hong

    2016-01-01

    The security and privacy of underwater acoustic sensor networks has received extensive attention recently due to the proliferation of underwater activities. This paper proposes an analytical model to investigate the eavesdropping attacks in underwater acoustic sensor networks. Our analytical framework considers the impacts of various underwater acoustic channel conditions (such as the acoustic signal frequency, spreading factor and wind speed) and different hydrophones (isotropic hydrophones and array hydrophones) in terms of network nodes and eavesdroppers. We also conduct extensive simulations to evaluate the effectiveness and the accuracy of our proposed model. Empirical results show that our proposed model is quite accurate. In addition, our results also imply that the eavesdropping probability heavily depends on both the underwater acoustic channel conditions and the features of hydrophones. PMID:27213379

  2. On Modeling Eavesdropping Attacks in Underwater Acoustic Sensor Networks.

    PubMed

    Wang, Qiu; Dai, Hong-Ning; Li, Xuran; Wang, Hao; Xiao, Hong

    2016-01-01

    The security and privacy of underwater acoustic sensor networks has received extensive attention recently due to the proliferation of underwater activities. This paper proposes an analytical model to investigate the eavesdropping attacks in underwater acoustic sensor networks. Our analytical framework considers the impacts of various underwater acoustic channel conditions (such as the acoustic signal frequency, spreading factor and wind speed) and different hydrophones (isotropic hydrophones and array hydrophones) in terms of network nodes and eavesdroppers. We also conduct extensive simulations to evaluate the effectiveness and the accuracy of our proposed model. Empirical results show that our proposed model is quite accurate. In addition, our results also imply that the eavesdropping probability heavily depends on both the underwater acoustic channel conditions and the features of hydrophones. PMID:27213379

  3. Construction of a Piezoresistive Neural Sensor Array

    NASA Technical Reports Server (NTRS)

    Carlson, W. B.; Schulze, W. A.; Pilgrim, P. M.

    1996-01-01

    The construction of a piezoresistive - piezoelectric sensor (or actuator) array is proposed using 'neural' connectivity for signal recognition and possible actuation functions. A closer integration of the sensor and decision functions is necessary in order to achieve intrinsic identification within the sensor. A neural sensor is the next logical step in development of truly 'intelligent' arrays. This proposal will integrate 1-3 polymer piezoresistors and MLC electroceramic devices for applications involving acoustic identification. The 'intelligent' piezoresistor -piezoelectric system incorporates printed resistors, composite resistors, and a feedback for the resetting of resistances. A model of a design is proposed in order to simulate electromechanical resistor interactions. The goal of optimizing a sensor geometry for improving device reliability, training, & signal identification capabilities is the goal of this work. At present, studies predict performance of a 'smart' device with a significant control of 'effective' compliance over a narrow pressure range due to a piezoresistor percolation threshold. An interesting possibility may be to use an array of control elements to shift the threshold function in order to change the level of resistance in a neural sensor array for identification, or, actuation applications. The proposed design employs elements of: (1) conductor loaded polymers for a 'fast' RC time constant response; and (2) multilayer ceramics for actuation or sensing and shifting of resistance in the polymer. Other material possibilities also exist using magnetoresistive layered systems for shifting the resistance. It is proposed to use a neural net configuration to test and to help study the possible changes required in the materials design of these devices. Numerical design models utilize electromechanical elements, in conjunction with structural elements in order to simulate piezoresistively controlled actuators and changes in resistance of sensors

  4. Adaptive and mobile ground sensor array.

    SciTech Connect

    Holzrichter, Michael Warren; O'Rourke, William T.; Zenner, Jennifer; Maish, Alexander B.

    2003-12-01

    The goal of this LDRD was to demonstrate the use of robotic vehicles for deploying and autonomously reconfiguring seismic and acoustic sensor arrays with high (centimeter) accuracy to obtain enhancement of our capability to locate and characterize remote targets. The capability to accurately place sensors and then retrieve and reconfigure them allows sensors to be placed in phased arrays in an initial monitoring configuration and then to be reconfigured in an array tuned to the specific frequencies and directions of the selected target. This report reviews the findings and accomplishments achieved during this three-year project. This project successfully demonstrated autonomous deployment and retrieval of a payload package with an accuracy of a few centimeters using differential global positioning system (GPS) signals. It developed an autonomous, multisensor, temporally aligned, radio-frequency communication and signal processing capability, and an array optimization algorithm, which was implemented on a digital signal processor (DSP). Additionally, the project converted the existing single-threaded, monolithic robotic vehicle control code into a multi-threaded, modular control architecture that enhances the reuse of control code in future projects.

  5. Improved Calibration Of Acoustic Plethysmographic Sensors

    NASA Technical Reports Server (NTRS)

    Zuckerwar, Allan J.; Davis, David C.

    1993-01-01

    Improved method of calibration of acoustic plethysmographic sensors involves acoustic-impedance test conditions like those encountered in use. Clamped aluminum tube holds source of sound (hydrophone) inside balloon. Test and reference sensors attached to outside of balloon. Sensors used to measure blood flow, blood pressure, heart rate, breathing sounds, and other vital signs from surfaces of human bodies. Attached to torsos or limbs by straps or adhesives.

  6. Performance Analysis of ICA in Sensor Array

    PubMed Central

    Cai, Xin; Wang, Xiang; Huang, Zhitao; Wang, Fenghua

    2016-01-01

    As the best-known scheme in the field of Blind Source Separation (BSS), Independent Component Analysis (ICA) has been intensively used in various domains, including biomedical and acoustics applications, cooperative or non-cooperative communication, etc. While sensor arrays are involved in most of the applications, the influence on the performance of ICA of practical factors therein has not been sufficiently investigated yet. In this manuscript, the issue is researched by taking the typical antenna array as an illustrative example. Factors taken into consideration include the environment noise level, the properties of the array and that of the radiators. We analyze the analytic relationship between the noise variance, the source variance, the condition number of the mixing matrix and the optimal signal to interference-plus-noise ratio, as well as the relationship between the singularity of the mixing matrix and practical factors concerned. The situations where the mixing process turns (nearly) singular have been paid special attention to, since such circumstances are critical in applications. Results and conclusions obtained should be instructive when applying ICA algorithms on mixtures from sensor arrays. Moreover, an effective countermeasure against the cases of singular mixtures has been proposed, on the basis of previous analysis. Experiments validating the theoretical conclusions as well as the effectiveness of the proposed scheme have been included. PMID:27164100

  7. Performance Analysis of ICA in Sensor Array.

    PubMed

    Cai, Xin; Wang, Xiang; Huang, Zhitao; Wang, Fenghua

    2016-01-01

    As the best-known scheme in the field of Blind Source Separation (BSS), Independent Component Analysis (ICA) has been intensively used in various domains, including biomedical and acoustics applications, cooperative or non-cooperative communication, etc. While sensor arrays are involved in most of the applications, the influence on the performance of ICA of practical factors therein has not been sufficiently investigated yet. In this manuscript, the issue is researched by taking the typical antenna array as an illustrative example. Factors taken into consideration include the environment noise level, the properties of the array and that of the radiators. We analyze the analytic relationship between the noise variance, the source variance, the condition number of the mixing matrix and the optimal signal to interference-plus-noise ratio, as well as the relationship between the singularity of the mixing matrix and practical factors concerned. The situations where the mixing process turns (nearly) singular have been paid special attention to, since such circumstances are critical in applications. Results and conclusions obtained should be instructive when applying ICA algorithms on mixtures from sensor arrays. Moreover, an effective countermeasure against the cases of singular mixtures has been proposed, on the basis of previous analysis. Experiments validating the theoretical conclusions as well as the effectiveness of the proposed scheme have been included. PMID:27164100

  8. An Integrated ISFET Sensor Array

    PubMed Central

    Nakazato, Kazuo

    2009-01-01

    A monolithically integrated ISFET sensor array and interface circuit are described. A new high-density, low-power source-drain follower was developed for the sensor array. ISFETs were formed by depositing Au/Ti extended-gate electrodes on standard MOSFETs, then thin silicon nitride layers using catalytic chemical vapor deposition and/or SU-8 protective layers were formed on the extended-gate electrodes. Applications for the array include: (1) pH detection by statistical distribution observing time and space fluctuations; (2) DNA detection using thiol-modified or silane-coupled oligonucleotides; (3) bio-image sensing by converting photons to electrons using Photosystem I of Thermosynechococcus elongatus, and sensing the converted electric charges by ISFETs. PMID:22291539

  9. Acoustic sensors in the helmet detect voice and physiology

    NASA Astrophysics Data System (ADS)

    Scanlon, Michael V.

    2003-09-01

    The Army Research Laboratory has developed body-contacting acoustic sensors that detect diverse physiological sounds such as heartbeats and breaths, high quality speech, and activity. These sensors use an acoustic impedance-matching gel contained in a soft, compliant pad to enhance the body borne sounds, yet significantly repel airborne noises due to an acoustic impedance mismatch. The signals from such a sensor can be used as a microphone with embedded physiology, or a dedicated digital signal processor can process packetized data to separate physiological parameters from voice, and log parameter trends for performance surveillance. Acoustic sensors were placed inside soldier helmets to monitor voice, physiology, activity, and situational awareness clues such as bullet shockwaves from sniper activity and explosions. The sensors were also incorporated into firefighter breathing masks, neck and wrist straps, and other protective equipment. Heart rate, breath rate, blood pressure, voice and activity can be derived from these sensors (reports at www.arl.army.mil/acoustics). Having numerous sensors at various locations provides a means for array processing to reduce motion artifacts, calculate pulse transit time for passive blood pressure measurement, and the origin of blunt/penetrating traumas such as ballistic wounding. These types of sensors give us the ability to monitor soldiers and civilian emergency first-responders in demanding environments, and provide vital signs information to assess their health status and how that person is interacting with the environment and mission at hand. The Objective Force Warrior, Scorpion, Land Warrior, Warrior Medic, and other military and civilian programs can potentially benefit from these sensors.

  10. Comparison study of time reversal OFDM acoustic communication with vector and scalar sensors

    NASA Astrophysics Data System (ADS)

    Wang, Zhongkang; Zhang, Hongtao; Xie, Zhe

    2012-11-01

    To compare the performance of time reversal orthogonal frequency division multiplexing (OFDM) acoustic communication on vector and scalar sensors, the vector and scalar acoustic fields were modeled. Time reversal OFDM acoustic communication was then simulated for each sensor type. These results are compared with data from the CAPEx'09 experiment. The abilityof particle velocity channels to achieve reliable acoustic communication, as predicted by the model, is confirmed with the experiment data. Experimental results show that vector receivers can reduce the required array size, in comparisonto hydrophone arrays, whileproviding comparable communication performance.

  11. Acoustic emission sensor radiation damage threshold experiment

    SciTech Connect

    Beeson, K.M.; Pepper, C.E.

    1994-09-01

    Determination of the threshold for damage to acoustic emission sensors exposed to radiation is important in their application to leak detection in radioactive waste transport and storage. Proper response to system leaks is necessary to ensure the safe operation of these systems. A radiation impaired sensor could provide ``false negative or false positive`` indication of acoustic signals from leaks within the system. Research was carried out in the Radiochemical Technology Division at Oak Ridge National Laboratory to determine the beta/gamma radiation damage threshold for acoustic emission sensor systems. The individual system consisted of an acoustic sensor mounted with a two part epoxy onto a stainless steel waveguide. The systems were placed in an irradiation fixture and exposed to a Cobalt-60 source. After each irradiation, the sensors were recalibrated by Physical Acoustics Corporation. The results were compared to the initial calibrations performed prior to irradiation and a control group, not exposed to radiation, was used to validate the results. This experiment determines the radiation damage threshold of each acoustic sensor system and verifies its life expectancy, usefulness and reliability for many applications in radioactive environments.

  12. Vertically integrated sensor array technology for unattended sensor networks (Keynote Address)

    NASA Astrophysics Data System (ADS)

    Balcerak, Raymond; Thurston, John; Breedlove, Jonathan

    2005-05-01

    The increasing need for unattended sensor networks drives individual sensor development, signal processing for network management, and communication technology. The application space is becoming more complex, with requirements for sensor networks in force protection; surveillance of large expanses of rugged terrain; and monitoring complex urban areas. Individual sensors exhibit excellent performance and include a wide variety of sensing modes, such as acoustic, electro-optical imaging, seismic, and radio frequency devices. These sensors continue to shrink with packaging, while applications continue to demand more of the sensor technology. Although single imaging arrays, which are available in spectral bands from the visible through the infrared, can be integrated into packages size as small as a cubic inch, the information from a single sensor is not sufficient to meet requirements for day/night, all-weather operation. This has driven the need for integration of multiple sensors into the compact packages intended for an individual sensor. A major step toward addressing the need for more effective sensor technology for unattended sensor networks is being taken through development of Vertically Integrated Sensor Array (VISA) technology. This technology, currently being developed for imaging sensors, builds multiple layers of signal processing at each pixel in the sensor array. Processing power is dramatically increased, allowing the integration of multiple sensors in small compact packages. This paper reviews the VISA approach to imaging sensors and describes applications for unattended sensors.

  13. Vertical Acoustic Arrays in the Deep Ocean

    NASA Astrophysics Data System (ADS)

    Fisher, F.

    2002-12-01

    The R/P FLIP has made possible the deployments of vertical arrays to study sound propagation and ambient noise in the deep ocean in ways never before possible from existing research vessels. Long vertical arrays can be deployed without the flow noise contamination from platform motion, long a bane for making such studies. The vertical stability of FLIP combined with the deep mooring capability developed by Earl D. Bronson made it possible to deploy multi-element arrays beginning with a versatile 20 element array with variable spacing developed by Bill Whitney in Fred Spiess's group. The 20 element array consisted of bungee mounted hydrophones in metal cages at either uniform spacing or variable spacing to meet directivity or other requirements. It was assembled on station in the vertical and deployed to the desired depths for the elements. Gerald Morris at MPL conducted ambient noise studies using variable spacing of the elements to below the critical depth as well as in the water column above. Vic Anderson used it for his DIMUS processing system for detecting low level signals masked by ambient noise. As a 500 meter array, I used it for a series of CONTRACK (Continuous Tracking of signals at long range) experiments to resolve multipaths so they wouldn't interfere with one another. The VEKA vertical array developed by Rick Swenson of NORDA was deployed in very deep (below 3300 m) water by Dan Ramsdale of NORDA using the winch and double lay armored cable on FLIP, the same cable system for the MPL 20 element array. In my group Bruce Williams designed a rapidly deployable array to study vertical anisotropy of ambient noise as a function of range from near shore shipping via downslope conversion in a series of 48 hours FLIP stations 350, 1000 and 1500 miles from the Pacific coast. A short 120 element array, 1000 meters long, was built by John Hildebrands's group for a test of matched field processing and the SLICE experiment in acoustic tomography research of Peter

  14. Integrated uncooled array IR sensors

    NASA Astrophysics Data System (ADS)

    Pevtsov, Eugeny P.; Elkin, Eugeny G.; Pospelova, Marina A.

    1997-08-01

    Technologies enabling low-dissipation designs for uncooled array IR sensors are offered. The technique involves the etching of special buffer layers from under a 1-micrometers membrane followed by deposition of an IR-sensitive film and electrode structure. The electrical and physical properties of plumbum-zirconate-titanate, barium titanate, tetraaminodiphenyl, polyvinylidene fluoride pyroelectric films are compared. A circuit for sensing pyroelectric signals in a CCD is considered.

  15. Thermal microphotonic sensor and sensor array

    DOEpatents

    Watts, Michael R.; Shaw, Michael J.; Nielson, Gregory N.; Lentine, Anthony L.

    2010-02-23

    A thermal microphotonic sensor is disclosed for detecting infrared radiation using heat generated by the infrared radiation to shift the resonant frequency of an optical resonator (e.g. a ring resonator) to which the heat is coupled. The shift in the resonant frequency can be determined from light in an optical waveguide which is evanescently coupled to the optical resonator. An infrared absorber can be provided on the optical waveguide either as a coating or as a plate to aid in absorption of the infrared radiation. In some cases, a vertical resonant cavity can be formed about the infrared absorber to further increase the absorption of the infrared radiation. The sensor can be formed as a single device, or as an array for imaging the infrared radiation.

  16. Wireless Multiplexed Surface Acoustic Wave Sensors Project

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert C.

    2014-01-01

    Wireless Surface Acoustic Wave (SAW) Sensor is a new technology for obtaining multiple, real-time measurements under extreme environmental conditions. This project plans to develop a wireless multiplexed sensor system that uses SAW sensors, with no batteries or semiconductors, that are passive and rugged, can operate down to cryogenic temperatures and up to hundreds of degrees C, and can be used to sense a wide variety of parameters over reasonable distances (meters).

  17. Acoustic sensors using microstructures tunable with energy other than acoustic energy

    DOEpatents

    Datskos, Panagiotis G.

    2005-06-07

    A sensor for detecting acoustic energy includes a microstructure tuned to a predetermined acoustic frequency and a device for detecting movement of the microstructure. A display device is operatively linked to the movement detecting device. When acoustic energy strikes the acoustic sensor, acoustic energy having a predetermined frequency moves the microstructure, where the movement is detected by the movement detecting device.

  18. Acoustic sensors using microstructures tunable with energy other than acoustic energy

    DOEpatents

    Datskos, Panagiotis G.

    2003-11-25

    A sensor for detecting acoustic energy includes a microstructure tuned to a predetermined acoustic frequency and a device for detecting movement of the microstructure. A display device is operatively linked to the movement detecting device. When acoustic energy strikes the acoustic sensor, acoustic energy having a predetermined frequency moves the microstructure, where the movement is detected by the movement detecting device.

  19. Acoustic transmission through compound subwavelength slit arrays

    NASA Astrophysics Data System (ADS)

    Ward, G. P.; Hibbins, A. P.; Sambles, J. R.; Smith, J. D.

    2016-07-01

    The angular dependence of the transmission of sound in air through four types of two-dimensional slit arrays formed of aluminium slats is explored, both experimentally and numerically. For a simple, subwavelength periodic slit array, it is well known that Fabry-Perot-like waveguide resonances, supported by the slit cavities, coupled to diffracted evanescent waves, result in enhanced acoustic transmission at frequencies determined by the length, width, and separation of each slit cavity. We demonstrate that altering the spacing or width of some of the slits to form a compound array (i.e., an array having a basis comprised of more than one slit) results in sharp dips in the transmission spectra, which may have a strong angular dependence. These features correspond to phase resonances, which have been studied extensively in the electromagnetic case. This geometry allows for additional near-field configurations compared to the simple array, whereby the field in adjacent cavities can be out of phase. Several types of compound slit arrays are investigated; one such structure is optimized to minimize the effect of boundary-layer loss mechanisms present in each slit cavity, thereby achieving a deep, sharp transmission minimum in a broad maximum.

  20. The design of a broadband ocean acoustic laboratory: detailed examination of vector sensor performance

    NASA Astrophysics Data System (ADS)

    Carpenter, Robert; Silvia, Manuel; Cray, Benjamin A.

    2006-05-01

    Acoustic vector sensors measure the acoustic pressure and three orthogonal components of the acoustic particle acceleration at a single point in space. These sensors, and arrays composed of them, have a number of advantages over traditional hydrophone arrays. This includes full azimuth/elevation angle estimation, even with a single sensor. It is of interest to see how in-water vector sensor performance matches theoretical bounds. A series of experiments designed to characterize the performance of vector sensors operating in shallow water was conducted to assess sensor mounting techniques, and evaluate the sensor's ability to measure bearing and elevation angles to a source as a function of waveform characteristics and signal-to-noise ratio.

  1. Wavelet Analysis for Acoustic Phased Array

    NASA Astrophysics Data System (ADS)

    Kozlov, Inna; Zlotnick, Zvi

    2003-03-01

    Wavelet spectrum analysis is known to be one of the most powerful tools for exploring quasistationary signals. In this paper we use wavelet technique to develop a new Direction Finding (DF) Algorithm for the Acoustic Phased Array (APA) systems. Utilising multi-scale analysis of libraries of wavelets allows us to work with frequency bands instead of individual frequency of an acoustic source. These frequency bands could be regarded as features extracted from quasistationary signals emitted by a noisy object. For detection, tracing and identification of a sound source in a noisy environment we develop smart algorithm. The essential part of this algorithm is a special interacting procedure of the above-mentioned DF-algorithm and the wavelet-based Identification (ID) algorithm developed in [4]. Significant improvement of the basic properties of a receiving APA pattern is achieved.

  2. Nanowire sensor, sensor array, and method for making the same

    NASA Technical Reports Server (NTRS)

    Yun, Minhee (Inventor); Myung, Nosang (Inventor); Vasquez, Richard (Inventor); Homer, Margie (Inventor); Ryan, Margaret (Inventor); Yen, Shiao-Pin (Inventor); Fleurial, Jean-Pierre (Inventor); Bugga, Ratnakumar (Inventor); Choi, Daniel (Inventor); Goddard, William (Inventor)

    2012-01-01

    The present invention relates to a nanowire sensor and method for forming the same. More specifically, the nanowire sensor comprises at least one nanowire formed on a substrate, with a sensor receptor disposed on a surface of the nanowire, thereby forming a receptor-coated nanowire. The nanowire sensor can be arranged as a sensor sub-unit comprising a plurality of homogeneously receptor-coated nanowires. A plurality of sensor subunits can be formed to collectively comprise a nanowire sensor array. Each sensor subunit in the nanowire sensor array can be formed to sense a different stimulus, allowing a user to sense a plurality of stimuli. Additionally, each sensor subunit can be formed to sense the same stimuli through different aspects of the stimulus. The sensor array is fabricated through a variety of techniques, such as by creating nanopores on a substrate and electrodepositing nanowires within the nanopores.

  3. Phase behaviour and phase separation kinetics measurement using acoustic arrays

    NASA Astrophysics Data System (ADS)

    Khammar, M.; Shaw, J. M.

    2011-10-01

    Speed of sound and acoustic wave attenuation are sensitive to fluid phase composition and to the presence of liquid-liquid interfaces. In this work, the use of an acoustic array comprising 64 elements as a non-intrusive sensor for liquid-liquid interface, phase separation kinetics measurement in bulk fluids, and local composition measurement in porous media is illustrated. Three benchmark examples: the phase behaviour of methanol + mixed hexanes and methanol + heptane mixtures at 25.0 °C and 1 bar, and Athabasca bitumen + heptane in a synthetic silica porous medium at 22.5 °C and 1 bar, illustrate the accuracy of liquid-liquid interface and potential research and industrial applications of the technique. Liquid-liquid interfaces can be detected independently using both speed of sound and acoustic wave attenuation measurements. The precision of the interface location measurement is 300 μm. As complete scans can be performed at a rate of 1 Hz, phase separation kinetics and diffusion of liquids within porous media are readily tracked. The technique is expected to find application where the fluids or porous media are opaque to visible light and where other imaging techniques are not readily applied, or are too costly. A current limitation is that the acoustic probes must be cooled to less than 315 K in order for them to operate.

  4. Vertically integrated sensor arrays: VISA

    NASA Astrophysics Data System (ADS)

    Horn, Stuart B.; Norton, Paul R.; Carson, Kent R.; Eden, Richard C.; Clement, Russel E.

    2004-08-01

    The VISA program has been sponsored by DARPA to enable a significant enhancement in signal conditioning, processing, and digitalization on the focal plane of visible and infrared sensors. The approach being developed builds on the traditional "hybrid" structure of a detector with a 2D array of indium-bump interconnects to a silicon readout. VISA will allow additional layers of silicon processing chips to be connected below the readout to provide more complex functionality. Connections will be fully arrayed two-dimensionally with one or more vias per pixel possible. The structural overview will be presented along with several application candidates that appear to be most promising to exploit this technology. These include active/passive sensors, expanded charge storage capacity for full flux utilization in the LWIR, cameras on a chip, high speed sub-frame collection to defeat pulsed laser interference, together with digital output with greater bit depth than currently possible from analog outputs. An A/D candidate circuit to achieve this performance within each pixel will be described.

  5. Multipurpose Acoustic Sensor for Downhole Fluid Monitoring

    SciTech Connect

    Pantea, Cristian

    2012-05-04

    The projects objectives and purpose are to: (1) development a multipurpose acoustic sensor for downhole fluid monitoring in Enhanced Geothermal Systems (EGS) reservoirs over typical ranges of pressures and temperatures and demonstrate its capabilities and performance for different EGS systems; (2) determine in real-time and in a single sensor package several parameters - temperature, pressure, fluid flow and fluid properties; (3) needed in nearly every phase of an EGS project, including Testing of Injection and Production Wells, Reservoir Validation, Inter-well Connectivity, Reservoir Scale Up and Reservoir Sustainability. (4) Current sensors are limited to operating at lower temperatures, but the need is for logging at high temperatures. The present project deals with the development of a novel acoustic-based sensor that can work at temperatures up to 374 C, in inhospitable environments.

  6. Robotic vehicle uses acoustic sensors for voice detection and diagnostics

    NASA Astrophysics Data System (ADS)

    Young, Stuart H.; Scanlon, Michael V.

    2000-07-01

    An acoustic sensor array that cues an imaging system on a small tele- operated robotic vehicle was used to detect human voice and activity inside a building. The advantage of acoustic sensors is that it is a non-line of sight (NLOS) sensing technology that can augment traditional LOS sensors such as visible and IR cameras. Acoustic energy emitted from a target, such as from a person, weapon, or radio, will travel through walls and smoke, around corners, and down corridors, whereas these obstructions would cripple an imaging detection system. The hardware developed and tested used an array of eight microphones to detect the loudest direction and automatically setter a camera's pan/tilt toward the noise centroid. This type of system has applicability for counter sniper applications, building clearing, and search/rescue. Data presented will be time-frequency representations showing voice detected within rooms and down hallways at various ranges. Another benefit of acoustics is that it provides the tele-operator some situational awareness clues via low-bandwidth transmission of raw audio data for the operator to interpret with either headphones or through time-frequency analysis. This data can be useful to recognize familiar sounds that might indicate the presence of personnel, such as talking, equipment, movement noise, etc. The same array also detects the sounds of the robot it is mounted on, and can be useful for engine diagnostics and trouble shooting, or for self-noise emanations for stealthy travel. Data presented will characterize vehicle self noise over various surfaces such as tiles, carpets, pavement, sidewalk, and grass. Vehicle diagnostic sounds will indicate a slipping clutch and repeated unexpected application of emergency braking mechanism.

  7. Acoustic composition sensor for cryogenic gas mixtures

    NASA Technical Reports Server (NTRS)

    Shakkottai, P.; Kwack, E. Y.; Luchik, T. S.; Back, L. H.

    1991-01-01

    An acoustic sensor useful for the determination of the composition of a gaseous binary mixture in cryogenic liquid spills has been characterized. One version of the instrument traps a known mixture of helium and nitrogen at ambient temperature in a tube which is interrogated by sonic pulses to determine the speed of sound and hence the composition. Experimental data shows that this sensor is quite accurate. The second version uses two unconfined microphones which sense sound pulses. Experimental data acquired during mixing when liquid nitrogen is poured into a vessel of gaseous helium is presented. Data during transient cooling of the tubular sensor containing nitrogen when the sensor is dipped into liquid nitrogen and during transient warm-up when the sensor is withdrawn are also presented. This sensor is being developed for use in the mixing of liquid cryogens with gas evolution in the simulation of liquid hydrogen/liquid oxygen explosion hazards.

  8. Simulation of detection and beamforming with acoustical ground sensors

    NASA Astrophysics Data System (ADS)

    Wilson, D. Keith; Sadler, Brian M.; Pham, Tien

    2002-08-01

    An interactive platform has been developed for simulating the detection and direction-finding performance of battlefield acoustic ground sensors. The simulations use the Acoustic Battlefield Aid (ABFA) as a computational engine to determine the signal propagation and resulting frequency-domain signal characteristics at the receiving sensor array. There are three components to the propagation predictions: the transmission loss (signal attenuation from target to sensor), signal saturation (degree of signal randomization), and signal coherence across the beamforming array. The transmission loss is predicted with a parabolic solution to the wave equation that accounts for sound refraction and ground interactions; signal saturation and coherence are predicted from the theory for line-of-sight wave propagation through turbulence. Based on these calculations, random frequency-domain signal samples are generated. The signal samples are then mixed with noise and fed to the selected detection or beamforming algorithm. After averaging over a number of trials, results are overlaid on a terrain map to show the sensor coverage. Currently available algorithms include the Neyman-Pearson criterion and Bayes risk minimization for detection, and the conventional, MVDR, and MUSIC beamformers. Users can readily add their own algorithms through a 'plug-in' interface. The interface requires only a text file listing the algorithm parameters and defaults, and a Matlab routine or Windows dynamic link library that implements the algorithm.

  9. Surface acoustic wave oxygen sensor

    NASA Technical Reports Server (NTRS)

    Collman, James P.; Oglesby, Donald M.; Upchurch, Billy T.; Leighty, Bradley D.; Zhang, Xumu; Herrmann, Paul C.

    1994-01-01

    A surface acoustic wave (SAW) device that responds to oxygen pressure was developed by coating a 158 MHz quartz surface acoustic wave (SAW) device with an oxygen binding agent. Two types of coatings were used. One type was prepared by dissolving an oxygen binding agent in a toluene solution of a copolymer containing the axial ligand. A second type was prepared with an oxygen binding porphyrin solution containing excess axial ligand without a polymer matrix. In the polymer based coatings, the copolymer served to provide the axial ligand to the oxygen binding agent and as a coating matrix on the surface of the SAW device. The oxygen sensing SAW device has been shown to bind oxygen following a Langmuir isotherm and may be used to measure the equilibrium constant of the oxygen binding compound in the coating matrix.

  10. Acoustic emission location on aluminum alloy structure by using FBG sensors and PSO method

    NASA Astrophysics Data System (ADS)

    Lu, Shizeng; Jiang, Mingshun; Sui, Qingmei; Dong, Huijun; Sai, Yaozhang; Jia, Lei

    2016-04-01

    Acoustic emission location is important for finding the structural crack and ensuring the structural safety. In this paper, an acoustic emission location method by using fiber Bragg grating (FBG) sensors and particle swarm optimization (PSO) algorithm were investigated. Four FBG sensors were used to form a sensing network to detect the acoustic emission signals. According to the signals, the quadrilateral array location equations were established. By analyzing the acoustic emission signal propagation characteristics, the solution of location equations was converted to an optimization problem. Thus, acoustic emission location can be achieved by using an improved PSO algorithm, which was realized by using the information fusion of multiple standards PSO, to solve the optimization problem. Finally, acoustic emission location system was established and verified on an aluminum alloy plate. The experimental results showed that the average location error was 0.010 m. This paper provided a reliable method for aluminum alloy structural acoustic emission location.

  11. Longitudinal bulk acoustic mass sensor

    SciTech Connect

    Hales, J. H.; Teva, J.; Boisen, A.; Davis, Z. J.

    2009-07-20

    A polycrystalline silicon longitudinal bulk acoustic cantilever is fabricated and operated in air at 51 MHz. A mass sensitivity of 100 Hz/fg (1 fg=10{sup -15} g) is obtained from the preliminary experiments where a minute mass is deposited on the device by means of focused ion beam. The total noise in the currently applied measurement system allows for a minimum detectable mass of 0.5 fg in air.

  12. Photo sensor array technology development

    NASA Technical Reports Server (NTRS)

    Rossman, M. W.; Young, V. F.; Beall, J. R.

    1977-01-01

    The development of an improved capability photo sensor array imager for use in a Viking '75 type facsimile camera is presented. This imager consists of silicon photodiodes and lead sulfide detectors to cover a spectral range from 0.4 to 2.7 microns. An optical design specifying filter configurations and convergence angles is described. Three electronics design approaches: AC-chopped light, DC-dual detector, and DC-single detector, are investigated. Experimental and calculated results are compared whenever possible using breadboard testing and tolerance analysis techniques. Results show that any design used must be forgiving of the relative instability of lead sulfide detectors. A final design using lead sulfide detectors and associated electronics is implemented by fabrication of a hybrid prototype device. Test results of this device show a good agreement with calculated values.

  13. Electret Acoustic Transducer Array For Computerized Ultrasound Risk Evaluation System

    DOEpatents

    Moore, Thomas L.; Fisher, Karl A.

    2005-08-09

    An electret-based acoustic transducer array is provided and may be used in a system for examining tissue. The acoustic transducer array is formed with a substrate that has a multiple distinct cells formed therein. Within each of the distinct cells is positioned an acoustic transducing element formed of an electret material. A conductive membrane is formed over the distinct cells and may be flexible.

  14. Development of an accelerometer-based underwater acoustic intensity sensor

    NASA Astrophysics Data System (ADS)

    Kim, Kang; Gabrielson, Thomas B.; Lauchle, Gerald C.

    2004-12-01

    An underwater acoustic intensity sensor is described. This sensor derives acoustic intensity from simultaneous, co-located measurement of the acoustic pressure and one component of the acoustic particle acceleration vector. The sensor consists of a pressure transducer in the form of a hollow piezoceramic cylinder and a pair of miniature accelerometers mounted inside the cylinder. Since this sensor derives acoustic intensity from measurement of acoustic pressure and acoustic particle acceleration, it is called a p-a intensity probe. The sensor is ballasted to be nearly neutrally buoyant. It is desirable for the accelerometers to measure only the rigid body motion of the assembled probe and for the effective centers of the pressure sensor and accelerometer to be coincident. This is achieved by symmetric disposition of a pair of accelerometers inside the ceramic cylinder. The response of the intensity probe is determined by comparison with a reference hydrophone in a predominantly reactive acoustic field. .

  15. Surface Acoustic Wave (SAW) Vibration Sensors

    PubMed Central

    Filipiak, Jerzy; Solarz, Lech; Steczko, Grzegorz

    2011-01-01

    In the paper a feasibility study on the use of surface acoustic wave (SAW) vibration sensors for electronic warning systems is presented. The system is assembled from concatenated SAW vibration sensors based on a SAW delay line manufactured on a surface of a piezoelectric plate. Vibrations of the plate are transformed into electric signals that allow identification of the sensor and localization of a threat. The theoretical study of sensor vibrations leads us to the simple isotropic model with one degree of freedom. This model allowed an explicit description of the sensor plate movement and identification of the vibrating sensor. Analysis of frequency response of the ST-cut quartz sensor plate and a damping speed of its impulse response has been conducted. The analysis above was the basis to determine the ranges of parameters for vibrating plates to be useful in electronic warning systems. Generally, operation of electronic warning systems with SAW vibration sensors is based on the analysis of signal phase changes at the working frequency of delay line after being transmitted via two circuits of concatenated four-terminal networks. Frequencies of phase changes are equal to resonance frequencies of vibrating plates of sensors. The amplitude of these phase changes is proportional to the amplitude of vibrations of a sensor plate. Both pieces of information may be sent and recorded jointly by a simple electrical unit. PMID:22247694

  16. Surface acoustic wave (SAW) vibration sensors.

    PubMed

    Filipiak, Jerzy; Solarz, Lech; Steczko, Grzegorz

    2011-01-01

    In the paper a feasibility study on the use of surface acoustic wave (SAW) vibration sensors for electronic warning systems is presented. The system is assembled from concatenated SAW vibration sensors based on a SAW delay line manufactured on a surface of a piezoelectric plate. Vibrations of the plate are transformed into electric signals that allow identification of the sensor and localization of a threat. The theoretical study of sensor vibrations leads us to the simple isotropic model with one degree of freedom. This model allowed an explicit description of the sensor plate movement and identification of the vibrating sensor. Analysis of frequency response of the ST-cut quartz sensor plate and a damping speed of its impulse response has been conducted. The analysis above was the basis to determine the ranges of parameters for vibrating plates to be useful in electronic warning systems. Generally, operation of electronic warning systems with SAW vibration sensors is based on the analysis of signal phase changes at the working frequency of delay line after being transmitted via two circuits of concatenated four-terminal networks. Frequencies of phase changes are equal to resonance frequencies of vibrating plates of sensors. The amplitude of these phase changes is proportional to the amplitude of vibrations of a sensor plate. Both pieces of information may be sent and recorded jointly by a simple electrical unit. PMID:22247694

  17. Analog circuit for controlling acoustic transducer arrays

    DOEpatents

    Drumheller, Douglas S.

    1991-01-01

    A simplified ananlog circuit is presented for controlling electromechanical transducer pairs in an acoustic telemetry system. The analog circuit of this invention comprises a single electrical resistor which replaces all of the digital components in a known digital circuit. In accordance with this invention, a first transducer in a transducer pair of array is driven in series with the resistor. The voltage drop across this resistor is then amplified and used to drive the second transducer. The voltage drop across the resistor is proportional and in phase with the current to the transducer. This current is approximately 90 degrees out of phase with the driving voltage to the transducer. This phase shift replaces the digital delay required by the digital control circuit of the prior art.

  18. Acoustic and vibration performance evaluations of a velocity sensing hull array

    SciTech Connect

    Cray, B.A.; Christman, R.A.

    1996-04-01

    Acoustic and vibration measurements were conducted at the Naval Undersea Warfare Center{close_quote}s Seneca Lake Facility to investigate the {ital in} {ital situ} signal response of a linear array of velocity sensors (sensors that measure either acoustic particle acceleration, velocity, or displacement have generically been denoted as {ital velocity} {ital sensors}) on a coating. The coating used at Seneca Lake consisted of air-voided elastomeric tiles with an overall coating thickness of approximately 3 inches. The accelerometer array and coating were mounted on the Seneca Lake Hull Fixture, which measures 33 feet lengthwise with an arc length of 20 feet. The fixture weighs approximately 30 tons. Specifically, measurements of {ital in} {ital situ} sensitivity, velocity reduction, reflection gain, array beam response, and equivalent planewave self-noise levels are presented. {copyright} {ital 1996 American Institute of Physics.}

  19. A Large Scale Virtual Gas Sensor Array

    NASA Astrophysics Data System (ADS)

    Ziyatdinov, Andrey; Fernández-Diaz, Eduard; Chaudry, A.; Marco, Santiago; Persaud, Krishna; Perera, Alexandre

    2011-09-01

    This paper depicts a virtual sensor array that allows the user to generate gas sensor synthetic data while controlling a wide variety of the characteristics of the sensor array response: arbitrary number of sensors, support for multi-component gas mixtures and full control of the noise in the system such as sensor drift or sensor aging. The artificial sensor array response is inspired on the response of 17 polymeric sensors for three analytes during 7 month. The main trends in the synthetic gas sensor array, such as sensitivity, diversity, drift and sensor noise, are user controlled. Sensor sensitivity is modeled by an optionally linear or nonlinear method (spline based). The toolbox on data generation is implemented in open source R language for statistical computing and can be freely accessed as an educational resource or benchmarking reference. The software package permits the design of scenarios with a very large number of sensors (over 10000 sensels), which are employed in the test and benchmarking of neuromorphic models in the Bio-ICT European project NEUROCHEM.

  20. Development of a MEMS acoustic emission sensor system

    NASA Astrophysics Data System (ADS)

    Greve, David W.; Oppenheim, Irving J.; Wu, Wei; Wright, Amelia P.

    2007-04-01

    An improved multi-channel MEMS chip for acoustic emission sensing has been designed and fabricated in 2006 to create a device that is smaller in size, superior in sensitivity, and more practical to manufacture than earlier designs. The device, fabricated in the MUMPS process, contains four resonant-type capacitive transducers in the frequency range between 100 kHz and 500 kHz on a chip with an area smaller than 2.5 sq. mm. The completed device, with its circuit board, electronics, housing, and connectors, possesses a square footprint measuring 25 mm x 25 mm. The small footprint is an important attribute for an acoustic emission sensor, because multiple sensors must typically be arrayed around a crack location. Superior sensitivity was achieved by a combination of four factors: the reduction of squeeze film damping, a resonant frequency approximating a rigid body mode rather than a bending mode, a ceramic package providing direct acoustic coupling to the structural medium, and high-gain amplifiers implemented on a small circuit board. Manufacture of the system is more practical because of higher yield (lower unit costs) in the MUMPS fabrication task and because of a printed circuit board matching the pin array of the MEMS chip ceramic package for easy assembly and compactness. The transducers on the MEMS chip incorporate two major mechanical improvements, one involving squeeze film damping and one involving the separation of resonance modes. For equal proportions of hole area to plate area, a triangular layout of etch holes reduces squeeze film damping as compared to the conventional square layout. The effect is modeled analytically, and is verified experimentally by characterization experiments on the new transducers. Structurally, the transducers are plates with spring supports; a rigid plate would be the most sensitive transducer, and bending decreases the sensitivity. In this chip, the structure was designed for an order-of-magnitude separation between the first

  1. NEMO-SMO acoustic array: A deep-sea test of a novel acoustic positioning system for a km3-scale underwater neutrino telescope

    NASA Astrophysics Data System (ADS)

    Viola, S.; Ardid, M.; Bertin, V.; Enzenhöfer, A.; Keller, P.; Lahmann, R.; Larosa, G.; Llorens, C. D.; NEMO Collaboration; SMO Collaboration

    2013-10-01

    Within the activities of the NEMO project, the installation of a 8-floors tower (NEMO-Phase II) at a depth of 3500 m is foreseen in 2012. The tower will be installed about 80 km off-shore Capo Passero, in Sicily. On board the NEMO tower, an array of 18 acoustic sensors will be installed, permitting acoustic detection of biological sources, studies for acoustic neutrino detection and primarily acoustic positioning of the underwater structures. For the latter purpose, the sensors register acoustic signals emitted by five acoustic beacons anchored on the sea-floor. The data acquisition system of the acoustic sensors is fully integrated with the detector data transport system and is based on an “all data to shore” philosophy. Signals coming from hydrophones are continuously sampled underwater at 192 kHz/24 bit and transmitted to shore through an electro-optical cable for real-time analysis. A novel technology for underwater GPS time-stamping of data has been implemented and tested. The operation of the acoustic array will permit long-term test of sensors and electronics technologies that are proposed for the acoustic positioning system of KM3NeT.

  2. Acoustic trapping with a high frequency linear phased array

    NASA Astrophysics Data System (ADS)

    Zheng, Fan; Li, Ying; Hsu, Hsiu-Sheng; Liu, Changgeng; Tat Chiu, Chi; Lee, Changyang; Ham Kim, Hyung; Shung, K. Kirk

    2012-11-01

    A high frequency ultrasonic phased array is shown to be capable of trapping and translating microparticles precisely and efficiently, made possible due to the fact that the acoustic beam produced by a phased array can be both focused and steered. Acoustic manipulation of microparticles by a phased array is advantageous over a single element transducer since there is no mechanical movement required for the array. Experimental results show that 45 μm diameter polystyrene microspheres can be easily and accurately trapped and moved to desired positions by a 64-element 26 MHz phased array.

  3. Detection of Volatile Organics Using a Surface Acoustic Wave Array System

    SciTech Connect

    ANDERSON, LAWRENCE F.; BARTHOLOMEW, JOHN W.; CERNOSEK, RICHARD W.; COLBURN, CHRISTOPHER W.; CROOKS, R.M.; MARTINEZ, R.F.; OSBOURN, GORDON C.; RICCO, A.J.; STATON, ALAN W.; YELTON, WILLIAM G.

    1999-10-14

    A chemical sensing system based on arrays of surface acoustic wave (SAW) delay lines has been developed for identification and quantification of volatile organic compounds (VOCs). The individual SAW chemical sensors consist of interdigital transducers patterned on the surface of an ST-cut quartz substrate to launch and detect the acoustic waves and a thin film coating in the SAW propagation path to perturb the acoustic wave velocity and attenuation during analyte sorption. A diverse set of material coatings gives the sensor arrays a degree of chemical sensitivity and selectivity. Materials examined for sensor application include the alkanethiol-based self-assembled monolayer, plasma-processed films, custom-synthesized conventional polymers, dendrimeric polymers, molecular recognition materials, electroplated metal thin films, and porous metal oxides. All of these materials target a specific chemical fi.mctionality and the enhancement of accessible film surface area. Since no one coating provides absolute analyte specificity, the array responses are further analyzed using a visual-empirical region-of-influence (VERI) pattern recognition algorithm. The chemical sensing system consists of a seven-element SAW array with accompanying drive and control electronics, sensor signal acquisition electronics, environmental vapor sampling hardware, and a notebook computer. Based on data gathered for individual sensor responses, greater than 93%-accurate identification can be achieved for any single analyte from a group of 17 VOCs and water.

  4. Analyzing Responses of Chemical Sensor Arrays

    NASA Technical Reports Server (NTRS)

    Zhou, Hanying

    2007-01-01

    NASA is developing a third-generation electronic nose (ENose) capable of continuous monitoring of the International Space Station s cabin atmosphere for specific, harmful airborne contaminants. Previous generations of the ENose have been described in prior NASA Tech Briefs issues. Sensor selection is critical in both (prefabrication) sensor material selection and (post-fabrication) data analysis of the ENose, which detects several analytes that are difficult to detect, or that are at very low concentration ranges. Existing sensor selection approaches usually include limited statistical measures, where selectivity is more important but reliability and sensitivity are not of concern. When reliability and sensitivity can be major limiting factors in detecting target compounds reliably, the existing approach is not able to provide meaningful selection that will actually improve data analysis results. The approach and software reported here consider more statistical measures (factors) than existing approaches for a similar purpose. The result is a more balanced and robust sensor selection from a less than ideal sensor array. The software offers quick, flexible, optimal sensor selection and weighting for a variety of purposes without a time-consuming, iterative search by performing sensor calibrations to a known linear or nonlinear model, evaluating the individual sensor s statistics, scoring the individual sensor s overall performance, finding the best sensor array size to maximize class separation, finding optimal weights for the remaining sensor array, estimating limits of detection for the target compounds, evaluating fingerprint distance between group pairs, and finding the best event-detecting sensors.

  5. Single-sensor multispeaker listening with acoustic metamaterials.

    PubMed

    Xie, Yangbo; Tsai, Tsung-Han; Konneker, Adam; Popa, Bogdan-Ioan; Brady, David J; Cummer, Steven A

    2015-08-25

    Designing a "cocktail party listener" that functionally mimics the selective perception of a human auditory system has been pursued over the past decades. By exploiting acoustic metamaterials and compressive sensing, we present here a single-sensor listening device that separates simultaneous overlapping sounds from different sources. The device with a compact array of resonant metamaterials is demonstrated to distinguish three overlapping and independent sources with 96.67% correct audio recognition. Segregation of the audio signals is achieved using physical layer encoding without relying on source characteristics. This hardware approach to multichannel source separation can be applied to robust speech recognition and hearing aids and may be extended to other acoustic imaging and sensing applications. PMID:26261314

  6. Single-sensor multispeaker listening with acoustic metamaterials

    PubMed Central

    Xie, Yangbo; Tsai, Tsung-Han; Konneker, Adam; Popa, Bogdan-Ioan; Brady, David J.; Cummer, Steven A.

    2015-01-01

    Designing a “cocktail party listener” that functionally mimics the selective perception of a human auditory system has been pursued over the past decades. By exploiting acoustic metamaterials and compressive sensing, we present here a single-sensor listening device that separates simultaneous overlapping sounds from different sources. The device with a compact array of resonant metamaterials is demonstrated to distinguish three overlapping and independent sources with 96.67% correct audio recognition. Segregation of the audio signals is achieved using physical layer encoding without relying on source characteristics. This hardware approach to multichannel source separation can be applied to robust speech recognition and hearing aids and may be extended to other acoustic imaging and sensing applications. PMID:26261314

  7. Exponential sensor array geometry and simulation

    NASA Technical Reports Server (NTRS)

    Weiman, Carl F. R.

    1988-01-01

    The polar exponential arrays whose geometric parameters are presently analyzed have proven superior to X-Y raster imaging sensors when wide FOV, high central resolution, and rotation- and zoom-invariance are required; attractive applications for such arrays are in spacecraft docking/tracking/stationkeeping and mobile robot navigation. Attention is given to optimal designs minimizing sensor configuration and computation requirements, and the relation of geometric parameters to the three-dimensional sensing precision requirements driving sensor design. A method for smooth patching of the 'blind-spot' singularity in the sensor with a uniformly high-resolution 'fovea' is also presented.

  8. Development of an unattended ground sensor array using piezoresistive sensors

    NASA Astrophysics Data System (ADS)

    Lee, Kelly; Gupta, Neelam; Sartain, Ronald B.

    2009-05-01

    This paper discusses the development of an Unattended Ground Sensor based on an array of pressure sensors designed to be buried in the ground. This sensor array, along with the required software (still under development), will have the ability to distinguish between humans and animals based on the size and shape of the foot print. The technology may also be applied to determine the weight and type of vehicle traveling on a road. The sensor array consists of pressure sensitive resistors (piezoresistors) on 0.8 inch centers printed on a sheet of polyimide film. Although very large arrays might one day be screen printed, the arrays for this study have been printed using a syringe dispenser and a precision x-y computer controlled table. For the preliminary development, the array has been sized to 8X10 inches. The piezoresistive properties of the sensors are discussed and preliminary test data is presented. It is shown that the piezoresistive gauge factor (ΔR/R/ΔL/L) is roughly 10 times that of conventional metal strain gauges. Because the change in resistance is large compared to metal strain gauges, lower cost electronics can be used. The small net size and low mass enables sensing elements with fast response time. The fact that these piezoresistive elements are directly printed, as opposed to being adhesively attached to a surface, eliminates many of the issues associated with bonded discrete sensors. It is anticipated that the piezoresistive sensor approach presented in this paper will be well suited to extremely rugged environmental conditions compared to the commercially available sensor arrays which rely on surface contact resistance or capacitive sensors which can be easily destroyed by moisture. Environmental testing will be done in a future phase of the project. The final system, which is still under development, will consist of a sensor array, information processing, and RF signal transmission. The system is anticipated to be low cost and environmentally

  9. Parametric acoustic arrays: A state of the art review

    NASA Technical Reports Server (NTRS)

    Fenlon, F. H.

    1976-01-01

    Following a brief introduction to the concept of parametric acoustic interactions, the basic properties of parametric transmitting and receiving arrays are considered in the light of conceptual advances resulting from experimental and theoretical investigations that have taken place since 1963.

  10. Transversal Anderson localization of sound in acoustic waveguide arrays.

    PubMed

    Ye, Yangtao; Ke, Manzhu; Feng, Junheng; Wang, Mudi; Qiu, Chunyin; Liu, Zhengyou

    2015-04-22

    We present designs of one-dimensional acoustic waveguide arrays and investigate wave propagation inside. Under the condition of single identical waveguide mode and weak coupling, the acoustic wave motion in waveguide arrays can be modeled with a discrete mode-coupling theory. The coupling constants can be retrieved from simulations or experiments as the function of neighboring waveguide separations. Sound injected into periodic arrays gives rise to the discrete diffraction, exhibiting ballistic or extended transport in transversal direction. But sound injected into randomized waveguide arrays readily leads to Anderson localization transversally. The experimental results show good agreement with simulations and theoretical predictions. PMID:25812602

  11. Bio-Inspired Micromechanical Directional Acoustic Sensor

    NASA Astrophysics Data System (ADS)

    Swan, William; Alves, Fabio; Karunasiri, Gamani

    Conventional directional sound sensors employ an array of spatially separated microphones and the direction is determined using arrival times and amplitudes. In nature, insects such as the Ormia ochracea fly can determine the direction of sound using a hearing organ much smaller than the wavelength of sound it detects. The fly's eardrums are mechanically coupled, only separated by about 1 mm, and have remarkable directional sensitivity. A micromechanical sensor based on the fly's hearing system was designed and fabricated on a silicon on insulator (SOI) substrate using MEMS technology. The sensor consists of two 1 mm2 wings connected using a bridge and to the substrate using two torsional legs. The dimensions of the sensor and material stiffness determine the frequency response of the sensor. The vibration of the wings in response to incident sound at the bending resonance was measured using a laser vibrometer and found to be about 1 μm/Pa. The electronic response of the sensor to sound was measured using integrated comb finger capacitors and found to be about 25 V/Pa. The fabricated sensors showed good directional sensitivity. In this talk, the design, fabrication and characteristics of the directional sound sensor will be described. Supported by ONR and TDSI.

  12. Phase discriminating capacitive array sensor system

    NASA Technical Reports Server (NTRS)

    Vranish, John M. (Inventor); Rahim, Wadi (Inventor)

    1993-01-01

    A phase discriminating capacitive sensor array system which provides multiple sensor elements which are maintained at a phase and amplitude based on a frequency reference provided by a single frequency stabilized oscillator. Sensor signals provided by the multiple sensor elements are controlled by multiple phase control units, which correspond to the multiple sensor elements, to adjust the sensor signals from the multiple sensor elements based on the frequency reference. The adjustment made to the sensor signals is indicated by output signals which indicate the proximity of the object. The output signals may also indicate the closing speed of the object based on the rate of change of the adjustment made, and the edges of the object based on a sudden decrease in the adjustment made.

  13. Large Format Transition Edge Sensor Microcalorimeter Arrays

    NASA Technical Reports Server (NTRS)

    Chervenak, J. A.; Adams, J. A.; Bandler, S. b.; Busch, S. E.; Eckart, M. E.; Ewin, A. E.; Finkbeiner, F. M.; Kilbourne, C. A.; Kelley, R. L.; Porst, J. P.; Porter, F. S.; Ray, C.; Sadleir, J. E.; Smith, S. J.; Wassell, E. J.

    2012-01-01

    We have produced a variety of superconducting transition edge sensor array designs for microcalorimetric detection of x-rays. Designs include kilopixel scale arrays of relatively small sensors (approximately 75 micron pitch) atop a thick metal heat sinking layer as well as arrays of membrane-isolated devices on 250 micron and up to 600 micron pitch. We discuss fabrication and performance of microstripline wiring at the small scales achieved to date. We also address fabrication issues with reduction of absorber contact area in small devices.

  14. Acoustic and Seismic Modalities for Unattended Ground Sensors

    SciTech Connect

    Elbring, G.J.; Ladd, M.D.; McDonald, T.S.; Sleefe, G.E.

    1999-03-31

    In this paper, we have presented the relative advantages and complementary aspects of acoustic and seismic ground sensors. A detailed description of both acoustic and seismic ground sensing methods has been provided. Acoustic and seismic phenomenology including source mechanisms, propagation paths, attenuation, and sensing have been discussed in detail. The effects of seismo-acoustic and acousto-seismic interactions as well as recommendations for minimizing seismic/acoustic cross talk have been highlighted. We have shown representative acoustic and seismic ground sensor data to illustrate the advantages and complementary aspects of the two modalities. The data illustrate that seismic transducers often respond to acoustic excitation through acousto-seismic coupling. Based on these results, we discussed the implications of this phenomenology on the detection, identification, and localization objectives of unattended ground sensors. We have concluded with a methodology for selecting the preferred modality (acoustic and/or seismic) for a particular application.

  15. Seismo-acoustic Signals Recorded at KSIAR, the Infrasound Array Installed at PS31

    NASA Astrophysics Data System (ADS)

    Kim, T. S.; Che, I. Y.; Jeon, J. S.; Chi, H. C.; Kang, I. B.

    2014-12-01

    One of International Monitoring System (IMS)'s primary seismic stations, PS31, called Korea Seismic Research Station (KSRS), was installed around Wonju, Korea in 1970s. It has been operated by US Air Force Technical Applications Center (AFTAC) for more than 40 years. KSRS is composed of 26 seismic sensors including 19 short period, 6 long period and 1 broad band seismometers. The 19 short period sensors were used to build an array with a 10-km aperture while the 6 long period sensors were used for a relatively long period array with a 40-km aperture. After KSRS was certified as an IMS station in 2006 by Comprehensive Nuclear Test Ban Treaty Organization (CTBTO), Korea Institute of Geoscience and Mineral Resources (KIGAM) which is the Korea National Data Center started to take over responsibilities on the operation and maintenance of KSRS from AFTAC. In April of 2014, KIGAM installed an infrasound array, KSIAR, on the existing four short period seismic stations of KSRS, the sites KS05, KS06, KS07 and KS16. The collocated KSIAR changed KSRS from a seismic array into a seismo-acoustic array. The aperture of KSIAR is 3.3 km. KSIAR also has a 100-m small aperture infrasound array at KS07. The infrasound data from KSIAR except that from the site KS06 is being transmitted in real time to KIGAM with VPN and internet line. An initial analysis on seismo-acoustic signals originated from local and regional distance ranges has been performed since May 2014. The analysis with the utilization of an array process called Progressive Multi-Channel Correlation (PMCC) detected seismo-acoustic signals caused by various sources including small explosions in relation to constructing local tunnels and roads. Some of them were not found in the list of automatic bulletin of KIGAM. The seismo-acoustic signals recorded by KSIAR are supplying a useful information for discriminating local and regional man-made events from natural events.

  16. Surface acoustic wave devices for sensor applications

    NASA Astrophysics Data System (ADS)

    Bo, Liu; Xiao, Chen; Hualin, Cai; Mohammad, Mohammad Ali; Xiangguang, Tian; Luqi, Tao; Yi, Yang; Tianling, Ren

    2016-02-01

    Surface acoustic wave (SAW) devices have been widely used in different fields and will continue to be of great importance in the foreseeable future. These devices are compact, cost efficient, easy to fabricate, and have a high performance, among other advantages. SAW devices can work as filters, signal processing units, sensors and actuators. They can even work without batteries and operate under harsh environments. In this review, the operating principles of SAW sensors, including temperature sensors, pressure sensors, humidity sensors and biosensors, will be discussed. Several examples and related issues will be presented. Technological trends and future developments will also be discussed. Project supported by the National Natural Science Foundation of China (Nos. 60936002, 61025021, 61434001, 61574083), the State Key Development Program for Basic Research of China (No. 2015CB352100), the National Key Project of Science and Technology (No. 2011ZX02403-002) and the Special Fund for Agroscientific Research in the Public Interest of China (No. 201303107). M.A.M is additionally supported by the Postdoctoral Fellowship (PDF) program of the Natural Sciences and Engineering Research Council (NSERC) of Canada and the China Postdoctoral Science Foundation (CPSF).

  17. Acoustic Source Localization in Aircraft Interiors Using Microphone Array Technologies

    NASA Technical Reports Server (NTRS)

    Sklanka, Bernard J.; Tuss, Joel R.; Buehrle, Ralph D.; Klos, Jacob; Williams, Earl G.; Valdivia, Nicolas

    2006-01-01

    Using three microphone array configurations at two aircraft body stations on a Boeing 777-300ER flight test, the acoustic radiation characteristics of the sidewall and outboard floor system are investigated by experimental measurement. Analysis of the experimental data is performed using sound intensity calculations for closely spaced microphones, PATCH Inverse Boundary Element Nearfield Acoustic Holography, and Spherical Nearfield Acoustic Holography. Each method is compared assessing strengths and weaknesses, evaluating source identification capability for both broadband and narrowband sources, evaluating sources during transient and steady-state conditions, and quantifying field reconstruction continuity using multiple array positions.

