Science.gov

Sample records for acoustic signals propagating

  1. Dimensional analysis of acoustically propagated signals

    NASA Technical Reports Server (NTRS)

    Hansen, Scott D.; Thomson, Dennis W.

    1993-01-01

    Traditionally, long term measurements of atmospherically propagated sound signals have consisted of time series of multiminute averages. Only recently have continuous measurements with temporal resolution corresponding to turbulent time scales been available. With modern digital data acquisition systems we now have the capability to simultaneously record both acoustical and meteorological parameters with sufficient temporal resolution to allow us to examine in detail relationships between fluctuating sound and the meteorological variables, particularly wind and temperature, which locally determine the acoustic refractive index. The atmospheric acoustic propagation medium can be treated as a nonlinear dynamical system, a kind of signal processor whose innards depend on thermodynamic and turbulent processes in the atmosphere. The atmosphere is an inherently nonlinear dynamical system. In fact one simple model of atmospheric convection, the Lorenz system, may well be the most widely studied of all dynamical systems. In this paper we report some results of our having applied methods used to characterize nonlinear dynamical systems to study the characteristics of acoustical signals propagated through the atmosphere. For example, we investigate whether or not it is possible to parameterize signal fluctuations in terms of fractal dimensions. For time series one such parameter is the limit capacity dimension. Nicolis and Nicolis were among the first to use the kind of methods we have to study the properties of low dimension global attractors.

  2. Modeling of Acoustic Emission Signal Propagation in Waveguides

    PubMed Central

    Zelenyak, Andreea-Manuela; Hamstad, Marvin A.; Sause, Markus G. R.

    2015-01-01

    Acoustic emission (AE) testing is a widely used nondestructive testing (NDT) method to investigate material failure. When environmental conditions are harmful for the operation of the sensors, waveguides are typically mounted in between the inspected structure and the sensor. Such waveguides can be built from different materials or have different designs in accordance with the experimental needs. All these variations can cause changes in the acoustic emission signals in terms of modal conversion, additional attenuation or shift in frequency content. A finite element method (FEM) was used to model acoustic emission signal propagation in an aluminum plate with an attached waveguide and was validated against experimental data. The geometry of the waveguide is systematically changed by varying the radius and height to investigate the influence on the detected signals. Different waveguide materials were implemented and change of material properties as function of temperature were taken into account. Development of the option of modeling different waveguide options replaces the time consuming and expensive trial and error alternative of experiments. Thus, the aim of this research has important implications for those who use waveguides for AE testing. PMID:26007731

  3. Low-Frequency Acoustic Signals Propagation in Buried Pipelines

    NASA Astrophysics Data System (ADS)

    Ovchinnikov, A. L.; Lapshin, B. M.

    2016-01-01

    The article deals with the issues concerning acoustic signals propagation in the large-diameter oil pipelines caused by mechanical action on the pipe body. Various mechanisms of signals attenuation are discussed. It is shown that the calculation of the attenuation caused only by internal energy loss, i.e, the presence of viscosity, thermal conductivity and liquid pipeline wall friction lead to low results. The results of experimental studies, carried out using the existing pipeline with a diameter of 1200 mm. are shown. It is experimentally proved that the main mechanism of signal attenuation is the energy emission into the environment. The numerical values of attenuation coefficients that are 0,14- 0.18 dB/m for the pipeline of 1200 mm in diameter, in the frequency range from 50 Hz to 500 Hz, are determined.

  4. Mode tomography using signals from the Long Range Ocean Acoustic Propagation EXperiment (LOAPEX)

    NASA Astrophysics Data System (ADS)

    Chandrayadula, Tarun K.

    Ocean acoustic tomography uses acoustic signals to infer the environmental properties of the ocean. The procedure for tomography consists of low frequency acoustic transmissions at mid-water depths to receivers located at hundreds of kilometer ranges. The arrival times of the signal at the receiver are then inverted for the sound speed of the background environment. Using this principle, experiments such as the 2004 Long Range Ocean Acoustic Propagation EXperiment have used acoustic signals recorded across Vertical Line Arrays (VLAs) to infer the Sound Speed Profile (SSP) across depth. The acoustic signals across the VLAs can be represented in terms of orthonormal basis functions called modes. The lower modes of the basis set concentrated around mid-water propagate longer distances and can be inverted for mesoscale effects such as currents and eddies. In spite of these advantages, mode tomography has received less attention. One of the important reasons for this is that internal waves in the ocean cause significant amplitude and travel time fluctuations in the modes. The amplitude and travel time fluctuations cause errors in travel time estimates. The absence of a statistical model and the lack of signal processing techniques for internal wave effects have precluded the modes from being used in tomographic inversions. This thesis estimates a statistical model for modes affected by internal waves and then uses the estimated model to design appropriate signal processing methods to obtain tomographic observables for the low modes. In order to estimate a statistical model, this thesis uses both the LOAPEX signals and also numerical simulations. The statistical model describes the amplitude and phase coherence across different frequencies for modes at different ranges. The model suggests that Matched Subspace Detectors (MSDs) based on the amplitude statistics of the modes are the optimum detectors to make travel time estimates for modes up to 250 km. The mean of the

  5. Generation of desired signals from acoustic drivers. [for aircraft engine internal noise propagation experiment

    NASA Technical Reports Server (NTRS)

    Ramakrishnan, R.; Salikuddin, M.; Ahuja, K. K.

    1982-01-01

    A procedure to control transient signal generation is developed for the study of internal noise propagation from aircraft engines. A simple algorithm incorporating transform techniques is used to produce signals of any desired waveform from acoustic drivers. The accurate driver response is then calculated, and from this the limiting frequency characteristics are determined and the undesirable frequencies where the driver response is poor are eliminated from the analysis. A synthesized signal is then produced by convolving the inverse of the response function with the desired signal. Although the shape of the synthesized signal is in general quite awkward, the driver generates the desired signal when the distorted signal is fed into the driver. The results of operating the driver in two environments, in a free field and in a duct, are presented in order to show the impedance matching effect of the driver. In addition, results using a high frequency cut-off value as a parameter is presented in order to demonstrate the extent of the applicability of the synthesis procedure. It is concluded that the desired signals can be generated through the signal synthesis procedure.

  6. Acoustic signal propagation and measurement in natural stream channels for application to surrogate bed load measurements: Halfmoon Creek, Colorado

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Monitoring sediment-generated noise using submerged hydrophones is a surrogate method for measuring bed load transport in streams with the potential for improving estimates of bed load transport through widespread, inexpensive monitoring. Understanding acoustic signal propagation in natural stream e...

  7. Chelyabinsk meteoroid entry: analysis of acoustic signals in the area of direct sound propagation

    NASA Astrophysics Data System (ADS)

    Podobnaya, Elena; Popova, Olga; Glazachev, Dmitry; Rybnov, Yurij; Shuvalov, Valery; Jenniskens, Peter; Kharlamov, Vladimir

    E.Podobnaya, Yu.Rybnov, O.Popova, V. Shuvalov, P. Jenniskens, V.Kharlamov, D.Glazachev The Chelyabinsk airburst of 15 February 2013, was exceptional because of the large kinetic energy of the impacting body and the airburst that was generated, creating significant damage and injuries in a populated area. The meteor and the effects of the airburst were extraordinarily well documented. Numerous video records provided an accurate record of the trajectory and orbit of the cosmic body as well as features of its interaction with the atmosphere (Borovicka et al., 2013; Popova et al. 2013). In this presentation, we discuss the information on shock wave arrival times. Arrival times of the shock wave were derived from the shaking of the camera, the movement of smoke or car exhaust, and the movement of cables in the field of view, as well as directly from the audio record. From the analysis of these shock wave arrival times, the altitudes of the energy deposition were derived (Popova et al. 2013). Borovicka et al (2013) suggested that subsequent acoustic arrivals corresponded to separate fragmentation events. The observed arrival times will be compared with model estimates taking into account the real wind and atmospheric conditions (i.e. sound velocity changes with altitude). Results of numerical simulations will be compared with recorded sound signals. References Borovicka J. et al., 2013, Nature 503, 235 Popova O. et al., 2013, Science, 342, 1096

  8. Turbofan Acoustic Propagation and Radiation

    NASA Technical Reports Server (NTRS)

    Eversman, Walter

    2000-01-01

    This document describes progress in the development of finite element codes for the prediction of near and far field acoustic radiation from the inlet and aft fan ducts of turbofan engines. The report consists of nine papers which have appeared in archival journals and conference proceedings, or are presently in review for publication. Topics included are: 1. Aft Fan Duct Acoustic Radiation; 2. Mapped Infinite Wave Envelope Elements for Acoustic Radiation in a Uniformly Moving Medium; 3. A Reflection Free Boundary Condition for Propagation in Uniform Flow Using Mapped Infinite Wave Envelope Elements; 4. A Numerical Comparison Between Multiple-Scales and FEM Solution for Sound Propagation in Lined Flow Ducts; 5. Acoustic Propagation at High Frequencies in Ducts; 6. The Boundary Condition at an Impedance Wall in a Nonuniform Duct with Potential Flow; 7. A Reverse Flow Theorem and Acoustic Reciprocity in Compressible Potential Flows; 8. Reciprocity and Acoustics Power in One Dimensional Compressible Potential Flows; and 9. Numerical Experiments on Acoustic Reciprocity in Compressible Potential Flows.

  9. Propagation characteristics of acoustic waves in snow

    NASA Astrophysics Data System (ADS)

    Capelli, Achille; Kapil, Jagdish Chandra; Reiweger, Ingrid; Schweizer, Jürg; Or, Dani

    2015-04-01

    Acoustic emission analysis is a promising technique for monitoring snow slope stability with potential for application in early warning systems for avalanches. Current research efforts focus on identification and localization of acoustic emission features preceding snow failure and avalanches. However, our knowledge of sound propagation characteristics in snow is still limited. A review of previous studies showed that significant gaps exist and that the results of the various studies are partly contradictory. Furthermore, sound velocity and attenuation have been determined for the frequency range below 10 kHz, while recent snow failure experiments suggest that the peak frequency is in the ultrasound range between 30 kHz to 500 kHz. We therefore studied the propagation of pencil lead fracture (PLF) signals through snow in the ultrasound frequency range. This was achieved by performing laboratory experiments with columns of artificially produced snow of varying density and temperature. The attenuation constant was obtained by varying the size of the columns to eliminate possible influences of the snow-sensor coupling. The attenuation constant was measured for the entire PLF burst signal and for single frequency components. The propagation velocity was calculated from the arrival time of the acoustic signal. We then modelled the sound propagation for our experimental setup using Biot's model for wave propagation in porous media. The Model results were in good agreement with our experimental results. For the studied samples, the acoustic signals propagated as fast and slow longitudinal waves, but the main part of the energy was carried by the slow waves. The Young's modulus of our snow samples was determined from the sound velocity. This is highly relevant, as the elastic properties of snow are not well known.

  10. Joint Acoustic Propagation Experiment (JAPE)

    NASA Technical Reports Server (NTRS)

    Carnes, Benny L.; Olsen, Robert O.; Kennedy, Bruce W.

    1993-01-01

    The Joint Acoustic Propagation Experiment (JAPE), performed under the auspices of NATO and the Acoustics Working Group, was conducted at White Sands Missile Range, New Mexico, USA, during the period 11-28 Jul. 1991. JAPE consisted of 220 trials using various acoustic sources including speakers, propane cannon, various types of military vehicles, helicopters, a 155mm howitzer, and static high explosives. Of primary importance to the performance of these tests was the intensive characterization of the atmosphere before and during the trials. Because of the wide range of interests on the part of the participants, JAPE was organized in such a manner to provide a broad cross section of test configurations. These included short and long range propagation from fixed and moving vehicles, terrain masking, and vehicle detection. A number of independent trials were also performed by individual participating agencies using the assets available during JAPE. These tests, while not documented in this report, provided substantial and important data to those groups. Perhaps the most significant feature of JAPE is the establishment of a permanent data base which can be used by not only the participants but by others interested in acoustics. A follow-on test was performed by NASA LaRC during the period 19-29 Aug. 1991 at the same location. These trials consisted of 59 overflights of supersonic aircraft in order to establish the relationship between atmospheric turbulence and the received sonic boom energy at the surface.

  11. Radio wave propagation and acoustic sounding

    NASA Astrophysics Data System (ADS)

    Singal, S. P.

    Radio wave propagation of the decimetric and centimetric waves depends to a large extent on the boundary layer meteorological conditions which give rise to severe fadings, very often due to multipath propagation. Sodar is one of the inexpensive remote sensing techniques which can be employed to probe the boundary layer structure. In the paper a historical perspective has been given of the simultaneously conducted studies on radio waves and sodar at various places. The radio meteorological information needed for propagation studies has been clearly spelt out and conditions of a ray path especially in the presence of a ducting layer have been defined as giving rise to fading or signal enhancement conditions. Finally the potential of the sodar studies to obtain information about the boundary layer phenomena has been stressed, clearly spelling out the use of acoustic sounding in radio wave propagation studies.

  12. Acoustic propagation under tidally driven, stratified flow.

    PubMed

    Finette, Steven; Oba, Roger; Shen, Colin; Evans, Thomas

    2007-05-01

    Amplitude and phase variability in acoustic fields are simulated within a canonical shelf-break ocean environment using sound speed distributions computed from hydrodynamics. The submesoscale description of the space and time varying environment is physically consistent with tidal forcing of stratified flows over variable bathymetry and includes the generation, evolution and propagation of internal tides and solibores. For selected time periods, two-dimensional acoustic transmission examples are presented for which signal gain degradation is computed between 200 and 500 Hz on vertical arrays positioned both on the shelf and beyond the shelf break. Decorrelation of the field is dominated by the phase contribution and occurs over 2-3 min, with significant recorrelation often noted for selected frequency subbands. Detection range is also determined in this frequency band. Azimuth-time variations in the acoustic field are illustrated for 100 Hz sources by extending the acoustic simulations to three spatial dimensions. The azimuthal and temporal structure of both the depth-averaged transmission loss and temporal correlation of the acoustic fields under different environmental conditions are considered. Depth-averaged transmission loss varies up to 4 dB, depending on a combination of source depth, location relative to the slope and tidally induced volumetric changes in the sound speed distribution. PMID:17550157

  13. Acoustically-Induced Electrical Signals

    NASA Astrophysics Data System (ADS)

    Brown, S. R.

    2014-12-01

    We have observed electrical signals excited by and moving along with an acoustic pulse propagating in a sandstone sample. Using resonance we are now studying the characteristics of this acousto-electric signal and determining its origin and the controlling physical parameters. Four rock samples with a range of porosities, permeabilities, and mineralogies were chosen: Berea, Boise, and Colton sandstones and Austin Chalk. Pore water salinity was varied from deionized water to sea water. Ag-AgCl electrodes were attached to the sample and were interfaced to a 4-wire electrical resistivity system. Under computer control, the acoustic signals were excited and the electrical response was recorded. We see strong acoustically-induced electrical signals in all samples, with the magnitude of the effect for each rock getting stronger as we move from the 1st to the 3rd harmonics in resonance. Given a particular fluid salinity, each rock has its own distinct sensitivity in the induced electrical effect. For example at the 2nd harmonic, Berea Sandstone produces the largest electrical signal per acoustic power input even though Austin Chalk and Boise Sandstone tend to resonate with much larger amplitudes at the same harmonic. Two effects are potentially responsible for this acoustically-induced electrical response: one the co-seismic seismo-electric effect and the other a strain-induced resistivity change known as the acousto-electric effect. We have designed experimental tests to separate these mechanisms. The tests show that the seismo-electric effect is dominant in our studies. We note that these experiments are in a fluid viscosity dominated seismo-electric regime, leading to a simple interpretation of the signals where the electric potential developed is proportional to the local acceleration of the rock. Toward a test of this theory we have measured the local time-varying acoustic strain in our samples using a laser vibrometer.

  14. The influence of mesoscale eddies on shallow water acoustic propagation

    NASA Astrophysics Data System (ADS)

    Deferrari, Harry; Olson, Donald

    2003-10-01

    Acoustic propagation measurements in 150 m depth on the Florida escarpment observe the effects of the passage of a cyclonic eddy. As the stream core of the Florida Current meanders, the eddy is formed and propagates along the shelf edge. The sequence over a roughly a fortnight is as follows: ahead of the eddy, warm surface water and cold bottom water are swept onto the terrace forming a steep thermocline and corresponding strong downward refracting C(z). The gradient produce intense, focused RBR arrivals and the thermocline becomes a duct for internal waves to propagate shoreward. At first, the internal wave energy is minimal and propagation is stable and coherent. As the internal tides attempt to propagate on shelf, the sound speed field and the acoustic signals become increasingly variable. The variability reaches a crescendo as the 200 m long internal tide is blocked from propagating on to the narrower shelf and begins to break and overturn producing small-scale variability. As the eddy passes, nearly iso-thermal conditions are restored along with quiescent internal wave fields and reduced signal variability. Here, the effects are quantized with data from fixed-system acoustic and oceanographic measurements demonstrating that the mesoscale determines acoustic propagation conditions days in advance.

  15. Acoustic Signal Processing

    NASA Astrophysics Data System (ADS)

    Hartmann, William M.; Candy, James V.

    Signal processing refers to the acquisition, storage, display, and generation of signals - also to the extraction of information from signals and the re-encoding of information. As such, signal processing in some form is an essential element in the practice of all aspects of acoustics. Signal processing algorithms enable acousticians to separate signals from noise, to perform automatic speech recognition, or to compress information for more efficient storage or transmission. Signal processing concepts are the building blocks used to construct models of speech and hearing. Now, in the 21st century, all signal processing is effectively digital signal processing. Widespread access to high-speed processing, massive memory, and inexpensive software make signal processing procedures of enormous sophistication and power available to anyone who wants to use them. Because advanced signal processing is now accessible to everybody, there is a need for primers that introduce basic mathematical concepts that underlie the digital algorithms. The present handbook chapter is intended to serve such a purpose.

  16. Acoustic communication in the Greater Sage-Grouse (Centrocercus urophasianus) an examination into vocal sacs, sound propagation, and signal directionality

    NASA Astrophysics Data System (ADS)

    Dantzker, Marc Steven

    The thesis is an inquiry into the acoustic communication of a very unusual avian species, the Greater Sage-Grouse, Centrocercus urophasianus. One of the most outstanding features of this animal's dynamic mating display is its use of paired air sacs that emerge explosively from an esophageal pouch. My first line of inquiry into this system is a review of the form and function of similar vocal apparatuses, collectively called vocal sacs, in birds. Next, with a combination of mathematical models and field measurements, My collaborator and I investigate the acoustic environment where the Greater Sage-Grouse display. The complexities of this acoustic environment are relevant both to the birds and to the subsequent examinations of the display's properties. Finally, my collaborators and I examine a cryptic component of the acoustic display --- directionality --- which we measured simultaneously from multiple locations around free moving grouse on their mating grounds.

  17. Vehicular sources in acoustic propagation experiments

    NASA Technical Reports Server (NTRS)

    Prado, Gervasio; Fitzgerald, James; Arruda, Anthony; Parides, George

    1990-01-01

    One of the most important uses of acoustic propagation models lies in the area of detection and tracking of vehicles. Propagation models are used to compute transmission losses in performance prediction models and to analyze the results of past experiments. Vehicles can also provide the means for cost effective experiments to measure acoustic propagation conditions over significant ranges. In order to properly correlate the information provided by the experimental data and the propagation models, the following issues must be taken into consideration: the phenomenology of the vehicle noise sources must be understood and characterized; the vehicle's location or 'ground truth' must be accurately reproduced and synchronized with the acoustic data; and sufficient meteorological data must be collected to support the requirements of the propagation models. The experimental procedures and instrumentation needed to carry out propagation experiments are discussed. Illustrative results are presented for two cases. First, a helicopter was used to measure propagation losses at a range of 1 to 10 Km. Second, a heavy diesel-powered vehicle was used to measure propagation losses in the 300 to 2200 m range.

  18. Nonlinear acoustic wave propagation in atmosphere

    NASA Technical Reports Server (NTRS)

    Hariharan, S. I.

    1985-01-01

    A model problem that simulates an atmospheric acoustic wave propagation situation that is nonlinear is considered. The model is derived from the basic Euler equations for the atmospheric flow and from the regular perturbations for the acoustic part. The nonlinear effects are studied by obtaining two successive linear problems in which the second one involves the solution of the first problem. Well posedness of these problems is discussed and approximations of the radiation boundary conditions that can be used in numerical simulations are presented.

  19. Nonlinear acoustic wave propagation in atmosphere

    NASA Technical Reports Server (NTRS)

    Hariharan, S. I.

    1986-01-01

    In this paper a model problem is considered that simulates an atmospheric acoustic wave propagation situation that is nonlinear. The model is derived from the basic Euler equations for the atmospheric flow and from the regular perturbations for the acoustic part. The nonlinear effects are studied by obtaining two successive linear problems in which the second one involves the solution of the first problem. Well-posedness of these problems is discussed and approximations of the radiation boundary conditions that can be used in numerical simulations are presented.

  20. Surface acoustic wave propagation in graphene film

    SciTech Connect

    Roshchupkin, Dmitry Plotitcyna, Olga; Matveev, Viktor; Kononenko, Oleg; Emelin, Evgenii; Irzhak, Dmitry; Ortega, Luc; Zizak, Ivo; Erko, Alexei; Tynyshtykbayev, Kurbangali; Insepov, Zinetula

    2015-09-14

    Surface acoustic wave (SAW) propagation in a graphene film on the surface of piezoelectric crystals was studied at the BESSY II synchrotron radiation source. Talbot effect enabled the visualization of the SAW propagation on the crystal surface with the graphene film in a real time mode, and high-resolution x-ray diffraction permitted the determination of the SAW amplitude in the graphene/piezoelectric crystal system. The influence of the SAW on the electrical properties of the graphene film was examined. It was shown that the changing of the SAW amplitude enables controlling the magnitude and direction of current in graphene film on the surface of piezoelectric crystals.

  1. Joint Acoustic Propagation Experiment (JAPE-91) Workshop

    NASA Technical Reports Server (NTRS)

    Willshire, William L., Jr. (Compiler); Chestnutt, David (Compiler)

    1993-01-01

    The Joint Acoustic Propagation Experiment (JAPE), was conducted at the White Sands Missile Range, New Mexico, USA, during the period 11-28 Jul. 1991. JAPE consisted of various short and long range propagation experiments using various acoustic sources including speakers, propane cannons, helicopters, a 155 mm howitzer, and static high explosives. Of primary importance to the performance of theses tests was the extensive characterization of the atmosphere during these tests. This atmospheric characterization included turbulence measurements. A workshop to disseminate the results of JAPE-91 was held in Hampton, VA, on 28 Apr. 1993. This report is a compilation of the presentations made at the workshop along with a list of attendees and the agenda.

  2. Temporal structure of non-propagated electric communication signals.

    PubMed

    Hopkins, C D

    1986-01-01

    Acoustic and electric communication differ in one important respect: while acoustic communication signals propagate through air or water as a wave, electric signals do not propagate, but exist instead as electrostatic fields. As a result of propagation, acoustic signals are distorted during transmission in a largely unpredictable way. Sound receivers, therefore, may not be able to recognize fine details in the waveform of an acoustic signal, but may have to rely instead upon time intervals between repetitions of a waveform, on the frequency of a signal, or on frequency modulations. By contrast, non-propagating electric communication signals are immune to many sources of signal distortion that affect sounds. Consequently, electric signal receivers may reliably use waveform cues to recognize a sender's identity and discriminate between signals. As examples, mormyrid electric fish encode species and sex differences in the fine structure of the electric organ discharge waveform and sense the differences using temporal cues. Gymnotiform pulse-discharging electric fish may employ scan-sampling for waveform analysis: a specialized mechanism analogous to a digital sampling oscilloscope for slowly scanning a repetitive waveform.

  3. Acoustic propagation in a thermally stratified atmosphere

    NASA Technical Reports Server (NTRS)

    Vanmoorhem, W. K.

    1987-01-01

    Acoustic propagation in an atmosphere with a specific form of temperature profile has been investigated by analytical means. The temperature profile used is representative of an actual atmospheric profile and contains three free parameters. Both lapse and inversion cases have been considered. Although ray solution have been considered the primary emphasis has been on solutions of the acoustic wave equation with point force where the sound speed varies with height above the ground corresponding to the assumed temperature profile. The method used to obtain the solution of the wave equation is based on Hankel transformation of the wave equation, approximate solution of the transformed equation for wavelength small compared to the scale of the temperature (or sound speed) profile, and approximate or numerical inversion of the Hankel transformed solution. The solution displays the characteristics found in experimental data but extensive comparison between the models and experimental data has not been carried out.

  4. Acoustic propagation in a thermally stratified atmosphere

    NASA Technical Reports Server (NTRS)

    Vanmoorhem, W. K.

    1988-01-01

    Acoustic propagation in an atmosphere with a specific form of a temperature profile has been investigated by analytical means. The temperature profile used is representative of an actual atmospheric profile and contains three free parameters. Both lapse and inversion cases have been considered. Although ray solutions have been considered, the primary emphasis has been on solutions of the acoustic wave equation with point source where the sound speed varies with height above the ground corresponding to the assumed temperature profile. The method used to obtain the solution of the wave equation is based on Hankel transformation of the wave equation, approximate solution of the transformed equation for wavelength small compared to the scale of the temperature (or sound speed) profile, and approximate or numerical inversion of the Hankel transformed solution. The solution displays the characteristics found in experimental data but extensive comparison between the models and experimental data has not been carried out.

  5. Generation of Acoustic Signals from Buried Explosions

    NASA Astrophysics Data System (ADS)

    Bonner, J. L.; Reinke, R.; Waxler, R.; Lenox, E. A.

    2012-12-01

    Buried explosions generate both seismic and acoustic signals. The mechanism for the acoustic generation is generally assumed to be large ground motions above the source region that cause atmospheric pressure disturbances which can propagate locally or regionally depending on source size and weather conditions. In order to better understand the factors that control acoustic generation from buried explosions, we conducted a series of 200 lb explosions detonated in and above the dry alluvium and limestones of Kirtland AFB, New Mexico. In this experiment, nicknamed HUMBLE REDWOOD III, we detonated charges at heights of burst of 2 m (no crater) and depths of burst of 7 m (fully confined). The seismic and acoustic signals were recorded on a network of near-source (< 90 m) co-located accelerometer and overpressure sensors, circular rings of acoustic sensors at 0.3 and 1 km, and multiple seismic and infrasound sensors at local-to-regional distances. Near-source acoustic signals for the 200 lb buried explosion in limestone show an impulsive, short-duration (0.04 s) initial peak, followed by a broad duration (0.3 s) negative pressure trough, and finally a second positive pulse (0.18 s duration). The entire width of the acoustic signal generated by this small buried explosion is 0.5 s and results in a 2 Hz peak in spectral energy. High-velocity wind conditions quickly attenuate the signal with few observations beyond 1 km. We have attempted to model these acoustic waveforms by estimating near-source ground motion using synthetic spall seismograms. Spall seismograms have similar characteristics as the observed acoustics and usually include an initial positive motion P wave, followed by -1 g acceleration due to the ballistic free fall of the near surface rock units, and ends with positive accelerations due to "slapdown" of the material. Spall seismograms were synthesized using emplacement media parameters and high-speed video observations of the surface movements. We present a

  6. Acoustic Localization with Infrasonic Signals

    NASA Astrophysics Data System (ADS)

    Threatt, Arnesha; Elbing, Brian

    2015-11-01

    Numerous geophysical and anthropogenic events emit infrasonic frequencies (<20 Hz), including volcanoes, hurricanes, wind turbines and tornadoes. These sounds, which cannot be heard by the human ear, can be detected from large distances (in excess of 100 miles) due to low frequency acoustic signals having a very low decay rate in the atmosphere. Thus infrasound could be used for long-range, passive monitoring and detection of these events. An array of microphones separated by known distances can be used to locate a given source, which is known as acoustic localization. However, acoustic localization with infrasound is particularly challenging due to contamination from other signals, sensitivity to wind noise and producing a trusted source for system development. The objective of the current work is to create an infrasonic source using a propane torch wand or a subwoofer and locate the source using multiple infrasonic microphones. This presentation will present preliminary results from various microphone configurations used to locate the source.

  7. Empirical mode decomposition for analyzing acoustical signals

    NASA Technical Reports Server (NTRS)

    Huang, Norden E. (Inventor)

    2005-01-01

    The present invention discloses a computer implemented signal analysis method through the Hilbert-Huang Transformation (HHT) for analyzing acoustical signals, which are assumed to be nonlinear and nonstationary. The Empirical Decomposition Method (EMD) and the Hilbert Spectral Analysis (HSA) are used to obtain the HHT. Essentially, the acoustical signal will be decomposed into the Intrinsic Mode Function Components (IMFs). Once the invention decomposes the acoustic signal into its constituting components, all operations such as analyzing, identifying, and removing unwanted signals can be performed on these components. Upon transforming the IMFs into Hilbert spectrum, the acoustical signal may be compared with other acoustical signals.

  8. Acoustic propagation in a thermally stratified atmosphere

    NASA Technical Reports Server (NTRS)

    Vanmoorhem, W. K.

    1985-01-01

    This report describes the activities during the fifth six month period of the investigation of acoustic propagation in the atmosphere with a realistic temperature profile. Progress has been achieved in two major directions: comparisons between the lapse model and experimental data taken by NASA during the second tower experiment, and development of a model propagation in an inversion. Data from the second tower experiment became available near the end of 1984 and some comparisons have been carried out, but this work is not complete. Problems with the temperature profiler during the experiment have produced temperature profiles that are difficult to fit the assumed variation of temperature with height, but in cases where reasonable fits have been obtained agreement between the model and the experiments are close. The major weaknesses in the model appear to be the presence of discontinuities in some regions, the low sound levels predicted near the source height, and difficulties with the argument of the Hankel function being outside the allowable range. Work on the inversion model has progressed slowly, and the rays for that case are discussed along with a simple energy conservation model of sound level enhancement in the inversion case.

  9. Field observation of low-to-mid-frequency acoustic propagation characteristics of an estuarine salt wedge.

    PubMed

    Reeder, D Benjamin

    2016-01-01

    The estuarine environment often hosts a salt wedge, the stratification of which is a function of the tide's range and speed of advance, river discharge volumetric flow rate, and river mouth morphology. Competing effects of temperature and salinity on sound speed in this stratified environment control the degree of acoustic refraction occurring along an acoustic path. A field experiment was carried out in the Columbia River Estuary to test the hypothesis: the estuarine salt wedge is acoustically observable in terms of low-to-mid-frequency acoustic propagation. Linear frequency-modulated acoustic signals in the 500-2000 Hz band were transmitted during the advance and retreat of the salt wedge during May 27-29, 2013. Results demonstrate that the salt wedge front is the dominant physical mechanism controlling acoustic propagation in this environment: received signal energy is relatively stable before and after the passage of the salt wedge front when the acoustic path consists of a single medium (either entirely fresh water or entirely salt water), and suffers a 10-15 dB loss and increased variability during salt wedge front passage. Physical parameters and acoustic propagation modeling corroborate and inform the acoustic observations. PMID:26827001

  10. Sources and propagation of atmospherical acoustic shock waves

    NASA Astrophysics Data System (ADS)

    Coulouvrat, François

    2012-09-01

    Sources of aerial shock waves are numerous and produce acoustical signals that propagate in the atmosphere over long ranges, with a wide frequency spectrum ranging from infrasonic to audible, and with a complex human response. They can be of natural origin, like meteors, lightning or volcanoes, or human-made as for explosions, so-called "buzz-saw noise" (BSN) from aircraft engines or sonic booms. Their description, modeling and data analysis within the viewpoint of nonlinear acoustics will be the topic of the present lecture, with focus on two main points: the challenges of the source description, and the main features of nonlinear atmospheric propagation. Inter-disciplinary aspects, with links to atmospheric and geo-sciences will be outlined. Detailed description of the source is very dependent on its nature. Mobile supersonic sources can be rotating (fan blades of aircraft engines) or in translation (meteors, sonic boom). Mach numbers range from transonic to hypersonic. Detailed knowledge of geometry is critical for the processes of boom minimization and audible frequency spectrum of BSN. Sources of geophysical nature are poorly known, and various mechanisms for explaining infrasound recorded from meteors or thunderstorms have been proposed. Comparison between recorded data and modeling may be one way to discriminate between them. Moreover, the nearfield of these sources is frequently beyond the limits of acoustical approximation, or too complex for simple modeling. A proper numerical description hence requires specific matching procedures between nearfield behavior and farfield propagation. Nonlinear propagation in the atmosphere is dominated by temperature and wind stratification. Ray theory is an efficient way to analyze observations, but is invalid in various situations. Nonlinear effects are enhanced locally at caustics, or in case of grazing propagation over a rigid surface. Absorption, which controls mostly the high frequency part of the spectrum contained

  11. Linear and nonlinear acoustic wave propagation in the atmosphere

    NASA Technical Reports Server (NTRS)

    Hariharan, S. I.; Yu, Ping

    1988-01-01

    The investigation of the acoustic wave propagation theory and numerical implementation for the situation of an isothermal atmosphere is described. A one-dimensional model to validate an asymptotic theory and a 3-D situation to relate to a realistic situation are considered. In addition, nonlinear wave propagation and the numerical treatment are included. It is known that the gravitational effects play a crucial role in the low frequency acoustic wave propagation. They propagate large distances and, as such, the numerical treatment of those problems become difficult in terms of posing boundary conditions which are valid for all frequencies.

  12. Nonlinear propagation and control of acoustic waves in phononic superlattices

    NASA Astrophysics Data System (ADS)

    Jiménez, Noé; Mehrem, Ahmed; Picó, Rubén; García-Raffi, Lluís M.; Sánchez-Morcillo, Víctor J.

    2016-05-01

    The propagation of intense acoustic waves in a one-dimensional phononic crystal is studied. The medium consists in a structured fluid, formed by a periodic array of fluid layers with alternating linear acoustic properties and quadratic nonlinearity coefficient. The spacing between layers is of the order of the wavelength, therefore Bragg effects such as band gaps appear. We show that the interplay between strong dispersion and nonlinearity leads to new scenarios of wave propagation. The classical waveform distortion process typical of intense acoustic waves in homogeneous media can be strongly altered when nonlinearly generated harmonics lie inside or close to band gaps. This allows the possibility of engineer a medium in order to get a particular waveform. Examples of this include the design of media with effective (e.g., cubic) nonlinearities, or extremely linear media (where distortion can be canceled). The presented ideas open a way towards the control of acoustic wave propagation in nonlinear regime. xml:lang="fr"

  13. Experimental study of propagation of instability waves in a submerged jet under transverse acoustic excitation

    NASA Astrophysics Data System (ADS)

    Mironov, A. K.; Krasheninnikov, S. Yu.; Maslov, V. P.; Zakharov, D. E.

    2016-07-01

    An experimental study was conducted on the specific features of instability wave propagation in the mixing layer of a turbulent jet when the jet is excited by an external acoustic wave. We used the technique of conditional phase averaging of data obtained by particle image velocimetry using the reference signal of a microphone placed near the jet. The influence of the excitation frequency on the characteristics of large-scale structures in the mixing layer was investigated. It is shown that the propagation patterns of the instability waves agree well with previously obtained data on the localization of acoustic sources in turbulent jets.

  14. Nonlinear acoustics in cicada mating calls enhance sound propagation.

    PubMed

    Hughes, Derke R; Nuttall, Albert H; Katz, Richard A; Carter, G Clifford

    2009-02-01

    An analysis of cicada mating calls, measured in field experiments, indicates that the very high levels of acoustic energy radiated by this relatively small insect are mainly attributed to the nonlinear characteristics of the signal. The cicada emits one of the loudest sounds in all of the insect population with a sound production system occupying a physical space typically less than 3 cc. The sounds made by tymbals are amplified by the hollow abdomen, functioning as a tuned resonator, but models of the signal based solely on linear techniques do not fully account for a sound radiation capability that is so disproportionate to the insect's size. The nonlinear behavior of the cicada signal is demonstrated by combining the mutual information and surrogate data techniques; the results obtained indicate decorrelation when the phase-randomized and non-phase-randomized data separate. The Volterra expansion technique is used to fit the nonlinearity in the insect's call. The second-order Volterra estimate provides further evidence that the cicada mating calls are dominated by nonlinear characteristics and also suggests that the medium contributes to the cicada's efficient sound propagation. Application of the same principles has the potential to improve radiated sound levels for sonar applications.

  15. Estimating propagation velocity through a surface acoustic wave sensor

    DOEpatents

    Xu, Wenyuan; Huizinga, John S.

    2010-03-16

    Techniques are described for estimating the propagation velocity through a surface acoustic wave sensor. In particular, techniques which measure and exploit a proper segment of phase frequency response of the surface acoustic wave sensor are described for use as a basis of bacterial detection by the sensor. As described, use of velocity estimation based on a proper segment of phase frequency response has advantages over conventional techniques that use phase shift as the basis for detection.

  16. Physical oceanography and acoustic propagation during LADC experiment in the Gulf of Mexico in 2001

    NASA Astrophysics Data System (ADS)

    Vinogradov, Sergey; Caruthers, Jerald W.; Rayborn, Grayson H.; Udovydchenkov, Ilya A.; Sidorovskaia, Natalia A.; Rypina, Irina I.; Newcomb, Joal J.; Fisher, Robert A.; Ioup, George E.; Ioup, Juliette W.

    2003-04-01

    The Littoral Acoustic Demonstration Center (LADC) deployed three environmental and acoustic moorings in a downslope line just off the Mississippi River Delta in the northern Gulf of Mexico in an area of a large concentration of sperm whales in July 2001. The measurement of whale vocalizations and, more generally, ambient noise, were the objectives of the experiment. Each mooring had a single hydrophone autonomously recording Environmental Acoustic Recording System (EARS) obtained from the U.S. Naval Oceanographic Office and modified to recorded signals up to 5859 Hz continuously for 36 days. Also, self-recording, environmental sensors were attached to the moorings to obtain profiles of time series data of temperature and salinity. Satellite imagery and NOAA mooring data were gathered for an analysis of eddy formations and movement in the Gulf. This paper will discuss the possible environmental impact of two events that occurred during the experiment: the passage of Tropical Storm Barry and the movement of the remnants of an eddy in the area. Discussed also will be the expected effects of these events on acoustic propagation based on modeling, which are carried out for long range and low frequency (300 km and 500 Hz) using the normal-mode acoustic model SWAMP (Shallow Water Acoustic Modal Propagation by M. F. Werby and N. A. Sidorovskaia) and for short range and high frequency (10 km and 5000 Hz) using the parabolic-equation acoustic model RAM (Range-dependent Acoustic model by M. Collins). [Work supported by ONR.

  17. Acoustic propagation in rigid ducts with blockage

    NASA Technical Reports Server (NTRS)

    El-Raheb, M.; Wagner, P.

    1982-01-01

    Acoustic levitation has been suggested for moving nonmagnetic material in furnaces for heat processing in space experiments. Basically, acoustic standing waves under resonant conditions are excited in the cavity of the furnace while the material blockage is located at a pressure node and thus at a maximum gradient. The position of the blockage is controlled by displacing the node as a result of frequency change. The present investigation is concerned with the effect of blockage on the longitudinal and transverse resonances of a cylindrical cavity, taking into account the results of a one-dimensional and three-dimensional (3-D) analysis. Based on a Green's function surface element method, 3-D analysis is tested experimentally and proved to be accurate over a wide range of geometric parameters and boundary shapes. The shift in resonance depends on the change in pressure gradient and duct shortening caused by the blockage.

  18. Acoustic propagation in rigid ducts with blockage

    NASA Astrophysics Data System (ADS)

    El-Raheb, M.; Wagner, P.

    1982-09-01

    Acoustic levitation has been suggested for moving nonmagnetic material in furnaces for heat processing in space experiments. Basically, acoustic standing waves under resonant conditions are excited in the cavity of the furnace while the material blockage is located at a pressure node and thus at a maximum gradient. The position of the blockage is controlled by displacing the node as a result of frequency change. The present investigation is concerned with the effect of blockage on the longitudinal and transverse resonances of a cylindrical cavity, taking into account the results of a one-dimensional and three-dimensional (3-D) analysis. Based on a Green's function surface element method, 3-D analysis is tested experimentally and proved to be accurate over a wide range of geometric parameters and boundary shapes. The shift in resonance depends on the change in pressure gradient and duct shortening caused by the blockage.

  19. Corrigendum and addendum. Modeling weakly nonlinear acoustic wave propagation

    DOE PAGES

    Christov, Ivan; Christov, C. I.; Jordan, P. M.

    2014-12-18

    This article presents errors, corrections, and additions to the research outlined in the following citation: Christov, I., Christov, C. I., & Jordan, P. M. (2007). Modeling weakly nonlinear acoustic wave propagation. The Quarterly Journal of Mechanics and Applied Mathematics, 60(4), 473-495.

  20. Numerical modelling of nonlinear full-wave acoustic propagation

    SciTech Connect

    Velasco-Segura, Roberto Rendón, Pablo L.

    2015-10-28

    The various model equations of nonlinear acoustics are arrived at by making assumptions which permit the observation of the interaction with propagation of either single or joint effects. We present here a form of the conservation equations of fluid dynamics which are deduced using slightly less restrictive hypothesis than those necessary to obtain the well known Westervelt equation. This formulation accounts for full wave diffraction, nonlinearity, and thermoviscous dissipative effects. A two-dimensional, finite-volume method using Roe’s linearisation has been implemented to obtain numerically the solution of the proposed equations. This code, which has been written for parallel execution on a GPU, can be used to describe moderate nonlinear phenomena, at low Mach numbers, in domains as large as 100 wave lengths. Applications range from models of diagnostic and therapeutic HIFU, to parametric acoustic arrays and nonlinear propagation in acoustic waveguides. Examples related to these applications are shown and discussed.

  1. The North Pacific Acoustic Laboratory deep-water acoustic propagation experiments in the Philippine Sea.

    PubMed

    Worcester, Peter F; Dzieciuch, Matthew A; Mercer, James A; Andrew, Rex K; Dushaw, Brian D; Baggeroer, Arthur B; Heaney, Kevin D; D'Spain, Gerald L; Colosi, John A; Stephen, Ralph A; Kemp, John N; Howe, Bruce M; Van Uffelen, Lora J; Wage, Kathleen E

    2013-10-01

    A series of experiments conducted in the Philippine Sea during 2009-2011 investigated deep-water acoustic propagation and ambient noise in this oceanographically and geologically complex region: (i) the 2009 North Pacific Acoustic Laboratory (NPAL) Pilot Study/Engineering Test, (ii) the 2010-2011 NPAL Philippine Sea Experiment, and (iii) the Ocean Bottom Seismometer Augmentation of the 2010-2011 NPAL Philippine Sea Experiment. The experimental goals included (a) understanding the impacts of fronts, eddies, and internal tides on acoustic propagation, (b) determining whether acoustic methods, together with other measurements and ocean modeling, can yield estimates of the time-evolving ocean state useful for making improved acoustic predictions, (c) improving our understanding of the physics of scattering by internal waves and spice, (d) characterizing the depth dependence and temporal variability of ambient noise, and (e) understanding the relationship between the acoustic field in the water column and the seismic field in the seafloor. In these experiments, moored and ship-suspended low-frequency acoustic sources transmitted to a newly developed distributed vertical line array receiver capable of spanning the water column in the deep ocean. The acoustic transmissions and ambient noise were also recorded by a towed hydrophone array, by acoustic Seagliders, and by ocean bottom seismometers.

  2. The North Pacific Acoustic Laboratory deep-water acoustic propagation experiments in the Philippine Sea.

    PubMed

    Worcester, Peter F; Dzieciuch, Matthew A; Mercer, James A; Andrew, Rex K; Dushaw, Brian D; Baggeroer, Arthur B; Heaney, Kevin D; D'Spain, Gerald L; Colosi, John A; Stephen, Ralph A; Kemp, John N; Howe, Bruce M; Van Uffelen, Lora J; Wage, Kathleen E

    2013-10-01

    A series of experiments conducted in the Philippine Sea during 2009-2011 investigated deep-water acoustic propagation and ambient noise in this oceanographically and geologically complex region: (i) the 2009 North Pacific Acoustic Laboratory (NPAL) Pilot Study/Engineering Test, (ii) the 2010-2011 NPAL Philippine Sea Experiment, and (iii) the Ocean Bottom Seismometer Augmentation of the 2010-2011 NPAL Philippine Sea Experiment. The experimental goals included (a) understanding the impacts of fronts, eddies, and internal tides on acoustic propagation, (b) determining whether acoustic methods, together with other measurements and ocean modeling, can yield estimates of the time-evolving ocean state useful for making improved acoustic predictions, (c) improving our understanding of the physics of scattering by internal waves and spice, (d) characterizing the depth dependence and temporal variability of ambient noise, and (e) understanding the relationship between the acoustic field in the water column and the seismic field in the seafloor. In these experiments, moored and ship-suspended low-frequency acoustic sources transmitted to a newly developed distributed vertical line array receiver capable of spanning the water column in the deep ocean. The acoustic transmissions and ambient noise were also recorded by a towed hydrophone array, by acoustic Seagliders, and by ocean bottom seismometers. PMID:24116529

  3. Low frequency acoustic pulse propagation in temperate forests.

    PubMed

    Albert, Donald G; Swearingen, Michelle E; Perron, Frank E; Carbee, David L

    2015-08-01

    Measurements of acoustic pulse propagation for a 30-m path were conducted in an open field and in seven different forest stands in the northeastern United States consisting of deciduous, evergreen, or mixed tree species. The waveforms recorded in forest generally show the pulse elongation characteristic of propagation over a highly porous ground surface, with high frequency scattered arrivals superimposed on the basic waveform shape. Waveform analysis conducted to determine ground properties resulted in acoustically determined layer thicknesses of 4-8 cm in summer, within 2 cm of the directly measured thickness of the litter layers. In winter the acoustic thicknesses correlated with the site-specific snow cover depths. Effective flow resistivity values of 50-88 kN s m(-4) were derived for the forest sites in summer, while lower values typical for snow were found in winter. Reverberation times (T60) were typically around 2 s, but two stands (deciduous and pruned spruce planted on a square grid) had lower values of about 1.2 s. One site with a very rough ground surface had very low summer flow resistivity value and also had the longest reverberation time of about 3 s. These measurements can provide parameters useful for theoretical predictions of acoustic propagation within forests. PMID:26328690

  4. Low frequency acoustic pulse propagation in temperate forests.

    PubMed

    Albert, Donald G; Swearingen, Michelle E; Perron, Frank E; Carbee, David L

    2015-08-01

    Measurements of acoustic pulse propagation for a 30-m path were conducted in an open field and in seven different forest stands in the northeastern United States consisting of deciduous, evergreen, or mixed tree species. The waveforms recorded in forest generally show the pulse elongation characteristic of propagation over a highly porous ground surface, with high frequency scattered arrivals superimposed on the basic waveform shape. Waveform analysis conducted to determine ground properties resulted in acoustically determined layer thicknesses of 4-8 cm in summer, within 2 cm of the directly measured thickness of the litter layers. In winter the acoustic thicknesses correlated with the site-specific snow cover depths. Effective flow resistivity values of 50-88 kN s m(-4) were derived for the forest sites in summer, while lower values typical for snow were found in winter. Reverberation times (T60) were typically around 2 s, but two stands (deciduous and pruned spruce planted on a square grid) had lower values of about 1.2 s. One site with a very rough ground surface had very low summer flow resistivity value and also had the longest reverberation time of about 3 s. These measurements can provide parameters useful for theoretical predictions of acoustic propagation within forests.

  5. Radial propagation of geodesic acoustic modes

    SciTech Connect

    Hager, Robert; Hallatschek, Klaus

    2009-07-15

    The GAM group velocity is estimated from the ratio of the radial free energy flux to the total free energy applying gyrokinetic and two-fluid theory. This method is much more robust than approaches that calculate the group velocity directly and can be generalized to include additional physics, e.g., magnetic geometry. The results are verified with the gyrokinetic code GYRO[J. Candy and R. E. Waltz, J. Comput. Phys. 186, 545 (2003)], the two-fluid code NLET[K. Hallatschek and A. Zeiler, Phys. Plasmas 7, 2554 (2000)], and analytical calculations. GAM propagation must be kept in mind when discussing the windows of GAM activity observed experimentally and the match between linear theory and experimental GAM frequencies.

  6. Acoustic pulse propagation in an urban environment

    NASA Astrophysics Data System (ADS)

    Albert, Donald G.; Liu, Lanbo

    2005-04-01

    Experimental measurements conducted in a full-scale artificial village show that complex signatures are formed by multiple reflections and diffractions from buildings along the propagation path. A two-dimensional finite difference time domain (FDTD) simulation running on a personal computer allows this wave interaction to be studied in detail. Time reversal processing to locate a sound source in an urban area is investigated using this simulation method. The results demonstrate that as few as three non-line-of-sight sensors are sufficient to determine the source location, and that errors on the order of a meter in the building or sensor locations still allow the correct source location to be determined. [Work supported by U.S. Army.

  7. Frequency Domain Calculations Of Acoustic Propagation

    NASA Technical Reports Server (NTRS)

    Lockard, David P.

    2004-01-01

    Two complex geometry problems are solved using the linearized Euler equations. The impedance mismatch method1 is used to impose the solid surfaces without the need to use a body-fitted grid. The problem is solved in the frequency domain to avoid long run times. Although the harmonic assumption eliminates all time dependence, a pseudo-time term is added to allow conventional iterative methods to be employed. A Jameson type, Runge-Kutta scheme is used to advance the solution in pseudo time. The spatial operator is based on a seven-point, sixth-order finite difference. Constant coefficient, sixth-derivative artificial dissipation is used throughout the domain. A buffer zone technique employing a complex frequency to damp all waves near the boundaries is used to minimize reflections. The results show that the method is capable of capturing the salient features of the scattering, but an excessive number of grid points are required to resolve the phenomena in the vicinity of the solid bodies because the wavelength of the acoustics is relatively short compared with the size of the bodies. Smoothly transitioning into the immersed boundary condition alleviates the difficulties, but a fine mesh is still required.

  8. Three-dimensional visualization of shear wave propagation generated by dual acoustic radiation pressure

    NASA Astrophysics Data System (ADS)

    Mochizuki, Yuta; Taki, Hirofumi; Kanai, Hiroshi

    2016-07-01

    An elastic property of biological soft tissue is an important indicator of the tissue status. Therefore, quantitative and noninvasive methods for elasticity evaluation have been proposed. Our group previously proposed a method using acoustic radiation pressure irradiated from two directions for elastic property evaluation, in which by measuring the propagation velocity of the shear wave generated by the acoustic radiation pressure inside the object, the elastic properties of the object were successfully evaluated. In the present study, we visualized the propagation of the shear wave in a three-dimensional space by the synchronization of signals received at various probe positions. The proposed method succeeded in visualizing the shear wave propagation clearly in the three-dimensional space of 35 × 41 × 4 mm3. These results show the high potential of the proposed method to estimate the elastic properties of the object in the three-dimensional space.

  9. Acoustic Propagation Modeling for Marine Hydro-Kinetic Applications

    NASA Astrophysics Data System (ADS)

    Johnson, C. N.; Johnson, E.

    2014-12-01

    The combination of riverine, tidal, and wave energy have the potential to supply over one third of the United States' annual electricity demand. However, in order to deploy and test prototypes, and commercial installations, marine hydrokinetic (MHK) devices must meet strict regulatory guidelines that determine the maximum amount of noise that can be generated and sets particular thresholds for determining disturbance and injury caused by noise. An accurate model for predicting the propagation of a MHK source in a real-life hydro-acoustic environment has been established. This model will help promote the growth and viability of marine, water, and hydrokinetic energy by confidently assuring federal regulations are meet and harmful impacts to marine fish and wildlife are minimal. Paracousti, a finite difference solution to the acoustic equations, was originally developed for sound propagation in atmospheric environments and has been successfully validated for a number of different geophysical activities. The three-dimensional numerical implementation is advantageous over other acoustic propagation techniques for a MHK application where the domains of interest have complex 3D interactions from the seabed, banks, and other shallow water effects. A number of different cases for hydro-acoustic environments have been validated by both analytical and numerical results from canonical and benchmark problems. This includes a variety of hydrodynamic and physical environments that may be present in a potential MHK application including shallow and deep water, sloping, and canyon type bottoms, with varying sound speed and density profiles. With the model successfully validated for hydro-acoustic environments more complex and realistic MHK sources from turbines and/or arrays can be modeled.

  10. Propagation of three-dimensional electron-acoustic solitary waves

    SciTech Connect

    Shalaby, M.; El-Sherif, L. S.; El-Labany, S. K.; Sabry, R.

