Science.gov

Sample records for acoustic signals obtained

  1. Empirical mode decomposition for analyzing acoustical signals

    NASA Technical Reports Server (NTRS)

    Huang, Norden E. (Inventor)

    2005-01-01

    The present invention discloses a computer implemented signal analysis method through the Hilbert-Huang Transformation (HHT) for analyzing acoustical signals, which are assumed to be nonlinear and nonstationary. The Empirical Decomposition Method (EMD) and the Hilbert Spectral Analysis (HSA) are used to obtain the HHT. Essentially, the acoustical signal will be decomposed into the Intrinsic Mode Function Components (IMFs). Once the invention decomposes the acoustic signal into its constituting components, all operations such as analyzing, identifying, and removing unwanted signals can be performed on these components. Upon transforming the IMFs into Hilbert spectrum, the acoustical signal may be compared with other acoustical signals.

  2. Acoustic Signal Processing

    NASA Astrophysics Data System (ADS)

    Hartmann, William M.; Candy, James V.

    Signal processing refers to the acquisition, storage, display, and generation of signals - also to the extraction of information from signals and the re-encoding of information. As such, signal processing in some form is an essential element in the practice of all aspects of acoustics. Signal processing algorithms enable acousticians to separate signals from noise, to perform automatic speech recognition, or to compress information for more efficient storage or transmission. Signal processing concepts are the building blocks used to construct models of speech and hearing. Now, in the 21st century, all signal processing is effectively digital signal processing. Widespread access to high-speed processing, massive memory, and inexpensive software make signal processing procedures of enormous sophistication and power available to anyone who wants to use them. Because advanced signal processing is now accessible to everybody, there is a need for primers that introduce basic mathematical concepts that underlie the digital algorithms. The present handbook chapter is intended to serve such a purpose.

  3. Acoustic barriers obtained from industrial wastes.

    PubMed

    Garcia-Valles, M; Avila, G; Martinez, S; Terradas, R; Nogués, J M

    2008-07-01

    Acoustic pollution is an environmental problem that is becoming increasingly more important in our society. Likewise, the accumulation of generated waste and the need for waste management are also becoming more and more pressing. In this study we describe a new material--called PROUSO--obtained from industrial wastes. PROUSO has a variety of commercial and engineering, as well as building, applications. The main raw materials used for this environmentally friendly material come from slag from the aluminium recycling process, dust from the marble industry, foundry sands, and recycled expanded polystyrene from recycled packaging. Some natural materials, such as plastic clays, are also used. To obtain PROUSO we used a conventional ceramic process, forming new mineral phases and incorporating polluted elements into the structure. Its physical properties make PROUSO an excellent acoustic and thermal insulation material. It absorbs 95% of the sound in the frequency band of the 500 Hz. Its compressive strength makes it ideal for use in ceramic wall building.

  4. Acoustically-Induced Electrical Signals

    NASA Astrophysics Data System (ADS)

    Brown, S. R.

    2014-12-01

    We have observed electrical signals excited by and moving along with an acoustic pulse propagating in a sandstone sample. Using resonance we are now studying the characteristics of this acousto-electric signal and determining its origin and the controlling physical parameters. Four rock samples with a range of porosities, permeabilities, and mineralogies were chosen: Berea, Boise, and Colton sandstones and Austin Chalk. Pore water salinity was varied from deionized water to sea water. Ag-AgCl electrodes were attached to the sample and were interfaced to a 4-wire electrical resistivity system. Under computer control, the acoustic signals were excited and the electrical response was recorded. We see strong acoustically-induced electrical signals in all samples, with the magnitude of the effect for each rock getting stronger as we move from the 1st to the 3rd harmonics in resonance. Given a particular fluid salinity, each rock has its own distinct sensitivity in the induced electrical effect. For example at the 2nd harmonic, Berea Sandstone produces the largest electrical signal per acoustic power input even though Austin Chalk and Boise Sandstone tend to resonate with much larger amplitudes at the same harmonic. Two effects are potentially responsible for this acoustically-induced electrical response: one the co-seismic seismo-electric effect and the other a strain-induced resistivity change known as the acousto-electric effect. We have designed experimental tests to separate these mechanisms. The tests show that the seismo-electric effect is dominant in our studies. We note that these experiments are in a fluid viscosity dominated seismo-electric regime, leading to a simple interpretation of the signals where the electric potential developed is proportional to the local acceleration of the rock. Toward a test of this theory we have measured the local time-varying acoustic strain in our samples using a laser vibrometer.

  5. Acoustic barriers obtained from industrial wastes.

    PubMed

    Garcia-Valles, M; Avila, G; Martinez, S; Terradas, R; Nogués, J M

    2008-07-01

    Acoustic pollution is an environmental problem that is becoming increasingly more important in our society. Likewise, the accumulation of generated waste and the need for waste management are also becoming more and more pressing. In this study we describe a new material--called PROUSO--obtained from industrial wastes. PROUSO has a variety of commercial and engineering, as well as building, applications. The main raw materials used for this environmentally friendly material come from slag from the aluminium recycling process, dust from the marble industry, foundry sands, and recycled expanded polystyrene from recycled packaging. Some natural materials, such as plastic clays, are also used. To obtain PROUSO we used a conventional ceramic process, forming new mineral phases and incorporating polluted elements into the structure. Its physical properties make PROUSO an excellent acoustic and thermal insulation material. It absorbs 95% of the sound in the frequency band of the 500 Hz. Its compressive strength makes it ideal for use in ceramic wall building. PMID:18514765

  6. Acoustic Localization with Infrasonic Signals

    NASA Astrophysics Data System (ADS)

    Threatt, Arnesha; Elbing, Brian

    2015-11-01

    Numerous geophysical and anthropogenic events emit infrasonic frequencies (<20 Hz), including volcanoes, hurricanes, wind turbines and tornadoes. These sounds, which cannot be heard by the human ear, can be detected from large distances (in excess of 100 miles) due to low frequency acoustic signals having a very low decay rate in the atmosphere. Thus infrasound could be used for long-range, passive monitoring and detection of these events. An array of microphones separated by known distances can be used to locate a given source, which is known as acoustic localization. However, acoustic localization with infrasound is particularly challenging due to contamination from other signals, sensitivity to wind noise and producing a trusted source for system development. The objective of the current work is to create an infrasonic source using a propane torch wand or a subwoofer and locate the source using multiple infrasonic microphones. This presentation will present preliminary results from various microphone configurations used to locate the source.

  7. Generation of Acoustic Signals from Buried Explosions

    NASA Astrophysics Data System (ADS)

    Bonner, J. L.; Reinke, R.; Waxler, R.; Lenox, E. A.

    2012-12-01

    Buried explosions generate both seismic and acoustic signals. The mechanism for the acoustic generation is generally assumed to be large ground motions above the source region that cause atmospheric pressure disturbances which can propagate locally or regionally depending on source size and weather conditions. In order to better understand the factors that control acoustic generation from buried explosions, we conducted a series of 200 lb explosions detonated in and above the dry alluvium and limestones of Kirtland AFB, New Mexico. In this experiment, nicknamed HUMBLE REDWOOD III, we detonated charges at heights of burst of 2 m (no crater) and depths of burst of 7 m (fully confined). The seismic and acoustic signals were recorded on a network of near-source (< 90 m) co-located accelerometer and overpressure sensors, circular rings of acoustic sensors at 0.3 and 1 km, and multiple seismic and infrasound sensors at local-to-regional distances. Near-source acoustic signals for the 200 lb buried explosion in limestone show an impulsive, short-duration (0.04 s) initial peak, followed by a broad duration (0.3 s) negative pressure trough, and finally a second positive pulse (0.18 s duration). The entire width of the acoustic signal generated by this small buried explosion is 0.5 s and results in a 2 Hz peak in spectral energy. High-velocity wind conditions quickly attenuate the signal with few observations beyond 1 km. We have attempted to model these acoustic waveforms by estimating near-source ground motion using synthetic spall seismograms. Spall seismograms have similar characteristics as the observed acoustics and usually include an initial positive motion P wave, followed by -1 g acceleration due to the ballistic free fall of the near surface rock units, and ends with positive accelerations due to "slapdown" of the material. Spall seismograms were synthesized using emplacement media parameters and high-speed video observations of the surface movements. We present a

  8. Dimensional analysis of acoustically propagated signals

    NASA Technical Reports Server (NTRS)

    Hansen, Scott D.; Thomson, Dennis W.

    1993-01-01

    Traditionally, long term measurements of atmospherically propagated sound signals have consisted of time series of multiminute averages. Only recently have continuous measurements with temporal resolution corresponding to turbulent time scales been available. With modern digital data acquisition systems we now have the capability to simultaneously record both acoustical and meteorological parameters with sufficient temporal resolution to allow us to examine in detail relationships between fluctuating sound and the meteorological variables, particularly wind and temperature, which locally determine the acoustic refractive index. The atmospheric acoustic propagation medium can be treated as a nonlinear dynamical system, a kind of signal processor whose innards depend on thermodynamic and turbulent processes in the atmosphere. The atmosphere is an inherently nonlinear dynamical system. In fact one simple model of atmospheric convection, the Lorenz system, may well be the most widely studied of all dynamical systems. In this paper we report some results of our having applied methods used to characterize nonlinear dynamical systems to study the characteristics of acoustical signals propagated through the atmosphere. For example, we investigate whether or not it is possible to parameterize signal fluctuations in terms of fractal dimensions. For time series one such parameter is the limit capacity dimension. Nicolis and Nicolis were among the first to use the kind of methods we have to study the properties of low dimension global attractors.

  9. Detection and Classification of Whale Acoustic Signals

    NASA Astrophysics Data System (ADS)

    Xian, Yin

    This dissertation focuses on two vital challenges in relation to whale acoustic signals: detection and classification. In detection, we evaluated the influence of the uncertain ocean environment on the spectrogram-based detector, and derived the likelihood ratio of the proposed Short Time Fourier Transform detector. Experimental results showed that the proposed detector outperforms detectors based on the spectrogram. The proposed detector is more sensitive to environmental changes because it includes phase information. In classification, our focus is on finding a robust and sparse representation of whale vocalizations. Because whale vocalizations can be modeled as polynomial phase signals, we can represent the whale calls by their polynomial phase coefficients. In this dissertation, we used the Weyl transform to capture chirp rate information, and used a two dimensional feature set to represent whale vocalizations globally. Experimental results showed that our Weyl feature set outperforms chirplet coefficients and MFCC (Mel Frequency Cepstral Coefficients) when applied to our collected data. Since whale vocalizations can be represented by polynomial phase coefficients, it is plausible that the signals lie on a manifold parameterized by these coefficients. We also studied the intrinsic structure of high dimensional whale data by exploiting its geometry. Experimental results showed that nonlinear mappings such as Laplacian Eigenmap and ISOMAP outperform linear mappings such as PCA and MDS, suggesting that the whale acoustic data is nonlinear. We also explored deep learning algorithms on whale acoustic data. We built each layer as convolutions with either a PCA filter bank (PCANet) or a DCT filter bank (DCTNet). With the DCT filter bank, each layer has different a time-frequency scale representation, and from this, one can extract different physical information. Experimental results showed that our PCANet and DCTNet achieve high classification rate on the whale

  10. Characteristics of acoustic gravity waves obtained from Dynasonde data

    NASA Astrophysics Data System (ADS)

    Negrea, Cǎtǎlin; Zabotin, Nikolay; Bullett, Terrence; Fuller-Rowell, Tim; Fang, Tzu-Wei; Codrescu, Mihail

    2016-04-01

    Traveling ionospheric disturbances (TIDs) are ubiquitous in the thermosphere-ionosphere and are often assumed to be caused by acoustic gravity waves (AGWs). This study performs an analysis of the TID and AGW activity above Wallops Island, VA, during October 2013. The variations in electron density and ionospheric tilts obtained with the Dynasonde technique are used as primary indicators of wave activity. The temporal and spectral characteristics of the data are discussed in detail, using also results of the Whole Atmosphere Model (WAM) and the Global Ionosphere Plasmasphere Model (GIP). The full set of propagation parameters (frequency, and the vertical, zonal and meridional wave vector components) of the TIDs is determined over the 160-220 km height range. A test of the self-consistency of these results within the confines of the theoretical AGW dispersion relation is devised. This is applied to a sample data set of 24 October 2013. A remarkable agreement has been achieved for wave periods between 52 and 21 min, for which we can rigorously claim the TIDs are caused by underlying acoustic gravity waves. The Wallops Island Dynasonde can operate for extended periods at a 2 min cadence, allowing determination of the statistical distributions of propagation parameters. A dominant population of TIDs is identified in the frequency band below 1 mHz, and for it, the distributions of the horizontal wavelengths, vertical wavelengths, and horizontal phase speeds are obtained.

  11. The influence of source acceleration on acoustic signals

    NASA Technical Reports Server (NTRS)

    Kelly, Jeffrey J.; Wilson, Mark R.

    1993-01-01

    The effect of aircraft acceleration on acoustic signals is often ignored in both analytical studies and data reduction of flight test measurements. In this study, the influence of source acceleration on acoustic signals is analyzed using computer simulated signals for an accelerating point source. Both rotating and translating sources are considered. Using a known signal allows an assessment of the influence of source acceleration on the received signal. Aircraft acceleration must also be considered in the measurement and reduction of flyover noise. Tracking of the aircraft over an array of microphones enables ensemble averaging of the acoustic signal, thus increasing the confidence in the measured data. This is only valid when both the altitude and velocity remain constant. For an accelerating aircraft, each microphone is exposed to differing flight velocities, Doppler shifts, and smear angles. Thus, averaging across the array in the normal manner is constrained by aircraft acceleration and microphone spacing. In this study computer simulated spectra, containing acceleration, are averaged across a 12 microphone array mimicking a flight test with accelerated profile in which noise data was obtained. Overlapped processing is performed is performed in the flight test measurements in order to alleviate spectral smearing.

  12. Identifying Potential Noise Sources within Acoustic Signals

    NASA Astrophysics Data System (ADS)

    Holcomb, Victoria; Lewalle, Jacques

    2013-11-01

    We test a new algorithm for its ability to detect sources of noise within random background. The goal of these tests is to better understand how to identify sources within acoustic signals while simultaneously determining the strengths and weaknesses of the algorithm in question. Unlike previously published algorithms, the antenna method does not pinpoint events by looking for the most energetic portions of a signal. The algorithm searches for the ideal lag combinations between three signals by taking excerpts of possible events. The excerpt with the lowest calculated minimum distance between possible events is how the algorithm identifies sources. At the minimum distance, the events are close in time and frequency. This method can be compared to the cross correlation and denoising methods to better understand its effectiveness. This work is supported in part by Spectral Energies LLC, under an SBIR grant from AFRL, as well as the Syracuse University MAE department.

  13. Study on demodulated signal distribution and acoustic pressure phase sensitivity of a self-interfered distributed acoustic sensing system

    NASA Astrophysics Data System (ADS)

    Shang, Ying; Yang, Yuan-Hong; Wang, Chen; Liu, Xiao-Hui; Wang, Chang; Peng, Gang-Ding

    2016-06-01

    We propose a demodulated signal distribution theory for a self-interfered distributed acoustic sensing system. The distribution region of Rayleigh backscattering including the acoustic sensing signal in the sensing fiber is investigated theoretically under different combinations of both the path difference and pulse width Additionally we determine the optimal solution between the path difference and pulse width to obtain the maximum phase change per unit length. We experimentally test this theory and realize a good acoustic pressure phase sensitivity of  -150 dB re rad/(μPa·m) of fiber in the frequency range from 200 Hz to 1 kHz.

  14. Noise correction of turbulent spectra obtained from Acoustic Doppler Velocimeters

    SciTech Connect

    Durgesh, Vibhav; Thomson, Jim; Richmond, Marshall C.; Polagye, Brian

    2014-03-02

    Accurately estimated auto-spectral density functions are essential for characterization of turbulent flows, and they also have applications in computational fluid dynamics modeling, site and inflow characterization for hydrokinetic turbines, and inflow turbulence generation. The Acoustic Doppler Velocimeter (ADV) provides single-point temporally resolved data, that are used to characterize turbulent flows in rivers, seas, and oceans. However, ADV data are susceptible to contamination from various sources, including instrument noise, which is the intrinsic limit to the accuracy of acoustic velocity measurements. Due to the presence of instrument noise, the spectra obtained are altered at high frequencies. The focus of this study is to develop a robust and effective method for accurately estimating auto-spectral density functions from ADV data by reducing or removing the spectral contribution derived from instrument noise. For this purpose, the “Noise Auto-Correlation” (NAC) approach was developed, which exploits the correlation properties of instrument noise to identify and remove its contribution from spectra. The spectra estimated using the NAC approach exhibit increased fidelity and a slope of -5/3 in the inertial range, which is typically observed for turbulent flows. Finally, this study also compares the effectiveness of low-pass Gaussian filters in removing instrument noise with that of the NAC approach. For the data used in this study, both the NAC and Gaussian filter approaches are observed to be capable of removing instrument noise at higher frequencies from the spectra. However, the NAC results are closer to the expected frequency power of -5/3 in the inertial sub-range.

  15. Bird population density estimated from acoustic signals

    USGS Publications Warehouse

    Dawson, D.K.; Efford, M.G.

    2009-01-01

    Many animal species are detected primarily by sound. Although songs, calls and other sounds are often used for population assessment, as in bird point counts and hydrophone surveys of cetaceans, there are few rigorous methods for estimating population density from acoustic data. 2. The problem has several parts - distinguishing individuals, adjusting for individuals that are missed, and adjusting for the area sampled. Spatially explicit capture-recapture (SECR) is a statistical methodology that addresses jointly the second and third parts of the problem. We have extended SECR to use uncalibrated information from acoustic signals on the distance to each source. 3. We applied this extension of SECR to data from an acoustic survey of ovenbird Seiurus aurocapilla density in an eastern US deciduous forest with multiple four-microphone arrays. We modelled average power from spectrograms of ovenbird songs measured within a window of 0??7 s duration and frequencies between 4200 and 5200 Hz. 4. The resulting estimates of the density of singing males (0??19 ha -1 SE 0??03 ha-1) were consistent with estimates of the adult male population density from mist-netting (0??36 ha-1 SE 0??12 ha-1). The fitted model predicts sound attenuation of 0??11 dB m-1 (SE 0??01 dB m-1) in excess of losses from spherical spreading. 5.Synthesis and applications. Our method for estimating animal population density from acoustic signals fills a gap in the census methods available for visually cryptic but vocal taxa, including many species of bird and cetacean. The necessary equipment is simple and readily available; as few as two microphones may provide adequate estimates, given spatial replication. The method requires that individuals detected at the same place are acoustically distinguishable and all individuals vocalize during the recording interval, or that the per capita rate of vocalization is known. We believe these requirements can be met, with suitable field methods, for a significant

  16. Acoustic signals generated in inclined granular flows

    NASA Astrophysics Data System (ADS)

    Tan, Danielle S.; Jenkins, James T.; Keast, Stephen C.; Sachse, Wolfgang H.

    2015-10-01

    Spontaneous avalanching in specific deserts produces a low-frequency sound known as "booming." This creates a puzzle, because avalanches down the face of a dune result in collisions between sand grains that occur at much higher frequencies. Reproducing this phenomenon in the laboratory permits a better understanding of the underlying mechanisms for the generation of such lower frequency acoustic emissions, which may also be relevant to other dry granular flows. Here we report measurements of low-frequency acoustical signals, produced by dried "sounding" sand (sand capable of booming in the desert) flowing down an inclined chute. The amplitude of the signal diminishes over time but reappears upon drying of the sand. We show that the presence of this sound in the experiments may provide supporting evidence for a previously published "waveguide" explanation for booming. Also, we propose a model based on kinetic theory for a sheared inclined flow in which the flowing layer exhibits "breathing" modes superimposed on steady shearing. The predicted oscillation frequency is of a similar order of magnitude as the measurements, indicating that small perturbations can sustain oscillations of a low frequency. However, the frequency is underestimated, which indicates that the stiffness has been underestimated. Also, the model predicts a discrete spectrum of frequencies, instead of the broadband spectrum measured experimentally.

  17. Spatial acoustic signal processing for immersive communication

    NASA Astrophysics Data System (ADS)

    Atkins, Joshua

    Computing is rapidly becoming ubiquitous as users expect devices that can augment and interact naturally with the world around them. In these systems it is necessary to have an acoustic front-end that is able to capture and reproduce natural human communication. Whether the end point is a speech recognizer or another human listener, the reduction of noise, reverberation, and acoustic echoes are all necessary and complex challenges. The focus of this dissertation is to provide a general method for approaching these problems using spherical microphone and loudspeaker arrays.. In this work, a theory of capturing and reproducing three-dimensional acoustic fields is introduced from a signal processing perspective. In particular, the decomposition of the spatial part of the acoustic field into an orthogonal basis of spherical harmonics provides not only a general framework for analysis, but also many processing advantages. The spatial sampling error limits the upper frequency range with which a sound field can be accurately captured or reproduced. In broadband arrays, the cost and complexity of using multiple transducers is an issue. This work provides a flexible optimization method for determining the location of array elements to minimize the spatial aliasing error. The low frequency array processing ability is also limited by the SNR, mismatch, and placement error of transducers. To address this, a robust processing method is introduced and used to design a reproduction system for rendering over arbitrary loudspeaker arrays or binaurally over headphones. In addition to the beamforming problem, the multichannel acoustic echo cancellation (MCAEC) issue is also addressed. A MCAEC must adaptively estimate and track the constantly changing loudspeaker-room-microphone response to remove the sound field presented over the loudspeakers from that captured by the microphones. In the multichannel case, the system is overdetermined and many adaptive schemes fail to converge to

  18. Estimation of the Tool Condition by Applying the Wavelet Transform to Acoustic Emission Signals

    SciTech Connect

    Gomez, M. P.; Piotrkowski, R.; Ruzzante, J. E.; D'Attellis, C. E.

    2007-03-21

    This work follows the search of parameters to evaluate the tool condition in machining processes. The selected sensing technique is acoustic emission and it is applied to a turning process of steel samples. The obtained signals are studied using the wavelet transformation. The tool wear level is quantified as a percentage of the final wear specified by the Standard ISO 3685. The amplitude and relevant scale obtained of acoustic emission signals could be related with the wear level.

  19. Acoustic signal detection of manatee calls

    NASA Astrophysics Data System (ADS)

    Niezrecki, Christopher; Phillips, Richard; Meyer, Michael; Beusse, Diedrich O.

    2003-04-01

    The West Indian manatee (trichechus manatus latirostris) has become endangered partly because of a growing number of collisions with boats. A system to warn boaters of the presence of manatees, that can signal to boaters that manatees are present in the immediate vicinity, could potentially reduce these boat collisions. In order to identify the presence of manatees, acoustic methods are employed. Within this paper, three different detection algorithms are used to detect the calls of the West Indian manatee. The detection systems are tested in the laboratory using simulated manatee vocalizations from an audio compact disc. The detection method that provides the best overall performance is able to correctly identify ~=96% of the manatee vocalizations. However the system also results in a false positive rate of ~=16%. The results of this work may ultimately lead to the development of a manatee warning system that can warn boaters of the presence of manatees.

  20. Acoustic signalling reflects personality in a social mammal

    PubMed Central

    Friel, Mary; Kunc, Hansjoerg P.; Griffin, Kym; Asher, Lucy; Collins, Lisa M.

    2016-01-01

    Social interactions among individuals are often mediated through acoustic signals. If acoustic signals are consistent and related to an individual's personality, these consistent individual differences in signalling may be an important driver in social interactions. However, few studies in non-human mammals have investigated the relationship between acoustic signalling and personality. Here we show that acoustic signalling rate is repeatable and strongly related to personality in a highly social mammal, the domestic pig (Sus scrofa domestica). Furthermore, acoustic signalling varied between environments of differing quality, with males from a poor-quality environment having a reduced vocalization rate compared with females and males from an enriched environment. Such differences may be mediated by personality with pigs from a poor-quality environment having more reactive and more extreme personality scores compared with pigs from an enriched environment. Our results add to the evidence that acoustic signalling reflects personality in a non-human mammal. Signals reflecting personalities may have far reaching consequences in shaping the evolution of social behaviours as acoustic communication forms an integral part of animal societies. PMID:27429775

  1. Acoustic signalling reflects personality in a social mammal.

    PubMed

    Friel, Mary; Kunc, Hansjoerg P; Griffin, Kym; Asher, Lucy; Collins, Lisa M

    2016-06-01

    Social interactions among individuals are often mediated through acoustic signals. If acoustic signals are consistent and related to an individual's personality, these consistent individual differences in signalling may be an important driver in social interactions. However, few studies in non-human mammals have investigated the relationship between acoustic signalling and personality. Here we show that acoustic signalling rate is repeatable and strongly related to personality in a highly social mammal, the domestic pig (Sus scrofa domestica). Furthermore, acoustic signalling varied between environments of differing quality, with males from a poor-quality environment having a reduced vocalization rate compared with females and males from an enriched environment. Such differences may be mediated by personality with pigs from a poor-quality environment having more reactive and more extreme personality scores compared with pigs from an enriched environment. Our results add to the evidence that acoustic signalling reflects personality in a non-human mammal. Signals reflecting personalities may have far reaching consequences in shaping the evolution of social behaviours as acoustic communication forms an integral part of animal societies. PMID:27429775

  2. Interpretation of acoustic signals from fluidzed beds

    SciTech Connect

    Halow, J.S.; Daw, C.S.; Finney, C.E.A.; Nguyen, K.

    1996-12-31

    Rhythmic {open_quotes}whooshing{close_quotes} sounds associated with rising bubbles are a characteristic feature of many fluidized beds. Although clearly distinguishable to the ear, these sounds are rather complicated in detail and seem to contain a large background of apparently irrelevant stochastic noise. While it is clear that these sounds contain some information about bed dynamics, it is not obvious how this information can be interpreted in a meaningful way. In this presentation we describe a technique for processing bed sounds that appears to work well for beds with large particles operating in a slugging or near-slugging mode. We find that our processing algorithm allows us to determine important bubble/slug features from sound measurements alone, including slug location at any point in time, the average bubble frequency and frequency variation, and corresponding dynamic pressure drops at different bed locations. We also have been able to correlate a portion of the acoustic signal with particle impacts on surfaces and particle motions near the grid. We conclude from our observations that relatively simple sound measurements can provide much diagnostic information and could be potentially used for bed control. 5 refs., 4 figs.

  3. Thirty years of underwater acoustic signal processing in China

    NASA Astrophysics Data System (ADS)

    Li, Qihu

    2012-11-01

    Advances in technology and theory in 30 years of underwater acoustic signal processing and its applications in China are presented in this paper. The topics include research work in the field of underwater acoustic signal modeling, acoustic field matching, ocean waveguide and internal wave, the extraction and processing technique for acoustic vector signal information, the space/time correlation characteristics of low frequency acoustic channels, the invariant features of underwater target radiated noise, the transmission technology of underwater voice/image data and its anti-interference technique. Some frontier technologies in sonar design are also discussed, including large aperture towed line array sonar, high resolution synthetic aperture sonar, deep sea siren and deep sea manned subsea vehicle, diver detection sonar and demonstration projector of national ocean monitoring system in China, etc.

  4. Amplitude Modulations of Acoustic Communication Signals

    NASA Astrophysics Data System (ADS)

    Turesson, Hjalmar K.

    2011-12-01

    In human speech, amplitude modulations at 3 -- 8 Hz are important for discrimination and detection. Two different neurophysiological theories have been proposed to explain this effect. The first theory proposes that, as a consequence of neocortical synaptic dynamics, signals that are amplitude modulated at 3 -- 8 Hz are propagated better than un-modulated signals, or signals modulated above 8 Hz. This suggests that neural activity elicited by vocalizations modulated at 3 -- 8 Hz is optimally transmitted, and the vocalizations better discriminated and detected. The second theory proposes that 3 -- 8 Hz amplitude modulations interact with spontaneous neocortical oscillations. Specifically, vocalizations modulated at 3 -- 8 Hz entrain local populations of neurons, which in turn, modulate the amplitude of high frequency gamma oscillations. This suggests that vocalizations modulated at 3 -- 8 Hz should induce stronger cross-frequency coupling. Similar to human speech, we found that macaque monkey vocalizations also are amplitude modulated between 3 and 8 Hz. Humans and macaque monkeys share similarities in vocal production, implying that the auditory systems subserving perception of acoustic communication signals also share similarities. Based on the similarities between human speech and macaque monkey vocalizations, we addressed how amplitude modulated vocalizations are processed in the auditory cortex of macaque monkeys, and what behavioral relevance modulations may have. Recording single neuron activity, as well as, the activity of local populations of neurons allowed us to test both of the neurophysiological theories presented above. We found that single neuron responses to vocalizations amplitude modulated at 3 -- 8 Hz resulted in better stimulus discrimination than vocalizations lacking 3 -- 8 Hz modulations, and that the effect most likely was mediated by synaptic dynamics. In contrast, we failed to find support for the oscillation-based model proposing a

  5. Tracheal activity recognition based on acoustic signals.

    PubMed

    Olubanjo, Temiloluwa; Ghovanloo, Maysam

    2014-01-01

    Tracheal activity recognition can play an important role in continuous health monitoring for wearable systems and facilitate the advancement of personalized healthcare. Neck-worn systems provide access to a unique set of health-related data that other wearable devices simply cannot obtain. Activities including breathing, chewing, clearing the throat, coughing, swallowing, speech and even heartbeat can be recorded from around the neck. In this paper, we explore tracheal activity recognition using a combination of promising acoustic features from related work and apply simplistic classifiers including K-NN and Naive Bayes. For wearable systems in which low power consumption is of primary concern, we show that with a sub-optimal sampling rate of 16 kHz, we have achieved average classification results in the range of 86.6% to 87.4% using 1-NN, 3-NN, 5-NN and Naive Bayes. All classifiers obtained the highest recognition rate in the range of 97.2% to 99.4% for speech classification. This is promising to mitigate privacy concerns associated with wearable systems interfering with the user's conversations.

  6. An Objective Focussing Measure for Acoustically Obtained Images

    NASA Astrophysics Data System (ADS)

    Czarnecki, Krzysztof; Moszyński, Marek; Rojewski, Mirosław

    In scientific literature many parameters of an image sharpness can be defined, that can be used for the evaluation of display energy concentration (EC). This paper proposes a new, simple approach to EC quantitative evaluation in spectrograms, which are used for the analysis and visualization of sonar signals. The presented approach of the global-image EC measure was developed to the evaluation of EC in arbitrary direction (or at an arbitrary angle) and along an arbitrary path that is contained within the displayed area. The proposed measures were used to establish optimum spectrograph parameters, subject to high EC in images, in particular the type and width of the window. Moreover, the paper defines the marginal EC distributions that can be used in sonar signal detection as a support to the main detector.

  7. Correlation of signals of thermal acoustic radiation

    NASA Astrophysics Data System (ADS)

    Anosov, A. A.; Passechnik, V. I.

    2003-03-01

    The spatial correlation function is measured for the pressure of thermal acoustic radiation from a source (a narrow plasticine plate) whose temperature is made both higher and lower than the temperature of the receiver. The spatial correlation function of the pressure of thermal acoustic radiation is found to be oscillatory in character. The oscillation amplitude is determined not by the absolute temperature of the source but by the temperature difference between the source and the receiver. The correlation function changes its sign when a source heated with respect to the receiver is replaced by a cooled one.

  8. Mesoscale variations in acoustic signals induced by atmospheric gravity waves.

    PubMed

    Chunchuzov, Igor; Kulichkov, Sergey; Perepelkin, Vitaly; Ziemann, Astrid; Arnold, Klaus; Kniffka, Anke

    2009-02-01

    The results of acoustic tomographic monitoring of the coherent structures in the lower atmosphere and the effects of these structures on acoustic signal parameters are analyzed in the present study. From the measurements of acoustic travel time fluctuations (periods 1 min-1 h) with distant receivers, the temporal fluctuations of the effective sound speed and wind speed are retrieved along different ray paths connecting an acoustic pulse source and several receivers. By using a coherence analysis of the fluctuations near spatially distanced ray turning points, the internal wave-associated fluctuations are filtered and their spatial characteristics (coherences, horizontal phase velocities, and spatial scales) are estimated. The capability of acoustic tomography in estimating wind shear near ground is shown. A possible mechanism describing the temporal modulation of the near-ground wind field by ducted internal waves in the troposphere is proposed.

  9. Single sensor processing to obtain high resolution color component signals

    NASA Technical Reports Server (NTRS)

    Glenn, William E. (Inventor)

    2010-01-01

    A method for generating color video signals representative of color images of a scene includes the following steps: focusing light from the scene on an electronic image sensor via a filter having a tri-color filter pattern; producing, from outputs of the sensor, first and second relatively low resolution luminance signals; producing, from outputs of the sensor, a relatively high resolution luminance signal; producing, from a ratio of the relatively high resolution luminance signal to the first relatively low resolution luminance signal, a high band luminance component signal; producing, from outputs of the sensor, relatively low resolution color component signals; and combining each of the relatively low resolution color component signals with the high band luminance component signal to obtain relatively high resolution color component signals.

  10. Inverse Modelling to Obtain Head Movement Controller Signal

    NASA Technical Reports Server (NTRS)

    Kim, W. S.; Lee, S. H.; Hannaford, B.; Stark, L.

    1984-01-01

    Experimentally obtained dynamics of time-optimal, horizontal head rotations have previously been simulated by a sixth order, nonlinear model driven by rectangular control signals. Electromyography (EMG) recordings have spects which differ in detail from the theoretical rectangular pulsed control signal. Control signals for time-optimal as well as sub-optimal horizontal head rotations were obtained by means of an inverse modelling procedures. With experimentally measured dynamical data serving as the input, this procedure inverts the model to produce the neurological control signals driving muscles and plant. The relationships between these controller signals, and EMG records should contribute to the understanding of the neurological control of movements.

  11. Pulse analysis of acoustic emission signals

    NASA Technical Reports Server (NTRS)

    Houghton, J. R.; Packman, P. F.

    1977-01-01

    A method for the signature analysis of pulses in the frequency domain and the time domain is presented. Fourier spectrum, Fourier transfer function, shock spectrum and shock spectrum ratio were examined in the frequency domain analysis and pulse shape deconvolution was developed for use in the time domain analysis. Comparisons of the relative performance of each analysis technique are made for the characterization of acoustic emission pulses recorded by a measuring system. To demonstrate the relative sensitivity of each of the methods to small changes in the pulse shape, signatures of computer modeled systems with analytical pulses are presented. Optimization techniques are developed and used to indicate the best design parameter values for deconvolution of the pulse shape. Several experiments are presented that test the pulse signature analysis methods on different acoustic emission sources. These include acoustic emission associated with (a) crack propagation, (b) ball dropping on a plate, (c) spark discharge, and (d) defective and good ball bearings. Deconvolution of the first few micro-seconds of the pulse train is shown to be the region in which the significant signatures of the acoustic emission event are to be found.

  12. Pulse analysis of acoustic emission signals

    NASA Technical Reports Server (NTRS)

    Houghton, J. R.; Packman, P. F.

    1977-01-01

    A method for the signature analysis of pulses in the frequency domain and the time domain is presented. Fourier spectrum, Fourier transfer function, shock spectrum and shock spectrum ratio were examined in the frequency domain analysis, and pulse shape deconvolution was developed for use in the time domain analysis. Comparisons of the relative performance of each analysis technique are made for the characterization of acoustic emission pulses recorded by a measuring system. To demonstrate the relative sensitivity of each of the methods to small changes in the pulse shape, signatures of computer modeled systems with analytical pulses are presented. Optimization techniques are developed and used to indicate the best design parameters values for deconvolution of the pulse shape. Several experiments are presented that test the pulse signature analysis methods on different acoustic emission sources. These include acoustic emissions associated with: (1) crack propagation, (2) ball dropping on a plate, (3) spark discharge and (4) defective and good ball bearings. Deconvolution of the first few micro-seconds of the pulse train are shown to be the region in which the significant signatures of the acoustic emission event are to be found.

  13. Acoustic signal characteristics during IR laser ablation and their consequences for acoustic tissue discrimination

    NASA Astrophysics Data System (ADS)

    Nahen, Kester; Vogel, Alfred

    2000-06-01

    IR laser ablation of skin is accompanied by acoustic signals the characteristics of which are closely linked to the ablation dynamics. A discrimination between different tissue layers, for example necrotic and vital tissue during laser burn debridement, is therefore possible by an analysis of the acoustic signal. We were able to discriminate tissue layers by evaluating the acoustic energy. To get a better understanding of the tissue specificity of the ablation noise, we investigated the correlation between sample water content, ablation dynamics, and characteristics of the acoustic signal. A free running Er:YAG laser with a maximum pulse energy of 2 J and a spot diameter of 5 mm was used to ablate gelatin samples with different water content. The ablation noise in air was detected using a piezoelectric transducer with a bandwidth of 1 MHz, and the acoustic signal generated inside the ablated sample was measured simultaneously ba a piezoelectric transducer in contact with the sample. Laser flash Schlieren photography was used to investigate the expansion velocity of the vapor plume and the velocity of the ejected material. We observed large differences between the ablation dynamics and material ejection velocity for gelatin samples with 70% and 90% water content. These differences cannot be explained by the small change of the gelatin absorption coefficient, but are largely related to differences of the mechanical properties of the sample. The different ablation dynamics are responsible for an increase of the acoustic energy by a factor of 10 for the sample with the higher water content.

  14. Speaker verification using combined acoustic and EM sensor signal processing

    SciTech Connect

    Ng, L C; Gable, T J; Holzrichter, J F

    2000-11-10

    Low Power EM radar-like sensors have made it possible to measure properties of the human speech production system in real-time, without acoustic interference. This greatly enhances the quality and quantity of information for many speech related applications. See Holzrichter, Burnett, Ng, and Lea, J. Acoustic. SOC. Am . 103 ( 1) 622 (1998). By combining the Glottal-EM-Sensor (GEMS) with the Acoustic-signals, we've demonstrated an almost 10 fold reduction in error rates from a speaker verification system experiment under a moderate noisy environment (-10dB).

  15. Low Bandwidth Vocoding using EM Sensor and Acoustic Signal Processing

    SciTech Connect

    Ng, L C; Holzrichter, J F; Larson, P E

    2001-10-25

    Low-power EM radar-like sensors have made it possible to measure properties of the human speech production system in real-time, without acoustic interference [1]. By combining these data with the corresponding acoustic signal, we've demonstrated an almost 10-fold bandwidth reduction in speech compression, compared to a standard 2.4 kbps LPC10 protocol used in the STU-III (Secure Terminal Unit, third generation) telephone. This paper describes a potential EM sensor/acoustic based vocoder implementation.

  16. Acoustic Aspects of Photoacoustic Signal Generation and Detection in Gases

    NASA Astrophysics Data System (ADS)

    Miklós, A.

    2015-09-01

    In this paper photoacoustic signal generation and detection in gases is investigated and discussed from the standpoint of acoustics. Four topics are considered: the effect of the absorption-desorption process of modulated and pulsed light on the heat power density released in the gas; the generation of the primary sound by the released heat in an unbounded medium; the excitation of an acoustic resonator by the primary sound; and finally, the generation of the measurable PA signal by a microphone. When light is absorbed by a molecule and the excess energy is relaxed by collisions with the surrounding molecules, the average kinetic energy, thus also the temperature of an ensemble of molecules (called "particle" in acoustics) will increase. In other words heat energy is added to the energy of the particle. The rate of the energy transfer is characterized by the heat power density. A simple two-level model of absorption-desorption is applied for describing the heat power generation process for modulated and pulsed illumination. Sound generation by a laser beam in an unbounded medium is discussed by means of the Green's function technique. It is shown that the duration of the generated sound pulse depends mostly on beam geometry. A photoacoustic signal is mostly detected in a photoacoustic cell composed of acoustic resonators, buffers, filters, etc. It is not easy to interpret the measured PA signal in such a complicated acoustic system. The acoustic response of a PA detector to different kinds of excitations (modulated cw, pulsed, periodic pulse train) is discussed. It is shown that acoustic resonators respond very differently to modulated cw excitation and to excitation by a pulse train. The microphone for detecting the PA signal is also a part of the acoustic system; its properties have to be taken into account by the design of a PA detector. The moving membrane of the microphone absorbs acoustic energy; thus, it may influence the resonance frequency and

  17. Wavelet-based ground vehicle recognition using acoustic signals

    NASA Astrophysics Data System (ADS)

    Choe, Howard C.; Karlsen, Robert E.; Gerhart, Grant R.; Meitzler, Thomas J.

    1996-03-01

    We present, in this paper, a wavelet-based acoustic signal analysis to remotely recognize military vehicles using their sound intercepted by acoustic sensors. Since expedited signal recognition is imperative in many military and industrial situations, we developed an algorithm that provides an automated, fast signal recognition once implemented in a real-time hardware system. This algorithm consists of wavelet preprocessing, feature extraction and compact signal representation, and a simple but effective statistical pattern matching. The current status of the algorithm does not require any training. The training is replaced by human selection of reference signals (e.g., squeak or engine exhaust sound) distinctive to each individual vehicle based on human perception. This allows a fast archiving of any new vehicle type in the database once the signal is collected. The wavelet preprocessing provides time-frequency multiresolution analysis using discrete wavelet transform (DWT). Within each resolution level, feature vectors are generated from statistical parameters and energy content of the wavelet coefficients. After applying our algorithm on the intercepted acoustic signals, the resultant feature vectors are compared with the reference vehicle feature vectors in the database using statistical pattern matching to determine the type of vehicle from where the signal originated. Certainly, statistical pattern matching can be replaced by an artificial neural network (ANN); however, the ANN would require training data sets and time to train the net. Unfortunately, this is not always possible for many real world situations, especially collecting data sets from unfriendly ground vehicles to train the ANN. Our methodology using wavelet preprocessing and statistical pattern matching provides robust acoustic signal recognition. We also present an example of vehicle recognition using acoustic signals collected from two different military ground vehicles. In this paper, we will

  18. Temporal coherence of acoustic signals in a fluctuating ocean.

    PubMed

    Voronovich, Alexander G; Ostashev, Vladimir E; Colosi, John A

    2011-06-01

    Temporal coherence of acoustic signals propagating in a fluctuating ocean is important for many practical applications and has been studied intensively experimentally. However, only a few theoretical formulations of temporal coherence exist. In the present paper, a three-dimensional (3D) modal theory of sound propagation in a fluctuating ocean is used to derive closed-form equations for the spatial-temporal coherence function of a broadband signal. The theory is applied to the analysis of the temporal coherence of a monochromatic signal propagating in an ocean perturbed by linear internal waves obeying the Garrett-Munk (G-M) spectral model. In particular, the temporal coherence function is calculated for propagation ranges up to 10(4) km and for five sound frequencies: 12, 25, 50, 75, and 100 Hz. Then, the dependence of the coherence time (i.e., the value of the time lag at which the temporal coherence decreases by a factor of e) on range and frequency is studied. The results obtained are compared with experimental data and predictions of the path-integral theory.

  19. System and method for characterizing voiced excitations of speech and acoustic signals, removing acoustic noise from speech, and synthesizing speech

    DOEpatents

    Burnett, Greg C.; Holzrichter, John F.; Ng, Lawrence C.

    2006-08-08

    The present invention is a system and method for characterizing human (or animate) speech voiced excitation functions and acoustic signals, for removing unwanted acoustic noise which often occurs when a speaker uses a microphone in common environments, and for synthesizing personalized or modified human (or other animate) speech upon command from a controller. A low power EM sensor is used to detect the motions of windpipe tissues in the glottal region of the human speech system before, during, and after voiced speech is produced by a user. From these tissue motion measurements, a voiced excitation function can be derived. Further, the excitation function provides speech production information to enhance noise removal from human speech and it enables accurate transfer functions of speech to be obtained. Previously stored excitation and transfer functions can be used for synthesizing personalized or modified human speech. Configurations of EM sensor and acoustic microphone systems are described to enhance noise cancellation and to enable multiple articulator measurements.

  20. System and method for characterizing voiced excitations of speech and acoustic signals, removing acoustic noise from speech, and synthesizing speech

    DOEpatents

    Burnett, Greg C.; Holzrichter, John F.; Ng, Lawrence C.

    2004-03-23

    The present invention is a system and method for characterizing human (or animate) speech voiced excitation functions and acoustic signals, for removing unwanted acoustic noise which often occurs when a speaker uses a microphone in common environments, and for synthesizing personalized or modified human (or other animate) speech upon command from a controller. A low power EM sensor is used to detect the motions of windpipe tissues in the glottal region of the human speech system before, during, and after voiced speech is produced by a user. From these tissue motion measurements, a voiced excitation function can be derived. Further, the excitation function provides speech production information to enhance noise removal from human speech and it enables accurate transfer functions of speech to be obtained. Previously stored excitation and transfer functions can be used for synthesizing personalized or modified human speech. Configurations of EM sensor and acoustic microphone systems are described to enhance noise cancellation and to enable multiple articulator measurements.

  1. System and method for characterizing voiced excitations of speech and acoustic signals, removing acoustic noise from speech, and synthesizing speech

    DOEpatents

    Burnett, Greg C.; Holzrichter, John F.; Ng, Lawrence C.

    2006-02-14

    The present invention is a system and method for characterizing human (or animate) speech voiced excitation functions and acoustic signals, for removing unwanted acoustic noise which often occurs when a speaker uses a microphone in common environments, and for synthesizing personalized or modified human (or other animate) speech upon command from a controller. A low power EM sensor is used to detect the motions of windpipe tissues in the glottal region of the human speech system before, during, and after voiced speech is produced by a user. From these tissue motion measurements, a voiced excitation function can be derived. Further, the excitation function provides speech production information to enhance noise removal from human speech and it enables accurate transfer functions of speech to be obtained. Previously stored excitation and transfer functions can be used for synthesizing personalized or modified human speech. Configurations of EM sensor and acoustic microphone systems are described to enhance noise cancellation and to enable multiple articulator measurements.

  2. System And Method For Characterizing Voiced Excitations Of Speech And Acoustic Signals, Removing Acoustic Noise From Speech, And Synthesizi

    DOEpatents

    Burnett, Greg C.; Holzrichter, John F.; Ng, Lawrence C.

    2006-04-25

    The present invention is a system and method for characterizing human (or animate) speech voiced excitation functions and acoustic signals, for removing unwanted acoustic noise which often occurs when a speaker uses a microphone in common environments, and for synthesizing personalized or modified human (or other animate) speech upon command from a controller. A low power EM sensor is used to detect the motions of windpipe tissues in the glottal region of the human speech system before, during, and after voiced speech is produced by a user. From these tissue motion measurements, a voiced excitation function can be derived. Further, the excitation function provides speech production information to enhance noise removal from human speech and it enables accurate transfer functions of speech to be obtained. Previously stored excitation and transfer functions can be used for synthesizing personalized or modified human speech. Configurations of EM sensor and acoustic microphone systems are described to enhance noise cancellation and to enable multiple articulator measurements.

  3. Analysis of acoustic signals on welding and cutting

    SciTech Connect

    Morita, Takao; Ogawa, Yoji; Sumitomo, Takashi

    1995-12-31

    The sounds emitted during the welding and cutting processes are closely related to the processing phenomena, and sometimes they provide useful information for evaluation of their processing conditions. The analyses of acoustic signals from arc welding, plasma arc cutting, oxy-flame cutting, and water jet cutting are carried out in details in order to develop effective signal processing algorithm. The sound from TIG arc welding has the typical line spectrum which principal frequency, is almost the same as that of supplied electricity. The disturbance of welding process is clearly appeared oil the acoustic emission. The sound exposure level for CO{sub 2} or MIG welding is higher than that for TIG welding, and the relative intensity of the typical line spectrum caused by supplied electricity becomes low. But the sudden transition of welding condition oil produces an apparent change of sound exposure level. On the contrary, the acoustics from cutting processes are much louder than those of arc welding and show more chaotic behavior because the supplied fluid velocity and temperature of arc for cutting processes are much higher than those for welding processes. Therefore, it requires a special technique to extract the well meaning signals from the loud acoustic sounds. Further point of view, the reduction of acoustic exposure level becomes an important research theme with the growth of application fields of cutting processes.

  4. Surface Roughness Evaluation Based on Acoustic Emission Signals in Robot Assisted Polishing

    PubMed Central

    de Agustina, Beatriz; Marín, Marta María; Teti, Roberto; Rubio, Eva María

    2014-01-01

    The polishing process is the most common technology used in applications where a high level of surface quality is demanded. The automation of polishing processes is especially difficult due to the high level of skill and dexterity that is required. Much of this difficulty arises because of the lack of reliable data on the effect of the polishing parameters on the resulting surface roughness. An experimental study was developed to evaluate the surface roughness obtained during Robot Assisted Polishing processes by the analysis of acoustic emission signals in the frequency domain. The aim is to find out a trend of a feature or features calculated from the acoustic emission signals detected along the process. Such an evaluation was made with the objective of collecting valuable information for the establishment of the end point detection of polishing process. As a main conclusion, it can be affirmed that acoustic emission (AE) signals can be considered useful to monitor the polishing process state. PMID:25405509

  5. Surface roughness evaluation based on acoustic emission signals in robot assisted polishing.

    PubMed

    de Agustina, Beatriz; Marín, Marta María; Teti, Roberto; Rubio, Eva María

    2014-11-14

    The polishing process is the most common technology used in applications where a high level of surface quality is demanded. The automation of polishing processes is especially difficult due to the high level of skill and dexterity that is required. Much of this difficulty arises because of the lack of reliable data on the effect of the polishing parameters on the resulting surface roughness. An experimental study was developed to evaluate the surface roughness obtained during Robot Assisted Polishing processes by the analysis of acoustic emission signals in the frequency domain. The aim is to find out a trend of a feature or features calculated from the acoustic emission signals detected along the process. Such an evaluation was made with the objective of collecting valuable information for the establishment of the end point detection of polishing process. As a main conclusion, it can be affirmed that acoustic emission (AE) signals can be considered useful to monitor the polishing process state.

  6. Studies of horizontal refraction and scattering of low-frequency acoustic signals using a modal approach in signal processing of NPAL data

    NASA Astrophysics Data System (ADS)

    Voronovich, Alexander G.; Ostashev, Vladimir E.

    2003-04-01

    In our previous paper [J. Acoust. Soc. Am. 112, 2232], we obtained a time dependence of the horizontal refraction angle (HRA) of acoustic signals propagating over a range of about 4000 km in the ocean. This dependence was computed by processing of acoustic signals recorded during the North Pacific Acoustic Laboratory (NPAL) experiment using a ray-type approach. In the present paper, we consider the results obtained in signal processing of the same data using a modal approach. In this approach, the acoustic field is represented as a sum of local acoustic modes with amplitudes depending on a frequency and arrival angle. We obtained a time dependence of HRA for a time interval of about a year. Time evolution of HRA exhibits long-period variations which could be associated with seasonal trends in the sound speed profiles. The results are consistent with those obtained by the ray approach. Different horizontal angles within arrivals were impossible to resolve due to sound scattering by internal waves. A theoretical estimate of the angular width of the acoustic signals in a horizontal plane was obtained. It appears to be consistent with the observed variance of HRA data. [Work supported by ONR.] a)J. A. Colosi, B. D. Cornuelle, B. D. Dushaw, M. A. Dzieciuch, B. M. Howe, J. A. Mercer, R. C. Spindel, and P. F. Worcester.

  7. A unique method to study acoustic transmission through ducts using signal synthesis and averaging of acoustic pulses

    NASA Technical Reports Server (NTRS)

    Salikuddin, M.; Ramakrishnan, R.; Ahuja, K. K.; Brown, W. H.

    1981-01-01

    An acoustic impulse technique using a loudspeaker driver is developed to measure the acoustic properties of a duct/nozzle system. A signal synthesis method is used to generate a desired single pulse with a flat spectrum. The convolution of the desired signal and the inverse Fourier transform of the reciprocal of the driver's response are then fed to the driver. A signal averaging process eliminates the jet mixing noise from the mixture of jet noise and the internal noise, thereby allowing very low intensity signals to be measured accurately, even for high velocity jets. A theoretical analysis is carried out to predict the incident sound field; this is used to help determine the number and locations of the induct measurement points to account for the contributions due to higher order modes present in the incident tube method. The impulse technique is validated by comparing experimentally determined acoustic characteristics of a duct-nozzle system with similar results obtained by the impedance tube method. Absolute agreement in the comparisons was poor, but the overall shapes of the time histories and spectral distributions were much alike.

  8. Digital Signal Processing in Acoustics--Part 2.

    ERIC Educational Resources Information Center

    Davies, H.; McNeill, D. J.

    1986-01-01

    Reviews the potential of a data acquisition system for illustrating the nature and significance of ideas in digital signal processing. Focuses on the fast Fourier transform and the utility of its two-channel format, emphasizing cross-correlation and its two-microphone technique of acoustic intensity measurement. Includes programing format. (ML)

  9. Atmospheric influence on volcano-acoustic signals

    NASA Astrophysics Data System (ADS)

    Matoza, Robin; de Groot-Hedlin, Catherine; Hedlin, Michael; Fee, David; Garcés, Milton; Le Pichon, Alexis

    2010-05-01

    Volcanoes are natural sources of infrasound, useful for studying infrasonic propagation in the atmosphere. Large, explosive volcanic eruptions typically produce signals that can be recorded at ranges of hundreds of kilometers propagating in atmospheric waveguides. In addition, sustained volcanic eruptions can produce smaller-amplitude repetitive signals recordable at >10 km range. These include repetitive impulsive signals and continuous tremor signals. The source functions of these signals can remain relatively invariant over timescales of weeks to months. Observed signal fluctuations from such persistent sources at an infrasound recording station may therefore be attributed to dynamic atmospheric propagation effects. We present examples of repetitive and sustained volcano infrasound sources at Mount St. Helens, Washington and Kilauea Volcano, Hawaii, USA. The data recorded at >10 km range show evidence of propagation effects induced by tropospheric variability at the mesoscale and microscale. Ray tracing and finite-difference simulations of the infrasound propagation produce qualitatively consistent results. However, the finite-difference simulations indicate that low-frequency effects such as diffraction, and scattering from topography may be important factors for infrasonic propagation at this scale.

  10. A Comparison of Signal Enhancement Methods for Extracting Tonal Acoustic Signals

    NASA Technical Reports Server (NTRS)

    Jones, Michael G.

    1998-01-01

    The measurement of pure tone acoustic pressure signals in the presence of masking noise, often generated by mean flow, is a continual problem in the field of passive liner duct acoustics research. In support of the Advanced Subsonic Technology Noise Reduction Program, methods were investigated for conducting measurements of advanced duct liner concepts in harsh, aeroacoustic environments. This report presents the results of a comparison study of three signal extraction methods for acquiring quality acoustic pressure measurements in the presence of broadband noise (used to simulate the effects of mean flow). The performance of each method was compared to a baseline measurement of a pure tone acoustic pressure 3 dB above a uniform, broadband noise background.

  11. Signal processing methodologies for an acoustic fetal heart rate monitor

    NASA Technical Reports Server (NTRS)

    Pretlow, Robert A., III; Stoughton, John W.

    1992-01-01

    Research and development is presented of real time signal processing methodologies for the detection of fetal heart tones within a noise-contaminated signal from a passive acoustic sensor. A linear predictor algorithm is utilized for detection of the heart tone event and additional processing derives heart rate. The linear predictor is adaptively 'trained' in a least mean square error sense on generic fetal heart tones recorded from patients. A real time monitor system is described which outputs to a strip chart recorder for plotting the time history of the fetal heart rate. The system is validated in the context of the fetal nonstress test. Comparisons are made with ultrasonic nonstress tests on a series of patients. Comparative data provides favorable indications of the feasibility of the acoustic monitor for clinical use.

  12. Dolphin's echolocation signals in a complicated acoustic environment

    NASA Astrophysics Data System (ADS)

    Ivanov, M. P.

    2004-07-01

    Echolocation abilities of a dolphin ( Tursiops truncatus ponticus) were investigated in laboratory conditions. The experiment was carried out in an open cage using an acoustic control over the behavior of the animal detecting underwater objects in a complicated acoustic environment. Targets of different strength were used as test objects. The dolphin was found to be able to detect objects at distances exceeding 650 m. For the target location, the dolphin used both single-pulse and multipulse echolocation modes. Time characteristics of echolocation pulses and time sequences of pulses as functions of the distance to the target were obtained.

  13. Modeling of Acoustic Emission Signal Propagation in Waveguides

    PubMed Central

    Zelenyak, Andreea-Manuela; Hamstad, Marvin A.; Sause, Markus G. R.

    2015-01-01

    Acoustic emission (AE) testing is a widely used nondestructive testing (NDT) method to investigate material failure. When environmental conditions are harmful for the operation of the sensors, waveguides are typically mounted in between the inspected structure and the sensor. Such waveguides can be built from different materials or have different designs in accordance with the experimental needs. All these variations can cause changes in the acoustic emission signals in terms of modal conversion, additional attenuation or shift in frequency content. A finite element method (FEM) was used to model acoustic emission signal propagation in an aluminum plate with an attached waveguide and was validated against experimental data. The geometry of the waveguide is systematically changed by varying the radius and height to investigate the influence on the detected signals. Different waveguide materials were implemented and change of material properties as function of temperature were taken into account. Development of the option of modeling different waveguide options replaces the time consuming and expensive trial and error alternative of experiments. Thus, the aim of this research has important implications for those who use waveguides for AE testing. PMID:26007731

  14. INSTRUMENTATION FOR SURVEYING ACOUSTIC SIGNALS IN NATURAL GAS TRANSMISSION LINES

    SciTech Connect

    John L. Loth; Gary J. Morris; George M. Palmer; Richard Guiler; Deepak Mehra

    2003-09-01

    In the U.S. natural gas is distributed through more than one million miles of high-pressure transmission pipelines. If all leaks and infringements could be detected quickly, it would enhance safety and U.S. energy security. Only low frequency acoustic waves appear to be detectable over distances up to 60 km where pipeline shut-off valves provide access to the inside of the pipeline. This paper describes a Portable Acoustic Monitoring Package (PAMP) developed to record and identify acoustic signals characteristic of: leaks, pump noise, valve and flow metering noise, third party infringement, manual pipeline water and gas blow-off, etc. This PAMP consists of a stainless steel 1/2 inch NPT plumbing tree rated for use on 1000 psi pipelines. Its instrumentation is designed to measure acoustic waves over the entire frequency range from zero to 16,000 Hz by means of four instruments: (1) microphone, (2) 3-inch water full range differential pressure transducer with 0.1% of range sensitivity, (3) a novel 3 inch to 100 inch water range amplifier, using an accumulator with needle valve and (4) a line-pressure transducer. The weight of the PAMP complete with all accessories is 36 pounds. This includes a remote control battery/switch box assembly on a 25-foot extension chord, a laptop data acquisition computer on a field table and a sun shield.

  15. Mode tomography using signals from the Long Range Ocean Acoustic Propagation EXperiment (LOAPEX)

    NASA Astrophysics Data System (ADS)

    Chandrayadula, Tarun K.

    Ocean acoustic tomography uses acoustic signals to infer the environmental properties of the ocean. The procedure for tomography consists of low frequency acoustic transmissions at mid-water depths to receivers located at hundreds of kilometer ranges. The arrival times of the signal at the receiver are then inverted for the sound speed of the background environment. Using this principle, experiments such as the 2004 Long Range Ocean Acoustic Propagation EXperiment have used acoustic signals recorded across Vertical Line Arrays (VLAs) to infer the Sound Speed Profile (SSP) across depth. The acoustic signals across the VLAs can be represented in terms of orthonormal basis functions called modes. The lower modes of the basis set concentrated around mid-water propagate longer distances and can be inverted for mesoscale effects such as currents and eddies. In spite of these advantages, mode tomography has received less attention. One of the important reasons for this is that internal waves in the ocean cause significant amplitude and travel time fluctuations in the modes. The amplitude and travel time fluctuations cause errors in travel time estimates. The absence of a statistical model and the lack of signal processing techniques for internal wave effects have precluded the modes from being used in tomographic inversions. This thesis estimates a statistical model for modes affected by internal waves and then uses the estimated model to design appropriate signal processing methods to obtain tomographic observables for the low modes. In order to estimate a statistical model, this thesis uses both the LOAPEX signals and also numerical simulations. The statistical model describes the amplitude and phase coherence across different frequencies for modes at different ranges. The model suggests that Matched Subspace Detectors (MSDs) based on the amplitude statistics of the modes are the optimum detectors to make travel time estimates for modes up to 250 km. The mean of the

  16. Data quality enhancement and knowledge discovery from relevant signals in acoustic emission

    NASA Astrophysics Data System (ADS)

    Mejia, Felipe; Shyu, Mei-Ling; Nanni, Antonio

    2015-10-01

    The increasing popularity of structural health monitoring has brought with it a growing need for automated data management and data analysis tools. Of great importance are filters that can systematically detect unwanted signals in acoustic emission datasets. This study presents a semi-supervised data mining scheme that detects data belonging to unfamiliar distributions. This type of outlier detection scheme is useful detecting the presence of new acoustic emission sources, given a training dataset of unwanted signals. In addition to classifying new observations (herein referred to as "outliers") within a dataset, the scheme generates a decision tree that classifies sub-clusters within the outlier context set. The obtained tree can be interpreted as a series of characterization rules for newly-observed data, and they can potentially describe the basic structure of different modes within the outlier distribution. The data mining scheme is first validated on a synthetic dataset, and an attempt is made to confirm the algorithms' ability to discriminate outlier acoustic emission sources from a controlled pencil-lead-break experiment. Finally, the scheme is applied to data from two fatigue crack-growth steel specimens, where it is shown that extracted rules can adequately describe crack-growth related acoustic emission sources while filtering out background "noise." Results show promising performance in filter generation, thereby allowing analysts to extract, characterize, and focus only on meaningful signals.

  17. A comparison of the three methods used to obtain acoustic measurements for the NASA Flight Effects Program

    NASA Technical Reports Server (NTRS)

    Mueller, A. W.

    1980-01-01

    The NASA Flight Effects Program has a requirement to compare acoustic data obtained from flyover, static test stand, and wind tunnel tests. Results a laboratory study of the acoustic characteristics of the three technqiues used to measure noise during these tests are presented. Recommendations are made to allow for a comparison of data obtained with each technique.

  18. Low-Frequency Acoustic Signals Propagation in Buried Pipelines

    NASA Astrophysics Data System (ADS)

    Ovchinnikov, A. L.; Lapshin, B. M.

    2016-01-01

    The article deals with the issues concerning acoustic signals propagation in the large-diameter oil pipelines caused by mechanical action on the pipe body. Various mechanisms of signals attenuation are discussed. It is shown that the calculation of the attenuation caused only by internal energy loss, i.e, the presence of viscosity, thermal conductivity and liquid pipeline wall friction lead to low results. The results of experimental studies, carried out using the existing pipeline with a diameter of 1200 mm. are shown. It is experimentally proved that the main mechanism of signal attenuation is the energy emission into the environment. The numerical values of attenuation coefficients that are 0,14- 0.18 dB/m for the pipeline of 1200 mm in diameter, in the frequency range from 50 Hz to 500 Hz, are determined.

  19. Adaptive plasticity in wild field cricket's acoustic signaling.

    PubMed

    Bertram, Susan M; Harrison, Sarah J; Thomson, Ian R; Fitzsimmons, Lauren P

    2013-01-01

    Phenotypic plasticity can be adaptive when phenotypes are closely matched to changes in the environment. In crickets, rhythmic fluctuations in the biotic and abiotic environment regularly result in diel rhythms in density of sexually active individuals. Given that density strongly influences the intensity of sexual selection, we asked whether crickets exhibit plasticity in signaling behavior that aligns with these rhythmic fluctuations in the socio-sexual environment. We quantified the acoustic mate signaling behavior of wild-caught males of two cricket species, Gryllus veletis and G. pennsylvanicus. Crickets exhibited phenotypically plastic mate signaling behavior, with most males signaling more often and more attractively during the times of day when mating activity is highest in the wild. Most male G. pennsylvanicus chirped more often and louder, with shorter interpulse durations, pulse periods, chirp durations, and interchirp durations, and at slightly higher carrier frequencies during the time of the day that mating activity is highest in the wild. Similarly, most male G. veletis chirped more often, with more pulses per chirp, longer interpulse durations, pulse periods, and chirp durations, shorter interchirp durations, and at lower carrier frequencies during the time of peak mating activity in the wild. Among-male variation in signaling plasticity was high, with some males signaling in an apparently maladaptive manner. Body size explained some of the among-male variation in G. pennsylvanicus plasticity but not G. veletis plasticity. Overall, our findings suggest that crickets exhibit phenotypically plastic mate attraction signals that closely match the fluctuating socio-sexual context they experience.

  20. Acoustic emission signal classification for gearbox failure detection

    NASA Astrophysics Data System (ADS)

    Shishino, Jun

    The purpose of this research is to develop a methodology and technique to determine the optimal number of clusters in acoustic emission (AE) data obtained from a ground test stand of a rotating H-60 helicopter tail gearbox by using mathematical algorithms and visual inspection. Signs of fatigue crack growth were observed from the AE signals acquired from the result of the optimal number of clusters in a data set. Previous researches have determined the number of clusters by visually inspecting the AE plots from number of iterations. This research is focused on finding the optimal number of clusters in the data set by using mathematical algorithms then using visual verification to confirm it. The AE data were acquired from the ground test stand that simulates the tail end of an H-60 Seahawk at Naval Air Station in Patuxant River, Maryland. The data acquired were filtered to eliminate durations that were greater than 100,000 is and 0 energy hit data to investigate the failure mechanisms occurring on the output bevel gear. From the filtered data, different AE signal parameters were chosen to perform iterations to see which clustering algorithms and number of outputs is the best. The clustering algorithms utilized are the Kohonen Self-organizing Map (SOM), k-mean and Gaussian Mixture Model (GMM). From the clustering iterations, the three cluster criterion algorithms were performed to observe the suggested optimal number of cluster by the criterions. The three criterion algorithms utilized are the Davies-Bouldin, Silhouette and Tou Criterions. After the criterions had suggested the optimal number of cluster for each data set, visual verification by observing the AE plots and statistical analysis of each cluster were performed. By observing the AE plots and the statistical analysis, the optimal number of cluster in the data set and effective clustering algorithms were determined. Along with the optimal number of clusters and effective clustering algorithm, the mechanisms

  1. Results obtained during acoustic emission monitoring of proof testing of a large Kevlar/epoxy rocket motor case

    SciTech Connect

    Hamstad, M.A.

    1982-12-01

    A total of 15 acoustic emission (AE) sensors were used to monitor a large Kevlar 49/epoxy rocket motor case during proof cycles to successively higher levels. Fourteen of the sensors were placed on the composite surface and one sensor was coupled to a stainless steel waveguide which penetrated the full length of the inside of the hydraulically pressurized motor case. To reduce signal propagation losses, the bandpass was chosen to be 5 to 10 kHz. In addition to an Acoustic Emission Technology (AET) 5000 system, Hewlett Packard 3400 A root-mean-square voltmeters, and a 1010 Biomation transient recorder were used to record AE data. The AET system measured rise time, event duration, peak amplitude, and energy (calculated from event duration and peak amplitude) for each AE event. The main purpose of this paper is to present and discuss the AE data obtained by hand post-processing of event listings generated for each proof cycle of the AE data taped by the 5000 system during the test. Real AE signal propagation losses are compared to the losses from Pentel pencil-lead breaks. We present first-hit sensor data for events with high amplitude, energy, and event duration. This data indicated that a certain area of the composite case is the potential region of failure.

  2. Precursory acoustic signals and ground deformation in volcanic explosions

    NASA Astrophysics Data System (ADS)

    Bowman, D. C.; Kim, K.; Anderson, J.; Lees, J. M.; Taddeucci, J.; Graettinger, A. H.; Sonder, I.; Valentine, G.

    2013-12-01

    We investigate precursory acoustic signals that appear prior to volcanic explosions in real and experimental settings. Acoustic records of a series of experimental blasts designed to mimic maar explosions show precursory energy 0.02 to 0.05 seconds before the high amplitude overpressure arrival. These blasts consisted of 1 to 1/3 lb charges detonated in unconsolidated granular material at depths between 0.5 and 1 m, and were performed during the Buffalo Man Made Maars experiment in Springville, New York, USA. The preliminary acoustic arrival is 1 to 2 orders of magnitude lower in amplitude compared to the main blast wave. The waveforms vary from blast to blast, perhaps reflecting the different explosive yields and burial depths of each shot. Similar arrivals are present in some infrasound records at Santiaguito volcano, Guatemala, where they precede the main blast signal by about 2 seconds and are about 1 order of magnitude weaker. Precursory infrasound has also been described at Sakurajima volcano, Japan (Yokoo et al, 2013; Bull. Volc. Soc. Japan, 58, 163-181) and Suwanosejima volcano, Japan (Yokoo and Iguchi, 2010; JVGR, 196, 287-294), where it is attributed to rapid deformation of the vent region. Vent deformation has not been directly observed at these volcanoes because of the difficulty of visually observing the crater floor. However, particle image velocimetry of video records at Santiaguito has revealed rapid and widespread ground motion just prior to eruptions (Johnson et al, 2008; Nature, 456, 377-381) and may be the cause of much of the infrasound recorded at that volcano (Johnson and Lees, 2010; GRL, 37, L22305). High speed video records of the blasts during the Man Made Maars experiment also show rapid deformation of the ground immediately before the explosion plume breaches the surface. We examine the connection between source yield, burial depths, ground deformation, and the production of initial acoustic phases for each simulated maar explosion. We

  3. Computational principles underlying the recognition of acoustic signals in insects.

    PubMed

    Clemens, Jan; Hennig, R Matthias

    2013-08-01

    Many animals produce pulse-like signals during acoustic communication. These signals exhibit structure on two time scales: they consist of trains of pulses that are often broadcast in packets-so called chirps. Temporal parameters of the pulse and of the chirp are decisive for female preference. Despite these signals being produced by animals from many different taxa (e.g. frogs, grasshoppers, crickets, bushcrickets, flies), a general framework for their evaluation is still lacking. We propose such a framework, based on a simple and physiologically plausible model. The model consists of feature detectors, whose time-varying output is averaged over the signal and then linearly combined to yield the behavioral preference. We fitted this model to large data sets collected in two species of crickets and found that Gabor filters--known from visual and auditory physiology--explain the preference functions in these two species very well. We further explored the properties of Gabor filters and found a systematic relationship between parameters of the filters and the shape of preference functions. Although these Gabor filters were relatively short, they were also able to explain aspects of the preference for signal parameters on the longer time scale due to the integration step in our model. Our framework explains a wide range of phenomena associated with female preference for a widespread class of signals in an intuitive and physiologically plausible fashion. This approach thus constitutes a valuable tool to understand the functioning and evolution of communication systems in many species.