  18. Cooperative implementation of a high temperature acoustic sensor

    NASA Astrophysics Data System (ADS)

    Baldini, S. E.; Nowakowski, Edward; Smith, Herbert G.; Friebele, E. J.; Putnam, Martin A.; Rogowski, Robert; Melvin, Leland D.; Claus, Richard O.; Tran, Tuan; Holben, Milford S., Jr.

    1991-12-01

    The current status and results of a cooperative program aimed at the implementation of a high-temperature acoustic/strain sensor onto metallic structures are reported. The sensor systems that are to be implemented under this program will measure thermal expansion, maneuver loads, aircraft buffet, sonic fatigue, and acoustic emissions in environments that approach 1800 F. The discussion covers fiber development, fabrication of an extrinsic Fabry-Perot interferometer acoustic sensor, sensor mounting/integration, and results of an evaluation of the sensor capabilities.

  19. Helmet-mounted acoustic array for hostile fire detection and localization in an urban environment

    NASA Astrophysics Data System (ADS)

    Scanlon, Michael V.

    2008-04-01

    The detection and localization of hostile weapons firing has been demonstrated successfully with acoustic sensor arrays on unattended ground sensors (UGS), ground-vehicles, and unmanned aerial vehicles (UAVs). Some of the more mature systems have demonstrated significant capabilities and provide direct support to ongoing counter-sniper operations. The Army Research Laboratory (ARL) is conducting research and development for a helmet-mounted system to acoustically detect and localize small arms firing, or other events such as RPG, mortars, and explosions, as well as other non-transient signatures. Since today's soldier is quickly being asked to take on more and more reconnaissance, surveillance, & target acquisition (RSTA) functions, sensor augmentation enables him to become a mobile and networked sensor node on the complex and dynamic battlefield. Having a body-worn threat detection and localization capability for events that pose an immediate danger to the soldiers around him can significantly enhance their survivability and lethality, as well as enable him to provide and use situational awareness clues on the networked battlefield. This paper addresses some of the difficulties encountered by an acoustic system in an urban environment. Complex reverberation, multipath, diffraction, and signature masking by building structures makes this a very harsh environment for robust detection and classification of shockwaves and muzzle blasts. Multifunctional acoustic detection arrays can provide persistent surveillance and enhanced situational awareness for every soldier.

  20. Measuring aeolian sand transport using acoustic sensors

    NASA Astrophysics Data System (ADS)

    Poortinga, Ate; van Rheenen, Hans; Ellis, Jean T.; Sherman, Douglas J.

    2015-03-01

    Acoustic sensors are frequently used to measure aeolian saltation. Different approaches are used to process the signals from these instruments. The goal of this paper is to describe and discuss a method to measure aeolian saltation with acoustic sensors. In a laboratory experiment, we measured the output from an advanced signal processing scheme on the circuit board of the saltiphone. We use a software implementation of this processing scheme to re-analyse data from four miniphones obtained during a field experiment. It is shown that a set of filters remove background noise outside the frequency spectrum of aeolian saltation (at 8 kHz), whereas signals within this frequency spectrum are amplified. The resulting analogue signal is a proxy of the energy. Using an AC pulse convertor, this signal can be converted into a digital and analogue count signal or an analogue energy signal, using a rectifier and integrator. Spatio-temporal correlation between field deployed miniphones increases by using longer integration times for signal processing. To quantify aeolian grain impact, it is suggested to use the analogue energy output, as this mode is able to detect changes in frequency and amplitude. The analogue and digital count signals are able to detect an increase in frequency, but are not able to detect an increase in signal amplitude. We propose a two-stage calibration scheme consisting of (1) a factory calibration, to set the frequency spectrum of the sensor and (2) a standardized drop-test conducted before and after the experiment to evaluate the response of the sensor.

  1. Acoustic interactions in arrays of spherical elastic shells

    NASA Astrophysics Data System (ADS)

    Scandrett, C. L.; Canright, David R.

    1990-06-01

    The acoustical performance of a submerged linear array of spherical transducers is examined by combining the T-Matrix method of solving for multiple acoustic interactions among separate bodies with a model for the transducers as thin spherical elastic shells. This approach solves the fully coupled problem of the response of the array to internal forcing. The results show that the assumptions giving rise to the Chebyshev criteria for optimal arrays of point sources appear to apply well even for large spheres at low frequencies. However, at frequencies near or above the lowest resonant frequency the directional pattern may be degraded, depending on the material of the shells.

  2. Feasibility of a phased acoustic array for monitoring acoustic signatures from meshing gear teeth.

    PubMed

    Hood, Adrian A; Pines, Darryll J

    2002-12-01

    This paper investigates the feasibility of sensing damage emanating from rotating drivetrain elements such as bearings, gear teeth, and drive shafts via airborne paths. A planar phased acoustic array is evaluated as a potential fault detection scheme for detecting spatially filtered acoustic signatures radiating from gearbox components. Specifically, the use of beam focusing and steering to monitor individual tooth mesh dynamics is analyzed taking into consideration the constraints of the array/gearbox geometry and the spectral content of typical gear noise. Experimental results for a linear array are presented to illustrate the concepts of adaptive beam steering and spatial acoustic filtering. This feasibility study indicates that the planar array can be used to track the acoustic signatures at higher harmonics of the gear mesh frequency. PMID:12509006

  3. Microfabricated Chemical Gas Sensors and Sensor Arrays for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.

    2005-01-01

    Aerospace applications require the development of chemical sensors with capabilities beyond those of commercially available sensors. In particular, factors such as minimal sensor size, weight, and power consumption are particularly important. Development areas which have potential aerospace applications include launch vehicle leak detection, engine health monitoring, and fire detection. Sensor development for these applications is based on progress in three types of technology: 1) Micromachining and microfabrication (Microsystem) technology to fabricate miniaturized sensors; 2) The use of nanocrystalline materials to develop sensors with improved stability combined with higher sensitivity; 3) The development of high temperature semiconductors, especially silicon carbide. This presentation discusses the needs of space applications as well as the point-contact sensor technology and sensor arrays being developed to address these needs. Sensors to measure hydrogen, hydrocarbons, nitrogen oxides (NO,), carbon monoxide, oxygen, and carbon dioxide are being developed as well as arrays for leak, fire, and emissions detection. Demonstrations of the technology will also be discussed. It is concluded that microfabricated sensor technology has significant potential for use in a range of aerospace applications.

  4. Optimizing Sensor and Actuator Arrays for ASAC Noise Control

    NASA Technical Reports Server (NTRS)

    Palumbo, Dan; Cabell, Ran

    2000-01-01

    This paper summarizes the development of an approach to optimizing the locations for arrays of sensors and actuators in active noise control systems. A type of directed combinatorial search, called Tabu Search, is used to select an optimal configuration from a much larger set of candidate locations. The benefit of using an optimized set is demonstrated. The importance of limiting actuator forces to realistic levels when evaluating the cost function is discussed. Results of flight testing an optimized system are presented. Although the technique has been applied primarily to Active Structural Acoustic Control systems, it can be adapted for use in other active noise control implementations.

  5. An acoustical array combining microphones and piezoelectric devices.

    PubMed

    Matsumoto, Mitsuharu; Hashimoto, Shuji

    2008-04-01

    This paper describes an acoustical array combining microphones and piezoelectric devices. Conventional microphone arrays have been widely utilized to realize noise reduction, sound separation and direction of arrival estimation system. However, when a conventional microphone array is mounted on a real system, such as a machine, vehicle or robot, the microphones are set extremely close to the system's actual body. In such cases, the noise from the system itself, such as motors, gears, and engines, namely internal noise, often becomes a troublesome problem. It is difficult to reduce internal noise utilizing a conventional microphone array because internal noise sources are extremely close to the microphones. As internal noise is not always stationary, statistically independent or sparse, most useful blind source separation approaches, such as independent component analysis and the sparseness approach, cannot be employed. Our aim is to reduce internal noise utilizing microphones and piezoelectric devices attached to the internal noise source. In this paper, a general description of the acoustical array is formulated and the characteristic features of microphones and piezoelectric devices in an acoustical array are given. An acoustical array combining microphones and piezoelectric devices is also described with some experimental results. PMID:18397019

  6. An Integrated Surface Acoustic Wave-Based Chemical Microsensor Array for Gas-Phase Chemical Analysis Microsystems

    SciTech Connect

    Casalnuovo, stephen A.; Frye-Mason, Gregory C.; Heller, Edwin J.; Hietala, Vincent M.; Kottenstette, Richard J.; Lewis, Patrick R.; Manginell, Ronald P.; Matzke, Carolyn M.

    1999-07-20

    This paper describes preliminary results in the development of an acoustic wave (SAW) microsensor array. The array is based on a novel configuration that allows for three sensors and a phase reference. Two configurations of the integrated array are discussed: a hybrid multichip-module based on a quartz SAW sensor with GaAs microelectronics and a fully monolithic GaAs-based SAW. Preliminary data are also presented for the use of the integrated SAW array in a gas-phase chemical micro system that incorporates microfabricated sample collectors and concentrators along with gas chromatography (GC) columns.

  7. Estimating propagation velocity through a surface acoustic wave sensor

    DOEpatents

    Xu, Wenyuan; Huizinga, John S.

    2010-03-16

    Techniques are described for estimating the propagation velocity through a surface acoustic wave sensor. In particular, techniques which measure and exploit a proper segment of phase frequency response of the surface acoustic wave sensor are described for use as a basis of bacterial detection by the sensor. As described, use of velocity estimation based on a proper segment of phase frequency response has advantages over conventional techniques that use phase shift as the basis for detection.

  8. Infrared phased-array sensor

    NASA Astrophysics Data System (ADS)

    Slovick, Brian A.; Bean, Jeffrey A.; Florence, Lou A.; Boreman, Glenn D.

    2011-06-01

    Metal-oxide-metal (MOM) tunnel diode detectors when integrated with phased-array antennas provide determination of the angle of arrival and degree of coherence of received infrared radiation. Angle-of-arrival measurements are made with a pair of dipole antennas coupled to a MOM diode through a coplanar strip transmission line. The direction of maximum angular response is altered by varying the position of the MOM diode along the transmission line connecting the antenna elements. Phased-array antennas can also be used to measure the degree of coherence of a partially coherent infrared field. With a two-element array, the degree of coherence is a measure of the correlation of electric fields received by the antennas as a function of the element separation. Antenna-coupled MOM diode devices are fabricated using electron beam lithography and thin-film deposition through a resist shadow mask. Measurements at 10.6 μm are substantiated by electromagnetic simulations and compared to analytic results.

  9. Capacitive micromachined ultrasonic transducer arrays as tunable acoustic metamaterials

    SciTech Connect

    Lani, Shane W. E-mail: karim.sabra@me.gatech.edu Sabra, Karim G.; Wasequr Rashid, M.; Hasler, Jennifer; Levent Degertekin, F.

    2014-02-03

    Capacitive Micromachined Ultrasonic Transducers (CMUTs) operating in immersion support dispersive evanescent waves due to the subwavelength periodic structure of electrostatically actuated membranes in the array. Evanescent wave characteristics also depend on the membrane resonance which is modified by the externally applied bias voltage, offering a mechanism to tune the CMUT array as an acoustic metamaterial. The dispersion and tunability characteristics are examined using a computationally efficient, mutual radiation impedance based approach to model a finite-size array and realistic parameters of variation. The simulations are verified, and tunability is demonstrated by experiments on a linear CMUT array operating in 2-12 MHz range.

  10. Acoustic focusing by an array of heat sources in air

    NASA Astrophysics Data System (ADS)

    Ge, Yong; Sun, Hong-xiang; Liu, Chen; Qian, Jiao; Yuan, Shou-qi; Xia, Jian-ping; Guan, Yi-jun; Zhang, Shu-yi

    2016-06-01

    We report on a broadband acoustic focusing lens comprising 20 heat sources of different temperatures, 10 on each side of the array, in air. This focusing phenomenon is attributed to temperature gradients inducing the desired refractive index in one medium (air) and to the continuously changing acoustic impedance, which avoids any acoustic impedance difference that would occur between a lens and air. The results indicate that this focusing lens has a broader bandwidth (>3.5 kHz), higher intensity amplification (about 5.0 times), and a simpler structure. This focusing lens has great potential for applications in ultrasonic devices.

  11. Manipulating Liquids With Acoustic Radiation Pressure Phased Arrays

    NASA Technical Reports Server (NTRS)

    Oeftering, Richard C.

    1999-01-01

    High-intensity ultrasound waves can produce the effects of "Acoustic Radiation Pressure" (ARP) and "acoustic streaming." These effects can be used to propel liquid flows and to apply forces that can be used to move or manipulate floating objects or liquid surfaces. NASA's interest in ARP includes the remote-control agitation of liquids and the manipulation of bubbles and drops in liquid experiments and propellant systems. A high level of flexibility is attained by using a high-power acoustic phased array to generate, steer, and focus a beam of acoustic waves. This is called an Acoustic Radiation Pressure Phased Array, or ARPPA. In this approach, many acoustic transducer elements emit wavelets that converge into a single beam of sound waves. Electronically coordinating the timing, or "phase shift," of the acoustic waves makes it possible to form a beam with a predefined direction and focus. Therefore, a user can direct the ARP force at almost any desired point within a liquid volume. ARPPA lets experimenters manipulate objects anywhere in a test volume. This flexibility allow it to be used for multiple purposes, such as to agitate liquids, deploy and manipulate drops or bubbles, and even suppress sloshing in spacecraft propellant tanks.

  12. Sensor array for toxic gas detection

    DOEpatents

    Stetter, Joseph R.; Zaromb, Solomon; Penrose, William R.

    1987-01-01

    A portable instrument for use in the field in detecting and identifying a hazardous component in air or other gas including an array of small sensors which upon exposure to the gas from a pattern of electrical responses, a source of standard response patterns characteristic of various components, and microprocessor means for comparing the sensor-formed response pattern with one or more standard patterns to thereby identify the component on a display. The number of responses may be increased beyond the number of sensors by changing the operating voltage, temperature or other condition associated with one or more sensors to provide a plurality of responses from each of one or more of the sensors. In one embodiment, the instrument is capable of identifying anyone of over 50-100 hazardous components.

  13. Active Control of Noise Using Actuator/Sensor Arrays

    NASA Technical Reports Server (NTRS)

    Lindner, Douglas K.; Winder, Patrice; Kirby, George

    1996-01-01

    Current research in smart structures is directed toward the integration of many actuators and sensors into a material. In this paper we investigate the possibility of using this instrumentation for active noise control from a vibrating structures. Current technology for reducing radiated sound is limited by the instrumentation for the control system. These control systems employ relatively small numbers of sensors and actuators. Hence, these control systems must rely on a model of the structure to estimate and control the global vibrations that contribute to the far field pressure. For complex, realistic structures the development of such a model is a formidable task. The model is a limiting factor in the continuing development of structural acoustics. In this paper we propose to increase the number of actuators and sensors of a smart material to offset the complexity of the model used for control design. The sensor arrays will be used to directly sense the shape of the structure rather than using a model of the structures to indirectly sense the shape of the structure. The actuator array is used to apply distributed forces to the structure, rather than using the structure itself as a load path. A control system for the active cancellation of sound is derived from standard control system methodologies.

  14. Adaptive laser array-receivers for acoustic waves detection

    NASA Astrophysics Data System (ADS)

    Tuovinen, Hemmo; Murray, Todd W.; Krishnaswamy, Sridhar

    2000-05-01

    Interferometric detection systems typically use a single focused laser point receiver for the detection of acoustic waves. In some cases, where optical damage of the structure is of concern, it may be advantageous to distribute the detection laser energy over an area. This can be done, for example, by using a point-array or a line-array probe. Other advantages of an array receiver include directional sensitivity and frequency selectivity. It is important to notice that laser-array reception is possible only with self-referential interferometers. In this paper adaptive array interferometric detection schemes, which are based on wave mixing in photorefractive bismuth silicate crystal, are described. An adaptive narrow-band laser array receiver of surface acoustic waves is demonstrated. The interferometer is also configured as a linearly frequency modulated (chirped) array receiver. The chirped receiver, when excited with a similarly chirped ultrasonic source, allows pulse compression of the ultrasonic signal thus maintaining high temporal resolution. The signal-to-noise ratio for the different array detection schemes are determined and compared. Several applications of laser-array reception are presented.

  15. Sensor arrays for detecting analytes in fluids

    NASA Technical Reports Server (NTRS)

    Lewis, Nathan S. (Inventor); Freund, Michael S. (Inventor)

    1996-01-01

    Chemical sensors for detecting analytes in fluids comprise first and second conductive elements (e.g. electrical leads) electrically coupled to and separated by a chemically sensitive resistor which provides an electrical path between the conductive elements. The resistor comprises a plurality of alternating nonconductive regions (comprising a nonconductive organic polymer) and conductive regions (comprising a conductive material) transverse to the electrical path. The resistor provides a difference in resistance between the conductive elements when contacted with a fluid comprising a chemical analyte at a first concentration, than when contacted with a fluid comprising the chemical analyte at a second different concentration. Arrays of such sensors are constructed with at least two sensors having different chemically sensitive resistors providing dissimilar such differences in resistance. Variability in chemical sensitivity from sensor to sensor is provided by qualitatively or quantitatively varying the composition of the conductive and/or nonconductive regions. An electronic nose for detecting an analyte in a fluid may be constructed by using such arrays in conjunction with an electrical measuring device electrically connected to the conductive elements of each sensor.

  16. Robotic vehicle uses acoustic array for detection and localization in urban environments

    NASA Astrophysics Data System (ADS)

    Young, Stuart H.; Scanlon, Michael V.

    2001-09-01

    Sophisticated robotic platforms with diverse sensor suites are quickly replacing the eyes and ears of soldiers on the complex battlefield. The Army Research Laboratory (ARL) in Adelphi, Maryland has developed a robot-based acoustic detection system that will detect an impulsive noise event, such as a sniper's weapon firing or door slam, and activate a pan-tilt to orient a visible and infrared camera toward the detected sound. Once the cameras are cued to the target, onboard image processing can then track the target and/or transmit the imagery to a remote operator for navigation, situational awareness, and target detection. Such a vehicle can provide reconnaissance, surveillance, and target acquisition for soldiers, law enforcement, and rescue personnel, and remove these people from hazardous environments. ARL's primary robotic platforms contain 16-in. diameter, eight-element acoustic arrays. Additionally, a 9- in. array is being developed in support of DARPA's Tactical Mobile Robot program. The robots have been tested in both urban and open terrain. The current acoustic processing algorithm has been optimized to detect the muzzle blast from a sniper's weapon, and reject many interfering noise sources such as wind gusts, generators, and self-noise. However, other detection algorithms for speech and vehicle detection/tracking are being developed for implementation on this and smaller robotic platforms. The collaboration between two robots, both with known positions and orientations, can provide useful triangulation information for more precise localization of the acoustic events. These robots can be mobile sensor nodes in a larger, more expansive, sensor network that may include stationary ground sensors, UAVs, and other command and control assets. This report will document the performance of the robot's acoustic localization, describe the algorithm, and outline future work.

  17. Linear array optical edge sensor

    NASA Technical Reports Server (NTRS)

    Bejczy, Antal K. (Inventor); Primus, Howard C. (Inventor)

    1987-01-01

    A series of independent parallel pairs of light emitting and detecting diodes for a linear pixel array, which is laterally positioned over an edge-like discontinuity in a workpiece to be scanned, is disclosed. These independent pairs of light emitters and detectors sense along intersecting pairs of separate optical axes. A discontinuity, such as an edge in the sensed workpiece, reflects a detectable difference in the amount of light from that discontinuity in comparison to the amount of light that is reflected on either side of the discontinuity. A sequentially sychronized clamping and sampling circuit detects that difference as an electrical signal which is recovered by circuitry that exhibits an improved signal-to-noise capability for the system.

  18. Acoustic Array Development for Wind Turbine Noise Characterization

    SciTech Connect

    Buck, S.; Roadman, J.; Moriarty, P.; Palo, S.

    2013-11-01

    This report discusses the design and use of a multi-arm, logarithmic spiral acoustic array by the National Renewable Energy Laboratory (NREL) for measurement and characterization of wind turbine-generated noise. The array was developed in collaboration with a team from the University of Colorado Boulder. This design process is a continuation of the elliptical array design work done by Simley. A description of the array system design process is presented, including array shape design, mechanical design, design of electronics and the data acquisition system, and development of post-processing software. System testing and calibration methods are detailed. Results from the initial data acquisition campaign are offered and discussed. Issues faced during this initial deployment of the array are presented and potential remedies discussed.

  19. Sensor array processing for random inhomogeneous media

    NASA Astrophysics Data System (ADS)

    Ringelstein, Joerg; Gershman, Alex B.; Boehme, Johann F.

    1999-11-01

    The performances of high-resolution array processing methods are known to degrade in random inhomogeneous media because the amplitude and phase of each wavefront tend to fluctuate and to loose their coherence between array sensors. As a result, in the presence of such a multiplicative noise, the conventional coherent wavefront model becomes inapplicable. Such a type of degradation may be especially strong for large aperture arrays. Below, we develop new high-resolution covariance matching (CM) techniques with an improved robustness against multiplicative noise and related coherence losses. Using a few unrestrictive physics-based assumptions on the environment, we show that reliable algorithms can be developed which take into account possible coherence losses. Computer simulation results and real sonar data processing results are presented. These results demonstrate drastic improvements achieved by our approach as compared with conventional high- resolution array processing techniques.

  20. Detection/classification/quantification of chemical agents using an array of surface acoustic wave (SAW) devices

    NASA Astrophysics Data System (ADS)

    Milner, G. Martin

    2005-05-01

    ChemSentry is a portable system used to detect, identify, and quantify chemical warfare (CW) agents. Electro chemical (EC) cell sensor technology is used for blood agents and an array of surface acoustic wave (SAW) sensors is used for nerve and blister agents. The combination of the EC cell and the SAW array provides sufficient sensor information to detect, classify and quantify all CW agents of concern using smaller, lighter, lower cost units. Initial development of the SAW array and processing was a key challenge for ChemSentry requiring several years of fundamental testing of polymers and coating methods to finalize the sensor array design in 2001. Following the finalization of the SAW array, nearly three (3) years of intensive testing in both laboratory and field environments were required in order to gather sufficient data to fully understand the response characteristics. Virtually unbounded permutations of agent characteristics and environmental characteristics must be considered in order to operate against all agents and all environments of interest to the U.S. military and other potential users of ChemSentry. The resulting signal processing design matched to this extensive body of measured data (over 8,000 agent challenges and 10,000 hours of ambient data) is considered to be a significant advance in state-of-the-art for CW agent detection.

  1. Proportional microvolume capacitive liquid level sensor array.

    PubMed

    Seliskar, D; Waterbury, R; Kearney, R

    2005-01-01

    A sensor array has been developed for use with laboratory automation to permit closed-loop control of liquid levels in a multiwell microplate geometry. We extended a simple electrical model for non-contact capacitance-based fluid sensors to describe a fluid-level dependency. The new model shows that a charge-transfer based capacitance transducer, employing a liquid-specific calibration, can be used to obtain an output signal that varies linearly with the liquid level. The calibration also compensates for liquid-to-liquid conductivity and permittivity differences. A prototype 3×3 sensor array was built and tested using NaCl and ethanol solutions to simulate the range of conductivity and permittivity typical in biological and chemical research. Calibrated output signals were linear with liquid volume for all tested solutions (R2>0.92). Measurement error averaged 1.3 % (2.0 μl) with a standard deviation of 6.0% (9.0 μl). These results demonstrate the feasibility of developing a microvolume sensor array in essentially any M×N microplate geometry. PMID:17281955

  2. The future of fluorescence sensor arrays.

    PubMed

    Demchenko, Alexander P

    2005-09-01

    The rapid progress in sensor and biosensor array technologies needs a general strategy in the design of fluorescence reporters. Such reporters should provide a high density of sensor elements, allow analysis of targets of different affinities, and be internally calibrated, reproducible and have a rapid readout. Several criteria are introduced here for the comparative evaluation of fluorescence-sensing techniques. It is shown that only the two-band wavelength ratiometric sensing with a single reporter dye exhibiting rapid reversible excited-state reaction can satisfy all these criteria and is a prospective candidate for further development. PMID:15967523

  3. Acoustic Particle Velocity Sensors: Design, Performance, and Applications Proceedings

    SciTech Connect

    Berliner, M.J.; Lindberg, J.F.

    1996-07-01

    These proceedings represent the papers presented at a workshop sponsored by the Office of Naval Research and the Acoustical Society of America. The topics discussed include designs, applications and performance of underwater acoustic sensors. There were 29 papers presented and all have been abstracted for the Energy Science and Technology database.(AIP)

  4. Seismic and Acoustic Array Monitoring of Signal from Tungurahua Volcano, Ecuador

    NASA Astrophysics Data System (ADS)

    Terbush, B. R.; Anthony, R. E.; Johnson, J. B.; Ruiz, M. C.

    2012-12-01

    Tungurahua Volcano is an active stratovolcano located in Ecuador's eastern Cordillera. Since its most recent cycle of eruptive activity, beginning in 1999, it has produced both strombolian-to-vulcanian eruptions, and regular vapor emissions. Tungurahua is located above the city of Baños, so volcanic activity is well-monitored by Ecuador's Instituto Geofisico Nacional with a seismic and infrasound network, and other surveillance tools. Toward better understanding of the complex seismic and acoustic signals associated with low-level Tungurahua activity, and which are often low in signal-to-noise, we deployed temporary seismo-acoustic arrays between June 9th and 20th in 2012. This deployment was part of a Field Volcano Geophysics class, a collaboration between New Mexico Institute of Mining and Technology and the Escuela Politecnica Nacional's Instituto Geofísico in Ecuador. Two six-element arrays were deployed on the flank of the volcano. A seismo-acoustic array, which consisted of combined broadband seismic and infrasound sensors, possessed 100-meter spacing, and was deployed five kilometers north of the vent in an open field at 2700 m. The second array had only acoustic sensors with 30-meter spacing, and was deployed approximately six kilometers northwest of the vent, on an old pyroclastic flow deposit. The arrays picked up signals from four distinct explosion events, a number of diverse tremor signals, local volcano tectonic and long period earthquakes, and a regional tectonic event of magnitude 4.9. Coherency of both seismic and acoustic array data was quantified using Fisher Statistics, which was effective for identifying myriad signals. For most signals Fisher Statistics were particularly high in low frequency bands, between 0.5 and 2 Hz. Array analyses helped to filter out noise induced by cultural sources and livestock signals, which were particularly pronounced in the deployment site. Volcan Tungurahua sources were considered plane wave signals and could

  5. Piezoresistive pressure sensor array for robotic skin

    NASA Astrophysics Data System (ADS)

    Mirza, Fahad; Sahasrabuddhe, Ritvij R.; Baptist, Joshua R.; Wijesundara, Muthu B. J.; Lee, Woo H.; Popa, Dan O.

    2016-05-01

    Robots are starting to transition from the confines of the manufacturing floor to homes, schools, hospitals, and highly dynamic environments. As, a result, it is impossible to foresee all the probable operational situations of robots, and preprogram the robot behavior in those situations. Among human-robot interaction technologies, haptic communication is an intuitive physical interaction method that can help define operational behaviors for robots cooperating with humans. Multimodal robotic skin with distributed sensors can help robots increase perception capabilities of their surrounding environments. Electro-Hydro-Dynamic (EHD) printing is a flexible multi-modal sensor fabrication method because of its direct printing capability of a wide range of materials onto substrates with non-uniform topographies. In past work we designed interdigitated comb electrodes as a sensing element and printed piezoresistive strain sensors using customized EHD printable PEDOT:PSS based inks. We formulated a PEDOT:PSS derivative ink, by mixing PEDOT:PSS and DMSO. Bending induced characterization tests of prototyped sensors showed high sensitivity and sufficient stability. In this paper, we describe SkinCells, robot skin sensor arrays integrated with electronic modules. 4x4 EHD-printed arrays of strain sensors was packaged onto Kapton sheets and silicone encapsulant and interconnected to a custom electronic module that consists of a microcontroller, Wheatstone bridge with adjustable digital potentiometer, multiplexer, and serial communication unit. Thus, SkinCell's electronics can be used for signal acquisition, conditioning, and networking between sensor modules. Several SkinCells were loaded with controlled pressure, temperature and humidity testing apparatuses, and testing results are reported in this paper.

  6. Optical networks for wideband sensor array

    NASA Astrophysics Data System (ADS)

    Sheng, Lin Horng

    2011-12-01

    This thesis presents the realization of novel systems for optical sensing networks with an array of long-period grating (LPG) sensors. As a launching point of the thesis, the motivation to implement optical sensing network in precisely catering LPG sensors is presented. It highlights the flexibility of the sensing network to act as the foundation in order to boost the application of the various LPG sensor design in biological and chemical sensing. After the thorough study on the various optical sensing networks, sub-carrier multiplexing (SCM) and optical time division multiplexing (OTDM) schemes are adopted in conjunction with tunable laser source (TLS) to facilitate simultaneous interrogation of the LPG sensors array. In fact, these systems are distinct to have the capability to accommodate wideband optical sensors. Specifically, the LPG sensors which is in 20nm bandwidth are identified to operate in these systems. The working principles of the systems are comprehensively elucidated in this thesis. It highlights the mathematical approach to quantify the experimental setup of the optical sensing network. Additionally, the system components of the designs are identified and methodically characterized so that the components well operate in the designed environment. A mockup has been setup to demonstrate the application in sensing of various liquid indices and analyse the response of the LPG sensors in order to evaluate the performance of the systems. Eventually, the resemblance of the demultiplexed spectral response to the pristine spectral response are quantified to have excellent agreement. Finally, the promising result consistency of the systems is verified through repeatability test.

  7. Future sensor system needs for staring arrays

    NASA Astrophysics Data System (ADS)

    Miller, John Lester

    2011-05-01

    This is a systems application paper regarding how sensor systems may use future technology FPAs. A historical perspective is discussed along with lessons learned from previous technologies. Future system requirements for strained super-lattice (SLS), quantum dots (QDOT) and traditional quantum well infrared photo-diodes (QWIP) arrays will be presented from both a commercial and military perspective. New potential markets will open up in the future if certain FPA technologies can reduce cost and provide higher sensitivities at higher operating temperatures.

  8. Multi-Channel Capacitive Sensor Arrays.

    PubMed

    Wang, Bingnan; Long, Jiang; Teo, Koon Hoo

    2016-01-01

    In this paper, multi-channel capacitive sensor arrays based on microstrip band-stop filters are studied. The sensor arrays can be used to detect the proximity of objects at different positions and directions. Each capacitive sensing structure in the array is connected to an inductive element to form resonance at different frequencies. The resonances are designed to be isolated in the frequency spectrum, such that the change in one channel does not affect resonances at other channels. The inductive element associated with each capacitive sensor can be surface-mounted inductors, integrated microstrip inductors or metamaterial-inspired structures. We show that by using metamaterial split-ring structures coupled to a microstrip line, the quality factor of each resonance can be greatly improved compared to conventional surface-mounted or microstrip meander inductors. With such a microstrip-coupled split-ring design, more sensing elements can be integrated in the same frequency spectrum, and the sensitivity can be greatly improved. PMID:26821023

  9. Multi-Channel Capacitive Sensor Arrays

    PubMed Central

    Wang, Bingnan; Long, Jiang; Teo, Koon Hoo

    2016-01-01

    In this paper, multi-channel capacitive sensor arrays based on microstrip band-stop filters are studied. The sensor arrays can be used to detect the proximity of objects at different positions and directions. Each capacitive sensing structure in the array is connected to an inductive element to form resonance at different frequencies. The resonances are designed to be isolated in the frequency spectrum, such that the change in one channel does not affect resonances at other channels. The inductive element associated with each capacitive sensor can be surface-mounted inductors, integrated microstrip inductors or metamaterial-inspired structures. We show that by using metamaterial split-ring structures coupled to a microstrip line, the quality factor of each resonance can be greatly improved compared to conventional surface-mounted or microstrip meander inductors. With such a microstrip-coupled split-ring design, more sensing elements can be integrated in the same frequency spectrum, and the sensitivity can be greatly improved. PMID:26821023

  10. Wide-band polarization-insensitive fiber optic acoustic sensors

    NASA Astrophysics Data System (ADS)

    Shih, Sung-Tsun

    1998-03-01

    A polarization-insensitive fiber optic acoustic sensor is constructed with a 3 X 3 coupler and Faraday rotator mirrors. This system deals with the polarization-induced signal fading by a passive method. The method is eliminating polarization-induced signal fading and the output intensities of this system are described and demonstrated. The homodyne symmetric demodulation system used to recover the sensing signal is also analyzed in detail with experimental verification. The sensing head of this sensor is made of single mode optical fiber wound in to a cylindrical shell with cast polyurethane rubber as the acoustic window. The sensitivity of this sensor is measured in anechoic water tank. The results show that this senor has a stable receiving sensitivity of - 145.5 dB re 1V/(mu) Pa and the bandwidth extends from 2 to 50 kHz. This sensor configuration can be used as a high sensitivity, wide band underwater acoustic sensor.

  11. Acoustic Sensor Design for Dark Matter Bubble Chamber Detectors

    PubMed Central

    Felis, Ivan; Martínez-Mora, Juan Antonio; Ardid, Miguel

    2016-01-01

    Dark matter bubble chamber detectors use piezoelectric sensors in order to detect and discriminate the acoustic signals emitted by the bubbles grown within the superheated fluid from a nuclear recoil produced by a particle interaction. These sensors are attached to the outside walls of the vessel containing the fluid. The acoustic discrimination depends strongly on the properties of the sensor attached to the outer wall of the vessel that has to meet the requirements of radiopurity and size. With the aim of optimizing the sensor system, a test bench for the characterization of the sensors has been developed. The sensor response for different piezoelectric materials, geometries, matching layers, and backing layers have been measured and contrasted with FEM simulations and analytical models. The results of these studies lead us to have a design criterion for the construction of specific sensors for the next generation of dark matter bubble chamber detectors (250 L). PMID:27294937

  12. Acoustic Sensor Design for Dark Matter Bubble Chamber Detectors.

    PubMed

    Felis, Ivan; Martínez-Mora, Juan Antonio; Ardid, Miguel

    2016-01-01

    Dark matter bubble chamber detectors use piezoelectric sensors in order to detect and discriminate the acoustic signals emitted by the bubbles grown within the superheated fluid from a nuclear recoil produced by a particle interaction. These sensors are attached to the outside walls of the vessel containing the fluid. The acoustic discrimination depends strongly on the properties of the sensor attached to the outer wall of the vessel that has to meet the requirements of radiopurity and size. With the aim of optimizing the sensor system, a test bench for the characterization of the sensors has been developed. The sensor response for different piezoelectric materials, geometries, matching layers, and backing layers have been measured and contrasted with FEM simulations and analytical models. The results of these studies lead us to have a design criterion for the construction of specific sensors for the next generation of dark matter bubble chamber detectors (250 L). PMID:27294937

  13. Speaker verification using combined acoustic and EM sensor signal processing

    SciTech Connect

    Ng, L C; Gable, T J; Holzrichter, J F

    2000-11-10

    Low Power EM radar-like sensors have made it possible to measure properties of the human speech production system in real-time, without acoustic interference. This greatly enhances the quality and quantity of information for many speech related applications. See Holzrichter, Burnett, Ng, and Lea, J. Acoustic. SOC. Am . 103 ( 1) 622 (1998). By combining the Glottal-EM-Sensor (GEMS) with the Acoustic-signals, we've demonstrated an almost 10 fold reduction in error rates from a speaker verification system experiment under a moderate noisy environment (-10dB).

  14. Low Bandwidth Vocoding using EM Sensor and Acoustic Signal Processing

    SciTech Connect

    Ng, L C; Holzrichter, J F; Larson, P E

    2001-10-25

    Low-power EM radar-like sensors have made it possible to measure properties of the human speech production system in real-time, without acoustic interference [1]. By combining these data with the corresponding acoustic signal, we've demonstrated an almost 10-fold bandwidth reduction in speech compression, compared to a standard 2.4 kbps LPC10 protocol used in the STU-III (Secure Terminal Unit, third generation) telephone. This paper describes a potential EM sensor/acoustic based vocoder implementation.

  15. Passive acoustic localization with an AUV-mounted hydrophone array

    NASA Astrophysics Data System (ADS)

    D'Spain, Gerald L.; Terrill, Eric; Chadwell, C. David; Smith, Jerome A.; Zimmerman, Richard

    2001-05-01

    A mid-size Odyssey IIb autonomous underwater vehicle (AUV) was retrofitted with the advanced vectored-thrust system presently installed on AUVs manufactured by Bluefin Robotics, Inc. Subsequent modifications to this thrust system decreased the radiated acoustic and vibration noise levels recorded by an eight-element hydrophone array mounted on the AUV's inner shroud by 20 to 50 dB across the 20 Hz to 10 kHz band. This reduction in self-noise levels to near, or at, background ocean noise levels permits the use of the vehicle-mounted hydrophone array in passive ocean acoustic studies. One example is the application of passive synthetic aperture processing techniques to provide greater spatial resolution estimates of the direction of low frequency sources. Doppler spreading caused by medium motion is a limiting factor in array gain. At mid frequencies (1-10 kHz), the complexity of the received acoustic field created by scattering off the AUV body is partly captured in the array processing by the use of replica vectors measured in a calibration tank. These empirical replica vectors decrease the azimuthally dependent degradation in beamforming performance over that of plane waves. [Work supported by ONR, Code 321(US).

  16. Infrasonic and seismic signals from earthquakes and explosions observed with Plostina seismo-acoustic array

    NASA Astrophysics Data System (ADS)

    Ghica, D.; Ionescu, C.

    2012-04-01

    Plostina seismo-acoustic array has been recently deployed by the National Institute for Earth Physics in the central part of Romania, near the Vrancea epicentral area. The array has a 2.5 km aperture and consists of 7 seismic sites (PLOR) and 7 collocated infrasound instruments (IPLOR). The array is being used to assess the importance of collocated seismic and acoustic sensors for the purposes of (1) seismic monitoring of the local and regional events, and (2) acoustic measurement, consisting of detection of the infrasound events (explosions, mine and quarry blasts, earthquakes, aircraft etc.). This paper focuses on characterization of infrasonic and seismic signals from the earthquakes and explosions (accidental and mining type). Two Vrancea earthquakes with magnitude above 5.0 were selected to this study: one occurred on 1st of May 2011 (MD = 5.3, h = 146 km), and the other one, on 4th October 2011 (MD = 5.2, h = 142 km). The infrasonic signals from the earthquakes have the appearance of the vertical component of seismic signals. Because the mechanism of the infrasonic wave formation is the coupling of seismic waves with the atmosphere, trace velocity values for such signals are compatible with the characteristics of the various seismic phases observed with PLOR array. The study evaluates and characterizes, as well, infrasound and seismic data recorded from the explosion caused by the military accident produced at Evangelos Florakis Naval Base, in Cyprus, on 11th July 2011. Additionally, seismo-acoustic signals presumed to be related to strong mine and quarry blasts were investigated. Ground truth of mine observations provides validation of this interpretation. The combined seismo-acoustic analysis uses two types of detectors for signal identification: one is the automatic detector DFX-PMCC, applied for infrasound detection and characterization, while the other one, which is used for seismic data, is based on array processing techniques (beamforming and frequency

  17. Development of combined Opto-Acoustical sensor Modules

    NASA Astrophysics Data System (ADS)

    Enzenhöfer, A.; Anton, G.; Graf, K.; Hößl, J.; Katz, U.; Lahmann, R.; Neff, M.; Richardt, C.

    2012-01-01

    The faint fluxes of cosmic neutrinos expected at very high energies require large instrumented detector volumes. The necessary volumes in combination with a sufficient shielding against background constitute forbidding and complex environments (e.g. the deep sea) as sites for neutrino telescopes. To withstand these environments and to assure the data quality, the sensors have to be reliable and their operation has to be as simple as possible. A compact sensor module design including all necessary components for data acquisition and module calibration would simplify the detector mechanics and ensures the long term operability of the detector. The compact design discussed here combines optical and acoustical sensors inside one module, therefore reducing electronics and additional external instruments for calibration purposes. In this design the acoustical sensor is primary used for acoustic positioning of the module. The module may also be used for acoustic particle detection and marine science if an appropriate acoustical sensor is chosen.First tests of this design are promising concerning the task of calibration. To expand the field of application also towards acoustic particle detection further improvements concerning electromagnetic shielding and adaptation of the single components are necessary.

  18. Ultrasonic waveguide sensor for acoustic monitoring of nuclear power plants

    SciTech Connect

    Mel'nikov, V.I.; Khokhlov, V.N.; Duntsev, A.V.

    1988-02-01

    Waveguide sensors are being increasingly used for acoustic emission monitoring of equipment in nuclear power plants and in systems for acoustic diagnostics of the coolant. In this paper we examine the construction of a waveguide sensor for acoustic monitoring for the example of an impedance sensor for the steam content of water coolant, intended for use in the active emission-reception mode. The dynamic properties of the sensor are determined by the construction and the dimensions of the transducer, and are usually represented by its amplitude-frequency characteristic, which, as a rule, is of the resonance type. The longitudinal-wave waveguide, made from steel wire 0.8-1.2 mm in diameter, can transmit signals in the band 50-1000 kHz. To increase the reliability and the ease of maintenance of the monitoring system the transducer and the waveguide are connected in a detachable manner.

  19. Modeling of a Surface Acoustic Wave Strain Sensor

    NASA Technical Reports Server (NTRS)

    Wilson, W. C.; Atkinson, Gary M.

    2010-01-01

    NASA Langley Research Center is investigating Surface Acoustic Wave (SAW) sensor technology for harsh environments aimed at aerospace applications. To aid in development of sensors a model of a SAW strain sensor has been developed. The new model extends the modified matrix method to include the response of Orthogonal Frequency Coded (OFC) reflectors and the response of SAW devices to strain. These results show that the model accurately captures the strain response of a SAW sensor on a Langasite substrate. The results of the model of a SAW Strain Sensor on Langasite are presented

  20. (3,1) Drive PVDF acoustic displacement sensor

    SciTech Connect

    Caspall, J.J.; Caille, G.W.; Jarzynski, J.; McCall, G.S. II

    1996-04-01

    A (3,1) drive piezofilm vibration sensor is introduced. Operated above the lumped element resonance frequency of 600 Hz, the sensor delivers a voltage signal proportional to displacement over the frequency range of 2 kHz to 8 kHz. It is anticipated that the sensor response is flat above 8 kHz, but calibration has not been performed at higher frequencies. The sensor is very sensitive, detecting acoustic displacements as small as 10{sup {minus}5} nm. Because of its simple design the sensor is robust and easy to assemble. {copyright} {ital 1996 American Institute of Physics.}

  1. A compact array calibrator to study the feasibility of acoustic neutrino detection

    NASA Astrophysics Data System (ADS)

    Ardid, M.; Camarena, F.; Felis, I.; Herrero, A.; Llorens, C. D.; Martínez-Mora, J.; Saldaña, M.

    2016-04-01

    Underwater acoustic detection of ultra-high-energy neutrinos was proposed already in 1950s: when a neutrino interacts with a nucleus in water, the resulting particle cascade produces a pressure pulse that has a bipolar temporal structure and propagates within a flat disk-like volume. A telescope that consists of thousands of acoustic sensors deployed in the deep sea can monitor hundreds of cubic kilometres of water looking for these signals and discriminating them from acoustic noise. To study the feasibility of the technique it is critical to have a calibrator able to mimic the neutrino "signature" that can be operated from a vessel. Due to the axial-symmetry of the signal, their very directive short bipolar shape and the constraints of operating at sea, the development of such a calibrator is very challenging. Once the possibility of using the acoustic parametric technique for this aim was validated with the first compact array calibrator prototype, in this paper we describe the new design for such a calibrator composed of an array of piezo ceramic tube transducers emitting in axial direction.

  2. Biomimetic smart sensors for autonomous robotic behavior I: acoustic processing

    NASA Astrophysics Data System (ADS)

    Deligeorges, Socrates; Xue, Shuwan; Soloway, Aaron; Lichtenstein, Lee; Gore, Tyler; Hubbard, Allyn

    2009-05-01

    Robotics are rapidly becoming an integral tool on the battlefield and in homeland security, replacing humans in hazardous conditions. To enhance the effectiveness of robotic assets and their interaction with human operators, smart sensors are required to give more autonomous function to robotic platforms. Biologically inspired sensors are an essential part of this development of autonomous behavior and can increase both capability and performance of robotic systems. Smart, biologically inspired acoustic sensors have the potential to extend autonomous capabilities of robotic platforms to include sniper detection, vehicle tracking, personnel detection, and general acoustic monitoring. The key to enabling these capabilities is biomimetic acoustic processing using a time domain processing method based on the neural structures of the mammalian auditory system. These biologically inspired algorithms replicate the extremely adaptive processing of the auditory system yielding high sensitivity over broad dynamic range. The algorithms provide tremendous robustness in noisy and echoic spaces; properties necessary for autonomous function in real world acoustic environments. These biomimetic acoustic algorithms also provide highly accurate localization of both persistent and transient sounds over a wide frequency range, using baselines on the order of only inches. A specialized smart sensor has been developed to interface with an iRobot Packbot® platform specifically to enhance its autonomous behaviors in response to personnel and gunfire. The low power, highly parallel biomimetic processor, in conjunction with a biomimetic vestibular system (discussed in the companion paper), has shown the system's autonomous response to gunfire in complicated acoustic environments to be highly effective.

  3. All fiber sensor array for ultrasound sensing

    NASA Astrophysics Data System (ADS)

    Gabai, Haniel; Steinberg, Idan; Eyal, Avishay

    2016-03-01

    The field of Optical Fiber Sensors (OFS) is gaining tremendous popularity in recent years. OFS natural immunity to electromagnetic disturbances, inherent biocompatibility and compactness making them highly attractive for ultrasound sensing. Moreover, their compatibility with photoacoustics can make them useful in situations where traditional piezoelectric probes are inadequate. However, the issue of multiplexing individual OFS into an array remains a challenging and costly task. In this work, we demonstrate a straightforward approach for multiplexing multiple broadband OFS for ultrasound sensing by exploiting most of the photoreceiver's bandwidth. The design is based on a recently developed system in which all sensing elements are connected to a single interrogator and to a single digitizing circuit. To mitigate aliasing, the system employs I/Q coherent detection. Synchronization of the sensor interrogation with the excitation enables very high repetition rates (kHz) making it ideal for applications where imaging of dynamic processes is desired.

  4. Acoustic Doppler velocity measurement system using capacitive micromachined ultrasound transducer array technology.

    PubMed

    Shin, Minchul; Krause, Joshua S; DeBitetto, Paul; White, Robert D

    2013-08-01

    This paper describes the design, fabrication, modeling, and characterization of a small (1 cm(2) transducer chip) acoustic Doppler velocity measurement system using microelectromechanical systems capacitive micromachined ultrasound transducer (cMUT) array technology. The cMUT sensor has a 185 kHz resonant frequency to achieve a 13° beam width for a 1 cm aperture. A model for the cMUT and the acoustic system which includes electrical, mechanical, and acoustic components is provided. Furthermore, this paper shows characterization of the cMUT sensor with a variety of testing procedures including Laser Doppler Vibrometry (LDV), beampattern measurement, reflection testing, and velocity testing. LDV measurements demonstrate that the membrane displacement at the center point is 0.4 nm/V(2) at 185 kHz. The maximum range of the sensor is 60 cm (30 cm out and 30 cm back). A velocity sled was constructed and used to demonstrate measureable Doppler shifts at velocities from 0.2 to 1.0 m/s. The Doppler shifts agree well with the expected frequency shifts over this range. PMID:23927100

  5. Seafloor horizontal positioning from a continuously operating buoy-based GPS-acoustic array

    NASA Astrophysics Data System (ADS)

    Chadwell, C. D.; Brown, K. M.; Tryon, M. D.; Send, U.

    2009-12-01

    Seafloor horizontal positions in a global frame were estimated daily from an autonomous buoy operating continuously over several months. The buoy (GEOCE) was moored offshore San Diego in 100-m-deep waters above an array of 4 seafloor transponders. Dual-frequency GPS data were collected at 1-Hz at a main antenna on the buoy and at 3 shore stations to provide continuous 2-3 cm positions of the buoy main antenna. Two single-frequency antennas on the buoy along with the main antenna were used to estimate the buoy attitude and short-term velocity. At one minute intervals the two-way acoustic travel time was measured between the buoy and transponders. During this few second span when transmitting and receiving acoustic signals, 10-Hz attitude and velocity were collected to locate the position of the transducer mounted approximately 2 m below the water line. The GPS and acoustic data were recorded internally and transmitted to shore over a cell-phone link and/or a wireless Ethernet. GPS data were combined with the acoustic data to estimate the array location at 1 minute intervals. The 1-minute positions are combined to provide a daily estimate of the array position. The buoy is autonomous, solar-powered and in addition to the GPS and acoustic data collects air pressure, temperature, wind speed/direction as well as water level at the surface and conductivity and temperature along the mooring line from near the sea surface to just above the sea floor. Here we report results from the horizontal positioning effort from Phase I of the project in shallow waters. The project also includes a vertical deformation sensor and physical oceanographic monitoring. A deep water (nominally 1000 m) test is planned for 2010. This work is supported by NSF-OCE-0551363 of the Ocean Technology and Interdisciplinary Coordination Program.

  6. Neural network based analysis for chemical sensor arrays

    SciTech Connect

    Hashem, S.; Keller, P.E.; Kouzes, R.T.; Kangas, L.J.

    1995-04-01

    Compact, portable systems capable of quickly identifying contaminants in the field are of great importance when monitoring the environment. In this paper, we examine the effectiveness of using artificial neural networks for real-time data analysis of a sensor array. Analyzing the sensor data in parallel may allow for rapid identification of contaminants in the field without requiring highly selective individual sensors. We use a prototype sensor array which consists of nine tin-oxide Taguchi-type sensors, a temperature sensor, and a humidity sensor. We illustrate that by using neural network based analysis of the sensor data, the selectivity of the sensor array may be significantly improved, especially when some (or all) the sensors are not highly selective.

  7. Fabrication of thermal microphotonic sensors and sensor arrays

    DOEpatents

    Shaw, Michael J.; Watts, Michael R.; Nielson, Gregory N.

    2010-10-26

    A thermal microphotonic sensor is fabricated on a silicon substrate by etching an opening and a trench into the substrate, and then filling in the opening and trench with silicon oxide which can be deposited or formed by thermally oxidizing a portion of the silicon substrate surrounding the opening and trench. The silicon oxide forms a support post for an optical resonator which is subsequently formed from a layer of silicon nitride, and also forms a base for an optical waveguide formed from the silicon nitride layer. Part of the silicon substrate can be selectively etched away to elevate the waveguide and resonator. The thermal microphotonic sensor, which is useful to detect infrared radiation via a change in the evanescent coupling of light between the waveguide and resonator, can be formed as a single device or as an array.

  8. Localization using ground- and air-based acoustic arrays

    NASA Astrophysics Data System (ADS)

    Goldman, Geoffrey H.; Reiff, Chris

    2011-06-01

    Techniques were developed to localize acoustic quasiperiodic signals using microphone arrays located on the ground and on an aerostat. The direction of arrival (DOA) was computed at each array and then the position of the source was estimated using algorithms based upon triangulation. Differential time delays between the microphones in a tetrahedral array were estimated in the frequency domain, and then DOA estimates were calculated using a weighted least squares approach. The location of the target was calculated by minimizing the weighted squared error of a cost function for different combinations of DOA estimates. The algorithms were tested offline using data collected by the U.S. Army Research Laboratory on an aircraft. The ground-truth position of the target was recorded using a GPS system as it maneuvered and compared to the results obtained from the localization algorithms. The algorithms performed well when estimating the x and y positions, but had difficulty obtaining consistently good z positions, or equivalently, height estimates.

  9. Subharmonic phased array for crack evaluation using surface acoustic wave

    NASA Astrophysics Data System (ADS)

    Ouchi, Akihiro; Sugawara, Azusa; Ohara, Yoshikazu; Yamanaka, Kazushi

    2015-07-01

    To accurately measure closed crack length, we proposed an imaging method using a subharmonic phased array for crack evaluation using surface acoustic waves (SAW SPACE) with water immersion. We applied SAW SPACE to the hole specimen in a fundamental array (FA) image. The hole was imaged with high resolution. Subsequently, SAW SPACE was applied to fatigue crack and stress corrosion crack (SCC) specimens. A fatigue crack was imaged in FA and subharmonic array (SA) images, and the length of this particular fatigue crack measured in the images was almost the same as that measured by optical observation. The SCC was imaged and its length was accurately measured in the SA image, whereas it was underestimated in the FA image and by optical observation. Thus, we demonstrated that SAW SPACE with water immersion is useful for the accurate measurement of closed crack length and for imaging the distribution of open and closed parts of cracks with high resolution.

  10. High-sensitivity acoustic sensors from nanofibre webs

    NASA Astrophysics Data System (ADS)

    Lang, Chenhong; Fang, Jian; Shao, Hao; Ding, Xin; Lin, Tong

    2016-03-01

    Considerable interest has been devoted to converting mechanical energy into electricity using polymer nanofibres. In particular, piezoelectric nanofibres produced by electrospinning have shown remarkable mechanical energy-to-electricity conversion ability. However, there is little data for the acoustic-to-electric conversion of electrospun nanofibres. Here we show that electrospun piezoelectric nanofibre webs have a strong acoustic-to-electric conversion ability. Using poly(vinylidene fluoride) as a model polymer and a sensor device that transfers sound directly to the nanofibre layer, we show that the sensor devices can detect low-frequency sound with a sensitivity as high as 266 mV Pa-1. They can precisely distinguish sound waves in low to middle frequency region. These features make them especially suitable for noise detection. Our nanofibre device has more than five times higher sensitivity than a commercial piezoelectric poly(vinylidene fluoride) film device. Electrospun piezoelectric nanofibres may be useful for developing high-performance acoustic sensors.

  11. Colorimetric Sensor Array for White Wine Tasting

    PubMed Central

    Chung, Soo; Park, Tu San; Park, Soo Hyun; Kim, Joon Yong; Park, Seongmin; Son, Daesik; Bae, Young Min; Cho, Seong In

    2015-01-01

    A colorimetric sensor array was developed to characterize and quantify the taste of white wines. A charge-coupled device (CCD) camera captured images of the sensor array from 23 different white wine samples, and the change in the R, G, B color components from the control were analyzed by principal component analysis. Additionally, high performance liquid chromatography (HPLC) was used to analyze the chemical components of each wine sample responsible for its taste. A two-dimensional score plot was created with 23 data points. It revealed clusters created from the same type of grape, and trends of sweetness, sourness, and astringency were mapped. An artificial neural network model was developed to predict the degree of sweetness, sourness, and astringency of the white wines. The coefficients of determination (R2) for the HPLC results and the sweetness, sourness, and astringency were 0.96, 0.95, and 0.83, respectively. This research could provide a simple and low-cost but sensitive taste prediction system, and, by helping consumer selection, will be able to have a positive effect on the wine industry. PMID:26213946

  12. Production and preliminary testing of multianalyte imaging sensor arrays

    SciTech Connect

    Richards, J.B.; Brown, S.B.; Milanovich, F.P.; Healey, B.G.; Chadha, S.; Walt, D.R.

    1994-11-01

    This report covers the production and preliminary testing of fiber optic sensors that contain a discrete array of analyte specific sensors on their distal ends. The development of the chemistries associated with this technology is covered elsewhere.

  13. Differentiation of vapor mixture with chemical sensor arrays

    NASA Astrophysics Data System (ADS)

    Kim, Chulki; Jung, Youngmo; Moon, Hi Gyu; Lee, Ji Eun; Shin, Bum Ju; Lim, Chaehyun; Choi, Jaebin; Seo, Minah; Kim, Jae Hun; Jun, Seong Chan; Kim, Sang Kyung; Kang, Chong Yun; Lee, Taikjin; Lee, Seok

    2015-07-01

    Arrays of partially selective chemical sensors have been the focus of extensive research over the past decades because of their potential for widespread application in ambient air monitoring, health and safety, and biomedical diagnostics. Especially, vapor sensor arrays based on functionalized nanomaterials have shown great promise with their high sensitivity by dimensionality and outstanding electronic properties. Here, we introduce experiments where individual vapors and mixtures of them are examined by different chemical sensor arrays. The collected data from those sensor arrays are further analyzed by a principal component analysis (PCA) and targeted vapors are recognized based on prepared database.

  14. Dual output acoustic wave sensor for molecular identification

    DOEpatents

    Frye, Gregory C.; Martin, Stephen J.

    1991-01-01

    A method of identification and quantification of absorbed chemical species by measuring changes in both the velocity and the attenuation of an acoustic wave traveling through a thin film into which the chemical species is sorbed. The dual output response provides two independent sensor responses from a single sensing device thereby providing twice as much information as a single output sensor. This dual output technique and analysis allows a single sensor to provide both the concentration and the identity of a chemical species or permits the number of sensors required for mixtures to be reduced by a factor of two.

  15. An Amplitude-Based Estimation Method for International Space Station (ISS) Leak Detection and Localization Using Acoustic Sensor Networks

    NASA Technical Reports Server (NTRS)

    Tian, Jialin; Madaras, Eric I.

    2009-01-01

    The development of a robust and efficient leak detection and localization system within a space station environment presents a unique challenge. A plausible approach includes the implementation of an acoustic sensor network system that can successfully detect the presence of a leak and determine the location of the leak source. Traditional acoustic detection and localization schemes rely on the phase and amplitude information collected by the sensor array system. Furthermore, the acoustic source signals are assumed to be airborne and far-field. Likewise, there are similar applications in sonar. In solids, there are specialized methods for locating events that are used in geology and in acoustic emission testing that involve sensor arrays and depend on a discernable phase front to the received signal. These methods are ineffective if applied to a sensor detection system within the space station environment. In the case of acoustic signal location, there are significant baffling and structural impediments to the sound path and the source could be in the near-field of a sensor in this particular setting.

  16. Sensor arrays for detecting analytes in fluids

    NASA Technical Reports Server (NTRS)

    Lewis, Nathan S. (Inventor); Freund, Michael S. (Inventor)

    2000-01-01

    A sensor array for detecting an analyte in a fluid, comprising at least first and second chemically sensitive resistors electrically connected to an electrical measuring apparatus, wherein each of the chemically sensitive resistors comprises a mixture of nonconductive material and a conductive material. Each resistor provides an electrical path through the mixture of nonconductive material and the conductive material. The resistors also provide a difference in resistance between the conductive elements when contacted with a fluid comprising an analyte at a first concentration, than when contacted with an analyte at a second different concentration. A broad range of analytes can be detected using the sensors of the present invention. Examples of such analytes include, but are not limited to, alkanes, alkenes, alkynes, dienes, alicyclic hydrocarbons, arenes, alcohols, ethers, ketones, aldehydes, carbonyls, carbanions, polynuclear aromatics, organic derivatives, biomolecules, sugars, isoprenes, isoprenoids and fatty acids. Moreover, applications for the sensors of the present invention include, but are not limited to, environmental toxicology, remediation, biomedicine, material quality control, food monitoring and agricultural monitoring.