    2011-06-15

    Theoretical investigation is carried out for understanding the properties of three-dimensional electron-acoustic waves propagating in magnetized plasma whose constituents are cold magnetized electron fluid, hot electrons obeying nonthermal distribution, and stationary ions. For this purpose, the hydrodynamic equations for the cold magnetized electron fluid, nonthermal electron density distribution, and the Poisson equation are used to derive the corresponding nonlinear evolution equation, Zkharov-Kuznetsov (ZK) equation, in the small- but finite- amplitude regime. The ZK equation is solved analytically and it is found that it supports both solitary and blow-up solutions. It is found that rarefactive electron-acoustic solitary waves strongly depend on the density and temperature ratios of the hot-to-cold electron species as well as the nonthermal electron parameter. Furthermore, there is a critical value for the nonthermal electron parameter, which decides whether the electron-acoustic solitary wave's amplitude is decreased or increased by changing various plasma parameters. Importantly, the change of the propagation angles leads to miss the balance between the nonlinearity and dispersion; hence, the localized pulses convert to explosive/blow-up pulses. The relevance of this study to the nonlinear electron-acoustic structures in the dayside auroral zone in the light of Viking satellite observations is discussed.

  11. Atmospheric influence on volcano-acoustic signals

    NASA Astrophysics Data System (ADS)

    Matoza, Robin; de Groot-Hedlin, Catherine; Hedlin, Michael; Fee, David; Garcés, Milton; Le Pichon, Alexis

    2010-05-01

    Volcanoes are natural sources of infrasound, useful for studying infrasonic propagation in the atmosphere. Large, explosive volcanic eruptions typically produce signals that can be recorded at ranges of hundreds of kilometers propagating in atmospheric waveguides. In addition, sustained volcanic eruptions can produce smaller-amplitude repetitive signals recordable at >10 km range. These include repetitive impulsive signals and continuous tremor signals. The source functions of these signals can remain relatively invariant over timescales of weeks to months. Observed signal fluctuations from such persistent sources at an infrasound recording station may therefore be attributed to dynamic atmospheric propagation effects. We present examples of repetitive and sustained volcano infrasound sources at Mount St. Helens, Washington and Kilauea Volcano, Hawaii, USA. The data recorded at >10 km range show evidence of propagation effects induced by tropospheric variability at the mesoscale and microscale. Ray tracing and finite-difference simulations of the infrasound propagation produce qualitatively consistent results. However, the finite-difference simulations indicate that low-frequency effects such as diffraction, and scattering from topography may be important factors for infrasonic propagation at this scale.

  12. Coherence of acoustic modes propagating through shallow water internal waves

    NASA Astrophysics Data System (ADS)

    Rouseff, Daniel; Turgut, Altan; Wolf, Stephen N.; Finette, Steve; Orr, Marshall H.; Pasewark, Bruce H.; Apel, John R.; Badiey, Mohsen; Chiu, Ching-Sang; Headrick, Robert H.; Lynch, James F.; Kemp, John N.; Newhall, Arthur E.; von der Heydt, Keith; Tielbuerger, Dirk

    2002-04-01

    The 1995 Shallow Water Acoustics in a Random Medium (SWARM) experiment [Apel et al., IEEE J. Ocean. Eng. 22, 445-464 (1997)] was conducted off the New Jersey coast. The experiment featured two well-populated vertical receiving arrays, which permitted the measured acoustic field to be decomposed into its normal modes. The decomposition was repeated for successive transmissions allowing the amplitude of each mode to be tracked. The modal amplitudes were observed to decorrelate with time scales on the order of 100 s [Headrick et al., J. Acoust. Soc. Am. 107(1), 201-220 (2000)]. In the present work, a theoretical model is proposed to explain the observed decorrelation. Packets of intense internal waves are modeled as coherent structures moving along the acoustic propagation path without changing shape. The packets cause mode coupling and their motion results in a changing acoustic interference pattern. The model is consistent with the rapid decorrelation observed in SWARM. The model also predicts the observed partial recorrelation of the field at longer time scales. The model is first tested in simple continuous-wave simulations using canonical representations for the internal waves. More detailed time-domain simulations are presented mimicking the situation in SWARM. Modeling results are compared to experimental data.

  13. Amplitude Modulations of Acoustic Communication Signals

    NASA Astrophysics Data System (ADS)

    Turesson, Hjalmar K.

    2011-12-01

    In human speech, amplitude modulations at 3 -- 8 Hz are important for discrimination and detection. Two different neurophysiological theories have been proposed to explain this effect. The first theory proposes that, as a consequence of neocortical synaptic dynamics, signals that are amplitude modulated at 3 -- 8 Hz are propagated better than un-modulated signals, or signals modulated above 8 Hz. This suggests that neural activity elicited by vocalizations modulated at 3 -- 8 Hz is optimally transmitted, and the vocalizations better discriminated and detected. The second theory proposes that 3 -- 8 Hz amplitude modulations interact with spontaneous neocortical oscillations. Specifically, vocalizations modulated at 3 -- 8 Hz entrain local populations of neurons, which in turn, modulate the amplitude of high frequency gamma oscillations. This suggests that vocalizations modulated at 3 -- 8 Hz should induce stronger cross-frequency coupling. Similar to human speech, we found that macaque monkey vocalizations also are amplitude modulated between 3 and 8 Hz. Humans and macaque monkeys share similarities in vocal production, implying that the auditory systems subserving perception of acoustic communication signals also share similarities. Based on the similarities between human speech and macaque monkey vocalizations, we addressed how amplitude modulated vocalizations are processed in the auditory cortex of macaque monkeys, and what behavioral relevance modulations may have. Recording single neuron activity, as well as, the activity of local populations of neurons allowed us to test both of the neurophysiological theories presented above. We found that single neuron responses to vocalizations amplitude modulated at 3 -- 8 Hz resulted in better stimulus discrimination than vocalizations lacking 3 -- 8 Hz modulations, and that the effect most likely was mediated by synaptic dynamics. In contrast, we failed to find support for the oscillation-based model proposing a

  14. The multipath propagation effect in gunshot acoustics and its impact on the design of sniper positioning systems

    NASA Astrophysics Data System (ADS)

    Ramos, António L. L.; Holm, Sverre; Gudvangen, Sigmund; Otterlei, Ragnvald

    2013-06-01

    Counter sniper systems rely on the detection and parameter estimation of the shockwave and the muzzle blast in order to determine the sniper location. In real-world situations, these acoustical signals can be disturbed by natural phenomena like weather and climate conditions, multipath propagation effect, and background noise. While some of these issues have received some attention in recent publications with application to gunshot acoustics, the multipath propagation phenomenon whose effect can not be neglected, specially in urban environments, has not yet been discussed in details in the technical literature in the same context. Propagating sound waves can be reflected at the boundaries in the vicinity of sound sources or receivers, whenever there is a difference in acoustical impedance between the reflective material and the air. Therefore, the received signal can be composed of a direct-path signal plus N scaled delayed copies of that signal. This paper presents a discussion on the multipath propagation effect and its impact on the performance and reliability of sniper positioning systems. In our formulation, propagation models for both the shockwave and the muzzle blast are considered and analyzed. Conclusions following the theoretical analysis of the problem are fully supported by actual gunshots acoustical signatures.

  15. Longitudinal elastic wave propagation characteristics of inertant acoustic metamaterials

    NASA Astrophysics Data System (ADS)

    Kulkarni, Prateek P.; Manimala, James M.

    2016-06-01

    Longitudinal elastic wave propagation characteristics of acoustic metamaterials with various inerter configurations are investigated using their representative one-dimensional discrete element lattice models. Inerters are dynamic mass-amplifying mechanical elements that are activated by a difference in acceleration across them. They have a small device mass but can provide a relatively large dynamic mass presence depending on accelerations in systems that employ them. The effect of introducing inerters both in local attachments and in the lattice was examined vis-à-vis the propagation characteristics of locally resonant acoustic metamaterials. A simple effective model based on mass, stiffness, or their combined equivalent was used to establish dispersion behavior and quantify attenuation within bandgaps. Depending on inerter configurations in local attachments or in the lattice, both up-shift and down-shift in the bandgap frequency range and their extent are shown to be possible while retaining static mass addition to the host structure to a minimum. Further, frequency-dependent negative and even extreme effective-stiffness regimes are encountered. The feasibility of employing tuned combinations of such mass-delimited inertant configurations to engineer acoustic metamaterials that act as high-pass filters without the use of grounded elements or even as complete longitudinal wave inhibitors is shown. Potential device implications and strategies for practical applications are also discussed.

  16. Modelling acoustic propagation beneath Antarctic sea ice using measured environmental parameters

    NASA Astrophysics Data System (ADS)

    Alexander, Polly; Duncan, Alec; Bose, Neil; Williams, Guy

    2016-09-01

    Autonomous underwater vehicles are improving and expanding in situ observations of sea ice for the validation of satellite remote sensing and climate models. Missions under sea ice, particularly over large distances (up to 100 km) away from the immediate vicinity of a ship or base, require accurate acoustic communication for monitoring, emergency response and some navigation systems. We investigate the propagation of acoustic signals in the Antarctic seasonal ice zone using the BELLHOP model, examining the influence of ocean and sea ice properties. We processed available observations from around Antarctica to generate input variables such as sound speed, surface reflection coefficient (R) and roughness parameters. The results show that changes in the sound speed profile make the most significant difference to the propagation of the direct path signal. The inclusion of the surface reflected signals from a flat ice surface was found to greatly decrease the transmission loss with range. When ice roughness was added, the transmission loss increased with roughness, in a manner similar to the direct path transmission loss results. The conclusions of this work are that: (1) the accuracy of acoustic modelling in this environment is greatly increased by using realistic sound speed data; (2) a risk averse ranging model would use only the direct path signal transmission; and (3) in a flat ice scenario, much greater ranges can be achieved if the surface reflected transmission paths are included. As autonomous missions under sea ice increase in scale and complexity, it will be increasingly important for operational procedures to include effective modelling of acoustic propagation with representative environmental data.

  17. Designing microcapsule arrays that propagate chemical signals

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Amitabh; Balazs, Anna C.

    2010-08-01

    Using analysis and simulation, we show how ordered arrays of microcapsules in solution can be harnessed to propagate chemical signals in directed and controllable ways, allowing the signals to be transmitted over macroscopic distances. The system encompasses two types of capsules that are localized on an adhesive surface. The “signaling” capsules release inducer molecules, which trigger “targets” to release nanoparticles. The released nanoparticles can bind to the underlying surface and thus, create adhesion gradients, which then propel the signaling capsules to shuttle between neighboring targets. This arrangement acts like a relay, so that triggering target capsules at a particular location in the array also triggers target capsules in adjacent locations. For an array containing two target columns, our simulations and analysis show that steady input signal leads to a sustained periodic output. For an array containing multiple target columns, we show that by introducing a prescribed ratio of nanoparticle release rates between successive target columns, a chemical signal can be propagated along the array without dissipation. We also demonstrate that similar signal transmission cannot be performed via diffusion alone.

  18. Theoretical models for duct acoustic propagation and radiation

    NASA Technical Reports Server (NTRS)

    Eversman, Walter

    1991-01-01

    The development of computational methods in acoustics has led to the introduction of analysis and design procedures which model the turbofan inlet as a coupled system, simultaneously modeling propagation and radiation in the presence of realistic internal and external flows. Such models are generally large, require substantial computer speed and capacity, and can be expected to be used in the final design stages, with the simpler models being used in the early design iterations. Emphasis is given to practical modeling methods that have been applied to the acoustical design problem in turbofan engines. The mathematical model is established and the simplest case of propagation in a duct with hard walls is solved to introduce concepts and terminologies. An extensive overview is given of methods for the calculation of attenuation in uniform ducts with uniform flow and with shear flow. Subsequent sections deal with numerical techniques which provide an integrated representation of duct propagation and near- and far-field radiation for realistic geometries and flight conditions.

  19. Propagation of acoustic waves in the partly ionized interstellar medium

    NASA Astrophysics Data System (ADS)

    Chalov, S. V.

    2014-07-01

    The properties of linear acoustic waves propagating in the interstellar medium, which is a mixture of electron-proton plasma and hydrogen atoms, are studied analytically. The plasma component interacts with hydrogen atoms through resonant charge exchange between the atoms and protons. To make the problem tractable, only short-wavelength disturbances are considered. Namely, the wavelength is assumed to be small as compared with the mean free path of atoms with respect to charge exchange. It is shown that short waves are damped out due to the charge exchange process, and the magnitude of decrement increases with the cross-section for charge exchange, number density of atoms and sound speed. In the first approximation, decrement does not depend on the wavelength, and acoustic waves are dispersionless. The advantage of our model is fully kinetic treatment of the interstellar atom motion.

  20. An Investigation of Acoustic Wave Propagation in Mach 2 Flow

    NASA Astrophysics Data System (ADS)

    Nieberding, Zachary J.

    Hypersonic technology is the next advancement to enter the aerospace community; it is defined as the study of flight at speeds Mach 5 and higher where intense aerodynamic heating is prevalent. Hypersonic flight is achieved through use of scramjet engines, which intake air and compress it by means of shock waves and geometry design. The airflow is then directed through an isolator where it is further compressed, it is then delivered to the combustor at supersonic speeds. The combusted airflow and fuel mixture is then accelerated through a nozzle to achieve the hypersonic speeds. Unfortunately, scramjet engines can experience a phenomenon known as an inlet unstart, where the combustor produces pressures large enough to force the incoming airflow out of the inlet of the engine, resulting in a loss of acceleration and power. There have been several government-funded programs that look to prove the concept of the scramjet engine and also tackle this inlet unstart issue. The research conducted in this thesis is a fundamental approach towards controlling the unstart problem: it looks at the basic concept of sending a signal upstream through the boundary layer of a supersonic flow and being able to detect a characterizeable signal. Since conditions within and near the combustor are very harsh, hardware is unable to be installed in that area, so this testing will determine if a signal can be sent and if so, how far upstream can the signal be detected. This experimental approach utilizes several acoustic and mass injection sources to be evaluated over three test series in a Mach 2 continuous flow wind tunnel that will determine the success of the objective. The test series vary in that the conditions of the flow and the test objectives change. The research shows that a characterizeable signal can be transmitted upstream roughly 12 inches through the subsonic boundary layer of a supersonic cross flow. It is also shown that the signal attenuates as the distance between the

  1. Temporal coherence of acoustic signals in a fluctuating ocean.

    PubMed

    Voronovich, Alexander G; Ostashev, Vladimir E; Colosi, John A

    2011-06-01

    Temporal coherence of acoustic signals propagating in a fluctuating ocean is important for many practical applications and has been studied intensively experimentally. However, only a few theoretical formulations of temporal coherence exist. In the present paper, a three-dimensional (3D) modal theory of sound propagation in a fluctuating ocean is used to derive closed-form equations for the spatial-temporal coherence function of a broadband signal. The theory is applied to the analysis of the temporal coherence of a monochromatic signal propagating in an ocean perturbed by linear internal waves obeying the Garrett-Munk (G-M) spectral model. In particular, the temporal coherence function is calculated for propagation ranges up to 10(4) km and for five sound frequencies: 12, 25, 50, 75, and 100 Hz. Then, the dependence of the coherence time (i.e., the value of the time lag at which the temporal coherence decreases by a factor of e) on range and frequency is studied. The results obtained are compared with experimental data and predictions of the path-integral theory.

  2. Obliquely propagating dust-acoustic waves in dense quantum magnetoplasmas

    SciTech Connect

    Khan, S. A.; Masood, W.; Siddiq, M.

    2009-01-15

    Two-dimensional, obliquely propagating nonlinear quantum dust-acoustic waves in dense magnetized plasmas are investigated on the basis of a quantum hydrodynamic model. In this regard, the Zakharov-Kuznetsov (ZK) equation is derived using the small amplitude approximation method. The extended hyperbolic tangent method is employed to obtain solitary and explosive solutions of the ZK equation. It is found that the quantum effects related to the Bohm potential, dust concentration, external magnetic field, and obliqueness significantly modify the amplitude and width of both solitary and explosive pulses. The relevance of the study to dense plasmas is also discussed.

  3. Obliquely propagating dust-acoustic waves in dense quantum magnetoplasmas

    NASA Astrophysics Data System (ADS)

    Khan, S. A.; Masood, W.; Siddiq, M.

    2009-01-01

    Two-dimensional, obliquely propagating nonlinear quantum dust-acoustic waves in dense magnetized plasmas are investigated on the basis of a quantum hydrodynamic model. In this regard, the Zakharov-Kuznetsov (ZK) equation is derived using the small amplitude approximation method. The extended hyperbolic tangent method is employed to obtain solitary and explosive solutions of the ZK equation. It is found that the quantum effects related to the Bohm potential, dust concentration, external magnetic field, and obliqueness significantly modify the amplitude and width of both solitary and explosive pulses. The relevance of the study to dense plasmas is also discussed.

  4. On fast radial propagation of parametrically excited geodesic acoustic mode

    SciTech Connect

    Qiu, Z.; Chen, L.; Zonca, F.

    2015-04-15

    The spatial and temporal evolution of parametrically excited geodesic acoustic mode (GAM) initial pulse is investigated both analytically and numerically. Our results show that the nonlinearly excited GAM propagates at a group velocity which is, typically, much larger than that due to finite ion Larmor radius as predicted by the linear theory. The nonlinear dispersion relation of GAM driven by a finite amplitude drift wave pump is also derived, showing a nonlinear frequency increment of GAM. Further implications of these findings for interpreting experimental observations are also discussed.

  5. Acoustic structure and propagation in highly porous, layered, fibrous materials

    NASA Technical Reports Server (NTRS)

    Lambert, R. F.; Tesar, J. S.

    1984-01-01

    The acoustic structure and propagation of sound in highly porous, layered, fine fiber materials is examined. Of particular interest is the utilization of the Kozeny number for determining the static flow resistance and the static structure factor based on flow permeability measurements. In this formulation the Kozeny number is a numerical constant independent of volume porosity at high porosities. The other essential parameters are then evaluated employing techniques developed earlier for open cell foams. The attenuation and progressive phase characteristics in bulk samples are measured and compared with predicted values. The agreements on the whole are very satisfactory.

  6. Pulse analysis of acoustic emission signals

    NASA Technical Reports Server (NTRS)

    Houghton, J. R.; Packman, P. F.

    1977-01-01

    A method for the signature analysis of pulses in the frequency domain and the time domain is presented. Fourier spectrum, Fourier transfer function, shock spectrum and shock spectrum ratio were examined in the frequency domain analysis and pulse shape deconvolution was developed for use in the time domain analysis. Comparisons of the relative performance of each analysis technique are made for the characterization of acoustic emission pulses recorded by a measuring system. To demonstrate the relative sensitivity of each of the methods to small changes in the pulse shape, signatures of computer modeled systems with analytical pulses are presented. Optimization techniques are developed and used to indicate the best design parameter values for deconvolution of the pulse shape. Several experiments are presented that test the pulse signature analysis methods on different acoustic emission sources. These include acoustic emission associated with (a) crack propagation, (b) ball dropping on a plate, (c) spark discharge, and (d) defective and good ball bearings. Deconvolution of the first few micro-seconds of the pulse train is shown to be the region in which the significant signatures of the acoustic emission event are to be found.

  7. Pulse analysis of acoustic emission signals

    NASA Technical Reports Server (NTRS)

    Houghton, J. R.; Packman, P. F.

    1977-01-01

    A method for the signature analysis of pulses in the frequency domain and the time domain is presented. Fourier spectrum, Fourier transfer function, shock spectrum and shock spectrum ratio were examined in the frequency domain analysis, and pulse shape deconvolution was developed for use in the time domain analysis. Comparisons of the relative performance of each analysis technique are made for the characterization of acoustic emission pulses recorded by a measuring system. To demonstrate the relative sensitivity of each of the methods to small changes in the pulse shape, signatures of computer modeled systems with analytical pulses are presented. Optimization techniques are developed and used to indicate the best design parameters values for deconvolution of the pulse shape. Several experiments are presented that test the pulse signature analysis methods on different acoustic emission sources. These include acoustic emissions associated with: (1) crack propagation, (2) ball dropping on a plate, (3) spark discharge and (4) defective and good ball bearings. Deconvolution of the first few micro-seconds of the pulse train are shown to be the region in which the significant signatures of the acoustic emission event are to be found.

  8. Outdoor propagation analysis of ultrawideband signals

    NASA Astrophysics Data System (ADS)

    Schiavone, Guy A.; Wahid, Parveen; Palaniappan, Ravi; Tracy, Judd; Van Doorn, Eric; Lonske, Benjamin

    2003-08-01

    An ultra wide band (UWB) signal is defined as any radiation in which the 3-dB bandwidth is greater than 25% of the center frequency. UWB signals are characterized by extreme low powers and large bandwidths, which can be used for data, voice and video communication. Since UWB waveforms have very short time duration, they are relatively immune to multi-path cancellation effects. In this paper we test the performance of a simulation to model the propagation of an UWB signal in outdoor forested environment. The simulation uses a combination of Finite Difference Time Domain and ray tracing methods to simulate the UWB wave propagation. The model takes into consideration the dielectric constants of the materials of the trees and measures the signal strength for vertical and horizontal polarizations of the UWB antennas placed at various heights and distances from each other. The results of the simulation are compared to measurements obtained from tests conducted at a wooded area in Seneca Creek State Park, Gaithersburg, Maryland. It was observed that upto 150 ft distance between the transmitter and receiver, the horizontally polarized antenna system gave better signal-to-noise ratio, but at greater distances the vertically polarized antenna system gave a better signal-to-noise ration performance. Three dimensional plots of the signal strengths and the signal-to-noise ratio for various transmitter and receiver distances are plotted for the system. These are compared with experimental results and the simulation closely matched the experimental data. The results of the simulation and measurements will be used for further developing an UWB location and tracking system for outdoor environments.

  9. Wave envelopes method for description of nonlinear acoustic wave propagation.

    PubMed

    Wójcik, J; Nowicki, A; Lewin, P A; Bloomfield, P E; Kujawska, T; Filipczyński, L

    2006-07-01

    A novel, free from paraxial approximation and computationally efficient numerical algorithm capable of predicting 4D acoustic fields in lossy and nonlinear media from arbitrary shaped sources (relevant to probes used in medical ultrasonic imaging and therapeutic systems) is described. The new WE (wave envelopes) approach to nonlinear propagation modeling is based on the solution of the second order nonlinear differential wave equation reported in [J. Wójcik, J. Acoust. Soc. Am. 104 (1998) 2654-2663; V.P. Kuznetsov, Akust. Zh. 16 (1970) 548-553]. An incremental stepping scheme allows for forward wave propagation. The operator-splitting method accounts independently for the effects of full diffraction, absorption and nonlinear interactions of harmonics. The WE method represents the propagating pulsed acoustic wave as a superposition of wavelet-like sinusoidal pulses with carrier frequencies being the harmonics of the boundary tone burst disturbance. The model is valid for lossy media, arbitrarily shaped plane and focused sources, accounts for the effects of diffraction and can be applied to continuous as well as to pulsed waves. Depending on the source geometry, level of nonlinearity and frequency bandwidth, in comparison with the conventional approach the Time-Averaged Wave Envelopes (TAWE) method shortens computational time of the full 4D nonlinear field calculation by at least an order of magnitude; thus, predictions of nonlinear beam propagation from complex sources (such as phased arrays) can be available within 30-60 min using only a standard PC. The approximate ratio between the computational time costs obtained by using the TAWE method and the conventional approach in calculations of the nonlinear interactions is proportional to 1/N2, and in memory consumption to 1/N where N is the average bandwidth of the individual wavelets. Numerical computations comparing the spatial field distributions obtained by using both the TAWE method and the conventional approach

  10. Wave envelopes method for description of nonlinear acoustic wave propagation.

    PubMed

    Wójcik, J; Nowicki, A; Lewin, P A; Bloomfield, P E; Kujawska, T; Filipczyński, L

    2006-07-01

    A novel, free from paraxial approximation and computationally efficient numerical algorithm capable of predicting 4D acoustic fields in lossy and nonlinear media from arbitrary shaped sources (relevant to probes used in medical ultrasonic imaging and therapeutic systems) is described. The new WE (wave envelopes) approach to nonlinear propagation modeling is based on the solution of the second order nonlinear differential wave equation reported in [J. Wójcik, J. Acoust. Soc. Am. 104 (1998) 2654-2663; V.P. Kuznetsov, Akust. Zh. 16 (1970) 548-553]. An incremental stepping scheme allows for forward wave propagation. The operator-splitting method accounts independently for the effects of full diffraction, absorption and nonlinear interactions of harmonics. The WE method represents the propagating pulsed acoustic wave as a superposition of wavelet-like sinusoidal pulses with carrier frequencies being the harmonics of the boundary tone burst disturbance. The model is valid for lossy media, arbitrarily shaped plane and focused sources, accounts for the effects of diffraction and can be applied to continuous as well as to pulsed waves. Depending on the source geometry, level of nonlinearity and frequency bandwidth, in comparison with the conventional approach the Time-Averaged Wave Envelopes (TAWE) method shortens computational time of the full 4D nonlinear field calculation by at least an order of magnitude; thus, predictions of nonlinear beam propagation from complex sources (such as phased arrays) can be available within 30-60 min using only a standard PC. The approximate ratio between the computational time costs obtained by using the TAWE method and the conventional approach in calculations of the nonlinear interactions is proportional to 1/N2, and in memory consumption to 1/N where N is the average bandwidth of the individual wavelets. Numerical computations comparing the spatial field distributions obtained by using both the TAWE method and the conventional approach

  11. Temperature dependence of acoustic harmonics generated by nonlinear ultrasound wave propagation in water at various frequencies.

    PubMed

    Maraghechi, Borna; Hasani, Mojtaba H; Kolios, Michael C; Tavakkoli, Jahan

    2016-05-01

    Ultrasound-based thermometry requires a temperature-sensitive acoustic parameter that can be used to estimate the temperature by tracking changes in that parameter during heating. The objective of this study is to investigate the temperature dependence of acoustic harmonics generated by nonlinear ultrasound wave propagation in water at various pulse transmit frequencies from 1 to 20 MHz. Simulations were conducted using an expanded form of the Khokhlov-Zabolotskaya-Kuznetsov nonlinear acoustic wave propagation model in which temperature dependence of the medium parameters was included. Measurements were performed using single-element transducers at two different transmit frequencies of 3.3 and 13 MHz which are within the range of frequencies simulated. The acoustic pressure signals were measured by a calibrated needle hydrophone along the axes of the transducers. The water temperature was uniformly increased from 26 °C to 46 °C in increments of 5 °C. The results show that the temperature dependence of the harmonic generation is different at various frequencies which is due to the interplay between the mechanisms of absorption, nonlinearity, and focusing gain. At the transmit frequencies of 1 and 3.3 MHz, the harmonic amplitudes decrease with increasing the temperature, while the opposite temperature dependence is observed at 13 and 20 MHz. PMID:27250143

  12. Propagation of high frequency jet noise using geometric acoustics

    NASA Technical Reports Server (NTRS)

    Khavaran, A.; Krejsa, E. A.

    1993-01-01

    Spherical directivity of noise radiated from a convecting quadrupole source embedded in an arbitrary spreading jet is obtained by ray-tracing methods of geometrical acoustics. The six propagation equations are solved in their general form in a rectangular coordinate system. The noise directivity in the far field is calculated by applying an iteration scheme that finds the required radiation angles at the source resulting in propagation through a given observer point. Factors influencing the zone of silence are investigated. The caustics of geometrical acoustics and the exact locations where it forms is demonstrated by studying the variation in ray tube area obtained from transport equation. For a ring source convecting along the center-axis of an axisymmetric jet, the polar directivity of the radiated noise is obtained by an integration with respect to azimuthal directivity of compact quadrupole sources distributed on the ring. The Doppler factor is shown to vary slightly from point to point on the ring. Finally the scaling of the directivity pattern with power -3 of Doppler factor is investigated and compared with experimental data.

  13. Acoustic propagation in curved ducts with extended reacting wall treatment

    NASA Technical Reports Server (NTRS)

    Baumeister, Kenneth J.

    1989-01-01

    A finite-element Galerkin formulation was employed to study the attenuation of acoustic waves propagating in two-dimensional S-curved ducts with absorbing walls without a mean flow. The reflection and transmission at the entrance and the exit of a curved duct were determined by coupling the finite-element solutions in the curved duct to the eigenfunctions of an infinite, uniform, hard wall duct. In the frequency range where the duct height and acoustic wave length are nearly equal, the effects of duct length, curvature (duct offset) and absorber thickness were examined. For a given offset in the curved duct, the length of the S-duct was found to significantly affect both the absorptive and reflective characteristics of the duct. A means of reducing the number of elements in the absorber region was also presented. In addition, for a curved duct, power attenuation contours were examined to determine conditions for maximum acoustic power absorption. Again, wall curvature was found to significantly effect the optimization process.

  14. Observations of acoustic surface waves in outdoor sound propagation

    NASA Astrophysics Data System (ADS)

    Albert, Donald G.

    2003-05-01

    Acoustic surface waves have been detected propagating outdoors under natural conditions. Two critical experimental conditions were employed to ensure the conclusive detection of these waves. First, acoustic pulses rather than a continuous wave source allowed an examination of the waveform shape and avoided the masking of wave arrivals. Second, a snow cover provided favorable ground impedance conditions for surface waves to exist. The acoustic pulses were generated by blank pistol shots fired 1 m above the snow. The resultant waveforms were measured using a vertical array of six microphones located 60 m away from the source at heights between 0.1 and 4.75 m. A strong, low frequency ``tail'' following the initial arrival was recorded near the snow surface. This tail, and its exponential decay with height (z) above the surface (~e-αz), are diagnostic features of surface waves. The measured attenuation coefficient α was 0.28 m-1. The identification of the surface wave is confirmed by comparing the measured waveforms with waveforms predicted by the theoretical evaluation of the explicit surface wave pole term using residue theory.

  15. A Fusion Model of Seismic and Hydro-Acoustic Propagation for Treaty Monitoring

    NASA Astrophysics Data System (ADS)

    Arora, Nimar; Prior, Mark

    2014-05-01

    We present an extension to NET-VISA (Network Processing Vertically Integrated Seismic Analysis), which is a probabilistic generative model of the propagation of seismic waves and their detection on a global scale, to incorporate hydro-acoustic data from the IMS (International Monitoring System) network. The new model includes the coupling of seismic waves into the ocean's SOFAR channel, as well as the propagation of hydro-acoustic waves from underwater explosions. The generative model is described in terms of multiple possible hypotheses -- seismic-to-hydro-acoustic, under-water explosion, other noise sources such as whales singing or icebergs breaking up -- that could lead to signal detections. We decompose each hypothesis into conditional probability distributions that are carefully analyzed and calibrated. These distributions include ones for detection probabilities, blockage in the SOFAR channel (including diffraction, refraction, and reflection around obstacles), energy attenuation, and other features of the resulting waveforms. We present a study of the various features that are extracted from the hydro-acoustic waveforms, and their correlations with each other as well the source of the energy. Additionally, an inference algorithm is presented that concurrently infers the seismic and under-water events, and associates all arrivals (aka triggers), both from seismic and hydro-acoustic stations, to the appropriate event, and labels the path taken by the wave. Finally, our results demonstrate that this fusion of seismic and hydro-acoustic data leads to very good performance. A majority of the under-water events that IDC (International Data Center) analysts built in 2010 are correctly located, and the arrivals that correspond to seismic-to-hydroacoustic coupling, the T phases, are mostly correctly identified. There is no loss in the accuracy of seismic events, in fact, there is a slight overall improvement.

  16. Detection and Classification of Whale Acoustic Signals

    NASA Astrophysics Data System (ADS)

    Xian, Yin

    This dissertation focuses on two vital challenges in relation to whale acoustic signals: detection and classification. In detection, we evaluated the influence of the uncertain ocean environment on the spectrogram-based detector, and derived the likelihood ratio of the proposed Short Time Fourier Transform detector. Experimental results showed that the proposed detector outperforms detectors based on the spectrogram. The proposed detector is more sensitive to environmental changes because it includes phase information. In classification, our focus is on finding a robust and sparse representation of whale vocalizations. Because whale vocalizations can be modeled as polynomial phase signals, we can represent the whale calls by their polynomial phase coefficients. In this dissertation, we used the Weyl transform to capture chirp rate information, and used a two dimensional feature set to represent whale vocalizations globally. Experimental results showed that our Weyl feature set outperforms chirplet coefficients and MFCC (Mel Frequency Cepstral Coefficients) when applied to our collected data. Since whale vocalizations can be represented by polynomial phase coefficients, it is plausible that the signals lie on a manifold parameterized by these coefficients. We also studied the intrinsic structure of high dimensional whale data by exploiting its geometry. Experimental results showed that nonlinear mappings such as Laplacian Eigenmap and ISOMAP outperform linear mappings such as PCA and MDS, suggesting that the whale acoustic data is nonlinear. We also explored deep learning algorithms on whale acoustic data. We built each layer as convolutions with either a PCA filter bank (PCANet) or a DCT filter bank (DCTNet). With the DCT filter bank, each layer has different a time-frequency scale representation, and from this, one can extract different physical information. Experimental results showed that our PCANet and DCTNet achieve high classification rate on the whale

  17. Acoustic Propagation Studies For Sperm Whale Phonation Analysis During LADC Experiments

    NASA Astrophysics Data System (ADS)

    Sidorovskaia, Natalia A.; Ioup, George E.; Ioup, Juliette W.; Caruthers, Jerald W.

    2004-11-01

    The Littoral Acoustic Demonstration Center (LADC) conducted a series of passive acoustic experiments in the Northern Gulf of Mexico and the Ligurian Sea in 2001 and 2002. Environmental and acoustic moorings were deployed in areas of large concentrations of marine mammals (mainly, sperm whales). Recordings and analysis of whale phonations are among the objectives of the project. Each mooring had a single autonomously recording hydrophone (Environmental Acoustic Recording System (EARS)) obtained from the U.S. Naval Oceanographic Office after modification to record signals up to 5,859 Hz in the Gulf of Mexico and up to 12,500 Hz in the Ligurian Sea. Self-recording environmental sensors, attached to the moorings, and concurrent environmental ship surveys provided the environmental data for the experiments. The results of acoustic simulations of long-range propagation of the broad-band (500-6,000 Hz) phonation pulses from a hypothetical whale location to the recording hydrophone in the experimental environments are presented. The utilization of the simulation results for an interpretation of the spectral features observed in whale clicks and for the development of tracking algorithms from single hydrophone recordings based on the identification of direct and surface and bottom reflected arrivals are discussed. [Research supported by ONR.

  18. Digital signal processing for ionospheric propagation diagnostics

    NASA Astrophysics Data System (ADS)

    Rino, Charles L.; Groves, Keith M.; Carrano, Charles S.; Gunter, Jacob H.; Parris, Richard T.

    2015-08-01

    For decades, analog beacon satellite receivers have generated multifrequency narrowband complex data streams that could be processed directly to extract total electron content (TEC) and scintillation diagnostics. With the advent of software-defined radio, modern digital receivers generate baseband complex data streams that require intermediate processing to extract the narrowband modulation imparted to the signal by ionospheric structure. This paper develops and demonstrates a processing algorithm for digital beacon satellite data that will extract TEC and scintillation components. For algorithm evaluation, a simulator was developed to generate noise-limited multifrequency complex digital signal realizations with representative orbital dynamics and propagation disturbances. A frequency-tracking procedure is used to capture the slowly changing frequency component. Dynamic demodulation against the low-frequency estimate captures the scintillation. The low-frequency reference can be used directly for dual-frequency TEC estimation.

  19. Nonlinear biochemical signal processing via noise propagation

    NASA Astrophysics Data System (ADS)

    Kim, Kyung Hyuk; Qian, Hong; Sauro, Herbert M.

    2013-10-01

    Single-cell studies often show significant phenotypic variability due to the stochastic nature of intra-cellular biochemical reactions. When the numbers of molecules, e.g., transcription factors and regulatory enzymes, are in low abundance, fluctuations in biochemical activities become significant and such "noise" can propagate through regulatory cascades in terms of biochemical reaction networks. Here we develop an intuitive, yet fully quantitative method for analyzing how noise affects cellular phenotypes based on identifying a system's nonlinearities and noise propagations. We observe that such noise can simultaneously enhance sensitivities in one behavioral region while reducing sensitivities in another. Employing this novel phenomenon we designed three biochemical signal processing modules: (a) A gene regulatory network that acts as a concentration detector with both enhanced amplitude and sensitivity. (b) A non-cooperative positive feedback system, with a graded dose-response in the deterministic case, that serves as a bistable switch due to noise-induced ultra-sensitivity. (c) A noise-induced linear amplifier for gene regulation that requires no feedback. The methods developed in the present work allow one to understand and engineer nonlinear biochemical signal processors based on fluctuation-induced phenotypes.

  20. Nonlinear biochemical signal processing via noise propagation.

    PubMed

    Kim, Kyung Hyuk; Qian, Hong; Sauro, Herbert M

    2013-10-14

    Single-cell studies often show significant phenotypic variability due to the stochastic nature of intra-cellular biochemical reactions. When the numbers of molecules, e.g., transcription factors and regulatory enzymes, are in low abundance, fluctuations in biochemical activities become significant and such "noise" can propagate through regulatory cascades in terms of biochemical reaction networks. Here we develop an intuitive, yet fully quantitative method for analyzing how noise affects cellular phenotypes based on identifying a system's nonlinearities and noise propagations. We observe that such noise can simultaneously enhance sensitivities in one behavioral region while reducing sensitivities in another. Employing this novel phenomenon we designed three biochemical signal processing modules: (a) A gene regulatory network that acts as a concentration detector with both enhanced amplitude and sensitivity. (b) A non-cooperative positive feedback system, with a graded dose-response in the deterministic case, that serves as a bistable switch due to noise-induced ultra-sensitivity. (c) A noise-induced linear amplifier for gene regulation that requires no feedback. The methods developed in the present work allow one to understand and engineer nonlinear biochemical signal processors based on fluctuation-induced phenotypes.

  1. Call transmission efficiency in native and invasive anurans: competing hypotheses of divergence in acoustic signals.

    PubMed

    Llusia, Diego; Gómez, Miguel; Penna, Mario; Márquez, Rafael

    2013-01-01

    Invasive species are a leading cause of the current biodiversity decline, and hence examining the major traits favouring invasion is a key and long-standing goal of invasion biology. Despite the prominent role of the advertisement calls in sexual selection and reproduction, very little attention has been paid to the features of acoustic communication of invasive species in nonindigenous habitats and their potential impacts on native species. Here we compare for the first time the transmission efficiency of the advertisement calls of native and invasive species, searching for competitive advantages for acoustic communication and reproduction of introduced taxa, and providing insights into competing hypotheses in evolutionary divergence of acoustic signals: acoustic adaptation vs. morphological constraints. Using sound propagation experiments, we measured the attenuation rates of pure tones (0.2-5 kHz) and playback calls (Lithobates catesbeianus and Pelophylax perezi) across four distances (1, 2, 4, and 8 m) and over two substrates (water and soil) in seven Iberian localities. All factors considered (signal type, distance, substrate, and locality) affected transmission efficiency of acoustic signals, which was maximized with lower frequency sounds, shorter distances, and over water surface. Despite being broadcast in nonindigenous habitats, the advertisement calls of invasive L. catesbeianus were propagated more efficiently than those of the native species, in both aquatic and terrestrial substrates, and in most of the study sites. This implies absence of optimal relationship between native environments and propagation of acoustic signals in anurans, in contrast to what predicted by the acoustic adaptation hypothesis, and it might render these vertebrates particularly vulnerable to intrusion of invasive species producing low frequency signals, such as L. catesbeianus. Our findings suggest that mechanisms optimizing sound transmission in native habitat can play a less

  2. Call Transmission Efficiency in Native and Invasive Anurans: Competing Hypotheses of Divergence in Acoustic Signals

    PubMed Central

    Llusia, Diego; Gómez, Miguel; Penna, Mario; Márquez, Rafael

    2013-01-01

    Invasive species are a leading cause of the current biodiversity decline, and hence examining the major traits favouring invasion is a key and long-standing goal of invasion biology. Despite the prominent role of the advertisement calls in sexual selection and reproduction, very little attention has been paid to the features of acoustic communication of invasive species in nonindigenous habitats and their potential impacts on native species. Here we compare for the first time the transmission efficiency of the advertisement calls of native and invasive species, searching for competitive advantages for acoustic communication and reproduction of introduced taxa, and providing insights into competing hypotheses in evolutionary divergence of acoustic signals: acoustic adaptation vs. morphological constraints. Using sound propagation experiments, we measured the attenuation rates of pure tones (0.2–5 kHz) and playback calls (Lithobates catesbeianus and Pelophylax perezi) across four distances (1, 2, 4, and 8 m) and over two substrates (water and soil) in seven Iberian localities. All factors considered (signal type, distance, substrate, and locality) affected transmission efficiency of acoustic signals, which was maximized with lower frequency sounds, shorter distances, and over water surface. Despite being broadcast in nonindigenous habitats, the advertisement calls of invasive L. catesbeianus were propagated more efficiently than those of the native species, in both aquatic and terrestrial substrates, and in most of the study sites. This implies absence of optimal relationship between native environments and propagation of acoustic signals in anurans, in contrast to what predicted by the acoustic adaptation hypothesis, and it might render these vertebrates particularly vulnerable to intrusion of invasive species producing low frequency signals, such as L. catesbeianus. Our findings suggest that mechanisms optimizing sound transmission in native habitat can play a

  3. Experimental verification of manipulating propagation directions of transmitted waves in asymmetric acoustic transmission

    NASA Astrophysics Data System (ADS)

    Sun, Hong-xiang; Zhang, Shu-yi; Yuan, Shou-qi; Xia, Jian-ping

    2016-04-01

    The manipulation of the propagation directions of the transmitted waves in an acoustic system with asymmetric acoustic transmission is investigated numerically and experimentally, in which the system consists of a brass plate and a periodical grating immersed in water. It is experimentally demonstrated that the propagation angles of the transmitted waves are close to those of ±1-order diffractions in the pass-band of the asymmetric acoustic transmission, and thus, the manipulation of the propagation directions of the transmitted waves is realized by adjusting the grating period and plate thickness. Our scheme may open up an avenue to the design of tunable unidirectional acoustic devices.

  4. Determination of particle size distributions from acoustic wave propagation measurements

    SciTech Connect

    Spelt, P.D.; Norato, M.A.; Sangani, A.S.; Tavlarides, L.L.

    1999-05-01

    The wave equations for the interior and exterior of the particles are ensemble averaged and combined with an analysis by Allegra and Hawley [J. Acoust. Soc. Am. {bold 51}, 1545 (1972)] for the interaction of a single particle with the incident wave to determine the phase speed and attenuation of sound waves propagating through dilute slurries. The theory is shown to compare very well with the measured attenuation. The inverse problem, i.e., the problem of determining the particle size distribution given the attenuation as a function of frequency, is examined using regularization techniques that have been successful for bubbly liquids. It is shown that, unlike the bubbly liquids, the success of solving the inverse problem is limited since it depends strongly on the nature of particles and the frequency range used in inverse calculations. {copyright} {ital 1999 American Institute of Physics.}

  5. Effects of dissipation on propagation of surface electromagnetic and acoustic waves

    NASA Astrophysics Data System (ADS)

    Nagaraj, Nagaraj

    With the recent emergence of the field of metamaterials, the study of subwavelength propagation of plane waves and the dissipation of their energy either in the form of Joule losses in the case of electomagnetic waves or in the form of viscous dissipation in the case of acoustic waves in different interfaced media assumes great importance. With this motivation, I have worked on problems in two different areas, viz., plasmonics and surface acoustics. The first part (chapters 2 & 3) of the dissertation deals with the emerging field of plasmonics. Researchers have come up with various designs in an effort to fabricate efficient plasmonic waveguides capable of guiding plasmonic signals. However, the inherent dissipation in the form of Joule losses limits efficient usage of surface plasmon signal. A dielectric-metal-dielectric planar structure is one of the most practical plasmonic structures that can serve as an efficient waveguide to guide electromagnetic waves along the metal-dielectric boundary. I present here a theoretical study of propagation of surface plasmons along a symmetric dielectric-metal-dielectric structure and show how proper orientation of the optical axis of the anisotropic substrate enhances the propagation length. An equation for propagation length is derived in a wide range of frequencies. I also show how the frequency of coupled surface plasmons can be modulated by changing the thickness of the metal film. I propose a Kronig-Penny model for the plasmonic crystal, which in the long wavelength limit, may serve as a homogeneous dielectric substrate with high anisotropy which do not exist for natural optical crystals. In the second part (chapters 4 & 5) of the dissertation, I discuss an interesting effect of extraordinary absorption of acoustic energy due to resonant excitation of Rayleigh waves in a narrow water channel clad between two metal plates. Starting from the elastic properties of the metal plates, I derive a dispersion equation that gives

  6. Analysis of passive acoustic ranging of helicopters from the joint acoustic propagation experiment

    NASA Technical Reports Server (NTRS)

    Carnes, Benny L.; Morgan, John C.

    1993-01-01

    For more than twenty years, personnel of the U.S.A.E. Waterways Experiment Station (WES) have been performing research dealing with the application of sensors for detection of military targets. The WES research has included the use of seismic, acoustic, magnetic, and other sensors to detect, track, and classify military ground targets. Most of the WES research has been oriented toward the employment of such sensors in a passive mode. Techniques for passive detection are of particular interest in the Army because of the advantages over active detection. Passive detection methods are not susceptible to interception, detection, jamming, or location of the source by the threat. A decided advantage for using acoustic and seismic sensors for detection in tactical situations is the non-line-of-sight capability; i.e., detection of low flying helicopters at long distances without visual contact. This study was conducted to analyze the passive acoustic ranging (PAR) concept using a more extensive data set from the Joint Acoustic Propagation Experiment (JAPE).

  7. Underwater Acoustic Propagation in the Philippine Sea: Intensity Fluctuations

    NASA Astrophysics Data System (ADS)

    White, Andrew W.

    In the spring of 2009, broadband transmissions from a ship-suspended source with a 284 Hz center frequency were received on a moored and navigated vertical array of hydrophones over a range of 107 km in the Philippine Sea. During a 60-hour period over 19 000 transmissions were carried out. The observed wavefront arrival structure reveals four distinct purely refracted acoustic paths: one with a single upper turning point near 80 m depth, two with a pair of upper turning points at a depth of roughly 300 m, and one with three upper turning points at 420 m. Individual path intensity, defined as the absolute square of the center frequency Fourier component for that arrival, was estimated over the 60-hour duration and used to compute scintillation index and log-intensity variance. Monte Carlo parabolic equation simulations using internal-wave induced sound speed perturbations obeying the Garrett-Munk internal-wave en- ergy spectrum were in agreement with measured data for the three deeper-turning paths but differed by as much as a factor of four for the near surface-interacting path. Estimates of the power spectral density and temporal autocorrelation function of intensity were attempted, but were complicated by gaps in the measured time-series. Deep fades in intensity were observed in the near surface-interacting path. Hypothesized causes for the deep fades were examined through further acoustic propagation modeling and analysis of various available oceanographic measurements.

  8. Modern Techniques in Acoustical Signal and Image Processing

    SciTech Connect

    Candy, J V

    2002-04-04

    Acoustical signal processing problems can lead to some complex and intricate techniques to extract the desired information from noisy, sometimes inadequate, measurements. The challenge is to formulate a meaningful strategy that is aimed at performing the processing required even in the face of uncertainties. This strategy can be as simple as a transformation of the measured data to another domain for analysis or as complex as embedding a full-scale propagation model into the processor. The aims of both approaches are the same--to extract the desired information and reject the extraneous, that is, develop a signal processing scheme to achieve this goal. In this paper, we briefly discuss this underlying philosophy from a ''bottom-up'' approach enabling the problem to dictate the solution rather than visa-versa.

  9. Identifying Potential Noise Sources within Acoustic Signals

    NASA Astrophysics Data System (ADS)

    Holcomb, Victoria; Lewalle, Jacques

    2013-11-01

    We test a new algorithm for its ability to detect sources of noise within random background. The goal of these tests is to better understand how to identify sources within acoustic signals while simultaneously determining the strengths and weaknesses of the algorithm in question. Unlike previously published algorithms, the antenna method does not pinpoint events by looking for the most energetic portions of a signal. The algorithm searches for the ideal lag combinations between three signals by taking excerpts of possible events. The excerpt with the lowest calculated minimum distance between possible events is how the algorithm identifies sources. At the minimum distance, the events are close in time and frequency. This method can be compared to the cross correlation and denoising methods to better understand its effectiveness. This work is supported in part by Spectral Energies LLC, under an SBIR grant from AFRL, as well as the Syracuse University MAE department.

  10. Experimental study of outdoor propagation of spherically speading periodic acoustic waves of finite amplitude

    NASA Technical Reports Server (NTRS)

    Theobald, M. A.

    1977-01-01

    The outdoor propagation of spherically spreading sound waves of finite amplitude was investigated. The main purpose of the experiments was to determine the extent to which the outdoor environment, mainly random inhomogeneity of the medium, affects finite amplitude propagation. Periodic sources with fundamental frequencies in the range 6 to 8 kHz and source levels SPLlm from 140 to 149 dB were used. The sources were an array of 7 to 10 horn drivers and a siren. The propagation path was vertical and parallel to an 85 m tower, whose elevator carried the traveling microphone. The general conclusions drawn from the experimental results were as follows. The inhomogeneities caused significant fluctuations in the instantaneous acoustic signal, but with sufficient time averaging of the measured harmonic levels, the results were comparable to results expected for propagation in a quiet medium. Propagation data for the fundamental of the siren approached within 1 dB of the weak shock saturation levels. Extra attenuation on the order of 8 dB was observed. The measurements generally confirmed the predictions of several theoretical models. The maximum propagation distance was 36 m. The narrowbeam arrays were much weaker sources. Nonlinear propagation distortion was produced, but the maximum value of extra attenuation measured was 1.5 dB. The maximum propagation distance was 76 m. The behavior of the asymetric waveforms received in one experiment qualitatively suggested that beam type diffraction effects were present. The role of diffraction of high intensity sound waves in radiation from a single horn was briefly investigated.

  11. Bird population density estimated from acoustic signals

    USGS Publications Warehouse

    Dawson, D.K.; Efford, M.G.

    2009-01-01

    Many animal species are detected primarily by sound. Although songs, calls and other sounds are often used for population assessment, as in bird point counts and hydrophone surveys of cetaceans, there are few rigorous methods for estimating population density from acoustic data. 2. The problem has several parts - distinguishing individuals, adjusting for individuals that are missed, and adjusting for the area sampled. Spatially explicit capture-recapture (SECR) is a statistical methodology that addresses jointly the second and third parts of the problem. We have extended SECR to use uncalibrated information from acoustic signals on the distance to each source. 3. We applied this extension of SECR to data from an acoustic survey of ovenbird Seiurus aurocapilla density in an eastern US deciduous forest with multiple four-microphone arrays. We modelled average power from spectrograms of ovenbird songs measured within a window of 0??7 s duration and frequencies between 4200 and 5200 Hz. 4. The resulting estimates of the density of singing males (0??19 ha -1 SE 0??03 ha-1) were consistent with estimates of the adult male population density from mist-netting (0??36 ha-1 SE 0??12 ha-1). The fitted model predicts sound attenuation of 0??11 dB m-1 (SE 0??01 dB m-1) in excess of losses from spherical spreading. 5.Synthesis and applications. Our method for estimating animal population density from acoustic signals fills a gap in the census methods available for visually cryptic but vocal taxa, including many species of bird and cetacean. The necessary equipment is simple and readily available; as few as two microphones may provide adequate estimates, given spatial replication. The method requires that individuals detected at the same place are acoustically distinguishable and all individuals vocalize during the recording interval, or that the per capita rate of vocalization is known. We believe these requirements can be met, with suitable field methods, for a significant

  12. Acoustic signals generated in inclined granular flows

    NASA Astrophysics Data System (ADS)

    Tan, Danielle S.; Jenkins, James T.; Keast, Stephen C.; Sachse, Wolfgang H.

    2015-10-01

    Spontaneous avalanching in specific deserts produces a low-frequency sound known as "booming." This creates a puzzle, because avalanches down the face of a dune result in collisions between sand grains that occur at much higher frequencies. Reproducing this phenomenon in the laboratory permits a better understanding of the underlying mechanisms for the generation of such lower frequency acoustic emissions, which may also be relevant to other dry granular flows. Here we report measurements of low-frequency acoustical signals, produced by dried "sounding" sand (sand capable of booming in the desert) flowing down an inclined chute. The amplitude of the signal diminishes over time but reappears upon drying of the sand. We show that the presence of this sound in the experiments may provide supporting evidence for a previously published "waveguide" explanation for booming. Also, we propose a model based on kinetic theory for a sheared inclined flow in which the flowing layer exhibits "breathing" modes superimposed on steady shearing. The predicted oscillation frequency is of a similar order of magnitude as the measurements, indicating that small perturbations can sustain oscillations of a low frequency. However, the frequency is underestimated, which indicates that the stiffness has been underestimated. Also, the model predicts a discrete spectrum of frequencies, instead of the broadband spectrum measured experimentally.