  4. Modern Techniques in Acoustical Signal and Image Processing

    SciTech Connect

    Candy, J V

    2002-04-04

    Acoustical signal processing problems can lead to some complex and intricate techniques to extract the desired information from noisy, sometimes inadequate, measurements. The challenge is to formulate a meaningful strategy that is aimed at performing the processing required even in the face of uncertainties. This strategy can be as simple as a transformation of the measured data to another domain for analysis or as complex as embedding a full-scale propagation model into the processor. The aims of both approaches are the same--to extract the desired information and reject the extraneous, that is, develop a signal processing scheme to achieve this goal. In this paper, we briefly discuss this underlying philosophy from a ''bottom-up'' approach enabling the problem to dictate the solution rather than visa-versa.

  5. Signal Restoration of Non-stationary Acoustic Signals in the Time Domain

    NASA Technical Reports Server (NTRS)

    Babkin, Alexander S.

    1988-01-01

    Signal restoration is a method of transforming a nonstationary signal acquired by a ground based microphone to an equivalent stationary signal. The benefit of the signal restoration is a simplification of the flight test requirements because it could dispense with the need to acquire acoustic data with another aircraft flying in concert with the rotorcraft. The data quality is also generally improved because the contamination of the signal by the propeller and wind noise is not present. The restoration methodology can also be combined with other data acquisition methods, such as a multiple linear microphone array for further improvement of the test results. The methodology and software are presented for performing the signal restoration in the time domain. The method has no restrictions on flight path geometry or flight regimes. Only requirement is that the aircraft spatial position be known relative to the microphone location and synchronized with the acoustic data. The restoration process assumes that the moving source radiates a stationary signal, which is then transformed into a nonstationary signal by various modulation processes. The restoration contains only the modulation due to the source motion.

  6. Acoustic resolution photoacoustic Doppler flowmetry: practical considerations for obtaining accurate measurements of blood flow

    NASA Astrophysics Data System (ADS)

    Brunker, J.; Beard, P.

    2014-03-01

    An assessment has been made of various experimental factors affecting the accuracy of flow velocities measured using a pulsed time correlation photoacoustic Doppler technique. In this method, Doppler time shifts are quantified via crosscorrelation of pairs of photoacoustic waveforms generated in moving absorbers using pairs of laser light pulses, and the photoacoustic waves are detected using an ultrasound transducer. The acoustic resolution mode is employed by using the transducer focal width, rather than the large illuminated volume, to define the lateral spatial resolution. This enables penetration depths of several millimetres or centimetres, unlike methods using the optical resolution mode, which limits the maximum penetration depth to approximately 1 mm. In the acoustic resolution mode, it is difficult to detect time shifts in highly concentrated suspensions of flowing absorbers, such as red blood cell suspensions and whole blood, and this challenge supposedly arises because of the lack of spatial heterogeneity. However, by assessing the effect of different absorption coefficients and tube diameters, we offer an alternative explanation relating to light attenuation and parabolic flow. We also demonstrate a new signal processing method that surmounts the previous problem of measurement under-reading. This method is a form of signal range gating and enables mapping of the flow velocity profile across the tube as well as measurement of the average flow velocity. We show that, using our signal processing scheme, it is possible to measure the flow of whole blood using a relatively low frequency detector. This important finding paves the way for application of the technique to measurements of blood flow several centimetres deep in living tissue.

  7. Non-invasive estimation of static and pulsatile intracranial pressure from transcranial acoustic signals.

    PubMed

    Levinsky, Alexandra; Papyan, Surik; Weinberg, Guy; Stadheim, Trond; Eide, Per Kristian

    2016-05-01

    The aim of the present study was to examine whether a method for estimation of non-invasive ICP (nICP) from transcranial acoustic (TCA) signals mixed with head-generated sounds estimate the static and pulsatile invasive ICP (iICP). For that purpose, simultaneous iICP and mixed TCA signals were obtained from patients undergoing continuous iICP monitoring as part of clinical management. The ear probe placed in the right outer ear channel sent a TCA signal with fixed frequency (621 Hz) that was picked up by the left ear probe along with acoustic signals generated by the intracranial compartment. Based on a mathematical model of the association between mixed TCA and iICP, the static and pulsatile nICP values were determined. Total 39 patients were included in the study; the total number of observations for prediction of static and pulsatile iICP were 5789 and 6791, respectively. The results demonstrated a good agreement between iICP/nICP observations, with mean difference of 0.39 mmHg and 0.53 mmHg for static and pulsatile ICP, respectively. In summary, in this cohort of patients, mixed TCA signals estimated the static and pulsatile iICP with rather good accuracy. Further studies are required to validate whether mixed TCA signals may become useful for measurement of nICP. PMID:26997563

  8. Adaptive Plasticity in Wild Field Cricket’s Acoustic Signaling

    PubMed Central

    Bertram, Susan M.; Harrison, Sarah J.; Thomson, Ian R.; Fitzsimmons, Lauren P.

    2013-01-01

    Phenotypic plasticity can be adaptive when phenotypes are closely matched to changes in the environment. In crickets, rhythmic fluctuations in the biotic and abiotic environment regularly result in diel rhythms in density of sexually active individuals. Given that density strongly influences the intensity of sexual selection, we asked whether crickets exhibit plasticity in signaling behavior that aligns with these rhythmic fluctuations in the socio-sexual environment. We quantified the acoustic mate signaling behavior of wild-caught males of two cricket species, Gryllus veletis and G. pennsylvanicus. Crickets exhibited phenotypically plastic mate signaling behavior, with most males signaling more often and more attractively during the times of day when mating activity is highest in the wild. Most male G. pennsylvanicus chirped more often and louder, with shorter interpulse durations, pulse periods, chirp durations, and interchirp durations, and at slightly higher carrier frequencies during the time of the day that mating activity is highest in the wild. Similarly, most male G. veletis chirped more often, with more pulses per chirp, longer interpulse durations, pulse periods, and chirp durations, shorter interchirp durations, and at lower carrier frequencies during the time of peak mating activity in the wild. Among-male variation in signaling plasticity was high, with some males signaling in an apparently maladaptive manner. Body size explained some of the among-male variation in G. pennsylvanicus plasticity but not G. veletis plasticity. Overall, our findings suggest that crickets exhibit phenotypically plastic mate attraction signals that closely match the fluctuating socio-sexual context they experience. PMID:23935965

  9. Moisture estimation in power transformer oil using acoustic signals and spectral kurtosis

    NASA Astrophysics Data System (ADS)

    Leite, Valéria C. M. N.; Veloso, Giscard F. C.; Borges da Silva, Luiz Eduardo; Lambert-Torres, Germano; Borges da Silva, Jonas G.; Onofre Pereira Pinto, João

    2016-03-01

    The aim of this paper is to present a new technique for estimating the contamination by moisture in power transformer insulating oil based on the spectral kurtosis analysis of the acoustic signals of partial discharges (PDs). Basically, in this approach, the spectral kurtosis of the PD acoustic signal is calculated and the correlation between its maximum value and the moisture percentage is explored to find a function that calculates the moisture percentage. The function can be easily implemented in DSP, FPGA, or any other type of embedded system for online moisture monitoring. To evaluate the proposed approach, an experiment is assembled with a piezoelectric sensor attached to a tank, which is filled with insulating oil samples contaminated by different levels of moisture. A device generating electrical discharges is submerged into the oil to simulate the occurrence of PDs. Detected acoustic signals are processed using fast kurtogram algorithm to extract spectral kurtosis values. The obtained data are used to find the fitting function that relates the water contamination to the maximum value of the spectral kurtosis. Experimental results show that the proposed method is suitable for online monitoring system of power transformers.

  10. Signal processing and tracking of arrivals in ocean acoustic tomography.

    PubMed

    Dzieciuch, Matthew A

    2014-11-01

    The signal processing for ocean acoustic tomography experiments has been improved to account for the scattering of the individual arrivals. The scattering reduces signal coherence over time, bandwidth, and space. In the typical experiment, scattering is caused by the random internal-wave field and results in pulse spreading (over arrival-time and arrival-angle) and wander. The estimator-correlator is an effective procedure that improves the signal-to-noise ratio of travel-time estimates and also provides an estimate of signal coherence. The estimator-correlator smoothes the arrival pulse at the expense of resolution. After an arrival pulse has been measured, it must be associated with a model arrival, typically a ray arrival. For experiments with thousands of transmissions, this is a tedious task that is error-prone when done manually. An error metric that accounts for peak amplitude as well as travel-time and arrival-angle can be defined. The Viterbi algorithm can then be adapted to the task of automated peak tracking. Repeatable, consistent results are produced that are superior to a manual tracking procedure. The tracking can be adjusted by tuning the error metric in logical, quantifiable manner. PMID:25373953

  11. Signal processing and tracking of arrivals in ocean acoustic tomography.

    PubMed

    Dzieciuch, Matthew A

    2014-11-01

    The signal processing for ocean acoustic tomography experiments has been improved to account for the scattering of the individual arrivals. The scattering reduces signal coherence over time, bandwidth, and space. In the typical experiment, scattering is caused by the random internal-wave field and results in pulse spreading (over arrival-time and arrival-angle) and wander. The estimator-correlator is an effective procedure that improves the signal-to-noise ratio of travel-time estimates and also provides an estimate of signal coherence. The estimator-correlator smoothes the arrival pulse at the expense of resolution. After an arrival pulse has been measured, it must be associated with a model arrival, typically a ray arrival. For experiments with thousands of transmissions, this is a tedious task that is error-prone when done manually. An error metric that accounts for peak amplitude as well as travel-time and arrival-angle can be defined. The Viterbi algorithm can then be adapted to the task of automated peak tracking. Repeatable, consistent results are produced that are superior to a manual tracking procedure. The tracking can be adjusted by tuning the error metric in logical, quantifiable manner.

  12. Extended amplification of acoustic signals by amphibian burrows.

    PubMed

    Muñoz, Matías I; Penna, Mario

    2016-07-01

    Animals relying on acoustic signals for communication must cope with the constraints imposed by the environment for sound propagation. A resource to improve signal broadcast is the use of structures that favor the emission or the reception of sounds. We conducted playback experiments to assess the effect of the burrows occupied by the frogs Eupsophus emiliopugini and E. calcaratus on the amplitude of outgoing vocalizations. In addition, we evaluated the influence of these cavities on the reception of externally generated sounds potentially interfering with conspecific communication, namely, the vocalizations emitted by four syntopic species of anurans (E. emiliopugini, E. calcaratus, Batrachyla antartandica, and Pleurodema thaul) and the nocturnal owls Strix rufipes and Glaucidium nanum. Eupsophus advertisement calls emitted from within the burrows experienced average amplitude gains of 3-6 dB at 100 cm from the burrow openings. Likewise, the incoming vocalizations of amphibians and birds were amplified on average above 6 dB inside the cavities. The amplification of internally broadcast Eupsophus vocalizations favors signal detection by nearby conspecifics. Reciprocally, the amplification of incoming conspecific and heterospecific signals facilitates the detection of neighboring males and the monitoring of the levels of potentially interfering biotic noise by resident frogs, respectively. PMID:27209276

  13. Acoustic Emission Signals in Thin Plates Produced by Impact Damage

    NASA Technical Reports Server (NTRS)

    Prosser, William H.; Gorman, Michael R.; Humes, Donald H.

    1999-01-01

    Acoustic emission (AE) signals created by impact sources in thin aluminum and graphite/epoxy composite plates were analyzed. Two different impact velocity regimes were studied. Low-velocity (less than 0.21 km/s) impacts were created with an airgun firing spherical steel projectiles (4.5 mm diameter). High-velocity (1.8 to 7 km/s) impacts were generated with a two-stage light-gas gun firing small cylindrical nylon projectiles (1.5 mm diameter). Both the impact velocity and impact angle were varied. The impacts did not penetrate the aluminum plates at either low or high velocities. For high-velocity impacts in composites, there were both impacts that fully penetrated the plate as well as impacts that did not. All impacts generated very large amplitude AE signals (1-5 V at the sensor), which propagated as plate (extensional and/or flexural) modes. In the low-velocity impact studies, the signal was dominated by a large flexural mode with only a small extensional mode component detected. As the impact velocity was increased within the low velocity regime, the overall amplitudes of both the extensional and flexural modes increased. In addition, a relative increase in the amplitude of high-frequency components of the flexural mode was also observed. Signals caused by high-velocity impacts that did not penetrate the plate contained both a large extensional and flexural mode component of comparable amplitudes. The signals also contained components of much higher frequency and were easily differentiated from those caused by low-velocity impacts. An interesting phenomenon was observed in that the large flexural mode component, seen in every other case, was absent from the signal when the impact particle fully penetrated through the composite plates.

  14. Wavelet Transform Of Acoustic Signal From A Ranque- Hilsch Vortex Tube

    NASA Astrophysics Data System (ADS)

    Istihat, Y.; Wisnoe, W.

    2015-09-01

    This paper presents the frequency analysis of flow in a Ranque-Hilsch Vortex Tube (RHVT) obtained from acoustic signal using microphones in an isolated formation setup. Data Acquisition System (DAS) that incorporates Analog to Digital Converter (ADC) with laptop computer has been used to acquire the wave data. Different inlet pressures (20, 30, 40, 50 and 60 psi) are supplied and temperature differences are recorded. Frequencies produced from a RHVT are experimentally measured and analyzed by means of Wavelet Transform (WT). Morlet Wavelet is used and relation between Pressure variation, Temperature and Frequency are studied. Acoustic data has been analyzed using Matlab® and time-frequency analysis (Scalogram) is presented. Results show that the Pressure is proportional with the Frequency inside the RHVT whereby two distinct working frequencies is pronounced in between 4-8 kHz.

  15. The effect of artificial rain on backscattered acoustic signal: first measurements

    NASA Astrophysics Data System (ADS)

    Titchenko, Yuriy; Karaev, Vladimir; Meshkov, Evgeny; Goldblat, Vladimir

    The problem of rain influencing on a characteristics of backscattered ultrasonic and microwave signal by water surface is considered. The rain influence on backscattering process of electromagnetic waves was investigated in laboratory and field experiments, for example [1-3]. Raindrops have a significant impact on backscattering of microwave and influence on wave spectrum measurement accuracy by string wave gauge. This occurs due to presence of raindrops in atmosphere and modification of the water surface. For measurements of water surface characteristics during precipitation we propose to use an acoustic system. This allows us obtaining of the water surface parameters independently on precipitation in atmosphere. The measurements of significant wave height of water surface using underwater acoustical systems are well known [4, 5]. Moreover, the variance of orbital velocity can be measure using these systems. However, these methods cannot be used for measurements of slope variance and the other second statistical moments of water surface that required for analyzing the radar backscatter signal. An original design Doppler underwater acoustic wave gauge allows directly measuring the surface roughness characteristics that affect on electromagnetic waves backscattering of the same wavelength [6]. Acoustic wave gauge is Doppler ultrasonic sonar which is fixed near the bottom on the floating disk. Measurements are carried out at vertically orientation of sonar antennas towards water surface. The first experiments were conducted with the first model of an acoustic wave gauge. The acoustic wave gauge (8 mm wavelength) is equipped with a transceiving antenna with a wide symmetrical antenna pattern. The gauge allows us to measure Doppler spectrum and cross section of backscattered signal. Variance of orbital velocity vertical component can be retrieved from Doppler spectrum with high accuracy. The result of laboratory and field experiments during artificial rain is presented

  16. Explosive activity at Mt. Yasur volcano: characterization of acoustic signals

    NASA Astrophysics Data System (ADS)

    Spina, L.; Taddeucci, J.; Scarlato, P.; Freda, C.; Gresta, S.

    2012-04-01

    Mt. Yasur (Vanuatu Islands) is an active volcano characterized by persistent Strombolian to mild Vulcanian explosive activity, well known to generate a broad variety of air pressure waves. Between 9 and 12 July 2011, we recorded explosive activity from the three active vents of Mt. Yasur by means of a multiparametric station, comprising thermal and visual high-speed cameras and two ECM microphones recording both infrasonic and sonic signals at 10 kHz sampling frequency. A total of 106 major acoustic events, lasting on average 5 seconds (up to 20 in some ash-rich explosion), correspond to visually recorded explosions at the vents and exhibit a surprisingly broad waveform variability. Major events intervene between minor transients with strongly repetitive waveforms typical of puffing activity. Spectral analyses have been computed on both major events and whole traces. Analysis of major events, carried out using a 5.12 s long window, reveals peak frequencies mostly beneath 5 Hz, only a few events displaying a notable energy content in the sonic band (up to 100 Hz ca). Peak-to-peak amplitude as well as RMS values (evaluated from event start to end) were computed on both raw and filtered (above and below 20 Hz) signals. Spectrograms of the whole traces, carried out using 1.28, 2.56, and 5.12 seconds long windows with 50% overlap, outline clearly the frequency content of major events and the occurrence of puffing ones. We also evaluated the peak frequency of each spectrum of the spectrogram, in order to detect spectral variation of the puffing signal. Considering their great variability, we classified the major events on the base of their spectral content rather than on waveform, grouping together all events having similar spectra by cross-correlating them. Three spectral families cover most of the dataset, as follows: 1) variable and irregular shaped spectra, with energy mainly below 4 Hz; 2) monochromatic events, with simple spectra corresponding in the time domain to

  17. Acoustic emission source localization based on distance domain signal representation

    NASA Astrophysics Data System (ADS)

    Gawronski, M.; Grabowski, K.; Russek, P.; Staszewski, W. J.; Uhl, T.; Packo, P.

    2016-04-01

    Acoustic emission is a vital non-destructive testing technique and is widely used in industry for damage detection, localisation and characterization. The latter two aspects are particularly challenging, as AE data are typically noisy. What is more, elastic waves generated by an AE event, propagate through a structural path and are significantly distorted. This effect is particularly prominent for thin elastic plates. In these media the dispersion phenomenon results in severe localisation and characterization issues. Traditional Time Difference of Arrival methods for localisation techniques typically fail when signals are highly dispersive. Hence, algorithms capable of dispersion compensation are sought. This paper presents a method based on the Time - Distance Domain Transform for an accurate AE event localisation. The source localisation is found through a minimization problem. The proposed technique focuses on transforming the time signal to the distance domain response, which would be recorded at the source. Only, basic elastic material properties and plate thickness are used in the approach, avoiding arbitrary parameters tuning.

  18. Demodulation of acoustic telemetry binary phase shift keying signal based on high-order Duffing system

    NASA Astrophysics Data System (ADS)

    Yan, Bing-Nan; Liu, Chong-Xin; Ni, Jun-Kang; Zhao, Liang

    2016-10-01

    In order to grasp the downhole situation immediately, logging while drilling (LWD) technology is adopted. One of the LWD technologies, called acoustic telemetry, can be successfully applied to modern drilling. It is critical for acoustic telemetry technology that the signal is successfully transmitted to the ground. In this paper, binary phase shift keying (BPSK) is used to modulate carrier waves for the transmission and a new BPSK demodulation scheme based on Duffing chaos is investigated. Firstly, a high-order system is given in order to enhance the signal detection capability and it is realized through building a virtual circuit using an electronic workbench (EWB). Secondly, a new BPSK demodulation scheme is proposed based on the intermittent chaos phenomena of the new Duffing system. Finally, a system variable crossing zero-point equidistance method is proposed to obtain the phase difference between the system and the BPSK signal. Then it is determined that the digital signal transmitted from the bottom of the well is ‘0’ or ‘1’. The simulation results show that the demodulation method is feasible. Project supported by the National Natural Science Foundation of China (Grant No. 51177117) and the National Key Science & Technology Special Projects, China (Grant No. 2011ZX05021-005).

  19. A Fibre Bragg Grating Sensor as a Receiver for Acoustic Communications Signals

    PubMed Central

    Wild, Graham; Hinckley, Steven

    2011-01-01

    A Fibre Bragg Grating (FBG) acoustic sensor is used as a receiver for acoustic communications signals. Acoustic transmissions were generated in aluminium and Carbon Fibre Composite (CFC) panels. The FBG receiver was coupled to the bottom surface opposite a piezoelectric transmitter. For the CFC, a second FBG was embedded within the layup for comparison. We show the transfer function, frequency response, and transient response of the acoustic communications channels. In addition, the FBG receiver was used to detect Phase Shift Keying (PSK) communications signals, which was shown to be the most robust method in a highly resonant communications channel. PMID:22346585

  20. Signal processing for passive detection and classification of underwater acoustic signals

    NASA Astrophysics Data System (ADS)

    Chung, Kil Woo

    2011-12-01

    This dissertation examines signal processing for passive detection, classification and tracking of underwater acoustic signals for improving port security and the security of coastal and offshore operations. First, we consider the problem of passive acoustic detection of a diver in a shallow water environment. A frequency-domain multi-band matched-filter approach to swimmer detection is presented. The idea is to break the frequency contents of the hydrophone signals into multiple narrow frequency bands, followed by time averaged (about half of a second) energy calculation over each band. Then, spectra composed of such energy samples over the chosen frequency bands are correlated to form a decision variable. The frequency bands with highest Signal/Noise ratio are used for detection. The performance of the proposed approach is demonstrated for experimental data collected for a diver in the Hudson River. We also propose a new referenceless frequency-domain multi-band detector which, unlike other reference-based detectors, does not require a diver specific signature. Instead, our detector matches to a general feature of the diver spectrum in the high frequency range: the spectrum is roughly periodic in time and approximately flat when the diver exhales. The performance of the proposed approach is demonstrated by using experimental data collected from the Hudson River. Moreover, we present detection, classification and tracking of small vessel signals. Hydroacoustic sensors can be applied for the detection of noise generated by vessels, and this noise can be used for vessel detection, classification and tracking. This dissertation presents recent improvements aimed at the measurement and separation of ship DEMON (Detection of Envelope Modulation on Noise) acoustic signatures in busy harbor conditions. Ship signature measurements were conducted in the Hudson River and NY Harbor. The DEMON spectra demonstrated much better temporal stability compared with the full ship

  1. Filtering of Acoustic Signals within the Hearing Organ

    PubMed Central

    Ramamoorthy, Sripriya; Chen, Fangyi; Jacques, Steven L.; Wang, Ruikang; Choudhury, Niloy; Fridberger, Anders

    2014-01-01

    The detection of sound by the mammalian hearing organ involves a complex mechanical interplay among different cell types. The inner hair cells, which are the primary sensory receptors, are stimulated by the structural vibrations of the entire organ of Corti. The outer hair cells are thought to modulate these sound-evoked vibrations to enhance hearing sensitivity and frequency resolution, but it remains unclear whether other structures also contribute to frequency tuning. In the current study, sound-evoked vibrations were measured at the stereociliary side of inner and outer hair cells and their surrounding supporting cells, using optical coherence tomography interferometry in living anesthetized guinea pigs. Our measurements demonstrate the presence of multiple vibration modes as well as significant differences in frequency tuning and response phase among different cell types. In particular, the frequency tuning at the inner hair cells differs from other cell types, causing the locus of maximum inner hair cell activation to be shifted toward the apex of the cochlea compared with the outer hair cells. These observations show that additional processing and filtering of acoustic signals occur within the organ of Corti before inner hair cell excitation, representing a departure from established theories. PMID:24990925

  2. Phylogenetic signal in the acoustic parameters of the advertisement calls of four clades of anurans

    PubMed Central

    2013-01-01

    Background Anuran vocalizations, especially their advertisement calls, are largely species-specific and can be used to identify taxonomic affiliations. Because anurans are not vocal learners, their vocalizations are generally assumed to have a strong genetic component. This suggests that the degree of similarity between advertisement calls may be related to large-scale phylogenetic relationships. To test this hypothesis, advertisement calls from 90 species belonging to four large clades (Bufo, Hylinae, Leptodactylus, and Rana) were analyzed. Phylogenetic distances were estimated based on the DNA sequences of the 12S mitochondrial ribosomal RNA gene, and, for a subset of 49 species, on the rhodopsin gene. Mean values for five acoustic parameters (coefficient of variation of root-mean-square amplitude, dominant frequency, spectral flux, spectral irregularity, and spectral flatness) were computed for each species. We then tested for phylogenetic signal on the body-size-corrected residuals of these five parameters, using three statistical tests (Moran’s I, Mantel, and Blomberg’s K) and three models of genetic distance (pairwise distances, Abouheif’s proximities, and the variance-covariance matrix derived from the phylogenetic tree). Results A significant phylogenetic signal was detected for most acoustic parameters on the 12S dataset, across statistical tests and genetic distance models, both for the entire sample of 90 species and within clades in several cases. A further analysis on a subset of 49 species using genetic distances derived from rhodopsin and from 12S broadly confirmed the results obtained on the larger sample, indicating that the phylogenetic signals observed in these acoustic parameters can be detected using a variety of genetic distance models derived either from a variable mitochondrial sequence or from a conserved nuclear gene. Conclusions We found a robust relationship, in a large number of species, between anuran phylogenetic relatedness and

  3. Localisation of an acoustic signal in a noisy environment: the display call of the king penguin Aptenodytes patagonicus.

    PubMed

    Aubin, Thierry; Jouventin, Pierre

    2002-12-01

    King penguin chicks identify their parents by an acoustic signal, the display call. This call consists of a succession of similar syllables. Each syllable has two harmonic series, strongly modulated in frequency and amplitude, with added beats of varying amplitude generated by a two-voice system. Previous work showed that only one syllable of the call is needed for the chick to identify the calling adult. Both the frequency modulation pattern of the syllable and the two-voice system play a role in the call identification. The syllabic organisation of the call, the harmonic structure and the amplitude modulations of the syllables apparently do not contribute to individual recognition. Are these acoustic features useless? To answer to this question, playback experiments were conducted using three categories of experimental signals: (i) signal with only the fundamental frequencies of the natural call, (ii) signal with the amplitude of each syllable kept at a constant level and (iii) signals with only one syllable, repeated or not. The responses of chicks to these experimental signals were compared to those obtained with the calls of their natural parents. We found that these acoustic features, while not directly implicated in the individual recognition process, help the chicks to better localise the signal of their parents. In addition, the redundant syllabic organisation of the call is a means of counteracting the masking effect of the background noise of the colony. PMID:12432003

  4. Ecology of acoustic signalling and the problem of masking interference in insects.

    PubMed

    Schmidt, Arne K D; Balakrishnan, Rohini

    2015-01-01

    The efficiency of long-distance acoustic signalling of insects in their natural habitat is constrained in several ways. Acoustic signals are not only subjected to changes imposed by the physical structure of the habitat such as attenuation and degradation but also to masking interference from co-occurring signals of other acoustically communicating species. Masking interference is likely to be a ubiquitous problem in multi-species assemblages, but successful communication in natural environments under noisy conditions suggests powerful strategies to deal with the detection and recognition of relevant signals. In this review we present recent work on the role of the habitat as a driving force in shaping insect signal structures. In the context of acoustic masking interference, we discuss the ecological niche concept and examine the role of acoustic resource partitioning in the temporal, spatial and spectral domains as sender strategies to counter masking. We then examine the efficacy of different receiver strategies: physiological mechanisms such as frequency tuning, spatial release from masking and gain control as useful strategies to counteract acoustic masking. We also review recent work on the effects of anthropogenic noise on insect acoustic communication and the importance of insect sounds as indicators of biodiversity and ecosystem health.

  5. Study of acoustic emission signals during fracture shear deformation

    NASA Astrophysics Data System (ADS)

    Ostapchuk, A. A.; Pavlov, D. V.; Markov, V. K.; Krasheninnikov, A. V.

    2016-07-01

    We study acoustic manifestations of different regimes of shear deformation of a fracture filled with a thin layer of granular material. It is established that the observed acoustic portrait is determined by the structure of the fracture at the mesolevel. Joint analysis of the activity of acoustic pulses and their spectral characteristics makes it possible to construct the pattern of internal evolutionary processes occurring in the thin layer of the interblock contact and consider the fracture deformation process as the evolution of a self-organizing system.

  6. Synergy of seismic, acoustic, and video signals in blast analysis

    SciTech Connect

    Anderson, D.P.; Stump, B.W.; Weigand, J.

    1997-09-01

    The range of mining applications from hard rock quarrying to coal exposure to mineral recovery leads to a great variety of blasting practices. A common characteristic of many of the sources is that they are detonated at or near the earth`s surface and thus can be recorded by camera or video. Although the primary interest is in the seismic waveforms that these blasts generate, the visual observations of the blasts provide important constraints that can be applied to the physical interpretation of the seismic source function. In particular, high speed images can provide information on detonation times of individuals charges, the timing and amount of mass movement during the blasting process and, in some instances, evidence of wave propagation away from the source. All of these characteristics can be valuable in interpreting the equivalent seismic source function for a set of mine explosions and quantifying the relative importance of the different processes. This paper documents work done at the Los Alamos National Laboratory and Southern Methodist University to take standard Hi-8 video of mine blasts, recover digital images from them, and combine them with ground motion records for interpretation. The steps in the data acquisition, processing, display, and interpretation are outlined. The authors conclude that the combination of video with seismic and acoustic signals can be a powerful diagnostic tool for the study of blasting techniques and seismology. A low cost system for generating similar diagnostics using consumer-grade video camera and direct-to-disk video hardware is proposed. Application is to verification of the Comprehensive Test Ban Treaty.

  7. Graph-based sensor fusion for classification of transient acoustic signals.

    PubMed

    Srinivas, Umamahesh; Nasrabadi, Nasser M; Monga, Vishal

    2015-03-01

    Advances in acoustic sensing have enabled the simultaneous acquisition of multiple measurements of the same physical event via co-located acoustic sensors. We exploit the inherent correlation among such multiple measurements for acoustic signal classification, to identify the launch/impact of munition (i.e., rockets, mortars). Specifically, we propose a probabilistic graphical model framework that can explicitly learn the class conditional correlations between the cepstral features extracted from these different measurements. Additionally, we employ symbolic dynamic filtering-based features, which offer improvements over the traditional cepstral features in terms of robustness to signal distortions. Experiments on real acoustic data sets show that our proposed algorithm outperforms conventional classifiers as well as the recently proposed joint sparsity models for multisensor acoustic classification. Additionally our proposed algorithm is less sensitive to insufficiency in training samples compared to competing approaches. PMID:25014986

  8. Denoising of human speech using combined acoustic and em sensor signal processing

    SciTech Connect

    Ng, L C; Burnett, G C; Holzrichter, J F; Gable, T J

    1999-11-29

    Low Power EM radar-like sensors have made it possible to measure properties of the human speech production system in real-time, without acoustic interference. This greatly enhances the quality and quantify of information for many speech related applications. See Holzrichter, Burnett, Ng, and Lea, J. Acoustic. Soc. Am. 103 (1) 622 (1998). By using combined Glottal-EM- Sensor- and Acoustic-signals, segments of voiced, unvoiced, and no-speech can be reliably defined. Real-time Denoising filters can be constructed to remove noise from the user's corresponding speech signal.

  9. Limited condition dependence of male acoustic signals in the grasshopper Chorthippus biguttulus

    PubMed Central

    Franzke, Alexandra; Reinhold, Klaus

    2012-01-01

    In many animal species, male acoustic signals serve to attract a mate and therefore often play a major role for male mating success. Male body condition is likely to be correlated with male acoustic signal traits, which signal male quality and provide choosy females indirect benefits. Environmental factors such as food quantity or quality can influence male body condition and therefore possibly lead to condition-dependent changes in the attractiveness of acoustic signals. Here, we test whether stressing food plants influences acoustic signal traits of males via condition-dependent expression of these traits. We examined four male song characteristics, which are vital for mate choice in females of the grasshopper Chorthippus biguttulus. Only one of the examined acoustic traits, loudness, was significantly altered by changing body condition because of drought- and moisture-related stress of food plants. No condition dependence could be observed for syllable to pause ratio, gap duration within syllables, and onset accentuation. We suggest that food plant stress and therefore food plant quality led to shifts in loudness of male grasshopper songs via body condition changes. The other three examined acoustic traits of males do not reflect male body condition induced by food plant quality. PMID:22957192

  10. Design of acoustic logging signal source of imitation based on field programmable gate array

    NASA Astrophysics Data System (ADS)

    Zhang, K.; Ju, X. D.; Lu, J. Q.; Men, B. Y.

    2014-08-01

    An acoustic logging signal source of imitation is designed and realized, based on the Field Programmable Gate Array (FPGA), to improve the efficiency of examining and repairing acoustic logging tools during research and field application, and to inspect and verify acoustic receiving circuits and corresponding algorithms. The design of this signal source contains hardware design and software design,and the hardware design uses an FPGA as the control core. Four signals are made first by reading the Random Access Memory (RAM) data which are inside the FPGA, then dealing with the data by digital to analog conversion, amplification, smoothing and so on. Software design uses VHDL, a kind of hardware description language, to program the FPGA. Experiments illustrate that the ratio of signal to noise for the signal source is high, the waveforms are stable, and also its functions of amplitude adjustment, frequency adjustment and delay adjustment are in accord with the characteristics of real acoustic logging waveforms. These adjustments can be used to imitate influences on sonic logging received waveforms caused by many kinds of factors such as spacing and span of acoustic tools, sonic speeds of different layers and fluids, and acoustic attenuations of different cementation planes.

  11. Diagnostics of DC and Induction Motors Based on the Analysis of Acoustic Signals

    NASA Astrophysics Data System (ADS)

    Glowacz, A.

    2014-10-01

    In this paper, a non-invasive method of early fault diagnostics of electric motors was proposed. This method uses acoustic signals generated by electric motors. Essential features were extracted from acoustic signals of motors. A plan of study of acoustic signals of electric motors was proposed. Researches were carried out for faultless induction motor, induction motor with one faulty rotor bar, induction motor with two faulty rotor bars and flawless Direct Current, and Direct Current motor with shorted rotor coils. Researches were carried out for methods of signal processing: log area ratio coefficients, Multiple signal classification, Nearest Neighbor classifier and the Bayes classifier. A pattern creation process was carried out using 40 samples of sound. In the identification process 130 five-second test samples were used. The proposed approach will also reduce the costs of maintenance and the number of faulty motors in the industry.

  12. Call transmission efficiency in native and invasive anurans: competing hypotheses of divergence in acoustic signals.

    PubMed

    Llusia, Diego; Gómez, Miguel; Penna, Mario; Márquez, Rafael

    2013-01-01

    Invasive species are a leading cause of the current biodiversity decline, and hence examining the major traits favouring invasion is a key and long-standing goal of invasion biology. Despite the prominent role of the advertisement calls in sexual selection and reproduction, very little attention has been paid to the features of acoustic communication of invasive species in nonindigenous habitats and their potential impacts on native species. Here we compare for the first time the transmission efficiency of the advertisement calls of native and invasive species, searching for competitive advantages for acoustic communication and reproduction of introduced taxa, and providing insights into competing hypotheses in evolutionary divergence of acoustic signals: acoustic adaptation vs. morphological constraints. Using sound propagation experiments, we measured the attenuation rates of pure tones (0.2-5 kHz) and playback calls (Lithobates catesbeianus and Pelophylax perezi) across four distances (1, 2, 4, and 8 m) and over two substrates (water and soil) in seven Iberian localities. All factors considered (signal type, distance, substrate, and locality) affected transmission efficiency of acoustic signals, which was maximized with lower frequency sounds, shorter distances, and over water surface. Despite being broadcast in nonindigenous habitats, the advertisement calls of invasive L. catesbeianus were propagated more efficiently than those of the native species, in both aquatic and terrestrial substrates, and in most of the study sites. This implies absence of optimal relationship between native environments and propagation of acoustic signals in anurans, in contrast to what predicted by the acoustic adaptation hypothesis, and it might render these vertebrates particularly vulnerable to intrusion of invasive species producing low frequency signals, such as L. catesbeianus. Our findings suggest that mechanisms optimizing sound transmission in native habitat can play a less

  13. Call Transmission Efficiency in Native and Invasive Anurans: Competing Hypotheses of Divergence in Acoustic Signals

    PubMed Central

    Llusia, Diego; Gómez, Miguel; Penna, Mario; Márquez, Rafael

    2013-01-01

    Invasive species are a leading cause of the current biodiversity decline, and hence examining the major traits favouring invasion is a key and long-standing goal of invasion biology. Despite the prominent role of the advertisement calls in sexual selection and reproduction, very little attention has been paid to the features of acoustic communication of invasive species in nonindigenous habitats and their potential impacts on native species. Here we compare for the first time the transmission efficiency of the advertisement calls of native and invasive species, searching for competitive advantages for acoustic communication and reproduction of introduced taxa, and providing insights into competing hypotheses in evolutionary divergence of acoustic signals: acoustic adaptation vs. morphological constraints. Using sound propagation experiments, we measured the attenuation rates of pure tones (0.2–5 kHz) and playback calls (Lithobates catesbeianus and Pelophylax perezi) across four distances (1, 2, 4, and 8 m) and over two substrates (water and soil) in seven Iberian localities. All factors considered (signal type, distance, substrate, and locality) affected transmission efficiency of acoustic signals, which was maximized with lower frequency sounds, shorter distances, and over water surface. Despite being broadcast in nonindigenous habitats, the advertisement calls of invasive L. catesbeianus were propagated more efficiently than those of the native species, in both aquatic and terrestrial substrates, and in most of the study sites. This implies absence of optimal relationship between native environments and propagation of acoustic signals in anurans, in contrast to what predicted by the acoustic adaptation hypothesis, and it might render these vertebrates particularly vulnerable to intrusion of invasive species producing low frequency signals, such as L. catesbeianus. Our findings suggest that mechanisms optimizing sound transmission in native habitat can play a

  14. The broadband social acoustic signaling behavior of spinner and spotted dolphins.

    PubMed

    Lammers, Marc O; Au, Whitlow W L; Herzing, Denise L

    2003-09-01

    Efforts to study the social acoustic signaling behavior of delphinids have traditionally been restricted to audio-range (<20 kHz) analyses. To explore the occurrence of communication signals at ultrasonic frequencies, broadband recordings of whistles and burst pulses were obtained from two commonly studied species of delphinids, the Hawaiian spinner dolphin (Stenella longirostris) and the Atlantic spotted dolphin (Stenella frontalis). Signals were quantitatively analyzed to establish their full bandwidth, to identify distinguishing characteristics between each species, and to determine how often they occur beyond the range of human hearing. Fundamental whistle contours were found to extend beyond 20 kHz only rarely among spotted dolphins, but with some regularity in spinner dolphins. Harmonics were present in the majority of whistles and varied considerably in their number, occurrence, and amplitude. Many whistles had harmonics that extended past 50 kHz and some reached as high as 100 kHz. The relative amplitude of harmonics and the high hearing sensitivity of dolphins to equivalent frequencies suggest that harmonics are biologically relevant spectral features. The burst pulses of both species were found to be predominantly ultrasonic, often with little or no energy below 20 kHz. The findings presented reveal that the social signals produced by spinner and spotted dolphins span the full range of their hearing sensitivity, are spectrally quite varied, and in the case of burst pulses are probably produced more frequently than reported by audio-range analyses. PMID:14514216

  15. The broadband social acoustic signaling behavior of spinner and spotted dolphins

    NASA Astrophysics Data System (ADS)

    Lammers, Marc O.; Au, Whitlow W. L.; Herzing, Denise L.

    2003-09-01

    Efforts to study the social acoustic signaling behavior of delphinids have traditionally been restricted to audio-range (<20 kHz) analyses. To explore the occurrence of communication signals at ultrasonic frequencies, broadband recordings of whistles and burst pulses were obtained from two commonly studied species of delphinids, the Hawaiian spinner dolphin (Stenella longirostris) and the Atlantic spotted dolphin (Stenella frontalis). Signals were quantitatively analyzed to establish their full bandwidth, to identify distinguishing characteristics between each species, and to determine how often they occur beyond the range of human hearing. Fundamental whistle contours were found to extend beyond 20 kHz only rarely among spotted dolphins, but with some regularity in spinner dolphins. Harmonics were present in the majority of whistles and varied considerably in their number, occurrence, and amplitude. Many whistles had harmonics that extended past 50 kHz and some reached as high as 100 kHz. The relative amplitude of harmonics and the high hearing sensitivity of dolphins to equivalent frequencies suggest that harmonics are biologically relevant spectral features. The burst pulses of both species were found to be predominantly ultrasonic, often with little or no energy below 20 kHz. The findings presented reveal that the social signals produced by spinner and spotted dolphins span the full range of their hearing sensitivity, are spectrally quite varied, and in the case of burst pulses are probably produced more frequently than reported by audio-range analyses.

  16. Deciphering acoustic emission signals in drought stressed branches: the missing link between source and sensor

    PubMed Central

    Vergeynst, Lidewei L.; Sause, Markus G. R.; Hamstad, Marvin A.; Steppe, Kathy

    2015-01-01

    When drought occurs in plants, acoustic emission (AE) signals can be detected, but the actual causes of these signals are still unknown. By analyzing the waveforms of the measured signals, it should, however, be possible to trace the characteristics of the AE source and get information about the underlying physiological processes. A problem encountered during this analysis is that the waveform changes significantly from source to sensor and lack of knowledge on wave propagation impedes research progress made in this field. We used finite element modeling and the well-known pencil lead break source to investigate wave propagation in a branch. A cylindrical rod of polyvinyl chloride was first used to identify the theoretical propagation modes. Two wave propagation modes could be distinguished and we used the finite element model to interpret their behavior in terms of source position for both the PVC rod and a wooden rod. Both wave propagation modes were also identified in drying-induced signals from woody branches, and we used the obtained insights to provide recommendations for further AE research in plant science. PMID:26191070

  17. System and method for investigating sub-surface features of a rock formation with acoustic sources generating coded signals

    SciTech Connect

    Vu, Cung Khac; Nihei, Kurt; Johnson, Paul A; Guyer, Robert; Ten Cate, James A; Le Bas, Pierre-Yves; Larmat, Carene S

    2014-12-30

    A system and a method for investigating rock formations includes generating, by a first acoustic source, a first acoustic signal comprising a first plurality of pulses, each pulse including a first modulated signal at a central frequency; and generating, by a second acoustic source, a second acoustic signal comprising a second plurality of pulses. A receiver arranged within the borehole receives a detected signal including a signal being generated by a non-linear mixing process from the first-and-second acoustic signal in a non-linear mixing zone within the intersection volume. The method also includes-processing the received signal to extract the signal generated by the non-linear mixing process over noise or over signals generated by a linear interaction process, or both.

  18. An information processing method for acoustic emission signal inspired from musical staff

    NASA Astrophysics Data System (ADS)

    Zheng, Wei; Wu, Chunxian

    2016-01-01

    This study proposes a musical-staff-inspired signal processing method for standard description expressions for discrete signals and describing the integrated characteristics of acoustic emission (AE) signals. The method maps various AE signals with complex environments into the normalized musical space. Four new indexes are proposed to comprehensively describe the signal. Several key features, such as contour, amplitude, and signal changing rate, are quantitatively expressed in a normalized musical space. The processed information requires only a small storage space to maintain high fidelity. The method is illustrated by using experiments on sandstones and computed tomography (CT) scanning to determine its validity for AE signal processing.

  19. Copula filtration of spoken language signals on the background of acoustic noise

    NASA Astrophysics Data System (ADS)

    Kolchenko, Lilia V.; Sinitsyn, Rustem B.

    2010-09-01

    This paper is devoted to the filtration of acoustic signals on the background of acoustic noise. Signal filtering is done with the help of a nonlinear analogue of a correlation function - a copula. The copula is estimated with the help of kernel estimates of the cumulative distribution function. At the second stage we suggest a new procedure of adaptive filtering. The silence and sound intervals are detected before the filtration with the help of nonparametric algorithm. The results are confirmed by experimental processing of spoken language signals.

  20. Acoustic cardiac signals analysis: a Kalman filter-based approach.

    PubMed

    Salleh, Sheik Hussain; Hussain, Hadrina Sheik; Swee, Tan Tian; Ting, Chee-Ming; Noor, Alias Mohd; Pipatsart, Surasak; Ali, Jalil; Yupapin, Preecha P

    2012-01-01

    Auscultation of the heart is accompanied by both electrical activity and sound. Heart auscultation provides clues to diagnose many cardiac abnormalities. Unfortunately, detection of relevant symptoms and diagnosis based on heart sound through a stethoscope is difficult. The reason GPs find this difficult is that the heart sounds are of short duration and separated from one another by less than 30 ms. In addition, the cost of false positives constitutes wasted time and emotional anxiety for both patient and GP. Many heart diseases cause changes in heart sound, waveform, and additional murmurs before other signs and symptoms appear. Heart-sound auscultation is the primary test conducted by GPs. These sounds are generated primarily by turbulent flow of blood in the heart. Analysis of heart sounds requires a quiet environment with minimum ambient noise. In order to address such issues, the technique of denoising and estimating the biomedical heart signal is proposed in this investigation. Normally, the performance of the filter naturally depends on prior information related to the statistical properties of the signal and the background noise. This paper proposes Kalman filtering for denoising statistical heart sound. The cycles of heart sounds are certain to follow first-order Gauss-Markov process. These cycles are observed with additional noise for the given measurement. The model is formulated into state-space form to enable use of a Kalman filter to estimate the clean cycles of heart sounds. The estimates obtained by Kalman filtering are optimal in mean squared sense.

  1. [Shape acoustical recognition and characteristics of sonar signals by the dolphin T. truncatus].

    PubMed

    Dziedzic, A; Alcuri, G

    1977-10-17

    During the shape acoustical recognition process, the signal processing reveals two phases in the T. truncatus sonar emission. In the course of the first phase, the wide-band signals are invariant, during the second phase, near the end of the approach, their temporal and spectral characteristics change along with the shape of the objects to identify.

  2. Characterizing, synthesizing, and/or canceling out acoustic signals from sound sources

    DOEpatents

    Holzrichter, John F.; Ng, Lawrence C.

    2007-03-13

    A system for characterizing, synthesizing, and/or canceling out acoustic signals from inanimate and animate sound sources. Electromagnetic sensors monitor excitation sources in sound producing systems, such as animate sound sources such as the human voice, or from machines, musical instruments, and various other structures. Acoustical output from these sound producing systems is also monitored. From such information, a transfer function characterizing the sound producing system is generated. From the transfer function, acoustical output from the sound producing system may be synthesized or canceled. The systems disclosed enable accurate calculation of transfer functions relating specific excitations to specific acoustical outputs. Knowledge of such signals and functions can be used to effect various sound replication, sound source identification, and sound cancellation applications.

  3. Real-time GMAW quality classification using an artificial neural network with airborne acoustic signals as inputs

    SciTech Connect

    Matteson, A.; Morris, R.; Tate, R.

    1993-12-31

    The acoustic signal produced by the gas metal arc welding (GMAW) arc contains information about the behavior of the arc column, the molten pool and droplet transfer. It is possible to detect some defect producing conditions from the acoustic signal from the GMAW arc. An intelligent sensor, called the Weld Acoustic Monitor (WAM) has been developed to take advantage of this acoustic information in order to provide real-time quality assessment information for process control. The WAM makes use of an Artificial Neural Network (ANN) to classify the characteristic arc acoustic signals of acceptable and unacceptable welds. The ANN used in the Weld Acoustic Monitor developed its own set of rules for this classification problem by learning a data base of known GMAW acoustic signals.

  4. Sources and Radiation Patterns of Volcano-Acoustic Signals Investigated with Field-Scale Chemical Explosions

    NASA Astrophysics Data System (ADS)

    Bowman, D. C.; Lees, J. M.; Taddeucci, J.; Graettinger, A. H.; Sonder, I.; Valentine, G.

    2014-12-01

    We investigate the processes that give rise to complex acoustic signals during volcanic blasts by monitoring buried chemical explosions with infrasound and audio range microphones, strong motion sensors, and high speed imagery. Acoustic waveforms vary with scaled depth of burial (SDOB, units in meters per cube root of joules), ranging from high amplitude, impulsive, gas expansion dominated signals at low SDOB to low amplitude, longer duration, ground motion dominated signals at high SDOB. Typically, the sudden upward acceleration of the substrate above the blast produces the first acoustic arrival, followed by a second pulse due to the eruption of pressurized gas at the surface. Occasionally, a third overpressure occurs when displaced material decelerates upon impact with the ground. The transition between ground motion dominated and gas release dominated acoustics ranges between 0.0038-0.0018 SDOB, respectively. For example, one explosion registering an SDOB=0.0031 produced two overpressure pulses of approximately equal amplitude, one due to ground motion, the other to gas release. Recorded volcano infrasound has also identified distinct ground motion and gas release components during explosions at Sakurajima, Santiaguito, and Karymsky volcanoes. Our results indicate that infrasound records may provide a proxy for the depth and energy of these explosions. Furthermore, while magma fragmentation models indicate the possibility of several explosions during a single vulcanian eruption (Alidibirov, Bull Volc., 1994), our results suggest that a single explosion can also produce complex acoustic signals. Thus acoustic records alone cannot be used to distinguish between single explosions and multiple closely-spaced blasts at volcanoes. Results from a series of lateral blasts during the 2014 field experiment further indicates whether vent geometry can produce directional acoustic radiation patterns like those observed at Tungarahua volcano (Kim et al., GJI, 2012). Beside

  5. The evolutionary origins of ritualized acoustic signals in caterpillars.

    PubMed

    Scott, Jaclyn L; Kawahara, Akito Y; Skevington, Jeffrey H; Yen, Shen-Horn; Sami, Abeer; Smith, Myron L; Yack, Jayne E

    2010-01-01

    Animal communication signals can be highly elaborate, and researchers have long sought explanations for their evolutionary origins. For example, how did signals such as the tail-fan display of a peacock, a firefly flash or a wolf howl evolve? Animal communication theory holds that many signals evolved from non-signalling behaviours through the process of ritualization. Empirical evidence for ritualization is limited, as it is necessary to examine living relatives with varying degrees of signal evolution within a phylogenetic framework. We examine the origins of vibratory territorial signals in caterpillars using comparative and molecular phylogenetic methods. We show that a highly ritualized vibratory signal--anal scraping--originated from a locomotory behaviour--walking. Furthermore, comparative behavioural analysis supports the hypothesis that ritualized vibratory signals derive from physical fighting behaviours. Thus, contestants signal their opponents to avoid the cost of fighting. Our study provides experimental evidence for the origins of a complex communication signal, through the process of ritualization.

  6. Pulse analysis of acoustic emission signals. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Houghton, J. R.

    1976-01-01

    A method for the signature analysis of pulses in the frequency domain and the time domain is presented. Fourier spectrum, Fourier transfer function, shock spectrum and shock spectrum ratio are examined in the frequency domain analysis, and pulse shape deconvolution is developed for use in the time domain analysis. To demonstrate the relative sensitivity of each of the methods to small changes in the pulse shape, signatures of computer modeled systems with analytical pulses are presented. Optimization techniques are developed and used to indicate the best design parameters values for deconvolution of the pulse shape. Several experiments are presented that test the pulse signature analysis methods on different acoustic emission sources. These include acoustic emissions associated with: (1) crack propagation, (2) ball dropping on a plate, (3) spark discharge and (4) defective and good ball bearings.

  7. The effect of habitat acoustics on common marmoset vocal signal transmission.

    PubMed

    Morrill, Ryan J; Thomas, A Wren; Schiel, Nicola; Souto, Antonio; Miller, Cory T

    2013-09-01

    Noisy acoustic environments present several challenges for the evolution of acoustic communication systems. Among the most significant is the need to limit degradation of spectro-temporal signal structure in order to maintain communicative efficacy. This can be achieved by selecting for several potentially complementary processes. Selection can act on behavioral mechanisms permitting signalers to control the timing and occurrence of signal production to avoid acoustic interference. Likewise, the signal itself may be the target of selection, biasing the evolution of its structure to comprise acoustic features that avoid interference from ambient noise or degrade minimally in the habitat. Here, we address the latter topic for common marmoset (Callithrix jacchus) long-distance contact vocalizations, known as phee calls. Our aim was to test whether this vocalization is specifically adapted for transmission in a species-typical forest habitat, the Atlantic forests of northeastern Brazil. We combined seasonal analyses of ambient habitat acoustics with experiments in which pure tones, clicks, and vocalizations were broadcast and rerecorded at different distances to characterize signal degradation in the habitat. Ambient sound was analyzed from intervals throughout the day and over rainy and dry seasons, showing temporal regularities across varied timescales. Broadcast experiment results indicated that the tone and click stimuli showed the typically inverse relationship between frequency and signaling efficacy. Although marmoset phee calls degraded over distance with marked predictability compared with artificial sounds, they did not otherwise appear to be specially designed for increased transmission efficacy or minimal interference in this habitat. We discuss these data in the context of other similar studies and evidence of potential behavioral mechanisms for avoiding acoustic interference in order to maintain effective vocal communication in common marmosets.

  8. The Effect of Habitat Acoustics on Common Marmoset Vocal Signal Transmission

    PubMed Central

    MORRILL, RYAN J.; THOMAS, A. WREN; SCHIEL, NICOLA; SOUTO, ANTONIO; MILLER, CORY T.

    2013-01-01

    Noisy acoustic environments present several challenges for the evolution of acoustic communication systems. Among the most significant is the need to limit degradation of spectro-temporal signal structure in order to maintain communicative efficacy. This can be achieved by selecting for several potentially complementary processes. Selection can act on behavioral mechanisms permitting signalers to control the timing and occurrence of signal production to avoid acoustic interference. Likewise, the signal itself may be the target of selection, biasing the evolution of its structure to comprise acoustic features that avoid interference from ambient noise or degrade minimally in the habitat. Here, we address the latter topic for common marmoset (Callithrix jacchus) long-distance contact vocalizations, known as phee calls. Our aim was to test whether this vocalization is specifically adapted for transmission in a species-typical forest habitat, the Atlantic forests of northeastern Brazil. We combined seasonal analyses of ambient habitat acoustics with experiments in which pure tones, clicks, and vocalizations were broadcast and rerecorded at different distances to characterize signal degradation in the habitat. Ambient sound was analyzed from intervals throughout the day and over rainy and dry seasons, showing temporal regularities across varied timescales. Broadcast experiment results indicated that the tone and click stimuli showed the typically inverse relationship between frequency and signaling efficacy. Although marmoset phee calls degraded over distance with marked predictability compared with artificial sounds, they did not otherwise appear to be specially designed for increased transmission efficacy or minimal interference in this habitat. We discuss these data in the context of other similar studies and evidence of potential behavioral mechanisms for avoiding acoustic interference in order to maintain effective vocal communication in common marmosets. PMID

  9. System and method for investigating sub-surface features of a rock formation with acoustic sources generating conical broadcast signals

    SciTech Connect

    Vu, Cung Khac; Skelt, Christopher; Nihei, Kurt; Johnson, Paul A.; Guyer, Robert; Ten Cate, James A.; Le Bas, Pierre -Yves; Larmat, Carene S.

    2015-08-18

    A method of interrogating a formation includes generating a conical acoustic signal, at a first frequency--a second conical acoustic signal at a second frequency each in the between approximately 500 Hz and 500 kHz such that the signals intersect in a desired intersection volume outside the borehole. The method further includes receiving, a difference signal returning to the borehole resulting from a non-linear mixing of the signals in a mixing zone within the intersection volume.

  10. Frequency Characteristics of Acoustic Emission Signals from Cementitious Waste-forms with Encapsulated Al

    SciTech Connect

    Spasova, Lyubka M.; Ojovan, Michael I.

    2007-07-01

    Acoustic emission (AE) signals were continuously recorded and their intrinsic frequency characteristics examined in order to evaluate the mechanical performance of cementitious wasteform samples with encapsulated Al waste. The primary frequency in the power spectrum and its range of intensity for the detected acoustic waves were potentially related with appearance of different micro-mechanical events caused by Al corrosion within the encapsulating cement system. In addition the process of cement matrix hardening has been shown as a source of AE signals characterized with essentially higher primary frequency (above 2 MHz) compared with those due to Al corrosion development (below 40 kHz) and cement cracking (above 100 kHz). (authors)

  11. Beeping and piping: characterization of two mechano-acoustic signals used by honey bees in swarming.

    PubMed

    Schlegel, Thomas; Visscher, P Kirk; Seeley, Thomas D

    2012-12-01

    Of the many signals used by honey bees during the process of swarming, two of them--the stop signal and the worker piping signal--are not easily distinguished for both are mechano-acoustic signals produced by scout bees who press their bodies against other bees while vibrating their wing muscles. To clarify the acoustic differences between these two signals, we recorded both signals from the same swarm and at the same time, and compared them in terms of signal duration, fundamental frequency, and frequency modulation. Stop signals and worker piping signals differ in all three variables: duration, 174 ± 64 vs. 602 ± 377 ms; fundamental frequency, 407 vs. 451 Hz; and frequency modulation, absent vs. present. While it remains unclear which differences the bees use to distinguish the two signals, it is clear that they do so for the signals have opposite effects. Stop signals cause inhibition of actively dancing scout bees whereas piping signals cause excitation of quietly resting non-scout bees. PMID:23149930

  12. Search for acoustic signals from high energy cascades

    NASA Technical Reports Server (NTRS)

    Bell, R.; Bowen, T.

    1985-01-01

    High energy cosmic ray secondaries can be detected by means of the cascades they produce when they pass through matter. When the charged particles of these cascades ionize the matter they are traveling through, the heat produced and resulting thermal expansion causes a thermoacoustic wave. These sound waves travel at about one hundred-thousandth the speed of light, and should allow an array of acoustic transducers to resolve structure in the cascade to about 1 cm without high speed electronics or segmentation of the detector.

  13. Search for acoustic signals from high energy cascades

    NASA Astrophysics Data System (ADS)

    Bell, R.; Bowen, T.

    1985-08-01

    High energy cosmic ray secondaries can be detected by means of the cascades they produce when they pass through matter. When the charged particles of these cascades ionize the matter they are traveling through, the heat produced and resulting thermal expansion causes a thermoacoustic wave. These sound waves travel at about one hundred-thousandth the speed of light, and should allow an array of acoustic transducers to resolve structure in the cascade to about 1 cm without high speed electronics or segmentation of the detector.

  14. Research on power-law acoustic transient signal detection based on wavelet transform

    NASA Astrophysics Data System (ADS)

    Han, Jian-hui; Yang, Ri-jie; Wang, Wei

    2007-11-01

    Aiming at the characteristics of acoustic transient signal emitted from antisubmarine weapon which is being dropped into water (torpedo, aerial sonobuoy and rocket assisted depth charge etc.), such as short duration, low SNR, abruptness and instability, based on traditional power-law detector, a new method to detect acoustic transient signal is proposed. Firstly wavelet transform is used to de-noise signal, removes random spectrum components and improves SNR. Then Power- Law detector is adopted to detect transient signal. The simulation results show the method can effectively extract envelop characteristic of transient signal on the condition of low SNR. The performance of WT-Power-Law markedly outgoes that of traditional Power-Law detection method.

  15. Application of pulse compression signal processing techniques to electromagnetic acoustic transducers for noncontact thickness measurements and imaging

    SciTech Connect

    Ho, K.S.; Gan, T.H.; Billson, D.R.; Hutchins, D.A.

    2005-05-15

    A pair of noncontact Electromagnetic Acoustic Transducers (EMATs) has been used for thickness measurements and imaging of metallic plates. This was performed using wide bandwidth EMATs and pulse-compression signal processing techniques, using chirp excitation. This gives a greatly improved signal-to-noise ratio for air-coupled experiments, increasing the speed of data acquisition. A numerical simulation of the technique has confirmed the performance. Experimental results indicate that it is possible to perform noncontact ultrasonic imaging and thickness gauging in a wide range of metal plates. An accuracy of up to 99% has been obtained for aluminum, brass, and copper samples. The resolution of the image obtained using the pulse compression approach was also improved compared to a transient pulse signal from conventional pulser(receiver). It is thus suggested that the combination of EMATs and pulse compression can lead to a wide range of online applications where fast time acquisition is required.

  16. Beeping and piping: characterization of two mechano-acoustic signals used by honey bees in swarming

    NASA Astrophysics Data System (ADS)

    Schlegel, Thomas; Visscher, P. Kirk; Seeley, Thomas D.

    2012-12-01

    Of the many signals used by honey bees during the process of swarming, two of them—the stop signal and the worker piping signal—are not easily distinguished for both are mechano-acoustic signals produced by scout bees who press their bodies against other bees while vibrating their wing muscles. To clarify the acoustic differences between these two signals, we recorded both signals from the same swarm and at the same time, and compared them in terms of signal duration, fundamental frequency, and frequency modulation. Stop signals and worker piping signals differ in all three variables: duration, 174 ± 64 vs. 602 ± 377 ms; fundamental frequency, 407 vs. 451 Hz; and frequency modulation, absent vs. present. While it remains unclear which differences the bees use to distinguish the two signals, it is clear that they do so for the signals have opposite effects. Stop signals cause inhibition of actively dancing scout bees whereas piping signals cause excitation of quietly resting non-scout bees.

  17. Development of an Acoustic Signal Analysis Tool “Auto-F” Based on the Temperament Scale

    NASA Astrophysics Data System (ADS)

    Modegi, Toshio

    The MIDI interface is originally designed for electronic musical instruments but we consider this music-note based coding concept can be extended for general acoustic signal description. We proposed applying the MIDI technology to coding of bio-medical auscultation sound signals such as heart sounds for retrieving medical records and performing telemedicine. Then we have tried to extend our encoding targets including vocal sounds, natural sounds and electronic bio-signals such as ECG, using Generalized Harmonic Analysis method. Currently, we are trying to separate vocal sounds included in popular songs and encode both vocal sounds and background instrumental sounds into separate MIDI channels. And also, we are trying to extract articulation parameters such as MIDI pitch-bend parameters in order to reproduce natural acoustic sounds using a GM-standard MIDI tone generator. In this paper, we present an overall algorithm of our developed acoustic signal analysis tool, based on those research works, which can analyze given time-based signals on the musical temperament scale. The prominent feature of this tool is producing high-precision MIDI codes, which reproduce the similar signals as the given source signal using a GM-standard MIDI tone generator, and also providing analyzed texts in the XML format.

  18. Improvement of Power Efficiency for Underwater Acoustic Communication Using Orthogonal Signal Division Multiplexing over Multiple Transducers

    NASA Astrophysics Data System (ADS)

    Ebihara, Tadashi

    2013-07-01

    In underwater acoustic (UWA) communication, power efficiency is one of the important characteristics. This paper is about multistream transmission using orthogonal signal division multiplexing (OSDM) as a technique to increase power efficiency. In this work, the performance of multistream transmission using OSDM is evaluated both experimentally in a test tank and by numerical simulation. Through this study, it is confirmed that the multistream transmission scheme is effective in enhancing the power efficiency compared with the single-stream transmission using higher order modulation. Moreover, the performance of multistream transmission using OSDM is compared with the existing scheme, multistream transmission using orthogonal frequency division multiplexing (OFDM). The obtained results suggest that multistream transmission using OSDM is attractive because it can achieve the same bit-error rate (BER) and the same data rate with less power of the signal, compared with the reference. Although the calculation cost of OSDM in the receiver remains as an issue, multistream transmission using OSDM may contribute to high-speed UWA communication because of its excellent power efficiency.

  19. Acoustic Signal Processing for Pipe Condition Assessment (WaterRF Report 4360)

    EPA Science Inventory

    Unique to prestressed concrete cylinder pipe (PCCP), individual wire breaks create an excitation in the pipe wall that may vary in response to the remaining compression of the pipe core. This project was designed to improve acoustic signal processing for pipe condition assessment...

  20. Antifade sonar employs acoustic field diversity to recover signals from multipath fading

    SciTech Connect

    Lubman, D.

    1996-04-01

    Co-located pressure and particle motion (PM) hydrophones together with four-channel diversity combiners may be used to recover signals from multipath fading. Multipath fading is important in both shallow and deep water propagation and can be an important source of signal loss. The acoustic field diversity concept arises from the notion of conservation of signal energy and the observation that in rooms at least, the total acoustic energy density is the sum of potential energy (scalar field-sound pressure) and kinetic energy (vector field-sound PM) portions. One pressure hydrophone determines acoustic potential energy density at a point. In principle, three PM sensors (displacement, velocity, or acceleration) directed along orthogonal axes describe the kinetic energy density at a point. For a single plane wave, the time-averaged potential and kinetic field energies are identical everywhere. In multipath interference, however, potential and kinetic field energies at a point are partitioned unequally, depending mainly on relative signal phases. Thus, when pressure signals are in deep fade, abundant kinetic field signal energy may be available at that location. Performance benefits require a degree of uncorrelated fading between channels. The expectation of nearly uncorrelated fading is motivated from room theory. Performance benefits for sonar limited by independent Rayleigh fading are suggested by analogy to antifade radio. Average SNR can be improved by several decibels, holding time on target is multiplied manifold, and the bit error rate for data communication is reduced substantially. {copyright} {ital 1996 American Institute of Physics.}

  1. Acoustic tweezers for studying intracellular calcium signaling in SKBR-3 human breast cancer cells.

    PubMed

    Hwang, Jae Youn; Yoon, Chi Woo; Lim, Hae Gyun; Park, Jin Man; Yoon, Sangpil; Lee, Jungwoo; Shung, K Kirk

    2015-12-01

    Extracellular matrix proteins such as fibronectin (FNT) play crucial roles in cell proliferation, adhesion, and migration. For better understanding of these associated cellular activities, various microscopic manipulation tools have been used to study their intracellular signaling pathways. Recently, it has appeared that acoustic tweezers may possess similar capabilities in the study. Therefore, we here demonstrate that our newly developed acoustic tweezers with a high-frequency lithium niobate ultrasonic transducer have potentials to study intracellular calcium signaling by FNT-binding to human breast cancer cells (SKBR-3). It is found that intracellular calcium elevations in SKBR-3 cells, initially occurring on the microbead-contacted spot and then eventually spreading over the entire cell, are elicited by attaching an acoustically trapped FNT-coated microbead. Interestingly, they are suppressed by either extracellular calcium elimination or phospholipase C (PLC) inhibition. Hence, this suggests that our acoustic tweezers may serve as an alternative tool in the study of intracellular signaling by FNT-binding activities.

  2. Moving stereotactic fiducial system to obtain a respiratory signal: proof of principle.

    PubMed

    Caballero Pinelo, Roberto; Alfonso, Rodolfo; González Pérez, Yelina; García, Albin Ariel; Rubio, Arnaldo

    2016-01-01

    The purpose of this study was to obtain a respiratory signal with the use of an add-on device to a specific stereotactic body frame and evaluate precision and accuracy of the method, with the use of a dynamic phantom. The authors designed and constructed a simple add-on device which, attached to a stereotactic body frame, provides information of the patient's respiratory signal in every CT axial image acquired. To assess the approach, 12 CT studies were acquired, on a phantom that simulates respiratory motion, which was placed inside the frame with the add-on device. Images of the phantom with sinusoidal and shark-fin motion patterns were acquired, with different amplitude in the movement of the external surrogate and the target. Cycle time was 6 s. Images were retrospectively processed to obtain a respiratory signal from the vertical movement of the "abdomen." The obtained signal was adjusted to a sinusoidal function; the resultant amplitude and cycle time were compared with the preset function in the phantom. The cycle amplitude and time obtained with the method agreed with the preset values within 0.4 mm and 0.29 s, respectively. In the cases of sinusoidal movements the maximal discrepancy was less than 1 mm. A respiratory signal was obtained in all cine CT sequence studies with this method that consistently coincides with the preset motion of the phantom. The authors proposed a tool to obtain a respiratory signal based on information contained into the CT axial images. PMID:26894334

  3. Moving stereotactic fiducial system to obtain a respiratory signal: proof of principle.

    PubMed

    Caballero Pinelo, Roberto; Alfonso, Rodolfo; González Pérez, Yelina; García, Albin Ariel; Rubio, Arnaldo

    2016-01-08

    The purpose of this study was to obtain a respiratory signal with the use of an add-on device to a specific stereotactic body frame and evaluate precision and accuracy of the method, with the use of a dynamic phantom. The authors designed and constructed a simple add-on device which, attached to a stereotactic body frame, provides information of the patient's respiratory signal in every CT axial image acquired. To assess the approach, 12 CT studies were acquired, on a phantom that simulates respiratory motion, which was placed inside the frame with the add-on device. Images of the phantom with sinusoidal and shark-fin motion patterns were acquired, with different amplitude in the movement of the external surrogate and the target. Cycle time was 6 s. Images were retrospectively processed to obtain a respiratory signal from the vertical movement of the "abdomen." The obtained signal was adjusted to a sinusoidal function; the resultant amplitude and cycle time were compared with the preset function in the phantom. The cycle amplitude and time obtained with the method agreed with the preset values within 0.4 mm and 0.29 s, respectively. In the cases of sinusoidal movements the maximal discrepancy was less than 1 mm. A respiratory signal was obtained in all cine CT sequence studies with this method that consistently coincides with the preset motion of the phantom. The authors proposed a tool to obtain a respiratory signal based on information contained into the CT axial images.

  4. Multi-scale morphology analysis of acoustic emission signal and quantitative diagnosis for bearing fault

    NASA Astrophysics Data System (ADS)

    Wang, Wen-Jing; Cui, Ling-Li; Chen, Dao-Yun

    2016-04-01

    Monitoring of potential bearing faults in operation is of critical importance to safe operation of high speed trains. One of the major challenges is how to differentiate relevant signals to operational conditions of bearings from noises emitted from the surrounding environment. In this work, we report a procedure for analyzing acoustic emission signals collected from rolling bearings for diagnosis of bearing health conditions by examining their morphological pattern spectrum (MPS) through a multi-scale morphology analysis procedure. The results show that acoustic emission signals resulted from a given type of bearing faults share rather similar MPS curves. Further examinations in terms of sample entropy and Lempel-Ziv complexity of MPS curves suggest that these two parameters can be utilized to determine damage modes.

  5. Temperature and Pressure Dependence of Signal Amplitudes for Electrostriction Laser-Induced Thermal Acoustics

    NASA Technical Reports Server (NTRS)

    Herring, Gregory C.

    2015-01-01

    The relative signal strength of electrostriction-only (no thermal grating) laser-induced thermal acoustics (LITA) in gas-phase air is reported as a function of temperature T and pressure P. Measurements were made in the free stream of a variable Mach number supersonic wind tunnel, where T and P are varied simultaneously as Mach number is varied. Using optical heterodyning, the measured signal amplitude (related to the optical reflectivity of the acoustic grating) was averaged for each of 11 flow conditions and compared to the expected theoretical dependence of a pure-electrostriction LITA process, where the signal is proportional to the square root of [P*P /( T*T*T)].