  17. Acoustic mapping of ocean currents using networked distributed sensors.

    PubMed

    Huang, Chen-Fen; Yang, T C; Liu, Jin-Yuan; Schindall, Jeff

    2013-09-01

    Distributed underwater sensors are expected to provide oceanographic monitoring over large areas. As fabrication technology advances, low cost sensors will be available for many uses. The sensors communicate to each other and are networked using acoustic communications. This paper first studies the performance of such systems for current measurements using tomographic inversion approaches to compare with that of a conventional system which distributes the sensors on the periphery of the area of interest. It then proposes two simple signal processing methods for ocean current mapping (using distributed networked sensors) aimed at real-time in-buoy processing. Tomographic inversion generally requires solving a challenging high dimensional inverse problem, involving substantial computations. Given distributed sensors, currents can be constructed locally based on data from neighboring sensors. It is shown using simulated data that similar results are obtained using distributed processing as using conventional tomographic approaches. The advantage for distributed systems is that by increasing the number of nodes, one gains a much more improved performance. Furthermore, distributed systems use much less energy than a conventional tomographic system for the same area coverage. Experimental data from an acoustic communication and networking experiment are used to demonstrate the feasibility of acoustic current mapping. PMID:23967940

  18. Optimizing surface acoustic wave sensors for trace chemical detection

    SciTech Connect

    Frye, G.C.; Kottenstette, R.J.; Heller, E.J.

    1997-06-01

    This paper describes several recent advances for fabricating coated surface acoustic wave (SAW) sensors for applications requiring trace chemical detection. Specifically, we have demonstrated that high surface area microporous oxides can provide 100-fold improvements in SAW sensor responses compared with more typical polymeric coatings. In addition, we fabricated GaAs SAW devices with frequencies up to 500 MHz to provide greater sensitivity and an ideal substrate for integration with high-frequency electronics.

  19. Acoustic contrast control in an arc-shaped area using a linear loudspeaker array.

    PubMed

    Zhao, Sipei; Qiu, Xiaojun; Burnett, Ian

    2015-02-01

    This paper proposes a method of creating acoustic contrast control in an arc-shaped area using a linear loudspeaker array. The boundary of the arc-shaped area is treated as the envelope of the tangent lines that can be formed by manipulating the phase profile of the loudspeakers in the array. When compared with the existing acoustic contrast control method, the proposed method is able to generate sound field inside an arc-shaped area and achieve a trade-off between acoustic uniformity and acoustic contrast. The acoustic contrast created by the proposed method increases while the acoustic uniformity decreases with frequency. PMID:25698035

  20. Laboratory comparisons of acoustic and optical sensors for microbubble measurement

    NASA Technical Reports Server (NTRS)

    Su, Ming Yang; Todoroff, Douglas; Cartmill, John

    1994-01-01

    This paper presents the results of a recent comparison between three microbubble size spectrum measurement systems. These systems are the light-scattering bubble counter, the photographic bubble-imaging system, and the acoustic resonator array. Good agreement was formed among these three systems over the bubble size range appropriate for each system.

  1. Superconducting Digital Multiplexers for Sensor Arrays

    NASA Technical Reports Server (NTRS)

    Kadin, Alan M.; Brock, Darren K.; Gupta, Deepnarayan

    2004-01-01

    Arrays of cryogenic microbolometers and other cryogenic detectors are being developed for infrared imaging. If the signal from each sensor is amplified, multiplexed, and digitized using superconducting electronics, then this data can be efficiently read out to ambient temperature with a minimum of noise and thermal load. HYPRES is developing an integrated system based on SQUID amplifiers, a high-resolution analog-to-digital converter (ADC) based on RSFQ (rapid single flux quantum) logic, and a clocked RSFQ multiplexer. The ADC and SQUIDs have already been demonstrated for other projects, so this paper will focus on new results of a digital multiplexer. Several test circuits have been fabricated using Nb Josephson technology and are about to be tested at T = 4.2 K, with a more complete prototype in preparation.

  2. Tracking a convoy of multiple targets using acoustic sensor data

    NASA Astrophysics Data System (ADS)

    Damarla, T. R.

    2003-08-01

    In this paper we present an algorithm to track a convoy of several targets in a scene using acoustic sensor array data. The tracking algorithm is based on template of the direction of arrival (DOA) angles for the leading target. Often the first target is the closest target to the sensor array and hence the loudest with good signal to noise ratio. Several steps were used to generate a template of the DOA angle for the leading target, namely, (a) the angle at the present instant should be close to the angle at the previous instant and (b) the angle at the present instant should be within error bounds of the predicted value based on the previous values. Once the template of the DOA angles of the leading target is developed, it is used to predict the DOA angle tracks of the remaining targets. In order to generate the tracks for the remaining targets, a track is established if the angles correspond to the initial track values of the first target. Second the time delay between the first track and the remaining tracks are estimated at the highest correlation points between the first track and the remaining tracks. As the vehicles move at different speeds the tracks either compress or expand depending on whether a target is moving fast or slow compared to the first target. The expansion and compression ratios are estimated and used to estimate the predicted DOA angle values of the remaining targets. Based on these predicted DOA angles of the remaining targets the DOA angles obtained from the MVDR or Incoherent MUSIC will be appropriately assigned to proper tracks. Several other rules were developed to avoid mixing the tracks. The algorithm is tested on data collected at Aberdeen Proving Ground with a convoy of 3, 4 and 5 vehicles. Some of the vehicles are tracked and some are wheeled vehicles. The tracking algorithm results are found to be good. The results will be presented at the conference and in the paper.

  3. Theory for a gas composition sensor based on acoustic properties

    NASA Technical Reports Server (NTRS)

    Phillips, Scott; Dain, Yefim; Lueptow, Richard M.

    2003-01-01

    Sound travelling through a gas propagates at different speeds and its intensity attenuates to different degrees depending upon the composition of the gas. Theoretically, a real-time gaseous composition sensor could be based on measuring the sound speed and the acoustic attenuation. To this end, the speed of sound was modelled using standard relations, and the acoustic attenuation was modelled using the theory for vibrational relaxation of gas molecules. The concept for a gas composition sensor is demonstrated theoretically for nitrogen-methane-water and hydrogen-oxygen-water mixtures. For a three-component gas mixture, the measured sound speed and acoustic attenuation each define separate lines in the composition plane of two of the gases. The intersection of the two lines defines the gas composition. It should also be possible to use the concept for mixtures of more than three components, if the nature of the gas composition is known to some extent.

  4. Theory for a gas composition sensor based on acoustic properties.

    PubMed

    Phillips, Scott; Dain, Yefim; Lueptow, Richard M

    2003-01-01

    Sound travelling through a gas propagates at different speeds and its intensity attenuates to different degrees depending upon the composition of the gas. Theoretically, a real-time gaseous composition sensor could be based on measuring the sound speed and the acoustic attenuation. To this end, the speed of sound was modelled using standard relations, and the acoustic attenuation was modelled using the theory for vibrational relaxation of gas molecules. The concept for a gas composition sensor is demonstrated theoretically for nitrogen-methane-water and hydrogen-oxygen-water mixtures. For a three-component gas mixture, the measured sound speed and acoustic attenuation each define separate lines in the composition plane of two of the gases. The intersection of the two lines defines the gas composition. It should also be possible to use the concept for mixtures of more than three components, if the nature of the gas composition is known to some extent. PMID:14552356

  5. Numerical analysis of sound propagation for acoustic lens array in different fluid mediums

    NASA Astrophysics Data System (ADS)

    Fujisawa, Kei; Asada, Akira

    2014-11-01

    In this paper, an acoustic sound focusing method using acoustic lens array is investigated numerically. To understand the sound propagation in the acoustic field in water with a lens material of glycerin, compressible Navier-Stokes equation, the mass conservation, energy equation, state equation in cylindrical coordinate system are solved without applying parabolic approximation. The numerical method is based on the finite difference time domain method. The numerical calculation of the sound propagation is carried out in the near field of the acoustic lens array of variable thickness normal to the acoustic beam. The numerical result shows that the sound pressure level along the beam axis increases due to the influence of the acoustic lens array, which indicates the capability of the acoustic lens array to the sound focusing.

  6. A colorimetric sensor array of porous pigments.

    PubMed

    Lim, Sung H; Kemling, Jonathan W; Feng, Liang; Suslick, Kenneth S

    2009-12-01

    The development of a low-cost, simple colorimetric sensor array capable of the detection and identification of toxic gases is reported. This technology uses a disposable printed array of porous pigments in which metalloporphyrins and chemically-responsive dyes are immobilized in a porous matrix of organically modified siloxanes (ormosils) and printed on a porous membrane. The printing of the ormosil into the membrane is highly uniform and does not lessen the porosity of the membrane, as shown by scanning electron microscopy. When exposed to an analyte, these pigments undergo reactions that result in well-defined color changes due to strong chemical interactions: ligation to metal ions, Lewis or Brønsted acid-base interactions, hydrogen bonding, etc. Striking visual identification of 3 toxic gases has been shown at the IDLH (immediately dangerous to life and health) concentration, at the PEL (permissible exposure level), and at a level well below the PEL. Identification and quantification of analytes were achieved using the color change profiles, which were readily distinguishable in a hierarchical clustering analysis (HCA) dendrogram, with no misclassifications in 50 trials. PMID:19918616

  7. A colorimetric sensor array of porous pigments

    PubMed Central

    Lim, Sung H.; Kemling, Jonathan W.; Feng, Liang

    2010-01-01

    The development of a low-cost, simple colorimetric sensor array capable of detection and identification of toxic gases is reported. This technology uses a disposable printed array of porous pigments in which metalloporphyrins and chemically responsive dyes are immobilized in a porous matrix of organically modified siloxanes (ormosils) and printed on a porous membrane. The printing of the ormosil into the membrane is highly uniform and does not lessen the porosity of the membrane, as shown by scanning electron microscopy. When exposed to an analyte, these pigments undergo reactions that result in well-defined color changes due to strong chemical interactions: ligation to metal ions, Lewis or Bronsted acid-base interactions, hydrogen bonding, etc. Striking visual identification of 3 toxic gases has been shown at the IDLH (immediately dangerous to life and health), at the PEL (permissible exposure level), and at a level well below the PEL. Identification and quantification of analytes were achieved using the color change profiles, which were readily distinguishable in a hierarchical clustering analysis (HCA) dendrogram, with no misclassifications in 50 trials. PMID:19918616

  8. Vector Acoustics, Vector Sensors, and 3D Underwater Imaging

    NASA Astrophysics Data System (ADS)

    Lindwall, D.

    2007-12-01

    Vector acoustic data has two more dimensions of information than pressure data and may allow for 3D underwater imaging with much less data than with hydrophone data. The vector acoustic sensors measures the particle motions due to passing sound waves and, in conjunction with a collocated hydrophone, the direction of travel of the sound waves. When using a controlled source with known source and sensor locations, the reflection points of the sound field can be determined with a simple trigonometric calculation. I demonstrate this concept with an experiment that used an accelerometer based vector acoustic sensor in a water tank with a short-pulse source and passive scattering targets. The sensor consists of a three-axis accelerometer and a matched hydrophone. The sound source was a standard transducer driven by a short 7 kHz pulse. The sensor was suspended in a fixed location and the hydrophone was moved about the tank by a robotic arm to insonify the tank from many locations. Several floats were placed in the tank as acoustic targets at diagonal ranges of approximately one meter. The accelerometer data show the direct source wave as well as the target scattered waves and reflections from the nearby water surface, tank bottom and sides. Without resorting to the usual methods of seismic imaging, which in this case is only two dimensional and relied entirely on the use of a synthetic source aperture, the two targets, the tank walls, the tank bottom, and the water surface were imaged. A directional ambiguity inherent to vector sensors is removed by using collocated hydrophone data. Although this experiment was in a very simple environment, it suggests that 3-D seismic surveys may be achieved with vector sensors using the same logistics as a 2-D survey that uses conventional hydrophones. This work was supported by the Office of Naval Research, program element 61153N.

  9. Miniature fiber acoustic sensors using a photonic-crystal membrane

    NASA Astrophysics Data System (ADS)

    Jo, Wonuk; Akkaya, Onur C.; Solgaard, Olav; Digonnet, Michel J. F.

    2013-12-01

    This paper discusses recent developments in fiber acoustic sensors utilizing a miniature Fabry-Perot (FP) interferometer fabricated at the tip of a fiber. The FP is made of a high-reflectivity photonic-crystal membrane placed ˜30 μm from the reflective end of a single-mode fiber. When exposed to an acoustic wave the compliant membrane vibrates, and this vibration is detected as a modulation of the optical power reflected by the FP. The interferometer is enclosed in a sensor head designed, with the assistance of an electro-mechanical model, to minimize squeezed-film damping of the thin air gap between the reflectors and obtain a good acoustic response. The sensor head is fabricated out of silica elements and assembled with silicate bonding to minimize thermal expansion and ensure thermal stability. In the first sensor of this type the reflector at the fiber tip is a gold coating. It exhibits an average minimum detectable pressure (MDP) of 33 μPa/√Hz (1-30 kHz), a high thermal stability, and a weak polarization dependence. The second sensor incorporates several improvements, including a larger membrane for increased vibration amplitude, and higher reflectivity mirrors (PC and fiber tip) for increased displacement sensitivity. Its measured response is flat between ˜600 Hz and 20 kHz, with a normalized sensitivity as high as ˜0.17 Pa-1. Between 1 kHz and 30 kHz its average MDP is ˜2.6 μPa/√Hz, the lowest reported value for a fiber acoustic sensor this small. These results demonstrate the promising potential of this class of stable and compact optical sensors for highly sensitive detection in the audible range.

  10. Experimental Results of Underwater Cooperative Source Localization Using a Single Acoustic Vector Sensor

    PubMed Central

    Felisberto, Paulo; Rodriguez, Orlando; Santos, Paulo; Ey, Emanuel; Jesus, Sérgio M.

    2013-01-01

    This paper aims at estimating the azimuth, range and depth of a cooperative broadband acoustic source with a single vector sensor in a multipath underwater environment, where the received signal is assumed to be a linear combination of echoes of the source emitted waveform. A vector sensor is a device that measures the scalar acoustic pressure field and the vectorial acoustic particle velocity field at a single location in space. The amplitudes of the echoes in the vector sensor components allow one to determine their azimuth and elevation. Assuming that the environmental conditions of the channel are known, source range and depth are obtained from the estimates of elevation and relative time delays of the different echoes using a ray-based backpropagation algorithm. The proposed method is tested using simulated data and is further applied to experimental data from the Makai'05 experiment, where 8–14 kHz chirp signals were acquired by a vector sensor array. It is shown that for short ranges, the position of the source is estimated in agreement with the geometry of the experiment. The method is low computational demanding, thus well-suited to be used in mobile and light platforms, where space and power requirements are limited. PMID:23857257

  11. Experimental results of underwater cooperative source localization using a single acoustic vector sensor.

    PubMed

    Felisberto, Paulo; Rodriguez, Orlando; Santos, Paulo; Ey, Emanuel; Jesus, Sérgio M

    2013-01-01

    This paper aims at estimating the azimuth, range and depth of a cooperative broadband acoustic source with a single vector sensor in a multipath underwater environment, where the received signal is assumed to be a linear combination of echoes of the source emitted waveform. A vector sensor is a device that measures the scalar acoustic pressure field and the vectorial acoustic particle velocity field at a single location in space. The amplitudes of the echoes in the vector sensor components allow one to determine their azimuth and elevation. Assuming that the environmental conditions of the channel are known, source range and depth are obtained from the estimates of elevation and relative time delays of the different echoes using a ray-based backpropagation algorithm. The proposed method is tested using simulated data and is further applied to experimental data from the Makai'05 experiment, where 8-14 kHz chirp signals were acquired by a vector sensor array. It is shown that for short ranges, the position of the source is estimated in agreement with the geometry of the experiment. The method is low computational demanding, thus well-suited to be used in mobile and light platforms, where space and power requirements are limited. PMID:23857257

  12. Gas sensor arrays for olfactory analysis: Issues and opportunities

    SciTech Connect

    Hoffheins, B.S.; Lauf, R.J.

    1988-01-01

    There have been many approaches to the development of gas sensor arrays for use in gas detection instruments and devices. Various techniques have been proposed to handle the signal processing and pattern recognition required to convert the outputs of these arrays into useful information such as the identities and concentrations of particular chemical species. In general, the pattern recognition techniques have not been developed as fully as have the sensor arrays. Materials issues, like sensor aging and drift, power requirements, and packaging are also problems that must be solved before gas sensor arrays can be incorporated into instruments for industrial and consumer markets. This paper describes significant thrusts in the areas of metal-oxide gas sensor array design and construction, related signature analysis and deconvolution, and materials issues. Recommendations are offered for future developments.

  13. MEMS Microphone Array Sensor for Air-Coupled Impact-Echo

    PubMed Central

    Groschup, Robin; Grosse, Christian U.

    2015-01-01

    Impact-Echo (IE) is a nondestructive testing technique for plate like concrete structures. We propose a new sensor concept for air-coupled IE measurements. By using an array of MEMS (micro-electro-mechanical system) microphones, instead of a single receiver, several operational advantages compared to conventional sensing strategies in IE are achieved. The MEMS microphone array sensor is cost effective, less sensitive to undesired effects like acoustic noise and has an optimized sensitivity for signals that need to be extracted for IE data interpretation. The proposed sensing strategy is justified with findings from numerical simulations, showing that the IE resonance in plate like structures causes coherent surface displacements on the specimen under test in an area around the impact location. Therefore, by placing several MEMS microphones on a sensor array board, the IE resonance is easier to be identified in the recorded spectra than with single point microphones or contact type transducers. A comparative measurement between the array sensor, a conventional accelerometer and a measurement microphone clearly shows the suitability of MEMS type microphones and the advantages of using these microphones in an array arrangement for IE. The MEMS microphone array will make air-coupled IE measurements faster and more reliable. PMID:26121610

  14. MEMS Microphone Array Sensor for Air-Coupled Impact-Echo.

    PubMed

    Groschup, Robin; Grosse, Christian U

    2015-01-01

    Impact-Echo (IE) is a nondestructive testing technique for plate like concrete structures. We propose a new sensor concept for air-coupled IE measurements. By using an array of MEMS (micro-electro-mechanical system) microphones, instead of a single receiver, several operational advantages compared to conventional sensing strategies in IE are achieved. The MEMS microphone array sensor is cost effective, less sensitive to undesired effects like acoustic noise and has an optimized sensitivity for signals that need to be extracted for IE data interpretation. The proposed sensing strategy is justified with findings from numerical simulations, showing that the IE resonance in plate like structures causes coherent surface displacements on the specimen under test in an area around the impact location. Therefore, by placing several MEMS microphones on a sensor array board, the IE resonance is easier to be identified in the recorded spectra than with single point microphones or contact type transducers. A comparative measurement between the array sensor, a conventional accelerometer and a measurement microphone clearly shows the suitability of MEMS type microphones and the advantages of using these microphones in an array arrangement for IE. The MEMS microphone array will make air-coupled IE measurements faster and more reliable. PMID:26121610

  15. Theory of metascreen-based acoustic passive phased array

    NASA Astrophysics Data System (ADS)

    Li, Yong; Qi, Shuibao; Badreddine Assouar, M.

    2016-04-01

    The metascreen-based acoustic passive phased array provides a new degree of freedom for manipulating acoustic waves due to their fascinating properties, such as a fully shifting phase, keeping impedance matching, and holding subwavelength spatial resolution. We develop acoustic theories to analyze the transmission/reflection spectra and the refracted pressure fields of a metascreen composed of elements with four Helmholtz resonators (HRs) in series and a straight pipe. We find that these properties are also valid under oblique incidence with large angles, with the underlying physics stemming from the hybrid resonances between the HRs and the straight pipe. By imposing the desired phase profiles, the refracted fields can be tailored in an anomalous yet controllable manner. In particular, two types of negative refraction are exhibited, based on two distinct mechanisms: one is formed from classical diffraction theory and the other is dominated by the periodicity of the metascreen. Positive (normal) and negative refractions can be converted by simply changing the incident angle, with the coexistence of two types of refraction in a certain range of incident angles.

  16. Performance of Large Format Transition Edge Sensor Microcalorimeter Arrays

    NASA Technical Reports Server (NTRS)

    Chervenak, J. A.; Adams, J. A.; Bandler, S. B.; Busch, S. E.; Eckart, M. E.; Ewin, A. E.; Finkbeiner, F. M.; Kilbourne, C. A.; Kelley, R. L.; Porst, J. P.; Porter, F. S.; Ray, C.; Sadleir, J. E.; Smith, S. J.; Wassell, E. J.

    2012-01-01

    We have produced a variety of superconducting transition edge sensor array designs for microcalorimetric detection of x-rays. Arrays are characterized with a time division SQUID multiplexer such that greater than 10 devices from an array can be measured in the same cooldown. Designs include kilo pixel scale arrays of relatively small sensors (-75 micron pitch) atop a thick metal heatsinking layer as well as arrays of membrane-isolated devices on 250 micron and up to 600 micron pitch. We discuss fabrication and performance of microstripline wiring at the small scales achieved to date. We also address fabrication issues with reduction of absorber contact area in small devices.

  17. High-frequency shear-horizontal surface acoustic wave sensor

    DOEpatents

    Branch, Darren W

    2013-05-07

    A Love wave sensor uses a single-phase unidirectional interdigital transducer (IDT) on a piezoelectric substrate for leaky surface acoustic wave generation. The IDT design minimizes propagation losses, bulk wave interferences, provides a highly linear phase response, and eliminates the need for impedance matching. As an example, a high frequency (.about.300-400 MHz) surface acoustic wave (SAW) transducer enables efficient excitation of shear-horizontal waves on 36.degree. Y-cut lithium tantalate (LTO) giving a highly linear phase response (2.8.degree. P-P). The sensor has the ability to detect at the pg/mm.sup.2 level and can perform multi-analyte detection in real-time. The sensor can be used for rapid autonomous detection of pathogenic microorganisms and bioagents by field deployable platforms.

  18. High-frequency shear-horizontal surface acoustic wave sensor

    SciTech Connect

    Branch, Darren W

    2014-03-11

    A Love wave sensor uses a single-phase unidirectional interdigital transducer (IDT) on a piezoelectric substrate for leaky surface acoustic wave generation. The IDT design minimizes propagation losses, bulk wave interferences, provides a highly linear phase response, and eliminates the need for impedance matching. As an example, a high frequency (.about.300-400 MHz) surface acoustic wave (SAW) transducer enables efficient excitation of shear-horizontal waves on 36.degree. Y-cut lithium tantalate (LTO) giving a highly linear phase response (2.8.degree. P-P). The sensor has the ability to detect at the pg/mm.sup.2 level and can perform multi-analyte detection in real-time. The sensor can be used for rapid autonomous detection of pathogenic microorganisms and bioagents by field deployable platforms.

  19. Differential temperature stress measurement employing array sensor with local offset

    NASA Technical Reports Server (NTRS)

    Lesniak, Jon R. (Inventor)

    1993-01-01

    The instrument has a focal plane array of infrared sensors of the integrating type such as a multiplexed device in which a charge is built up on a capacitor which is proportional to the total number of photons which that sensor is exposed to between read-out cycles. The infrared sensors of the array are manufactured as part of an overall array which is part of a micro-electronic device. The sensor achieves greater sensitivity by applying a local offset to the output of each sensor before it is converted into a digital word. The offset which is applied to each sensor will typically be the sensor's average value so that the digital signal which is periodically read from each sensor of the array corresponds to the portion of the signal which is varying in time. With proper synchronization between the cyclical loading of the test object and the frame rate of the infrared array the output of the A/D converted signal will correspond to the stress field induced temperature variations. A digital lock-in operation may be performed on the output of each sensor in the array. This results in a test instrument which can rapidly form a precise image of the thermoelastic stresses in an object.

  20. High-Temperature Gas Sensor Array (Electronic Nose) Demonstrated

    NASA Technical Reports Server (NTRS)

    Hunter, Gary W.

    2002-01-01

    The ability to measure emissions from aeronautic engines and in commercial applications such as automotive emission control and chemical process monitoring is a necessary first step if one is going to actively control those emissions. One single sensor will not give all the information necessary to determine the chemical composition of a high-temperature, harsh environment. Rather, an array of gas sensor arrays--in effect, a high-temperature electronic "nose"--is necessary to characterize the chemical constituents of a diverse, high-temperature environment, such as an emissions stream. The signals produced by this nose could be analyzed to determine the constituents of the emission stream. Although commercial electronic noses for near-room temperature applications exist, they often depend significantly on lower temperature materials or only one sensor type. A separate development effort necessary for a high-temperature electronic nose is being undertaken by the NASA Glenn Research Center, Case Western Reserve University, Ohio State University, and Makel Engineering, Inc. The sensors are specially designed for hightemperature environments. A first-generation high-temperature electronic nose has been demonstrated on a modified automotive engine. This nose sensor array was composed of sensors designed for hightemperature environments fabricated using microelectromechanical-systems- (MEMS-) based technology. The array included a tin-oxide-based sensor doped for nitrogen oxide (NOx) sensitivity, a SiC-based hydrocarbon (CxHy) sensor, and an oxygen sensor (O2). These sensors operate on different principles--resistor, diode, and electrochemical cell, respectively--and each sensor has very different responses to the individual gases in the environment. A picture showing the sensor head for the array is shown in the photograph on the left and the sensors installed in the engine are shown in the photograph on the right. Electronics are interfaced with the sensors for

  1. Noninvasive imaging using an array of electric potential sensors

    SciTech Connect

    Gebrial, W.; Prance, R. J.; Harland, C. J.; Clark, T. D.

    2006-06-15

    We present a design for a linear array of eight electric potential sensors arranged with 1 mm spacing and configured to measure spatially varying potential at the microscopic scale. The array successfully detects a 50 {mu}m wide feature associated with one of the samples tested. In a single sensor arrangement we have demonstrated <1 {mu}m resolution, but the data acquisition times can become prohibitive. The sensors operate noninvasively by capacitively coupling to the sample. The issues associated with using an array of sensors in close proximity are addressed. Cross coupling and strategies for matching the response of the sensors are described in detail. Results are presented for a range of samples including a resistive potential divider, a ceramic microwave circuit board, and a section taken from an oil drill pipe containing a known fault. The data acquisition times are compared with those of a single sensor system, with improvements of 4.5 times in speed reported. In one case real-time simultaneous data acquisition is demonstrated using all eight sensors. Since these sensors operate via the displacement current they may also be applied to the characterization of material properties, including, for example, insulators, dielectrics, and poorly conducting composite materials. It is concluded that we see significant improvements in the data acquisition times for the linear array over a single sensor as expected and are able to overcome the difficulties associated with operating an array of sensors in close proximity.

  2. Multipoint dynamically reconfigure adaptive distributed fiber optic acoustic emission sensor (FAESense) system for condition based maintenance

    NASA Astrophysics Data System (ADS)

    Mendoza, Edgar; Prohaska, John; Kempen, Connie; Esterkin, Yan; Sun, Sunjian; Krishnaswamy, Sridhar

    2010-09-01

    This paper describes preliminary results obtained under a Navy SBIR contract by Redondo Optics Inc. (ROI), in collaboration with Northwestern University towards the development and demonstration of a next generation, stand-alone and fully integrated, dynamically reconfigurable, adaptive fiber optic acoustic emission sensor (FAESense™) system for the in-situ unattended detection and localization of shock events, impact damage, cracks, voids, and delaminations in new and aging critical infrastructures found in ships, submarines, aircraft, and in next generation weapon systems. ROI's FAESense™ system is based on the integration of proven state-of-the-art technologies: 1) distributed array of in-line fiber Bragg gratings (FBGs) sensors sensitive to strain, vibration, and acoustic emissions, 2) adaptive spectral demodulation of FBG sensor dynamic signals using two-wave mixing interferometry on photorefractive semiconductors, and 3) integration of all the sensor system passive and active optoelectronic components within a 0.5-cm x 1-cm photonic integrated circuit microchip. The adaptive TWM demodulation methodology allows the measurement of dynamic high frequnency acoustic emission events, while compensating for passive quasi-static strain and temperature drifts. It features a compact, low power, environmentally robust 1-inch x 1-inch x 4-inch small form factor (SFF) package with no moving parts. The FAESense™ interrogation system is microprocessor-controlled using high data rate signal processing electronics for the FBG sensors calibration, temperature compensation and the detection and analysis of acoustic emission signals. Its miniaturized package, low power operation, state-of-the-art data communications, and low cost makes it a very attractive solution for a large number of applications in naval and maritime industries, aerospace, civil structures, the oil and chemical industry, and for homeland security applications.

  3. A Secure Communication Suite for Underwater Acoustic Sensor Networks

    PubMed Central

    Dini, Gianluca; Duca, Angelica Lo

    2012-01-01

    In this paper we describe a security suite for Underwater Acoustic Sensor Networks comprising both fixed and mobile nodes. The security suite is composed of a secure routing protocol and a set of cryptographic primitives aimed at protecting the confidentiality and the integrity of underwater communication while taking into account the unique characteristics and constraints of the acoustic channel. By means of experiments and simulations based on real data, we show that the suite is suitable for an underwater networking environment as it introduces limited, and sometimes negligible, communication and power consumption overhead. PMID:23202204

  4. Tunable arrayed waveguide grating driven by surface acoustic waves

    NASA Astrophysics Data System (ADS)

    Crespo-Poveda, Antonio; Hernández-Mínguez, Alberto; Biermann, Klaus; Tahraoui, Abbes; Gargallo, Bernardo; Muñoz, Pascual; Santos, Paulo V.; Cantarero, Andrés.; de Lima, Maurício M.

    2016-03-01

    We present a design approach for compact reconfigurable phased-array wavelength-division multiplexing (WDM) devices with N access waveguides (WGs) based on multimode interference (MMI) couplers. The proposed devices comprise two MMI couplers which are employed as power splitters and combiners, respectively, linked by an array of N single-mode WGs. First, passive devices are explored. Taking advantage of the transfer phases between the access ports of the MMI couplers, we derive very simple phase relations between the arms that provide wavelength dispersion at the output plane of the devices. When the effective refractive index of the WGs is modulated with the proper relative optical phase difference, each wavelength component can switch paths between the preset output channel and the remaining output WGs. Moreover, very simple phase relations between the modulated WGs that enable the reconfiguration of the output channel distribution when the appropriated coupling lengths of the MMI couplers are chosen are also derived. In this way, a very compact expression to calculate the channel assignment of the devices as a function of the applied phase shift is derived for the general case of N access WGs. Finally, the experimental results corresponding to an acoustically driven phased-array WDM device with five access WGs fabricated on (Al,Ga)As are shown.

  5. Coded acoustic wave sensors and system using time diversity

    NASA Technical Reports Server (NTRS)

    Solie, Leland P. (Inventor); Hines, Jacqueline H. (Inventor)

    2012-01-01

    An apparatus and method for distinguishing between sensors that are to be wirelessly detected is provided. An interrogator device uses different, distinct time delays in the sensing signals when interrogating the sensors. The sensors are provided with different distinct pedestal delays. Sensors that have the same pedestal delay as the delay selected by the interrogator are detected by the interrogator whereas other sensors with different pedestal delays are not sensed. Multiple sensors with a given pedestal delay are provided with different codes so as to be distinguished from one another by the interrogator. The interrogator uses a signal that is transmitted to the sensor and returned by the sensor for combination and integration with the reference signal that has been processed by a function. The sensor may be a surface acoustic wave device having a differential impulse response with a power spectral density consisting of lobes. The power spectral density of the differential response is used to determine the value of the sensed parameter or parameters.

  6. Characterization of a surface micromachined pressure sensor array

    SciTech Connect

    Eaton, W.P.; Smith, J.H.

    1995-08-01

    A surface micromachined pressure sensor array has been designed and fabricated. The sensors are based upon deformable, silicon nitride diaphragms with polysilicon piezoresistors. Absolute pressure is detected by virtue of reference pressure cavities underneath the diaphragms. For this type of sensor, design tradeoffs must be made among allowable diaphragm size, and desirable pressure ranges. Several fabrication issues were observed and addressed. Offset voltage, sensitivity, and nonlinearity of 100 {mu}m diameter sensors were measured.

  7. Detection of impulsive sources from an aerostat-based acoustic array data collection system

    NASA Astrophysics Data System (ADS)

    Prather, Wayne E.; Clark, Robert C.; Strickland, Joshua; Frazier, Wm. Garth; Singleton, Jere

    2009-05-01

    An aerostat based acoustic array data collection system was deployed at the NATO TG-53 "Acoustic Detection of Weapon Firing" Joint Field Experiment conducted in Bourges, France during the final two weeks of June 2008. A variety of impulsive sources including mortar, artillery, gunfire, RPG, and explosive devices were fired during the test. Results from the aerostat acoustic array will be presented against the entire range of sources.

  8. Shack-Hartmann wavefront sensor with adaptive holographic lenslet array

    NASA Astrophysics Data System (ADS)

    Podanchuk, Dmytro V.; Dan'ko, Volodymyr P.; Goloborodko, Andrey A.; Sutyagina, Natalia S.

    2009-10-01

    The method of the dynamic range expansion of the Shack-Hartmann wavefront sensor is discussed. It's based on the use of nonlinear dual focus holographic lenslet arrays with the aberration precompensation. The data concerning the optical setup and the technique of adaptive lenslet array producing based on nonlinear holographic recording phenomenon are represented. On the example of spherical wavefronts it is shown, that the use of three lenslet arrays with different amount of the aberration precompensation allows expanding approximately in five times the dynamic range of the sensor four times greater with preserving the specified sensitivity in comparison with the corresponding refractive lenslet array.

  9. Hydrogen Sensors and Switches from Electrodeposited Palladium Mesowire Arrays

    NASA Astrophysics Data System (ADS)

    Favier, Frédéric; Walter, Erich C.; Zach, Michael P.; Benter, Thorsten; Penner, Reginald M.

    2001-09-01

    Hydrogen sensors and hydrogen-activated switches were fabricated from arrays of mesoscopic palladium wires. These palladium ``mesowire'' arrays were prepared by electrodeposition onto graphite surfaces and were transferred onto a cyanoacrylate film. Exposure to hydrogen gas caused a rapid (less than 75 milliseconds) reversible decrease in the resistance of the array that correlated with the hydrogen concentration over a range from 2 to 10%. The sensor response appears to involve the closing of nanoscopic gaps or ``break junctions'' in wires caused by the dilation of palladium grains undergoing hydrogen absorption. Wire arrays in which all wires possessed nanoscopic gaps reverted to open circuits in the absence of hydrogen gas.

  10. Cloaking an acoustic sensor with single-negative materials

    SciTech Connect

    Cai, Chen; Zhu, Xue-Feng; Xu, Tao; Zou, Xin-Ye; Liang, Bin; Cheng, Jian-Chun

    2015-07-15

    In this review, a brief introduction is given to the development of acoustic superlens cloaks that allow the cloaked object to receive signals while its presence is not sensed by the surrounding, which can be regarded as “cloaking an acoustic sensor”. Remarkably, the designed cloak consists of single-negative materials with parameters independent of the background medium or the sensor system, which is proven to be a magnifying superlens. This has facilitated significantly the design and fabrication of acoustic cloaks that generally require double-negative materials with customized parameters. Such innovative design has then been simplified further as a multi-layered structure comprising of two alternately arranged complementary media with homogeneous isotropic single-negative materials. Based on this, a scattering analyses method is developed for the numerical simulation of such multi-layered cloak structures, which may serve as an efficient approach for the investigation on such devices.

  11. An invisible acoustic sensor based on parity-time symmetry.

    PubMed

    Fleury, Romain; Sounas, Dimitrios; Alù, Andrea

    2015-01-01

    Sensing an incoming signal is typically associated with absorbing a portion of its energy, inherently perturbing the measurement and creating reflections and shadows. Here, in contrast, we demonstrate a non-invasive, shadow-free, invisible sensor for airborne sound waves at audible frequencies, which fully absorbs the impinging signal, without at the same time perturbing its own measurement or creating a shadow. This unique sensing device is based on the unusual scattering properties of a parity-time (PT) symmetric metamaterial device formed by a pair of electro-acoustic resonators loaded with suitably tailored non-Foster electrical circuits, constituting the acoustic equivalent of a coherent perfect absorber coupled to a coherent laser. Beyond the specific application to non-invasive sensing, our work broadly demonstrates the unique relevance of PT-symmetric metamaterials for acoustics, loss compensation and extraordinary wave manipulation. PMID:25562746

  12. Solid Micro Horn Array (SMIHA) for Acoustic Matching

    NASA Technical Reports Server (NTRS)

    Sherrit, S.; Bao, X.; Bar-Cohen, Y.

    2008-01-01

    Transduction of electrical signals to mechanical signals and vice-versa in piezoelectric materials is controlled by the material coupling coefficient. In general in a loss-less material the ratio of energy conversion per cycle is proportional to the square of the coupling coefficient. In practical transduction however the impedance mismatch between the piezoelectric material and the electrical drive circuitry or the mechanical structure can have a significant impact on the power transfer. This paper looks at novel methods of matching the acoustic impedance of structures to the piezoelectric material in an effort to increase power transmission and efficiency. In typical methods the density and acoustic velocity of the matching layer is adjusted to give good matching between the transducer and the load. The approach discussed in this paper utilizes solid micro horn arrays in the matching layer which channel the stress and increase the strain in the layer. This approach is found to have potential applications in energy harvesting, medical ultrasound and in liquid and gas coupled transducers.

  13. An oxygen pressure sensor using surface acoustic wave devices

    NASA Technical Reports Server (NTRS)

    Leighty, Bradley D.; Upchurch, Billy T.; Oglesby, Donald M.

    1993-01-01

    Surface acoustic wave (SAW) piezoelectric devices are finding widespread applications in many arenas, particularly in the area of chemical sensing. We have developed an oxygen pressure sensor based on coating a SAW device with an oxygen binding agent which can be tailored to provide variable sensitivity. The coating is prepared by dissolving an oxygen binding agent in a toluene solution of a copolymer which is then sprayed onto the surface of the SAW device. Experimental data shows the feasibility of tailoring sensors to measure the partial pressure of oxygen from 2.6 to 67 KPa (20 to 500 torr). Potential applications of this technology are discussed.

  14. High-performance air acoustic detection and classification sensor

    NASA Astrophysics Data System (ADS)

    Porter, Richard; Raines, Robert; Jones, Barry

    2009-05-01

    Acoustic signals are a principal detection modality for unattended sensor systems. However, the performance of these systems is frequently suboptimal due to insufficient dynamic range in small systems or excess power consumption in larger systems. This paper discusses an approach to developing an unattended ground sensor (UGS) system that has the best features of both worlds. This system, developed by McQ Inc., has exceptional dynamic range (> 100 dB) while operating at power levels of 1.5-5 watts. The system also has a user definable signal parameter library and automated detection methodology that will be described.

  15. Dual mode acoustic wave sensor for precise pressure reading

    NASA Astrophysics Data System (ADS)

    Mu, Xiaojing; Kropelnicki, Piotr; Wang, Yong; Randles, Andrew Benson; Chuan Chai, Kevin Tshun; Cai, Hong; Gu, Yuan Dong

    2014-09-01

    In this letter, a Microelectromechanical system acoustic wave sensor, which has a dual mode (lateral field exited Lamb wave mode and surface acoustic wave (SAW) mode) behavior, is presented for precious pressure change read out. Comb-like interdigital structured electrodes on top of piezoelectric material aluminium nitride (AlN) are used to generate the wave modes. The sensor membrane consists of single crystalline silicon formed by backside-etching of the bulk material of a silicon on insulator wafer having variable device thickness layer (5 μm-50 μm). With this principle, a pressure sensor has been fabricated and mounted on a pressure test package with pressure applied to the backside of the membrane within a range of 0 psi to 300 psi. The temperature coefficient of frequency was experimentally measured in the temperature range of -50 °C to 300 °C. This idea demonstrates a piezoelectric based sensor having two modes SAW/Lamb wave for direct physical parameter—pressure readout and temperature cancellation which can operate in harsh environment such as oil and gas exploration, automobile and aeronautic applications using the dual mode behavior of the sensor and differential readout at the same time.

  16. Gas sensor array based on metal-decorated carbon nanotubes.

    PubMed

    Star, Alexander; Joshi, Vikram; Skarupo, Sergei; Thomas, David; Gabriel, Jean-Christophe P

    2006-10-26

    Here we demonstrate design, fabrication, and testing of electronic sensor array based on single-walled carbon nanotubes (SWNTs). Multiple sensor elements consisting of isolated networks of SWNTs were integrated into Si chips by chemical vapor deposition (CVD) and photolithography processes. For chemical selectivity, SWNTs were decorated with metal nanoparticles. The differences in catalytic activity of 18 catalytic metals for detection of H(2), CH(4), CO, and H(2)S gases were observed. Furthermore, a sensor array was fabricated by site-selective electroplating of Pd, Pt, Rh, and Au metals on isolated SWNT networks located on a single chip. The resulting electronic sensor array, which was comprised of several functional SWNT network sensors, was exposed to a randomized series of toxic/combustible gases. Electronic responses of all sensor elements were recorded and the sensor array data was analyzed using pattern-recognition analysis tools. Applications of these small-size, low-power, electronic sensor arrays are in the detection and identification of toxic/combustible gases for personal safety and air pollution monitoring. PMID:17048920

  17. Polarization multiplexed interrogation technique for FBG sensor array

    NASA Astrophysics Data System (ADS)

    Sikdar, Debabrata; Tiwari, Vinita; Soni, Anupam; Jaiswal, Ritesh; Bhanot, Surekha

    2015-09-01

    This paper proposes a polarization multiplexed interrogation technique for fiber Bragg grating (FBG) sensor array. The novelty of the proposed model is its ability to reduce interference and cross talk, thus allowing larger number of FBG sensors to be interrogated in an array. The calibration technique has been illustrated in this work for the FBG sensor array, where data from each sensor are linearly polarized and multiplexed before co-propagation, to find out the tapping points that enable identification of each sensor data uniquely. Simulation has been carried out for odd number and even number of sensors in an array. Even with interfering input, this proposed scheme can interrogate and distinctively identify each sensor data using appropriate tuning of polarization-splitter, polarization-rotator, and polarization-attenuator at the detector end during the calibration process. The significance of the proposed method is its compact size, which makes this calibration system ready to be deployed in real-time sensing applications and data acquisition from the FBG sensor array.

  18. Method for Fabricating Piezoelectric Polymer Acoustic Sensors

    NASA Technical Reports Server (NTRS)

    Hall, Thomas E., Jr. (Inventor); Bryant, Timothy D. (Inventor)

    1998-01-01

    A method for forming a sensor includes providing a first and a second film and bonding an internal connection tab there between. The internal connection tab is positioned between the inner surfaces of the first and second film. Then, a conductive adhesive is applied to either the tab or to the inner film surfaces such that the inner surfaces of the film and the tab are electrically connected. Finally, the films are pressed together to bond the film together with the internal connection tab in between.

  19. Shallow water acoustic backscatter and reverberation measurements using a 68-kHz cylindrical array

    NASA Astrophysics Data System (ADS)

    Gallaudet, Timothy Cole

    2001-10-01

    The characterization of high frequency, shallow water acoustic backscatter and reverberation is important because acoustic systems are used in many scientific, commercial, and military applications. The approach taken is to use data collected by the Toroidal Volume Search Sonar (TVSS), a 68 kHz multibeam sonar capable of 360° imaging in a vertical plane perpendicular to its direction of travel. With this unique capability, acoustic backscatter imagery of the seafloor, sea surface, and horizontal and vertical planes in the volume are constructed from data obtained in 200m deep waters in the Northeastern Gulf of Mexico when the TVSS was towed 78m below the surface, 735m astern of a towship. The processed imagery provide a quasi-synoptic characterization of the spatial and temporal structure of boundary and volume acoustic backscatter and reverberation. Diffraction, element patterns, and high sidelobe levels are shown to be the most serious problems affecting cylindrical arrays such as the TVSS, and an amplitude shading method is presented for reducing the peak sidelobe levels of irregular-line and non-coplanar arrays. Errors in the towfish's attitude and motion sensor, and irregularities in the TVSS's transmitted beampattern produce artifacts in the TVSS-derived bathymetry and seafloor acoustic backscatter imagery. Correction strategies for these problems are described, which are unique in that they use environmental information extracted from both ocean boundaries. Sea surface and volume acoustic backscatter imagery are used to explore and characterize the structure of near-surface bubble clouds, schooling fish, and zooplankton. The simultaneous horizontal and vertical coverage provided by the TVSS is shown to be a primary advantage, motivating further use of multibeam sonars in these applications. Whereas boundary backscatter fluctuations are well described by Weibull, K, and Rayleigh mixture probability distributions, those corresponding to volume backscatter are

  20. High-sensitivity acoustic sensors from nanofibre webs

    PubMed Central

    Lang, Chenhong; Fang, Jian; Shao, Hao; Ding, Xin; Lin, Tong

    2016-01-01

    Considerable interest has been devoted to converting mechanical energy into electricity using polymer nanofibres. In particular, piezoelectric nanofibres produced by electrospinning have shown remarkable mechanical energy-to-electricity conversion ability. However, there is little data for the acoustic-to-electric conversion of electrospun nanofibres. Here we show that electrospun piezoelectric nanofibre webs have a strong acoustic-to-electric conversion ability. Using poly(vinylidene fluoride) as a model polymer and a sensor device that transfers sound directly to the nanofibre layer, we show that the sensor devices can detect low-frequency sound with a sensitivity as high as 266 mV Pa−1. They can precisely distinguish sound waves in low to middle frequency region. These features make them especially suitable for noise detection. Our nanofibre device has more than five times higher sensitivity than a commercial piezoelectric poly(vinylidene fluoride) film device. Electrospun piezoelectric nanofibres may be useful for developing high-performance acoustic sensors. PMID:27005010

  1. High-sensitivity acoustic sensors from nanofibre webs.

    PubMed

    Lang, Chenhong; Fang, Jian; Shao, Hao; Ding, Xin; Lin, Tong

    2016-01-01

    Considerable interest has been devoted to converting mechanical energy into electricity using polymer nanofibres. In particular, piezoelectric nanofibres produced by electrospinning have shown remarkable mechanical energy-to-electricity conversion ability. However, there is little data for the acoustic-to-electric conversion of electrospun nanofibres. Here we show that electrospun piezoelectric nanofibre webs have a strong acoustic-to-electric conversion ability. Using poly(vinylidene fluoride) as a model polymer and a sensor device that transfers sound directly to the nanofibre layer, we show that the sensor devices can detect low-frequency sound with a sensitivity as high as 266 mV Pa(-1). They can precisely distinguish sound waves in low to middle frequency region. These features make them especially suitable for noise detection. Our nanofibre device has more than five times higher sensitivity than a commercial piezoelectric poly(vinylidene fluoride) film device. Electrospun piezoelectric nanofibres may be useful for developing high-performance acoustic sensors. PMID:27005010

  2. Detection and localization using an acoustic array on a small robotic platform

    NASA Astrophysics Data System (ADS)

    Young, Stuart H.; Scanlon, Michael V.

    2003-09-01

    The future battlefield will require an unprecedented level of automation in which soldier-operated autonomous and semi-autonomous ground, air and sea platforms along with mounted and dismounted soldiers will function as a tightly coupled team. Sophisticated robotic platforms with diverse sensor suites will be an integral part of the Objective Force, and must be able to collaborate not only amongst themselves but also with their manned partners. The Army Research Laboratory has developed a robot-based acoustic detection system that will detect and localize on an impulsive noise event, such as a sniper's weapon firing. Additionally, acoustic sensor arrays worn on a soldier's helmet or equipment can enhance his situational awareness and RSTA capabilities. The Land Warrior or Objective Force Warrior body-worn computer can detect tactically significant impulsive signatures from bullets, mortars, artillery, and missiles or spectral signatures from tanks, helicopters, UAVs, and mobile robots. Time-difference-of-arrival techniques can determine a sound's direction of arrival, while head attitude sensors can instantly determine the helmet orientation at time of capture. With precision GPS location of the soldier, along with the locations of other soldiers, robots, or unattended ground sensors that heard the same event, triangulation techniques can produce an accurate location of the target. Data from C-4 explosions and 0.50-Caliber shots shows that both helmet and robot systems can localize on the same event. This provides an awesome capability - mobile robots and soldiers working together on an ever-changing battlespace to detect the enemy and improve the survivability, mobility, and lethality of our future warriors.

  3. Acoustic source localization in mixed field using spherical microphone arrays

    NASA Astrophysics Data System (ADS)

    Huang, Qinghua; Wang, Tong

    2014-12-01

    Spherical microphone arrays have been used for source localization in three-dimensional space recently. In this paper, a two-stage algorithm is developed to localize mixed far-field and near-field acoustic sources in free-field environment. In the first stage, an array signal model is constructed in the spherical harmonics domain. The recurrent relation of spherical harmonics is independent of far-field and near-field mode strengths. Therefore, it is used to develop spherical estimating signal parameter via rotational invariance technique (ESPRIT)-like approach to estimate directions of arrival (DOAs) for both far-field and near-field sources. In the second stage, based on the estimated DOAs, simple one-dimensional MUSIC spectrum is exploited to distinguish far-field and near-field sources and estimate the ranges of near-field sources. The proposed algorithm can avoid multidimensional search and parameter pairing. Simulation results demonstrate the good performance for localizing far-field sources, or near-field ones, or mixed field sources.

  4. Zinc oxide thin film acoustic sensor

    SciTech Connect

    Mohammed, Ali Jasim; Salih, Wafaa Mahdi; Hassan, Marwa Abdul Muhsien; Nusseif, Asmaa Deiaa; Kadhum, Haider Abdullah; Mansour, Hazim Louis

    2013-12-16

    This paper reports the implementation of (750 nm) thickness of Zinc Oxide (ZnO) thin film for the piezoelectric pressure sensors. The film was prepared and deposited employing the spray pyrolysis technique. XRD results show that the growth preferred orientation is the (002) plane. A polycrystalline thin film (close to mono crystallite like) was obtained. Depending on the Scanning Electron Microscopy photogram, the film homogeneity and thickness were shown. The resonance frequency measured (about 19 kHz) and the damping coefficient was calculated and its value was found to be about (2.5538), the thin film be haves as homogeneous for under and over damped. The thin film pressure sensing was approximately exponentially related with frequency, the thin film was observed to has a good response for mechanical stresses also it is a good material for the piezoelectric properties.

  5. Zinc oxide thin film acoustic sensor

    NASA Astrophysics Data System (ADS)

    Mohammed, Ali Jasim; Salih, Wafaa Mahdi; Hassan, Marwa Abdul Muhsien; Mansour, Hazim Louis; Nusseif, Asmaa Deiaa; Kadhum, Haider Abdullah

    2013-12-01

    This paper reports the implementation of (750 nm) thickness of Zinc Oxide (ZnO) thin film for the piezoelectric pressure sensors. The film was prepared and deposited employing the spray pyrolysis technique. XRD results show that the growth preferred orientation is the (002) plane. A polycrystalline thin film (close to mono crystallite like) was obtained. Depending on the Scanning Electron Microscopy photogram, the film homogeneity and thickness were shown. The resonance frequency measured (about 19 kHz) and the damping coefficient was calculated and its value was found to be about (2.5538), the thin film be haves as homogeneous for under and over damped. The thin film pressure sensing was approximately exponentially related with frequency, the thin film was observed to has a good response for mechanical stresses also it is a good material for the piezoelectric properties.

  6. Network of acoustic sensors for the detection of weapons firing: tests for the choice of individual sensing elements

    NASA Astrophysics Data System (ADS)

    Naz, P.; Marty, Ch.; Hengy, S.; Hamery, P.

    2010-04-01

    The detection and localization of weapon firing on the battlefield is envisaged by means of acoustic waves. The main objective of this work is to compare various sensing elements that can be integrated in acoustic arrays. Experimental measurements of sound waves obtained by using some of these elements in Unattended Ground Sensors are presented for snipers, mortars or artillery guns. The emphasis will be put on the characteristics of the sensing elements needed to detect and classify the Mach wave generated by a supersonic projectile and the muzzle wave generated by the combustion of the propulsion powder. Examples of preliminary prototypes are presented to illustrate our topic. We will concentrate on a wearable system considered to improve the soldier's awareness of the surrounding threats: this realization consists of a network of three helmets integrating an acoustic array for the detection and localization of snipers.

  7. Acoustic Beam Forming Array Using Feedback-Controlled Microphones for Tuning and Self-Matching of Frequency Response

    NASA Technical Reports Server (NTRS)

    Radcliffe, Eliott (Inventor); Naguib, Ahmed (Inventor); Humphreys, Jr., William M. (Inventor)

    2014-01-01

    A feedback-controlled microphone includes a microphone body and a membrane operatively connected to the body. The membrane is configured to be initially deflected by acoustic pressure such that the initial deflection is characterized by a frequency response. The microphone also includes a sensor configured to detect the frequency response of the initial deflection and generate an output voltage indicative thereof. The microphone additionally includes a compensator in electric communication with the sensor and configured to establish a regulated voltage in response to the output voltage. Furthermore, the microphone includes an actuator in electric communication with the compensator, wherein the actuator is configured to secondarily deflect the membrane in opposition to the initial deflection such that the frequency response is adjusted. An acoustic beam forming microphone array including a plurality of the above feedback-controlled microphones is also disclosed.

  8. Characterization of polymeric surface acoustic wave sensor coatings and semiempirical models of sensor responses to organic vapors.

    PubMed

    Patrash, S J; Zellers, E T

    1993-08-01

    Responses from an array of four polymer-coated surface acoustic wave sensors exposed to a series of 39 organic vapors were used to investigate sensor response models based on vapor boiling point, solubility parameters, and solvation parameters in conjunction with linear solvation energy relationships. As part of this effort, sensor response data were used to estimate the solubility parameters and solvation parameters of the sensor coatings by adaptation of methods originally developed for use with gas-liquid chromatographic retention data. Values of these parameters were found to be consistent with the structures of the coatings though in some cases different from those determined by other methods. Discrepancies were attributed to differences in the conditions used for the determinations. Sensor responses were linear over the concentration ranges examined and could be summarized using the empirically determined partition coefficient, Ke, for each vapor-coating pair. Linear correlations were found between log Ke and vapor boiling point, and the slopes of the regressions lines were similar to those expected for ideal behavior. The strength of the correlations decreased with increasing coating polarity, and it was necessary to divide the vapors into two or three broad chemical classes in order to obtain satisfactory results. Improved correlations were found by use of Hildebrand solubility parameters in a model based on regular solution theory which attempts to account for nonideal vapor-coating interactions. The use of solvation parameters in linear solvation energy relationships, however, provided the strongest correlations, with modeled K values falling within a factor of 2 of experimental values in all cases and within +/- 25% of experimental values in 83% of the cases. Application of these models to the prediction of sensor array response patterns appears promising. PMID:8372969

  9. A micromachined surface acoustic wave sensor for detecting inert gases

    SciTech Connect

    Ahuja, S.; Hersam, M.; Ross, C.; Chien, H.T.; Raptis, A.C.

    1996-12-31

    Surface acoustic wave (SAW) sensors must be specifically designed for each application because many variables directly affect the acoustic wave velocity. In the present work, the authors have designed, fabricated, and tested an SAW sensor for detection of metastable states of He. The sensor consists of two sets of micromachined interdigitated transducers (IDTs) and delay lines fabricated by photolithography on a single Y-cut LiNbO{sub 3} substrate oriented for Z-propagation of the SAWs. One set is used as a reference and the other set employs a delay line coated with a titanium-based thin film sensitive to electrical conductivity changes when exposed to metastable states of He. The reference sensor is used to obtain a true frequency translation in relation to a voltage controlled oscillator. An operating frequency of 109 MHz has been used, and the IDT finger width is 8 {micro}m. Variation in electrical conductivity of the thin film at the delay line due to exposure to He is detected as a frequency shift in the assembly, which is then used as a measure of the amount of metastable He exposed to the sensing film on the SAW delay line. A variation in the He pressure versus frequency shifts indicates the extent of the metastable He interaction.

  10. Statistical evaluation of an array of soil moisture sensors

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The study of large experimental units often requires complicated decisions regarding the number and location of sensors for data collection designed to characterize the experimental unit. Sensors are often arrayed spatially based on the assumption that the variation is closely associated with landsc...

  11. Mapping Capacitive Coupling Among Pixels in a Sensor Array

    NASA Technical Reports Server (NTRS)

    Seshadri, Suresh; Cole, David M.; Smith, Roger M.

    2010-01-01

    An improved method of mapping the capacitive contribution to cross-talk among pixels in an imaging array of sensors (typically, an imaging photodetector array) has been devised for use in calibrating and/or characterizing such an array. The method involves a sequence of resets of subarrays of pixels to specified voltages and measurement of the voltage responses of neighboring non-reset pixels.

  12. Mapping acoustic emissions from hydraulic fracture treatments using coherent array processing: Concept

    SciTech Connect

    Harris, D.B.; Sherwood, R.J.; Jarpe, S.P.; Harben, P.E.

    1991-09-01

    Hydraulic fracturing is a widely-used well completion technique for enhancing the recovery of gas and oil in low-permeability formations. Hydraulic fracturing consists of pumping fluids into a well under high pressure (1000--5000 psi) to wedge-open and extend a fracture into the producing formation. The fracture acts as a conduit for gas and oil to flow back to the well, significantly increasing communication with larger volumes of the producing formation. A considerable amount of research has been conducted on the use of acoustic (microseismic) emission to delineate fracture growth. The use of transient signals to map the location of discrete sites of emission along fractures has been the focus of most research on methods for delineating fractures. These methods depend upon timing the arrival of compressional (P) or shear (S) waves from discrete fracturing events at one or more clamped geophones in the treatment well or in adjacent monitoring wells. Using a propagation model, the arrival times are used to estimate the distance from each sensor to the fracturing event. Coherent processing methods appear to have sufficient resolution in the 75 to 200 Hz band to delineate the extent of fractures induced by hydraulic fracturing. The medium velocity structure must be known with a 10% accuracy or better and no major discontinuities should be undetected. For best results, the receiving array must be positioned directly opposite the perforations (same depths) at a horizontal range of 200 to 400 feet from the region to be imaged. Sources of acoustic emission may be detectable down to a single-sensor SNR of 0.25 or somewhat less. These conclusions are limited by the assumptions of this study: good coupling to the formation, acoustic propagation, and accurate knowledge of the velocity structure.

  13. Surface Acoustic Wave Vibration Sensors for Measuring Aircraft Flutter

    NASA Technical Reports Server (NTRS)

    Wilson, William C.; Moore, Jason P.; Juarez, Peter D.

    2016-01-01

    Under NASA's Advanced Air Vehicles Program the Advanced Air Transport Technology (AATT) Project is investigating flutter effects on aeroelastic wings. To support that work a new method for measuring vibrations due to flutter has been developed. The method employs low power Surface Acoustic Wave (SAW) sensors. To demonstrate the ability of the SAW sensor to detect flutter vibrations the sensors were attached to a Carbon fiber-reinforced polymer (CFRP) composite panel which was vibrated at six frequencies from 1Hz to 50Hz. The SAW data was compared to accelerometer data and was found to resemble sine waves and match each other closely. The SAW module design and results from the tests are presented here.