  13. Spatial acoustic signal processing for immersive communication

    NASA Astrophysics Data System (ADS)

    Atkins, Joshua

    Computing is rapidly becoming ubiquitous as users expect devices that can augment and interact naturally with the world around them. In these systems it is necessary to have an acoustic front-end that is able to capture and reproduce natural human communication. Whether the end point is a speech recognizer or another human listener, the reduction of noise, reverberation, and acoustic echoes are all necessary and complex challenges. The focus of this dissertation is to provide a general method for approaching these problems using spherical microphone and loudspeaker arrays.. In this work, a theory of capturing and reproducing three-dimensional acoustic fields is introduced from a signal processing perspective. In particular, the decomposition of the spatial part of the acoustic field into an orthogonal basis of spherical harmonics provides not only a general framework for analysis, but also many processing advantages. The spatial sampling error limits the upper frequency range with which a sound field can be accurately captured or reproduced. In broadband arrays, the cost and complexity of using multiple transducers is an issue. This work provides a flexible optimization method for determining the location of array elements to minimize the spatial aliasing error. The low frequency array processing ability is also limited by the SNR, mismatch, and placement error of transducers. To address this, a robust processing method is introduced and used to design a reproduction system for rendering over arbitrary loudspeaker arrays or binaurally over headphones. In addition to the beamforming problem, the multichannel acoustic echo cancellation (MCAEC) issue is also addressed. A MCAEC must adaptively estimate and track the constantly changing loudspeaker-room-microphone response to remove the sound field presented over the loudspeakers from that captured by the microphones. In the multichannel case, the system is overdetermined and many adaptive schemes fail to converge to

  14. Underwater Wireless Sensor Networks: how do acoustic propagation models impact the performance of higher-level protocols?

    PubMed

    Llor, Jesús; Malumbres, Manuel P

    2012-01-01

    Several Medium Access Control (MAC) and routing protocols have been developed in the last years for Underwater Wireless Sensor Networks (UWSNs). One of the main difficulties to compare and validate the performance of different proposals is the lack of a common standard to model the acoustic propagation in the underwater environment. In this paper we analyze the evolution of underwater acoustic prediction models from a simple approach to more detailed and accurate models. Then, different high layer network protocols are tested with different acoustic propagation models in order to determine the influence of environmental parameters on the obtained results. After several experiments, we can conclude that higher-level protocols are sensitive to both: (a) physical layer parameters related to the network scenario and (b) the acoustic propagation model. Conditions like ocean surface activity, scenario location, bathymetry or floor sediment composition, may change the signal propagation behavior. So, when designing network architectures for UWSNs, the role of the physical layer should be seriously taken into account in order to assert that the obtained simulation results will be close to the ones obtained in real network scenarios.

  15. Numerical and experimental study of Lamb wave propagation in a two-dimensional acoustic black hole

    NASA Astrophysics Data System (ADS)

    Yan, Shiling; Lomonosov, Alexey M.; Shen, Zhonghua

    2016-06-01

    The propagation of laser-generated Lamb waves in a two-dimensional acoustic black-hole structure was studied numerically and experimentally. The geometrical acoustic theory has been applied to calculate the beam trajectories in the region of the acoustic black hole. The finite element method was also used to study the time evolution of propagating waves. An optical system based on the laser-Doppler vibration method was assembled. The effect of the focusing wave and the reduction in wave speed of the acoustic black hole has been validated.

  16. Acoustic signal detection of manatee calls

    NASA Astrophysics Data System (ADS)

    Niezrecki, Christopher; Phillips, Richard; Meyer, Michael; Beusse, Diedrich O.

    2003-04-01

    The West Indian manatee (trichechus manatus latirostris) has become endangered partly because of a growing number of collisions with boats. A system to warn boaters of the presence of manatees, that can signal to boaters that manatees are present in the immediate vicinity, could potentially reduce these boat collisions. In order to identify the presence of manatees, acoustic methods are employed. Within this paper, three different detection algorithms are used to detect the calls of the West Indian manatee. The detection systems are tested in the laboratory using simulated manatee vocalizations from an audio compact disc. The detection method that provides the best overall performance is able to correctly identify ~=96% of the manatee vocalizations. However the system also results in a false positive rate of ~=16%. The results of this work may ultimately lead to the development of a manatee warning system that can warn boaters of the presence of manatees.

  17. AUV Positioning Method Based on Tightly Coupled SINS/LBL for Underwater Acoustic Multipath Propagation

    PubMed Central

    Zhang, Tao; Shi, Hongfei; Chen, Liping; Li, Yao; Tong, Jinwu

    2016-01-01

    This paper researches an AUV (Autonomous Underwater Vehicle) positioning method based on SINS (Strapdown Inertial Navigation System)/LBL (Long Base Line) tightly coupled algorithm. This algorithm mainly includes SINS-assisted searching method of optimum slant-range of underwater acoustic propagation multipath, SINS/LBL tightly coupled model and multi-sensor information fusion algorithm. Fuzzy correlation peak problem of underwater LBL acoustic propagation multipath could be solved based on SINS positional information, thus improving LBL positional accuracy. Moreover, introduction of SINS-centered LBL locating information could compensate accumulative AUV position error effectively and regularly. Compared to loosely coupled algorithm, this tightly coupled algorithm can still provide accurate location information when there are fewer than four available hydrophones (or within the signal receiving range). Therefore, effective positional calibration area of tightly coupled system based on LBL array is wider and has higher reliability and fault tolerance than loosely coupled. It is more applicable to AUV positioning based on SINS/LBL. PMID:26978361

  18. AUV Positioning Method Based on Tightly Coupled SINS/LBL for Underwater Acoustic Multipath Propagation.

    PubMed

    Zhang, Tao; Shi, Hongfei; Chen, Liping; Li, Yao; Tong, Jinwu

    2016-03-11

    This paper researches an AUV (Autonomous Underwater Vehicle) positioning method based on SINS (Strapdown Inertial Navigation System)/LBL (Long Base Line) tightly coupled algorithm. This algorithm mainly includes SINS-assisted searching method of optimum slant-range of underwater acoustic propagation multipath, SINS/LBL tightly coupled model and multi-sensor information fusion algorithm. Fuzzy correlation peak problem of underwater LBL acoustic propagation multipath could be solved based on SINS positional information, thus improving LBL positional accuracy. Moreover, introduction of SINS-centered LBL locating information could compensate accumulative AUV position error effectively and regularly. Compared to loosely coupled algorithm, this tightly coupled algorithm can still provide accurate location information when there are fewer than four available hydrophones (or within the signal receiving range). Therefore, effective positional calibration area of tightly coupled system based on LBL array is wider and has higher reliability and fault tolerance than loosely coupled. It is more applicable to AUV positioning based on SINS/LBL.

  19. AUV Positioning Method Based on Tightly Coupled SINS/LBL for Underwater Acoustic Multipath Propagation.

    PubMed

    Zhang, Tao; Shi, Hongfei; Chen, Liping; Li, Yao; Tong, Jinwu

    2016-01-01

    This paper researches an AUV (Autonomous Underwater Vehicle) positioning method based on SINS (Strapdown Inertial Navigation System)/LBL (Long Base Line) tightly coupled algorithm. This algorithm mainly includes SINS-assisted searching method of optimum slant-range of underwater acoustic propagation multipath, SINS/LBL tightly coupled model and multi-sensor information fusion algorithm. Fuzzy correlation peak problem of underwater LBL acoustic propagation multipath could be solved based on SINS positional information, thus improving LBL positional accuracy. Moreover, introduction of SINS-centered LBL locating information could compensate accumulative AUV position error effectively and regularly. Compared to loosely coupled algorithm, this tightly coupled algorithm can still provide accurate location information when there are fewer than four available hydrophones (or within the signal receiving range). Therefore, effective positional calibration area of tightly coupled system based on LBL array is wider and has higher reliability and fault tolerance than loosely coupled. It is more applicable to AUV positioning based on SINS/LBL. PMID:26978361

  20. Extended amplification of acoustic signals by amphibian burrows.

    PubMed

    Muñoz, Matías I; Penna, Mario

    2016-07-01

    Animals relying on acoustic signals for communication must cope with the constraints imposed by the environment for sound propagation. A resource to improve signal broadcast is the use of structures that favor the emission or the reception of sounds. We conducted playback experiments to assess the effect of the burrows occupied by the frogs Eupsophus emiliopugini and E. calcaratus on the amplitude of outgoing vocalizations. In addition, we evaluated the influence of these cavities on the reception of externally generated sounds potentially interfering with conspecific communication, namely, the vocalizations emitted by four syntopic species of anurans (E. emiliopugini, E. calcaratus, Batrachyla antartandica, and Pleurodema thaul) and the nocturnal owls Strix rufipes and Glaucidium nanum. Eupsophus advertisement calls emitted from within the burrows experienced average amplitude gains of 3-6 dB at 100 cm from the burrow openings. Likewise, the incoming vocalizations of amphibians and birds were amplified on average above 6 dB inside the cavities. The amplification of internally broadcast Eupsophus vocalizations favors signal detection by nearby conspecifics. Reciprocally, the amplification of incoming conspecific and heterospecific signals facilitates the detection of neighboring males and the monitoring of the levels of potentially interfering biotic noise by resident frogs, respectively. PMID:27209276

  1. Toward a Nonlinear Acoustic Analogy: Turbulence as a Source of Sound and Nonlinear Propagation

    NASA Technical Reports Server (NTRS)

    Miller, Steven A. E.

    2015-01-01

    An acoustic analogy is proposed that directly includes nonlinear propagation effects. We examine the Lighthill acoustic analogy and replace the Green's function of the wave equation with numerical solutions of the generalized Burgers' equation. This is justified mathematically by using similar arguments that are the basis of the solution of the Lighthill acoustic analogy. This approach is superior to alternatives because propagation is accounted for directly from the source to the far-field observer instead of from an arbitrary intermediate point. Validation of a numerical solver for the generalized Burgers' equation is performed by comparing solutions with the Blackstock bridging function and measurement data. Most importantly, the mathematical relationship between the Navier-Stokes equations, the acoustic analogy that describes the source, and canonical nonlinear propagation equations is shown. Example predictions are presented for nonlinear propagation of jet mixing noise at the sideline angle.

  2. Toward a Nonlinear Acoustic Analogy: Turbulence as a Source of Sound and Nonlinear Propagation

    NASA Technical Reports Server (NTRS)

    Miller, Steven A. E.

    2015-01-01

    An acoustic analogy is proposed that directly includes nonlinear propagation effects. We examine the Lighthill acoustic analogy and replace the Green's function of the wave equation with numerical solutions of the generalized Burgers' equation. This is justified mathematically by using similar arguments that are the basis of the solution of the Lighthill acoustic analogy. This approach is superior to alternatives because propagation is accounted for directly from the source to the far-field observer instead of from an arbitrary intermediate point. Validation of a numerical solver for the generalized Burgers' equation is performed by comparing solutions with the Blackstock bridging function and measurement data. Most importantly, the mathematical relationship between the Navier- Stokes equations, the acoustic analogy that describes the source, and canonical nonlinear propagation equations is shown. Example predictions are presented for nonlinear propagation of jet mixing noise at the sideline angle

  3. A perturbative analysis of surface acoustic wave propagation and reflection in interdigital transducers

    NASA Astrophysics Data System (ADS)

    Thoma, Carsten Hilmar

    1997-12-01

    The coupling of stress and strain fields to electric fields present in anisotropic piezoelectric crystals makes them ideal for use as electromechanical transducers in a wide variety of applications. In recent years such crystals have been utilized to produce surface acoustic wave devices for signal processing applications, in which an applied metallic grating both transmits and receives, through the piezoelectric effect, electromechanical surface waves. The design of such interdigital transducers requires an accurate knowledge of wave propagation and reflection. The presence of the metal grating in addition to its ideal transduction function, by means of electrical and mechanical loading, also introduces a velocity shift as well as reflection into substrate surface waves. We seek to obtain a consistent formulation of the wave behavior due to the electrical and mechanical loading of the substrate crystal by the metallic grating. A perturbative solution up to second order in h//lambda is developed, where h is the maximum grating height and λ the acoustic wavelength. For the operating frequencies and physical parameters of modern surface acoustic wave devices such an analysis will provide an adequate description of device behavior in many cases, thereby circumventing the need for more computationally laborious methods. Numerical calculations are presented and compared with available experimental data.

  4. Time Reversal Mirrors and Cross Correlation Functions in Acoustic Wave Propagation

    NASA Astrophysics Data System (ADS)

    Fishman, Louis; Jonsson, B. Lars G.; de Hoop, Maarten V.

    2009-03-01

    In time reversal acoustics (TRA), a signal is recorded by an array of transducers, time reversed, and then retransmitted into the configuration. The retransmitted signal propagates back through the same medium and retrofocuses on the source that generated the signal. If the transducer array is a single, planar (flat) surface, then this configuration is referred to as a planar, one-sided, time reversal mirror (TRM). In signal processing, for example, in active-source seismic interferometry, the measurement of the wave field at two distinct receivers, generated by a common source, is considered. Cross correlating these two observations and integrating the result over the sources yield the cross correlation function (CCF). Adopting the TRM experiments as the basic starting point and identifying the kinematically correct correspondences, it is established that the associated CCF signal processing constructions follow in a specific, infinite recording time limit. This perspective also provides for a natural rationale for selecting the Green's function components in the TRM and CCF expressions. For a planar, one-sided, TRM experiment and the corresponding CCF signal processing construction, in a three-dimensional homogeneous medium, the exact expressions are explicitly calculated, and the connecting limiting relationship verified. Finally, the TRM and CCF results are understood in terms of the underlying, governing, two-way wave equation, its corresponding time reversal invariance (TRI) symmetry, and the absence of TRI symmetry in the associated one-way wave equations, highlighting the role played by the evanescent modal contributions.

  5. Comparison of the TACOM acoustic-detection-range prediction model and the UK Dstl acoustic prediction propagation model

    NASA Astrophysics Data System (ADS)

    Nunney, Victoria; Mantey, Robert; Crile, James

    2002-08-01

    Acoustic signatures are being exploited more and more by new technology in the battlefield as a way of detecting and identifying potential targets. An understanding of the way in which the acoustic signature of a land platform propagates through the atmosphere enables one to target suppression techniques to those acoustic sources on the vehicle that will provide the greatest military benefit in terms of reducing the detection range of the platform. Dstl Chertsey (UK) and TACOM (US) have developed acoustic propagation models which can predict the far-field sound pressure levels (SPLs) and associated detection ranges of land platforms under a variety of meteorological conditions over different terrain types. The Acoustic Prediction Propagation Model (APPM), UK) and Acoustic Detection Range Prediction Model (ADRPM, US) have previously been compared and have been found to produce similar results for simple scenarios. With recent developments in both models, this comparison has been carried out again, looking at the introduction of Fast-Field Programs (FFP) to both models and, in more detail, the differences between the results at certain frequencies. This paper represents the results found from this comparison study, showing the differences, similarities and potential of these models for the future.

  6. Acoustic signalling reflects personality in a social mammal

    PubMed Central

    Friel, Mary; Kunc, Hansjoerg P.; Griffin, Kym; Asher, Lucy; Collins, Lisa M.

    2016-01-01

    Social interactions among individuals are often mediated through acoustic signals. If acoustic signals are consistent and related to an individual's personality, these consistent individual differences in signalling may be an important driver in social interactions. However, few studies in non-human mammals have investigated the relationship between acoustic signalling and personality. Here we show that acoustic signalling rate is repeatable and strongly related to personality in a highly social mammal, the domestic pig (Sus scrofa domestica). Furthermore, acoustic signalling varied between environments of differing quality, with males from a poor-quality environment having a reduced vocalization rate compared with females and males from an enriched environment. Such differences may be mediated by personality with pigs from a poor-quality environment having more reactive and more extreme personality scores compared with pigs from an enriched environment. Our results add to the evidence that acoustic signalling reflects personality in a non-human mammal. Signals reflecting personalities may have far reaching consequences in shaping the evolution of social behaviours as acoustic communication forms an integral part of animal societies. PMID:27429775

  7. Acoustic signalling reflects personality in a social mammal.

    PubMed

    Friel, Mary; Kunc, Hansjoerg P; Griffin, Kym; Asher, Lucy; Collins, Lisa M

    2016-06-01

    Social interactions among individuals are often mediated through acoustic signals. If acoustic signals are consistent and related to an individual's personality, these consistent individual differences in signalling may be an important driver in social interactions. However, few studies in non-human mammals have investigated the relationship between acoustic signalling and personality. Here we show that acoustic signalling rate is repeatable and strongly related to personality in a highly social mammal, the domestic pig (Sus scrofa domestica). Furthermore, acoustic signalling varied between environments of differing quality, with males from a poor-quality environment having a reduced vocalization rate compared with females and males from an enriched environment. Such differences may be mediated by personality with pigs from a poor-quality environment having more reactive and more extreme personality scores compared with pigs from an enriched environment. Our results add to the evidence that acoustic signalling reflects personality in a non-human mammal. Signals reflecting personalities may have far reaching consequences in shaping the evolution of social behaviours as acoustic communication forms an integral part of animal societies. PMID:27429775

  8. 70 FR 41810 - Advisory Circular 25.856-1, Thermal/Acoustic Insulation Flame Propagation Test Method Details

    Federal Register 2010, 2011, 2012, 2013, 2014

    2005-07-20

    ... Federal Aviation Administration Advisory Circular 25.856-1, Thermal/Acoustic Insulation Flame Propagation... requirements applicable to thermal/acoustic insulation materials. The guidance in this AC describes a test method to determine the flammability and flame propagation characteristics of thermal/acoustic...

  9. High-frequency surface acoustic wave propagation in nanaostructures characterized by coherent extreme ultraviolet beams

    SciTech Connect

    Siemens, M.; Li, Q.; Murnane, M.; Kapteyn, H.; Yang, R.; Anderson, E.; Nelson, K.

    2009-03-02

    We study ultrahigh frequency surface acoustic wave propagation in nickel-on-sapphire nanostructures. The use of ultrafast, coherent, extreme ultraviolet beams allows us to extend optical measurements of propagation dynamics of surface acoustic waves to frequencies of nearly 50 GHz, corresponding to wavelengths as short as 125 nm. We repeat the measurement on a sequence of nanostructured samples to observe surface acoustic wave dispersion in a nanostructure series for the first time. These measurements are critical for accurate characterization of thin films using this technique.

  10. Acoustic Emission Signals in Thin Plates Produced by Impact Damage

    NASA Technical Reports Server (NTRS)

    Prosser, William H.; Gorman, Michael R.; Humes, Donald H.

    1999-01-01

    Acoustic emission (AE) signals created by impact sources in thin aluminum and graphite/epoxy composite plates were analyzed. Two different impact velocity regimes were studied. Low-velocity (less than 0.21 km/s) impacts were created with an airgun firing spherical steel projectiles (4.5 mm diameter). High-velocity (1.8 to 7 km/s) impacts were generated with a two-stage light-gas gun firing small cylindrical nylon projectiles (1.5 mm diameter). Both the impact velocity and impact angle were varied. The impacts did not penetrate the aluminum plates at either low or high velocities. For high-velocity impacts in composites, there were both impacts that fully penetrated the plate as well as impacts that did not. All impacts generated very large amplitude AE signals (1-5 V at the sensor), which propagated as plate (extensional and/or flexural) modes. In the low-velocity impact studies, the signal was dominated by a large flexural mode with only a small extensional mode component detected. As the impact velocity was increased within the low velocity regime, the overall amplitudes of both the extensional and flexural modes increased. In addition, a relative increase in the amplitude of high-frequency components of the flexural mode was also observed. Signals caused by high-velocity impacts that did not penetrate the plate contained both a large extensional and flexural mode component of comparable amplitudes. The signals also contained components of much higher frequency and were easily differentiated from those caused by low-velocity impacts. An interesting phenomenon was observed in that the large flexural mode component, seen in every other case, was absent from the signal when the impact particle fully penetrated through the composite plates.

  11. Interpretation of acoustic signals from fluidzed beds

    SciTech Connect

    Halow, J.S.; Daw, C.S.; Finney, C.E.A.; Nguyen, K.

    1996-12-31

    Rhythmic {open_quotes}whooshing{close_quotes} sounds associated with rising bubbles are a characteristic feature of many fluidized beds. Although clearly distinguishable to the ear, these sounds are rather complicated in detail and seem to contain a large background of apparently irrelevant stochastic noise. While it is clear that these sounds contain some information about bed dynamics, it is not obvious how this information can be interpreted in a meaningful way. In this presentation we describe a technique for processing bed sounds that appears to work well for beds with large particles operating in a slugging or near-slugging mode. We find that our processing algorithm allows us to determine important bubble/slug features from sound measurements alone, including slug location at any point in time, the average bubble frequency and frequency variation, and corresponding dynamic pressure drops at different bed locations. We also have been able to correlate a portion of the acoustic signal with particle impacts on surfaces and particle motions near the grid. We conclude from our observations that relatively simple sound measurements can provide much diagnostic information and could be potentially used for bed control. 5 refs., 4 figs.

  12. Thirty years of underwater acoustic signal processing in China

    NASA Astrophysics Data System (ADS)

    Li, Qihu

    2012-11-01

    Advances in technology and theory in 30 years of underwater acoustic signal processing and its applications in China are presented in this paper. The topics include research work in the field of underwater acoustic signal modeling, acoustic field matching, ocean waveguide and internal wave, the extraction and processing technique for acoustic vector signal information, the space/time correlation characteristics of low frequency acoustic channels, the invariant features of underwater target radiated noise, the transmission technology of underwater voice/image data and its anti-interference technique. Some frontier technologies in sonar design are also discussed, including large aperture towed line array sonar, high resolution synthetic aperture sonar, deep sea siren and deep sea manned subsea vehicle, diver detection sonar and demonstration projector of national ocean monitoring system in China, etc.

  13. Sweep-spread carrier for underwater communication over acoustic channels with strong multipath propagation.

    PubMed

    Kebkal, Konstantin G; Bannasch, Rudolf

    2002-11-01

    Multipath propagation causes the transmitted signal to take numerous, time-varying different-length paths to the receiver. Exploitation of conventional frequency-constant carrier signals for communication over underwater acoustic channels typically shows that intricate mutual time variations of multipath arrivals create an extremely hard problem for equalizers to compensate for nonstable intersymbol interactions. Communication over such channels can be, however, substantially improved by using a new method based on the implementation of a sweep-spread carrier (S2C). Such a carrier consists of a succession of sweeps, which cause permanent rapid fluctuation of signal frequency. Apart from some additional useful effects such as providing multiuser access and reducing influence of narrow-band noise, the method provides significant processing improvement enabling clear separation of multipath arrivals by converting their time delays into their frequency reallocations--the steeper the sweeps, the better the multipath resolution that can be achieved. When converting the signal into constant intermediate frequencies, the best suitable multipath arrival can be separated not as traditionally in time domains, applying complex equalizers, but in frequency domains by means of usual band-pass filters. High transmission stability of this approach was confirmed in both computer simulations as well as in validation experiments carried out since summer 1999.

  14. Oblique Propagation of Ion Acoustic Solitons in Magnetized Superthermal Plasmas

    NASA Astrophysics Data System (ADS)

    Devanandhan, S.; Sreeraj, T.; Singh, S.; Lakhina, G. S.

    2015-12-01

    Small amplitude ion-acoustic solitons are studied in a magnetized plasma consisting of protons, doubly charged helium ions and superthermal electrons. The Korteweg-de-Vries-Zakharov-Kuznetsov (KdV-ZK) is derived to examine the properties of ion acoustic solitary structures observed in space plasmas. Our model is applicable for weakly magnetized plasmas. The results will be applied to the satellite observations in the solar wind at 1 AU where magnetized ion acoustic waves with superthermal electrons can exist. The effects of superthermality, temperature and densities on these solitary structures will be discussed.

  15. Acoustic emission source localization based on distance domain signal representation

    NASA Astrophysics Data System (ADS)

    Gawronski, M.; Grabowski, K.; Russek, P.; Staszewski, W. J.; Uhl, T.; Packo, P.

    2016-04-01

    Acoustic emission is a vital non-destructive testing technique and is widely used in industry for damage detection, localisation and characterization. The latter two aspects are particularly challenging, as AE data are typically noisy. What is more, elastic waves generated by an AE event, propagate through a structural path and are significantly distorted. This effect is particularly prominent for thin elastic plates. In these media the dispersion phenomenon results in severe localisation and characterization issues. Traditional Time Difference of Arrival methods for localisation techniques typically fail when signals are highly dispersive. Hence, algorithms capable of dispersion compensation are sought. This paper presents a method based on the Time - Distance Domain Transform for an accurate AE event localisation. The source localisation is found through a minimization problem. The proposed technique focuses on transforming the time signal to the distance domain response, which would be recorded at the source. Only, basic elastic material properties and plate thickness are used in the approach, avoiding arbitrary parameters tuning.

  16. Nonlinear acoustic propagation in bubbly liquids: Multiple scattering, softening and hardening phenomena.

    PubMed

    Doc, Jean-Baptiste; Conoir, Jean-Marc; Marchiano, Régis; Fuster, Daniel

    2016-04-01

    The weakly nonlinear propagation of acoustic waves in monodisperse bubbly liquids is investigated numerically. A hydrodynamic model based on the averaged two-phase fluid equations is coupled with the Rayleigh-Plesset equation to model the dynamics of bubbles at the local scale. The present model is validated in the linear regime by comparing with the Foldy approximation. The analysis of the pressure signals in the linear regime highlights two resonance frequencies: the Minnaert frequency and a multiple scattering resonance that strongly depends on the bubble concentration. For weakly nonlinear regimes, the generation of higher harmonics is observed only for the Minnaert frequency. Linear combinations between the Minnaert harmonics and the multiple scattering resonance are also observed. However, the most significant effect observed is the appearance of softening-hardening effects that share some similarities with those observed for sandstones or cracked materials. These effects are related to the multiple scattering resonance. Downward or upward resonance frequency shifts can be observed depending on the characteristic of the incident wave when increasing the excitation amplitude. It is shown that the frequency shift can be explained assuming that the acoustic wave velocity depends on a law different from those usually encountered for sandstones or cracked materials.

  17. Nonlinear acoustic propagation in bubbly liquids: Multiple scattering, softening and hardening phenomena.

    PubMed

    Doc, Jean-Baptiste; Conoir, Jean-Marc; Marchiano, Régis; Fuster, Daniel

    2016-04-01

    The weakly nonlinear propagation of acoustic waves in monodisperse bubbly liquids is investigated numerically. A hydrodynamic model based on the averaged two-phase fluid equations is coupled with the Rayleigh-Plesset equation to model the dynamics of bubbles at the local scale. The present model is validated in the linear regime by comparing with the Foldy approximation. The analysis of the pressure signals in the linear regime highlights two resonance frequencies: the Minnaert frequency and a multiple scattering resonance that strongly depends on the bubble concentration. For weakly nonlinear regimes, the generation of higher harmonics is observed only for the Minnaert frequency. Linear combinations between the Minnaert harmonics and the multiple scattering resonance are also observed. However, the most significant effect observed is the appearance of softening-hardening effects that share some similarities with those observed for sandstones or cracked materials. These effects are related to the multiple scattering resonance. Downward or upward resonance frequency shifts can be observed depending on the characteristic of the incident wave when increasing the excitation amplitude. It is shown that the frequency shift can be explained assuming that the acoustic wave velocity depends on a law different from those usually encountered for sandstones or cracked materials. PMID:27106317

  18. Acoustic communication in two freshwater gobies: ambient noise and short-range propagation in shallow streams.

    PubMed

    Lugli, M; Fine, M L

    2003-07-01

    Noise is an important theoretical constraint on the evolution of signal form and sensory performance. In order to determine environmental constraints on the communication of two freshwater gobies Padogobius martensii and Gobius nigricans, numerous noise spectra were measured from quiet areas and ones adjacent to waterfalls and rapids in two shallow stony streams. Propagation of goby sounds and waterfall noise was also measured. A quiet window around 100 Hz is present in many noise spectra from noisy locations. The window lies between two noise sources, a low-frequency one attributed to turbulence, and a high-frequency one (200-500 Hz) attributed to bubble noise from water breaking the surface. Ambient noise from a waterfall (frequencies below 1 kHz) attenuates as much as 30 dB between 1 and 2 m, after which values are variable without further attenuation (i.e., buried in the noise floor). Similarly, courtship sounds of P. martensii attenuate as much as 30 dB between 5 and 50 cm. Since gobies are known to court in noisy as well as quiet locations in these streams, their acoustic communication system (sounds and auditory system) must be able to cope with short-range propagation dictated by shallow depths and ambient noise in noisy locations. PMID:12880062

  19. Acoustic communication in two freshwater gobies: ambient noise and short-range propagation in shallow streams.

    PubMed

    Lugli, M; Fine, M L

    2003-07-01

    Noise is an important theoretical constraint on the evolution of signal form and sensory performance. In order to determine environmental constraints on the communication of two freshwater gobies Padogobius martensii and Gobius nigricans, numerous noise spectra were measured from quiet areas and ones adjacent to waterfalls and rapids in two shallow stony streams. Propagation of goby sounds and waterfall noise was also measured. A quiet window around 100 Hz is present in many noise spectra from noisy locations. The window lies between two noise sources, a low-frequency one attributed to turbulence, and a high-frequency one (200-500 Hz) attributed to bubble noise from water breaking the surface. Ambient noise from a waterfall (frequencies below 1 kHz) attenuates as much as 30 dB between 1 and 2 m, after which values are variable without further attenuation (i.e., buried in the noise floor). Similarly, courtship sounds of P. martensii attenuate as much as 30 dB between 5 and 50 cm. Since gobies are known to court in noisy as well as quiet locations in these streams, their acoustic communication system (sounds and auditory system) must be able to cope with short-range propagation dictated by shallow depths and ambient noise in noisy locations.

  20. Seismic-acoustic finite-difference wave propagation algorithm.

    SciTech Connect

    Preston, Leiph; Aldridge, David Franklin

    2010-10-01

    An efficient numerical algorithm for treating earth models composed of fluid and solid portions is obtained via straightforward modifications to a 3D time-domain finite-difference algorithm for simulating isotropic elastic wave propagation.

  1. Acoustic pulse propagation in an urban environment using a three-dimensional numerical simulation.

    PubMed

    Mehra, Ravish; Raghuvanshi, Nikunj; Chandak, Anish; Albert, Donald G; Wilson, D Keith; Manocha, Dinesh

    2014-06-01

    Acoustic pulse propagation in outdoor urban environments is a physically complex phenomenon due to the predominance of reflection, diffraction, and scattering. This is especially true in non-line-of-sight cases, where edge diffraction and high-order scattering are major components of acoustic energy transport. Past work by Albert and Liu [J. Acoust. Soc. Am. 127, 1335-1346 (2010)] has shown that many of these effects can be captured using a two-dimensional finite-difference time-domain method, which was compared to the measured data recorded in an army training village. In this paper, a full three-dimensional analysis of acoustic pulse propagation is presented. This analysis is enabled by the adaptive rectangular decomposition method by Raghuvanshi, Narain and Lin [IEEE Trans. Visual. Comput. Graphics 15, 789-801 (2009)], which models sound propagation in the same scene in three dimensions. The simulation is run at a much higher usable bandwidth (nearly 450 Hz) and took only a few minutes on a desktop computer. It is shown that a three-dimensional solution provides better agreement with measured data than two-dimensional modeling, especially in cases where propagation over rooftops is important. In general, the predicted acoustic responses match well with measured results for the source/sensor locations. PMID:24907788

  2. Multidimensional Fourier Methods: Analysis of Internal Soliton Data and Acoustic Wave Propagation

    NASA Astrophysics Data System (ADS)

    Osborne, A.

    2005-05-01

    The aggressive pursuit of a satisfactory level of physical understanding of nonlinear oceanic wave dynamics has lead to the use of multidimensional Fourier analysis as a tool for the time series analysis of both internal wave motion and acoustic wave propagation. These new tools have arisen naturally for studies using the inverse scattering transform to particular nonlinear wave equations. When applied to the Korteweg-deVries equation, for example, one finds that the approach can be extended to arbitrarily high order. There are several advantages for using multidimensional Fourier methods over ordinary Fourier analysis: (1) fully nonlinear wave dynamics can be studied, (2) solitons become a natural component in the theory and correspond to the diagonal elements of the "Riemann matrix", (3) nonlinear interactions are accounted for by the off-diagonal elements of this matrix, (4) nonlinear acoustic modes are found to also have an (albeit static) solitonic component. These surprising results lead to new interpretations of acoustic waves propagating in the presence of a nonlinear internal wave field. One of the most important results is the implication that new nonlinear filtering techniques allow for the spectral decomposition of both the internal wave field and of the acoustic field. With regard to the acoustic field, one can foresee the application of the method to the observations of phenomena in the "hidden zones", where one would normally conclude that acoustic wave propagation does not occur.

  3. Resonant acoustic propagation and negative density in liquid foams.

    PubMed

    Pierre, Juliette; Dollet, Benjamin; Leroy, Valentin

    2014-04-11

    We measured the dispersion relation for acoustic longitudinal waves in liquid foams, over a broad frequency range (60-600 kHz). Strong dispersion was found, with two nondispersive behaviors, separated by a negative density regime. A new model, based on the coupled displacements of films, liquid channels, and gas in the foam, rationalizes all the experimental findings.

  4. Correlation of signals of thermal acoustic radiation

    NASA Astrophysics Data System (ADS)

    Anosov, A. A.; Passechnik, V. I.

    2003-03-01

    The spatial correlation function is measured for the pressure of thermal acoustic radiation from a source (a narrow plasticine plate) whose temperature is made both higher and lower than the temperature of the receiver. The spatial correlation function of the pressure of thermal acoustic radiation is found to be oscillatory in character. The oscillation amplitude is determined not by the absolute temperature of the source but by the temperature difference between the source and the receiver. The correlation function changes its sign when a source heated with respect to the receiver is replaced by a cooled one.

  5. Measurement of Bubble Size Distribution Based on Acoustic Propagation in Bubbly Medium

    NASA Astrophysics Data System (ADS)

    Wu, Xiongjun; Hsiao, Chao-Tsung; Choi, Jin-Keun; Chahine, Georges

    2013-03-01

    Acoustic properties are strongly affected by bubble size distribution in a bubbly medium. Measurement of the acoustic transmission becomes increasingly difficulty as the void fraction of the bubbly medium increases due to strong attenuation, while acoustic reflection can be measured more easily with increasing void fraction. The ABS ACOUSTIC BUBBLE SPECTROMETER®\\copyright, an instrument for bubble size measurement that is under development tries to take full advantage of the properties of acoustic propagation in bubbly media to extract bubble size distribution. Properties of both acoustic transmission and reflection in the bubbly medium from a range of short single-frequency bursts of acoustic waves at different frequencies are measured in an effort to deduce the bubble size distribution. With the combination of both acoustic transmission and reflection, assisted with validations from photography, the ABS ACOUSTIC BUBBLE SPECTROMETER®\\copyright has the potential to measure bubble size distributions in a wider void fraction range. This work was sponsored by Department of Energy SBIR program

  6. The role of gravity in ocean acoustics propagation and its implication to early tsunami detection

    NASA Astrophysics Data System (ADS)

    Oliveira, Tiago; Lin, Ying-Tsong; Kadri, Usama

    2016-04-01

    Oceanic low frequency sound generated by submarine earthquake travels much faster than tsunamis and leaves pressure signatures that can act as tsunami precursors. In this regard, it is anticipated that the correct measurement and analysis of low frequency acoustics would enhance current early tsunami detection systems. In this work we model the low frequency acoustics generated by the 2004 Indian Ocean earthquake using the "Method of Normal Modes" and the "Acoustics-Gravity Wave" theory. Ocean acoustic theories usually neglect the effect of gravity. However, we show for rigid and elastic bottom conditions how gravity influences the acoustic normal mode propagation speed. Practically, our results can help in the real time characterization of low frequency sources in the ocean. This will enhance the robustness of early tsunami detection systems.

  7. Mesoscale variations in acoustic signals induced by atmospheric gravity waves.

    PubMed

    Chunchuzov, Igor; Kulichkov, Sergey; Perepelkin, Vitaly; Ziemann, Astrid; Arnold, Klaus; Kniffka, Anke

    2009-02-01

    The results of acoustic tomographic monitoring of the coherent structures in the lower atmosphere and the effects of these structures on acoustic signal parameters are analyzed in the present study. From the measurements of acoustic travel time fluctuations (periods 1 min-1 h) with distant receivers, the temporal fluctuations of the effective sound speed and wind speed are retrieved along different ray paths connecting an acoustic pulse source and several receivers. By using a coherence analysis of the fluctuations near spatially distanced ray turning points, the internal wave-associated fluctuations are filtered and their spatial characteristics (coherences, horizontal phase velocities, and spatial scales) are estimated. The capability of acoustic tomography in estimating wind shear near ground is shown. A possible mechanism describing the temporal modulation of the near-ground wind field by ducted internal waves in the troposphere is proposed.

  8. Velocity of an RF pulse signal propagating in a waveguide

    NASA Astrophysics Data System (ADS)

    Su, Wansheng; Besieris, Ioannis M.; Riad, Sedki M.

    1992-06-01

    An experiment is described to check the finding (Giakos and Ishii, 1991) that the leading edge of a pulse-modulated microwave signal propagates in a waveguide with a velocity equal to the phase velocity, or faster than the speed of light. Measurement results demonstrate that an RF pulse signal cannot travel faster than light. The energy of the signal is transported at the 'subluminal' group speed that can be measured.

  9. Staggered-grid finite-difference acoustic modeling with the Time-Domain Atmospheric Acoustic Propagation Suite (TDAAPS).

    SciTech Connect

    Aldridge, David Franklin; Collier, Sandra L.; Marlin, David H.; Ostashev, Vladimir E.; Symons, Neill Phillip; Wilson, D. Keith

    2005-05-01

    This document is intended to serve as a users guide for the time-domain atmospheric acoustic propagation suite (TDAAPS) program developed as part of the Department of Defense High-Performance Modernization Office (HPCMP) Common High-Performance Computing Scalable Software Initiative (CHSSI). TDAAPS performs staggered-grid finite-difference modeling of the acoustic velocity-pressure system with the incorporation of spatially inhomogeneous winds. Wherever practical the control structure of the codes are written in C++ using an object oriented design. Sections of code where a large number of calculations are required are written in C or F77 in order to enable better compiler optimization of these sections. The TDAAPS program conforms to a UNIX style calling interface. Most of the actions of the codes are controlled by adding flags to the invoking command line. This document presents a large number of examples and provides new users with the necessary background to perform acoustic modeling with TDAAPS.

  10. Parallel acoustic wave propagation and generation of a seismic dataset

    SciTech Connect

    Oldfield, R.; Dyke, J.V.; Semeraro, B.D.

    1995-12-01

    The ultimate goal of this work is to construct a large seismic dataset that will be used to calibrate industrial seismic analysis codes. Seismic analysis is used in oil and gas exploration to deduce subterranean geological formations based on the reflection of acoustic waves from a source to an array of receivers placed on or near the surface. This work deals with the generation of a test set of acoustic data based on a known representative geological formation. Industrial users of the data will calibrate their codes by comparing their predicted geology to the know geology used to generate the test data. This is a cooperative effort involving Los Alamos, Sandia, Oak Ridge and Lawrence Livermore national labs as well as Institut Francais du Petrole and the Society of Exploration Geophysicists.

  11. Single crystal metal wedges for surface acoustic wave propagation

    DOEpatents

    Fisher, E.S.

    1980-05-09

    An ultrasonic testing device has been developed to evaluate flaws and inhomogeneities in the near-surface region of a test material. A metal single crystal wedge is used to generate high frequency Rayleigh surface waves in the test material surface by conversion of a slow velocity, bulk acoustic mode in the wedge into a Rayleigh wave at the metal-wedge test material interface. Particular classes of metals have been found to provide the bulk acoustic modes necessary for production of a surface wave with extremely high frequency and angular collimation. The high frequency allows flaws and inhomogeneities to be examined with greater resolution. The high degree of angular collimation for the outgoing ultrasonic beam permits precision angular location of flaws and inhomogeneities in the test material surface.

  12. Single crystal metal wedges for surface acoustic wave propagation

    DOEpatents

    Fisher, Edward S.

    1982-01-01

    An ultrasonic testing device has been developed to evaluate flaws and inhomogeneities in the near-surface region of a test material. A metal single crystal wedge is used to generate high frequency Rayleigh surface waves in the test material surface by conversion of a slow velocity, bulk acoustic mode in the wedge into a Rayleigh wave at the metal-wedge test material interface. Particular classes of metals have been found to provide the bulk acoustic modes necessary for production of a surface wave with extremely high frequency and angular collimation. The high frequency allows flaws and inhomogeneities to be examined with greater resolution. The high degree of angular collimation for the outgoing ultrasonic beam permits precision angular location of flaws and inhomogeneities in the test material surface.

  13. Modeling acoustic wave propagation in the Southern Ocean to estimate the acoustic impact of seismic surveys on marine mammals

    NASA Astrophysics Data System (ADS)

    Breitzke, M.; Bohlen, T.

    2007-12-01

    According to the Protocol on Environmental Protection to the Antarctic Treaty, adopted 1991, seismic surveys in the Southern Ocean south of 60°S are exclusively dedicated to academic research. The seismic surveys conducted by the Alfred-Wegener-Institute for Polar and Marine Research, Bremerhaven, Germany during the last 20 years focussed on two areas: The Wedell Sea (60°W - 0°W) and the Amundsen/Bellinghausen Sea (120°W - 60°W). Histograms of the Julian days and water depths covered by these surveys indicate that maximum activities occurred in January and February, and most lines were collected either in shallow waters of 400 - 500 m depth or in deep waters of 2500 - 4500 m depth. To assess the potential risk of future seismic research on marine mammal populations an acoustic wave propagation modeling study is conducted for the Wedell and the Amundsen/ Bellinghausen Sea. A 2.5D finite-difference code is used. It allows to simulate the spherical amplitude decay of point sources correctly, considers P- and S-wave velocities at the sea floor and provides snapshots of the wavefield at any spatial and temporal resolution. As source signals notional signatures of GI-, G- and Bolt guns, computed by the NUCLEUS software (PGS) are used. Based on CTD measurements, sediment core samplings and sediment echosounder recordings two horizontally-layered, range-independent generic models are established for the Wedell and the Amundsen/Bellinghausen Sea, one for shallow (500 m) and one for deep water (3000 m). They indicate that the vertical structure of the water masses is characterized by a 100 m thick, cold, low sound velocity layer (~1440 - 1450 m/s), centered in 100 m depth. In the austral summer it is overlain by a warmer, 50 m thick surface layer with slightly higher sound velocities (~1447 - 1453 m/s). Beneath the low-velocity layer sound velocities increase rapidly to ~1450 - 1460 m/s in 200 m depth, and smoothly to ~1530 m/s in 4700 m depth. The sea floor is mainly

  14. Acoustic signal characteristics during IR laser ablation and their consequences for acoustic tissue discrimination

    NASA Astrophysics Data System (ADS)

    Nahen, Kester; Vogel, Alfred

    2000-06-01

    IR laser ablation of skin is accompanied by acoustic signals the characteristics of which are closely linked to the ablation dynamics. A discrimination between different tissue layers, for example necrotic and vital tissue during laser burn debridement, is therefore possible by an analysis of the acoustic signal. We were able to discriminate tissue layers by evaluating the acoustic energy. To get a better understanding of the tissue specificity of the ablation noise, we investigated the correlation between sample water content, ablation dynamics, and characteristics of the acoustic signal. A free running Er:YAG laser with a maximum pulse energy of 2 J and a spot diameter of 5 mm was used to ablate gelatin samples with different water content. The ablation noise in air was detected using a piezoelectric transducer with a bandwidth of 1 MHz, and the acoustic signal generated inside the ablated sample was measured simultaneously ba a piezoelectric transducer in contact with the sample. Laser flash Schlieren photography was used to investigate the expansion velocity of the vapor plume and the velocity of the ejected material. We observed large differences between the ablation dynamics and material ejection velocity for gelatin samples with 70% and 90% water content. These differences cannot be explained by the small change of the gelatin absorption coefficient, but are largely related to differences of the mechanical properties of the sample. The different ablation dynamics are responsible for an increase of the acoustic energy by a factor of 10 for the sample with the higher water content.

  15. Crack propagation testing using a YCOB acoustic emission sensor

    NASA Astrophysics Data System (ADS)

    Johnson, Joseph A.; Kim, Kyungrim; Zhang, Shujun; Jiang, Xiaoning

    2014-03-01

    Piezoelectric crystals are popular for passive sensors, such as accelerometers and acoustic emission sensors, due to their robustness and high sensitivity. These sensors are widespread in structural health monitoring among civil and industrial structures, but there is little application in high temperature environments (e.g. > 1000°C) due to the few materials that are capable of operating at elevated temperatures. Most piezoelectric materials suffer from a loss of electric properties above temperatures in the 500-700°C range, but rare earth oxyborate crystals, such as Yttrium calcium oxyborate (YCOB), retain their piezoelectric properties above 1000 °C. Our previous research demonstrated that YCOB can be used to detect transient lamb waves via Hsu-Nielsen tests, which replicate acoustic emission waves, up to 1000°C. In this paper, YCOB piezoelectric acoustic emission sensors were tested for their ability to detect crack progression at elevated temperatures. The sensor was fabricated using a YCOB single crystal and Inconel electrodes and wires. The sensor was mounted onto a stainless steel bar substrate, which was machined to include a pre-crack notch. A dynamic load was induced on the bar with a shaker in order to force the crack to advance along the thickness of the substrate. The obtained raw data was processed and analyzed in the frequency domain and compared to the Lamb wave modes that were evaluated in previous Hsu-Nielsen testing for the substrate.

  16. Speaker verification using combined acoustic and EM sensor signal processing

    SciTech Connect

    Ng, L C; Gable, T J; Holzrichter, J F

    2000-11-10

    Low Power EM radar-like sensors have made it possible to measure properties of the human speech production system in real-time, without acoustic interference. This greatly enhances the quality and quantity of information for many speech related applications. See Holzrichter, Burnett, Ng, and Lea, J. Acoustic. SOC. Am . 103 ( 1) 622 (1998). By combining the Glottal-EM-Sensor (GEMS) with the Acoustic-signals, we've demonstrated an almost 10 fold reduction in error rates from a speaker verification system experiment under a moderate noisy environment (-10dB).

  17. Low Bandwidth Vocoding using EM Sensor and Acoustic Signal Processing

    SciTech Connect

    Ng, L C; Holzrichter, J F; Larson, P E

    2001-10-25

    Low-power EM radar-like sensors have made it possible to measure properties of the human speech production system in real-time, without acoustic interference [1]. By combining these data with the corresponding acoustic signal, we've demonstrated an almost 10-fold bandwidth reduction in speech compression, compared to a standard 2.4 kbps LPC10 protocol used in the STU-III (Secure Terminal Unit, third generation) telephone. This paper describes a potential EM sensor/acoustic based vocoder implementation.

  18. Deciphering acoustic emission signals in drought stressed branches: the missing link between source and sensor

    PubMed Central

    Vergeynst, Lidewei L.; Sause, Markus G. R.; Hamstad, Marvin A.; Steppe, Kathy

    2015-01-01

    When drought occurs in plants, acoustic emission (AE) signals can be detected, but the actual causes of these signals are still unknown. By analyzing the waveforms of the measured signals, it should, however, be possible to trace the characteristics of the AE source and get information about the underlying physiological processes. A problem encountered during this analysis is that the waveform changes significantly from source to sensor and lack of knowledge on wave propagation impedes research progress made in this field. We used finite element modeling and the well-known pencil lead break source to investigate wave propagation in a branch. A cylindrical rod of polyvinyl chloride was first used to identify the theoretical propagation modes. Two wave propagation modes could be distinguished and we used the finite element model to interpret their behavior in terms of source position for both the PVC rod and a wooden rod. Both wave propagation modes were also identified in drying-induced signals from woody branches, and we used the obtained insights to provide recommendations for further AE research in plant science. PMID:26191070

  19. Acoustic Aspects of Photoacoustic Signal Generation and Detection in Gases

    NASA Astrophysics Data System (ADS)

    Miklós, A.

    2015-09-01

    In this paper photoacoustic signal generation and detection in gases is investigated and discussed from the standpoint of acoustics. Four topics are considered: the effect of the absorption-desorption process of modulated and pulsed light on the heat power density released in the gas; the generation of the primary sound by the released heat in an unbounded medium; the excitation of an acoustic resonator by the primary sound; and finally, the generation of the measurable PA signal by a microphone. When light is absorbed by a molecule and the excess energy is relaxed by collisions with the surrounding molecules, the average kinetic energy, thus also the temperature of an ensemble of molecules (called "particle" in acoustics) will increase. In other words heat energy is added to the energy of the particle. The rate of the energy transfer is characterized by the heat power density. A simple two-level model of absorption-desorption is applied for describing the heat power generation process for modulated and pulsed illumination. Sound generation by a laser beam in an unbounded medium is discussed by means of the Green's function technique. It is shown that the duration of the generated sound pulse depends mostly on beam geometry. A photoacoustic signal is mostly detected in a photoacoustic cell composed of acoustic resonators, buffers, filters, etc. It is not easy to interpret the measured PA signal in such a complicated acoustic system. The acoustic response of a PA detector to different kinds of excitations (modulated cw, pulsed, periodic pulse train) is discussed. It is shown that acoustic resonators respond very differently to modulated cw excitation and to excitation by a pulse train. The microphone for detecting the PA signal is also a part of the acoustic system; its properties have to be taken into account by the design of a PA detector. The moving membrane of the microphone absorbs acoustic energy; thus, it may influence the resonance frequency and

  20. 69 FR 74563 - Proposed Advisory Circulars 25.856-1X, Thermal/Acoustic Insulation Flame Propagation Test Method...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2004-12-14

    ... Federal Aviation Administration Proposed Advisory Circulars 25.856-1X, Thermal/Acoustic Insulation Flame Propagation Test Method Details; and 25.856-2X, Installation of Thermal/Acoustic Insulation for Burnthrough... draft advisory circulars concerning thermal.acoustic insulation installed on transport...

  1. Wavelet-based ground vehicle recognition using acoustic signals

    NASA Astrophysics Data System (ADS)

    Choe, Howard C.; Karlsen, Robert E.; Gerhart, Grant R.; Meitzler, Thomas J.

    1996-03-01

    We present, in this paper, a wavelet-based acoustic signal analysis to remotely recognize military vehicles using their sound intercepted by acoustic sensors. Since expedited signal recognition is imperative in many military and industrial situations, we developed an algorithm that provides an automated, fast signal recognition once implemented in a real-time hardware system. This algorithm consists of wavelet preprocessing, feature extraction and compact signal representation, and a simple but effective statistical pattern matching. The current status of the algorithm does not require any training. The training is replaced by human selection of reference signals (e.g., squeak or engine exhaust sound) distinctive to each individual vehicle based on human perception. This allows a fast archiving of any new vehicle type in the database once the signal is collected. The wavelet preprocessing provides time-frequency multiresolution analysis using discrete wavelet transform (DWT). Within each resolution level, feature vectors are generated from statistical parameters and energy content of the wavelet coefficients. After applying our algorithm on the intercepted acoustic signals, the resultant feature vectors are compared with the reference vehicle feature vectors in the database using statistical pattern matching to determine the type of vehicle from where the signal originated. Certainly, statistical pattern matching can be replaced by an artificial neural network (ANN); however, the ANN would require training data sets and time to train the net. Unfortunately, this is not always possible for many real world situations, especially collecting data sets from unfriendly ground vehicles to train the ANN. Our methodology using wavelet preprocessing and statistical pattern matching provides robust acoustic signal recognition. We also present an example of vehicle recognition using acoustic signals collected from two different military ground vehicles. In this paper, we will

  2. Validation of an analytical compressed elastic tube model for acoustic wave propagation

    NASA Astrophysics Data System (ADS)

    Van Hirtum, A.; Blandin, R.; Pelorson, X.

    2015-12-01

    Acoustic wave propagation through a compressed elastic tube is a recurrent problem in engineering. Compression of the tube is achieved by pinching it between two parallel bars so that the pinching effort as well as the longitudinal position of pinching can be controlled. A stadium-based geometrical tube model is combined with a plane wave acoustic model in order to estimate acoustic wave propagation through the elastic tube as a function of pinching effort, pinching position, and outlet termination (flanged or unflanged). The model outcome is validated against experimental data obtained in a frequency range from 3.5 kHz up to 10 kHz by displacing an acoustic probe along the tube's centerline. Due to plane wave model assumptions and the decrease of the lowest higher order mode cut-on frequency with increasing pinching effort, the difference between modeled and measured data is analysed in three frequency bands, up to 5 kHz, 8 kHz, and 9.5 kHz, respectively. It is seen that the mean and standard error within each frequency band do not significantly vary with pinching effort, pinching position, or outlet termination. Therefore, it is concluded that the analytical tube model is suitable to approximate the elastic tube geometry when modeling acoustic wave propagation through the pinched elastic tube with either flanged or unflanged termination.