  6. A simple way of obtaining a composite video output signal from the GAMMA-11 computing system.

    PubMed

    Richardson, R L

    1978-08-01

    Many departments of nuclear medicine are currently using the GAMMA-11 computer to process clinical images. Often practitioners would like to display the output pictures on conventional cathode-ray monitors that they already have. Some may want to record the images on a video tape recorder. Both of these devices require a composite video signal, which the computer does not provide. Such a signal can be obtained, however, by combining two signals that the system does produce. A number of relatively complicated systems for doing this have been suggested. The desired result can be obtained, however, by using two ten-cent resistors in the simple circuit described in this paper.

  7. [Research on Time-frequency Characteristics of Magneto-acoustic Signal of Different Thickness Medium Based on Wave Summing Method].

    PubMed

    Zhang, Shunqi; Yin, Tao; Ma, Ren; Liu, Zhipeng

    2015-08-01

    Functional imaging method of biological electrical characteristics based on magneto-acoustic effect gives valuable information of tissue in early tumor diagnosis, therein time and frequency characteristics analysis of magneto-acoustic signal is important in image reconstruction. This paper proposes wave summing method based on Green function solution for acoustic source of magneto-acoustic effect. Simulations and analysis under quasi 1D transmission condition are carried out to time and frequency characteristics of magneto-acoustic signal of models with different thickness. Simulation results of magneto-acoustic signal were verified through experiments. Results of the simulation with different thickness showed that time-frequency characteristics of magneto-acoustic signal reflected thickness of sample. Thin sample, which is less than one wavelength of pulse, and thick sample, which is larger than one wavelength, showed different summed waveform and frequency characteristics, due to difference of summing thickness. Experimental results verified theoretical analysis and simulation results. This research has laid a foundation for acoustic source and conductivity reconstruction to the medium with different thickness in magneto-acoustic imaging.

  8. Ductile Deformation of Dehydrating Serpentinite Evidenced by Acoustic Signal Monitoring

    NASA Astrophysics Data System (ADS)

    Gasc, J.; Hilairet, N.; Wang, Y.; Schubnel, A. J.

    2012-12-01

    Serpentinite dehydration is believed to be responsible for triggering earthquakes at intermediate depths (i.e., 60-300 km) in subduction zones. Based on experimental results, some authors have proposed mechanisms that explain how brittle deformation can occur despite high pressure and temperature conditions [1]. However, reproducing microseismicity in the laboratory associated with the deformation of dehydrating serpentinite remains challenging. A recent study showed that, even for fast dehydration kinetics, ductile deformation could take place rather than brittle faulting in the sample [2]. This latter study was conducted in a multi-anvil apparatus without the ability to control differential stress during dehydration. We have since conducted controlled deformation experiments in the deformation-DIA (D-DIA) on natural serpentinite samples at sector 13 (GSECARS) of the APS. Monochromatic radiation was used with both a 2D MAR-CCD detector and a CCD camera to determine the stress and the strain of the sample during the deformation process [3]. In addition, an Acoustic Emission (AE) recording setup was used to monitor the microseismicity from the sample, using piezo-ceramic transducers glued on the basal truncation of the anvils. The use of six independent transducers allows locating the AEs and calculating the corresponding focal mechanisms. The samples were deformed at strain rates of 10-5-10-4 s-1 under confining pressures of 3-5 GPa. Dehydration was triggered during the deformation by heating the samples at rates ranging from 5 to 60 K/min. Before the onset of the dehydration, X-ray diffraction data showed that the serpentinite sustained ~1 GPa of stress which plummeted when dehydration occurred. Although AEs were recorded during the compression and decompression stages, no AEs ever accompanied this stress drop, suggesting ductile deformation of the samples. Hence, unlike many previous studies, no evidence for fluid embrittlement and anticrack generation was found

  9. Biological invasions and the acoustic niche: the effect of bullfrog calls on the acoustic signals of white-banded tree frogs.

    PubMed

    Both, Camila; Grant, Taran

    2012-10-23

    Invasive species are known to affect native species in a variety of ways, but the effect of acoustic invaders has not been examined previously. We simulated an invasion of the acoustic niche by exposing calling native male white-banded tree frogs (Hypsiboas albomarginatus) to recorded invasive American bullfrog (Lithobates catesbeianus) calls. In response, tree frogs immediately shifted calls to significantly higher frequencies. In the post-stimulus period, they continued to use higher frequencies while also decreasing signal duration. Acoustic signals are the primary basis of mate selection in many anurans, suggesting that such changes could negatively affect the reproductive success of native species. The effects of bullfrog vocalizations on acoustic communities are expected to be especially severe due to their broad frequency band, which masks the calls of multiple species simultaneously. PMID:22675139

  10. Biological invasions and the acoustic niche: the effect of bullfrog calls on the acoustic signals of white-banded tree frogs

    PubMed Central

    Both, Camila; Grant, Taran

    2012-01-01

    Invasive species are known to affect native species in a variety of ways, but the effect of acoustic invaders has not been examined previously. We simulated an invasion of the acoustic niche by exposing calling native male white-banded tree frogs (Hypsiboas albomarginatus) to recorded invasive American bullfrog (Lithobates catesbeianus) calls. In response, tree frogs immediately shifted calls to significantly higher frequencies. In the post-stimulus period, they continued to use higher frequencies while also decreasing signal duration. Acoustic signals are the primary basis of mate selection in many anurans, suggesting that such changes could negatively affect the reproductive success of native species. The effects of bullfrog vocalizations on acoustic communities are expected to be especially severe due to their broad frequency band, which masks the calls of multiple species simultaneously. PMID:22675139

  11. Biological invasions and the acoustic niche: the effect of bullfrog calls on the acoustic signals of white-banded tree frogs.

    PubMed

    Both, Camila; Grant, Taran

    2012-10-23

    Invasive species are known to affect native species in a variety of ways, but the effect of acoustic invaders has not been examined previously. We simulated an invasion of the acoustic niche by exposing calling native male white-banded tree frogs (Hypsiboas albomarginatus) to recorded invasive American bullfrog (Lithobates catesbeianus) calls. In response, tree frogs immediately shifted calls to significantly higher frequencies. In the post-stimulus period, they continued to use higher frequencies while also decreasing signal duration. Acoustic signals are the primary basis of mate selection in many anurans, suggesting that such changes could negatively affect the reproductive success of native species. The effects of bullfrog vocalizations on acoustic communities are expected to be especially severe due to their broad frequency band, which masks the calls of multiple species simultaneously.

  12. Extraction of fault component from abnormal sound in diesel engines using acoustic signals

    NASA Astrophysics Data System (ADS)

    Dayong, Ning; Changle, Sun; Yongjun, Gong; Zengmeng, Zhang; Jiaoyi, Hou

    2016-06-01

    In this paper a method for extracting fault components from abnormal acoustic signals and automatically diagnosing diesel engine faults is presented. The method named dislocation superimposed method (DSM) is based on the improved random decrement technique (IRDT), differential function (DF) and correlation analysis (CA). The aim of DSM is to linearly superpose multiple segments of abnormal acoustic signals because of the waveform similarity of faulty components. The method uses sample points at the beginning of time when abnormal sound appears as the starting position for each segment. In this study, the abnormal sound belonged to shocking faulty type; thus, the starting position searching method based on gradient variance was adopted. The coefficient of similar degree between two same sized signals is presented. By comparing with a similar degree, the extracted fault component could be judged automatically. The results show that this method is capable of accurately extracting the fault component from abnormal acoustic signals induced by faulty shocking type and the extracted component can be used to identify the fault type.

  13. Perturbation and Nonlinear Dynamic Analysis of Acoustic Phonatory Signal in Parkinsonian Patients Receiving Deep Brain Stimulation

    ERIC Educational Resources Information Center

    Lee, Victoria S.; Zhou, Xiao Ping; Rahn, Douglas A., III; Wang, Emily Q.; Jiang, Jack J.

    2008-01-01

    Nineteen PD patients who received deep brain stimulation (DBS), 10 non-surgical (control) PD patients, and 11 non-pathologic age- and gender-matched subjects performed sustained vowel phonations. The following acoustic measures were obtained on the sustained vowel phonations: correlation dimension (D[subscript 2]), percent jitter, percent shimmer,…

  14. Near- Source, Seismo-Acoustic Signals Accompanying a NASCAR Race at the Texas Motor Speedway

    NASA Astrophysics Data System (ADS)

    Stump, B. W.; Hayward, C.; Underwood, R.; Howard, J. E.; MacPhail, M. D.; Golden, P.; Endress, A.

    2014-12-01

    Near-source, seismo-acoustic observations provide a unique opportunity to characterize urban sources, remotely sense human activities including vehicular traffic and monitor large engineering structures. Energy separately coupled into the solid earth and atmosphere provides constraints on not only the location of these sources but also the physics of the generating process. Conditions and distances at which these observations can be made are dependent upon not only local geological conditions but also atmospheric conditions at the time of the observations. In order to address this range of topics, an empirical, seismo-acoustic study was undertaken in and around the Texas Motor Speedway in the Dallas-Ft. Worth area during the first week of April 2014 at which time a range of activities associated with a series of NASCAR races occurred. Nine, seismic sensors were deployed around the 1.5-mile track for purposes of documenting the direct-coupled seismic energy from the passage of the cars and other vehicles on the track. Six infrasound sensors were deployed on a rooftop in a rectangular array configuration designed to provide high frequency beam forming for acoustic signals. Finally, a five-element infrasound array was deployed outside the track in order to characterize how the signals propagate away from the sources in the near-source region. Signals recovered from within the track were able to track and characterize the motion of a variety of vehicles during the race weekend including individual racecars. Seismic data sampled at 1000 sps documented strong Doppler effects as the cars approached and moved away from individual sensors. There were faint seismic signals that arrived at seismic velocity but local acoustic to seismic coupling as supported by the acoustic observations generated the majority of seismic signals. Actual seismic ground motions were small as demonstrated by the dominance of regional seismic signals from a magnitude 4.0 earthquake that arrived at

  15. Information Theory Filters for Wavelet Packet Coefficient Selection with Application to Corrosion Type Identification from Acoustic Emission Signals

    PubMed Central

    Van Dijck, Gert; Van Hulle, Marc M.

    2011-01-01

    The damage caused by corrosion in chemical process installations can lead to unexpected plant shutdowns and the leakage of potentially toxic chemicals into the environment. When subjected to corrosion, structural changes in the material occur, leading to energy releases as acoustic waves. This acoustic activity can in turn be used for corrosion monitoring, and even for predicting the type of corrosion. Here we apply wavelet packet decomposition to extract features from acoustic emission signals. We then use the extracted wavelet packet coefficients for distinguishing between the most important types of corrosion processes in the chemical process industry: uniform corrosion, pitting and stress corrosion cracking. The local discriminant basis selection algorithm can be considered as a standard for the selection of the most discriminative wavelet coefficients. However, it does not take the statistical dependencies between wavelet coefficients into account. We show that, when these dependencies are ignored, a lower accuracy is obtained in predicting the corrosion type. We compare several mutual information filters to take these dependencies into account in order to arrive at a more accurate prediction. PMID:22163921

  16. Time delay and Doppler estimation for wideband acoustic signals in multipath environments.

    PubMed

    Jiang, Xue; Zeng, Wen-Jun; Li, Xi-Lin

    2011-08-01

    Estimation of the parameters of a multipath underwater acoustic channel is of great interest for a variety of applications. This paper proposes a high-resolution method for jointly estimating the multipath time delays, Doppler scales, and attenuation amplitudes of a time-varying acoustical channel. The proposed method formulates the estimation of channel parameters into a sparse representation problem. With the [script-l](1)-norm as the measure of sparsity, the proposed method makes use of the basis pursuit (BP) criterion to find the sparse solution. The ill-conditioning can be effectively reduced by the [script-l](1)-norm regularization. Unlike many existing methods that are only applicable to narrowband signals, the proposed method can handle both narrowband and wideband signals. Simulation results are provided to verify the performance and effectiveness of the proposed algorithm, indicating that it has a super-resolution in both delay and Doppler domain, and it is robust to noise.

  17. Seismo-acoustic signals associated with degassing explosions recorded at Shishaldin Volcano, Alaska, 2003-2004

    USGS Publications Warehouse

    Petersen, T.

    2007-01-01

    In summer 2003, a Chaparral Model 2 microphone was deployed at Shishaldin Volcano, Aleutian Islands, Alaska. The pressure sensor was co-located with a short-period seismometer on the volcano’s north flank at a distance of 6.62 km from the active summit vent. The seismo-acoustic data exhibit a correlation between impulsive acoustic signals (1–2 Pa) and long-period (LP, 1–2 Hz) earthquakes. Since it last erupted in 1999, Shishaldin has been characterized by sustained seismicity consisting of many hundreds to two thousand LP events per day. The activity is accompanied by up to ∼200 m high discrete gas puffs exiting the small summit vent, but no significant eruptive activity has been confirmed. The acoustic waveforms possess similarity throughout the data set (July 2003–November 2004) indicating a repetitive source mechanism. The simplicity of the acoustic waveforms, the impulsive onsets with relatively short (∼10–20 s) gradually decaying codas and the waveform similarities suggest that the acoustic pulses are generated at the fluid–air interface within an open-vent system. SO2 measurements have revealed a low SO2 flux, suggesting a hydrothermal system with magmatic gases leaking through. This hypothesis is supported by the steady-state nature of Shishaldin’s volcanic system since 1999. Time delays between the seismic LP and infrasound onsets were acquired from a representative day of seismo-acoustic data. A simple model was used to estimate source depths. The short seismo-acoustic delay times have revealed that the seismic and acoustic sources are co-located at a depth of 240±200 m below the crater rim. This shallow depth is confirmed by resonance of the upper portion of the open conduit, which produces standing waves with f=0.3 Hz in the acoustic waveform codas. The infrasound data has allowed us to relate Shishaldin’s LP earthquakes to degassing explosions, created by gas volume ruptures from a fluid–air interface.

  18. Lateralization of acoustic signals by dichotically listening budgerigars (Melopsittacus undulatus).

    PubMed

    Welch, Thomas E; Dent, Micheal L

    2011-10-01

    Sound localization allows humans and animals to determine the direction of objects to seek or avoid and indicates the appropriate position to direct visual attention. Interaural time differences (ITDs) and interaural level differences (ILDs) are two primary cues that humans use to localize or lateralize sound sources. There is limited information about behavioral cue sensitivity in animals, especially animals with poor sound localization acuity and small heads, like budgerigars. ITD and ILD thresholds were measured behaviorally in dichotically listening budgerigars equipped with headphones in an identification task. Budgerigars were less sensitive than humans and cats, and more similar to rabbits, barn owls, and monkeys, in their abilities to lateralize dichotic signals. Threshold ITDs were relatively constant for pure tones below 4 kHz, and were immeasurable at higher frequencies. Threshold ILDs were relatively constant over a wide range of frequencies, similar to humans. Thresholds in both experiments were best for broadband noise stimuli. These lateralization results are generally consistent with the free field localization abilities of these birds, and add support to the idea that budgerigars may be able to enhance their cues to directional hearing (e.g., via connected interaural pathways) beyond what would be expected based on head size. PMID:21973385

  19. Circuit for echo and noise suppression of acoustic signals transmitted through a drill string

    DOEpatents

    Drumheller, D.S.; Scott, D.D.

    1993-12-28

    An electronic circuit for digitally processing analog electrical signals produced by at least one acoustic transducer is presented. In a preferred embodiment of the present invention, a novel digital time delay circuit is utilized which employs an array of First-in-First-out (FiFo) microchips. Also, a bandpass filter is used at the input to this circuit for isolating drill string noise and eliminating high frequency output. 20 figures.

  20. Punch stretching process monitoring using acoustic emission signal analysis. II - Application of frequency domain deconvolution

    NASA Technical Reports Server (NTRS)

    Liang, Steven Y.; Dornfeld, David A.; Nickerson, Jackson A.

    1987-01-01

    The coloring effect on the acoustic emission signal due to the frequency response of the data acquisition/processing instrumentation may bias the interpretation of AE signal characteristics. In this paper, a frequency domain deconvolution technique, which involves the identification of the instrumentation transfer functions and multiplication of the AE signal spectrum by the inverse of these system functions, has been carried out. In this way, the change in AE signal characteristics can be better interpreted as the result of the change in only the states of the process. Punch stretching process was used as an example to demonstrate the application of the technique. Results showed that, through the deconvolution, the frequency characteristics of AE signals generated during the stretching became more distinctive and can be more effectively used as tools for process monitoring.

  1. Problems Associated with Statistical Pattern Recognition of Acoustic Emission Signals in a Compact Tension Fatigue Specimen

    NASA Technical Reports Server (NTRS)

    Hinton, Yolanda L.

    1999-01-01

    Acoustic emission (AE) data were acquired during fatigue testing of an aluminum 2024-T4 compact tension specimen using a commercially available AE system. AE signals from crack extension were identified and separated from noise spikes, signals that reflected from the specimen edges, and signals that saturated the instrumentation. A commercially available software package was used to train a statistical pattern recognition system to classify the signals. The software trained a network to recognize signals with a 91-percent accuracy when compared with the researcher's interpretation of the data. Reasons for the discrepancies are examined and it is postulated that additional preprocessing of the AE data to focus on the extensional wave mode and eliminate other effects before training the pattern recognition system will result in increased accuracy.

  2. Acoustic effects of the ATOC signal (75 Hz, 195 dB) on dolphins and whales.

    PubMed

    Au, W W; Nachtigall, P E; Pawloski, J L

    1997-05-01

    The Acoustic Thermometry of Ocean Climate (ATOC) program of Scripps Institution of Oceanography and the Applied Physics Laboratory, University of Washington, will broadcast a low-frequency 75-Hz phase modulated acoustic signal over ocean basins in order to study ocean temperatures on a global scale and examine the effects of global warming. One of the major concerns is the possible effect of the ATOC signal on marine life, especially on dolphins and whales. In order to address this issue, the hearing sensitivity of a false killer whale (Pseudorca crassidens) and a Risso's dolphin (Grampus griseus) to the ATOC sound was measured behaviorally. A staircase procedure with the signal levels being changed in 1-dB steps was used to measure the animals' threshold to the actual ATOC coded signal. The results indicate that small odontocetes such as the Pseudorca and Grampus swimming directly above the ATOC source will not hear the signal unless they dive to a depth of approximately 400 m. A sound propagation analysis suggests that the sound-pressure level at ranges greater than 0.5 km will be less than 130 dB for depths down to about 500 m. Several species of baleen whales produce sounds much greater than 170-180 dB. With the ATOC source on the axis of the deep sound channel (greater than 800 m), the ATOC signal will probably have minimal physical and physiological effects on cetaceans.

  3. Acoustics

    NASA Technical Reports Server (NTRS)

    Goodman, Jerry R.; Grosveld, Ferdinand

    2007-01-01

    The acoustics environment in space operations is important to maintain at manageable levels so that the crewperson can remain safe, functional, effective, and reasonably comfortable. High acoustic levels can produce temporary or permanent hearing loss, or cause other physiological symptoms such as auditory pain, headaches, discomfort, strain in the vocal cords, or fatigue. Noise is defined as undesirable sound. Excessive noise may result in psychological effects such as irritability, inability to concentrate, decrease in productivity, annoyance, errors in judgment, and distraction. A noisy environment can also result in the inability to sleep, or sleep well. Elevated noise levels can affect the ability to communicate, understand what is being said, hear what is going on in the environment, degrade crew performance and operations, and create habitability concerns. Superfluous noise emissions can also create the inability to hear alarms or other important auditory cues such as an equipment malfunctioning. Recent space flight experience, evaluations of the requirements in crew habitable areas, and lessons learned (Goodman 2003; Allen and Goodman 2003; Pilkinton 2003; Grosveld et al. 2003) show the importance of maintaining an acceptable acoustics environment. This is best accomplished by having a high-quality set of limits/requirements early in the program, the "designing in" of acoustics in the development of hardware and systems, and by monitoring, testing and verifying the levels to ensure that they are acceptable.

  4. Discussion about generation mechanisms of third-order nonlinear signals in surface acoustic wave resonators based on simulation

    NASA Astrophysics Data System (ADS)

    Nakagawa, Ryo; Suzuki, Takanao; Shimizu, Hiroshi; Kyoya, Haruki; Nako, Katsuhiro; Hashimoto, Ken-ya

    2016-07-01

    In this paper, we discuss the generation mechanisms of third-order nonlinearity in surface acoustic wave (SAW) devices on the basis of simulation results, which are obtained by a proposed method for this discussion. First, eight nonlinear terms are introduced to the piezoelectric constitutive equations, and nonlinear stress and electric flux fields are estimated using linear strain and electric fields calculated by a linear analysis, i.e., the coupling of mode simulation. Then, their contributions are embedded as voltage and current sources, respectively, in an equivalent circuit model, and nonlinear signals appearing at external ports are estimated. It is shown that eight coefficients of the nonlinear terms can be determined from a series of experiments carried out at various driving and resulting frequencies. This is because the effect of each nonlinear term on the nonlinear signal outputs changes markedly with the conditions. When the coefficients are determined properly, the simulations agree well with some measurement results under various conditions.

  5. The Acoustic Structure and Information Content of Female Koala Vocal Signals

    PubMed Central

    Charlton, Benjamin D.

    2015-01-01

    Determining the information content of animal vocalisations can give valuable insights into the potential functions of vocal signals. The source-filter theory of vocal production allows researchers to examine the information content of mammal vocalisations by linking variation in acoustic features with variation in relevant physical characteristics of the caller. Here I used a source-filter theory approach to classify female koala vocalisations into different call-types, and determine which acoustic features have the potential to convey important information about the caller to other conspecifics. A two-step cluster analysis classified female calls into bellows, snarls and tonal rejection calls. Additional results revealed that female koala vocalisations differed in their potential to provide information about a given caller’s phenotype that may be of importance to receivers. Female snarls did not contain reliable acoustic cues to the caller’s identity and age. In contrast, female bellows and tonal rejection calls were individually distinctive, and the tonal rejection calls of older female koalas had consistently lower mean, minimum and maximum fundamental frequency. In addition, female bellows were significantly shorter in duration and had higher fundamental frequency, formant frequencies, and formant frequency spacing than male bellows. These results indicate that female koala vocalisations have the potential to signal the caller’s identity, age and sex. I go on to discuss the anatomical basis for these findings, and consider the possible functional relevance of signalling this type of information in the koala’s natural habitat. PMID:26465340

  6. The Acoustic Structure and Information Content of Female Koala Vocal Signals.

    PubMed

    Charlton, Benjamin D

    2015-01-01

    Determining the information content of animal vocalisations can give valuable insights into the potential functions of vocal signals. The source-filter theory of vocal production allows researchers to examine the information content of mammal vocalisations by linking variation in acoustic features with variation in relevant physical characteristics of the caller. Here I used a source-filter theory approach to classify female koala vocalisations into different call-types, and determine which acoustic features have the potential to convey important information about the caller to other conspecifics. A two-step cluster analysis classified female calls into bellows, snarls and tonal rejection calls. Additional results revealed that female koala vocalisations differed in their potential to provide information about a given caller's phenotype that may be of importance to receivers. Female snarls did not contain reliable acoustic cues to the caller's identity and age. In contrast, female bellows and tonal rejection calls were individually distinctive, and the tonal rejection calls of older female koalas had consistently lower mean, minimum and maximum fundamental frequency. In addition, female bellows were significantly shorter in duration and had higher fundamental frequency, formant frequencies, and formant frequency spacing than male bellows. These results indicate that female koala vocalisations have the potential to signal the caller's identity, age and sex. I go on to discuss the anatomical basis for these findings, and consider the possible functional relevance of signalling this type of information in the koala's natural habitat.

  7. Gearbox fault diagnosis based on deep random forest fusion of acoustic and vibratory signals

    NASA Astrophysics Data System (ADS)

    Li, Chuan; Sanchez, René-Vinicio; Zurita, Grover; Cerrada, Mariela; Cabrera, Diego; Vásquez, Rafael E.

    2016-08-01

    Fault diagnosis is an effective tool to guarantee safe operations in gearboxes. Acoustic and vibratory measurements in such mechanical devices are all sensitive to the existence of faults. This work addresses the use of a deep random forest fusion (DRFF) technique to improve fault diagnosis performance for gearboxes by using measurements of an acoustic emission (AE) sensor and an accelerometer that are used for monitoring the gearbox condition simultaneously. The statistical parameters of the wavelet packet transform (WPT) are first produced from the AE signal and the vibratory signal, respectively. Two deep Boltzmann machines (DBMs) are then developed for deep representations of the WPT statistical parameters. A random forest is finally suggested to fuse the outputs of the two DBMs as the integrated DRFF model. The proposed DRFF technique is evaluated using gearbox fault diagnosis experiments under different operational conditions, and achieves 97.68% of the classification rate for 11 different condition patterns. Compared to other peer algorithms, the addressed method exhibits the best performance. The results indicate that the deep learning fusion of acoustic and vibratory signals may improve fault diagnosis capabilities for gearboxes.

  8. The Acoustic Structure and Information Content of Female Koala Vocal Signals.

    PubMed

    Charlton, Benjamin D

    2015-01-01

    Determining the information content of animal vocalisations can give valuable insights into the potential functions of vocal signals. The source-filter theory of vocal production allows researchers to examine the information content of mammal vocalisations by linking variation in acoustic features with variation in relevant physical characteristics of the caller. Here I used a source-filter theory approach to classify female koala vocalisations into different call-types, and determine which acoustic features have the potential to convey important information about the caller to other conspecifics. A two-step cluster analysis classified female calls into bellows, snarls and tonal rejection calls. Additional results revealed that female koala vocalisations differed in their potential to provide information about a given caller's phenotype that may be of importance to receivers. Female snarls did not contain reliable acoustic cues to the caller's identity and age. In contrast, female bellows and tonal rejection calls were individually distinctive, and the tonal rejection calls of older female koalas had consistently lower mean, minimum and maximum fundamental frequency. In addition, female bellows were significantly shorter in duration and had higher fundamental frequency, formant frequencies, and formant frequency spacing than male bellows. These results indicate that female koala vocalisations have the potential to signal the caller's identity, age and sex. I go on to discuss the anatomical basis for these findings, and consider the possible functional relevance of signalling this type of information in the koala's natural habitat. PMID:26465340

  9. Acoustic effects of the ATOC signal (75 Hz, 195 dB) on dolphins and whales

    SciTech Connect

    Au, W.W.; Nachtigall, P.E.; Pawloski, J.L.

    1997-05-01

    The Acoustic Thermometry of Ocean Climate (ATOC) program of Scripps Institution of Oceanography and the Applied Physics Laboratory, University of Washington, will broadcast a low-frequency 75-Hz phase modulated acoustic signal over ocean basins in order to study ocean temperatures on a global scale and examine the effects of global warming. One of the major concerns is the possible effect of the ATOC signal on marine life, especially on dolphins and whales. In order to address this issue, the hearing sensitivity of a false killer whale ({ital Pseudorca crassidens}) and a Risso{close_quote}s dolphin ({ital Grampus griseus}) to the ATOC sound was measured behaviorally. A staircase procedure with the signal levels being changed in 1-dB steps was used to measure the animals{close_quote} threshold to the actual ATOC coded signal. The results indicate that small odontocetes such as the {ital Pseudorca} and {ital Grampus} swimming directly above the ATOC source will not hear the signal unless they dive to a depth of approximately 400 m. A sound propagation analysis suggests that the sound-pressure level at ranges greater than 0.5 km will be less than 130 dB for depths down to about 500 m. Several species of baleen whales produce sounds much greater than 170{endash}180 dB. With the ATOC source on the axis of the deep sound channel (greater than 800 m), the ATOC signal will probably have minimal physical and physiological effects on cetaceans. {copyright} {ital 1997 Acoustical Society of America.}

  10. Quadratic Time-Frequency Analysis of Hydroacoustic Signals as Applied to Acoustic Emissions of Large Whales

    NASA Astrophysics Data System (ADS)

    Le Bras, Ronan; Victor, Sucic; Damir, Malnar; Götz, Bokelmann

    2014-05-01

    In order to enrich the set of attributes in setting up a large database of whale signals, as envisioned in the Baleakanta project, we investigate methods of time-frequency analysis. The purpose of establishing the database is to increase and refine knowledge of the emitted signal and of its propagation characteristics, leading to a better understanding of the animal migrations in a non-invasive manner and to characterize acoustic propagation in oceanic media. The higher resolution for signal extraction and a better separation from other signals and noise will be used for various purposes, including improved signal detection and individual animal identification. The quadratic class of time-frequency distributions (TFDs) is the most popular set of time-frequency tools for analysis and processing of non-stationary signals. Two best known and most studied members of this class are the spectrogram and the Wigner-Ville distribution. However, to be used efficiently, i.e. to have highly concentrated signal components while significantly suppressing interference and noise simultaneously, TFDs need to be optimized first. The optimization method used in this paper is based on the Cross-Wigner-Ville distribution, and unlike similar approaches it does not require prior information on the analysed signal. The method is applied to whale signals, which, just like the majority of other real-life signals, can generally be classified as multicomponent non-stationary signals, and hence time-frequency techniques are a natural choice for their representation, analysis, and processing. We present processed data from a set containing hundreds of individual calls. The TFD optimization method results into a high resolution time-frequency representation of the signals. It allows for a simple extraction of signal components from the TFD's dominant ridges. The local peaks of those ridges can then be used for the signal components instantaneous frequency estimation, which in turn can be used as

  11. Behavioral assessment of acoustic parameters relevant to signal recognition and preference in a vocal fish.

    PubMed

    McKibben, J R; Bass, A H

    1998-12-01

    Acoustic signal recognition depends on the receiver's processing of the physical attributes of a sound. This study takes advantage of the simple communication sounds produced by plainfin midshipman fish to examine effects of signal variation on call recognition and preference. Nesting male midshipman generate both long duration (> 1 min) sinusoidal-like "hums" and short duration "grunts." The hums of neighboring males often overlap, creating beat waveforms. Presentation of humlike, single tone stimuli, but not grunts or noise, elicited robust attraction (phonotaxis) by gravid females. In two-choice tests, females differentiated and chose between acoustic signals that differed in duration, frequency, amplitude, and fine temporal content. Frequency preferences were temperature dependent, in accord with the known temperature dependence of hum fundamental frequency. Concurrent hums were simulated with two-tone beat stimuli, either presented from a single speaker or produced more naturally by interference between adjacent sources. Whereas certain single-source beats reduced stimulus attractiveness, beats which resolved into unmodulated tones at their sources did not affect preference. These results demonstrate that phonotactic assessment of stimulus relevance can be applied in a teleost fish, and that multiple signal parameters can affect receiver response in a vertebrate with relatively simple communication signals. PMID:9857511

  12. Seismo-acoustic Signals Recorded at KSIAR, the Infrasound Array Installed at PS31

    NASA Astrophysics Data System (ADS)

    Kim, T. S.; Che, I. Y.; Jeon, J. S.; Chi, H. C.; Kang, I. B.

    2014-12-01

    One of International Monitoring System (IMS)'s primary seismic stations, PS31, called Korea Seismic Research Station (KSRS), was installed around Wonju, Korea in 1970s. It has been operated by US Air Force Technical Applications Center (AFTAC) for more than 40 years. KSRS is composed of 26 seismic sensors including 19 short period, 6 long period and 1 broad band seismometers. The 19 short period sensors were used to build an array with a 10-km aperture while the 6 long period sensors were used for a relatively long period array with a 40-km aperture. After KSRS was certified as an IMS station in 2006 by Comprehensive Nuclear Test Ban Treaty Organization (CTBTO), Korea Institute of Geoscience and Mineral Resources (KIGAM) which is the Korea National Data Center started to take over responsibilities on the operation and maintenance of KSRS from AFTAC. In April of 2014, KIGAM installed an infrasound array, KSIAR, on the existing four short period seismic stations of KSRS, the sites KS05, KS06, KS07 and KS16. The collocated KSIAR changed KSRS from a seismic array into a seismo-acoustic array. The aperture of KSIAR is 3.3 km. KSIAR also has a 100-m small aperture infrasound array at KS07. The infrasound data from KSIAR except that from the site KS06 is being transmitted in real time to KIGAM with VPN and internet line. An initial analysis on seismo-acoustic signals originated from local and regional distance ranges has been performed since May 2014. The analysis with the utilization of an array process called Progressive Multi-Channel Correlation (PMCC) detected seismo-acoustic signals caused by various sources including small explosions in relation to constructing local tunnels and roads. Some of them were not found in the list of automatic bulletin of KIGAM. The seismo-acoustic signals recorded by KSIAR are supplying a useful information for discriminating local and regional man-made events from natural events.

  13. Method and apparatus for obtaining complete speech signals for speech recognition applications

    NASA Technical Reports Server (NTRS)

    Abrash, Victor (Inventor); Cesari, Federico (Inventor); Franco, Horacio (Inventor); George, Christopher (Inventor); Zheng, Jing (Inventor)

    2009-01-01

    The present invention relates to a method and apparatus for obtaining complete speech signals for speech recognition applications. In one embodiment, the method continuously records an audio stream comprising a sequence of frames to a circular buffer. When a user command to commence or terminate speech recognition is received, the method obtains a number of frames of the audio stream occurring before or after the user command in order to identify an augmented audio signal for speech recognition processing. In further embodiments, the method analyzes the augmented audio signal in order to locate starting and ending speech endpoints that bound at least a portion of speech to be processed for recognition. At least one of the speech endpoints is located using a Hidden Markov Model.

  14. Biomechanical Correlates of Surface Electromyography Signals Obtained during Swallowing by Healthy Adults

    ERIC Educational Resources Information Center

    Crary, Michael A.; Carnaby (Mann), Giselle D.; Groher, Michael E.

    2006-01-01

    Purpose: The purpose of this study was to describe biomechanical correlates of the surface electromyographic signal obtained during swallowing by healthy adult volunteers. Method: Seventeen healthy adults were evaluated with simultaneous videofluoroscopy and surface electromyography (sEMG) while swallowing 5 mL of liquid barium sulfate. Three…

  15. Extraction and modeling of the Oscillatory Potential: signal conditioning to obtain minimally corrupted Oscillatory Potentials.

    PubMed

    Derr, Peter H; Meyer, Andrew U; Haupt, Edward J; Brigell, Mitchell G

    2002-01-01

    A method of extracting a temporally bounded component of a composite signal has been developed which minimizes data corruption in signal processing. The composite signal is windowed in the time domain, padding signals are attached, and finally, the conditioned signal is filtered to extract the component of interest. The method has been utilized to extract the Oscillatory Potential (OP) from the Electroretinogram (ERG). ERGs can contain impulse like transients, including flash artifacts and a-b wave transition, which may not be related to the Oscillatory Potential. Such transients will stimulate a filter, yielding its natural (filter) response and thus distort the actual OP signal. To avoid this effect, time-domain windowing and signal conditioning is used to extract the OP from the ERG. The extraction and modeling approach is applied to ERGs obtained from patients with recent monocular central retinal vein occlusion (CRVO). Model parameters clearly differentiate affected from fellow eyes and show subtle differences between eyes with benign and complicated outcomes.

  16. Generation of desired signals from acoustic drivers. [for aircraft engine internal noise propagation experiment

    NASA Technical Reports Server (NTRS)

    Ramakrishnan, R.; Salikuddin, M.; Ahuja, K. K.

    1982-01-01

    A procedure to control transient signal generation is developed for the study of internal noise propagation from aircraft engines. A simple algorithm incorporating transform techniques is used to produce signals of any desired waveform from acoustic drivers. The accurate driver response is then calculated, and from this the limiting frequency characteristics are determined and the undesirable frequencies where the driver response is poor are eliminated from the analysis. A synthesized signal is then produced by convolving the inverse of the response function with the desired signal. Although the shape of the synthesized signal is in general quite awkward, the driver generates the desired signal when the distorted signal is fed into the driver. The results of operating the driver in two environments, in a free field and in a duct, are presented in order to show the impedance matching effect of the driver. In addition, results using a high frequency cut-off value as a parameter is presented in order to demonstrate the extent of the applicability of the synthesis procedure. It is concluded that the desired signals can be generated through the signal synthesis procedure.

  17. Acoustic alarm signalling facilitates predator protection of treehoppers by mutualist ant bodyguards

    PubMed Central

    Morales, Manuel A; Barone, Jennifer L; Henry, Charles S

    2008-01-01

    Mutualism is a net positive interaction that includes varying degrees of both costs and benefits. Because tension between the costs and benefits of mutualism can lead to evolutionary instability, identifying mechanisms that regulate investment between partners is critical to understanding the evolution and maintenance of mutualism. Recently, studies have highlighted the importance of interspecific signalling as one mechanism for regulating investment between mutualist partners. Here, we provide evidence for interspecific alarm signalling in an insect protection mutualism and we demonstrate a functional link between this acoustic signalling and efficacy of protection. The treehopper Publilia concava Say (Hemiptera: Membracidae) is an insect that provides ants with a carbohydrate-rich excretion called honeydew in return for protection from predators. Adults of this species produce distinct vibrational signals in the context of predator encounters. In laboratory trials, putative alarm signal production significantly increased following initial contact with ladybeetle predators (primarily Harmonia axyridis Pallas, Coleoptera: Coccinellidae), but not following initial contact with ants. In field trials, playback of a recorded treehopper alarm signal resulted in a significant increase in both ant activity and the probability of ladybeetle discovery by ants relative to both silence and treehopper courtship signal controls. Our results show that P. concava treehoppers produce alarm signals in response to predator threat and that this signalling can increase effectiveness of predator protection by ants. PMID:18480015

  18. Acoustic signal perception in a noisy habitat: lessons from synchronising insects.

    PubMed

    Hartbauer, M; Siegert, M E; Fertschai, I; Römer, H

    2012-06-01

    Acoustically communicating animals often have to cope with ambient noise that has the potential to interfere with the perception of conspecific signals. Here we use the synchronous display of mating signals in males of the tropical katydid Mecopoda elongata in order to assess the influence of nocturnal rainforest noise on signal perception. Loud background noise may disturb chorus synchrony either by masking the signals of males or by interaction of noisy events with the song oscillator. Phase-locked synchrony of males was studied under various signal-to-noise ratios (SNRs) using either native noise or the audio component of noise (<9 kHz). Synchronous entrainment was lost at a SNR of -3 dB when native noise was used, whereas with the audio component still 50% of chirp periods matched the pacer period at a SNR of -7 dB. Since the chirp period of solo singing males remained almost unaffected by noise, our results suggest that masking interference limits chorus synchrony by rendering conspecific signals ambiguous. Further, entrainment with periodic artificial signals indicates that synchrony is achieved by ignoring heterospecific signals and attending to a conspecific signal period. Additionally, the encoding of conspecific chirps was studied in an auditory neuron under the same background noise regimes.

  19. Temporal patterns in the acoustic signals of beaked whales at Cross Seamount.

    PubMed

    Johnston, D W; McDonald, M; Polovina, J; Domokos, R; Wiggins, S; Hildebrand, J

    2008-04-23

    Seamounts may influence the distribution of marine mammals through a combination of increased ocean mixing, enhanced local productivity and greater prey availability. To study the effects of seamounts on the presence and acoustic behaviour of cetaceans, we deployed a high-frequency acoustic recording package on the summit of Cross Seamount during April through October 2005. The most frequently detected cetacean vocalizations were echolocation sounds similar to those produced by ziphiid and mesoplodont beaked whales together with buzz-type signals consistent with prey-capture attempts. Beaked whale signals occurred almost entirely at night throughout the six-month deployment. Measurements of prey presence with a Simrad EK-60 fisheries acoustics echo sounder indicate that Cross Seamount may enhance local productivity in near-surface waters. Concentrations of micronekton were aggregated over the seamount in near-surface waters at night, and dense concentrations of nekton were detected across the surface of the summit. Our results suggest that seamounts may provide enhanced foraging opportunities for beaked whales during the night through a combination of increased productivity, vertical migrations by micronekton and local retention of prey. Furthermore, the summit of the seamount may act as a barrier against which whales concentrate prey. PMID:18252660

  20. Extruded Bread Classification on the Basis of Acoustic Emission Signal With Application of Artificial Neural Networks

    NASA Astrophysics Data System (ADS)

    Świetlicka, Izabela; Muszyński, Siemowit; Marzec, Agata

    2015-04-01

    The presented work covers the problem of developing a method of extruded bread classification with the application of artificial neural networks. Extruded flat graham, corn, and rye breads differening in water activity were used. The breads were subjected to the compression test with simultaneous registration of acoustic signal. The amplitude-time records were analyzed both in time and frequency domains. Acoustic emission signal parameters: single energy, counts, amplitude, and duration acoustic emission were determined for the breads in four water activities: initial (0.362 for rye, 0.377 for corn, and 0.371 for graham bread), 0.432, 0.529, and 0.648. For classification and the clustering process, radial basis function, and self-organizing maps (Kohonen network) were used. Artificial neural networks were examined with respect to their ability to classify or to cluster samples according to the bread type, water activity value, and both of them. The best examination results were achieved by the radial basis function network in classification according to water activity (88%), while the self-organizing maps network yielded 81% during bread type clustering.

  1. Temporal patterns in the acoustic signals of beaked whales at Cross Seamount.

    PubMed

    Johnston, D W; McDonald, M; Polovina, J; Domokos, R; Wiggins, S; Hildebrand, J

    2008-04-23

    Seamounts may influence the distribution of marine mammals through a combination of increased ocean mixing, enhanced local productivity and greater prey availability. To study the effects of seamounts on the presence and acoustic behaviour of cetaceans, we deployed a high-frequency acoustic recording package on the summit of Cross Seamount during April through October 2005. The most frequently detected cetacean vocalizations were echolocation sounds similar to those produced by ziphiid and mesoplodont beaked whales together with buzz-type signals consistent with prey-capture attempts. Beaked whale signals occurred almost entirely at night throughout the six-month deployment. Measurements of prey presence with a Simrad EK-60 fisheries acoustics echo sounder indicate that Cross Seamount may enhance local productivity in near-surface waters. Concentrations of micronekton were aggregated over the seamount in near-surface waters at night, and dense concentrations of nekton were detected across the surface of the summit. Our results suggest that seamounts may provide enhanced foraging opportunities for beaked whales during the night through a combination of increased productivity, vertical migrations by micronekton and local retention of prey. Furthermore, the summit of the seamount may act as a barrier against which whales concentrate prey.

  2. Incident signal power comparison for localization of concurrent multiple acoustic sources.

    PubMed

    Salvati, Daniele; Canazza, Sergio

    2014-01-01

    In this paper, a method to solve the localization of concurrent multiple acoustic sources in large open spaces is presented. The problem of the multisource localization in far-field conditions is to correctly associate the direction of arrival (DOA) estimated by a network array system to the same source. The use of systems implementing a Bayesian filter is a traditional approach to address the problem of localization in multisource acoustic scenario. However, in a real noisy open space the acoustic sources are often discontinuous with numerous short-duration events and thus the filtering methods may have difficulty to track the multiple sources. Incident signal power comparison (ISPC) is proposed to compute DOAs association. ISPC is based on identifying the incident signal power (ISP) of the sources on a microphone array using beamforming methods and comparing the ISP between different arrays using spectral distance (SD) measurement techniques. This method solves the ambiguities, due to the presence of simultaneous sources, by identifying sounds through a minimization of an error criterion on SD measures of DOA combinations. The experimental results were conducted in an outdoor real noisy environment and the ISPC performance is reported using different beamforming techniques and SD functions. PMID:24701179

  3. Incident Signal Power Comparison for Localization of Concurrent Multiple Acoustic Sources

    PubMed Central

    2014-01-01

    In this paper, a method to solve the localization of concurrent multiple acoustic sources in large open spaces is presented. The problem of the multisource localization in far-field conditions is to correctly associate the direction of arrival (DOA) estimated by a network array system to the same source. The use of systems implementing a Bayesian filter is a traditional approach to address the problem of localization in multisource acoustic scenario. However, in a real noisy open space the acoustic sources are often discontinuous with numerous short-duration events and thus the filtering methods may have difficulty to track the multiple sources. Incident signal power comparison (ISPC) is proposed to compute DOAs association. ISPC is based on identifying the incident signal power (ISP) of the sources on a microphone array using beamforming methods and comparing the ISP between different arrays using spectral distance (SD) measurement techniques. This method solves the ambiguities, due to the presence of simultaneous sources, by identifying sounds through a minimization of an error criterion on SD measures of DOA combinations. The experimental results were conducted in an outdoor real noisy environment and the ISPC performance is reported using different beamforming techniques and SD functions. PMID:24701179

  4. Semi-real-time monitoring of cracking on couplings by neural network analysis of acoustic emission signals

    NASA Astrophysics Data System (ADS)

    Godinez-Azcuaga, Valery F.; Shu, Fong; Finlayson, Richard D.; O'Donnell, Bruce W.

    2004-07-01

    This paper presents the results obtained during the development of a semi-real-time monitoring methodology based on Neural Network Pattern Recognition of Acoustic Emission (AE) signals for early detection of cracks in couplings used in aircraft and engine drive systems. AE signals were collected in order to establish a baseline of a gear-testing fixture background noise and its variations due to rotational speed and torque. Also, simulated cracking signals immersed in background noise were collected. EDM notches were machined in the driving gear and the load on the gearbox was increased until damaged was induced. Using these data, a Neural Network Signal Classifier (NNSC) was implemented and tested. The testing showed that the NNSC was capable of correctly identifying six different classes of AE signals corresponding to different gearbox operation conditions. Also, a semi-real-time classification software was implemented. This software includes functions that allow the user to view and classify AE data from a dynamic process as they are recorded at programmable time intervals. The software is capable of monitoring periodic statistics of AE data, which can be used as an indicator of damage presence and severity in a dynamic system. The semi-real-time classification software was successfully tested in situations where a delay of 10 seconds between data acquisition and classification was achieved with a hit rate of 50 hits/second per channel on eight active AE channels.

  5. A hardware model of the auditory periphery to transduce acoustic signals into neural activity

    PubMed Central

    Tateno, Takashi; Nishikawa, Jun; Tsuchioka, Nobuyoshi; Shintaku, Hirofumi; Kawano, Satoyuki

    2013-01-01

    To improve the performance of cochlear implants, we have integrated a microdevice into a model of the auditory periphery with the goal of creating a microprocessor. We constructed an artificial peripheral auditory system using a hybrid model in which polyvinylidene difluoride was used as a piezoelectric sensor to convert mechanical stimuli into electric signals. To produce frequency selectivity, the slit on a stainless steel base plate was designed such that the local resonance frequency of the membrane over the slit reflected the transfer function. In the acoustic sensor, electric signals were generated based on the piezoelectric effect from local stress in the membrane. The electrodes on the resonating plate produced relatively large electric output signals. The signals were fed into a computer model that mimicked some functions of inner hair cells, inner hair cell–auditory nerve synapses, and auditory nerve fibers. In general, the responses of the model to pure-tone burst and complex stimuli accurately represented the discharge rates of high-spontaneous-rate auditory nerve fibers across a range of frequencies greater than 1 kHz and middle to high sound pressure levels. Thus, the model provides a tool to understand information processing in the peripheral auditory system and a basic design for connecting artificial acoustic sensors to the peripheral auditory nervous system. Finally, we discuss the need for stimulus control with an appropriate model of the auditory periphery based on auditory brainstem responses that were electrically evoked by different temporal pulse patterns with the same pulse number. PMID:24324432

  6. A hardware model of the auditory periphery to transduce acoustic signals into neural activity.

    PubMed

    Tateno, Takashi; Nishikawa, Jun; Tsuchioka, Nobuyoshi; Shintaku, Hirofumi; Kawano, Satoyuki

    2013-01-01

    To improve the performance of cochlear implants, we have integrated a microdevice into a model of the auditory periphery with the goal of creating a microprocessor. We constructed an artificial peripheral auditory system using a hybrid model in which polyvinylidene difluoride was used as a piezoelectric sensor to convert mechanical stimuli into electric signals. To produce frequency selectivity, the slit on a stainless steel base plate was designed such that the local resonance frequency of the membrane over the slit reflected the transfer function. In the acoustic sensor, electric signals were generated based on the piezoelectric effect from local stress in the membrane. The electrodes on the resonating plate produced relatively large electric output signals. The signals were fed into a computer model that mimicked some functions of inner hair cells, inner hair cell-auditory nerve synapses, and auditory nerve fibers. In general, the responses of the model to pure-tone burst and complex stimuli accurately represented the discharge rates of high-spontaneous-rate auditory nerve fibers across a range of frequencies greater than 1 kHz and middle to high sound pressure levels. Thus, the model provides a tool to understand information processing in the peripheral auditory system and a basic design for connecting artificial acoustic sensors to the peripheral auditory nervous system. Finally, we discuss the need for stimulus control with an appropriate model of the auditory periphery based on auditory brainstem responses that were electrically evoked by different temporal pulse patterns with the same pulse number. PMID:24324432

  7. Study of Doppler Shift Correction for Underwater Acoustic Communication Using Orthogonal Signal Division Multiplexing

    NASA Astrophysics Data System (ADS)

    Ebihara, Tadashi; Mizutani, Keiichi

    2011-07-01

    In this study, we apply Doppler shift correction schemes for underwater acoustic (UWA) communication with orthogonal signal division multiplexing (OSDM) to achieve stable communication in underwater acoustic channels. Three Doppler correction schemes, which exploit the guard interval, are applied to UWA communication with OSDM and evaluated in simulations. Through a simulation in which only the Doppler effect is considered, we confirmed that by adapting schemes to UWA communication with OSDM, we can correct large Doppler shifts, which addresses the usual speed of vehicles and ships. Moreover, by considering both the Doppler effect and channel reverberation, we propose the best possible combination of Doppler correction schemes for UWA communication with OSDM. The results suggest that UWA communication with OSDM may lead to high-quality communication by considering channel reverberation and large Doppler shifts.

  8. Estimates of the prevalence of anomalous signal losses in the Yellow Sea derived from acoustic and oceanographic computer model simulations

    NASA Astrophysics Data System (ADS)

    Chin-Bing, Stanley A.; King, David B.; Warn-Varnas, Alex C.; Lamb, Kevin G.; Hawkins, James A.; Teixeira, Marvi

    2002-05-01

    The results from collocated oceanographic and acoustic simulations in a region of the Yellow Sea near the Shandong peninsula have been presented [Chin-Bing et al., J. Acoust. Soc. Am. 108, 2577 (2000)]. In that work, the tidal flow near the peninsula was used to initialize a 2.5-dimensional ocean model [K. G. Lamb, J. Geophys. Res. 99, 843-864 (1994)] that subsequently generated internal solitary waves (solitons). The validity of these soliton simulations was established by matching satellite imagery taken over the region. Acoustic propagation simulations through this soliton field produced results similar to the anomalous signal loss measured by Zhou, Zhang, and Rogers [J. Acoust. Soc. Am. 90, 2042-2054 (1991)]. Analysis of the acoustic interactions with the solitons also confirmed the hypothesis that the loss mechanism involved acoustic mode coupling. Recently we have attempted to estimate the prevalence of these anomalous signal losses in this region. These estimates were made from simulating acoustic effects over an 80 hour space-time evolution of soliton packets. Examples will be presented that suggest the conditions necessary for anomalous signal loss may be more prevalent than previously thought. [Work supported by ONR/NRL and by a High Performance Computing DoD grant.

  9. Characterization and calibration of the central arterial pressure waveform obtained from vibrocardiographic signal

    NASA Astrophysics Data System (ADS)

    Casacanditella, L.; Cosoli, G.; Casaccia, S.; Rohrbaugh, J. W.; Scalise, L.; Tomasini, E. P.

    2016-06-01

    Laser Doppler Vibrometry (LDV) has been demonstrated to be a non-contact technique with high sensitivity, able to measure the skin vibrations related to cardiac activity. The obtainable mechanical signal (i.e. a velocity signal), VibroCardioGram (VCG), is able to provide significant physiological parameters, such as Heart Rate (HR). In this work, the authors aim to present a non-contact measurement method to obtain the arterial blood pressure signal from the mechanical vibrations assessed by LDV, in a central district of the arterial tree, such as carotid artery. In fact, in this way it is possible to indirectly assess Central Arterial Blood Pressure (CABP), which indicates the hemodynamic load on the heart, so that it is considered an important index predicting the cardiac risk of a subject. The measurement setup involves the use of an oscillometric cuff, to measure peripheral blood pressure at the radial artery level. Diastolic and Mean Arterial Pressure (MAP) at radial level were used to calibrate the integrated LDV signal (i.e. a displacement signal). As regard calibration, an exponential mathematical model was adopted to derive the pressure waveform from the displacement of the vessel detected by LDV. Results show an average difference of around 20% between systolic pressure measured at brachial level (i.e. peripheral pressure value) and systolic pressure derived from VCG signal measured over the carotid artery (i.e. central pressure). This is a physiological difference, consistent with the literature about the physiological increase of Systolic Blood Pressure (SBP) and Pressure Pulse (PP) at increased distances from the heart. However, this non-contact technique is affected by movement artifacts and by reflection phenomena not related to the studied vessel and so it is necessary to account of such issues in the results.

  10. Influence of attenuation on acoustic emission signals in carbon fiber reinforced polymer panels.

    PubMed

    Asamene, Kassahun; Hudson, Larry; Sundaresan, Mannur

    2015-05-01

    Influence of attenuation on acoustic emission (AE) signals in Carbon Fiber Reinforced Polymer (CFRP) crossply and quasi-isotropic panels is examined in this paper. Attenuation coefficients of the fundamental antisymmetric (A0) and symmetric (S0) wave modes were determined experimentally along different directions for the two types of CFRP panels. In the frequency range from 100 kHz to 500 kHz, the A0 mode undergoes significantly greater changes due to material related attenuation compared to the S0 mode. Moderate to strong changes in the attenuation levels were noted with propagation directions. Such mode and frequency dependent attenuation introduces major changes in the characteristics of AE signals depending on the position of the AE sensor relative to the source. Results from finite element simulations of a microscopic damage event in the composite laminates are used to illustrate attenuation related changes in modal and frequency components of AE signals.

  11. Pipe wall damage detection by electromagnetic acoustic transducer generated guided waves in absence of defect signals.

    PubMed

    Vasiljevic, Milos; Kundu, Tribikram; Grill, Wolfgang; Twerdowski, Evgeny

    2008-05-01

    Most investigators emphasize the importance of detecting the reflected signal from the defect to determine if the pipe wall has any damage and to predict the damage location. However, often the small signal from the defect is hidden behind the other arriving wave modes and signal noise. To overcome the difficulties associated with the identification of the small defect signal in the time history plots, in this paper the time history is analyzed well after the arrival of the first defect signal, and after different wave modes have propagated multiple times through the pipe. It is shown that the defective pipe can be clearly identified by analyzing these late arriving diffuse ultrasonic signals. Multiple reflections and scattering of the propagating wave modes by the defect and pipe ends do not hamper the defect detection capability; on the contrary, it apparently stabilizes the signal and makes it easier to distinguish the defective pipe from the defect-free pipe. This paper also highlights difficulties associated with the interpretation of the recorded time histories due to mode conversion by the defect. The design of electro-magnetic acoustic transducers used to generate and receive the guided waves in the pipe is briefly described in the paper.

  12. Noise affects the shape of female preference functions for acoustic signals.

    PubMed

    Reichert, Michael S; Ronacher, Bernhard

    2015-02-01

    The shape of female mate preference functions influences the speed and direction of sexual signal evolution. However, the expression of female preferences is modulated by interactions between environmental conditions and the female's sensory processing system. Noise is an especially relevant environmental condition because it interferes directly with the neural processing of signals. Although noise is therefore likely a significant force in the evolution of communication systems, little is known about its effects on preference function shape. In the grasshopper Chorthippus biguttulus, female preferences for male calling song characteristics are likely to be affected by noise because its auditory system is sensitive to fine temporal details of songs. We measured female preference functions for variation in male song characteristics in several levels of masking noise and found strong effects of noise on preference function shape. The overall responsiveness to signals in noise generally decreased. Preference strength increased for some signal characteristics and decreased for others, largely corresponding to expectations based on neurophysiological studies of acoustic signal processing. These results suggest that different signal characteristics will be favored under different noise conditions, and thus that signal evolution may proceed differently depending on the extent and temporal patterning of environmental noise.

  13. Signal diversification in Oecanthus tree crickets is shaped by energetic, morphometric, and acoustic trade-offs.

    PubMed

    Symes, L B; Ayres, M P; Cowdery, C P; Costello, R A

    2015-06-01

    Physiology, physics, and ecological interactions can generate trade-offs within species, but may also shape divergence among species. We tested whether signal divergence in Oecanthus tree crickets is shaped by acoustic, energetic, and behavioral trade-offs. We found that species with faster pulse rates, produced by opening and closing wings up to twice as many times per second, did not have higher metabolic costs of calling. The relatively constant energetic cost across species is explained by trade-offs between the duration and repetition rate of acoustic signals-species with fewer stridulatory teeth closed their wings more frequently such that the number of teeth struck per second of calling and the resulting duty cycle were relatively constant across species. Further trade-offs were evident in relationships between signals and body size. Calling was relatively inexpensive for small males, permitting them to call for much of the night, but at low amplitude. Large males produced much louder calls, reaching up to four times more area, but the energetic costs increased substantially with increasing size and the time spent calling dropped to only 20% of the night. These trade-offs indicate that the trait combinations that arise in these species represent a limited subset of conceivable trait combinations.

  14. Signal diversification in Oecanthus tree crickets is shaped by energetic, morphometric, and acoustic trade-offs.

    PubMed

    Symes, L B; Ayres, M P; Cowdery, C P; Costello, R A

    2015-06-01

    Physiology, physics, and ecological interactions can generate trade-offs within species, but may also shape divergence among species. We tested whether signal divergence in Oecanthus tree crickets is shaped by acoustic, energetic, and behavioral trade-offs. We found that species with faster pulse rates, produced by opening and closing wings up to twice as many times per second, did not have higher metabolic costs of calling. The relatively constant energetic cost across species is explained by trade-offs between the duration and repetition rate of acoustic signals-species with fewer stridulatory teeth closed their wings more frequently such that the number of teeth struck per second of calling and the resulting duty cycle were relatively constant across species. Further trade-offs were evident in relationships between signals and body size. Calling was relatively inexpensive for small males, permitting them to call for much of the night, but at low amplitude. Large males produced much louder calls, reaching up to four times more area, but the energetic costs increased substantially with increasing size and the time spent calling dropped to only 20% of the night. These trade-offs indicate that the trait combinations that arise in these species represent a limited subset of conceivable trait combinations. PMID:25903317

  15. The potential influence of morphology on the evolutionary divergence of an acoustic signal

    PubMed Central

    Pitchers, W. R.; Klingenberg, C.P.; Tregenza, Tom; Hunt, J.; Dworkin, I.

    2014-01-01

    The evolution of acoustic behaviour and that of the morphological traits mediating its production are often coupled. Lack of variation in the underlying morphology of signalling traits has the potential to constrain signal evolution. This relationship is particularly likely in field crickets, where males produce acoustic advertisement signals to attract females by stridulating with specialized structures on their forewings. In this study, we characterise the size and geometric shape of the forewings of males from six allopatric populations of the black field cricket (Teleogryllus commodus) known to have divergent advertisement calls. We sample from each of these populations using both wild-caught and common-garden reared cohorts, allowing us to test for multivariate relationships between wing morphology and call structure. We show that the allometry of shape has diverged across populations. However, there was a surprisingly small amount of covariation between wing shape and call structure within populations. Given the importance of male size for sexual selection in crickets, the divergence we observe among populations has the potential to influence the evolution of advertisement calls in this species. PMID:25223712

  16. Long Recording Sequences: How to Track the Intra-Individual Variability of Acoustic Signals

    PubMed Central

    Lengagne, Thierry; Gomez, Doris; Josserand, Rémy; Voituron, Yann

    2015-01-01

    Recently developed acoustic technologies - like automatic recording units - allow the recording of long sequences in natural environments. These devices are used for biodiversity survey but they could also help researchers to estimate global signal variability at various (individual, population, species) scales. While sexually-selected signals are expected to show a low intra-individual variability at relatively short time scale, this variability has never been estimated so far. Yet, measuring signal variability in controlled conditions should prove useful to understand sexual selection processes and should help design acoustic sampling schedules and to analyse long call recordings. We here use the overall call production of 36 male treefrogs (Hyla arborea) during one night to evaluate within-individual variability in call dominant frequency and to test the efficiency of different sampling methods at capturing such variability. Our results confirm that using low number of calls underestimates call dominant frequency variation of about 35% in the tree frog and suggest that the assessment of this variability is better by using 2 or 3 short and well-distributed records than by using samples made of consecutive calls. Hence, 3 well-distributed 2-minutes records (beginning, middle and end of the calling period) are sufficient to capture on average all the nightly variability, whereas a sample of 10 000 consecutive calls captures only 86% of it. From a biological point of view, the call dominant frequency variability observed in H. arborea (116Hz on average but up to 470 Hz of variability during the course of the night for one male) challenge about its reliability in mate quality assessment. Automatic acoustic recording units will provide long call sequences in the near future and it will be then possible to confirm such results on large samples recorded in more complex field conditions. PMID:25970183

  17. Mate preference in the painted goby: the influence of visual and acoustic courtship signals.

    PubMed

    Amorim, M Clara P; da Ponte, Ana Nunes; Caiano, Manuel; Pedroso, Silvia S; Pereira, Ricardo; Fonseca, Paulo J

    2013-11-01

    We tested the hypothesis that females of a small vocal marine fish with exclusive paternal care, the painted goby, prefer high parental-quality mates such as large or high-condition males. We tested the effect of male body size and male visual and acoustic courtship behaviour (playback experiments) on female mating preferences by measuring time spent near one of a two-choice stimuli. Females did not show preference for male size but preferred males that showed higher levels of courtship, a trait known to advertise condition (fat reserves). Also, time spent near the preferred male depended on male courtship effort. Playback experiments showed that when sound was combined with visual stimuli (a male confined in a small aquarium placed near each speaker), females spent more time near the male associated with courtship sound than with the control male (associated with white noise or silence). Although male visual courtship effort also affected female preference in the pre-playback period, this effect decreased during playback and disappeared in the post-playback period. Courtship sound stimuli alone did not elicit female preference in relation to a control. Taken together, the results suggest that visual and mainly acoustic courtship displays are subject to mate preference and may advertise parental quality in this species. Our results indicate that visual and acoustic signals interplay in a complex fashion and highlight the need to examine how different sensory modalities affect mating preferences in fish and other vertebrates. PMID:23948469

  18. Multichannel signal processing at Bell Labs Acoustics Research-Sampled by a postdoc

    NASA Astrophysics Data System (ADS)

    Kellermann, Walter

    2001-05-01

    In the mid 1980's, the first large microphone arrays for audio capture were designed and realized by Jim Flanagan and Gary Elko. After the author joined Bell Labs in 1989, the first real-time digital beamformer for teleconferencing applications was implemented and formed a starting point for the development of several novel beamforming techniques. In parallel, multichannel loudspeaker systems were already investigated and research on acoustic echo cancellation, small-aperture directional microphones, and sensor technology complemented the research scenario aiming at seamless hands-free acoustic communication. Arrays of many sensors and loudspeakers for sampling the spatial domain combined with advanced signal processing sparked new concepts that are still fueling ongoing research around the world-including the author's research group. Here, robust adaptive beamforming has found its way from large-scale arrays into many applications using smaller apertures. Blind source separation algorithms allow for effective spatial filtering without a priori information on source positions. Full-duplex communication using multiple channels for both reproduction and recording is enabled by multichannel acoustic echo cancellation combined with beamforming. Recently, wave domain adaptive filtering, a new concept for handling many sensors and many loudspeakers, has been verified for arrays that may well remind some observers of former Bell Labs projects.

  19. Neural Mechanisms for Acoustic Signal Detection under Strong Masking in an Insect

    PubMed Central

    Römer, Heiner

    2015-01-01

    Communication is fundamental for our understanding of behavior. In the acoustic modality, natural scenes for communication in humans and animals are often very noisy, decreasing the chances for signal detection and discrimination. We investigated the mechanisms enabling selective hearing under natural noisy conditions for auditory receptors and interneurons of an insect. In the studied katydid Mecopoda elongata species-specific calling songs (chirps) are strongly masked by signals of another species, both communicating in sympatry. The spectral properties of the two signals are similar and differ only in a small frequency band at 2 kHz present in the chirping species. Receptors sharply tuned to 2 kHz are completely unaffected by the masking signal of the other species, whereas receptors tuned to higher audio and ultrasonic frequencies show complete masking. Intracellular recordings of identified interneurons revealed two mechanisms providing response selectivity to the chirp. (1) Response selectivity is when several identified interneurons exhibit remarkably selective responses to the chirps, even at signal-to-noise ratios of −21 dB, since they are sharply tuned to 2 kHz. Their dendritic arborizations indicate selective connectivity with low-frequency receptors tuned to 2 kHz. (2) Novelty detection is when a second group of interneurons is broadly tuned but, because of strong stimulus-specific adaptation to the masker spectrum and “novelty detection” to the 2 kHz band present only in the conspecific signal, these interneurons start to respond selectively to the chirp shortly after the onset of the continuous masker. Both mechanisms provide the sensory basis for hearing at unfavorable signal-to-noise ratios. SIGNIFICANCE STATEMENT Animal and human acoustic communication may suffer from the same “cocktail party problem,” when communication happens in noisy social groups. We address solutions for this problem in a model system of two katydids, where one

  20. Neural Mechanisms for Acoustic Signal Detection under Strong Masking in an Insect.

    PubMed

    Kostarakos, Konstantinos; Römer, Heiner

    2015-07-22

    Communication is fundamental for our understanding of behavior. In the acoustic modality, natural scenes for communication in humans and animals are often very noisy, decreasing the chances for signal detection and discrimination. We investigated the mechanisms enabling selective hearing under natural noisy conditions for auditory receptors and interneurons of an insect. In the studied katydid Mecopoda elongata species-specific calling songs (chirps) are strongly masked by signals of another species, both communicating in sympatry. The spectral properties of the two signals are similar and differ only in a small frequency band at 2 kHz present in the chirping species. Receptors sharply tuned to 2 kHz are completely unaffected by the masking signal of the other species, whereas receptors tuned to higher audio and ultrasonic frequencies show complete masking. Intracellular recordings of identified interneurons revealed two mechanisms providing response selectivity to the chirp. (1) Response selectivity is when several identified interneurons exhibit remarkably selective responses to the chirps, even at signal-to-noise ratios of -21 dB, since they are sharply tuned to 2 kHz. Their dendritic arborizations indicate selective connectivity with low-frequency receptors tuned to 2 kHz. (2) Novelty detection is when a second group of interneurons is broadly tuned but, because of strong stimulus-specific adaptation to the masker spectrum and "novelty detection" to the 2 kHz band present only in the conspecific signal, these interneurons start to respond selectively to the chirp shortly after the onset of the continuous masker. Both mechanisms provide the sensory basis for hearing at unfavorable signal-to-noise ratios. Significance statement: Animal and human acoustic communication may suffer from the same "cocktail party problem," when communication happens in noisy social groups. We address solutions for this problem in a model system of two katydids, where one species

  1. Optical observations of meteors generating infrasound-I: Acoustic signal identification and phenomenology

    NASA Astrophysics Data System (ADS)

    Silber, Elizabeth A.; Brown, Peter G.

    2014-11-01

    We analyse infrasound signals from 71 bright meteors/fireballs simultaneously detected by video to investigate the phenomenology and characteristics of meteor-generated near-field infrasound (<300 km) and shock production. A taxonomy for meteor generated infrasound signal classification has been developed using the time-pressure signal of the infrasound arrivals. Based on the location along the meteor trail where the infrasound signal originates, we find most signals are associated with cylindrical shocks, with about a quarter of events evidencing spherical shocks associated with fragmentation episodes and optical flares. The video data indicate that all events with ray launch angles >117° from the trajectory heading are most likely generated by a spherical shock, while infrasound produced by the meteors with ray launch angles ≤117° can be attributed to both a cylindrical line source and a spherical shock. We find that meteors preferentially produce infrasound toward the end of their trails with a smaller number showing a preference for mid-trail production. Meteors producing multiple infrasound arrivals show a strong infrasound source height skewness to the end of trails and are much more likely to be associated with optical flares. We find that about 1% of all our optically-recorded meteors have associated detected infrasound and estimate that regional meteor infrasound events should occur on the order of once per week and dominate in numbers over infrasound associated with more energetic (but rarer) bolides. While a significant fraction of our meteors generating infrasound (~1/4 of single arrivals) are produced by fragmentation events, we find no instances where acoustic radiation is detectable more than about 60° beyond the ballistic regime at our meteoroid sizes (grams to tens of kilograms) emphasizing the strong anisotropy in acoustic radiation for meteors which are dominated by cylindrical line source geometry, even in the presence of fragmentation.

  2. Multiple target tracking and classification improvement using data fusion at node level using acoustic signals

    NASA Astrophysics Data System (ADS)

    Damarla, T. R.; Whipps, Gene

    2005-05-01

    Target tracking and classification using passive acoustic signals is difficult at best as the signals are contaminated by wind noise, multi-path effects, road conditions, and are generally not deterministic. In addition, microphone characteristics, such as sensitivity, vary with the weather conditions. The problem is further compounded if there are multiple targets, especially if some are measured with higher signal-to-noise ratios (SNRs) than the others and they share spectral information. At the U. S. Army Research Laboratory we have conducted several field experiments with a convoy of two, three, four and five vehicles traveling on different road surfaces, namely gravel, asphalt, and dirt roads. The largest convoy is comprised of two tracked vehicles and three wheeled vehicles. Two of the wheeled vehicles are heavy trucks and one is a light vehicle. We used a super-resolution direction-of-arrival estimator, specifically the minimum variance distortionless response, to compute the bearings of the targets. In order to classify the targets, we modeled the acoustic signals emanated from the targets as a set of coupled harmonics, which are related to the engine-firing rate, and subsequently used a multivariate Gaussian classifier. Independent of the classifier, we find tracking of wheeled vehicles to be intermittent as the signals from vehicles with high SNR dominate the much quieter wheeled vehicles. We used several fusion techniques to combine tracking and classification results to improve final tracking and classification estimates. We will present the improvements (or losses) made in tracking and classification of all targets. Although improvements in the estimates for tracked vehicles are not noteworthy, significant improvements are seen in the case of wheeled vehicles. We will present the fusion algorithm used.