  14. Optical Sensor/Actuator Locations for Active Structural Acoustic Control

    NASA Technical Reports Server (NTRS)

    Padula, Sharon L.; Palumbo, Daniel L.; Kincaid, Rex K.

    1998-01-01

    Researchers at NASA Langley Research Center have extensive experience using active structural acoustic control (ASAC) for aircraft interior noise reduction. One aspect of ASAC involves the selection of optimum locations for microphone sensors and force actuators. This paper explains the importance of sensor/actuator selection, reviews optimization techniques, and summarizes experimental and numerical results. Three combinatorial optimization problems are described. Two involve the determination of the number and position of piezoelectric actuators, and the other involves the determination of the number and location of the sensors. For each case, a solution method is suggested, and typical results are examined. The first case, a simplified problem with simulated data, is used to illustrate the method. The second and third cases are more representative of the potential of the method and use measured data. The three case studies and laboratory test results establish the usefulness of the numerical methods.

  15. Localization with a mobile beacon in underwater acoustic sensor networks.

    PubMed

    Lee, Sangho; Kim, Kiseon

    2012-01-01

    Localization is one of the most important issues associated with underwater acoustic sensor networks, especially when sensor nodes are randomly deployed. Given that it is difficult to deploy beacon nodes at predetermined locations, localization schemes with a mobile beacon on the sea surface or along the planned path are inherently convenient, accurate, and energy-efficient. In this paper, we propose a new range-free Localization with a Mobile Beacon (LoMoB). The mobile beacon periodically broadcasts a beacon message containing its location. Sensor nodes are individually localized by passively receiving the beacon messages without inter-node communications. For location estimation, a set of potential locations are obtained as candidates for a node's location and then the node's location is determined through the weighted mean of all the potential locations with the weights computed based on residuals. PMID:22778597

  16. Mapping Electrical Crosstalk in Pixelated Sensor Arrays

    NASA Technical Reports Server (NTRS)

    Seshadri, Suresh (Inventor); Cole, David (Inventor); Smith, Roger M (Inventor); Hancock, Bruce R. (Inventor)

    2013-01-01

    The effects of inter pixel capacitance in a pixilated array may be measured by first resetting all pixels in the array to a first voltage, where a first image is read out, followed by resetting only a subset of pixels in the array to a second voltage, where a second image is read out, where the difference in the first and second images provide information about the inter pixel capacitance. Other embodiments are described and claimed.

  17. CCD camera full range pH sensor array.

    PubMed

    Safavi, A; Maleki, N; Rostamzadeh, A; Maesum, S

    2007-01-15

    Changes in colors of an array of optical sensors that responds in full pH range were recorded using a CCD camera. The data of the camera were transferred to the computer through a capture card. Simple software was written to read the specific color of each sensor. In order to associate sensor array responses with pH values, a number of different mathematics and chemometrics methods were investigated and compared. The results show that the use of "Microsoft Excel's Solver" provides results which are in very good agreement with those obtained with chemometric methods such as artificial neural network (ANN) and partial least square (PLS) methods. PMID:19071333

  18. One dimensional wavefront distortion sensor comprising a lens array system

    DOEpatents

    Neal, D.R.; Michie, R.B.

    1996-02-20

    A 1-dimensional sensor for measuring wavefront distortion of a light beam as a function of time and spatial position includes a lens system which incorporates a linear array of lenses, and a detector system which incorporates a linear array of light detectors positioned from the lens system so that light passing through any of the lenses is focused on at least one of the light detectors. The 1-dimensional sensor determines the slope of the wavefront by location of the detectors illuminated by the light. The 1 dimensional sensor has much greater bandwidth that 2 dimensional systems. 8 figs.

  19. One dimensional wavefront distortion sensor comprising a lens array system

    DOEpatents

    Neal, Daniel R.; Michie, Robert B.

    1996-01-01

    A 1-dimensional sensor for measuring wavefront distortion of a light beam as a function of time and spatial position includes a lens system which incorporates a linear array of lenses, and a detector system which incorporates a linear array of light detectors positioned from the lens system so that light passing through any of the lenses is focused on at least one of the light detectors. The 1-dimensional sensor determines the slope of the wavefront by location of the detectors illuminated by the light. The 1 dimensional sensor has much greater bandwidth that 2 dimensional systems.

  20. Disposable microfluidic sensor arrays for discrimination of antioxidants.

    PubMed

    Park, Seong H; Maruniak, Autumn; Kim, Jisun; Yi, Gi-Ra; Lim, Sung H

    2016-06-01

    A microfluidic colorimetric sensor array was developed for detection and identification of various antioxidants. The sensor was fabricated by a photolithographic method, and consists of an array of printed cross-responsive indicators. The microfluidic design also incorporates pre-activation spots to allow printing of chemically incompatible components separately. Separately printed oxidizer allowed an oxidation of adjacent redox indicators only when aqueous sample was added to the sensor cartridge. Antioxidants were primarily detected by measuring the extent of inhibition of this oxidation reaction. Using this flow-based technique, a clear differentiation of 8 different antioxidants and 4 different teas has been demonstrated with 98.5% sensitivity. PMID:27130104

  1. Large-scale optimal sensor array management for target tracking

    NASA Astrophysics Data System (ADS)

    Tharmarasa, Ratnasingham; Kirubarajan, Thiagalingam; Hernandez, Marcel L.

    2004-01-01

    Large-scale sensor array management has applications in a number of target tracking problems. For example, in ground target tracking, hundreds or even thousands of unattended ground sensors (UGS) may be dropped over a large surveillance area. At any one time it may then only be possible to utilize a very small number of the available sensors at the fusion center because of bandwidth limitations. A similar situation may arise in tracking sea surface or underwater targets using a large number of sonobuoys. The general problem is then to select a subset of the available sensors in order to optimize tracking performance. The Posterior Cramer-Rao Lower Bound (PCRLB), which quantifies the obtainable accuracy of target state estimation, is used as the basis for network management. In a practical scenario with even hundreds of sensors, the number of possible sensor combinations would make it impossible to enumerate all possibilities in real-time. Efficient local (or greedy) search techniques must then be used to make the computational load manageable. In this paper we introduce an efficient search strategy for selecting a subset of the sensor array for use during each sensor change interval in multi-target tracking. Simulation results illustrating the performance of the sensor array manager are also presented.

  2. Large-scale optimal sensor array management for target tracking

    NASA Astrophysics Data System (ADS)

    Tharmarasa, Ratnasingham; Kirubarajan, Thiagalingam; Hernandez, Marcel L.

    2003-12-01

    Large-scale sensor array management has applications in a number of target tracking problems. For example, in ground target tracking, hundreds or even thousands of unattended ground sensors (UGS) may be dropped over a large surveillance area. At any one time it may then only be possible to utilize a very small number of the available sensors at the fusion center because of bandwidth limitations. A similar situation may arise in tracking sea surface or underwater targets using a large number of sonobuoys. The general problem is then to select a subset of the available sensors in order to optimize tracking performance. The Posterior Cramer-Rao Lower Bound (PCRLB), which quantifies the obtainable accuracy of target state estimation, is used as the basis for network management. In a practical scenario with even hundreds of sensors, the number of possible sensor combinations would make it impossible to enumerate all possibilities in real-time. Efficient local (or greedy) search techniques must then be used to make the computational load manageable. In this paper we introduce an efficient search strategy for selecting a subset of the sensor array for use during each sensor change interval in multi-target tracking. Simulation results illustrating the performance of the sensor array manager are also presented.

  3. MEMS-based sensor arrays for military applications

    NASA Astrophysics Data System (ADS)

    Ruffin, Paul B.

    2002-07-01

    Scientists and engineers at the Army Aviation Missile Command's (AMCOM) Research, Development and Engineering Center (RDEC) are cooperatively working with the Defense Advanced Research Projects Agency (DARPA), other Army agencies, and industry to provide technical solutions for the Army's transformation efforts into the 21st Century force. Advanced technologies are being exposed to achieve the performance and cost goals dictated by the emerging missions of the Transformed Army. It is well established that MEMS technology offers the potential solution to cost, size, and weight issues for the soldier, missile, gun, ground vehicles, and aircraft applications. MEMS sensor arrays are currently being investigated to meet system performance requirements and provide more robust mission capability. A Science and Technology Objective, Research and Development Project is underway at AMCOM/RDEC to develop controlled MEMS sensor arrays to provide for full military dynamic performance ranges using miniature sensor system. MEMS-based angular rate sensors are enhanced with vibration feedback form MEMS accelerometers for output signal stabilization in high-vibration environments. Multi-range MEMS-based accelerometers, cooperatively developed by Government and industry, are being multiplexed to provide dynamic range expansion. An array of integrated accelerometers is expected to increase the dynamic range by an order of magnitude. Future projections suggest that MEMS sensor array technology will be applicable to a broad range of military applications, which include environmental sensor suites for structural health monitoring and forward reconnaissance and surveillance; and optical and radio frequency phased arrays for fast beam steering.

  4. Soldier detection using unattended acoustic and seismic sensors

    NASA Astrophysics Data System (ADS)

    Naz, P.; Hengy, S.; Hamery, P.

    2012-06-01

    During recent military conflicts, as well as for security interventions, the urban zone has taken a preponderant place. Studies have been initiated in national and in international programs to stimulate the technical innovations for these specific scenarios. For example joint field experiments have been organized by the NATO group SET-142 to evaluate the capability for the detection and localization of snipers, mortars or artillery guns using acoustic devices. Another important operational need corresponds to the protection of military sites or buildings. In this context, unattended acoustic and seismic sensors are envisaged to contribute to the survey of specific points by the detection of approaching enemy soldiers. This paper describes some measurements done in an anechoic chamber and in free field to characterize typical sounds generated by the soldier activities (walking, crawling, weapon handling, radio communication, clothing noises...). Footstep, speech and some specific impulsive sounds are detectable at various distances from the source. Such detection algorithms may be easily merged with the existing weapon firing detection algorithms to provide a more generic "battlefield acoustic" early warning system. Results obtained in various conditions (grassy terrain, gravel path, road, forest) will be presented. A method to extrapolate the distances of detection has been developed, based on an acoustic propagation model and applied to the laboratory measurements.

  5. Electronic tongue based on an array of metallic potentiometric sensors.

    PubMed

    Lvova, Larisa; Martinelli, Eugenio; Mazzone, Emiliano; Pede, Andrea; Paolesse, Roberto; Di Natale, Corrado; D'Amico, Arnaldo

    2006-11-15

    An electronic tongue system based on the array of six metallic potentiometric sensors (metallic wires) was developed and utilized for discrimination of foodstuffs: several types of vinegar and fruit juices. Copper, tin, iron, aluminum, brass and stainless steel wires were included in the array and supplemented by pH glass electrode. The response of potentiometric metallic sensors towards various organic acids has been studied and possible sensitivity mechanisms were discussed. Overall potential changes of metallic sensors were exanimate as complex mixed signals influenced by several components presenting in analyte employing chemometric approach. The multisensor array of such a type can be useful for several applications since of simplicity in handling, low cost of sensors and easy measure procedure. PMID:18970847

  6. Manipulation of Liquids Using Phased Array Generation of Acoustic Radiation Pressure

    NASA Technical Reports Server (NTRS)

    Oeftering, Richard C. (Inventor)

    2000-01-01

    A phased array of piezoelectric transducers is used to control and manipulate contained as well as uncontained fluids in space and earth applications. The transducers in the phased array are individually activated while being commonly controlled to produce acoustic radiation pressure and acoustic streaming. The phased array is activated to produce a single pulse, a pulse burst or a continuous pulse to agitate, segregate or manipulate liquids and gases. The phased array generated acoustic radiation pressure is also useful in manipulating a drop, a bubble or other object immersed in a liquid. The transducers can be arranged in any number of layouts including linear single or multi- dimensional, space curved and annular arrays. The individual transducers in the array are activated by a controller, preferably driven by a computer.

  7. Active Travel-Time Tomography using a Distributed Acoustic Sensing Array

    NASA Astrophysics Data System (ADS)

    Lancelle, C.; Fratta, D.; Lord, N. E.; Wang, H. F.; Chalari, A.

    2015-12-01

    Distributed acoustic sensing (DAS) is a sensor array used for monitoring ground motion by utilizing the interaction of light pulses with sections of a fiber-optic cable. In September 2013 a field test was conducted at the NEES@UCSB Garner Valley field site in Southern California incorporating DAS technology. A 762-meter-long fiber-optic cable was trenched to a depth of about 0.3 m in a rectangular design with two interior diagonal segments. The fiber was excited by a number of sources, including a 45 kN shear shaker and a smaller 450 N portable mass shaker, both of which were available through NEES@UCLA. In addition to these sources, signals were recorded from a minivib source and hammer blows on a steel plate, as well as 8 hours of overnight ambient noise recording. One goal of the field test was to evaluate the use of DAS for tomographic studies. The large number of measurement points inherent to DAS lends itself well to this type of study. Tomograms were constructed using two of the active-sources at multiple locations. There were 8 minivib locations within the array and 13 hammer locations along the boundary of the array. Travel-time data were collected with the DAS array. Two-dimensional velocity tomograms were constructed for different resolutions from the two active sources and compared. In all the images, the lowest velocities lie near the center of the array with higher velocities surrounding this area. The impact results, however, may contain an artifact due to multiple propagation modes. This research is part of the DOE's PoroTomo project.

  8. Langasite Surface Acoustic Wave Sensors: Fabrication and Testing

    SciTech Connect

    Zheng, Peng; Greve, David W.; Oppenheim, Irving J.; Chin, Tao-Lun; Malone, Vanessa

    2012-02-01

    We report on the development of harsh-environment surface acoustic wave sensors for wired and wireless operation. Surface acoustic wave devices with an interdigitated transducer emitter and multiple reflectors were fabricated on langasite substrates. Both wired and wireless temperature sensing was demonstrated using radar-mode (pulse) detection. Temperature resolution of better than ±0.5°C was achieved between 200°C and 600°C. Oxygen sensing was achieved by depositing a layer of ZnO on the propagation path. Although the ZnO layer caused additional attenuation of the surface wave, oxygen sensing was accomplished at temperatures up to 700°C. The results indicate that langasite SAW devices are a potential solution for harsh-environment gas and temperature sensing.

  9. Physically based simulation model for acoustic sensor robot navigation.

    PubMed

    Kuc, R; Siegel, M W

    1987-06-01

    A computer model is described that combines concepts from the fields of acoustics, linear system theory, and digital signal processing to simulate an acoustic sensor navigation system using time-of-flight ranging. By separating the transmitter/receiver into separate components and assuming mirror-like reflectors, closed-form solutions for the reflections from corners, edges, and walls are determined as a function of transducer size, location, and orientation. A floor plan consisting of corners, walls, and edges is efficiently encoded to indicate which of these elements contribute to a particular pulse-echo response. Sonar maps produced by transducers having different resonant frequencies and transmitted pulse waveforms can then be simulated efficiently. Examples of simulated sonar maps of two floor plans illustrate the performance of the model. Actual sonar maps are presented to verify the simulation results. PMID:21869438

  10. Distributed fiber optic acoustic sensor for leak detection

    NASA Astrophysics Data System (ADS)

    Kurmer, John P.; Kingsley, Stuart A.; Laudo, John S.; Krak, Stephen J.

    1992-01-01

    Leaks in dielectric fluid-filled, high-voltage distribution lines can cause significant problems for the electric power industry. Often, these lines run over long distance and are difficult to access. Operators may know that a leak exists because additional fluid is required to maintain pipe pressure; however, locating the leak is often a significant challenge. A system that could monitor and locate leaks within the electrical distribution pipe lines would be highly desirable. We present a distributed fiber optic acoustic sensor technology that could be used to measure and locate leaks within fluid-filled, high-voltage distribution lines. In this application, the optical fiber sensor is placed inside the fluid-filled pipe and can potentially locate leaks to within several meters. The fiber optic acoustic sensor is designed such that it can listen to the sound produced by the fluid as it escapes from the pipe into the surrounding soil. The fluid inside the pipe is typically maintained at a pressure of 200 psi and escapes at high velocity when a leak occurs. The distributed fiber optic sensing system being developed is based upon the Sagnac interferometer and is unusual in that range information is not obtained by the more common method of optical time domain reflectometry or optical frequency domain reflectometry, but by essentially a CW technique which works in the frequency domain. It is also unusual in that the signal processing technique actually looks for the absence of a signal.

  11. Acoustic Source Localization via Distributed Sensor Networks using Tera-scale Optical-Core Devices

    SciTech Connect

    Imam, Neena; Barhen, Jacob; Wardlaw, Michael

    2008-01-01

    For real-time acoustic source localization applications, one of the primary challenges is the considerable growth in computational complexity associated with the emergence of ever larger, active or passive, distributed sensor networks. The complexity of the calculations needed to achieve accurate source localization increases dramatically with the size of sensor arrays, resulting in substantial growth of computational requirements that cannot be met with standard hardware. One option to meet this challenge builds upon the emergence of digital optical-core devices. The objective of this work was to explore the implementation of key building block algorithms used in underwater source localization on an optical-core digital processing platform recently introduced by Lenslet Inc. They investigate key concepts of threat-detection algorithms such as Time Difference Of Arrival (TDOA) estimation via sensor data correlation in the time domain with the purpose of implementation on the optical-core processor. they illustrate their results with the aid of numerical simulation and actual optical hardware runs. The major accomplishments of this research, in terms of computational speedup and numerical accurcy achieved via the deployment of optical processing technology, should be of substantial interest to the acoustic signal processing community.

  12. Performance of Optimized Actuator and Sensor Arrays in an Active Noise Control System

    NASA Technical Reports Server (NTRS)

    Palumbo, D. L.; Padula, S. L.; Lyle, K. H.; Cline, J. H.; Cabell, R. H.

    1996-01-01

    Experiments have been conducted in NASA Langley's Acoustics and Dynamics Laboratory to determine the effectiveness of optimized actuator/sensor architectures and controller algorithms for active control of harmonic interior noise. Tests were conducted in a large scale fuselage model - a composite cylinder which simulates a commuter class aircraft fuselage with three sections of trim panel and a floor. Using an optimization technique based on the component transfer functions, combinations of 4 out of 8 piezoceramic actuators and 8 out of 462 microphone locations were evaluated against predicted performance. A combinatorial optimization technique called tabu search was employed to select the optimum transducer arrays. Three test frequencies represent the cases of a strong acoustic and strong structural response, a weak acoustic and strong structural response and a strong acoustic and weak structural response. Noise reduction was obtained using a Time Averaged/Gradient Descent (TAGD) controller. Results indicate that the optimization technique successfully predicted best and worst case performance. An enhancement of the TAGD control algorithm was also evaluated. The principal components of the actuator/sensor transfer functions were used in the PC-TAGD controller. The principal components are shown to be independent of each other while providing control as effective as the standard TAGD.

  13. Performance of Optimized Actuator and Sensor Arrays in an Active Noise Control System

    NASA Technical Reports Server (NTRS)

    Palumbo, D. L.; Padula, S. L.; Lyle, K. H.; Cline, J. H.; Cabell, R. H.

    1996-01-01

    Experiments have been conducted in NASA Langley s Acoustics and Dynamics Laboratory to determine the effectiveness of optimized actuator/sensor architectures and controller algorithms for active control of harmonic interior noise. Tests were conducted in a large scale fuselage model - a composite cylinder which simulates a commuter class aircraft fuselage with three sections of trim panel and a floor. Using an optimization technique based on the component transfer functions, combinations of 4 out of 8 piezoceramic actuators and 8 out of 462 microphone locations were evaluated against predicted performance. A combinatorial optimization technique call tabu search was employed to select the optimum transducer arrays. Three test frequencies represent the cases of a strong acoustic and strong structural response, a weak acoustic and strong structural response and a strong acoustic and weak structural response. Noise reduction was obtained using a Time Averaged/Gradient Descent (TAGD) controller. Results indicate that the optimization technique successfully predicted best and worst case performance. An enhancement of the TAGD control algorithm was also evaluated. The principal components of the actuator/sensor transfer functions were used in the PC-TAGD controller. The principal components are shown to be independent of each other while providing control as effective as the standard TAGD.

  14. Digital seismo-acoustic signal processing aboard a wireless sensor platform

    NASA Astrophysics Data System (ADS)

    Marcillo, O.; Johnson, J. B.; Lorincz, K.; Werner-Allen, G.; Welsh, M.

    2006-12-01

    We are developing a low power, low-cost wireless sensor array to conduct real-time signal processing of earthquakes at active volcanoes. The sensor array, which integrates data from both seismic and acoustic sensors, is based on Moteiv TMote Sky wireless sensor nodes (www.moteiv.com). The nodes feature a Texas Instruments MSP430 microcontroller, 48 Kbytes of program memory, 10 Kbytes of static RAM, 1 Mbyte of external flash memory, and a 2.4-GHz Chipcon CC2420 IEEE 802.15.4 radio. The TMote Sky is programmed in TinyOS. Basic signal processing occurs on an array of three peripheral sensor nodes. These nodes are tied into a dedicated GPS receiver node, which is focused on time synchronization, and a central communications node, which handles data integration and additional processing. The sensor nodes incorporate dual 12-bit digitizers sampling a seismic sensor and a pressure transducer at 100 samples per second. The wireless capabilities of the system allow flexible array geometry, with a maximum aperture of 200m. We have already developed the digital signal processing routines on board the Moteiv Tmote sensor nodes. The developed routines accomplish Real-time Seismic-Amplitude Measurement (RSAM), Seismic Spectral- Amplitude Measurement (SSAM), and a user-configured Short Term Averaging / Long Term Averaging (STA LTA ratio), which is used to calculate first arrivals. The processed data from individual nodes are transmitted back to a central node, where additional processing may be performed. Such processing will include back azimuth determination and other wave field analyses. Future on-board signal processing will focus on event characterization utilizing pattern recognition and spectral characterization. The processed data is intended as low bandwidth information which can be transmitted periodically and at low cost through satellite telemetry to a web server. The processing is limited by the computational capabilities (RAM, ROM) of the nodes. Nevertheless, we

  15. Vision communications based on LED array and imaging sensor

    NASA Astrophysics Data System (ADS)

    Yoo, Jong-Ho; Jung, Sung-Yoon

    2012-11-01

    In this paper, we propose a brand new communication concept, called as "vision communication" based on LED array and image sensor. This system consists of LED array as a transmitter and digital device which include image sensor such as CCD and CMOS as receiver. In order to transmit data, the proposed communication scheme simultaneously uses the digital image processing and optical wireless communication scheme. Therefore, the cognitive communication scheme is possible with the help of recognition techniques used in vision system. By increasing data rate, our scheme can use LED array consisting of several multi-spectral LEDs. Because arranged each LED can emit multi-spectral optical signal such as visible, infrared and ultraviolet light, the increase of data rate is possible similar to WDM and MIMO skills used in traditional optical and wireless communications. In addition, this multi-spectral capability also makes it possible to avoid the optical noises in communication environment. In our vision communication scheme, the data packet is composed of Sync. data and information data. Sync. data is used to detect the transmitter area and calibrate the distorted image snapshots obtained by image sensor. By making the optical rate of LED array be same with the frame rate (frames per second) of image sensor, we can decode the information data included in each image snapshot based on image processing and optical wireless communication techniques. Through experiment based on practical test bed system, we confirm the feasibility of the proposed vision communications based on LED array and image sensor.

  16. Fiber-optic sensors for acoustic studies and biological applications

    NASA Astrophysics Data System (ADS)

    Zhou, Chonghua

    1997-11-01

    This study is directed at the investigation of the applicability of various fiber-optic techniques in acoustic studies and biological sensing. The acoustic studies are conducted both at low frequencies, such as in audible sound and dynamic wave propagation measurements, and at high frequencies, such as in ultrasound for nondestructive evaluation. In biological sensing, an all- fiber-optic design biosensor with evanescent-mode coupling has been implemented and an enhanced biosensor using ultrasonic localization has been studied. The type of sensor considered for audible sound measurement is based on a combination of Fabry-Perot interferometry and intensity modulation. The technique provides information on both the amplitude and direction of the vibration and thus removes fringe counting ambiguity over a wide dynamic range, and still keeps the high-sensitivity property of interferometry. A novel microbend fiber-optic strain sensor was developed and applied to static and dynamic fracture problems and dynamic wave propagation studies. Static and dynamic fracture experiments and dynamic impact experiment have been performed and the results match well with the theoretical predications and the results obtained with electrical strain gages. The application of polarimetric fiber-optic ultrasonic sensors in nondestructive evaluation of materials is also presented. Theoretical analysis and experimental optimization have been performed and both immersion testing and embedding testing of internal defects of materials have been conducted and promising results have been obtained. For biological application, a compact fiber-optic evanescent-wave sensing system with all-fiber optical design and red semiconductor-laser excitation has been developed and tested. In this system, the fluorescent signal is confined in the fiber system so the signal-to- noise ratio is greatly improved and the sensor can be operated in ambient light conditions. To further enhance this biosensor, an

  17. An acoustic vibration sensor based on tapered triple cladding fiber

    NASA Astrophysics Data System (ADS)

    Xu, Hui; Pang, Fufei; Zhao, Shiqi; Chen, Zhenyi; Wang, Tingyun

    2014-05-01

    An acoustic vibration sensor is investigated and demonstrated by using a tapered triple cladding fiber (TCF). It is fabricated by tapering a length of 2 cm TCF which is spliced between two single mode fibers (SMF). The TCF consists of core, inner cladding, middle cladding and outer cladding. After the tapering process, this structure becomes a tapered coaxial fiber coupler which presents a periodic filtering transmission spectrum. The surrounding vibration perturbation can be directly demodulated by intensity detection of the transmission power at a particular wavelength. The experimental result shows that the maximum frequency response of 700 kHz is achieved.

  18. The origin, history and future of fiber-optic interferometric acoustic sensors for US Navy applications

    NASA Astrophysics Data System (ADS)

    Cole, James H.; Bucaro, Joseph A.; Kirkendall, Clay K.; Dandridge, Anthony

    2011-05-01

    Fiber-optic interferometric acoustic sensors were first proposed for US Navy applications 36 years ago. This paper will review the origin, development and deployment of these sensors. Future applications will also be discussed.

  19. Development of Microfabricated Chemical Gas Sensors and Sensor Arrays for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Hunter, G. W.; Neudeck, P. G.; Fralick, G.; Thomas, V.; Liu, C. C.; Wu, W. H.; Ward, B.; Makel, D.

    2002-01-01

    Aerospace applications require the development of chemical sensors with capabilities beyond those of commercially available sensors. In particular, factors such as minimal sensor size, weight, and power consumption are particularly important. Development areas which have potential aerospace applications include launch vehicle leak detection, engine health monitoring, fire detection, and environmental monitoring. Sensor development for these applications is based on progress in three types of technology: 1) Micromachining and microfabrication (Microsystem) technology to fabricate miniaturized sensors. 2) The use of nanocrystalline materials to develop sensors with improved stability combined with higher sensitivity. 3) The development of high temperature semiconductors, especially silicon carbide. However, due to issues of selectivity and cross-sensitivity, individual sensors are limited in the amount of information that they can provide in environments that contain multiple chemical species. Thus, sensor arrays are being developed to address detection needs in such multi-species environments. This paper discusses the needs of space applications as well as the point-contact sensor technology and sensor arrays being developed to address these needs. Sensors to measure hydrogen, hydrocarbons, hydrazine, nitrogen oxides (NO,), carbon monoxide, oxygen, and carbon dioxide are being developed as well as arrays for leak, fire, and emissions detection. Demonstrations of the technology will also be discussed. It is concluded that microfabricated sensor technology has significant potential for use in a range of aerospace applications.

  20. Fracture of Human Femur Tissue Monitored by Acoustic Emission Sensors

    PubMed Central

    Aggelis, Dimitrios. G.; Strantza, Maria; Louis, Olivia; Boulpaep, Frans; Polyzos, Demosthenes; van Hemelrijck, Danny

    2015-01-01

    The study describes the acoustic emission (AE) activity during human femur tissue fracture. The specimens were fractured in a bending-torsion loading pattern with concurrent monitoring by two AE sensors. The number of recorded signals correlates well with the applied load providing the onset of micro-fracture at approximately one sixth of the maximum load. Furthermore, waveform frequency content and rise time are related to the different modes of fracture (bending of femur neck or torsion of diaphysis). The importance of the study lies mainly in two disciplines. One is that, although femurs are typically subjects of surgical repair in humans, detailed monitoring of the fracture with AE will enrich the understanding of the process in ways that cannot be achieved using only the mechanical data. Additionally, from the point of view of monitoring techniques, applying sensors used for engineering materials and interpreting the obtained data pose additional difficulties due to the uniqueness of the bone structure. PMID:25763648

  1. Flight parameter estimation using instantaneous frequency and time delay measurements from a three-element planar acoustic array.

    PubMed

    Lo, Kam W

    2016-05-01

    The acoustic signal emitted by a turbo-prop aircraft consists of a strong narrowband tone superimposed on a broadband random component. A ground-based three-element planar acoustic array can be used to estimate the full set of flight parameters of a turbo-prop aircraft in transit by measuring the time delay (TD) between the signal received at the reference sensor and the signal received at each of the other two sensors of the array over a sufficiently long period of time. This paper studies the possibility of using instantaneous frequency (IF) measurements from the reference sensor to improve the precision of the flight parameter estimates. A simplified Cramer-Rao lower bound analysis shows that the standard deviations in the estimates of the aircraft velocity and altitude can be greatly reduced when IF measurements are used together with TD measurements. Two flight parameter estimation algorithms that utilize both IF and TD measurements are formulated and their performances are evaluated using both simulated and real data. PMID:27250134

  2. Towards outperforming conventional sensor arrays with fabricated individual photonic vapour sensors inspired by Morpho butterflies

    PubMed Central

    Potyrailo, Radislav A.; Bonam, Ravi K.; Hartley, John G.; Starkey, Timothy A.; Vukusic, Peter; Vasudev, Milana; Bunning, Timothy; Naik, Rajesh R.; Tang, Zhexiong; Palacios, Manuel A.; Larsen, Michael; Le Tarte, Laurie A.; Grande, James C.; Zhong, Sheng; Deng, Tao

    2015-01-01

    Combining vapour sensors into arrays is an accepted compromise to mitigate poor selectivity of conventional sensors. Here we show individual nanofabricated sensors that not only selectively detect separate vapours in pristine conditions but also quantify these vapours in mixtures, and when blended with a variable moisture background. Our sensor design is inspired by the iridescent nanostructure and gradient surface chemistry of Morpho butterflies and involves physical and chemical design criteria. The physical design involves optical interference and diffraction on the fabricated periodic nanostructures and uses optical loss in the nanostructure to enhance the spectral diversity of reflectance. The chemical design uses spatially controlled nanostructure functionalization. Thus, while quantitation of analytes in the presence of variable backgrounds is challenging for most sensor arrays, we achieve this goal using individual multivariable sensors. These colorimetric sensors can be tuned for numerous vapour sensing scenarios in confined areas or as individual nodes for distributed monitoring. PMID:26324320

  3. Flexible ultrasonic array sensors for health monitoring

    NASA Astrophysics Data System (ADS)

    Kobayashi, M.; Wu, K.-T.; Song, L.; Liu, Q.; Jen, C.-K.

    2007-04-01

    Flexible ultrasonic array transducers which can be attached to the desired structures or materials for nondestructive testing and structural health monitoring applications at room and elevated temperatures are developed. These flexible ultrasonic transducers (UTs) arrays consist of a thin polyimide membrane with a bottom electrode or stainless steel foil, a piezoelectric lead-zirconate-titanate (PZT) composite film and top electrodes. The flexibility is realized owing to the porosity of piezoelectric film and the thinness of substrate and electrodes. Top and bottom electrode materials are silver paste, silver paint or electroless plated nickel alloys. The UT array is configured by the several top electrodes. The flexible UT has been successfully tested at 150°C and also immersed into water as immersion ultrasonic probe operated in the pulse-echo mode with good signal to noise ratio.

  4. Acoustic wave flow sensor using quartz thickness shear mode resonator.

    PubMed

    Qin, Lifeng; Zeng, Zijing; Cheng, Hongbin; Wang, Qing-Ming

    2009-09-01

    A quartz thickness shear mode (TSM) bulk acoustic wave resonator was used for in situ and real-time detection of liquid flow rate in this study. A special flow chamber made of 2 parallel acrylic plates was designed for flow measurement. The flow chamber has a rectangular flow channel, 2 flow reservoirs for stabilizing the fluid flow, a sensor mounting port for resonator holding, one inlet port, and one outlet port for pipe connection. A 5-MHz TSM quartz resonator was edge-bonded to the sensor mounting port with one side exposed to the flowing liquid and other side exposed to air. The electrical impedance spectra of the quartz resonator at different volumetric flow rate conditions were measured by an impedance analyzer for the extraction of the resonant frequency through a data-fitting method. The fundamental, 3rd, 5th, 7th, and 9th resonant frequency shifts were found to be around 920, 3572, 5947, 8228, and 10,300 Hz for flow rate variation from 0 to 3000 mL/min, which had a corresponding Reynolds number change from 0 to 822. The resonant frequency shifts of different modes are found to be quadratic with flow rate, which is attributed to the nonlinear effect of quartz resonator due to the effective normal pressure imposing on the resonator sensor by the flowing fluid. The results indicate that quartz TSM resonators can be used for flow sensors with characteristics of simplicity, fast response, and good repeatability. PMID:19811997

  5. A Survey on Underwater Acoustic Sensor Network Routing Protocols

    PubMed Central

    Li, Ning; Martínez, José-Fernán; Meneses Chaus, Juan Manuel; Eckert, Martina

    2016-01-01

    Underwater acoustic sensor networks (UASNs) have become more and more important in ocean exploration applications, such as ocean monitoring, pollution detection, ocean resource management, underwater device maintenance, etc. In underwater acoustic sensor networks, since the routing protocol guarantees reliable and effective data transmission from the source node to the destination node, routing protocol design is an attractive topic for researchers. There are many routing algorithms have been proposed in recent years. To present the current state of development of UASN routing protocols, we review herein the UASN routing protocol designs reported in recent years. In this paper, all the routing protocols have been classified into different groups according to their characteristics and routing algorithms, such as the non-cross-layer design routing protocol, the traditional cross-layer design routing protocol, and the intelligent algorithm based routing protocol. This is also the first paper that introduces intelligent algorithm-based UASN routing protocols. In addition, in this paper, we investigate the development trends of UASN routing protocols, which can provide researchers with clear and direct insights for further research. PMID:27011193

  6. A Survey on Underwater Acoustic Sensor Network Routing Protocols.

    PubMed

    Li, Ning; Martínez, José-Fernán; Meneses Chaus, Juan Manuel; Eckert, Martina

    2016-01-01

    Underwater acoustic sensor networks (UASNs) have become more and more important in ocean exploration applications, such as ocean monitoring, pollution detection, ocean resource management, underwater device maintenance, etc. In underwater acoustic sensor networks, since the routing protocol guarantees reliable and effective data transmission from the source node to the destination node, routing protocol design is an attractive topic for researchers. There are many routing algorithms have been proposed in recent years. To present the current state of development of UASN routing protocols, we review herein the UASN routing protocol designs reported in recent years. In this paper, all the routing protocols have been classified into different groups according to their characteristics and routing algorithms, such as the non-cross-layer design routing protocol, the traditional cross-layer design routing protocol, and the intelligent algorithm based routing protocol. This is also the first paper that introduces intelligent algorithm-based UASN routing protocols. In addition, in this paper, we investigate the development trends of UASN routing protocols, which can provide researchers with clear and direct insights for further research. PMID:27011193

  7. Corroles-Porphyrins: A Teamwork for Gas Sensor Arrays

    PubMed Central

    Capuano, Rosamaria; Pomarico, Giuseppe; Paolesse, Roberto; Di Natale, Corrado

    2015-01-01

    Porphyrins provide an excellent material for chemical sensors, and they have been used for sensing species both in air and solution. In the gas phase, the broad selectivity of porphyrins is largely dependant on molecular features, such as the metal ion complexed at the core of the aromatic ring and the peripheral substituents. Although these features have been largely exploited to design gas sensor arrays, so far, little attention has been devoted to modify the sensing properties of these macrocycles by variation of the molecular aromatic ring. In this paper, the gas sensing properties of a porphyrin analog, the corrole, are studied in comparison with those of the parent porphyrin. Results show that changes in the aromatic ring have important consequences on the sensitivity and selectivity of the sensors and that porphyrins and corroles can positively cooperate to enhance the performance of sensor arrays. PMID:25856324

  8. Acoustic detection and localization of weapons fire by unattended ground sensors and aerostat-borne sensors

    NASA Astrophysics Data System (ADS)

    Naz, P.; Marty, Ch.; Hengy, S.; Miller, L. S.

    2009-05-01

    The detection and localization of artillery guns on the battlefield is envisaged by means of acoustic and seismic waves. The main objective of this work is to examine the different frequency ranges usable for the detection of small arms, mortars, and artillery guns on the same hardware platform. The main stages of this study have consisted of: data acquisition of the acoustic signals of the different weapons used, signal processing and evaluation of the localization performance for various types of individual arrays, and modeling of the wave propagation in the atmosphere. The study of the propagation effects on the signatures of these weapons is done by comparing the acoustic signals measured during various days, at ground level and at the altitude of our aerostat (typically 200 m). Numerical modeling has also been performed to reinforce the interpretation of the experimental results.

  9. Piezoresistive cantilever array sensor for consolidated bioprocess monitoring

    SciTech Connect

    Kim, Seonghwan Sam; Rahman, Touhidur; Senesac, Larry R; Davison, Brian H; Thundat, Thomas George

    2009-01-01

    Cellulolytic microbes occur in diverse natural niches and are being screened for industrial modification and utility. A microbe for Consolidated bioprocessing (CBP) development can rapidly degrade pure cellulose and then ferment the resulting sugars into fuels. To identify and screen for novel microbes for CBP, we have developed a piezoresistive cantilever array sensor which is capable of simultaneous monitoring of glucose and ethanol concentration changes in a phosphate buffer solution. 4-mercaptophenylboronic acid (4-MPBA) and polyethyleneglycol (PEG)-thiol are employed to functionalize each piezoresistive cantilever for glucose and ethanol sensing, respectively. Successful concentration measurements of glucose and ethanol with minimal interferences are obtained with our cantilever array sensor.

  10. Three dimensional stress vector sensor array and method therefor

    DOEpatents

    Pfeifer, Kent Bryant; Rudnick, Thomas Jeffery

    2005-07-05

    A sensor array is configured based upon capacitive sensor techniques to measure stresses at various positions in a sheet simultaneously and allow a stress map to be obtained in near real-time. The device consists of single capacitive elements applied in a one or two dimensional array to measure the distribution of stresses across a mat surface in real-time as a function of position for manufacturing and test applications. In-plane and normal stresses in rolling bodies such as tires may thus be monitored.

  11. Performance of multiplexed SQUID readout for Cryogenic Sensor Arrays

    NASA Astrophysics Data System (ADS)

    Chervenak, J. A.; Grossman, E. N.; Irwin, K. D.; Martinis, John M.; Reintsema, C. D.; Allen, C. A.; Bergman, D. I.; Moseley, S. H.; Shafer, R.

    2000-04-01

    We report on the implementation of a multiplexer that uses superconducting quantum interference devices (SQUIDs) to read out low-impedance cryogenic detectors. Using prototype chips, a circuit was built which interfaces eight input SQUID channels with a close-packed array of eight transition-edge sensor (TES) infrared bolometers. Circuit elements were measured and crosstalk specifications are reported. Digital feedback is employed to flux-lock a single element in the array of SQUIDs.

  12. Characterization Test Report for the Mnemonics-UCS Wireless Surface Acoustic Wave Sensor System

    NASA Technical Reports Server (NTRS)

    Duncan, Joshua J.; Youngquist, Robert C.

    2013-01-01

    The scope of this testing includes the Surface Acoustic Wave Sensor System delivered to KSC: two interrogator (transceiver) systems, four temperature sensors, with wooden mounting blocks, two antennas, two power supplies, network cables, and analysis software. Also included are a number of additional temperature sensors and newly-developed hydrogen sensors

  13. Detection of in-plane displacements of acoustic wave fields using extrinsic Fizeau fiber interferometric sensors

    NASA Technical Reports Server (NTRS)

    Dhawan, R.; Gunther, M. F.; Claus, R. O.

    1991-01-01

    Quantitative measurements of the in-plane particle displacement components of ultrasonic surface acoustic wave fields using extrinsic Fizeau fiber interferometric (EFFI) sensors are reported. Wave propagation in materials and the fiber sensor elements are briefly discussed. Calibrated experimental results obtained for simulated acoustic emission events on homogeneous metal test specimens are reported and compared to previous results obtained using piezoelectric transducers.

  14. Algorithmic sensor failure detection on passive antenna arrays

    NASA Astrophysics Data System (ADS)

    Chun, Joohwan; Luk, Franklin T.

    1991-12-01

    We present an algorithm that can detect and isolate a single passive antenna failure under the assumption of slowly time varying signal sources. Our failure detection algorithm recursively computes an eigenvalue decomposition of the covariance of the "syndrome" vector. The sensor failure is detected using the largest eigenvalue, and the faulty sensor is located using the corresponding eigenvector. The algorithm can also be used in conjunction with existing singular value decomposition or orthogonal triangularization based recursive antenna array processing methods.

  15. A Mobile Ferromagnetic Shape Detection Sensor Using a Hall Sensor Array and Magnetic Imaging

    PubMed Central

    Misron, Norhisam; Shin, Ng Wei; Shafie, Suhaidi; Marhaban, Mohd Hamiruce; Mailah, Nashiren Farzilah

    2011-01-01

    This paper presents a Mobile Hall Sensor Array system for the shape detection of ferromagnetic materials that are embedded in walls or floors. The operation of the Mobile Hall Sensor Array system is based on the principle of magnetic flux leakage to describe the shape of the ferromagnetic material. Two permanent magnets are used to generate the magnetic flux flow. The distribution of magnetic flux is perturbed as the ferromagnetic material is brought near the permanent magnets and the changes in magnetic flux distribution are detected by the 1-D array of the Hall sensor array setup. The process for magnetic imaging of the magnetic flux distribution is done by a signal processing unit before it displays the real time images using a netbook. A signal processing application software is developed for the 1-D Hall sensor array signal acquisition and processing to construct a 2-D array matrix. The processed 1-D Hall sensor array signals are later used to construct the magnetic image of ferromagnetic material based on the voltage signal and the magnetic flux distribution. The experimental results illustrate how the shape of specimens such as square, round and triangle shapes is determined through magnetic images based on the voltage signal and magnetic flux distribution of the specimen. In addition, the magnetic images of actual ferromagnetic objects are also illustrated to prove the functionality of Mobile Hall Sensor Array system for actual shape detection. The results prove that the Mobile Hall Sensor Array system is able to perform magnetic imaging in identifying various ferromagnetic materials. PMID:22346653

  16. A Deconvolution Approach for the Mapping of Acoustic Sources (DAMAS) Determined from Phased Microphone Arrays

    NASA Technical Reports Server (NTRS)

    Brooks, Thomas F.; Humphreys, William M.

    2006-01-01

    Current processing of acoustic array data is burdened with considerable uncertainty. This study reports an original methodology that serves to demystify array results, reduce misinterpretation, and accurately quantify position and strength of acoustic sources. Traditional array results represent noise sources that are convolved with array beamform response functions, which depend on array geometry, size (with respect to source position and distributions), and frequency. The Deconvolution Approach for the Mapping of Acoustic Sources (DAMAS) method removes beamforming characteristics from output presentations. A unique linear system of equations accounts for reciprocal influence at different locations over the array survey region. It makes no assumption beyond the traditional processing assumption of statistically independent noise sources. The full rank equations are solved with a new robust iterative method. DAMAS is quantitatively validated using archival data from a variety of prior high-lift airframe component noise studies, including flap edge/cove, trailing edge, leading edge, slat, and calibration sources. Presentations are explicit and straightforward, as the noise radiated from a region of interest is determined by simply summing the mean-squared values over that region. DAMAS can fully replace existing array processing and presentations methodology in most applications. It appears to dramatically increase the value of arrays to the field of experimental acoustics.

  17. A Deconvolution Approach for the Mapping of Acoustic Sources (DAMAS) Determined from Phased Microphone Arrays

    NASA Technical Reports Server (NTRS)

    Brooks, Thomas F.; Humphreys, William M., Jr.

    2004-01-01

    Current processing of acoustic array data is burdened with considerable uncertainty. This study reports an original methodology that serves to demystify array results, reduce misinterpretation, and accurately quantify position and strength of acoustic sources. Traditional array results represent noise sources that are convolved with array beamform response functions, which depend on array geometry, size (with respect to source position and distributions), and frequency. The Deconvolution Approach for the Mapping of Acoustic Sources (DAMAS) method removes beamforming characteristics from output presentations. A unique linear system of equations accounts for reciprocal influence at different locations over the array survey region. It makes no assumption beyond the traditional processing assumption of statistically independent noise sources. The full rank equations are solved with a new robust iterative method. DAMAS is quantitatively validated using archival data from a variety of prior high-lift airframe component noise studies, including flap edge/cove, trailing edge, leading edge, slat, and calibration sources. Presentations are explicit and straightforward, as the noise radiated from a region of interest is determined by simply summing the mean-squared values over that region. DAMAS can fully replace existing array processing and presentations methodology in most applications. It appears to dramatically increase the value of arrays to the field of experimental acoustics.

  18. Tunable optical lens array using viscoelastic material and acoustic radiation force

    SciTech Connect

    Koyama, Daisuke Kashihara, Yuta; Matsukawa, Mami; Hatanaka, Megumi; Nakamura, Kentaro

    2015-10-28

    A movable optical lens array that uses acoustic radiation force was investigated. The lens array consists of a glass plate, two piezoelectric bimorph transducers, and a transparent viscoelastic gel film. A cylindrical lens array with a lens pitch of 4.6 mm was fabricated using the acoustic radiation force generated by the flexural vibration of the glass plate. The focal point and the positioning of the lenses can be changed using the input voltage and the driving phase difference between the two transducers, respectively.

  19. Chemical sensors using peptide-functionalized conducting polymer nanojunction arrays

    NASA Astrophysics Data System (ADS)

    Aguilar, Alvaro Díaz; Forzani, Erica S.; Li, Xiulan; Tao, Nongjian; Nagahara, Larry A.; Amlani, Islamshah; Tsui, Raymond

    2005-11-01

    We demonstrate a heavy metal-ion sensor for drinking water analysis using a conducting polymer nanojunction array. Each nanojunction is formed by bridging a pair of nanoelectrodes separated with a small gap (<60nm) with electrodeposited peptide-modified polyanilines. The signal transduction mechanism of the sensor is based on the change in the nanojunction conductance as a result of polymer conformational changes induced by the metal-ion chelating peptide. The nanojunction sensor allows real-time detection of Cu2+ and Ni2+ at ppt range.

  20. Transparent and flexible force sensor array based on optical waveguide.

    PubMed

    Kim, Youngsung; Park, Suntak; Park, Seung Koo; Yun, Sungryul; Kyung, Ki-Uk; Sun, Kyung

    2012-06-18

    This paper suggests a force sensor array measuring contact force based on intensity change of light transmitted throughout optical waveguide. For transparency and flexibility of the sensor, two soft prepolymers with different refractive index have been developed. The optical waveguide consists of two cladding layers and a core layer. The top cladding layer is designed to allow light scattering at the specific area in response to finger contact. The force sensor shows a distinct tendency that output intensity decreases with input force and measurement range is from 0 to -13.2 dB. PMID:22714510

  1. A new kind of sensor array for measuring spatial coherence of surface pressure on a car's side window

    NASA Astrophysics Data System (ADS)

    Gabriel, C.; Müller, S.; Ullrich, F.; Lerch, R.

    2014-02-01

    The mechanical behavior of a car's side window and the resulting acoustic radiation into the cabin is mainly affected by the spatial coherence of the surface pressure exciting the glass plate. The surface pressure is a superposition of hydrodynamic and acoustic pressure whose levels differ by 2 or 3 orders of magnitude. To gain information about the coherence characteristics of the surface pressure and to separate its hydrodynamic and acoustic components, a measurement of high spatial resolution is needed. For that reason a novel pressure transducer array with a minimum distance between two adjacent measurement points of only 2 mm was developed. The pressure transducers of the array are arranged sparsely on a grid while all possible distances between the spots on the grid are covered. Due to this minimization of distance redundancy, the amount of microphones could be reduced from 1849 to 92 representing a virtual array of 43×43 measurement positions. A Nyquist wavenumber of 250 1/m and a resolution of 11.9 1/m using a sensor area of only 52×52 mm2 were achieved. Because of its small dimensions, this array allows for measurements at various test areas on the side window, which is a major improvement compared to former investigations. For the measurements conventional MEMS microphones are applied. It is shown that the used microphones are suitable for the requisite, even if operating in saturation. Hence, the existence of acoustic loads on the side window and the position-dependent spatial coherence of the surface pressure can be studied. Measurements using the sensor array are carried out in the anechoic wind tunnel to validate the methodology. Results of the separation between hydrodynamic and acoustic pressure as well as the identification of coherence properties are presented.

  2. Autonomous hydrophone array for long-term acoustic monitoring in the open ocean

    NASA Astrophysics Data System (ADS)

    D'Eu, J.-F.; Brachet, C.; Goslin, J.; Royer, J.-Y.; Ammann, J.

    2009-04-01

    We are developing an array of new autonomous hydrophones, benefiting from a long-lasting collaboration with the Pacific Marine Environmental Laboratory (NOAA and Oregon state University). The hydrophones are deployed on a mooring line anchored to the seafloor by an expendable anchor weight. The length of the line is adjusted so that the sensor (and buoy) lies in the middle of the SOFAR channel at about 1000m depth for mid-latitudes (depending on the speed-of-sound profile). The buoy at depth keeps the line under tension and prevents wave-motion noise from the sensor. The instrument continuously samples and records the acoustic signals at 240Hz for seismic studies, or 480Hz (or more) for marine mammal studies. The SOFAR channel acts as an acoustic wave-guide in the ocean so that acoustic waves can propagate with little attenuation over long distances. Autonomous hydrophones allow the detection and localization of the low-magnitude (Mw>2.5) seismic activity along oceanic ridges and in deformed intraplate areas, which remains generally undetected or poorly localized by land-based seismic networks. An array of hydrophones can monitor a much wider area (more than 1000 km across) than ocean-bottom seismometers, which suffer from the rapid attenuation of seismic waves in the crust and upper mantle. Arrays of autonomous hydrophones thus succeed in detecting and locating 30 to 50 times more earthquakes than those listed in the catalogs from land-based seismograph stations. Data are buffered on flash cards and then regularly stored on hard disks or on solid-state drives (e.g. 20Gb of data per year at 240Hz sampling rate). We use 24-bit sigma-delta converters with programmable gain amplifiers. As timing is a key issue for an accurate localisation of the seismic events, instruments are synchronized with GPS time and have a low-power, highly stable calibrated clock (10-8 drift). All electronics and batteries (Li or alcaline) are placed in titanium pressure cases for long

  3. Distributed acoustic fibre optic sensors for condition monitoring of pipelines

    NASA Astrophysics Data System (ADS)

    Hussels, Maria-Teresa; Chruscicki, Sebastian; Habib, Abdelkarim; Krebber, Katerina

    2016-05-01

    Industrial piping systems are particularly relevant to public safety and the continuous availability of infrastructure. However, condition monitoring systems based on many discrete sensors are generally not well-suited for widespread piping systems due to considerable installation effort, while use of distributed fibre-optic sensors would reduce this effort to a minimum. Specifically distributed acoustic sensing (DAS) is employed for detection of third-party threats and leaks in oil and gas pipelines in recent years and can in principle also be applied to industrial plants. Further possible detection routes amenable by DAS that could identify damage prior to emission of medium are subject of a current project at BAM, which aims at qualifying distributed fibre optic methods such as DAS as a means for spatially continuous monitoring of industrial piping systems. Here, first tests on a short pipe are presented, where optical fibres were applied directly to the surface. An artificial signal was used to define suitable parameters of the measurement system and compare different ways of applying the sensor.

  4. Fabrication and characterization of nano-gas sensor arrays

    SciTech Connect

    Hassan, H. S. Kashyout, A. B.; Morsi, I. Nasser, A. A. A. Raafat, A.

    2015-03-30

    A novel structures of Nanomaterials gas sensors array constructed using ZnO, and ZnO doped with Al via sol-gel technique. Two structure arrays are developed; the first one is a double sensor array based on doping with percentages of 1% and 5%. The second is a quadrature sensor array based on several doping ratios concentrations (0%, 1%, 5% and 10%). The morphological structures of prepared ZnO were revealed using scanning electron microscope (SEM). X-ray diffraction (XRD) patterns reveal a highly crystallized wurtzite structure and used for identifying phase structure and chemical state of both ZnO and ZnO doped with Al under different preparation conditions and different doping ratios. Chemical composition of Al-doped ZnO nanopowders was performed using energy dispersive x-ray (EDS) analysis. The electrical characteristics of the sensor are determined by measuring the two terminal sensor’s output resistance for O{sub 2}, H{sub 2} and CO{sub 2} gases as a function of temperature.

  5. Position sensor for linear synchronous motors employing halbach arrays

    DOEpatents

    Post, Richard Freeman

    2014-12-23

    A position sensor suitable for use in linear synchronous motor (LSM) drive systems employing Halbach arrays to create their magnetic fields is described. The system has several advantages over previously employed ones, especially in its simplicity and its freedom from being affected by weather conditions, accumulated dirt, or electrical interference from the LSM system itself.

  6. Very Large Chemical Sensor Array for Mimicking Biological Olfaction

    NASA Astrophysics Data System (ADS)

    Beccherelli, R.; Zampetti, E.; Pantalei, S.; Bernabei, M.; Persaud, K. C.

    2009-05-01

    Olfactory receptor neurons (ORN) in the mammalian olfactory system, transduce molecular properties of the odorants into electrical signals and project these into the olfactory bulb (OB). In the biological system several millions of receptor neurons of a few hundred types create redundancy and the massive convergence of the ORNs to the OB, is thought to enhance the sensitivity and selectivity of the system. To explore this concept, the NEUROCHEM project will build a polymeric chemical sensor array consisting of 216 (65536) sensors with tens of different types. To interface such a large sensor array, a topological array configuration with n rows and m columns, has been adopted, to reduce the total wiring connections to n+m. A method of addressing a single element in the array in isolation of the rest of the network has been developed. Over the array ten different conductive polymers with different sensing characteristics will be deposited by means of electrodeposition and inkjet printing. A smaller prototype of 64 elements has been investigated and the results are here reported and discussed.

  7. Contact CMOS imaging of gaseous oxygen sensor array

    PubMed Central

    Daivasagaya, Daisy S.; Yao, Lei; Yi Yung, Ka; Hajj-Hassan, Mohamad; Cheung, Maurice C.; Chodavarapu, Vamsy P.; Bright, Frank V.

    2014-01-01

    We describe a compact luminescent gaseous oxygen (O2) sensor microsystem based on the direct integration of sensor elements with a polymeric optical filter and placed on a low power complementary metal-oxide semiconductor (CMOS) imager integrated circuit (IC). The sensor operates on the measurement of excited-state emission intensity of O2-sensitive luminophore molecules tris(4,7-diphenyl-1,10-phenanthroline) ruthenium(II) ([Ru(dpp)3]2+) encapsulated within sol–gel derived xerogel thin films. The polymeric optical filter is made with polydimethylsiloxane (PDMS) that is mixed with a dye (Sudan-II). The PDMS membrane surface is molded to incorporate arrays of trapezoidal microstructures that serve to focus the optical sensor signals on to the imager pixels. The molded PDMS membrane is then attached with the PDMS color filter. The xerogel sensor arrays are contact printed on top of the PDMS trapezoidal lens-like microstructures. The CMOS imager uses a 32 × 32 (1024 elements) array of active pixel sensors and each pixel includes a high-gain phototransistor to convert the detected optical signals into electrical currents. Correlated double sampling circuit, pixel address, digital control and signal integration circuits are also implemented on-chip. The CMOS imager data is read out as a serial coded signal. The CMOS imager consumes a static power of 320 µW and an average dynamic power of 625 µW when operating at 100 Hz sampling frequency and 1.8 V DC. This CMOS sensor system provides a useful platform for the development of miniaturized optical chemical gas sensors. PMID:24493909

  8. Automated inspection of surface breaking cracks using GMR sensor arrays

    SciTech Connect

    Pelkner, Matthias; Reimund, Verena; Erthner, Thomas; Panke, Nicolai; Kreutzbruck, Marc

    2014-02-18

    We present a prototype for automated magnetic stray field testing of ferromagnetic roller bearings. For this purpose NDE-adapted GMR sensor arrays (giant magneto resistance) are used for the detection of surface breaking cracks. The sensors are miniaturized down to the lower μm-regime to achieve adequate spatial resolution. In doing so, sensor arrays with up to 48 elements are used to inspect the bearing surface within a few seconds only. In contrast to magnetic particle inspection (MPI), where the global magnetization requires a further inspection step and succeeding demagnetization, the presented prototype only locally magnetize the surface area in the vicinity of the GMR Sensors. For the local magnetization, the applied sub-surface magnetic field was simulated and proofed for detecting flaws with a depth of a few 10 μm. By multiplexing the sensor array with an adapted read out electronics we quasi simultaneously detect the normal field component of about 100μm above the surface. The detection of artificial notches with a depth of 40 μm and more could be resolved with a SNR better than 20 dB. The presented testing facility is fast and provides a step towards automated testing of safety relevant steel components.

  9. Automated inspection of surface breaking cracks using GMR sensor arrays

    NASA Astrophysics Data System (ADS)

    Pelkner, Matthias; Reimund, Verena; Erthner, Thomas; Panke, Nicolai; Kreutzbruck, Marc

    2014-02-01

    We present a prototype for automated magnetic stray field testing of ferromagnetic roller bearings. For this purpose NDE-adapted GMR sensor arrays (giant magneto resistance) are used for the detection of surface breaking cracks. The sensors are miniaturized down to the lower μm-regime to achieve adequate spatial resolution. In doing so, sensor arrays with up to 48 elements are used to inspect the bearing surface within a few seconds only. In contrast to magnetic particle inspection (MPI), where the global magnetization requires a further inspection step and succeeding demagnetization, the presented prototype only locally magnetize the surface area in the vicinity of the GMR Sensors. For the local magnetization, the applied sub-surface magnetic field was simulated and proofed for detecting flaws with a depth of a few 10 μm. By multiplexing the sensor array with an adapted read out electronics we quasi simultaneously detect the normal field component of about 100μm above the surface. The detection of artificial notches with a depth of 40 μm and more could be resolved with a SNR better than 20 dB. The presented testing facility is fast and provides a step towards automated testing of safety relevant steel components.