  3. Propagation of acoustic shock waves between parallel rigid boundaries and into shadow zones

    SciTech Connect

    Desjouy, C. Ollivier, S.; Dragna, D.; Blanc-Benon, P.; Marsden, O.

    2015-10-28

    The study of acoustic shock propagation in complex environments is of great interest for urban acoustics, but also for source localization, an underlying problematic in military applications. To give a better understanding of the phenomenon taking place during the propagation of acoustic shocks, laboratory-scale experiments and numerical simulations were performed to study the propagation of weak shock waves between parallel rigid boundaries, and into shadow zones created by corners. In particular, this work focuses on the study of the local interactions taking place between incident, reflected, and diffracted waves according to the geometry in both regular or irregular – also called Von Neumann – regimes of reflection. In this latter case, an irregular reflection can lead to the formation of a Mach stem that can modify the spatial distribution of the acoustic pressure. Short duration acoustic shock waves were produced by a 20 kilovolts electric spark source and a schlieren optical method was used to visualize the incident shockfront and the reflection/diffraction patterns. Experimental results are compared to numerical simulations based on the high-order finite difference solution of the two dimensional Navier-Stokes equations.

  4. Application of the Parabolic Approximation to Predict Acoustical Propagation in the Ocean.

    ERIC Educational Resources Information Center

    McDaniel, Suzanne T.

    1979-01-01

    A simplified derivation of the parabolic approximation to the acoustical wave equation is presented. Exact solutions to this approximate equation are compared with solutions to the wave equation to demonstrate the applicability of this method to the study of underwater sound propagation. (Author/BB)

  5. Antifade sonar employs acoustic field diversity to recover signals from multipath fading

    SciTech Connect

    Lubman, D.

    1996-04-01

    Co-located pressure and particle motion (PM) hydrophones together with four-channel diversity combiners may be used to recover signals from multipath fading. Multipath fading is important in both shallow and deep water propagation and can be an important source of signal loss. The acoustic field diversity concept arises from the notion of conservation of signal energy and the observation that in rooms at least, the total acoustic energy density is the sum of potential energy (scalar field-sound pressure) and kinetic energy (vector field-sound PM) portions. One pressure hydrophone determines acoustic potential energy density at a point. In principle, three PM sensors (displacement, velocity, or acceleration) directed along orthogonal axes describe the kinetic energy density at a point. For a single plane wave, the time-averaged potential and kinetic field energies are identical everywhere. In multipath interference, however, potential and kinetic field energies at a point are partitioned unequally, depending mainly on relative signal phases. Thus, when pressure signals are in deep fade, abundant kinetic field signal energy may be available at that location. Performance benefits require a degree of uncorrelated fading between channels. The expectation of nearly uncorrelated fading is motivated from room theory. Performance benefits for sonar limited by independent Rayleigh fading are suggested by analogy to antifade radio. Average SNR can be improved by several decibels, holding time on target is multiplied manifold, and the bit error rate for data communication is reduced substantially. {copyright} {ital 1996 American Institute of Physics.}

  6. Optimization of Gaussian beam widths in acoustic propagation

    NASA Astrophysics Data System (ADS)

    Gordon, D. F.

    1989-10-01

    The use of Gaussian beams to compute wave propagation phenomena is a field of current interest and activity. Porter and Bucker (1987) supply an extensive list of references. More recent references can be found in Benites and Aki (1989). Gaussian beams can be traced as rays in range-dependent media providing not only propagation loss, but travel times, multipath structure, and frequency dependence. The well-known ray theory problems of caustics and shadow zones are treated automatically. A beam width minimization technique applied to a Gaussian beam model developed by Dr. H. P. Bucker, is outlined. Porter and Bucker (1987) gives the formulation upon which the techniques is built. A free parameter E is usually determined in a heuristic manner. Here, it is shown that the minimization of beam width assigns a precise value to E. Examples are given showing that the minimized beams give good propagation losses in some cases. A case also shown in the standard Gaussian beams give poor results and the minimized beams give even worse results. The problem appears to arise in beams that pass near boundaries. This problem will have to be corrected before a final judgment can be made on the validity of minimum-width beams.

  7. Acoustic wave propagation in heterogeneous structures including experimental validation

    NASA Technical Reports Server (NTRS)

    Baumeister, Kenneth J.; Dahl, Milo D.

    1989-01-01

    A finite element model was developed to solve for the acoustic pressure and energy fields in a heterogeneous suppressor. The derivations from the governing equations assumed that the material properties could vary with position resulting in a heterogeneous variable property two-dimensional wave equation. This eliminated the necessity of finding the boundary conditions between different materials. For a two media region consisting of part air and part bulk absorber, a model was used to describe the bulk absorber properties in two directions. Complex metallic structures inside the air duct are simulated by simply changing element properties from air to the structural material in a pattern to describe the desired shapes. To verify the numerical theory, experiments were conducted without flow in a rectangular duct with a single folded cavity mounted above the duct and absorbing material mounted inside a cavity. Changes in a nearly plane wave sound field were measured on the wall opposite the absorbing cavity. Fairly good agreement was found in the standing wave pattern upstream of the absorber and in the decay of pressure level opposite the absorber, as a function of distance along the duct. The finite element model provides a convenient method for evaluating the acoustic properties of bulk absorbers.

  8. Acoustic wave propagation in heterogeneous structures including experimental validation

    NASA Technical Reports Server (NTRS)

    Baumeister, Kenneth J.; Dahl, Milo D.

    1989-01-01

    A finite element model was developed to solve for the acoustic pressure and energy fields in a heterogeneous suppressor. The derivations from the governing equations assumed that the material properties could vary with position resulting in a heterogeneous variable property two-dimensional wave equation. This eliminated the necessity of finding the boundary conditions between different materials. For a two-media region consisting of part air and part bulk absorber, a model was used to describe the bulk absorber properties in two directions. Complex metallic structures inside the air duct are simulated by simply changing element properties from air to the structural material in a pattern to describe the desired shapes. To verify the numerical theory, experiments were conducted without flow in a rectangular duct with a single folded cavity mounted above the duct and absorbing material mounted inside a cavity. Changes in a nearly plane wave sound field were measured on the wall opposite the absorbing cavity. Fairly good agreement was found in the standing wave pattern upstream of the absorber and in the decay of pressure level opposite the absorber, as a function of distance along the duct. The finite element model provides a convenient method for evaluating the acoustic properties of bulk absorbers.

  9. Evolution of nonlinear ion-acoustic solitary wave propagation in rotating plasma

    SciTech Connect

    Das, G. C.; Nag, Apratim

    2006-08-15

    A simple unmagnetized plasma rotating around an axis at an angle {theta} with the propagation direction of the acoustic mode has been taken. The nonlinear wave mode has been derived as an equivalent Sagdeev potential equation. A special procedure, known as the tanh method, has been developed to study the nonlinear wave propagation in plasma dynamics. Further, under small amplitude approximation, the nonlinear plasma acoustic mode has been exploited to study the evolution of soliton propagation in the plasma. The main emphasis has been given to the interaction of Coriolis force on the changes of coherent structure of the soliton. The solitary wave solution finds the different nature of solitons called compressive and rarefactive solitons as well as its explosions or collapses along with soliton dynamics and these have been showing exciting observations in exhibiting a narrow wave packet with the generation of high electric pressure and the growth of high energy which, in turn, yields the phenomena of radiating soliton in dynamics.

  10. Studies of horizontal refraction and scattering of low-frequency acoustic signals using a modal approach in signal processing of NPAL data

    NASA Astrophysics Data System (ADS)

    Voronovich, Alexander G.; Ostashev, Vladimir E.

    2003-04-01

    In our previous paper [J. Acoust. Soc. Am. 112, 2232], we obtained a time dependence of the horizontal refraction angle (HRA) of acoustic signals propagating over a range of about 4000 km in the ocean. This dependence was computed by processing of acoustic signals recorded during the North Pacific Acoustic Laboratory (NPAL) experiment using a ray-type approach. In the present paper, we consider the results obtained in signal processing of the same data using a modal approach. In this approach, the acoustic field is represented as a sum of local acoustic modes with amplitudes depending on a frequency and arrival angle. We obtained a time dependence of HRA for a time interval of about a year. Time evolution of HRA exhibits long-period variations which could be associated with seasonal trends in the sound speed profiles. The results are consistent with those obtained by the ray approach. Different horizontal angles within arrivals were impossible to resolve due to sound scattering by internal waves. A theoretical estimate of the angular width of the acoustic signals in a horizontal plane was obtained. It appears to be consistent with the observed variance of HRA data. [Work supported by ONR.] a)J. A. Colosi, B. D. Cornuelle, B. D. Dushaw, M. A. Dzieciuch, B. M. Howe, J. A. Mercer, R. C. Spindel, and P. F. Worcester.

  11. Acoustic-phonon propagation in rectangular semiconductor nanowires with elastically dissimilar barriers

    NASA Astrophysics Data System (ADS)

    Pokatilov, E. P.; Nika, D. L.; Balandin, A. A.

    2005-09-01

    We have theoretically studied acoustic phonon spectra and phonon propagation in rectangular nanowires embedded within elastically dissimilar materials. As example systems, we have considered GaN nanowires with AlN and plastic barrier layers. It has been established that the acoustically mismatched barriers dramatically influence the quantized phonon spectrum of the nanowires. The barriers with lower sound velocity compress the phonon energy spectrum and reduce the phonon group velocities in the nanowire. The barriers with higher sound velocity have an opposite effect. The physical origin of this effect is related to redistribution of the elastic deformations in the acoustically mismatched nanowires. In the case of the “acoustically slow” barriers, the elastic deformation waves are squeezed in the barrier layer. The effect predicted for the nanowires embedded with elastically dissimilar materials could be used for reengineering phonon spectrum in nanostructures.

  12. Numerical analysis of ultrasound propagation and reflection intensity for biological acoustic impedance microscope.

    PubMed

    Gunawan, Agus Indra; Hozumi, Naohiro; Yoshida, Sachiko; Saijo, Yoshifumi; Kobayashi, Kazuto; Yamamoto, Seiji

    2015-08-01

    This paper proposes a new method for microscopic acoustic imaging that utilizes the cross sectional acoustic impedance of biological soft tissues. In the system, a focused acoustic beam with a wide band frequency of 30-100 MHz is transmitted across a plastic substrate on the rear side of which a soft tissue object is placed. By scanning the focal point along the surface, a 2-D reflection intensity profile is obtained. In the paper, interpretation of the signal intensity into a characteristic acoustic impedance is discussed. Because the acoustic beam is strongly focused, interpretation assuming vertical incidence may lead to significant error. To determine an accurate calibration curve, a numerical sound field analysis was performed. In these calculations, the reflection intensity from a target with an assumed acoustic impedance was compared with that from water, which was used as a reference material. The calibration curve was determined by changing the assumed acoustic impedance of the target material. The calibration curve was verified experimentally using saline solution, of which the acoustic impedance was known, as the target material. Finally, the cerebellar tissue of a rat was observed to create an acoustic impedance micro profile. In the paper, details of the numerical analysis and verification of the observation results will be described.

  13. Diffusive Propagation of Energy in a Non-acoustic Chain

    NASA Astrophysics Data System (ADS)

    Komorowski, Tomasz; Olla, Stefano

    2016-08-01

    We consider a non-acoustic chain of harmonic oscillators with the dynamics perturbed by a random local exchange of momentum, such that energy and momentum are conserved. The macroscopic limits of the energy density, momentum and the curvature (or bending) of the chain satisfy a system of evolution equations. We prove that, in a diffusive space-time scaling, the curvature and momentum evolve following a linear system that corresponds to a damped Euc(uler)-Buc(ernoulli) beam equation. The macroscopic energy density evolves following a non linear diffusive equation. In particular, the energy transfer is diffusive in this dynamics. This provides a first rigorous example of a normal diffusion of energy in a one dimensional dynamics that conserves the momentum.

  14. Analysis of acoustic signals on welding and cutting

    SciTech Connect

    Morita, Takao; Ogawa, Yoji; Sumitomo, Takashi

    1995-12-31

    The sounds emitted during the welding and cutting processes are closely related to the processing phenomena, and sometimes they provide useful information for evaluation of their processing conditions. The analyses of acoustic signals from arc welding, plasma arc cutting, oxy-flame cutting, and water jet cutting are carried out in details in order to develop effective signal processing algorithm. The sound from TIG arc welding has the typical line spectrum which principal frequency, is almost the same as that of supplied electricity. The disturbance of welding process is clearly appeared oil the acoustic emission. The sound exposure level for CO{sub 2} or MIG welding is higher than that for TIG welding, and the relative intensity of the typical line spectrum caused by supplied electricity becomes low. But the sudden transition of welding condition oil produces an apparent change of sound exposure level. On the contrary, the acoustics from cutting processes are much louder than those of arc welding and show more chaotic behavior because the supplied fluid velocity and temperature of arc for cutting processes are much higher than those for welding processes. Therefore, it requires a special technique to extract the well meaning signals from the loud acoustic sounds. Further point of view, the reduction of acoustic exposure level becomes an important research theme with the growth of application fields of cutting processes.

  15. Studies of elasticity, sound propagation and attenuation of acoustic modes in granular media: final report

    SciTech Connect

    Makse, Hernan A.; Johnson, David L.

    2014-09-03

    This is the final report describing the results of DOE Grant # DE-FG02-03ER15458 with original termination date of April 31, 2013, which has been extended to April 31, 2014. The goal of this project is to develop a theoretical and experimental understanding of sound propagation, elasticity and dissipation in granular materials. The topic is relevant for the efficient production of hydrocarbon and for identifying and characterizing the underground formation for storage of either CO2 or nuclear waste material. Furthermore, understanding the basic properties of acoustic propagation in granular media is of importance not only to the energy industry, but also to the pharmaceutical, chemical and agricultural industries. We employ a set of experimental, theoretical and computational tools to develop a study of acoustics and dissipation in granular media. These include the concept effective mass of granular media, normal modes analysis, statistical mechanics frameworks and numerical simulations based on Discrete Element Methods. Effective mass measurements allow us to study the mechanisms of the elastic response and attenuation of acoustic modes in granular media. We perform experiments and simulations under varying conditions, including humidity and vacuum, and different interparticle force-laws to develop a fundamental understanding of the mechanisms of damping and acoustic propagation in granular media. A theoretical statistical approach studies the necessary phase space of configurations in pressure, volume fraction to classify granular materials.

  16. Synergy of seismic, acoustic, and video signals in blast analysis

    SciTech Connect

    Anderson, D.P.; Stump, B.W.; Weigand, J.

    1997-09-01

    The range of mining applications from hard rock quarrying to coal exposure to mineral recovery leads to a great variety of blasting practices. A common characteristic of many of the sources is that they are detonated at or near the earth`s surface and thus can be recorded by camera or video. Although the primary interest is in the seismic waveforms that these blasts generate, the visual observations of the blasts provide important constraints that can be applied to the physical interpretation of the seismic source function. In particular, high speed images can provide information on detonation times of individuals charges, the timing and amount of mass movement during the blasting process and, in some instances, evidence of wave propagation away from the source. All of these characteristics can be valuable in interpreting the equivalent seismic source function for a set of mine explosions and quantifying the relative importance of the different processes. This paper documents work done at the Los Alamos National Laboratory and Southern Methodist University to take standard Hi-8 video of mine blasts, recover digital images from them, and combine them with ground motion records for interpretation. The steps in the data acquisition, processing, display, and interpretation are outlined. The authors conclude that the combination of video with seismic and acoustic signals can be a powerful diagnostic tool for the study of blasting techniques and seismology. A low cost system for generating similar diagnostics using consumer-grade video camera and direct-to-disk video hardware is proposed. Application is to verification of the Comprehensive Test Ban Treaty.

  17. System and method for characterizing, synthesizing, and/or canceling out acoustic signals from inanimate sound sources

    DOEpatents

    Holzrichter, John F; Burnett, Greg C; Ng, Lawrence C

    2013-05-21

    A system and method for characterizing, synthesizing, and/or canceling out acoustic signals from inanimate sound sources is disclosed. Propagating wave electromagnetic sensors monitor excitation sources in sound producing systems, such as machines, musical instruments, and various other structures. Acoustical output from these sound producing systems is also monitored. From such information, a transfer function characterizing the sound producing system is generated. From the transfer function, acoustical output from the sound producing system may be synthesized or canceled. The methods disclosed enable accurate calculation of matched transfer functions relating specific excitations to specific acoustical outputs. Knowledge of such signals and functions can be used to effect various sound replication, sound source identification, and sound cancellation applications.

  18. System and method for characterizing, synthesizing, and/or canceling out acoustic signals from inanimate sound sources

    DOEpatents

    Holzrichter, John F.; Burnett, Greg C.; Ng, Lawrence C.

    2007-10-16

    A system and method for characterizing, synthesizing, and/or canceling out acoustic signals from inanimate sound sources is disclosed. Propagating wave electromagnetic sensors monitor excitation sources in sound producing systems, such as machines, musical instruments, and various other structures. Acoustical output from these sound producing systems is also monitored. From such information, a transfer function characterizing the sound producing system is generated. From the transfer function, acoustical output from the sound producing system may be synthesized or canceled. The methods disclosed enable accurate calculation of matched transfer functions relating specific excitations to specific acoustical outputs. Knowledge of such signals and functions can be used to effect various sound replication, sound source identification, and sound cancellation applications.

  19. System and method for characterizing synthesizing and/or canceling out acoustic signals from inanimate sound sources

    DOEpatents

    Holzrichter, John F.; Burnett, Greg C.; Ng, Lawrence C.

    2003-01-01

    A system and method for characterizing, synthesizing, and/or canceling out acoustic signals from inanimate sound sources is disclosed. Propagating wave electromagnetic sensors monitor excitation sources in sound producing systems, such as machines, musical instruments, and various other structures. Acoustical output from these sound producing systems is also monitored. From such information, a transfer function characterizing the sound producing system is generated. From the transfer function, acoustical output from the sound producing system may be synthesized or canceled. The methods disclosed enable accurate calculation of matched transfer functions relating specific excitations to specific acoustical outputs. Knowledge of such signals and functions can be used to effect various sound replication, sound source identification, and sound cancellation applications.

  20. Temporal coherence of the acoustic field forward propagated through a continental shelf with random internal waves.

    PubMed

    Gong, Zheng; Chen, Tianrun; Ratilal, Purnima; Makris, Nicholas C

    2013-11-01

    An analytical model derived from normal mode theory for the accumulated effects of range-dependent multiple forward scattering is applied to estimate the temporal coherence of the acoustic field forward propagated through a continental-shelf waveguide containing random three-dimensional internal waves. The modeled coherence time scale of narrow band low-frequency acoustic field fluctuations after propagating through a continental-shelf waveguide is shown to decay with a power-law of range to the -1/2 beyond roughly 1 km, decrease with increasing internal wave energy, to be consistent with measured acoustic coherence time scales. The model should provide a useful prediction of the acoustic coherence time scale as a function of internal wave energy in continental-shelf environments. The acoustic coherence time scale is an important parameter in remote sensing applications because it determines (i) the time window within which standard coherent processing such as matched filtering may be conducted, and (ii) the number of statistically independent fluctuations in a given measurement period that determines the variance reduction possible by stationary averaging.

  1. SPICE analysis of signal propagation in Si microstrip detectors

    SciTech Connect

    Bacchetta, N.; Bisello, D. |; Candelori, A.; Paccagnella, A. |; Spada, M.; Vanzi, M.

    1995-08-01

    The main DC and AC characteristics of AC-coupled polysilicon-biased silicon microstrip detectors have been measured in order to determine the set of SPICE parameters of these devices based on a RC network. For this purpose each strip has been divided in 200 unit cells and simulations with 5 and 9 strips have been performed. The model is capable of calculating the interstrip and coupling impedance and phase angle in good agreement with experimental results up to a frequency of 1 MHz. The electrical propagation of a current signal simulating the charge pulse of an ionizing particle along the strips has been studied. The role of the input characteristics of the read-out electronics on the detector output signals has been addressed. The signal propagation has been studied also for anomalous working conditions of the detector, such as a strip with a break in the Al film, or disconnected from the read-out electronics.

  2. Sound propagation in and radiation from acoustically lined flow ducts: A comparison of experiment and theory

    NASA Technical Reports Server (NTRS)

    Plumblee, H. E., Jr.; Dean, P. D.; Wynne, G. A.; Burrin, R. H.

    1973-01-01

    The results of an experimental and theoretical study of many of the fundamental details of sound propagation in hard wall and soft wall annular flow ducts are reported. The theory of sound propagation along such ducts and the theory for determining the complex radiation impedance of higher order modes of an annulus are outlined, and methods for generating acoustic duct modes are developed. The results of a detailed measurement program on propagation in rigid wall annular ducts with and without airflow through the duct are presented. Techniques are described for measuring cut-on frequencies, modal phase speed, and radial and annular mode shapes. The effects of flow velocity on cut-on frequencies and phase speed are measured. Comparisons are made with theoretical predictions for all of the effects studies. The two microphone method of impedance is used to measure the effects of flow on acoustic liners. A numerical study of sound propagation in annular ducts with one or both walls acoustically lined is presented.

  3. Acoustic Propagation in a Water-Filled Cylindrical Pipe

    SciTech Connect

    Sullivan, E J; Candy, J V

    2003-06-01

    This study was concerned with the physics of the propagation of a tone burst of high frequency sound in a steel water-filled pipe. The choice of the pulse was rather arbitrary, so that this work in no way can be considered as recommending a particular pulse form. However, the MATLAB computer codes developed in this study are general enough to carry out studies of pulses of various forms. Also, it should be pointed out that the codes as written are quite time consuming. A computation of the complete field, including all 5995 modes, requires several hours on a desktop computer. The time required by such computations as these is a direct consequence of the bandwidths, frequencies and sample rates employed. No attempt was made to optimize these codes, and it is assumed that much can be done in this regard.

  4. Digital Signal Processing in Acoustics--Part 2.

    ERIC Educational Resources Information Center

    Davies, H.; McNeill, D. J.

    1986-01-01

    Reviews the potential of a data acquisition system for illustrating the nature and significance of ideas in digital signal processing. Focuses on the fast Fourier transform and the utility of its two-channel format, emphasizing cross-correlation and its two-microphone technique of acoustic intensity measurement. Includes programing format. (ML)

  5. Signal propagation in dipole coupled nanomagnets for logic applications

    NASA Astrophysics Data System (ADS)

    Carlton, David; Lambson, Brian; Gu, Zheng; Dhuey, Scott; Gao, Li; Hughes, Brian; Olynick, Deirdre; Rettner, Charles; Scholl, Andreas; Youngblood, Brian; Young, Anthony; Krivorotov, Ilya; Parkin, Stuart; Bokor, Jeffrey

    2012-10-01

    As conventional Silicon-based transistors reach their scaling limits, novel devices for performing computations have emerged as alternatives to continue the improvements in information technology that have benefited society over the past 40 years. One candidate that has shown great promise recently is a device that performs logical computations using dipole coupled nanomagnets. In this paper, we discuss recent advances that have led to a greater understanding of signal propagation in nanomagnet arrays. In particular, we highlight recent experimental work towards the imaging of a propagating magnetic cascade.

  6. Propagation of flexural waves in inhomogeneous plates exhibiting hysteretic nonlinearity: Nonlinear acoustic black holes.

    PubMed

    Gusev, Vitalyi E; Ni, Chenyin; Lomonosov, Alexey; Shen, Zhonghua

    2015-08-01

    Theory accounting for the influence of hysteretic nonlinearity of micro-inhomogeneous material on flexural wave in the plates of continuously varying thickness is developed. For the wedges with thickness increasing as a power law of distance from its edge strong modifications of the wave dynamics with propagation distance are predicted. It is found that nonlinear absorption progressively disappearing with diminishing wave amplitude leads to complete attenuation of acoustic waves in most of the wedges exhibiting black hole phenomenon. It is also demonstrated that black holes exist beyond the geometrical acoustic approximation. Applications include nondestructive evaluation of micro-inhomogeneous materials and vibrations damping.

  7. Propagation of flexural waves in inhomogeneous plates exhibiting hysteretic nonlinearity: Nonlinear acoustic black holes.

    PubMed

    Gusev, Vitalyi E; Ni, Chenyin; Lomonosov, Alexey; Shen, Zhonghua

    2015-08-01

    Theory accounting for the influence of hysteretic nonlinearity of micro-inhomogeneous material on flexural wave in the plates of continuously varying thickness is developed. For the wedges with thickness increasing as a power law of distance from its edge strong modifications of the wave dynamics with propagation distance are predicted. It is found that nonlinear absorption progressively disappearing with diminishing wave amplitude leads to complete attenuation of acoustic waves in most of the wedges exhibiting black hole phenomenon. It is also demonstrated that black holes exist beyond the geometrical acoustic approximation. Applications include nondestructive evaluation of micro-inhomogeneous materials and vibrations damping. PMID:25937493

  8. The influence of source acceleration on acoustic signals

    NASA Technical Reports Server (NTRS)

    Kelly, Jeffrey J.; Wilson, Mark R.

    1993-01-01

    The effect of aircraft acceleration on acoustic signals is often ignored in both analytical studies and data reduction of flight test measurements. In this study, the influence of source acceleration on acoustic signals is analyzed using computer simulated signals for an accelerating point source. Both rotating and translating sources are considered. Using a known signal allows an assessment of the influence of source acceleration on the received signal. Aircraft acceleration must also be considered in the measurement and reduction of flyover noise. Tracking of the aircraft over an array of microphones enables ensemble averaging of the acoustic signal, thus increasing the confidence in the measured data. This is only valid when both the altitude and velocity remain constant. For an accelerating aircraft, each microphone is exposed to differing flight velocities, Doppler shifts, and smear angles. Thus, averaging across the array in the normal manner is constrained by aircraft acceleration and microphone spacing. In this study computer simulated spectra, containing acceleration, are averaged across a 12 microphone array mimicking a flight test with accelerated profile in which noise data was obtained. Overlapped processing is performed is performed in the flight test measurements in order to alleviate spectral smearing.

  9. Acoustic-Seismic Coupling of Broadband Signals - Analysis of Potential Disturbances during CTBT On-Site Inspection Measurements

    NASA Astrophysics Data System (ADS)

    Liebsch, Mattes; Altmann, Jürgen

    2015-04-01

    For the verification of the Comprehensive Nuclear Test Ban Treaty (CTBT) the precise localisation of possible underground nuclear explosion sites is important. During an on-site inspection (OSI) sensitive seismic measurements of aftershocks can be performed, which, however, can be disturbed by other signals. To improve the quality and effectiveness of these measurements it is essential to understand those disturbances so that they can be reduced or prevented. In our work we focus on disturbing signals caused by airborne sources: When the sound of aircraft (as often used by the inspectors themselves) hits the ground, it propagates through pores in the soil. Its energy is transferred to the ground and soil vibrations are created which can mask weak aftershock signals. The understanding of the coupling of acoustic waves to the ground is still incomplete. However, it is necessary to improve the performance of an OSI, e.g. to address potential consequences for the sensor placement, the helicopter trajectories etc. We present our recent advances in this field. We performed several measurements to record sound pressure and soil velocity produced by various sources, e.g. broadband excitation by jet aircraft passing overhead and signals artificially produced by a speaker. For our experimental set-up microphones were placed close to the ground and geophones were buried in different depths in the soil. Several sensors were shielded from the directly incident acoustic signals by a box coated with acoustic damping material. While sound pressure under the box was strongly reduced, the soil velocity measured under the box was just slightly smaller than outside of it. Thus these soil vibrations were mostly created outside the box and travelled through the soil to the sensors. This information is used to estimate characteristic propagation lengths of the acoustically induced signals in the soil. In the seismic data we observed interference patterns which are likely caused by the

  10. Estimates of the prevalence of anomalous signal losses in the Yellow Sea derived from acoustic and oceanographic computer model simulations

    NASA Astrophysics Data System (ADS)

    Chin-Bing, Stanley A.; King, David B.; Warn-Varnas, Alex C.; Lamb, Kevin G.; Hawkins, James A.; Teixeira, Marvi

    2002-05-01

    The results from collocated oceanographic and acoustic simulations in a region of the Yellow Sea near the Shandong peninsula have been presented [Chin-Bing et al., J. Acoust. Soc. Am. 108, 2577 (2000)]. In that work, the tidal flow near the peninsula was used to initialize a 2.5-dimensional ocean model [K. G. Lamb, J. Geophys. Res. 99, 843-864 (1994)] that subsequently generated internal solitary waves (solitons). The validity of these soliton simulations was established by matching satellite imagery taken over the region. Acoustic propagation simulations through this soliton field produced results similar to the anomalous signal loss measured by Zhou, Zhang, and Rogers [J. Acoust. Soc. Am. 90, 2042-2054 (1991)]. Analysis of the acoustic interactions with the solitons also confirmed the hypothesis that the loss mechanism involved acoustic mode coupling. Recently we have attempted to estimate the prevalence of these anomalous signal losses in this region. These estimates were made from simulating acoustic effects over an 80 hour space-time evolution of soliton packets. Examples will be presented that suggest the conditions necessary for anomalous signal loss may be more prevalent than previously thought. [Work supported by ONR/NRL and by a High Performance Computing DoD grant.

  11. Quadratic Time-Frequency Analysis of Hydroacoustic Signals as Applied to Acoustic Emissions of Large Whales

    NASA Astrophysics Data System (ADS)

    Le Bras, Ronan; Victor, Sucic; Damir, Malnar; Götz, Bokelmann

    2014-05-01

    In order to enrich the set of attributes in setting up a large database of whale signals, as envisioned in the Baleakanta project, we investigate methods of time-frequency analysis. The purpose of establishing the database is to increase and refine knowledge of the emitted signal and of its propagation characteristics, leading to a better understanding of the animal migrations in a non-invasive manner and to characterize acoustic propagation in oceanic media. The higher resolution for signal extraction and a better separation from other signals and noise will be used for various purposes, including improved signal detection and individual animal identification. The quadratic class of time-frequency distributions (TFDs) is the most popular set of time-frequency tools for analysis and processing of non-stationary signals. Two best known and most studied members of this class are the spectrogram and the Wigner-Ville distribution. However, to be used efficiently, i.e. to have highly concentrated signal components while significantly suppressing interference and noise simultaneously, TFDs need to be optimized first. The optimization method used in this paper is based on the Cross-Wigner-Ville distribution, and unlike similar approaches it does not require prior information on the analysed signal. The method is applied to whale signals, which, just like the majority of other real-life signals, can generally be classified as multicomponent non-stationary signals, and hence time-frequency techniques are a natural choice for their representation, analysis, and processing. We present processed data from a set containing hundreds of individual calls. The TFD optimization method results into a high resolution time-frequency representation of the signals. It allows for a simple extraction of signal components from the TFD's dominant ridges. The local peaks of those ridges can then be used for the signal components instantaneous frequency estimation, which in turn can be used as

  12. Tracheal activity recognition based on acoustic signals.

    PubMed

    Olubanjo, Temiloluwa; Ghovanloo, Maysam

    2014-01-01

    Tracheal activity recognition can play an important role in continuous health monitoring for wearable systems and facilitate the advancement of personalized healthcare. Neck-worn systems provide access to a unique set of health-related data that other wearable devices simply cannot obtain. Activities including breathing, chewing, clearing the throat, coughing, swallowing, speech and even heartbeat can be recorded from around the neck. In this paper, we explore tracheal activity recognition using a combination of promising acoustic features from related work and apply simplistic classifiers including K-NN and Naive Bayes. For wearable systems in which low power consumption is of primary concern, we show that with a sub-optimal sampling rate of 16 kHz, we have achieved average classification results in the range of 86.6% to 87.4% using 1-NN, 3-NN, 5-NN and Naive Bayes. All classifiers obtained the highest recognition rate in the range of 97.2% to 99.4% for speech classification. This is promising to mitigate privacy concerns associated with wearable systems interfering with the user's conversations.

  13. Unstructured grid finite volume analysis for acoustic and pulsed wave propagation characteristics in exhaust silencer systems

    SciTech Connect

    Kim, J.T.; Kim, Y.M.; Maeng, J.S.; Lyu, M.S.; Ku, Y.G.

    1996-10-01

    The unstructured grid finite volume method has been applied to predict the linear and nonlinear attenuation characteristics of the expansion chamber type silencer system. In order to achieve grid flexibility and a solution adaptation for geometrically complex flow regions associated with the actual silencers, the unstructured mesh algorithm in context with the node-centered finite volume method has been employed. The validation cases for the linear and nonlinear wave propagation characteristics include the acoustic field of the concentric expansion chamber and the axisymmetric blast flow field with the open end. Effects of the chamber geometry on the nonlinear wave propagation characteristics are discussed in detail.

  14. Isentropic acoustic propagation in a viscous fluid with uniform circular pipeline flow.

    PubMed

    Chen, Yong; Huang, Yiyong; Chen, Xiaoqian

    2013-10-01

    Isentropic wave propagation in a viscous fluid with a uniform mean flow confined by a rigid-walled circular pipeline is considered. A method based on the Fourier-Bessel theory, which is complete and orthogonal in Lebesgue space, is introduced to solve the convected acoustic equations. After validating the method's convergence, the cut-off frequency of wave modes is addressed. Furthermore, the effect of flow profile on wave attenuation is analyzed. Meanwhile, measurement performance of an ultrasonic flow meter based on wave propagation is numerically accounted.

  15. Isentropic acoustic propagation in a viscous fluid with uniform circular pipeline flow.

    PubMed

    Chen, Yong; Huang, Yiyong; Chen, Xiaoqian

    2013-10-01

    Isentropic wave propagation in a viscous fluid with a uniform mean flow confined by a rigid-walled circular pipeline is considered. A method based on the Fourier-Bessel theory, which is complete and orthogonal in Lebesgue space, is introduced to solve the convected acoustic equations. After validating the method's convergence, the cut-off frequency of wave modes is addressed. Furthermore, the effect of flow profile on wave attenuation is analyzed. Meanwhile, measurement performance of an ultrasonic flow meter based on wave propagation is numerically accounted. PMID:24116397

  16. JAPE 91: Influence of terrain masking of the acoustic propagation of helicopter noise

    NASA Technical Reports Server (NTRS)

    Naz, P.

    1993-01-01

    The acoustic propagation in the case of a noise source masked by a small element of terrain has been investigated experimentally. These data have been measured during the 'terrain masking' experiment of the NATO JAPE 91 experimental campaign. The main objective of that experiment was to study the acoustic detection of a helicopter masked by a small hill. Microphones have been placed at different locations on the shadow zone of the hill to study the effect of the terrain obstruction on sound propagation. The results presented come from data measured by Atlas Elektronik and by ISL, and have been processed together. The terrain obstruction causes an excess attenuation of the SPL (Sound Pressure Level) for all the frequencies, but this attenuation is more effective for the high frequencies than for the low frequencies. Results typical of diffraction phenomena have been observed; the SPL is minimal at the foot of the hill and is relatively constant beyond it.

  17. Pulse analysis of acoustic emission signals. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Houghton, J. R.

    1976-01-01

    A method for the signature analysis of pulses in the frequency domain and the time domain is presented. Fourier spectrum, Fourier transfer function, shock spectrum and shock spectrum ratio are examined in the frequency domain analysis, and pulse shape deconvolution is developed for use in the time domain analysis. To demonstrate the relative sensitivity of each of the methods to small changes in the pulse shape, signatures of computer modeled systems with analytical pulses are presented. Optimization techniques are developed and used to indicate the best design parameters values for deconvolution of the pulse shape. Several experiments are presented that test the pulse signature analysis methods on different acoustic emission sources. These include acoustic emissions associated with: (1) crack propagation, (2) ball dropping on a plate, (3) spark discharge and (4) defective and good ball bearings.

  18. Deep seafloor arrivals: an unexplained set of arrivals in long-range ocean acoustic propagation.

    PubMed

    Stephen, Ralph A; Bolmer, S Thompson; Dzieciuch, Matthew A; Worcester, Peter F; Andrew, Rex K; Buck, Linda J; Mercer, James A; Colosi, John A; Howe, Bruce M

    2009-08-01

    Receptions, from a ship-suspended source (in the band 50-100 Hz) to an ocean bottom seismometer (about 5000 m depth) and the deepest element on a vertical hydrophone array (about 750 m above the seafloor) that were acquired on the 2004 Long-Range Ocean Acoustic Propagation Experiment in the North Pacific Ocean, are described. The ranges varied from 50 to 3200 km. In addition to predicted ocean acoustic arrivals and deep shadow zone arrivals (leaking below turning points), "deep seafloor arrivals," that are dominant on the seafloor geophone but are absent or very weak on the hydrophone array, are observed. These deep seafloor arrivals are an unexplained set of arrivals in ocean acoustics possibly associated with seafloor interface waves.

  19. A high-order discontinuous Galerkin method for wave propagation through coupled elastic-acoustic media

    NASA Astrophysics Data System (ADS)

    Wilcox, Lucas C.; Stadler, Georg; Burstedde, Carsten; Ghattas, Omar

    2010-12-01

    We introduce a high-order discontinuous Galerkin (dG) scheme for the numerical solution of three-dimensional (3D) wave propagation problems in coupled elastic-acoustic media. A velocity-strain formulation is used, which allows for the solution of the acoustic and elastic wave equations within the same unified framework. Careful attention is directed at the derivation of a numerical flux that preserves high-order accuracy in the presence of material discontinuities, including elastic-acoustic interfaces. Explicit expressions for the 3D upwind numerical flux, derived as an exact solution for the relevant Riemann problem, are provided. The method supports h-non-conforming meshes, which are particularly effective at allowing local adaptation of the mesh size to resolve strong contrasts in the local wavelength, as well as dynamic adaptivity to track solution features. The use of high-order elements controls numerical dispersion, enabling propagation over many wave periods. We prove consistency and stability of the proposed dG scheme. To study the numerical accuracy and convergence of the proposed method, we compare against analytical solutions for wave propagation problems with interfaces, including Rayleigh, Lamb, Scholte, and Stoneley waves as well as plane waves impinging on an elastic-acoustic interface. Spectral rates of convergence are demonstrated for these problems, which include a non-conforming mesh case. Finally, we present scalability results for a parallel implementation of the proposed high-order dG scheme for large-scale seismic wave propagation in a simplified earth model, demonstrating high parallel efficiency for strong scaling to the full size of the Jaguar Cray XT5 supercomputer.

  20. A high-order discontinuous Galerkin method for wave propagation through coupled elastic-acoustic media

    SciTech Connect

    Wilcox, Lucas C.; Stadler, Georg; Burstedde, Carsten; Ghattas, Omar

    2010-12-10

    We introduce a high-order discontinuous Galerkin (dG) scheme for the numerical solution of three-dimensional (3D) wave propagation problems in coupled elastic-acoustic media. A velocity-strain formulation is used, which allows for the solution of the acoustic and elastic wave equations within the same unified framework. Careful attention is directed at the derivation of a numerical flux that preserves high-order accuracy in the presence of material discontinuities, including elastic-acoustic interfaces. Explicit expressions for the 3D upwind numerical flux, derived as an exact solution for the relevant Riemann problem, are provided. The method supports h-non-conforming meshes, which are particularly effective at allowing local adaptation of the mesh size to resolve strong contrasts in the local wavelength, as well as dynamic adaptivity to track solution features. The use of high-order elements controls numerical dispersion, enabling propagation over many wave periods. We prove consistency and stability of the proposed dG scheme. To study the numerical accuracy and convergence of the proposed method, we compare against analytical solutions for wave propagation problems with interfaces, including Rayleigh, Lamb, Scholte, and Stoneley waves as well as plane waves impinging on an elastic-acoustic interface. Spectral rates of convergence are demonstrated for these problems, which include a non-conforming mesh case. Finally, we present scalability results for a parallel implementation of the proposed high-order dG scheme for large-scale seismic wave propagation in a simplified earth model, demonstrating high parallel efficiency for strong scaling to the full size of the Jaguar Cray XT5 supercomputer.

  1. Ultraviolet complete Lorentz-invariant theory with superluminal signal propagation

    NASA Astrophysics Data System (ADS)

    Cooper, Patrick; Dubovsky, Sergei; Mohsen, Ali

    2014-04-01

    We describe a UV complete asymptotically fragile Lorentz-invariant theory exhibiting superluminal signal propagation. Its low energy effective action contains "wrong" sign higher dimensional operators. Nevertheless, the theory gives rise to an S matrix, which is defined at all energies. As expected for a nonlocal theory, the corresponding scattering amplitudes are not exponentially bounded on the physical sheet, but otherwise are healthy. We study some of the physical consequences of this S matrix.

  2. Pipe wall damage detection by electromagnetic acoustic transducer generated guided waves in absence of defect signals.

    PubMed

    Vasiljevic, Milos; Kundu, Tribikram; Grill, Wolfgang; Twerdowski, Evgeny

    2008-05-01

    Most investigators emphasize the importance of detecting the reflected signal from the defect to determine if the pipe wall has any damage and to predict the damage location. However, often the small signal from the defect is hidden behind the other arriving wave modes and signal noise. To overcome the difficulties associated with the identification of the small defect signal in the time history plots, in this paper the time history is analyzed well after the arrival of the first defect signal, and after different wave modes have propagated multiple times through the pipe. It is shown that the defective pipe can be clearly identified by analyzing these late arriving diffuse ultrasonic signals. Multiple reflections and scattering of the propagating wave modes by the defect and pipe ends do not hamper the defect detection capability; on the contrary, it apparently stabilizes the signal and makes it easier to distinguish the defective pipe from the defect-free pipe. This paper also highlights difficulties associated with the interpretation of the recorded time histories due to mode conversion by the defect. The design of electro-magnetic acoustic transducers used to generate and receive the guided waves in the pipe is briefly described in the paper.

  3. Observations of clustering inside oceanic bubble clouds and the effect on short-range acoustic propagation.

    PubMed

    Weber, Thomas C

    2008-11-01

    It has recently been shown [Weber, T. C. et al. (2007). "Acoustic propagation through clustered bubble clouds," IEEE J. Ocean. Eng. 32, 513-523] that gas bubble clustering plays a role in determining the acoustic field characteristics of bubbly fluids. In particular, it has been shown that clustering changes the bubble-induced attenuation as well as the ping-to-ping variability in the acoustic field. The degree to which bubble clustering exists in nature, however, is unknown. This paper describes a method for quantifying bubble clustering using a high frequency (400 kHz) multibeam sonar, and reports on observations of near-surface bubble clustering during a storm (14.6 m/s wind speed) in the Gulf of Maine. The multibeam sonar data are analyzed to estimate the pair correlation function, a measure of bubble clustering. In order to account for clustering in the mean acoustic field, a modification to the effective medium wave number is made. With this modification, the multibeam sonar observations are used to predict the effect of clustering on the attenuation of the mean field for short-range propagation (1 m) at frequencies between 10 and 350 kHz. Results for this specific case show that clustering can cause the attenuation to change by 20%-80% over this frequency range.

  4. Observations of clustering inside oceanic bubble clouds and the effect on short-range acoustic propagation.

    PubMed

    Weber, Thomas C

    2008-11-01

    It has recently been shown [Weber, T. C. et al. (2007). "Acoustic propagation through clustered bubble clouds," IEEE J. Ocean. Eng. 32, 513-523] that gas bubble clustering plays a role in determining the acoustic field characteristics of bubbly fluids. In particular, it has been shown that clustering changes the bubble-induced attenuation as well as the ping-to-ping variability in the acoustic field. The degree to which bubble clustering exists in nature, however, is unknown. This paper describes a method for quantifying bubble clustering using a high frequency (400 kHz) multibeam sonar, and reports on observations of near-surface bubble clustering during a storm (14.6 m/s wind speed) in the Gulf of Maine. The multibeam sonar data are analyzed to estimate the pair correlation function, a measure of bubble clustering. In order to account for clustering in the mean acoustic field, a modification to the effective medium wave number is made. With this modification, the multibeam sonar observations are used to predict the effect of clustering on the attenuation of the mean field for short-range propagation (1 m) at frequencies between 10 and 350 kHz. Results for this specific case show that clustering can cause the attenuation to change by 20%-80% over this frequency range. PMID:19045766

  5. A low order flow/acoustics interaction method for the prediction of sound propagation using 3D adaptive hybrid grids

    SciTech Connect

    Kallinderis, Yannis; Vitsas, Panagiotis A.; Menounou, Penelope

    2012-07-15

    A low-order flow/acoustics interaction method for the prediction of sound propagation and diffraction in unsteady subsonic compressible flow using adaptive 3-D hybrid grids is investigated. The total field is decomposed into the flow field described by the Euler equations, and the acoustics part described by the Nonlinear Perturbation Equations. The method is shown capable of predicting monopole sound propagation, while employment of acoustics-guided adapted grid refinement improves the accuracy of capturing the acoustic field. Interaction of sound with solid boundaries is also examined in terms of reflection, and diffraction. Sound propagation through an unsteady flow field is examined using static and dynamic flow/acoustics coupling demonstrating the importance of the latter.

  6. Acoustic effects of the ATOC signal (75 Hz, 195 dB) on dolphins and whales.

    PubMed

    Au, W W; Nachtigall, P E; Pawloski, J L

    1997-05-01

    The Acoustic Thermometry of Ocean Climate (ATOC) program of Scripps Institution of Oceanography and the Applied Physics Laboratory, University of Washington, will broadcast a low-frequency 75-Hz phase modulated acoustic signal over ocean basins in order to study ocean temperatures on a global scale and examine the effects of global warming. One of the major concerns is the possible effect of the ATOC signal on marine life, especially on dolphins and whales. In order to address this issue, the hearing sensitivity of a false killer whale (Pseudorca crassidens) and a Risso's dolphin (Grampus griseus) to the ATOC sound was measured behaviorally. A staircase procedure with the signal levels being changed in 1-dB steps was used to measure the animals' threshold to the actual ATOC coded signal. The results indicate that small odontocetes such as the Pseudorca and Grampus swimming directly above the ATOC source will not hear the signal unless they dive to a depth of approximately 400 m. A sound propagation analysis suggests that the sound-pressure level at ranges greater than 0.5 km will be less than 130 dB for depths down to about 500 m. Several species of baleen whales produce sounds much greater than 170-180 dB. With the ATOC source on the axis of the deep sound channel (greater than 800 m), the ATOC signal will probably have minimal physical and physiological effects on cetaceans.

  7. Local probing of propagating acoustic waves in a gigahertz echo chamber

    NASA Astrophysics Data System (ADS)

    Gustafsson, Martin V.; Santos, Paulo V.; Johansson, Göran; Delsing, Per

    2012-04-01

    In the same way that micro-mechanical resonators resemble guitar strings and drums, surface acoustic waves resemble the sound these instruments produce, but moving over a solid surface rather than through air. In contrast with oscillations in suspended resonators, such propagating mechanical waves have not before been studied near the quantum mechanical limits. Here, we demonstrate local probing of surface acoustic waves with a displacement sensitivity of 30amRMSHz-1/2 and detection sensitivity on the single-phonon level after averaging, at a frequency of 932MHz. Our probe is a piezoelectrically coupled single-electron transistor, which is sufficiently fast, non-destructive and localized to enable us to track pulses echoing back and forth in a long acoustic cavity, self-interfering and ringing the cavity up and down. We project that strong coupling to quantum circuits will enable new experiments, and hybrids using the unique features of surface acoustic waves. Prospects include quantum investigations of phonon-phonon interactions, and acoustic coupling to superconducting qubits for which we present favourable estimates.

  8. The effects of fracture permeability on acoustic wave propagation in the porous media: A microscopic perspective.

    PubMed

    Wang, Ding; Wang, Liji; Ding, Pinbo

    2016-08-01

    An illustrative theory is developed to analyze the acoustic wave propagation characteristics in the porous media with anisotropic permeability. We focus here on the role of fracture permeability in the unconsolidated porous media, looking in particular at the compressional P-wave phase velocity and attenuation. Two fluid pressure equilibration characteristic time factors are defined, which are corresponding to crack-pore system and crack-crack system, respectively. The theoretical results show that the dispersion and attenuation characteristics of acoustic wave are affected by porous matrix and fracture permeability simultaneously. Due to the fluid exchange that takes place between fractures and pores dominantly, the influence of the fracture connectivity on the wave propagation is very weak when the permeability of background medium is relatively high. However, correlation between wave propagation and fracture permeability is significant when the matrix permeability at a low level. A second attenuation peak occurs for the fluid flow within fractures in high-frequency region for more and more higher fracture permeability. The exact analytical solutions that are compared to numerical forward modeling of wave propagation in fractured media allow us to verify the correctness of the new model. If there exists another approach for obtaining the connectivity information of background media, we can use this model to analyze qualitatively the permeability of fractures or afford an indicator of in-situ permeability changes in a oil reservoir, for example, fracturing operations.

  9. The effects of fracture permeability on acoustic wave propagation in the porous media: A microscopic perspective.

    PubMed

    Wang, Ding; Wang, Liji; Ding, Pinbo

    2016-08-01

    An illustrative theory is developed to analyze the acoustic wave propagation characteristics in the porous media with anisotropic permeability. We focus here on the role of fracture permeability in the unconsolidated porous media, looking in particular at the compressional P-wave phase velocity and attenuation. Two fluid pressure equilibration characteristic time factors are defined, which are corresponding to crack-pore system and crack-crack system, respectively. The theoretical results show that the dispersion and attenuation characteristics of acoustic wave are affected by porous matrix and fracture permeability simultaneously. Due to the fluid exchange that takes place between fractures and pores dominantly, the influence of the fracture connectivity on the wave propagation is very weak when the permeability of background medium is relatively high. However, correlation between wave propagation and fracture permeability is significant when the matrix permeability at a low level. A second attenuation peak occurs for the fluid flow within fractures in high-frequency region for more and more higher fracture permeability. The exact analytical solutions that are compared to numerical forward modeling of wave propagation in fractured media allow us to verify the correctness of the new model. If there exists another approach for obtaining the connectivity information of background media, we can use this model to analyze qualitatively the permeability of fractures or afford an indicator of in-situ permeability changes in a oil reservoir, for example, fracturing operations. PMID:27259119

  10. 3D numerical simulation of laser-generated Lamb waves propagation in 2D acoustic black holes

    NASA Astrophysics Data System (ADS)

    Yan, Shiling; Lomonosov, Alexey M.; Shen, Zhonghua; Han, Bing

    2015-05-01

    Acoustic black holes have been widely used in damping structural vibration. In this work, the Lamb waves are utilized to evaluate the specified structure. The three-dimensional numerical model of acoustic black holes with parabolic profile was established. The propagation of laser-generated Lamb wave in two-dimensional acoustic black holes was numerically simulated using the finite element method. The results indicated that the incident wave was trapped by the structure obviously.

  11. A Comparison of Signal Enhancement Methods for Extracting Tonal Acoustic Signals

    NASA Technical Reports Server (NTRS)

    Jones, Michael G.

    1998-01-01

    The measurement of pure tone acoustic pressure signals in the presence of masking noise, often generated by mean flow, is a continual problem in the field of passive liner duct acoustics research. In support of the Advanced Subsonic Technology Noise Reduction Program, methods were investigated for conducting measurements of advanced duct liner concepts in harsh, aeroacoustic environments. This report presents the results of a comparison study of three signal extraction methods for acquiring quality acoustic pressure measurements in the presence of broadband noise (used to simulate the effects of mean flow). The performance of each method was compared to a baseline measurement of a pure tone acoustic pressure 3 dB above a uniform, broadband noise background.

  12. Signal processing methodologies for an acoustic fetal heart rate monitor

    NASA Technical Reports Server (NTRS)

    Pretlow, Robert A., III; Stoughton, John W.

    1992-01-01

    Research and development is presented of real time signal processing methodologies for the detection of fetal heart tones within a noise-contaminated signal from a passive acoustic sensor. A linear predictor algorithm is utilized for detection of the heart tone event and additional processing derives heart rate. The linear predictor is adaptively 'trained' in a least mean square error sense on generic fetal heart tones recorded from patients. A real time monitor system is described which outputs to a strip chart recorder for plotting the time history of the fetal heart rate. The system is validated in the context of the fetal nonstress test. Comparisons are made with ultrasonic nonstress tests on a series of patients. Comparative data provides favorable indications of the feasibility of the acoustic monitor for clinical use.