  3. Clustering reveals cavitation-related acoustic emission signals from dehydrating branches.

    PubMed

    Vergeynst, Lidewei L; Sause, Markus G R; De Baerdemaeker, Niels J F; De Roo, Linus; Steppe, Kathy

    2016-06-01

    The formation of air emboli in the xylem during drought is one of the key processes leading to plant mortality due to loss in hydraulic conductivity, and strongly fuels the interest in quantifying vulnerability to cavitation. The acoustic emission (AE) technique can be used to measure hydraulic conductivity losses and construct vulnerability curves. For years, it has been believed that all the AE signals are produced by the formation of gas emboli in the xylem sap under tension. More recent experiments, however, demonstrate that gas emboli formation cannot explain all the signals detected during drought, suggesting that different sources of AE exist. This complicates the use of the AE technique to measure emboli formation in plants. We therefore analysed AE waveforms measured on branches of grapevine (Vitis vinifera L. 'Chardonnay') during bench dehydration with broadband sensors, and applied an automated clustering algorithm in order to find natural clusters of AE signals. We used AE features and AE activity patterns during consecutive dehydration phases to identify the different AE sources. Based on the frequency spectrum of the signals, we distinguished three different types of AE signals, of which the frequency cluster with high 100-200 kHz frequency content was strongly correlated with cavitation. Our results indicate that cavitation-related AE signals can be filtered from other AE sources, which presents a promising avenue into quantifying xylem embolism in plants in laboratory and field conditions. PMID:27095256

  4. System and method for characterizing, synthesizing, and/or canceling out acoustic signals from inanimate sound sources

    DOEpatents

    Holzrichter, John F; Burnett, Greg C; Ng, Lawrence C

    2013-05-21

    A system and method for characterizing, synthesizing, and/or canceling out acoustic signals from inanimate sound sources is disclosed. Propagating wave electromagnetic sensors monitor excitation sources in sound producing systems, such as machines, musical instruments, and various other structures. Acoustical output from these sound producing systems is also monitored. From such information, a transfer function characterizing the sound producing system is generated. From the transfer function, acoustical output from the sound producing system may be synthesized or canceled. The methods disclosed enable accurate calculation of matched transfer functions relating specific excitations to specific acoustical outputs. Knowledge of such signals and functions can be used to effect various sound replication, sound source identification, and sound cancellation applications.

  5. System and method for characterizing, synthesizing, and/or canceling out acoustic signals from inanimate sound sources

    DOEpatents

    Holzrichter, John F.; Burnett, Greg C.; Ng, Lawrence C.

    2007-10-16

    A system and method for characterizing, synthesizing, and/or canceling out acoustic signals from inanimate sound sources is disclosed. Propagating wave electromagnetic sensors monitor excitation sources in sound producing systems, such as machines, musical instruments, and various other structures. Acoustical output from these sound producing systems is also monitored. From such information, a transfer function characterizing the sound producing system is generated. From the transfer function, acoustical output from the sound producing system may be synthesized or canceled. The methods disclosed enable accurate calculation of matched transfer functions relating specific excitations to specific acoustical outputs. Knowledge of such signals and functions can be used to effect various sound replication, sound source identification, and sound cancellation applications.

  6. System and method for characterizing synthesizing and/or canceling out acoustic signals from inanimate sound sources

    DOEpatents

    Holzrichter, John F.; Burnett, Greg C.; Ng, Lawrence C.

    2003-01-01

    A system and method for characterizing, synthesizing, and/or canceling out acoustic signals from inanimate sound sources is disclosed. Propagating wave electromagnetic sensors monitor excitation sources in sound producing systems, such as machines, musical instruments, and various other structures. Acoustical output from these sound producing systems is also monitored. From such information, a transfer function characterizing the sound producing system is generated. From the transfer function, acoustical output from the sound producing system may be synthesized or canceled. The methods disclosed enable accurate calculation of matched transfer functions relating specific excitations to specific acoustical outputs. Knowledge of such signals and functions can be used to effect various sound replication, sound source identification, and sound cancellation applications.

  7. Experimental Research Into Generation of Acoustic Emission Signals in the Process of Friction of Hadfield Steel Single Crystals

    NASA Astrophysics Data System (ADS)

    Lychagin, D. V.; Filippov, A. V.; Novitskaia, O. S.; Kolubaev, E. A.; Sizova, O. V.

    2016-08-01

    The results of experimental research into dry sliding friction of Hadfield steel single crystals involving registration of acoustic emission are presented in the paper. The images of friction surfaces of Hadfield steel single crystals and wear grooves of the counterbody surface made after completion of three serial experiments conducted under similar conditions and friction regimes are given. The relation of the acoustic emission waveform envelope to the changing friction factor is revealed. Amplitude-frequency characteristics of acoustic emission signal frames are determined on the base of Fast Fourier Transform and Short Time Fourier Transform during the run-in stage of tribounits and in the process of stable friction.

  8. Silent katydid females are at higher risk of bat predation than acoustically signalling katydid males.

    PubMed

    Raghuram, Hanumanthan; Deb, Rittik; Nandi, Diptarup; Balakrishnan, Rohini

    2015-01-01

    Males that produce conspicuous mate attraction signals are often at high risk of predation from eavesdropping predators. Females of such species typically search for signalling males and their higher motility may also place them at risk. The relative predation risk faced by males and females in the context of mate-finding using long-distance signals has rarely been investigated. In this study, we show, using a combination of diet analysis and behavioural experiments, that katydid females, who do not produce acoustic signals, are at higher risk of predation from a major bat predator, Megaderma spasma, than calling males. Female katydids were represented in much higher numbers than males in the culled remains beneath roosts of M. spasma. Playback experiments using katydid calls revealed that male calls were approached in only about one-third of the trials overall, whereas tethered, flying katydids were always approached and attacked. Our results question the idea that necessary costs of mate-finding, including risk of predation, are higher in signalling males than in searching females.

  9. Silent katydid females are at higher risk of bat predation than acoustically signalling katydid males

    PubMed Central

    Raghuram, Hanumanthan; Deb, Rittik; Nandi, Diptarup; Balakrishnan, Rohini

    2015-01-01

    Males that produce conspicuous mate attraction signals are often at high risk of predation from eavesdropping predators. Females of such species typically search for signalling males and their higher motility may also place them at risk. The relative predation risk faced by males and females in the context of mate-finding using long-distance signals has rarely been investigated. In this study, we show, using a combination of diet analysis and behavioural experiments, that katydid females, who do not produce acoustic signals, are at higher risk of predation from a major bat predator, Megaderma spasma, than calling males. Female katydids were represented in much higher numbers than males in the culled remains beneath roosts of M. spasma. Playback experiments using katydid calls revealed that male calls were approached in only about one-third of the trials overall, whereas tethered, flying katydids were always approached and attacked. Our results question the idea that necessary costs of mate-finding, including risk of predation, are higher in signalling males than in searching females. PMID:25429019

  10. When males whistle at females: complex FM acoustic signals in cockroaches

    NASA Astrophysics Data System (ADS)

    Sueur, Jérôme; Aubin, Thierry

    2006-10-01

    Male cockroaches of the species Elliptorhina chopardi expel air through a pair of modified abdominal spiracles during courtship. This air expulsion simultaneously produces air and substrate-borne vibrations. We described and compared in details these two types of vibrations. Our analysis of the air-borne signals shows that males can produce three categories of signals with distinct temporal and frequency parameters. “Pure whistles” consist of two independent harmonic series fast frequency modulated with independent harmonics that can cross each other. “Noisy whistles” also possess two independent voices but include a noisy broad-band frequency part in the middle. Hiss sounds are more noise-like, being made of a broad-band frequency spectrum. All three call types are unusually high in dominant frequency (>5 kHz) for cockroaches. The substrate-borne signals are categorised similarly. Some harmonics of the substrate-borne signals were filtered out, however, making the acoustic energy centered on fewer frequency bands. Our analysis shows that cockroach signals are complex, with fast frequency modulations and two distinct voices. These results also readdress the question of what system could potentially receive and decode the information contained within such complex sounds.

  11. Silent katydid females are at higher risk of bat predation than acoustically signalling katydid males.

    PubMed

    Raghuram, Hanumanthan; Deb, Rittik; Nandi, Diptarup; Balakrishnan, Rohini

    2015-01-01

    Males that produce conspicuous mate attraction signals are often at high risk of predation from eavesdropping predators. Females of such species typically search for signalling males and their higher motility may also place them at risk. The relative predation risk faced by males and females in the context of mate-finding using long-distance signals has rarely been investigated. In this study, we show, using a combination of diet analysis and behavioural experiments, that katydid females, who do not produce acoustic signals, are at higher risk of predation from a major bat predator, Megaderma spasma, than calling males. Female katydids were represented in much higher numbers than males in the culled remains beneath roosts of M. spasma. Playback experiments using katydid calls revealed that male calls were approached in only about one-third of the trials overall, whereas tethered, flying katydids were always approached and attacked. Our results question the idea that necessary costs of mate-finding, including risk of predation, are higher in signalling males than in searching females. PMID:25429019

  12. Processing of simple and complex acoustic signals in a tonotopically organized ear

    PubMed Central

    Hummel, Jennifer; Wolf, Konstantin; Kössl, Manfred; Nowotny, Manuela

    2014-01-01

    Processing of complex signals in the hearing organ remains poorly understood. This paper aims to contribute to this topic by presenting investigations on the mechanical and neuronal response of the hearing organ of the tropical bushcricket species Mecopoda elongata to simple pure tone signals as well as to the conspecific song as a complex acoustic signal. The high-frequency hearing organ of bushcrickets, the crista acustica (CA), is tonotopically tuned to frequencies between about 4 and 70 kHz. Laser Doppler vibrometer measurements revealed a strong and dominant low-frequency-induced motion of the CA when stimulated with either pure tone or complex stimuli. Consequently, the high-frequency distal area of the CA is more strongly deflected by low-frequency-induced waves than by high-frequency-induced waves. This low-frequency dominance will have strong effects on the processing of complex signals. Therefore, we additionally studied the neuronal response of the CA to native and frequency-manipulated chirps. Again, we found a dominant influence of low-frequency components within the conspecific song, indicating that the mechanical vibration pattern highly determines the neuronal response of the sensory cells. Thus, we conclude that the encoding of communication signals is modulated by ear mechanics. PMID:25339727

  13. Processing of simple and complex acoustic signals in a tonotopically organized ear.

    PubMed

    Hummel, Jennifer; Wolf, Konstantin; Kössl, Manfred; Nowotny, Manuela

    2014-12-01

    Processing of complex signals in the hearing organ remains poorly understood. This paper aims to contribute to this topic by presenting investigations on the mechanical and neuronal response of the hearing organ of the tropical bushcricket species Mecopoda elongata to simple pure tone signals as well as to the conspecific song as a complex acoustic signal. The high-frequency hearing organ of bushcrickets, the crista acustica (CA), is tonotopically tuned to frequencies between about 4 and 70 kHz. Laser Doppler vibrometer measurements revealed a strong and dominant low-frequency-induced motion of the CA when stimulated with either pure tone or complex stimuli. Consequently, the high-frequency distal area of the CA is more strongly deflected by low-frequency-induced waves than by high-frequency-induced waves. This low-frequency dominance will have strong effects on the processing of complex signals. Therefore, we additionally studied the neuronal response of the CA to native and frequency-manipulated chirps. Again, we found a dominant influence of low-frequency components within the conspecific song, indicating that the mechanical vibration pattern highly determines the neuronal response of the sensory cells. Thus, we conclude that the encoding of communication signals is modulated by ear mechanics.

  14. Monitoring Rock Failure Processes Using the Hilbert-Huang Transform of Acoustic Emission Signals

    NASA Astrophysics Data System (ADS)

    Zhang, Ji; Peng, Weihong; Liu, Fengyu; Zhang, Haixiang; Li, Zhijian

    2016-02-01

    Rock fracturing generates acoustic emission (AE) signals that have statistical parameters referred to as AE signal parameters (AESP). Identification of rock fracturing or the failure process stage using such data raises several challenges. This study proposes a Hilbert-Huang transform-based AE processing approach to capture the time-frequency characteristics of both AE signals and AESP during rock failure processes. The damage occurring in tested rock specimens can be illustrated through analysis using this method. In this study, the specimens were 25 × 60 × 150 mm3 in size and were compressed at a displacement rate of 0.05 mm/min until failure. The recorded data included force and displacement, AE signals, and AESP. The AESP in the last third of the strain range period and 14 typical moments of strong AE signals were selected for further investigation. These results show that AE signals and AESP can be jointly used for identification of deformation stages. The transition between linear and nonlinear deformation stages was found to last for a short period in this process. The instantaneous frequency of the AE effective energy rate increased linearly from 0.5 to 1.5 Hz. Attenuation of elastic waves spreading in rock samples developed with deformation, as illustrated in the Hilbert spectra of AE signals. This attenuation is frequency dependent. Furthermore, AE signals in the softening process showed a complex frequency distribution attributed to the mechanical properties of the tested specimen. The results indicate that rock failure is predictable. The novel technology applied in this study is feasible for analysis of the entire deformation process, including softening and failure processes.

  15. Properties of Noise Cross Correlation Functions Obtained from a Distributed Acoustic Sensing (DAS) Array at Garner Valley, California

    NASA Astrophysics Data System (ADS)

    Zeng, X.; Lancelle, C.; Thurber, C. H.; Fratta, D.; Wang, H. F.; Chalari, A.; Clarke, A.

    2015-12-01

    The field test of Distributed Acoustic Sensing (DAS) conducted at Garner Valley, California on September 11-12, 2013 provided a continuous overnight record of ambient noise. The DAS array recorded ground motions every one meter of optical cable that was arranged approximately in the shape of a rectangle with dimensions of 160 m by 80 m. The long dimension of the array was adjacent to a state highway. Three hours of record were used to compute noise cross-correlation functions (NCFs) in one-minute windows. The trace from each sensor channel was pre-processed by downsampling to 200 Hz, followed by normalization in the time-domain and bandpass filtering between 2 and 20 Hz (Bensen et al., 2007). The one-minute NCFs were then stacked using the time-frequency domain phase-weighted stacking method (Schimmel & Gallart, 2007). The NCFs between channels were asymmetrical reflecting the direction of traffic noise. The group velocities were found using the frequency-time analysis method. The energy was concentrated between 5 and 15 Hz, which falls into the typical traffic noise frequency band. The resulting velocities were between 100 and 300 m/s for frequencies between 10 and 20 Hz, which are in the same range as described in the results for surface-wave dispersion obtained using an active source for the same site (Lancelle et al., 2015). The group velocity starts to decrease for frequencies greater than ~10 Hz, which was expected on the basis of a previous shear-wave velocity model (Steidl et al., 1996). Then, the phase velocity was calculated using the multichannel analysis of surface wave technique (MASW - Park et al., 1999) with 114 NCFs spaced one meter apart. The resulting dispersion curve between 5 and 15 Hz gave phase velocities that ranged from approximately 170 m/s at 15 Hz to 250 m/s at 5 Hz. These results are consistent with other results of active-source DAS and seismometer records obtained at the Garner Valley site (e.g., Stokoe et al. 2004). This analysis is

  16. Subject specific BOLD fMRI respiratory and cardiac response functions obtained from global signal.

    PubMed

    Falahpour, Maryam; Refai, Hazem; Bodurka, Jerzy

    2013-05-15

    Subtle changes in either breathing pattern or cardiac pulse rate alter blood oxygen level dependent functional magnetic resonance imaging signal (BOLD fMRI). This is problematic because such fluctuations could possibly not be related to underlying neuronal activations of interest but instead the source of physiological noise. Several methods have been proposed to eliminate physiological noise in BOLD fMRI data. One such method is to derive a template based on average multi-subject data for respiratory response function (RRF) and cardiac response function (CRF) by simultaneously utilizing an external recording of cardiac and respiratory waveforms with the fMRI. Standard templates can then be used to model, map, and remove respiration and cardiac fluctuations from fMRI data. Utilizing these does not, however, account for intra-subject variations in physiological response. Thus, performing a more individualized approach for single subject physiological noise correction becomes more desirable, especially for clinical purposes. Here we propose a novel approach that employs subject-specific RRF and CRF response functions obtained from the whole brain or brain tissue-specific global signals (GS). Averaging multiple voxels in global signal computation ensures physiological noise dominance over thermal and system noise in even high-spatial-resolution fMRI data, making the GS suitable for deriving robust estimations of both RRF and CRF for individual subjects. Using these individualized response functions instead of standard templates based on multi-subject averages judiciously removes physiological noise from the data, assuming that there is minimal neuronal contribution in the derived individualized filters. Subject-specific physiological response functions obtained from the GS better maps individuals' physiological characteristics.

  17. A methodology to condition distorted acoustic emission signals to identify fracture timing from human cadaver spine impact tests.

    PubMed

    Arun, Mike W J; Yoganandan, Narayan; Stemper, Brian D; Pintar, Frank A

    2014-12-01

    While studies have used acoustic sensors to determine fracture initiation time in biomechanical studies, a systematic procedure is not established to process acoustic signals. The objective of the study was to develop a methodology to condition distorted acoustic emission data using signal processing techniques to identify fracture initiation time. The methodology was developed from testing a human cadaver lumbar spine column. Acoustic sensors were glued to all vertebrae, high-rate impact loading was applied, load-time histories were recorded (load cell), and fracture was documented using CT. Compression fracture occurred to L1 while other vertebrae were intact. FFT of raw voltage-time traces were used to determine an optimum frequency range associated with high decibel levels. Signals were bandpass filtered in this range. Bursting pattern was found in the fractured vertebra while signals from other vertebrae were silent. Bursting time was associated with time of fracture initiation. Force at fracture was determined using this time and force-time data. The methodology is independent of selecting parameters a priori such as fixing a voltage level(s), bandpass frequency and/or using force-time signal, and allows determination of force based on time identified during signal processing. The methodology can be used for different body regions in cadaver experiments.

  18. Multi-bearing defect detection with trackside acoustic signal based on a pseudo time-frequency analysis and Dopplerlet filter

    NASA Astrophysics Data System (ADS)

    Zhang, Haibin; Lu, Siliang; He, Qingbo; Kong, Fanrang

    2016-03-01

    The diagnosis of train bearing defects based on the acoustic signal acquired by a trackside microphone plays a significant role in the transport system. However, the wayside acoustic signal suffers from the Doppler distortion due to the high moving speed and also contains the multi-source signals from different train bearings. This paper proposes a novel solution to overcome the two difficulties in trackside acoustic diagnosis. In the method a pseudo time-frequency analysis (PTFA) based on an improved Dopplerlet transform (IDT) is presented to acquire the time centers for different bearings. With the time centers, we design a series of Dopplerlet filters (DF) in time-frequency domain to work on the signal's time-frequency distribution (TFD) gained by the short time Fourier transform (STFT). Then an inverse STFT (ISTFT) is utilized to get the separated signals for each sound source which means bearing here. Later the resampling method based on certain motion parameters eliminates the Doppler Effect and finally the diagnosis can be made effectively according to the envelope spectrum of each separated signal. With the effectiveness of the technique validated by both simulated and experimental cases, the proposed wayside acoustic diagnostic scheme is expected to be available in wayside defective bearing detection.

  19. Divergence of Acoustic Signals in a Widely Distributed Frog: Relevance of Inter-Male Interactions

    PubMed Central

    Velásquez, Nelson A.; Opazo, Daniel; Díaz, Javier; Penna, Mario

    2014-01-01

    Divergence of acoustic signals in a geographic scale results from diverse evolutionary forces acting in parallel and affecting directly inter-male vocal interactions among disjunct populations. Pleurodema thaul is a frog having an extensive latitudinal distribution in Chile along which males' advertisement calls exhibit an important variation. Using the playback paradigm we studied the evoked vocal responses of males of three populations of P. thaul in Chile, from northern, central and southern distribution. In each population, males were stimulated with standard synthetic calls having the acoustic structure of local and foreign populations. Males of both northern and central populations displayed strong vocal responses when were confronted with the synthetic call of their own populations, giving weaker responses to the call of the southern population. The southern population gave stronger responses to calls of the northern population than to the local call. Furthermore, males in all populations were stimulated with synthetic calls for which the dominant frequency, pulse rate and modulation depth were varied parametrically. Individuals from the northern and central populations gave lower responses to a synthetic call devoid of amplitude modulation relative to stimuli containing modulation depths between 30–100%, whereas the southern population responded similarly to all stimuli in this series. Geographic variation in the evoked vocal responses of males of P. thaul underlines the importance of inter-male interactions in driving the divergence of the acoustic traits and contributes evidence for a role of intra-sexual selection in the evolution of the sound communication system of this anuran. PMID:24489957

  20. Can acoustic emissions patterns signal imminence of avalanche events in a growing sand pile?

    NASA Astrophysics Data System (ADS)

    Vögtli, Melanie; Lehmann, Peter; Breitenstein, Daniel; Or, Dani

    2014-05-01

    Gravity driven mass release is often triggered abruptly with limited precursory cues to indicate imminent failure and thus limiting early warning. Evidence suggests that with increased mechanical loading of a slope, numerous local damage events marking friction between rearranged particles or breakage of roots release strain energy as elastic waves measurable as acoustic emissions. We examined the potential predictability of mass release events from preceding acoustic emission (AE) signatures in a well-known and simple model system of a growing sand pile. We installed four AE-sensors within the core of a 30 cm (diameter) sand pile fed by a constant input of grains and mounted on a balance. Subsequent to the convergence of the slope to dynamic angle of repose, sand avalanche across the bottom boundary were monitored by abrupt mass change and by the amplitudes and number of AE events (recorded at high frequency and averaged to 0.2 s). We detected a systematic change of AE-patterns characterized by systematically decreasing AE standard deviation prior to each mass release. Although the lead time following minimum AE standard deviation was relatively short (10s of seconds), the AE signature already started to change minutes before the mass release. Accordingly the information embedded in AE signal dynamics could potentially offer larger lead times for systems of practical interest.

  1. Statistical Modeling of Large-Scale Signal Path Loss in Underwater Acoustic Networks

    PubMed Central

    Llor, Jesús; Malumbres, Manuel Perez

    2013-01-01

    In an underwater acoustic channel, the propagation conditions are known to vary in time, causing the deviation of the received signal strength from the nominal value predicted by a deterministic propagation model. To facilitate a large-scale system design in such conditions (e.g., power allocation), we have developed a statistical propagation model in which the transmission loss is treated as a random variable. By applying repetitive computation to the acoustic field, using ray tracing for a set of varying environmental conditions (surface height, wave activity, small node displacements around nominal locations, etc.), an ensemble of transmission losses is compiled and later used to infer the statistical model parameters. A reasonable agreement is found with log-normal distribution, whose mean obeys a log-distance increases, and whose variance appears to be constant for a certain range of inter-node distances in a given deployment location. The statistical model is deemed useful for higher-level system planning, where simulation is needed to assess the performance of candidate network protocols under various resource allocation policies, i.e., to determine the transmit power and bandwidth allocation necessary to achieve a desired level of performance (connectivity, throughput, reliability, etc.). PMID:23396190

  2. Amplitude-Frequency Analysis of Signals of Acoustic Emission from Granite Fractured at Elevated Temperatures

    NASA Astrophysics Data System (ADS)

    Shcherbakov, I. P.; Chmel‧, A. E.

    2015-05-01

    The problem of stability of underground structures serving to store radioactive waste, to gasify carbon, and to utilize geothermal energy is associated with the action of elevated temperatures and pressures. The acoustic-emission method makes it possible to monitor the accumulation of microcracks arising in stress fields of both thermal and mechanical origin. In this report, the authors give results of a laboratory investigation into the acoustic emission from granite subjected to impact fracture at temperatures of up to 600°C. An amplitude-frequency analysis of acousticemission signals has enabled the authors to evaluate the dimension of the arising microcracks and to determine their character (intergranular or intragranular). It has been shown that intergranular faults on the boundaries between identical minerals predominate at room temperature (purely mechanical action); at a temperature of 300°C (impact plus thermoelastic stresses), there also appear cracks on the quartz-feldspar boundaries; finally, at temperatures of 500-600°C, it is intragranular faults that predominate in feldspar. The dimensions of the above three types of microcracks are approximately 2, 0.8, and 0.3 mm respectively.

  3. Acoustic-Seismic Coupling of Broadband Signals - Analysis of Potential Disturbances during CTBT On-Site Inspection Measurements

    NASA Astrophysics Data System (ADS)

    Liebsch, Mattes; Altmann, Jürgen

    2015-04-01

    For the verification of the Comprehensive Nuclear Test Ban Treaty (CTBT) the precise localisation of possible underground nuclear explosion sites is important. During an on-site inspection (OSI) sensitive seismic measurements of aftershocks can be performed, which, however, can be disturbed by other signals. To improve the quality and effectiveness of these measurements it is essential to understand those disturbances so that they can be reduced or prevented. In our work we focus on disturbing signals caused by airborne sources: When the sound of aircraft (as often used by the inspectors themselves) hits the ground, it propagates through pores in the soil. Its energy is transferred to the ground and soil vibrations are created which can mask weak aftershock signals. The understanding of the coupling of acoustic waves to the ground is still incomplete. However, it is necessary to improve the performance of an OSI, e.g. to address potential consequences for the sensor placement, the helicopter trajectories etc. We present our recent advances in this field. We performed several measurements to record sound pressure and soil velocity produced by various sources, e.g. broadband excitation by jet aircraft passing overhead and signals artificially produced by a speaker. For our experimental set-up microphones were placed close to the ground and geophones were buried in different depths in the soil. Several sensors were shielded from the directly incident acoustic signals by a box coated with acoustic damping material. While sound pressure under the box was strongly reduced, the soil velocity measured under the box was just slightly smaller than outside of it. Thus these soil vibrations were mostly created outside the box and travelled through the soil to the sensors. This information is used to estimate characteristic propagation lengths of the acoustically induced signals in the soil. In the seismic data we observed interference patterns which are likely caused by the

  4. Multiplex transmission system for gate drive signals of inverter circuit using surface acoustic wave filters

    NASA Astrophysics Data System (ADS)

    Suzuki, Akifumi; Ueda, Kensuke; Goka, Shigeyoshi; Wada, Keiji; Kakio, Shoji

    2016-07-01

    We propose and fabricate a multiplexed transmission system based on frequency-division multiple access (FDMA) with surface acoustic wave (SAW) filters. SAW filters are suitable for use in wide-gap switching devices and multilevel inverters because of their capability to operate at high temperatures, good electrical isolation, low cost, and high reliability. Our proposed system reduces the number of electrical signal wires needed to control each switching device and eliminates the need for isolation circuits, simplifying the transmission system and gate drive circuits. We successfully controlled two switching devices with a single coaxial line and confirmed the operation of a single-phase half-bridge inverter at a supply voltage of 100 V, and the total delay time to control the switching devices was less than 2.5 µs. Our experimental results validated our proposed system.

  5. Experimental Study of Doppler Effect for Underwater Acoustic Communication Using Orthogonal Signal Division Multiplexing

    NASA Astrophysics Data System (ADS)

    Ebihara, Tadashi; Mizutani, Keiichi

    2012-07-01

    This paper is about the underwater acoustic (UWA) communication using orthogonal signal division multiplexing (OSDM) in shallow water, whose environment is time spread and frequency spread. In this paper, the Doppler effect - Doppler shift and spread - for UWA communication using OSDM is mainly considered. The effects of Doppler shift and Doppler spread are evaluated in a test tank with a moving platform on a stable water surface and with a stable platform with a moving water surface, respectively. Doppler shift correction, which has been considered in simulation-based studies, is found to work effectively. In relation to the effect of Doppler spread, the experimental result well agrees with the simulation result. Through this study, it is confirmed that a smaller frame length is preferable because it enables the measurement of the UWA channel frequently so that it can keep up with channel changes.

  6. A framework for the damage evaluation of acoustic emission signals through Hilbert-Huang transform

    NASA Astrophysics Data System (ADS)

    Siracusano, Giulio; Lamonaca, Francesco; Tomasello, Riccardo; Garescì, Francesca; Corte, Aurelio La; Carnì, Domenico Luca; Carpentieri, Mario; Grimaldi, Domenico; Finocchio, Giovanni

    2016-06-01

    The acoustic emission (AE) is a powerful and potential nondestructive testing method for structural monitoring in civil engineering. Here, we show how systematic investigation of crack phenomena based on AE data can be significantly improved by the use of advanced signal processing techniques. Such data are a fundamental source of information that can be used as the basis for evaluating the status of the material, thereby paving the way for a new frontier of innovation made by data-enabled analytics. In this article, we propose a framework based on the Hilbert-Huang Transform for the evaluation of material damages that (i) facilitates the systematic employment of both established and promising analysis criteria, and (ii) provides unsupervised tools to achieve an accurate classification of the fracture type, the discrimination between longitudinal (P-) and traversal (S-) waves related to an AE event. The experimental validation shows promising results for a reliable assessment of the health status through the monitoring of civil infrastructures.

  7. Wing Morphometry and Acoustic Signals in Sterile and Wild Males: Implications for Mating Success in Ceratitis capitata.

    PubMed

    de Souza, João Maria Gomes Alencar; de Lima-Filho, Paulo Augusto; Molina, Wagner Franco; de Almeida, Lúcia Maria; de Gouveia, Milson Bezerra; de Macêdo, Francisco Pepino; Laumann, Raul Alberto; Paranhos, Beatriz Aguiar Jordão

    2015-01-01

    The sterile insect technique (SIT) is widely utilized in the biological control of fruit flies of the family Tephritidae, particularly against the Mediterranean fruit fly. This study investigated the interaction between mating success and morphometric variation in the wings and the production of acoustic signals among three male groups of Ceratitis capitata (Wiedemann): (1) wild males, (2) irradiated with Co-60 (steriles), and (3) irradiated (steriles) and treated with ginger oil. The canonical variate analysis discriminated two groups (males irradiated and males wild), based on the morphological shape of the wings. Among males that emit buzz signals, wild males obtained copulation more frequently than males in Groups 2 and 3. The individuals of Group 3 achieved more matings than those in Group 2. Wild males displayed lower pulse duration, higher intervals between pulses, and higher dominant frequency. Regarding the reproductive success, the morphological differences in the wings' shape between accepted and nonaccepted males are higher in wild males than in the irradiated ones. The present results can be useful in programs using the sterile insect technique for biological control of C. capitata. PMID:26075293

  8. Wing Morphometry and Acoustic Signals in Sterile and Wild Males: Implications for Mating Success in Ceratitis capitata

    PubMed Central

    de Souza, João Maria Gomes Alencar; Molina, Wagner Franco; de Almeida, Lúcia Maria; de Gouveia, Milson Bezerra; de Macêdo, Francisco Pepino; Laumann, Raul Alberto; Paranhos, Beatriz Aguiar Jordão

    2015-01-01

    The sterile insect technique (SIT) is widely utilized in the biological control of fruit flies of the family Tephritidae, particularly against the Mediterranean fruit fly. This study investigated the interaction between mating success and morphometric variation in the wings and the production of acoustic signals among three male groups of Ceratitis capitata (Wiedemann): (1) wild males, (2) irradiated with Co-60 (steriles), and (3) irradiated (steriles) and treated with ginger oil. The canonical variate analysis discriminated two groups (males irradiated and males wild), based on the morphological shape of the wings. Among males that emit buzz signals, wild males obtained copulation more frequently than males in Groups 2 and 3. The individuals of Group 3 achieved more matings than those in Group 2. Wild males displayed lower pulse duration, higher intervals between pulses, and higher dominant frequency. Regarding the reproductive success, the morphological differences in the wings' shape between accepted and nonaccepted males are higher in wild males than in the irradiated ones. The present results can be useful in programs using the sterile insect technique for biological control of C. capitata. PMID:26075293

  9. The Acoustic Signal of a Helicopter can be Used to Track it With Seismic Arrays

    NASA Astrophysics Data System (ADS)

    Eibl, Eva P. S.; Lokmer, Ivan; Bean, Christopher J.; Akerlie, Eggert

    2016-04-01

    We apply traditional frequency domain methods usually applied to volcanic tremor on seismic recordings of a helicopter. On a volcano the source can be repeating, closely spaced earthquakes whereas for a helicopter the source are repeating pressure pulses from the rotor blades that are converted through acoustic-to-seismic coupling. In both cases the seismic signal is referred to as tremor. As frequency gliding is in this case merely caused by the Doppler effect, not a change in the source, we can use its shape to deduce properties of the helicopter. We show in this analysis that the amount of rotor blades, rotor revolutions per minute (RPM), flight direction, height and location can be deduced. The signal was recorded by a seven station broadband array with an aperture of 1.6 km. Our spacing is close enough to record the signal at all stations and far enough to observe traveltime differences. We perform a detailed spectral and location analysis of the signal, and compare our results with the known information on the helicopter's speed, location, height, the frequency of the blades rotation and the amount of blades. This analysis is based on the characteristic shape of the curve i.e. speed of the gliding, minimum and maximum fundamental frequency, amplitudes at the inflection points at different stations and traveltimes deduced from the inflection points at different stations. The helicopter GPS track gives us a robust way of testing the method. This observation has an educative value, because the same principles can be applied to signals in different disciplines.

  10. Periodic shock-emission from acoustically driven cavitation clouds: a source of the subharmonic signal.

    PubMed

    Johnston, Keith; Tapia-Siles, Cecilia; Gerold, Bjoern; Postema, Michiel; Cochran, Sandy; Cuschieri, Alfred; Prentice, Paul

    2014-12-01

    Single clouds of cavitation bubbles, driven by 254kHz focused ultrasound at pressure amplitudes in the range of 0.48-1.22MPa, have been observed via high-speed shadowgraphic imaging at 1×10(6) frames per second. Clouds underwent repetitive growth, oscillation and collapse (GOC) cycles, with shock-waves emitted periodically at the instant of collapse during each cycle. The frequency of cloud collapse, and coincident shock-emission, was primarily dependent on the intensity of the focused ultrasound driving the activity. The lowest peak-to-peak pressure amplitude of 0.48MPa generated shock-waves with an average period of 7.9±0.5μs, corresponding to a frequency of f0/2, half-harmonic to the fundamental driving. Increasing the intensity gave rise to GOC cycles and shock-emission periods of 11.8±0.3, 15.8±0.3, 19.8±0.2μs, at pressure amplitudes of 0.64, 0.92 and 1.22MPa, corresponding to the higher-order subharmonics of f0/3, f0/4 and f0/5, respectively. Parallel passive acoustic detection, filtered for the fundamental driving, revealed features that correlated temporally to the shock-emissions observed via high-speed imaging, p(two-tailed) < 0.01 (r=0.996, taken over all data). Subtracting the isolated acoustic shock profiles from the raw signal collected from the detector, demonstrated the removal of subharmonic spectral peaks, in the frequency domain. The larger cavitation clouds (>200μm diameter, at maximum inflation), that developed under insonations of peak-to-peak pressure amplitudes >1.0MPa, emitted shock-waves with two or more fronts suggesting non-uniform collapse of the cloud. The observations indicate that periodic shock-emissions from acoustically driven cavitation clouds provide a source for the cavitation subharmonic signal, and that shock structure may be used to study intra-cloud dynamics at sub-microsecond timescales.

  11. Shared developmental and evolutionary origins for neural basis of vocal–acoustic and pectoral–gestural signaling

    PubMed Central

    Bass, Andrew H.; Chagnaud, Boris P.

    2012-01-01

    Acoustic signaling behaviors are widespread among bony vertebrates, which include the majority of living fishes and tetrapods. Developmental studies in sound-producing fishes and tetrapods indicate that central pattern generating networks dedicated to vocalization originate from the same caudal hindbrain rhombomere (rh) 8-spinal compartment. Together, the evidence suggests that vocalization and its morphophysiological basis, including mechanisms of vocal–respiratory coupling that are widespread among tetrapods, are ancestral characters for bony vertebrates. Premotor-motor circuitry for pectoral appendages that function in locomotion and acoustic signaling develops in the same rh8-spinal compartment. Hence, vocal and pectoral phenotypes in fishes share both developmental origins and roles in acoustic communication. These findings lead to the proposal that the coupling of more highly derived vocal and pectoral mechanisms among tetrapods, including those adapted for nonvocal acoustic and gestural signaling, originated in fishes. Comparative studies further show that rh8 premotor populations have distinct neurophysiological properties coding for equally distinct behavioral attributes such as call duration. We conclude that neural network innovations in the spatiotemporal patterning of vocal and pectoral mechanisms of social communication, including forelimb gestural signaling, have their evolutionary origins in the caudal hindbrain of fishes. PMID:22723366

  12. Acoustic signal propagation and measurement in natural stream channels for application to surrogate bed load measurements: Halfmoon Creek, Colorado

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Monitoring sediment-generated noise using submerged hydrophones is a surrogate method for measuring bed load transport in streams with the potential for improving estimates of bed load transport through widespread, inexpensive monitoring. Understanding acoustic signal propagation in natural stream e...

  13. Traceability of Acoustic Emission measurements for a proposed calibration method - Classification of characteristics and identification using signal analysis

    NASA Astrophysics Data System (ADS)

    Griffin, James

    2015-01-01

    When using Acoustic Emission (AE) technologies, tensile, compressive and shear stress/strain tests can provide a detector for material deformation and dislocations. In this paper improvements are made to standardise calibration techniques for AE against known metrics such as force. AE signatures were evaluated from various calibration energy sources based on the energy from the first harmonic (dominant energy band) [1,2]. The effects of AE against its calibration identity are investigated: where signals are correlated to the average energy and distance of the detected phenomena. In addition, extra tests are investigated in terms of the tensile tests and single grit tests characterising different materials. Necessary translations to the time-frequency domain were necessary when segregating salient features between different material properties. Continuing this work the obtained AE is summarised and evaluated by a Neural Network (NN) regression classification technique which identifies how far the malformation has progressed (in terms of energy/force) during material transformation. Both genetic-fuzzy clustering and tree rule based classifier techniques were used as the second and third classification techniques respectively to verify the NN output giving a weighted three classifier system. The work discussed in this paper looks at both distance and force relationships for various prolonged Acoustic Emission stresses. Later such analysis was realised with different classifier models and finally implemented into the Simulink simulations. Further investigations were made into classifier models for different material interactions in terms of force and distance which add further dimension to this work with different materials based simulation realisations. Within the statistical analysis section there are two varying prolonged stress tests which together offer the mechanical calibration system (automated solenoid and pencil break calibration system). Taking such a

  14. Application of nonlinearly demodulated acoustic signals for the measurement of the acoustical coefficient of reflection for air saturated porous materials

    NASA Astrophysics Data System (ADS)

    Saeid, Mohamed; Castagnède, Bernard; Moussatov, Alexei; Tournat, Vincent; Gusev, Vitalyi

    2004-10-01

    The present Note describes work related to the measurement of the coefficient of reflection in automotive felt materials, by using a mixed ultrasonic/audio range technique. Powerful 162 kHz ultrasonic waves are amplitude modulated in the audio range. By applying appropriate procedures borrowed from underwater nonlinear ultrasonic methods (the so-called parametric antennae), one produces low frequency (i.e. in the 5-30 kHz range) acoustical waves which are generated in the pulse echo mode by short bursts. The coefficient of reflection of various felt materials are measured, and the results are compared to the standard 'fluid-equivalent' model which describes the propagation of acoustic waves in poroelastic air-saturated materials. To cite this article: M. Saeid et al., C. R. Mecanique 332 (2004).

  15. 49 CFR 236.512 - Cab signal indication when locomotive enters block where restrictive conditions obtain.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Cab signal indication when locomotive enters block... TRAIN CONTROL SYSTEMS, DEVICES, AND APPLIANCES Automatic Train Stop, Train Control and Cab Signal Systems Standards § 236.512 Cab signal indication when locomotive enters block where...

  16. Wintertime water dynamics and moonlight disruption of the acoustic backscatter diurnal signal in an ice-covered Northeast Greenland fjord

    NASA Astrophysics Data System (ADS)

    Petrusevich, Vladislav; Dmitrenko, Igor; Kirillov, Sergey; Rysgaard, Søren; Falk-Petersen, Stig; Barber, David; Ehn, Jens

    2016-04-01

    Six and a half month time series of acoustic backscatter and velocity from three ice-tethered Acoustic Doppler Current Profilers deployed in the Young Sound fjord in Northeast Greenland were used to analyse the acoustic signal. During period of civil polar night below the land-fast ice, the acoustic data suggest a systematic diel vertical migration (DVM) of backscatters likely comprised of zooplankton. The acoustic backscatter and vertical velocity data were also arranged in a form of actograms. Results show that the acoustic signal pattern typical to DVM in Young Sound persists throughout the entire winter including the period of civil polar night. However, polynya-enhanced estuarine-like cell circulation that occurred during winter disrupted the DVM signal favouring zooplankton to occupy the near-surface water layer. This suggests that zooplankton avoided spending additional energy crossing the interface with a relatively strong velocity gradient comprised by fjord inflow in the intermediate layer and outflow in the subsurface layer. Instead the zooplankton tended to favour remaining in the upper 40 m layer where also the relatively warmer water temperatures associated with upward heat flux during enhanced estuarine-like circulation could be energetically favourable. Furthermore, our data show moonlight disruption of DVM in the subsurface layer and weaker intensity of vertical migration beneath snow covered land-fast ice during polar night. Using existing models for lunar illuminance and light transmission through sea ice and snow cover we estimated under ice illuminance and compared it with known light sensitivity for Arctic zooplankton species.

  17. Decision making and preferences for acoustic signals in choice situations by female crickets.

    PubMed

    Gabel, Eileen; Kuntze, Janine; Hennig, R Matthias

    2015-08-01

    Multiple attributes usually have to be assessed when choosing a mate. Efficient choice of the best mate is complicated if the available cues are not positively correlated, as is often the case during acoustic communication. Because of varying distances of signalers, a female may be confronted with signals of diverse quality at different intensities. Here, we examined how available cues are weighted for a decision by female crickets. Two songs with different temporal patterns and/or sound intensities were presented in a choice paradigm and compared with female responses from a no-choice test. When both patterns were presented at equal intensity, preference functions became wider in choice situations compared with a no-choice paradigm. When the stimuli in two-choice tests were presented at different intensities, this effect was counteracted as preference functions became narrower compared with choice tests using stimuli of equal intensity. The weighting of intensity differences depended on pattern quality and was therefore non-linear. A simple computational model based on pattern and intensity cues reliably predicted female decisions. A comparison of processing schemes suggested that the computations for pattern recognition and directionality are performed in a network with parallel topology. However, the computational flow of information corresponded to serial processing.

  18. Phenotypic covariance structure and its divergence for acoustic mate attraction signals among four cricket species

    PubMed Central

    Bertram, Susan M; Fitzsimmons, Lauren P; McAuley, Emily M; Rundle, Howard D; Gorelick, Root

    2012-01-01

    The phenotypic variance–covariance matrix (P) describes the multivariate distribution of a population in phenotypic space, providing direct insight into the appropriateness of measured traits within the context of multicollinearity (i.e., do they describe any significant variance that is independent of other traits), and whether trait covariances restrict the combinations of phenotypes available to selection. Given the importance of P, it is therefore surprising that phenotypic covariances are seldom jointly analyzed and that the dimensionality of P has rarely been investigated in a rigorous statistical framework. Here, we used a repeated measures approach to quantify P separately for populations of four cricket species using seven acoustic signaling traits thought to enhance mate attraction. P was of full or almost full dimensionality in all four species, indicating that all traits conveyed some information that was independent of the other traits, and that phenotypic trait covariances do not constrain the combinations of signaling traits available to selection. P also differed significantly among species, although the dominant axis of phenotypic variation (pmax) was largely shared among three of the species (Acheta domesticus, Gryllus assimilis, G. texensis), but different in the fourth (G. veletis). In G. veletis and A. domesticus, but not G. assimilis and G. texensis, pmax was correlated with body size, while pmax was not correlated with residual mass (a condition measure) in any of the species. This study reveals the importance of jointly analyzing phenotypic traits. PMID:22408735

  19. Assessing the horizontal refraction of ocean acoustic tomography signals using high-resolution ocean state estimates.

    PubMed

    Dushaw, Brian D

    2014-07-01

    The analysis of signals for acoustic tomography sent between a source and a receiver most often uses the unrefracted geodesic path, an approximation that is justified from theoretical considerations, relying on estimates of horizontal gradients of sound speed, or on simple theoretical models. To quantify the effects of horizontal refraction caused by a realistic ocean environment, horizontal refractions of long-range signals were computed using global ocean state estimates for 2004 from the Estimating the Circulation and Climate of the Ocean (ECCO2) project. Basin-scale paths in the eastern North Pacific Ocean and regional-scale paths in the Philippine Sea were used as examples. At O(5 Mm) basin scales, refracted geodesic and geodesic paths differed by only about 5 km. Gyre-scale features had the greatest refractive influence, but the precise refractive effects depended on the path geometry with respect to oceanographic features. Refraction decreased travel times by 5-10 ms and changed azimuthal angles by about 0.2°. At O(500 km) regional scales, paths deviated from the geodesic by only 250 m, and travel times deviated by less than 0.5 ms. Such effects are of little consequence in the analysis of tomographic data. Refraction details depend only slightly on mode number and frequency. PMID:24993200

  20. Time-frequency analysis of acoustic signals in the audio-frequency range generated during Hadfield's steel friction

    NASA Astrophysics Data System (ADS)

    Dobrynin, S. A.; Kolubaev, E. A.; Smolin, A. Yu.; Dmitriev, A. I.; Psakhie, S. G.

    2010-07-01

    Time-frequency analysis of sound waves detected by a microphone during the friction of Hadfield’s steel has been performed using wavelet transform and window Fourier transform methods. This approach reveals a relationship between the appearance of quasi-periodic intensity outbursts in the acoustic response signals and the processes responsible for the formation of wear products. It is shown that the time-frequency analysis of acoustic emission in a tribosystem can be applied, along with traditional approaches, to studying features in the wear and friction process.

  1. Wintertime water dynamics and moonlight disruption of the acoustic backscatter diurnal signal in an ice-covered Northeast Greenland fjord

    NASA Astrophysics Data System (ADS)

    Petrusevich, Vladislav; Dmitrenko, Igor A.; Kirillov, Sergey A.; Rysgaard, Søren; Falk-Petersen, Stig; Barber, David G.; Boone, Wieter; Ehn, Jens K.

    2016-07-01

    Six and a half month records from three ice-tethered Acoustic Doppler Current Profilers deployed in October 2013 in Young Sound fjord in Northeast Greenland are used to analyze the acoustic backscatter signal. The acoustic data suggest a systematic diel vertical migration (DVM) of scatters below the land-fast ice during polar night. The scatters were likely composed of zooplankton. The acoustic signal pattern typical to DVM persisted in Young Sound throughout the entire winter including the period of civil polar night. However, polynya-enhanced estuarine-like cell circulation that occurred during winter disrupted the DVM signal favoring zooplankton to occupy the near-surface water layer. This suggests that zooplankton avoided spending additional energy crossing the interface with a relatively strong velocity gradient comprised by fjord inflow in the intermediate layer and outflow in the subsurface layer. Instead, the zooplankton tended to remain in the upper 40 m layer where relatively warmer water temperatures associated with upward heat flux during enhanced estuarine-like circulation could be energetically favorable. Furthermore, our data show moonlight disruption of DVM in the subsurface layer and weaker intensity of vertical migration beneath snow covered land-fast ice during polar night. Finally, by using existing models for lunar illuminance and light transmission through sea ice and snow cover, we estimated under ice illuminance and compared it with known light sensitivity of Arctic zooplankton species.

  2. Acoustic Imaging in Helioseismology

    NASA Astrophysics Data System (ADS)

    Chou, Dean-Yi; Chang, Hsiang-Kuang; Sun, Ming-Tsung; LaBonte, Barry; Chen, Huei-Ru; Yeh, Sheng-Jen; Team, The TON

    1999-04-01

    The time-variant acoustic signal at a point in the solar interior can be constructed from observations at the surface, based on the knowledge of how acoustic waves travel in the Sun: the time-distance relation of the p-modes. The basic principle and properties of this imaging technique are discussed in detail. The helioseismic data used in this study were taken with the Taiwan Oscillation Network (TON). The time series of observed acoustic signals on the solar surface is treated as a phased array. The time-distance relation provides the phase information among the phased array elements. The signal at any location at any time can be reconstructed by summing the observed signal at array elements in phase and with a proper normalization. The time series of the constructed acoustic signal contains information on frequency, phase, and intensity. We use the constructed intensity to obtain three-dimensional acoustic absorption images. The features in the absorption images correlate with the magnetic field in the active region. The vertical extension of absorption features in the active region is smaller in images constructed with shorter wavelengths. This indicates that the vertical resolution of the three-dimensional images depends on the range of modes used in constructing the signal. The actual depths of the absorption features in the active region may be smaller than those shown in the three-dimensional images.

  3. Opto-acoustic measurement of the local light absorption coefficient in turbid media: 2. On the possibility of light absorption coefficient measurement in a turbid medium from the amplitude of the opto-acoustic signal

    SciTech Connect

    Pelivanov, Ivan M; Barskaya, M I; Podymova, N B; Khokhlova, Tanya D; Karabutov, Aleksander A

    2009-09-30

    The second part of this work describes the experimental technique of measuring the local light absorption in turbid media. The technique is based on the measurement of the amplitude of an opto-acoustic (OA) signal excited in a turbid medium under the condition of one-sided access to the object under study. An OA transducer is developed to perform the proposed measurement procedure. Experiments are conducted for the turbid media with different optical properties (light absorption and reduced scattering coefficients) and for different diameters of the incident laser beam. It is found that the laser beam diameter can be chosen so that the dependences of the measured OA signal amplitude on the light absorption coefficient coincide upon varying the reduced scattering coefficient by more than twice. The obtained numerical and experimental results demonstrate that the OA method is applicable for measuring the local light absorption coefficient in turbid media, for example, in biological tissues. (measurement of parametrs of laser radiation)

  4. Acoustical standards in engineering acoustics

    NASA Astrophysics Data System (ADS)

    Burkhard, Mahlon D.

    2001-05-01

    The Engineering Acoustics Technical Committee is concerned with the evolution and improvement of acoustical techniques and apparatus, and with the promotion of new applications of acoustics. As cited in the Membership Directory and Handbook (2002), the interest areas include transducers and arrays; underwater acoustic systems; acoustical instrumentation and monitoring; applied sonics, promotion of useful effects, information gathering and transmission; audio engineering; acoustic holography and acoustic imaging; acoustic signal processing (equipment and techniques); and ultrasound and infrasound. Evident connections between engineering and standards are needs for calibration, consistent terminology, uniform presentation of data, reference levels, or design targets for product development. Thus for the acoustical engineer standards are both a tool for practices, for communication, and for comparison of his efforts with those of others. Development of many standards depends on knowledge of the way products are put together for the market place and acoustical engineers provide important input to the development of standards. Acoustical engineers and members of the Engineering Acoustics arm of the Society both benefit from and contribute to the Acoustical Standards of the Acoustical Society.

  5. [Genetic aspects of sexual behavior in malaria mosquitoes on the basis of specific acoustic signals at mating].

    PubMed

    Perevozkin, V P; Printseva, A A; Maslennikov, P V; Bondarchuk, S S

    2012-06-01

    Acoustic characteristics were studied in two species of the "Anopheles maculipennis" species complex, A. messeae and A. atroparvus. The species were found to clearly differ in sound frequencies, which was assumed to play a key role in species identification during mating in regions of their sympatric distribution. The sound spectrum in A. messeae was far more diverse than in A. atroparvus, which was associated with intraspecific inversion polymorphism of the former. Mosquitoes with the inversion combinations that were most common in populations of the central region of the A. messeae species area specifically differed in acoustic signal spectrum from each other. Hence, sound communication within the species was considered to be the main mechanism that is responsible for sexual partner selection and determines the chromosome associations observed earlier in individual karyotypes. Since males carrying different inversion combinations significantly differed in acoustic characteristics, females were assumed to play a main role in selecting the sexual partner.

  6. Signal processing Model/Method for Recovering Acoustic Reflectivity of Spot Weld

    2005-09-08

    empirically. For fast estimation of R using only observations beta(1, ..., T) a receiver state equation has been derived, and is attached as Eq. (3). This equation has the further advantage that the initial impulse S need not be known, rather it is estimated simultaneously. This is necessary because element failure and coupling can cause large variations in S. Constrained nonlinear least squares techniques can be applied to this equation to recover reflectivity (and initial impulse) [4]. In particular, the Gauss-Newton algorithm on the log of the sum of squared errors based on the receiver state equation is recommended. To summarize, it is the model described in Eqs. (2) and (3) that is novel, and that enables the recovery of acoustic reflectivity from the ultrasound signals. It has been verified that this reflectivity estimate provides a better indicator of weld veracity than other features previously derived from such signals.« less

  7. Underwater acoustic communication using orthogonal signal division multiplexing scheme with time diversity

    NASA Astrophysics Data System (ADS)

    Ebihara, Tadashi; Ogasawara, Hanako; Mizutani, Koichi

    2016-03-01

    In this paper, an underwater acoustic (UWA) communication scheme for mobile platforms is proposed. The proposed scheme is based on the orthogonal signal division multiplexing (OSDM) scheme, which offers highly reliable UWA communication. However, OSDM is not suitable for mobile platforms as it is — it requires a receiver array and a large calculation cost for equalization. To establish a reliable link with small communication platforms, we design OSDM that can perform reliable communication without the need for an array and can reduce receiver complexity using the time-diversity technique (TD), and evaluate its performance in experiments. The experimental results suggest that OSDM-TD can simultaneously achieve power-efficient communications and receiver complexity reduction, and can realize small-scale communication platforms. In detail, OSDM-TD achieved almost the same communication quality as conventional OSDM, in exchange for an effective data rate. Moreover, the power efficiency of OSDM-TD was almost the same as that of conventional OSDM with two receiver array elements, although the calculation cost of OSDM-TD was far below that of conventional OSDM. As a result, it was found that OSDM-TD is suitable for UWA communication for mobile nodes whose capacity and computational resources are severely limited.

  8. Chelyabinsk meteoroid entry: analysis of acoustic signals in the area of direct sound propagation

    NASA Astrophysics Data System (ADS)

    Podobnaya, Elena; Popova, Olga; Glazachev, Dmitry; Rybnov, Yurij; Shuvalov, Valery; Jenniskens, Peter; Kharlamov, Vladimir

    E.Podobnaya, Yu.Rybnov, O.Popova, V. Shuvalov, P. Jenniskens, V.Kharlamov, D.Glazachev The Chelyabinsk airburst of 15 February 2013, was exceptional because of the large kinetic energy of the impacting body and the airburst that was generated, creating significant damage and injuries in a populated area. The meteor and the effects of the airburst were extraordinarily well documented. Numerous video records provided an accurate record of the trajectory and orbit of the cosmic body as well as features of its interaction with the atmosphere (Borovicka et al., 2013; Popova et al. 2013). In this presentation, we discuss the information on shock wave arrival times. Arrival times of the shock wave were derived from the shaking of the camera, the movement of smoke or car exhaust, and the movement of cables in the field of view, as well as directly from the audio record. From the analysis of these shock wave arrival times, the altitudes of the energy deposition were derived (Popova et al. 2013). Borovicka et al (2013) suggested that subsequent acoustic arrivals corresponded to separate fragmentation events. The observed arrival times will be compared with model estimates taking into account the real wind and atmospheric conditions (i.e. sound velocity changes with altitude). Results of numerical simulations will be compared with recorded sound signals. References Borovicka J. et al., 2013, Nature 503, 235 Popova O. et al., 2013, Science, 342, 1096

  9. Detection of Cracking Levels in Brittle Rocks by Parametric Analysis of the Acoustic Emission Signals

    NASA Astrophysics Data System (ADS)

    Moradian, Zabihallah; Einstein, Herbert H.; Ballivy, Gerard

    2016-03-01

    Determination of the cracking levels during the crack propagation is one of the key challenges in the field of fracture mechanics of rocks. Acoustic emission (AE) is a technique that has been used to detect cracks as they occur across the specimen. Parametric analysis of AE signals and correlating these parameters (e.g., hits and energy) to stress-strain plots of rocks let us detect cracking levels properly. The number of AE hits is related to the number of cracks, and the AE energy is related to magnitude of the cracking event. For a full understanding of the fracture process in brittle rocks, prismatic specimens of granite containing pre-existing flaws have been tested in uniaxial compression tests, and their cracking process was monitored with both AE and high-speed video imaging. In this paper, the characteristics of the AE parameters and the evolution of cracking sequences are analyzed for every cracking level. Based on micro- and macro-crack damage, a classification of cracking levels is introduced. This classification contains eight stages (1) crack closure, (2) linear elastic deformation, (3) micro-crack initiation (white patch initiation), (4) micro-crack growth (stable crack growth), (5) micro-crack coalescence (macro-crack initiation), (6) macro-crack growth (unstable crack growth), (7) macro-crack coalescence and (8) failure.

  10. Plant acoustics: in the search of a sound mechanism for sound signaling in plants.

    PubMed

    Mishra, Ratnesh Chandra; Ghosh, Ritesh; Bae, Hanhong

    2016-08-01

    Being sessile, plants continuously deal with their dynamic and complex surroundings, identifying important cues and reacting with appropriate responses. Consequently, the sensitivity of plants has evolved to perceive a myriad of external stimuli, which ultimately ensures their successful survival. Research over past centuries has established that plants respond to environmental factors such as light, temperature, moisture, and mechanical perturbations (e.g. wind, rain, touch, etc.) by suitably modulating their growth and development. However, sound vibrations (SVs) as a stimulus have only started receiving attention relatively recently. SVs have been shown to increase the yields of several crops and strengthen plant immunity against pathogens. These vibrations can also prime the plants so as to make them more tolerant to impending drought. Plants can recognize the chewing sounds of insect larvae and the buzz of a pollinating bee, and respond accordingly. It is thus plausible that SVs may serve as a long-range stimulus that evokes ecologically relevant signaling mechanisms in plants. Studies have suggested that SVs increase the transcription of certain genes, soluble protein content, and support enhanced growth and development in plants. At the cellular level, SVs can change the secondary structure of plasma membrane proteins, affect microfilament rearrangements, produce Ca(2+) signatures, cause increases in protein kinases, protective enzymes, peroxidases, antioxidant enzymes, amylase, H(+)-ATPase / K(+) channel activities, and enhance levels of polyamines, soluble sugars and auxin. In this paper, we propose a signaling model to account for the molecular episodes that SVs induce within the cell, and in so doing we uncover a number of interesting questions that need to be addressed by future research in plant acoustics.

  11. Plant acoustics: in the search of a sound mechanism for sound signaling in plants.

    PubMed

    Mishra, Ratnesh Chandra; Ghosh, Ritesh; Bae, Hanhong

    2016-08-01

    Being sessile, plants continuously deal with their dynamic and complex surroundings, identifying important cues and reacting with appropriate responses. Consequently, the sensitivity of plants has evolved to perceive a myriad of external stimuli, which ultimately ensures their successful survival. Research over past centuries has established that plants respond to environmental factors such as light, temperature, moisture, and mechanical perturbations (e.g. wind, rain, touch, etc.) by suitably modulating their growth and development. However, sound vibrations (SVs) as a stimulus have only started receiving attention relatively recently. SVs have been shown to increase the yields of several crops and strengthen plant immunity against pathogens. These vibrations can also prime the plants so as to make them more tolerant to impending drought. Plants can recognize the chewing sounds of insect larvae and the buzz of a pollinating bee, and respond accordingly. It is thus plausible that SVs may serve as a long-range stimulus that evokes ecologically relevant signaling mechanisms in plants. Studies have suggested that SVs increase the transcription of certain genes, soluble protein content, and support enhanced growth and development in plants. At the cellular level, SVs can change the secondary structure of plasma membrane proteins, affect microfilament rearrangements, produce Ca(2+) signatures, cause increases in protein kinases, protective enzymes, peroxidases, antioxidant enzymes, amylase, H(+)-ATPase / K(+) channel activities, and enhance levels of polyamines, soluble sugars and auxin. In this paper, we propose a signaling model to account for the molecular episodes that SVs induce within the cell, and in so doing we uncover a number of interesting questions that need to be addressed by future research in plant acoustics. PMID:27342223

  12. Maintaining acoustic communication at a cocktail party: heterospecific masking noise improves signal detection through frequency separation

    PubMed Central

    Siegert, M. E.; Römer, H.; Hartbauer, M.

    2014-01-01

    SUMMARY We examined acoustic masking in a chirping katydid species of the Mecopoda elongata complex due to interference with a sympatric Mecopoda species where males produce continuous trills at high amplitudes. Frequency spectra of both calling songs range from 1 to 80 kHz; the chirper species has more energy in a narrow frequency band at 2 kHz and above 40 kHz. Behaviourally, chirper males successfully phase-locked their chirps to playbacks of conspecific chirps under masking conditions at signal-to-noise ratios (SNRs) of −8 dB. After the 2 kHz band in the chirp had been equalised to the level in the masking trill, the breakdown of phase-locked synchrony occurred at a SNR of +7 dB. The remarkable receiver performance is partially mirrored in the selective response of a first-order auditory interneuron (TN1) to conspecific chirps under these masking conditions. However, the selective response is only maintained for a stimulus including the 2 kHz component, although this frequency band has no influence on the unmasked TN1 response. Remarkably, the addition of masking noise at 65 dB sound pressure level (SPL) to threshold response levels of TN1 for pure tones of 2 kHz enhanced the sensitivity of the response by 10 dB. Thus, the spectral dissimilarity between masker and signal at a rather low frequency appears to be of crucial importance for the ability of the chirping species to communicate under strong masking by the trilling species. We discuss the possible properties underlying the cellular/synaptic mechanisms of the ‘novelty detector’. PMID:24307713

  13. Digital seismo-acoustic signal processing aboard a wireless sensor platform

    NASA Astrophysics Data System (ADS)

    Marcillo, O.; Johnson, J. B.; Lorincz, K.; Werner-Allen, G.; Welsh, M.

    2006-12-01

    We are developing a low power, low-cost wireless sensor array to conduct real-time signal processing of earthquakes at active volcanoes. The sensor array, which integrates data from both seismic and acoustic sensors, is based on Moteiv TMote Sky wireless sensor nodes (www.moteiv.com). The nodes feature a Texas Instruments MSP430 microcontroller, 48 Kbytes of program memory, 10 Kbytes of static RAM, 1 Mbyte of external flash memory, and a 2.4-GHz Chipcon CC2420 IEEE 802.15.4 radio. The TMote Sky is programmed in TinyOS. Basic signal processing occurs on an array of three peripheral sensor nodes. These nodes are tied into a dedicated GPS receiver node, which is focused on time synchronization, and a central communications node, which handles data integration and additional processing. The sensor nodes incorporate dual 12-bit digitizers sampling a seismic sensor and a pressure transducer at 100 samples per second. The wireless capabilities of the system allow flexible array geometry, with a maximum aperture of 200m. We have already developed the digital signal processing routines on board the Moteiv Tmote sensor nodes. The developed routines accomplish Real-time Seismic-Amplitude Measurement (RSAM), Seismic Spectral- Amplitude Measurement (SSAM), and a user-configured Short Term Averaging / Long Term Averaging (STA LTA ratio), which is used to calculate first arrivals. The processed data from individual nodes are transmitted back to a central node, where additional processing may be performed. Such processing will include back azimuth determination and other wave field analyses. Future on-board signal processing will focus on event characterization utilizing pattern recognition and spectral characterization. The processed data is intended as low bandwidth information which can be transmitted periodically and at low cost through satellite telemetry to a web server. The processing is limited by the computational capabilities (RAM, ROM) of the nodes. Nevertheless, we

  14. Decomposition of frequency characteristics of acoustic emission signals for different types of partial discharges sources

    NASA Astrophysics Data System (ADS)

    Witos, F.; Gacek, Z.; Paduch, P.

    2006-11-01

    The problem touched in the article is decomposition of frequency characteristic of AE signals into elementary form of three-parametrical Gauss function. At the first stage, for modelled curves in form of sum of three-parametrical Gauss peaks, accordance of modelled curve and a curve resulting from a solutions obtained using method with dynamic windows, Levenberg-Marquardt algorithm, genetic algorithms and differential evolution algorithm are discussed. It is founded that analyses carried out by means differential evolution algorithm are effective and the computer system served an analysis of AE signal frequency characteristics was constructed. Decomposition of frequency characteristics for selected AE signals coming from modelled PD sources using different ends of the bushing, and real PD sources in generator coil bars are carried out.

  15. Acoustic Location of Lightning Using Interferometric Techniques

    NASA Astrophysics Data System (ADS)

    Erives, H.; Arechiga, R. O.; Stock, M.; Lapierre, J. L.; Edens, H. E.; Stringer, A.; Rison, W.; Thomas, R. J.

    2013-12-01

    Acoustic arrays have been used to accurately locate thunder sources in lightning flashes. The acoustic arrays located around the Magdalena mountains of central New Mexico produce locations which compare quite well with source locations provided by the New Mexico Tech Lightning Mapping Array. These arrays utilize 3 outer microphones surrounding a 4th microphone located at the center, The location is computed by band-passing the signal to remove noise, and then computing the cross correlating the outer 3 microphones with respect the center reference microphone. While this method works very well, it works best on signals with high signal to noise ratios; weaker signals are not as well located. Therefore, methods are being explored to improve the location accuracy and detection efficiency of the acoustic location systems. The signal received by acoustic arrays is strikingly similar to th signal received by radio frequency interferometers. Both acoustic location systems and radio frequency interferometers make coherent measurements of a signal arriving at a number of closely spaced antennas. And both acoustic and interferometric systems then correlate these signals between pairs of receivers to determine the direction to the source of the received signal. The primary difference between the two systems is the velocity of propagation of the emission, which is much slower for sound. Therefore, the same frequency based techniques that have been used quite successfully with radio interferometers should be applicable to acoustic based measurements as well. The results presented here are comparisons between the location results obtained with current cross correlation method and techniques developed for radio frequency interferometers applied to acoustic signals. The data were obtained during the summer 2013 storm season using multiple arrays sensitive to both infrasonic frequency and audio frequency acoustic emissions from lightning. Preliminary results show that

  16. Signal processing techniques for acoustic measurement of sperm whale body lengths.

    PubMed

    Goold, J C

    1996-11-01

    Waveform cross correlation and cepstrum analysis were used to demonstrate possible techniques to measure pulse intervals within sperm whale sonar clicks. The structure of sperm whale clicks takes the form of a series of decaying broadband pulses separated by a time interval that is a function of sound velocity in spermaceti oil and the length of the spermaceti sac within the whales' head. Click signals were bandpass filtered and waveform cross correlation used on the filtered signals to obtain maxima in the correlation function. Such maxima occur when successive pulses within the filtered click waveforms align after time shifting of the replica waveform by integer multiples of the interpulse interval. As an alternative approach, cepstrum analysis was used on the spectra of individual clicks, which were found to contain ripples with periods corresponding to the reciprocal of the interpulse interval. Variable signal quality lead to the conclusion that neither method was reliable for spot measurements of IPIs from individual clicks. However, calculating IPIs by either method for several hundred clicks in 6-min sequences, and smoothing the results with moving averages, allowed realistic mean values to be obtained and interpulse interval trends to be observed with dive time. Interpulse intervals were generally found to decrease with dive time, in accordance with known sound velocity characteristics of spermaceti oil under increasing pressure. Mean values of interpulse intervals obtained by cepstrum analysis for each click sequence were used to estimate body lengths of the respective animals.

  17. Effect of reflected and refracted signals on coherent underwater acoustic communication: results from the Kauai experiment (KauaiEx 2003).

    PubMed

    Rouseff, Daniel; Badiey, Mohsen; Song, Aijun

    2009-11-01

    The performance of a communications equalizer is quantified in terms of the number of acoustic paths that are treated as usable signal. The analysis uses acoustical and oceanographic data collected off the Hawaiian Island of Kauai. Communication signals were measured on an eight-element vertical array at two different ranges, 1 and 2 km, and processed using an equalizer based on passive time-reversal signal processing. By estimating the Rayleigh parameter, it is shown that all paths reflected by the sea surface at both ranges undergo incoherent scattering. It is demonstrated that some of these incoherently scattered paths are still useful for coherent communications. At range of 1 km, optimal communications performance is achieved when six acoustic paths are retained and all paths with more than one reflection off the sea surface are rejected. Consistent with a model that ignores loss from near-surface bubbles, the performance improves by approximately 1.8 dB when increasing the number of retained paths from four to six. The four-path results though are more stable and require less frequent channel estimation. At range of 2 km, ray refraction is observed and communications performance is optimal when some paths with two sea-surface reflections are retained.

  18. Correlation of infrared thermographic patterns and acoustic emission signals with tensile deformation and fracture processes

    NASA Astrophysics Data System (ADS)

    Venkataraman, B.; Raj, Baldev; Mukhopadhyay, C. K.; Jayakumar, T.

    2001-04-01

    During tensile deformation, part of the mechanical work done on the specimen is transformed into heat and acoustic activity. The amount of acoustic activity and the thermal emissions depend on the test conditions and the deformation behavior of the specimen during loading. Authors have used thermography and acoustic emission (AE) simultaneously for monitoring tensile deformation in AISI type 316 SS. Tensile testing was carried out at 298 K at three different strain rates. It has been shown that the simultaneous use of these techniques can provide complementary information for characterizing the tensile deformation and fracture processes.

  19. SEPARATING THE EFFECTS OF ACOUSTIC AND PHONETIC FACTORS IN LINGUISTIC PROCESSING WITH IMPOVERISHED SIGNALS BY ADULTS AND CHILDREN

    PubMed Central

    Nittrouer, Susan; Lowenstein, Joanna H.

    2012-01-01

    Cochlear implants allow many individuals with profound hearing loss to understand spoken language, even though the impoverished signals provided by these devices poorly preserve acoustic attributes long believed to support recovery of phonetic structure. Consequently questions may be raised regarding whether traditional psycholinguistic theories rely too heavily on phonetic segments to explain linguistic processing while ignoring potential roles of other forms of acoustic structure. This study tested that possibility. Adults and children (8 years old) performed two tasks: one involving explicit segmentation, phonemic awareness, and one involving a linguistic task thought to operate more efficiently with well-defined phonetic segments, short-term memory. Stimuli were unprocessed signals (UP), amplitude envelopes (AE) analogous to implant signals, and unprocessed signals in noise (NOI) which provided a degraded signal for comparison. Adults’ results for short-term recall were similar for UP and NOI, but worse for AE stimuli. The phonemic awareness task revealed the opposite pattern across AE and NOI. Children’s results for short-term recall showed similar decrements in performance for AE and NOI compared to UP, even though only NOI stimuli showed diminished results for segmentation. Conclusions were that perhaps traditional accounts are too focused on phonetic segments, something implant designers and clinicians need to consider. PMID:24729642

  20. Measurement of Acoustic-to-Seismic Conversion Using T-wave Signals Recorded at Ascension Island and Diego Garcia

    NASA Astrophysics Data System (ADS)

    Pulli, J. J.; Kofford, A. S.; Newman, K. R.; Krumhansl, P. A.