  10. Acoustic analysis by spherical microphone array processing of room impulse responses.

    PubMed

    Khaykin, Dima; Rafaely, Boaz

    2012-07-01

    Spherical microphone arrays have been recently used for room acoustics analysis, to detect the direction-of-arrival of early room reflections, and compute directional room impulse responses and other spatial room acoustics parameters. Previous works presented methods for room acoustics analysis using spherical arrays that are based on beamforming, e.g., delay-and-sum, regular beamforming, and Dolph-Chebyshev beamforming. Although beamforming methods provide useful directional selectivity, optimal array processing methods can provide enhanced performance. However, these algorithms require an array cross-spectrum matrix with a full rank, while array data based on room impulse responses may not satisfy this condition due to the single frame data. This paper presents a smoothing technique for the cross-spectrum matrix in the frequency domain, designed for spherical microphone arrays, that can solve the problem of low rank when using room impulse response data, therefore facilitating the use of optimal array processing methods. Frequency smoothing is shown to be performed effectively using spherical arrays, due to the decoupling of frequency and angular components in the spherical harmonics domain. Experimental study with data measured in a real auditorium illustrates the performance of optimal array processing methods such as MUSIC and MVDR compared to beamforming. PMID:22779475

  11. Improved Circuits with Capacitive Feedback for Readout Resistive Sensor Arrays

    PubMed Central

    Oballe-Peinado, Óscar; Vidal-Verdú, Fernando; Sánchez-Durán, José A.; Castellanos-Ramos, Julián; Hidalgo-López, José A.

    2016-01-01

    One of the most suitable ways of distributing a resistive sensor array for reading is an array with M rows and N columns. This allows reduced wiring and a certain degree of parallelism in the implementation, although it also introduces crosstalk effects. Several types of circuits can carry out the analogue-digital conversion of this type of sensors. This article focuses on the use of operational amplifiers with capacitive feedback and FPGAs for this task. Specifically, modifications of a previously reported circuit are proposed to reduce the errors due to the non-idealities of the amplifiers and the I/O drivers of the FPGA. Moreover, calibration algorithms are derived from the analysis of the proposed circuitry to reduce the crosstalk error and improve the accuracy. Finally, the performances of the proposals is evaluated experimentally on an array of resistors and for different ranges. PMID:26821024

  12. Triaxial thermopile array geo-heat-flow sensor

    DOEpatents

    Carrigan, Charles R.; Hardee, Harry C.; Reynolds, Gerald D.; Steinfort, Terry D.

    1992-01-01

    A triaxial thermopile array geothermal heat flow sensor is designed to measure heat flow in three dimensions in a reconstituted or unperturbed subsurface regime. Heat flow can be measured in conductive or permeable convective media. The sensor may be encased in protective pvc tubing and includes a plurality of thermistors and an array of heat flow transducers arranged in a vertical string. The transducers produce voltage proportional to heat flux along the subsurface regime and permit direct measurement of heat flow in the subsurface regime. The presence of the thermistor array permits a comparison to be made between the heat flow estimates obtained from the transducers and heat flow calculated using temperature differences and Fourier's Law. The device is extremely sensitive with an accuracy of less than 0.1 Heat Flow Units (HFU) and may be used for long term readings.

  13. Two-dimensional pixel array image sensor for protein crystallography

    SciTech Connect

    Beuville, E.; Beche, J.-F.; Cork, C.

    1996-07-01

    A 2D pixel array image sensor module has been designed for time resolved Protein Crystallography. This smart pixels detector significantly enhances time resolved Laue Protein crystallography by two to three orders of magnitude compared to existing sensors like films or phosphor screens coupled to CCDs. The resolution in time and dynamic range of this type of detector will allow one to study the evolution of structural changes that occur within the protein as a function of time. This detector will also considerably accelerate data collection in static Laue or monochromatic crystallography and make better use of the intense beam delivered by synchrotron light sources. The event driven pixel array detectors, based on the column Architecture, can provide multiparameter information (energy discrimination, time), with sparse and frameless readout without significant dead time. The prototype module consists of a 16x16 pixel diode array bump-bonded to the integrated circuit. The detection area is 150x150 square microns.

  14. Triaxial thermopile array geo-heat-flow sensor

    DOEpatents

    Carrigan, C.R.; Hardee, H.C.; Reynolds, G.D.; Steinfort, T.D.

    1990-01-01

    A triaxial thermopile array geothermal heat flow sensor is designed to measure heat flow in three dimensions in a reconstituted or unperturbed subsurface regime. Heat flow can be measured in conductive or permeable convective media. The sensor may be encased in protective pvc tubing and includes a plurality of thermistors and an array of heat flow transducers produce voltage proportional to heat flux along the subsurface regime and permit direct measurement of heat flow in the subsurface regime. The presence of the thermistor array permits a comparison to be made between the heat flow estimates obtained from the transducers and heat flow calculated using temperature differences and Fourier's Law. The device is extremely sensitive with an accuracy of less than 0.1 Heat Flow Units (HFU) and may be used for long term readings. 6 figs.

  15. Improved Circuits with Capacitive Feedback for Readout Resistive Sensor Arrays.

    PubMed

    Oballe-Peinado, Óscar; Vidal-Verdú, Fernando; Sánchez-Durán, José A; Castellanos-Ramos, Julián; Hidalgo-López, José A

    2016-01-01

    One of the most suitable ways of distributing a resistive sensor array for reading is an array with M rows and N columns. This allows reduced wiring and a certain degree of parallelism in the implementation, although it also introduces crosstalk effects. Several types of circuits can carry out the analogue-digital conversion of this type of sensors. This article focuses on the use of operational amplifiers with capacitive feedback and FPGAs for this task. Specifically, modifications of a previously reported circuit are proposed to reduce the errors due to the non-idealities of the amplifiers and the I/O drivers of the FPGA. Moreover, calibration algorithms are derived from the analysis of the proposed circuitry to reduce the crosstalk error and improve the accuracy. Finally, the performances of the proposals is evaluated experimentally on an array of resistors and for different ranges. PMID:26821024

  16. Pattern recognition for selective odor detection with gas sensor arrays.

    PubMed

    Kim, Eungyeong; Lee, Seok; Kim, Jae Hun; Kim, Chulki; Byun, Young Tae; Kim, Hyung Seok; Lee, Taikjin

    2012-01-01

    This paper presents a new pattern recognition approach for enhancing the selectivity of gas sensor arrays for clustering intelligent odor detection. The aim of this approach was to accurately classify an odor using pattern recognition in order to enhance the selectivity of gas sensor arrays. This was achieved using an odor monitoring system with a newly developed neural-genetic classification algorithm (NGCA). The system shows the enhancement in the sensitivity of the detected gas. Experiments showed that the proposed NGCA delivered better performance than the previous genetic algorithm (GA) and artificial neural networks (ANN) methods. We also used PCA for data visualization. Our proposed system can enhance the reproducibility, reliability, and selectivity of odor sensor output, so it is expected to be applicable to diverse environmental problems including air pollution, and monitor the air quality of clean-air required buildings such as a kindergartens and hospitals. PMID:23443378

  17. Pattern Recognition for Selective Odor Detection with Gas Sensor Arrays

    PubMed Central

    Kim, Eungyeong; Lee, Seok; Kim, Jae Hun; Kim, Chulki; Byun, Young Tae; Kim, Hyung Seok; Lee, Taikjin

    2012-01-01

    This paper presents a new pattern recognition approach for enhancing the selectivity of gas sensor arrays for clustering intelligent odor detection. The aim of this approach was to accurately classify an odor using pattern recognition in order to enhance the selectivity of gas sensor arrays. This was achieved using an odor monitoring system with a newly developed neural-genetic classification algorithm (NGCA). The system shows the enhancement in the sensitivity of the detected gas. Experiments showed that the proposed NGCA delivered better performance than the previous genetic algorithm (GA) and artificial neural networks (ANN) methods. We also used PCA for data visualization. Our proposed system can enhance the reproducibility, reliability, and selectivity of odor sensor output, so it is expected to be applicable to diverse environmental problems including air pollution, and monitor the air quality of clean-air required buildings such as a kindergartens and hospitals. PMID:23443378

  18. Underwater hybrid near-field acoustical holography based on the measurement of vector hydrophone array

    NASA Astrophysics Data System (ADS)

    Hu, Bo; Yang, Desen; Sun, Yu

    2010-06-01

    Hybrid near-field acoustical holography (NAH) is developed for reconstructing acoustic radiation from a cylindrical source in a complex underwater environment. In hybrid NAH, we combine statistically optimized near-field acoustical holography (SONAH) and broadband acoustical holography from intensity measurements (BAHIM) to reconstruct the underwater cylindrical source field. First, the BAHIM is utilized to regenerate as much acoustic pressures on the hologram surface as necessary, and then the acoustic pressures are taken as input to the formulation implemented numerically by SONAH. The main advantages of this technology are that the complex pressure on the hologram surface can be reconstructed without reference signal, and the measurement array can be smaller than the source, thus the practicability and efficiency of this technology are greatly enhanced. Numerical examples of a cylindrical source are demonstrated. Test results show that hybrid NAH can yield a more accurate reconstruction than conventional NAH. Then, an experiment has been carried out with a vector hydrophone array. The experimental results show the advantage of hybrid NAH in the reconstruction of an acoustic field and the feasibility of using a vector hydrophone array in an underwater NAH measurement, as well as the identification and localization of noise sources.

  19. Acoustically induced transparency using Fano resonant periodic arrays

    NASA Astrophysics Data System (ADS)

    Amin, M.; Elayouch, A.; Farhat, M.; Addouche, M.; Khelif, A.; Baǧcı, H.

    2015-10-01

    A three-dimensional acoustic device, which supports Fano resonance and induced transparency in its response to an incident sound wave, is designed and fabricated. These effects are generated from the destructive interference of closely coupled one broad- and one narrow-band acoustic modes. The proposed design ensures excitation and interference of two spectrally close modes by locating a small pipe inside a wider and longer one. Indeed, numerical simulations and experiments demonstrate that this simple-to-fabricate structure can be used to generate Fano resonance as well as acoustically induced transparency with promising applications in sensing, cloaking, and imaging.

  20. Active pixel sensor array with multiresolution readout

    NASA Technical Reports Server (NTRS)

    Fossum, Eric R. (Inventor); Kemeny, Sabrina E. (Inventor); Pain, Bedabrata (Inventor)

    1999-01-01

    An imaging device formed as a monolithic complementary metal oxide semiconductor integrated circuit in an industry standard complementary metal oxide semiconductor process, the integrated circuit including a focal plane array of pixel cells, each one of the cells including a photogate overlying the substrate for accumulating photo-generated charge in an underlying portion of the substrate and a charge coupled device section formed on the substrate adjacent the photogate having a sensing node and at least one charge coupled device stage for transferring charge from the underlying portion of the substrate to the sensing node. There is also a readout circuit, part of which can be disposed at the bottom of each column of cells and be common to all the cells in the column. The imaging device can also include an electronic shutter formed on the substrate adjacent the photogate, and/or a storage section to allow for simultaneous integration. In addition, the imaging device can include a multiresolution imaging circuit to provide images of varying resolution. The multiresolution circuit could also be employed in an array where the photosensitive portion of each pixel cell is a photodiode. This latter embodiment could further be modified to facilitate low light imaging.

  1. PATTERN RECOGNITION STUDIES OF HALOGENATED ORGANIC COMPOUNDS USING CONDUCTING POLYMER SENSOR ARRAYS. (R825323)

    EPA Science Inventory

    Direct measurement of volatile and semivolatile halogenated organic compounds of environmental interest was carried out using arrays of conducting polymer sensors. Mathematical expressions of the sensor arrays using microscopic polymer network model is described. A classical, non...

  2. Langasite Surface Acoustic Wave Gas Sensors: Modeling and Verification

    SciTech Connect

    Zheng, Peng; Greve, David W; Oppenheim, Irving J

    2013-01-01

    We report finite element simulations of the effect of conductive sensing layers on the surface wave velocity of langasite substrates. The simulations include both the mechanical and electrical influences of the conducting sensing layer. We show that three-dimensional simulations are necessary because of the out-of-plane displacements of the commonly used (0, 138.5, 26.7) Euler angle. Measurements of the transducer input admittance in reflective delay-line devices yield a value for the electromechanical coupling coefficient that is in good agreement with the three-dimensional simulations on bare langasite substrate. The input admittance measurements also show evidence of excitation of an additional wave mode and excess loss due to the finger resistance. The results of these simulations and measurements will be useful in the design of surface acoustic wave gas sensors.

  3. Enhanced directional sensitivity of a biomimetic MEMS acoustic localization sensor

    NASA Astrophysics Data System (ADS)

    Gee, Danny; Liu, Haijun; Currano, Luke; Yu, Miao

    2010-04-01

    We present an improved microfabricated sound localization sensor for unobtrusive surveillance systems inspired by the tympanic membranes of the parasitoid fly, Ormia ochracea. The device consists of two silicon diaphragms mechanically coupled by a suspended beam that amplifies the difference in time response, dependent on the incident angle of the sound source. Fabrication techniques were modified to reduce residual stresses and improve device uniformity. Enhanced acoustic cues for devices with central pivoting anchors were measured with laser Doppler vibrometry. Device responses to weak excitations demonstrated good sensitivity over environmental noise. An order of magnitude in time difference amplification was measured at 90° incident angles with a directional sensitivity of .39μs/degree. These results provide a foundation for realizing an accurate bio-inspired MEMS directional microphone.

  4. The contamination of acoustic pressure measurements by sensor oscillations

    SciTech Connect

    Surry, J.; Kezele, D.; Risley, C.

    1996-04-01

    The significance of micromotion (sensor) noise contamination of low frequency, low level, ambient ocean acoustic measurements has been pursued experimentally and analytically. Oceanographic hydrophones are subject to small motions resulting from various phenomena; the present study focussed on a pressure-sensitive hydrophone exposed to vertical oscillations. While under such imposed motion, the responses from a pressure-sensitive hydrophone and a collocated accelerometer were analyzed relative to a stationary reference hydrophone. The imposed motion was vertical, colored noise (1 to 50 Hz) of various acceleration amplitudes (10 {mu}g to 10 mg), transmitted through an elastic isolation suspension. Formation of Frequency Response Functions between the measured transducer signals, demonstrated that a three component model of the hydrophone signal predicts the response-to-motion contamination of the acoustic signal. In the lower frequency range, the vertical motion through the static head gradient generates a signal similar to the response-to-acoustic signal, while in the upper frequency range, the hydrophone responds inertially to the motion. For acceleration greater than 30 {mu}g, these components masked the laboratory ambient sound, except in a narrow frequency band where the two motion related components canceled each other. The in-water acceleration sensitivity of the hydrophone was found to be higher than the measured in-air value, apparently due to two hydrodynamic effects: water mass loading predicted by a classical added-mass term and a greatly magnifying effect from an adjacent moving body. Extrapolating the results to a deep ocean environment, the hydrophone signals would be contaminated below 5 Hz. A spectral technique is demonstrated to remove both forms of motion contamination from laboratory data. {copyright} {ital 1996 American Institute of Physics.}

  5. Surface acoustic wave devices as passive buried sensors

    NASA Astrophysics Data System (ADS)

    Friedt, J.-M.; Rétornaz, T.; Alzuaga, S.; Baron, T.; Martin, G.; Laroche, T.; Ballandras, S.; Griselin, M.; Simonnet, J.-P.

    2011-02-01

    Surface acoustic wave (SAW) devices are currently used as passive remote-controlled sensors for measuring various physical quantities through a wireless link. Among the two main classes of designs—resonator and delay line—the former has the advantage of providing narrow-band spectrum informations and hence appears compatible with an interrogation strategy complying with Industry-Scientific-Medical regulations in radio-frequency (rf) bands centered around 434, 866, or 915 MHz. Delay-line based sensors require larger bandwidths as they consists of a few interdigitated electrodes excited by short rf pulses with large instantaneous energy and short response delays but is compatible with existing equipment such as ground penetrating radar (GPR). We here demonstrate the measurement of temperature using the two configurations, particularly for long term monitoring using sensors buried in soil. Although we have demonstrated long term stability and robustness of packaged resonators and signal to noise ratio compatible with the expected application, the interrogation range (maximum 80 cm) is insufficient for most geology or geophysical purposes. We then focus on the use of delay lines, as the corresponding interrogation method is similar to the one used by GPR which allows for rf penetration distances ranging from a few meters to tens of meters and which operates in the lower rf range, depending on soil water content, permittivity, and conductivity. Assuming propagation losses in a pure dielectric medium with negligible conductivity (snow or ice), an interrogation distance of about 40 m is predicted, which overcomes the observed limits met when using interrogation methods specifically developed for wireless SAW sensors, and could partly comply with the above-mentioned applications. Although quite optimistic, this estimate is consistent with the signal to noise ratio observed during an experimental demonstration of the interrogation of a delay line buried at a depth of 5

  6. An acoustic sensor for monitoring airflow in pediatric tracheostomy patients.

    PubMed

    Ruscher, Thomas; Wicks Phd, Alexandrina; Muelenaer Md, Andre

    2012-01-01

    Without proper monitoring, patients with artificial airways in the trachea are at high risk for complications or death. Despite routine maintenance of the tube, dislodged or copious mucus can obstruct the airway. Young children ( 3yrs) have difficulty tending to their own tubes and are particularly vulnerable to blockages. They require external respiratory sensors. In a hospital environment, ventilators, end-tidal CO2 monitors, thermistors, and other auxiliary equipment provide sufficient monitoring of respiration. However, outpatient monitoring methods, such as thoracic impedance and pulse oximetry, are indirect and prone to false positives. Desensitization of caregivers to frequent false alarms has been cited in medical literature as a contributing factor in cases of child death. Ultrasonic time-of-flight (TOF) is a technique used in specialized industrial applications to non-invasively measure liquid and gas flow. Two transducers are oriented at a diagonal across a flow channel. Velocity measurement is accomplished by detecting slight variations in transit time of contra-propagating acoustic signals with a directional component parallel to air flow. Due to the symmetry of acoustic pathway between sensors, velocity measurements are immune to partial fouling in the tube from mucus, saliva, and condensation. A first generation proof of concept prototype was constructed to evaluate the ultrasonic TOF technique for medical tracheostomy monitoring. After successful performance, a second generation prototype was designed with a smaller form factor and more advanced electronics. This prototype was tested and found to measure inspired volume with a root-mean-square error < 2% during initial trials. PMID:22846306

  7. Biomimetic MEMS sensor array for navigation and water detection

    NASA Astrophysics Data System (ADS)

    Futterknecht, Oliver; Macqueen, Mark O.; Karman, Salmah; Diah, S. Zaleha M.; Gebeshuber, Ille C.

    2013-05-01

    The focus of this study is biomimetic concept development for a MEMS sensor array for navigation and water detection. The MEMS sensor array is inspired by abstractions of the respective biological functions: polarized skylight-based navigation sensors in honeybees (Apis mellifera) and the ability of African elephants (Loxodonta africana) to detect water. The focus lies on how to navigate to and how to detect water sources in desert-like or remote areas. The goal is to develop a sensor that can provide both, navigation clues and help in detecting nearby water sources. We basically use the information provided by the natural polarization pattern produced by the sunbeams scattered within the atmosphere combined with the capability of the honeybee's compound eye to extrapolate the navigation information. The detection device uses light beam reactive MEMS, which are capable to detect the skylight polarization based on the Rayleigh sky model. For water detection we present various possible approaches to realize the sensor. In the first approach, polarization is used: moisture saturated areas near ground have a small but distinctively different effect on scattering and polarizing light than less moist ones. Modified skylight polarization sensors (Karman, Diah and Gebeshuber, 2012) are used to visualize this small change in scattering. The second approach is inspired by the ability of elephants to detect infrasound produced by underground water reservoirs, and shall be used to determine the location of underground rivers and visualize their exact routes.

  8. Outdoor sound propagation effects on aircraft detection through passive phased-array acoustic antennas: 3D numerical simulations

    NASA Astrophysics Data System (ADS)

    Roselli, Ivan; Testa, Pierluigi; Caronna, Gaetano; Barbagelata, Andrea; Ferrando, Alessandro

    2005-09-01

    The present paper describes some of the main acoustic issues connected with the SAFE-AIRPORT European Project for the development of an innovative acoustic system for the improvement of air traffic management. The system sensors are two rotating passive phased-array antennas with 512 microphones each. In particular, this study focused on the propagation of sound waves in the atmosphere and its influence on the system detection efficiency. The effects of air temperature and wind gradients on aircraft tracking were analyzed. Algorithms were implemented to correct output data errors on aircraft location due to acoustic ray deviation in 3D environment. Numerical simulations were performed using several temperature and wind profiles according to common and critical meteorological conditions. Aircraft location was predicted through 3D acoustic ray triangulation methods, taking into account variation in speed of sound waves along rays path toward each antenna. The system range was also assessed considering aircraft noise spectral emission. Since the speed of common airplanes is not negligible with respect to sound speed during typical airport operations such as takeoff and approach, the influence of the Doppler effect on range calculation was also considered and most critical scenarios were simulated.

  9. Biochemical Sensors Using Carbon Nanotube Arrays

    NASA Technical Reports Server (NTRS)

    Li, Jun (Inventor); Meyyappan, Meyya (Inventor); Cassell, Alan M. (Inventor)

    2011-01-01

    Method and system for detecting presence of biomolecules in a selected subset, or in each of several selected subsets, in a fluid. Each of an array of two or more carbon nanotubes ("CNTs") is connected at a first CNT end to one or more electronics devices, each of which senses a selected electrochemical signal that is generated when a target biomolecule in the selected subset becomes attached to a functionalized second end of the CNT, which is covalently bonded with a probe molecule. This approach indicates when target biomolecules in the selected subset are present and indicates presence or absence of target biomolecules in two or more selected subsets. Alternatively, presence of absence of an analyte can be detected.

  10. Gas sensor technology at Sandia National Laboratories: Catalytic gate, Surface Acoustic Wave and Fiber Optic Devices

    SciTech Connect

    Hughes, R.C.; Moreno, D.J.; Jenkins, M.W.; Rodriguez, J.L.

    1993-10-01

    Sandia`s gas sensor program encompasses three separate electronic platforms: Acoustic Wave Devices, Fiber Optic Sensors and sensors based on silicon microelectronic devices. A review of most of these activities was presented recently in a article in Science under the title ``Chemical Microsensors.`` The focus of the program has been on understanding and developing the chemical sensor coatings that are necessary for using these electronic platforms as effective chemical sensors.

  11. Fiber-optic hydrophone array for acoustic surveillance in the littoral

    NASA Astrophysics Data System (ADS)

    Hill, David; Nash, Phillip

    2005-05-01

    We describe a fibre-optic hydrophone array system architecture that can be tailored to meet the underwater acoustic surveillance requirements of the military, counter terrorist and customs authorities in protecting ports and harbours, offshore production facilities or coastal approaches. Physically the fibre-optic hydrophone array is in the form of a lightweight cable, enabling rapid deployment from a small vessel. Based upon an optical architecture of time and wavelength multiplexed interferometric hydrophones, the array is comprised of a series of hydrophone sub-arrays. Using multiple sub-arrays, extended perimeters many tens of kilometres in length can be monitored. Interrogated via a long (~50km) optical fibre data link, the acoustic date is processed using the latest open architecture sonar processing platform, ensuring that acoustic targets below, on and above the surface are detected, tracked and classified. Results obtained from an at sea trial of a 96-channel hydrophone array are given, showing the passive detection and tracking of a diver, small surface craft and big ocean going ships beyond the horizon. Furthermore, we describe how the OptaMarine fibre-optic hydrophone array fits into an integrated multi-layered approach to port and harbour security consisting of active sonar for diver detection and hull imaging, as well as thermal imaging and CCTV for surface monitoring. Finally, we briefly describe a complimentary land perimeter intruder detection system consisting of an array of fibre optic accelerometers.

  12. Tracking sperm whale (Physeter macrocephalus) dive profiles using a towed passive acoustic array

    NASA Astrophysics Data System (ADS)

    Thode, Aaron

    2004-07-01

    A passive acoustic method is presented for tracking sperm whale dive profiles, using two or three hydrophones deployed as either a vertical or large-aperture towed array. The relative arrival times between the direct and surface-reflected acoustic paths are used to obtain the ranges and depths of animals with respect to the array, provided that the hydrophone depths are independently measured. Besides reducing the number of hydrophones required, exploiting surface reflections simplifies automation of the data processing. Experimental results are shown from 2002 and 2003 cruises in the Gulf of Mexico for two different towed array deployments. The 2002 deployment consisted of two short-aperture towed arrays separated by 170 m, while the 2003 deployment placed an autonomous acoustic recorder in tandem with a short-aperture towed array, and used ship noise to time-align the acoustic data. The resulting dive profiles were independently checked using single-hydrophone localizations, whenever multipath reflections from the ocean bottom could be exploited to effectively create a large-aperture vertical array. This technique may have applications for basic research and for real-time mitigation for seismic airgun surveys.

  13. Tracking sperm whale (Physeter macrocephalus) dive profiles using a towed passive acoustic array.

    PubMed

    Thode, Aaron

    2004-07-01

    A passive acoustic method is presented for tracking sperm whale dive profiles, using two or three hydrophones deployed as either a vertical or large-aperture towed array. The relative arrival times between the direct and surface-reflected acoustic paths are used to obtain the ranges and depths of animals with respect to the array, provided that the hydrophone depths are independently measured. Besides reducing the number of hydrophones required, exploiting surface reflections simplifies automation of the data processing. Experimental results are shown from 2002 and 2003 cruises in the Gulf of Mexico for two different towed array deployments. The 2002 deployment consisted of two short-aperture towed arrays separated by 170 m, while the 2003 deployment placed an autonomous acoustic recorder in tandem with a short-aperture towed array, and used ship noise to time-align the acoustic data. The resulting dive profiles were independently checked using single-hydrophone localizations, whenever multipath reflections from the ocean bottom could be exploited to effectively create a large-aperture vertical array. This technique may have applications for basic research and for real-time mitigation for seismic airgun surveys. PMID:15295984

  14. A thermal plasmonic sensor platform: resistive heating of nanohole arrays.

    PubMed

    Virk, Mudassar; Xiong, Kunli; Svedendahl, Mikael; Käll, Mikael; Dahlin, Andreas B

    2014-06-11

    We have created a simple and efficient thermal plasmonic sensor platform by letting a DC current heat plasmonic nanohole arrays. The sensor can be used to determine thermodynamic parameters in addition to monitoring molecular reactions in real-time. As an application example, we use the thermal sensor to determine the kinetics and activation energy for desorption of thiol monolayers on gold. Further, the temperature of the metal can be measured optically by the spectral shift of the bonding surface plasmon mode (0.015 nm/K). We show that this resonance shift is caused by thermal lattice expansion, which reduces the plasma frequency of the metal. The sensor is also used to determine the thin film thermal expansion coefficient through a theoretical model for the expected resonance shift. PMID:24807397

  15. Digital pixel sensor array with logarithmic delta-sigma architecture.

    PubMed

    Mahmoodi, Alireza; Li, Jing; Joseph, Dileepan

    2013-01-01

    Like the human eye, logarithmic image sensors achieve wide dynamic range easily at video rates, but, unlike the human eye, they suffer from low peak signal-to-noise-and-distortion ratios (PSNDRs). To improve the PSNDR, we propose integrating a delta-sigma analog-to-digital converter (ADC) in each pixel. An image sensor employing this architecture is designed, built and tested in 0.18 micron complementary metal-oxide-semiconductor (CMOS) technology. It achieves a PSNDR better than state-of-the-art logarithmic sensors and comparable to the human eye. As the approach concerns an array of many ADCs, we use a small-area low-power delta-sigma design. For scalability, each pixel has its own decimator. The prototype is compared to a variety of other image sensors, linear and nonlinear, from industry and academia. PMID:23959239

  16. Cantilever Arrays as a platform for chemical and biological sensors

    NASA Astrophysics Data System (ADS)

    Datskos, Panos

    2005-03-01

    Since the late 1980's there have been spectacular developments in micro-mechanical or micro-electro-mechanical (MEMS) systems which have enabled exploration of new transduction modes that involve mechanical energy and are based primarily on mechanical phenomena. As a result, an innovative family of chemical and biological sensors has emerged. While MEMS represents a diverse family of designs, devices with simple cantilever configurations are especially attractive as transducers for chemical and biological sensors. In our presentation we deal with four important aspects of cantilever transducers: (i) operation principles and models, (ii) micro-fabrication, (iii) figures of merit, and (iv) applications of cantilever sensors. We also provide a brief analysis of historical predecessors of the modern cantilever sensors. Finally we have demonstrated that using large well designed arrays of differentially coated microcantilevers coupled artificial neural network techniques can provide information on the identity and amount of target chemicals. We will present our results and discuss future directions.

  17. Numerical simulations of odorant detection by biologically inspired sensor arrays.

    PubMed

    Schuech, R; Stacey, M T; Barad, M F; Koehl, M A R

    2012-03-01

    The antennules of many marine crustaceans enable them to rapidly locate sources of odorant in turbulent environmental flows and may provide biological inspiration for engineered plume sampling systems. A substantial gap in knowledge concerns how the physical interaction between a sensing device and the chemical filaments forming a turbulent plume affects odorant detection and filters the information content of the plume. We modeled biological arrays of chemosensory hairs as infinite arrays of odorant flux-detecting cylinders and simulated the fluid flow around and odorant flux into the hair-like sensors as they intercepted a single odorant filament. As array geometry and sampling kinematics were varied, we quantified distortion of the flux time series relative to the spatial shape of the original odorant filament as well as flux metrics that may be important to both organisms and engineered systems attempting to measure plume structure and/or identify chemical composition. The most important predictor of signal distortion is the ratio of sensor diameter to odorant filament width. Achieving high peak properties (e.g. sharpness) of the flux time series and maximizing the total number of odorant molecules detected appear to be mutually exclusive design goals. Sensor arrays inspired specifically by the spiny lobster Panulirus argus and mantis shrimp Gonodactylaceus falcatus introduce little signal distortion but these species' neural systems may not be able to resolve plume structure at the level of individual filaments via temporal properties of the odorant flux. Current chemical sensors are similarly constrained. Our results suggest either that the spatial distribution of flux across the aesthetasc array is utilized by P. argus and G. falcatus, or that such high spatiotemporal resolution is unnecessary for effective plume tracking. PMID:22155966

  18. Mapping Electrical Crosstalk in Pixelated Sensor Arrays

    NASA Technical Reports Server (NTRS)

    Seshadri, S.; Cole, D. M.; Hancock, B. R.; Smith, R. M.

    2008-01-01

    Electronic coupling effects such as Inter-Pixel Capacitance (IPC) affect the quantitative interpretation of image data from CMOS, hybrid visible and infrared imagers alike. Existing methods of characterizing IPC do not provide a map of the spatial variation of IPC over all pixels. We demonstrate a deterministic method that provides a direct quantitative map of the crosstalk across an imager. The approach requires only the ability to reset single pixels to an arbitrary voltage, different from the rest of the imager. No illumination source is required. Mapping IPC independently for each pixel is also made practical by the greater S/N ratio achievable for an electrical stimulus than for an optical stimulus, which is subject to both Poisson statistics and diffusion effects of photo-generated charge. The data we present illustrates a more complex picture of IPC in Teledyne HgCdTe and HyViSi focal plane arrays than is presently understood, including the presence of a newly discovered, long range IPC in the HyViSi FPA that extends tens of pixels in distance, likely stemming from extended field effects in the fully depleted substrate. The sensitivity of the measurement approach has been shown to be good enough to distinguish spatial structure in IPC of the order of 0.1%.

  19. A novel sensor for monitoring acoustic cavitation. Part I: Concept, theory, and prototype development.

    PubMed

    Zeqiri, Bajram; Gélat, Pierre N; Hodnett, Mark; Lee, Nigel D

    2003-10-01

    This paper describes a new concept for an ultrasonic cavitation sensor designed specifically for monitoring acoustic emissions generated by small microbubbles when driven by an applied acoustic field. Its novel features include a hollow, open-ended, cylindrical shape, with the sensor being a right circular cylinder of height 32 mm and external diameter 38 mm. The internal diameter of the sensor is 30 mm; its inner surface is fabricated from a 110-microm layer of piezoelectrically active film whose measurement bandwidth is sufficient to enable acoustic emissions up to and beyond 10 MHz to be monitored. When in use, the sensor is immersed within the liquid test medium and high frequency (megahertz) acoustic emissions occurring within the hollow body of the sensor are monitored. In order to shield the sensor response from events occurring outside the cylinder, the outer surface of the sensor cylinder is encapsulated within a special 4-mm thick polyurethane-based cavitation shield with acoustic properties specifically developed to be minimally perturbing to the 40 kHz applied acoustic field but attenuating to ultrasound generated at megahertz frequencies (plane-wave transmission loss > 30 dB at 1 MHz). This paper introduces the rationale behind the new sensor, describing details of its construction and the materials formulation program undertaken to develop the cavitation shield. PMID:14609074

  20. Starch viscoelastic properties studied with an acoustic wave sensor.

    PubMed

    Santos, M D; Gomes, M T S R

    2014-01-01

    Gelatinization and retrogradation of starch was followed in real time with an acoustic wave sensor. This study relies on the monitorization of the frequency of oscillation of a piezoelectric quartz crystal in contact with a 2.5% emulsion of a commercial maize starch, during heating and cooling. The technique showed to be very powerful and sensitive to most of the changes described in the literature, which have been elucidated by some other techniques. The value for the temperature of gelatinization found using the sensor was confirmed by the analysis of the same starch emulsion by polarized light microscopy. Temperatures of gelatinization were found to vary with the sample heating rate, as follows: 73.5 °C at 2.0 °C/min, 66.0 °C at 1.0 °C/min, and 65.0 °C at 0.5 °C/min. Hysteresis of the studied system was evidenced by the frequency shift before heating and after cooling till the initial temperature. Analysis performed on a 1.5% emulsion of a rice starch heated at 2.0 °C/min and cooled as before, evidenced no hysteresis and showed complete reversibility, in which concerns to the series frequency of the piezoelectric quartz crystal. PMID:24274480

  1. Electro-chemical sensors, sensor arrays and circuits

    SciTech Connect

    Katz, Howard E.; Kong, Hoyoul

    2014-07-08

    An electro-chemical sensor includes a first electrode, a second electrode spaced apart from the first electrode, and a semiconductor channel in electrical contact with the first and second electrodes. The semiconductor channel includes a trapping material. The trapping material reduces an ability of the semiconductor channel to conduct a current of charge carriers by trapping at least some of the charge carriers to localized regions within the semiconductor channel. The semiconductor channel includes at least a portion configured to be exposed to an analyte to be detected, and the trapping material, when exposed to the analyte, interacts with the analyte so as to at least partially restore the ability of the semiconductor channel to conduct the current of charge carriers.

  2. A general superdirectivity model for arbitrary sensor arrays

    NASA Astrophysics Data System (ADS)

    Wang, Yong; Yang, Yixin; He, Zhengyao; Han, Yina; Ma, Yuanliang

    2015-12-01

    This paper proposes a general model of superdirectivity to provide analytical and closed-form solutions for arbitrary sensor arrays. Based on the equivalence between the maximum directivity factor and the maximum array gain in the isotropic noise field, Gram-Schmidt orthogonalization is introduced and recursively transformed into a matrix form to conduct pre-whitening and matching operations that result in superdirectivity solutions. A Gram-Schmidt mode-beam decomposition and synthesis method is then presented to formally implement these solutions. Illustrative examples for different arrays are provided to demonstrate the feasibility of this method, and a reduced rank technique is used to deal with the practical array design for robust beamforming and acceptable high-order superdirectivity. Experimental results that are provided for a linear array consisting of nine hydrophones show the good performance of the technique. A superdirective beampattern with a beamwidth of 48.05° in the endfire direction is typically achieved when the inter-sensor spacing is only 0.09 λ ( λ is the wavelength), and the directivity index is up to 12 dB, which outperforms that of the conventional delay-and-sum counterpart by 6 dB.

  3. Maximum Constrained Directivity of Oversteered End-Fire Sensor Arrays

    PubMed Central

    Trucco, Andrea; Traverso, Federico; Crocco, Marco

    2015-01-01

    For linear arrays with fixed steering and an inter-element spacing smaller than one half of the wavelength, end-fire steering of a data-independent beamformer offers better directivity than broadside steering. The introduction of a lower bound on the white noise gain ensures the necessary robustness against random array errors and sensor mismatches. However, the optimum broadside performance can be obtained using a simple processing architecture, whereas the optimum end-fire performance requires a more complicated system (because complex weight coefficients are needed). In this paper, we reconsider the oversteering technique as a possible way to simplify the processing architecture of equally spaced end-fire arrays. We propose a method for computing the amount of oversteering and the related real-valued weight vector that allows the constrained directivity to be maximized for a given inter-element spacing. Moreover, we verify that the maximized oversteering performance is very close to the optimum end-fire performance. We conclude that optimized oversteering is a viable method for designing end-fire arrays that have better constrained directivity than broadside arrays but with a similar implementation complexity. A numerical simulation is used to perform a statistical analysis, which confirms that the maximized oversteering performance is robust against sensor mismatches. PMID:26066987

  4. A four-element end-fire microphone array for acoustic measurements in wind tunnels

    NASA Technical Reports Server (NTRS)

    Soderman, P. T.; Noble, S. C.

    1974-01-01

    A prototype four-element end-fire microphone array was designed and built for evaluation as a directional acoustic receiver for use in large wind tunnels. The microphone signals were digitized, time delayed, summed, and reconverted to analog form in such a way as to create a directional response with the main lobe along the array axis. The measured array directivity agrees with theoretical predictions confirming the circuit design of the electronic control module. The array with 0.15 m (0.5 ft) microphone spacing rejected reverberations and background noise in the Ames 40- by 80-foot wind tunnel by 5 to 12 db for frequencies above 400 Hz.

  5. Embedded and conventional ultrasonic sensors for monitoring acoustic emission during thermal fatigue

    NASA Astrophysics Data System (ADS)

    Trujillo, Blaine; Zagrai, Andrei

    2016-04-01

    Acoustic emission is widely used for monitoring pressure vessels, pipes, critical infrastructure, as well as land, sea and air vehicles. It is one of dominant approaches to explore material degradation under fatigue and events leading to material fracture. Addressing a recent interest in structural health monitoring of space vehicles, a need has emerged to evaluate material deterioration due to thermal fatigue during spacecraft atmospheric reentry. Thermal fatigue experiments were conducted, in which aluminum plates were subjected to localized heating and acoustic emission was monitoring by embedded and conventional acoustic emission sensors positioned at various distances from a heat source. At the same time, surface temperature of aluminum plates was monitored using an IR camera. Acoustic emission counts collected by embedded sensors were compared to counts measured with conventional acoustic emission sensors. Both types of sensors show noticeable increase of acoustic emission activity as localized heating source was applied to aluminum plates. Experimental data demonstrate correlation between temperature increase on the surface of the plates and increase in measured acoustic emission activity. It is concluded that under particular conditions, embedded piezoelectric wafer active sensors can be used for acoustic emission monitoring of thermally-induced structural degradation.

  6. Ionization Gas Sensor using Aligned Multiwalled Carbon Nanotubes Array

    SciTech Connect

    Kermany, A. R.; Mohamed, N. M.; Singh, B. S. M.

    2011-05-25

    The challenge with current conventional gas sensors which are operating using semiconducting oxides is their size. After the introduction of nanotechnology and in order to reduce the dimension and consequently the power consumption and cost, new materials such as carbon nanotubes (CNTs) are being introduced. From previous works and characterization results, it was proven that the CNTs based gas sensor has better sensitivity, selectivity and faster response time in compared with semiconducting oxides based gas sensors. As in this work, a fabrication and successful testing of an ionization-based gas sensor using aligned Multiwalled CNTs (MWCNTs) as sensing element is discussed, in which MWCNTs array and Al film are used as anode and cathode plates respectively with electrode separation ranging from 80 {mu}m to 140 {mu}m. Aligned MWCNTs array was incorporated into a sensor configuration in the gas chamber for testing of gases such as argon, air, and mixed gas of 2%H{sub 2} in air. Obtained results show that among the three gases, argon has the lowest breakdown voltage whilst air has the highest value and the breakdown voltage was found to decrease as the electrode spacing was reduced from 140 {mu}m to 80 {mu}m for all three gases.

  7. Modulation transfer function measurement technique for image sensor arrays

    NASA Astrophysics Data System (ADS)

    Jin, Hui; Jiang, Huilin; Zhang, XiaoHui

    2010-08-01

    A new technique is demonstrated for measurement of modulation transfer function (MTF) on image sensor arrays. Fourier analysis of a low frequency bar target pattern is used to extract MTF at odd harmonics of a target pattern frequency up to and beyond Nyquist. The technique is particularly useful for linear image arrays (either conventional linescan or time-delay- integration devices) where conventional slanted-edge technique is not always applicable. The technique is well suited to simple implementation and can provide live presentation of the MTF curve, which helps to ensure optimal alignment conditions are achieved. Detailed analysis of the technique and demonstration of experimental results are presented.

  8. Assessment of Microphone Phased Array for Measuring Launch Vehicle Lift-off Acoustics

    NASA Technical Reports Server (NTRS)

    Garcia, Roberto

    2012-01-01

    The specific purpose of the present work was to demonstrate the suitability of a microphone phased array for launch acoustics applications via participation in selected firings of the Ares I Scale Model Acoustics Test. The Ares I Scale Model Acoustics Test is a part of the discontinued Constellation Program Ares I Project, but the basic understanding gained from this test is expected to help development of the Space Launch System vehicles. Correct identification of sources not only improves the predictive ability, but provides guidance for a quieter design of the launch pad and optimization of the water suppression system. This document contains the results of the NASA Engineering and Safety Center assessment.

  9. 3-D sensing with polar exponential sensor arrays

    NASA Technical Reports Server (NTRS)

    Weiman, Carl F. R.

    1988-01-01

    The present computations for three-dimensional vision involve, in such cases as those of scaling for perspective and optic flow, their reduction to additive operations by the implicit logarithmic transformation of image coordinates. Expressions for such computations are derived and applied to illustrative examples of sensor design. The advantages of polar exponential arrays over X-Y rasters for binocular vision are noted to encompass the inference of range and three-dimensional position from local image velocity without knowledge of pixel location, provided that the relative velocity of the target and sensor are known by some other means.

  10. Suspended particulate matter estimates using optical and acoustic sensors: application in Nestos River plume (Thracian Sea, North Aegean Sea).

    PubMed

    Anastasiou, Sotiria; Sylaios, Georgios K; Tsihrintzis, Vassilios A

    2015-06-01

    The present study investigates the use of combined methods of optical and acoustic sensors, in collaboration with direct in situ measurements, for the calibration and validation of a model transforming acoustic backscatter intensity series into suspended particulate matter (SPM) concentration datasets. The model follows previously elaborated techniques, placing particular attention to the parameterization of the acoustic absorption index as a function of water physical properties. Results were obtained from the annual deployment (during 2007-2008) of an upward-facing acoustic Doppler current profiler (ADCP) (307 kHz), equipped with a Wave Array, and an optical backscatter sensor (OBS), at the bottom of Thassos Passage near Nestos River plume (Thracian Sea, Northern Greece). The OBS was calibrated through linear regression, using 2007 and 2012 field sampling data, exhibiting an error of 13-14 % due to chlorophyll presence. The ADCP signal was calibrated through simultaneous measurements of backscatter intensity and turbidity profiles. Harmonic analysis on the model-produced SPM concentrations explained the tidal influence on their variability, especially during the summer. Empirical orthogonal functions analysis revealed the impact of waves and wave-induced currents on SPM variability. Finally, Nestos River sediment load was found uncorrelated to the SPM change in Thassos Passage, due to the dispersal and sediment deposition near the river mouth. PMID:26026846

  11. Sensor arrays from multicomponent micropatterned nanoparticles and graphene.

    PubMed

    Nagelli, Enoch; Naik, Rajesh; Xue, Yuhua; Gao, Yunxiang; Zhang, Mei; Dai, Liming

    2013-11-01

    A novel approach for multicomponent patterning metal/metal oxide nanoparticles on graphene was developed, which involves region-specific plasma treatment, followed by region-selective substrate-enhanced electroless deposition of Au nanoparticles and solution alkalization of ferrous chloride tetrahydrate in the presence of ammonia into Fe3O4 nanoparticles. The resultant Fe3O4/Au multicomponent micropatterned-graphene films were found to be highly selective sensor arrays for detecting low levels of chemical vapor molecules at ppm levels. This novel concept could be applied to the development of various multicomponent patterned nanomaterials for many potential applications, ranging from nanoscale region-specific chemical-/bio-sensor arrays to multifunctional optoelectronic devices. PMID:24113252

  12. An Artificial Nose Based on Microcantilever Array Sensors

    NASA Astrophysics Data System (ADS)

    Lang, H. P.; Ramseyer, J. P.; Grange, W.; Braun, T.; Schmid, D.; Hunziker, P.; Jung, C.; Hegner, M.; Gerber, C.

    2007-03-01

    We used microfabricated cantilever array sensors for an artificial nose setup. Each cantilever is coated on its top surface with a polymer layer. Volatile gaseous analytes are detected by tracking the diffusion process of the molecules into the polymer layers, resulting in swelling of the polymer layers and therewith bending of the cantilevers. From the bending pattern of all cantilevers in the array, a characteristic 'fingerprint' of the analyte is obtained, which is evaluated using principal component analysis. In a flow of dry nitrogen gas, the bending of the cantilevers is reverted to its initial state before exposure to the analyte, which allows reversible and reproducible operation of the sensor. We show examples of detection of solvents, perfume essences and beverage flavors. In a medical application, the setup provides indication of presence of diseases in patient's breath samples.

  13. Inverse Problem in Nondestructive Testing Using Arrayed Eddy Current Sensors

    PubMed Central

    Zaoui, Abdelhalim; Menana, Hocine; Feliachi, Mouloud; Berthiau, Gérard

    2010-01-01

    A fast crack profile reconstitution model in nondestructive testing is developed using an arrayed eddy current sensor. The inverse problem is based on an iterative solving of the direct problem using genetic algorithms. In the direct problem, assuming a current excitation, the incident field produced by all the coils of the arrayed sensor is obtained by the translation and superposition of the 2D axisymmetric finite element results obtained for one coil; the impedance variation of each coil, due to the crack, is obtained by the reciprocity principle involving the dyadic Green’s function. For the inverse problem, the surface of the crack is subdivided into rectangular cells, and the objective function is expressed only in terms of the depth of each cell. The evaluation of the dyadic Green’s function matrix is made independently of the iterative procedure, making the inversion very fast. PMID:22163680

  14. Inverse problem in nondestructive testing using arrayed eddy current sensors.

    PubMed

    Zaoui, Abdelhalim; Menana, Hocine; Feliachi, Mouloud; Berthiau, Gérard

    2010-01-01

    A fast crack profile reconstitution model in nondestructive testing is developed using an arrayed eddy current sensor. The inverse problem is based on an iterative solving of the direct problem using genetic algorithms. In the direct problem, assuming a current excitation, the incident field produced by all the coils of the arrayed sensor is obtained by the translation and superposition of the 2D axisymmetric finite element results obtained for one coil; the impedance variation of each coil, due to the crack, is obtained by the reciprocity principle involving the dyadic Green's function. For the inverse problem, the surface of the crack is subdivided into rectangular cells, and the objective function is expressed only in terms of the depth of each cell. The evaluation of the dyadic Green's function matrix is made independently of the iterative procedure, making the inversion very fast. PMID:22163680

  15. Array of piezoelectric wires in acoustic energy harvesting

    NASA Astrophysics Data System (ADS)

    Golestanyan, Edvin

    An acoustic energy harvesting mechanism to harvest a travelling sound wave at a low audible frequency (180 ˜ 200Hz) is further developed and studied both experimentally and numerically. The acoustic energy harvester in this study consists of a quarter-wavelength straight tube resonator and multiple piezoelectric oscillators in wire and plate shapes placed inside the tube. When the tube resonator is excited by an incident sound at its acoustic resonant frequency, the amplified acoustic pressure inside the tube drives the vibration motions of piezoelectric oscillators, resulting in generating electricity. It has been found that a single piezoelectric plate generates more power than a wire, but with placing in multiple-rows piezoelectric wires more power is produced. Parallel and series connections of multiple piezoelectric oscillators have also been studied and expressions for calculating optimum loading resistance have been presented. It has been found that the series connection generates more power than parallel connection. As the number of piezoelectric oscillators increases, the magnitude of the single loading resistance decreases. The decrease of loading resistance is more intense in multiple wires than in multiple plates and in parallel connection than in series connection.

  16. Optical sensors and multisensor arrays containing thin film electroluminescent devices

    DOEpatents

    Aylott, Jonathan W.; Chen-Esterlit, Zoe; Friedl, Jon H.; Kopelman, Raoul; Savvateev, Vadim N.; Shinar, Joseph

    2001-12-18

    Optical sensor, probe and array devices for detecting chemical biological, and physical analytes. The devices include an analyte-sensitive layer optically coupled to a thin film electroluminescent layer which activates the analyte-sensitive layer to provide an optical response. The optical response varies depending upon the presence of an analyte and is detected by a photodetector and analyzed to determine the properties of the analyte.

  17. Design of an Acoustic Array for Comparison with an Alternative Source Localization Method

    NASA Astrophysics Data System (ADS)

    Coombs, Deshawn; Lewalle, Jacques; Glauser, Mark; Wang, Guannan

    2013-11-01

    We report on the design, testing and construction of a conventional acoustic array, and document an alternate method of signal processing. The purpose of the new algorithm is to improve the spatial localization of acoustic sources. The reference results are obtained using the beamforming algorithm. The array design includes 60 microphones with a maximum aperture diameter of 39 inches. The arrays target frequency range is 500-5000 Hz. The new algorithm uses fewer microphones. We will show results with simulated signals and with jet noise experimental data. Details of the array calibration and representative data from measurements will be presented along with data post-processing procedures. Support from Syracuse University MAE department and LSAMP.

  18. Design and analysis of air acoustic vector-sensor configurations for two-dimensional geometry.

    PubMed

    Wajid, Mohd; Kumar, Arun; Bahl, Rajendar

    2016-05-01

    Acoustic vector-sensors (AVS) have been designed using the P-P method for different microphone configurations. These configurations have been used to project the acoustic intensity on the orthogonal axes through which the direction of arrival (DoA) of a sound source has been estimated. The analytical expressions for the DoA for different microphone configurations have been derived for two-dimensional geometry. Finite element method simulation using COMSOL-Multiphysics has been performed, where the microphone signals for AVS configurations have been recorded in free field conditions. The performance of all the configurations has been evaluated with respect to angular error and root-mean-square angular error. The simulation results obtained with ideal geometry for different configurations have been corroborated experimentally with prototype AVS realizations and also compared with microphone-array method, viz., Multiple Signal Classification and Generalized Cross Correlation. Experiments have been performed in an anechoic room using different prototype AVS configurations made from small size microphones. The DoA performance using analytical expressions, simulation studies, and experiments with prototype AVS in anechoic chamber are presented in the paper. The square and delta configurations are found to perform better in the absence and presence of noise, respectively. PMID:27250174

  19. Integrating Different Types of Nanowire Sensors in a Large Array

    NASA Astrophysics Data System (ADS)

    Dan, Yaping; Evoy, Stephane; Johnson, A. T. Charlie

    2008-03-01

    Biological olfactory systems have a key structural feature: different types of sensors in a large array. Humans, for example, possess several hundred distinct types of sensing cells, a level of sensor diversity not yet achieved in artificial olfactory systems. Here, we demonstrate a simple and low-cost electrochemical approach to integrate large numbers of different types of nanowire sensors in an array on the same silicon wafer. In our approach, nanowires are grown inside an on-chip nanochannel template by electrochemistry with each horizontal channel connected to a gold electrode. This design allows for addressable synthesis of a specific type of nanowire in specified channels by providing a voltage to the electrodes connecting to those channels. The process can be further repeated to produce different types of nanowires in other channels using different electroplating solutions. The scale and diversity of this array have a potential to compete with those of biological olfactory systems and the synthesis process is cost-effective enough for commercialization.

  20. Guided Wave Annular Array Sensor Design for Improved Tomographic Imaging

    NASA Astrophysics Data System (ADS)

    Koduru, Jaya Prakash; Rose, Joseph L.

    2009-03-01

    Guided wave tomography for structural health monitoring is fast emerging as a reliable tool for the detection and monitoring of hotspots in a structure, for any defects arising from corrosion, crack growth etc. To date guided wave tomography has been successfully tested on aircraft wings, pipes, pipe elbows, and weld joints. Structures practically deployed are subjected to harsh environments like exposure to rain, changes in temperature and humidity. A reliable tomography system should take into account these environmental factors to avoid false alarms. The lack of mode control with piezoceramic disk sensors makes it very sensitive to traces of water leading to false alarms. In this study we explore the design of annular array sensors to provide mode control for improved structural tomography, in particular, addressing the false alarm potential of water loading. Clearly defined actuation lines in the phase velocity dispersion curve space are calculated. A dominant in-plane displacement point is found to provide a solution to the water loading problem. The improvement in the tomographic images with the annular array sensors in the presence of water traces is clearly illustrated with a series of experiments. An annular array design philosophy for other problems in NDE/SHM is also discussed.

  1. Cell adhesion and guidance by micropost-array chemical sensors

    NASA Astrophysics Data System (ADS)

    Pantano, Paul; Quah, Soo-Kim; Danowski, Kristine L.

    2002-06-01

    An array of ~50,000 individual polymeric micropost sensors was patterned across a glass coverslip by a photoimprint lithographic technique. Individual micropost sensors were ~3-micrometers tall and ~8-micrometers wide. The O2-sensitive micropost array sensors (MPASs) comprised a ruthenium complex encapsulated in a gas permeable photopolymerizable siloxane. The pH-sensitive MPASs comprised a fluorescein conjugate encapsulated in a photocrosslinkable poly(vinyl alcohol)-based polymer. PO2 and pH were quantitated by acquiring MPAS luminescence images with an epifluorescence microscope/charge coupled device imaging system. O2-sensitive MPASs displayed linear Stern-Volmer quenching behavior with a maximum Io/I of ~8.6. pH-sensitive MPASs displayed sigmoidal calibration curves with a pKa of ~5.8. The adhesion of undifferentiated rat pheochromocytoma (PC12) cells across these two polymeric surface types was investigated. The greatest PC12 cell proliferation and adhesion occurred across the poly(vinyl alcohol)-based micropost arrays relative to planar poly(vinyl alcohol)-based surfaces and both patterned and planar siloxane surfaces. An additional advantage of the patterned MPAS layers relative to planar sensing layers was the ability to direct the growth of biological cells. Preliminary data is presented whereby nerve growth factor-differentiated PC12 cells grew neurite-like processes that extended along paths defined by the micropost architecture.

  2. A sensor array is the solution to the CBRNE problem

    NASA Astrophysics Data System (ADS)

    Swaby, James A.

    2004-11-01

    Chemical/Biological/Radiological/Nuclear/Explosives (CBRNE) is a threat to all forces that deploy to any part of the globe. Lightweight expeditionary forces are especially vulnerable because they operate with minimum force structure in or near enemy forces and may become indirect targets due to the proximity of opposing forces. There is currently no integrated tactical, agile CBRNE detect-to-warn and detect-to-treat detection system suitable for lightweight expeditionary forces. The current solutions are often outside the deployment and support constraints of expeditionary forces. Expeditionary forces, typically, require a 30-day capability without re-supply and must maximize resources. Situational awareness is limited with little or no automation. Due to the limitations in existing detectors, no detector has been found to be the magic bullet for all types of agents. An array of sensors that are redundant and overlap the capabilities of each and the limitations of each technology, on the other hand, would provide a level of security that is progressively more acceptable to the warfighter. Initially, the array will be composed of integrated commercial-off-the-shelf (COTS) and government-off-the-shelf (GOTS) CBRNE samplers, identification devices, tamper sensors, and communications and alert equipment. The sensor array will plug-and-play new technologies as they become available.

  3. Pyroelectric sensor arrays for detection and thermal imaging

    NASA Astrophysics Data System (ADS)

    Holden, Anthony J.

    2013-06-01

    Penetration of uncooled (room temperature operation) thermal detector arrays into high volume commercial products depends on very low cost technology linked to high volume production. A series of innovative and revolutionary developments is now allowing arrays based on bulk pyroelectric ceramic material to enter the consumer marketplace providing everything from sophisticated security and people monitoring devices to hand held thermal imagers and visual IR thermometers for preventative maintenance and building inspection. Although uncooled resistive microbolometer detector technology has captured market share in higher cost thermal imager products we describe a pyroelectric ceramic technology which does not need micro electro-mechanical systems (MEMS) technology and vacuum packaging to give good performance. This is a breakthrough for very low cost sensors and imagers. Recent developments in a variety of products based on pyroelectric ceramic arrays are described and their performance and applicability compared and contrasted with competing technologies.

  4. Arrays of Nano Tunnel Junctions as Infrared Image Sensors

    NASA Technical Reports Server (NTRS)

    Son, Kyung-Ah; Moon, Jeong S.; Prokopuk, Nicholas

    2006-01-01

    Infrared image sensors based on high density rectangular planar arrays of nano tunnel junctions have been proposed. These sensors would differ fundamentally from prior infrared sensors based, variously, on bolometry or conventional semiconductor photodetection. Infrared image sensors based on conventional semiconductor photodetection must typically be cooled to cryogenic temperatures to reduce noise to acceptably low levels. Some bolometer-type infrared sensors can be operated at room temperature, but they exhibit low detectivities and long response times, which limit their utility. The proposed infrared image sensors could be operated at room temperature without incurring excessive noise, and would exhibit high detectivities and short response times. Other advantages would include low power demand, high resolution, and tailorability of spectral response. Neither bolometers nor conventional semiconductor photodetectors, the basic detector units as proposed would partly resemble rectennas. Nanometer-scale tunnel junctions would be created by crossing of nanowires with quantum-mechanical-barrier layers in the form of thin layers of electrically insulating material between them (see figure). A microscopic dipole antenna sized and shaped to respond maximally in the infrared wavelength range that one seeks to detect would be formed integrally with the nanowires at each junction. An incident signal in that wavelength range would become coupled into the antenna and, through the antenna, to the junction. At the junction, the flow of electrons between the crossing wires would be dominated by quantum-mechanical tunneling rather than thermionic emission. Relative to thermionic emission, quantum mechanical tunneling is a fast process.

  5. Identification of cavitation signatures using both optical and PZT acoustic sensors

    NASA Astrophysics Data System (ADS)

    Vidakovic, M.; Armakolas, I.; Sun, T.; Carlton, J.; Grattan, K. T. V.

    2015-09-01

    This paper presents the results obtained from monitoring a simulated material cavitation process using both a fibre Bragg grating (FBG)-based acoustic sensor system developed at City University London and a commercial PZT (Piezoelectric Transducer) acoustic sensor, with an aim to identify the cavitation signatures. In the experiment, a sample metal plate with its back surface being instrumented with both sensors is positioned very close to an excitation sonotrode with a standard frequency of 19.5kHz. The data obtained from both sensors are recorded and analyzed, showing a very good agreement.