  13. Statistical Modeling of Large-Scale Signal Path Loss in Underwater Acoustic Networks

    PubMed Central

    Llor, Jesús; Malumbres, Manuel Perez

    2013-01-01

    In an underwater acoustic channel, the propagation conditions are known to vary in time, causing the deviation of the received signal strength from the nominal value predicted by a deterministic propagation model. To facilitate a large-scale system design in such conditions (e.g., power allocation), we have developed a statistical propagation model in which the transmission loss is treated as a random variable. By applying repetitive computation to the acoustic field, using ray tracing for a set of varying environmental conditions (surface height, wave activity, small node displacements around nominal locations, etc.), an ensemble of transmission losses is compiled and later used to infer the statistical model parameters. A reasonable agreement is found with log-normal distribution, whose mean obeys a log-distance increases, and whose variance appears to be constant for a certain range of inter-node distances in a given deployment location. The statistical model is deemed useful for higher-level system planning, where simulation is needed to assess the performance of candidate network protocols under various resource allocation policies, i.e., to determine the transmit power and bandwidth allocation necessary to achieve a desired level of performance (connectivity, throughput, reliability, etc.). PMID:23396190

  14. Influence of attenuation on acoustic emission signals in carbon fiber reinforced polymer panels.

    PubMed

    Asamene, Kassahun; Hudson, Larry; Sundaresan, Mannur

    2015-05-01

    Influence of attenuation on acoustic emission (AE) signals in Carbon Fiber Reinforced Polymer (CFRP) crossply and quasi-isotropic panels is examined in this paper. Attenuation coefficients of the fundamental antisymmetric (A0) and symmetric (S0) wave modes were determined experimentally along different directions for the two types of CFRP panels. In the frequency range from 100 kHz to 500 kHz, the A0 mode undergoes significantly greater changes due to material related attenuation compared to the S0 mode. Moderate to strong changes in the attenuation levels were noted with propagation directions. Such mode and frequency dependent attenuation introduces major changes in the characteristics of AE signals depending on the position of the AE sensor relative to the source. Results from finite element simulations of a microscopic damage event in the composite laminates are used to illustrate attenuation related changes in modal and frequency components of AE signals.

  15. HAMP domain conformers that propagate opposite signals in bacterial chemoreceptors.

    PubMed

    Airola, Michael V; Sukomon, Nattakan; Samanta, Dipanjan; Borbat, Peter P; Freed, Jack H; Watts, Kylie J; Crane, Brian R

    2013-01-01

    HAMP domains are signal relay modules in >26,000 receptors of bacteria, eukaryotes, and archaea that mediate processes involved in chemotaxis, pathogenesis, and biofilm formation. We identify two HAMP conformations distinguished by a four- to two-helix packing transition at the C-termini that send opposing signals in bacterial chemoreceptors. Crystal structures of signal-locked mutants establish the observed structure-to-function relationships. Pulsed dipolar electron spin resonance spectroscopy of spin-labeled soluble receptors active in cells verify that the crystallographically defined HAMP conformers are maintained in the receptors and influence the structure and activity of downstream domains accordingly. Mutation of HR2, a key residue for setting the HAMP conformation and generating an inhibitory signal, shifts HAMP structure and receptor output to an activating state. Another HR2 variant displays an inverted response with respect to ligand and demonstrates the fine energetic balance between "on" and "off" conformers. A DExG motif found in membrane proximal HAMP domains is shown to be critical for responses to extracellular ligand. Our findings directly correlate in vivo signaling with HAMP structure, stability, and dynamics to establish a comprehensive model for HAMP-mediated signal relay that consolidates existing views on how conformational signals propagate in receptors. Moreover, we have developed a rational means to manipulate HAMP structure and function that may prove useful in the engineering of bacterial taxis responses.

  16. Numerical simulation of acoustic holography with propagator adaptation. Application to a 3D disc

    NASA Astrophysics Data System (ADS)

    Martin, Vincent; Le Bourdon, Thibault; Pasqual, Alexander Mattioli

    2011-08-01

    Acoustical holography can be used to identify the vibration velocity of an extended vibrating body. Such an inverse problem relies on the radiated acoustic pressure measured by a microphone array and on an a priori knowledge of the way the body radiates sound. Any perturbation on the radiation model leads to a perturbation on the velocity identified by the inversion process. Thus, to obtain the source vibration velocity with a good precision, it is useful to identify also an appropriate propagation model. Here, this identification, or adaptation, procedure rests on a geometrical interpretation of the acoustic holography in the objective space (here the radiated pressure space equipped with the L2-norm) and on a genetic algorithm. The propagator adaptation adds information to the holographic process, so it is not a regularisation method, which approximates the inverse of the model but does not affect the model. Moreover regularisations act in the variables space, here the velocities space. It is shown that an adapted model significantly decreases the quantity of regularisation needed to obtain a good reconstructed velocity, and that model adaptation improves significantly the acoustical holography results. In the presence of perturbations on the radiated pressure, some indications will be given on the interest or not to adapt the model, again thanks to the geometrical interpretation of holography in the objective space. As a numerical example, a disc whose vibration velocity on one of its sides is identified by acoustic holography is presented. On an industrial scale, this problem occurs due to the noise radiated by car wheels. The assessment of the holographic results has not yet been rigorously performed in such situations due to the complexity of the wheel environment made up of the car body, road and rolling conditions.

  17. Propagation of phase modulation signals in time-varying plasma

    NASA Astrophysics Data System (ADS)

    Yang, Min; Li, Xiaoping; Wang, Di; Liu, Yanming; He, Pan

    2016-05-01

    The effects of time-varying plasma to the propagation of phase modulation signals are investigated in this paper. Through theoretical analysis, the mechanism of the interaction between the time-varying plasma and the phase modulation signal is given. A time-varying plasma generator which could produce arbitrary time-varying plasma is built by adjusting the discharge power. A comparison of results from experiment and simulation prove that the time-varying plasma could cause the special rotation of QPSK (Quadrature Phase Shift Keying) constellation, and the mechanism of constellation point's rotation is analyzed. Additionally, the experimental results of the QPSK signals' EVM (Error Vector Magnitude) after time-varying and time-invariant plasma with different ωp/ω are given. This research could be used to improve the TT&C (Tracking Telemeter and Command) system of re-entry vehicles.

  18. An Investigation of Two Acoustic Propagation Codes for Three-Dimensional Geometries

    NASA Technical Reports Server (NTRS)

    Nark, D. M.; Watson, W. R.; Jones, M. G.

    2005-01-01

    The ability to predict fan noise within complex three-dimensional aircraft engine nacelle geometries is a valuable tool in studying low-noise designs. Recent years have seen the development of aeroacoustic propagation codes using various levels of approximation to obtain such a capability. In light of this, it is beneficial to pursue a design paradigm that incorporates the strengths of the various tools. The development of a quasi-3D methodology (Q3D-FEM) at NASA Langley has brought these ideas to mind in relation to the framework of the CDUCT-LaRC acoustic propagation and radiation tool. As more extensive three dimensional codes become available, it would seem appropriate to incorporate these tools into a framework similar to CDUCT-LaRC and use them in a complementary manner. This work focuses on such an approach in beginning the steps toward a systematic assessment of the errors, and hence the trade-offs, involved in the use of these codes. To illustrate this point, CDUCT-LaRC was used to study benchmark hardwall duct problems to quantify errors caused by wave propagation in directions far removed from that defined by the parabolic approximation. Configurations incorporating acoustic treatment were also studied with CDUCT-LaRC and Q3D-FEM. The cases presented show that acoustic treatment diminishes the effects of CDUCT-LaRC phase error as the solutions are attenuated. The results of the Q3D-FEM were very promising and matched the analytic solution very well. Overall, these tests were meant to serve as a step toward the systematic study of errors inherent in the propagation module of CDUCT-LaRC, as well as an initial test of the higher fidelity Q3D-FEM code.

  19. Observations and transport theory analysis of low frequency, acoustic mode propagation in the Eastern North Pacific Ocean.

    PubMed

    Chandrayadula, Tarun K; Colosi, John A; Worcester, Peter F; Dzieciuch, Matthew A; Mercer, James A; Andrew, Rex K; Howe, Bruce M

    2013-10-01

    Second order mode statistics as a function of range and source depth are presented from the Long Range Ocean Acoustic Propagation EXperiment (LOAPEX). During LOAPEX, low frequency broadband signals were transmitted from a ship-suspended source to a mode-resolving vertical line array. Over a one-month period, the ship occupied seven stations from 50 km to 3200 km distance from the receiver. At each station broadband transmissions were performed at a near-axial depth of 800 m and an off-axial depth of 350 m. Center frequencies at these two depths were 75 Hz and 68 Hz, respectively. Estimates of observed mean mode energy, cross mode coherence, and temporal coherence are compared with predictions from modal transport theory, utilizing the Garrett-Munk internal wave spectrum. In estimating the acoustic observables, there were challenges including low signal to noise ratio, corrections for source motion, and small sample sizes. The experimental observations agree with theoretical predictions within experimental uncertainty.

  20. Acoustic effects of the ATOC signal (75 Hz, 195 dB) on dolphins and whales

    SciTech Connect

    Au, W.W.; Nachtigall, P.E.; Pawloski, J.L.

    1997-05-01

    The Acoustic Thermometry of Ocean Climate (ATOC) program of Scripps Institution of Oceanography and the Applied Physics Laboratory, University of Washington, will broadcast a low-frequency 75-Hz phase modulated acoustic signal over ocean basins in order to study ocean temperatures on a global scale and examine the effects of global warming. One of the major concerns is the possible effect of the ATOC signal on marine life, especially on dolphins and whales. In order to address this issue, the hearing sensitivity of a false killer whale ({ital Pseudorca crassidens}) and a Risso{close_quote}s dolphin ({ital Grampus griseus}) to the ATOC sound was measured behaviorally. A staircase procedure with the signal levels being changed in 1-dB steps was used to measure the animals{close_quote} threshold to the actual ATOC coded signal. The results indicate that small odontocetes such as the {ital Pseudorca} and {ital Grampus} swimming directly above the ATOC source will not hear the signal unless they dive to a depth of approximately 400 m. A sound propagation analysis suggests that the sound-pressure level at ranges greater than 0.5 km will be less than 130 dB for depths down to about 500 m. Several species of baleen whales produce sounds much greater than 170{endash}180 dB. With the ATOC source on the axis of the deep sound channel (greater than 800 m), the ATOC signal will probably have minimal physical and physiological effects on cetaceans. {copyright} {ital 1997 Acoustical Society of America.}

  1. Near- Source, Seismo-Acoustic Signals Accompanying a NASCAR Race at the Texas Motor Speedway

    NASA Astrophysics Data System (ADS)

    Stump, B. W.; Hayward, C.; Underwood, R.; Howard, J. E.; MacPhail, M. D.; Golden, P.; Endress, A.

    2014-12-01

    Near-source, seismo-acoustic observations provide a unique opportunity to characterize urban sources, remotely sense human activities including vehicular traffic and monitor large engineering structures. Energy separately coupled into the solid earth and atmosphere provides constraints on not only the location of these sources but also the physics of the generating process. Conditions and distances at which these observations can be made are dependent upon not only local geological conditions but also atmospheric conditions at the time of the observations. In order to address this range of topics, an empirical, seismo-acoustic study was undertaken in and around the Texas Motor Speedway in the Dallas-Ft. Worth area during the first week of April 2014 at which time a range of activities associated with a series of NASCAR races occurred. Nine, seismic sensors were deployed around the 1.5-mile track for purposes of documenting the direct-coupled seismic energy from the passage of the cars and other vehicles on the track. Six infrasound sensors were deployed on a rooftop in a rectangular array configuration designed to provide high frequency beam forming for acoustic signals. Finally, a five-element infrasound array was deployed outside the track in order to characterize how the signals propagate away from the sources in the near-source region. Signals recovered from within the track were able to track and characterize the motion of a variety of vehicles during the race weekend including individual racecars. Seismic data sampled at 1000 sps documented strong Doppler effects as the cars approached and moved away from individual sensors. There were faint seismic signals that arrived at seismic velocity but local acoustic to seismic coupling as supported by the acoustic observations generated the majority of seismic signals. Actual seismic ground motions were small as demonstrated by the dominance of regional seismic signals from a magnitude 4.0 earthquake that arrived at

  2. Finite Difference Numerical Modeling of Gravito-Acoustic Wave Propagation in a Windy and Attenuating Atmosphere

    NASA Astrophysics Data System (ADS)

    Brissaud, Q.; Garcia, R.; Martin, R.; Komatitsch, D.

    2015-12-01

    The acoustic and gravity waves propagating in the planetary atmospheres have been studied intensively as markers of specific phenomena (tectonic events, explosions) or as contributors to the atmosphere dynamics. To get a better understanding of the physic behind these dynamic processes, both acoustic and gravity waves propagation should be modeled in an attenuating and windy 3D atmosphere from the ground to the upper thermosphere. Thus, In order to provide an efficient numerical tool at the regional or the global scale a high order finite difference time domain (FDTD) approach is proposed that relies on the linearized compressible Navier-Stokes equations (Landau 1959) with non constant physical parameters (density, viscosities and speed of sound) and background velocities (wind). One significant benefit from this code is its versatility. Indeed, it handles both acoustic and gravity waves in the same simulation that enables one to observe correlations between the two. Simulations will also be performed on 2D/3D realistic cases such as tsunamis in a full MSISE-00 atmosphere and gravity-wave generation through atmospheric explosions. Computations are validated by comparison to well-known analytical solutions based on dispersion relations in specific benchmark cases (atmospheric explosion and bottom displacement forcing).

  3. Estimating Effects of Multipath Propagation on GPS Signals

    NASA Technical Reports Server (NTRS)

    Byun, Sung; Hajj, George; Young, Lawrence

    2005-01-01

    Multipath Simulator Taking into Account Reflection and Diffraction (MUSTARD) is a computer program that simulates effects of multipath propagation on received Global Positioning System (GPS) signals. MUSTARD is a very efficient means of estimating multipath-induced position and phase errors as functions of time, given the positions and orientations of GPS satellites, the GPS receiver, and any structures near the receiver as functions of time. MUSTARD traces each signal from a GPS satellite to the receiver, accounting for all possible paths the signal can take, including all paths that include reflection and/or diffraction from surfaces of structures near the receiver and on the satellite. Reflection and diffraction are modeled by use of the geometrical theory of diffraction. The multipath signals are added to the direct signal after accounting for the gain of the receiving antenna. Then, in a simulation of a delay-lock tracking loop in the receiver, the multipath-induced range and phase errors as measured by the receiver are estimated. All of these computations are performed for both right circular polarization and left circular polarization of both the L1 (1.57542-GHz) and L2 (1.2276-GHz) GPS signals.

  4. INSTRUMENTATION FOR SURVEYING ACOUSTIC SIGNALS IN NATURAL GAS TRANSMISSION LINES

    SciTech Connect

    John L. Loth; Gary J. Morris; George M. Palmer; Richard Guiler; Deepak Mehra

    2003-09-01

    In the U.S. natural gas is distributed through more than one million miles of high-pressure transmission pipelines. If all leaks and infringements could be detected quickly, it would enhance safety and U.S. energy security. Only low frequency acoustic waves appear to be detectable over distances up to 60 km where pipeline shut-off valves provide access to the inside of the pipeline. This paper describes a Portable Acoustic Monitoring Package (PAMP) developed to record and identify acoustic signals characteristic of: leaks, pump noise, valve and flow metering noise, third party infringement, manual pipeline water and gas blow-off, etc. This PAMP consists of a stainless steel 1/2 inch NPT plumbing tree rated for use on 1000 psi pipelines. Its instrumentation is designed to measure acoustic waves over the entire frequency range from zero to 16,000 Hz by means of four instruments: (1) microphone, (2) 3-inch water full range differential pressure transducer with 0.1% of range sensitivity, (3) a novel 3 inch to 100 inch water range amplifier, using an accumulator with needle valve and (4) a line-pressure transducer. The weight of the PAMP complete with all accessories is 36 pounds. This includes a remote control battery/switch box assembly on a 25-foot extension chord, a laptop data acquisition computer on a field table and a sun shield.

  5. A direct method for measuring acoustic ground impedance in long-range propagation experiments.

    PubMed

    Soh, Jin H; Gilbert, Kenneth E; Frazier, W M Garth; Talmadge, Carrick L; Waxler, Roger

    2010-11-01

    A method is reported for determining ground impedance in long-range propagation experiments by using the definition of impedance directly. The method is envisioned as way of measuring the impedence at multiple locations along the propagation path, using the signals broadcast during the experiment itself. In a short-range (10 m) test, the direct method was in good agreement with a more conventional model-based least-squares method. The utility of the direct method was demonstrated in a 400 m propagation experiment in a agricultural field. The resulting impedance was consistent with the impedance measured previously in the same field. PMID:21110540

  6. Investigation of near-axial interference effects in long-range acoustic propagation in the ocean

    NASA Astrophysics Data System (ADS)

    Grigorieva, Natalie S.; Fridman, Gregory M.

    2002-05-01

    The observed time-of-arrival patterns from a number of long-range ocean acoustic propagation experiments show early geometrical-like arrivals followed by a crescendo of energy that propagates along the sound-channel axis and is not resolved into individual arrivals. The two-dimensional reference point source problem for the parabolic index of refraction squared is investigated to describe in a simple model case the interference of near-axial waves which resulted in forming the so-called axial wave and propose a formula for the axial wave in more general cases. Using the method proposed by Buldyrev [V. Buldyrev, Tr. Mat. Inst. Steklov 115, 78-102 (1971)], the integral representation for the exact solution is transformed in such a way to extract ray summands corresponding to rays radiated from the source at angles less than a certain angle, the axial wave, and a term corresponding to the sum of all the rays having launch angles greater than the indicated angle. Numerical results for the axial wave and the last term are obtained for parameters corresponding to long-range ocean acoustic propagation experiments. The generalization of the obtained formula for the axial wave to the case of an arbitrary range-independent sound speed is given and discussed. [Work supported by VSP Grant No. N00014-01-4003.

  7. Generation and Upper Atmospheric Propagation of Acoustic Gravity Waves according to Numerical Modeling and Radio Tomography

    NASA Astrophysics Data System (ADS)

    Vorontsov, Artem; Andreeva, Elena; Nesterov, Ivan; Padokhin, Artem; Kurbatov, Grigory

    2016-04-01

    The acoustic-gravity waves (AGW) in the upper atmosphere and ionosphere can be generated by a variety of the phenomena in the near-Earth environment and atmosphere as well as by some perturbations of the Earth's ground or ocean surface. For instance, the role of the AGW sources can be played by the earthquakes, explosions, thermal heating, seisches, tsunami waves. We present the examples of AGWs excited by the tsunami waves traveling in the ocean, by seisches, and by ionospheric heating by the high-power radio wave. In the last case, the gravity waves are caused by the pulsed modulation of the heating wave. The AGW propagation in the upper atmosphere induces the variations and irregularities in the electron density distribution of the ionosphere, whose structure can be efficiently reconstructed by the method of the ionospheric radio tomography (RT) based on the data from the global navigational satellite systems (GNSS). The input data for RT diagnostics are composed of the 150/400 MHz radio signals from the low-orbiting (LO) satellites and 1.2-1.5 GHz radio signals from the high-orbiting (HO) satellites with their orbits at ~1000 and ~20000 km above the ground, respectively. These data enable ionospheric imaging on different spatiotemporal scales with different spatiotemporal resolution and coverage, which is suitable, inter alia, for tracking the waves and wave-like features in the ionosphere. In particular, we demonstrate the maps of the ionospheric responses to the tornado at Moore (Oklahoma, USA) of May 20, 2013, which are reconstructed from the HO data. We present the examples of LORT images containing the waves and wavelike disturbances associated with various sources (e.g., auroral precipitation and high-power heating of the ionosphere). We also discuss the results of modeling the AGW generation by the surface and volumetric sources. The millihertz AGW from these sources initiate the ionospheric perturbation with a typical scale of a few hundred km at the

  8. A Theoretical and Experimental Study of Acoustic Propagation in Multisectioned Circular Ducts. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Wyerman, B. R.

    1976-01-01

    The propagation of plane waves and higher order acoustic modes in a circular multisectioned duct was studied. A unique source array consisting of two concentric rings of sources, providing phase and amplitude control in the radial, as well as circumferential direction, was developed to generate plane waves and both spinning and nonspinning higher order modes. Measurements of attenuation and radial mode shapes were taken with finite length liners inserted between the hard wall sections of an anechoically terminated duct. Materials tested as liners included a glass fiber material and both sintered fiber metals and perforated sheet metals with a honeycomb backing. The fundamental acoustic properties of these materials were studied with emphasis on the attenuation of sound by the liners and the determination of local versus extended reaction behavior for the boundary condition. A search technique was developed to find the complex eigenvalues for a liner under the assumption of a locally reacting boundary condition.

  9. The propagation and attenuation of complex acoustic waves in treated circular and annular ducts

    NASA Technical Reports Server (NTRS)

    Reethof, G.

    1976-01-01

    The propagation of plane waves and higher order acoustic modes in a circular multisectioned duct was studied. A unique source array consisting of two concentric rings of sources, providing phase and amplitude control in the radial, as well as circumferential direction, was developed to generate plane waves and both spinning and nonspinning higher order modes. Measurements of attenuation and radial mode shapes were taken with finite length liners between the hard wall sections of an anechoically terminated duct. Materials tested as liners included a glass fiber material and both sintered fiber metals and perforated sheet metals with a honeycomb backing. The fundamental acoustic properties of these materials were studied with emphasis on the attenuation of sound by the liners and the determination of local versus extended reaction behavior for the boundary condition. The experimental results were compared with a mathematical model for the multisectioned duct.

  10. Finite element analysis of solitary wave propagation by acoustic velocity method

    NASA Astrophysics Data System (ADS)

    Maruoka, Akira; Uchiyama, Ichiro; Kawahara, Mutsuto

    2016-10-01

    There is discontinuity between compressible and incompressible states in fluid flows. If we subtract the thermal effect from compressible fluid flows, we obtain adiabatic fluid flows, from which incompressible fluid flows are obtained if we let the acoustic velocity tend to infinity. Thus, we employ the idea of adiabatic fluid flows to solve incompressible flows. In the computation, the physical value of the acoustic velocity is employed. This idea corresponds to an extension of artificial compressibility under physical considerations. We present the new SUPG formulation of adiabatic fluid flows, by which not only the effect of SUPG but also those of PSPG and LSIC of incompressible fluid flows are derived. After the numerical verifications, three-dimensional solitary wave propagations are computed. Close agreement between computed and experimental values is obtained.

  11. Estimation of Eeg Signal Dispersion During Seizure Propagation

    PubMed Central

    Stamoulis, Catherine; Chang, Bernard S.; Madsen, Joseph R.

    2010-01-01

    Localization of the seizure focus in the brain is a challenging problem in the field of epilepsy. The complexity of the seizure-related EEG waveform, its non-stationarity and degradation with distance due to the dispersive nature of the brain as a propagation medium, make localization difficult. Yet, precise estimation of the focus is critical, particularly when surgical resection is the only therapeutic option. The first step to solving this inverse problem is to estimate and account for frequency- or mode-specific signal dispersion, which is present in both scalp and intracranial EEG recordings during seizures. We estimated dispersion curves in both types of signals using a spatial correlation method and mode-based semblance analysis. We showed that, despite the assumption of spatial stationarity and a simplified array geometry, there is measurable inter-modal and intra-modal dispersion during seizures in both types of EEG recordings, affecting the estimated arrival times and consequently focus localization. PMID:20436687

  12. Measurement of the flow velocity in unmagnetized plasmas by counter propagating ion-acoustic waves

    SciTech Connect

    Ma, J.X.; Li Yangfang; Xiao Delong; Li Jingju; Li Yiren

    2005-06-15

    The diffusion velocity of an inhomogeneous unmagnetized plasma is measured by means of the phase velocities of ion-acoustic waves propagating along and against the direction of the plasma flow. Combined with the measurement of the plasma density distributions by usual Langmuir probes, the method is applied to measure the ambipolar diffusion coefficient and effective ion collision frequency in inhomogeneous plasmas formed in an asymmetrically discharged double-plasma device. Experimental results show that the measured flow velocities, diffusion coefficients, and effective collision frequencies are in agreement with ion-neutral collision dominated diffusion theory.

  13. Adaptive plasticity in wild field cricket's acoustic signaling.

    PubMed

    Bertram, Susan M; Harrison, Sarah J; Thomson, Ian R; Fitzsimmons, Lauren P

    2013-01-01

    Phenotypic plasticity can be adaptive when phenotypes are closely matched to changes in the environment. In crickets, rhythmic fluctuations in the biotic and abiotic environment regularly result in diel rhythms in density of sexually active individuals. Given that density strongly influences the intensity of sexual selection, we asked whether crickets exhibit plasticity in signaling behavior that aligns with these rhythmic fluctuations in the socio-sexual environment. We quantified the acoustic mate signaling behavior of wild-caught males of two cricket species, Gryllus veletis and G. pennsylvanicus. Crickets exhibited phenotypically plastic mate signaling behavior, with most males signaling more often and more attractively during the times of day when mating activity is highest in the wild. Most male G. pennsylvanicus chirped more often and louder, with shorter interpulse durations, pulse periods, chirp durations, and interchirp durations, and at slightly higher carrier frequencies during the time of the day that mating activity is highest in the wild. Similarly, most male G. veletis chirped more often, with more pulses per chirp, longer interpulse durations, pulse periods, and chirp durations, shorter interchirp durations, and at lower carrier frequencies during the time of peak mating activity in the wild. Among-male variation in signaling plasticity was high, with some males signaling in an apparently maladaptive manner. Body size explained some of the among-male variation in G. pennsylvanicus plasticity but not G. veletis plasticity. Overall, our findings suggest that crickets exhibit phenotypically plastic mate attraction signals that closely match the fluctuating socio-sexual context they experience.

  14. Propagation of finite amplitude sound through turbulence: modeling with geometrical acoustics and the parabolic approximation.

    PubMed

    Blanc-Benon, Philippe; Lipkens, Bart; Dallois, Laurent; Hamilton, Mark F; Blackstock, David T

    2002-01-01

    Sonic boom propagation can be affected by atmospheric turbulence. It has been shown that turbulence affects the perceived loudness of sonic booms, mainly by changing its peak pressure and rise time. The models reported here describe the nonlinear propagation of sound through turbulence. Turbulence is modeled as a set of individual realizations of a random temperature or velocity field. In the first model, linear geometrical acoustics is used to trace rays through each realization of the turbulent field. A nonlinear transport equation is then derived along each eigenray connecting the source and receiver. The transport equation is solved by a Pestorius algorithm. In the second model, the KZK equation is modified to account for the effect of a random temperature field and it is then solved numerically. Results from numerical experiments that simulate the propagation of spark-produced N waves through turbulence are presented. It is observed that turbulence decreases, on average, the peak pressure of the N waves and increases the rise time. Nonlinear distortion is less when turbulence is present than without it. The effects of random vector fields are stronger than those of random temperature fields. The location of the caustics and the deformation of the wave front are also presented. These observations confirm the results from the model experiment in which spark-produced N waves are used to simulate sonic boom propagation through a turbulent atmosphere. PMID:11837954

  15. Precursory acoustic signals and ground deformation in volcanic explosions

    NASA Astrophysics Data System (ADS)

    Bowman, D. C.; Kim, K.; Anderson, J.; Lees, J. M.; Taddeucci, J.; Graettinger, A. H.; Sonder, I.; Valentine, G.

    2013-12-01

    We investigate precursory acoustic signals that appear prior to volcanic explosions in real and experimental settings. Acoustic records of a series of experimental blasts designed to mimic maar explosions show precursory energy 0.02 to 0.05 seconds before the high amplitude overpressure arrival. These blasts consisted of 1 to 1/3 lb charges detonated in unconsolidated granular material at depths between 0.5 and 1 m, and were performed during the Buffalo Man Made Maars experiment in Springville, New York, USA. The preliminary acoustic arrival is 1 to 2 orders of magnitude lower in amplitude compared to the main blast wave. The waveforms vary from blast to blast, perhaps reflecting the different explosive yields and burial depths of each shot. Similar arrivals are present in some infrasound records at Santiaguito volcano, Guatemala, where they precede the main blast signal by about 2 seconds and are about 1 order of magnitude weaker. Precursory infrasound has also been described at Sakurajima volcano, Japan (Yokoo et al, 2013; Bull. Volc. Soc. Japan, 58, 163-181) and Suwanosejima volcano, Japan (Yokoo and Iguchi, 2010; JVGR, 196, 287-294), where it is attributed to rapid deformation of the vent region. Vent deformation has not been directly observed at these volcanoes because of the difficulty of visually observing the crater floor. However, particle image velocimetry of video records at Santiaguito has revealed rapid and widespread ground motion just prior to eruptions (Johnson et al, 2008; Nature, 456, 377-381) and may be the cause of much of the infrasound recorded at that volcano (Johnson and Lees, 2010; GRL, 37, L22305). High speed video records of the blasts during the Man Made Maars experiment also show rapid deformation of the ground immediately before the explosion plume breaches the surface. We examine the connection between source yield, burial depths, ground deformation, and the production of initial acoustic phases for each simulated maar explosion. We

  16. Seismo-acoustic propagation in environments that depend strongly on both range and depth

    NASA Astrophysics Data System (ADS)

    Outing, Donald A.; Siegmann, William L.; Dorman, LeRoy M.; Collins, Michael D.

    2002-11-01

    The parabolic equation method provides an excellent combination of accuracy and efficiency for range-dependent ocean acoustics and seismology problems. This approach is highly developed for problems in which the ocean bottom can be modeled as a fluid. For the elastic case, there remain some accuracy limitations for problems involving sloping interfaces. Progress on this problem has been made by combining a new formulation of the elastic parabolic equation that handles layering more effectively [W. Jerzak, ''Parabolic Equations for Layered Elastic Media,'' doctoral dissertation, Rensselaer Polytechnic Institute, Troy, NY (2001)] and a mapping approach that handles sloping interfaces accurately [J. Acoust. Soc. Am. 107, 1937-1942 (2000)]. This approach makes it possible to handle problems involving complex layering and steep slopes, but the rate of change of the slope must be small. The method and its application to data will be described. Our immediate goal is to model propagation of seismic surface waves propagating across a transition between dry and marshy terrain. We have suitable data applicable to vehicle-tracking problems from Marine Corps Base Camp, Pendleton, CA. [Work supported by ONR.

  17. Computational principles underlying the recognition of acoustic signals in insects.

    PubMed

    Clemens, Jan; Hennig, R Matthias

    2013-08-01

    Many animals produce pulse-like signals during acoustic communication. These signals exhibit structure on two time scales: they consist of trains of pulses that are often broadcast in packets-so called chirps. Temporal parameters of the pulse and of the chirp are decisive for female preference. Despite these signals being produced by animals from many different taxa (e.g. frogs, grasshoppers, crickets, bushcrickets, flies), a general framework for their evaluation is still lacking. We propose such a framework, based on a simple and physiologically plausible model. The model consists of feature detectors, whose time-varying output is averaged over the signal and then linearly combined to yield the behavioral preference. We fitted this model to large data sets collected in two species of crickets and found that Gabor filters--known from visual and auditory physiology--explain the preference functions in these two species very well. We further explored the properties of Gabor filters and found a systematic relationship between parameters of the filters and the shape of preference functions. Although these Gabor filters were relatively short, they were also able to explain aspects of the preference for signal parameters on the longer time scale due to the integration step in our model. Our framework explains a wide range of phenomena associated with female preference for a widespread class of signals in an intuitive and physiologically plausible fashion. This approach thus constitutes a valuable tool to understand the functioning and evolution of communication systems in many species.

  18. Signal Propagation from the Tail to the Ionosphere

    NASA Astrophysics Data System (ADS)

    Ferdousi, B.; Raeder, J.

    2014-12-01

    The night side of magnetosphere is a very dynamic region, where substorms can release substantial amounts of energy in an explosive fashion. Even though many physical models explaining the substorm process have been proposed, the onset mechanism (initiation) of substorms is still an unsolved problem in Space Physics. It is presently not resolved whether the onset mechanism is triggered by current disruption (CD) process, by some other ideal MHD instability such as the ballooning mode, or by magnetic reconnection process (Rx). The former two processes would initiate a substorm close to Earth somewhere between 6 and 8 RE downtail, whereas a reconnection trigger is thought to occur around 20 RE. Recent observations by the THEMIS mission suggests that substorms are triggered by magnetic reconnection mechanism in mid-tail region (Angelopoulos et al., 2009 ), but those results are disputed (Lui et al., 2009). Distinguishing these processes depends critically on the correct timing of different signals in the plasma sheet and the ionosphere in order to establish a time sequence of events. This has been difficult to accomplish with data alone, since signals are sometimes ambiguous, or they have not been observed in the right locations. To investigate signal propagation paths and signal travel times, we use OpenGGCM global simulation. By launching wave pulses from various locations in the magnetosphere, we investigate the path taken by the waves and time it takes for different wave to reach the ionosphere. We find that the Tamao path is not generally preferred path for waves originating in the plasma sheet. We also find that a point source in the tail can lead to spread out signal in the ionosphere.

  19. Influences of non-uniform pressure field outside bubbles on the propagation of acoustic waves in dilute bubbly liquids.

    PubMed

    Zhang, Yuning; Du, Xiaoze

    2015-09-01

    Predictions of the propagation of the acoustic waves in bubbly liquids is of great importance for bubble dynamics and related applications (e.g. sonochemistry, sonochemical reactor design, biomedical engineering). In the present paper, an approach for modeling the propagation of the acoustic waves in dilute bubbly liquids is proposed through considering the non-uniform pressure field outside the bubbles. This approach is validated through comparing with available experimental data in the literature. Comparing with the previous models, our approach mainly improves the predictions of the attenuation of acoustic waves in the regions with large kR0 (k is the wave number and R0 is the equilibrium bubble radius). Stability of the oscillating bubbles under acoustic excitation are also quantitatively discussed based on the analytical solution.

  20. Crack Propagation Analysis Using Acoustic Emission Sensors for Structural Health Monitoring Systems

    DOE PAGES

    Kral, Zachary; Horn, Walter; Steck, James

    2013-01-01

    Aerospace systems are expected to remain in service well beyond their designed life. Consequently, maintenance is an important issue. A novel method of implementing artificial neural networks and acoustic emission sensors to form a structural health monitoring (SHM) system for aerospace inspection routines was the focus of this research. Simple structural elements, consisting of flat aluminum plates of AL 2024-T3, were subjected to increasing static tensile loading. As the loading increased, designed cracks extended in length, releasing strain waves in the process. Strain wave signals, measured by acoustic emission sensors, were further analyzed in post-processing by artificial neural networks (ANN).more » Several experiments were performed to determine the severity and location of the crack extensions in the structure. ANNs were trained on a portion of the data acquired by the sensors and the ANNs were then validated with the remaining data. The combination of a system of acoustic emission sensors, and an ANN could determine crack extension accurately. The difference between predicted and actual crack extensions was determined to be between 0.004 in. and 0.015 in. with 95% confidence. These ANNs, coupled with acoustic emission sensors, showed promise for the creation of an SHM system for aerospace systems.« less

  1. Crack Propagation Analysis Using Acoustic Emission Sensors for Structural Health Monitoring Systems

    PubMed Central

    Horn, Walter; Steck, James

    2013-01-01

    Aerospace systems are expected to remain in service well beyond their designed life. Consequently, maintenance is an important issue. A novel method of implementing artificial neural networks and acoustic emission sensors to form a structural health monitoring (SHM) system for aerospace inspection routines was the focus of this research. Simple structural elements, consisting of flat aluminum plates of AL 2024-T3, were subjected to increasing static tensile loading. As the loading increased, designed cracks extended in length, releasing strain waves in the process. Strain wave signals, measured by acoustic emission sensors, were further analyzed in post-processing by artificial neural networks (ANN). Several experiments were performed to determine the severity and location of the crack extensions in the structure. ANNs were trained on a portion of the data acquired by the sensors and the ANNs were then validated with the remaining data. The combination of a system of acoustic emission sensors, and an ANN could determine crack extension accurately. The difference between predicted and actual crack extensions was determined to be between 0.004 in. and 0.015 in. with 95% confidence. These ANNs, coupled with acoustic emission sensors, showed promise for the creation of an SHM system for aerospace systems. PMID:24023536

  2. Crack propagation analysis using acoustic emission sensors for structural health monitoring systems.

    PubMed

    Kral, Zachary; Horn, Walter; Steck, James

    2013-01-01

    Aerospace systems are expected to remain in service well beyond their designed life. Consequently, maintenance is an important issue. A novel method of implementing artificial neural networks and acoustic emission sensors to form a structural health monitoring (SHM) system for aerospace inspection routines was the focus of this research. Simple structural elements, consisting of flat aluminum plates of AL 2024-T3, were subjected to increasing static tensile loading. As the loading increased, designed cracks extended in length, releasing strain waves in the process. Strain wave signals, measured by acoustic emission sensors, were further analyzed in post-processing by artificial neural networks (ANN). Several experiments were performed to determine the severity and location of the crack extensions in the structure. ANNs were trained on a portion of the data acquired by the sensors and the ANNs were then validated with the remaining data. The combination of a system of acoustic emission sensors, and an ANN could determine crack extension accurately. The difference between predicted and actual crack extensions was determined to be between 0.004 in. and 0.015 in. with 95% confidence. These ANNs, coupled with acoustic emission sensors, showed promise for the creation of an SHM system for aerospace systems. PMID:24023536

  3. Study on demodulated signal distribution and acoustic pressure phase sensitivity of a self-interfered distributed acoustic sensing system

    NASA Astrophysics Data System (ADS)

    Shang, Ying; Yang, Yuan-Hong; Wang, Chen; Liu, Xiao-Hui; Wang, Chang; Peng, Gang-Ding

    2016-06-01

    We propose a demodulated signal distribution theory for a self-interfered distributed acoustic sensing system. The distribution region of Rayleigh backscattering including the acoustic sensing signal in the sensing fiber is investigated theoretically under different combinations of both the path difference and pulse width Additionally we determine the optimal solution between the path difference and pulse width to obtain the maximum phase change per unit length. We experimentally test this theory and realize a good acoustic pressure phase sensitivity of  -150 dB re rad/(μPa·m) of fiber in the frequency range from 200 Hz to 1 kHz.

  4. Signal Restoration of Non-stationary Acoustic Signals in the Time Domain

    NASA Technical Reports Server (NTRS)

    Babkin, Alexander S.

    1988-01-01

    Signal restoration is a method of transforming a nonstationary signal acquired by a ground based microphone to an equivalent stationary signal. The benefit of the signal restoration is a simplification of the flight test requirements because it could dispense with the need to acquire acoustic data with another aircraft flying in concert with the rotorcraft. The data quality is also generally improved because the contamination of the signal by the propeller and wind noise is not present. The restoration methodology can also be combined with other data acquisition methods, such as a multiple linear microphone array for further improvement of the test results. The methodology and software are presented for performing the signal restoration in the time domain. The method has no restrictions on flight path geometry or flight regimes. Only requirement is that the aircraft spatial position be known relative to the microphone location and synchronized with the acoustic data. The restoration process assumes that the moving source radiates a stationary signal, which is then transformed into a nonstationary signal by various modulation processes. The restoration contains only the modulation due to the source motion.

  5. Acoustic attenuation, phase and group velocities in liquid-filled pipes III: nonaxisymmetric propagation and circumferential modes in lossless conditions.

    PubMed

    Baik, Kyungmin; Jiang, Jian; Leighton, Timothy G

    2013-03-01

    Equations for the nonaxisymmetric modes that are axially and circumferentially propagating in a liquid-filled tube with elastic walls surrounded by air/vacuum are presented using exact elasticity theory. Dispersion curves for the axially propagating modes are obtained and verified through comparison with measurements. The resulting theory is applied to the circumferential modes, and the pressures and the stresses in the liquid-filled pipe are calculated under external forced oscillation by an acoustic source. This provides the theoretical foundation for the narrow band acoustic bubble detector that was subsequently deployed at the Target Test Facility (TTF) of the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL), TN.

  6. Acoustic wave propagation in heterogeneous two-dimensional fractured porous media

    NASA Astrophysics Data System (ADS)

    Hamzehpour, Hossein; Asgari, Mojgan; Sahimi, Muhammad

    2016-06-01

    This paper addresses an important fundamental question: the differences between wave propagation in fractured porous media with a uniform matrix (constant bulk modulus) and those in which the matrix is heterogeneous with its bulk modulus distributed spatially. The analysis of extensive experimental data [Phys. Rev. E 71, 046301 (2005), 10.1103/PhysRevE.71.046301] indicated that such distributions are self-affine and induce correlations at all the relevant length scales. The comparison is important from a practical view point because in many of the traditional models of fractured rock, particularly those that are used to study wave propagation or fit some data, the matrix is assumed to be uniform. Using extensive numerical simulation of propagation of acoustic waves, we present strong evidence indicating that the waves' amplitude in a fractured porous medium with a heterogeneous matrix decays exponentially with the distance from the source. This is in sharp contrast with a fractured porous medium with a uniform matrix in which not only the waves' amplitude decays with the distance as a stretched exponential function, but the exponent that characterizes the function is also dependent upon the fracture density. The localization length depends on the correlations in the spatial distribution of the bulk modulus, as well as the fracture density. The mean speed of the waves varies linearly with the fractures' mean orientation.

  7. Acoustic wave propagation in heterogeneous two-dimensional fractured porous media.

    PubMed

    Hamzehpour, Hossein; Asgari, Mojgan; Sahimi, Muhammad

    2016-06-01

    This paper addresses an important fundamental question: the differences between wave propagation in fractured porous media with a uniform matrix (constant bulk modulus) and those in which the matrix is heterogeneous with its bulk modulus distributed spatially. The analysis of extensive experimental data [Phys. Rev. E 71, 046301 (2005)PLEEE81539-375510.1103/PhysRevE.71.046301] indicated that such distributions are self-affine and induce correlations at all the relevant length scales. The comparison is important from a practical view point because in many of the traditional models of fractured rock, particularly those that are used to study wave propagation or fit some data, the matrix is assumed to be uniform. Using extensive numerical simulation of propagation of acoustic waves, we present strong evidence indicating that the waves' amplitude in a fractured porous medium with a heterogeneous matrix decays exponentially with the distance from the source. This is in sharp contrast with a fractured porous medium with a uniform matrix in which not only the waves' amplitude decays with the distance as a stretched exponential function, but the exponent that characterizes the function is also dependent upon the fracture density. The localization length depends on the correlations in the spatial distribution of the bulk modulus, as well as the fracture density. The mean speed of the waves varies linearly with the fractures' mean orientation. PMID:27415385

  8. Modeling propagation of infrasound signals observed by a dense seismic network.

    PubMed

    Chunchuzov, I; Kulichkov, S; Popov, O; Hedlin, M

    2014-01-01

    The long-range propagation of infrasound from a surface explosion with an explosive yield of about 17.6 t TNT that occurred on June 16, 2008 at the Utah Test and Training Range (UTTR) in the western United States is simulated using an atmospheric model that includes fine-scale layered structure of the wind velocity and temperature fields. Synthetic signal parameters (waveforms, amplitudes, and travel times) are calculated using parabolic equation and ray-tracing methods for a number of ranges between 100 and 800 km from the source. The simulation shows the evolution of several branches of stratospheric and thermospheric signals with increasing range from the source. Infrasound signals calculated using a G2S (ground-to-space) atmospheric model perturbed by small-scale layered wind velocity and temperature fluctuations are shown to agree well with recordings made by the dense High Lava Plains seismic network located at an azimuth of 300° from UTTR. The waveforms of calculated infrasound arrivals are compared with those of seismic recordings. This study illustrates the utility of dense seismic networks for mapping an infrasound field with high spatial resolution. The parabolic equation calculations capture both the effect of scattering of infrasound into geometric acoustic shadow zones and significant temporal broadening of the arrivals. PMID:24437743

  9. Modeling propagation of infrasound signals observed by a dense seismic network.

    PubMed

    Chunchuzov, I; Kulichkov, S; Popov, O; Hedlin, M

    2014-01-01

    The long-range propagation of infrasound from a surface explosion with an explosive yield of about 17.6 t TNT that occurred on June 16, 2008 at the Utah Test and Training Range (UTTR) in the western United States is simulated using an atmospheric model that includes fine-scale layered structure of the wind velocity and temperature fields. Synthetic signal parameters (waveforms, amplitudes, and travel times) are calculated using parabolic equation and ray-tracing methods for a number of ranges between 100 and 800 km from the source. The simulation shows the evolution of several branches of stratospheric and thermospheric signals with increasing range from the source. Infrasound signals calculated using a G2S (ground-to-space) atmospheric model perturbed by small-scale layered wind velocity and temperature fluctuations are shown to agree well with recordings made by the dense High Lava Plains seismic network located at an azimuth of 300° from UTTR. The waveforms of calculated infrasound arrivals are compared with those of seismic recordings. This study illustrates the utility of dense seismic networks for mapping an infrasound field with high spatial resolution. The parabolic equation calculations capture both the effect of scattering of infrasound into geometric acoustic shadow zones and significant temporal broadening of the arrivals.

  10. An Experimental Study on Elastic Wave Propagation in a Filament-Wound Composite Motor Case for Acoustic Emission during Hydroproof Testing

    NASA Astrophysics Data System (ADS)

    Song, Sung-Jin; Choe, Ji-Ung; Bae, Dong-Ho

    Recently, acoustic emission during hydroproof (AE/H) testing has been adopted for the quality assurance of filament-wound composite rocket motor (FCRM) cases. For the proper performance of this testing, it is crucial to understand the characteristics of elastic wave propagation in the FCRM case, since AE signals captured in this testing can very significantly according to various factors including its geometry and material properties. Furthermore, the optimization of the AE/H testing parameters is strongly desired based on this understanding for the suitable interpretation of the test results. To address such a need, we have conducted an experimental study on the analysis of the elastic wave propagation in the FCRM case. In the experiments, broadband ultrasonic waves radiated at a fixed point were received at many different locations after propagating through the FCRM case with different distances and/or directions. From the received signals, the characteristics of elastic wave propagation such as frequency components, the maximum propagation distances and velocity curves were investigated in two separate conditions: one with the case empty and the other with the case hydraulically pressurized. Based on this systematic investigation, the optimal frequency component of the elastic wave to be monitored in the AE/H testing of the FCRM case was determined successfully.

  11. Signal Propagation between Neuronal Populations Controlled by Micropatterning

    PubMed Central

    Albers, Jonas; Offenhäusser, Andreas

    2016-01-01

    The central nervous system consists of an unfathomable number of functional networks enabling highly sophisticated information processing. Guided neuronal growth with a well-defined connectivity and accompanying polarity is essential for the formation of these networks. To investigate how two-dimensional protein patterns influence neuronal outgrowth with respect to connectivity and functional polarity between adjacent populations of neurons, a microstructured model system was established. Exclusive cell growth on patterned substrates was achieved by transferring a mixture of poly-l-lysine and laminin to a cell-repellent glass surface by microcontact printing. Triangular structures with different opening angle, height, and width were chosen as a pattern to achieve network formation with defined behavior at the junction of adjacent structures. These patterns were populated with dissociated primary cortical embryonic rat neurons and investigated with respect to their impact on neuronal outgrowth by immunofluorescence analysis, as well as their functional connectivity by calcium imaging. Here, we present a highly reproducible technique to devise neuronal networks in vitro with a predefined connectivity induced by the design of the gateway. Daisy-chained neuronal networks with predefined connectivity and functional polarity were produced using the presented micropatterning method. Controlling the direction of signal propagation among populations of neurons provides insights to network communication and offers the chance to investigate more about learning processes in networks by external manipulation of cells and signal cascades. PMID:27379230

  12. Signal Propagation between Neuronal Populations Controlled by Micropatterning.

    PubMed

    Albers, Jonas; Offenhäusser, Andreas

    2016-01-01

    The central nervous system consists of an unfathomable number of functional networks enabling highly sophisticated information processing. Guided neuronal growth with a well-defined connectivity and accompanying polarity is essential for the formation of these networks. To investigate how two-dimensional protein patterns influence neuronal outgrowth with respect to connectivity and functional polarity between adjacent populations of neurons, a microstructured model system was established. Exclusive cell growth on patterned substrates was achieved by transferring a mixture of poly-l-lysine and laminin to a cell-repellent glass surface by microcontact printing. Triangular structures with different opening angle, height, and width were chosen as a pattern to achieve network formation with defined behavior at the junction of adjacent structures. These patterns were populated with dissociated primary cortical embryonic rat neurons and investigated with respect to their impact on neuronal outgrowth by immunofluorescence analysis, as well as their functional connectivity by calcium imaging. Here, we present a highly reproducible technique to devise neuronal networks in vitro with a predefined connectivity induced by the design of the gateway. Daisy-chained neuronal networks with predefined connectivity and functional polarity were produced using the presented micropatterning method. Controlling the direction of signal propagation among populations of neurons provides insights to network communication and offers the chance to investigate more about learning processes in networks by external manipulation of cells and signal cascades. PMID:27379230

  13. Superwide-angle acoustic propagations above the critical angles of the Snell law in liquid—solid superlattice

    NASA Astrophysics Data System (ADS)

    Zhang, Sai; Zhang, Yu; Gao, Xiao-Wei

    2014-12-01

    In this paper, superwide-angle acoustic propagations above the critical angles of the Snell law in liquid—solid superlattice are investigated. Incident waves above the critical angles of the Snell law usually inevitably induce total reflection. However, incident waves with big oblique angles through the liquid—solid superlattice will produce a superwide angle transmission in a certain frequency range so that total reflection does not occur. Together with the simulation by finite element analysis, theoretical analysis by using transfer matrix method suggests the Bragg scattering of the Lamb waves as the physical mechanism of acoustic wave super-propagation far beyond the critical angle. Incident angle, filling fraction, and material thickness have significant influences on propagation. Superwide-angle propagation phenomenon may have potential applications in nondestructive evaluation of layered structures and controlling of energy flux.

  14. Theory of acoustic propagation in a multi-phase stratified liquid flowing within an elastic-walled conduit of varying cross-sectional area

    NASA Astrophysics Data System (ADS)

    Garces, M. A.

    2000-08-01

    A theoretical solution is derived for the sound field in an arbitrarily layered viscous fluid moving with the non-negligible Mach number within a duct with elastic walls and varying cross-sectional area. The solution is applied to the interpretation of infrasonic and seismic signals preceding and accompanying volcanic eruptions, and can be used to study the acoustic response of various types of volcanic fluids, including magma-gas mixtures, ash-gas mixtures, and bubble-rich liquids. The acoustic field in a magma conduit can be propagated into the atmosphere through an open vent, and coupled into the ground through the displacement of the magma conduit walls. The theoretical solutions predict that fluids moving with the non-negligible Mach number will exhibit significant attenuation in the upstream direction, thereby reducing the quality factor of the conduit resonance. Thus, acoustic energy generated during an eruption may be preferentially radiated downstream, exacerbating the acoustic decoupling between the upper and lower parts of a stratified magma column. A source model for a repeated cavitation process is introduced as a possible excitation mechanism for tremor signals.

  15. Adaptive Plasticity in Wild Field Cricket’s Acoustic Signaling

    PubMed Central

    Bertram, Susan M.; Harrison, Sarah J.; Thomson, Ian R.; Fitzsimmons, Lauren P.