    2012-12-01

    T-wave signals from sub-sea earthquakes are often recorded on coastal or island seismic stations (Linehan, 1940; Okal, 2008). The physical process of the acoustic-to-seismic conversion is poorly understood but likely depends on factors such as seafloor relief and sediment thickness at the location where the interaction occurs. Quantification of the conversion process is necessary to understand and interpret the seismic recordings, and allow for the calculation of in-water acoustic levels from these recordings where no in-water sensor recordings are available. Applications for this knowledge would include the calculation of in-water explosion yields and seismic airgun source levels. Here we present the measurement of the acoustic-to-seismic transfer functions at Ascension Island and Diego Garcia using hydroacoustic data from the International Monitoring System and broadband seismic data from the Global Seismic Network. For Ascension Island, a volcanic island formed above magmatic plumes, we used T-wave signals from earthquakes on the Central Mid-Atlantic Ridge and associated fracture zones. For Diego Garcia, an atoll of carbonate sequences and no volcanism, we used T-wave signals from earthquakes along the Sumatran Subduction Zone, the Indian Ocean Ridges, and the Chagos Arch. The methodology is based on the smoothed cross-spectra over a frequency band that is common to the acoustic and seismic recordings, typically 2-18 Hz. Preliminary results indicate that at 5 Hz the acoustic-to-seismic conversion is 2-4 times more efficient at Ascension Island than at Diego Garcia (124 nm/s/Pa vs. 51 nm/s/Pa, respectively), but nearly equal at 10 Hz (20 nm/s/Pa). At 15 Hz the conversion is more efficient at Diego Garcia (13 nm/s/Pa vs. 8 nm/s/Pa at Ascension). We also investigate the azimuthal variance of this transfer function, as well as the differences between the three components of seismic motion. As a verification of the methodology, we use the equivalent time domain

  1. WE-D-BRF-02: Acoustic Signal From the Bragg Peak for Range Verification in Proton Therapy

    SciTech Connect

    Reinhardt, S; Assmann, W; Fink, A; Thirolf, P; Parodi, K; Kellnberger, S; Omar, M; Ntziachristos, V; Gaebisch, C; Moser, M; Dollinger, G; Sergiadis, G

    2014-06-15

    Purpose: Range verification in ion beam therapy relies to date on nuclear imaging techniques which require complex and costly detector systems. A different approach is the detection of thermoacoustic signals that are generated due to localized energy loss of ion beams. Aim of this work is to study the feasibility of determining the ion range with sub-mm accuracy by use of high frequency ultrasonic (US) transducers and to image the Bragg peak by tomography. Methods: A water phantom was irradiated by a pulsed 20 MeV proton beam with varying pulse intensity, length and repetition rate. The acoustic signal of single proton pulses was measured by different PZT-based US detectors (3.5 MHz and 10 MHz central frequencies). For tomography a 64 channel US detector array was used and moved along the ion track by a remotely controlled motor stage. Results: A clear signal of the Bragg peak was visible for an energy deposition as low as 10{sup 12} eV. The signal amplitude showed a linear increase with particle number per pulse and thus, dose. Range measurements were reproducible within +/− 20 micrometer and agreed well with Geant4 simulations. The tomographic reconstruction does not only allow to measure the ion range but also the beam spot size at the Bragg peak position. Conclusion: Range verification by acoustic means is a promising new technique for treatment modalities where the tumor can be localized by US imaging. Further improvement of sensitivity is required to account for higher attenuation of the US signal in tissue, as well as lower energy density in the Bragg peak in realistic treatment cases due to higher particle energy and larger spot sizes. Nevertheless, the acoustic range verification approach could offer the possibility of combining anatomical US imaging with Bragg Peak imaging in the near future. The work was funded by the DFG cluster of excellence Munich Centre for Advanced Photonics (MAP)

  2. Acoustic emission descriptors

    NASA Astrophysics Data System (ADS)

    Witos, Franciszek; Malecki, Ignacy

    The authors present selected problems associated with acoustic emission interpreted as a physical phenomenon and as a measurement technique. The authors examine point sources of acoustic emission in isotropic, homogeneous linearly elastic media of different shapes. In the case of an unbounded medium the authors give the analytical form of the stress field and the wave shift field of the acoustic emission. In the case of a medium which is unbounded plate the authors give a form for the equations which is suitable for numerical calculation of the changes over time of selected acoustic emission values. For acoustic emission as a measurement technique, the authors represent the output signal as the resultant of a mechanical input value which describes the source, the transient function of the medium, and the transient function of specific components of the measurement loop. As an effect of this notation, the authors introduce the distinction between an acoustic measurement signal and an acoustic measurement impulse. The authors define the basic parameters of an arbitrary impulse. The authors extensively discuss the signal functions of acoustic emission impulses and acoustic emission signals defined in this article as acoustic emission descriptors (or signal functions of acoustic emission impulses) and advanced acoustic emission descriptors (which are either descriptors associated with acoustic emission applications or the signal functions of acoustic emission signals). The article also contains the results of experimental research on three different problems in which acoustic emission descriptors associated with acoustic emission pulses, acoustic emission applications, and acoustic emission signals are used. These problems are respectively: a problem of the amplitude-load characteristics of acoustic emission pulses in carbon samples subjected to compound uniaxial compression, the use of acoustic emission to predict the durability characteristics of conveyor belts, and

  3. Wireless acoustic-electric feed-through for power and signal transmission

    NASA Technical Reports Server (NTRS)

    Sherrit, Stewart (Inventor); Bar-Cohen, Yoseph (Inventor); Bao, Xiaoqi (Inventor); Doty, Benjamin (Inventor); Badescu, Mircea (Inventor); Chang, Zensheu (Inventor)

    2011-01-01

    An embodiment provides electrical energy from a source on one side of a medium to a load on the other side of the medium, the embodiment including a first piezoelectric to generate acoustic energy in response to electrical energy from the source, and a second piezoelectric to convert the received acoustic energy to electrical energy used by the load. Other embodiments are described and claimed.

  4. Grey seals use anthropogenic signals from acoustic tags to locate fish: evidence from a simulated foraging task

    PubMed Central

    Stansbury, Amanda L.; Götz, Thomas; Deecke, Volker B.; Janik, Vincent M.

    2015-01-01

    Anthropogenic noise can have negative effects on animal behaviour and physiology. However, noise is often introduced systematically and potentially provides information for navigation or prey detection. Here, we show that grey seals (Halichoerus grypus) learn to use sounds from acoustic fish tags as an indicator of food location. In 20 randomized trials each, 10 grey seals individually explored 20 foraging boxes, with one box containing a tagged fish, one containing an untagged fish and all other boxes being empty. The tagged box was found after significantly fewer non-tag box visits across trials, and seals revisited boxes containing the tag more often than any other box. The time and number of boxes needed to find both fish decreased significantly throughout consecutive trials. Two additional controls were conducted to investigate the role of the acoustic signal: (i) tags were placed in one box, with no fish present in any boxes and (ii) additional pieces of fish, inaccessible to the seal, were placed in the previously empty 18 boxes, making possible alternative chemosensory cues less reliable. During these controls, the acoustically tagged box was generally found significantly faster than the control box. Our results show that animals learn to use information provided by anthropogenic signals to enhance foraging success. PMID:25411449

  5. Acoustic Data Processing and Transient Signal Analysis for the Hybrid Wing Body 14- by 22-Foot Subsonic Wind Tunnel Test

    NASA Technical Reports Server (NTRS)

    Bahr, Christopher J.; Brooks, Thomas F.; Humphreys, William M.; Spalt, Taylor B.; Stead, Daniel J.

    2014-01-01

    An advanced vehicle concept, the HWB N2A-EXTE aircraft design, was tested in NASA Langley's 14- by 22-Foot Subsonic Wind Tunnel to study its acoustic characteristics for var- ious propulsion system installation and airframe con gurations. A signi cant upgrade to existing data processing systems was implemented, with a focus on portability and a re- duction in turnaround time. These requirements were met by updating codes originally written for a cluster environment and transferring them to a local workstation while en- abling GPU computing. Post-test, additional processing of the time series was required to remove transient hydrodynamic gusts from some of the microphone time series. A novel automated procedure was developed to analyze and reject contaminated blocks of data, under the assumption that the desired acoustic signal of interest was a band-limited sta- tionary random process, and of lower variance than the hydrodynamic contamination. The procedure is shown to successfully identify and remove contaminated blocks of data and retain the desired acoustic signal. Additional corrections to the data, mainly background subtraction, shear layer refraction calculations, atmospheric attenuation and microphone directivity corrections, were all necessary for initial analysis and noise assessments. These were implemented for the post-processing of spectral data, and are shown to behave as expected.

  6. Grey seals use anthropogenic signals from acoustic tags to locate fish: evidence from a simulated foraging task.

    PubMed

    Stansbury, Amanda L; Götz, Thomas; Deecke, Volker B; Janik, Vincent M

    2015-01-01

    Anthropogenic noise can have negative effects on animal behaviour and physiology. However, noise is often introduced systematically and potentially provides information for navigation or prey detection. Here, we show that grey seals (Halichoerus grypus) learn to use sounds from acoustic fish tags as an indicator of food location. In 20 randomized trials each, 10 grey seals individually explored 20 foraging boxes, with one box containing a tagged fish, one containing an untagged fish and all other boxes being empty. The tagged box was found after significantly fewer non-tag box visits across trials, and seals revisited boxes containing the tag more often than any other box. The time and number of boxes needed to find both fish decreased significantly throughout consecutive trials. Two additional controls were conducted to investigate the role of the acoustic signal: (i) tags were placed in one box, with no fish present in any boxes and (ii) additional pieces of fish, inaccessible to the seal, were placed in the previously empty 18 boxes, making possible alternative chemosensory cues less reliable. During these controls, the acoustically tagged box was generally found significantly faster than the control box. Our results show that animals learn to use information provided by anthropogenic signals to enhance foraging success.

  7. Acoustic Images of Submarine landslide in western Sagami Bay obtained by deep sea AUV “URASHIMA” in Sagami bay

    NASA Astrophysics Data System (ADS)

    Kasaya, Takafumi; Tsukioka, Satoshi; Yamamoto, Fujio; Hyakudome, Tadahiro; Sawa, Takao; Yoshida, Hiroshi; Ishibashi, Shojiro; Tahara, Junichiro; Kinoshita, Masataka; Aoki, Taro

    To collect bathymetric data and bottom material information, multi narrow beam echo sounder and/or side scan sonar are usually used over wide area. The autonomous underwater vehicle (AUV) has the advantage of getting closer to the sea surface as compared with a survey from the vessel. URASHIMA is a 3000 m class AUV, is loaded with multi narrow beam depth sounder, side scan sonar and sub-bottom profiler. Using URASHIMA, side scan sonar images and sub-bottom profiles were collected around off Hatsushima Island where mud flow was generated with some large earthquakes occurrence. We could obtain many enough quality side scan sonar images and sub-bottom profiles. Mosaic image was constructed by obtained side scan sonar images, and shows distinctive surface structure. Some irregular patches are detected around the mudflow area 7km off Hatsushima Island. This structure do not relate to the bathymetry obtained by SeaBat8160 on R/V Natsushima. Therefore, these are interpreted as debris generated with earthquakes. Sub-bottom profiles could detect very clear sedimentary structure.

  8. Decimated signal diagonalization for obtaining the complete eigenspectra of large matrices

    NASA Astrophysics Data System (ADS)

    Belkić, Dževad; Dando, Paul A.; Taylor, Howard S.; Main, Jörg

    1999-12-01

    An alternative method for obtaining high and interior eigenvalues of a dense spectrum is presented. The method takes advantage of the accurate, well-tested and fully understood algorithms for the fast Fourier transform to create, in a natural manner, a `window' containing only a small number of eigenvalues of the spectrum. The method is easy to implement, stable, efficient and accurate.

  9. Costas loop demodulation of suppressed carrier BPSK signals in the DSN environment: Experimental results obtained at TDL

    NASA Technical Reports Server (NTRS)

    Reasoner, R.

    1979-01-01

    Suppressed carrier binary phase-shift keyed (BPSK) signalling is currently being considered as a design alternative for future DSN telemetry in the multimegabit range. Carrier tracking of such signals is usually achieved by a Costas loop, as opposed to the ordinary phase lock loop. A Costas loop capable of demodulating BPSK signals with data rates up to 1 Msps was designed and constructed and its Doppler tracking performance with respect to a Block 3 receiver was tested at the Telecommunications Development Laboratory (TDL). The compatibility of suppressed carrier signalling with the current radiometric system, specifically Doppler tracking and ranging, was investigated. The experimental results obtained to-date with respect to Doppler tracking are presented.

  10. Signal Analysis Algorithms for Optimized Fitting of Nonresonant Laser Induced Thermal Acoustics Damped Sinusoids

    NASA Technical Reports Server (NTRS)

    Balla, R. Jeffrey; Miller, Corey A.

    2008-01-01

    This study seeks a numerical algorithm which optimizes frequency precision for the damped sinusoids generated by the nonresonant LITA technique. It compares computed frequencies, frequency errors, and fit errors obtained using five primary signal analysis methods. Using variations on different algorithms within each primary method, results from 73 fits are presented. Best results are obtained using an AutoRegressive method. Compared to previous results using Prony s method, single shot waveform frequencies are reduced approx.0.4% and frequency errors are reduced by a factor of approx.20 at 303K to approx. 0.1%. We explore the advantages of high waveform sample rates and potential for measurements in low density gases.

  11. Signal Analysis of Helicopter Blade-Vortex-Interaction Acoustic Noise Data

    NASA Technical Reports Server (NTRS)

    Rogers, James C.; Dai, Renshou

    1998-01-01

    Blade-Vortex-Interaction (BVI) produces annoying high-intensity impulsive noise. NASA Ames collected several sets of BVI noise data during in-flight and wind tunnel tests. The goal of this work is to extract the essential features of the BVI signals from the in-flight data and examine the feasibility of extracting those features from BVI noise recorded inside a large wind tunnel. BVI noise generating mechanisms and BVI radiation patterns an are considered and a simple mathematical-physical model is presented. It allows the construction of simple synthetic BVI events that are comparable to free flight data. The boundary effects of the wind tunnel floor and ceiling are identified and more complex synthetic BVI events are constructed to account for features observed in the wind tunnel data. It is demonstrated that improved recording of BVI events can be attained by changing the geometry of the rotor hub, floor, ceiling and microphone. The Euclidean distance measure is used to align BVI events from each blade and improved BVI signals are obtained by time-domain averaging the aligned data. The differences between BVI events for individual blades are then apparent. Removal of wind tunnel background noise by optimal Wiener-filtering is shown to be effective provided representative noise-only data have been recorded. Elimination of wind tunnel reflections by cepstral and optimal filtering deconvolution is examined. It is seen that the cepstral method is not applicable but that a pragmatic optimal filtering approach gives encouraging results. Recommendations for further work include: altering measurement geometry, real-time data observation and evaluation, examining reflection signals (particularly those from the ceiling) and performing further analysis of expected BVI signals for flight conditions of interest so that microphone placement can be optimized for each condition.

  12. A signal processing approach for enhanced Acoustic Emission data analysis in high activity systems: Application to organic matrix composites

    NASA Astrophysics Data System (ADS)

    Kharrat, M.; Ramasso, E.; Placet, V.; Boubakar, M. L.

    2016-03-01

    Structural elements made of Organic Matrix Composites (OMC) under complex loading may suffer from high Acoustic Emission (AE) activity caused by the emergence of different emission sources at high rates with high noise level, which finally engender continuous emissions. The detection of hits in this situation becomes a challenge particularly during fatigue tests. This work suggests an approach based on the Discrete Wavelet Transform (DWT) denoising applied on signal segments. A particular attention is paid to the adjustment of the denoising parameters based on pencil lead breaks and their influence on the quality of the denoised AE signals. The validation of the proposed approach is performed on a ring-shaped Carbon Fiber Reinforced Plastics (CFRP) under in-service-like conditions involving continuous emissions with superimposed damage-related transients. It is demonstrated that errors in hit detection are greatly reduced leading to a better identification of the natural damage scenario based on AE signals.

  13. Partial Adaptation of Obtained and Observed Value Signals Preserves Information about Gains and Losses

    PubMed Central

    Baddeley, Michelle; Tobler, Philippe N.; Schultz, Wolfram

    2016-01-01

    Given that the range of rewarding and punishing outcomes of actions is large but neural coding capacity is limited, efficient processing of outcomes by the brain is necessary. One mechanism to increase efficiency is to rescale neural output to the range of outcomes expected in the current context, and process only experienced deviations from this expectation. However, this mechanism comes at the cost of not being able to discriminate between unexpectedly low losses when times are bad versus unexpectedly high gains when times are good. Thus, too much adaptation would result in disregarding information about the nature and absolute magnitude of outcomes, preventing learning about the longer-term value structure of the environment. Here we investigate the degree of adaptation in outcome coding brain regions in humans, for directly experienced outcomes and observed outcomes. We scanned participants while they performed a social learning task in gain and loss blocks. Multivariate pattern analysis showed two distinct networks of brain regions adapt to the most likely outcomes within a block. Frontostriatal areas adapted to directly experienced outcomes, whereas lateral frontal and temporoparietal regions adapted to observed social outcomes. Critically, in both cases, adaptation was incomplete and information about whether the outcomes arose in a gain block or a loss block was retained. Univariate analysis confirmed incomplete adaptive coding in these regions but also detected nonadapting outcome signals. Thus, although neural areas rescale their responses to outcomes for efficient coding, they adapt incompletely and keep track of the longer-term incentives available in the environment. SIGNIFICANCE STATEMENT Optimal value-based choice requires that the brain precisely and efficiently represents positive and negative outcomes. One way to increase efficiency is to adapt responding to the most likely outcomes in a given context. However, too strong adaptation would result

  14. Turboprop and rotary-wing aircraft flight parameter estimation using both narrow-band and broadband passive acoustic signal-processing methods.

    PubMed

    Ferguson, B G; Lo, K W

    2000-10-01

    Flight parameter estimation methods for an airborne acoustic source can be divided into two categories, depending on whether the narrow-band lines or the broadband component of the received signal spectrum is processed to estimate the flight parameters. This paper provides a common framework for the formulation and test of two flight parameter estimation methods: one narrow band, the other broadband. The performances of the two methods are evaluated by applying them to the same acoustic data set, which is recorded by a planar array of passive acoustic sensors during multiple transits of a turboprop fixed-wing aircraft and two types of rotary-wing aircraft. The narrow-band method, which is based on a kinematic model that assumes the source travels in a straight line at constant speed and altitude, requires time-frequency analysis of the acoustic signal received by a single sensor during each aircraft transit. The broadband method is based on the same kinematic model, but requires observing the temporal variation of the differential time of arrival of the acoustic signal at each pair of sensors that comprises the planar array. Generalized cross correlation of each pair of sensor outputs using a cross-spectral phase transform prefilter provides instantaneous estimates of the differential times of arrival of the signal as the acoustic wavefront traverses the array.

  15. Single-channel blind separation using L₁-sparse complex non-negative matrix factorization for acoustic signals.

    PubMed

    Parathai, P; Woo, W L; Dlay, S S; Gao, Bin

    2015-01-01

    An innovative method of single-channel blind source separation is proposed. The proposed method is a complex-valued non-negative matrix factorization with probabilistically optimal L1-norm sparsity. This preserves the phase information of the source signals and enforces the inherent structures of the temporal codes to be optimally sparse, thus resulting in more meaningful parts factorization. An efficient algorithm with closed-form expression to compute the parameters of the model including the sparsity has been developed. Real-time acoustic mixtures recorded from a single-channel are used to verify the effectiveness of the proposed method. PMID:25618092

  16. Acoustic-emission signal-processing analog unit for locating flaws in large tanks

    NASA Technical Reports Server (NTRS)

    Moskal, F. J.; Fageol, J. D.

    1973-01-01

    Technique monitors structural flaws in 105-in. diameter tanks. Tank surface is divided into many areas and each area is sectioned into 20 equilateral triangles that form icosahedron. Twelve transducers are equally positioned on tank surface at vertex of each triangle. Transducers monitor area for flaws by detecting any increase in acoustical activity.

  17. Acoustic duetting in Drosophila virilis relies on the integration of auditory and tactile signals

    PubMed Central

    LaRue, Kelly M; Clemens, Jan; Berman, Gordon J; Murthy, Mala

    2015-01-01

    Many animal species, including insects, are capable of acoustic duetting, a complex social behavior in which males and females tightly control the rate and timing of their courtship song syllables relative to each other. The mechanisms underlying duetting remain largely unknown across model systems. Most studies of duetting focus exclusively on acoustic interactions, but the use of multisensory cues should aid in coordinating behavior between individuals. To test this hypothesis, we develop Drosophila virilis as a new model for studies of duetting. By combining sensory manipulations, quantitative behavioral assays, and statistical modeling, we show that virilis females combine precisely timed auditory and tactile cues to drive song production and duetting. Tactile cues delivered to the abdomen and genitalia play the larger role in females, as even headless females continue to coordinate song production with courting males. These data, therefore, reveal a novel, non-acoustic, mechanism for acoustic duetting. Finally, our results indicate that female-duetting circuits are not sexually differentiated, as males can also produce ‘female-like’ duets in a context-dependent manner. DOI: http://dx.doi.org/10.7554/eLife.07277.001 PMID:26046297

  18. Reflex Modification by Acoustic Signals in Newborn Infants and in Adults.

    ERIC Educational Resources Information Center

    Hoffman, Howard S.; And Others

    1985-01-01

    Five experiments using identical reflex modification procedures on neonates and adults suggest developmental differences in processing auditory stimuli. Neonates failed to exhibit reflex inhibition by either prior acoustic or tactile stimuli. Adults exhibited robust reflex inhibition to these same stimuli. Developmental processes implied by these…

  19. Environmental variability and acoustic signals: a multi-level approach in songbirds.

    PubMed

    Medina, Iliana; Francis, Clinton D

    2012-12-23

    Among songbirds, growing evidence suggests that acoustic adaptation of song traits occurs in response to habitat features. Despite extensive study, most research supporting acoustic adaptation has only considered acoustic traits averaged for species or populations, overlooking intraindividual variation of song traits, which may facilitate effective communication in heterogeneous and variable environments. Fewer studies have explicitly incorporated sexual selection, which, if strong, may favour variation across environments. Here, we evaluate the prevalence of acoustic adaptation among 44 species of songbirds by determining how environmental variability and sexual selection intensity are associated with song variability (intraindividual and intraspecific) and short-term song complexity. We show that variability in precipitation can explain short-term song complexity among taxonomically diverse songbirds, and that precipitation seasonality and the intensity of sexual selection are related to intraindividual song variation. Our results link song complexity to environmental variability, something previously found for mockingbirds (Family Mimidae). Perhaps more importantly, our results illustrate that individual variation in song traits may be shaped by both environmental variability and strength of sexual selection.

  20. Environmental variability and acoustic signals: a multi-level approach in songbirds

    PubMed Central

    Medina, Iliana; Francis, Clinton D.

    2012-01-01

    Among songbirds, growing evidence suggests that acoustic adaptation of song traits occurs in response to habitat features. Despite extensive study, most research supporting acoustic adaptation has only considered acoustic traits averaged for species or populations, overlooking intraindividual variation of song traits, which may facilitate effective communication in heterogeneous and variable environments. Fewer studies have explicitly incorporated sexual selection, which, if strong, may favour variation across environments. Here, we evaluate the prevalence of acoustic adaptation among 44 species of songbirds by determining how environmental variability and sexual selection intensity are associated with song variability (intraindividual and intraspecific) and short-term song complexity. We show that variability in precipitation can explain short-term song complexity among taxonomically diverse songbirds, and that precipitation seasonality and the intensity of sexual selection are related to intraindividual song variation. Our results link song complexity to environmental variability, something previously found for mockingbirds (Family Mimidae). Perhaps more importantly, our results illustrate that individual variation in song traits may be shaped by both environmental variability and strength of sexual selection. PMID:22859557

  1. [The reflection of the motivational status in the spectral characteristics of the species-specific acoustic signals of the domestic cat].

    PubMed

    Sokolova, N N; Liakso, E E

    1989-01-01

    Spectral characteristics of species-specific acoustic signals were analyzed in cats under various unfavourable conditions: hunger, isolation, pain stimulation, agony. The increase in the need to get rid of the discomfort accompanied by the development of emotional excitation was reflected in spectral characteristics of produced signals. The frequency and duration of signals increased, their spectrum widened accompanied by spectral maxima shifted towards the high-frequency area similar to the range of formant frequencies in the signals of newborn kittens. The similarity between spectral characteristics of the above signals in adult and newborn cats might indicate the appearance of infantile features in adult cats under conditions of a marked desire to change the existing situation. The fact that motivational state was reflected in spectral characteristics of acoustic signals along with stable responses to the signals, spoke in favour of a considerable contribution made by communication to the organization of intraspecific relations.

  2. Application of an Aligned and Unaligned Signal Processing Technique to Investigate Tones and Broadband Noise in Fan and Contra-Rotating Open Rotor Acoustic Spectra

    NASA Technical Reports Server (NTRS)

    Miles, Jeffrey Hilton; Hultgren, Lennart S.

    2015-01-01

    The study of noise from a two-shaft contra-rotating open rotor (CROR) is challenging since the shafts are not phase locked in most cases. Consequently, phase averaging of the acoustic data keyed to a single shaft rotation speed is not meaningful. An unaligned spectrum procedure that was developed to estimate a signal coherence threshold and reveal concealed spectral lines in turbofan engine combustion noise is applied to fan and CROR acoustic data in this paper (also available as NASA/TM-2015-218865). The NASA Advanced Air Vehicles Program, Advanced Air Transport Technology Project, Aircraft Noise Reduction Subproject supported the current work. The fan and open rotor data were obtained under previous efforts supported by the NASA Quiet Aircraft Technology (QAT) Project and the NASA Environmentally Responsible Aviation (ERA) Project of the Integrated Systems Research Program in collaboration with GE Aviation, respectively. The overarching goal of the Advanced Air Transport (AATT) Project is to explore and develop technologies and concepts to revolutionize the energy efficiency and environmental compatibility of fixed wing transport aircrafts. These technological solutions are critical in reducing the impact of aviation on the environment even as this industry and the corresponding global transportation system continue to grow.

  3. Application of an Aligned and Unaligned Signal Processing Technique to Investigate Tones and Broadband Noise in Fan and Contra-Rotating Open Rotor Acoustic Spectra

    NASA Technical Reports Server (NTRS)

    Miles, Jeffrey Hilton; Hultgren, Lennart S.

    2015-01-01

    The study of noise from a two-shaft contra-rotating open rotor (CROR) is challenging since the shafts are not phase locked in most cases. Consequently, phase averaging of the acoustic data keyed to a single shaft rotation speed is not meaningful. An unaligned spectrum procedure that was developed to estimate a signal coherence threshold and reveal concealed spectral lines in turbofan engine combustion noise is applied to fan and CROR acoustic data in this paper.

  4. A novel acoustic emission monitoring and signal processing to elucidate the fracture dynamics of hydrogen assisted cracking

    SciTech Connect

    Hayashi, Yasuhisa; Takemoto, Makoto; Takemoto, Mikio

    1994-12-31

    An advanced Acoustic Emission (AE) monitoring and signal processing system was developed and applied to elucidate the fracture dynamics of hydrogen assisted cracking (HAC) of quenched-tempered low alloy steel. The developed system enables one to monitor an initiation of microcrack correctly and also to elucidate the dynamics of microcracks when multi-channel moment tensor analysis is jointly used. The system consists of 8-channel monitoring. One channel monitors the surface displacement in loading direction excited by the propagation of elastic wave, and gives the source wave by the deconvolution integral of it with the Green`s function of the second kind. Another 7 channels were designed to measure arrival time and relative amplitude of the P-waves, and to determine both the source location and the crack kinematics by tensor analysis. This paper introduces the developed monitoring system and signal processing method, and fracture dynamics of microcracks in HAC.

  5. Splitting a droplet with oil encapsulation using surface acoustic wave excited by electric signal with low power

    NASA Astrophysics Data System (ADS)

    Zhang, Anliang; Zha, Yan; Fu, Xingting

    2013-07-01

    A new method for splitting a droplet with oil encapsulation is presented. An interdigital transducer and a reflector are fabricated on a 128° yx-LiNbO3 piezoelectric substrate using microelectric technology. An electric signal with the power of 12.3 dBm is applied to the interdigital transducer to generate surface acoustic wave, which is radiated into a droplet with oil encapsulation, leading to surface acoustic wave streaming force. When the electric signal is suddenly moved off, the breakup of the droplet occurs due to inertial force. Color dye solution droplets encapsulated by oil droplets are demonstrated. The effects of electric power, the volume ratio of color dye solution to oil, and the volume of mother droplet on the breakup of droplets are studied. As applications, the presented method is successfully applied to mixture operation and color development reaction of two droplets. The method provides a new sample preparation technique, which is helpful for microfluidic biochemical analysis in a piezoelectric microfluidic system.

  6. Observations and Bayesian location methodology of transient acoustic signals (likely blue whales) in the Indian Ocean, using a hydrophone triplet.

    PubMed

    Le Bras, Ronan J; Kuzma, Heidi; Sucic, Victor; Bokelmann, Götz

    2016-05-01

    A notable sequence of calls was encountered, spanning several days in January 2003, in the central part of the Indian Ocean on a hydrophone triplet recording acoustic data at a 250 Hz sampling rate. This paper presents signal processing methods applied to the waveform data to detect, group, extract amplitude and bearing estimates for the recorded signals. An approximate location for the source of the sequence of calls is inferred from extracting the features from the waveform. As the source approaches the hydrophone triplet, the source level (SL) of the calls is estimated at 187 ± 6 dB re: 1 μPa-1 m in the 15-60 Hz frequency range. The calls are attributed to a subgroup of blue whales, Balaenoptera musculus, with a characteristic acoustic signature. A Bayesian location method using probabilistic models for bearing and amplitude is demonstrated on the calls sequence. The method is applied to the case of detection at a single triad of hydrophones and results in a probability distribution map for the origin of the calls. It can be extended to detections at multiple triads and because of the Bayesian formulation, additional modeling complexity can be built-in as needed. PMID:27250159

  7. Observations and Bayesian location methodology of transient acoustic signals (likely blue whales) in the Indian Ocean, using a hydrophone triplet.

    PubMed

    Le Bras, Ronan J; Kuzma, Heidi; Sucic, Victor; Bokelmann, Götz

    2016-05-01

    A notable sequence of calls was encountered, spanning several days in January 2003, in the central part of the Indian Ocean on a hydrophone triplet recording acoustic data at a 250 Hz sampling rate. This paper presents signal processing methods applied to the waveform data to detect, group, extract amplitude and bearing estimates for the recorded signals. An approximate location for the source of the sequence of calls is inferred from extracting the features from the waveform. As the source approaches the hydrophone triplet, the source level (SL) of the calls is estimated at 187 ± 6 dB re: 1 μPa-1 m in the 15-60 Hz frequency range. The calls are attributed to a subgroup of blue whales, Balaenoptera musculus, with a characteristic acoustic signature. A Bayesian location method using probabilistic models for bearing and amplitude is demonstrated on the calls sequence. The method is applied to the case of detection at a single triad of hydrophones and results in a probability distribution map for the origin of the calls. It can be extended to detections at multiple triads and because of the Bayesian formulation, additional modeling complexity can be built-in as needed.

  8. Normalization and source separation of acoustic emission signals for condition monitoring and fault detection of multi-cylinder diesel engines

    NASA Astrophysics Data System (ADS)

    Wu, Weiliang; Lin, Tian Ran; Tan, Andy C. C.

    2015-12-01

    A signal processing technique is presented in this paper to normalize and separate the source of non-linear acoustic emission (AE) signals of a multi-cylinder diesel engine for condition monitoring applications and fault detection. The normalization technique presented in the paper overcomes the long-existing non-linearity problem of AE sensors so that responses measured by different AE sensors can be quantitatively analysed and compared. A source separation algorithm is also developed in the paper to separate the mixture of the normalized AE signals produced by a multi-cylinder diesel engine by utilising the system parameters (i.e., wave attenuation constant and the arrival time delay) of AE wave propagation determined by a standard pencil lead break test on the engine cylinder head. It is shown that the source separation algorithm is able to separate the signal interference of adjacent cylinders from the monitored cylinder once the wave attenuation constant and the arrival time delay along the propagation path are known. The algorithm is particularly useful in the application of AE technique for condition monitoring of small-size diesel engines where signal interference from the neighbouring cylinders is strong.

  9. Visualizing detecting low-frequency underwater acoustic signals by means of optical diffraction.

    PubMed

    Ren, Yao; Miao, Runcai; Su, Xiaoming; Chen, Hua

    2016-03-10

    A novel and simple technique based on the light diffraction effect for visualization of low-frequency underwater acoustic waves (LFUAWs) in real time has been developed in this paper. A cylindrical object has been put on the surface of the water. A low-frequency underwater longitudinal wave can be generated into a water surface transversal capillary wave around the cylinder by our technique. Modulating the phase of a laser beam reflected from a water surface by surface acoustic waves (SAWs) realizes the acousto-optic effect. Then, a steady and visible diffraction pattern is experimentally observed. A physical model of the SAW is established to verify the feasibility of our technique. An analytical expression of wavelength, wave amplitude, and excitation frequency has been derived to study the physical properties of LFUAWs, and it explains the experimental phenomenon very well. As a result, the technique is effective, easy, and practical for visualizing LFUAWs and has significance for applications. PMID:26974797

  10. Auditory object salience: human cortical processing of non-biological action sounds and their acoustic signal attributes

    PubMed Central

    Lewis, James W.; Talkington, William J.; Tallaksen, Katherine C.; Frum, Chris A.

    2012-01-01

    Whether viewed or heard, an object in action can be segmented as a distinct salient event based on a number of different sensory cues. In the visual system, several low-level attributes of an image are processed along parallel hierarchies, involving intermediate stages wherein gross-level object form and/or motion features are extracted prior to stages that show greater specificity for different object categories (e.g., people, buildings, or tools). In the auditory system, though relying on a rather different set of low-level signal attributes, meaningful real-world acoustic events and “auditory objects” can also be readily distinguished from background scenes. However, the nature of the acoustic signal attributes or gross-level perceptual features that may be explicitly processed along intermediate cortical processing stages remain poorly understood. Examining mechanical and environmental action sounds, representing two distinct non-biological categories of action sources, we had participants assess the degree to which each sound was perceived as object-like versus scene-like. We re-analyzed data from two of our earlier functional magnetic resonance imaging (fMRI) task paradigms (Engel et al., 2009) and found that scene-like action sounds preferentially led to activation along several midline cortical structures, but with strong dependence on listening task demands. In contrast, bilateral foci along the superior temporal gyri (STG) showed parametrically increasing activation to action sounds rated as more “object-like,” independent of sound category or task demands. Moreover, these STG regions also showed parametric sensitivity to spectral structure variations (SSVs) of the action sounds—a quantitative measure of change in entropy of the acoustic signals over time—and the right STG additionally showed parametric sensitivity to measures of mean entropy and harmonic content of the environmental sounds. Analogous to the visual system, intermediate stages

  11. Acoustically based fetal heart rate monitor

    NASA Technical Reports Server (NTRS)

    Baker, Donald A.; Zuckerwar, Allan J.

    1991-01-01

    The acoustically based fetal heart rate monitor permits an expectant mother to perform the fetal Non-Stress Test in her home. The potential market would include the one million U.S. pregnancies per year requiring this type of prenatal surveillance. The monitor uses polyvinylidene fluoride (PVF2) piezoelectric polymer film for the acoustic sensors, which are mounted in a seven-element array on a cummerbund. Evaluation of the sensor ouput signals utilizes a digital signal processor, which performs a linear prediction routine in real time. Clinical tests reveal that the acoustically based monitor provides Non-Stress Test records which are comparable to those obtained with a commercial ultrasonic transducer.

  12. Acoustic velocity meter systems

    USGS Publications Warehouse

    Laenen, Antonius

    1985-01-01

    Acoustic velocity meter (AVM) systems operate on the principles that the point-to-point upstream traveltime of an acoustic pulse is longer than the downstream traveltime and that this difference in traveltime can be accurately measured by electronic devices. An AVM system is capable of recording water velocity (and discharge) under a wide range of conditions, but some constraints apply: 1. Accuracy is reduced and performance is degraded if the acoustic path is not a continuous straight line. The path can be bent by reflection if it is too close to a stream boundary or by refraction if it passes through density gradients resulting from variations in either water temperature or salinity. For paths of less than 100 m, a temperature gradient of 0.1' per meter causes signal bending less than 0.6 meter at midchannel, and satisfactory velocity results can be obtained. Reflection from stream boundaries can cause signal cancellation if boundaries are too close to signal path. 2. Signal strength is attenuated by particles or bubbles that absorb, spread, or scatter sound. The concentration of particles or bubbles that can be tolerated is a function of the path length and frequency of the acoustic signal. 3. Changes in streamline orientation can affect system accuracy if the variability is random. 4. Errors relating to signal resolution are much larger for a single threshold detection scheme than for multiple threshold schemes. This report provides methods for computing the effect of various conditions on the accuracy of a record obtained from an AVM. The equipment must be adapted to the site. Field reconnaissance and preinstallation analysis to detect possible problems are critical for proper installation and operation of an AVM system.

  13. Acoustic emission signal processing technique to characterize reactor in-pile phenomena

    SciTech Connect

    Agarwal, Vivek; Tawfik, Magdy S.; Smith, James A.

    2015-03-31

    Existing and developing advanced sensor technologies and instrumentation will allow non-intrusive in-pile measurement of temperature, extension, and fission gases when coupled with advanced signal processing algorithms. The transmitted measured sensor signals from inside to the outside of containment structure are corrupted by noise and are attenuated, thereby reducing the signal strength and the signal-to-noise ratio. Identification and extraction of actual signal (representative of an in-pile phenomenon) is a challenging and complicated process. In the paper, empirical mode decomposition technique is utilized to reconstruct actual sensor signal by partially combining intrinsic mode functions. Reconstructed signal will correspond to phenomena and/or failure modes occurring inside the reactor. In addition, it allows accurate non-intrusive monitoring and trending of in-pile phenomena.

  14. Acoustic Emission Signal Processing Technique to Characterize Reactor In-Pile Phenomena

    SciTech Connect

    Vivek Agarwal; Magdy Samy Tawfik; James A Smith

    2014-07-01

    Existing and developing advanced sensor technologies and instrumentation will allow non-intrusive in-pile measurement of temperature, extension, and fission gases when coupled with advanced signal processing algorithms. The transmitted measured sensor signals from inside to the outside of containment structure are corrupted by noise and are attenuated, thereby reducing the signal strength and signal-to-noise ratio. Identification and extraction of actual signal (representative of an in-pile phenomenon) is a challenging and complicated process. In this paper, empirical mode decomposition technique is proposed to reconstruct actual sensor signal by partially combining intrinsic mode functions. Reconstructed signal corresponds to phenomena and/or failure modes occurring inside the reactor. In addition, it allows accurate non-intrusive monitoring and trending of in-pile phenomena.

  15. Acoustic emission frequency discrimination

    NASA Technical Reports Server (NTRS)

    Sugg, Frank E. (Inventor); Graham, Lloyd J. (Inventor)

    1988-01-01

    In acoustic emission nondestructive testing, broadband frequency noise is distinguished from narrow banded acoustic emission signals, since the latter are valid events indicative of structural flaws in the material being examined. This is accomplished by separating out those signals which contain frequency components both within and beyond (either above or below) the range of valid acoustic emission events. Application to acoustic emission monitoring during nondestructive bond verification and proof loading of undensified tiles on the Space Shuttle Orbiter is considered.

  16. Body Morphology, Energy Stores, and Muscle Enzyme Activity Explain Cricket Acoustic Mate Attraction Signaling Variation

    PubMed Central

    Thomson, Ian R.; Darveau, Charles-A.; Bertram, Susan M.

    2014-01-01

    High mating success in animals is often dependent on males signalling attractively with high effort. Since males should be selected to maximize their reproductive success, female preferences for these traits should result in minimal signal variation persisting in the population. However, extensive signal variation persists. The genic capture hypothesis proposes genetic variation persists because fitness-conferring traits depend on an individual's basic processes, including underlying physiological, morphological, and biochemical traits, which are themselves genetically variable. To explore the traits underlying signal variation, we quantified among-male differences in signalling, morphology, energy stores, and the activities of key enzymes associated with signalling muscle metabolism in two species of crickets, Gryllus assimilis (chirper: <20 pulses/chirp) and G. texensis (triller: >20 pulses/chirp). Chirping G. assimilis primarily fuelled signalling with carbohydrate metabolism: smaller individuals and individuals with increased thoracic glycogen stores signalled for mates with greater effort; individuals with greater glycogen phosphorylase activity produced more attractive mating signals. Conversely, the more energetic trilling G. texensis fuelled signalling with both lipid and carbohydrate metabolism: individuals with increased β-hydroxyacyl-CoA dehydrogenase activity and increased thoracic free carbohydrate content signalled for mates with greater effort; individuals with higher thoracic and abdominal carbohydrate content and higher abdominal lipid stores produced more attractive signals. Our findings suggest variation in male reproductive success may be driven by hidden physiological trade-offs that affect the ability to uptake, retain, and use essential nutrients, although the results remain correlational in nature. Our findings indicate that a physiological perspective may help us to understand some of the causes of variation in behaviour. PMID:24608102

  17. Adaptive significance of synchronous chorusing in an acoustically signalling wolf spider.

    PubMed

    Kotiaho, Janne S; Alatalo, Rauno V; Mappes, Johanna; Parri, Silja

    2004-09-01

    Synchronous sexual signalling is a behavioural phenomenon that has received considerable theoretical interest, but surprisingly few empirical tests have been conducted. Here, we present a set of experiments designed to determine (i) whether the sexual signalling of the drumming wolf spider Hygrolycosa rubrofasciata is synchronous, and (ii) whether the synchrony may have evolved through female preference. Using controlled playback experiments, we found that males actively synchronized their drumming bouts with other males and females significantly preferred closely synchronized drumming clusters compared with loose clusters. In loose clusters, the first drumming signals attracted the most female responses, whereas in close clusters, the last drumming signals were the most heeded. We suggest that this female preference for the last drummer can maintain male synchronous signalling in H. rubrofasciata.

  18. Acoustic underwater signals with a probable function during competitive feeding in a tadpole

    NASA Astrophysics Data System (ADS)

    Reeve, Erik; Ndriantsoa, Serge Herilala; Strauß, Axel; Randrianiaina, Roger-Daniel; Rasolonjatovo Hiobiarilanto, Tahiry; Glaw, Frank; Glos, Julian; Vences, Miguel

    2011-02-01

    Acoustic communication is widespread among adult stages of terrestrial animals and fish and has also been observed in insect larvae. We report underwater acoustic communication in the larvae of a frog, Gephyromantis azzurrae, from Isalo, a sandstone massif in western Madagascar. According to our field data, these tadpoles live in streams and prefer habitats characterized by comparatively low temperatures, shallow water depth, and a relatively fast current. Feeding experiments indicated that the tadpoles are carnivorous and macrophagous. They consumed insect larvae and, to a lesser extent, small shrimps, and conspecific as well as heterospecific tadpoles. Calls of these tadpoles consisted either of single click notes or of irregular series of various clicks. Some complex calls have a pulsed structure with three to nine indistinct energy pulses. Production of the pulses coincided with rapid closure of the jaw sheaths and often with an upward movement of the body. Calls were emitted while attacking prey and occurred significantly more often when attacking conspecifics. Tadpoles that had not been fed for some time emitted sounds more frequently than those that had been regularly fed. The spectral frequency of the calls differed in tadpole groups of different size and was higher in groups of smaller tadpoles, suggesting that spectral frequency carries some information about tadpole size which might be important during competitive feeding to assess size and strength of competitors. This report differs from those for the larvae of South American horned frogs, Ceratophrys ornata. These are the only other tadpoles for which sound production has reliably been reported but the calls of Ceratophrys tadpoles occur mainly in a defensive context.

  19. Frequency and time pattern differences in acoustic signals produced by Prostephanus truncatus (Horn) (Coleoptera: Bostrichidae) and Sitophilus zeamais (Motschulsky) (Coleoptera: Curculionidae)in stored maize

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The acoustic signals emitted by the last stage larval instars and adults of Prostephanus truncatus and Sitophilus zeamais in stored maize were investigated. Analyses were performed to identify brief, 1-10-ms broadband sound impulses of five different frequency patterns produced by larvae and adults,...

  20. Validation of GNSS signal slant total delays obtained from GNSS4SWEC WG1 benchmark campaign data

    NASA Astrophysics Data System (ADS)

    Kapłon, Jan; Hordyniec, Paweł; Kryza, Maciej; Rohm, Witold; Guzikowski, Jakub; Wilgan, Karina

    2016-04-01

    Continuous observations from GNSS receivers provide excellent data to derive the state of neutral atmosphere. Currently, development of services for near real-time (NRT) and real-time (RT) troposphere parameter estimation from GNSS data are of utmost importance in severe weather events research. The GNSS&METEO research group at Wroclaw University of Environmental and Life Sciences (WUELS) participate in the COST ES1206 Action: GNSS4SWEC (Advanced Global Navigation Satellite Systems tropospheric products for monitoring severe weather events and climate) and EGVAP initiative as NRT/RT GNSS processing centre. Our interest is to provide the reliable GNSS products to weather prediction and climate studies. The knowledge of spatial and temporal variation of water content in the atmosphere cannot be obtained using the signal delays in zenith direction only. The possibility of slant wet delays estimation in directions to GNSS satellites makes possible the 4-dimensional modelling of troposphere precipitable water vapour content. Benchmark activity done according to the GNSS4SWEC action's WG1 objectives is an excellent reference for verification of the slant delays processing scenarios. Area of the benchmark contains the territories of Austria, Czech Republic, Germany and Poland and consists of total 430 GNSS stations, where 360 have GPS+GLONASS observations. Data in benchmark's repository is from the period covering May and June of 2013. The weather conditions during the selected period include quiet weather as well as heavy rainfall events. Benchmark data repository includes: GNSS data, GNSS troposphere products from near real-time solution, numerical weather model data, radiosonde data, radar images, meteorological data from synoptic stations and water vapour radiometer data. The paper presents methodology of GNSS signal slant total delay estimation at WUELS using the Precise Point Positioning (PPP) approach. It presents also resultant slant delays obtained from benchmark

  1. The vocal repertoire of the domesticated zebra finch: a data-driven approach to decipher the information-bearing acoustic features of communication signals.

    PubMed

    Elie, Julie E; Theunissen, Frédéric E

    2016-03-01

    Although a universal code for the acoustic features of animal vocal communication calls may not exist, the thorough analysis of the distinctive acoustical features of vocalization categories is important not only to decipher the acoustical code for a specific species but also to understand the evolution of communication signals and the mechanisms used to produce and understand them. Here, we recorded more than 8000 examples of almost all the vocalizations of the domesticated zebra finch, Taeniopygia guttata: vocalizations produced to establish contact, to form and maintain pair bonds, to sound an alarm, to communicate distress or to advertise hunger or aggressive intents. We characterized each vocalization type using complete representations that avoided any a priori assumptions on the acoustic code, as well as classical bioacoustics measures that could provide more intuitive interpretations. We then used these acoustical features to rigorously determine the potential information-bearing acoustical features for each vocalization type using both a novel regularized classifier and an unsupervised clustering algorithm. Vocalization categories are discriminated by the shape of their frequency spectrum and by their pitch saliency (noisy to tonal vocalizations) but not particularly by their fundamental frequency. Notably, the spectral shape of zebra finch vocalizations contains peaks or formants that vary systematically across categories and that would be generated by active control of both the vocal organ (source) and the upper vocal tract (filter). PMID:26581377

  2. Coupled High Speed Imaging and Seismo-Acoustic Recordings of Strombolian Explosions at Etna, July 2014: Implications for Source Processes and Signal Inversions.

    NASA Astrophysics Data System (ADS)

    Taddeucci, J.; Del Bello, E.; Scarlato, P.; Ricci, T.; Andronico, D.; Kueppers, U.; Cannata, A.; Sesterhenn, J.; Spina, L.

    2015-12-01

    Seismic and acoustic surveillance is routinely performed at several persistent activity volcanoes worldwide. However, interpretation of the signals associated with explosive activity is still equivocal, due to both source variability and the intrinsically limited information carried by the waves. Comparison and cross-correlation of the geophysical quantities with other information in general and visual recording in particular is therefore actively sought. At Etna (Italy) in July 2014, short-lived Strombolian explosions ejected bomb- to lapilli-sized, molten pyroclasts at a remarkably repeatable time interval of about two seconds, offering a rare occasion to systematically investigate the seismic and acoustic fields radiated by this common volcanic source. We deployed FAMoUS (FAst, MUltiparametric Setup for the study of explosive activity) at 260 meters from the vents, recording more than 60 explosions in thermal and visible high-speed videos (50 to 500 frames per second) and broadband seismic and acoustic instruments (1 to 10000 Hz for the acoustic and from 0.01 to 30 Hz for the seismic). Analysis of this dataset highlights nonlinear relationships between the exit velocity and mass of ejecta and the amplitude and frequency of the acoustic signals. It also allows comparing different methods to estimate source depth, and to validate existing theory on the coupling of airwaves with ground motion.

  3. Thermal and Acoustic Signals associated to Vulcanian Explosions at Soufrière Hills Volcano, Montserrat

    NASA Astrophysics Data System (ADS)

    Delle Donne, D.; Ripepe, M.; De Angelis, S.; Cole, P.; Lacanna, G.; Stewart, R. C.

    2012-12-01

    Soufrière Hills volcano (SHV) at Montserrat (WI) offers the opportunity to study a large variety of processes related to large Vulcanian eruptions. We show how a thermal camera and an infrasonic array can be used to constrain the eruptive onset, plume exit velocity and volumetric flux. This information is more difficult to be derived by seismic signals alone and thus thermal images and infrasound can help in their interpretation in terms of volcanic dynamics. The thermal and infrasonic integrated analysis applied to the large Vulcanian eruption of 5th February 2010, reveals a temperature increase above the dome lasting for ~20 seconds which coincides with the onset and the duration of the positive compressive infrasonic signal (14 Pa at 5600 m of distance) in the low frequency band <1 Hz. Besides, thermal decomposition method shows a rapid deceleration of the plume velocity from the initial ~170 m/s to a more stationary ascent rate at ~27 m/s. We interpret this initial eruptive phase as dominated by the gas thrust feeding gas and ash in the atmosphere at a volumetric discharge rate of 3.3x104 m3/s, giving a total discharged bulk volume of 8.5x105 m3. The seismic signal associated to this gas thrust phase becomes visible only when filtered in the 0.03 - 0.1 very long period (VLP) frequency band. The maximum amplitude of the VLP seismic signal coincides with the positive infrasonic peak, indicating that the VLP seismic signal originated during the initial gas thrust phase of the eruption. The fragmentation of overpressurized magmatic foam could be responsible for the rapid expansion in the conduit of the gas driving upward hot tephra out the vent in the atmosphere. The ground will react to the upward momentum induced by the mass discharge with a downward oriented counter force, which is probably the source of the VLP seismic signal. The striking correlation of seismic VLP with infrasound and the plume velocity derived by thermal image analysis seems to support this

  4. Systems and methods of monitoring acoustic pressure to detect a flame condition in a gas turbine

    DOEpatents

    Ziminsky, Willy Steve; Krull, Anthony Wayne; Healy, Timothy Andrew , Yilmaz, Ertan

    2011-05-17

    A method may detect a flashback condition in a fuel nozzle of a combustor. The method may include obtaining a current acoustic pressure signal from the combustor, analyzing the current acoustic pressure signal to determine current operating frequency information for the combustor, and indicating that the flashback condition exists based at least in part on the current operating frequency information.

  5. Elaborate visual and acoustic signals evolve independently in a large, phenotypically diverse radiation of songbirds

    PubMed Central

    Mason, Nicholas A.; Shultz, Allison J.; Burns, Kevin J.

    2014-01-01

    The concept of a macroevolutionary trade-off among sexual signals has a storied history in evolutionary biology. Theory predicts that if multiple sexual signals are costly for males to produce or maintain and females prefer a single, sexually selected trait, then an inverse correlation between sexual signal elaborations is expected among species. However, empirical evidence for what has been termed the ‘transfer hypothesis’ is mixed, which may reflect different selective pressures among lineages, evolutionary covariates or methodological differences among studies. Here, we examine interspecific correlations between song and plumage elaboration in a phenotypically diverse, widespread radiation of songbirds, the tanagers. The tanagers (Thraupidae) are the largest family of songbirds, representing nearly 10% of all songbirds. We assess variation in song and plumage elaboration across 301 species, representing the largest scale comparative study of multimodal sexual signalling to date. We consider whether evolutionary covariates, including habitat, structural and carotenoid-based coloration, and subfamily groupings influence the relationship between song and plumage elaboration. We find that song and plumage elaboration are uncorrelated when considering all tanagers, although the relationship between song and plumage complexity varies among subfamilies. Taken together, we find that elaborate visual and vocal sexual signals evolve independently among tanagers. PMID:24943371

  6. Classifying acoustic signals into phoneme categories: average and dyslexic readers make use of complex dynamical patterns and multifractal scaling properties of the speech signal.

    PubMed

    Hasselman, Fred

    2015-01-01

    Several competing aetiologies of developmental dyslexia suggest that the problems with acquiring literacy skills are causally entailed by low-level auditory and/or speech perception processes. The purpose of this study is to evaluate the diverging claims about the specific deficient peceptual processes under conditions of strong inference. Theoretically relevant acoustic features were extracted from a set of artificial speech stimuli that lie on a /bAk/-/dAk/ continuum. The features were tested on their ability to enable a simple classifier (Quadratic Discriminant Analysis) to reproduce the observed classification performance of average and dyslexic readers in a speech perception experiment. The 'classical' features examined were based on component process accounts of developmental dyslexia such as the supposed deficit in Envelope Rise Time detection and the deficit in the detection of rapid changes in the distribution of energy in the frequency spectrum (formant transitions). Studies examining these temporal processing deficit hypotheses do not employ measures that quantify the temporal dynamics of stimuli. It is shown that measures based on quantification of the dynamics of complex, interaction-dominant systems (Recurrence Quantification Analysis and the multifractal spectrum) enable QDA to classify the stimuli almost identically as observed in dyslexic and average reading participants. It seems unlikely that participants used any of the features that are traditionally associated with accounts of (impaired) speech perception. The nature of the variables quantifying the temporal dynamics of the speech stimuli imply that the classification of speech stimuli cannot be regarded as a linear aggregate of component processes that each parse the acoustic signal independent of one another, as is assumed by the 'classical' aetiologies of developmental dyslexia. It is suggested that the results imply that the differences in speech perception performance between average and

  7. Classifying acoustic signals into phoneme categories: average and dyslexic readers make use of complex dynamical patterns and multifractal scaling properties of the speech signal.

    PubMed

    Hasselman, Fred

    2015-01-01

    Several competing aetiologies of developmental dyslexia suggest that the problems with acquiring literacy skills are causally entailed by low-level auditory and/or speech perception processes. The purpose of this study is to evaluate the diverging claims about the specific deficient peceptual processes under conditions of strong inference. Theoretically relevant acoustic features were extracted from a set of artificial speech stimuli that lie on a /bAk/-/dAk/ continuum. The features were tested on their ability to enable a simple classifier (Quadratic Discriminant Analysis) to reproduce the observed classification performance of average and dyslexic readers in a speech perception experiment. The 'classical' features examined were based on component process accounts of developmental dyslexia such as the supposed deficit in Envelope Rise Time detection and the deficit in the detection of rapid changes in the distribution of energy in the frequency spectrum (formant transitions). Studies examining these temporal processing deficit hypotheses do not employ measures that quantify the temporal dynamics of stimuli. It is shown that measures based on quantification of the dynamics of complex, interaction-dominant systems (Recurrence Quantification Analysis and the multifractal spectrum) enable QDA to classify the stimuli almost identically as observed in dyslexic and average reading participants. It seems unlikely that participants used any of the features that are traditionally associated with accounts of (impaired) speech perception. The nature of the variables quantifying the temporal dynamics of the speech stimuli imply that the classification of speech stimuli cannot be regarded as a linear aggregate of component processes that each parse the acoustic signal independent of one another, as is assumed by the 'classical' aetiologies of developmental dyslexia. It is suggested that the results imply that the differences in speech perception performance between average and

  8. Classifying acoustic signals into phoneme categories: average and dyslexic readers make use of complex dynamical patterns and multifractal scaling properties of the speech signal

    PubMed Central

    2015-01-01

    Several competing aetiologies of developmental dyslexia suggest that the problems with acquiring literacy skills are causally entailed by low-level auditory and/or speech perception processes. The purpose of this study is to evaluate the diverging claims about the specific deficient peceptual processes under conditions of strong inference. Theoretically relevant acoustic features were extracted from a set of artificial speech stimuli that lie on a /bAk/-/dAk/ continuum. The features were tested on their ability to enable a simple classifier (Quadratic Discriminant Analysis) to reproduce the observed classification performance of average and dyslexic readers in a speech perception experiment. The ‘classical’ features examined were based on component process accounts of developmental dyslexia such as the supposed deficit in Envelope Rise Time detection and the deficit in the detection of rapid changes in the distribution of energy in the frequency spectrum (formant transitions). Studies examining these temporal processing deficit hypotheses do not employ measures that quantify the temporal dynamics of stimuli. It is shown that measures based on quantification of the dynamics of complex, interaction-dominant systems (Recurrence Quantification Analysis and the multifractal spectrum) enable QDA to classify the stimuli almost identically as observed in dyslexic and average reading participants. It seems unlikely that participants used any of the features that are traditionally associated with accounts of (impaired) speech perception. The nature of the variables quantifying the temporal dynamics of the speech stimuli imply that the classification of speech stimuli cannot be regarded as a linear aggregate of component processes that each parse the acoustic signal independent of one another, as is assumed by the ‘classical’ aetiologies of developmental dyslexia. It is suggested that the results imply that the differences in speech perception performance between

  9. Effect of sound on gap-junction-based intercellular signaling: Calcium waves under acoustic irradiation

    NASA Astrophysics Data System (ADS)

    Deymier, P. A.; Swinteck, N.; Runge, K.; Deymier-Black, A.; Hoying, J. B.

    2015-11-01

    We present a previously unrecognized effect of sound waves on gap-junction-based intercellular signaling such as in biological tissues composed of endothelial cells. We suggest that sound irradiation may, through temporal and spatial modulation of cell-to-cell conductance, create intercellular calcium waves with unidirectional signal propagation associated with nonconventional topologies. Nonreciprocity in calcium wave propagation induced by sound wave irradiation is demonstrated in the case of a linear and a nonlinear reaction-diffusion model. This demonstration should be applicable to other types of gap-junction-based intercellular signals, and it is thought that it should be of help in interpreting a broad range of biological phenomena associated with the beneficial therapeutic effects of sound irradiation and possibly the harmful effects of sound waves on health.

  10. Effect of sound on gap-junction-based intercellular signaling: Calcium waves under acoustic irradiation.

    PubMed

    Deymier, P A; Swinteck, N; Runge, K; Deymier-Black, A; Hoying, J B

    2015-01-01

    We present a previously unrecognized effect of sound waves on gap-junction-based intercellular signaling such as in biological tissues composed of endothelial cells. We suggest that sound irradiation may, through temporal and spatial modulation of cell-to-cell conductance, create intercellular calcium waves with unidirectional signal propagation associated with nonconventional topologies. Nonreciprocity in calcium wave propagation induced by sound wave irradiation is demonstrated in the case of a linear and a nonlinear reaction-diffusion model. This demonstration should be applicable to other types of gap-junction-based intercellular signals, and it is thought that it should be of help in interpreting a broad range of biological phenomena associated with the beneficial therapeutic effects of sound irradiation and possibly the harmful effects of sound waves on health.

  11. Habituation of Auditory Steady State Responses Evoked by Amplitude-Modulated Acoustic Signals in Rats

    PubMed Central

    Prado-Gutierrez, Pavel; Castro-Fariñas, Anisleidy; Morgado-Rodriguez, Lisbet; Velarde-Reyes, Ernesto; Martínez, Agustín D.; Martínez-Montes, Eduardo

    2015-01-01

    Generation of the auditory steady state responses (ASSR) is commonly explained by the linear combination of random background noise activity and the stationary response. Based on this model, the decrease of amplitude that occurs over the sequential averaging of epochs of the raw data has been exclusively linked to the cancelation of noise. Nevertheless, this behavior might also reflect the non-stationary response of the ASSR generators. We tested this hypothesis by characterizing the ASSR time course in rats with different auditory maturational stages. ASSR were evoked by 8-kHz tones of different supra-threshold intensities, modulated in amplitude at 115 Hz. Results show that the ASSR amplitude habituated to the sustained stimulation and that dishabituation occurred when deviant stimuli were presented. ASSR habituation increased as animals became adults, suggesting that the ability to filter acoustic stimuli with no-relevant temporal information increased with age. Results are discussed in terms of the current model of the ASSR generation and analysis procedures. They might have implications for audiometric tests designed to assess hearing in subjects who cannot provide reliable results in the psychophysical trials. PMID:26557360

  12. Computational principles underlying recognition of acoustic signals in grasshoppers and crickets.

    PubMed

    Ronacher, Bernhard; Hennig, R Matthias; Clemens, Jan

    2015-01-01

    Grasshoppers and crickets independently evolved hearing organs and acoustic communication. They differ considerably in the organization of their auditory pathways, and the complexity of their songs, which are essential for mate attraction. Recent approaches aimed at describing the behavioral preference functions of females in both taxa by a simple modeling framework. The basic structure of the model consists of three processing steps: (1) feature extraction with a bank of 'LN models'-each containing a linear filter followed by a nonlinearity, (2) temporal integration, and (3) linear combination. The specific properties of the filters and nonlinearities were determined using a genetic learning algorithm trained on a large set of different song features and the corresponding behavioral response scores. The model showed an excellent prediction of the behavioral responses to the tested songs. Most remarkably, in both taxa the genetic algorithm found Gabor-like functions as the optimal filter shapes. By slight modifications of Gabor filters several types of preference functions could be modeled, which are observed in different cricket species. Furthermore, this model was able to explain several so far enigmatic results in grasshoppers. The computational approach offered a remarkably simple framework that can account for phenotypically rather different preference functions across several taxa.

  13. Variability of spike trains and the processing of temporal patterns of acoustic signals-problems, constraints, and solutions.

    PubMed

    Ronacher, B; Franz, A; Wohlgemuth, S; Hennig, R M

    2004-04-01

    Object recognition and classification by sensory pathways is rooted in spike trains provided by sensory neurons. Nervous systems had to evolve mechanisms to extract information about relevant object properties, and to separate these from spurious features. In this review, problems caused by spike train variability and counterstrategies are exemplified for the processing of acoustic signals in orthopteran insects. Due to size limitations of their nervous system we expect to find solutions that are stripped to the computational basics. A key feature of auditory systems is temporal resolution, which is likely limited by spike train variability. Basic strategies to reduce such variability are to integrate over time, or to average across several neurons. The first strategy is constrained by its possible interference with temporal resolution. Grasshoppers do not seem to explore temporal integration much, in spite of the repetitive structure of their songs, which invites for 'multiple looks' at the signal. The benefits of averaging across neurons depend on uncorrelated responses, a factor that may be crucial for the performance and evolution of small nervous systems. In spite of spike train variability the temporal information necessary for the recognition of conspecifics is preserved to a remarkable degree in the auditory pathway.

  14. Alarm signals of the great gerbil: Acoustic variation by predator context, sex, age, individual, and family group

    NASA Astrophysics Data System (ADS)

    Randall, Jan A.; McCowan, Brenda; Collins, Kellie C.; Hooper, Stacie L.; Rogovin, Konstantin

    2005-10-01

    The great gerbil, Rhombomys opinus, is a highly social rodent that usually lives in family groups consisting of related females, their offspring, and an adult male. The gerbils emit alarm vocalizations in the presence of diverse predators with different hunting tactics. Alarm calls were recorded in response to three predators, a monitor lizard, hunting dog, and human, to determine whether the most common call type, the rhythmic call, is functionally referential with regard to type of predator. Results show variation in the alarm calls of both adults and subadults with the type of predator. Discriminant function analysis classified an average of 70% of calls to predator type. Call variation, however, was not limited to the predator context, because signal structure also differed by sex, age, individual callers, and family groups. These variations illustrate the flexibility of the rhythmic alarm call of the great gerbil and how it might have multiple functions and communicate in multiple contexts. Three alarm calls, variation in the rhythmic call, and vibrational signals generated from foot-drumming provide the gerbils with a varied and multi-channel acoustic repertoire.

  15. Mountain chickadees from different elevations sing different songs: acoustic adaptation, temporal drift or signal of local adaptation?

    PubMed

    Branch, Carrie L; Pravosudov, Vladimir V

    2015-04-01

    Song in songbirds is widely thought to function in mate choice and male-male competition. Song is also phenotypically plastic and typically learned from local adults; therefore, it varies across geographical space and can serve as a cue for an individual's location of origin, with females commonly preferring males from their respective location. Geographical variation in song dialect may reflect acoustic adaptation to different environments and/or serve as a signal of local adaptation. In montane environments, environmental differences can occur over an elevation gradient, favouring local adaptations across small spatial scales. We tested whether food caching mountain chickadees, known to exhibit elevation-related differences in food caching intensity, spatial memory and the hippocampus, also sing different dialects despite continuous distribution and close proximity. Male songs were collected from high and low elevations at two different mountains (separated by 35 km) to test whether song differs between elevations and/or between adjacent populations at each mountain. Song structure varied significantly between high and low elevation adjacent populations from the same mountain and between populations from different mountains at the same elevations, despite a continuous distribution across each mountain slope. These results suggest that elevation-related differences in song structure in chickadees might serve as a signal for local adaptation.

  16. Mountain chickadees from different elevations sing different songs: acoustic adaptation, temporal drift or signal of local adaptation?

    PubMed Central

    Branch, Carrie L.; Pravosudov, Vladimir V.

    2015-01-01

    Song in songbirds is widely thought to function in mate choice and male–male competition. Song is also phenotypically plastic and typically learned from local adults; therefore, it varies across geographical space and can serve as a cue for an individual's location of origin, with females commonly preferring males from their respective location. Geographical variation in song dialect may reflect acoustic adaptation to different environments and/or serve as a signal of local adaptation. In montane environments, environmental differences can occur over an elevation gradient, favouring local adaptations across small spatial scales. We tested whether food caching mountain chickadees, known to exhibit elevation-related differences in food caching intensity, spatial memory and the hippocampus, also sing different dialects despite continuous distribution and close proximity. Male songs were collected from high and low elevations at two different mountains (separated by 35 km) to test whether song differs between elevations and/or between adjacent populations at each mountain. Song structure varied significantly between high and low elevation adjacent populations from the same mountain and between populations from different mountains at the same elevations, despite a continuous distribution across each mountain slope. These results suggest that elevation-related differences in song structure in chickadees might serve as a signal for local adaptation. PMID:26064641

  17. Comparison of Methods for Identifying Noise Sources in Far-Field Acoustic Signals

    NASA Astrophysics Data System (ADS)

    Tenney, Andrew; Lewalle, Jacques

    2013-11-01

    Three different methods of extracting intermittent wave packets from unstructured background within complex time series signals were analyzed and compared. The algorithms are denoted ``cross correlation,'' ``denoising,'' and ``TFLE (Time-Frequency-Lag event)'' methods respectively. All three methods utilize Mexican Hat or Morlet wavelets for the transformation of time domain signals into time-frequency domain signals. Within the denoising and cross correlation algorithms, events are identified through comparison of high energy excerpts of each signal captured by individual far-field microphones, while the TFLE algorithm simply defines events by their contributions to positive correlation values. The goal of this analysis is to quantify the advantages and disadvantages of each of these methods. The results lend themselves to determining the validity of these methods as noise source identification algorithms to be used in jet noise characterization. This work is supported in part by Spectral Energies LLC, under an SBIR grant from AFRL; and by the Department of Mechanical and Aerospace Engineering REU Program at SU.

  18. A High Performance Pocket-Size System for Evaluations in Acoustic Signal Processing

    NASA Astrophysics Data System (ADS)

    Rass, Uwe; Steeger, Gerhard H.

    2001-12-01

    Custom-made hardware is attractive for sophisticated signal processing in wearable electroacoustic devices, but has a high initial cost overhead. Thus, signal processing algorithms should be tested thoroughly in real application environments by potential end users prior to the hardware implementation. In addition, the algorithms should be easily alterable during this test phase. A wearable system which meets these requirements has been developed and built. The system is based on the high performance signal processor Motorola DSP56309. This device also includes high quality stereo analog-to-digital-(ADC)- and digital-to-analog-(DAC)-converters with 20 bit word length each. The available dynamic range exceeds 88 dB. The input and output gains can be adjusted by digitally controlled potentiometers. The housing of the unit is small enough to carry it in a pocket (dimensions 150 × 80 × 25 mm). Software tools have been developed to ease the development of new algorithms. A set of configurable Assembler code modules implements all hardware dependent software routines and gives easy access to the peripherals and interfaces. A comfortable fitting interface allows easy control of the signal processing unit from a PC, even by assistant personnel. The device has proven to be a helpful means for development and field evaluations of advanced new hearing aid algorithms, within interdisciplinary research projects. Now it is offered to the scientific community.

  19. [EFFECTS OF MUSIC-ACOUSTIC SIGNALS, ONLINE CONTROLLED BY EEG OSCILLATORS OF THE SUBJECT].

    PubMed

    Fedotchev, A I; Bondar, A T; Bakhchina, A V; Parin, S B; Polevaya, S A; Radchenko, G S

    2015-08-01

    The effects of 2 variants of the method of musical EEG neurofeedback, in which the dominant spectral components of subject's EEG (EEG oscillators) are online converted to music-like signals similar by timbre to flute sounds, have been studied. In the first case, these music-like signals were smoothly varying by the pitch and intensity in accordance with the current amplitude of the EEG oscillator. In the second case, the same variations of flute-like sound were accompanied by such musical element as rhythm. After the single exposure, the modifications of subject's brain activity and positive changes in psycho-physiological state of the subject have been found. Particularly pronounced effects were observed under rhythmically organized music-like stimuli.

  20. [EFFECTS OF MUSIC-ACOUSTIC SIGNALS, ONLINE CONTROLLED BY EEG OSCILLATORS OF THE SUBJECT].