  6. Investigation of acoustic sensors to detect coconut rhinoceros beetle in Guam

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The coconut rhinoceros beetle, Oryctes rhinoceros, was accidentally introduced into Guam last year and now threatens the Island’s forests and tourist industry. These large insects can be detected easily with acoustic sensors, and procedures are being developed to incorporate acoustic technology int...

  7. Dataset from chemical gas sensor array in turbulent wind tunnel.

    PubMed

    Fonollosa, Jordi; Rodríguez-Luján, Irene; Trincavelli, Marco; Huerta, Ramón

    2015-06-01

    The dataset includes the acquired time series of a chemical detection platform exposed to different gas conditions in a turbulent wind tunnel. The chemo-sensory elements were sampling directly the environment. In contrast to traditional approaches that include measurement chambers, open sampling systems are sensitive to dispersion mechanisms of gaseous chemical analytes, namely diffusion, turbulence, and advection, making the identification and monitoring of chemical substances more challenging. The sensing platform included 72 metal-oxide gas sensors that were positioned at 6 different locations of the wind tunnel. At each location, 10 distinct chemical gases were released in the wind tunnel, the sensors were evaluated at 5 different operating temperatures, and 3 different wind speeds were generated in the wind tunnel to induce different levels of turbulence. Moreover, each configuration was repeated 20 times, yielding a dataset of 18,000 measurements. The dataset was collected over a period of 16 months. The data is related to "On the performance of gas sensor arrays in open sampling systems using Inhibitory Support Vector Machines", by Vergara et al.[1]. The dataset can be accessed publicly at the UCI repository upon citation of [1]: http://archive.ics.uci.edu/ml/datasets/Gas+sensor+arrays+in+open+sampling+settings. PMID:26217739

  8. Adaptive sensor array algorithm for structural health monitoring of helmet

    NASA Astrophysics Data System (ADS)

    Zou, Xiaotian; Tian, Ye; Wu, Nan; Sun, Kai; Wang, Xingwei

    2011-04-01

    The adaptive neural network is a standard technique used in nonlinear system estimation and learning applications for dynamic models. In this paper, we introduced an adaptive sensor fusion algorithm for a helmet structure health monitoring system. The helmet structure health monitoring system is used to study the effects of ballistic/blast events on the helmet and human skull. Installed inside the helmet system, there is an optical fiber pressure sensors array. After implementing the adaptive estimation algorithm into helmet system, a dynamic model for the sensor array has been developed. The dynamic response characteristics of the sensor network are estimated from the pressure data by applying an adaptive control algorithm using artificial neural network. With the estimated parameters and position data from the dynamic model, the pressure distribution of the whole helmet can be calculated following the Bazier Surface interpolation method. The distribution pattern inside the helmet will be very helpful for improving helmet design to provide better protection to soldiers from head injuries.

  9. Dielectric microfilter arrays for local resolving color sensors

    NASA Astrophysics Data System (ADS)

    Frank, Marcus; Schallenberg, Uwe B.; Kaiser, Norbert; Buss, Wolfgang

    1998-04-01

    Two different types of color sensor have been developed, which are adaptable to a wide variety of industrial applications. One kind of sensor was developed by depositing dielectric interference filters directly on photoelectric cells, applying a low temperature coating procedure. This way it was possible to accommodate spectral characteristics to the specific spectral sensitivity of the photoelectric cells, minimizing losses by absorption and scattered light in the desired spectral region. The geometric shape of these coated cells is suitable especially for color measurements using fibers. The second kind of color sensors, consisting of miniaturized photoelectric cell arrays and three different micro-patterned interference filter arrays, arranged on a glass substrate, make it possible to distinguish and measure colors with a local resolution. The honey-comb-arrangement of filter- and receiver cells and a flexible setup also permits a fast adaptation to different applications. In this paper design and development of both miniaturized interference filers are described. The different manufacturing procedures are depicted, advantages and questions arising with the employment of interference filters are discussed and the entire assembly of both sensors is presented.

  10. Dataset from chemical gas sensor array in turbulent wind tunnel

    PubMed Central

    Fonollosa, Jordi; Rodríguez-Luján, Irene; Trincavelli, Marco; Huerta, Ramón

    2015-01-01

    The dataset includes the acquired time series of a chemical detection platform exposed to different gas conditions in a turbulent wind tunnel. The chemo-sensory elements were sampling directly the environment. In contrast to traditional approaches that include measurement chambers, open sampling systems are sensitive to dispersion mechanisms of gaseous chemical analytes, namely diffusion, turbulence, and advection, making the identification and monitoring of chemical substances more challenging. The sensing platform included 72 metal-oxide gas sensors that were positioned at 6 different locations of the wind tunnel. At each location, 10 distinct chemical gases were released in the wind tunnel, the sensors were evaluated at 5 different operating temperatures, and 3 different wind speeds were generated in the wind tunnel to induce different levels of turbulence. Moreover, each configuration was repeated 20 times, yielding a dataset of 18,000 measurements. The dataset was collected over a period of 16 months. The data is related to “On the performance of gas sensor arrays in open sampling systems using Inhibitory Support Vector Machines”, by Vergara et al.[1]. The dataset can be accessed publicly at the UCI repository upon citation of [1]: http://archive.ics.uci.edu/ml/datasets/Gas+sensor+arrays+in+open+sampling+settings PMID:26217739

  11. Uncooled infrared sensors with digital focal plane array

    NASA Astrophysics Data System (ADS)

    Marshall, Charles A.; Butler, Neal R.; Blackwell, Richard; Murphy, Robert; Breen, Thomas

    1996-06-01

    Loral Infrared & Imaging Systems is developing low cost, high performance, uncooled infrared imaging products for both military and commercial applications. These products are based on the microbolometer technology, a silicon micromachined sensor which combines the wafer level silicon processing with a device structure capable of yielding excellent infrared imaging performance. Here, we report on the development of an uncooled sensor, the LTC500, which incorporates an all digital focal plane array and has a measured NETD of less than 70 mK. The focal plane array and the electronics within the LTC500 have been designed as an integrated unit to meet a broad range of end user applications by providing features such as nonuniformity correction, autogain and level, NTSC video, and digital outputs. The 327 X 245 element focal plane array has a 46.25 micrometers pixel pitch and an on focal plane array 14 bit to analog to digital converter (ADC). The ADC has a measured instantaneous dynamic range of more than 76 dB at a 6.1 MHz output data rate and 60 Hz frame rate. The focal plane array consumes less than 500 mW of power, of which less than 250 mW is used in the ADC. An additional 36 dB of digital coarse offset correction in front of the ADC on the focal plane array results in a total electronic dynamic range of 112 dB. The MRT of the LTC500 camera has been measured at less 0.2 C at f(subscript o).

  12. Development of Glucose Sensors by Modified Carbon Nanotube Arrays

    NASA Astrophysics Data System (ADS)

    Moscatello, Jason; Pandey, Archana; Prasad, Abhishek; Khin Yap, Yoke

    2009-03-01

    In 2007 the CDC estimates 7.8% of the US population had diabetes, and the percentage is rising [1]. Such numbers lead to a large demand for highly selective, sensitive glucose sensors. We have used vertically-aligned multiwalled carbon nanotube (VA-MWCNT) arrays [2] to fabricate glucose sensors. VA-MWCNTs were embedded in PMMA and polished to expose the tips. The tips were functionalized by carboxyl groups, then modified by immobilization of glucose oxidase. Initial results on sensors of this type were previously reported [3], but we have further characterized to include lowest detection limits, enzyme lifetime, and performance stability. Comprehensive electrochemical data will be presented along with Raman, IR, and SEM. 1. National Diabetes Fact Sheet, Centers for Disease Control and Prevention, U.S. Department of Health (2007) 2. J. Menda et al., Appl. Phys. Lett., 87, 173106-3 (2005) 3. Y. Lin, F. Lu, Y. Tu, Z. Ren, Nano Lett., 4, 191-195 (2004)

  13. A Motion-Tracking Ultrasonic Sensor Array for Behavioral Monitoring

    PubMed Central

    Cheng, Roland; Heinzelman, Wendi; Sturge-Apple, Melissa; Ignjatovic, Zeljko

    2011-01-01

    The application of Kalman filtering to track subjects’ movements during a behavioral experiment is discussed. Specifically, an overhead array of wireless, ultrasound sensors automatically tracks the position of a parent, child, and stranger over a 4.45 m × 4.23 m observation area. This WiPsy (Wireless sensors for Psychology research) system provides accurate, real-time quantitative metrics for psychological evaluation in lieu of traditional qualitative manual coding. Moreover, tracking subjects using ultrasound sensors is less error-prone than existing methods that track based on human coding of video. In particular, the Kalman filter, which forms the core of this tracking system, can locate targets with a mean square error of about 1.3 m2. Overall, WiPsy strives to streamline data acquisition, processing, and analysis by providing previously unavailable assessment parameters. PMID:22081760

  14. NOTE: Sampling and reconstruction schemes for biomagnetic sensor arrays

    NASA Astrophysics Data System (ADS)

    Naddeo, Adele; Della Penna, Stefania; Nappi, Ciro; Vardaci, Emanuele; Pizzella, Vittorio

    2002-09-01

    In this paper we generalize the approach of Ahonen et al (1993 IEEE Trans. Biomed. Eng. 40 859-69) to two-dimensional non-uniform sampling. The focus is on two main topics: (1) searching for the optimal sensor configuration on a planar measurement surface; and (2) reconstructing the magnetic field (a continuous function) from a discrete set of data points recorded with a finite number of sensors. A reconstruction formula for Bz is derived in the framework of the multidimensional Papoulis generalized sampling expansion (Papoulis A 1977 IEEE Trans. Circuits Syst. 24 652-4, Cheung K F 1993 Advanced Topics in Shannon Sampling and Interpolation Theory (New York: Springer) pp 85-119) in a particular case. Application of these considerations to the design of biomagnetic sensor arrays is also discussed.

  15. Identification of catecholamine neurotransmitters using fluorescence sensor array.

    PubMed

    Ghasemi, Forough; Hormozi-Nezhad, M Reza; Mahmoudi, Morteza

    2016-04-21

    A nano-based sensor array has been developed for identification and discrimination of catecholamine neurotransmitters based on optical properties of their oxidation products under alkaline conditions. To produce distinct fluorescence response patterns for individual catecholamine, quenching of thioglycolic acid functionalized cadmium telluride (CdTe) quantum dots, by oxidation products, were employed along with the variation of fluorescence spectra of oxidation products. The spectral changes were analyzed with hierarchical cluster analysis (HCA) and principal component analysis (PCA) to identify catecholamine patterns. The proposed sensor could efficiently discriminate the individual catecholamine (i.e., dopamine, norepinephrine, and l-DOPA) and their mixtures in the concentration range of 0.25-30 μmol L(-1). Finally, we found that the sensor had capability to identify the various catecholamines in urine sample. PMID:27026604

  16. Polymer waveguide sensor arrays for enhanced multichemical detection

    NASA Astrophysics Data System (ADS)

    Cordero, Steven R.; Low, Aaron; Ruiz, David; Lieberman, Robert A.

    2007-09-01

    We report the development of absorption-based waveguide sensors for the toxic industrial chemicals hydrogen cyanide, hydrogen sulfide, and chlorine. Polymeric materials formulated as colorimetric sensors have been engineered into miniature waveguide channels. The channels have dimensions 30x0.6x0.05 mm (LxWxH) and are patterned on glass substrates using a photolithography process. Subsequent light coupling was achieved using optical fibers. Enhanced sensitivity is observed owing to the increased path length as described by the Beer-Lambert law. When the individual sensors are challenged with the IDLH concentrations of their target gases they react instantaneously with response times (T90) less than 20 seconds. When tested simultaneously as an array, a predictable level of cross interference was observed. The cross interference indicates that the inclusion of a signal processing algorithm is required to selectively resolve the analytes and reduce or eliminate false alarms.

  17. Acoustic phonon spectrum and thermal transport in nanoporous alumina arrays

    SciTech Connect

    Kargar, Fariborz; Ramirez, Sylvester; Debnath, Bishwajit; Malekpour, Hoda; Lake, Roger; Balandin, Alexander A.

    2015-10-28

    We report results of a combined investigation of thermal conductivity and acoustic phonon spectra in nanoporous alumina membranes with the pore diameter decreasing from D=180 nm to 25 nm. The samples with the hexagonally arranged pores were selected to have the same porosity Ø ≈13%. The Brillouin-Mandelstam spectroscopy measurements revealed bulk-like phonon spectrum in the samples with D=180-nm pores and spectral features, which were attributed to spatial confinement, in the samples with 25-nm and 40-nm pores. The velocity of the longitudinal acoustic phonons was reduced in the samples with smaller pores. As a result, analysis of the experimental data and calculated phonon dispersion suggests that both phonon-boundary scattering and phonon spatial confinement affect heat conduction in membranes with the feature sizes D<40 nm.

  18. Acoustic phonon spectrum and thermal transport in nanoporous alumina arrays

    DOE PAGESBeta

    Kargar, Fariborz; Ramirez, Sylvester; Debnath, Bishwajit; Malekpour, Hoda; Lake, Roger; Balandin, Alexander A.

    2015-10-28

    We report results of a combined investigation of thermal conductivity and acoustic phonon spectra in nanoporous alumina membranes with the pore diameter decreasing from D=180 nm to 25 nm. The samples with the hexagonally arranged pores were selected to have the same porosity Ø ≈13%. The Brillouin-Mandelstam spectroscopy measurements revealed bulk-like phonon spectrum in the samples with D=180-nm pores and spectral features, which were attributed to spatial confinement, in the samples with 25-nm and 40-nm pores. The velocity of the longitudinal acoustic phonons was reduced in the samples with smaller pores. As a result, analysis of the experimental data andmore » calculated phonon dispersion suggests that both phonon-boundary scattering and phonon spatial confinement affect heat conduction in membranes with the feature sizes D<40 nm.« less

  19. Optical sensor array platform based on polymer electronic devices

    NASA Astrophysics Data System (ADS)

    Koetse, Marc M.; Rensing, Peter A.; Sharpe, Ruben B. A.; van Heck, Gert T.; Allard, Bart A. M.; Meulendijks, Nicole N. M. M.; Kruijt, Peter G. M.; Tijdink, Marcel W. W. J.; De Zwart, René M.; Houben, René J.; Enting, Erik; van Veen, Sjaak J. J. F.; Schoo, Herman F. M.

    2007-10-01

    Monitoring of personal wellbeing and optimizing human performance are areas where sensors have only begun to be used. One of the reasons for this is the specific demands that these application areas put on the underlying technology and system properties. In many cases these sensors will be integrated in clothing, be worn on the skin, or may even be placed inside the body. This implies that flexibility and wearability of the systems is essential for their success. Devices based on polymer semiconductors allow for these demands since they can be fabricated with thin film technology. The use of thin film device technology allows for the fabrication of very thin sensors (e.g. integrated in food product packaging), flexible or bendable sensors in wearables, large area/distributed sensors, and intrinsically low-cost applications in disposable products. With thin film device technology a high level of integration can be achieved with parts that analyze signals, process and store data, and interact over a network. Integration of all these functions will inherently lead to better cost/performance ratios, especially if printing and other standard polymer technology such as high precision moulding is applied for the fabrication. In this paper we present an optical transmission sensor array based on polymer semiconductor devices made by thin film technology. The organic devices, light emitting diodes, photodiodes and selective medium chip, are integrated with classic electronic components. Together they form a versatile sensor platform that allows for the quantitative measurement of 100 channels and communicates wireless with a computer. The emphasis is given to the sensor principle, the design, fabrication technology and integration of the thin film devices.

  20. Hydrophone arrays for instantaneous measurement of high-pressure acoustic fields

    NASA Astrophysics Data System (ADS)

    Ketterling, Jeffrey A.; Kracht, Jonathan M.; Cleveland, Robin O.

    2010-03-01

    Electrohydraulic lithotripter acoustic fields are measured with single-element hydrophones even though the acoustic fields are not highly repeatable. The ability to obtain an instantaneous "snapshot" of the sound field would have broad implications for advancing the understanding of how lithotripters fragment stones and damage kidney tissue. To better characterize the acoustic field of lithotripters, linear hydrophone arrays were fabricated by bonding a 9 μm piezopolymer film to a copper-clad polyimide which had an array pattern etched on the copper layer. After bonding, the devices were backed with an epoxy plug in order to provide structural support. The array elements were each 0.5 by 0.5 mm, spaced 1.25 mm center to center, and there were 20 elements. The relative sensitivity of each hydrophone element was measured at 5.25 MHz for an acoustic pressure of 4.5 kPa and the elements were found to vary by ≈ 6%. The arrays were then placed in the focus of a piezoelectric lithotripter and were found to maintain their sensitivity for roughly 500 shock waves before gradually losing sensitivity.

  1. Thermal Sensor Arrays for The Combinatorial Analysis of Thin Films

    NASA Astrophysics Data System (ADS)

    McCluskey, Patrick James

    2011-12-01

    Membrane-based thermal sensor arrays were developed for the high-throughput analysis of the thermophysical properties of thin films. The continuous growth of integrated circuits and microelectromechanical systems, as well as the development of functional materials and the optimization of materials properties, have produced the need for instruments capable of fast materials screening and analysis at reduced length scales. Two instruments were developed based on a similar architecture, one to measure thermal transport properties and the other to perform calorimetry measurements. Both have the capability to accelerate the pace of materials development and understanding using combinatorial measurement methods. The shared architecture of the instruments consists of a silicon-based micromachined array of thermal sensors. Each sensor consists of a SiN X membrane and a W heating element that also serves as a temperature gauge. The array design allows the simultaneous creation of a library of thin film samples by various deposition techniques while systematically varying a parameter of interest across the device. The membrane-based sensors have little thermal mass making them extremely sensitive to changes in thermal energy. The nano-thermal transport array has an array of sensors optimized for sensitivity to heat loss. The heat loss is determined from the temperature response of the sensor to an applied current. An analytical model is used with a linear regression analysis to fit the thermal properties of the samples to the temperature response. The assumptions of the analytical model are validated with a finite element model. Measured thermal properties include specific heat, thermal effusivity, thermal conductivity, and emissivity. The technique is demonstrated by measuring the thermal transport properties of sputter deposited Cu multilayers with a total film thickness from 15 to 470 nm. The experimental results compare well to a theory based on electronic thermal

  2. Unvoiced Speech Recognition Using Tissue-Conductive Acoustic Sensor

    NASA Astrophysics Data System (ADS)

    Heracleous, Panikos; Kaino, Tomomi; Saruwatari, Hiroshi; Shikano, Kiyohiro

    2006-12-01

    We present the use of stethoscope and silicon NAM (nonaudible murmur) microphones in automatic speech recognition. NAM microphones are special acoustic sensors, which are attached behind the talker's ear and can capture not only normal (audible) speech, but also very quietly uttered speech (nonaudible murmur). As a result, NAM microphones can be applied in automatic speech recognition systems when privacy is desired in human-machine communication. Moreover, NAM microphones show robustness against noise and they might be used in special systems (speech recognition, speech transform, etc.) for sound-impaired people. Using adaptation techniques and a small amount of training data, we achieved for a 20 k dictation task a[InlineEquation not available: see fulltext.] word accuracy for nonaudible murmur recognition in a clean environment. In this paper, we also investigate nonaudible murmur recognition in noisy environments and the effect of the Lombard reflex on nonaudible murmur recognition. We also propose three methods to integrate audible speech and nonaudible murmur recognition using a stethoscope NAM microphone with very promising results.

  3. Fly-ear inspired acoustic sensors for gunshot localization

    NASA Astrophysics Data System (ADS)

    Liu, Haijun; Currano, Luke; Gee, Danny; Yang, Benjamin; Yu, Miao

    2009-05-01

    The supersensitive ears of the parasitoid fly Ormia ochracea have inspired researchers to develop bio-inspired directional microphone for sound localization. Although the fly ear is optimized for localizing the narrow-band calling song of crickets at 5 kHz, experiments and simulation have shown that it can amplify directional cues for a wide frequency range. In this article, a theoretical investigation is presented to study the use of fly-ear inspired directional microphones for gunshot localization. Using an equivalent 2-DOF model of the fly ear, the time responses of the fly ear structure to a typical shock wave are obtained and the associated time delay is estimated by using cross-correlation. Both near-field and far-field scenarios are considered. The simulation shows that the fly ear can greatly amplify the time delay by ~20 times, which indicates that with an interaural distance of only 1.2 mm the fly ear is able to generate a time delay comparable to that obtained by a conventional microphone pair with a separation as large as 24 mm. Since the parameters of the fly ear structure can also be tuned for muzzle blast and other impulse stimulus, fly-ear inspired acoustic sensors offers great potential for developing portable gunshot localization systems.

  4. Low-cost acoustic sensors for littoral anti-submarine warfare (ASW)

    NASA Astrophysics Data System (ADS)

    Towle, Jonathan P.; Herold, David; Johnson, Ryan; Vincent, Harold

    2007-04-01

    Detecting modern diesel-electric submarines operating on batteries in littoral waters is very difficult using traditional sonar technology due in large part to the noisy and reverberant acoustic environment. To address this issue, SI2 Technologies Inc. (SI2) has developed a small, low cost, short range, dual mode acoustic sensor. The sensors can be deployed in large numbers (hundreds or thousands) to provide a high density sensor field depending upon the application of interest. SI2's low cost sensors have a short detection range and therefore are far less susceptible to multi-path reverberations and other acoustic artifacts. Simulation results will be presented showing that high probabilities of detection (P D) can be achieved with low false alarm rates (FAR) using a field of a few hundred of these low cost sensors.

  5. Fiber Optic Sensor for Acoustic Detection of Partial Discharges in Oil-Paper Insulated Electrical Systems

    PubMed Central

    Posada-Roman, Julio; Garcia-Souto, Jose A.; Rubio-Serrano, Jesus

    2012-01-01

    A fiber optic interferometric sensor with an intrinsic transducer along a length of the fiber is presented for ultrasound measurements of the acoustic emission from partial discharges inside oil-filled power apparatus. The sensor is designed for high sensitivity measurements in a harsh electromagnetic field environment, with wide temperature changes and immersion in oil. It allows enough sensitivity for the application, for which the acoustic pressure is in the range of units of Pa at a frequency of 150 kHz. In addition, the accessibility to the sensing region is guaranteed by immune fiber-optic cables and the optical phase sensor output. The sensor design is a compact and rugged coil of fiber. In addition to a complete calibration, the in-situ results show that two types of partial discharges are measured through their acoustic emissions with the sensor immersed in oil. PMID:22666058

  6. Galfenol tactile sensor array and visual mapping system

    NASA Astrophysics Data System (ADS)

    Hale, Kathleen; Flatau, Alison

    2006-03-01

    The smart material, Galfenol, is being explored for its uses as a magnetostrictive material. This project seeks to determine if Galfenol can be used as a tactile sensor in a 2-D grid array, magnetic circuit system. When used within a magnetic circuit, Galfenol indicates induced stress and force as a change in flux, due to a change in permeability of the material. The change in flux is detected by Giant MagnetoResistive (GMR) Sensors, which produce a voltage change proportional to the field change. By using Galfenol in an array, this research attempts to create a sensory area. Galfenol is an alloy made of Iron and Gallium. Fe 100-xGa x, where 15 <= x <= 28, creates a material with useful mechanical and transduction attributes (Clark et al. and Kellogg). Galfenol is also distinguished by the crystalline structure of the material. Two types currently exist: single crystal and polycrystalline. Single crystal has higher transduction coefficients than polycrystalline, but is more costly. Polycrystalline Galfenol is currently available as either production or research grade. The designations are related to the sample growth rate with the slower rate being the research grade. The slower growth rate more closely resembles the single crystal Galfenol properties. Galfenol 17.5-18% research grade is used for this experiment, provided by Etrema Products Inc. The magnetic circuit and sensor array is first built at the macro scale so that the design can be verified. After the macro scale is proven, further development will move the system to the nano-level. Recent advances in nanofabrication have enabled Galfenol to be grown as nanowires. Using the nanowires, research will seek to create high resolution tactile sensors with spatial resolutions similar to human finger tips, but with greater force ranges and sensitivity capabilities (Flatau & Stadler). Possible uses of such systems include robotics and prosthetics.

  7. Polymer substrate temperature sensor array for brain interfaces.

    PubMed

    Kim, Insoo; Fok, Ho Him R; Li, Yuanyuan; Jackson, Thomas N; Gluckman, Bruce J

    2011-01-01

    We developed an implantable thin film transistor temperature sensor (TFT-TS) to measure temperature changes in the brain. These changes are assumed to be associated with cerebral metabolism and neuronal activity. Two prototype TFT-TSs were designed and tested in-vitro: one with 8 diode-connected single-ended sensors, and the other with 4 pairs of differential-ended sensors in an array configuration. The sensor elements are 25 ~ 100 pm in width and 5 μm in length. The TFT-TSs were fabricated based on high-speed ZnO TFT process technology on flexible polyimide substrates (50 μm thick, 500 μm width, 20 mm length). In order to interface external signal electronics, they were directly bonded to a prototype printed circuit board using anisotropic conductive films The prototypes were characterized between 23 ~ 38 °C using a commercial temperature sensor and custom-designed temperature controlled oven. The maximum sensitivity of 40 mV/°C was obtained from the TFT-TS. PMID:22255041

  8. Denoising of human speech using combined acoustic and em sensor signal processing

    SciTech Connect

    Ng, L C; Burnett, G C; Holzrichter, J F; Gable, T J

    1999-11-29

    Low Power EM radar-like sensors have made it possible to measure properties of the human speech production system in real-time, without acoustic interference. This greatly enhances the quality and quantify of information for many speech related applications. See Holzrichter, Burnett, Ng, and Lea, J. Acoustic. Soc. Am. 103 (1) 622 (1998). By using combined Glottal-EM- Sensor- and Acoustic-signals, segments of voiced, unvoiced, and no-speech can be reliably defined. Real-time Denoising filters can be constructed to remove noise from the user's corresponding speech signal.

  9. Acoustic vector sensor beamforming reduces masking from underwater industrial noise during passive monitoring.

    PubMed

    Thode, Aaron M; Kim, Katherine H; Norman, Robert G; Blackwell, Susanna B; Greene, Charles R

    2016-04-01

    Masking from industrial noise can hamper the ability to detect marine mammal sounds near industrial operations, whenever conventional (pressure sensor) hydrophones are used for passive acoustic monitoring. Using data collected from an autonomous recorder with directional capabilities (Directional Autonomous Seafloor Acoustic Recorder), deployed 4.1 km from an arctic drilling site in 2012, the authors demonstrate how conventional beamforming on an acoustic vector sensor can be used to suppress noise arriving from a narrow sector of geographic azimuths. Improvements in signal-to-noise ratio of up to 15 dB are demonstrated on bowhead whale calls, which were otherwise undetectable using conventional hydrophones. PMID:27106345

  10. Electro-acoustic sensors based on AlN thin film: possibilities and limitations

    NASA Astrophysics Data System (ADS)

    Wingqvist, Gunilla

    2011-06-01

    The non-ferroelectric polar wurtzite aluminium nitride (AlN) material has been shown to have potential for various sensor applications both utilizing the piezoelectric effect directly for pressure sensors or indirectly for acoustic sensing of various physical, chemical and biochemical sensor applications. Especially, sputter deposited AlN thin films have played a central role for successful development of the thin film electro-acoustic technology. The development has been primarily driven by one device - the thin film bulk acoustic resonator (FBAR or TFBAR), with its primary use for high frequency filter applications for the telecom industry. AlN has been the dominating choice for commercial application due to compatibility with the integrated circuit technology, low acoustic and dielectric losses, high acoustic velocity in combination with comparably high (but still for some applications limited) electromechanical coupling. Recently, increased piezoelectric properties (and also electromechanical coupling) in the AlN through the alloying with scandium nitride (ScN) have been identified both experimentally and theoretically. Inhere, the utilization of piezoelectricity in electro-acoustic sensing will be discussed together with expectation on acoustic FBAR sensor performance with variation in piezoelectric material properties in the parameter space around AlN due to alloying, in view of the ScxAl1-xN (0

  11. In-plane photonic transduction for microcantilever sensor arrays

    NASA Astrophysics Data System (ADS)

    Nordin, Gregory P.; Noh, Jong Wok; Kim, Seunghyun

    2007-02-01

    Microcantilevers show significant promise in sensing minute quantities of chemical and biological analytes in vapor and liquid media. Much of the reported work on microcantilever sensors has made use of single functionalized microcantilevers, usually derived from commercially available atomic force microscope (AFM) cantilevers. However, arrays with hundreds to thousands of microcantilevers on a single chip are required to create sophisticated, broad spectrum chemical and biological sensors in which individual microcantilevers have different bio- or chemoselective coatings. Unfortunately, the most sensitive microcantilever readout mechanisms (such as laser beam reflection as used in atomic force microscopy) are not readily scalable to large arrays. We therefore introduce a new microcantilever transduction mechanism for silicon-on-insulator (SOI) microcantilevers that is designed to scale to large arrays while maintaining a very compact form factor and high sensitivity. This mechanism is based on in-plane photonic transduction of microcantilever deflection in which the microcantilever itself forms a single mode rib waveguide. Light from the end of the microcantilever is directed across a small gap to an asymmetric receiving waveguide with two outputs that enables differential detection of microcantilever deflection. Initial noise and optical power budget calculations indicate that deflection sensitivities in the 10's of picometer range should be achievable.

  12. Low SWaP multispectral sensors using dichroic filter arrays

    NASA Astrophysics Data System (ADS)

    Dougherty, John; Varghese, Ron

    2015-06-01

    The benefits of multispectral imaging are well established in a variety of applications including remote sensing, authentication, satellite and aerial surveillance, machine vision, biomedical, and other scientific and industrial uses. However, many of the potential solutions require more compact, robust, and cost-effective cameras to realize these benefits. The next generation of multispectral sensors and cameras needs to deliver improvements in size, weight, power, portability, and spectral band customization to support widespread deployment for a variety of purpose-built aerial, unmanned, and scientific applications. A novel implementation uses micro-patterning of dichroic filters1 into Bayer and custom mosaics, enabling true real-time multispectral imaging with simultaneous multi-band image acquisition. Consistent with color image processing, individual spectral channels are de-mosaiced with each channel providing an image of the field of view. This approach can be implemented across a variety of wavelength ranges and on a variety of detector types including linear, area, silicon, and InGaAs. This dichroic filter array approach can also reduce payloads and increase range for unmanned systems, with the capability to support both handheld and autonomous systems. Recent examples and results of 4 band RGB + NIR dichroic filter arrays in multispectral cameras are discussed. Benefits and tradeoffs of multispectral sensors using dichroic filter arrays are compared with alternative approaches - including their passivity, spectral range, customization options, and scalable production.

  13. A colorimetric sensor array for detection of triacetone triperoxide vapor.

    PubMed

    Lin, Hengwei; Suslick, Kenneth S

    2010-11-10

    Triacetone triperoxide (TATP), one of the most dangerous primary explosives, has emerged as an explosive of choice for terrorists in recent years. Owing to the lack of UV absorbance, fluorescence, or facile ionization, TATP is extremely difficult to detect directly. Techniques that are able to detect generally require expensive instrumentation, need extensive sample preparation, or cannot detect TATP in the gas phase. Here we report a simple and highly sensitive colorimetric sensor for the detection of TATP vapor with semiquantitative analysis from 50 ppb to 10 ppm. By using a solid acid catalyst to pretreat a gas stream, we have discovered that a colorimetric sensor array of redox sensitive dyes can detect even very low levels of TATP vapor from its acid decomposition products (e.g., H(2)O(2)) with limits of detection (LOD) below 2 ppb (i.e., <0.02% of its saturation vapor pressure). Common potential interferences (e.g., humidity, personal hygiene products, perfume, laundry supplies, volatile organic compounds, etc.) do not generate an array response, and the array can also differentiate TATP from other chemical oxidants (e.g., hydrogen peroxide, bleach, tert-butylhydroperoxide, peracetic acid). PMID:20949933

  14. A Fibre Bragg Grating Sensor as a Receiver for Acoustic Communications Signals

    PubMed Central

    Wild, Graham; Hinckley, Steven

    2011-01-01

    A Fibre Bragg Grating (FBG) acoustic sensor is used as a receiver for acoustic communications signals. Acoustic transmissions were generated in aluminium and Carbon Fibre Composite (CFC) panels. The FBG receiver was coupled to the bottom surface opposite a piezoelectric transmitter. For the CFC, a second FBG was embedded within the layup for comparison. We show the transfer function, frequency response, and transient response of the acoustic communications channels. In addition, the FBG receiver was used to detect Phase Shift Keying (PSK) communications signals, which was shown to be the most robust method in a highly resonant communications channel. PMID:22346585

  15. Acoustic-wave sensor for ambient monitoring of a photoresist-stripping agent

    DOEpatents

    Pfeifer, Kent B.; Hoyt, Andrea E.; Frye, Gregory C.

    1998-01-01

    The acoustic-wave sensor. The acoustic-wave sensor is designed for ambient or vapor-phase monitoring of a photoresist-stripping agent such as N-methylpyrrolidinone (NMP), ethoxyethylpropionate (EEP) or the like. The acoustic-wave sensor comprises an acoustic-wave device such as a surface-acoustic-wave (SAW) device, a flexural-plate-wave (FPW) device, an acoustic-plate-mode (APM) device, or a thickness-shear-mode (TSM) device (also termed a quartz crystal microbalance or QCM) having a sensing region on a surface thereof. The sensing region includes a sensing film for sorbing a quantity of the photoresist-stripping agent, thereby altering or shifting a frequency of oscillation of an acoustic wave propagating through the sensing region for indicating an ambient concentration of the agent. According to preferred embodiments of the invention, the acoustic-wave device is a SAW device; and the sensing film comprises poly(vinylacetate), poly(N-vinylpyrrolidinone), or poly(vinylphenol).

  16. Acoustic-wave sensor for ambient monitoring of a photoresist-stripping agent

    DOEpatents

    Pfeifer, K.B.; Hoyt, A.E.; Frye, G.C.

    1998-08-18

    The acoustic-wave sensor is disclosed. The acoustic-wave sensor is designed for ambient or vapor-phase monitoring of a photoresist-stripping agent such as N-methylpyrrolidinone (NMP), ethoxyethylpropionate (EEP) or the like. The acoustic-wave sensor comprises an acoustic-wave device such as a surface-acoustic-wave (SAW) device, a flexural-plate-wave (FPW) device, an acoustic-plate-mode (APM) device, or a thickness-shear-mode (TSM) device (also termed a quartz crystal microbalance or QCM) having a sensing region on a surface thereof. The sensing region includes a sensing film for sorbing a quantity of the photoresist-stripping agent, thereby altering or shifting a frequency of oscillation of an acoustic wave propagating through the sensing region for indicating an ambient concentration of the agent. According to preferred embodiments of the invention, the acoustic-wave device is a SAW device; and the sensing film comprises poly(vinylacetate), poly(N-vinylpyrrolidinone), or poly(vinylphenol). 3 figs.

  17. Localization of source with unknown amplitude using IPMC sensor arrays

    NASA Astrophysics Data System (ADS)

    Abdulsadda, Ahmad T.; Zhang, Feitian; Tan, Xiaobo

    2011-04-01

    The lateral line system, consisting of arrays of neuromasts functioning as flow sensors, is an important sensory organ for fish that enables them to detect predators, locate preys, perform rheotaxis, and coordinate schooling. Creating artificial lateral line systems is of significant interest since it will provide a new sensing mechanism for control and coordination of underwater robots and vehicles. In this paper we propose recursive algorithms for localizing a vibrating sphere, also known as a dipole source, based on measurements from an array of flow sensors. A dipole source is frequently used in the study of biological lateral lines, as a surrogate for underwater motion sources such as a flapping fish fin. We first formulate a nonlinear estimation problem based on an analytical model for the dipole-generated flow field. Two algorithms are presented to estimate both the source location and the vibration amplitude, one based on the least squares method and the other based on the Newton-Raphson method. Simulation results show that both methods deliver comparable performance in source localization. A prototype of artificial lateral line system comprising four ionic polymer-metal composite (IPMC) sensors is built, and experimental results are further presented to demonstrate the effectiveness of IPMC lateral line systems and the proposed estimation algorithms.

  18. Imaging Ferromagnetic Tracers with a Magnetoresistive Sensors Array

    NASA Astrophysics Data System (ADS)

    Leyva, Juan A.; Carneiro, Antonio A. O.; Murta, Luís O.; Baffa, O.

    2006-09-01

    The aim of this work was to study the feasibility to obtain images from a distribution of ferromagnetic tracers using a magnetoresistive multichannel sensor array (MRA). A magnetic imaging system formed by a linear array composed of 12 magnetoresistive sensors (Honeywell HMC 1001) was constructed covering a scanning area of (16×18) cm2. The signal was pre-processed for off-set correction and interpolation to generate a matrix of (256×256). The point spread function of the MRA was evaluated and the sensors were spaced accordingly. The magnetic images were generated by mapping the response of the MRA at short distances from the presence of a magnetite powder dispersed in planar phantoms with different shapes. The phantoms were magnetized by a pulse field of approximately 80 mT produced by a Helmholtz coil. Using the Wiener filtering, the magnetic source images were obtained. We conclude that this biomagnetic method can be successfully used to generate planar functional images of the gastrointestinal tract using magnetic markers in the near field.

  19. WO{sub 3} thin film based multiple sensor array for electronic nose application

    SciTech Connect

    Ramgir, Niranjan S. E-mail: deepakcct1991@gmail.com; Goyal, C. P.; Datta, N.; Kaur, M.; Debnath, A. K.; Aswal, D. K.; Gupta, S. K.; Goyal, Deepak E-mail: deepakcct1991@gmail.com

    2015-06-24

    Multiple sensor array comprising 16 x 2 sensing elements were realized using RF sputtered WO{sub 3} thin films. The sensor films were modified with a thin layer of sensitizers namely Au, Ni, Cu, Al, Pd, Ti, Pt. The resulting sensor array were tested for their response towards different gases namely H{sub 2}S, NH{sub 3}, NO and C{sub 2}H{sub 5}OH. The sensor response values measured from the response curves indicates that the sensor array generates a unique signature pattern (bar chart) for the gases. The sensor response values can be used to get both qualitative and quantitative information about the gas.

  20. The trade-off characteristics of acoustic and pressure sensors for the NASP

    NASA Technical Reports Server (NTRS)

    Winkler, Martin; Bush, Chuck

    1992-01-01

    Results of a trade study for the development of pressure and acoustic sensors for use on the National Aerospace Plane (NASP) are summarized. Pressure sensors are needed to operate to 100 psia; acoustic sensors are needed that can give meaningful information about a 200 dB sound pressure level (SPL) environment. Both sensors will have to operate from a high temperature of 2000 F down to absolute zero. The main conclusions of the study are the following: (1) Diaphragm materials limit minimum size and maximum frequency response attainable. (2) No transduction is available to meet all the NASP requirements with existing technology. (3) Capacitive sensors are large relative to the requirement, have limited resolution and frequency response due to noise, and cable length is limited to approximately 20 feet. (4) Eddy current sensors are large relative to the requirement and have limited cable lengths. (5) Fiber optic sensors provide the possibility for a small sensor, even though present developments do not exhibit that characteristic. The need to use sapphire at high temperature complicates the design. Present high temperature research sensors suffer from poor resolution. A significant development effort will be required to realize the potential of fiber optics. (6) Short-term development seems to favor eddy current techniques with the penalty of larger size and reduced dynamic range for acoustic sensors. (7) Long-term development may favor fiber optics with the penalties of cost, schedule, and uncertainty.

  1. Customization of the acoustic field produced by a piezoelectric array through interelement delays

    PubMed Central

    Chitnis, Parag V.; Barbone, Paul E.; Cleveland, Robin O.

    2008-01-01

    A method for producing a prescribed acoustic pressure field from a piezoelectric array was investigated. The array consisted of 170 elements placed on the inner surface of a 15 cm radius spherical cap. Each element was independently driven by using individual pulsers each capable of generating 1.2 kV. Acoustic field customization was achieved by independently controlling the time when each element was excited. The set of time delays necessary to produce a particular acoustic field was determined by using an optimization scheme. The acoustic field at the focal plane was simulated by using the angular spectrum method, and the optimization searched for the time delays that minimized the least squared difference between the magnitudes of the simulated and desired pressure fields. The acoustic field was shaped in two different ways: the −6 dB focal width was increased to different desired widths and the ring-shaped pressure distributions of various prescribed diameters were produced. For both cases, the set of delays resulting from the respective optimization schemes were confirmed to yield the desired pressure distributions by using simulations and measurements. The simulations, however, predicted peak positive pressures roughly half those obtained from the measurements, which was attributed to the exclusion of nonlinearity in the simulations. PMID:18537369

  2. Single-shot measurements of the acoustic field of an electrohydraulic lithotripter using a hydrophone array

    PubMed Central

    Alibakhshi, Mohammad A.; Kracht, Jonathan M.; Cleveland, Robin O.; Filoux, Erwan; Ketterling, Jeffrey A.

    2013-01-01

    Piezopolymer-based hydrophone arrays consisting of 20 elements were fabricated and tested for use in measuring the acoustic field from a shock-wave lithotripter. The arrays were fabricated from piezopolymer films and were mounted in a housing to allow submersion into water. The motivation was to use the array to determine how the shot-to-shot variability of the spark discharge in an electrohydraulic lithotripter affects the resulting focused acoustic field. It was found that the dominant effect of shot-to-shot variability was to laterally shift the location of the focus by up to 5 mm from the nominal acoustic axis of the lithotripter. The effect was more pronounced when the spark discharge was initiated with higher voltages. The lateral beamwidth of individual, instantaneous shock waves were observed to range from 1.5 mm to 24 mm. Due to the spatial variation of the acoustic field, the average of instantaneous beamwidths were observed to be 1 to 2 mm narrower than beamwidths determined from traditional single-point measurements that average the pressure measured at each location before computing beamwidth. PMID:23654419

  3. An acoustic-array based structural health monitoring technique for wind turbine blades

    NASA Astrophysics Data System (ADS)

    Aizawa, Kai; Poozesh, Peyman; Niezrecki, Christopher; Baqersad, Javad; Inalpolat, Murat; Heilmann, Gunnar

    2015-04-01

    This paper proposes a non-contact measurement technique for health monitoring of wind turbine blades using acoustic beamforming techniques. The technique works by mounting an audio speaker inside a wind turbine blade and observing the sound radiated from the blade to identify damage within the structure. The main hypothesis for the structural damage detection is that the structural damage (cracks, edge splits, holes etc.) on the surface of a composite wind turbine blade results in changes in the sound radiation characteristics of the structure. Preliminary measurements were carried out on two separate test specimens, namely a composite box and a section of a wind turbine blade to validate the methodology. The rectangular shaped composite box and the turbine blade contained holes with different dimensions and line cracks. An acoustic microphone array with 62 microphones was used to measure the sound radiation from both structures when the speaker was located inside the box and also inside the blade segment. A phased array beamforming technique and CLEAN-based subtraction of point spread function from a reference (CLSPR) were employed to locate the different damage types on both the composite box and the wind turbine blade. The same experiment was repeated by using a commercially available 48-channel acoustic ring array to compare the test results. It was shown that both the acoustic beamforming and the CLSPR techniques can be used to identify the damage in the test structures with sufficiently high fidelity.

  4. Acoustic contrast, planarity and robustness of sound zone methods using a circular loudspeaker array.

    PubMed

    Coleman, Philip; Jackson, Philip J B; Olik, Marek; Møller, Martin; Olsen, Martin; Abildgaard Pedersen, Jan

    2014-04-01

    Since the mid 1990s, acoustics research has been undertaken relating to the sound zone problem-using loudspeakers to deliver a region of high sound pressure while simultaneously creating an area where the sound is suppressed-in order to facilitate independent listening within the same acoustic enclosure. The published solutions to the sound zone problem are derived from areas such as wave field synthesis and beamforming. However, the properties of such methods differ and performance tends to be compared against similar approaches. In this study, the suitability of energy focusing, energy cancelation, and synthesis approaches for sound zone reproduction is investigated. Anechoic simulations based on two zones surrounded by a circular array show each of the methods to have a characteristic performance, quantified in terms of acoustic contrast, array control effort and target sound field planarity. Regularization is shown to have a significant effect on the array effort and achieved acoustic contrast, particularly when mismatched conditions are considered between calculation of the source weights and their application to the system. PMID:25234991

  5. Uncooled array IR sensors integrated with CCD analog processor

    NASA Astrophysics Data System (ADS)

    Chernokozhin, Vladimir V.; Pevtsov, Eugeny P.; Sigov, Alexander S.

    2002-04-01

    The technological methods proposed above allow one to prepare integrated structures of multi-element heat detectors and special CCD. In thin structure the sensitive film is isolated from the substrate by means of a supporting membrane or serves as the membrane itself. Such a technology seems to be advantageous in further development of different MEMS structures. There is created a completely monolithic pyroelectric array of sensors 100 X 100 micrometers 2 based on a heat-sensitive film construction lifted slightly above the crystal and also detector specimens with NETD less than 0.2 - 0.5 K (8 - 12 micrometers at 300 K and 20 - 50 Hz of modulation frequency). Derived measurements and investigations allowed us to choose the structure of 2D analogue CCD processor which now is under design and which will be integrated with pyroelectric membrane array.

  6. A sensor array system for monitoring moisture dynamics inunsaturated soil

    SciTech Connect

    Salve, R.; Cook, P.J.

    2007-05-15

    To facilitate investigations of moisture dynamics inunsaturated soil, we have developed a technique to qualitatively monitorpatterns of saturation changes. Field results suggest that this device,the sensor array system (SAS), is suitable for determining changes inrelative wetness along vertical soil profiles. The performance of theseprobes was compared with that of the time domain reflectometry (TDR)technique under controlled and field conditions. Measurements from bothtechniques suggest that by obtaining data at high spatial and temporalresolution, the SAS technique was effective in determining patterns ofsaturation changes along a soil profile. In addition, hardware used inthe SAS technique was significantly cheaper than the TDR system, and thesensor arrays were much easier to install along a soilprofile.

  7. Hand-Held Reader for Colorimetric Sensor Arrays.

    PubMed

    Askim, Jon R; Suslick, Kenneth S

    2015-08-01

    An inexpensive hand-held device for analysis of colorimetric sensor arrays (CSAs) has been developed. The device makes use of a contact image sensor (CIS), technology commonly used in business card scanners, to rapidly collect low-noise colorimetric data for chemical sensing. The lack of moving parts and insensitivity to vibration allow for lower noise and improved scan rates compared to other digital imaging techniques (e.g., digital cameras, flatbed scanners); signal-to-noise ratios are a factor of 3-10 higher than currently used methods, and scan rates are up to 250 times faster without compromising sensitivity. The device is capable of real-time chemical analysis at scan rates up to 48 Hz. PMID:26177346

  8. Array-type NH.sub.3 sensor

    DOEpatents

    West, David Lawrence; Montgomery, Frederick Charles; Armstrong, Timothy R; Warmack, Robert J

    2013-12-31

    An array-type sensor that senses NH.sub.3 includes non-Nernstian sensing elements constructed from metal and/or metal-oxide electrodes on an O.sub.2 ion conducting substrate. In one example sensor, one electrode may be made of platinum, another electrode may be made of manganese (III) oxide (Mn.sub.2O.sub.3), and another electrode may be made of tungsten trioxide (WO.sub.3). Some sensing elements may further include an electrode made of La.sub.0.6Sr.sub.0.4Co.sub.0.2Fe.sub0.8O.sub.3 and another electrode made of LaCr.sub.0.95.Mg.sub.0.05O.sub.3.

  9. Polar exponential sensor arrays unify iconic and Hough space representation

    NASA Technical Reports Server (NTRS)

    Weiman, Carl F. R.

    1990-01-01

    The log-polar coordinate system, inherent in both polar exponential sensor arrays and log-polar remapped video imagery, is identical to the coordinate system of its corresponding Hough transform parameter space. The resulting unification of iconic and Hough domains simplifies computation for line recognition and eliminates the slope quantization problems inherent in the classical Cartesian Hough transform. The geometric organization of the algorithm is more amenable to massively parallel architectures than that of the Cartesian version. The neural architecture of the human visual cortex meets the geometric requirements to execute 'in-place' log-Hough algorithms of the kind described here.

  10. Nanowire sensors and arrays for chemical/biomolecule detection

    NASA Technical Reports Server (NTRS)

    Yun, Minhee; Lee, Choonsup; Vasquez, Richard P.; Ramanathan, K.; Bangar, M. A.; Chen, W.; Mulchandan, A.; Myung, N. V.

    2005-01-01

    We report electrochemical growth of single nanowire based sensors using e-beam patterned electrolyte channels, potentially enabling the controlled fabrication of individually addressable high density arrays. The electrodeposition technique results in nanowires with controlled dimensions, positions, alignments, and chemical compositions. Using this technique, we have fabricated single palladium nanowires with diameters ranging between 75 nm and 300 nm and conducting polymer nanowires (polypyrrole and polyaniline) with diameters between 100 nm and 200 nm. Using these single nanowires, we have successfully demonstrated gas sensing with Pd nanowires and pH sensing with polypirrole nanowires.

  11. Advanced array techniques for unattended ground sensor applications

    NASA Astrophysics Data System (ADS)

    Followill, Fred E.; Wolford, James K.; Candy, James V.

    1997-07-01

    Sensor arrays offer opportunities to beamform, and time- frequency analyses offer additional insights to the wavefield data. Data collected while monitoring three different sources with unattended ground sensors in a 16- element, small-aperture (approximately 5 meters) geophone array are used as examples of model-based seismic signal processing on actual geophone array data. The three sources monitored were: (Source 01). A frequency-modulated chirp of an electromechanical shaker mounted on a floor of an underground bunker. Three 60-second time-windows corresponding to (a) 50 Hz to 55 Hz sweep, (b) 60 Hz to 70 Hz sweep, and (c) 80 Hz to 90 Hz sweep. (Source 02). A single transient impact of a hammer striking the floor of the bunker. Twenty seconds of data (with the transient event approximately mid-point in the time window). (Source 11). The transient event of a diesel generator turning on, including a few seconds before the `turn-on time' and a few seconds after the generator reaches `steady-state conditions'. The high-frequency seismic array was positioned at the surface of the ground at a distance of 150 meters (North) of the underground bunker. Four Y-shaped subarrays (each with 2-meter apertures) in a Y-shaped pattern (with a 6-meter aperture) using a total of 163-component, high- frequency geophones were deployed. These 48 channels of seismic data were recorded at 6000 and 12000 samples per second on 16-bit data loggers. Representative examples of the data and analyses illustrate the results of this experiment.

  12. Advanced array techniques for unattended ground sensor applications

    SciTech Connect

    Followill, F.E.; Wolford, J.K.; Candy, J.V.

    1997-05-06

    Sensor arrays offer opportunities to beam form, and time-frequency analyses offer additional insights to the wavefield data. Data collected while monitoring three different sources with unattended ground sensors in a 16-element, small-aperture (approximately 5 meters) geophone array are used as examples of model-based seismic signal processing on actual geophone array data. The three sources monitored were: (Source 01). A frequency-modulated chirp of an electromechanical shaker mounted on the floor of an underground bunker. Three 60-second time-windows corresponding to (a) 50 Hz to 55 Hz sweep, (b) 60 Hz to 70 Hz sweep, and (c) 80 Hz to 90 Hz sweep. (Source 02). A single transient impact of a hammer striking the floor of the bunker. Twenty seconds of data (with the transient event approximately mid-point in the time window.(Source 11)). The transient event of a diesel generator turning on, including a few seconds before the turn-on time and a few seconds after the generator reaches steady-state conditions. The high-frequency seismic array was positioned at the surface of the ground at a distance of 150 meters (North) of the underground bunker. Four Y-shaped subarrays (each with 2-meter apertures) in a Y-shaped pattern (with a 6-meter aperture) using a total of 16 3-component, high-frequency geophones were deployed. These 48 channels of seismic data were recorded at 6000 and 12000 samples per second on 16-bit data loggers. Representative examples of the data and analyses illustrate the results of this experiment.

  13. Investigation of the thickness effect to impedance analysis results AlGaN acoustic sensor

    NASA Astrophysics Data System (ADS)

    Özen, Soner; Bilgiç, Eyüp; Gülmez, Gülay; Şenay, Volkan; Pat, Suat; Korkmaz, Şadan; Mohammadigharehbagh, Reza

    2016-03-01

    In this study, AlGaN acoustic sensors were deposited on aluminum metal substrate by thermionic vacuum arc (TVA) method, for the first time. Impedance analyses of the fabricated acoustic sensors were investigated for the determining of effect of the nano layer thickness. Thickness values are very close to each others. Fabricated sensors have been fabricated from AlGaN deposited on aluminum substrates. Gallium materials are used in many applications for optoelectronic device and semiconductor technology. Thermionic vacuum arc is the deposition technology for the variously materials and applications field. TVA production parameters and some properties of the deposited layers were investigated. TVA is the fast deposition technology for the gallium compounds and doped gallium compounds. Obtained results that AlGaN layer are very promising material for an acoustic sensor but also TVA is proper fast technology for the production.

  14. High-Resolution Displacement Sensor Using a SQUID Array Amplifier

    NASA Technical Reports Server (NTRS)

    Chui, Talso; Penanen, Konstantin; Barmatz, M.; Paik, Ho Jung

    2004-01-01

    Improvement in the measurement of displacement has profound implications for both exploration technologies and fundamental physics. For planetary exploration, the new SQUID-based capacitive displacement sensor will enable a more sensitive gravity gradiometer for mapping the interior of planets and moons. A new concept of a superfluid clock to be reported by Penanen and Chui at this workshop is also based on a high-resolution displacement sensor. Examples of high-impact physics projects that can benefit from a better displacement sensor are: detection of gravitational waves, test of the equivalence principle, search for the postulated "axion" particle, and test of the inverse square law of gravity. We describe the concept of a new displacement sensor that makes use of a recent development in the Superconducting Quantum Interference Device (SQUID) technology. The SQUID array amplifier, invented by Welty and Martinis (IEEE Trans. Appl. Superconductivity 3, 2605, 1993), has about the same noise as a conventional SQUID; however, it can work at a much higher frequency of up to 5 MHz. We explain how the higher bandwidth can be translated into higher resolution using a bridge-balancing scheme that can simultaneously balance out both the carrier signal at the bridge output and the electrostatic force acting on the test mass.

  15. Polymer Substrate Temperature Sensor Array for Brain Interfaces

    PubMed Central

    Kim, Insoo; Fok, Ho Him R.; Li, Yuanyuan; Jackson, Thomas N.; Gluckman, Bruce J.