    2013-01-01

    Phenotypic plasticity can be adaptive when phenotypes are closely matched to changes in the environment. In crickets, rhythmic fluctuations in the biotic and abiotic environment regularly result in diel rhythms in density of sexually active individuals. Given that density strongly influences the intensity of sexual selection, we asked whether crickets exhibit plasticity in signaling behavior that aligns with these rhythmic fluctuations in the socio-sexual environment. We quantified the acoustic mate signaling behavior of wild-caught males of two cricket species, Gryllus veletis and G. pennsylvanicus. Crickets exhibited phenotypically plastic mate signaling behavior, with most males signaling more often and more attractively during the times of day when mating activity is highest in the wild. Most male G. pennsylvanicus chirped more often and louder, with shorter interpulse durations, pulse periods, chirp durations, and interchirp durations, and at slightly higher carrier frequencies during the time of the day that mating activity is highest in the wild. Similarly, most male G. veletis chirped more often, with more pulses per chirp, longer interpulse durations, pulse periods, and chirp durations, shorter interchirp durations, and at lower carrier frequencies during the time of peak mating activity in the wild. Among-male variation in signaling plasticity was high, with some males signaling in an apparently maladaptive manner. Body size explained some of the among-male variation in G. pennsylvanicus plasticity but not G. veletis plasticity. Overall, our findings suggest that crickets exhibit phenotypically plastic mate attraction signals that closely match the fluctuating socio-sexual context they experience. PMID:23935965

  16. Signal processing and tracking of arrivals in ocean acoustic tomography.

    PubMed

    Dzieciuch, Matthew A

    2014-11-01

    The signal processing for ocean acoustic tomography experiments has been improved to account for the scattering of the individual arrivals. The scattering reduces signal coherence over time, bandwidth, and space. In the typical experiment, scattering is caused by the random internal-wave field and results in pulse spreading (over arrival-time and arrival-angle) and wander. The estimator-correlator is an effective procedure that improves the signal-to-noise ratio of travel-time estimates and also provides an estimate of signal coherence. The estimator-correlator smoothes the arrival pulse at the expense of resolution. After an arrival pulse has been measured, it must be associated with a model arrival, typically a ray arrival. For experiments with thousands of transmissions, this is a tedious task that is error-prone when done manually. An error metric that accounts for peak amplitude as well as travel-time and arrival-angle can be defined. The Viterbi algorithm can then be adapted to the task of automated peak tracking. Repeatable, consistent results are produced that are superior to a manual tracking procedure. The tracking can be adjusted by tuning the error metric in logical, quantifiable manner. PMID:25373953

  17. Signal processing and tracking of arrivals in ocean acoustic tomography.

    PubMed

    Dzieciuch, Matthew A

    2014-11-01

    The signal processing for ocean acoustic tomography experiments has been improved to account for the scattering of the individual arrivals. The scattering reduces signal coherence over time, bandwidth, and space. In the typical experiment, scattering is caused by the random internal-wave field and results in pulse spreading (over arrival-time and arrival-angle) and wander. The estimator-correlator is an effective procedure that improves the signal-to-noise ratio of travel-time estimates and also provides an estimate of signal coherence. The estimator-correlator smoothes the arrival pulse at the expense of resolution. After an arrival pulse has been measured, it must be associated with a model arrival, typically a ray arrival. For experiments with thousands of transmissions, this is a tedious task that is error-prone when done manually. An error metric that accounts for peak amplitude as well as travel-time and arrival-angle can be defined. The Viterbi algorithm can then be adapted to the task of automated peak tracking. Repeatable, consistent results are produced that are superior to a manual tracking procedure. The tracking can be adjusted by tuning the error metric in logical, quantifiable manner.

  18. Acoustic propagation from a spiral wave front source in an ocean environment.

    PubMed

    Hefner, Brian T; Dzikowicz, Benjamin R

    2012-03-01

    A spiral wave front source generates a pressure field that has a phase that depends linearly on the azimuthal angle at which it is measured. This differs from a point source that has a phase that is constant with direction. The spiral wave front source has been developed for use in navigation; however, very little work has been done to model this source in an ocean environment. To this end, the spiral wave front analogue of the acoustic point source is developed and is shown to be related to the point source through a simple transformation. This makes it possible to transform the point source solution in a particular ocean environment into the solution for a spiral source in the same environment. Applications of this transformation are presented for a spiral source near the ocean surface and seafloor as well as for the more general case of propagation in a horizontally stratified waveguide.

  19. Vibro-acoustic propagation of gear dynamics in a gear-bearing-housing system

    NASA Astrophysics Data System (ADS)

    Guo, Yi; Eritenel, Tugan; Ericson, Tristan M.; Parker, Robert G.

    2014-10-01

    This work developed a computational process to predict noise radiation from gearboxes. It developed a system-level vibro-acoustic model of an actual gearbox, including gears, bearings, shafts, and housing structure, and compared the results to experiments. The meshing action of gear teeth causes vibrations to propagate through shafts and bearings to the housing radiating noise. The vibration excitation from the gear mesh and the system response were predicted using finite element and lumped-parameter models. From these results, the radiated noise was calculated using a boundary element model of the housing. Experimental vibration and noise measurements from the gearbox confirmed the computational predictions. The developed tool was used to investigate the influence of standard rolling element and modified journal bearings on gearbox radiated noise.

  20. On the Propagation of Plane Acoustic Waves in a Duct With Flexible and Impedance Walls

    NASA Technical Reports Server (NTRS)

    Frendi, Abdelkader; Vu, Bruce

    2003-01-01

    This Technical Memorandum (TM) discusses the harmonic and random plane acoustic waves propagating from inside a duct to its surroundings. Various duct surfaces are considered, such as rigid, flexible, and impedance. In addition, the effects of a mean flow are studied when the duct alone is considered. Results show a significant reduction in overall sound pressure levels downstream of the impedance wall for both mean flow and no mean flow cases and for a narrow duct. When a wider duct is used, the overall sound pressure level (OSPL) reduction downstream of the impedance wall is much smaller. In the far field, the directivity is such that the overall sound pressure level is reduced by about 5 decibels (dB) on the side of the impedance wall. When a flexible surface is used, the far field directivity becomes asymmetric with an increase in the OSPL on the side of the flexible surface of about 7 dB.

  1. Experimental study of noise sources and acoustic propagation in a turbofan model

    NASA Astrophysics Data System (ADS)

    Lewy, S.; Canard-Caruana, S.; Julliard, J.

    1990-10-01

    Experimental studies of the acoustic radiation of subsonic fans mainly due to blade and vane presure fluctuations were performed in the SNECMA 5C2 compressor anechoic facility. A brief description of the test rig is presented noting that the CA5 turbojet engine model fan has a diameter of 47 cm, 48 blades, and a nominal rotation speed of 12,600 rpm. The two chief experiments discussed are the measurement of blade and vane pressure fluctuations by thin-film transducers and the spinning mode analysis of the sound field propagating in the intake duct. Several examples of applications are discussed, and it is shown that an inflow control device, as expected, reduces the aerodynamic disturbances by about 10 dB. Rotor-stator interaction tones are determined by the modal analysis, and it is found that a duct lining with a length of one duct radius could give an insertion loss up to 20 dB in flight.

  2. Propagation and oblique collision of ion-acoustic solitary waves in a magnetized dusty electronegative plasma

    SciTech Connect

    El-Labany, S. K.; Behery, E. E.; El-Shamy, E. F.

    2013-12-15

    The propagation and oblique collision of ion-acoustic (IA) solitary waves in a magnetized dusty electronegative plasma consisting of cold mobile positive ions, Boltzmann negative ions, Boltzmann electrons, and stationary positive/negative dust particles are studied. The extended Poincaré-Lighthill-Kuo perturbation method is employed to derive the Korteweg-de Vries equations and the corresponding expressions for the phase shifts after collision between two IA solitary waves. It turns out that the angle of collision, the temperature and density of negative ions, and the dust density of opposite polarity have reasonable effects on the phase shift. Clearly, the numerical results demonstrated that the IA solitary waves are delayed after the oblique collision. The current finding of this work is applicable in many plasma environments having negative ion species, such as D- and F-regions of the Earth's ionosphere and some laboratory plasma experiments.

  3. Wave propagation in piezoelectric layered structures of film bulk acoustic resonators.

    PubMed

    Zhu, Feng; Qian, Zheng-hua; Wang, Bin

    2016-04-01

    In this paper, we studied the wave propagation in a piezoelectric layered plate consisting of a piezoelectric thin film on an electroded elastic substrate with or without a driving electrode. Both plane-strain and anti-plane waves were taken into account for the sake of completeness. Numerical results on dispersion relations, cut-off frequencies and vibration distributions of selected modes were given. The effects of mass ratio of driving electrode layer to film layer on the dispersion curve patterns and cut-off frequencies of the plane-strain waves were discussed in detail. Results show that the mass ratio does not change the trend of dispersion curves but larger mass ratio lowers corresponding frequency at a fixed wave number and may extend the frequency range for energy trapping. Those results are of fundamental importance and can be used as a reference to develop effective two-dimensional plate equations for structural analysis and design of film bulk acoustic resonators.

  4. The stability of freely-propagating ion acoustic waves in 2D systems

    NASA Astrophysics Data System (ADS)

    Chapman, Thomas; Berger, Richard; Banks, Jeffrey; Brunner, Stephan

    2014-10-01

    The stability of a freely-propagating ion acoustic wave (IAW) is a basic science problem that is made difficult by the need to resolve electron kinetic effects over a timescale that greatly exceeds the IAW period during numerical simulation. Recent results examining IAW stability using a 1D+1V Vlasov-Poisson solver indicate that instability is a fundamental property of IAWs that occurs over most if not all of the parameter space of relevance to ICF experiments. We present here new results addressing the fundamental question of IAW stability across a broad range of plasma conditions in a 2D+2V system using LOKI, ranging from a regime of relatively weak to a regime of relatively strong ion kinetic effects. Work performed under the auspices of the U.S. DOE by LLNL (DE-AC52-07NA27344) and funded by the LDRD Program at LLNL (12-ERD-061).

  5. Acoustic shock wave propagation in a heterogeneous medium: a numerical simulation beyond the parabolic approximation.

    PubMed

    Dagrau, Franck; Rénier, Mathieu; Marchiano, Régis; Coulouvrat, François

    2011-07-01

    Numerical simulation of nonlinear acoustics and shock waves in a weakly heterogeneous and lossless medium is considered. The wave equation is formulated so as to separate homogeneous diffraction, heterogeneous effects, and nonlinearities. A numerical method called heterogeneous one-way approximation for resolution of diffraction (HOWARD) is developed, that solves the homogeneous part of the equation in the spectral domain (both in time and space) through a one-way approximation neglecting backscattering. A second-order parabolic approximation is performed but only on the small, heterogeneous part. So the resulting equation is more precise than the usual standard or wide-angle parabolic approximation. It has the same dispersion equation as the exact wave equation for all forward propagating waves, including evanescent waves. Finally, nonlinear terms are treated through an analytical, shock-fitting method. Several validation tests are performed through comparisons with analytical solutions in the linear case and outputs of the standard or wide-angle parabolic approximation in the nonlinear case. Numerical convergence tests and physical analysis are finally performed in the fully heterogeneous and nonlinear case of shock wave focusing through an acoustical lens.

  6. A finite element propagation model for extracting normal incidence impedance in nonprogressive acoustic wave fields

    NASA Technical Reports Server (NTRS)

    Watson, Willie R.; Jones, Michael G.; Tanner, Sharon E.; Parrott, Tony L.

    1995-01-01

    A propagation model method for extracting the normal incidence impedance of an acoustic material installed as a finite length segment in a wall of a duct carrying a nonprogressive wave field is presented. The method recasts the determination of the unknown impedance as the minimization of the normalized wall pressure error function. A finite element propagation model is combined with a coarse/fine grid impedance plane search technique to extract the impedance of the material. Results are presented for three different materials for which the impedance is known. For each material, the input data required for the prediction scheme was computed from modal theory and then contaminated by random error. The finite element method reproduces the known impedance of each material almost exactly for random errors typical of those found in many measurement environments. Thus, the method developed here provides a means for determining the impedance of materials in a nonprogressirve wave environment such as that usually encountered in a commercial aircraft engine and most laboratory settings.

  7. Acoustic emission for characterising the crack propagation in strain-hardening cement-based composites (SHCC)

    SciTech Connect

    Paul, S.C.; Pirskawetz, S.; Zijl, G.P.A.G. van; Schmidt, W.

    2015-03-15

    This paper presents the analysis of crack propagation in strain-hardening cement-based composite (SHCC) under tensile and flexural load by using acoustic emission (AE). AE is a non-destructive technique to monitor the development of structural damage due to external forces. The main objective of this research was to characterise the cracking behaviour in SHCC in direct tensile and flexural tests by using AE. A better understanding of the development of microcracks in SHCC will lead to a better understanding of pseudo strain-hardening behaviour of SHCC and its general performance. ARAMIS optical deformation analysis was also used in direct tensile tests to observe crack propagation in SHCC materials. For the direct tensile tests, SHCC specimens were prepared with polyvinyl alcohol (PVA) fibre with three different volume percentages (1%, 1.85% and 2.5%). For the flexural test beam specimens, only a fibre dosage of 1.85% was applied. It was found that the application of AE in SHCC can be a good option to analyse the crack growth in the specimens under increasing load, the location of the cracks and most importantly the identification of matrix cracking and fibre rupture or slippage.

  8. Oblique propagation of ion-acoustic solitary waves in a magnetized electron-positron-ion plasma

    SciTech Connect

    Ferdousi, M.; Sultana, S.; Mamun, A. A.

    2015-03-15

    The properties of obliquely propagating ion-acoustic solitary waves in the presence of ambient magnetic field have been investigated theoretically in an electron-positron-ion nonthermal plasma. The plasma nonthermality is introduced via the q-nonextensive distribution of electrons and positrons. The Korteweg-de Vries (K-dV) and modified K-dV (mK-dV) equations are derived by adopting reductive perturbation method. The solution of K-dV and modified K-dV equation, which describes the solitary wave characteristics in the long wavelength limit, is obtained by steady state approach. It is seen that the electron and positron nonextensivity and external magnetic field (obliqueness) have significant effects on the characteristics of solitary waves. A critical value of nonextensivity is found for which solitary structures transit from positive to negative potential. The findings of this investigation may be used in understanding the wave propagation in laboratory and space plasmas where static external magnetic field is present.

  9. Acoustic wave propagation in the solar atmosphere 1. Rediscussion of the linearized theory including nonstationary solutions

    NASA Technical Reports Server (NTRS)

    Wang, Zhengzhi; Ulrich, Roger K.; Coroniti, Ferdinand V.

    1995-01-01

    The normal dispersion analysis for linear adiabatic wave propagation in stratified atmospheres adopts a real frequency and solves for the complex vertical wavenumber. We show that an exponentially stratified atmosphere does not have any spatially bounded normal modes for real frequencies. The usual treatment involves a representation where the imaginary part of the vertical wavenumber yields a rho(sup -1/2) dependence of the velocity amplitude which diverges as the absolute value of z approaches infinity. This solution includes a cutoff frequency below which acoustic modes cannot propagate. The standard dispersion analysis is a local representation of the wave behavior in both space and time but which is assumed to represent the motion throughout - infinity is less than t is less than infinity and 0 is less than infinity. However, any solution which has a purely sinusoidal time dependence extends through this full domain and is divergent due to the rho(sup -1/2) dependence. We show that a proper description is in terms of a near field of a boundary piston which is driven arbitrarily as a function of space and time. The atmosphere which responds to this piston is a semi-infinite layer which has an initially constant sound speed but which has the usual gravitational stratification. In a restricted domain of space and time above this boundary, the wavelike behavior of the medium may be described by frequencies and vertical wavenumbers which are both complex. When both parameters are allowed to have imaginary components, a new range of solutions is found for which there is virtually no cutoff frequency. We show that vertical energy propagation can take place through the solar atmosphere as a result of oscillations below the nominal cutoff frequency. Previously, the largest amplitude oscillations which generally have low frequencies were dropped from the calculation of energy flux becuase their frequencies are below the cutoff frequency. This new family of near

  10. Explosive activity at Mt. Yasur volcano: characterization of acoustic signals

    NASA Astrophysics Data System (ADS)

    Spina, L.; Taddeucci, J.; Scarlato, P.; Freda, C.; Gresta, S.

    2012-04-01

    Mt. Yasur (Vanuatu Islands) is an active volcano characterized by persistent Strombolian to mild Vulcanian explosive activity, well known to generate a broad variety of air pressure waves. Between 9 and 12 July 2011, we recorded explosive activity from the three active vents of Mt. Yasur by means of a multiparametric station, comprising thermal and visual high-speed cameras and two ECM microphones recording both infrasonic and sonic signals at 10 kHz sampling frequency. A total of 106 major acoustic events, lasting on average 5 seconds (up to 20 in some ash-rich explosion), correspond to visually recorded explosions at the vents and exhibit a surprisingly broad waveform variability. Major events intervene between minor transients with strongly repetitive waveforms typical of puffing activity. Spectral analyses have been computed on both major events and whole traces. Analysis of major events, carried out using a 5.12 s long window, reveals peak frequencies mostly beneath 5 Hz, only a few events displaying a notable energy content in the sonic band (up to 100 Hz ca). Peak-to-peak amplitude as well as RMS values (evaluated from event start to end) were computed on both raw and filtered (above and below 20 Hz) signals. Spectrograms of the whole traces, carried out using 1.28, 2.56, and 5.12 seconds long windows with 50% overlap, outline clearly the frequency content of major events and the occurrence of puffing ones. We also evaluated the peak frequency of each spectrum of the spectrogram, in order to detect spectral variation of the puffing signal. Considering their great variability, we classified the major events on the base of their spectral content rather than on waveform, grouping together all events having similar spectra by cross-correlating them. Three spectral families cover most of the dataset, as follows: 1) variable and irregular shaped spectra, with energy mainly below 4 Hz; 2) monochromatic events, with simple spectra corresponding in the time domain to

  11. A Fibre Bragg Grating Sensor as a Receiver for Acoustic Communications Signals

    PubMed Central

    Wild, Graham; Hinckley, Steven

    2011-01-01

    A Fibre Bragg Grating (FBG) acoustic sensor is used as a receiver for acoustic communications signals. Acoustic transmissions were generated in aluminium and Carbon Fibre Composite (CFC) panels. The FBG receiver was coupled to the bottom surface opposite a piezoelectric transmitter. For the CFC, a second FBG was embedded within the layup for comparison. We show the transfer function, frequency response, and transient response of the acoustic communications channels. In addition, the FBG receiver was used to detect Phase Shift Keying (PSK) communications signals, which was shown to be the most robust method in a highly resonant communications channel. PMID:22346585

  12. Signal processing for passive detection and classification of underwater acoustic signals

    NASA Astrophysics Data System (ADS)

    Chung, Kil Woo

    2011-12-01

    This dissertation examines signal processing for passive detection, classification and tracking of underwater acoustic signals for improving port security and the security of coastal and offshore operations. First, we consider the problem of passive acoustic detection of a diver in a shallow water environment. A frequency-domain multi-band matched-filter approach to swimmer detection is presented. The idea is to break the frequency contents of the hydrophone signals into multiple narrow frequency bands, followed by time averaged (about half of a second) energy calculation over each band. Then, spectra composed of such energy samples over the chosen frequency bands are correlated to form a decision variable. The frequency bands with highest Signal/Noise ratio are used for detection. The performance of the proposed approach is demonstrated for experimental data collected for a diver in the Hudson River. We also propose a new referenceless frequency-domain multi-band detector which, unlike other reference-based detectors, does not require a diver specific signature. Instead, our detector matches to a general feature of the diver spectrum in the high frequency range: the spectrum is roughly periodic in time and approximately flat when the diver exhales. The performance of the proposed approach is demonstrated by using experimental data collected from the Hudson River. Moreover, we present detection, classification and tracking of small vessel signals. Hydroacoustic sensors can be applied for the detection of noise generated by vessels, and this noise can be used for vessel detection, classification and tracking. This dissertation presents recent improvements aimed at the measurement and separation of ship DEMON (Detection of Envelope Modulation on Noise) acoustic signatures in busy harbor conditions. Ship signature measurements were conducted in the Hudson River and NY Harbor. The DEMON spectra demonstrated much better temporal stability compared with the full ship

  13. Implementation of dispersion-free slow acoustic wave propagation and phase engineering with helical-structured metamaterials

    PubMed Central

    Zhu, Xuefeng; Li, Kun; Zhang, Peng; Zhu, Jie; Zhang, Jintao; Tian, Chao; Liu, Shengchun

    2016-01-01

    The ability to slow down wave propagation in materials has attracted significant research interest. A successful solution will give rise to manageable enhanced wave–matter interaction, freewheeling phase engineering and spatial compression of wave signals. The existing methods are typically associated with constructing dispersive materials or structures with local resonators, thus resulting in unavoidable distortion of waveforms. Here we show that, with helical-structured acoustic metamaterials, it is now possible to implement dispersion-free sound deceleration. The helical-structured metamaterials present a non-dispersive high effective refractive index that is tunable through adjusting the helicity of structures, while the wavefront revolution plays a dominant role in reducing the group velocity. Finally, we numerically and experimentally demonstrate that the helical-structured metamaterials with designed inhomogeneous unit cells can turn a normally incident plane wave into a self-accelerating beam on the prescribed parabolic trajectory. The helical-structured metamaterials will have profound impact to applications in explorations of slow wave physics. PMID:27198887

  14. Implementation of dispersion-free slow acoustic wave propagation and phase engineering with helical-structured metamaterials.

    PubMed

    Zhu, Xuefeng; Li, Kun; Zhang, Peng; Zhu, Jie; Zhang, Jintao; Tian, Chao; Liu, Shengchun

    2016-05-20

    The ability to slow down wave propagation in materials has attracted significant research interest. A successful solution will give rise to manageable enhanced wave-matter interaction, freewheeling phase engineering and spatial compression of wave signals. The existing methods are typically associated with constructing dispersive materials or structures with local resonators, thus resulting in unavoidable distortion of waveforms. Here we show that, with helical-structured acoustic metamaterials, it is now possible to implement dispersion-free sound deceleration. The helical-structured metamaterials present a non-dispersive high effective refractive index that is tunable through adjusting the helicity of structures, while the wavefront revolution plays a dominant role in reducing the group velocity. Finally, we numerically and experimentally demonstrate that the helical-structured metamaterials with designed inhomogeneous unit cells can turn a normally incident plane wave into a self-accelerating beam on the prescribed parabolic trajectory. The helical-structured metamaterials will have profound impact to applications in explorations of slow wave physics.

  15. Implementation of dispersion-free slow acoustic wave propagation and phase engineering with helical-structured metamaterials

    NASA Astrophysics Data System (ADS)

    Zhu, Xuefeng; Li, Kun; Zhang, Peng; Zhu, Jie; Zhang, Jintao; Tian, Chao; Liu, Shengchun

    2016-05-01

    The ability to slow down wave propagation in materials has attracted significant research interest. A successful solution will give rise to manageable enhanced wave-matter interaction, freewheeling phase engineering and spatial compression of wave signals. The existing methods are typically associated with constructing dispersive materials or structures with local resonators, thus resulting in unavoidable distortion of waveforms. Here we show that, with helical-structured acoustic metamaterials, it is now possible to implement dispersion-free sound deceleration. The helical-structured metamaterials present a non-dispersive high effective refractive index that is tunable through adjusting the helicity of structures, while the wavefront revolution plays a dominant role in reducing the group velocity. Finally, we numerically and experimentally demonstrate that the helical-structured metamaterials with designed inhomogeneous unit cells can turn a normally incident plane wave into a self-accelerating beam on the prescribed parabolic trajectory. The helical-structured metamaterials will have profound impact to applications in explorations of slow wave physics.

  16. Implementation of dispersion-free slow acoustic wave propagation and phase engineering with helical-structured metamaterials.

    PubMed

    Zhu, Xuefeng; Li, Kun; Zhang, Peng; Zhu, Jie; Zhang, Jintao; Tian, Chao; Liu, Shengchun

    2016-01-01

    The ability to slow down wave propagation in materials has attracted significant research interest. A successful solution will give rise to manageable enhanced wave-matter interaction, freewheeling phase engineering and spatial compression of wave signals. The existing methods are typically associated with constructing dispersive materials or structures with local resonators, thus resulting in unavoidable distortion of waveforms. Here we show that, with helical-structured acoustic metamaterials, it is now possible to implement dispersion-free sound deceleration. The helical-structured metamaterials present a non-dispersive high effective refractive index that is tunable through adjusting the helicity of structures, while the wavefront revolution plays a dominant role in reducing the group velocity. Finally, we numerically and experimentally demonstrate that the helical-structured metamaterials with designed inhomogeneous unit cells can turn a normally incident plane wave into a self-accelerating beam on the prescribed parabolic trajectory. The helical-structured metamaterials will have profound impact to applications in explorations of slow wave physics. PMID:27198887

  17. Propagation characteristics of dust-acoustic waves in presence of a floating cylindrical object in the DC discharge plasma

    NASA Astrophysics Data System (ADS)

    Choudhary, Mangilal; Mukherjee, S.; Bandyopadhyay, P.

    2016-08-01

    The experimental observation of the self-excited dust acoustic waves (DAWs) and its propagation characteristics in the absence and presence of a floating cylindrical object is investigated. The experiments are carried out in a direct current (DC) glow discharge dusty plasma in a background of argon gas. Dust particles are found levitated at the interface of plasma and cathode sheath region. The DAWs are spontaneously excited in the dust medium and found to propagate in the direction of ion drift (along the gravity) above a threshold discharge current at low pressure. Excitation of such a low frequency wave is a result of the ion-dust streaming instability in the dust cloud. Characteristics of the propagating dust acoustic wave get modified in the presence of a floating cylindrical object of radius larger than that of the dust Debye length. Instead of propagation in the vertical direction, the DAWs are found to propagate obliquely in the presence of the floating object (kept either vertically or horizontally). In addition, a horizontally aligned floating object forms a wave structure in the cone shaped dust cloud in the sheath region. Such changes in the propagation characteristics of DAWs are explained on the basis of modified potential (or electric field) distribution, which is a consequence of coupling of sheaths formed around the cylindrical object and the cathode.

  18. Wave propagation in a 2D nonlinear structural acoustic waveguide using asymptotic expansions of wavenumbers

    NASA Astrophysics Data System (ADS)

    Vijay Prakash, S.; Sonti, Venkata R.

    2016-02-01

    Nonlinear acoustic wave propagation in an infinite rectangular waveguide is investigated. The upper boundary of this waveguide is a nonlinear elastic plate, whereas the lower boundary is rigid. The fluid is assumed to be inviscid with zero mean flow. The focus is restricted to non-planar modes having finite amplitudes. The approximate solution to the acoustic velocity potential of an amplitude modulated pulse is found using the method of multiple scales (MMS) involving both space and time. The calculations are presented up to the third order of the small parameter. It is found that at some frequencies the amplitude modulation is governed by the Nonlinear Schrödinger equation (NLSE). The first objective here is to study the nonlinear term in the NLSE. The sign of the nonlinear term in the NLSE plays a role in determining the stability of the amplitude modulation. Secondly, at other frequencies, the primary pulse interacts with its higher harmonics, as do two or more primary pulses with their resultant higher harmonics. This happens when the phase speeds of the waves match and the objective is to identify the frequencies of such interactions. For both the objectives, asymptotic coupled wavenumber expansions for the linear dispersion relation are required for an intermediate fluid loading. The novelty of this work lies in obtaining the asymptotic expansions and using them for predicting the sign change of the nonlinear term at various frequencies. It is found that when the coupled wavenumbers approach the uncoupled pressure-release wavenumbers, the amplitude modulation is stable. On the other hand, near the rigid-duct wavenumbers, the amplitude modulation is unstable. Also, as a further contribution, these wavenumber expansions are used to identify the frequencies of the higher harmonic interactions. And lastly, the solution for the amplitude modulation derived through the MMS is validated using these asymptotic expansions.

  19. Effects of trapped electrons on the oblique propagation of ion acoustic solitary waves in electron-positron-ion plasmas

    NASA Astrophysics Data System (ADS)

    Hafez, M. G.; Roy, N. C.; Talukder, M. R.; Hossain Ali, M.

    2016-08-01

    The characteristics of the nonlinear oblique propagation of ion acoustic solitary waves in unmagnetized plasmas consisting of Boltzmann positrons, trapped electrons and ions are investigated. The modified Kadomtsev-Petviashivili ( m K P ) equation is derived employing the reductive perturbation technique. The parametric effects on phase velocity, Sagdeev potential, amplitude and width of solitons, and electrostatic ion acoustic solitary structures are graphically presented with the relevant physical explanations. This study may be useful for the better understanding of physical phenomena concerned in plasmas in which the effects of trapped electrons control the dynamics of wave.

  20. Acoustical effects of a large ridge on low-frequency sound propagation in stationary and moving atmospheres

    NASA Technical Reports Server (NTRS)

    Robertson, J. S.; Jacobson, M. J.; Siegmann, W. L.; Santandrea, D. P.

    1989-01-01

    The effects of a ridge on a low-frequency acoustic propagation in quiescent and windy atmospheres are investigated using a parabolic approximation. A logarithmic wind-speed profile, commonly employed to model atmospheric wind currents, is modified and used to model two-dimensional atmospheric flow over a triangularly-shaped hill. The parabolic equation is solved using an implicit finite-difference algorithm. Several examples are examined to determine the combined effects of source-ridge distance, ridge dimensions, wind-speed profile, and CW source frequency on the received acoustic field.

  1. Nonlinear propagation of small-amplitude modified electron acoustic solitary waves and double layer in semirelativistic plasmas

    SciTech Connect

    Sah, O.P.; Goswami, K.S. )

    1994-10-01

    Considering an unmagnetized plasma consisting of relativistic drifting electrons and nondrifting thermal ions and by using reductive perturbation method, a usual Korteweg--de Vries (KdV) equation and a generalized form of KdV equation are derived. It is found that while the former governs the dynamics of a small-amplitude rarefactive modified electron acoustic (MEA) soliton, the latter governs the dynamics of a weak compressive modified electron acoustic double layer. The influences of relativistic effect on the propagation of such a soliton and double layer are examined. The relevance of this investigation to space plasma is pointed out.

  2. Filtering of Acoustic Signals within the Hearing Organ

    PubMed Central

    Ramamoorthy, Sripriya; Chen, Fangyi; Jacques, Steven L.; Wang, Ruikang; Choudhury, Niloy; Fridberger, Anders

    2014-01-01

    The detection of sound by the mammalian hearing organ involves a complex mechanical interplay among different cell types. The inner hair cells, which are the primary sensory receptors, are stimulated by the structural vibrations of the entire organ of Corti. The outer hair cells are thought to modulate these sound-evoked vibrations to enhance hearing sensitivity and frequency resolution, but it remains unclear whether other structures also contribute to frequency tuning. In the current study, sound-evoked vibrations were measured at the stereociliary side of inner and outer hair cells and their surrounding supporting cells, using optical coherence tomography interferometry in living anesthetized guinea pigs. Our measurements demonstrate the presence of multiple vibration modes as well as significant differences in frequency tuning and response phase among different cell types. In particular, the frequency tuning at the inner hair cells differs from other cell types, causing the locus of maximum inner hair cell activation to be shifted toward the apex of the cochlea compared with the outer hair cells. These observations show that additional processing and filtering of acoustic signals occur within the organ of Corti before inner hair cell excitation, representing a departure from established theories. PMID:24990925

  3. On the effects of small-scale variability on acoustic propagation in Fram Strait: The tomography forward problem.

    PubMed

    Dushaw, Brian D; Sagen, Hanne; Beszczynska-Möller, Agnieszka

    2016-08-01

    Acoustic tomography systems have been deployed in Fram Strait over the past decade to complement existing observing systems there. The observed acoustic arrival patterns are unusual, however, consisting of a single, broad arrival pulse, with no discernible repeating patterns or individual ray arrivals. The nature of these arrivals is caused by vigorous acoustic scattering from the small-scale processes that dominate ocean variability in Fram Strait. Simple models for internal wave and mesoscale variability were constructed and tailored to match the variability observed by moored thermisters in Fram Strait. The internal wave contribution to variability is weak. Acoustic propagation through a simulated ocean consisting of a climatological sound speed plus mesoscale and internal wave scintillations obtains arrival patterns that match the characteristics of those observed, i.e., pulse width and travel time variation. The scintillations cause a proliferation of acoustic ray paths, however, reminiscent of "ray chaos." This understanding of the acoustic forward problem is prerequisite to designing an inverse scheme for estimating temperature from the observed travel times. PMID:27586755

  4. Propagation of acoustic waves in a one-dimensional array of noncohesive cylinders.

    PubMed

    Huillard, Guillaume; Noblin, Xavier; Rajchenbach, Jean

    2011-07-01

    By means of a photoelastic method, we access the visualization of acoustic waves propagating in a one-dimensional array of noncohesive cylinders. As pointed by Nesterenko in the case of spherical grains [V. F. Nesterenko, J. Appl. Mech. Tech. Phys. 24, p. 567 (1983)], the nonlinearity of the contact law between the grains induces a dependence of the wave velocity both on its amplitude and on the confinement force. Our experimental method allows one to access the evolution in time of the internal state of stress of individual grains with excellent accuracy. We show that the velocity of the sound presents two regimes as a function of the confining force. For low forces, the dependence is strongly nonlinear, while it weakens for higher forces. By means of the direct visualization of the contact zone, we show that both micro- and macroscale imperfections of the surface of contact explain the low forces behavior. We test the consistency of our experimental findings results with both the theoretical expectations and with the experimental determination of the force-displacement dependence. We show, moreover, that the main damping process originates in solid friction. PMID:21867329

  5. Wave propagation in piezoelectric layered structures of film bulk acoustic resonators.

    PubMed

    Zhu, Feng; Qian, Zheng-hua; Wang, Bin

    2016-04-01

    In this paper, we studied the wave propagation in a piezoelectric layered plate consisting of a piezoelectric thin film on an electroded elastic substrate with or without a driving electrode. Both plane-strain and anti-plane waves were taken into account for the sake of completeness. Numerical results on dispersion relations, cut-off frequencies and vibration distributions of selected modes were given. The effects of mass ratio of driving electrode layer to film layer on the dispersion curve patterns and cut-off frequencies of the plane-strain waves were discussed in detail. Results show that the mass ratio does not change the trend of dispersion curves but larger mass ratio lowers corresponding frequency at a fixed wave number and may extend the frequency range for energy trapping. Those results are of fundamental importance and can be used as a reference to develop effective two-dimensional plate equations for structural analysis and design of film bulk acoustic resonators. PMID:26812132

  6. Effect of Bohm quantum potential in the propagation of ion-acoustic waves in degenerate plasmas

    NASA Astrophysics Data System (ADS)

    Hasan, M. M.; Hossen, M. A.; Rafat, A.; Mamun, A. A.

    2016-10-01

    A theoretical investigation has been carried out on the propagation of the ion-acoustic (IA) waves in a relativistic degenerate plasma containing relativistic degenerate electron and positron fluids in the presence of inertial non-relativistic light ion fluid. The Korteweg-de Vries (K-dV), modified K-dV (mK-dV), and mixed mK-dV (mmK-dV) equations are derived by adopting the reductive perturbation method. In order to analyze the basic features (phase speed, amplitude, width, etc.) of the IA solitary waves (SWs), the SWs solutions of the K-dV, mK-dV, and mmK-dV are numerically analyzed. It is found that the degenerate pressure, inclusion of the new phenomena like the Fermi temperatures and quantum mechanical effects (arising due to the quantum diffraction) of both electrons and positrons, number densities, etc., of the plasma species remarkably change the basic characteristics of the IA SWs which are found to be formed either with positive or negative potential. The implication of our results in explaining different nonlinear phenomena in astrophysical compact objects, e.g., white dwarfs, neutron stars, etc., and laboratory plasmas like intense laser-solid matter interaction experiments, etc., are mentioned.

  7. Frequency-dependent damping in propagating slow magneto-acoustic waves

    SciTech Connect

    Prasad, S. Krishna; Banerjee, D.; Van Doorsselaere, T.

    2014-07-10

    Propagating slow magneto-acoustic waves are often observed in polar plumes and active region fan loops. The observed periodicities of these waves range from a few minutes to a few tens of minutes and their amplitudes were found to decay rapidly as they travel along the supporting structure. Previously, thermal conduction, compressive viscosity, radiation, density stratification, and area divergence were identified to be some of the causes for change in the slow wave amplitude. Our recent studies indicate that the observed damping in these waves is frequency-dependent. We used imaging data from the Solar Dynamics Observatory/Atmospheric Imaging Assembly to study this dependence in detail and for the first time via observations we attempted to deduce a quantitative relation between the damping length and frequency of these oscillations. We developed a new analysis method to obtain this relation. The observed frequency dependence does not seem to agree with the current linear wave theory and it was found that the waves observed in the polar regions show a different dependence from those observed in the on-disk loop structures despite the similarity in their properties.

  8. Propagation of Flexural Mode AE Signals in GR/EP Composite Plates

    NASA Technical Reports Server (NTRS)

    Prosser, W. H.; Gorman, M. R.

    1992-01-01

    It has been documented that AE signals propagate in thin plates as extensional and flexural plate modes. This was demonstrated using simulated AE sources (pencil lead breaks) by Gorman on thin aluminum and gr/ep composite plates and by Gorman and Prosser on thin aluminum plates. A typical signal from a pencil lead break source which identifies these two modes is shown. AE signals from transverse matrix cracking sources in gr/ep composite plates were also shown to propagate as plate modes by Gorman and Ziola. Smith showed that crack growth events in thin aluminum plates under spectrum fatigue loading produced signals that propagated as plate modes. Additionally, Prosser et al. showed that AE signals propagated as plate modes in a thin walled composite tube.

  9. Wideband propagation measurement system using spread spectrum signaling and TDRS

    NASA Technical Reports Server (NTRS)

    Jenkins, Jeffrey D.; Fan, Yiping; Osborne, William P.

    1995-01-01

    In this paper, a wideband propagation measurement system, which consisted of a ground-based transmitter, a mobile receiver, and a data acquisition system, was constructed. This system has been employed in a study of the characteristics of different propagation environments, such as urban, suburban and rural areas, by using a pseudonoise spreading sequence transmitted over NASA's Tracking and Data Relay Satellite System. The hardware and software tests showed that it met overall system requirements and it was very robust during a 3-month-long outdoor data collection experiment.

  10. Transmission in nonuniform ducts - A comparative evaluation of finite element and weighted residuals computational schemes. [acoustic propagation

    NASA Technical Reports Server (NTRS)

    Eversman, W.; Astley, R. J.; Thanh, V. P.

    1977-01-01

    The Method of Weighted Residuals (MWR) and the Finite Element Method (FEM) are considered as computational schemes in the problem of acoustic transmission in nonuniform ducts. MWR is presented in an improved form which includes the interaction of acoustic modes (irrotational) and hydrodynamic modes (rotational). FEM is based on a weighted residuals formulation using eight noded isoparametric elements. Both are applicable to two-dimensional and axially symmetric problems. Calculations are made for several sample problems to demonstrate accuracy and relative efficiency. One test case has implications in the phenomenon of subsonic acoustic choking and it is found that a large transmission loss is not an automatic consequence of propagation against a high subsonic mean flow.

  11. Oblique propagation of ion acoustic soliton-cnoidal waves in a magnetized electron-positron-ion plasma with superthermal electrons

    SciTech Connect

    Wang, Jian-Yong; Cheng, Xue-Ping; Tang, Xiao-Yan; Yang, Jian-Rong; Ren, Bo

    2014-03-15

    The oblique propagation of ion-acoustic soliton-cnoidal waves in a magnetized electron-positron-ion plasma with superthermal electrons is studied. Linear dispersion relations of the fast and slow ion-acoustic modes are discussed under the weak and strong magnetic field situations. By means of the reductive perturbation approach, Korteweg-de Vries equations governing ion-acoustic waves of fast and slow modes are derived, respectively. Explicit interacting soliton-cnoidal wave solutions are obtained by the generalized truncated Painlevé expansion. It is found that every peak of a cnoidal wave elastically interacts with a usual soliton except for some phase shifts. The influence of the electron superthermality, positron concentration, and magnetic field obliqueness on the soliton-cnoidal wave are investigated in detail.

  12. Effect of gas adsorption on acoustic wave propagation in MFI zeolite membrane materials: experiment and molecular simulation.

    PubMed

    Manga, Etoungh D; Blasco, Hugues; Da-Costa, Philippe; Drobek, Martin; Ayral, André; Le Clezio, Emmanuel; Despaux, Gilles; Coasne, Benoit; Julbe, Anne

    2014-09-01

    The present study reports on the development of a characterization method of porous membrane materials which consists of considering their acoustic properties upon gas adsorption. Using acoustic microscopy experiments and atomistic molecular simulations for helium adsorbed in a silicalite-1 zeolite membrane layer, we showed that acoustic wave propagation could be used, in principle, for controlling the membranes operando. Molecular simulations, which were found to fit experimental data, showed that the compressional modulus of the composite system consisting of silicalite-1 with adsorbed He increases linearly with the He adsorbed amount while its shear modulus remains constant in a large range of applied pressures. These results suggest that the longitudinal and Rayleigh wave velocities (VL and VR) depend on the He adsorbed amount whereas the transverse wave velocity VT remains constant. PMID:25089584

  13. Effect of gas adsorption on acoustic wave propagation in MFI zeolite membrane materials: experiment and molecular simulation.

    PubMed

    Manga, Etoungh D; Blasco, Hugues; Da-Costa, Philippe; Drobek, Martin; Ayral, André; Le Clezio, Emmanuel; Despaux, Gilles; Coasne, Benoit; Julbe, Anne

    2014-09-01

    The present study reports on the development of a characterization method of porous membrane materials which consists of considering their acoustic properties upon gas adsorption. Using acoustic microscopy experiments and atomistic molecular simulations for helium adsorbed in a silicalite-1 zeolite membrane layer, we showed that acoustic wave propagation could be used, in principle, for controlling the membranes operando. Molecular simulations, which were found to fit experimental data, showed that the compressional modulus of the composite system consisting of silicalite-1 with adsorbed He increases linearly with the He adsorbed amount while its shear modulus remains constant in a large range of applied pressures. These results suggest that the longitudinal and Rayleigh wave velocities (VL and VR) depend on the He adsorbed amount whereas the transverse wave velocity VT remains constant.

  14. Ecology of acoustic signalling and the problem of masking interference in insects.

    PubMed

    Schmidt, Arne K D; Balakrishnan, Rohini

    2015-01-01

    The efficiency of long-distance acoustic signalling of insects in their natural habitat is constrained in several ways. Acoustic signals are not only subjected to changes imposed by the physical structure of the habitat such as attenuation and degradation but also to masking interference from co-occurring signals of other acoustically communicating species. Masking interference is likely to be a ubiquitous problem in multi-species assemblages, but successful communication in natural environments under noisy conditions suggests powerful strategies to deal with the detection and recognition of relevant signals. In this review we present recent work on the role of the habitat as a driving force in shaping insect signal structures. In the context of acoustic masking interference, we discuss the ecological niche concept and examine the role of acoustic resource partitioning in the temporal, spatial and spectral domains as sender strategies to counter masking. We then examine the efficacy of different receiver strategies: physiological mechanisms such as frequency tuning, spatial release from masking and gain control as useful strategies to counteract acoustic masking. We also review recent work on the effects of anthropogenic noise on insect acoustic communication and the importance of insect sounds as indicators of biodiversity and ecosystem health.

  15. SLOW PATCHY EXTREME-ULTRAVIOLET PROPAGATING FRONTS ASSOCIATED WITH FAST CORONAL MAGNETO-ACOUSTIC WAVES IN SOLAR ERUPTIONS

    SciTech Connect

    Guo, Y.; Ding, M. D.; Chen, P. F.

    2015-08-15

    Using the high spatiotemporal resolution extreme ultraviolet (EUV) observations of the Atmospheric Imaging Assembly on board the Solar Dynamics Observatory, we conduct a statistical study of the observational properties of the coronal EUV propagating fronts. We find that it might be a universal phenomenon for two types of fronts to coexist in a large solar eruptive event. It is consistent with the hybrid model of EUV propagating fronts, which predicts that coronal EUV propagating fronts consist of both a fast magneto-acoustic wave and a nonwave component. We find that the morphologies, propagation behaviors, and kinematic features of the two EUV propagating fronts are completely different from each other. The fast magneto-acoustic wave fronts are almost isotropic. They travel continuously from the flaring region across multiple magnetic polarities to global distances. On the other hand, the slow nonwave fronts appear as anisotropic and sequential patches of EUV brightening. Each patch propagates locally in the magnetic domains where the magnetic field lines connect to the bottom boundary and stops at the magnetic domain boundaries. Within each magnetic domain, the velocities of the slow patchy nonwave component are an order of magnitude lower than that of the fast-wave component. However, the patches of the slow EUV propagating front can jump from one magnetic domain to a remote one. The velocities of such a transit between different magnetic domains are about one-third to one-half of those of the fast-wave component. The results show that the velocities of the nonwave component, both within one magnetic domain and between different magnetic domains, are highly nonuniform due to the inhomogeneity of the magnetic field in the lower atmosphere.

  16. Study of acoustic emission signals during fracture shear deformation

    NASA Astrophysics Data System (ADS)

    Ostapchuk, A. A.; Pavlov, D. V.; Markov, V. K.; Krasheninnikov, A. V.

    2016-07-01

    We study acoustic manifestations of different regimes of shear deformation of a fracture filled with a thin layer of granular material. It is established that the observed acoustic portrait is determined by the structure of the fracture at the mesolevel. Joint analysis of the activity of acoustic pulses and their spectral characteristics makes it possible to construct the pattern of internal evolutionary processes occurring in the thin layer of the interblock contact and consider the fracture deformation process as the evolution of a self-organizing system.

  17. Estimation of the Tool Condition by Applying the Wavelet Transform to Acoustic Emission Signals

    SciTech Connect

    Gomez, M. P.; Piotrkowski, R.; Ruzzante, J. E.; D'Attellis, C. E.

    2007-03-21

    This work follows the search of parameters to evaluate the tool condition in machining processes. The selected sensing technique is acoustic emission and it is applied to a turning process of steel samples. The obtained signals are studied using the wavelet transformation. The tool wear level is quantified as a percentage of the final wear specified by the Standard ISO 3685. The amplitude and relevant scale obtained of acoustic emission signals could be related with the wear level.

  18. Normalization and source separation of acoustic emission signals for condition monitoring and fault detection of multi-cylinder diesel engines

    NASA Astrophysics Data System (ADS)

    Wu, Weiliang; Lin, Tian Ran; Tan, Andy C. C.

    2015-12-01

    A signal processing technique is presented in this paper to normalize and separate the source of non-linear acoustic emission (AE) signals of a multi-cylinder diesel engine for condition monitoring applications and fault detection. The normalization technique presented in the paper overcomes the long-existing non-linearity problem of AE sensors so that responses measured by different AE sensors can be quantitatively analysed and compared. A source separation algorithm is also developed in the paper to separate the mixture of the normalized AE signals produced by a multi-cylinder diesel engine by utilising the system parameters (i.e., wave attenuation constant and the arrival time delay) of AE wave propagation determined by a standard pencil lead break test on the engine cylinder head. It is shown that the source separation algorithm is able to separate the signal interference of adjacent cylinders from the monitored cylinder once the wave attenuation constant and the arrival time delay along the propagation path are known. The algorithm is particularly useful in the application of AE technique for condition monitoring of small-size diesel engines where signal interference from the neighbouring cylinders is strong.

  19. Graph-based sensor fusion for classification of transient acoustic signals.

    PubMed

    Srinivas, Umamahesh; Nasrabadi, Nasser M; Monga, Vishal

    2015-03-01

    Advances in acoustic sensing have enabled the simultaneous acquisition of multiple measurements of the same physical event via co-located acoustic sensors. We exploit the inherent correlation among such multiple measurements for acoustic signal classification, to identify the launch/impact of munition (i.e., rockets, mortars). Specifically, we propose a probabilistic graphical model framework that can explicitly learn the class conditional correlations between the cepstral features extracted from these different measurements. Additionally, we employ symbolic dynamic filtering-based features, which offer improvements over the traditional cepstral features in terms of robustness to signal distortions. Experiments on real acoustic data sets show that our proposed algorithm outperforms conventional classifiers as well as the recently proposed joint sparsity models for multisensor acoustic classification. Additionally our proposed algorithm is less sensitive to insufficiency in training samples compared to competing approaches. PMID:25014986

  20. Stability analysis for acoustic wave propagation in tilted TI media by finite differences

    NASA Astrophysics Data System (ADS)

    Bakker, Peter M.; Duveneck, Eric

    2011-05-01

    Several papers in recent years have reported instabilities in P-wave modelling, based on an acoustic approximation, for inhomogeneous transversely isotropic media with tilted symmetry axis (TTI media). In particular, instabilities tend to occur if the axis of symmetry varies rapidly in combination with strong contrasts of medium parameters, which is typically the case at the foot of a steeply dipping salt flank. In a recent paper, we have proposed and demonstrated a P-wave modelling approach for TTI media, based on rotated stress and strain tensors, in which the wave equations reduce to a coupled set of two second-order partial differential equations for two scalar stress components: a normal component along the variable axis of symmetry and a lateral component of stress in the plane perpendicular to that axis. Spatially constant density is assumed in this approach. A numerical discretization scheme was proposed which uses discrete second-derivative operators for the non-mixed second-order derivatives in the wave equations, and combined first-derivative operators for the mixed second-order derivatives. This paper provides a complete and rigorous stability analysis, assuming a uniformly sampled grid. Although the spatial discretization operator for the TTI acoustic wave equation is not self-adjoint, this operator still defines a complete basis of eigenfunctions of the solution space, provided that the solution space is somewhat restricted at locations where the medium is elliptically anisotropic. First, a stability analysis is given for a discretization scheme, which is purely based on first-derivative operators. It is shown that the coefficients of the central difference operators should satisfy certain conditions. In view of numerical artefacts, such a discretization scheme is not attractive, and the non-mixed second-order derivatives of the wave equation are discretized directly by second-derivative operators. It is shown that this modification preserves

  1. Acoustic emission signal classification for gearbox failure detection

    NASA Astrophysics Data System (ADS)

    Shishino, Jun

    The purpose of this research is to develop a methodology and technique to determine the optimal number of clusters in acoustic emission (AE) data obtained from a ground test stand of a rotating H-60 helicopter tail gearbox by using mathematical algorithms and visual inspection. Signs of fatigue crack growth were observed from the AE signals acquired from the result of the optimal number of clusters in a data set. Previous researches have determined the number of clusters by visually inspecting the AE plots from number of iterations. This research is focused on finding the optimal number of clusters in the data set by using mathematical algorithms then using visual verification to confirm it. The AE data were acquired from the ground test stand that simulates the tail end of an H-60 Seahawk at Naval Air Station in Patuxant River, Maryland. The data acquired were filtered to eliminate durations that were greater than 100,000 is and 0 energy hit data to investigate the failure mechanisms occurring on the output bevel gear. From the filtered data, different AE signal parameters were chosen to perform iterations to see which clustering algorithms and number of outputs is the best. The clustering algorithms utilized are the Kohonen Self-organizing Map (SOM), k-mean and Gaussian Mixture Model (GMM). From the clustering iterations, the three cluster criterion algorithms were performed to observe the suggested optimal number of cluster by the criterions. The three criterion algorithms utilized are the Davies-Bouldin, Silhouette and Tou Criterions. After the criterions had suggested the optimal number of cluster for each data set, visual verification by observing the AE plots and statistical analysis of each cluster were performed. By observing the AE plots and the statistical analysis, the optimal number of cluster in the data set and effective clustering algorithms were determined. Along with the optimal number of clusters and effective clustering algorithm, the mechanisms

  2. Denoising of human speech using combined acoustic and em sensor signal processing

    SciTech Connect

    Ng, L C; Burnett, G C; Holzrichter, J F; Gable, T J

    1999-11-29

    Low Power EM radar-like sensors have made it possible to measure properties of the human speech production system in real-time, without acoustic interference. This greatly enhances the quality and quantify of information for many speech related applications. See Holzrichter, Burnett, Ng, and Lea, J. Acoustic. Soc. Am. 103 (1) 622 (1998). By using combined Glottal-EM- Sensor- and Acoustic-signals, segments of voiced, unvoiced, and no-speech can be reliably defined. Real-time Denoising filters can be constructed to remove noise from the user's corresponding speech signal.

  3. Application of nonlinearly demodulated acoustic signals for the measurement of the acoustical coefficient of reflection for air saturated porous materials

    NASA Astrophysics Data System (ADS)

    Saeid, Mohamed; Castagnède, Bernard; Moussatov, Alexei; Tournat, Vincent; Gusev, Vitalyi

    2004-10-01

    The present Note describes work related to the measurement of the coefficient of reflection in automotive felt materials, by using a mixed ultrasonic/audio range technique. Powerful 162 kHz ultrasonic waves are amplitude modulated in the audio range. By applying appropriate procedures borrowed from underwater nonlinear ultrasonic methods (the so-called parametric antennae), one produces low frequency (i.e. in the 5-30 kHz range) acoustical waves which are generated in the pulse echo mode by short bursts. The coefficient of reflection of various felt materials are measured, and the results are compared to the standard 'fluid-equivalent' model which describes the propagation of acoustic waves in poroelastic air-saturated materials. To cite this article: M. Saeid et al., C. R. Mecanique 332 (2004).

  4. Comparison of FFP predictions with measurements of a low-frequency signal propagated in the atmosphere

    NASA Technical Reports Server (NTRS)

    Wilson, K. Keith; Thomson, Dennis W.

    1990-01-01

    An experimental study of low-frequency propagation over a distance of 770 m was previously reported (J. Acoust. Soc. Am. Suppl. 1 86, S120 (1989)). For that study, sound speed profiles were reconstructed entirely from surface-layer micrometeorological data. When the acoustic data were compared with theoretical predictions from a fast field program (FFP), it was found that the FFP underpredicted sound levels measured in a shadow zone. Here, the effect on the predictions of including meteorological data for heights greater than the surface layer, i.e., wind profiles measured by a Doppler sodar, is discussed. Vertical structure of turbulence is simulated by stochastically perturbing the mean profiles, and the agreement between the acoustic data and FFP predictions is improved.

  5. Elastic parabolic equation and normal mode solutions for seismo-acoustic propagation in underwater environments with ice covers.