    PubMed

    Fedotchev, A I; Bondar, A T; Bakhchina, A V; Parin, S B; Polevaya, S A; Radchenko, G S

    2015-08-01

    The effects of 2 variants of the method of musical EEG neurofeedback, in which the dominant spectral components of subject's EEG (EEG oscillators) are online converted to music-like signals similar by timbre to flute sounds, have been studied. In the first case, these music-like signals were smoothly varying by the pitch and intensity in accordance with the current amplitude of the EEG oscillator. In the second case, the same variations of flute-like sound were accompanied by such musical element as rhythm. After the single exposure, the modifications of subject's brain activity and positive changes in psycho-physiological state of the subject have been found. Particularly pronounced effects were observed under rhythmically organized music-like stimuli. PMID:26591592

  1. Technique for the suppression of three-pass signals in surface-acoustic-wave filters

    NASA Astrophysics Data System (ADS)

    Paskhin, V. M.; Sandler, M. S.; Sveshnikov, B. V.

    1981-12-01

    It is shown analytically that for any thickness of the interdigital transducer (IDT) electrodes, the level of three-pass signal suppression can be made appreciable by the proper choice of complex electrical loads of the transducers. These loads are shown to depend on the IDT electrode thickness. The theoretical conclusion is verified experimentally by studying an SAW filter with aluminum IDT on an ST-cut quartz substrate.

  2. A method of construction of information images of the acoustic signals of the human bronchopulmonary system

    NASA Astrophysics Data System (ADS)

    Bureev, A. Sh.; Zhdanov, D. S.; Zemlyakov, I. Yu.; Kiseleva, E. Yu.; Khokhlova, L. A.

    2015-11-01

    The present study focuses on the development of a method of identification of respiratory sounds and noises of a human naturally and in various pathological conditions. The existing approaches based on a simple method of frequency and time signal analysis, have insufficient specificity, efficiency and unambiguous interpretation of the results of a clinical study. An algorithm for a phase selection of respiratory cycles and analysis of respiratory sounds resulting from bronchi examination of a patient has been suggested. The algorithm is based on the method of phase timing analysis of bronchi phonograms. The results of the phase-frequency algorithm with high resolution reflects a time position of the traceable signals and the individual structure of recorded signals. This allows using the proposed method for the formation of information images (models) of the diagnostically significant fragments. A weight function, frequency parameters of which can be selectively modified, is used for this purpose. The vision of the weighting function is specific to each type of respiratory noise, traditionally referred to quality characteristics (wet or dry noise, crackling, etc.).

  3. Comment on "The directionality of acoustic T-phase signals from small magnitude submarine earthquakes" [J. Acoust. Soc. Am. 119, 3669-3675 (2006)].

    PubMed

    Bohnenstiehl, Delwayne R

    2007-03-01

    In a recent paper, Chapman and Marrett [J. Acoust. Soc. Am. 119, 3669-3675 (2006)] examined the tertiary (T-) waves associated with three subduction-related earthquakes within the South Fiji Basin. In that paper it is argued that acoustic energy is radiated into the sound channel by downslope propagation along abyssal seamounts and ridges that lie distant to the epicenter. A reexamination of the travel-time constraints indicates that this interpretation is not well supported. Rather, the propagation model that is described would require the high-amplitude T-wave components to be sourced well to the east of the region identified, along a relatively flat-lying seafloor.

  4. Continuous measurements of suspended sediment loads using dual frequency acoustic Doppler profile signals

    NASA Astrophysics Data System (ADS)

    Antonini, Alessandro; Guerrero, Massimo; Rüther, Nils; Stokseth, Siri

    2016-04-01

    A huge thread to Hydropower plants (HPP) is incoming sediments in suspension from the rivers upstream. The sediments settle in the reservoir and reduce the effective head as well as the volume and reduce consequently the lifetime of the reservoir. In addition are the fine sediments causing severe damages to turbines and infrastructure of a HPP. For estimating the amount of in-coming sediments in suspension and the consequent planning of efficient counter measures, it is essential to monitor the rivers within the catchment of the HPP for suspended sediments. This work is considerably time consuming and requires highly educated personnel and is therefore expensive. Surrogate-indirect methods using acoustic and optic devices have bee developed since the last decades that may be efficiently applied for the continuous monitoring of suspended sediment loads. The presented study proposes therefore to establish a research station at a cross section of a river which is the main tributary to a reservoir of a HPP and equip this station with surrogate as well as with common method of measuring suspended load concentrations and related flow discharge and level. The logger at the research station delivers data automatically to a server. Therefore it is ensured that also large flood events are covered. Data during flood are of high interest to the HPP planners since they carried the most part of the sediment load in a hydrological year. Theses peaks can hardly be measured with common measurement methods. Preliminary results of the wet season 2015/2016 are presented. The data gives insight in the applicable range, in terms of scattering particles concentration-average size and corresponding flow discharge and level, eventually enabling the study of suspended sediment load-water flow correlations during peak events. This work is carried out as part of a larger research project on sustainable hydro power plants exposed to high sediment yield, SediPASS. SediPASS is funded by the

  5. Time-varying autoregressive modelling for nonstationary acoustic signal and its frequency analysis

    NASA Astrophysics Data System (ADS)

    Sodsri, Chukiet

    2003-06-01

    A time-varying autoregressive (TVAR) approach is used for modeling nonstationary signals, and frequency information is then extracted from the TVAR parameters. Two methods may be used for estimating the TVAR parameters: the adaptive algorithm approach and the basis function approach. Adaptive algorithms, such as the least mean square (LMS) and the recursive least square (RLS), use a dynamic model for adapting the TVAR parameters and are capable of tracking time-varying frequency, provided that the variation is slow. It is observed that, if the signals have a single time-frequency component, the RLS with a fixed pole on the unit circle yields the fastest convergence. The basis function method employs an explicit model for the TVAR parameter variation, and model parameters are estimated via a block calculation. We proposed a modification to the basis function method by utilizing both forward and backward predictors for estimating the time-varying spectral density of nonstationary signals. It is shown that our approach yields better accuracy than the existing basis function approach, which uses only the forward predictor. The selection of the basis functions and limitations are also discussed in this thesis. Finally, the proposed approach is applied to analyze violin vibrato. Our results showed superior frequency resolution and spectral line smoothness using the proposed approach, compared to conventional analysis with the short time Fourier transform (STFT) whose frequency resolution is very limited. It was also found that frequency modulation of vibrato occurs at the rate of 6 Hz, and the frequency variations for each partial are different and increase nonlinearly with the partial number.

  6. [Music-Acoustic Signals Controlled by Subject's Brain Potentials in the Correction of Unfavorable Functional States].

    PubMed

    Fedotchev, A I; Bondar, A T; Bakhchina, A V; Parin, S B; Polevaya, S A; Radchenko, G S

    2016-01-01

    Literature review and the results of own studies on the development and experimental testing of musical EEG neurofeedback technology are presented. The technology is based on exposure of subjects to music or music-like signals that are organized in strict accordance with the current values of brain potentials of the patient. The main attention is paid to the analysis of the effectiveness of several versions of the technology, using specific and meaningful for the individual narrow-frequency EEG oscillators during the correction of unfavorable changes of the functional state. PMID:27149824

  7. [Music-Acoustic Signals Controlled by Subject's Brain Potentials in the Correction of Unfavorable Functional States].

    PubMed

    Fedotchev, A I; Bondar, A T; Bakhchina, A V; Parin, S B; Polevaya, S A; Radchenko, G S

    2016-01-01

    Literature review and the results of own studies on the development and experimental testing of musical EEG neurofeedback technology are presented. The technology is based on exposure of subjects to music or music-like signals that are organized in strict accordance with the current values of brain potentials of the patient. The main attention is paid to the analysis of the effectiveness of several versions of the technology, using specific and meaningful for the individual narrow-frequency EEG oscillators during the correction of unfavorable changes of the functional state.

  8. Advanced Concepts for Underwater Acoustic Channel Modeling

    NASA Astrophysics Data System (ADS)

    Etter, P. C.; Haas, C. H.; Ramani, D. V.

    2014-12-01

    This paper examines nearshore underwater-acoustic channel modeling concepts and compares channel-state information requirements against existing modeling capabilities. This process defines a subset of candidate acoustic models suitable for simulating signal propagation in underwater communications. Underwater-acoustic communications find many practical applications in coastal oceanography, and networking is the enabling technology for these applications. Such networks can be formed by establishing two-way acoustic links between autonomous underwater vehicles and moored oceanographic sensors. These networks can be connected to a surface unit for further data transfer to ships, satellites, or shore stations via a radio-frequency link. This configuration establishes an interactive environment in which researchers can extract real-time data from multiple, but distant, underwater instruments. After evaluating the obtained data, control messages can be sent back to individual instruments to adapt the networks to changing situations. Underwater networks can also be used to increase the operating ranges of autonomous underwater vehicles by hopping the control and data messages through networks that cover large areas. A model of the ocean medium between acoustic sources and receivers is called a channel model. In an oceanic channel, characteristics of the acoustic signals change as they travel from transmitters to receivers. These characteristics depend upon the acoustic frequency, the distances between sources and receivers, the paths followed by the signals, and the prevailing ocean environment in the vicinity of the paths. Properties of the received signals can be derived from those of the transmitted signals using these channel models. This study concludes that ray-theory models are best suited to the simulation of acoustic signal propagation in oceanic channels and identifies 33 such models that are eligible candidates.

  9. Corruption of ant acoustical signals by mimetic social parasites: Maculinea butterflies achieve elevated status in host societies by mimicking the acoustics of queen ants.

    PubMed

    Thomas, Jeremy A; Schönrogge, Karsten; Bonelli, Simona; Barbero, Francesca; Balletto, Emilio

    2010-03-01

    Recent recordings of the stridulations of Myrmica ants revealed that their queens made distinctive sounds from their workers, although the acoustics of queens and workers, respectively, were the same in different species of Myrmica. Queen recordings induced enhanced protective behavior when played to workers in the one species tested. Larvae and pupae of the butterfly genus Maculinea inhabit Myrmica colonies as social parasites, and both stages generate sounds that mimic those of a Myrmica queen, inducing similar superior treatments from workers as their model. We discuss how initial penetration and acceptance as a colony member is achieved by Maculinea through mimicking the species-specific semio-chemicals of their hosts, and how acoustical mimicry is then employed to elevate the parasite's membership of that society towards the highest attainable level in their host's hierarchy. We postulate that, if acoustics is as well developed a means of communication in certain ants as these studies suggest, then others among an estimated 10,000 species of ant social parasite may supplement their well-known use of chemical and tactile mimicry to trick host ants with mimicry of host acoustical systems.

  10. Are mussels able to distinguish underwater sounds? Assessment of the reactions of Mytilus galloprovincialis after exposure to lab-generated acoustic signals.

    PubMed

    Vazzana, Mirella; Celi, Monica; Maricchiolo, Giulia; Genovese, Lucrezia; Corrias, Valentina; Quinci, Enza Maria; de Vincenzi, Giovanni; Maccarrone, Vincenzo; Cammilleri, Gaetano; Mazzola, Salvatore; Buscaino, Giuseppa; Filiciotto, Francesco

    2016-11-01

    This study examined the effects of lab-generated acoustic signals on the behaviour and biochemistry of Mediterranean mussels (Mytilus galloprovincialis). The experiment was carried out in a tank equipped with a video-recording system using six groups of five mussels exposed to five acoustic treatments (each treatment was replicated three times) for 30min. The acoustic signals, with a maximum sound pressure level of 150dB rms re 1μPa, differed in frequency range as follows: low (0.1-5kHz), mid-low (5-10kHz), mid (10-20kHz), mid-high (20-40kHz) and high (40-60kHz). The exposure to sweeps did not produce any significant changes in the mussels' behaviour. Conversely, the specimens exposed to the low frequency band treatment showed significantly higher values of the following biochemical stress parameters measured in their plasma and tissues: glucose, total proteins, total haemocyte number (THC), heat shock protein 70 (Hsp70) expression, and Acetylcholinesterase (AChE) activity. The responses observed in the mussels exposed to low frequency sweeps enable us to suppose a biological and ecological role for this sound, which contains the main frequencies produced by both shipping traffic and the acoustic emissions of fish. PMID:27371112

  11. Are mussels able to distinguish underwater sounds? Assessment of the reactions of Mytilus galloprovincialis after exposure to lab-generated acoustic signals.

    PubMed

    Vazzana, Mirella; Celi, Monica; Maricchiolo, Giulia; Genovese, Lucrezia; Corrias, Valentina; Quinci, Enza Maria; de Vincenzi, Giovanni; Maccarrone, Vincenzo; Cammilleri, Gaetano; Mazzola, Salvatore; Buscaino, Giuseppa; Filiciotto, Francesco

    2016-11-01

    This study examined the effects of lab-generated acoustic signals on the behaviour and biochemistry of Mediterranean mussels (Mytilus galloprovincialis). The experiment was carried out in a tank equipped with a video-recording system using six groups of five mussels exposed to five acoustic treatments (each treatment was replicated three times) for 30min. The acoustic signals, with a maximum sound pressure level of 150dB rms re 1μPa, differed in frequency range as follows: low (0.1-5kHz), mid-low (5-10kHz), mid (10-20kHz), mid-high (20-40kHz) and high (40-60kHz). The exposure to sweeps did not produce any significant changes in the mussels' behaviour. Conversely, the specimens exposed to the low frequency band treatment showed significantly higher values of the following biochemical stress parameters measured in their plasma and tissues: glucose, total proteins, total haemocyte number (THC), heat shock protein 70 (Hsp70) expression, and Acetylcholinesterase (AChE) activity. The responses observed in the mussels exposed to low frequency sweeps enable us to suppose a biological and ecological role for this sound, which contains the main frequencies produced by both shipping traffic and the acoustic emissions of fish.

  12. High signal-to-noise acoustic sensor using phase-shifted gratings interrogated by the Pound-Drever-Hall technique

    NASA Astrophysics Data System (ADS)

    Kung, Peter; Comanici, Maria I.

    2014-11-01

    Optical fiber is made of glass, an insulator, and thus it is immune to strong electromagnetic interference. Therefore, fiber optics is a technology ideally suitable for sensing of partial discharge (PD) both in transformers and generators. Extensive efforts have been used to develop a cost effective solution for detecting partial discharge, which generates acoustic emission, with signals ranging from 30 kHz to 200 kHz. The requirement is similar to fiber optics Hydro Phone, but at higher frequencies. There are several keys to success: there must be at least 60 dB signal-to-noise ratio (SNR) performance, which will ensure not only PD detection but later on provide diagnostics and also the ability to locate the origin of the events. Defects that are stationary would gradually degrade the insulation and result in total breakdown. Transformers currently need urgent attention: most of them are oil filled and are at least 30 to 50 years old, close to the end of life. In this context, an issue to be addressed is the safety of the personnel working close to the assets and collateral damage that could be caused by a tank explosion (with fire spilling over the whole facility). This paper will describe the latest achievement in fiber optics PD sensor technology: the use of phase shifted-fiber gratings with a very high speed interrogation method that uses the Pound-Drever-Hall technique. More importantly, this is based on a technology that could be automated, easy to install, and, eventually, available at affordable prices.

  13. High signal-to-noise ratio acoustic sensor using phase shifted gratings interrogated by the Pound-Drever-Hall technique

    NASA Astrophysics Data System (ADS)

    Kung, Peter; Comanici, Maria I.

    2015-03-01

    Optical fiber is made of glass, an insulator, and thus it is immune to strong electromagnetic interference. Therefore, fiber optics is a technology ideally suitable for sensing of partial discharge (PD) both in transformers and generators. Extensive efforts have been used to develop a cost effective solution for detecting partial discharge, which generates acoustic emission, with signals ranging from 30 kHz to 200 kHz. The requirement is similar to fiber optics Hydro Phone, but at higher frequencies. There are several keys to success: there must be at least 60 dB signal-to-noise ratio (SNR) performance, which will ensure not only PD detection but later on provide diagnostics and also the ability to locate the origin of the events. Defects that are stationary would gradually degrade the insulation and result in total breakdown. Transformers currently need urgent attention: most of them are oil filled and are at least 30 to 50 years old, close to the end of life. In this context, an issue to be addressed is the safety of the personnel working close to the assets and collateral damage that could be caused by a tank explosion (with fire spilling over the whole facility). This paper will describe the latest achievement in fiber optics PD sensor technology: the use of phase shifted-fiber gratings with a very high speed interrogation method that uses the Pound-Drever-Hall technique. More importantly, this is based on a technology that could be automated, easy to install, and, eventually, available at affordable prices.

  14. Fast contactless vibrating structure characterization using real time field programmable gate array-based digital signal processing: demonstrations with a passive wireless acoustic delay line probe and vision.

    PubMed

    Goavec-Mérou, G; Chrétien, N; Friedt, J-M; Sandoz, P; Martin, G; Lenczner, M; Ballandras, S

    2014-01-01

    Vibrating mechanical structure characterization is demonstrated using contactless techniques best suited for mobile and rotating equipments. Fast measurement rates are achieved using Field Programmable Gate Array (FPGA) devices as real-time digital signal processors. Two kinds of algorithms are implemented on FPGA and experimentally validated in the case of the vibrating tuning fork. A first application concerns in-plane displacement detection by vision with sampling rates above 10 kHz, thus reaching frequency ranges above the audio range. A second demonstration concerns pulsed-RADAR cooperative target phase detection and is applied to radiofrequency acoustic transducers used as passive wireless strain gauges. In this case, the 250 ksamples/s refresh rate achieved is only limited by the acoustic sensor design but not by the detection bandwidth. These realizations illustrate the efficiency, interest, and potentialities of FPGA-based real-time digital signal processing for the contactless interrogation of passive embedded probes with high refresh rates. PMID:24517814

  15. Fast contactless vibrating structure characterization using real time field programmable gate array-based digital signal processing: Demonstrations with a passive wireless acoustic delay line probe and vision

    NASA Astrophysics Data System (ADS)

    Goavec-Mérou, G.; Chrétien, N.; Friedt, J.-M.; Sandoz, P.; Martin, G.; Lenczner, M.; Ballandras, S.

    2014-01-01

    Vibrating mechanical structure characterization is demonstrated using contactless techniques best suited for mobile and rotating equipments. Fast measurement rates are achieved using Field Programmable Gate Array (FPGA) devices as real-time digital signal processors. Two kinds of algorithms are implemented on FPGA and experimentally validated in the case of the vibrating tuning fork. A first application concerns in-plane displacement detection by vision with sampling rates above 10 kHz, thus reaching frequency ranges above the audio range. A second demonstration concerns pulsed-RADAR cooperative target phase detection and is applied to radiofrequency acoustic transducers used as passive wireless strain gauges. In this case, the 250 ksamples/s refresh rate achieved is only limited by the acoustic sensor design but not by the detection bandwidth. These realizations illustrate the efficiency, interest, and potentialities of FPGA-based real-time digital signal processing for the contactless interrogation of passive embedded probes with high refresh rates.

  16. Signal/Image Processing of Acoustic Flaw Signatures for Detection and Localization

    SciTech Connect

    Candy, J V; Meyer, A W

    2001-06-01

    The timely, nondestructive evaluation (NDE) of critical optics in high energy, pulsed laser experiments is a crucial analysis that must be performed for the experiment to be successful. Failure to detect flaws of critical sizes in vacuum-loaded optical windows can result in a catastrophic failure jeopardizing the safety of both personnel and costly equipment. We discuss the development of signal/image processing techniques to both detect critical flaws and locate their position on the window. The data measured from two Orthogonal arrays of narrow beamwidth ultrasonic transducers are preprocessed using a model-based scheme based on the Green's function of the medium providing individual channel signatures. These signatures are then transformed to the two-dimensional image space using a power-based estimator. A 2D-replicant is then constructed based on the underlying physics of the material along with the geometry of the window. Correlating the replicant with the enhanced power image leads to the optimal 2D-matched filter solution detecting and localizing the flaw. Controlled experimental results on machined flaws are discussed.

  17. Introduction to acoustic emission

    NASA Technical Reports Server (NTRS)

    Possa, G.

    1983-01-01

    Typical acoustic emission signal characteristics are described and techniques which localize the signal source by processing the acoustic delay data from multiple sensors are discussed. The instrumentation, which includes sensors, amplifiers, pulse counters, a minicomputer and output devices is examined. Applications are reviewed.

  18. True Katydids (Pseudophyllinae) from Guadeloupe: Acoustic Signals and Functional Considerations of Song Production

    PubMed Central

    Stumpner, Andreas; Dann, Angela; Schink, Matthias; Gubert, Silvia; Hugel, Sylvain

    2013-01-01

    Guadeloupe, the largest of the Leeward Islands, harbors three species of Pseudophyllinae (Orthoptera: Tettigoniidae) belonging to distinct tribes. This study examined the basic aspects of sound production and acousto-vibratory behavior of these species. As the songs of many Pseudophyllinae are complex and peak at high frequencies, they require high quality recordings. Wild specimens were therefore recorded ex situ. Collected specimens were used in structure-function experiments. Karukerana aguilari Bonfils (Pterophyllini) is a large species with a mirror in each tegmen and conspicuous folds over the mirror. It sings 4–6 syllables, each comprising 10–20 pulses, with several peaks in the frequency spectrum between 4 and 20 kHz. The song is among the loudest in Orthoptera (> 125 dB SPL in 10 cm distance). The folds are protective and have no function in song production. Both mirrors may work independently in sound radiation. Nesonotus reticulatus (Fabricius) (Cocconotini) produces verses from two syllables at irregular intervals. The song peaks around 20 kHz. While singing, the males often produce a tremulation signal with the abdomen at about 8–10 Hz. To our knowledge, it is the first record of simultaneous calling song and tremulation in Orthoptera. Other males reply to the tremulation with their own tremulation. Xerophyllopteryx fumosa (Brunner von Wattenwyl) (Pleminiini) is a large, bark-like species, producing a syllable of around 20 pulses. The syllables are produced with irregular rhythms (often two with shorter intervals). The song peaks around 2–3 kHz and 10 kHz. The hind wings are relatively thick and are held between the half opened tegmina during singing. Removal of the hind wings reduces song intensity by about 5 dB, especially of the low frequency component, suggesting that the hind wings have a role in amplifying the song. PMID:24785151

  19. True katydids (Pseudophyllinae) from Guadeloupe: acoustic signals and functional considerations of song production.

    PubMed

    Stumpner, Andreas; Dann, Angela; Schink, Matthias; Gubert, Silvia; Hugel, Sylvain

    2013-01-01

    Guadeloupe, the largest of the Leeward Islands, harbors three species of Pseudophyllinae (Orthoptera: Tettigoniidae) belonging to distinct tribes. This study examined the basic aspects of sound production and acousto-vibratory behavior of these species. As the songs of many Pseudophyllinae are complex and peak at high frequencies, they require high quality recordings. Wild specimens were therefore recorded ex situ. Collected specimens were used in structure-function experiments. Karukerana aguilari Bonfils (Pterophyllini) is a large species with a mirror in each tegmen and conspicuous folds over the mirror. It sings 4-6 syllables, each comprising 10-20 pulses, with several peaks in the frequency spectrum between 4 and 20 kHz. The song is among the loudest in Orthoptera (> 125 dB SPL in 10 cm distance). The folds are protective and have no function in song production. Both mirrors may work independently in sound radiation. Nesonotus reticulatus (Fabricius) (Cocconotini) produces verses from two syllables at irregular intervals. The song peaks around 20 kHz. While singing, the males often produce a tremulation signal with the abdomen at about 8-10 Hz. To our knowledge, it is the first record of simultaneous calling song and tremulation in Orthoptera. Other males reply to the tremulation with their own tremulation. Xerophyllopteryx fumosa (Brunner von Wattenwyl) (Pleminiini) is a large, bark-like species, producing a syllable of around 20 pulses. The syllables are produced with irregular rhythms (often two with shorter intervals). The song peaks around 2-3 kHz and 10 kHz. The hind wings are relatively thick and are held between the half opened tegmina during singing. Removal of the hind wings reduces song intensity by about 5 dB, especially of the low frequency component, suggesting that the hind wings have a role in amplifying the song. PMID:24785151

  20. Evaluation of a rubber-compound diaphragm for acoustic fisheries surveys: Effects on dual-beam signal intensity and beam patterns

    USGS Publications Warehouse

    Fleischer, Guy W.; Argyle, R.L.; Nester, R.T.; Dawson, J.J.

    2002-01-01

    The use of rubber-compound windows for fisheries acoustics must consider operating frequency and ambient water temperatures. Signal attenuation by the rubber becomes pronounced with increased frequency and decreased temperature. Based on our results, a 420 k Hz system could be expected to lose up to 3-4 dB in colder water through a 5.1-cm thick rubber diaphragm. At 120 k Hz, signal loss was negligible and would undoubtedly also be inconsequential for even lower frequencies used in fisheries applications (e.g., 70, 38 k Hz).

  1. Acoustic biosensors

    PubMed Central

    Fogel, Ronen; Seshia, Ashwin A.

    2016-01-01

    Resonant and acoustic wave devices have been researched for several decades for application in the gravimetric sensing of a variety of biological and chemical analytes. These devices operate by coupling the measurand (e.g. analyte adsorption) as a modulation in the physical properties of the acoustic wave (e.g. resonant frequency, acoustic velocity, dissipation) that can then be correlated with the amount of adsorbed analyte. These devices can also be miniaturized with advantages in terms of cost, size and scalability, as well as potential additional features including integration with microfluidics and electronics, scaled sensitivities associated with smaller dimensions and higher operational frequencies, the ability to multiplex detection across arrays of hundreds of devices embedded in a single chip, increased throughput and the ability to interrogate a wider range of modes including within the same device. Additionally, device fabrication is often compatible with semiconductor volume batch manufacturing techniques enabling cost scalability and a high degree of precision and reproducibility in the manufacturing process. Integration with microfluidics handling also enables suitable sample pre-processing/separation/purification/amplification steps that could improve selectivity and the overall signal-to-noise ratio. Three device types are reviewed here: (i) bulk acoustic wave sensors, (ii) surface acoustic wave sensors, and (iii) micro/nano-electromechanical system (MEMS/NEMS) sensors. PMID:27365040

  2. Acoustic biosensors.

    PubMed

    Fogel, Ronen; Limson, Janice; Seshia, Ashwin A

    2016-06-30

    Resonant and acoustic wave devices have been researched for several decades for application in the gravimetric sensing of a variety of biological and chemical analytes. These devices operate by coupling the measurand (e.g. analyte adsorption) as a modulation in the physical properties of the acoustic wave (e.g. resonant frequency, acoustic velocity, dissipation) that can then be correlated with the amount of adsorbed analyte. These devices can also be miniaturized with advantages in terms of cost, size and scalability, as well as potential additional features including integration with microfluidics and electronics, scaled sensitivities associated with smaller dimensions and higher operational frequencies, the ability to multiplex detection across arrays of hundreds of devices embedded in a single chip, increased throughput and the ability to interrogate a wider range of modes including within the same device. Additionally, device fabrication is often compatible with semiconductor volume batch manufacturing techniques enabling cost scalability and a high degree of precision and reproducibility in the manufacturing process. Integration with microfluidics handling also enables suitable sample pre-processing/separation/purification/amplification steps that could improve selectivity and the overall signal-to-noise ratio. Three device types are reviewed here: (i) bulk acoustic wave sensors, (ii) surface acoustic wave sensors, and (iii) micro/nano-electromechanical system (MEMS/NEMS) sensors. PMID:27365040

  3. Observation of Marine Animals Using Underwater Acoustic Camera

    NASA Astrophysics Data System (ADS)

    Iida, Kohji; Takahashi, Rika; Tang, Yong; Mukai, Tohru; Sato, Masanori

    2006-05-01

    An underwater acoustic camera enclosed in a pressure-resistant case was constructed to observe underwater marine animals. This enabled the measurement of the size, shape, and behavior of living marine animals in the detection range up to 240 cm. The transducer array of the acoustic camera was driven by 3.5 MHz ultrasonic signals, and B-mode acoustic images were obtained. Observations were conducted for captive animals in a water tank and for natural animals in a field. The captive animals, including fish, squid and jellyfish, were observed, and a three-dimensional internal structure of animals was reconstructed using multiple acoustical images. The most important contributors of acoustic scattering were the swimbladder and vertebra of bladdered fish, and the liver and reproductive organs of invertebrate animals. In a field experiment, the shape, size, and swimming behavior of wild animals were observed. The possibilities and limitations of the underwater acoustic camera for fishery applications were discussed.

  4. Acoustic communication in the Greater Sage-Grouse (Centrocercus urophasianus) an examination into vocal sacs, sound propagation, and signal directionality

    NASA Astrophysics Data System (ADS)

    Dantzker, Marc Steven

    The thesis is an inquiry into the acoustic communication of a very unusual avian species, the Greater Sage-Grouse, Centrocercus urophasianus. One of the most outstanding features of this animal's dynamic mating display is its use of paired air sacs that emerge explosively from an esophageal pouch. My first line of inquiry into this system is a review of the form and function of similar vocal apparatuses, collectively called vocal sacs, in birds. Next, with a combination of mathematical models and field measurements, My collaborator and I investigate the acoustic environment where the Greater Sage-Grouse display. The complexities of this acoustic environment are relevant both to the birds and to the subsequent examinations of the display's properties. Finally, my collaborators and I examine a cryptic component of the acoustic display --- directionality --- which we measured simultaneously from multiple locations around free moving grouse on their mating grounds.

  5. Low frequency acoustic microscope

    DOEpatents

    Khuri-Yakub, Butrus T.

    1986-11-04

    A scanning acoustic microscope is disclosed for the detection and location of near surface flaws, inclusions or voids in a solid sample material. A focused beam of acoustic energy is directed at the sample with its focal plane at the subsurface flaw, inclusion or void location. The sample is scanned with the beam. Detected acoustic energy specularly reflected and mode converted at the surface of the sample and acoustic energy reflected by subsurface flaws, inclusions or voids at the focal plane are used for generating an interference signal which is processed and forms a signal indicative of the subsurface flaws, inclusions or voids.

  6. A new avenue for obtaining insight into the functional characteristics of long noncoding RNAs associated with estrogen receptor signaling

    PubMed Central

    Wu, Liangcai; Xu, Qianqian; Zhang, Haohai; Li, Ming; Zhu, Chengpei; Jiang, Minjie; Sang, Xinting; Zhao, Yi; Sun, Qiang; Zhao, Haitao

    2016-01-01

    Estrogen receptor signalling plays important regulatory roles in multiple mammalian physiological processes. Dysregulation of estrogen receptor (ER) expression and/or its associated signalling pathway is strongly associated with the development, progression, transition, and endocrine-resistance of breast cancer. Non-coding transcripts are essential regulators of almost every level of gene regulation. However, few long non-coding transcripts (lncRNAs) associated with the estrogen receptor signalling pathway have been well-described. We used array-based methods to identify 33 estrogen receptor agitation-related (ERAR) lncRNAs. A coding–non-coding gene co-expression network analysis suggested that 15 ERAR lncRNAs were associated with mitosis, DNA damage, and DNA repair. Kaplan–Meier analysis indicated that five ERAR lncRNAs selected using the Random Forest-Recursive Feature Elimination algorithm were significantly correlated with endocrine resistance-free survival and distant metastasis-free survival as well as disease free survival. Our results suggest that ERAR lncRNAs may serve as novel biomarkers for guiding breast cancer treatment and prognosis. Furthermore, our findings reveal a new avenue by which estrogen receptor signalling can be further explored. PMID:27539025

  7. Using time separation of signals to obtain independent proton and antiproton beam position measurements around the Tevatron

    SciTech Connect

    Webber, R.; /Fermilab

    2005-05-01

    Independent position measurement of the counter-circulating proton and antiproton beams in the Tevatron, never supported by the original Tevatron Beam Position Monitor (BPM) system, presents a challenge to upgrading that system. This paper discusses the possibilities and complications of using time separation of proton and antiproton signals at the numerous BPM locations and for the dynamic Tevatron operating conditions. Results of measurements using one such method are presented.

  8. Acoustic leak detection system

    SciTech Connect

    Peacock, M.J.

    1993-08-03

    An acoustic leak detection system is described for determining the location of leaks in storage tanks, comprising: (a) sensor means for detecting a leak signal; (b) data acquisition means for digitizing and storing leak signals meeting preset criterion; and (c) analysis means for analyzing the digitized signals and computing the location of the source of the leak signals.

  9. Systems and methods for biometric identification using the acoustic properties of the ear canal

    DOEpatents

    Bouchard, Ann Marie; Osbourn, Gordon Cecil

    1998-01-01

    The present invention teaches systems and methods for verifying or recognizing a person's identity based on measurements of the acoustic response of the individual's ear canal. The system comprises an acoustic emission device, which emits an acoustic source signal s(t), designated by a computer, into the ear canal of an individual, and an acoustic response detection device, which detects the acoustic response signal f(t). A computer digitizes the response (detected) signal f(t) and stores the data. Computer-implemented algorithms analyze the response signal f(t) to produce ear-canal feature data. The ear-canal feature data obtained during enrollment is stored on the computer, or some other recording medium, to compare the enrollment data with ear-canal feature data produced in a subsequent access attempt, to determine if the individual has previously been enrolled. The system can also be adapted for remote access applications.

  10. Systems and methods for biometric identification using the acoustic properties of the ear canal

    DOEpatents

    Bouchard, A.M.; Osbourn, G.C.

    1998-07-28

    The present invention teaches systems and methods for verifying or recognizing a person`s identity based on measurements of the acoustic response of the individual`s ear canal. The system comprises an acoustic emission device, which emits an acoustic source signal s(t), designated by a computer, into the ear canal of an individual, and an acoustic response detection device, which detects the acoustic response signal f(t). A computer digitizes the response (detected) signal f(t) and stores the data. Computer-implemented algorithms analyze the response signal f(t) to produce ear-canal feature data. The ear-canal feature data obtained during enrollment is stored on the computer, or some other recording medium, to compare the enrollment data with ear-canal feature data produced in a subsequent access attempt, to determine if the individual has previously been enrolled. The system can also be adapted for remote access applications. 5 figs.

  11. Acoustic Remote Sensing

    NASA Astrophysics Data System (ADS)

    Dowling, David R.; Sabra, Karim G.

    2015-01-01

    Acoustic waves carry information about their source and collect information about their environment as they propagate. This article reviews how these information-carrying and -collecting features of acoustic waves that travel through fluids can be exploited for remote sensing. In nearly all cases, modern acoustic remote sensing involves array-recorded sounds and array signal processing to recover multidimensional results. The application realm for acoustic remote sensing spans an impressive range of signal frequencies (10-2 to 107 Hz) and distances (10-2 to 107 m) and involves biomedical ultrasound imaging, nondestructive evaluation, oil and gas exploration, military systems, and Nuclear Test Ban Treaty monitoring. In the past two decades, approaches have been developed to robustly localize remote sources; remove noise and multipath distortion from recorded signals; and determine the acoustic characteristics of the environment through which the sound waves have traveled, even when the recorded sounds originate from uncooperative sources or are merely ambient noise.

  12. Modulation by steroid hormones of a "sexy" acoustic signal in an Oscine species, the Common Canary Serinus canaria.

    PubMed

    Rybak, Fanny; Gahr, Manfred

    2004-06-01

    The respective influence of testosterone and estradiol on the structure of the Common Canary Serinus canaria song was studied by experimentally controlling blood levels of steroid hormones in males and analyzing the consequent effects on acoustic parameters. A detailed acoustic analysis of the songs produced before and after hormonal manipulation revealed that testosterone and estradiol seem to control distinct song parameters independently. The presence of receptors for testosterone and estradiol in the brain neural pathway controlling song production strongly suggests that the observed effects are mediated by a steroid action at the neuronal level.

  13. The Aging Female Voice: Acoustic and Respiratory Data

    ERIC Educational Resources Information Center

    Awan, Shaheen N.

    2006-01-01

    The purpose of this study was to extend understanding of the effects of aging on the female voice by obtaining measures of both acoustic and respiratory-based performance in groups of 18-30, 40-49, 50-59, 60-69, and 70-79-year-old subjects. Acoustic measures of speaking fundamental frequency (SFF), pitch sigma, jitter, shimmer, and signal-to-noise…

  14. Dynamic characteristics of laser Doppler flowmetry signals obtained in response to a local and progressive pressure applied on diabetic and healthy subjects

    NASA Astrophysics Data System (ADS)

    Humeau, Anne; Koitka, Audrey; Abraham, Pierre; Saumet, Jean-Louis; L'Huillier, Jean-Pierre

    2004-09-01

    In the biomedical field, the laser Doppler flowmetry (LDF) technique is a non-invasive method to monitor skin perfusion. On the skin of healthy humans, LDF signals present a significant transient increase in response to a local and progressive pressure application. This vasodilatory reflex response may have important implications for cutaneous pathologies involved in various neurological diseases and in the pathophysiology of decubitus ulcers. The present work analyses the dynamic characteristics of these signals on young type 1 diabetic patients, and on healthy age-matched subjects. To obtain accurate dynamic characteristic values, a de-noising wavelet-based algorithm is first applied to LDF signals. All the de-noised signals are then normalised to the same value. The blood flow peak and the time to reach this peak are then calculated on each computed signal. The results show that a large vasodilation is present on signals of healthy subjects. The mean peak occurs at a pressure of 3.2 kPa approximately. However, a vasodilation of limited amplitude appears on type 1 diabetic patients. The maximum value is visualised, on the average, when the pressure is 1.1 kPa. The inability for diabetic patients to increase largely their cutaneous blood flow may bring explanations to foot ulcers.

  15. Liquid Helium Acoustic Microscope.

    NASA Astrophysics Data System (ADS)

    Steer, Andrew Paul

    Available from UMI in association with The British Library. In an acoustic microscope, images are generated by monitoring the intensity of the ultrasonic reflection, or echo, from the surface of a sample. In order to achieve this a pulse of acoustic energy is produced by the excitation of a thin film transducer. The pulse thus generated propagates through a crystal and is incident upon the acoustic lens surface, which is the boundary between the crystal and an acoustic coupling liquid. The acoustic lens is a converging element, and brings the ultrasonic beam to a focus within the liquid. A sample, placed at the focus, can act as a reflector, and the returned pulse then contains information regarding the acoustic reflectivity of this specimen. Acoustic pulses are repeatedly launched and detected while the acoustic lens is scanned over the surface of the sample. In this manner an acoustic image is constructed. Acoustic losses in room temperature liquid coupling media represent a considerable source of difficulty in the recovery of acoustic echo signals. At the frequencies of operation required in a microscope which is capable of high resolution, the ultrasonic attenuation is not only large but increases with the square of frequency. In superfluid liquid helium at temperatures below 0.1 K, however, the ultrasonic attenuation becomes negligible. Furthermore, the low sound velocity in liquid helium results in an increase in resolution, since the acoustic wavelength is proportional to velocity. A liquid helium acoustic microscope has been designed and constructed. Details of the various possible detection methods are given, and comparisons are made between them. Measurements of the performance of the system that was adopted are reported. The development of a cooled preamplifier is also described. The variation of reflected signal with object distance has been measured and compared with theoretical predictions. This variation is important in the analysis of acoustic

  16. Wavefront modulation and subwavelength diffractive acoustics with an acoustic metasurface

    NASA Astrophysics Data System (ADS)

    Xie, Yangbo; Wang, Wenqi; Chen, Huanyang; Konneker, Adam; Popa, Bogdan-Ioan; Cummer, Steven A.

    2014-11-01

    Metasurfaces are a family of novel wavefront-shaping devices with planar profile and subwavelength thickness. Acoustic metasurfaces with ultralow profile yet extraordinary wave manipulating properties would be highly desirable for improving the performance of many acoustic wave-based applications. However, designing acoustic metasurfaces with similar functionality to their electromagnetic counterparts remains challenging with traditional metamaterial design approaches. Here we present a design and realization of an acoustic metasurface based on tapered labyrinthine metamaterials. The demonstrated metasurface can not only steer an acoustic beam as expected from the generalized Snell’s law, but also exhibits various unique properties such as conversion from propagating wave to surface mode, extraordinary beam-steering and apparent negative refraction through higher-order diffraction. Such designer acoustic metasurfaces provide a new design methodology for acoustic signal modulation devices and may be useful for applications such as acoustic imaging, beam steering, ultrasound lens design and acoustic surface wave-based applications.

  17. Wavefront modulation and subwavelength diffractive acoustics with an acoustic metasurface.

    PubMed

    Xie, Yangbo; Wang, Wenqi; Chen, Huanyang; Konneker, Adam; Popa, Bogdan-Ioan; Cummer, Steven A

    2014-11-24

    Metasurfaces are a family of novel wavefront-shaping devices with planar profile and subwavelength thickness. Acoustic metasurfaces with ultralow profile yet extraordinary wave manipulating properties would be highly desirable for improving the performance of many acoustic wave-based applications. However, designing acoustic metasurfaces with similar functionality to their electromagnetic counterparts remains challenging with traditional metamaterial design approaches. Here we present a design and realization of an acoustic metasurface based on tapered labyrinthine metamaterials. The demonstrated metasurface can not only steer an acoustic beam as expected from the generalized Snell's law, but also exhibits various unique properties such as conversion from propagating wave to surface mode, extraordinary beam-steering and apparent negative refraction through higher-order diffraction. Such designer acoustic metasurfaces provide a new design methodology for acoustic signal modulation devices and may be useful for applications such as acoustic imaging, beam steering, ultrasound lens design and acoustic surface wave-based applications.

  18. Demonstration of improvement in the signal-to-noise ratio of Thomson scattering signal obtained by using a multi-pass optical cavity on the Tokyo Spherical Tokamak-2

    SciTech Connect

    Togashi, H. Ejiri, A.; Nakamura, K.; Takase, Y.; Yamaguchi, T.; Furui, H.; Imamura, K.; Inada, T.; Nakanishi, A.; Oosako, T.; Shinya, T.; Tsuda, S.; Tsujii, N.; Hiratsuka, J.; Kakuda, H.; Sonehara, M.; Wakatsuki, T.; Hasegawa, M.; Nagashima, Y.; Narihara, K.; and others

    2014-11-15

    The multi-pass Thomson scattering (TS) scheme enables obtaining many photons by accumulating multiple TS signals. The signal-to-noise ratio (SNR) depends on the accumulation number. In this study, we performed multi-pass TS measurements for ohmically heated plasmas, and the relationship between SNR and the accumulation number was investigated. As a result, improvement of SNR in this experiment indicated similar tendency to that calculated for the background noise dominant situation.

  19. Acoustic Analysis of the Tremulous Voice: Assessing the Utility of the Correlation Dimension and Perturbation Parameters

    ERIC Educational Resources Information Center

    Shao, Jun; MacCallum, Julia K.; Zhang, Yu; Sprecher, Alicia; Jiang, Jack J.

    2010-01-01

    Acoustic analysis may provide a useful means to quantitatively characterize the tremulous voice. Signals were obtained from 25 subjects with diagnoses of either Parkinson's disease or vocal polyps exhibiting vocal tremor. These were compared to signals from 24 subjects with normal voices. Signals were analyzed via correlation dimension and several…

  20. Acoustic Gaits: Gait Analysis With Footstep Sounds.

    PubMed

    Altaf, M Umair Bin; Butko, Taras; Juang, Biing-Hwang Fred

    2015-08-01

    We describe the acoustic gaits-the natural human gait quantitative characteristics derived from the sound of footsteps as the person walks normally. We introduce the acoustic gait profile, which is obtained from temporal signal analysis of sound of footsteps collected by microphones and illustrate some of the spatio-temporal gait parameters that can be extracted from the acoustic gait profile by using three temporal signal analysis methods-the squared energy estimate, Hilbert transform and Teager-Kaiser energy operator. Based on the statistical analysis of the parameter estimates, we show that the spatio-temporal parameters and gait characteristics obtained using the acoustic gait profile can consistently and reliably estimate a subset of clinical and biometric gait parameters currently in use for standardized gait assessments. We conclude that the Teager-Kaiser energy operator provides the most consistent gait parameter estimates showing the least variation across different sessions and zones. Acoustic gaits use an inexpensive set of microphones with a computing device as an accurate and unintrusive gait analysis system. This is in contrast to the expensive and intrusive systems currently used in laboratory gait analysis such as the force plates, pressure mats and wearable sensors, some of which may change the gait parameters that are being measured.

  1. Inverse problem of nonlinear acoustics: Synthesizing intense signals to intensify the thermal and radiation action of ultrasound

    NASA Astrophysics Data System (ADS)

    Rudenko, O. V.; Gurbatov, S. N.

    2016-07-01

    Inverse problems of nonlinear acoustics have important applied significance. On the one hand, they are necessary for nonlinear diagnostics of media, materials, manufactured articles, building units, and biological and geological structures. On the other hand, they are needed for creating devices that ensure optimal action of acoustic radiation on a target. However, despite the many promising applications, this direction remains underdeveloped, especially for strongly distorted high-intensity waves containing shock fronts. An example of such an inverse problem is synthesis of the spatiotemporal structure of a field in a radiating system that ensures the highest possible energy density in the focal region. This problem is also related to the urgent problems of localizing wave energy and the theory of strongly nonlinear waves. Below we analyze some quite general and simple inverse nonlinear problems.

  2. Regularities of Acoustic Emission in the Freight Car Solebar Materials

    NASA Astrophysics Data System (ADS)

    Bekher, S.

    2016-01-01

    Acoustic emission results which were obtained during tests of the samples, which were made from foundry solebars with the developing fatigue crack, are presented. The dependences of the acoustic emission event count, the force critical value during the stationary acoustic emission process, and the growth rate of the event count from the cycles number are determined. The amplitude signal distributions relating to the crack growth were received. It is offered to use the force critical value and the amplitude threshold in the rejection criteria.

  3. Measuring Acoustic-Radiation Stresses in Materials

    NASA Technical Reports Server (NTRS)

    Cantrell, John H.; Yost, W. T.

    1986-01-01

    System measures nonlinearity parameters of materials. Uses static strain generated by acoustic wave propagating in material. Since static strain is effectively "dc" component of waveform distortion, problems associated with phase-cancellation artifacts disappear. Further, sign of nonlinearity parameter obtained by simple inspection of measured signal polarity. These features make this system very amenable to use in field. System expected to become standard for acoustic-radiation-stress measurements for solids and liquids and for characterization of material properties related to strength and residual or applied stresses. Also expected to become standard for transducer calibration.

  4. Differential phase acoustic microscope for micro-NDE

    NASA Technical Reports Server (NTRS)

    Waters, David D.; Pusateri, T. L.; Huang, S. R.

    1992-01-01

    A differential phase scanning acoustic microscope (DP-SAM) was developed, fabricated, and tested in this project. This includes the acoustic lens and transducers, driving and receiving electronics, scanning stage, scanning software, and display software. This DP-SAM can produce mechanically raster-scanned acoustic microscopic images of differential phase, differential amplitude, or amplitude of the time gated returned echoes of the samples. The differential phase and differential amplitude images provide better image contrast over the conventional amplitude images. A specially designed miniature dual beam lens was used to form two foci to obtain the differential phase and amplitude information of the echoes. High image resolution (1 micron) was achieved by applying high frequency (around 1 GHz) acoustic signals to the samples and placing two foci close to each other (1 micron). Tone burst was used in this system to obtain a good estimation of the phase differences between echoes from the two adjacent foci. The system can also be used to extract the V(z) acoustic signature. Since two acoustic beams and four receiving modes are available, there are 12 possible combinations to produce an image or a V(z) scan. This provides a unique feature of this system that none of the existing acoustic microscopic systems can provide for the micro-nondestructive evaluation applications. The entire system, including the lens, electronics, and scanning control software, has made a competitive industrial product for nondestructive material inspection and evaluation and has attracted interest from existing acoustic microscope manufacturers.

  5. Temperature Dependence of Surface Acoustic Wave Propagation Velocity in InxGa1-xN Films Obtained by High-Resolution Brillouin Spectroscopy: Determination of Temperature Coefficient of Frequency

    NASA Astrophysics Data System (ADS)

    Riobóo, Rafael J. Jiménez; Prieto, Carlos; Cuscó, Ramón; Artús, Lluís; Boney, Chris; Bensaoula, Abdelhak; Yamaguchi, Tomohiro; Nanishi, Yasushi

    2013-05-01

    Temperature-dependent surface acoustic wave (SAW) propagation velocity and temperature coefficient of frequency (TCF) have been determined for the first time in InxGa1-xN alloys by means of high-resolution Brillouin spectroscopy (HRBS). HRBS offers an alternative way of determining TCF. The obtained TCF values present a non-linear behavior with the In concentration. TCF of pure InN (-13.75 ppm/K) is similar to those of AlN and GaN (-19 and -17.7 ppm/K, respectively). InxGa1-xN samples exhibit frequency values that are very stable against temperature changes, which makes InxGa1-xN a good candidate for current SAW-based technological applications.

  6. Acoustic imaging system

    DOEpatents

    Smith, Richard W.

    1979-01-01

    An acoustic imaging system for displaying an object viewed by a moving array of transducers as the array is pivoted about a fixed point within a given plane. A plurality of transducers are fixedly positioned and equally spaced within a laterally extending array and operatively directed to transmit and receive acoustic signals along substantially parallel transmission paths. The transducers are sequentially activated along the array to transmit and receive acoustic signals according to a preestablished sequence. Means are provided for generating output voltages for each reception of an acoustic signal, corresponding to the coordinate position of the object viewed as the array is pivoted. Receptions from each of the transducers are presented on the same display at coordinates corresponding to the actual position of the object viewed to form a plane view of the object scanned.

  7. Effects of signal attenuation in natural media on interpretation of acoustic emissions in the context early warning systems

    NASA Astrophysics Data System (ADS)

    Faillettaz, Jerome; Or, Dani

    2015-04-01

    Gravity driven instabilities in natural media such as rockfalls, landslides, snow avalanches or glacier break-offs represent a significant class of natural hazards. Reliable prediction of imminence of such events combined with timely evacuation remain a challenge because material failure is a non linear process involving inherent heterogeneities affecting the outcome. Nevertheless, such materials break gradually with the weakest parts breaking first, producing precursory "micro-cracks" and associated elastic waves traveling in the material. The monitoring of such acoustic/micro-seismic activity offers valuable information on the progression of damage and imminence of global failure. The main challenge is that acoustic waves are strongly attenuated during their travel through natural media thereby introducing ambiguity in the interpretation of the magnitude (severity) or leading to loss of detection for faraway events. For example, a micro-crack event would be measured as a large event if occurring close to the sensor, and as a small event if far from the sensor ( or may not be detected at all). A more complete picture of acoustic emissions or micro- seismic activity requires deployment of a dense network of sensors that enables localization of sources and thus the determination of initial energy released with each event. However, such networks are prohibitively costly difficult to analyze in real time over scales of interest. Is it possible to find a way to analyze directly in real time the measured micro-seismic activity to infer the slope mechanical status? Following a qualitative description of the observation problem and the processes leading to attenuation, a quantitative analysis is performed using a numerical model based on the classical Fiber Bundle Model. Introducing a basic attenuation law in such simple models enables to directly compare un-attenuated and attenuated acoustic activity (and also avalanche size-frequency distribution) at any location

  8. Effects of electrostimulation on the vastus medialis in the deoxygenation and the blood volume signals obtained by near-infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Verdaguer-Codina, Joan

    1996-12-01

    The electrotherapy field has been generated as a technique to improve the muscles of people affected by various pathologies. For this reason the electrotherapy is increasing its use as part of a treatment in muscle therapy. However there are not studies related to electrostimulation and near-IR spectroscopy. This work was designed to assess by near-IR spectroscopy the effects of electrostimulation in the vastus medialis, applying a tetanic contraction in this muscle with a compensated rectangular impulse at 100Hz, tolerating the subject 10mA of current. In the results obtained, we have not observed significant variations in the deoxygenation and blood volume signals, whereas as light change was observed comparing the calibration signals before and after to apply electrostimulation. It is postulated that electrostimulation only increases the diameter of the vessels, because the muscle doesn't do a metabolic work, and the heart rate frequency of the subject has not increased.

  9. Determination of the Temperature Change by Means of an Outcoming Signal of Electric Resistance in an Isoperibolic Calorimetric Cell. Obtainment of Heat Solution

    PubMed Central

    Giraldo-Gutierréz, Liliana; Moreno-Piraján, Juan Carlos

    2005-01-01

    An isoperibolic calorimetric cell is built with glass surrounded by plastic insulation. The cell has a lid on which a thermistor thermometer, an electric resistance to provide the cell with definite quantities of electric work and a container for a glass ampoule, are placed. For measuring the thermal changes, an NTC thermistor, which provides an electric resistance signal that varies with temperature, is used. Calibration curves of the thermistor and of the stabilization of the system signal in thermal equilibrium are shown, which enable the observation of a good insulation. The calorific capacity of the system with water, with a value of 206.7 ±0.7 J °C-1 is determined; the solution enthalpy for propanol-water and KCl-water systems is obtained, which shows the behavior of the cell before exothermic and endothermic effects, respectively.

  10. Acoustic vs VHF Lightning Location Systems

    NASA Astrophysics Data System (ADS)

    Arechiga, R. O.; Lapierre, J. L.; Stock, M.; Erives, H.; Edens, H. E.; Stringer, A.; Rison, W.; Thomas, R. J.

    2013-12-01

    A single acoustic array can determine the 3-D location of lightning sources by using time of arrival differences arriving at the microphones and ranging techniques. The range is obtained from the time difference between the electromagnetic emission (detected by the acoustic data logger) and the acoustic signal produced by lightning. Audio frequency acoustic location systems are sensitive to the gas dynamic expansion of portions of a rapidly heating lightning channel, and so acoustic signatures are produced by a wide variety of different lightning discharge processes including: return strokes, K changes, M components, leader stepping and more. Infrasonic frequency range acoustic sensors are also sensitive to gas dynamic expansion, and in addition are also sensitive to processes which are electro-static in nature. RF location systems such as the Lightning Mapping Array (LMA) and the Continuous Sampling Broadband VHF Digital Interferometer (DITF) from New Mexico Tech (NMT) produce high quality maps of lightning discharges; however, they are sensitive to breakdown processes only and can not locate sources originating in already well conducting channels. During the summer of 2013 an acoustic audio-range array and an infrasound array were co-located with the NMT DITF in the Magdalena mountains of central New Mexico, where an LMA is also operating. The audio-range acoustic array consists of custom-designed GPS-synced data loggers with a 50 kHz sampling rate and audio range omnidirectional dynamic microphones. The infrasound array uses GPS time-synced data logger and custom-designed broadband microphones with flat response in the band of 0.01 to 500 Hz. The DITF uses flat plate dE/dt antennas bandpass filtered to 20 to 80 MHz, providing 2D maps of lightning emissions with very high (sub-microsecond) timing resolution. Both acoustic and interferometric arrays of antennas determine location of sources by coherently comparing the signals arriving at the antennas (or

  11. Performance comparison of an all-fiber-based laser Doppler vibrometer for remote acoustical signal detection using short and long coherence length lasers.

    PubMed

    Li, Rui; Madampoulos, Nicholas; Zhu, Zhigang; Xie, Liangping

    2012-07-20

    All-fiber laser Doppler vibrometer systems have great potential in the application of remote acoustic detection. However, due to the requirement for a long operating distance, a long coherence length laser is required, which can drive the system cost high. In this paper, a system using a short coherence length laser is proposed and demonstrated. Experimental analysis indicates that the multi-longitudinal modes of the laser cause detection noise and that the unequal length between two paths (local oscillator path and transmission path) increases the intensity and the frequency components of the noise. In order to reduce the noise, the optical length of the two paths needs to be balanced, within the coherence length of the source. We demonstrate that adopting a tunable optical delay to compensate the unequal length significantly reduces the noise. In a comparison of the detection results by using a short coherence laser and a long coherence laser, our developed system gives a good performance on the acoustic signal detection from three meters away.

  12. Applications of acoustic-gravity waves numerical modelling to tsunami signals observed by gravimetry satellites in very low orbit.

    NASA Astrophysics Data System (ADS)

    Brissaud, Quentin; Garcia, Raphael; Martin, Roland; Komatitsch, Dimitri; Sladen, Anthony

    2016-04-01

    Acoustic and gravity waves propagating in planetary atmospheres have been studied intensively as markers of specific phenomena (tectonic events, explosions) or as contributors to atmosphere dynamics. To get a better understanding of the physics behind these dynamic processes, both acoustic and gravity waves propagation should be modeled in an attenuating and windy 3D atmosphere from the ground all the way to the upper thermosphere. Thus, in order to provide an efficient numerical tool at the regional or global scale we introduce a high-order finite- difference time domain (FDTD) approach that relies on the linearized compressible Navier-Stokes equations with non constant physical parameters (density, viscosities and speed of sound) and background velocities (wind). We present applications of these simulations to the propagation of gravity waves generated by tsunamis for realistic cases for which atmospheric models are extracted from empirical models including 3D variations of atmospheric parameters, and tsunami forcing at the ocean surface is extracted from finite-fault dislocation simulations. We describe the specific difficulties induced by the size of the simulation, the boundary conditions and the spherical geometry and compare the simulation outputs to data gathered by gravimetric satellites crossing gravity waves generated by tsunamis.

  13. Deoxygenation and the blood volume signals in the flexor carpi ulnaris and radialis muscles obtained during the execution of the Mirallas's test of judo athletes

    NASA Astrophysics Data System (ADS)

    Verdaguer-Codina, Joan; Mirallas, Jaume A.

    1996-12-01

    The technique of execution of any movement in Judo is extremely important. The coaches want tests and tools easy to use and cheaper, to evaluate the progress of a judoist in the tatame. In this paper we present a test developed by Mirallas, which has his name 'Test of Mirallas' to evaluate the maximal power capacity of the judoist. The near infrared spectroscopy (NIRS) signals were obtained to have a measurement of the metabolic work of the flexor carpi ulnaris and radialis muscles, during the execution of the ippon-seoi-nage movement, allowing this measurement to assess by NIRS the maximal oxygen uptake. Also obtained were tympanic, skin forehead, and biceps brachii temperatures during the test time and recovery phase to study the effects of ambient conditions and the post-exercise oxygen consumption. The deoxygenation and blood volume signals obtained gave different results, demonstrating the hypothesis of the coaches that some judoist do the execution of the ippon-seoi-nage movement correctly and the rest didn't. The heart rate frequency obtained in the group of judoist was between 190-207 bpm, and in the minute five of post-exercise was 114-137 bpm; the time employed in the MIrallas's test were from 7 feet 14 inches to 13 feet 49 inches, and the total of movements were from 199 to 409. The data obtained in the skin forehead, and skin biceps brachii confirms previous works that the oxygen consumption remains after exercise in the muscle studied. According to the results, the test developed by Mirallas is a good tool to evaluate the performance of judoist any time, giving better results compared with standard tests.

  14. Theory and application of scanning electron acoustic microscopy

    NASA Technical Reports Server (NTRS)

    Cantrell, John H.; Qian, Menglu; Chen, Ruiyi; Yost, William T.

    1992-01-01

    A three-dimensional theoretical model based on the application of the thermal conduction and Navier equations to a chopped electron beam incident on a disk specimen is used to obtain the particle displacement field in the specimen. The results lead to a consideration of the signal generation, spatial resolution, and contrast mechanisms in scanning electron acoustic microscopy (SEAM). The model suggests that the time-variant heat source produced by the beam chopping generates driving source, thermal wave, and acoustic wave displacements simultaneously in the specimen. Evidence of the correctness of the prediction is obtained from the mathematically similar problem of pulsed laser light injection into a tank of water. High speed Schlieren photographs taken following laser injection show the simultaneous evolution of thermal and acoustic waveforms. Examples of contrast reversal, stress-induced contrast, and acoustic zone contrast and resolution with SEAM are presented and explained in terms of the model features.

  15. West Texas array experiment: Noise and source characterization of short-range infrasound and acoustic signals, along with lab and field evaluation of Intermountain Laboratories infrasound microphones

    NASA Astrophysics Data System (ADS)

    Fisher, Aileen

    The term infrasound describes atmospheric sound waves with frequencies below 20 Hz, while acoustics are classified within the audible range of 20 Hz to 20 kHz. Infrasound and acoustic monitoring in the scientific community is hampered by low signal-to-noise ratios and a limited number of studies on regional and short-range noise and source characterization. The JASON Report (2005) suggests the infrasound community focus on more broad-frequency, observational studies within a tactical distance of 10 km. In keeping with that recommendation, this paper presents a study of regional and short-range atmospheric acoustic and infrasonic noise characterization, at a desert site in West Texas, covering a broad frequency range of 0.2 to 100 Hz. To spatially sample the band, a large number of infrasound gauges was needed. A laboratory instrument analysis is presented of the set of low-cost infrasound sensors used in this study, manufactured by Inter-Mountain Laboratories (IML). Analysis includes spectra, transfer functions and coherences to assess the stability and range of the gauges, and complements additional instrument testing by Sandia National Laboratories. The IMLs documented here have been found reliably coherent from 0.1 to 7 Hz without instrument correction. Corrections were built using corresponding time series from the commercially available and more expensive Chaparral infrasound gauge, so that the corrected IML outputs were able to closely mimic the Chaparral output. Arrays of gauges are needed for atmospheric sound signal processing. Our West Texas experiment consisted of a 1.5 km aperture, 23-gauge infrasound/acoustic array of IMLs, with a compact, 12 m diameter grid-array of rented IMLs at the center. To optimize signal recording, signal-to-noise ratio needs to be quantified with respect to both frequency band and coherence length. The higher-frequency grid array consisted of 25 microphones arranged in a five by five pattern with 3 meter spacing, without

  16. West Texas array experiment: Noise and source characterization of short-range infrasound and acoustic signals, along with lab and field evaluation of Intermountain Laboratories infrasound microphones

    NASA Astrophysics Data System (ADS)

    Fisher, Aileen

    The term infrasound describes atmospheric sound waves with frequencies below 20 Hz, while acoustics are classified within the audible range of 20 Hz to 20 kHz. Infrasound and acoustic monitoring in the scientific community is hampered by low signal-to-noise ratios and a limited number of studies on regional and short-range noise and source characterization. The JASON Report (2005) suggests the infrasound community focus on more broad-frequency, observational studies within a tactical distance of 10 km. In keeping with that recommendation, this paper presents a study of regional and short-range atmospheric acoustic and infrasonic noise characterization, at a desert site in West Texas, covering a broad frequency range of 0.2 to 100 Hz. To spatially sample the band, a large number of infrasound gauges was needed. A laboratory instrument analysis is presented of the set of low-cost infrasound sensors used in this study, manufactured by Inter-Mountain Laboratories (IML). Analysis includes spectra, transfer functions and coherences to assess the stability and range of the gauges, and complements additional instrument testing by Sandia National Laboratories. The IMLs documented here have been found reliably coherent from 0.1 to 7 Hz without instrument correction. Corrections were built using corresponding time series from the commercially available and more expensive Chaparral infrasound gauge, so that the corrected IML outputs were able to closely mimic the Chaparral output. Arrays of gauges are needed for atmospheric sound signal processing. Our West Texas experiment consisted of a 1.5 km aperture, 23-gauge infrasound/acoustic array of IMLs, with a compact, 12 m diameter grid-array of rented IMLs at the center. To optimize signal recording, signal-to-noise ratio needs to be quantified with respect to both frequency band and coherence length. The higher-frequency grid array consisted of 25 microphones arranged in a five by five pattern with 3 meter spacing, without

  17. System and methods for determining masking signals for applying empirical mode decomposition (EMD) and for demodulating intrinsic mode functions obtained from application of EMD

    DOEpatents

    Senroy, Nilanjan; Suryanarayanan, Siddharth

    2011-03-15

    A computer-implemented method of signal processing is provided. The method includes generating one or more masking signals based upon a computed Fourier transform of a received signal. The method further includes determining one or more intrinsic mode functions (IMFs) of the received signal by performing a masking-signal-based empirical mode decomposition (EMD) using the at least one masking signal.

  18. Transmission Characteristics of Primate Vocalizations: Implications for Acoustic Analyses

    PubMed Central

    Maciej, Peter; Fischer, Julia; Hammerschmidt, Kurt

    2011-01-01

    Acoustic analyses have become a staple method in field studies of animal vocal communication, with nearly all investigations using computer-based approaches to extract specific features from sounds. Various algorithms can be used to extract acoustic variables that may then be related to variables such as individual identity, context or reproductive state. Habitat structure and recording conditions, however, have strong effects on the acoustic structure of sound signals. The purpose of this study was to identify which acoustic parameters reliably describe features of propagated sounds. We conducted broadcast experiments and examined the influence of habitat type, transmission height, and re-recording distance on the validity (deviation from the original sound) and reliability (variation within identical recording conditions) of acoustic features of different primate call types. Validity and reliability varied independently of each other in relation to habitat, transmission height, and re-recording distance, and depended strongly on the call type. The smallest deviations from the original sounds were obtained by a visually-controlled calculation of the fundamental frequency. Start- and end parameters of a sound were most susceptible to degradation in the environment. Because the recording conditions can have appreciable effects on acoustic parameters, it is advisable to validate the extraction method of acoustic variables from recordings over longer distances before using them in acoustic analyses. PMID:21829682

  19. Kea: A New Tool to Obtain Stellar Parameters from Low to Moderate Signal-to-noise and High-resolution Echelle Spectra

    NASA Astrophysics Data System (ADS)

    Endl, Michael; Cochran, William D.

    2016-09-01

    In this paper, we describe Kea a new spectroscopic fitting method to derive stellar parameters from moderate to low signal-to-noise, high-resolution spectra. We developed this new tool to analyze the massive data set of the Kepler mission reconnaissance spectra that we have obtained at McDonald Observatory. We use Kea to determine effective temperatures (T eff), metallicity ([Fe/H]), surface gravity (log g), and projected rotational velocity (v{sin}i). Kea compares the observations to a large library of synthetic spectra that covers a wide range of different T eff, [Fe/H], and log g values. We calibrated Kea on observations of well-characterized standard stars (the Kepler field “platinum” sample) that range in T eff from 5000 to 6500 K, in [Fe/H] from -0.5 to +0.4 dex, and in log g from 3.2 to 4.6 dex. We then compared the Kea results from reconnaissance spectra of 45 Kepler objects of interest (KOIs) to stellar parameters derived from higher signal-to-noise spectra obtained with Keck/HIRES. We find typical uncertainties of 100 K in T eff, 0.12 dex in [Fe/H], and 0.18 dex in log g. Named after Nestor notabilis an alpine parrot native to New Zealand.

  20. Kea: A New Tool to Obtain Stellar Parameters from Low to Moderate Signal-to-noise and High-resolution Echelle Spectra

    NASA Astrophysics Data System (ADS)

    Endl, Michael; Cochran, William D.

    2016-09-01

    In this paper, we describe Kea a new spectroscopic fitting method to derive stellar parameters from moderate to low signal-to-noise, high-resolution spectra. We developed this new tool to analyze the massive data set of the Kepler mission reconnaissance spectra that we have obtained at McDonald Observatory. We use Kea to determine effective temperatures (T eff), metallicity ([Fe/H]), surface gravity (log g), and projected rotational velocity (v{sin}i). Kea compares the observations to a large library of synthetic spectra that covers a wide range of different T eff, [Fe/H], and log g values. We calibrated Kea on observations of well-characterized standard stars (the Kepler field “platinum” sample) that range in T eff from 5000 to 6500 K, in [Fe/H] from ‑0.5 to +0.4 dex, and in log g from 3.2 to 4.6 dex. We then compared the Kea results from reconnaissance spectra of 45 Kepler objects of interest (KOIs) to stellar parameters derived from higher signal-to-noise spectra obtained with Keck/HIRES. We find typical uncertainties of 100 K in T eff, 0.12 dex in [Fe/H], and 0.18 dex in log g. Named after Nestor notabilis an alpine parrot native to New Zealand.

  1. Acoustic data transmission through a drill string

    DOEpatents

    Drumheller, D.S.

    1988-04-21

    Acoustical signals are transmitted through a drill string by canceling upward moving acoustical noise and by preconditioning the data in recognition of the comb filter impedance characteristics of the drill string. 5 figs.

  2. Pseudo-continuous-wave acoustic instrument

    NASA Technical Reports Server (NTRS)

    Heyman, J. S.; Stone, F. D.

    1978-01-01

    Simple, inexpensive, and portable ultrasonic device accurately measures acoustic properties of liquids, gases, and solids, using pseudo-continuous wave responses from samples to measure change in resonant frequency or amplitude in acoustic signal.

  3. Inverting Comet Acoustic Surface Sounding Experiment (CASSE) touchdown signals to measure the elastic modulus of comet material

    NASA Astrophysics Data System (ADS)

    Arnold, W.; Faber, C.; Knapmeyer, M.; Witte, L.; Schröder, S.; Tune, J.; Möhlmann, D.; Roll, R.; Chares, B.; Fischer, H.; Seidensticker, K.

    2014-07-01

    carried out on the concrete floor of the LAMA to determine the stiffness of the landing gear based on the deceleration data measured with the accelerometer. Landings on fine-grained quartz sand and on a Mars soil simulant (brand names WF34 and MSS-D, respectively) allow quantifying the changes of the deceleration data due to interaction with the soil. The elastic moduli of the soils that were inverted from the accelerometer data agree well with data obtained by ultrasonic time-of-flight measurements, provided an effective contact area is used. To this end, the lander structure was viewed in a simplified way as a mass-spring-damper system coupled to the soil by a contact spring, whose stiffness is determined by elastic moduli of the soil and the contact radius. Analytical expressions allow a rapid inversion of the deceleration data to obtain elastic data. It is expected that the same procedure can be applied to the signal measured when landing on comet 67P.