    2012-01-01

    We developed an implantable thin film transistor temperature sensor (TFT-TS) to measure temperature changes in the brain. These changes are assumed to be associated with cerebral metabolism and neuronal activity. Two prototype TFT-TSs were designed and tested in-vitro: one with 8 diode-connected single-ended sensors, and the other with 4 pairs of differential-ended sensors in an array configuration. The sensor elements are 25~100 μm in width and 5 μm in length. The TFT-TSs were fabricated based on high-speed ZnO TFT process technology on flexible polyimide substrates (50 μm thick, 500 μm width, 20 mm length). In order to interface external signal electronics, they were directly bonded to a prototype printed circuit board using anisotropic conductive films The prototypes were characterized between 20~40 °C using a surface mounted thermocouple and custom-designed temperature controlled oven. The maximum sensitivity of 40 mV/°C was obtained from the TFT-TS. PMID:22255041

  16. Harnessing a ratiometric fluorescence output from a sensor array.

    PubMed

    Wang, Zhuo; Palacios, Manuel A; Zyryanov, Grigory; Anzenbacher, Pavel

    2008-01-01

    Ratiometric fluorescence-based sensors are widely sought after because they can effectively convert even relatively small changes in optical output into a strong and easy-to-read signal. However, ratiometric sensor molecules are usually difficult to make. We present a proof-of-principle experiment that shows that efficient ratiometric sensing may be achieved by an array of two chromophores, one providing an on-to-off response and the second yielding an off-to-on response in a complementary fashion. In the case that both chromophores emit light of different color, the result is a switching of colors that may be utilized in the same way as from a true ratiometric probe. The chromophore array comprises two sensor elements: i) a polyurethane membrane with embedded N-anthracen-9-yl-methyl-N-7-nitrobenzoxa-[1,2,5]diazo-4-yl-N',N'-dimethylethylenediamine hydrochloride and ii) a membrane with N,N-dimethyl-N'-(9-methylanthracenyl)ethylenediamine. A combination of photoinduced electron transfer (PET) and fluorescence resonance energy transfer (FRET) allows for green-to-blue emission switching in the presence of Zn(II) ions. The sensing experiments carried out with different Zn(II) salts at controlled pH revealed that the degree of color switching in the individual sensor elements depends on both the presence of Zn(II) ions and the counter anion. These results suggest that sensing of both cations and anions may perhaps be extended to different cation-anion pairs. PMID:18688830

  17. Development of novel optical fiber interferometric sensors with high sensitivity for acoustic emission detection

    NASA Astrophysics Data System (ADS)

    Deng, Jiangdong

    For the purpose of developing a new highly-sensitive and reliable fiber optical acoustic sensor capable of real-time on-line detection of acoustic emissions in power transformers, this dissertation presents the comprehensive research work on the theory, modeling, design, instrumentation, noise analysis, and performance evaluation of a diaphragm-based optical fiber acoustic (DOFIA) sensor system. The optical interference theory and the diaphragm dynamic vibration analysis form the two foundation stones of the diaphragm-based optical fiber interferometric acoustic (DOFIA) sensor. Combining these two principles, the pressure sensitivity and frequency response of the acoustic sensor system is analyzed quantitatively, which provides guidance for the practical design for the DOFIA sensor probe and system. To meet all the technical requirements for partial discharge detection, semiconductor process technologies are applied, for the first time to our knowledge, in fabricating the micro-caved diaphragm (MCD) used for the DOFIA sensor probe. The novel controlled thermal bonding method was proposed, designed, and developed to fabricate high performance DOFIA sensor probes with excellent mechanical strength and temperature stability. In addition, the signal processing unit is designed and implemented with high gain, wide band response, and ultra low noise. A systematic noise analysis is also presented to provide a better understanding of the performance limitations of the DOFIA sensor system. Based on the system noise analysis results, optimization measures are proposed to improve the system performance. Extensive experiments, including the field testing in a power transformer, have also been conducted to systematically evaluate the performance of the instrumentation systems and the sensor probes. These results clearly demonstrated the feasibility of the developed DOFIA sensor for the detection of partial discharges inside electrical power transformers, with unique advantages

  18. Probing mechanical properties of liposomes using acoustic sensors.

    PubMed

    Melzak, Kathryn A; Bender, Florian; Tsortos, Achilleas; Gizeli, Electra

    2008-08-19

    Acoustic devices were employed to characterize variations in the mechanical properties (density and viscoelasticity) of liposomes composed of 1-oleoyl-2-palmitoyl- sn-glycero-3-phosphocholine (POPC) and cholesterol. Liposome properties were modified in three ways. In some experiments, the POPC/cholesterol ratio was varied prior to deposition on the device surface. Alternatively, the ratio was changed in situ via either insertion of cholesterol or removal of cholesterol with beta-cyclodextrin. This was done for liposomes adsorbed directly on the device surface and for liposomes attached via a biotin-terminated poly(ethylene glycol) linker. The acoustic measurements make use of two simultaneous time-resolved signals: one signal is related to the velocity of the acoustic wave, while the second is related to dissipation of acoustic energy. Together, they provide information not only about the mass (or density) of the probed medium but also about its viscoelastic properties. The cholesterol-induced increase in the surface density of the lipid bilayer was indeed observed in the acoustic data, but the resulting change in signal was larger than expected from the change in surface density. In addition, increasing the bilayer resistance to stretching was found to lead to a greater dissipation of the acoustic energy. The acoustic response is assessed in terms of the possible distortions of the liposomes and the known effects of cholesterol on the mechanical properties of the lipid bilayer that encloses the aqueous core of the liposome. To aid the interpretation of the acoustic response, it is discussed how the above changes in the lipid bilayer will affect the effective viscoelastic properties of the entire liposome/solvent film on the scale of the acoustic wavelength. It was found that the acoustic device is very sensitive to the mechanical properties of lipid vesicles; the response of the acoustic device is explained, and the basic underlying mechanisms of interaction are

  19. An object-oriented modeling and simulation framework for bearings-only multi-target tracking using an unattended acoustic sensor network

    NASA Astrophysics Data System (ADS)

    Aslan, Murat Šamil

    2013-10-01

    Tracking ground targets using low cost ground-based sensors is a challenging field because of the limited capabilities of such sensors. Among the several candidates, including seismic and magnetic sensors, the acoustic sensors based on microphone arrays have a potential of being useful: They can provide a direction to the sound source, they can have a relatively better range, and the sound characteristics can provide a basis for target classification. However, there are still many problems. One of them is the difficulty to resolve multiple sound sources, another is that they do not provide distance, a third is the presence of background noise from wind, sea, rain, distant air and land traffic, people, etc., and a fourth is that the same target can sound very differently depending on factors like terrain type, topography, speed, gear, distance, etc. Use of sophisticated signal processing and data fusion algorithms is the key for compensating (to an extend) the limited capabilities and mentioned problems of these sensors. It is hard, if not impossible, to evaluate the performance of such complex algorithms analytically. For an effective evaluation, before performing expensive field trials, well-designed laboratory experiments and computer simulations are necessary. Along this line, in this paper, we present an object-oriented modeling and simulation framework which can be used to generate simulated data for the data fusion algorithms for tracking multiple on-road targets in an unattended acoustic sensor network. Each sensor node in the network is a circular microphone array which produces the direction of arrival (DOA) (or bearing) measurements of the targets and sends this information to a fusion center. We present the models for road networks, targets (motion and acoustic power) and acoustic sensors in an object-oriented fashion where different and possibly time-varying sampling periods for each sensor node is possible. Moreover, the sensor's signal processing and

  20. Empirical and quadrature approximation of acoustic field and array response probability density functions.

    PubMed

    Hayward, Thomas J; Oba, Roger M

    2013-07-01

    Numerical methods are presented for approximating the probability density functions (pdf's) of acoustic fields and receiver-array responses induced by a given joint pdf of a set of acoustic environmental parameters. An approximation to the characteristic function of the random acoustic field (the inverse Fourier transform of the field pdf) is first obtained either by construction of the empirical characteristic function (ECF) from a random sample of the acoustic parameters, or by application of generalized Gaussian quadrature to approximate the integral defining the characteristic function. The Fourier transform is then applied to obtain an approximation of the pdf by a continuous function of the field variables. Application of both the ECF and generalized Gaussian quadrature is demonstrated in an example of a shallow-water ocean waveguide with two-dimensional uncertainty of sound speed and attenuation coefficient in the ocean bottom. Both approximations lead to a smoother estimate of the field pdf than that provided by a histogram, with generalized Gaussian quadrature providing a smoother estimate at the tails of the pdf. Potential applications to acoustic system performance quantification and to nonparametric acoustic signal processing are discussed. PMID:23862782

  1. Multi Reflection of Lamb Wave Emission in an Acoustic Waveguide Sensor

    PubMed Central

    Schmitt, Martin; Olfert, Sergei; Rautenberg, Jens; Lindner, Gerhard; Henning, Bernd; Reindl, Leonhard Michael

    2013-01-01

    Recently, an acoustic waveguide sensor based on multiple mode conversion of surface acoustic waves at the solid—liquid interfaces has been introduced for the concentration measurement of binary and ternary mixtures, liquid level sensing, investigation of spatial inhomogenities or bubble detection. In this contribution the sound wave propagation within this acoustic waveguide sensor is visualized by Schlieren imaging for continuous and burst operation the first time. In the acoustic waveguide the antisymmetrical zero order Lamb wave mode is excited by a single phase transducer of 1 MHz on thin glass plates of 1 mm thickness. By contact to the investigated liquid Lamb waves propagating on the first plate emit pressure waves into the adjacent liquid, which excites Lamb waves on the second plate, what again causes pressure waves traveling inside the liquid back to the first plate and so on. The Schlieren images prove this multi reflection within the acoustic waveguide, which confirms former considerations and calculations based on the receiver signal. With this knowledge the sensor concepts with the acoustic waveguide sensor can be interpreted in a better manner. PMID:23447010

  2. Development of Hybrid Sensor Arrays for Sensor Arrays for Simultaneous Measurement of Pressure and Shear Stress Distribution

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This document reports on the progress in developing hybrid sensors for the simultaneous measurement of pressure and shear stress. The key feature for the success of the proposed hybrid sensor array is the ability to deposit Cu-Ni alloy with proper composition (55 - 45) on a silicon wafer to form a strain gage. This alloy strain gage replaces the normally used Si strain gages in MEMS, which are highly nonlinear and temperature dependent. The copper nickel, with proper composition (55 - 45), was successfully deposited on a silicon wafer with a few trials during this period of the project. Pictures of the Cu-Ni alloy strain gage and the x-ray spectra indicating the composition are shown. The planned tests are also reviewed.

  3. The application of smart sensor techniques to a solid-state array multispectral sensor

    NASA Technical Reports Server (NTRS)

    Mcfadin, L. W.

    1978-01-01

    The solid-state array spectroradiometer (SAS) developed at JSC for remote sensing applications is a multispectral sensor which has no moving parts, is virtually maintenance-free, and has the ability to provide data which requires a minimum of processing. The instrument is based on the 42 x 342 element charge injection device (CID) detector. This system allows the combination of spectral scanning and across-track spatial scanning along with its associated digitization electronics into a single detector.

  4. Estimation of low-altitude moving target trajectory using single acoustic array.

    PubMed

    Tong, Jianfei; Xie, Wei; Hu, Yu-Hen; Bao, Ming; Li, Xiaodong; He, Wei

    2016-04-01

    An acoustic-signature based method of estimating the flight trajectory of low-altitude flying aircraft that only requires a stationary microphone array is proposed. This method leverages the Doppler shifts of engine sound to estimate the closest point of approach distance, time, and speed. It also leverages the acoustic phase shift over the microphone array to estimate the direction of arrival of the target. Combining these parameters, this algorithm provides a total least square estimate of the target trajectory under the assumption of constant target height, direction, and speed. Analytical bounds of potential performance degradation due to noise are derived and the estimation error caused by signal propagation delay is analyzed, and both are verified with extensive simulation. The proposed algorithm is also validated by processing the data collected in field experiments. PMID:27106332

  5. High sensitivity carbon nanotube based electrochemiluminescence sensor array

    PubMed Central

    Venkatanarayanan, Anita; Crowley, Karl; Lestini, Elena; Keyes, Tia E.; Rusling, James F.; Forster, Robert J.

    2012-01-01

    Ink jet printed carbon nanotube forest arrays capable of detecting picomolar concentrations of immunoglobulin G (IgG) using electrochemiluminescence (ECL) are described. Patterned arrays of vertically aligned single walled carbon nanotube (SWCNT) forests were printed on indium tin oxide (ITO) electrodes. Capture anti-IgG antibodies were then coupled through peptide bond formation to acidic functional groups on the vertical nanotubes. IgG immunoassays were performed using silica nano particles (Si NP) functionalized with the ECL luminophore [Ru(bpy)2 PICH2]2+], and IgG labelled G1.5 acid terminated PAMAM dendrimers. PAMAM is poly(amido amine), bpy is 2,2′-bipyridyl and PICH2 is (2-(4-carboxyphenyl)imidazo[4,5-f][1,10]phenanthroline). The carboxyl terminal of [Ru(bpy)2 PICH2]2+ (fluorescence lifetime ≈682 ± 5 ns) dye was covalently coupled to amine groups on the 800 nm diameter silica spheres in order to produce significant ECL enhancement in the presence of sodium oxalate as co-reactant in PBS at pH 7.2). Significantly, this SWCNT-based sensor array shows a wide linear dynamic range for IgG coated spheres (106 to 1012 spheres) corresponding to IgG concentrations between 20 pM and 300 nM. A detection limit of 1.1 ± 0.1 pM IgG is obtained under optimal conditions. PMID:22137061

  6. Reactive Arrays of Colorimetric Sensors for Metabolite and Steroid Identification.

    PubMed

    Batres, Gary; Jones, Talia; Johnke, Hannah; Wilson, Mark; Holmes, Andrea E; Sikich, Sharmin

    2014-12-31

    The work described herein examines a rapid mix-and-measure method called DETECHIP suitable for screening of steroids and metabolites. The addition of steroids and metabolites to reactive arrays of colorimetric sensors generated characteristic color "fingerprints" that were used to identify the analyte. A color analysis tool was used to identify the analyte pool that now includes biologically relevant analytes. The mix-and-measure arrays allowed the detection of disease metabolites, orotic acid and argininosuccinic acid; and the steroids androsterone, 1,4-androstadiene, testosterone, stanozolol, and estrone. The steroid 1,4-androstadiene was also detected by this method while dissolved in synthetic urine. Some of the steroids, such as androstadiene, stanozolol, and androsterone were co-dissolved with (2-hydroxypropyl)-β-cyclodextrin in order to increase solubility in aqueous buffered solutions. The colorimetric arrays do not intend to eliminate ELISA or mass spectroscopy based screening, but to possibly provide an alternative analytical detection method for steroids and metabolites. PMID:25019034

  7. An active alignment scheme for the MPTS array. [contour sensors

    NASA Technical Reports Server (NTRS)

    Iwasaki, R.

    1980-01-01

    In order to achieve and maintain required flatness of the antenna array, a rotating laser beam used for leveling applications on earth was utilized as a reference system. A photoconductive sensor with a reflective collecting surface determines the displacement and polarity of any misalignment and automatically engages a stepping motor to drive a variable-length mechanism to make the necessary corrections. Once aligned, little power is dissipated since a nulling bridge circuit that centers on the beam is used. A three-point subarray alignment arrangement is described which independently adjusts, in the three orthogonal directions, the height and tilt of subarrays within the MPTS array and readily adapts to any physical distortions of the secondary structure (such as that resulting from severe temperature extremes caused by an eclipse of the Sun). It is shown that only one rotating laser system is required since optical blockage is minimal on the array surface and that it is possible to incorporate a number of redundant laser systems for reliability without affecting the overall performance.

  8. Improving the sensitivity of an interferometric fiber optic sensor for acoustic detection in rockfalls

    NASA Astrophysics Data System (ADS)

    Schenato, L.; Palmieri, L.; Autizi, E.; Galtarossa, A.; Pasuto, A.

    2013-12-01

    Being intrinsically EMI free and offering superior hostile environment operation, fiber optic sensor technology represents a valuable alternative to standard sensors technology in landslides monitoring. Here an improved design for a fiber optic sensor to be used for ultrasonic acoustic detection in rockfall monitoring is proposed. Basically, the original sensor consists of a fiber coil tightly wound on an aluminum flanged hollow mandrel that acts as the sensing arm of a Mach-Zehnder interferometer [1]. To further improve sensor sensitivity, the use of a special fiber, with polyimide coating and very large numerical aperture, has been proposed and tested. The polyimide coating, harder and thinner than standard coating, makes the fiber more sensitive to acoustic waves and increase the coupling efficiency between fiber and mandrel. At the same time, a fiber with very large numerical aperture allows for a much smaller bending radius and thus enables the design of a sensor with reduced size, or with the same external size but housing a longer fiber. Part of the research activity has been then focused toward the optimization of the shape and dimensions of the mandrel: to this aim, a large set of numerical simulations has been performed and they are here presented and discussed. The performance assessment gained with new sensors has been carried in a controlled scenario by using a block of trachyte in which the sensors have been screwed in internally threaded chemical anchors housed in holes drilled on one face of the block. Ultrasonic signals have been generated in a repeatable way by dropping a 5-mm-diameter steel ball along a steep slide. Experimental tests, carried out by firstly comparing the performance of a sensor made with special fiber with respect to the original one, have shown an increased sensitivity of almost 35 % in the detected acoustic energy. Further tests, carried out on a sensor with optimized dimensions and made with special fiber, have shown an

  9. Data-driven and calibration-free Lamb wave source localization with sparse sensor arrays.

    PubMed

    Harley, Joel B; Moura, José M F

    2015-08-01

    Most Lamb wave localization techniques require that we know the wave's velocity characteristics; yet, in many practical scenarios, velocity estimates can be challenging to acquire, are unavailable, or are unreliable because of the complexity of Lamb waves. As a result, there is a significant need for new methods that can reduce a system's reliance on a priori velocity information. This paper addresses this challenge through two novel source localization methods designed for sparse sensor arrays in isotropic media. Both methods exploit the fundamental sparse structure of a Lamb wave's frequency-wavenumber representation. The first method uses sparse recovery techniques to extract velocities from calibration data. The second method uses kurtosis and the support earth mover's distance to measure the sparseness of a Lamb wave's approximate frequency-wavenumber representation. These measures are then used to locate acoustic sources with no prior calibration data. We experimentally study each method with a collection of acoustic emission data measured from a 1.22 m by 1.22 m isotropic aluminum plate. We show that both methods can achieve less than 1 cm localization error and have less systematic error than traditional time-of-arrival localization methods. PMID:26276960

  10. Study on high temperature Fabry-Perot fiber acoustic sensor with temperature self-compensation

    NASA Astrophysics Data System (ADS)

    Hu, Pan; Tong, Xinglin; Zhao, Minli; Deng, Chengwei; Guo, Qian; Mao, Yan; Wang, Kun

    2015-09-01

    A Fabry-Perot (F-P) fiber acoustic sensor, which can work under high-temperature harsh environment with temperature self-compensation, is designed and prepared. A condenser was used to maintain the sensor to work in a stable temperature environment. Because of the special structure of the sensor and the function of the condenser, the cavity variation of the sensor caused by changes of external temperature from -10°C to 500°C would not exceed 8 nm. The experimental results show that the sensor has a good frequency response in a range of 1 to 5 kHz and the field experiment results show that it could be used for hydraulic decoking online monitoring by judging the acoustic frequency spectrum.

  11. Unexploded ordnance detection using imaging giant magnetoresistive (GMR) sensor arrays

    SciTech Connect

    Chaiken, A., LLNL

    1997-05-06

    False positive detections account for a great part of the expense associated with unexploded ordnance (UXO) remediation. Presently fielded systems like pulsed electromagnetic induction systems and cesium-vapor magnetometers are able to distinguish between UXO and other metallic ground clutter only with difficulty. The discovery of giant magnetoresistance (GMR) has led to the development of a new generation of integrated-circuit magnetic sensors that are far more sensitive than previously available room-temperature-operation electronic devices. The small size of GMR sensors makes possible the construction of array detectors that can be used to image the flux emanating from a ferrous object or from a non-ferrous object with eddy currents imposed by an external coil. The purpose of a GMR-based imaging detector would be to allow the operator to easily distinguish between UXO and benign objects (like shrapnel or spent bullets) that litter formerly used defense sites (FUDS). In order to demonstrate the potential of a GMR-based imaging technology, a crude magnetic imaging system has been constructed using commercially available sensors. The ability to roughly determine the outline and disposition of magnetic objects has been demonstrated. Improvements to the system which are necessary to make it into a high-performance UXO detector are outlined.

  12. Optimization of monolithic charged-particle sensor arrays

    NASA Astrophysics Data System (ADS)

    Kleinfelder, Stuart; Li, Shengdong; Chen, Yandong

    2007-09-01

    Direct-detection CMOS image sensors optimized for charged-particle imaging applications, such as electron microscopy and particle physics, have been designed, fabricated and characterized. These devices directly image charged particles without reliance on image-degrading hybrid technologies such as the use of scintillating materials. Based on standard CMOS Active Pixel Sensor (APS) technology, the sensor arrays use an 8-20 μm thick epitaxial layer that acts as a sensitive region for the generation and collection of ionization electrons resulting from impinging high-energy particles. A range of optimizations to this technology have been developed via simulation and experimental device design. These include the simulation and measurement of charge-collection efficiency vs. recombination, effect of diode area and stray capacitance vs. signal gain and noise, and the effect of different epitaxial silicon depths. Several experimental devices and full-scale prototypes are presented, including two prototypes that systematically and independently vary pixel pitch and diode area, and a complete high-resolution camera for electron microscopy optimized through experiment and simulation. The electron microscope camera has 1×1 k 2 pixels with a 5 μm pixel pitch and an 8 μm epitaxial silicon thickness.

  13. A micromachined silicon parallel acoustic delay line (PADL) array for real-time photoacoustic tomography (PAT)

    NASA Astrophysics Data System (ADS)

    Cho, Young Y.; Chang, Cheng-Chung; Wang, Lihong V.; Zou, Jun

    2015-03-01

    To achieve real-time photoacoustic tomography (PAT), massive transducer arrays and data acquisition (DAQ) electronics are needed to receive the PA signals simultaneously, which results in complex and high-cost ultrasound receiver systems. To address this issue, we have developed a new PA data acquisition approach using acoustic time delay. Optical fibers were used as parallel acoustic delay lines (PADLs) to create different time delays in multiple channels of PA signals. This makes the PA signals reach a single-element transducer at different times. As a result, they can be properly received by single-channel DAQ electronics. However, due to their small diameter and fragility, using optical fiber as acoustic delay lines poses a number of challenges in the design, construction and packaging of the PADLs, thereby limiting their performances and use in real imaging applications. In this paper, we report the development of new silicon PADLs, which are directly made from silicon wafers using advanced micromachining technologies. The silicon PADLs have very low acoustic attenuation and distortion. A linear array of 16 silicon PADLs were assembled into a handheld package with one common input port and one common output port. To demonstrate its real-time PAT capability, the silicon PADL array (with its output port interfaced with a single-element transducer) was used to receive 16 channels of PA signals simultaneously from a tissue-mimicking optical phantom sample. The reconstructed PA image matches well with the imaging target. Therefore, the silicon PADL array can provide a 16× reduction in the ultrasound DAQ channels for real-time PAT.

  14. Fault detection, isolation, and diagnosis of status self-validating gas sensor arrays

    NASA Astrophysics Data System (ADS)

    Chen, Yin-sheng; Xu, Yong-hui; Yang, Jing-li; Shi, Zhen; Jiang, Shou-da; Wang, Qi

    2016-04-01

    The traditional gas sensor array has been viewed as a simple apparatus for information acquisition in chemosensory systems. Gas sensor arrays frequently undergo impairments in the form of sensor failures that cause significant deterioration of the performance of previously trained pattern recognition models. Reliability monitoring of gas sensor arrays is a challenging and critical issue in the chemosensory system. Because of its importance, we design and implement a status self-validating gas sensor array prototype to enhance the reliability of its measurements. A novel fault detection, isolation, and diagnosis (FDID) strategy is presented in this paper. The principal component analysis-based multivariate statistical process monitoring model can effectively perform fault detection by using the squared prediction error statistic and can locate the faulty sensor in the gas sensor array by using the variables contribution plot. The signal features of gas sensor arrays for different fault modes are extracted by using ensemble empirical mode decomposition (EEMD) coupled with sample entropy (SampEn). The EEMD is applied to adaptively decompose the original gas sensor signals into a finite number of intrinsic mode functions (IMFs) and a residual. The SampEn values of each IMF and the residual are calculated to reveal the multi-scale intrinsic characteristics of the faulty sensor signals. Sparse representation-based classification is introduced to identify the sensor fault type for the purpose of diagnosing deterioration in the gas sensor array. The performance of the proposed strategy is compared with other different diagnostic approaches, and it is fully evaluated in a real status self-validating gas sensor array experimental system. The experimental results demonstrate that the proposed strategy provides an excellent solution to the FDID of status self-validating gas sensor arrays.

  15. Fault detection, isolation, and diagnosis of status self-validating gas sensor arrays.

    PubMed

    Chen, Yin-Sheng; Xu, Yong-Hui; Yang, Jing-Li; Shi, Zhen; Jiang, Shou-da; Wang, Qi

    2016-04-01

    The traditional gas sensor array has been viewed as a simple apparatus for information acquisition in chemosensory systems. Gas sensor arrays frequently undergo impairments in the form of sensor failures that cause significant deterioration of the performance of previously trained pattern recognition models. Reliability monitoring of gas sensor arrays is a challenging and critical issue in the chemosensory system. Because of its importance, we design and implement a status self-validating gas sensor array prototype to enhance the reliability of its measurements. A novel fault detection, isolation, and diagnosis (FDID) strategy is presented in this paper. The principal component analysis-based multivariate statistical process monitoring model can effectively perform fault detection by using the squared prediction error statistic and can locate the faulty sensor in the gas sensor array by using the variables contribution plot. The signal features of gas sensor arrays for different fault modes are extracted by using ensemble empirical mode decomposition (EEMD) coupled with sample entropy (SampEn). The EEMD is applied to adaptively decompose the original gas sensor signals into a finite number of intrinsic mode functions (IMFs) and a residual. The SampEn values of each IMF and the residual are calculated to reveal the multi-scale intrinsic characteristics of the faulty sensor signals. Sparse representation-based classification is introduced to identify the sensor fault type for the purpose of diagnosing deterioration in the gas sensor array. The performance of the proposed strategy is compared with other different diagnostic approaches, and it is fully evaluated in a real status self-validating gas sensor array experimental system. The experimental results demonstrate that the proposed strategy provides an excellent solution to the FDID of status self-validating gas sensor arrays. PMID:27131696

  16. Distributed feedback fiber laser acoustic emission sensor for concrete structure health monitoring

    NASA Astrophysics Data System (ADS)

    Hao, Gengjie; Huang, Wenzhu; Zhang, Wentao; Sun, Baochen; Li, Fang

    2014-05-01

    This paper introduces a highly-sensitive fiber optical acoustic emission (AE) sensor and a parameter analysis method aiming at concrete structure health monitoring. Distributed feedback fiber-laser (DFB-FL), which is encapsulated to have a high acoustic sensitivity, is used for sensor unit of the AE sensor. The AE signal of concrete beam in different work stages, based on the four-point bending experiment of the concrete beam, is picked up, and the relationship between the concrete beam work stages and the AE parameter is found. The results indicate that DFB-FLAES can be used as sensitive transducers for recording acoustic events and forecasting the imminent failure of the concrete beam.

  17. New Research on MEMS Acoustic Vector Sensors Used in Pipeline Ground Markers

    PubMed Central

    Song, Xiaopeng; Jian, Zeming; Zhang, Guojun; Liu, Mengran; Guo, Nan; Zhang, Wendong

    2015-01-01

    According to the demands of current pipeline detection systems, the above-ground marker (AGM) system based on sound detection principle has been a major development trend in pipeline technology. A novel MEMS acoustic vector sensor for AGM systems which has advantages of high sensitivity, high signal-to-noise ratio (SNR), and good low frequency performance has been put forward. Firstly, it is presented that the frequency of the detected sound signal is concentrated in a lower frequency range, and the sound attenuation is relatively low in soil. Secondly, the MEMS acoustic vector sensor structure and basic principles are introduced. Finally, experimental tests are conducted and the results show that in the range of 0°∼90°, when r = 5 m, the proposed MEMS acoustic vector sensor can effectively detect sound signals in soil. The measurement errors of all angles are less than 5°. PMID:25609046

  18. Dual output acoustic wave sensor for molecular identification

    SciTech Connect

    Frye, G.C.; Martin, S.J.

    1990-10-03

    The invention comprises a method for the identification and quantification of sorbed chemical species onto a coating of a device capable of generating and receiving an acoustic wave, by measuring the changes in the velocity of the acoustic wave resulting from the sorption of the chemical species into the coating as the wave travels through the coating and by measuring the changes in the attenuation of an acoustic wave resulting from the sorption of the chemical species into the coating as the wave travels through the coating. The inventive method further correlates the magnitudes of the changes of velocity with respect to changes of the attenuation of the acoustic wave to identify the sorbed chemical species. The absolute magnitudes of the velocity changes or the absolute magnitude of the attenuation changes are used to determine the concentration of the identified chemical species.

  19. Studying Room Acoustics using a Monopole-Dipole Microphone Array

    NASA Technical Reports Server (NTRS)

    Begault, Durand R.; Abel, Jonathan S.; Gills, Stephen R. (Technical Monitor)

    1997-01-01

    The use of a soundfield microphone for examining the directional nature of a room impulse response was reported recently. By cross-correlating monopole and co-located dipole microphone signals aligned with left-right, up-down, and front-back axes, a sense of signal direction of arrival is revealed. The current study is concerned with the array's ability to detect individual reflections and directions of arrival, as a function of the cross-correlation window duration. If is window is too long, weak reflections are overlooked; if too short, spurious detections result. Guidelines are presented for setting the window width according to perceptual criteria. Formulas are presented describing the accuracy with which direction of arrival can be estimated as a function of room specifics and measurement noise. The direction of arrival of early reflections is more accurately determined than that of later reflections which are quieter and more numerous. The transition from a fairly directional sound field at the beginning of the room impulse response to a uni-directional diffuse field is examined. Finally, it is shown that measurements from additional dipole orientations can significantly improve the ability to detect reflections and estimate their directions of arrival.

  20. Graph-based sensor fusion for classification of transient acoustic signals.

    PubMed

    Srinivas, Umamahesh; Nasrabadi, Nasser M; Monga, Vishal

    2015-03-01

    Advances in acoustic sensing have enabled the simultaneous acquisition of multiple measurements of the same physical event via co-located acoustic sensors. We exploit the inherent correlation among such multiple measurements for acoustic signal classification, to identify the launch/impact of munition (i.e., rockets, mortars). Specifically, we propose a probabilistic graphical model framework that can explicitly learn the class conditional correlations between the cepstral features extracted from these different measurements. Additionally, we employ symbolic dynamic filtering-based features, which offer improvements over the traditional cepstral features in terms of robustness to signal distortions. Experiments on real acoustic data sets show that our proposed algorithm outperforms conventional classifiers as well as the recently proposed joint sparsity models for multisensor acoustic classification. Additionally our proposed algorithm is less sensitive to insufficiency in training samples compared to competing approaches. PMID:25014986

  1. Electron Beam Crosslinked Au-nanoparticle Films for Sensor Array Patterning

    NASA Astrophysics Data System (ADS)

    Covington, Elizabeth; Kurdak, Cagliyan; Bohrer, Forest; Chang, Hungwei; Zellers, Edward T.

    2010-03-01

    We have fabricated chemiresistors, arranged in a 2x2 array with 4 μm spacing between the sensors, for use in a micro-gas chromatography (μ-GC) system. To discriminate between analytes, each sensor should be coated with a different thiol coated Au-nanoparticle film. Due to their close spacing, it is not possible to pattern the sensors with different films with traditional film coating methods. Electron beam exposure crosslinks the nanoparticles and renders the film insoluble, and it possible to selectively expose a single sensor in an array. After crosslinking, the remaining film can be rinsed away leaving one coated sensor. This process can be repeated for different films until all sensors in the array have a distinct coating. Using this technique we have made the smallest chemiresistor array with four different films to date. The sensors were characterized by four volatile organic compounds and exhibit different response patterns making them suitable for μ-GC applications.

  2. Acoustic generation of femtoliter to picoliter droplets using two-dimensional micromachined microdroplet ejector arrays

    NASA Astrophysics Data System (ADS)

    Demirci, Utkan

    There is growing demand in the fields of semiconductor manufacturing and biotechnology to reliably generate repeatable, uniform, picoliter-size fluid droplets. Such droplets can be generated using MEMS (Micro-Electro-Mechanical Systems) technology. We propose 2-D micromachined microdroplet ejector arrays for environmentally benign deposition of photoresist and other spin-on materials, such as low-k and high-k dielectrics used in integrated circuit (IC) manufacturing. Direct deposition of these chemicals will reduce waste and production cost. These ejectors are chemically compatible with the materials used in IC manufacturing, and do not harm fluids that are heat or pressure sensitive. Moreover, these ejectors are attractive to biomedicine and biotechnology for droplet generation in applications such as printing of DNA or protein assays and drug testing. Two novel methods for generating millions of droplets per second using acoustically actuated 2-D micromachined microdroplet ejector arrays will be presented. First, membrane based 2-D micromachined ejector arrays will be introduced. Each element of a membrane based 2-D ejector array consists of a flexurally vibrating circular membrane on one face of a cylindrical fluid reservoir. The membrane has an orifice at the center. A piezoelectric transducer generating ultrasonic waves, located at the open face of the reservoir, actuates the membrane and droplets are ejected through the membrane orifice. The ejectors operated most efficiently at 1.2 MHz and generated 3--7 mum diameter droplets. Second, acoustic focus based 2-D micromachined ejector arrays will be demonstrated. The radiation pressure associated with the acoustic beam overcomes the surface tension force, and releases droplets into air in every actuation cycle. The ejectors operated most efficiently at 34.7 MHz, and generated 28 mum diameter droplets in both drop-on-demand and continuous modes of operation, as predicted by the finite element analysis

  3. Modal structural acoustic sensing with minimum number of optimally placed piezoelectric sensors

    NASA Astrophysics Data System (ADS)

    Loghmani, Ali; Danesh, Mohammad; Keshmiri, Mehdi

    2016-02-01

    Structural acoustic sensing is a method of obtaining radiated sound pressure from a vibrating structure using vibration information. Structural acoustic sensing is used in active structural acoustic control for attenuating the sound radiated from a structure. In this paper, a new approach called Modal Structural Acoustic Sensing (MSAS) is proposed for estimating the pressure radiated from a vibrating cylindrical shell using piezoelectric sensors. The motion equations of a cylindrical shell in conjunction with piezoelectric patches are derived based on the Donnel-Mushtari shell theory. The locations of the piezoelectric sensors are optimized by the Genetic Algorithm based on maximizing the observability gramian matrix. The Kirchhoff-Helmholtz integral is used for estimating the sound pressure radiated from the cylindrical shell. Numerical simulations are performed to demonstrate the advantages of the proposed approach in comparison with previous methods such as discrete structural acoustic sensing and distributed modal sensors. Results show that the MSAS can increase the estimation accuracy and decrease the controller dimensionality and the number of required sensors.

  4. Acoustic ranging of small arms fire using a single sensor node collocated with the target.

    PubMed

    Lo, Kam W; Ferguson, Brian G

    2015-06-01

    A ballistic model-based method, which builds upon previous work by Lo and Ferguson [J. Acoust. Soc. Am. 132, 2997-3017 (2012)], is described for ranging small arms fire using a single acoustic sensor node collocated with the target, without a priori knowledge of the muzzle speed and ballistic constant of the bullet except that they belong to a known two-dimensional parameter space. The method requires measurements of the differential time of arrival and differential angle of arrival of the muzzle blast and ballistic shock wave at the sensor node. Its performance is evaluated using both simulated and real data. PMID:26093450

  5. Acoustic and optical multi-sensor threat detection system for border patrol against aerial threats

    NASA Astrophysics Data System (ADS)

    Alsawadi, Motasem S.; Ismail, Ahmad; Al-Azem, Badeea F.; El-Desouki, Munir M.; Alghamdi, Sultan; Alghamdi, Mansour

    2012-10-01

    Saudi Arabia has borders covering over 4,300 km that are shared with seven countries. Such large borders pose many challenges for security and patrol. Thermal imagers are considered the most reliable means of threat detection, however, they are quite costly, which can prevent using them over large areas. This work discusses a multi-sensor acoustic and optical implementation for threat detection as an effort to reduce system cost. The acoustic sensor provides position and direction recognition by using a four microphone setup. The data analysis of field tests will be discussed in this work.

  6. Measurement of Plasma Clotting Using Shear Horizontal Surface Acoustic Wave Sensor

    NASA Astrophysics Data System (ADS)

    Nagayama, Tatsuya; Kondoh, Jun; Oonishi, Tomoko; Hosokawa, Kazuya

    2013-07-01

    The monitoring of blood coagulation is important during operation. In this study, a shear horizontal surface acoustic wave (SH-SAW) sensor is applied to monitor plasma clotting. An SH-SAW sensor with a metallized surface for mechanical perturbation detection can detect plasma clotting. As plasma clotting is a gel formation reaction, the SH-SAW sensor detects viscoelastic property changes. On the other hand, an SH-SAW sensor with a free surface for electrical perturbation detection detects only the liquid mixing effect. No electrical property changes due to plasma clotting are obtained using this sensor. A planar electrochemical sensor is also used to monitor plasma clotting. In impedance spectral analysis, plasma clotting is measured. However, in the measurement of time responses, no differences between clotting and nonclotting are obtained. Therefore, the SH-SAW sensor is useful for monitoring plasma clotting.

  7. Reconfigurable optical interconnection network for multimode optical fiber sensor arrays

    NASA Technical Reports Server (NTRS)

    Chen, R. T.; Robinson, D.; Lu, H.; Wang, M. R.; Jannson, T.; Baumbick, R.

    1992-01-01

    A single-source, single-detector architecture has been developed to implement a reconfigurable optical interconnection network multimode optical fiber sensor arrays. The network was realized by integrating LiNbO3 electrooptic (EO) gratings working at the Raman Na regime and a massive fan-out waveguide hologram (WH) working at the Bragg regime onto a multimode glass waveguide. The glass waveguide utilized the whole substrate as a guiding medium. A 1-to-59 massive waveguide fan-out was demonstrated using a WH operating at 514 nm. Measured diffraction efficiency of 59 percent was experimentally confirmed. Reconfigurability of the interconnection was carried out by generating an EO grating through an externally applied electric field. Unlike conventional single-mode integrated optical devices, the guided mode demonstrated has an azimuthal symmetry in mode profile which is the same as that of a fiber mode.

  8. Multichannel DC SQUID sensor array for biomagnetic applications

    SciTech Connect

    Hoenig, H.E.; Daalmans, G.M.; Bar, L.; Bommel, F.; Paulus, A.; Uhl, D.; Weisse, H.J. ); Schneider, S.; Seifert, H.; Reichenberger, H.; Abraham-Fuchs, K. )

    1991-03-01

    This paper reports on a biomagnetic multichannel system for medical diagnosis of brain and heart KRENIKON has been developed. 37 axial 2st order gradiometers - manufactured as flexible superconducting printed circuits - are arranged in a circular flat array of 19 cm diameter. Additionally, 3 orthogonal magnetometers are provided. The DC SQUIDs are fabricated in all-Nb technology, ten on a chip. The sensor system is operated in a shielded room with two layers of soft magnetic material and one layer of Al. The every day noise level is 10 fT/Hz{sup 1/2} at frequencies above 10 Hz. Within 2 years of operation in a normal urban surrounding, useful clinical applications have been demonstrated (e.g. for epilepsy and heart arrhythmias).

  9. Crack propagation analysis using acoustic emission sensors for structural health monitoring systems.

    PubMed

    Kral, Zachary; Horn, Walter; Steck, James

    2013-01-01

    Aerospace systems are expected to remain in service well beyond their designed life. Consequently, maintenance is an important issue. A novel method of implementing artificial neural networks and acoustic emission sensors to form a structural health monitoring (SHM) system for aerospace inspection routines was the focus of this research. Simple structural elements, consisting of flat aluminum plates of AL 2024-T3, were subjected to increasing static tensile loading. As the loading increased, designed cracks extended in length, releasing strain waves in the process. Strain wave signals, measured by acoustic emission sensors, were further analyzed in post-processing by artificial neural networks (ANN). Several experiments were performed to determine the severity and location of the crack extensions in the structure. ANNs were trained on a portion of the data acquired by the sensors and the ANNs were then validated with the remaining data. The combination of a system of acoustic emission sensors, and an ANN could determine crack extension accurately. The difference between predicted and actual crack extensions was determined to be between 0.004 in. and 0.015 in. with 95% confidence. These ANNs, coupled with acoustic emission sensors, showed promise for the creation of an SHM system for aerospace systems. PMID:24023536

  10. Crack Propagation Analysis Using Acoustic Emission Sensors for Structural Health Monitoring Systems

    DOE PAGESBeta

    Kral, Zachary; Horn, Walter; Steck, James

    2013-01-01

    Aerospace systems are expected to remain in service well beyond their designed life. Consequently, maintenance is an important issue. A novel method of implementing artificial neural networks and acoustic emission sensors to form a structural health monitoring (SHM) system for aerospace inspection routines was the focus of this research. Simple structural elements, consisting of flat aluminum plates of AL 2024-T3, were subjected to increasing static tensile loading. As the loading increased, designed cracks extended in length, releasing strain waves in the process. Strain wave signals, measured by acoustic emission sensors, were further analyzed in post-processing by artificial neural networks (ANN).more » Several experiments were performed to determine the severity and location of the crack extensions in the structure. ANNs were trained on a portion of the data acquired by the sensors and the ANNs were then validated with the remaining data. The combination of a system of acoustic emission sensors, and an ANN could determine crack extension accurately. The difference between predicted and actual crack extensions was determined to be between 0.004 in. and 0.015 in. with 95% confidence. These ANNs, coupled with acoustic emission sensors, showed promise for the creation of an SHM system for aerospace systems.« less

  11. Crack Propagation Analysis Using Acoustic Emission Sensors for Structural Health Monitoring Systems

    PubMed Central

    Horn, Walter; Steck, James

    2013-01-01

    Aerospace systems are expected to remain in service well beyond their designed life. Consequently, maintenance is an important issue. A novel method of implementing artificial neural networks and acoustic emission sensors to form a structural health monitoring (SHM) system for aerospace inspection routines was the focus of this research. Simple structural elements, consisting of flat aluminum plates of AL 2024-T3, were subjected to increasing static tensile loading. As the loading increased, designed cracks extended in length, releasing strain waves in the process. Strain wave signals, measured by acoustic emission sensors, were further analyzed in post-processing by artificial neural networks (ANN). Several experiments were performed to determine the severity and location of the crack extensions in the structure. ANNs were trained on a portion of the data acquired by the sensors and the ANNs were then validated with the remaining data. The combination of a system of acoustic emission sensors, and an ANN could determine crack extension accurately. The difference between predicted and actual crack extensions was determined to be between 0.004 in. and 0.015 in. with 95% confidence. These ANNs, coupled with acoustic emission sensors, showed promise for the creation of an SHM system for aerospace systems. PMID:24023536

  12. Ultrasonic fingerprint sensor using a piezoelectric micromachined ultrasonic transducer array integrated with complementary metal oxide semiconductor electronics

    SciTech Connect

    Lu, Y.; Fung, S.; Wang, Q.; Horsley, D. A.; Tang, H.; Boser, B. E.; Tsai, J. M.; Daneman, M.

    2015-06-29

    This paper presents an ultrasonic fingerprint sensor based on a 24 × 8 array of 22 MHz piezoelectric micromachined ultrasonic transducers (PMUTs) with 100 μm pitch, fully integrated with 180 nm complementary metal oxide semiconductor (CMOS) circuitry through eutectic wafer bonding. Each PMUT is directly bonded to a dedicated CMOS receive amplifier, minimizing electrical parasitics and eliminating the need for through-silicon vias. The array frequency response and vibration mode-shape were characterized using laser Doppler vibrometry and verified via finite element method simulation. The array's acoustic output was measured using a hydrophone to be ∼14 kPa with a 28 V input, in reasonable agreement with predication from analytical calculation. Pulse-echo imaging of a 1D steel grating is demonstrated using electronic scanning of a 20 × 8 sub-array, resulting in 300 mV maximum received amplitude and 5:1 contrast ratio. Because the small size of this array limits the maximum image size, mechanical scanning was used to image a 2D polydimethylsiloxane fingerprint phantom (10 mm × 8 mm) at a 1.2 mm distance from the array.

  13. Acoustic intensity methods and their applications to vector sensor use and design

    NASA Astrophysics Data System (ADS)

    Naluai, Nathan Kahikina

    Applications of acoustic intensity processing methods to vector sensor output signals are investigated for three specific cases: acoustic intensity scattering, spatial correlations of intensities, and conceptual design of a high frequency inertial vector sensor with a novel suspension. An overview of intensity processing is presented and the concept of a complex intensity is illustrated. Measurement techniques for determining the complex intensity spectra from the signals received by a standard acoustic vector sensor are demonstrated. Acoustic intensity processing of signals from SSQ-53D sonobuoys is used to enhance the detection of submerged bodies in bi-static sonar applications. Deep water experiments conducted at Lake Pend Oreille in northern Idaho are described. A submerged body is located between a source and a number of SSQ-53D sonobuoy receivers. Scalar pressure measurements change by less than 0.5 dB when the scattering body is inserted in the field. The phase of the orthogonal intensity component shows repeatable and strong variations of nearly 55°. The classical solution for the spatial correlation of the pressure field is presented. The derivation techniques are expanded to derive previously unsolved analytic forms for the spatial correlations of separated intensity field components based on combinations of the solutions for various pressure and velocity components. Experimental validation of these correlation solutions are performed computationally and in an underwater environment. The computational experiments are designed to test highly controlled variations to the idealized case (e.g. sound field content, transducer phasing issues, additive output noise, etc.) Additional verification is provided from physical tests measuring the correlations between a pair of acoustic vector sensors in a large reverberant tank which is excited acoustically with broadband noise. The results successfully corroborate the derivation methods for correlations of

  14. Quantitative ultrasound images generated by a PE-CMOS sensor array: scatter modeling and image restoration

    NASA Astrophysics Data System (ADS)

    Liu, Chu-Chuan; Lo, Shih-Chung Ben; Freedman, Matthew T.; Lasser, Marvin E.; Lasser, Bob; Kula, John; Wang, Yue Joseph

    2007-03-01

    In the projection geometry, the detected ultrasound energy through a soft-tissue is mainly attributed to the attenuated primary intensity and the scatter intensity. In order to extract ultrasound image of attenuated primary beam out of the detected raw data, the scatter component must be carefully quantified for restoring the original image. In this study, we have designed a set of apparatus to modeling the ultrasound scattering in soft-tissue. The employed ultrasound imaging device was a C-Scan (projection) prototype using a 4th generation PE-CMOS sensor array (model I400, by Imperium Inc., Silver Spring, MD) as the detector. Right after the plane wave ultrasound transmitting through a soft-tissue mimicking material (Zerdine, by CIRS Inc., Norfolk, VA), a ring aperture is used to collimate the signal before reaching the acoustic lens and the PE-CMOS sensor. Three sets of collimated ring images were acquired and analyzed to obtain the scattering components as a function of the off-center distance. Several pathological specimens and breast phantoms consisting of simulated breast tissue with masses, cysts and microcalcifications were imaged by the same C-Scan imaging prototype. The restoration of these ultrasound images were performed by using a standard deconvolution computation. Our study indicated that the resultant images show shaper edges and detailed features as compared to their unprocessed counterparts.

  15. 77 FR 52317 - Record of Decision for Surveillance Towed Array Sensor System Low Frequency Active Sonar

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-29

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF DEFENSE Department of the Navy Record of Decision for Surveillance Towed Array Sensor System Low Frequency Active... Array Sensor System Low Frequency Active (SURTASS LFA) sonar systems with certain...

  16. All-fiber photoacoustic gas sensor with graphene nano-mechanical resonator as the acoustic detector

    NASA Astrophysics Data System (ADS)

    Yanzhen, Tan; Fan, Yang; Jun, Ma; Hoi Lut, Ho; Wei, Jin

    2015-09-01

    We demonstrate an all-optical-fiber photoacoustic (PA) spectrometric gas sensor with a graphene nano-mechanical resonator as the acoustic detector. The acoustic detection is performed by a miniature ferrule-top nano-mechanical resonator with a ˜100-nm-thick, 2.5-mm-diameter multilayer graphene diaphragm. Experimental investigation showed that the performance of the PA gas sensor can be significantly enhanced by operating at the resonance of the grapheme diaphragm where a lower detection limit of 153 parts-per-billion (ppb) acetylene is achieved. The all-fiber PA sensor which is immune to electromagnetic interference and safe in explosive environments is ideally suited for real-world remote, space-limited applications and for multipoint detection in a multiplexed fiber optic sensor network.

  17. Auxiliary Components for Kilopixel Transition Edge Sensor Arrays

    NASA Technical Reports Server (NTRS)

    Brown, Ari-David; Chervenak, James A.; Chuss, David; Hilton Gene C.; Mikula, Vilem; Henry, ROss; Wollack, Edward; Zhao, Yue

    2007-01-01

    We have fabricated transition edge sensor bolometer focal plane arrays sensitive to mm-submillimeter (0.1-3 THz) radiation for the Atacama Cosmology Telescope (ACT), which will probe the cosmic microwave background at 0.147,0.215, and 0.279 GHz. Central to the performance of these bolometers is a set of auxiliary resistive components. Here we discuss shunt resistors, which allow for tight optimization of bolometer time constant and sensitivity. Our shunt resistors consist of AuPd strips grown atop of interdigitated superconducting MoN, wires. We can tailor the shunt resistance by altering the dimensions of the AuPd strips and the pitch and width of the MoN, wires and can fabricate over 1000 shunts on a single 4" wafer. By modeling the resistance dependence of these parameters, a variety of different 0.77 +I-0.13 mOhm shunt resistors have been fabricated. This variety includes different shunts possessing MoN, wires with wire width equal to 1.5 and 10 microns and pitch equal to 4.5 and 26 microns, respectively. Our ability to set the resistance of the shunts hints at the scalability of our design. We have also integrated a Si02 capping layer into our shunt resistor fabrication scheme, which inhibits metal corrosion and eventual degradation of the shunt. Consequently, their robustness coupled with their high packing density makes these resistive components attractive for future kilopixel detector arrays.

  18. A Hall sensor array for internal current profile constraint.

    PubMed

    Bongard, M W; Fonck, R J; Lewicki, B T; Redd, A J

    2010-10-01

    Measurements of the internal distribution of B in magnetically confined plasmas are required to obtain current profiles via equilibrium reconstruction with sufficient accuracy to challenge stability theory. A 16-channel linear array of InSb Hall effect sensors with 7.5 mm spatial resolution has been constructed to directly measure internal B(z)(R,t) for determination of J(ψ,t) associated with edge-localized peeling mode instabilities in the Pegasus Toroidal Experiment. The diagnostic is mounted in an electrically isolated vacuum assembly which presents a slim, cylindrical profile (∼1 cm outside diameter) to the plasma using graphite as a low-Z plasma facing component. Absolute calibration of the sensors is determined via in situ cross-calibration against existing magnetic pickup coils. Present channel sensitivities are of order of 0.25 mT. Internal measurements with bandwidth of ≤25 kHz have been obtained without measurable plasma perturbation. They resolve n=1 internal magnetohydrodynamics and indicate systematic variation in J(ψ) under different stability conditions. PMID:21033970

  19. A Hall sensor array for internal current profile constraint

    SciTech Connect

    Bongard, M. W.; Fonck, R. J.; Lewicki, B. T.; Redd, A. J.

    2010-10-15

    Measurements of the internal distribution of B in magnetically confined plasmas are required to obtain current profiles via equilibrium reconstruction with sufficient accuracy to challenge stability theory. A 16-channel linear array of InSb Hall effect sensors with 7.5 mm spatial resolution has been constructed to directly measure internal B{sub z}(R,t) for determination of J({psi},t) associated with edge-localized peeling mode instabilities in the Pegasus Toroidal Experiment. The diagnostic is mounted in an electrically isolated vacuum assembly which presents a slim, cylindrical profile ({approx}1 cm outside diameter) to the plasma using graphite as a low-Z plasma facing component. Absolute calibration of the sensors is determined via in situ cross-calibration against existing magnetic pickup coils. Present channel sensitivities are of order of 0.25 mT. Internal measurements with bandwidth of {<=}25 kHz have been obtained without measurable plasma perturbation. They resolve n=1 internal magnetohydrodynamics and indicate systematic variation in J({psi}) under different stability conditions.

  20. Artificial olfactory system with fault-tolerant sensor array.

    PubMed

    Lotfivand, Nasser; Abdolzadeh, Vida; Hamidon, Mohd Nizar

    2016-07-01

    Numerous applications of artificial olfaction resulting from research in many branches of sciences have caused considerable interest in the enhancement of these systems. In this paper, we offer an architecture which is suitable for critical applications, such as medical diagnosis, where reliability and precision are deemed important. The proposed architecture is able to tolerate failures in the sensors of the array. In this study, the discriminating ability of the proposed architecture in detecting complex odors, as well as the performance of the proposed architecture in encountering sensor failure, were investigated and compared with the generic architecture. The results demonstrated that by applying the proposed architecture in the artificial olfactory system, the performance of system in the healthy mode was identical to the classic structure. However, in the faulty situation, the proposed architecture implied high identification ability of odor samples, while the generic architecture showed very poor performance in the same situation. Based on the results, it was possible to achieve high odor identification through the developed artificial olfactory system using the proposed architecture. PMID:27038885

  1. Multifunctional potentiometric gas sensor array with an integrated temperature control and temperature sensors

    DOEpatents

    Blackburn, Bryan M; Wachsman, Eric D

    2015-05-12

    Embodiments of the subject invention relate to a gas sensor and method for sensing one or more gases. An embodiment incorporates an array of sensing electrodes maintained at similar or different temperatures, such that the sensitivity and species selectivity of the device can be fine tuned between different pairs of sensing electrodes. A specific embodiment pertains to a gas sensor array for monitoring combustion exhausts and/or chemical reaction byproducts. An embodiment of the subject device related to this invention operates at high temperatures and can withstand harsh chemical environments. Embodiments of the device are made on a single substrate. The devices can also be made on individual substrates and monitored individually as if they were part of an array on a single substrate. The device can incorporate sensing electrodes in the same environment, which allows the electrodes to be coplanar and, thus, keep manufacturing costs low. Embodiments of the device can provide improvements to sensitivity, selectivity, and signal interference via surface temperature control.

  2. High sensitivity carbon nanotube based electrochemiluminescence sensor array.

    PubMed

    Venkatanarayanan, Anita; Crowley, Karl; Lestini, Elena; Keyes, Tia E; Rusling, James F; Forster, Robert J

    2012-01-15

    Ink jet printed carbon nanotube forest arrays capable of detecting picomolar concentrations of immunoglobulin G (IgG) using electrochemiluminescence (ECL) are described. Patterned arrays of vertically aligned single walled carbon nanotube (SWCNT) forests were printed on indium tin oxide (ITO) electrodes. Capture anti-IgG antibodies were then coupled through peptide bond formation to acidic functional groups on the vertical nanotubes. IgG immunoassays were performed using silica nano particles (Si NP) functionalized with the ECL luminophore [Ru(bpy)(2)PICH(2)](2+)], and IgG labelled G1.5 acid terminated PAMAM dendrimers. PAMAM is poly(amido amine), bpy is 2,2'-bipyridyl and PICH(2) is (2-(4-carboxyphenyl)imidazo[4,5-f][1,10]phenanthroline). The carboxyl terminal of [Ru(bpy)(2)PICH(2)](2+) (fluorescence lifetime ≈ 682±5 ns) dye was covalently coupled to amine groups on the 800 nm diameter silica spheres in order to produce significant ECL enhancement in the presence of sodium oxalate as co-reactant in PBS at pH 7.2). Significantly, this SWCNT-based sensor array shows a wide linear dynamic range for IgG coated spheres (10(6) to 10(12) spheres) corresponding to IgG concentrations between 20 pM and 300 nM. A detection limit of 1.1±0.1 pM IgG is obtained under optimal conditions. PMID:22137061

  3. Acoustic Detection Of Loose Particles In Pressure Sensors

    NASA Technical Reports Server (NTRS)

    Kwok, Lloyd C.

    1995-01-01

    Particle-impact-noise-detector (PIND) apparatus used in conjunction with computer program analyzing output of apparatus to detect extraneous particles trapped in pressure sensors. PIND tester essentially shaker equipped with microphone measuring noise in pressure sensor or other object being shaken. Shaker applies controlled vibration. Output of microphone recorded and expressed in terms of voltage, yielding history of noise subsequently processed by computer program. Data taken at sampling rate sufficiently high to enable identification of all impacts of particles on sensor diaphragm and on inner surfaces of sensor cavities.

  4. Acoustic Source Localization via Time Difference of Arrival Estimation for Distributed Sensor Networks Using Tera-Scale Optical Core Devices

    DOE PAGESBeta

    Imam, Neena; Barhen, Jacob

    2009-01-01

    For real-time acoustic source localization applications, one of the primary challenges is the considerable growth in computational complexity associated with the emergence of ever larger, active or passive, distributed sensor networks. These sensors rely heavily on battery-operated system components to achieve highly functional automation in signal and information processing. In order to keep communication requirements minimal, it is desirable to perform as much processing on the receiver platforms as possible. However, the complexity of the calculations needed to achieve accurate source localization increases dramatically with the size of sensor arrays, resulting in substantial growth of computational requirements that cannot bemore » readily met with standard hardware. One option to meet this challenge builds upon the emergence of digital optical-core devices. The objective of this work was to explore the implementation of key building block algorithms used in underwater source localization on the optical-core digital processing platform recently introduced by Lenslet Inc. This demonstration of considerably faster signal processing capability should be of substantial significance to the design and innovation of future generations of distributed sensor networks.« less

  5. A surface-acoustic-wave-based cantilever bio-sensor.

    PubMed

    De Simoni, Giorgio; Signore, Giovanni; Agostini, Matteo; Beltram, Fabio; Piazza, Vincenzo

    2015-06-15

    A scalable surface-acoustic-wave- (SAW-) based cantilevered device for portable bio-chemical sensing applications is presented. Even in the current, proof-of-principle implementation this architecture is shown to outperform commercial quartz-crystal microbalances in terms of sensitivity. Adhesion of analytes on a functionalized surface of the cantilever shifts the resonant frequency of a SAW-generating transducer due to the stress-induced variation of the speed of surface acoustic modes. We discuss the relevance of this approach for diagnostics applications based on miniaturized devices. PMID:25643594

  6. Surface acoustic wave/silicon monolithic sensor/processor

    NASA Technical Reports Server (NTRS)

    Kowel, S. T.; Kornreich, P. G.; Nouhi, A.; Kilmer, R.; Fathimulla, M. A.; Mehter, E.

    1983-01-01

    A new technique for sputter deposition of piezoelectric zinc oxide (ZnO) is described. An argon-ion milling system was converted to sputter zinc oxide films in an oxygen atmosphere using a pure zinc oxide target. Piezoelectric films were grown on silicon dioxide and silicon dioxide overlayed with gold. The sputtered films were evaluated using surface acoustic wave measurements, X-ray diffraction, scanning electron microscopy, Auger electron spectroscopy, and resistivity measurements. The effect of the sputtering conditions on the film quality and the result of post-deposition annealing are discussed. The application of these films to the generation of surface acoustic waves is also discussed.

  7. Increasing lifetimes of fiber-optic sensor arrays for chemical warfare detection

    NASA Astrophysics Data System (ADS)

    Bencic, Sandra; Walt, David R.

    2004-03-01

    We are exploring the ability of cross reactive sensor arrays to monitor the presence of chemical warfare agents. The sensing platform developed in our lab uses a variety of fluorescent microbead sensors, either 3 or 5 microns in diameter. The sensors have a wide range of surface functionalities and are coated with fluorescent dyes that change their emission properties upon interaction with analyte vapors. Every time the sensors are interrogated with light they photobleach which leads to signal loss and a decreased array lifetime. In order to monitor for long periods of time, a strategy has been developed that extends the array lifetime. Here, we implement a method to increase the lifetime of an array by up to 10-fold, as we incrementally expose small sections of the array at a time. We divide the array into sections by moving an optical slit across the face of the fiber.