    PubMed

    Collis, Jon M; Frank, Scott D; Metzler, Adam M; Preston, Kimberly S

    2016-05-01

    Sound propagation predictions for ice-covered ocean acoustic environments do not match observational data: received levels in nature are less than expected, suggesting that the effects of the ice are substantial. Effects due to elasticity in overlying ice can be significant enough that low-shear approximations, such as effective complex density treatments, may not be appropriate. Building on recent elastic seafloor modeling developments, a range-dependent parabolic equation solution that treats the ice as an elastic medium is presented. The solution is benchmarked against a derived elastic normal mode solution for range-independent underwater acoustic propagation. Results from both solutions accurately predict plate flexural modes that propagate in the ice layer, as well as Scholte interface waves that propagate at the boundary between the water and the seafloor. The parabolic equation solution is used to model a scenario with range-dependent ice thickness and a water sound speed profile similar to those observed during the 2009 Ice Exercise (ICEX) in the Beaufort Sea. PMID:27250161

  6. Elastic parabolic equation and normal mode solutions for seismo-acoustic propagation in underwater environments with ice covers.

    PubMed

    Collis, Jon M; Frank, Scott D; Metzler, Adam M; Preston, Kimberly S

    2016-05-01

    Sound propagation predictions for ice-covered ocean acoustic environments do not match observational data: received levels in nature are less than expected, suggesting that the effects of the ice are substantial. Effects due to elasticity in overlying ice can be significant enough that low-shear approximations, such as effective complex density treatments, may not be appropriate. Building on recent elastic seafloor modeling developments, a range-dependent parabolic equation solution that treats the ice as an elastic medium is presented. The solution is benchmarked against a derived elastic normal mode solution for range-independent underwater acoustic propagation. Results from both solutions accurately predict plate flexural modes that propagate in the ice layer, as well as Scholte interface waves that propagate at the boundary between the water and the seafloor. The parabolic equation solution is used to model a scenario with range-dependent ice thickness and a water sound speed profile similar to those observed during the 2009 Ice Exercise (ICEX) in the Beaufort Sea.

  7. A k-space method for acoustic propagation using coupled first-order equations in three dimensions

    PubMed Central

    Tillett, Jason C.; Daoud, Mohammad I.; Lacefield, James C.; Waag, Robert C.

    2009-01-01

    A previously described two-dimensional k-space method for large-scale calculation of acoustic wave propagation in tissues is extended to three dimensions. The three-dimensional method contains all of the two-dimensional method features that allow accurate and stable calculation of propagation. These features are spectral calculation of spatial derivatives, temporal correction that produces exact propagation in a homogeneous medium, staggered spatial and temporal grids, and a perfectly matched boundary layer. Spectral evaluation of spatial derivatives is accomplished using a fast Fourier transform in three dimensions. This computational bottleneck requires all-to-all communication; execution time in a parallel implementation is therefore sensitive to node interconnect latency and bandwidth. Accuracy of the three-dimensional method is evaluated through comparisons with exact solutions for media having spherical inhomogeneities. Large-scale calculations in three dimensions were performed by distributing the nearly 50 variables per voxel that are used to implement the method over a cluster of computers. Two computer clusters used to evaluate method accuracy are compared. Comparisons of k-space calculations with exact methods including absorption highlight the need to model accurately the medium dispersion relationships, especially in large-scale media. Accurately modeled media allow the k-space method to calculate acoustic propagation in tissues over hundreds of wavelengths. PMID:19739736

  8. Predictability of Acoustic Propagation in Shallow Water Using Parabolic Approximation Models

    NASA Astrophysics Data System (ADS)

    Cederberg, Robert John

    Accuracy of relative intensity, interference wavelength and horizontal wavenumber predictions from parabolic approximation models of shallow water, low frequency (less than 100 Hz) acoustic propagation problems is examined. The investigation is directed toward environmental parameter values corresponding generally to those near the site of a recent New Jersey shelf experiment. First, typical parameter uncertainties in the environment of the experiment site are used to determine effects of parameter sensitivities on the accuracy of two -layer isospeed model predictions. Also, analytic expressions for rates of change of wavenumbers with respect to parameters are used to compute wavenumber and interference wavelength changes caused by parameter variations corresponding to the uncertainties. It is found that channel depth variations cause the largest change in intensity, while water sound speed variations have the greatest effect on wavenumbers. Variability of the parameter sensitivities in regions about the base parameter sets is also examined, with rates of change generally staying of the same order of magnitude throughout the regions considered. Effects of input parameter uncertainties and basic approximations in depth and range dependent PE models are also investigated. Parameter uncertainties are found to impose the greatest limitations on prediction accuracy, with sediment sound speed uncertainties causing the largest restrictions. Models of bottom sound speed profiles that take into account sediment consolidation are developed, and their effects on propagation model predictions in range dependent environments are examined. Using borehole density data and Biot-Stoll theory, a functional form for porosity in a homogeneous consolidated sediment is derived. Corresponding sound speed profiles for different sediment types are then constructed. Predictions from models consisting of consolidated sediment layers throughout the bottom are compared with results from cases

  9. System and method for characterizing voiced excitations of speech and acoustic signals, removing acoustic noise from speech, and synthesizing speech

    DOEpatents

    Burnett, Greg C.; Holzrichter, John F.; Ng, Lawrence C.

    2006-08-08

    The present invention is a system and method for characterizing human (or animate) speech voiced excitation functions and acoustic signals, for removing unwanted acoustic noise which often occurs when a speaker uses a microphone in common environments, and for synthesizing personalized or modified human (or other animate) speech upon command from a controller. A low power EM sensor is used to detect the motions of windpipe tissues in the glottal region of the human speech system before, during, and after voiced speech is produced by a user. From these tissue motion measurements, a voiced excitation function can be derived. Further, the excitation function provides speech production information to enhance noise removal from human speech and it enables accurate transfer functions of speech to be obtained. Previously stored excitation and transfer functions can be used for synthesizing personalized or modified human speech. Configurations of EM sensor and acoustic microphone systems are described to enhance noise cancellation and to enable multiple articulator measurements.

  10. System and method for characterizing voiced excitations of speech and acoustic signals, removing acoustic noise from speech, and synthesizing speech

    DOEpatents

    Burnett, Greg C.; Holzrichter, John F.; Ng, Lawrence C.

    2004-03-23

    The present invention is a system and method for characterizing human (or animate) speech voiced excitation functions and acoustic signals, for removing unwanted acoustic noise which often occurs when a speaker uses a microphone in common environments, and for synthesizing personalized or modified human (or other animate) speech upon command from a controller. A low power EM sensor is used to detect the motions of windpipe tissues in the glottal region of the human speech system before, during, and after voiced speech is produced by a user. From these tissue motion measurements, a voiced excitation function can be derived. Further, the excitation function provides speech production information to enhance noise removal from human speech and it enables accurate transfer functions of speech to be obtained. Previously stored excitation and transfer functions can be used for synthesizing personalized or modified human speech. Configurations of EM sensor and acoustic microphone systems are described to enhance noise cancellation and to enable multiple articulator measurements.

  11. System and method for characterizing voiced excitations of speech and acoustic signals, removing acoustic noise from speech, and synthesizing speech

    DOEpatents

    Burnett, Greg C.; Holzrichter, John F.; Ng, Lawrence C.

    2006-02-14

    The present invention is a system and method for characterizing human (or animate) speech voiced excitation functions and acoustic signals, for removing unwanted acoustic noise which often occurs when a speaker uses a microphone in common environments, and for synthesizing personalized or modified human (or other animate) speech upon command from a controller. A low power EM sensor is used to detect the motions of windpipe tissues in the glottal region of the human speech system before, during, and after voiced speech is produced by a user. From these tissue motion measurements, a voiced excitation function can be derived. Further, the excitation function provides speech production information to enhance noise removal from human speech and it enables accurate transfer functions of speech to be obtained. Previously stored excitation and transfer functions can be used for synthesizing personalized or modified human speech. Configurations of EM sensor and acoustic microphone systems are described to enhance noise cancellation and to enable multiple articulator measurements.

  12. System And Method For Characterizing Voiced Excitations Of Speech And Acoustic Signals, Removing Acoustic Noise From Speech, And Synthesizi

    DOEpatents

    Burnett, Greg C.; Holzrichter, John F.; Ng, Lawrence C.

    2006-04-25

    The present invention is a system and method for characterizing human (or animate) speech voiced excitation functions and acoustic signals, for removing unwanted acoustic noise which often occurs when a speaker uses a microphone in common environments, and for synthesizing personalized or modified human (or other animate) speech upon command from a controller. A low power EM sensor is used to detect the motions of windpipe tissues in the glottal region of the human speech system before, during, and after voiced speech is produced by a user. From these tissue motion measurements, a voiced excitation function can be derived. Further, the excitation function provides speech production information to enhance noise removal from human speech and it enables accurate transfer functions of speech to be obtained. Previously stored excitation and transfer functions can be used for synthesizing personalized or modified human speech. Configurations of EM sensor and acoustic microphone systems are described to enhance noise cancellation and to enable multiple articulator measurements.

  13. Silent Flocks: Constraints on Signal Propagation Across Biological Groups

    NASA Astrophysics Data System (ADS)

    Cavagna, Andrea; Giardina, Irene; Grigera, Tomas S.; Jelic, Asja; Levine, Dov; Ramaswamy, Sriram; Viale, Massimiliano

    2015-05-01

    Experiments find coherent information transfer through biological groups on length and time scales distinctly below those on which asymptotically correct hydrodynamic theories apply. We present here a new continuum theory of collective motion coupling the velocity and density fields of Toner and Tu to the inertial spin field recently introduced to describe information propagation in natural flocks of birds. The long-wavelength limit of the new equations reproduces the Toner-Tu theory, while at shorter wavelengths (or, equivalently, smaller damping), spin fluctuations dominate over density fluctuations, and second-sound propagation of the kind observed in real flocks emerges. We study the dispersion relation of the new theory and find that when the speed of second sound is large, a gap in momentum space sharply separates first- from second-sound modes. This gap implies the existence of silent flocks, namely, of medium-sized systems across which information cannot propagate in a linear and underdamped way, either under the form of orientational fluctuations or under that of density fluctuations, making it hard for the group to achieve coordination.

  14. Silent flocks: constraints on signal propagation across biological groups.

    PubMed

    Cavagna, Andrea; Giardina, Irene; Grigera, Tomas S; Jelic, Asja; Levine, Dov; Ramaswamy, Sriram; Viale, Massimiliano

    2015-05-29

    Experiments find coherent information transfer through biological groups on length and time scales distinctly below those on which asymptotically correct hydrodynamic theories apply. We present here a new continuum theory of collective motion coupling the velocity and density fields of Toner and Tu to the inertial spin field recently introduced to describe information propagation in natural flocks of birds. The long-wavelength limit of the new equations reproduces the Toner-Tu theory, while at shorter wavelengths (or, equivalently, smaller damping), spin fluctuations dominate over density fluctuations, and second-sound propagation of the kind observed in real flocks emerges. We study the dispersion relation of the new theory and find that when the speed of second sound is large, a gap in momentum space sharply separates first- from second-sound modes. This gap implies the existence of silent flocks, namely, of medium-sized systems across which information cannot propagate in a linear and underdamped way, either under the form of orientational fluctuations or under that of density fluctuations, making it hard for the group to achieve coordination.

  15. Propagation of the quasimonochromatic signal through medium having non-linear dispersion

    SciTech Connect

    Galkin, Y.

    1996-12-31

    Tunable Diode Laser Absorption Spectroscopy (TDLAS) fulfill the requirements for trace gas analysis, for the measurement of concentrations of most atmospheric pollutants, and is increasingly being used to measure pollutants. The medium non-linear dispersion influence for complex form of quasimonochromatic signal propagating through environment is described. It is shown, that a non-linear dispersion disturbs both a real amplitude and an imaginary phase of signal. The proofs are adduced for AM-signal. The results of a computer simulation of a process corroborate the theoretical conclusions. Noted effects may be important for the signal propagating within spectral absorption line at the TDLS.

  16. Effects of obliqueness and strong electrostatic interaction on linear and nonlinear propagation of dust-acoustic waves in a magnetized strongly coupled dusty plasma

    SciTech Connect

    Shahmansouri, M.; Mamun, A. A.

    2014-03-15

    Linear and nonlinear propagation of dust-acoustic waves in a magnetized strongly coupled dusty plasma is theoretically investigated. The normal mode analysis (reductive perturbation method) is employed to investigate the role of ambient/external magnetic field, obliqueness, and effective electrostatic dust-temperature in modifying the properties of linear (nonlinear) dust-acoustic waves propagating in such a strongly coupled dusty plasma. The effective electrostatic dust-temperature, which arises from strong electrostatic interactions among highly charged dust, is considered as a dynamical variable. The linear dispersion relation (describing the linear propagation characteristics) for the obliquely propagating dust-acoustic waves is derived and analyzed. On the other hand, the Korteweg-de Vries equation describing the nonlinear propagation of the dust-acoustic waves (particularly, propagation of dust-acoustic solitary waves) is derived and solved. It is shown that the combined effects of obliqueness, magnitude of the ambient/external magnetic field, and effective electrostatic dust-temperature significantly modify the basic properties of linear and nonlinear dust-acoustic waves. The results of this work are compared with those observed by some laboratory experiments.

  17. Wave propagation characteristics of helically orthotropic cylindrical shells and resonance emergence in scattered acoustic field. Part 1. Formulations

    NASA Astrophysics Data System (ADS)

    Rajabi, Majid

    2016-05-01

    The method of wave function expansion is adopted to study the three dimensional scattering of a plane progressive harmonic acoustic wave incident upon an arbitrarily thick-walled helically filament-wound composite cylindrical shell submerged in and filled with compressible ideal fluids. An approximate laminate model in the context of the so-called state-space formulation is employed for the construction of T-matrix solution to solve for the unknown modal scattering coefficients. Considering the nonaxisymmetric wave propagation phenomenon in anisotropic cylindrical components and following the resonance scattering theory which determines the resonance and background scattering fields, the stimulated resonance frequencies of the shell are isolated and classified due to their fundamental mode of excitation, overtone and style of propagation along the cylindrical axis (i.e., clockwise or anticlockwise propagation around the shell) and are identified as the helically circumnavigating waves.

  18. Simulation of acoustic wave propagation in dispersive media with relaxation losses by using FDTD method with PML absorbing boundary condition.

    PubMed

    Yuan, X; Borup, D; Wiskin, J; Berggren, M; Johnson, S A

    1999-01-01

    We present a method to incorporate the relaxation dominated attenuation into the finite-difference time-domain (FDTD) simulation of acoustic wave propagation in complex media. A dispersive perfectly matched layer (DPML) boundary condition, which is suitable for boundary matching to such a dispersive media whole space, is also proposed to truncate the FDTD simulation domain. The numerical simulation of a Ricker wavelet propagating in a dispersive medium, described by second-order Debye model, shows that the Ricker wavelet is attenuated in amplitude and expanded in time in its course of propagation, as required by Kramers-Kronig relations. The numerical results also are compared to exact solution showing that the dispersive FDTD method is accurate and that the DPML boundary condition effectively dampens reflective waves. The method presented here is applicable to the simulation of ultrasonic instrumentation for medical imaging and other nondestructive testing problems with frequency dependent, attenuating media.

  19. The effects of random bottom bathymetry on coherence in shallow water acoustic propagation

    NASA Astrophysics Data System (ADS)

    Wylie, Jennifer Leigh

    In an ideal shallow water propagation channel the sound field is accurately described by normal modes and the mode structure is predictable with clean separated modes. However the real ocean environment is rarely ideal, and variations in bottom bathymetry and water column sound speed are usually present. Random fluctuations of the sound speed in time, space, and/or the boundaries can distort modes such that phase coherence is reduced and under some conditions completely lost. The basic research community seeks to understand the effects of internal waves on temporal coherence. Here the study method of choice is to use fixed system experiments that observe both oceanographic and acoustical fluctuations. On the other hand applied Naval research is focused on using mobile platforms to instantaneously measure spatial coherence shipboard, and they have little to no interest in measuring long term coherence. Here we seek to present a unified theory using normal modes. Both spatial and temporal coherence as well as the effects of source motion and Doppler will be addressed. Mode structure can be randomized in two ways: sound speed fluctuations and boundary variations. The research proposed here will emphasize spatial variations of the bottom bathymetry and how they affect mode arrivals. A parabolic equation model is used to predict mode shapes in a range dependent environment and random variations in bottom boundaries will be introduced and distortion in the mode arrival structure will be observed. The mode arrival structures will then be used to estimate temporal and spatial coherence of the mode arrivals and the predictions will be compared to the data from three different shallow water experiments.

  20. Limited condition dependence of male acoustic signals in the grasshopper Chorthippus biguttulus

    PubMed Central

    Franzke, Alexandra; Reinhold, Klaus

    2012-01-01

    In many animal species, male acoustic signals serve to attract a mate and therefore often play a major role for male mating success. Male body condition is likely to be correlated with male acoustic signal traits, which signal male quality and provide choosy females indirect benefits. Environmental factors such as food quantity or quality can influence male body condition and therefore possibly lead to condition-dependent changes in the attractiveness of acoustic signals. Here, we test whether stressing food plants influences acoustic signal traits of males via condition-dependent expression of these traits. We examined four male song characteristics, which are vital for mate choice in females of the grasshopper Chorthippus biguttulus. Only one of the examined acoustic traits, loudness, was significantly altered by changing body condition because of drought- and moisture-related stress of food plants. No condition dependence could be observed for syllable to pause ratio, gap duration within syllables, and onset accentuation. We suggest that food plant stress and therefore food plant quality led to shifts in loudness of male grasshopper songs via body condition changes. The other three examined acoustic traits of males do not reflect male body condition induced by food plant quality. PMID:22957192

  1. Design of acoustic logging signal source of imitation based on field programmable gate array

    NASA Astrophysics Data System (ADS)

    Zhang, K.; Ju, X. D.; Lu, J. Q.; Men, B. Y.

    2014-08-01

    An acoustic logging signal source of imitation is designed and realized, based on the Field Programmable Gate Array (FPGA), to improve the efficiency of examining and repairing acoustic logging tools during research and field application, and to inspect and verify acoustic receiving circuits and corresponding algorithms. The design of this signal source contains hardware design and software design,and the hardware design uses an FPGA as the control core. Four signals are made first by reading the Random Access Memory (RAM) data which are inside the FPGA, then dealing with the data by digital to analog conversion, amplification, smoothing and so on. Software design uses VHDL, a kind of hardware description language, to program the FPGA. Experiments illustrate that the ratio of signal to noise for the signal source is high, the waveforms are stable, and also its functions of amplitude adjustment, frequency adjustment and delay adjustment are in accord with the characteristics of real acoustic logging waveforms. These adjustments can be used to imitate influences on sonic logging received waveforms caused by many kinds of factors such as spacing and span of acoustic tools, sonic speeds of different layers and fluids, and acoustic attenuations of different cementation planes.

  2. A unique method to study acoustic transmission through ducts using signal synthesis and averaging of acoustic pulses

    NASA Technical Reports Server (NTRS)

    Salikuddin, M.; Ramakrishnan, R.; Ahuja, K. K.; Brown, W. H.

    1981-01-01

    An acoustic impulse technique using a loudspeaker driver is developed to measure the acoustic properties of a duct/nozzle system. A signal synthesis method is used to generate a desired single pulse with a flat spectrum. The convolution of the desired signal and the inverse Fourier transform of the reciprocal of the driver's response are then fed to the driver. A signal averaging process eliminates the jet mixing noise from the mixture of jet noise and the internal noise, thereby allowing very low intensity signals to be measured accurately, even for high velocity jets. A theoretical analysis is carried out to predict the incident sound field; this is used to help determine the number and locations of the induct measurement points to account for the contributions due to higher order modes present in the incident tube method. The impulse technique is validated by comparing experimentally determined acoustic characteristics of a duct-nozzle system with similar results obtained by the impedance tube method. Absolute agreement in the comparisons was poor, but the overall shapes of the time histories and spectral distributions were much alike.

  3. Diagnostics of DC and Induction Motors Based on the Analysis of Acoustic Signals

    NASA Astrophysics Data System (ADS)

    Glowacz, A.

    2014-10-01

    In this paper, a non-invasive method of early fault diagnostics of electric motors was proposed. This method uses acoustic signals generated by electric motors. Essential features were extracted from acoustic signals of motors. A plan of study of acoustic signals of electric motors was proposed. Researches were carried out for faultless induction motor, induction motor with one faulty rotor bar, induction motor with two faulty rotor bars and flawless Direct Current, and Direct Current motor with shorted rotor coils. Researches were carried out for methods of signal processing: log area ratio coefficients, Multiple signal classification, Nearest Neighbor classifier and the Bayes classifier. A pattern creation process was carried out using 40 samples of sound. In the identification process 130 five-second test samples were used. The proposed approach will also reduce the costs of maintenance and the number of faulty motors in the industry.

  4. A novel acoustic emission monitoring and signal processing to elucidate the fracture dynamics of hydrogen assisted cracking

    SciTech Connect

    Hayashi, Yasuhisa; Takemoto, Makoto; Takemoto, Mikio

    1994-12-31

    An advanced Acoustic Emission (AE) monitoring and signal processing system was developed and applied to elucidate the fracture dynamics of hydrogen assisted cracking (HAC) of quenched-tempered low alloy steel. The developed system enables one to monitor an initiation of microcrack correctly and also to elucidate the dynamics of microcracks when multi-channel moment tensor analysis is jointly used. The system consists of 8-channel monitoring. One channel monitors the surface displacement in loading direction excited by the propagation of elastic wave, and gives the source wave by the deconvolution integral of it with the Green`s function of the second kind. Another 7 channels were designed to measure arrival time and relative amplitude of the P-waves, and to determine both the source location and the crack kinematics by tensor analysis. This paper introduces the developed monitoring system and signal processing method, and fracture dynamics of microcracks in HAC.

  5. Modeling and Simulation for Realistic Propagation Environments of Communications Signals at SHF Band

    NASA Technical Reports Server (NTRS)

    Ho, Christian

    2005-01-01

    In this article, most of widely accepted radio wave propagation models that have proven to be accurate in practice as well as numerically efficient at SHF band will be reviewed. Weather and terrain data along the signal's paths can be input in order to more accurately simulate the propagation environments under particular weather and terrain conditions. Radio signal degradation and communications impairment severity will be investigated through the realistic radio propagation channel simulator. Three types of simulation approaches in predicting signal's behaviors are classified as: deterministic, stochastic and attenuation map. The performance of the simulation can be evaluated under operating conditions for the test ranges of interest. Demonstration tests of a real-time propagation channel simulator will show the capabilities and limitations of the simulation tool and underlying models.

  6. Stable propagation of mechanical signals in soft media using stored elastic energy

    NASA Astrophysics Data System (ADS)

    Raney, Jordan R.; Nadkarni, Neel; Daraio, Chiara; Kochmann, Dennis M.; Lewis, Jennifer A.; Bertoldi, Katia

    2016-08-01

    Soft structures with rationally designed architectures capable of large, nonlinear deformation present opportunities for unprecedented, highly tunable devices and machines. However, the highly dissipative nature of soft materials intrinsically limits or prevents certain functions, such as the propagation of mechanical signals. Here we present an architected soft system composed of elastomeric bistable beam elements connected by elastomeric linear springs. The dissipative nature of the polymer readily damps linear waves, preventing propagation of any mechanical signal beyond a short distance, as expected. However, the unique architecture of the system enables propagation of stable, nonlinear solitary transition waves with constant, controllable velocity and pulse geometry over arbitrary distances. Because the high damping of the material removes all other linear, small-amplitude excitations, the desired pulse propagates with high fidelity and controllability. This phenomenon can be used to control signals, as demonstrated by the design of soft mechanical diodes and logic gates.

  7. Wavefront modulation and subwavelength diffractive acoustics with an acoustic metasurface

    NASA Astrophysics Data System (ADS)

    Xie, Yangbo; Wang, Wenqi; Chen, Huanyang; Konneker, Adam; Popa, Bogdan-Ioan; Cummer, Steven A.

    2014-11-01

    Metasurfaces are a family of novel wavefront-shaping devices with planar profile and subwavelength thickness. Acoustic metasurfaces with ultralow profile yet extraordinary wave manipulating properties would be highly desirable for improving the performance of many acoustic wave-based applications. However, designing acoustic metasurfaces with similar functionality to their electromagnetic counterparts remains challenging with traditional metamaterial design approaches. Here we present a design and realization of an acoustic metasurface based on tapered labyrinthine metamaterials. The demonstrated metasurface can not only steer an acoustic beam as expected from the generalized Snell’s law, but also exhibits various unique properties such as conversion from propagating wave to surface mode, extraordinary beam-steering and apparent negative refraction through higher-order diffraction. Such designer acoustic metasurfaces provide a new design methodology for acoustic signal modulation devices and may be useful for applications such as acoustic imaging, beam steering, ultrasound lens design and acoustic surface wave-based applications.

  8. Wavefront modulation and subwavelength diffractive acoustics with an acoustic metasurface.

    PubMed

    Xie, Yangbo; Wang, Wenqi; Chen, Huanyang; Konneker, Adam; Popa, Bogdan-Ioan; Cummer, Steven A

    2014-11-24

    Metasurfaces are a family of novel wavefront-shaping devices with planar profile and subwavelength thickness. Acoustic metasurfaces with ultralow profile yet extraordinary wave manipulating properties would be highly desirable for improving the performance of many acoustic wave-based applications. However, designing acoustic metasurfaces with similar functionality to their electromagnetic counterparts remains challenging with traditional metamaterial design approaches. Here we present a design and realization of an acoustic metasurface based on tapered labyrinthine metamaterials. The demonstrated metasurface can not only steer an acoustic beam as expected from the generalized Snell's law, but also exhibits various unique properties such as conversion from propagating wave to surface mode, extraordinary beam-steering and apparent negative refraction through higher-order diffraction. Such designer acoustic metasurfaces provide a new design methodology for acoustic signal modulation devices and may be useful for applications such as acoustic imaging, beam steering, ultrasound lens design and acoustic surface wave-based applications.

  9. Detection of Cracking Levels in Brittle Rocks by Parametric Analysis of the Acoustic Emission Signals

    NASA Astrophysics Data System (ADS)

    Moradian, Zabihallah; Einstein, Herbert H.; Ballivy, Gerard

    2016-03-01

    Determination of the cracking levels during the crack propagation is one of the key challenges in the field of fracture mechanics of rocks. Acoustic emission (AE) is a technique that has been used to detect cracks as they occur across the specimen. Parametric analysis of AE signals and correlating these parameters (e.g., hits and energy) to stress-strain plots of rocks let us detect cracking levels properly. The number of AE hits is related to the number of cracks, and the AE energy is related to magnitude of the cracking event. For a full understanding of the fracture process in brittle rocks, prismatic specimens of granite containing pre-existing flaws have been tested in uniaxial compression tests, and their cracking process was monitored with both AE and high-speed video imaging. In this paper, the characteristics of the AE parameters and the evolution of cracking sequences are analyzed for every cracking level. Based on micro- and macro-crack damage, a classification of cracking levels is introduced. This classification contains eight stages (1) crack closure, (2) linear elastic deformation, (3) micro-crack initiation (white patch initiation), (4) micro-crack growth (stable crack growth), (5) micro-crack coalescence (macro-crack initiation), (6) macro-crack growth (unstable crack growth), (7) macro-crack coalescence and (8) failure.

  10. Analytical study of the propagation of fast longitudinal modes along wz-BN/AlN thin acoustic waveguides.

    PubMed

    Caliendo, Cinzia

    2015-01-01

    The propagation of the fundamental symmetric Lamb mode S0 along wz-BN/AlN thin composite plates suitable for telecommunication and sensing applications is studied. The investigation of the acoustic field profile across the plate thickness revealed the presence of modes having longitudinal polarization, the Anisimkin Jr. plate modes (AMs), travelling at a phase velocity close to that of the wz-BN longitudinal bulk acoustic wave propagating in the same direction. The study of the S0 mode phase velocity and coupling coefficient (K2) dispersion curves, for different electrical boundary conditions, has shown that eight different coupling configurations are allowable that exhibit a K2 as high as about 4% and very high phase velocity (up to about 16,700 m/s). The effect of the thickness and material type of the metal floating electrode on the K2 dispersion curves has also been investigated, specifically addressing the design of an enhanced coupling device. The gravimetric sensitivity of the BN/AlN-based acoustic waveguides was then calculated for both the AMs and elliptically polarized S0 modes; the AM-based sensor velocity and attenuation shifts due to the viscosity of a surrounding liquid was theoretically predicted. The performed investigation suggests that wz-BN/AlN is a very promising substrate material suitable for developing GHz band devices with enhanced electroacoustic coupling efficiency and suitable for application in telecommunications and sensing fields.

  11. Analytical Study of the Propagation of Fast Longitudinal Modes along wz-BN/AlN Thin Acoustic Waveguides

    PubMed Central

    Caliendo, Cinzia

    2015-01-01

    The propagation of the fundamental symmetric Lamb mode S0 along wz-BN/AlN thin composite plates suitable for telecommunication and sensing applications is studied. The investigation of the acoustic field profile across the plate thickness revealed the presence of modes having longitudinal polarization, the Anisimkin Jr. plate modes (AMs), travelling at a phase velocity close to that of the wz-BN longitudinal bulk acoustic wave propagating in the same direction. The study of the S0 mode phase velocity and coupling coefficient (K2) dispersion curves, for different electrical boundary conditions, has shown that eight different coupling configurations are allowable that exhibit a K2 as high as about 4% and very high phase velocity (up to about 16,700 m/s). The effect of the thickness and material type of the metal floating electrode on the K2 dispersion curves has also been investigated, specifically addressing the design of an enhanced coupling device. The gravimetric sensitivity of the BN/AlN-based acoustic waveguides was then calculated for both the AMs and elliptically polarized S0 modes; the AM-based sensor velocity and attenuation shifts due to the viscosity of a surrounding liquid was theoretically predicted. The performed investigation suggests that wz-BN/AlN is a very promising substrate material suitable for developing GHz band devices with enhanced electroacoustic coupling efficiency and suitable for application in telecommunications and sensing fields. PMID:25625904

  12. Dolphin's echolocation signals in a complicated acoustic environment

    NASA Astrophysics Data System (ADS)

    Ivanov, M. P.

    2004-07-01

    Echolocation abilities of a dolphin ( Tursiops truncatus ponticus) were investigated in laboratory conditions. The experiment was carried out in an open cage using an acoustic control over the behavior of the animal detecting underwater objects in a complicated acoustic environment. Targets of different strength were used as test objects. The dolphin was found to be able to detect objects at distances exceeding 650 m. For the target location, the dolphin used both single-pulse and multipulse echolocation modes. Time characteristics of echolocation pulses and time sequences of pulses as functions of the distance to the target were obtained.

  13. System and method for investigating sub-surface features of a rock formation with acoustic sources generating coded signals

    SciTech Connect

    Vu, Cung Khac; Nihei, Kurt; Johnson, Paul A; Guyer, Robert; Ten Cate, James A; Le Bas, Pierre-Yves; Larmat, Carene S

    2014-12-30

    A system and a method for investigating rock formations includes generating, by a first acoustic source, a first acoustic signal comprising a first plurality of pulses, each pulse including a first modulated signal at a central frequency; and generating, by a second acoustic source, a second acoustic signal comprising a second plurality of pulses. A receiver arranged within the borehole receives a detected signal including a signal being generated by a non-linear mixing process from the first-and-second acoustic signal in a non-linear mixing zone within the intersection volume. The method also includes-processing the received signal to extract the signal generated by the non-linear mixing process over noise or over signals generated by a linear interaction process, or both.

  14. Modeling of the Acoustic Reverberation Special Research Program deep ocean seafloor scattering experiments using a hybrid wave propagation simulation technique

    NASA Astrophysics Data System (ADS)

    Robertsson, Johan O. A.; Levander, Alan; Holliger, Klaus

    1996-02-01

    Quantitative modeling of bottom-interacting ocean acoustic waves is complicated by the long propagation ranges and by the complexity of the scattering targets. We employ a two-dimensional (2-D) hybrid technique combining Gaussian beam, finite difference, and Kirchhoff integral solutions of the wave equation to simulate ocean acoustic experiments within half of a convergence zone in the SOFAR channel. The 2-D modeling approach is reasonable due to the one-dimensional (1-D) velocity distribution in the water column and the strong lineation of the seafloor morphology parallel to the mid-ocean ridges. Full-waveform modeling of ocean acoustic data requires that the topography and the material properties of the seafloor are available at scales that are several orders of magnitude smaller than typical bathymetric sampling rates. We have therefore investigated the effects on the ocean acoustic response of a stochastic interpolation scheme used to generate seafloor models. For typical grazing angles of the incident wave field (approximately 5°-20°), we found that different stochastic realizations of the same seafloor segment (sampled at 200 m) yield an intrinsic uncertainty of the order of 3-8 dB in amplitude and 0.1-0.3 s in time for individual prominent events in the reverberant acoustic field. Hybrid simulations are compared to beam-formed ocean acoustic data collected during the Acoustic Reverberation Special Research Program (ARSRP) cruises. Side lobe noise in the observed acoustic data is simulated by adding band-limited white noise at -30 dB relative to the maximum intensity in the synthetic data. Numerical simulations can be limited to the response of only one of the mirror azimuth beams provided that the experimental geometry is suitably chosen. For the 2-D approximation to be valid, the cross-range resolution of the observed data must be smaller than the characteristic scale of seafloor lineations, and the beams of interest must be approximately perpendicular to

  15. Intrinsic excitability state of local neuronal population modulates signal propagation in feed-forward neural networks.

    PubMed

    Han, Ruixue; Wang, Jiang; Yu, Haitao; Deng, Bin; Wei, Xilei; Qin, Yingmei; Wang, Haixu

    2015-04-01

    Reliable signal propagation across distributed brain areas is an essential requirement for cognitive function, and it has been investigated extensively in computational studies where feed-forward network (FFN) is taken as a generic model. But it is still unclear how distinct local network states, which are intrinsically generated by synaptic interactions within each layer, would affect the ability of FFN to transmit information. Here we investigate the impact of such network states on propagating transient synchrony (synfire) and firing rate by a combination of numerical simulations and analytical approach. Specifically, local network dynamics is attributed to the competition between excitatory and inhibitory neurons within each layer. Our results show that concomitant with different local network states, the performance of signal propagation differs dramatically. For both synfire propagation and firing rate propagation, there exists an optimal local excitability state, respectively, that optimizes the performance of signal propagation. Furthermore, we find that long-range connections strongly change the dependence of spiking activity propagation on local network state and propose that these two factors work jointly to determine information transmission across distributed networks. Finally, a simple mean field approach that bridges response properties of long-range connectivity and local subnetworks is utilized to reveal the underlying mechanism.

  16. Intrinsic excitability state of local neuronal population modulates signal propagation in feed-forward neural networks

    NASA Astrophysics Data System (ADS)

    Han, Ruixue; Wang, Jiang; Yu, Haitao; Deng, Bin; Wei, Xilei; Qin, Yingmei; Wang, Haixu

    2015-04-01

    Reliable signal propagation across distributed brain areas is an essential requirement for cognitive function, and it has been investigated extensively in computational studies where feed-forward network (FFN) is taken as a generic model. But it is still unclear how distinct local network states, which are intrinsically generated by synaptic interactions within each layer, would affect the ability of FFN to transmit information. Here we investigate the impact of such network states on propagating transient synchrony (synfire) and firing rate by a combination of numerical simulations and analytical approach. Specifically, local network dynamics is attributed to the competition between excitatory and inhibitory neurons within each layer. Our results show that concomitant with different local network states, the performance of signal propagation differs dramatically. For both synfire propagation and firing rate propagation, there exists an optimal local excitability state, respectively, that optimizes the performance of signal propagation. Furthermore, we find that long-range connections strongly change the dependence of spiking activity propagation on local network state and propose that these two factors work jointly to determine information transmission across distributed networks. Finally, a simple mean field approach that bridges response properties of long-range connectivity and local subnetworks is utilized to reveal the underlying mechanism.

  17. An information processing method for acoustic emission signal inspired from musical staff

    NASA Astrophysics Data System (ADS)

    Zheng, Wei; Wu, Chunxian

    2016-01-01

    This study proposes a musical-staff-inspired signal processing method for standard description expressions for discrete signals and describing the integrated characteristics of acoustic emission (AE) signals. The method maps various AE signals with complex environments into the normalized musical space. Four new indexes are proposed to comprehensively describe the signal. Several key features, such as contour, amplitude, and signal changing rate, are quantitatively expressed in a normalized musical space. The processed information requires only a small storage space to maintain high fidelity. The method is illustrated by using experiments on sandstones and computed tomography (CT) scanning to determine its validity for AE signal processing.

  18. Propagation Effects of Wind and Temperature on Acoustic Ground Contour Levels

    NASA Technical Reports Server (NTRS)

    Heath, Stephanie L.; McAninch, Gerry L.

    2006-01-01

    Propagation characteristics for varying wind and temperature atmospheric conditions are identified using physically-limiting propagation angles to define shadow boundary regions. These angles are graphically illustrated for various wind and temperature cases using a newly developed ray-tracing propagation code.

  19. Nonlinear propagation of spark-generated N-waves in air: modeling and measurements using acoustical and optical methods.

    PubMed

    Yuldashev, Petr; Ollivier, Sébastien; Averiyanov, Mikhail; Sapozhnikov, Oleg; Khokhlova, Vera; Blanc-Benon, Philippe

    2010-12-01

    The propagation of nonlinear spherically diverging N-waves in homogeneous air is studied experimentally and theoretically. A spark source is used to generate high amplitude (1.4 kPa) short duration (40 μs) N-waves; acoustic measurements are performed using microphones (3 mm diameter, 150 kHz bandwidth). Numerical modeling with the generalized Burgers equation is used to reveal the relative effects of acoustic nonlinearity, thermoviscous absorption, and oxygen and nitrogen relaxation on the wave propagation. The results of modeling are in a good agreement with the measurements in respect to the wave amplitude and duration. However, the measured rise time of the front shock is ten times longer than the calculated one, which is attributed to the limited bandwidth of the microphone. To better resolve the shock thickness, a focused shadowgraphy technique is used. The recorded optical shadowgrams are compared with shadow patterns predicted by geometrical optics and scalar diffraction model of light propagation. It is shown that the geometrical optics approximation results in overestimation of the shock rise time, while the diffraction model allows to correctly resolve the shock width. A combination of microphone measurements and focused optical shadowgraphy is therefore a reliable way of studying evolution of spark-generated shock waves in air. PMID:21218866

  20. Copula filtration of spoken language signals on the background of acoustic noise

    NASA Astrophysics Data System (ADS)

    Kolchenko, Lilia V.; Sinitsyn, Rustem B.

    2010-09-01

    This paper is devoted to the filtration of acoustic signals on the background of acoustic noise. Signal filtering is done with the help of a nonlinear analogue of a correlation function - a copula. The copula is estimated with the help of kernel estimates of the cumulative distribution function. At the second stage we suggest a new procedure of adaptive filtering. The silence and sound intervals are detected before the filtration with the help of nonparametric algorithm. The results are confirmed by experimental processing of spoken language signals.

  1. [Shape acoustical recognition and characteristics of sonar signals by the dolphin T. truncatus].

    PubMed

    Dziedzic, A; Alcuri, G

    1977-10-17

    During the shape acoustical recognition process, the signal processing reveals two phases in the T. truncatus sonar emission. In the course of the first phase, the wide-band signals are invariant, during the second phase, near the end of the approach, their temporal and spectral characteristics change along with the shape of the objects to identify.

  2. Characterizing, synthesizing, and/or canceling out acoustic signals from sound sources

    DOEpatents

    Holzrichter, John F.; Ng, Lawrence C.

    2007-03-13

    A system for characterizing, synthesizing, and/or canceling out acoustic signals from inanimate and animate sound sources. Electromagnetic sensors monitor excitation sources in sound producing systems, such as animate sound sources such as the human voice, or from machines, musical instruments, and various other structures. Acoustical output from these sound producing systems is also monitored. From such information, a transfer function characterizing the sound producing system is generated. From the transfer function, acoustical output from the sound producing system may be synthesized or canceled. The systems disclosed enable accurate calculation of transfer functions relating specific excitations to specific acoustical outputs. Knowledge of such signals and functions can be used to effect various sound replication, sound source identification, and sound cancellation applications.

  3. Acoustic Remote Sensing

    NASA Astrophysics Data System (ADS)

    Dowling, David R.; Sabra, Karim G.

    2015-01-01

    Acoustic waves carry information about their source and collect information about their environment as they propagate. This article reviews how these information-carrying and -collecting features of acoustic waves that travel through fluids can be exploited for remote sensing. In nearly all cases, modern acoustic remote sensing involves array-recorded sounds and array signal processing to recover multidimensional results. The application realm for acoustic remote sensing spans an impressive range of signal frequencies (10-2 to 107 Hz) and distances (10-2 to 107 m) and involves biomedical ultrasound imaging, nondestructive evaluation, oil and gas exploration, military systems, and Nuclear Test Ban Treaty monitoring. In the past two decades, approaches have been developed to robustly localize remote sources; remove noise and multipath distortion from recorded signals; and determine the acoustic characteristics of the environment through which the sound waves have traveled, even when the recorded sounds originate from uncooperative sources or are merely ambient noise.

  4. Acoustic wave propagation in uniform glow discharge plasma at an arbitrary angle between the electric field and wave vectors

    SciTech Connect

    Soukhomlinov, Vladimir; Gerasimov, Nikolay; Sheverev, Valery A.

    2008-08-15

    This paper extends the recently reported one-dimensional model for sound propagation in glow discharge plasma to arbitrary mutual orientation of the plasma electric field and acoustic wave vectors. The results demonstrate that an acoustic wave in plasma may amplify, attenuate, or remain unchanged depending on the angle between these vectors and on the power input into the discharge. Quantitative evaluations indicate that for glow discharge plasma of a self-sustained discharge in air at the electric current densities of the order of 100 mA cm{sup -2}, a gain of as much as 1 m{sup -1} at 0 deg. angle between the vectors changes to similar strength attenuation for the 90 deg. angle.

  5. Generation and Propagation of a Picosecond Acoustic Pulse at a Buried Interface: Time-Resolved X-Ray Diffraction Measurements

    SciTech Connect

    Lee, S.H.; Cavalieri, A.L.; Fritz, D.M.; Swan, M.C.; Reis, D.A.; Hegde, R.S.; Reason, M.; Goldman, R.S.

    2005-12-09

    We report on the propagation of coherent acoustic wave packets in (001) surface oriented Al{sub 0.3}Ga{sub 0.7}As/GaAs heterostructure, generated through localized femtosecond photoexcitation of the GaAs. Transient structural changes in both the substrate and film are measured with picosecond time-resolved x-ray diffraction. The data indicate an elastic response consisting of unipolar compression pulses of a few hundred picosecond duration traveling along [001] and [001] directions that are produced by predominately impulsive stress. The transmission and reflection of the strain pulses are in agreement with an acoustic mismatch model of the heterostructure and free-space interfaces.

  6. Real-time GMAW quality classification using an artificial neural network with airborne acoustic signals as inputs

    SciTech Connect

    Matteson, A.; Morris, R.; Tate, R.

    1993-12-31

    The acoustic signal produced by the gas metal arc welding (GMAW) arc contains information about the behavior of the arc column, the molten pool and droplet transfer. It is possible to detect some defect producing conditions from the acoustic signal from the GMAW arc. An intelligent sensor, called the Weld Acoustic Monitor (WAM) has been developed to take advantage of this acoustic information in order to provide real-time quality assessment information for process control. The WAM makes use of an Artificial Neural Network (ANN) to classify the characteristic arc acoustic signals of acceptable and unacceptable welds. The ANN used in the Weld Acoustic Monitor developed its own set of rules for this classification problem by learning a data base of known GMAW acoustic signals.

  7. Sources and Radiation Patterns of Volcano-Acoustic Signals Investigated with Field-Scale Chemical Explosions

    NASA Astrophysics Data System (ADS)

    Bowman, D. C.; Lees, J. M.; Taddeucci, J.; Graettinger, A. H.; Sonder, I.; Valentine, G.

    2014-12-01

    We investigate the processes that give rise to complex acoustic signals during volcanic blasts by monitoring buried chemical explosions with infrasound and audio range microphones, strong motion sensors, and high speed imagery. Acoustic waveforms vary with scaled depth of burial (SDOB, units in meters per cube root of joules), ranging from high amplitude, impulsive, gas expansion dominated signals at low SDOB to low amplitude, longer duration, ground motion dominated signals at high SDOB. Typically, the sudden upward acceleration of the substrate above the blast produces the first acoustic arrival, followed by a second pulse due to the eruption of pressurized gas at the surface. Occasionally, a third overpressure occurs when displaced material decelerates upon impact with the ground. The transition between ground motion dominated and gas release dominated acoustics ranges between 0.0038-0.0018 SDOB, respectively. For example, one explosion registering an SDOB=0.0031 produced two overpressure pulses of approximately equal amplitude, one due to ground motion, the other to gas release. Recorded volcano infrasound has also identified distinct ground motion and gas release components during explosions at Sakurajima, Santiaguito, and Karymsky volcanoes. Our results indicate that infrasound records may provide a proxy for the depth and energy of these explosions. Furthermore, while magma fragmentation models indicate the possibility of several explosions during a single vulcanian eruption (Alidibirov, Bull Volc., 1994), our results suggest that a single explosion can also produce complex acoustic signals. Thus acoustic records alone cannot be used to distinguish between single explosions and multiple closely-spaced blasts at volcanoes. Results from a series of lateral blasts during the 2014 field experiment further indicates whether vent geometry can produce directional acoustic radiation patterns like those observed at Tungarahua volcano (Kim et al., GJI, 2012). Beside

  8. The evolutionary origins of ritualized acoustic signals in caterpillars.

    PubMed

    Scott, Jaclyn L; Kawahara, Akito Y; Skevington, Jeffrey H; Yen, Shen-Horn; Sami, Abeer; Smith, Myron L; Yack, Jayne E

    2010-01-01

    Animal communication signals can be highly elaborate, and researchers have long sought explanations for their evolutionary origins. For example, how did signals such as the tail-fan display of a peacock, a firefly flash or a wolf howl evolve? Animal communication theory holds that many signals evolved from non-signalling behaviours through the process of ritualization. Empirical evidence for ritualization is limited, as it is necessary to examine living relatives with varying degrees of signal evolution within a phylogenetic framework. We examine the origins of vibratory territorial signals in caterpillars using comparative and molecular phylogenetic methods. We show that a highly ritualized vibratory signal--anal scraping--originated from a locomotory behaviour--walking. Furthermore, comparative behavioural analysis supports the hypothesis that ritualized vibratory signals derive from physical fighting behaviours. Thus, contestants signal their opponents to avoid the cost of fighting. Our study provides experimental evidence for the origins of a complex communication signal, through the process of ritualization.

  9. ZnO Films on {001}-Cut <110>-Propagating GaAs Substrates for Surface Acoustic Wave Device Applications

    NASA Technical Reports Server (NTRS)

    Kim, Yoonkee; Hunt, William D.; Hickernell, Frederick S.; Higgins, Robert J.; Jen, Cheng-Kuei

    1995-01-01

    A potential application for piezoelectric films on GaAs substrates is the monolithic integration of surface acoustic wave (SAW) devices with GaAs electronics. Knowledge of the SAW properties of the layered structure is critical for the optimum and accurate design of such devices. The acoustic properties of ZnO films sputtered on {001}-cut <110> -propagating GaAs substrates are investigated in this article, including SAW Velocity effective piezoelectric coupling constant, propagation loss. diffraction, velocity surface, and reflectivity of shorted and open metallic gratings. The measurements of these essential SAW properties for the frequency range between 180 and 360 MHz have been performed using a knife-edge laser probe for film thicknesses over the range of 1.6-4 micron and with films or different grain sizes. The high quality of dc triode sputtered films was observed as evidenced by high K(exp 2) and low attenuation. The measurements of the velocity surface, which directly affects the SAW diffraction, on the bare and metalized ZnO on SiO2, or Si3N4 on {001}-cut GaAs samples are reported using two different techniques: 1) knife-edge laser probe, 2) line-focus-beam scanning acoustic microscope. It was found that near the <110> propagation direction, the focusing SAW property of the bare GaAs changes into a nonfocusing one for the layered structure, but a reversed phenomenon exists near the <100> direction. Furthermore, to some extent the diffraction of the substrate can be controlled with the film thickness. The reflectivity of shorted and open gratings are also analyzed and measured. Zero reflectivity is observed for a shorted grating. There is good agreement between the measured data and theoretical values.

  10. Visualizing coherent phonon propagation in the 100 GHz range: A broadband picosecond acoustics approach

    NASA Astrophysics Data System (ADS)

    Pontecorvo, Emanuele; Ortolani, Michele; Polli, Dario; Ferretti, Marco; Ruocco, Giancarlo; Cerullo, Giulio; Scopigno, Tullio

    2011-01-01

    Building on a 1 kHz amplified Ti:sapphire laser source, we developed a novel pump-probe setup for broadband picosecond acoustics using a white-light continuum probe coupled to an optical multichannel analyzer. The system allows one to access, in a single measurement, acoustic parameters such as sound velocity and attenuation all over the bandwidth of the acoustic wave-packet launched by the pump pulse. We use the setup to measure the sound attenuation in fused silica and observe a dynamic crossover occurring at ≈170 GHz.

  11. Effect of positive end-expiratory pressure on acoustic wave propagation in experimental porcine lung injury.

    PubMed

    Räsänen, Jukka; Nemergut, Michael E; Gavriely, Noam

    2015-03-01

    To evaluate the effect of positive end-expiratory pressure (PEEP) on sound propagation through injured lungs, we injected a multifrequency broad-band sound signal into the airway of eight anesthetized, intubated and mechanically ventilated pigs, while recording transmitted sound at three locations bilaterally on the chest wall. Oleic acid injections effected a severe pulmonary oedema predominately in the dependent lung regions, with an average increase in venous admixture from 19 ± 15 to 59 ± 14% (P < 0.001), and a reduction in dynamic respiratory system compliance from 34 ± 7 to 14 ± 4 ml cmH2 O(-1) (P < 0.001). A concomitant decrease in sound transit time was seen in the dependent lung regions (P < 0.05); no statistically significant change occurred in the lateral or non-dependent areas. The application of PEEP resulted in a decrease in venous admixture, increase in respiratory system compliance and return of the sound transit time to pre-injury levels in the dependent lung regions. Our results indicate that sound transmission velocity increases in lung tissue affected by permeability-type pulmonary oedema in a manner reversible during alveolar recruitment with PEEP.

  12. Passive time-domain numerical models of viscothermal wave propagation in acoustic tubes of variable cross section.

    PubMed

    Bilbao, Stefan; Harrison, Reginald

    2016-07-01

    Numerical modeling of wave propagation in acoustic tubes is a subject of longstanding interest, particularly for enclosures of varying cross section, and especially when viscothermal losses due to boundary layer effects are taken into consideration. Though steady-state, or frequency domain methods, are a common avenue of approach, recursive time domain methods are an alternative, allowing for the generation of wideband responses, and offer a point of departure for more general modeling of nonlinear wave propagation. The design of time-domain methods is complicated by numerical stability considerations, and to this end, a passive representation is a useful design principle leading to simple stable and explicit numerical schemes, particularly in the case of viscothermal loss modeling. Such schemes and the accompanying energy and stability analysis are presented here. Numerical examples are presented for a variety of duct profiles, illustrating strict energy dissipation, and for comparison of computed input impedances against frequency-domain results. PMID:27475194

  13. Multi-dimensional instability of obliquely propagating ion acoustic solitary waves in electron-positron-ion superthermal magnetoplasmas

    NASA Astrophysics Data System (ADS)

    EL-Shamy, E. F.

    2014-08-01

    The solitary structures of multi-dimensional ion-acoustic solitary waves (IASWs) have been considered in magnetoplasmas consisting of electron-positron-ion with high-energy (superthermal) electrons and positrons are investigated. Using a reductive perturbation method, a nonlinear Zakharov-Kuznetsov equation is derived. The multi-dimensional instability of obliquely propagating (with respect to the external magnetic field) IASWs has been studied by the small-k (long wavelength plane wave) expansion perturbation method. The instability condition and the growth rate of the instability have been derived. It is shown that the instability criterion and their growth rate depend on the parameter measuring the superthermality, the ion gyrofrequency, the unperturbed positrons-to-ions density ratio, the direction cosine, and the ion-to-electron temperature ratio. Clearly, the study of our model under consideration is helpful for explaining the propagation and the instability of IASWs in space observations of magnetoplasmas with superthermal electrons and positrons.

  14. Multi-dimensional instability of obliquely propagating ion acoustic solitary waves in electron-positron-ion superthermal magnetoplasmas

    SciTech Connect

    EL-Shamy, E. F.