  4. Frequency steerable acoustic transducers

    NASA Astrophysics Data System (ADS)

    Senesi, Matteo

    Structural health monitoring (SHM) is an active research area devoted to the assessment of the structural integrity of critical components of aerospace, civil and mechanical systems. Guided wave methods have been proposed for SHM of plate-like structures using permanently attached piezoelectric transducers, which generate and sense waves to evaluate the presence of damage. Effective interrogation of structural health is often facilitated by sensors and actuators with the ability to perform electronic, i.e. phased array, scanning. The objective of this research is to design an innovative directional piezoelectric transducer to be employed for the localization of broadband acoustic events, or for the generation of Lamb waves for active interrogation of structural health. The proposed Frequency Steerable Acoustic Transducers (FSATs) are characterized by a spatial arrangement of active material which leads to directional characteristics varying with frequency. Thus FSATs can be employed both for directional sensing and generation of guided waves without relying on phasing and control of a large number of channels. The analytical expression of the shape of the FSATs is obtained through a theoretical formulation for continuously distributed active material as part of a shaped piezoelectric device. The FSAT configurations analyzed in this work are a quadrilateral array and a geometry which corresponds to a spiral in the wavenumber domain. The quadrilateral array is experimentally validated, confirming the concept of frequency-dependent directionality. Its limited directivity is improved by the Wavenumber Spiral FSAT (WS-FSAT), which, instead, is characterized by a continuous frequency dependent directionality. Preliminary validations of the WS-FSAT, using a laser doppler vibrometer, are followed by the implementation of the WS-FSAT as a properly shaped piezo transducer. The prototype is first used for localization of acoustic broadband sources. Signal processing

  5. Acoustic communication in plant-animal interactions.

    PubMed

    Schöner, Michael G; Simon, Ralph; Schöner, Caroline R

    2016-08-01

    Acoustic communication is widespread and well-studied in animals but has been neglected in other organisms such as plants. However, there is growing evidence for acoustic communication in plant-animal interactions. While knowledge about active acoustic signalling in plants (i.e. active sound production) is still in its infancy, research on passive acoustic signalling (i.e. reflection of animal sounds) revealed that bat-dependent plants have adapted to the bats' echolocation systems by providing acoustic reflectors to attract their animal partners. Understanding the proximate mechanisms and ultimate causes of acoustic communication will shed light on an underestimated dimension of information transfer between plants and animals. PMID:27423052

  6. Acoustic communication in plant-animal interactions.

    PubMed

    Schöner, Michael G; Simon, Ralph; Schöner, Caroline R

    2016-08-01

    Acoustic communication is widespread and well-studied in animals but has been neglected in other organisms such as plants. However, there is growing evidence for acoustic communication in plant-animal interactions. While knowledge about active acoustic signalling in plants (i.e. active sound production) is still in its infancy, research on passive acoustic signalling (i.e. reflection of animal sounds) revealed that bat-dependent plants have adapted to the bats' echolocation systems by providing acoustic reflectors to attract their animal partners. Understanding the proximate mechanisms and ultimate causes of acoustic communication will shed light on an underestimated dimension of information transfer between plants and animals.

  7. Method and apparatus of spectro-acoustically enhanced ultrasonic detection for diagnostics

    DOEpatents

    Vo-Dinh, Tuan; Norton, Stephen J.

    2001-01-01

    An apparatus for detecting a discontinuity in a material includes a source of electromagnetic radiation has a wavelength and an intensity sufficient to induce an enhancement in contrast between a manifestation of an acoustic property in the material and of the acoustic property in the discontinuity, as compared to when the material is not irradiated by the electromagnetic radiation. An acoustic emitter directs acoustic waves to the discontinuity in the material. The acoustic waves have a sensitivity to the acoustic property. An acoustic receiver receives the acoustic waves generated by the acoustic emitter after the acoustic waves have interacted with the material and the discontinuity. The acoustic receiver also generates a signal representative of the acoustic waves received by the acoustic receiver. A processor, in communication with the acoustic receiver and responsive to the signal generated by the acoustic receiver, is programmed to generate informational output about the discontinuity based on the signal generated by the acoustic receiver.

  8. A compact acoustic recorder

    NASA Astrophysics Data System (ADS)

    Stein, Ronald

    1989-09-01

    The design and operation of a portable compact acoustic recorder is discussed. Designed to be used in arctic conditions for applications that require portable equipment, the device is configured to fit into a lightweight briefcase. It will operate for eight hours at -40 F with heat provided by a hot water bottle. It has proven to be an effective scientific tool in the measurement of underwater acoustic signals in arctic experiments. It has also been used successfully in warmer climates, e.g., in recording acoustic signals from small boats with no ac power. The acoustic recorder's cost is moderate since it is based on a Sony Walkman Professional (WM-D6C) tape recorder playback unit. A speaker and battery assembly and a hydrophone interface electronic assembly complete the system electronics. The interface assembly supplies a number of functions, including a calibration tone generator, an audio amplifier, and a hydrophone interface. Calibrated acoustic recordings can be made by comparing the calibration tone amplitude with the acoustic signal amplitude. The distortion of the recording is minimized by using a high quality, consumer tape recorder.

  9. Assessing Linearity in the Loudness Envelope of the Messa di Voce Singing Exercise Through Acoustic Signal Analysis.

    PubMed

    Yadav, Manuj; Cabrera, Densil; Kenny, Dianna T

    2015-09-01

    Messa di voce (MDV) is a singing exercise that involves sustaining a single pitch with a linear change in loudness from silence to maximum intensity (the crescendo part) and back to silence again (the decrescendo part), with time symmetry between the two parts. Previous studies have used the sound pressure level (SPL, in decibels) of a singer's voice to measure loudness, so as to assess the linearity of each part-an approach that has limitations due to loudness and SPL not being linearly related. This article studies the loudness envelope shapes of MDVs, comparing the SPL approach with approaches that are more closely related to human loudness perception. The MDVs were performed by a cohort of tertiary singing students, recorded six times (once per semester) over a period of 3 years. The loudness envelopes were derived for a typical audience listening position, and for listening to one's own singing, using three models: SPL, Stevens' power law-based model, and a computational loudness model. The effects on the envelope shape due to room acoustics (an important effect) and vibrato (minimal effect) were also considered. The results showed that the SPL model yielded a lower proportion of linear crescendi and decrescendi, compared with other models. The Stevens' power law-based model provided results similar to the more complicated computational loudness model. Longitudinally, there was no consistent trend in the shape of the MDV loudness envelope for the cohort although there were some individual singers who exhibited improvements in linearity.

  10. Assessing Linearity in the Loudness Envelope of the Messa di Voce Singing Exercise Through Acoustic Signal Analysis.

    PubMed

    Yadav, Manuj; Cabrera, Densil; Kenny, Dianna T

    2015-09-01

    Messa di voce (MDV) is a singing exercise that involves sustaining a single pitch with a linear change in loudness from silence to maximum intensity (the crescendo part) and back to silence again (the decrescendo part), with time symmetry between the two parts. Previous studies have used the sound pressure level (SPL, in decibels) of a singer's voice to measure loudness, so as to assess the linearity of each part-an approach that has limitations due to loudness and SPL not being linearly related. This article studies the loudness envelope shapes of MDVs, comparing the SPL approach with approaches that are more closely related to human loudness perception. The MDVs were performed by a cohort of tertiary singing students, recorded six times (once per semester) over a period of 3 years. The loudness envelopes were derived for a typical audience listening position, and for listening to one's own singing, using three models: SPL, Stevens' power law-based model, and a computational loudness model. The effects on the envelope shape due to room acoustics (an important effect) and vibrato (minimal effect) were also considered. The results showed that the SPL model yielded a lower proportion of linear crescendi and decrescendi, compared with other models. The Stevens' power law-based model provided results similar to the more complicated computational loudness model. Longitudinally, there was no consistent trend in the shape of the MDV loudness envelope for the cohort although there were some individual singers who exhibited improvements in linearity. PMID:25892091

  11. Acoustic transducer for nuclear reactor monitoring

    DOEpatents

    Ahlgren, Frederic F.; Scott, Paul F.

    1977-01-01

    A transducer to monitor a parameter and produce an acoustic signal from which the monitored parameter can be recovered. The transducer comprises a modified Galton whistle which emits a narrow band acoustic signal having a frequency dependent upon the parameter being monitored, such as the temperature of the cooling media of a nuclear reactor. Multiple locations within a reactor are monitored simultaneously by a remote acoustic receiver by providing a plurality of transducers each designed so that the acoustic signal it emits has a frequency distinct from the frequencies of signals emitted by the other transducers, whereby each signal can be unambiguously related to a particular transducer.

  12. Acoustic ground impedance meter

    NASA Technical Reports Server (NTRS)

    Zuckerwar, A. J. (Inventor)

    1984-01-01

    A method and apparatus are presented for measuring the acoustic impedance of a surface in which the surface is used to enclose one end of the chamber of a Helmholz resonator. Acoustic waves are generated in the neck of the resonator by a piston driven by a variable speed motor through a cam assembly. The acoustic waves are measured in the chamber and the frequency of the generated acoustic waves is measured by an optical device. These measurements are used to compute the compliance and conductance of the chamber and surface combined. The same procedure is followed with a calibration plate having infinite acoustic impedance enclosing the chamber of the resonator to compute the compliance and conductance of the chamber alone. Then by subtracting, the compliance and conductance for the surface is obtained.

  13. The Role of Dopamine in the Context of Aversive Stimuli with Particular Reference to Acoustically Signaled Avoidance Learning

    PubMed Central

    Ilango, Anton; Shumake, Jason; Wetzel, Wolfram; Scheich, Henning; Ohl, Frank W.

    2012-01-01

    Learning from punishment is a powerful means for behavioral adaptation with high relevance for various mechanisms of self-protection. Several studies have explored the contribution of released dopamine (DA) or responses of DA neurons on reward seeking using rewards such as food, water, and sex. Phasic DA signals evoked by rewards or conditioned reward predictors are well documented, as are modulations of these signals by such parameters as reward magnitude, probability, and deviation of actually occurring from expected rewards. Less attention has been paid to DA neuron firing and DA release in response to aversive stimuli, and the prediction and avoidance of punishment. In this review, we first focus on DA changes in response to aversive stimuli as measured by microdialysis and voltammetry followed by the change in electrophysiological signatures by aversive stimuli and fearful events. We subsequently focus on the role of DA and effect of DA manipulations on signaled avoidance learning, which consists of learning the significance of a warning cue through Pavlovian associations and the execution of an instrumental avoidance response. We present a coherent framework utilizing the data on microdialysis, voltammetry, electrophysiological recording, electrical brain stimulation, and behavioral analysis. We end by outlining current gaps in the literature and proposing future directions aimed at incorporating technical and conceptual progress to understand the involvement of reward circuit on punishment based decisions. PMID:23049495

  14. Micro acoustic spectrum analyzer

    DOEpatents

    Schubert, W. Kent; Butler, Michael A.; Adkins, Douglas R.; Anderson, Larry F.

    2004-11-23

    A micro acoustic spectrum analyzer for determining the frequency components of a fluctuating sound signal comprises a microphone to pick up the fluctuating sound signal and produce an alternating current electrical signal; at least one microfabricated resonator, each resonator having a different resonant frequency, that vibrate in response to the alternating current electrical signal; and at least one detector to detect the vibration of the microfabricated resonators. The micro acoustic spectrum analyzer can further comprise a mixer to mix a reference signal with the alternating current electrical signal from the microphone to shift the frequency spectrum to a frequency range that is a better matched to the resonant frequencies of the microfabricated resonators. The micro acoustic spectrum analyzer can be designed specifically for portability, size, cost, accuracy, speed, power requirements, and use in a harsh environment. The micro acoustic spectrum analyzer is particularly suited for applications where size, accessibility, and power requirements are limited, such as the monitoring of industrial equipment and processes, detection of security intrusions, or evaluation of military threats.

  15. Patterns of Song across Natural and Anthropogenic Soundscapes Suggest That White-Crowned Sparrows Minimize Acoustic Masking and Maximize Signal Content.

    PubMed

    Derryberry, Elizabeth P; Danner, Raymond M; Danner, Julie E; Derryberry, Graham E; Phillips, Jennifer N; Lipshutz, Sara E; Gentry, Katherine; Luther, David A

    2016-01-01

    Soundscapes pose both evolutionarily recent and long-standing sources of selection on acoustic communication. We currently know more about the impact of evolutionarily recent human-generated noise on communication than we do about how natural sounds such as pounding surf have shaped communication signals over evolutionary time. Based on signal detection theory, we hypothesized that acoustic phenotypes will vary with both anthropogenic and natural background noise levels and that similar mechanisms of cultural evolution and/or behavioral flexibility may underlie this variation. We studied song characteristics of white-crowned sparrows (Zonotrichia leucophrys nuttalli) across a noise gradient that includes both anthropogenic and natural sources of noise in San Francisco and Marin counties, California, USA. Both anthropogenic and natural soundscapes contain high amplitude low frequency noise (traffic or surf, respectively), so we predicted that birds would produce songs with higher minimum frequencies in areas with higher amplitude background noise to avoid auditory masking. We also anticipated that song minimum frequencies would be higher than the projected lower frequency limit of hearing based on site-specific masking profiles. Background noise was a strong predictor of song minimum frequency, both within a local noise gradient of three urban sites with the same song dialect and cultural evolutionary history, and across the regional noise gradient, which encompasses 11 urban and rural sites, several dialects, and several anthropogenic and natural sources of noise. Among rural sites alone, background noise tended to predict song minimum frequency, indicating that urban sites were not solely responsible for driving the regional pattern. These findings support the hypothesis that songs vary with local and regional soundscapes regardless of the source of noise. Song minimum frequency from five core study sites was also higher than the lower frequency limit of hearing

  16. Patterns of Song across Natural and Anthropogenic Soundscapes Suggest That White-Crowned Sparrows Minimize Acoustic Masking and Maximize Signal Content

    PubMed Central

    Derryberry, Graham E.; Phillips, Jennifer N.; Lipshutz, Sara E.; Gentry, Katherine; Luther, David A.

    2016-01-01

    Soundscapes pose both evolutionarily recent and long-standing sources of selection on acoustic communication. We currently know more about the impact of evolutionarily recent human-generated noise on communication than we do about how natural sounds such as pounding surf have shaped communication signals over evolutionary time. Based on signal detection theory, we hypothesized that acoustic phenotypes will vary with both anthropogenic and natural background noise levels and that similar mechanisms of cultural evolution and/or behavioral flexibility may underlie this variation. We studied song characteristics of white-crowned sparrows (Zonotrichia leucophrys nuttalli) across a noise gradient that includes both anthropogenic and natural sources of noise in San Francisco and Marin counties, California, USA. Both anthropogenic and natural soundscapes contain high amplitude low frequency noise (traffic or surf, respectively), so we predicted that birds would produce songs with higher minimum frequencies in areas with higher amplitude background noise to avoid auditory masking. We also anticipated that song minimum frequencies would be higher than the projected lower frequency limit of hearing based on site-specific masking profiles. Background noise was a strong predictor of song minimum frequency, both within a local noise gradient of three urban sites with the same song dialect and cultural evolutionary history, and across the regional noise gradient, which encompasses 11 urban and rural sites, several dialects, and several anthropogenic and natural sources of noise. Among rural sites alone, background noise tended to predict song minimum frequency, indicating that urban sites were not solely responsible for driving the regional pattern. These findings support the hypothesis that songs vary with local and regional soundscapes regardless of the source of noise. Song minimum frequency from five core study sites was also higher than the lower frequency limit of hearing

  17. Acoustic Neuroma

    MedlinePlus

    An acoustic neuroma is a benign tumor that develops on the nerve that connects the ear to the brain. The tumor ... press against the brain, becoming life-threatening. Acoustic neuroma can be difficult to diagnose, because the symptoms ...

  18. SNR characterization in distributed acoustic sensing

    NASA Astrophysics Data System (ADS)

    Gabai, Haniel; Eyal, Avishay

    2016-05-01

    In this paper we study the SNR associated with acoustic detection in Rayleigh-based Distributed Acoustic Sensing (DAS) systems. The study is focused on phase sensitive DAS due to its superiority in terms of linearity and sensitivity. Since DAS is based on coherent interference of backscattered light from multiple scatterers it is prone to signal fading. When left unresolved, the issue of signal fading renders the associated SNR randomly dependent on position and time. Hence, its proper measurement and characterization requires statistical tools. Here such tools are introduced and a methodology for finding the mean SNR and its distribution is implemented in both experiment and simulation. It is shown that the distribution of the DAS-SNR can be obtained from the distribution of backscattered power in OTDR and the mean DAS-SNR is proportional to the energy of the interrogation pulse.

  19. Acoustic emission intrusion detector

    DOEpatents

    Carver, Donald W.; Whittaker, Jerry W.

    1980-01-01

    An intrusion detector is provided for detecting a forcible entry into a secured structure while minimizing false alarms. The detector uses a piezoelectric crystal transducer to sense acoustic emissions. The transducer output is amplified by a selectable gain amplifier to control the sensitivity. The rectified output of the amplifier is applied to a Schmitt trigger circuit having a preselected threshold level to provide amplitude discrimination. Timing circuitry is provided which is activated by successive pulses from the Schmitt trigger which lie within a selected time frame for frequency discrimination. Detected signals having proper amplitude and frequency trigger an alarm within the first complete cycle time of a detected acoustical disturbance signal.

  20. PORTABLE ACOUSTIC MONITORING PACKAGE (PAMP)

    SciTech Connect

    John L. Loth; Gary J. Morris; George M. Palmer; Richard Guiler; Patrick Browning

    2004-07-20

    The Portable Acoustic Monitoring Package (PAMP) has been designed to record and monitor the acoustic signal in natural gas transmission lines. In particular the three acoustic signals associated with a line leak. The system is portable ({approx}30 lbs) and is designed for line pressures up to 1000 psi. It has become apparent that cataloging of the various background acoustic signals in natural gas transmission line is very important if a system to identify leak signals is to be developed. The low-pressure (0-200 psig) laboratory test phase has been completed and a number of field trials have been conducted. Before the cataloging phase could begin, a few problems identified in field trials identified had to be corrected such as: (1) Decreased microphone sensitivity at line pressures above 250 psig. (2) The inability to deal with large data sets collected when cataloging the variety of signals in a transmission line. (3) The lack of an available online acoustic calibration system. These problems have been solved and the WVU PAMP is now fully functional over the entire pressure range found in the Natural Gas transmission lines in this region. Field portability and reliability have been greatly improved. Data collection and storage have also improved to the point were the full acoustic spectrum of acoustic signals can be accurately cataloged, recorded and described.

  1. Acoustic Seal

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M. (Inventor)

    2006-01-01

    The invention relates to a sealing device having an acoustic resonator. The acoustic resonator is adapted to create acoustic waveforms to generate a sealing pressure barrier blocking fluid flow from a high pressure area to a lower pressure area. The sealing device permits noncontacting sealing operation. The sealing device may include a resonant-macrosonic-synthesis (RMS) resonator.

  2. Acoustic seal

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M. (Inventor)

    2006-01-01

    The invention relates to a sealing device having an acoustic resonator. The acoustic resonator is adapted to create acoustic waveforms to generate a sealing pressure barrier blocking fluid flow from a high pressure area to a lower pressure area. The sealing device permits noncontacting sealing operation. The sealing device may include a resonant-macrosonic-synthesis (RMS) resonator.

  3. Acoustic mapping velocimetry

    NASA Astrophysics Data System (ADS)

    Muste, M.; Baranya, S.; Tsubaki, R.; Kim, D.; Ho, H.; Tsai, H.; Law, D.

    2016-05-01

    Knowledge of sediment dynamics in rivers is of great importance for various practical purposes. Despite its high relevance in riverine environment processes, the monitoring of sediment rates remains a major and challenging task for both suspended and bed load estimation. While the measurement of suspended load is currently an active area of testing with nonintrusive technologies (optical and acoustic), bed load measurement does not mark a similar progress. This paper describes an innovative combination of measurement techniques and analysis protocols that establishes the proof-of-concept for a promising technique, labeled herein Acoustic Mapping Velocimetry (AMV). The technique estimates bed load rates in rivers developing bed forms using a nonintrusive measurements approach. The raw information for AMV is collected with acoustic multibeam technology that in turn provides maps of the bathymetry over longitudinal swaths. As long as the acoustic maps can be acquired relatively quickly and the repetition rate for the mapping is commensurate with the movement of the bed forms, successive acoustic maps capture the progression of the bed form movement. Two-dimensional velocity maps associated with the bed form migration are obtained by implementing algorithms typically used in particle image velocimetry to acoustic maps converted in gray-level images. Furthermore, use of the obtained acoustic and velocity maps in conjunction with analytical formulations (e.g., Exner equation) enables estimation of multidirectional bed load rates over the whole imaged area. This paper presents a validation study of the AMV technique using a set of laboratory experiments.

  4. Calibration of acoustic transients.

    PubMed

    Burkard, Robert

    2006-05-26

    This article reviews the appropriate stimulus parameters (click duration, toneburst envelope) that should be used when eliciting auditory brainstem responses from mice. Equipment specifications required to calibrate these acoustic transients are discussed. Several methods of calibrating the level of acoustic transients are presented, including the measurement of peak equivalent sound pressure level (peSPL) and peak sound pressure level (pSPL). It is hoped that those who collect auditory brainstem response thresholds in mice will begin to use standardized methods of acoustic calibration, so that hearing thresholds across mouse strains obtained in different laboratories can more readily be compared.

  5. High signal-to-noise ratio acoustic sensor using phase-shifted gratings interrogated by the Pound-Drever-Hall technique

    NASA Astrophysics Data System (ADS)

    Kung, Peter; Comanici, Maria I.

    2014-06-01

    Optical fiber is made of glass, an insulator, and thus it is immune to strong electromagnetic interference. Therefore, fiber optics is a technology ideally suitable for sensing of partial discharge (PD) both in transformers and generators. Extensive efforts have been used to develop a cost effective solution for detecting partial discharge, which generates acoustic emission, with signals ranging from 30 kHz to 200 kHz. The requirement is similar to fiber optics Hydro Phone, but at higher frequencies. There are several keys to success: there must be at least 60 dB signal-to-noise ratio (SNR) performance, which will ensure not only PD detection but later on provide diagnostics and also the ability to locate the origin of the events. Defects that are stationary would gradually degrade the insulation and result in total breakdown. Transformers currently need urgent attention: most of them are oil filled and are at least 30 to 50 years old, close to the end of life. In this context, an issue to be addressed is the safety of the personnel working close to the assets and collateral damage that could be caused by a tank explosion (with fire spilling over the whole facility). This paper will describe the latest achievement in fiber optics PD sensor technology: the use of phase shifted-fiber gratings with a very high speed interrogation method that uses the Pound-Drever-Hall technique. More importantly, this is based on a technology that could be automated, easy to install, and, eventually, available at affordable prices

  6. Acoustically Induced Vibration of Structures: Reverberant Vs. Direct Acoustic Testing

    NASA Technical Reports Server (NTRS)

    Kolaini, Ali R.; O'Connell, Michael R.; Tsoi, Wan B.

    2009-01-01

    Large reverberant chambers have been used for several decades in the aerospace industry to test larger structures such as solar arrays and reflectors to qualify and to detect faults in the design and fabrication of spacecraft and satellites. In the past decade some companies have begun using direct near field acoustic testing, employing speakers, for qualifying larger structures. A limited test data set obtained from recent acoustic tests of the same hardware exposed to both direct and reverberant acoustic field testing has indicated some differences in the resulting structural responses. In reverberant acoustic testing, higher vibration responses were observed at lower frequencies when compared with the direct acoustic testing. In the case of direct near field acoustic testing higher vibration responses appeared to occur at higher frequencies as well. In reverberant chamber testing and direct acoustic testing, standing acoustic modes of the reverberant chamber or the speakers and spacecraft parallel surfaces can strongly couple with the fundamental structural modes of the test hardware. In this paper data from recent acoustic testing of flight hardware, that yielded evidence of acoustic standing wave coupling with structural responses, are discussed in some detail. Convincing evidence of the acoustic standing wave/structural coupling phenomenon will be discussed, citing observations from acoustic testing of a simple aluminum plate. The implications of such acoustic coupling to testing of sensitive flight hardware will be discussed. The results discussed in this paper reveal issues with over or under testing of flight hardware that could pose unanticipated structural and flight qualification issues. Therefore, it is of paramount importance to understand the structural modal coupling with standing acoustic waves that has been observed in both methods of acoustic testing. This study will assist the community to choose an appropriate testing method and test setup in

  7. Transition section for acoustic waveguides

    DOEpatents

    Karplus, H.H.B.

    1975-10-28

    A means of facilitating the transmission of acoustic waves with minimal reflection between two regions having different specific acoustic impedances is described comprising a region exhibiting a constant product of cross-sectional area and specific acoustic impedance at each cross-sectional plane along the axis of the transition region. A variety of structures that exhibit this feature is disclosed, the preferred embodiment comprising a nested structure of doubly reentrant cones. This structure is useful for monitoring the operation of nuclear reactors in which random acoustic signals are generated in the course of operation.

  8. ACOUSTIC DETECTING AND LOCATING GAS PIPE LINE INFRINGEMENT

    SciTech Connect

    John L. Loth; Gary J. Morris; George M. Palmer; Richard Guiler; Patrick Browning

    2004-10-31

    The extensive network of high-pressure natural gas transmission pipelines covering the United States provides an important infrastructure for our energy independence. Early detection of pipeline leaks and infringements by construction equipment, resulting in corrosion fractures, presents an important aspect of our national security policy. The National Energy Technology Laboratory Strategic Center for Natural Gas (SCVG) is and has been funding research on various applicable techniques. The WVU research team has focused on monitoring pipeline background acoustic signals generated and transmitted by gas flowing through the gas inside the pipeline. In case of a pipeline infringement, any mechanical impact on the pipe wall, or escape of high-pressure gas, generates acoustic signals traveling both up and down stream through the gas. Sudden changes in flow noise are detectable with a Portable Acoustic Monitoring Package (PAMP), developed under this contract. It incorporates a pressure compensating microphone and a signal- recording device. Direct access to the gas inside the line is obtained by mounting such a PAMP, with a 1/2 inch NPT connection, to a pipeline pressure port found near most shut-off valves. An FFT of the recorded signal subtracted by that of the background noise recorded one-second earlier appears to sufficiently isolate the infringement signal to allow source interpretation. Using cell phones for data downloading might allow a network of such 1000-psi rated PAMP's to acoustically monitor a pipeline system and be trained by neural network software to positively identify and locate any pipeline infringement.

  9. ACOUSTIC DETECTING AND LOCATING GAS PIPE LINE INFRINGEMENT

    SciTech Connect

    John L. Loth; Gary J. Morris; George M. Palmer; Richard Guiler; Patrick Browning

    2004-12-01

    The extensive network of high-pressure natural gas transmission pipelines covering the United States provides an important infrastructure for our energy independence. Early detection of pipeline leaks and infringements by construction equipment, resulting in corrosion fractures, presents an important aspect of our national security policy. The National Energy Technology Laboratory Strategic Center for Natural Gas (SCVG) is and has been funding research on various applicable techniques. The WVU research team has focused on monitoring pipeline background acoustic signals generated and transmitted by gas flowing through the gas inside the pipeline. In case of a pipeline infringement, any mechanical impact on the pipe wall, or escape of high-pressure gas, generates acoustic signals traveling both up and down stream through the gas. Sudden changes in flow noise are detectable with a Portable Acoustic Monitoring Package (PAMP), developed under this contract. It incorporates a pressure compensating microphone and a signal- recording device. Direct access to the gas inside the line is obtained by mounting such a PAMP, with a 1/2 inch NPT connection, to a pipeline pressure port found near most shut-off valves. An FFT of the recorded signal subtracted by that of the background noise recorded one-second earlier appears to sufficiently isolate the infringement signal to allow source interpretation. Using cell phones for data downloading might allow a network of such 1000-psi rated PAMP's to acoustically monitor a pipeline system and be trained by neural network software to positively identify and locate any pipeline infringement.

  10. Education in acoustics in Argentina

    NASA Astrophysics Data System (ADS)

    Miyara, Federico

    2002-11-01

    Over the last decades, education in acoustics (EA) in Argentina has experienced ups and downs due to economic and political issues interfering with long term projects. Unlike other countries, like Chile, where EA has reached maturity in spite of the acoustical industry having shown little development, Argentina has several well-established manufacturers of acoustic materials and equipment but no specific career with a major in acoustics. At the university level, acoustics is taught as a complementary--often elective--course for careers such as architecture, communication engineering, or music. In spite of this there are several research centers with programs covering environmental and community noise, effects of noise on man, acoustic signal processing, musical acoustics and acoustic emission, and several national and international meetings are held each year in which results are communicated and discussed. Several books on a variety of topics such as sound system, architectural acoustics, and noise control have been published as well. Another chapter in EA is technical and vocational education, ranging between secondary and postsecondary levels, with technical training on sound system operation or design. Over the last years there have been several attempts to implement master degrees in acoustics or audio engineering, with little or no success.

  11. Numerical analysis of ultrasound propagation and reflection intensity for biological acoustic impedance microscope.

    PubMed

    Gunawan, Agus Indra; Hozumi, Naohiro; Yoshida, Sachiko; Saijo, Yoshifumi; Kobayashi, Kazuto; Yamamoto, Seiji

    2015-08-01

    This paper proposes a new method for microscopic acoustic imaging that utilizes the cross sectional acoustic impedance of biological soft tissues. In the system, a focused acoustic beam with a wide band frequency of 30-100 MHz is transmitted across a plastic substrate on the rear side of which a soft tissue object is placed. By scanning the focal point along the surface, a 2-D reflection intensity profile is obtained. In the paper, interpretation of the signal intensity into a characteristic acoustic impedance is discussed. Because the acoustic beam is strongly focused, interpretation assuming vertical incidence may lead to significant error. To determine an accurate calibration curve, a numerical sound field analysis was performed. In these calculations, the reflection intensity from a target with an assumed acoustic impedance was compared with that from water, which was used as a reference material. The calibration curve was determined by changing the assumed acoustic impedance of the target material. The calibration curve was verified experimentally using saline solution, of which the acoustic impedance was known, as the target material. Finally, the cerebellar tissue of a rat was observed to create an acoustic impedance micro profile. In the paper, details of the numerical analysis and verification of the observation results will be described.

  12. Negative refraction imaging of acoustic metamaterial lens in the supersonic range

    SciTech Connect

    Han, Jianning; Wen, Tingdun; Yang, Peng; Zhang, Lu

    2014-05-15

    Acoustic metamaterials with negative refraction index is the most promising method to overcome the diffraction limit of acoustic imaging to achieve ultrahigh resolution. In this paper, we use localized resonant phononic crystal as the unit cell to construct the acoustic negative refraction lens. Based on the vibration model of the phononic crystal, negative quality parameters of the lens are obtained while excited near the system resonance frequency. Simulation results show that negative refraction of the acoustic lens can be achieved when a sound wave transmiting through the phononic crystal plate. The patterns of the imaging field agree well with that of the incident wave, while the dispersion is very weak. The unit cell size in the simulation is 0.0005 m and the wavelength of the sound source is 0.02 m, from which we show that acoustic signal can be manipulated through structures with dimensions much smaller than the wavelength of incident wave.

  13. Acoustic detection of pneumothorax

    NASA Astrophysics Data System (ADS)

    Mansy, Hansen A.; Royston, Thomas J.; Balk, Robert A.; Sandler, Richard H.

    2003-04-01

    This study aims at investigating the feasibility of using low-frequency (<2000 Hz) acoustic methods for medical diagnosis. Several candidate methods of pneumothorax detection were tested in dogs. In the first approach, broadband acoustic signals were introduced into the trachea during end-expiration and transmitted waves were measured at the chest surface. Pneumothorax was found to consistently decrease pulmonary acoustic transmission in the 200-1200-Hz frequency band, while less change was observed at lower frequencies (p<0.0001). The ratio of acoustic energy between low (<220 Hz) and mid (550-770 Hz) frequency bands was significantly different in the control (healthy) and pneumothorax states (p<0.0001). The second approach measured breath sounds in the absence of an external acoustic input. Pneumothorax was found to be associated with a preferential reduction of sound amplitude in the 200- to 700-Hz range, and a decrease of sound amplitude variation (in the 300 to 600-Hz band) during the respiration cycle (p<0.01 for each). Finally, chest percussion was implemented. Pneumothorax changed the frequency and decay rate of percussive sounds. These results imply that certain medical conditions may be reliably detected using appropriate acoustic measurements and analysis. [Work supported by NIH/NHLBI #R44HL61108.

  14. Acoustic communication by ants

    NASA Astrophysics Data System (ADS)

    Hickling, Robert

    2002-05-01

    Many ant species communicate acoustically by stridulating, i.e., running a scraper over a washboard-like set of ridges. Ants appear to be insensitive to airborne sound. Consequently, myrmecologists have concluded that the stridulatory signals are transmitted through the substrate. This has tended to diminish the importance of acoustic communication, and it is currently believed that ant communication is based almost exclusively on pheromones, with acoustic communication assigned an almost nonexistent role. However, it can be shown that acoustic communication between ants is effective only if the medium is air and not the substrate. How, then, is it possible for ants to appear deaf to airborne sound and yet communicate through the air? An explanation is provided in a paper [R. Hickling and R. L. Brown, ``Analysis of acoustic communication by ants,'' J. Acoust. Soc. Am. 108, 1920-1929 (2000)]. Ants are small relative to the wavelengths they generate. Hence, they create a near field, which is characterized by a major increase in sound velocity (particle velocity of sound) in the vicinity of the source. Hair sensilla on the ants' antennae respond to sound velocity. Thus, ants are able to detect near-field sound from other ants and to exclude extraneous airborne sound.

  15. Propagation characteristics of acoustic waves in snow

    NASA Astrophysics Data System (ADS)

    Capelli, Achille; Kapil, Jagdish Chandra; Reiweger, Ingrid; Schweizer, Jürg; Or, Dani

    2015-04-01

    Acoustic emission analysis is a promising technique for monitoring snow slope stability with potential for application in early warning systems for avalanches. Current research efforts focus on identification and localization of acoustic emission features preceding snow failure and avalanches. However, our knowledge of sound propagation characteristics in snow is still limited. A review of previous studies showed that significant gaps exist and that the results of the various studies are partly contradictory. Furthermore, sound velocity and attenuation have been determined for the frequency range below 10 kHz, while recent snow failure experiments suggest that the peak frequency is in the ultrasound range between 30 kHz to 500 kHz. We therefore studied the propagation of pencil lead fracture (PLF) signals through snow in the ultrasound frequency range. This was achieved by performing laboratory experiments with columns of artificially produced snow of varying density and temperature. The attenuation constant was obtained by varying the size of the columns to eliminate possible influences of the snow-sensor coupling. The attenuation constant was measured for the entire PLF burst signal and for single frequency components. The propagation velocity was calculated from the arrival time of the acoustic signal. We then modelled the sound propagation for our experimental setup using Biot's model for wave propagation in porous media. The Model results were in good agreement with our experimental results. For the studied samples, the acoustic signals propagated as fast and slow longitudinal waves, but the main part of the energy was carried by the slow waves. The Young's modulus of our snow samples was determined from the sound velocity. This is highly relevant, as the elastic properties of snow are not well known.

  16. Topological Acoustics

    NASA Astrophysics Data System (ADS)

    Yang, Zhaoju; Gao, Fei; Shi, Xihang; Lin, Xiao; Gao, Zhen; Chong, Yidong; Zhang, Baile

    2015-03-01

    The manipulation of acoustic wave propagation in fluids has numerous applications, including some in everyday life. Acoustic technologies frequently develop in tandem with optics, using shared concepts such as waveguiding and metamedia. It is thus noteworthy that an entirely novel class of electromagnetic waves, known as "topological edge states," has recently been demonstrated. These are inspired by the electronic edge states occurring in topological insulators, and possess a striking and technologically promising property: the ability to travel in a single direction along a surface without backscattering, regardless of the existence of defects or disorder. Here, we develop an analogous theory of topological fluid acoustics, and propose a scheme for realizing topological edge states in an acoustic structure containing circulating fluids. The phenomenon of disorder-free one-way sound propagation, which does not occur in ordinary acoustic devices, may have novel applications for acoustic isolators, modulators, and transducers.

  17. Topological acoustics.

    PubMed

    Yang, Zhaoju; Gao, Fei; Shi, Xihang; Lin, Xiao; Gao, Zhen; Chong, Yidong; Zhang, Baile

    2015-03-20

    The manipulation of acoustic wave propagation in fluids has numerous applications, including some in everyday life. Acoustic technologies frequently develop in tandem with optics, using shared concepts such as waveguiding and metamedia. It is thus noteworthy that an entirely novel class of electromagnetic waves, known as "topological edge states," has recently been demonstrated. These are inspired by the electronic edge states occurring in topological insulators, and possess a striking and technologically promising property: the ability to travel in a single direction along a surface without backscattering, regardless of the existence of defects or disorder. Here, we develop an analogous theory of topological fluid acoustics, and propose a scheme for realizing topological edge states in an acoustic structure containing circulating fluids. The phenomenon of disorder-free one-way sound propagation, which does not occur in ordinary acoustic devices, may have novel applications for acoustic isolators, modulators, and transducers.

  18. Physical oceanography and acoustic propagation during LADC experiment in the Gulf of Mexico in 2001

    NASA Astrophysics Data System (ADS)

    Vinogradov, Sergey; Caruthers, Jerald W.; Rayborn, Grayson H.; Udovydchenkov, Ilya A.; Sidorovskaia, Natalia A.; Rypina, Irina I.; Newcomb, Joal J.; Fisher, Robert A.; Ioup, George E.; Ioup, Juliette W.

    2003-04-01

    The Littoral Acoustic Demonstration Center (LADC) deployed three environmental and acoustic moorings in a downslope line just off the Mississippi River Delta in the northern Gulf of Mexico in an area of a large concentration of sperm whales in July 2001. The measurement of whale vocalizations and, more generally, ambient noise, were the objectives of the experiment. Each mooring had a single hydrophone autonomously recording Environmental Acoustic Recording System (EARS) obtained from the U.S. Naval Oceanographic Office and modified to recorded signals up to 5859 Hz continuously for 36 days. Also, self-recording, environmental sensors were attached to the moorings to obtain profiles of time series data of temperature and salinity. Satellite imagery and NOAA mooring data were gathered for an analysis of eddy formations and movement in the Gulf. This paper will discuss the possible environmental impact of two events that occurred during the experiment: the passage of Tropical Storm Barry and the movement of the remnants of an eddy in the area. Discussed also will be the expected effects of these events on acoustic propagation based on modeling, which are carried out for long range and low frequency (300 km and 500 Hz) using the normal-mode acoustic model SWAMP (Shallow Water Acoustic Modal Propagation by M. F. Werby and N. A. Sidorovskaia) and for short range and high frequency (10 km and 5000 Hz) using the parabolic-equation acoustic model RAM (Range-dependent Acoustic model by M. Collins). [Work supported by ONR.

  19. Sensory Drive Mediated by Climatic Gradients Partially Explains Divergence in Acoustic Signals in Two Horseshoe Bat Species, Rhinolophus swinnyi and Rhinolophus simulator

    PubMed Central

    Mutumi, Gregory L.; Jacobs, David S.; Winker, Henning

    2016-01-01

    Geographic variation can be an indicator of still poorly understood evolutionary processes such as adaptation and drift. Sensory systems used in communication play a key role in mate choice and species recognition. Habitat-mediated (i.e. adaptive) differences in communication signals may therefore lead to diversification. We investigated geographic variation in echolocation calls of African horseshoe bats, Rhinolophus simulator and R. swinnyi in the context of two adaptive hypotheses: 1) James’ Rule and 2) the Sensory Drive Hypothesis. According to James’ Rule body-size should vary in response to relative humidity and temperature so that divergence in call frequency may therefore be the result of climate-mediated variation in body size because of the correlation between body size and call frequency. The Sensory Drive Hypothesis proposes that call frequency is a response to climate-induced differences in atmospheric attenuation and predicts that increases in atmospheric attenuation selects for calls of lower frequency. We measured the morphology and resting call frequency (RF) of 111 R. simulator and 126 R. swinnyi individuals across their distributional range to test the above hypotheses. Contrary to the prediction of James’ Rule, divergence in body size could not explain the variation in RF. Instead, acoustic divergence in RF was best predicted by latitude, geography and climate-induced differences in atmospheric attenuation, as predicted by the Sensory Drive Hypothesis. Although variation in RF was strongly influenced by temperature and humidity, other climatic variables (associated with latitude and altitude) as well as drift (as suggested by a positive correlation between call variation and geographic distance, especially in R. simulator) may also play an important role. PMID:26815436

  20. Sensory Drive Mediated by Climatic Gradients Partially Explains Divergence in Acoustic Signals in Two Horseshoe Bat Species, Rhinolophus swinnyi and Rhinolophus simulator.

    PubMed

    Mutumi, Gregory L; Jacobs, David S; Winker, Henning

    2016-01-01

    Geographic variation can be an indicator of still poorly understood evolutionary processes such as adaptation and drift. Sensory systems used in communication play a key role in mate choice and species recognition. Habitat-mediated (i.e. adaptive) differences in communication signals may therefore lead to diversification. We investigated geographic variation in echolocation calls of African horseshoe bats, Rhinolophus simulator and R. swinnyi in the context of two adaptive hypotheses: 1) James' Rule and 2) the Sensory Drive Hypothesis. According to James' Rule body-size should vary in response to relative humidity and temperature so that divergence in call frequency may therefore be the result of climate-mediated variation in body size because of the correlation between body size and call frequency. The Sensory Drive Hypothesis proposes that call frequency is a response to climate-induced differences in atmospheric attenuation and predicts that increases in atmospheric attenuation selects for calls of lower frequency. We measured the morphology and resting call frequency (RF) of 111 R. simulator and 126 R. swinnyi individuals across their distributional range to test the above hypotheses. Contrary to the prediction of James' Rule, divergence in body size could not explain the variation in RF. Instead, acoustic divergence in RF was best predicted by latitude, geography and climate-induced differences in atmospheric attenuation, as predicted by the Sensory Drive Hypothesis. Although variation in RF was strongly influenced by temperature and humidity, other climatic variables (associated with latitude and altitude) as well as drift (as suggested by a positive correlation between call variation and geographic distance, especially in R. simulator) may also play an important role. PMID:26815436

  1. Sensory Drive Mediated by Climatic Gradients Partially Explains Divergence in Acoustic Signals in Two Horseshoe Bat Species, Rhinolophus swinnyi and Rhinolophus simulator.

    PubMed

    Mutumi, Gregory L; Jacobs, David S; Winker, Henning

    2016-01-01

    Geographic variation can be an indicator of still poorly understood evolutionary processes such as adaptation and drift. Sensory systems used in communication play a key role in mate choice and species recognition. Habitat-mediated (i.e. adaptive) differences in communication signals may therefore lead to diversification. We investigated geographic variation in echolocation calls of African horseshoe bats, Rhinolophus simulator and R. swinnyi in the context of two adaptive hypotheses: 1) James' Rule and 2) the Sensory Drive Hypothesis. According to James' Rule body-size should vary in response to relative humidity and temperature so that divergence in call frequency may therefore be the result of climate-mediated variation in body size because of the correlation between body size and call frequency. The Sensory Drive Hypothesis proposes that call frequency is a response to climate-induced differences in atmospheric attenuation and predicts that increases in atmospheric attenuation selects for calls of lower frequency. We measured the morphology and resting call frequency (RF) of 111 R. simulator and 126 R. swinnyi individuals across their distributional range to test the above hypotheses. Contrary to the prediction of James' Rule, divergence in body size could not explain the variation in RF. Instead, acoustic divergence in RF was best predicted by latitude, geography and climate-induced differences in atmospheric attenuation, as predicted by the Sensory Drive Hypothesis. Although variation in RF was strongly influenced by temperature and humidity, other climatic variables (associated with latitude and altitude) as well as drift (as suggested by a positive correlation between call variation and geographic distance, especially in R. simulator) may also play an important role.

  2. Acoustic Force Density Acting on Inhomogeneous Fluids in Acoustic Fields.

    PubMed

    Karlsen, Jonas T; Augustsson, Per; Bruus, Henrik

    2016-09-01

    We present a theory for the acoustic force density acting on inhomogeneous fluids in acoustic fields on time scales that are slow compared to the acoustic oscillation period. The acoustic force density depends on gradients in the density and compressibility of the fluid. For microfluidic systems, the theory predicts a relocation of the inhomogeneities into stable field-dependent configurations, which are qualitatively different from the horizontally layered configurations due to gravity. Experimental validation is obtained by confocal imaging of aqueous solutions in a glass-silicon microchip. PMID:27661695

  3. Acoustic Force Density Acting on Inhomogeneous Fluids in Acoustic Fields.

    PubMed

    Karlsen, Jonas T; Augustsson, Per; Bruus, Henrik

    2016-09-01

    We present a theory for the acoustic force density acting on inhomogeneous fluids in acoustic fields on time scales that are slow compared to the acoustic oscillation period. The acoustic force density depends on gradients in the density and compressibility of the fluid. For microfluidic systems, the theory predicts a relocation of the inhomogeneities into stable field-dependent configurations, which are qualitatively different from the horizontally layered configurations due to gravity. Experimental validation is obtained by confocal imaging of aqueous solutions in a glass-silicon microchip.

  4. Acoustic 3D imaging of dental structures

    SciTech Connect

    Lewis, D.K.; Hume, W.R.; Douglass, G.D.

    1997-02-01

    Our goals for the first year of this three dimensional electodynamic imaging project was to determine how to combine flexible, individual addressable; preprocessing of array source signals; spectral extrapolation or received signals; acoustic tomography codes; and acoustic propagation modeling code. We investigated flexible, individually addressable acoustic array material to find the best match in power, sensitivity and cost and settled on PVDF sheet arrays and 3-1 composite material.

  5. Acoustic resonance phase locked photoacoustic spectrometer

    DOEpatents

    Pilgrim, Jeffrey S.; Bomse, David S.; Silver, Joel A.

    2003-08-19

    A photoacoustic spectroscopy method and apparatus for maintaining an acoustic source frequency on a sample cell resonance frequency comprising: providing an acoustic source to the sample cell to generate a photoacoustic signal, the acoustic source having a source frequency; continuously measuring detection phase of the photoacoustic signal with respect to source frequency or a harmonic thereof; and employing the measured detection phase to provide magnitude and direction for correcting the source frequency to the resonance frequency.

  6. Local ballistocardiographic spectrum studies from signals obtained from limbs and carotid artery with an EMFi sensor induced with a tilt table.

    PubMed

    Alametsä, Jarmo; Palomäki, Ari; Viik, Jari

    2013-01-01

    The purpose of this work is to study the effect of a tilt table test procedure on ballistocardiographic (BCG) signal by using Electromechanical Film (EMFi) strip sensors. The ECG, BCG, carotid pulse (CP) from the neck near the carotid artery and ankle pulse signals were recorded from 7 persons. The spectral components of the recordings during the tilt table test were studied concentrating mainly on heart induced pulsatile signals propagating along the artery to the periphery. The properties of BCG pulse signal changed due to the tilt test in spectral domain. Blood pressure (BP) values and shape of the pulse changed due to the tilt test. According to this study, local BCG measurements with EMFi sensor strips combined with a tilt test can be used as a very simple non-invasive method in hemodynamic studies.

  7. Acoustic energy harvesting based on a planar acoustic metamaterial

    NASA Astrophysics Data System (ADS)

    Qi, Shuibao; Oudich, Mourad; Li, Yong; Assouar, Badreddine

    2016-06-01

    We theoretically report on an innovative and practical acoustic energy harvester based on a defected acoustic metamaterial (AMM) with piezoelectric material. The idea is to create suitable resonant defects in an AMM to confine the strain energy originating from an acoustic incidence. This scavenged energy is converted into electrical energy by attaching a structured piezoelectric material into the defect area of the AMM. We show an acoustic energy harvester based on a meta-structure capable of producing electrical power from an acoustic pressure. Numerical simulations are provided to analyze and elucidate the principles and the performances of the proposed system. A maximum output voltage of 1.3 V and a power density of 0.54 μW/cm3 are obtained at a frequency of 2257.5 Hz. The proposed concept should have broad applications on energy harvesting as well as on low-frequency sound isolation, since this system acts as both acoustic insulator and energy harvester.

  8. Experimental verification of acoustic trace wavelength enhancement.

    PubMed

    Cray, Benjamin A

    2015-12-01

    Directivity is essentially a measure of a sonar array's beamwidth that can be obtained in a spherically isotropic ambient noise field; narrow array mainbeam widths are more directive than broader mainbeam widths. For common sonar systems, the directivity factor (or directivity index) is directly proportional to the ratio of an incident acoustic trace wavelength to the sonar array's physical length (which is always constrained). Increasing this ratio, by creating additional trace wavelengths for a fixed array length, will increase array directivity. Embedding periodic structures within an array generates Bragg scattering of the incident acoustic plane wave along the array's surface. The Bragg scattered propagating waves are shifted in a precise manner and create shorter wavelength replicas of the original acoustic trace wavelength. These replicated trace wavelengths (which contain identical signal arrival information) increase an array's wavelength to length ratio and thus directivity. Therefore, a smaller array, in theory, can have the equivalent directivity of a much larger array. Measurements completed in January 2015 at the Naval Undersea Warfare Center's Acoustic Test Facility, in Newport, RI, verified, near perfectly, these replicated, shorter, trace wavelengths. PMID:26723331

  9. Experimental verification of acoustic trace wavelength enhancement.

    PubMed

    Cray, Benjamin A

    2015-12-01

    Directivity is essentially a measure of a sonar array's beamwidth that can be obtained in a spherically isotropic ambient noise field; narrow array mainbeam widths are more directive than broader mainbeam widths. For common sonar systems, the directivity factor (or directivity index) is directly proportional to the ratio of an incident acoustic trace wavelength to the sonar array's physical length (which is always constrained). Increasing this ratio, by creating additional trace wavelengths for a fixed array length, will increase array directivity. Embedding periodic structures within an array generates Bragg scattering of the incident acoustic plane wave along the array's surface. The Bragg scattered propagating waves are shifted in a precise manner and create shorter wavelength replicas of the original acoustic trace wavelength. These replicated trace wavelengths (which contain identical signal arrival information) increase an array's wavelength to length ratio and thus directivity. Therefore, a smaller array, in theory, can have the equivalent directivity of a much larger array. Measurements completed in January 2015 at the Naval Undersea Warfare Center's Acoustic Test Facility, in Newport, RI, verified, near perfectly, these replicated, shorter, trace wavelengths.

  10. Refinement and application of acoustic impulse technique to study nozzle transmission characteristics

    NASA Technical Reports Server (NTRS)

    Salikuddin, M.; Brown, W. H.; Ramakrishnan, R.; Tanna, H. K.

    1983-01-01

    An improved acoustic impulse technique was developed and was used to study the transmission characteristics of duct/nozzle systems. To accomplish the above objective, various problems associated with the existing spark-discharge impulse technique were first studied. These included (1) the nonlinear behavior of high intensity pulses, (2) the contamination of the signal with flow noise, (3) low signal-to-noise ratio at high exhaust velocities, and (4) the inability to control or shape the signal generated by the source, specially when multiple spark points were used as the source. The first step to resolve these problems was the replacement of the spark-discharge source with electroacoustic driver(s). These included (1) synthesizing on acoustic impulse with acoustic driver(s) to control and shape the output signal, (2) time domain signal averaging to remove flow noise from the contaminated signal, (3) signal editing to remove unwanted portions of the time history, (4) spectral averaging, and (5) numerical smoothing. The acoustic power measurement technique was improved by taking multiple induct measurements and by a modal decomposition process to account for the contribution of higher order modes in the power computation. The improved acoustic impulse technique was then validated by comparing the results derived by an impedance tube method. The mechanism of acoustic power loss, that occurs when sound is transmitted through nozzle terminations, was investigated. Finally, the refined impulse technique was applied to obtain more accurate results for the acoustic transmission characteristics of a conical nozzle and a multi-lobe multi-tube supressor nozzle.

  11. Musical Acoustics

    NASA Astrophysics Data System (ADS)

    Gough, Colin

    This chapter provides an introduction to the physical and psycho-acoustic principles underlying the production and perception of the sounds of musical instruments. The first section introduces generic aspects of musical acoustics and the perception of musical sounds, followed by separate sections on string, wind and percussion instruments.

  12. Acoustic metafluids.

    PubMed

    Norris, Andrew N

    2009-02-01

    Acoustic metafluids are defined as the class of fluids that allow one domain of fluid to acoustically mimic another, as exemplified by acoustic cloaks. It is shown that the most general class of acoustic metafluids are materials with anisotropic inertia and the elastic properties of what are known as pentamode materials. The derivation uses the notion of finite deformation to define the transformation of one region to another. The main result is found by considering energy density in the original and transformed regions. Properties of acoustic metafluids are discussed, and general conditions are found which ensure that the mapped fluid has isotropic inertia, which potentially opens up the possibility of achieving broadband cloaking. PMID:19206861

  13. Acoustic Levitation Containerless Processing

    NASA Technical Reports Server (NTRS)

    Whymark, R. R.; Rey, C. A.

    1985-01-01

    This research program consists of the development of acoustic containerless processing systems with applications in the areas of research in material sciences, as well as the production of new materials, solid forms with novel and unusual microstructures, fusion target spheres, and improved optical fibers. Efforts have been focused on the containerless processing at high temperatures for producing new kinds of glasses. Also, some development has occurred in the areas of containerlessly supporting liquids at room temperature, with applications in studies of fluid dynamics, potential undercooling of liquids, etc. The high temperature area holds the greatest promise for producing new kinds of glasses and ceramics, new alloys, and possibly unusual structural shapes, such as very uniform hollow glass shells for fusion target applications. High temperature acoustic levitation required for containerless processing has been demonstrated in low-g environments as well as in ground-based experiments. Future activities include continued development of the signals axis acoustic levitator.

  14. Acoustic network event classification using swarm optimization

    NASA Astrophysics Data System (ADS)

    Burman, Jerry

    2013-05-01

    Classifying acoustic signals detected by distributed sensor networks is a difficult problem due to the wide variations that can occur in the transmission of terrestrial, subterranean, seismic and aerial events. An acoustic event classifier was developed that uses particle swarm optimization to perform a flexible time correlation of a sensed acoustic signature to reference data. In order to mitigate the effects from interference such as multipath, the classifier fuses signatures from multiple sensors to form a composite sensed acoustic signature and then automatically matches the composite signature with reference data. The approach can classify all types of acoustic events but is particularly well suited to explosive events such as gun shots, mortar blasts and improvised explosive devices that produce an acoustic signature having a shock wave component that is aperiodic and non-linear. The classifier was applied to field data and yielded excellent results in terms of reconstructing degraded acoustic signatures from multiple sensors and in classifying disparate acoustic events.

  15. Measuring acoustic habitats

    PubMed Central

    Merchant, Nathan D; Fristrup, Kurt M; Johnson, Mark P; Tyack, Peter L; Witt, Matthew J; Blondel, Philippe; Parks, Susan E

    2015-01-01

    1. Many organisms depend on sound for communication, predator/prey detection and navigation. The acoustic environment can therefore play an important role in ecosystem dynamics and evolution. A growing number of studies are documenting acoustic habitats and their influences on animal development, behaviour, physiology and spatial ecology, which has led to increasing demand for passive acoustic monitoring (PAM) expertise in the life sciences. However, as yet, there has been no synthesis of data processing methods for acoustic habitat monitoring, which presents an unnecessary obstacle to would-be PAM analysts. 2. Here, we review the signal processing techniques needed to produce calibrated measurements of terrestrial and aquatic acoustic habitats. We include a supplemental tutorial and template computer codes in matlab and r, which give detailed guidance on how to produce calibrated spectrograms and statistical analyses of sound levels. Key metrics and terminology for the characterisation of biotic, abiotic and anthropogenic sound are covered, and their application to relevant monitoring scenarios is illustrated through example data sets. To inform study design and hardware selection, we also include an up-to-date overview of terrestrial and aquatic PAM instruments. 3. Monitoring of acoustic habitats at large spatiotemporal scales is becoming possible through recent advances in PAM technology. This will enhance our understanding of the role of sound in the spatial ecology of acoustically sensitive species and inform spatial planning to mitigate the rising influence of anthropogenic noise in these ecosystems. As we demonstrate in this work, progress in these areas will depend upon the application of consistent and appropriate PAM methodologies. PMID:25954500

  16. Ultrasonic signal enhancement by resonator techniques

    NASA Technical Reports Server (NTRS)

    Heyman, J. S.

    1973-01-01

    Ultrasonic resonators increase experimental sensitivity to acoustic dispersion and changes in attenuation. Experimental sensitivity enhancement line shapes are presented which were obtained by modulating the acoustic properties of a CdS resonator with a light beam. Small changes in light level are made to produce almost pure absorptive or dispersive changes in the resonator signal. This effect is due to the coupling of the ultrasonic wave to the CdS conductivity which is proportional to incident light intensity. The resonator conductivity is adjusted in this manner to obtain both dispersive and absorptive sensitivity enhancement line shapes. The data presented verify previous thoretical calculations based on a propagating wave model.

  17. [Use of self-organizing neural networks (Kohonen maps) for classification of voice acoustic signals exemplified by the infant voice with and without time-delayed auditory feedback].

    PubMed

    Schönweiler, R; Kaese, S; Möller, S; Rinscheid, A; Ptok, M

    1996-04-01

    Subjective and auditory assessment of the voice is now more commonly being replaced by objective voice analysis. Because of the amount of data available from computer-aided voice analysis, subjective selection and interpretation of single data sets remain a matter of experience of the individual investigator. Since neuronal networks are widely used in telecommunication and speech recognition, we applied self-organizing Kohonen networks to classify voice patterns. In the phase of "learning," the Kohonen map is adapted to patterns of the primary signals obtained. If, in the phase of using the map, the input signal hits the field of the primary signals, it will resemble them closely. In this study, we recorded newborn and young infant cries using a DAT recorder and a high-quality microphone. The cries were elicited by wearing uncomfortable headphones ("cries of discomfort"). Spectrographic characteristics of the cries were classified by 20-step bark spectra and then applied to the neuronal networks. It was possible to recognize similarities of different cries of the same children and interindividual differences, as well as cries of children with profound hearing loss. In addition, delayed auditory feedback at 80 dB SL was presented to 27 children via headphone using a three-headed tape-recorder as a model for induced individual cry changes. However, it was not possible to classify short-term changes as in a delayed feedback procedure. Nevertheless, neuronal networks may be helpful as an additional tool in spectrographic voice analysis.

  18. Acoustics of contrastive prosody in children

    NASA Astrophysics Data System (ADS)

    Patel, Rupal; Piel, Jordan; Grigos, Maria

    2005-04-01

    Empirical data on the acoustics of prosodic control in children is limited, particularly for linguistically contrastive tasks. Twelve children aged 4, 7, and 11 years were asked to produce two utterances ``Show Bob a bot'' (voiced consonants) and ``Show Pop a pot'' (voiceless consonants) 10 times each with emphasis placed on the second word (Bob/Pop) and 10 times with emphasis placed on the last word (bot/pot). A total of 40 utterances were analyzed per child. The following acoustic measures were obtained for each word within each utterance: average fundamental frequency (f0), peak f0, average intensity, peak intensity, and duration. Preliminary results suggest that 4 year olds are unable to modulate prosodic cues to signal the linguistic contrast. The 7 year olds, however, not only signaled the appropriate stress location, but did so with the most contrastive differences in f0, intensity, and duration, of all age groups. Prosodic differences between stressed and unstressed words were more pronounced for the utterance with voiced consonants. These findings suggest that the acoustics of linguistic prosody begin to differentiate between age 4 and 7 and may be highly influenced by changes in physiological control and flexibility that may also affect segmental features.

  19. Panama City 2003 Broadband Shallow-water Acoustic Coherence Experiments

    NASA Astrophysics Data System (ADS)

    Stanic, Steve; Kennedy, Edgar; Malley, Dexter; Brown, Bob; Meredith, Roger; Fisher, Robert; Chandler, Howard; Ray, Richard; Goodman, Ralph

    2004-11-01

    In June 2003 a series of acoustic propagation experiments were conducted off the coast of Panama City, Florida. The experiments were designed to measure and provide an understand of signal phase and amplitude fluctuations, and signal spatial and temporal coherence over several large horizontal and vertical arrays. The propagation measurements were conducted in a water depth of 8.8m and at ranges of 70 m and 150 m. The acoustic measurements cover frequencies from 1 to 140 kHz. The propagation measurements were supported by data obtained by wave rider buoys, CTD's, thermister chains and current meters. Bottom penetration data was also obtained using a buried hydrophone array. The experiments will be outlined and the data sets described.

  20. Study of acoustic correlates associate with emotional speech

    NASA Astrophysics Data System (ADS)

    Yildirim, Serdar; Lee, Sungbok; Lee, Chul Min; Bulut, Murtaza; Busso, Carlos; Kazemzadeh, Ebrahim; Narayanan, Shrikanth

    2004-10-01

    This study investigates the acoustic characteristics of four different emotions expressed in speech. The aim is to obtain detailed acoustic knowledge on how a speech signal is modulated by changes from neutral to a certain emotional state. Such knowledge is necessary for automatic emotion recognition and classification and emotional speech synthesis. Speech data obtained from two semi-professional actresses are analyzed and compared. Each subject produces 211 sentences with four different emotions; neutral, sad, angry, happy. We analyze changes in temporal and acoustic parameters such as magnitude and variability of segmental duration, fundamental frequency and the first three formant frequencies as a function of emotion. Acoustic differences among the emotions are also explored with mutual information computation, multidimensional scaling and acoustic likelihood comparison with normal speech. Results indicate that speech associated with anger and happiness is characterized by longer duration, shorter interword silence, higher pitch and rms energy with wider ranges. Sadness is distinguished from other emotions by lower rms energy and longer interword silence. Interestingly, the difference in formant pattern between [happiness/anger] and [neutral/sadness] are better reflected in back vowels such as /a/(/father/) than in front vowels. Detailed results on intra- and interspeaker variability will be reported.

  1. (Collection of high quality acoustical records for honeybees)

    SciTech Connect

    Kerr, H.T.; Buchanan, M.E.

    1987-02-19

    High quality acoustical data records were collected for both European and Africanized honeybees under various field conditions. This data base was needed for more rigorous evaluation of a honeybee identification technique previously developed by the travelers from preliminary data sets. Laboratory-grade recording equipment was used to record sounds made by honeybees in and near their nests and during foraging flights. Recordings were obtained from European and Africanized honeybees in the same general environment. Preliminary analyses of the acoustical data base clearly support the general identification algorithm: Africanized honeybee noise has significantly higher frequency content than does European honeybee noise. As this algorithm is refined, it may result in the development of a simple field-portable device for identifying subspecies of honeybees. Further, the honeybee's acoustical signals appear to be correlated with specific colony conditions. Understanding these variations may have enormous benefit for entomologists and for the beekeeping industry.

  2. Time reverse modeling of acoustic emissions in a reinforced concrete beam.

    PubMed

    Kocur, Georg Karl; Saenger, Erik H; Grosse, Christian U; Vogel, Thomas

    2016-02-01

    The time reverse modeling (TRM) is applied for signal-based acoustic emission (AE) analysis of reinforced concrete (RC) specimens. TRM uses signals obtained from physical experiments as input. The signals are re-emitted numerically into a structure in a time-reversed manner, where the wavefronts interfere and appear as dominant concentrations of energy at the origin of the AE. The experimental and numerical results presented for selected AE signals confirm that TRM is capable of localizing AE activity in RC caused by concrete cracking. The accuracy of the TRM results is corroborated by three-dimensional crack distributions obtained from X-ray computed tomography images.

  3. Time reverse modeling of acoustic emissions in a reinforced concrete beam.

    PubMed

    Kocur, Georg Karl; Saenger, Erik H; Grosse, Christian U; Vogel, Thomas

    2016-02-01

    The time reverse modeling (TRM) is applied for signal-based acoustic emission (AE) analysis of reinforced concrete (RC) specimens. TRM uses signals obtained from physical experiments as input. The signals are re-emitted numerically into a structure in a time-reversed manner, where the wavefronts interfere and appear as dominant concentrations of energy at the origin of the AE. The experimental and numerical results presented for selected AE signals confirm that TRM is capable of localizing AE activity in RC caused by concrete cracking. The accuracy of the TRM results is corroborated by three-dimensional crack distributions obtained from X-ray computed tomography images. PMID:26518525

  4. System and method for generating micro-seismic events and characterizing properties of a medium with non-linear acoustic interactions

    SciTech Connect

    Vu, Cung Khac; Nihei, Kurt; Johnson, Paul A.; Guyer, Robert; Ten Cate, James A.; Le Bas, Pierre-Yves; Larmat, Carene S.

    2015-12-29

    A method and system includes generating a first coded acoustic signal including pulses each having a modulated signal at a central frequency; and a second coded acoustic signal each pulse of which includes a modulated signal a central frequency of which is a fraction d of the central frequency of the modulated signal for the corresponding pulse in the first plurality of pulses. A receiver detects a third signal generated by a non-linear mixing process in the mixing zone and the signal is processed to extract the third signal to obtain an emulated micro-seismic event signal occurring at the mixing zone; and to characterize properties of the medium or creating a 3D image of the properties of the medium, or both, based on the emulated micro-seismic event signal.

  5. Acoustic trauma

    MedlinePlus

    Acoustic trauma is a common cause of sensory hearing loss . Damage to the hearing mechanisms within the inner ... Symptoms include: Partial hearing loss that most often involves ... The hearing loss may slowly get worse. Noises, ringing in ...

  6. Acoustic Neuroma

    MedlinePlus

    ... slow growing tumor which arise primarily from the vestibular portion of the VIII cranial nerve and lie ... you have a "brain tumor" called acoustic neuroma (vestibular schwannoma). You think you are the only one ...

  7. Underwater Acoustics.

    ERIC Educational Resources Information Center

    Creasey, D. J.

    1981-01-01

    Summarizes the history of underwater acoustics and describes related research studies and teaching activities at the University of Birmingham (England). Also includes research studies on transducer design and mathematical techniques. (SK)

  8. Room Acoustics

    NASA Astrophysics Data System (ADS)

    Kuttruff, Heinrich; Mommertz, Eckard

    The traditional task of room acoustics is to create or formulate conditions which ensure the best possible propagation of sound in a room from a sound source to a listener. Thus, objects of room acoustics are in particular assembly halls of all kinds, such as auditoria and lecture halls, conference rooms, theaters, concert halls or churches. Already at this point, it has to be pointed out that these conditions essentially depend on the question if speech or music should be transmitted; in the first case, the criterion for transmission quality is good speech intelligibility, in the other case, however, the success of room-acoustical efforts depends on other factors that cannot be quantified that easily, not least it also depends on the hearing habits of the listeners. In any case, absolutely "good acoustics" of a room do not exist.

  9. Based on optical fiber Michelson interferometer for acoustic emission detection experimental research

    NASA Astrophysics Data System (ADS)

    Liang, Yijun; Qu, Dandan; Deng, Hu

    2013-08-01

    A type of Michelson interferometer with two optical fiber loop reflectors acoustic emission sensor is proposed in the article to detect the vibrations produced by ultrasonic waves propagating in a solid body. Two optical fiber loop reflectors are equivalent to the sensing arm and the reference arm instead of traditional Michelson interferometer end reflecter Theoretical analyses indicate that the sensitivity of the system has been remarkably increased because of the decrease of the losses of light energy. The best operating point of optical fiber sensor is fixed by theoretical derivation and simulation of computer, and the signal frequency which is detected by the sensor is the frequency of input signal. PZT (Piezoelectric Ceramic) is powered by signal generator as known ultrasonic source, The Polarization controller is used to make the reflected light interference,The fiber length is changed by adjusting the DC voltage on the PZT with the fiber loop to make the sensor system response that ΔΦ is closed to π/2. the signal basis frequency detected by the sensor is the frequency of the input signal. Then impacts the surface of the marble slab with home-made mechanical acoustic emission source. And detect it. and then the frequency characteristic of acoustic emission signal is obtained by Fourier technique. The experimental results indicate that the system can identify the frequency characteristic of acoustic emission signal, and it can be also used to detect the surface feeble vibration which is generated by ultrasonic waves propagating in material structure.

  10. Recent developments in the use of acoustic sensors and signal processing tools to target early infestations of Red Palm Weevil in agricultural environments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Much of the damage caused by red palm weevil larvae to date palms, ornamental palms, and palm offshoots could be mitigated by early detection and treatment of infestations. Acoustic technology has potential to enable early detection, but the short, high-frequency sound impulses produced by red palm ...

  11. Recent developments in the use of acoustic sensors and signal processing tools to target early infestations of red palm weevil (Coleopter: Curculionidae) in agricultural environments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Much of the damage caused by red palm weevil larvae to date palms, ornamental palms, and palm offshoots could be mitigated by early detection and treatment of infestations. Acoustic technology has potential to enable early detection, but the short, high-frequency sound impulses produced by red palm ...

  12. The use of net analyte signal orthogonalization in the separation of multi-component diffraction patterns obtained from X-ray powder diffraction of intact compacts.

    PubMed

    Moore, Michael D; Cogdill, Robert P; Short, Steven M; Hair, Colleen R; Wildfong, Peter L D

    2008-06-01

    X-ray powder diffraction (XRPD) analysis of intact multi-component consolidated mixtures has significant potential owing to the ability to non-destructively quantify and discriminate between solid phases in composite bodies with minimal sample preparation. There are, however, limitations to the quantitative power using traditional univariate methods on diffraction data containing features from all components in the system. The ability to separate multi-component diffraction data into patterns representing single constituents allows both composition as well as physical phenomena associated with the individual components of complex systems to be probed. Intact, four-component compacts, consisting of two crystalline and two amorphous constituents were analyzed using XRPD configured in both traditional Bragg-Brentano reflectance geometry and parallel-beam transmission geometry. Two empirical, model-based methods consisting of a multiple step net analyte signal (NAS) orthogonalization are presented as ways to separate multi-component XRPD patterns into single constituent patterns. Multivariate figures of merit (FOM) were calculated for each of the isolated constituents to compare method-specific parameters such as sensitivity, selectivity, and signal-to-noise, enabling quantitative comparisons between the two modes of XRPD analysis. PMID:18294800

  13. Passive broadband acoustic thermometry

    NASA Astrophysics Data System (ADS)

    Anosov, A. A.; Belyaev, R. V.; Klin'shov, V. V.; Mansfel'd, A. D.; Subochev, P. V.

    2016-04-01

    The 1D internal (core) temperature profiles for the model object (plasticine) and the human hand are reconstructed using the passive acoustothermometric broadband probing data. Thermal acoustic radiation is detected by a broadband (0.8-3.5 MHz) acoustic radiometer. The temperature distribution is reconstructed using a priori information corresponding to the experimental conditions. The temperature distribution for the heated model object is assumed to be monotonic. For the hand, we assume that the temperature distribution satisfies the heat-conduction equation taking into account the blood flow. The average error of reconstruction determined for plasticine from the results of independent temperature measurements is 0.6 K for a measuring time of 25 s. The reconstructed value of the core temperature of the hand (36°C) generally corresponds to physiological data. The obtained results make it possible to use passive broadband acoustic probing for measuring the core temperatures in medical procedures associated with heating of human organism tissues.