  8. Data set from gas sensor array under flow modulation☆

    PubMed Central

    Ziyatdinov, Andrey; Fonollosa, Jordi; Fernández, Luis; Gutiérrez-Gálvez, Agustín; Marco, Santiago; Perera, Alexandre

    2015-01-01

    Recent studies in neuroscience suggest that sniffing, namely sampling odors actively, plays an important role in olfactory system, especially in certain scenarios such as novel odorant detection. While the computational advantages of high frequency sampling have not been yet elucidated, here, in order to motivate further investigation in active sampling strategies, we share the data from an artificial olfactory system made of 16 MOX gas sensors under gas flow modulation. The data were acquired on a custom set up featured by an external mechanical ventilator that emulates the biological respiration cycle. 58 samples were recorded in response to a relatively broad set of 12 gas classes, defined from different binary mixtures of acetone and ethanol in air. The acquired time series show two dominant frequency bands: the low-frequency signal corresponds to a conventional response curve of a sensor in response to a gas pulse, and the high-frequency signal has a clear principal harmonic at the respiration frequency. The data are related to the study in [1], and the data analysis results reported there should be considered as a reference point. The data presented here have been deposited to the web site of The University of California at Irvine (UCI) Machine Learning Repository (https://archive.ics.uci.edu/ml/datasets/Gas+sensor+array+under+flow+modulation). The code repository for reproducible analysis applied to the data is hosted at the GutHub web site (https://github.com/variani/pulmon). The data and code can be used upon citation of [1]. PMID:26217733

  9. Data set from gas sensor array under flow modulation.

    PubMed

    Ziyatdinov, Andrey; Fonollosa, Jordi; Fernández, Luis; Gutiérrez-Gálvez, Agustín; Marco, Santiago; Perera, Alexandre

    2015-06-01

    Recent studies in neuroscience suggest that sniffing, namely sampling odors actively, plays an important role in olfactory system, especially in certain scenarios such as novel odorant detection. While the computational advantages of high frequency sampling have not been yet elucidated, here, in order to motivate further investigation in active sampling strategies, we share the data from an artificial olfactory system made of 16 MOX gas sensors under gas flow modulation. The data were acquired on a custom set up featured by an external mechanical ventilator that emulates the biological respiration cycle. 58 samples were recorded in response to a relatively broad set of 12 gas classes, defined from different binary mixtures of acetone and ethanol in air. The acquired time series show two dominant frequency bands: the low-frequency signal corresponds to a conventional response curve of a sensor in response to a gas pulse, and the high-frequency signal has a clear principal harmonic at the respiration frequency. The data are related to the study in [1], and the data analysis results reported there should be considered as a reference point. The data presented here have been deposited to the web site of The University of California at Irvine (UCI) Machine Learning Repository (https://archive.ics.uci.edu/ml/datasets/Gas+sensor+array+under+flow+modulation). The code repository for reproducible analysis applied to the data is hosted at the GutHub web site (https://github.com/variani/pulmon). The data and code can be used upon citation of [1]. PMID:26217733

  10. Orthographic Projection Capillary Array Fluorescent Sensor for mHealth

    PubMed Central

    Balsam, Joshua; Bruck, Hugh Alan; Rasooly, Avraham

    2013-01-01

    To overcome the limited sensitivity of phone cameras for mobile health (mHealth) fluorescent detection, we have previously developed a capillary array which enables a ~100× increase in detection sensitivity. However, for an effective detection platform, the optical configuration must allow for uniform measurement sensitivity between channels when using such a capillary array sensor. This is a challenge due to the parallax inherent in imaging long parallel capillary tubes with typical lens configurations. To enable effective detection, we have developed an orthographic projection system in this work which forms parallel light projection images from the capillaries using an object-space telecentric lens configuration. This optical configuration results in a significantly higher degree of uniformity in measurement between channels, as well as a significantly reduced focal distance, which enables a more compact sensor. A plano-convex lens (f = 150 mm) was shown to produce a uniform orthographic projection when properly combined with the phone camera’s built in lens (f = 4 mm), enabling measurements of long capillaries (125 mm) to be made from a distance of 160 mm. The number of parallel measurements which can be made is determined by the size of the secondary lens. Based on these results, a more compact configuration with shorter 32 mm capillaries and a plano-convex lens with a shorter focal length (f = 10 mm) was constructed. This optical system was used to measure serial dilutions of fluorescein with a limit of detection (LOD) of 10 nM, similar to the LOD of a commercial plate reader. However, many plate readers based on standard 96 well plate requires sample volumes of 100 ul for measurement, while the capillary array requires a sample volume of less than 10 ul. This optical configuration allows for a device to make use of the ~100× increase in fluorescent detection sensitivity produced by capillary amplification while maintaining a compact size and capability

  11. Spatiotemporal and geometric optimization of sensor arrays for detecting analytes in fluids

    DOEpatents

    Lewis, Nathan S.; Freund, Michael S.; Briglin, Shawn S.; Tokumaru, Phillip; Martin, Charles R.; Mitchell, David

    2009-09-29

    Sensor arrays and sensor array systems for detecting analytes in fluids. Sensors configured to generate a response upon introduction of a fluid containing one or more analytes can be located on one or more surfaces relative to one or more fluid channels in an array. Fluid channels can take the form of pores or holes in a substrate material. Fluid channels can be formed between one or more substrate plates. Sensor can be fabricated with substantially optimized sensor volumes to generate a response having a substantially maximized signal to noise ratio upon introduction of a fluid containing one or more target analytes. Methods of fabricating and using such sensor arrays and systems are also disclosed.

  12. Spatiotemporal and geometric optimization of sensor arrays for detecting analytes fluids

    DOEpatents

    Lewis, Nathan S.; Freund, Michael S.; Briglin, Shawn M.; Tokumaru, Phil; Martin, Charles R.; Mitchell, David T.

    2006-10-17

    Sensor arrays and sensor array systems for detecting analytes in fluids. Sensors configured to generate a response upon introduction of a fluid containing one or more analytes can be located on one or more surfaces relative to one or more fluid channels in an array. Fluid channels can take the form of pores or holes in a substrate material. Fluid channels can be formed between one or more substrate plates. Sensor can be fabricated with substantially optimized sensor volumes to generate a response having a substantially maximized signal to noise ratio upon introduction of a fluid containing one or more target analytes. Methods of fabricating and using such sensor arrays and systems are also disclosed.

  13. Underwater patch near-field acoustical holography based on particle velocity and vector hydrophone array

    NASA Astrophysics Data System (ADS)

    Hu, Bo; Yang, DeSen; Li, SiChun; Sun, Yu; Mo, ShiQi; Shi, ShengGuo

    2012-11-01

    One-step patch near-field acoustical holography (PNAH) is a powerful tool for identifying noise sources from the partially known sound pressure field. The acoustical property to be reconstructed on the surface of interest is related to the partially measured pressure on the hologram surface in terms of sampling and bandlimiting matrices, which cost more in computation. A one-step procedure based on measuring of the normal component of the particle velocity is described, including the mathematical formulation. The numerical simulation shows that one-step PNAH based on particle velocity can obtain more accurately reconstructed results and it is also less sensitive to noise than the method based on pressure. These findings are confirmed by an underwater near-field acoustical holography experiment conducted with a vector hydrophone array. The experimental results have illustrated the high performance of one-step PNAH based on particle velocity in the reconstruction of sound field and the advantages of a vector hydrophone array in an underwater near-field measurement.

  14. Detection of Volatile Organic Compounds by Self-assembled Monolayer Coated Sensor Array with Concentration-independent Fingerprints.

    PubMed

    Chang, Ye; Tang, Ning; Qu, Hemi; Liu, Jing; Zhang, Daihua; Zhang, Hao; Pang, Wei; Duan, Xuexin

    2016-01-01

    In this paper, we have modeled and analyzed affinities and kinetics of volatile organic compounds (VOCs) adsorption (and desorption) on various surface chemical groups using multiple self-assembled monolayers (SAMs) functionalized film bulk acoustic resonator (FBAR) array. The high-frequency and micro-scale resonator provides improved sensitivity in the detections of VOCs at trace levels. With the study of affinities and kinetics, three concentration-independent intrinsic parameters (monolayer adsorption capacity, adsorption energy constant and desorption rate) of gas-surface interactions are obtained to contribute to a multi-parameter fingerprint library of VOC analytes. Effects of functional group's properties on gas-surface interactions are also discussed. The proposed sensor array with concentration-independent fingerprint library shows potential as a portable electronic nose (e-nose) system for VOCs discrimination and gas-sensitive materials selections. PMID:27045012

  15. Detection of Volatile Organic Compounds by Self-assembled Monolayer Coated Sensor Array with Concentration-independent Fingerprints

    NASA Astrophysics Data System (ADS)

    Chang, Ye; Tang, Ning; Qu, Hemi; Liu, Jing; Zhang, Daihua; Zhang, Hao; Pang, Wei; Duan, Xuexin

    2016-04-01

    In this paper, we have modeled and analyzed affinities and kinetics of volatile organic compounds (VOCs) adsorption (and desorption) on various surface chemical groups using multiple self-assembled monolayers (SAMs) functionalized film bulk acoustic resonator (FBAR) array. The high-frequency and micro-scale resonator provides improved sensitivity in the detections of VOCs at trace levels. With the study of affinities and kinetics, three concentration-independent intrinsic parameters (monolayer adsorption capacity, adsorption energy constant and desorption rate) of gas-surface interactions are obtained to contribute to a multi-parameter fingerprint library of VOC analytes. Effects of functional group’s properties on gas-surface interactions are also discussed. The proposed sensor array with concentration-independent fingerprint library shows potential as a portable electronic nose (e-nose) system for VOCs discrimination and gas-sensitive materials selections.

  16. Detection of Volatile Organic Compounds by Self-assembled Monolayer Coated Sensor Array with Concentration-independent Fingerprints

    PubMed Central

    Chang, Ye; Tang, Ning; Qu, Hemi; Liu, Jing; Zhang, Daihua; Zhang, Hao; Pang, Wei; Duan, Xuexin

    2016-01-01

    In this paper, we have modeled and analyzed affinities and kinetics of volatile organic compounds (VOCs) adsorption (and desorption) on various surface chemical groups using multiple self-assembled monolayers (SAMs) functionalized film bulk acoustic resonator (FBAR) array. The high-frequency and micro-scale resonator provides improved sensitivity in the detections of VOCs at trace levels. With the study of affinities and kinetics, three concentration-independent intrinsic parameters (monolayer adsorption capacity, adsorption energy constant and desorption rate) of gas-surface interactions are obtained to contribute to a multi-parameter fingerprint library of VOC analytes. Effects of functional group’s properties on gas-surface interactions are also discussed. The proposed sensor array with concentration-independent fingerprint library shows potential as a portable electronic nose (e-nose) system for VOCs discrimination and gas-sensitive materials selections. PMID:27045012

  17. Bio-Inspired Miniature Direction Finding Acoustic Sensor

    PubMed Central

    Wilmott, Daniel; Alves, Fabio; Karunasiri, Gamani

    2016-01-01

    A narrowband MEMS direction finding sensor has been developed based on the mechanically coupled ears of the Ormia Ochracea fly. The sensor consists of two wings coupled at the middle and attached to a substrate using two legs. The sensor operates at its bending resonance frequency and has cosine directional characteristics similar to that of a pressure gradient microphone. Thus, the directional response of the sensor is symmetric about the normal axis making the determination of the direction ambiguous. To overcome this shortcoming two sensors were assembled with a canted angle similar to that employed in radar bearing locators. The outputs of two sensors were processed together allowing direction finding with no requirement of knowing the incident sound pressure level. At the bending resonant frequency of the sensors (1.69 kHz) an output voltage of about 25 V/Pa was measured. The angle uncertainty of the bearing of sound ranged from less than 0.3° close to the normal axis (0°) to 3.4° at the limits of coverage (±60°) based on the 30° canted angle used. These findings indicate the great potential to use dual MEMS direction finding sensor assemblies to locate sound sources with high accuracy. PMID:27440657

  18. Bio-Inspired Miniature Direction Finding Acoustic Sensor

    NASA Astrophysics Data System (ADS)

    Wilmott, Daniel; Alves, Fabio; Karunasiri, Gamani

    2016-07-01

    A narrowband MEMS direction finding sensor has been developed based on the mechanically coupled ears of the Ormia Ochracea fly. The sensor consists of two wings coupled at the middle and attached to a substrate using two legs. The sensor operates at its bending resonance frequency and has cosine directional characteristics similar to that of a pressure gradient microphone. Thus, the directional response of the sensor is symmetric about the normal axis making the determination of the direction ambiguous. To overcome this shortcoming two sensors were assembled with a canted angle similar to that employed in radar bearing locators. The outputs of two sensors were processed together allowing direction finding with no requirement of knowing the incident sound pressure level. At the bending resonant frequency of the sensors (1.69 kHz) an output voltage of about 25 V/Pa was measured. The angle uncertainty of the bearing of sound ranged from less than 0.3° close to the normal axis (0°) to 3.4° at the limits of coverage (±60°) based on the 30° canted angle used. These findings indicate the great potential to use dual MEMS direction finding sensor assemblies to locate sound sources with high accuracy.

  19. Bio-Inspired Miniature Direction Finding Acoustic Sensor.

    PubMed

    Wilmott, Daniel; Alves, Fabio; Karunasiri, Gamani

    2016-01-01

    A narrowband MEMS direction finding sensor has been developed based on the mechanically coupled ears of the Ormia Ochracea fly. The sensor consists of two wings coupled at the middle and attached to a substrate using two legs. The sensor operates at its bending resonance frequency and has cosine directional characteristics similar to that of a pressure gradient microphone. Thus, the directional response of the sensor is symmetric about the normal axis making the determination of the direction ambiguous. To overcome this shortcoming two sensors were assembled with a canted angle similar to that employed in radar bearing locators. The outputs of two sensors were processed together allowing direction finding with no requirement of knowing the incident sound pressure level. At the bending resonant frequency of the sensors (1.69 kHz) an output voltage of about 25 V/Pa was measured. The angle uncertainty of the bearing of sound ranged from less than 0.3° close to the normal axis (0°) to 3.4° at the limits of coverage (±60°) based on the 30° canted angle used. These findings indicate the great potential to use dual MEMS direction finding sensor assemblies to locate sound sources with high accuracy. PMID:27440657

  20. Fast contactless vibrating structure characterization using real time field programmable gate array-based digital signal processing: demonstrations with a passive wireless acoustic delay line probe and vision.

    PubMed

    Goavec-Mérou, G; Chrétien, N; Friedt, J-M; Sandoz, P; Martin, G; Lenczner, M; Ballandras, S

    2014-01-01

    Vibrating mechanical structure characterization is demonstrated using contactless techniques best suited for mobile and rotating equipments. Fast measurement rates are achieved using Field Programmable Gate Array (FPGA) devices as real-time digital signal processors. Two kinds of algorithms are implemented on FPGA and experimentally validated in the case of the vibrating tuning fork. A first application concerns in-plane displacement detection by vision with sampling rates above 10 kHz, thus reaching frequency ranges above the audio range. A second demonstration concerns pulsed-RADAR cooperative target phase detection and is applied to radiofrequency acoustic transducers used as passive wireless strain gauges. In this case, the 250 ksamples/s refresh rate achieved is only limited by the acoustic sensor design but not by the detection bandwidth. These realizations illustrate the efficiency, interest, and potentialities of FPGA-based real-time digital signal processing for the contactless interrogation of passive embedded probes with high refresh rates. PMID:24517814

  1. Fast contactless vibrating structure characterization using real time field programmable gate array-based digital signal processing: Demonstrations with a passive wireless acoustic delay line probe and vision

    NASA Astrophysics Data System (ADS)

    Goavec-Mérou, G.; Chrétien, N.; Friedt, J.-M.; Sandoz, P.; Martin, G.; Lenczner, M.; Ballandras, S.

    2014-01-01

    Vibrating mechanical structure characterization is demonstrated using contactless techniques best suited for mobile and rotating equipments. Fast measurement rates are achieved using Field Programmable Gate Array (FPGA) devices as real-time digital signal processors. Two kinds of algorithms are implemented on FPGA and experimentally validated in the case of the vibrating tuning fork. A first application concerns in-plane displacement detection by vision with sampling rates above 10 kHz, thus reaching frequency ranges above the audio range. A second demonstration concerns pulsed-RADAR cooperative target phase detection and is applied to radiofrequency acoustic transducers used as passive wireless strain gauges. In this case, the 250 ksamples/s refresh rate achieved is only limited by the acoustic sensor design but not by the detection bandwidth. These realizations illustrate the efficiency, interest, and potentialities of FPGA-based real-time digital signal processing for the contactless interrogation of passive embedded probes with high refresh rates.

  2. Low acoustic attenuation silicone rubber lens for medical ultrasonic array probe.

    PubMed

    Itsumi, Kazuhiro; Hosono, Yasuharu; Yamamoto, Noriko; Yamashita, Yohachi John

    2009-04-01

    Effects of heavy density (rho = 9.2 x 10(3) kg/m(3)) Yb(2)O(3) fine dopant (16 nm in diameter) on the acoustic properties of a high-temperature-vulcanization (HTV) silicone rubber have been investigated, to develop a new acoustic lens material with a low acoustic attenuation (alpha) for the medical array probe application. The HTV silicone rubber has advantages in that it shows a lower alpha than that of a room-temperature-vulcanization (RTV) silicone rubber and it can be mixed by applying shear stress, using roll-milling equipment. Roll-milling time dependence of the HTV silicone rubber indicates that the alpha is closely affected by the dispersion of nanopowders in the rubber matrix. The 8 vol% Yb(2)O(3)-doped HTV silicone rubber mixed for 30 min showed the lowest alpha of 0.73 dB/mm MHz with an acoustic impedance [AI = sound speed (c) x density (rho)] of 1.43 x 10(6) kg/m(2)s at 37 degrees C. Moreover, simulation results reveal that a 5 MHz linear probe using the HTV silicone rubber doped with Yb(2)O(3) powder showed relative sensitivity around 2.6 to 3.0 dB higher than a probe using RTV silicone rubber doped with Yb(2)O(3) powder or SiO2-doped conventional silicone rubber for the ultrasonic medical application. PMID:19406717

  3. Method for simultaneously making a plurality of acoustic signal sensor elements

    NASA Technical Reports Server (NTRS)

    Bryant, Timothy D. (Inventor); Wynkoop, Mark W. (Inventor); Holloway, Nancy M. H. (Inventor); Zuckerwar, Allan J. (Inventor)

    2005-01-01

    A fetal heart monitoring system preferably comprising a backing plate having a generally concave front surface and a generally convex back surface, and at least one sensor element attached to the concave front surface for acquiring acoustic fetal heart signals produced by a fetus within a body. The sensor element has a shape that conforms to the generally concave back surface of the backing plate. In one embodiment, the at least one sensor element comprises an inner sensor, and a plurality of outer sensors surrounding the inner sensor. The fetal heart monitoring system can further comprise a web belt, and a web belt guide movably attached to the web belt. The web belt guide being is to the convex back surface of the backing plate.

  4. Job-Oriented Basic Skills (JOBS) Program for the Acoustic Sensor Operations Strand.

    ERIC Educational Resources Information Center

    U'Ren, Paula Kabance; Baker, Meryl S.

    An effort was undertaken to develop a job-oriented basic skills curriculum appropriate for the acoustic sensor operations area, which includes members of four ratings: ocean systems technician, aviation antisubmarine warfare operator, sonar technician (surface), and sonar technician (submarine). Analysis of the job duties of the four ratings…

  5. Detection of chemical or biological artillery attacks using a seismic/acoustic sensor: preliminary results

    NASA Astrophysics Data System (ADS)

    Baker, Vincent J.; Walter, Paul A.

    2004-04-01

    Chemical and biological weapons pose a serious threat to the United States armed forces. Early detection of a chemical or biological attack is critical to the safety of soldiers in the field. The Edgewood Chemical and Biological Center (ECBC) is conducting a study using currently fielded seismic and acoustic sensors to detect chemical and biological attacks. This paper presents some preliminary results.

  6. A thickness mode acoustic wave sensor for measuring interface stiffness between two elastic materials.

    PubMed

    Chen, Jiankang; Wang, Wencai; Wang, Ji; Yang, Zengtao; Yang, Jiashi

    2008-08-01

    We studied thickness vibration of 2 elastic layers with an elastic interface mounted on a plate piezoelectric resonator. The effect of the interface elasticity on resonant frequencies was examined. The result obtained suggests an acoustic wave sensor for measuring the elastic property of an interface between 2 materials. PMID:18986911

  7. Hydrogen-Bond Basic Siloxane Phosphonate Polymers for Surface Acoustic Wave (Saw) Sensors

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A surface acoustic wave (SAW) sensor coated with a novel hydrogen-bond basic siloxane phosphonate SAW polymer gave excellent initial response and long-term performance when tested against phenol vapor and compared with polyethyleneimine (PEI), a conventional hydrogent-bond basic SAW polymer....

  8. Simulation of vehicle acoustics in support of netted sensor research and development

    NASA Astrophysics Data System (ADS)

    Christou, Carol T.; Jacyna, Garry M.

    2005-05-01

    The MITRE Corporation has initiated a three-year internally-funded research program in netted sensors, the first-year effort focusing on vehicle detection for border monitoring. An important component is developing an understanding of the complex acoustic structure of vehicle noise to aid in netted sensor-based detection and classification. This presentation will discuss the design of a high-fidelity vehicle acoustic simulator to model the generation and transmission of acoustic energy from a moving vehicle to a collection of sensor nodes. Realistic spatially-dependent automobile sounds are generated from models of the engine cylinder firing rates, muffler and manifold resonances, and speed-dependent tire whine noise. Tire noise is the dominant noise source for vehicle speeds in excess of 30 miles per hour (MPH). As a result, we have developed detailed models that successfully predict the tire noise spectrum as a function of speed, road surface wave-number spectrum, tire geometry, and tire tread pattern. We have also included realistic descriptions of the spatial directivity patterns for the engine harmonics, muffler, and tire whine noise components. The acoustic waveforms are propagated to each sensor node using a simple phase-dispersive multi-path model. A brief description of the models and their corresponding outputs is provided.

  9. Development of a standing wave apparatus for calibrating acoustic vector sensors and hydrophones.

    PubMed

    Lenhart, Richard D; Sagers, Jason D; Wilson, Preston S

    2016-01-01

    An apparatus was developed to calibrate acoustic hydrophones and vector sensors between 25 and 2000 Hz. A standing wave field is established inside a vertically oriented, water-filled, elastic-walled waveguide by a piston velocity source at the bottom and a pressure-release boundary condition at the air/water interface. A computer-controlled linear positioning system allows a device under test to be precisely located in the water column while the acoustic response is measured. Some of the challenges of calibrating hydrophones and vector sensors in such an apparatus are discussed, including designing the waveguide to mitigate dispersion, understanding the impact of waveguide structural resonances on the acoustic field, and developing algorithms to post-process calibration measurement data performed in a standing wave field. Data from waveguide characterization experiments and calibration measurements are presented and calibration uncertainty is reported. PMID:26827015

  10. Detecting Changes of a Distant Gas Source with an Array of MOX Gas Sensors

    PubMed Central

    Pashami, Sepideh; Lilienthal, Achim J.; Trincavelli, Marco

    2012-01-01

    We address the problem of detecting changes in the activity of a distant gas source from the response of an array of metal oxide (MOX) gas sensors deployed in an open sampling system. The main challenge is the turbulent nature of gas dispersion and the response dynamics of the sensors. We propose a change point detection approach and evaluate it on individual gas sensors in an experimental setup where a gas source changes in intensity, compound, or mixture ratio. We also introduce an efficient sensor selection algorithm and evaluate the change point detection approach with the selected sensor array subsets. PMID:23443385

  11. Sensitivity enhancement of grating interferometer based two-dimensional sensor arrays using two-wavelength readout

    SciTech Connect

    Ferhanoglu, Onur; Urey, Hakan

    2011-07-01

    Diffraction gratings integrated with microelectromechanical systems (MEMS) sensors offer displacement measurements with subnanometer sensitivity. However, the sensitivity of the interferometric readout may drop significantly based on the gap between the grating and the reference surface. A two-wavelength (2-{lambda}) readout method was previously tested using a single MEMS sensor for illustrating increased displacement measurement capability. This work demonstrates sensitivity enhancement on a sensor array with large scale parallelization ({approx}20,000 sensors). The statistical representation, which is developed to model sensitivity enhancement within a grating based sensor array, is supported by experimental results using a thermal sensor array. In the experiments, two lasers at different wavelengths (633 and 650 nm) illuminate the thermal sensor array from the backside, time-sequentially. The diffracted first order light from the array is imaged onto a single CCD camera. The target scene is reconstructed by observing the change in the first diffracted order diffraction intensity for both wavelengths. Merging of the data from two measurements with two lasers was performed by taking the larger of the two CCD measurements with respect to the reference image for each sensor. {approx}30% increase in the average sensitivity was demonstrated for a 160x120 pixel IR sensor array. Proposed architecture is also applicable to a variety of sensing applications, such as parallel biosensing and atomic force microscopy, for improved displacement measurements and enhanced sensitivity.

  12. Acoustic biosensors

    PubMed Central

    Fogel, Ronen; Seshia, Ashwin A.

    2016-01-01

    Resonant and acoustic wave devices have been researched for several decades for application in the gravimetric sensing of a variety of biological and chemical analytes. These devices operate by coupling the measurand (e.g. analyte adsorption) as a modulation in the physical properties of the acoustic wave (e.g. resonant frequency, acoustic velocity, dissipation) that can then be correlated with the amount of adsorbed analyte. These devices can also be miniaturized with advantages in terms of cost, size and scalability, as well as potential additional features including integration with microfluidics and electronics, scaled sensitivities associated with smaller dimensions and higher operational frequencies, the ability to multiplex detection across arrays of hundreds of devices embedded in a single chip, increased throughput and the ability to interrogate a wider range of modes including within the same device. Additionally, device fabrication is often compatible with semiconductor volume batch manufacturing techniques enabling cost scalability and a high degree of precision and reproducibility in the manufacturing process. Integration with microfluidics handling also enables suitable sample pre-processing/separation/purification/amplification steps that could improve selectivity and the overall signal-to-noise ratio. Three device types are reviewed here: (i) bulk acoustic wave sensors, (ii) surface acoustic wave sensors, and (iii) micro/nano-electromechanical system (MEMS/NEMS) sensors. PMID:27365040

  13. Acoustic biosensors.

    PubMed

    Fogel, Ronen; Limson, Janice; Seshia, Ashwin A

    2016-06-30

    Resonant and acoustic wave devices have been researched for several decades for application in the gravimetric sensing of a variety of biological and chemical analytes. These devices operate by coupling the measurand (e.g. analyte adsorption) as a modulation in the physical properties of the acoustic wave (e.g. resonant frequency, acoustic velocity, dissipation) that can then be correlated with the amount of adsorbed analyte. These devices can also be miniaturized with advantages in terms of cost, size and scalability, as well as potential additional features including integration with microfluidics and electronics, scaled sensitivities associated with smaller dimensions and higher operational frequencies, the ability to multiplex detection across arrays of hundreds of devices embedded in a single chip, increased throughput and the ability to interrogate a wider range of modes including within the same device. Additionally, device fabrication is often compatible with semiconductor volume batch manufacturing techniques enabling cost scalability and a high degree of precision and reproducibility in the manufacturing process. Integration with microfluidics handling also enables suitable sample pre-processing/separation/purification/amplification steps that could improve selectivity and the overall signal-to-noise ratio. Three device types are reviewed here: (i) bulk acoustic wave sensors, (ii) surface acoustic wave sensors, and (iii) micro/nano-electromechanical system (MEMS/NEMS) sensors. PMID:27365040

  14. Dynamic response of an array of flexural plates in acoustic medium

    PubMed Central

    Park, Kwan Kyu; Khuri-Yakub, Brutus T.

    2012-01-01

    The dynamic response of a transducer array made up of circular flexural plates in immersion is analytically calculated. The calculation method includes three steps: (1) the calculation of parallel resonant frequency and the velocity profile of each plate, (2) the calculation of mutual acoustic impedance between the plates, and (3) the calculation of velocity response, including the mechanical and acoustic impedance. The calculation method is validated by both finite element analysis and measurement results of a fabricated capacitive micromachined ultrasonic transducer. Based on the calculated velocity, the near-field pressure and the near-to-far field radiation patterns are presented. The flexural plate array in immersion displays two modes of operation. At low frequency, the mode shape of the transducer array is similar to that of a suspended plate and, at certain frequencies, two groups of plates move in opposite phase, which results in the cancellation of the average velocity. At high frequency, the mode shape is similar to that of a piston transducer; however, the near-field pressure distribution is similar to that of a resilient disk. PMID:23039426

  15. Acoustic investigation of wall jet over a backward-facing step using a microphone phased array

    NASA Astrophysics Data System (ADS)

    Perschke, Raimund F.; Ramachandran, Rakesh C.; Raman, Ganesh

    2015-02-01

    The acoustic properties of a wall jet over a hard-walled backward-facing step of aspect ratios 6, 3, 2, and 1.5 are studied using a 24-channel microphone phased array at Mach numbers up to M=0.6. The Reynolds number based on inflow velocity and step height assumes values from Reh = 3.0 ×104 to 7.2 ×105. Flow without and with side walls is considered. The experimental setup is open in the wall-normal direction and the expansion ratio is effectively 1. In case of flow through a duct, symmetry of the flow in the spanwise direction is lost downstream of separation at all but the largest aspect ratio as revealed by oil paint flow visualization. Hydrodynamic scattering of turbulence from the trailing edge of the step contributes significantly to the radiated sound. Reflection of acoustic waves from the bottom plate results in a modulation of power spectral densities. Acoustic source localization has been conducted using a 24-channel microphone phased array. Convective mean-flow effects on the apparent source origin have been assessed by placing a loudspeaker underneath a perforated flat plate and evaluating the displacement of the beamforming peak with inflow Mach number. Two source mechanisms are found near the step. One is due to interaction of the turbulent wall jet with the convex edge of the step. Free-stream turbulence sound is found to be peaked downstream of the step. Presence of the side walls increases free-stream sound. Results of the flow visualization are correlated with acoustic source maps. Trailing-edge sound and free-stream turbulence sound can be discriminated using source localization.

  16. Use of acoustic sensors to probe the mechanical properties of liposomes.

    PubMed

    Melzak, Kathryn; Tsortos, Achilleas; Gizeli, Electra

    2009-01-01

    Acoustic sensors probe the response of a thin layer to the mechanical displacement associated with an acoustic wave. Acoustic measurements provide two simultaneous time-resolved signals; one signal is related to the velocity or frequency of the acoustic wave and is mainly a function of adsorbed mass, while the second signal, related to the oscillation amplitude, is associated with energy dissipation and is a function of the viscoelastic properties of the adsorbed layer. The methods described in this chapter explore the relationship between the acoustic measurements of adsorbed liposomes and the mechanical properties of the lipid bilayer. This is carried out using a well-characterized model system consisting of liposomes prepared from an unsaturated phospholipid and a range of mole fractions of cholesterol. Real-time acoustic measurements are shown to be sensitive to changes in the liposome cholesterol content, regardless of the mode of attachment of the liposome to the device surface. This sensitivity is not due to changes in the density of the bilayer, or to changes in the extent of liposome-surface interactions, thus leaving the mechanical properties of the bilayer as the feature that is probably being measured. Some mechanisms by which the acoustic response could be generated are suggested in this chapter. PMID:19913160

  17. Optimal Sensor Arrangements in Angle of Arrival (AoA) and Range Based Localization with Linear Sensor Arrays

    PubMed Central

    Herath, Sanvidha C. K.; Pathirana, Pubudu N.

    2013-01-01

    This paper investigates the linear separation requirements for Angle-of-Arrival (AoA) and range sensors, in order to achieve the optimal performance in estimating the position of a target from multiple and typically noisy sensor measurements. We analyse the sensor-target geometry in terms of the Cramer–Rao inequality and the corresponding Fisher information matrix, in order to characterize localization performance with respect to the linear spatial distribution of sensors. Here in this paper, we consider both fixed and adjustable linear sensor arrays. PMID:24036585

  18. Seismo-acoustic analysis of the ocean swell sources observed with Romanian infrasound array and seismic stations

    NASA Astrophysics Data System (ADS)

    Ghica, Daniela; Grecu, Bogdan; Popa, Mihaela

    2015-04-01

    Romanian Plostina infrasound array (IPLOR) is deployed in the central part of the country, in Vrancea region. Presently, IPLOR array configuration includes 6 elements equipped with Chaparral Physics sensors and with aperture of about 2.5 km. For the purpose of assessing the IPLOR performance in observing various types of infrasound sources, over five years of data (since June 2009 to present) were processed. Signal interactive analysis was performed using WinPMCC software. The detection results show that the station response was gradually improved, as the number of array elements increased from three to six, and wind noise reduction conditions were enhanced. A larger number of detected signals and a better array resolution at lower frequency were noticed as well. Microbaroms - the interaction of ocean swell with the atmosphere - represent a relevant type of infrasonic source present in the IPLOR detection plots, for which the signal characterization has been enhanced with the array upgrading process. IPLOR detection capability related to this energetic long-period infrasound waves, which propagate over large distances, shows an alternating behavior, being strongly influenced by the upper atmospheric winds, i.e. seasonally dependent stratospheric winds. The ocean swell can be considered as a seismo-acoustic source, leaving an imprint on both seismic and infrasonic recordings. The interaction with the atmosphere generates infrasound (microbarom), while the interaction with the sea floor emits seismic signal (microseism). Microbaroms have a sinusoidal wave character with a dominant period of 5 s. Due to low damping at this period in stratospheric wave duct, microbaroms are observed over large distance ranges up to a few thousand kilometres. Microseisms occur as an increasing of seismic background noise between 2 and 20 s; in this range, primary and secondary peaks, at 5 and 14 s, are observed. Common broad-band seismic data, recorded with Romanian dense seismic

  19. Experimental Study of Highly Sensitive Sensor Using a Surface Acoustic Wave Resonator for Wireless Strain Detection

    NASA Astrophysics Data System (ADS)

    Bao; Zhongqing; Hara, Motoaki; Mitsui, Misato; Sano, Koji; Nagasawa, Sumito; Kuwano, Hiroki

    2012-07-01

    We developed a highly sensitive strain sensor employing a surface acoustic wave (SAW) resonator for a wireless sensing system. The aim of this study is to monitor the distribution of the strain in the earth crust or giant infrastructures, such as bridges, skyscrapers and power plants, for disaster prevention. A SAW strain sensor was fabricated using LiNbO3 and a quartz substrate, and applied in a tensile test by attaching the steel specimen based on Japanese Industrial Standards (JIS Z2441-1). The results confirmed that the developed sensor could detect a strain of 10-6 order with linearity.

  20. Faster Array Training and Rapid Analysis for a Sensor Array Intended for an Event Monitor in Air

    NASA Technical Reports Server (NTRS)

    Homer, Margie L.; Shevade, A. V.; Fonollosa, J.; Huerta, R.

    2013-01-01

    Environmental monitoring, in particular, air monitoring, is a critical need for human space flight. Both monitoring and life support systems have needs for closed loop process feedback and quality control for environmental factors. Monitoring protects the air environment and water supply for the astronaut crew and different sensors help ensure that the habitat falls within acceptable limits, and that the life support system is functioning properly and efficiently. The longer the flight duration and the farther the destination, the more critical it becomes to have carefully monitored and automated control systems for life support. There is an acknowledged need for an event monitor which samples the air continuously and provides near real-time information on changes in the air. Past experiments with the JPL ENose have demonstrated a lifetime of the sensor array, with the software, of around 18 months. We are working on a sensor array and new algorithms that will incorporate transient sensor responses in the analysis. Preliminary work has already showed more rapid quantification and identification of analytes and the potential for faster training time of the array. We will look at some of the factors that contribute to demonstrating faster training time for the array. Faster training will decrease the integrated sensor exposure to training analytes, which will also help extend sensor lifetime.

  1. Wireless surface acoustic wave sensors for displacement and crack monitoring in concrete structures

    NASA Astrophysics Data System (ADS)

    Perry, M.; McKeeman, I.; Saafi, M.; Niewczas, P.

    2016-03-01

    In this work, we demonstrate that wireless surface acoustic wave devices can be used to monitor millimetre displacements in crack opening during the cyclic and static loading of reinforced concrete structures. Sensors were packaged to extend their gauge length and to protect them against brittle fracture, before being surface-mounted onto the tensioned surface of a concrete beam. The accuracy of measurements was verified using computational methods and optical-fibre strain sensors. After packaging, the displacement and temperature resolutions of the surface acoustic wave sensors were 10 μ {{m}} and 2 °C respectively. With some further work, these devices could be retrofitted to existing concrete structures to facilitate wireless structural health monitoring.

  2. Research of temperature field measurement using a flexible temperature sensor array for robot sensing skin

    NASA Astrophysics Data System (ADS)

    Huang, Ying; Wu, Siyu; Li, Ruiqi; Yang, Qinghua; Zhang, Yugang; Liu, Caixia

    2013-10-01

    This paper presents a novel temperature sensor array by dispensing conductive composites on a flexible printed circuit board which is able to acquire the ambient temperature. The flexible temperature sensor array was fabricated by using carbon fiber-filled silicon rubber based composites on a flexible polyimide circuit board, which can both ensure their high flexibility. It found that CF with 12 wt% could be served as the best conductive filler for higher temperature sensitivity and better stability comparing with some other proportion for dynamic range from 30&° to 90°. The preparation of the temperature sensitive material has also been described in detail. Connecting the flexible sensor array with a data acquisition card and a personal computer (PC), some heat sources with different shapes were loaded on the sensor array; the detected results were shown in the interface by LabVIEW software. The measured temperature contours are in good agreement with the shapes and amplitudes of different heat sources. Furthermore, in consideration of the heat dissipation in the air, the relationship between the resistance and the distance of heat sources with sensor array was also detected to verify the accuracy of the sensor array, which is also a preparation for our future work. Experimental results demonstrate the effectiveness and accuracy of the developed flexible sensor array, and it can be used as humanoid artificial skin for sensation system of robots.

  3. Sensor evaluation study for use with towed arrays for UXO site characterization

    SciTech Connect

    McDonald, J.R.; Robertson, R.

    1996-11-01

    The Naval Research Laboratory is developing a Multi-sensor Towed Array Detection System (MTADS) with support from the DOD Environmental Security Technology Certification Program (ESTCP). In this effort we seek to extend and refine ordnance detection technology to more efficiently characterize OEW sites, identifying nonferrous and smaller items, distinguishing ordnance from clutter and analyzing clustered targets to identify and locate individual targets within complex target fields. Our evaluation shows that these goals are best met by combining magnetic and electromagnetic sensors. We report on field studies at a prepared test range of commercial sensors in arrays in various configurations and including; Cesium vapor magnetometers in single sensor and gradiometric configurations, fluxgate gradiometers, proton procession magnetometers, and electromagnetic pulsed induction sensors. The advantages and disadvantages of each technology and their applicability based upon survey requirements is discussed. We also discuss recommended data densities including horizontal sensor spacings, survey speeds, sensor heights and make recommendations about the appropriate use of gradiometers and active sensors.

  4. Standoff photoacoustic detections with high-sensitivity microphones and acoustic arrays

    NASA Astrophysics Data System (ADS)

    Choa, Fow-Sen; Wang, Chen-Chia; Khurgin, Jacob; Samuels, Alan; Trivedi, Sudhir; Gupta, Deepa

    2016-05-01

    Standoff detection of dangerous chemicals like explosives, nerve gases, and harmful aerosols has continuously been an important subject due to the serious concern about terrorist threats to both overseas and homeland lives and facility. Compared with other currently available standoff optical detection techniques, like Raman, photo-thermal, laser induced breakdown spectroscopy,...etc., photoacoustic (PA) sensing has the advantages of background free and very high detection sensitivity, no need of back reflection surfaces, and 1/R instead of 1/R2 signal decay distance dependence. Furthermore, there is still a great room for PA sensitivity improvement by using different PA techniques, including lockin amplifier, employing new microphones, and microphone array techniques. Recently, we have demonstrated standoff PA detection of isopropanol vapor, solid phase TNT and RDX at a standoff distance. To further calibrate the detection sensitivity, we use nerve gas simulants that were generated and calibrated by a commercial vapor generator. For field operations, array of microphones and microphone-reflector pairs can be utilized to achieve noise rejection and signal enhancement. We have experimentally demonstrated signal enhancement and noise reduction using an array of 4 microphone/4 reflector system as well as an array of 16-microphone/1 reflector. In this work we will review and compare different standoff techniques and discuss the advantages of using different photoacoustic techniques. We will also discuss new advancement of using new types of microphone and the performance comparison of using different structure of microphone arrays and combining lock-in amplifier with acoustic arrays. Demonstration of out-door real-time operations with high power mid-IR laser and microphone array will be presented.

  5. A micro-Doppler sonar for acoustic surveillance in sensor networks

    NASA Astrophysics Data System (ADS)

    Zhang, Zhaonian

    Wireless sensor networks have been employed in a wide variety of applications, despite the limited energy and communication resources at each sensor node. Low power custom VLSI chips implementing passive acoustic sensing algorithms have been successfully integrated into an acoustic surveillance unit and demonstrated for detection and location of sound sources. In this dissertation, I explore active and passive acoustic sensing techniques, signal processing and classification algorithms for detection and classification in a multinodal sensor network environment. I will present the design and characterization of a continuous-wave micro-Doppler sonar to image objects with articulated moving components. As an example application for this system, we use it to image gaits of humans and four-legged animals. I will present the micro-Doppler gait signatures of a walking person, a dog and a horse. I will discuss the resolution and range of this micro-Doppler sonar and use experimental results to support the theoretical analyses. In order to reduce the data rate and make the system amenable to wireless sensor networks, I will present a second micro-Doppler sonar that uses bandpass sampling for data acquisition. Speech recognition algorithms are explored for biometric identifications from one's gait, and I will present and compare the classification performance of the two systems. The acoustic micro-Doppler sonar design and biometric identification results are the first in the field as the previous work used either video camera or microwave technology. I will also review bearing estimation algorithms and present results of applying these algorithms for bearing estimation and tracking of moving vehicles. Another major source of the power consumption at each sensor node is the wireless interface. To address the need of low power communications in a wireless sensor network, I will also discuss the design and implementation of ultra wideband transmitters in a three dimensional

  6. Inkjet-printed paper-based colorimetric sensor array for the discrimination of volatile primary amines.

    PubMed

    Soga, Tamaki; Jimbo, Yusuke; Suzuki, Koji; Citterio, Daniel

    2013-10-01

    This paper describes a colorimetric sensor array for the discrimination of volatile amines. Analyte discrimination is achieved by combining two functional elements: (1) a "chemical class-selective" single chromogenic sensing dye with selectivity for amines in general, encapsulated into (2) polymer nanoparticles with different polarities. The resulting array has the ability to distinguish one closely related amine from another, relying on a polarity-based approach. In order to achieve reproducible, cost efficient, and flexible sensor array fabrication with the potential for mass production, inkjet-printing technology combined with standard copy paper as a sensor substrate is applied. Printing of 6 types of inks, which are prepared by mixing two dye encapsulating nanoparticles of different polarity in different mixture ratios, results in a colorimetric sensor array with a polarity gradient. Seven primary amines with increasing alkyl chain lengths have been selected to demonstrate the performance of the sensor array. The RGB color differences (ΔR, ΔG, ΔB) of the sensor array spots before and after gas exposure were analyzed by principal component analysis (PCA) and agglomerative hierarchical clustering (AHC) analysis. Under the selected measurement conditions, results of PCA and AHC analysis indicated high discrimination ability with high reproducibility of the sensor array down to amine concentrations of 50 ppm. The discrimination ability was maintained at relative humidities between 10% and 80%. Furthermore, the sensor array showed no significant response to common volatile organic compounds, confirming the high selectivity toward amines. This is, to the best of our knowledge, the first report of a colorimetric sensor array with selectivity for a specific chemical class of analytes and the ability to discriminate compounds of the same class, which is obtained by simply mixing two types of single dye-encapsulating polymer nanoparticles. PMID:24044503

  7. A radiosonde using a humidity sensor array with a platinum resistance heater and multi-sensor data fusion.

    PubMed

    Shi, Yunbo; Luo, Yi; Zhao, Wenjie; Shang, Chunxue; Wang, Yadong; Chen, Yinsheng

    2013-01-01

    This paper describes the design and implementation of a radiosonde which can measure the meteorological temperature, humidity, pressure, and other atmospheric data. The system is composed of a CPU, microwave module, temperature sensor, pressure sensor and humidity sensor array. In order to effectively solve the humidity sensor condensation problem due to the low temperatures in the high altitude environment, a capacitive humidity sensor including four humidity sensors to collect meteorological humidity and a platinum resistance heater was developed using micro-electro-mechanical-system (MEMS) technology. A platinum resistance wire with 99.999% purity and 0.023 mm in diameter was used to obtain the meteorological temperature. A multi-sensor data fusion technique was applied to process the atmospheric data. Static and dynamic experimental results show that the designed humidity sensor with platinum resistance heater can effectively tackle the sensor condensation problem, shorten response times and enhance sensitivity. The humidity sensor array can improve measurement accuracy and obtain a reliable initial meteorological humidity data, while the multi-sensor data fusion technique eliminates the uncertainty in the measurement. The radiosonde can accurately reflect the meteorological changes. PMID:23857263

  8. A Radiosonde Using a Humidity Sensor Array with a Platinum Resistance Heater and Multi-Sensor Data Fusion

    PubMed Central

    Shi, Yunbo; Luo, Yi; Zhao, Wenjie; Shang, Chunxue; Wang, Yadong; Chen, Yinsheng

    2013-01-01

    This paper describes the design and implementation of a radiosonde which can measure the meteorological temperature, humidity, pressure, and other atmospheric data. The system is composed of a CPU, microwave module, temperature sensor, pressure sensor and humidity sensor array. In order to effectively solve the humidity sensor condensation problem due to the low temperatures in the high altitude environment, a capacitive humidity sensor including four humidity sensors to collect meteorological humidity and a platinum resistance heater was developed using micro-electro-mechanical-system (MEMS) technology. A platinum resistance wire with 99.999% purity and 0.023 mm in diameter was used to obtain the meteorological temperature. A multi-sensor data fusion technique was applied to process the atmospheric data. Static and dynamic experimental results show that the designed humidity sensor with platinum resistance heater can effectively tackle the sensor condensation problem, shorten response times and enhance sensitivity. The humidity sensor array can improve measurement accuracy and obtain a reliable initial meteorological humidity data, while the multi-sensor data fusion technique eliminates the uncertainty in the measurement. The radiosonde can accurately reflect the meteorological changes. PMID:23857263

  9. Phased Acoustic Array Measurements of a 5.75 Percent Hybrid Wing Body Aircraft

    NASA Technical Reports Server (NTRS)

    Burnside, Nathan J.; Horne, William C.; Elmer, Kevin R.; Cheng, Rui; Brusniak, Leon

    2016-01-01

    Detailed acoustic measurements of the noise from the leading-edge Krueger flap of a 5.75 percent Hybrid Wing Body (HWB) aircraft model were recently acquired with a traversing phased microphone array in the AEDC NFAC (Arnold Engineering Development Complex, National Full Scale Aerodynamics Complex) 40- by 80-Foot Wind Tunnel at NASA Ames Research Center. The spatial resolution of the array was sufficient to distinguish between individual support brackets over the full-scale frequency range of 100 to 2875 Hertz. For conditions representative of landing and take-off configuration, the noise from the brackets dominated other sources near the leading edge. Inclusion of flight-like brackets for select conditions highlights the importance of including the correct number of leading-edge high-lift device brackets with sufficient scale and fidelity. These measurements will support the development of new predictive models.

  10. Deconvolution methods and systems for the mapping of acoustic sources from phased microphone arrays

    NASA Technical Reports Server (NTRS)

    Brooks, Thomas F. (Inventor); Humphreys, Jr., William M. (Inventor)

    2010-01-01

    A method and system for mapping acoustic sources determined from a phased microphone array. A plurality of microphones are arranged in an optimized grid pattern including a plurality of grid locations thereof. A linear configuration of N equations and N unknowns can be formed by accounting for a reciprocal influence of one or more beamforming characteristics thereof at varying grid locations among the plurality of grid locations. A full-rank equation derived from the linear configuration of N equations and N unknowns can then be iteratively determined. A full-rank can be attained by the solution requirement of the positivity constraint equivalent to the physical assumption of statically independent noise sources at each N location. An optimized noise source distribution is then generated over an identified aeroacoustic source region associated with the phased microphone array in order to compile an output presentation thereof, thereby removing the beamforming characteristics from the resulting output presentation.

  11. Deconvolution Methods and Systems for the Mapping of Acoustic Sources from Phased Microphone Arrays

    NASA Technical Reports Server (NTRS)

    Brooks, Thomas F. (Inventor); Humphreys, Jr., William M. (Inventor)

    2012-01-01

    Mapping coherent/incoherent acoustic sources as determined from a phased microphone array. A linear configuration of equations and unknowns are formed by accounting for a reciprocal influence of one or more cross-beamforming characteristics thereof at varying grid locations among the plurality of grid locations. An equation derived from the linear configuration of equations and unknowns can then be iteratively determined. The equation can be attained by the solution requirement of a constraint equivalent to the physical assumption that the coherent sources have only in phase coherence. The size of the problem may then be reduced using zoning methods. An optimized noise source distribution is then generated over an identified aeroacoustic source region associated with a phased microphone array (microphones arranged in an optimized grid pattern including a plurality of grid locations) in order to compile an output presentation thereof, thereby removing beamforming characteristics from the resulting output presentation.

  12. Integration of acoustical sensors into the KM3NeT optical modules

    SciTech Connect

    Enzenhöfer, A.; Collaboration: KM3NeT Collaboration

    2014-11-18

    The next generation multi-cubic-kilometre water Cherenkov neutrino telescope will be build in the Mediterranean Sea. This telescope, called KM3NeT, is currently entering a first construction phase. The KM3NeT research infrastructure will comprise 690 so-called Detection Units in its final design which will be anchored to the sea bed and held upright by submerged floats. The positions of these Detection Units, several hundred metres in length, and their attached Optical Modules for the detection of Cherenkov light have to be monitored continously to provide the telescope with its desired pointing precision. A standard way to do this is the utilisation of an acoustic positioning system using emitters at fixed positions and receivers distributed along the Detection Units. The KM3NeT neutrino telescope comprises a custom-made acoustic positioning system with newly designed emitters attached to the anchors of the Detection Units and custom-designed receivers attached to the Detection Units. This article describes an approach for a receiver and its performance. The proposed Opto-Acoustical Modules combine the optical sensors for the telescope with the acoustical sensors necessary for the positioning of the module itself. This combination leads to a compact design suited for an easy deployment of the numerous Detection Units. Furthermore, the instrumented volume can be used for scientific analyses such as marine science and acoustic particle detection.

  13. Classifiers utilized to enhance acoustic based sensors to identify round types of artillery/mortar

    NASA Astrophysics Data System (ADS)

    Grasing, David; Desai, Sachi; Morcos, Amir

    2008-04-01

    Feature extraction methods based on the statistical analysis of the change in event pressure levels over a period and the level of ambient pressure excitation facilitate the development of a robust classification algorithm. The features reliably discriminates mortar and artillery variants via acoustic signals produced during the launch events. Utilizing acoustic sensors to exploit the sound waveform generated from the blast for the identification of mortar and artillery variants as type A, etcetera through analysis of the waveform. Distinct characteristics arise within the different mortar/artillery variants because varying HE mortar payloads and related charges emphasize varying size events at launch. The waveform holds various harmonic properties distinct to a given mortar/artillery variant that through advanced signal processing and data mining techniques can employed to classify a given type. The skewness and other statistical processing techniques are used to extract the predominant components from the acoustic signatures at ranges exceeding 3000m. Exploiting these techniques will help develop a feature set highly independent of range, providing discrimination based on acoustic elements of the blast wave. Highly reliable discrimination will be achieved with a feedforward neural network classifier trained on a feature space derived from the distribution of statistical coefficients, frequency spectrum, and higher frequency details found within different energy bands. The processes that are described herein extend current technologies, which emphasis acoustic sensor systems to provide such situational awareness.

  14. Can you hear me now? Range-testing a submerged passive acoustic receiver array in a Caribbean coral reef habitat.

    PubMed

    Selby, Thomas H; Hart, Kristen M; Fujisaki, Ikuko; Smith, Brian J; Pollock, Clayton J; Hillis-Starr, Zandy; Lundgren, Ian; Oli, Madan K

    2016-07-01

    Submerged passive acoustic technology allows researchers to investigate spatial and temporal movement patterns of many marine and freshwater species. The technology uses receivers to detect and record acoustic transmissions emitted from tags attached to an individual. Acoustic signal strength naturally attenuates over distance, but numerous environmental variables also affect the probability a tag is detected. Knowledge of receiver range is crucial for designing acoustic arrays and analyzing telemetry data. Here, we present a method for testing a relatively large-scale receiver array in a dynamic Caribbean coastal environment intended for long-term monitoring of multiple species. The U.S. Geological Survey and several academic institutions in collaboration with resource management at Buck Island Reef National Monument (BIRNM), off the coast of St. Croix, recently deployed a 52 passive acoustic receiver array. We targeted 19 array-representative receivers for range-testing by submersing fixed delay interval range-testing tags at various distance intervals in each cardinal direction from a receiver for a minimum of an hour. Using a generalized linear mixed model (GLMM), we estimated the probability of detection across the array and assessed the effect of water depth, habitat, wind, temperature, and time of day on the probability of detection. The predicted probability of detection across the entire array at 100 m distance from a receiver was 58.2% (95% CI: 44.0-73.0%) and dropped to 26.0% (95% CI: 11.4-39.3%) 200 m from a receiver indicating a somewhat constrained effective detection range. Detection probability varied across habitat classes with the greatest effective detection range occurring in homogenous sand substrate and the smallest in high rugosity reef. Predicted probability of detection across BIRNM highlights potential gaps in coverage using the current array as well as limitations of passive acoustic technology within a complex coral reef environment

  15. Can you hear me now? Range-testing a submerged passive acoustic receiver array in a Caribbean coral reef habitat

    USGS Publications Warehouse

    Selby, Thomas H.; Hart, Kristen M.; Fujisaki, Ikuko; Smith, Brian J.; Pollock, Clayton J; Hillis-Star, Zandy M; Lundgren, Ian; Oli, Madan K.

    2016-01-01

    Submerged passive acoustic technology allows researchers to investigate spatial and temporal movement patterns of many marine and freshwater species. The technology uses receivers to detect and record acoustic transmissions emitted from tags attached to an individual. Acoustic signal strength naturally attenuates over distance, but numerous environmental variables also affect the probability a tag is detected. Knowledge of receiver range is crucial for designing acoustic arrays and analyzing telemetry data. Here, we present a method for testing a relatively large-scale receiver array in a dynamic Caribbean coastal environment intended for long-term monitoring of multiple species. The U.S. Geological Survey and several academic institutions in collaboration with resource management at Buck Island Reef National Monument (BIRNM), off the coast of St. Croix, recently deployed a 52 passive acoustic receiver array. We targeted 19 array-representative receivers for range-testing by submersing fixed delay interval range-testing tags at various distance intervals in each cardinal direction from a receiver for a minimum of an hour. Using a generalized linear mixed model (GLMM), we estimated the probability of detection across the array and assessed the effect of water depth, habitat, wind, temperature, and time of day on the probability of detection. The predicted probability of detection across the entire array at 100 m distance from a receiver was 58.2% (95% CI: 44.0–73.0%) and dropped to 26.0% (95% CI: 11.4–39.3%) 200 m from a receiver indicating a somewhat constrained effective detection range. Detection probability varied across habitat classes with the greatest effective detection range occurring in homogenous sand substrate and the smallest in high rugosity reef. Predicted probability of detection across BIRNM highlights potential gaps in coverage using the current array as well as limitations of passive acoustic technology within a complex coral reef

  16. Measurement of cantilever vibration using impedance-loaded surface acoustic wave sensor

    NASA Astrophysics Data System (ADS)

    Oishi, Masaki; Hamashima, Hiromitsu; Kondoh, Jun

    2016-07-01

    In this study, an impedance-loaded surface acoustic wave (SAW) sensor was demonstrated to monitor the vibration frequency. Commercialized pressure sensors and a variable capacitor were chosen as external sensors, which were connected to a reflector on a SAW device. As the reflection coefficient of the reflector depended on the impedance, the echo amplitude was influenced by changes in the impedance of the external sensor. The vibration frequency of the cantilever was determined by monitoring the echo amplitude of the SAW device. Moreover, the attenuation constant of an envelope was estimated. The results of our feasibility study indicate that the impedance-loaded SAW sensor can be applied as a detector for structural health monitoring.

  17. A Bio-Hybrid Tactile Sensor Incorporating Living Artificial Skin and an Impedance Sensing Array

    PubMed Central

    Cheneler, David; Buselli, Elisa; Camboni, Domenico; Anthony, Carl; Grover, Liam; Adams, Michael John; Oddo, Calogero Maria

    2014-01-01

    The development of a bio-hybrid tactile sensor array that incorporates a skin analogue comprised of alginate encapsulated fibroblasts is described. The electrical properties are modulated by mechanical stress induced during contact, and changes are detected by a ten-channel dual-electrode impedance sensing array. By continuously monitoring the impedance of the sensor array at a fixed frequency, whilst normal and tangential loads are applied to the skin surface, transient mechanotransduction has been observed. The results demonstrate the effectiveness and feasibility of the preliminary prototype bio-hybrid tactile sensor. PMID:25615726

  18. A self-mixing based ring-type fiber-optic acoustic sensor

    NASA Astrophysics Data System (ADS)

    Wang, Lutang; Wu, Chunxu; Fang, Nian

    2014-07-01

    A novel, simple fiber-optic acoustic sensor consisting of a self-mixing effect based laser source and a ring-type interferometer is presented. With weak external optical feedbacks, the acoustic wave signals can be detected by measuring the changes of oscillating frequency of the laser diode, induced by the disturbances of sensing fiber, with the ring-type interferometer. The operation principles of the sensor system are explored in-depth and the experimental researches are carried out. The acoustic wave signals produced by various actions, such as by pencil broken, mental pin free falling and PZT are detected for evaluating the sensing performances of the experimental system. The investigation items include the sensitivity as well as frequency responses of the sensor system. An experiment for the detection of corona discharges is carried out, which occur in a high-voltage environment between two parallel copper electrodes, under different humidity levels. The satisfied experimental results are obtained. These experimental results well prove that our proposed sensing system has very high sensitivity and excellent high frequency responses characteristics in the detections of weak, high-frequency acoustic wave signals.

  19. The Baryon Acoustic Oscillation Broadband and Broad-beam Array: Design Overview and Sensitivity Forecasts

    NASA Astrophysics Data System (ADS)

    Pober, Jonathan C.; Parsons, Aaron R.; DeBoer, David R.; McDonald, Patrick; McQuinn, Matthew; Aguirre, James E.; Ali, Zaki; Bradley, Richard F.; Chang, Tzu-Ching; Morales, Miguel F.

    2013-03-01

    This work describes a new instrument optimized for a detection of the neutral hydrogen 21 cm power spectrum between redshifts of 0.5 and 1.5: the Baryon Acoustic Oscillation Broadband and Broad-beam (BAOBAB) array. BAOBAB will build on the efforts of a first generation of 21 cm experiments that are targeting a detection of the signal from the Epoch of Reionization at z ~ 10. At z ~ 1, the emission from neutral hydrogen in self-shielded overdense halos also presents an accessible signal, since the dominant, synchrotron foreground emission is considerably fainter than at redshift 10. The principle science driver for these observations are baryon acoustic oscillations in the matter power spectrum which have the potential to act as a standard ruler and constrain the nature of dark energy. BAOBAB will fully correlate dual-polarization antenna tiles over the 600-900 MHz band with a frequency resolution of 300 kHz and a system temperature of 50 K. The number of antennas will grow in staged deployments, and reconfigurations of the array will allow for both traditional imaging and high power spectrum sensitivity operations. We present calculations of the power spectrum sensitivity for various array sizes, with a 35 element array measuring the cosmic neutral hydrogen fraction as a function of redshift, and a 132 element system detecting the BAO features in the power spectrum, yielding a 1.8% error on the z ~ 1 distance scale, and, in turn, significant improvements to constraints on the dark energy equation of state over an unprecedented range of redshifts from ~0.5 to 1.5.

  20. Beamforming and Power Control in Sensor Arrays Using Reinforcement Learning

    PubMed Central

    Almeida, Náthalee C.; Fernandes, Marcelo A.C.; Neto, Adrião D.D.

    2015-01-01

    The use of beamforming and power control, combined or separately, has advantages and disadvantages, depending on the application. The combined use of beamforming and power control has been shown to be highly effective in applications involving the suppression of interference signals from different sources. However, it is necessary to identify efficient methodologies for the combined operation of these two techniques. The most appropriate technique may be obtained by means of the implementation of an intelligent agent capable of making the best selection between beamforming and power control. The present paper proposes an algorithm using reinforcement learning (RL) to determine the optimal combination of beamforming and power control in sensor arrays. The RL algorithm used was Q-learning, employing an ε-greedy policy, and training was performed using the offline method. The simulations showed that RL was effective for implementation of a switching policy involving the different techniques, taking advantage of the positive characteristics of each technique in terms of signal reception. PMID:25808769