  14. PORTABLE ACOUSTIC MONITORING PACKAGE (PAMP)

    SciTech Connect

    John l. Loth; Gary J. Morris; George M. Palmer; Richard Guiler; Deepak Mehra

    2003-07-01

    The 1st generation acoustic monitoring package was designed to detect and analyze weak acoustic signals inside natural gas transmission lines. Besides a microphone it housed a three-inch diameter aerodynamic acoustic signal amplifier to maximize sensitivity to leak induced {Delta}p type signals. The theory and test results of this aerodynamic signal amplifier was described in the master's degree thesis of our Research Assistant Deepak Mehra who is about to graduate. To house such a large three-inch diameter sensor required the use of a steel 300-psi rated 4 inch weld neck flange, which itself weighed already 29 pounds. The completed 1st generation Acoustic Monitoring Package weighed almost 100 pounds. This was too cumbersome to mount in the field, on an access port at a pipeline shut-off valve. Therefore a 2nd generation and truly Portable Acoustic Monitor was built. It incorporated a fully self-contained {Delta}p type signal sensor, rated for line pressures up to 1000 psi with a base weight of only 6 pounds. This is the Rosemont Inc. Model 3051CD-Range 0, software driven sensor, which is believed to have industries best total performance. Its most sensitive unit was purchased with a {Delta}p range from 0 to 3 inch water. This resulted in the herein described 2nd generation: Portable Acoustic Monitoring Package (PAMP) for pipelines up to 1000 psi. Its 32-pound total weight includes an 18-volt battery. Together with a 3 pound laptop with its 4-channel data acquisition card, completes the equipment needed for field acoustic monitoring of natural gas transmission pipelines.

  15. Acoustic emission monitoring system

    DOEpatents

    Romrell, Delwin M.

    1977-07-05

    Methods and apparatus for identifying the source location of acoustic emissions generated within an acoustically conductive medium. A plurality of acoustic receivers are communicably coupled to the surface of the medium at a corresponding number of spaced locations. The differences in the reception time of the respective sensors in response to a given acoustic event are measured among various sensor combinations prescribed by the monitoring mode employed. Acoustic reception response encountered subsequent to the reception by a predetermined number of the prescribed sensor combinations are inhibited from being communicated to the processing circuitry, while the time measurements obtained from the prescribed sensor combinations are translated into a position measurement representative of the location on the surface most proximate the source of the emission. The apparatus is programmable to function in six separate and five distinct operating modes employing either two, three or four sensory locations. In its preferred arrangement the apparatus of this invention will re-initiate a monitoring interval if the predetermined number of sensors do not respond to a particular emission within a given time period.

  16. Correlation reception of thermal acoustic radiation

    NASA Astrophysics Data System (ADS)

    Anosov, A. A.; Barabanenkov, Yu. N.; Sel'Skii, A. G.

    2003-11-01

    Correlated signals of thermal acoustic radiation from heated sources extending in the transverse direction (a pair of narrow plasticine plates and a wide plasticine strip) are measured. The measurements are performed by multiplying together the signals that are shifted in time with respect to each other and detected by two piezoelectric transducers. The values of the correlated signals of thermal acoustic radiation are determined by the spatial variation of temperature in the medium under study.

  17. Beamforming in an acoustic shadow

    NASA Technical Reports Server (NTRS)

    Havelock, David; Stinson, Michael; Daigle, Gilles

    1993-01-01

    The sound field deep within an acoustic shadow region is less well understood than that outside the shadow region. Signal levels are substantially lower within the shadow, but beamforming difficulties arise for other reasons such as loss of spatial coherence. Based on analysis of JAPE-91 data, and other data, three types of characteristic signals within acoustic shadow regions are identified. These signal types may correspond to different, intermittent signal propagation conditions. Detection and classification algorithms might take advantage of the signal characteristics. Frequency coherence is also discussed. The extent of coherence across frequencies is shown to be limited, causing difficulties for source classification based on harmonic amplitude relationships. Discussions emphasize short-term characteristics on the order of one second. A video presentation on frequency coherence shows the similarity, in the presence of atmospheric turbulence, between the received signal from a stable set of harmonics generated by a loudspeaker and that received from a helicopter hovering behind a hill.

  18. An acoustic intensity-based method and its aeroacoustic applications

    NASA Astrophysics Data System (ADS)

    Yu, Chao

    of elliptic equations. Hence the AIBM is more stable and the reconstructed acoustic pressure is less dependent on the locations of the input acoustic data. The solution of the modified Helmholtz equation in the frequency domain is approximated by finite linear combination of basis functions. The coefficients associated with the basis functions are obtained by matching the assumed general solution to the given input data over an open control surface. The details on the optimization method, the instability issue and the numerical implementation of the AIBM have been discussed in the dissertation. To verify the AIBM model, several acoustic radiation examples are solved, e.g. multiple sources radiation. The analytical acoustic pressure and its normal derivative on a partial spherical control surface are used as the input for the AIBM. The reconstructed acoustic field is obtained then compared with the analytical acoustic field. Excellent agreement is achieved and demonstrated. Some affecting factors on the AIBM, e.g. input locations and the signal-to-noise ratio, are also investigated. In addition, the potential of AIBM in broad-band noise prediction is examined in vortex/trailing edge interaction problem. Furthermore, a series of real world model problems are chosen to demonstrate the capability and potential of AIBM in CAA applications. Two important aircraft noises: turbofan noise and airframe noise, are studied in detail. Both the permeable surface FW-H equation method and the AIBM are used to evaluate the radiated field. The prediction results obtained from the AIBM and the FW-H integral method are compared with the solution from the CFD/CAA method. The accuracy and efficiency of both the AIBM and the FW-H integral method are analyzed. In summary, the "open surface" AIBM makes up the drawbacks of traditional "closed surface" approaches. It provides an effective alternative for the far-field acoustic prediction of practical aeroacoustic problems.

  19. Influence of the Laser Spot Size, Focal Beam Profile, and Tissue Type on the Lipid Signals Obtained by MALDI-MS Imaging in Oversampling Mode

    NASA Astrophysics Data System (ADS)

    Wiegelmann, Marcel; Dreisewerd, Klaus; Soltwisch, Jens

    2016-08-01

    To improve the lateral resolution in matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) beyond the dimensions of the focal laser spot oversampling techniques are employed. However, few data are available on the effect of the laser spot size and its focal beam profile on the ion signals recorded in oversampling mode. To investigate these dependencies, we produced 2 times six spots with dimensions between ~30 and 200 μm. By optional use of a fundamental beam shaper, square flat-top and Gaussian beam profiles were compared. MALDI-MSI data were collected using a fixed pixel size of 20 μm and both pixel-by-pixel and continuous raster oversampling modes on a QSTAR mass spectrometer. Coronal mouse brain sections coated with 2,5-dihydroxybenzoic acid matrix were used as primary test systems. Sizably higher phospholipid ion signals were produced with laser spots exceeding a dimension of ~100 μm, although the same amount of material was essentially ablated from the 20 μm-wide oversampling pixel at all spot size settings. Only on white matter areas of the brain these effects were less apparent to absent. Scanning electron microscopy images showed that these findings can presumably be attributed to different matrix morphologies depending on tissue type. We propose that a transition in the material ejection mechanisms from a molecular desorption at large to ablation at smaller spot sizes and a concomitant reduction in ion yields may be responsible for the observed spot size effects. The combined results indicate a complex interplay between tissue type, matrix crystallization, and laser-derived desorption/ablation and finally analyte ionization.

  20. Granular acoustic switches and logic elements

    NASA Astrophysics Data System (ADS)

    Li, Feng; Anzel, Paul; Yang, Jinkyu; Kevrekidis, Panayotis G.; Daraio, Chiara

    2014-10-01

    Electrical flow control devices are fundamental components in electrical appliances and computers; similarly, optical switches are essential in a number of communication, computation and quantum information-processing applications. An acoustic counterpart would use an acoustic (mechanical) signal to control the mechanical energy flow through a solid material. Although earlier research has demonstrated acoustic diodes or circulators, no acoustic switches with wide operational frequency ranges and controllability have been realized. Here we propose and demonstrate an acoustic switch based on a driven chain of spherical particles with a nonlinear contact force. We experimentally and numerically verify that this switching mechanism stems from a combination of nonlinearity and bandgap effects. We also realize the OR and AND acoustic logic elements by exploiting the nonlinear dynamical effects of the granular chain. We anticipate these results to enable the creation of novel acoustic devices for the control of mechanical energy flow in high-performance ultrasonic devices.

  1. Experimental study of propagation of instability waves in a submerged jet under transverse acoustic excitation

    NASA Astrophysics Data System (ADS)

    Mironov, A. K.; Krasheninnikov, S. Yu.; Maslov, V. P.; Zakharov, D. E.

    2016-07-01

    An experimental study was conducted on the specific features of instability wave propagation in the mixing layer of a turbulent jet when the jet is excited by an external acoustic wave. We used the technique of conditional phase averaging of data obtained by particle image velocimetry using the reference signal of a microphone placed near the jet. The influence of the excitation frequency on the characteristics of large-scale structures in the mixing layer was investigated. It is shown that the propagation patterns of the instability waves agree well with previously obtained data on the localization of acoustic sources in turbulent jets.

  2. Classroom acoustics: Three pilot studies

    NASA Astrophysics Data System (ADS)

    Smaldino, Joseph J.

    2005-04-01

    This paper summarizes three related pilot projects designed to focus on the possible effects of classroom acoustics on fine auditory discrimination as it relates to language acquisition, especially English as a second language. The first study investigated the influence of improving the signal-to-noise ratio on the differentiation of English phonemes. The results showed better differentiation with better signal-to-noise ratio. The second studied speech perception in noise by young adults for whom English was a second language. The outcome indicated that the second language learners required a better signal-to-noise ratio to perform equally to the native language participants. The last study surveyed the acoustic conditions of preschool and day care classrooms, wherein first and second language learning occurs. The survey suggested an unfavorable acoustic environment for language learning.

  3. Optimizing and Interpreting Insular Functional Connectivity Maps Obtained During Acute Experimental Pain: The Effects of Global Signal and Task Paradigm Regression.

    PubMed

    Ibinson, James W; Vogt, Keith M; Taylor, Kevin B; Dua, Shiv B; Becker, Christopher J; Loggia, Marco; Wasan, Ajay D

    2015-12-01

    The insula is uniquely located between the temporal and parietal cortices, making it anatomically well-positioned to act as an integrating center between the sensory and affective domains for the processing of painful stimulation. This can be studied through resting-state functional connectivity (fcMRI) imaging; however, the lack of a clear methodology for the analysis of fcMRI complicates the interpretation of these data during acute pain. Detected connectivity changes may reflect actual alterations in low-frequency synchronous neuronal activity related to pain, may be due to changes in global cerebral blood flow or the superimposed task-induced neuronal activity. The primary goal of this study was to investigate the effects of global signal regression (GSR) and task paradigm regression (TPR) on the changes in functional connectivity of the left (contralateral) insula in healthy subjects at rest and during acute painful electric nerve stimulation of the right hand. The use of GSR reduced the size and statistical significance of connectivity clusters and created negative correlation coefficients for some connectivity clusters. TPR with cyclic stimulation gave task versus rest connectivity differences similar to those with a constant task, suggesting that analysis which includes TPR is more accurately reflective of low-frequency neuronal activity. Both GSR and TPR have been inconsistently applied to fcMRI analysis. Based on these results, investigators need to consider the impact GSR and TPR have on connectivity during task performance when attempting to synthesize the literature.

  4. Acoustic detection of melolonthine larvae in Australian sugarcane.

    PubMed

    Mankin, R W; Samson, P R; Chandler, K J

    2009-08-01

    Decision support systems have been developed for risk analysis and management of root-feeding white grubs (Coleoptera: Scarabaeidae: Melolonthinae) in Queensland, Australia, sugarcane (Saccharum spp.), based partly on manual inspection of soil samples. Acoustic technology was considered as a potential alternative to this laborious procedure. Field surveys were conducted to detect the major pests Dermolepida albohirtum (Waterhouse) near Mackay, and Antitrogus parvulus Britton near Bundaberg. Computer analyses were developed to identify distinctive scrapes and other sounds produced by D. albohirtum and Antitrogus species and to distinguish them from sounds of nondamaging white grubs (Rutelinae, Dynastinae), as well as from extraneous, wind-induced tapping signals. Procedures were considered for incorporating acoustic methods into surveys and sequential sampling plans. Digging up and inspecting sugarcane root systems requires 10-12 min per sample, but acoustic assessments can be obtained in 3-5 min, so labor and time could be reduced by beginning the surveys with acoustic sampling. In a typical survey conducted in a field with low population densities, sampling might terminate quickly after five negative acoustic samples, establishing a desired precision level of 0.25 but avoiding the effort of excavating and inspecting empty samples. With a high population density, sampling might terminate also if signals were detected in five samples, in which case it would be beneficial to excavate the samples and count the white grubs. In intermediate populations, it might be necessary to collect up to 20 samples to achieve desired precision, and acoustic methods could help determine which samples would be best to excavate. PMID:19736765

  5. System and method for sonic wave measurements using an acoustic beam source

    SciTech Connect

    Vu, Cung Khac; Sinha, Dipen N.; Pantea, Cristian

    2015-08-11

    A method and system for investigating structure near a borehole are described herein. The method includes generating an acoustic beam by an acoustic source; directing at one or more azimuthal angles the acoustic beam towards a selected location in a vicinity of a borehole; receiving at one or more receivers an acoustic signal, the acoustic signal originating from a reflection or a refraction of the acoustic wave by a material at the selected location; and analyzing the received acoustic signal to characterize features of the material around the borehole.

  6. Surface acoustic wave dust deposition monitor

    DOEpatents

    Fasching, G.E.; Smith, N.S. Jr.

    1988-02-12

    A system is disclosed for using the attenuation of surface acoustic waves to monitor real time dust deposition rates on surfaces. The system includes a signal generator, a tone-burst generator/amplifier connected to a transmitting transducer for converting electrical signals into acoustic waves. These waves are transmitted through a path defining means adjacent to a layer of dust and then, in turn, transmitted to a receiving transducer for changing the attenuated acoustic wave to electrical signals. The signals representing the attenuated acoustic waves may be amplified and used in a means for analyzing the output signals to produce an output indicative of the dust deposition rates and/or values of dust in the layer. 8 figs.

  7. Intelligent Engine Systems: Acoustics

    NASA Technical Reports Server (NTRS)

    Wojno, John; Martens, Steve; Simpson, Benjamin

    2008-01-01

    An extensive study of new fan exhaust nozzle technologies was performed. Three new uniform chevron nozzles were designed, based on extensive CFD analysis. Two new azimuthally varying variants were defined. All five were tested, along with two existing nozzles, on a representative model-scale, medium BPR exhaust nozzle. Substantial acoustic benefits were obtained from the uniform chevron nozzle designs, the best benefit being provided by an existing design. However, one of the azimuthally varying nozzle designs exhibited even better performance than any of the uniform chevron nozzles. In addition to the fan chevron nozzles, a new technology was demonstrated, using devices that enhance mixing when applied to an exhaust nozzle. The acoustic benefits from these devices applied to medium BPR nozzles were similar, and in some cases superior to, those obtained from conventional uniform chevron nozzles. However, none of the low noise technologies provided equivalent acoustic benefits on a model-scale high BPR exhaust nozzle, similar to current large commercial applications. New technologies must be identified to improve the acoustics of state-of-the-art high BPR jet engines.

  8. Pen-chant: Acoustic emissions of handwriting and drawing

    NASA Astrophysics Data System (ADS)

    Seniuk, Andrew G.

    The sounds generated by a writing instrument ('pen-chant') provide a rich and underutilized source of information for pattern recognition. We examine the feasibility of recognition of handwritten cursive text, exclusively through an analysis of acoustic emissions. We design and implement a family of recognizers using a template matching approach, with templates and similarity measures derived variously from: smoothed amplitude signal with fixed resolution, discrete sequence of magnitudes obtained from peaks in the smoothed amplitude signal, and ordered tree obtained from a scale space signal representation. Test results are presented for recognition of isolated lowercase cursive characters and for whole words. We also present qualitative results for recognizing gestures such as circling, scratch-out, check-marks, and hatching. Our first set of results, using samples provided by the author, yield recognition rates of over 70% (alphabet) and 90% (26 words), with a confidence of +/-8%, based solely on acoustic emissions. Our second set of results uses data gathered from nine writers. These results demonstrate that acoustic emissions are a rich source of information, usable---on their own or in conjunction with image-based features---to solve pattern recognition problems. In future work, this approach can be applied to writer identification, handwriting and gesture-based computer input technology, emotion recognition, and temporal analysis of sketches.

  9. A unified acquisition system for acoustic data

    NASA Technical Reports Server (NTRS)

    Zuckerwar, A. J.; Holmes, H. K.

    1977-01-01

    A multichannel, acoustic AM carrier system was developed for a wide variety of applications, particularly for aircraft noise and sonic boom measurements. Each data acquisition channel consists of a condenser microphone, an acoustic signal converter, and a Zero Drive amplifier, along with peripheral supporting equipment. A control network insures continuous optimal tuning of the converter and permits remote calibration of the condenser microphone. With a 12.70-mm (1/2-in.) condenser microphone, the converter/Zero Drive amplifier combination has a frequency response from 0 Hz to 20 kHz (-3 db), a dynamic range exceeding 70 db, and a minimum noise floor of 50 db ref. 20 micro Pa) in the band 22.4 Hz to 22.4 kHz. The system requires no external impedance matching networks and is insensitive to cable length, at least up to 900 m (3,000 ft). System gain varies only + or - 1 db over the temperature range 4 to 54 C (40 to 130 F). Adapters are available to accommodate 23.77-mm (1-in.) and 6.35-mm (1/4-in.) microphones and to provide 30-db attenuation. A field test to obtain the acoustical time history of a helicopter flyover proved successful.

  10. Accurate recovery of articulator positions from acoustics: New conclusions based on human data

    SciTech Connect

    Hogden, J.; Lofqvist, A.; Gracco, V.; Zlokarnik, I.; Rubin, P.; Saltzman, E.

    1996-09-01

    Vocal tract models are often used to study the problem of mapping from the acoustic transfer function to the vocal tract area function (inverse mapping). Unfortunately, results based on vocal tract models are strongly affected by the assumptions underlying the models. In this study, the mapping from acoustics (digitized speech samples) to articulation (measurements of the positions of receiver coils placed on the tongue, jaw, and lips) is examined using human data from a single speaker: Simultaneous acoustic and articulator measurements made for vowel-to-vowel transitions, /g/ closures, and transitions into and out of /g/ closures. Articulator positions were measured using an EMMA system to track coils placed on the lips, jaw, and tongue. Using these data, look-up tables were created that allow articulator positions to be estimated from acoustic signals. On a data set not used for making look-up tables, correlations between estimated and actual coil positions of around 94{percent} and root-mean-squared errors around 2 mm are common for coils on the tongue. An error source evaluation shows that estimating articulator positions from quantized acoustics gives root-mean-squared errors that are typically less than 1 mm greater than the errors that would be obtained from quantizing the articulator positions themselves. This study agrees with and extends previous studies of human data by showing that for the data studied, speech acoustics can be used to accurately recover articulator positions. {copyright} {ital 1996 Acoustical Society of America.}

  11. Levitation of objects using acoustic energy

    NASA Technical Reports Server (NTRS)

    Whymark, R. R.

    1975-01-01

    Activated sound source establishes standing-wave pattern in gap between source and acoustic reflector. Solid or liquid material introduced in region will move to one of the low pressure areas produced at antinodes and remain suspended as long as acoustic signal is present.

  12. Analyzing the Acoustic Beat with Mobile Devices

    ERIC Educational Resources Information Center

    Kuhn, Jochen; Vogt, Patrik; Hirth, Michael

    2014-01-01

    In this column, we have previously presented various examples of how physical relationships can be examined by analyzing acoustic signals using smartphones or tablet PCs. In this example, we will be exploring the acoustic phenomenon of small beats, which is produced by the overlapping of two tones with a low difference in frequency ?f. The…

  13. The Simplest Demonstration on Acoustic Beats

    ERIC Educational Resources Information Center

    Ganci, Alessio; Ganci, Salvatore

    2015-01-01

    The classical demonstration experiment on acoustic beats using two signal generators and a dual trace oscilloscope is an important ingredient in teaching the subject. This short laboratory note aims to point out what may be the simplest demonstrative experiment on acoustic beats to carry out in a classroom without employing any lab apparatus.

  14. Acoustics, computers and measurements

    NASA Astrophysics Data System (ADS)

    Truchard, James J.

    2003-10-01

    The human ear has created a high standard for the requirements of acoustical measurements. The transient nature of most acoustical signals has limited the success of traditional volt meters. Professor Hixson's pioneering work in electroacoustical measurements at ARL and The University of Texas helped set the stage for modern computer-based measurements. The tremendous performance of modern PCs and extensive libraries of signal processing functions in virtual instrumentation application software has revolutionized the way acoustical measurements are made. Today's analog to digital converters have up to 24 bits of resolution with a dynamic range of over 120 dB and a single PC processor can process 112 channels of FFTs at 4 kHz in real time. Wavelet technology further extends the capabilities for analyzing transients. The tools available for measurements in speech, electroacoustics, noise, and vibration represent some of the most advanced measurement tools available. During the last 50 years, Professor Hixson has helped drive this revolution from simple oscilloscope measurements to the modern high performance computer-based measurements.

  15. Non-invasive photo acoustic approach for human bone diagnosis.

    PubMed

    Thella, Ashok Kumar; Rizkalla, James; Helmy, Ahdy; Suryadevara, Vinay Kumar; Salama, Paul; Rizkalla, Maher

    2016-12-01

    The existing modalities of bone diagnosis including X-ray and ultrasound may cite drawback in some cases related to health issues and penetration depth, while the ultrasound modality may lack image quality. Photo acoustic approach however, provides light energy to the acoustic wave, enabling it to activate and respond according to the propagating media (which is type of bones in this case). At the same time, a differential temperature change may result in the bio heat response, resulting from the heat absorbed across the multiple materials under study. In this work, we have demonstrated the features of using photo acoustic modality in order to non-invasively diagnose the type of human bones based on their electrical, thermal, and acoustic properties that differentiate the output response of each type. COMSOL software was utilized to combine both acoustic equations and bio heat equations, in order to study both the thermal and acoustic responses through which the differential diagnosis can be obtained. In this study, we solved both the acoustic equation and bio heat equations for four types of bones, bone (cancellous), bone (cortical), bone marrow (red), and bone marrow (yellow). 1 MHz acoustic source frequency was chosen and 10(5) W/m(2) power source was used in the simulation. The simulation tested the dynamic response of the wave over a distance of 5 cm from each side for the source. Near 2.4 cm was detected from simulation from each side of the source with a temperature change of within 0.5 K for various types of bones, citing a promising technique for a practical model to detect the type of bones via the differential temperature as well as the acoustic was response via the multiple materials associated with the human bones (skin and blood). The simulation results suggest that the PA technique may be applied to non-invasive diagnosis for the different types of bones, including cancerous bones. A practical model for detecting both the temperature change via

  16. Non-invasive photo acoustic approach for human bone diagnosis.

    PubMed

    Thella, Ashok Kumar; Rizkalla, James; Helmy, Ahdy; Suryadevara, Vinay Kumar; Salama, Paul; Rizkalla, Maher

    2016-12-01

    The existing modalities of bone diagnosis including X-ray and ultrasound may cite drawback in some cases related to health issues and penetration depth, while the ultrasound modality may lack image quality. Photo acoustic approach however, provides light energy to the acoustic wave, enabling it to activate and respond according to the propagating media (which is type of bones in this case). At the same time, a differential temperature change may result in the bio heat response, resulting from the heat absorbed across the multiple materials under study. In this work, we have demonstrated the features of using photo acoustic modality in order to non-invasively diagnose the type of human bones based on their electrical, thermal, and acoustic properties that differentiate the output response of each type. COMSOL software was utilized to combine both acoustic equations and bio heat equations, in order to study both the thermal and acoustic responses through which the differential diagnosis can be obtained. In this study, we solved both the acoustic equation and bio heat equations for four types of bones, bone (cancellous), bone (cortical), bone marrow (red), and bone marrow (yellow). 1 MHz acoustic source frequency was chosen and 10(5) W/m(2) power source was used in the simulation. The simulation tested the dynamic response of the wave over a distance of 5 cm from each side for the source. Near 2.4 cm was detected from simulation from each side of the source with a temperature change of within 0.5 K for various types of bones, citing a promising technique for a practical model to detect the type of bones via the differential temperature as well as the acoustic was response via the multiple materials associated with the human bones (skin and blood). The simulation results suggest that the PA technique may be applied to non-invasive diagnosis for the different types of bones, including cancerous bones. A practical model for detecting both the temperature change via

  17. Reverberant Acoustic Testing and Direct Field Acoustic Testing Acoustic Standing Waves and their Impact on Structural Responses

    NASA Technical Reports Server (NTRS)

    Kolaini, Ali R.; Doty, Benjamin; Chang, Zensheu

    2012-01-01

    The aerospace industry has been using two methods of acoustic testing to qualify flight hardware: (1) Reverberant Acoustic Test (RAT), (2) Direct Field Acoustic Test (DFAT). The acoustic field obtained by RAT is generally understood and assumed to be diffuse, expect below Schroeder cut-of frequencies. DFAT method of testing has some distinct advantages over RAT, however the acoustic field characteristics can be strongly affected by test setup such as the speaker layouts, number and location of control microphones and control schemes. In this paper the following are discussed based on DEMO tests performed at APL and JPL: (1) Acoustic wave interference patterns and acoustic standing waves, (2) The structural responses in RAT and DFAT.

  18. Flight and echolocation behaviour of whiskered bats commuting along a hedgerow: range-dependent sonar signal design, Doppler tolerance and evidence for 'acoustic focussing'.

    PubMed

    Holderied, Marc W; Jones, Gareth; von Helversen, Otto

    2006-05-01

    Echolocating bats obtain three-dimensional images of their surroundings in complete darkness by emitting sonar signals and evaluating returning echoes. When flying close to objects, bats risk collision and therefore depend on the accuracy of images--particularly in the perceived distance of obstacles, which is coded by the time delay between call and echo. Yet, during flight, such accuracy is perturbed first because bats call and receive echoes at different positions and second because echoes are modified by Doppler shifts. Certain call designs avoid both sources of ranging error, but only for a limited range of distances [the 'distance of focus' (DOF)]. Here, we show that whiskered bats (Myotis mystacinus) using broadband echolocation calls adjust call design in a range-dependent manner so that nearby obstacles are localised accurately. Such behaviour is adaptive because it reduces collision risk. The bats also reduced call duration to some extent as they approached obstacles so that most returning echoes arrived after they finished calling. This reduction in call duration during the approach to obstacles was neither the only nor the main factor that influenced DOF. Indeed, both duration and bandwidth of calls influenced DOF independently, with lower bandwidths and longer durations giving greater DOF. Our findings give a new perspective on the adaptive significance of echolocation call design in nature and have implications for sonar engineering.

  19. A preliminary study of the effect of electrode placement in order to define a suitable location for two electrodes and obtain sufficiently reliable ECG signals when monitoring with wireless system.

    PubMed

    Noh, Hyung Wook; Jang, Yongwon; Lee, I B; Song, Yoonseon; Jeong, Ji-Wook; Lee, Sooyeul

    2012-01-01

    Most countries face high and increasing rates of cardiovascular disease. Each year, heart disease kills more Americans than cancer. Therefore, there has been a promising market for portable ECG equipment and it is increasing. To use portable ECG measuring devices, it is essential to define a suitable location for the measuring as we need to reduced electrode size and distance. This research proposes to study how the inter-electrode distance affects the signal and how the electrode pair should be placed on the chest in order to obtain a sufficiently reliable ECG signal to detect heart arrhythmias in any environment, such as home or work. Therefore, we developed a compact, portable patch type ambulatory ECG monitoring system, Heart Tracker, using a microprocessor for preliminary study of signal analysis. To optimize the electrode arrangement in wireless environment, we compared HT and standard 12 lead with changing electrode position.

  20. Source Localization with Acoustic Sensor Arrays Using Generative Model Based Fitting with Sparse Constraints

    PubMed Central

    Velasco, Jose; Pizarro, Daniel; Macias-Guarasa, Javier

    2012-01-01

    This paper presents a novel approach for indoor acoustic source localization using sensor arrays. The proposed solution starts by defining a generative model, designed to explain the acoustic power maps obtained by Steered Response Power (SRP) strategies. An optimization approach is then proposed to fit the model to real input SRP data and estimate the position of the acoustic source. Adequately fitting the model to real SRP data, where noise and other unmodelled effects distort the ideal signal, is the core contribution of the paper. Two basic strategies in the optimization are proposed. First, sparse constraints in the parameters of the model are included, enforcing the number of simultaneous active sources to be limited. Second, subspace analysis is used to filter out portions of the input signal that cannot be explained by the model. Experimental results on a realistic speech database show statistically significant localization error reductions of up to 30% when compared with the SRP-PHAT strategies. PMID:23202021

  1. Virtual acoustic displays

    NASA Technical Reports Server (NTRS)

    Wenzel, Elizabeth M.

    1991-01-01

    A 3D auditory display can potentially enhance information transfer by combining directional and iconic information in a quite naturalistic representation of dynamic objects in the interface. Another aspect of auditory spatial clues is that, in conjunction with other modalities, it can act as a potentiator of information in the display. For example, visual and auditory cues together can reinforce the information content of the display and provide a greater sense of presence or realism in a manner not readily achievable by either modality alone. This phenomenon will be particularly useful in telepresence applications, such as advanced teleconferencing environments, shared electronic workspaces, and monitoring telerobotic activities in remote or hazardous situations. Thus, the combination of direct spatial cues with good principles of iconic design could provide an extremely powerful and information-rich display which is also quite easy to use. An alternative approach, recently developed at ARC, generates externalized, 3D sound cues over headphones in realtime using digital signal processing. Here, the synthesis technique involves the digital generation of stimuli using Head-Related Transfer Functions (HRTF's) measured in the two ear-canals of individual subjects. Other similar approaches include an analog system developed by Loomis, et. al., (1990) and digital systems which make use of transforms derived from normative mannikins and simulations of room acoustics. Such an interface also requires the careful psychophysical evaluation of listener's ability to accurately localize the virtual or synthetic sound sources. From an applied standpoint, measurement of each potential listener's HRTF's may not be possible in practice. For experienced listeners, localization performance was only slightly degraded compared to a subject's inherent ability. Alternatively, even inexperienced listeners may be able to adapt to a particular set of HRTF's as long as they provide adequate

  2. Acoustic fault injection tool (AFIT)

    NASA Astrophysics Data System (ADS)

    Schoess, Jeffrey N.

    1999-05-01

    On September 18, 1997, Honeywell Technology Center (HTC) successfully completed a three-week flight test of its rotor acoustic monitoring system (RAMS) at Patuxent River Flight Test Center. This flight test was the culmination of an ambitious 38-month proof-of-concept effort directed at demonstrating the feasibility of detecting crack propagation in helicopter rotor components. The program was funded as part of the U.S. Navy's Air Vehicle Diagnostic Systems (AVDS) program. Reductions in Navy maintenance budgets and available personnel have dictated the need to transition from time-based to 'condition-based' maintenance. Achieving this will require new enabling diagnostic technologies. The application of acoustic emission for the early detection of helicopter rotor head dynamic component faults has proven the feasibility of the technology. The flight-test results demonstrated that stress-wave acoustic emission technology can detect signals equivalent to small fatigue cracks in rotor head components and can do so across the rotating articulated rotor head joints and in the presence of other background acoustic noise generated during flight operation. During the RAMS flight test, 12 test flights were flown from which 25 Gbyte of digital acoustic data and about 15 hours of analog flight data recorder (FDR) data were collected from the eight on-rotor acoustic sensors. The focus of this paper is to describe the CH-46 flight-test configuration and present design details about a new innovative machinery diagnostic technology called acoustic fault injection. This technology involves the injection of acoustic sound into machinery to assess health and characterize operational status. The paper will also address the development of the Acoustic Fault Injection Tool (AFIT), which was successfully demonstrated during the CH-46 flight tests.

  3. Studies of depredating sperm whales (Physeter macrocephalus) off Sitka, AK, using videocameras, tags, and long-range passive acoustic tracking

    NASA Astrophysics Data System (ADS)

    Mathias, Delphine

    This dissertation uses videocameras, tags and acoustic recorders to investigate the diving and acoustic behavior of sperm whales in the Gulf of Alaska during natural and depredation foraging conditions. First, underwater videocamera footage of a sperm whale attacking a fisherman's longline at 100 m depth was used to examine its acoustic behavior at close range and to estimate its size both acoustically and visually. Second, bioacoustic tagging data demonstrated that the same individuals displayed different acoustic behaviors during natural and depredation foraging states. Two broad categories of depredation, "shallow" and "deep," were also identified. These results suggest that passive acoustic monitoring at close ranges may yield useful metrics for quantifying depredation activity. Third, the behavioral reactions of depredating sperm whales to a variety of acoustic playbacks generated at relatively low source levels were investigated using bioacoustic tags. Finally, bioacoustic and satellite tag data were used to develop passive acoustic techniques for tracking sperm whales with a short-aperture two-element vertical array. When numeric sound propagation models were exploited, localization ranges up to 35 km were obtained. The tracking methods were also used to estimate the source levels of sperm whale "clicks" and "creaks", predict the maximum detection range of the signals as a function of sea state, and measure the drift of several whales away from a visual decoy.

  4. Acoustic transducer for acoustic microscopy

    DOEpatents

    Khuri-Yakub, B.T.; Chou, C.H.

    1990-03-20

    A shear acoustic transducer-lens system is described in which a shear polarized piezoelectric material excites shear polarized waves at one end of a buffer rod having a lens at the other end which excites longitudinal waves in a coupling medium by mode conversion at selected locations on the lens. 9 figs.

  5. Acoustic transducer for acoustic microscopy

    DOEpatents

    Khuri-Yakub, Butrus T.; Chou, Ching H.

    1990-01-01

    A shear acoustic transducer-lens system in which a shear polarized piezoelectric material excites shear polarized waves at one end of a buffer rod having a lens at the other end which excites longitudinal waves in a coupling medium by mode conversion at selected locations on the lens.

  6. The Acoustic Signature of High-Temperature Deep Sea Hydrothermal Vents

    NASA Astrophysics Data System (ADS)

    Crone, T. J.; Wilcock, W. S.; Parsons, J. D.; Barclay, A. H.

    2005-12-01

    Motivated by a desire to find new measurements that might be sensitive to flow rate variations within mid-ocean ridge hydrothermal systems, we have conducted field studies to collect passive acoustic measurements at black smoker hydrothermal vents using two versions of a simple dual-hydrophone recording device capable of collecting continuous acoustic data for about one week at sampling rates of 1000--2000 Hz. We deployed the first-generation instrument on the Sully sulfide structure in the Main Endeavour Field of the Juan de Fuca Ridge during September of 2004. We were able to collect approximately 48 hours of data before the instrument was partially destroyed by venting fluid. We are in the process of obtaining additional measurements in the same vent field with a second-generation instrument. For the 2004 deployment, the venting fluid produced an acoustic signal that was far above the background level at all measured frequencies. The acoustic spectrum contains a broadband signal that is weighted toward the low frequencies and extends to the Nyquist frequency at 500 Hz. The spectrum also contains several sharp peaks below 150 Hz. The signal is variable in time, with the broadband and peak amplitudes fluctuating by ~20 dB, and the frequencies of the sharp spectral peaks fluctuating by ~1--3 Hz. The complex nature of the acoustic signal suggests that more than one sound production mechanism is operating within the vent. The sharp peaks suggest the presence of a resonant mechanism such as pipe resonance excited by turbulent flow. The high level of the broadband signal is not predicted by theoretical investigations of low Mach number jet acoustics. It is likely that another broadband sound source is present, which could be related to phase separation or to the mixing of different density fluids. More observations will be required to fully understand the basic mechanisms of sound production within black smoker chimneys.

  7. Acoustic Transmitters for Underwater Neutrino Telescopes

    PubMed Central

    Ardid, Miguel; Martínez-Mora, Juan A.; Bou-Cabo, Manuel; Larosa, Giuseppina; Adrián-Martínez, Silvia; Llorens, Carlos D.

    2012-01-01

    In this paper acoustic transmitters that were developed for use in underwater neutrino telescopes are presented. Firstly, an acoustic transceiver has been developed as part of the acoustic positioning system of neutrino telescopes. These infrastructures are not completely rigid and require a positioning system in order to monitor the position of the optical sensors which move due to sea currents. To guarantee a reliable and versatile system, the transceiver has the requirements of reduced cost, low power consumption, high pressure withstanding (up to 500 bars), high intensity for emission, low intrinsic noise, arbitrary signals for emission and the capacity of acquiring and processing received signals. Secondly, a compact acoustic transmitter array has been developed for the calibration of acoustic neutrino detection systems. The array is able to mimic the signature of ultra-high-energy neutrino interaction in emission directivity and signal shape. The technique of parametric acoustic sources has been used to achieve the proposed aim. The developed compact array has practical features such as easy manageability and operation. The prototype designs and the results of different tests are described. The techniques applied for these two acoustic systems are so powerful and versatile that may be of interest in other marine applications using acoustic transmitters. PMID:22666022

  8. Acoustic transmitters for underwater neutrino telescopes.

    PubMed

    Ardid, Miguel; Martínez-Mora, Juan A; Bou-Cabo, Manuel; Larosa, Giuseppina; Adrián-Martínez, Silvia; Llorens, Carlos D

    2012-01-01

    In this paper acoustic transmitters that were developed for use in underwater neutrino telescopes are presented. Firstly, an acoustic transceiver has been developed as part of the acoustic positioning system of neutrino telescopes. These infrastructures are not completely rigid and require a positioning system in order to monitor the position of the optical sensors which move due to sea currents. To guarantee a reliable and versatile system, the transceiver has the requirements of reduced cost, low power consumption, high pressure withstanding (up to 500 bars), high intensity for emission, low intrinsic noise, arbitrary signals for emission and the capacity of acquiring and processing received signals. Secondly, a compact acoustic transmitter array has been developed for the calibration of acoustic neutrino detection systems. The array is able to mimic the signature of ultra-high-energy neutrino interaction in emission directivity and signal shape. The technique of parametric acoustic sources has been used to achieve the proposed aim. The developed compact array has practical features such as easy manageability and operation. The prototype designs and the results of different tests are described. The techniques applied for these two acoustic systems are so powerful and versatile that may be of interest in other marine applications using acoustic transmitters.

  9. Detection of acoustic emission from composite laminates using PVF2 transducers

    NASA Technical Reports Server (NTRS)

    Stiffler, R.; Henneke, E. G., II; Herakovich, C. T.

    1983-01-01

    Polyvinylidene fluoride (PVF2), a semicrystalline polymer exhibiting piezoelectricity, is presently used as a sensing transducer in acoustic emission (AE) monitoring of several different composite laminate materials in order to obtain both quasi-static and fatigue loading results. AE signals obtained from PVF2 transducers are compared with those obtained by standard AE sensors. It is noted that PVF2 transducers may, through the application of spectral signal analysis, be able to distinguish between two distinct failure modes which have been observed in two composite laminates of the same material, but employing different lamina stacking sequences.

  10. Wall pressure fluctuations and acoustics in turbulent pipe flow

    NASA Astrophysics Data System (ADS)

    Daniels, M. A.; Lauchle, G. C.

    1986-09-01

    Measurements of the turbulent boundary layer (TBL) wall pressure spectrum and the facility's propagating acoustic field were conducted in the Boundary Layer Research Facility. Subminiature, piezoresistive-type pressure transducers were used. Detailed calibration of the pressure transducers was performed using a standing wave tube. Measured sensitivities of the transducers were within 0.5 dB of factory specifications and measured phase differences between individual transducers were insignificant. The TBL wall pressure spectrum was obtained using a novel signal-processing technique that allowed a minimization of both acoustic and vibration-induced noise. This technique uses pairs of transducer difference signals from an exisymmetric array of three flush-mounted pressure sensors and permits cancellation of the propagating acoustic and vibrationally induced pressure fields. A measurement involving the coherence function between these transducer signals was shown to validate the measured TBL wall pressure spectra and all assumptions used in developing the measurement technique. Non-dimensionalized spectra of the TBL fluctuating wall pressure measured in this investigation are compared to those measured previously. These comparisons substantiated a maximum, normalized transducer diameter for the complete resolution of the high-frequency part of the TBL wall pressure spectrum.

  11. Medical Acoustics

    NASA Astrophysics Data System (ADS)

    Beach, Kirk W.; Dunmire, Barbrina

    Medical acoustics can be subdivided into diagnostics and therapy. Diagnostics are further separated into auditory and ultrasonic methods, and both employ low amplitudes. Therapy (excluding medical advice) uses ultrasound for heating, cooking, permeablizing, activating and fracturing tissues and structures within the body, usually at much higher amplitudes than in diagnostics. Because ultrasound is a wave, linear wave physics are generally applicable, but recently nonlinear effects have become more important, even in low-intensity diagnostic applications.

  12. Property evaluation of thermal sprayed metallic coating by acoustic emission analysis

    SciTech Connect

    Ishida, Asako; Mizutani, Yoshihiro; Takemoto, Mikio; Ono, Kanji

    2000-03-01

    The authors analyzed acoustic emission signals from plasma sprayed sheets by first obtaining the Young's modulus, Poisson's ratio, and density. The sheets of a high Cr-Ni alloy (55Cr-41Ni-Mo, Si, B) were made by low pressure plasma spraying (LPPS) and heat treated. Utilizing laser induced surface acoustic waves (SAWs), the group velocity dispersion data of Rayleigh waves was obtained and matched to that computed by Adler's matrix transfer method. They monitored the acoustic emissions (Lamb waves) produced by microfractures in free standing as sprayed coating subjected to bending. Fast cleavage type microfracture with source rise time of around 2 {micro}s occurred as precursors to the final brittle fracture. The velocity and time-frequency amplitude spectrograms (wavelet contour maps) of the Lamb waves were utilized for the source location and fracture kinetic analyses.

  13. Acoustics Research of Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Gao, Ximing; Houston, Janice

    2014-01-01

    The liftoff phase induces high acoustic loading over a broad frequency range for a launch vehicle. These external acoustic environments are used in the prediction of the internal vibration responses of the vehicle and components. Present liftoff vehicle acoustic environment prediction methods utilize stationary data from previously conducted hold-down tests to generate 1/3 octave band Sound Pressure Level (SPL) spectra. In an effort to update the accuracy and quality of liftoff acoustic loading predictions, non-stationary flight data from the Ares I-X were processed in PC-Signal in two flight phases: simulated hold-down and liftoff. In conjunction, the Prediction of Acoustic Vehicle Environments (PAVE) program was developed in MATLAB to allow for efficient predictions of sound pressure levels (SPLs) as a function of station number along the vehicle using semi-empirical methods. This consisted of generating the Dimensionless Spectrum Function (DSF) and Dimensionless Source Location (DSL) curves from the Ares I-X flight data. These are then used in the MATLAB program to generate the 1/3 octave band SPL spectra. Concluding results show major differences in SPLs between the hold-down test data and the processed Ares I-X flight data making the Ares I-X flight data more practical for future vehicle acoustic environment predictions.

  14. Acoustic paramagnetic logging tool

    DOEpatents

    Vail, III, William B.

    1988-01-01

    New methods and apparatus are disclosed which allow measurement of the presence of oil and water in geological formations using a new physical effect called the Acoustic Paramagnetic Logging Effect (APLE). The presence of petroleum in formation causes a slight increase in the earth's magnetic field in the vicinity of the reservoir. This is the phenomena of paramagnetism. Application of an acoustic source to a geological formation at the Larmor frequency of the nucleons present causes the paramagnetism of the formation to disappear. This results in a decrease in the earth3 s magnetic field in the vicinity of the oil bearing formation. Repetitively frequency sweeping the acoustic source through the Larmor frequency of the nucleons present (approx. 2 kHz) causes an amplitude modulation of the earth's magnetic field which is a consequence of the APLE. The amplitude modulation of the earth's magnetic field is measured with an induction coil gradiometer and provides a direct measure of the amount of oil and water in the excitation zone of the formation . The phase of the signal is used to infer the longitudinal relaxation times of the fluids present, which results in the ability in general to separate oil and water and to measure the viscosity of the oil present. Such measurements may be preformed in open boreholes and in cased well bores.

  15. Acoustics Research of Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Gao, Ximing; Houston, Janice D.

    2014-01-01

    The liftoff phase induces some of the highest acoustic loading over a broad frequency for a launch vehicle. These external acoustic environments are used in the prediction of the internal vibration responses of the vehicle and components. Thus, predicting these liftoff acoustic environments is critical to the design requirements of any launch vehicle but there are challenges. Present liftoff vehicle acoustic environment prediction methods utilize stationary data from previously conducted hold-down tests; i.e. static firings conducted in the 1960's, to generate 1/3 octave band Sound Pressure Level (SPL) spectra. These data sets are used to predict the liftoff acoustic environments for launch vehicles. To facilitate the accuracy and quality of acoustic loading, predictions at liftoff for future launch vehicles such as the Space Launch System (SLS), non-stationary flight data from the Ares I-X were processed in PC-Signal in two forms which included a simulated hold-down phase and the entire launch phase. In conjunction, the Prediction of Acoustic Vehicle Environments (PAVE) program was developed in MATLAB to allow for efficient predictions of sound pressure levels (SPLs) as a function of station number along the vehicle using semiempirical methods. This consisted, initially, of generating the Dimensionless Spectrum Function (DSF) and Dimensionless Source Location (DSL) curves from the Ares I-X flight data. These are then used in the MATLAB program to generate the 1/3 octave band SPL spectra. Concluding results show major differences in SPLs between the hold-down test data and the processed Ares IX flight data making the Ares I-X flight data more practical for future vehicle acoustic environment predictions.

  16. Cavitation controlled acoustic probe for fabric spot cleaning and moisture monitoring

    DOEpatents

    Sheen, Shuh-Haw; Chien, Hual-Te; Raptis, Apostolos C.

    1997-01-01

    A method and apparatus are provided for monitoring a fabric. An acoustic probe generates acoustic waves relative to the fabric. An acoustic sensor, such as an accelerometer is coupled to the acoustic probe for generating a signal representative of cavitation activity in the fabric. The generated cavitation activity representative signal is processed to indicate moisture content of the fabric. A feature of the invention is a feedback control signal is generated responsive to the generated cavitation activity representative signal. The feedback control signal can be used to control the energy level of the generated acoustic waves and to control the application of a cleaning solution to the fabric.

  17. Convective Heat Transfer in Acoustic Streaming Flows

    NASA Astrophysics Data System (ADS)

    Gopinath, Ashok

    1992-01-01

    Convective heat transfer due to acoustic streaming has been studied in the absence of an imposed mean flow. The work is motivated by the need to design and control the thermal features of a suitable experimental rig for the containerless processing of materials by heat treatment of acoustically levitated alloy samples at near zero-gravity. First the problem of heat transfer from an isolated sphere (in a standing sound field) is explored in detail. The streaming Reynolds number, Rs, which characterizes the resulting steady flows, is determined from the acoustic signal. A scale analysis is used to ascertain the importance of buoyancy and viscous dissipation. The steady velocity and temperature fields are determined using asymptotic techniques and numerical methods for the limiting cases of Rs<<1 and Rsgg1. Working correlations for the average Nusselt number are obtained for a wide range of Prandtl numbers. A simple experiment is conducted to verify the predictions for the more relevant case of Rsgg1. The acoustic levitation chamber itself is modelled as a Kundt tube (supporting a plane axial standing sound wave) with insulated side-wall and isothermal end-walls. Analytical solution techniques are used to determine the steady fields close to the tube walls. For the steady recirculatory transport in the core, the numerical solver PHOENICS is adopted for the solution of the complete elliptic form of the governing equations. A study of the effects of a range of acoustic and geometric parameters on the flow and heat transfer is performed and Nusselt number correlations are obtained for air. PHOENICS is also used to study the effects of variable fluid properties and axial side-wall conduction (coupled with radiation). The role of normal/reduced gravity is assessed and suggestions made for terrestrial testing of the levitation apparatus. Finally, with the sample located at a node in the levitation chamber, the effect of the interaction of the streaming flows (on the sphere

  18. Acoustic constituents of prosodic typology

    NASA Astrophysics Data System (ADS)

    Komatsu, Masahiko

    Different languages sound different, and considerable part of it derives from the typological difference of prosody. Although such difference is often referred to as lexical accent types (stress accent, pitch accent, and tone; e.g. English, Japanese, and Chinese respectively) and rhythm types (stress-, syllable-, and mora-timed rhythms; e.g. English, Spanish, and Japanese respectively), it is unclear whether these types are determined in terms of acoustic properties, The thesis intends to provide a potential basis for the description of prosody in terms of acoustics. It argues for the hypothesis that the source component of the source-filter model (acoustic features) approximately corresponds to prosody (linguistic features) through several experimental-phonetic studies. The study consists of four parts. (1) Preliminary experiment: Perceptual language identification tests were performed using English and Japanese speech samples whose frequency spectral information (i.e. non-source component) is heavily reduced. The results indicated that humans can discriminate languages with such signals. (2) Discussion on the linguistic information that the source component contains: This part constitutes the foundation of the argument of the thesis. Perception tests of consonants with the source signal indicated that the source component carries the information on broad categories of phonemes that contributes to the creation of rhythm. (3) Acoustic analysis: The speech samples of Chinese, English, Japanese, and Spanish, differing in prosodic types, were analyzed. These languages showed difference in acoustic characteristics of the source component. (4) Perceptual experiment: A language identification test for the above four languages was performed using the source signal with its acoustic features parameterized. It revealed that humans can discriminate prosodic types solely with the source features and that the discrimination is easier as acoustic information increases. The

  19. Magneto acoustic emission apparatus for testing materials for embrittlement

    NASA Technical Reports Server (NTRS)

    Allison, Sidney G. (Inventor); Min, Namkung (Inventor); Yost, William T. (Inventor); Cantrell, John H. (Inventor)

    1990-01-01

    A method and apparatus for testing steel components for temper embrittlement uses magneto-acoustic emission to nondestructively evaluate the component. Acoustic emission signals occur more frequently at higher levels in embrittled components. A pair of electromagnets are used to create magnetic induction in the test component. Magneto-acoustic emission signals may be generated by applying an ac current to the electromagnets. The acoustic emission signals are analyzed to provide a comparison between a component known to be unembrittled and a test component. Magnetic remanence is determined by applying a dc current to the electromagnets, then turning the magnets off and observing the residual magnetic induction.

  20. Acoustic microscope surface inspection system and method

    DOEpatents

    Khuri-Yakub, B.T.; Parent, P.; Reinholdtsen, P.A.

    1991-02-26

    An acoustic microscope surface inspection system and method are described in which pulses of high frequency electrical energy are applied to a transducer which forms and focuses acoustic energy onto a selected location on the surface of an object and receives energy from the location and generates electrical pulses. The phase of the high frequency electrical signal pulses are stepped with respect to the phase of a reference signal at said location. An output signal is generated which is indicative of the surface of said selected location. The object is scanned to provide output signals representative of the surface at a plurality of surface locations. 7 figures.

  1. Acoustic microscope surface inspection system and method

    DOEpatents

    Khuri-Yakub, Butrus T.; Parent, Philippe; Reinholdtsen, Paul A.

    1991-01-01

    An acoustic microscope surface inspection system and method in which pulses of high frequency electrical energy are applied to a transducer which forms and focuses acoustic energy onto a selected location on the surface of an object and receives energy from the location and generates electrical pulses. The phase of the high frequency electrical signal pulses are stepped with respected to the phase of a reference signal at said location. An output signal is generated which is indicative of the surface of said selected location. The object is scanned to provide output signals representative of the surface at a plurality of surface locations.

  2. Acoustic Tooth Cleaner

    NASA Technical Reports Server (NTRS)

    Heyman, J. S.

    1984-01-01

    Acoustically-energized water jet aids in plaque breakdown. Acoustic Wand includes acoustic transducer 1/4 wave plate, and tapered cone. Together elements energize solution of water containing mild abrasive injected into mouth to help prevent calculous buildup.

  3. Focused acoustic beam imaging of grain structure and local Young's modulus with Rayleigh and surface skimming longitudinal waves

    SciTech Connect

    Martin, R. W.; Sathish, S.; Blodgett, M. P.

    2013-01-25

    The interaction of a focused acoustic beam with materials generates Rayleigh surface waves (RSW) and surface skimming longitudinal waves (SSLW). Acoustic microscopic investigations have used the RSW amplitude and the velocity measurements, extensively for grain structure analysis. Although, the presence of SSLW has been recognized, it is rarely used in acoustic imaging. This paper presents an approach to perform microstructure imaging and local elastic modulus measurements by combining both RSW and SSLW. The acoustic imaging of grain structure was performed by measuring the amplitude of RSW and SSLW signal. The microstructure images obtained on the same region of the samples with RSW and SSLW are compared and the difference in the contrast observed is discussed based on the propagation characteristics of the individual surface waves. The velocity measurements are determined by two point defocus method. The surface wave velocities of RSW and SSLW of the same regions of the sample are combined and presented as average Young's modulus image.

  4. Vibro-acoustic analysis of the acoustic-structure interaction of flexible structure due to acoustic excitation

    NASA Astrophysics Data System (ADS)

    Djojodihardjo, Harijono

    2015-03-01

    The application of BE-FE acoustic-structure interaction on a structure subject to acoustic load is elaborated using the boundary element-finite element acoustic structural coupling and the utilization of the computational scheme developed earlier. The plausibility of the numerical treatment is investigated and validated through application to generic cases. The analysis carried out in the work is intended to serve as a baseline in the analysis of acoustic structure interaction for lightweight structures. Results obtained thus far exhibit the robustness of the method developed.

  5. Acoustic FMRI noise: linear time-invariant system model.

    PubMed

    Rizzo Sierra, Carlos V; Versluis, Maarten J; Hoogduin, Johannes M; Duifhuis, Hendrikus Diek

    2008-09-01

    Functional magnetic resonance imaging (fMRI) enables sites of brain activation to be localized in human subjects. For auditory system studies, however, the acoustic noise generated by the scanner tends to interfere with the assessments of this activation. Understanding and modeling fMRI acoustic noise is a useful step to its reduction. To study acoustic noise, the MR scanner is modeled as a linear electroacoustical system generating sound pressure signals proportional to the time derivative of the input gradient currents. The transfer function of one MR scanner is determined for two different input specifications: 1) by using the gradient waveform calculated by the scanner software and 2) by using a recording of the gradient current. Up to 4 kHz, the first method is shown as reliable as the second one, and its use is encouraged when direct measurements of gradient currents are not possible. Additionally, the linear order and average damping properties of the gradient coil system are determined by impulse response analysis. Since fMRI is often based on echo planar imaging (EPI) sequences, a useful validation of the transfer function prediction ability can be obtained by calculating the acoustic output for the EPI sequence. We found a predicted sound pressure level (SPL) for the EPI sequence of 104 dB SPL compared to a measured value of 102 dB SPL. As yet, the predicted EPI pressure waveform shows similarity as well as some differences with the directly measured EPI pressure waveform.

  6. Acoustic Microscope Inspection of Cylindrical Butt Laser Welds

    NASA Astrophysics Data System (ADS)

    Maev, R. Gr.; Severin, F.

    Presented work was made in order to develop the ultrasound technique for quality control of critical butt laser welds in automotive production. The set of powertrain assemblies was tested by high resolution acoustic microscopy method. The pulse-echo Tessonics AM 1102 scanning acoustic microscope was modified to accommodate cylindrical configuration of the parts. The spherically focused transducers with frequencies 15, 25 and 50 MHz were used; ultrasonic beam was focused on the joint area. Three-dimensional acoustic images were obtained and analyzed. The clear distinction between weld seam and remaining gap was demonstrated on the B- and C-scans representation. Seam depth varying from 0 up to 3.2 mm was measured along the weld. Different types of defects (porosity, cracks, lack of fusion) were detected and classified. The optimized analytical procedures for signal processing and advanced seam visualization were determined. The results were used as a basis for development of specialized instrumentation for inspection of this kind of parts in industrial environment. The technical requirements were established and the general design of new cylindrical acoustical scanner was made.

  7. Linear and Nonlinear Time Reverse Acoustics in Geomaterials

    NASA Astrophysics Data System (ADS)

    Sutin, A.; Johnson, P. A.; Tencate, J.

    2004-12-01

    Linear and Nonlinear Time Reverse Acoustics in Geomaterials P. A. Johnson, A.Sutin and J. TenCate Time Reversal Acoustics (TRA) is one of the most interesting topics to have emerged in modern acoustics in the last 40 years. Much of the seminal research in this area has been carried out by the group at the Laboratoire Ondes et Acoustique at the University of Paris 7, who have demonstrated the ability and robustness of TRA (using Time Reversal Mirrors) to provide spatial control and focusing of an ultrasonic beam (e.g. Fink, 1999). The ability to obtain highly focused signals with TRA has numerous applications, including lithotripsy, ultrasonic brain surgery, nondestructive evaluation and underwater acoustic communication. Notably, the study of time reversal in solids and in the earth is still relatively new. The problem is fundamentally different from the purely acoustic one due to the excitation and propagation of both compressional (bulk) and shear waves as well as the scattering and potentially high dissipation of the medium. We conducted series of TRA experiments in different solids using direct-coupled transducers on solids in tandem with a large bandwidth laser vibrometer detector. A typical time reversal experiment was carried out using the following steps (Sutin et al. 2004a). Laboratory experiments were conducted in different geomaterials of different shapes and sizes, including Carrera marble, granite and Berea sandstone. We observed that, in spite of potentially huge numbers of wave conversions (e.g., compressional to shear, shear to compressional, compressional/shear to surface waves, etc.) for each reflection at each free surface, time reversal still provides significant spatial and temporal focusing in these different geophysical materials. The typical size of the focal area is approximately equivalent to the shear wavelength and the focal area, but becomes larger with increasing wave attenuation (Sutin et al. 2004a; Delsanto et al., 2003)). The TR

  8. Spectral statistics of the acoustic stadium

    NASA Astrophysics Data System (ADS)

    Méndez-Sánchez, R. A.; Báez, G.; Leyvraz, F.; Seligman, T. H.

    2014-01-01

    We calculate the normal-mode frequencies and wave amplitudes of the two-dimensional acoustical stadium. We also obtain the statistical properties of the acoustical spectrum and show that they agree with the results given by random matrix theory. Some normal-mode wave amplitudes showing scarring are presented.

  9. Acoustic source identification using a Generalized Weighted Inverse Beamforming technique

    NASA Astrophysics Data System (ADS)

    Presezniak, Flavio; Zavala, Paulo A. G.; Steenackers, Gunther; Janssens, Karl; Arruda, Jose R. F.; Desmet, Wim; Guillaume, Patrick

    2012-10-01

    In the last years, acoustic source identification has gained special attention, mainly due to new environmental norms, urbanization problems and more demanding acoustic comfort expectation of consumers. From the current methods, beamforming techniques are of common use, since normally demands affordable data acquisition effort, while producing clear source identification in most of the applications. In order to improve the source identification quality, this work presents a method, based on the Generalized Inverse Beamforming, that uses a weighted pseudo-inverse approach and an optimization procedure, called Weighted Generalized Inverse Beamforming. To validate this method, a simple case of two compact sources in close vicinity in coherent radiation was investigated by numerical and experimental assessment. Weighted generalized inverse results are compared to the ones obtained by the conventional beamforming, MUltiple Signal Classification, and Generalized Inverse Beamforming. At the end, the advantages of the proposed method are outlined together with the computational effort increase compared to the Generalized Inverse Beamforming.

  10. Acoustic transducer

    DOEpatents

    Drumheller, D.S.

    1997-12-30

    An acoustic transducer is described comprising a one-piece hollow mandrel into the outer surface of which is formed a recess with sides perpendicular to the central axis of the mandrel and separated by a first distance and with a bottom parallel to the central axis and within which recess are a plurality of washer-shaped discs of a piezoelectric material and at least one disc of a temperature-compensating material with the discs being captured between the sides of the recess in a pre-stressed interference fit, typically at 2,000 psi of compressive stress. The transducer also includes a power supply and means to connect to a measurement device. The transducer is intended to be used for telemetry between a measurement device located downhole in an oil or gas well and the surface. The transducer is of an construction that is stronger with fewer joints that could leak fluids into the recess holding the piezoelectric elements than is found in previous acoustic transducers. 4 figs.

  11. Acoustic transducer

    DOEpatents

    Drumheller, Douglas S.

    1997-01-01

    An acoustic transducer comprising a one-piece hollow mandrel into the outer surface of which is formed a recess with sides perpendicular to the central axis of the mandrel and separated by a first distance and with a bottom parallel to the central axis and within which recess are a plurality of washer-shaped discs of a piezoelectric material and at least one disc of a temperature-compensating material with the discs being captured between the sides of the recess in a pre-stressed interference fit, typically at 2000 psi of compressive stress. The transducer also includes a power supply and means to connect to a measurement device. The transducer is intended to be used for telemetry between a measurement device located downhole in an oil or gas well and the surface. The transducer is of an construction that is stronger with fewer joints that could leak fluids into the recess holding the piezoelectric elements than is found in previous acoustic transducers.

  12. Sonification of acoustic emission data

    NASA Astrophysics Data System (ADS)

    Raith, Manuel; Große, Christian

    2014-05-01

    While loading different specimens, acoustic emissions appear due to micro crack formation or friction of already existing crack edges. These acoustic emissions can be recorded using suitable ultrasonic transducers and transient recorders. The analysis of acoustic emissions can be used to investigate the mechanical behavior of different specimens under load. Our working group has undertaken several experiments, monitored with acoustic emission techniques. Different materials such as natural stone, concrete, wood, steel, carbon composites and bone were investigated. Also the experimental setup has been varied. Fire-spalling experiments on ultrahigh performance concrete and pullout experiments on bonded anchors have been carried out. Furthermore uniaxial compression tests on natural stone and animal bone had been conducted. The analysis tools include not only the counting of events but the analysis of full waveforms. Powerful localization algorithms and automatic onset picking techniques (based on Akaikes Information Criterion) were established to handle the huge amount of data. Up to several thousand events were recorded during experiments of a few minutes. More sophisticated techniques like moment tensor inversion have been established on this relatively small scale as well. Problems are related to the amount of data but also to signal-to-noise quality, boundary conditions (reflections) sensor characteristics and unknown and changing Greens functions of the media. Some of the acoustic emissions recorded during these experiments had been transferred into audio range. The transformation into the audio range was done using Matlab. It is the aim of the sonification to establish a tool that is on one hand able to help controlling the experiment in-situ and probably adjust the load parameters according to the number and intensity of the acoustic emissions. On the other hand sonification can help to improve the understanding of acoustic emission techniques for training

  13. Software for Acoustic Rendering

    NASA Technical Reports Server (NTRS)

    Miller, Joel D.

    2003-01-01

    SLAB is a software system that can be run on a personal computer to simulate an acoustic environment in real time. SLAB was developed to enable computational experimentation in which one can exert low-level control over a variety of signal-processing parameters, related to spatialization, for conducting psychoacoustic studies. Among the parameters that can be manipulated are the number and position of reflections, the fidelity (that is, the number of taps in finite-impulse-response filters), the system latency, and the update rate of the filters. Another goal in the development of SLAB was to provide an inexpensive means of dynamic synthesis of virtual audio over headphones, without need for special-purpose signal-processing hardware. SLAB has a modular, object-oriented design that affords the flexibility and extensibility needed to accommodate a variety of computational experiments and signal-flow structures. SLAB s spatial renderer has a fixed signal-flow architecture corresponding to a set of parallel signal paths from each source to a listener. This fixed architecture can be regarded as a compromise that optimizes efficiency at the expense of complete flexibility. Such a compromise is necessary, given the design goal of enabling computational psychoacoustic experimentation on inexpensive personal computers.

  14. Acoustic Probe for Solid-Gas-Liquid Suspension

    SciTech Connect

    Tavlarides, L.L.; Sangani, Ashok

    2003-09-14

    /monitoring two-phase flows in relatively ideal, well-characterized suspensions. Two major factors which we judge has prevented its wide-spread use in the processing industry, particularly for dilute suspensions, is careful selection of the frequency range for interrogation and quantification and removal of the noise introduced by bubbles from the acoustic signal obtained from the suspension. Our research during the first funding period to develop an acoustic probe for solid-gas liquid suspensions has resulted in a theory, supported by our experiments, to describe small amplitude dilute suspensions (Norato, 1999, Spelt et al., 1999, Spelt et al., 2001). The theory agrees well with experimental data of sound attenuation up to 45 {approx}01% suspensions of 0.11 and 77 micron radius polystyrene particles in water and 0.4 to 40 vol %, suspensions of 32 micron soda-lime glass particles in water. Also, analyses of our attenuation experiments for solid-gas liquid experiments suggest the theory can be applied to correct for signal interference due to the presence of bubbles over a selected frequency range to permit determination of the solid-liquid volume fraction. Further, we show experimentally that a reliable linear dependency of weight percent solids with attenuation is obtained for low weight fractions at high frequencies of interrogation where bubble interference is minimal. There was a collaborative effort during the first funding period with the Pacific Northwest National Laboratories in that Dr. Margaret Greenwood was a co-investigator on the project. Dr. Greenwood provided a high level of experimental knowledge and techniques on ultrasound propagation, measurement and data processing. During the second funding period the slurry test loop at Oak Ridge National Laboratories under the direction of Mr. Tom Hylton will be employed to demonstrate the measurement capabilities of the prototype acoustic monitor.

  15. Fast wideband acoustical holography.

    PubMed

    Hald, Jørgen

    2016-04-01

    Patch near-field acoustical holography methods like statistically optimized near-field acoustical holography and equivalent source method are limited to relatively low frequencies, where the average array-element spacing is less than half of the acoustic wavelength, while beamforming provides useful resolution only at medium-to-high frequencies. With adequate array design, both methods can be used with the same array. But for holography to provide good low-frequency resolution, a small measurement distance is needed, whereas beamforming requires a larger distance to limit sidelobe issues. The wideband holography method of the present paper was developed to overcome that practical conflict. Only a single measurement is needed at a relatively short distance and a single result is obtained covering the full frequency range. The method uses the principles of compressed sensing: A sparse sound field representation is assumed with a chosen set of basis functions, a measurement is taken with an irregular array, and the inverse problem is solved with a method that enforces sparsity in the coefficient vector. Instead of using regularization based on the 1-norm of the coefficient vector, an iterative solution procedure is used that promotes sparsity. The iterative method is shown to provide very similar results in most cases and to be computationally much more efficient. PMID:27106299

  16. A multi-channel acoustics monitor for perioperative respiratory monitoring: preliminary data.

    PubMed

    Jafarian, Kamal; Amineslami, Majid; Hassani, Kamran; Navidbakhsh, Mahdi; Lahiji, Mohammad Niakan; Doyle, D John

    2016-02-01

    This study pertains to a six-channel acoustic monitoring system for use in patient monitoring during or after surgery. The base hardware consists of a USB data acquisition system, a custom-built six-channel amplification system, and a series of microphones of various designs. The software is based on the MATLAB platform with data acquisition drivers installed. The displayed information includes: time domain signals, frequency domain signals, and tools to aid in the detection of endobronchial intubation. We hypothesize that the above mentioned arrangement may be helpful to the anesthesiologist in recognizing clinical conditions like wheezing, bronchospasm, endobronchial intubation, and apnea. The study also evaluated various types of microphone designs used to transduce breath sounds. The system also features selectable band-pass filtering using MATLAB algorithms as well as a collection of recordings obtained with the system to establish what respiratory acoustic signals look like under various conditions.

  17. A multi-channel acoustics monitor for perioperative respiratory monitoring: preliminary data.

    PubMed

    Jafarian, Kamal; Amineslami, Majid; Hassani, Kamran; Navidbakhsh, Mahdi; Lahiji, Mohammad Niakan; Doyle, D John

    2016-02-01

    This study pertains to a six-channel acoustic monitoring system for use in patient monitoring during or after surgery. The base hardware consists of a USB data acquisition system, a custom-built six-channel amplification system, and a series of microphones of various designs. The software is based on the MATLAB platform with data acquisition drivers installed. The displayed information includes: time domain signals, frequency domain signals, and tools to aid in the detection of endobronchial intubation. We hypothesize that the above mentioned arrangement may be helpful to the anesthesiologist in recognizing clinical conditions like wheezing, bronchospasm, endobronchial intubation, and apnea. The study also evaluated various types of microphone designs used to transduce breath sounds. The system also features selectable band-pass filtering using MATLAB algorithms as well as a collection of recordings obtained with the system to establish what respiratory acoustic signals look like under various conditions. PMID:25869899

  18. Simple discrimination method between False Acoustic Emission and Acoustic Emission revealed by piezoelectric sensors, in Gran Sasso mountain measurements (L)

    NASA Astrophysics Data System (ADS)

    Diodati, Paolo; Piazza, Stefano

    2004-07-01

    Recently it was shown, studying data acquired with in-situ measurements on the Gran Sasso mountain (Italy), for about ten years, by means of a high sensitivity transducer coupled to the free-end section of a stainless steel rod fixed by cement in a rock-drill hole 10 m high, about 2500 m above sea level, that Acoustic Emission (AE) can be affected by more than 90% False Acoustic Emission (FAE) of an electromagnetic origin. A very simple method to solve the problem of the discrimination between AE events due to elastic waves, from FAE signals, due to electromagnetic noise, both coming from the same ``reception-point,'' is presented. The reliability of the obtained separation is confirmed also by the reported amplitude and time distribution of AE events, typical of fracture dynamics and those of FAE events, similar to those of noise.

  19. Acoustic enhancement for photo detecting devices

    DOEpatents

    Thundat, Thomas G; Senesac, Lawrence R; Van Neste, Charles W

    2013-02-19

    Provided are improvements to photo detecting devices and methods for enhancing the sensitivity of photo detecting devices. A photo detecting device generates an electronic signal in response to a received light pulse. An electro-mechanical acoustic resonator, electrically coupled to the photo detecting device, damps the electronic signal and increases the signal noise ratio (SNR) of the electronic signal. Increased photo detector standoff distances and sensitivities will result.

  20. Monitoring of Temperature Fatigue Failure Mechanism for Polyvinyl Alcohol Fiber Concrete Using Acoustic Emission Sensors

    PubMed Central

    Li, Dongsheng; Cao, Hai

    2012-01-01

    The applicability of acoustic emission (AE) techniques to monitor the mechanism of evolution of polyvinyl alcohol (PVA) fiber concrete damage under temperature fatigue loading is investigated. Using the temperature fatigue test, real-time AE monitoring data of PVA fiber concrete is achieved. Based on the AE signal characteristics of the whole test process and comparison of AE signals of PVA fiber concretes with different fiber contents, the damage evolution process of PVA fiber concrete is analyzed. Finally, a qualitative evaluation of the damage degree is obtained using the kurtosis index and b-value of AE characteristic parameters. The results obtained using both methods are discussed. PMID:23012555