    2014-08-15

    The solitary structures of multi–dimensional ion-acoustic solitary waves (IASWs) have been considered in magnetoplasmas consisting of electron-positron-ion with high-energy (superthermal) electrons and positrons are investigated. Using a reductive perturbation method, a nonlinear Zakharov-Kuznetsov equation is derived. The multi-dimensional instability of obliquely propagating (with respect to the external magnetic field) IASWs has been studied by the small-k (long wavelength plane wave) expansion perturbation method. The instability condition and the growth rate of the instability have been derived. It is shown that the instability criterion and their growth rate depend on the parameter measuring the superthermality, the ion gyrofrequency, the unperturbed positrons-to-ions density ratio, the direction cosine, and the ion-to-electron temperature ratio. Clearly, the study of our model under consideration is helpful for explaining the propagation and the instability of IASWs in space observations of magnetoplasmas with superthermal electrons and positrons.

  15. Passive time-domain numerical models of viscothermal wave propagation in acoustic tubes of variable cross section.

    PubMed

    Bilbao, Stefan; Harrison, Reginald

    2016-07-01

    Numerical modeling of wave propagation in acoustic tubes is a subject of longstanding interest, particularly for enclosures of varying cross section, and especially when viscothermal losses due to boundary layer effects are taken into consideration. Though steady-state, or frequency domain methods, are a common avenue of approach, recursive time domain methods are an alternative, allowing for the generation of wideband responses, and offer a point of departure for more general modeling of nonlinear wave propagation. The design of time-domain methods is complicated by numerical stability considerations, and to this end, a passive representation is a useful design principle leading to simple stable and explicit numerical schemes, particularly in the case of viscothermal loss modeling. Such schemes and the accompanying energy and stability analysis are presented here. Numerical examples are presented for a variety of duct profiles, illustrating strict energy dissipation, and for comparison of computed input impedances against frequency-domain results.

  16. Comment on "The directionality of acoustic T-phase signals from small magnitude submarine earthquakes" [J. Acoust. Soc. Am. 119, 3669-3675 (2006)].

    PubMed

    Bohnenstiehl, Delwayne R

    2007-03-01

    In a recent paper, Chapman and Marrett [J. Acoust. Soc. Am. 119, 3669-3675 (2006)] examined the tertiary (T-) waves associated with three subduction-related earthquakes within the South Fiji Basin. In that paper it is argued that acoustic energy is radiated into the sound channel by downslope propagation along abyssal seamounts and ridges that lie distant to the epicenter. A reexamination of the travel-time constraints indicates that this interpretation is not well supported. Rather, the propagation model that is described would require the high-amplitude T-wave components to be sourced well to the east of the region identified, along a relatively flat-lying seafloor.

  17. Finite difference methods for transient signal propagation in stratified dispersive media

    NASA Technical Reports Server (NTRS)

    Lam, D. H.

    1975-01-01

    Explicit difference equations are presented for the solution of a signal of arbitrary waveform propagating in an ohmic dielectric, a cold plasma, a Debye model dielectric, and a Lorentz model dielectric. These difference equations are derived from the governing time-dependent integro-differential equations for the electric fields by a finite difference method. A special difference equation is derived for the grid point at the boundary of two different media. Employing this difference equation, transient signal propagation in an inhomogeneous media can be solved provided that the medium is approximated in a step-wise fashion. The solutions are generated simply by marching on in time. It is concluded that while the classical transform methods will remain useful in certain cases, with the development of the finite difference methods described, an extensive class of problems of transient signal propagating in stratified dispersive media can be effectively solved by numerical methods.

  18. Modeling the global positioning system signal propagation through the ionosphere

    NASA Technical Reports Server (NTRS)

    Bassiri, S.; Hajj, G. A.

    1992-01-01

    Based on realistic modeling of the electron density of the ionosphere and using a dipole moment approximation for the Earth's magnetic field, one is able to estimate the effect of the ionosphere on the Global Positioning System (GPS) signal for a ground user. The lowest order effect, which is on the order of 0.1-100 m of group delay, is subtracted out by forming a linear combination of the dual frequencies of the GPS signal. One is left with second- and third-order effects that are estimated typically to be approximately 0-2 cm and approximately 0-2 mm at zenith, respectively, depending on the geographical location, the time of day, the time of year, the solar cycle, and the relative geometry of the magnetic field and the line of sight. Given the total electron content along a line of sight, the authors derive an approximation to the second-order term which is accurate to approximately 90 percent within the magnetic dipole moment model; this approximation can be used to reduce the second-order term to the millimeter level, thus potentially improving precise positioning in space and on the ground. The induced group delay, or phase advance, due to second- and third-order effects is examined for two ground receivers located at equatorial and mid-latitude regions tracking several GPS satellites.

  19. Surface Roughness Evaluation Based on Acoustic Emission Signals in Robot Assisted Polishing

    PubMed Central

    de Agustina, Beatriz; Marín, Marta María; Teti, Roberto; Rubio, Eva María

    2014-01-01

    The polishing process is the most common technology used in applications where a high level of surface quality is demanded. The automation of polishing processes is especially difficult due to the high level of skill and dexterity that is required. Much of this difficulty arises because of the lack of reliable data on the effect of the polishing parameters on the resulting surface roughness. An experimental study was developed to evaluate the surface roughness obtained during Robot Assisted Polishing processes by the analysis of acoustic emission signals in the frequency domain. The aim is to find out a trend of a feature or features calculated from the acoustic emission signals detected along the process. Such an evaluation was made with the objective of collecting valuable information for the establishment of the end point detection of polishing process. As a main conclusion, it can be affirmed that acoustic emission (AE) signals can be considered useful to monitor the polishing process state. PMID:25405509

  20. Surface roughness evaluation based on acoustic emission signals in robot assisted polishing.

    PubMed

    de Agustina, Beatriz; Marín, Marta María; Teti, Roberto; Rubio, Eva María

    2014-11-14

    The polishing process is the most common technology used in applications where a high level of surface quality is demanded. The automation of polishing processes is especially difficult due to the high level of skill and dexterity that is required. Much of this difficulty arises because of the lack of reliable data on the effect of the polishing parameters on the resulting surface roughness. An experimental study was developed to evaluate the surface roughness obtained during Robot Assisted Polishing processes by the analysis of acoustic emission signals in the frequency domain. The aim is to find out a trend of a feature or features calculated from the acoustic emission signals detected along the process. Such an evaluation was made with the objective of collecting valuable information for the establishment of the end point detection of polishing process. As a main conclusion, it can be affirmed that acoustic emission (AE) signals can be considered useful to monitor the polishing process state.

  1. Signal Propagation in the Human Visual Pathways: An Effective Connectivity Analysis.

    PubMed

    Youssofzadeh, Vahab; Prasad, Girijesh; Fagan, Andrew J; Reilly, Richard B; Martens, Sven; Meaney, James F; Wong-Lin, KongFatt

    2015-09-30

    Although the visual system has been extensively investigated, an integrated account of the spatiotemporal dynamics of long-range signal propagation along the human visual pathways is not completely known or validated. In this work, we used dynamic causal modeling approach to provide insights into the underlying neural circuit dynamics of pattern reversal visual-evoked potentials extracted from concurrent EEG-fMRI data. A recurrent forward-backward connectivity model, consisting of multiple interacting brain regions identified by EEG source localization aided by fMRI spatial priors, best accounted for the data dynamics. Sources were first identified in the thalamic area, primary visual cortex, as well as higher cortical areas along the ventral and dorsal visual processing streams. Consistent with hierarchical early visual processing, the model disclosed and quantified the neural temporal dynamics across the identified activity sources. This signal propagation is dominated by a feedforward process, but we also found weaker effective feedback connectivity. Using effective connectivity analysis, the optimal dynamic causal modeling revealed enhanced connectivity along the dorsal pathway but slightly suppressed connectivity along the ventral pathway. A bias was also found in favor of the right hemisphere consistent with functional attentional asymmetry. This study validates, for the first time, the long-range signal propagation timing in the human visual pathways. A similar modeling approach can potentially be used to understand other cognitive processes and dysfunctions in signal propagation in neurological and neuropsychiatric disorders. Significance statement: An integrated account of long-range visual signal propagation in the human brain is currently incomplete. Using computational neural modeling on our acquired concurrent EEG-fMRI data under a visual evoked task, we found not only a substantial forward propagation toward "higher-order" brain regions but also a

  2. Data for spatial characterization of AC signal propagation over primary neuron dendrites.

    PubMed

    Kim, Hojeong; Heckman, C J

    2016-03-01

    Action potentials generated near the soma propagate not only into the axonal nerve connecting to the adjacent neurons but also into the dendrites interacting with a diversity of synaptic inputs as well as voltage gated ion channels. Measuring voltage attenuation factors between the soma and all single points of the dendrites in the anatomically reconstructed primary neurons with the same cable properties, we report the signal propagation data showing how the alternating current (AC) signal such as action potentials back-propagates over the dendrites among different types of primary neurons. Fitting equations and their parameter values for the data are also presented to quantitatively capture the spatial profile of AC signal propagation from the soma to the dendrites in primary neurons. Our data is supplemental to our original study for the dependency of dendritic signal propagation and excitability, and their relationship on the cell type-specific structure in primary neurons (DOI: 10.1016/j.neulet.2015.10.017 [1]). PMID:26862580

  3. Quasi-plane shear wave propagation induced by acoustic radiation force with a focal line region: a simulation study.

    PubMed

    Guo, Min; Abbott, Derek; Lu, Minhua; Liu, Huafeng

    2016-03-01

    Shear wave propagation speed has been regarded as an attractive indicator for quantitatively measuring the intrinsic mechanical properties of soft tissues. While most existing techniques use acoustic radiation force (ARF) excitation with focal spot region based on linear array transducers, we try to employ a special ARF with a focal line region and apply it to viscoelastic materials to create shear waves. First, a two-dimensional capacitive micromachined ultrasonic transducer with 64 × 128 fully controllable elements is realised and simulated to generate this special ARF. Then three-dimensional finite element models are developed to simulate the resulting shear wave propagation through tissue phantom materials. Three different phantoms are explored in our simulation study using: (a) an isotropic viscoelastic medium, (b) within a cylindrical inclusion, and (c) a transverse isotropic viscoelastic medium. For each phantom, the ARF creates a quasi-plane shear wave which has a preferential propagation direction perpendicular to the focal line excitation. The propagation of the quasi-plane shear wave is investigated and then used to reconstruct shear moduli sequentially after the estimation of shear wave speed. In the phantom with a transverse isotropic viscoelastic medium, the anisotropy results in maximum speed parallel to the fiber direction and minimum speed perpendicular to the fiber direction. The simulation results show that the line excitation extends the displacement field to obtain a large imaging field in comparison with spot excitation, and demonstrate its potential usage in measuring the mechanical properties of anisotropic tissues. PMID:26768475

  4. The effect of habitat acoustics on common marmoset vocal signal transmission.

    PubMed

    Morrill, Ryan J; Thomas, A Wren; Schiel, Nicola; Souto, Antonio; Miller, Cory T

    2013-09-01

    Noisy acoustic environments present several challenges for the evolution of acoustic communication systems. Among the most significant is the need to limit degradation of spectro-temporal signal structure in order to maintain communicative efficacy. This can be achieved by selecting for several potentially complementary processes. Selection can act on behavioral mechanisms permitting signalers to control the timing and occurrence of signal production to avoid acoustic interference. Likewise, the signal itself may be the target of selection, biasing the evolution of its structure to comprise acoustic features that avoid interference from ambient noise or degrade minimally in the habitat. Here, we address the latter topic for common marmoset (Callithrix jacchus) long-distance contact vocalizations, known as phee calls. Our aim was to test whether this vocalization is specifically adapted for transmission in a species-typical forest habitat, the Atlantic forests of northeastern Brazil. We combined seasonal analyses of ambient habitat acoustics with experiments in which pure tones, clicks, and vocalizations were broadcast and rerecorded at different distances to characterize signal degradation in the habitat. Ambient sound was analyzed from intervals throughout the day and over rainy and dry seasons, showing temporal regularities across varied timescales. Broadcast experiment results indicated that the tone and click stimuli showed the typically inverse relationship between frequency and signaling efficacy. Although marmoset phee calls degraded over distance with marked predictability compared with artificial sounds, they did not otherwise appear to be specially designed for increased transmission efficacy or minimal interference in this habitat. We discuss these data in the context of other similar studies and evidence of potential behavioral mechanisms for avoiding acoustic interference in order to maintain effective vocal communication in common marmosets.

  5. The Effect of Habitat Acoustics on Common Marmoset Vocal Signal Transmission

    PubMed Central

    MORRILL, RYAN J.; THOMAS, A. WREN; SCHIEL, NICOLA; SOUTO, ANTONIO; MILLER, CORY T.

    2013-01-01

    Noisy acoustic environments present several challenges for the evolution of acoustic communication systems. Among the most significant is the need to limit degradation of spectro-temporal signal structure in order to maintain communicative efficacy. This can be achieved by selecting for several potentially complementary processes. Selection can act on behavioral mechanisms permitting signalers to control the timing and occurrence of signal production to avoid acoustic interference. Likewise, the signal itself may be the target of selection, biasing the evolution of its structure to comprise acoustic features that avoid interference from ambient noise or degrade minimally in the habitat. Here, we address the latter topic for common marmoset (Callithrix jacchus) long-distance contact vocalizations, known as phee calls. Our aim was to test whether this vocalization is specifically adapted for transmission in a species-typical forest habitat, the Atlantic forests of northeastern Brazil. We combined seasonal analyses of ambient habitat acoustics with experiments in which pure tones, clicks, and vocalizations were broadcast and rerecorded at different distances to characterize signal degradation in the habitat. Ambient sound was analyzed from intervals throughout the day and over rainy and dry seasons, showing temporal regularities across varied timescales. Broadcast experiment results indicated that the tone and click stimuli showed the typically inverse relationship between frequency and signaling efficacy. Although marmoset phee calls degraded over distance with marked predictability compared with artificial sounds, they did not otherwise appear to be specially designed for increased transmission efficacy or minimal interference in this habitat. We discuss these data in the context of other similar studies and evidence of potential behavioral mechanisms for avoiding acoustic interference in order to maintain effective vocal communication in common marmosets. PMID

  6. System and method for investigating sub-surface features of a rock formation with acoustic sources generating conical broadcast signals

    SciTech Connect

    Vu, Cung Khac; Skelt, Christopher; Nihei, Kurt; Johnson, Paul A.; Guyer, Robert; Ten Cate, James A.; Le Bas, Pierre -Yves; Larmat, Carene S.

    2015-08-18

    A method of interrogating a formation includes generating a conical acoustic signal, at a first frequency--a second conical acoustic signal at a second frequency each in the between approximately 500 Hz and 500 kHz such that the signals intersect in a desired intersection volume outside the borehole. The method further includes receiving, a difference signal returning to the borehole resulting from a non-linear mixing of the signals in a mixing zone within the intersection volume.

  7. Acoustic 3D imaging of dental structures

    SciTech Connect

    Lewis, D.K.; Hume, W.R.; Douglass, G.D.

    1997-02-01

    Our goals for the first year of this three dimensional electodynamic imaging project was to determine how to combine flexible, individual addressable; preprocessing of array source signals; spectral extrapolation or received signals; acoustic tomography codes; and acoustic propagation modeling code. We investigated flexible, individually addressable acoustic array material to find the best match in power, sensitivity and cost and settled on PVDF sheet arrays and 3-1 composite material.

  8. Frequency Characteristics of Acoustic Emission Signals from Cementitious Waste-forms with Encapsulated Al

    SciTech Connect

    Spasova, Lyubka M.; Ojovan, Michael I.

    2007-07-01

    Acoustic emission (AE) signals were continuously recorded and their intrinsic frequency characteristics examined in order to evaluate the mechanical performance of cementitious wasteform samples with encapsulated Al waste. The primary frequency in the power spectrum and its range of intensity for the detected acoustic waves were potentially related with appearance of different micro-mechanical events caused by Al corrosion within the encapsulating cement system. In addition the process of cement matrix hardening has been shown as a source of AE signals characterized with essentially higher primary frequency (above 2 MHz) compared with those due to Al corrosion development (below 40 kHz) and cement cracking (above 100 kHz). (authors)

  9. Beeping and piping: characterization of two mechano-acoustic signals used by honey bees in swarming.

    PubMed

    Schlegel, Thomas; Visscher, P Kirk; Seeley, Thomas D

    2012-12-01

    Of the many signals used by honey bees during the process of swarming, two of them--the stop signal and the worker piping signal--are not easily distinguished for both are mechano-acoustic signals produced by scout bees who press their bodies against other bees while vibrating their wing muscles. To clarify the acoustic differences between these two signals, we recorded both signals from the same swarm and at the same time, and compared them in terms of signal duration, fundamental frequency, and frequency modulation. Stop signals and worker piping signals differ in all three variables: duration, 174 ± 64 vs. 602 ± 377 ms; fundamental frequency, 407 vs. 451 Hz; and frequency modulation, absent vs. present. While it remains unclear which differences the bees use to distinguish the two signals, it is clear that they do so for the signals have opposite effects. Stop signals cause inhibition of actively dancing scout bees whereas piping signals cause excitation of quietly resting non-scout bees. PMID:23149930

  10. Search for acoustic signals from high energy cascades

    NASA Technical Reports Server (NTRS)

    Bell, R.; Bowen, T.

    1985-01-01

    High energy cosmic ray secondaries can be detected by means of the cascades they produce when they pass through matter. When the charged particles of these cascades ionize the matter they are traveling through, the heat produced and resulting thermal expansion causes a thermoacoustic wave. These sound waves travel at about one hundred-thousandth the speed of light, and should allow an array of acoustic transducers to resolve structure in the cascade to about 1 cm without high speed electronics or segmentation of the detector.

  11. Search for acoustic signals from high energy cascades

    NASA Astrophysics Data System (ADS)

    Bell, R.; Bowen, T.

    1985-08-01

    High energy cosmic ray secondaries can be detected by means of the cascades they produce when they pass through matter. When the charged particles of these cascades ionize the matter they are traveling through, the heat produced and resulting thermal expansion causes a thermoacoustic wave. These sound waves travel at about one hundred-thousandth the speed of light, and should allow an array of acoustic transducers to resolve structure in the cascade to about 1 cm without high speed electronics or segmentation of the detector.

  12. Research on power-law acoustic transient signal detection based on wavelet transform

    NASA Astrophysics Data System (ADS)

    Han, Jian-hui; Yang, Ri-jie; Wang, Wei

    2007-11-01

    Aiming at the characteristics of acoustic transient signal emitted from antisubmarine weapon which is being dropped into water (torpedo, aerial sonobuoy and rocket assisted depth charge etc.), such as short duration, low SNR, abruptness and instability, based on traditional power-law detector, a new method to detect acoustic transient signal is proposed. Firstly wavelet transform is used to de-noise signal, removes random spectrum components and improves SNR. Then Power- Law detector is adopted to detect transient signal. The simulation results show the method can effectively extract envelop characteristic of transient signal on the condition of low SNR. The performance of WT-Power-Law markedly outgoes that of traditional Power-Law detection method.

  13. Effects of atmospheric variations on acoustic system performance

    NASA Technical Reports Server (NTRS)

    Nation, Robert; Lang, Stephen; Olsen, Robert; Chintawongvanich, Prasan

    1993-01-01

    Acoustic propagation over medium to long ranges in the atmosphere is subject to many complex, interacting effects. Of particular interest at this point is modeling low frequency (less than 500 Hz) propagation for the purpose of predicting ranges and bearing accuracies at which acoustic sources can be detected. A simple means of estimating how much of the received signal power propagated directly from the source to the receiver and how much was received by turbulent scattering was developed. The correlations between the propagation mechanism and detection thresholds, beamformer bearing estimation accuracies, and beamformer processing gain of passive acoustic signal detection systems were explored.

  14. Simulation of nonlinear Westervelt equation for the investigation of acoustic streaming and nonlinear propagation effects.

    PubMed

    Solovchuk, Maxim; Sheu, Tony W H; Thiriet, Marc

    2013-11-01

    This study investigates the influence of blood flow on temperature distribution during high-intensity focused ultrasound (HIFU) ablation of liver tumors. A three-dimensional acoustic-thermal-hydrodynamic coupling model is developed to compute the temperature field in the hepatic cancerous region. The model is based on the nonlinear Westervelt equation, bioheat equations for the perfused tissue and blood flow domains. The nonlinear Navier-Stokes equations are employed to describe the flow in large blood vessels. The effect of acoustic streaming is also taken into account in the present HIFU simulation study. A simulation of the Westervelt equation requires a prohibitively large amount of computer resources. Therefore a sixth-order accurate acoustic scheme in three-point stencil was developed for effectively solving the nonlinear wave equation. Results show that focused ultrasound beam with the peak intensity 2470 W/cm(2) can induce acoustic streaming velocities up to 75 cm/s in the vessel with a diameter of 3 mm. The predicted temperature difference for the cases considered with and without acoustic streaming effect is 13.5 °C or 81% on the blood vessel wall for the vein. Tumor necrosis was studied in a region close to major vessels. The theoretical feasibility to safely necrotize the tumors close to major hepatic arteries and veins was shown. PMID:24180802

  15. Beeping and piping: characterization of two mechano-acoustic signals used by honey bees in swarming

    NASA Astrophysics Data System (ADS)

    Schlegel, Thomas; Visscher, P. Kirk; Seeley, Thomas D.

    2012-12-01

    Of the many signals used by honey bees during the process of swarming, two of them—the stop signal and the worker piping signal—are not easily distinguished for both are mechano-acoustic signals produced by scout bees who press their bodies against other bees while vibrating their wing muscles. To clarify the acoustic differences between these two signals, we recorded both signals from the same swarm and at the same time, and compared them in terms of signal duration, fundamental frequency, and frequency modulation. Stop signals and worker piping signals differ in all three variables: duration, 174 ± 64 vs. 602 ± 377 ms; fundamental frequency, 407 vs. 451 Hz; and frequency modulation, absent vs. present. While it remains unclear which differences the bees use to distinguish the two signals, it is clear that they do so for the signals have opposite effects. Stop signals cause inhibition of actively dancing scout bees whereas piping signals cause excitation of quietly resting non-scout bees.

  16. Navigation Signal Disturbances by Multipath Propagation - Scaled Measurements with a Universal Channel Sounder Architecture

    NASA Astrophysics Data System (ADS)

    Geise, Robert; Neubauer, Bjoern; Zimmer, Georg

    2015-11-01

    The performance of navigation systems is always reduced by unwanted multipath propagation. This is especially of practical importance for airborne navigation systems like the instrument landing system (ILS) or the VHF omni directional radio range (VOR). Nevertheless, the quantitative analysis of corresponding, potentially harmful multipath propagation disturbances is very difficult due to the large parameter space. Experimentally difficulties arise due to very expensive, real scale measurement campaigns and numerical simulation techniques still have shortcomings which are briefly discussed. In this contribution a new universal approach is introduced on how to measure very flexibly multipath propagation effects for arbitrary navigation systems using a channel sounder architecture in a scaled measurement environment. Two relevant scenarios of multipath propagation and the impact on navigation signals are presented. The first describes disturbances of the ILS due to large taxiing aircraft. The other example shows the influence of rotating wind turbines on the VOR.

  17. Sub-nanosecond signal propagation in anisotropy-engineered nanomagnetic logic chains

    NASA Astrophysics Data System (ADS)

    Gu, Zheng; Nowakowski, Mark E.; Carlton, David B.; Storz, Ralph; Im, Mi-Young; Hong, Jeongmin; Chao, Weilun; Lambson, Brian; Bennett, Patrick; Alam, Mohmmad T.; Marcus, Matthew A.; Doran, Andrew; Young, Anthony; Scholl, Andreas; Fischer, Peter; Bokor, Jeffrey

    2015-03-01

    Energy efficient nanomagnetic logic (NML) computing architectures propagate binary information by relying on dipolar field coupling to reorient closely spaced nanoscale magnets. Signal propagation in nanomagnet chains has been previously characterized by static magnetic imaging experiments; however, the mechanisms that determine the final state and their reproducibility over millions of cycles in high-speed operation have yet to be experimentally investigated. Here we present a study of NML operation in a high-speed regime. We perform direct imaging of digital signal propagation in permalloy nanomagnet chains with varying degrees of shape-engineered biaxial anisotropy using full-field magnetic X-ray transmission microscopy and time-resolved photoemission electron microscopy after applying nanosecond magnetic field pulses. An intrinsic switching time of 100 ps per magnet is observed. These experiments, and accompanying macrospin and micromagnetic simulations, reveal the underlying physics of NML architectures repetitively operated on nanosecond timescales and identify relevant engineering parameters to optimize performance and reliability.

  18. Finite element modeling of acoustic wave propagation and energy deposition in bone during extracorporeal shock wave treatment

    NASA Astrophysics Data System (ADS)

    Wang, Xiaofeng; Matula, Thomas J.; Ma, Yong; Liu, Zheng; Tu, Juan; Guo, Xiasheng; Zhang, Dong

    2013-06-01

    It is well known that extracorporeal shock wave treatment is capable of providing a non-surgical and relatively pain free alternative treatment modality for patients suffering from musculoskeletal disorders but do not respond well to conservative treatments. The major objective of current work is to investigate how the shock wave (SW) field would change if a bony structure exists in the path of the acoustic wave. Here, a model of finite element method (FEM) was developed based on linear elasticity and acoustic propagation equations to examine SW propagation and deflection near a mimic musculoskeletal bone. High-speed photography experiments were performed to record cavitation bubbles generated in SW field with the presence of mimic bone. By comparing experimental and simulated results, the effectiveness of FEM model could be verified and strain energy distributions in the bone were also predicted according to numerical simulations. The results show that (1) the SW field will be deflected with the presence of bony structure and varying deflection angles can be observed as the bone shifted up in the z-direction relative to SW geometric focus (F2 focus); (2) SW deflection angels predicted by the FEM model agree well with experimental results obtained from high-speed photographs; and (3) temporal evolutions of strain energy distribution in the bone can also be evaluated based on FEM model, with varied vertical distance between F2 focus and intended target point on the bone surface. The present studies indicate that, by combining MRI/CT scans and FEM modeling work, it is possible to better understand SW propagation characteristics and energy deposition in musculoskeletal structure during extracorporeal shock wave treatment, which is important for standardizing the treatment dosage, optimizing treatment protocols, and even providing patient-specific treatment guidance in clinic.

  19. Development of an Acoustic Signal Analysis Tool “Auto-F” Based on the Temperament Scale

    NASA Astrophysics Data System (ADS)

    Modegi, Toshio

    The MIDI interface is originally designed for electronic musical instruments but we consider this music-note based coding concept can be extended for general acoustic signal description. We proposed applying the MIDI technology to coding of bio-medical auscultation sound signals such as heart sounds for retrieving medical records and performing telemedicine. Then we have tried to extend our encoding targets including vocal sounds, natural sounds and electronic bio-signals such as ECG, using Generalized Harmonic Analysis method. Currently, we are trying to separate vocal sounds included in popular songs and encode both vocal sounds and background instrumental sounds into separate MIDI channels. And also, we are trying to extract articulation parameters such as MIDI pitch-bend parameters in order to reproduce natural acoustic sounds using a GM-standard MIDI tone generator. In this paper, we present an overall algorithm of our developed acoustic signal analysis tool, based on those research works, which can analyze given time-based signals on the musical temperament scale. The prominent feature of this tool is producing high-precision MIDI codes, which reproduce the similar signals as the given source signal using a GM-standard MIDI tone generator, and also providing analyzed texts in the XML format.

  20. Characterization of spontaneous magnetic signals induced by cyclic tensile stress in crack propagation stage

    NASA Astrophysics Data System (ADS)

    Huang, Haihong; Jiang, Shilin; Wang, Yan; Zhang, Lei; Liu, Zhifeng

    2014-09-01

    Influenced by the geomagnetic field, crack can induce spontaneous magnetic signals in ferromagnetic steels. The normal component of surface spontaneous magnetic signals of the center-cracked sheet specimens, Hp(y), was measured throughout the tension-tension fatigue tests. The variation of Hp(y) and its maximum gradient Kmax in the crack propagation stage were studied. It shows that Hp(y) began to change its polarity, just right on the crack position, in the intermediate stage of crack propagation. The cause for this phenomenon was also discussed. The peak-to-peak value, ΔHp(y), of the magnetic signal when Hp(y) changing its polarity was collected, and discrete wavelet transform (DWT) was further used to acquire high frequency components of the Hp(y) signal. The results show that the Kmax increased exponentially with the increase of loading cycles; an approximate linear relationship was found between Kmax and crack length 2a in the intermediate stage of crack propagation; and the high-frequency component of Hp(y) can be used to identify the late stage of crack propagation.

  1. Oblique propagation of ion acoustic shock waves in weakly and highly relativistic plasmas with nonthermal electrons and positrons

    NASA Astrophysics Data System (ADS)

    Hafez, M. G.; Roy, N. C.; Talukder, M. R.; Hossain Ali, M.

    2016-09-01

    This work investigates the oblique nonlinear propagation of ion acoustic (IA) shock waves for both weakly and highly relativistic plasmas composed of nonthermal electrons and positrons with relativistic thermal ions. The KdVB-like equation, involving dispersive, weakly transverse dispersive, nonlinearity and dissipative coefficients, is derived employing the well known reductive perturbation method. The integration of this equation is carried out by the {tanh} method taking the stable shock formation condition into account. The effects of nonthermal electrons and positrons, nonthermal electrons with isothermal positrons, isothermal electrons with nonthermal positrons, and isothermal electrons and positrons on oblique propagation of IA shock waves in weakly relativistic regime are described. Furthermore, the effects of plasma parameters on oblique propagation of IA shock waves in highly relativistic regime are discussed and compared with weakly relativistic case. It is seen that the plasma parameters within certain limits significantly modify the structures of the IA shock waves in both cases. The results may be useful for better understanding of the interactions of charged particles with extra-galactic jets as well as astrophysical compact objects.

  2. Acoustic Signal Processing for Pipe Condition Assessment (WaterRF Report 4360)

    EPA Science Inventory

    Unique to prestressed concrete cylinder pipe (PCCP), individual wire breaks create an excitation in the pipe wall that may vary in response to the remaining compression of the pipe core. This project was designed to improve acoustic signal processing for pipe condition assessment...

  3. Modeling the effects of Multi-path propagation and scintillation on GPS signals

    NASA Astrophysics Data System (ADS)

    Habash Krause, L.; Wilson, S. J.

    2014-12-01

    GPS signals traveling through the earth's ionosphere are affected by charged particles that often disrupt the signal and the information it carries due to "scintillation", which resembles an extra noise source on the signal. These signals are also affected by weather changes, tropospheric scattering, and absorption from objects due to multi-path propagation of the signal. These obstacles cause distortion within information and fading of the signal, which ultimately results in phase locking errors and noise in messages. In this work, we attempted to replicate the distortion that occurs in GPS signals using a signal processing simulation model. We wanted to be able to create and identify scintillated signals so we could better understand the environment that caused it to become scintillated. Then, under controlled conditions, we simulated the receiver's ability to suppress scintillation in a signal. We developed a code in MATLAB that was programmed to: 1. Create a carrier wave and then plant noise (four different frequencies) on the carrier wave, 2. Compute a Fourier transform on the four different frequencies to find the frequency content of a signal, 3. Use a filter and apply it to the Fourier transform of the four frequencies and then compute a Signal-to-noise ratio to evaluate the power (in Decibels) of the filtered signal, and 4.Plot each of these components into graphs. To test the code's validity, we used user input and data from an AM transmitter. We determined that the amplitude modulated signal or AM signal would be the best type of signal to test the accuracy of the MATLAB code due to its simplicity. This code is basic to give students the ability to change and use it to determine the environment and effects of noise on different AM signals and their carrier waves. Overall, we were able to manipulate a scenario of a noisy signal and interpret its behavior and change due to its noisy components: amplitude, frequency, and phase shift.

  4. Cascaded analysis of signal and noise propagation through a heterogeneous breast model

    SciTech Connect

    Mainprize, James G.; Yaffe, Martin J.

    2010-10-15

    Purpose: The detectability of lesions in radiographic images can be impaired by patterns caused by the surrounding anatomic structures. The presence of such patterns is often referred to as anatomic noise. Others have previously extended signal and noise propagation theory to include variable background structure as an additional noise term and used in simulations for analysis by human and ideal observers. Here, the analytic forms of the signal and noise transfer are derived to obtain an exact expression for any input random distribution and the ''power law'' filter used to generate the texture of the tissue distribution. Methods: A cascaded analysis of propagation through a heterogeneous model is derived for x-ray projection through simulated heterogeneous backgrounds. This is achieved by considering transmission through the breast as a correlated amplification point process. The analytic forms of the cascaded analysis were compared to monoenergetic Monte Carlo simulations of x-ray propagation through power law structured backgrounds. Results: As expected, it was found that although the quantum noise power component scales linearly with the x-ray signal, the anatomic noise will scale with the square of the x-ray signal. There was a good agreement between results obtained using analytic expressions for the noise power and those from Monte Carlo simulations for different background textures, random input functions, and x-ray fluence. Conclusions: Analytic equations for the signal and noise properties of heterogeneous backgrounds were derived. These may be used in direct analysis or as a tool to validate simulations in evaluating detectability.

  5. The phase of the crosspolarized signal generated by millimeter wave propagation through rain

    NASA Technical Reports Server (NTRS)

    Overstreet, W. P.; Bostian, C. W.

    1978-01-01

    Proposed schemes for cancelling rain-induced crosstalk in dual-polarized communications systems depend upon the phase relationships between the wanted and unwanted signals. This report investigates the phase relationship of the rain-generated crosspolarized signal relative to the copolarized signal. Theoretical results obtained from a commonly accepted propagation model are presented. Experimental data from the Communications Technology Satellite beacon and from the Comstar beacon are presented and the correlation between theory and data is discussed. An inexpensive semi-adaptive cancellation system is proposed and its performance expectations are presented. The implications of phase variations on a cancellation system are also discussed.

  6. Propagation modeling of ocean-scattered low-elevation GPS signals for maritime tropospheric duct inversion

    NASA Astrophysics Data System (ADS)

    Zhang, Jin-Peng; Wu, Zhen-Sen; Zhao, Zhen-Wei; Zhang, Yu-Sheng; Wang, Bo

    2012-10-01

    The maritime tropospheric duct is a low-altitude anomalous refractivity structure over the ocean surface, and it can significantly affect the performance of many shore-based/shipboard radar and communication systems. We propose the idea that maritime tropospheric ducts can be retrieved from ocean forward-scattered low-elevation global positioning system (GPS) signals. Retrieval is accomplished by matching the measured power patterns of the signals to those predicted by the forward propagation model as a function of the modified refractivity profile. On the basis of a parabolic equation method and bistatic radar equation, we develop such a forward model for computing the trapped propagation characteristics of an ocean forward-scattered GPS signal within a tropospheric duct. A new GPS scattering initial field is defined for this model to start the propagation modeling. A preliminary test on the performance of this model is conducted using measured data obtained from a 2009-experiment in the South China Sea. Results demonstrate that this model can predict GPS propagation characteristics within maritime tropospheric ducts and serve as a forward model for duct inversion.

  7. Physical mechanisms associated with long-range propagation of the signals from ionospheric heating experiments

    NASA Astrophysics Data System (ADS)

    Zabotin, Nikolay A.; Zavorotny, Valery U.; Rietveld, Michael T.

    2014-10-01

    Long-range propagation of heater-produced signals has been studied in experiments with the European Incoherent Scatter Scientific Association ionospheric heating facility and with several globally distributed receiving sites by Zalizovski et al. [2009]. Two distinctive components were present in the signals' spectra, and these can be attributed to two modes of propagation of the signals. One of the components is narrowband and stable; it obviously can be associated with the multihop ionospheric propagation of HF waves radiated by the side lobes of the heater's antenna array. Prominent features of the second component are its wider spectral band (up to few tens of hertz) and strong variations in the average Doppler frequency shift and in the power, which in many cases were synchronous at the different receiving sites. These effects are most likely produced by the ionospheric scattering and dynamics within the heater's main beam. The tricky part is to explain how a portion of the HF energy contained in the relatively narrow main beam of the heater is redirected toward the remote receiving locations. We suggest a robust mechanism explaining the long-range propagation of the wideband component of the heater-generated signal based on the theory of scattering from rough surfaces. This mechanism preserves all the observed properties of the remote signals. We show that mountain relief in the vicinity of the heater plays the role of the rough surface causing almost isotropic scattering of the heater's main beam after it is reflected by the ionosphere. Multiple scattering by natural and artificial field-aligned irregularities in the ionospheric layer may be related to the ground-scattered remote signals through its role in spatial redistribution of the heater's radiation.

  8. Oblique propagation of dust ion-acoustic solitary waves in a magnetized dusty pair-ion plasma

    SciTech Connect

    Misra, A. P. E-mail: apmisra@gmail.com; Barman, Arnab

    2014-07-15

    We investigate the propagation characteristics of electrostatic waves in a magnetized pair-ion plasma with immobile charged dusts. It is shown that obliquely propagating (OP) low-frequency (in comparison with the negative-ion cyclotron frequency) long-wavelength “slow” and “fast” modes can propagate, respectively, as dust ion-acoustic (DIA) and dust ion-cyclotron (DIC)-like waves. The properties of these modes are studied with the effects of obliqueness of propagation (θ), the static magnetic field, the ratios of the negative to positive ion masses (m), and temperatures (T) as well as the dust to negative-ion number density ratio (δ). Using the standard reductive perturbation technique, we derive a Korteweg-de Vries (KdV) equation which governs the evolution of small-amplitude OP DIA waves. It is found that the KdV equation admits only rarefactive solitons in plasmas with m well below its critical value m{sub c} (≫ 1) which typically depends on T and δ. It is shown that the nonlinear coefficient of the KdV equation vanishes at m = m{sub c}, i.e., for plasmas with much heavier negative ions, and the evolution of the DIA waves is then described by a modified KdV (mKdV) equation. The latter is shown to have only compressive soliton solution. The properties of both the KdV and mKdV solitons are studied with the system parameters as above, and possible applications of our results to laboratory and space plasmas are briefly discussed.

  9. Role of positively charged dust grains on dust acoustic wave propagation in presence of nonthermal ions

    SciTech Connect

    Sarkar, Susmita; Maity, Saumyen

    2013-08-15

    An expression for ion current flowing to the dust grains is proposed, when dust charge is positive and the ions are nonthermal. Secondary electron emission has been considered as the source of positive charging of the dust grains. Investigation shows that presence of positively charged dust grains along with thermal electrons and nonthermal ions generate purely growing dust acoustic waves for both the cases of ion nonthermal parameter greater than one and less than one. In the later case, the growth is conditional.

  10. Data quality enhancement and knowledge discovery from relevant signals in acoustic emission

    NASA Astrophysics Data System (ADS)

    Mejia, Felipe; Shyu, Mei-Ling; Nanni, Antonio

    2015-10-01

    The increasing popularity of structural health monitoring has brought with it a growing need for automated data management and data analysis tools. Of great importance are filters that can systematically detect unwanted signals in acoustic emission datasets. This study presents a semi-supervised data mining scheme that detects data belonging to unfamiliar distributions. This type of outlier detection scheme is useful detecting the presence of new acoustic emission sources, given a training dataset of unwanted signals. In addition to classifying new observations (herein referred to as "outliers") within a dataset, the scheme generates a decision tree that classifies sub-clusters within the outlier context set. The obtained tree can be interpreted as a series of characterization rules for newly-observed data, and they can potentially describe the basic structure of different modes within the outlier distribution. The data mining scheme is first validated on a synthetic dataset, and an attempt is made to confirm the algorithms' ability to discriminate outlier acoustic emission sources from a controlled pencil-lead-break experiment. Finally, the scheme is applied to data from two fatigue crack-growth steel specimens, where it is shown that extracted rules can adequately describe crack-growth related acoustic emission sources while filtering out background "noise." Results show promising performance in filter generation, thereby allowing analysts to extract, characterize, and focus only on meaningful signals.

  11. Acoustic tweezers for studying intracellular calcium signaling in SKBR-3 human breast cancer cells.

    PubMed

    Hwang, Jae Youn; Yoon, Chi Woo; Lim, Hae Gyun; Park, Jin Man; Yoon, Sangpil; Lee, Jungwoo; Shung, K Kirk

    2015-12-01

    Extracellular matrix proteins such as fibronectin (FNT) play crucial roles in cell proliferation, adhesion, and migration. For better understanding of these associated cellular activities, various microscopic manipulation tools have been used to study their intracellular signaling pathways. Recently, it has appeared that acoustic tweezers may possess similar capabilities in the study. Therefore, we here demonstrate that our newly developed acoustic tweezers with a high-frequency lithium niobate ultrasonic transducer have potentials to study intracellular calcium signaling by FNT-binding to human breast cancer cells (SKBR-3). It is found that intracellular calcium elevations in SKBR-3 cells, initially occurring on the microbead-contacted spot and then eventually spreading over the entire cell, are elicited by attaching an acoustically trapped FNT-coated microbead. Interestingly, they are suppressed by either extracellular calcium elimination or phospholipase C (PLC) inhibition. Hence, this suggests that our acoustic tweezers may serve as an alternative tool in the study of intracellular signaling by FNT-binding activities.

  12. Study of Signal Detection, Integration, and Propagation in Quorum Sensing at the Single Cell Level

    NASA Astrophysics Data System (ADS)

    Long, Tao; Bassler, Bonnie; Wingreen, Ned

    2007-03-01

    Bacteria respond to their environment and to each other and accordingly adjust their gene-expression levels. Accurate signal detection, appropriate signal integration, and faithful signal propagation are essential for a cell to make correct adjustments in response to various extracellular cues. To better understand this information processing by living cells, we studied a model system -- the quorum-sensing circuit in Vibrio harveyi. Quorum sensing is a process in which bacteria communicate with each other by diffusible chemical molecules, termed ``autoinducers'', to commit to coordinated developmental decisions. Three types of autoinducers are detected coincidently by three parallel receptors. The signals are then integrated into the same signaling pathway and propagated by phosphorylation or dephosphorylation of the pathway components. To quantitatively measure the intracellular response, we applied a fluorescent protein reporter, whose production is regulated by a phosphorylated protein in the pathway. By single-cell microscopy, we can explore features of this information-processing circuit such as coincidence detection, signal integration, noise reduction or filtering, and especially the fidelity in signal processing achieved in the presence of inevitable fluctuations.

  13. Multi-level Monte Carlo finite volume methods for uncertainty quantification of acoustic wave propagation in random heterogeneous layered medium

    NASA Astrophysics Data System (ADS)

    Mishra, S.; Schwab, Ch.; Šukys, J.

    2016-05-01

    We consider the very challenging problem of efficient uncertainty quantification for acoustic wave propagation in a highly heterogeneous, possibly layered, random medium, characterized by possibly anisotropic, piecewise log-exponentially distributed Gaussian random fields. A multi-level Monte Carlo finite volume method is proposed, along with a novel, bias-free upscaling technique that allows to represent the input random fields, generated using spectral FFT methods, efficiently. Combined together with a recently developed dynamic load balancing algorithm that scales to massively parallel computing architectures, the proposed method is able to robustly compute uncertainty for highly realistic random subsurface formations that can contain a very high number (millions) of sources of uncertainty. Numerical experiments, in both two and three space dimensions, illustrating the efficiency of the method are presented.

  14. Multi-scale morphology analysis of acoustic emission signal and quantitative diagnosis for bearing fault

    NASA Astrophysics Data System (ADS)

    Wang, Wen-Jing; Cui, Ling-Li; Chen, Dao-Yun

    2016-04-01

    Monitoring of potential bearing faults in operation is of critical importance to safe operation of high speed trains. One of the major challenges is how to differentiate relevant signals to operational conditions of bearings from noises emitted from the surrounding environment. In this work, we report a procedure for analyzing acoustic emission signals collected from rolling bearings for diagnosis of bearing health conditions by examining their morphological pattern spectrum (MPS) through a multi-scale morphology analysis procedure. The results show that acoustic emission signals resulted from a given type of bearing faults share rather similar MPS curves. Further examinations in terms of sample entropy and Lempel-Ziv complexity of MPS curves suggest that these two parameters can be utilized to determine damage modes.

  15. Temperature and Pressure Dependence of Signal Amplitudes for Electrostriction Laser-Induced Thermal Acoustics

    NASA Technical Reports Server (NTRS)

    Herring, Gregory C.

    2015-01-01

    The relative signal strength of electrostriction-only (no thermal grating) laser-induced thermal acoustics (LITA) in gas-phase air is reported as a function of temperature T and pressure P. Measurements were made in the free stream of a variable Mach number supersonic wind tunnel, where T and P are varied simultaneously as Mach number is varied. Using optical heterodyning, the measured signal amplitude (related to the optical reflectivity of the acoustic grating) was averaged for each of 11 flow conditions and compared to the expected theoretical dependence of a pure-electrostriction LITA process, where the signal is proportional to the square root of [P*P /( T*T*T)].

  16. 3D numerical simulation of the long range propagation of acoustical shock waves through a heterogeneous and moving medium

    NASA Astrophysics Data System (ADS)

    Luquet, David; Marchiano, Régis; Coulouvrat, François

    2015-10-01

    Many situations involve the propagation of acoustical shock waves through flows. Natural sources such as lightning, volcano explosions, or meteoroid atmospheric entries, emit loud, low frequency, and impulsive sound that is influenced by atmospheric wind and turbulence. The sonic boom produced by a supersonic aircraft and explosion noises are examples of intense anthropogenic sources in the atmosphere. The Buzz-Saw-Noise produced by turbo-engine fan blades rotating at supersonic speed also propagates in a fast flow within the engine nacelle. Simulating these situations is challenging, given the 3D nature of the problem, the long range propagation distances relative to the central wavelength, the strongly nonlinear behavior of shocks associated to a wide-band spectrum, and finally the key role of the flow motion. With this in view, the so-called FLHOWARD (acronym for FLow and Heterogeneous One-Way Approximation for Resolution of Diffraction) method is presented with three-dimensional applications. A scalar nonlinear wave equation is established in the framework of atmospheric applications, assuming weak heterogeneities and a slow wind. It takes into account diffraction, absorption and relaxation properties of the atmosphere, quadratic nonlinearities including weak shock waves, heterogeneities of the medium in sound speed and density, and presence of a flow (assuming a mean stratified wind and 3D turbulent ? flow fluctuations of smaller amplitude). This equation is solved in the framework of the one-way method. A split-step technique allows the splitting of the non-linear wave equation into simpler equations, each corresponding to a physical effect. Each sub-equation is solved using an analytical method if possible, and finite-differences otherwise. Nonlinear effects are solved in the time domain, and others in the frequency domain. Homogeneous diffraction is handled by means of the angular spectrum method. Ground is assumed perfectly flat and rigid. Due to the 3D

  17. 3D numerical simulation of the long range propagation of acoustical shock waves through a heterogeneous and moving medium

    SciTech Connect

    Luquet, David; Marchiano, Régis; Coulouvrat, François

    2015-10-28

    Many situations involve the propagation of acoustical shock waves through flows. Natural sources such as lightning, volcano explosions, or meteoroid atmospheric entries, emit loud, low frequency, and impulsive sound that is influenced by atmospheric wind and turbulence. The sonic boom produced by a supersonic aircraft and explosion noises are examples of intense anthropogenic sources in the atmosphere. The Buzz-Saw-Noise produced by turbo-engine fan blades rotating at supersonic speed also propagates in a fast flow within the engine nacelle. Simulating these situations is challenging, given the 3D nature of the problem, the long range propagation distances relative to the central wavelength, the strongly nonlinear behavior of shocks associated to a wide-band spectrum, and finally the key role of the flow motion. With this in view, the so-called FLHOWARD (acronym for FLow and Heterogeneous One-Way Approximation for Resolution of Diffraction) method is presented with three-dimensional applications. A scalar nonlinear wave equation is established in the framework of atmospheric applications, assuming weak heterogeneities and a slow wind. It takes into account diffraction, absorption and relaxation properties of the atmosphere, quadratic nonlinearities including weak shock waves, heterogeneities of the medium in sound speed and density, and presence of a flow (assuming a mean stratified wind and 3D turbulent ? flow fluctuations of smaller amplitude). This equation is solved in the framework of the one-way method. A split-step technique allows the splitting of the non-linear wave equation into simpler equations, each corresponding to a physical effect. Each sub-equation is solved using an analytical method if possible, and finite-differences otherwise. Nonlinear effects are solved in the time domain, and others in the frequency domain. Homogeneous diffraction is handled by means of the angular spectrum method. Ground is assumed perfectly flat and rigid. Due to the 3D

  18. Nonlinear acoustic pulse propagation in dispersive sediments using fractional loss operators.

    PubMed

    Maestas, Joseph T; Collis, Jon M

    2016-03-01

    The nonlinear progressive wave equation (NPE) is a time-domain formulation of the Euler fluid equations designed to model low-angle wave propagation using a wave-following computational domain. The wave-following frame of reference permits the simulation of long-range propagation and is useful in modeling blast wave effects in the ocean waveguide. Existing models do not take into account frequency-dependent sediment attenuation, a feature necessary for accurately describing sound propagation over, into, and out of the ocean sediment. Sediment attenuation is addressed in this work by applying lossy operators to the governing equation that are based on a fractional Laplacian. These operators accurately describe frequency-dependent attenuation and dispersion in typical ocean sediments. However, dispersion within the sediment is found to be a secondary process to absorption and effectively negligible for ranges of interest. The resulting fractional NPE is benchmarked against a Fourier-transformed parabolic equation solution for a linear case, and against the analytical Mendousse solution to Burgers' equation for the nonlinear case. The fractional NPE is then used to investigate the effects of attenuation on shock wave propagation. PMID:27036279

  19. Characterization of material properties of soft solid thin layers with acoustic radiation force and wave propagation.

    PubMed

    Urban, Matthew W; Nenadic, Ivan Z; Qiang, Bo; Bernal, Miguel; Chen, Shigao; Greenleaf, James F

    2015-10-01

    Evaluation of tissue engineering constructs is performed by a series of different tests. In many cases it is important to match the mechanical properties of these constructs to those of native tissues. However, many mechanical testing methods are destructive in nature which increases cost for evaluation because of the need for additional samples reserved for these assessments. A wave propagation method is proposed for characterizing the shear elasticity of thin layers bounded by a rigid substrate and fluid-loading, similar to the configuration for many tissue engineering applications. An analytic wave propagation model was derived for this configuration and compared against finite element model simulations and numerical solutions from the software package Disperse. The results from the different models found very good agreement. Experiments were performed in tissue-mimicking gelatin phantoms with thicknesses of 1 and 4 mm and found that the wave propagation method could resolve the shear modulus with very good accuracy, no more than 4.10% error. This method could be used in tissue engineering applications to monitor tissue engineering construct maturation with a nondestructive wave propagation method to evaluate the shear modulus of a material.

  20. Evaluation of a scale-model experiment to investigate long-range acoustic propagation

    NASA Technical Reports Server (NTRS)

    Parrott, Tony L.; Mcaninch, Gerry L.; Carlberg, Ingrid A.

    1987-01-01

    Tests were conducted to evaluate the feasibility of using a scale-model experiment situated in an anechoic facility to investigate long-range sound propagation over ground terrain. For a nominal scale factor of 100:1, attenuations along a linear array of six microphones colinear with a continuous-wave type of sound source were measured over a wavelength range from 10 to 160 for a nominal test frequency of 10 kHz. Most tests were made for a hard model surface (plywood), but limited tests were also made for a soft model surface (plywood with felt). For grazing-incidence propagation over the hard surface, measured and predicted attenuation trends were consistent for microphone locations out to between 40 and 80 wavelengths. Beyond 80 wavelengths, significant variability was observed that was caused by disturbances in the propagation medium. Also, there was evidence of extraneous propagation-path contributions to data irregularities at more remote microphones. Sensitivity studies for the hard-surface and microphone indicated a 2.5 dB change in the relative excess attenuation for a systematic error in source and microphone elevations on the order of 1 mm. For the soft-surface model, no comparable sensitivity was found.

  1. [Research on Time-frequency Characteristics of Magneto-acoustic Signal of Different Thickness Medium Based on Wave Summing Method].

    PubMed

    Zhang, Shunqi; Yin, Tao; Ma, Ren; Liu, Zhipeng

    2015-08-01

    Functional imaging method of biological electrical characteristics based on magneto-acoustic effect gives valuable information of tissue in early tumor diagnosis, therein time and frequency characteristics analysis of magneto-acoustic signal is important in image reconstruction. This paper proposes wave summing method based on Green function solution for acoustic source of magneto-acoustic effect. Simulations and analysis under quasi 1D transmission condition are carried out to time and frequency characteristics of magneto-acoustic signal of models with different thickness. Simulation results of magneto-acoustic signal were verified through experiments. Results of the simulation with different thickness showed that time-frequency characteristics of magneto-acoustic signal reflected thickness of sample. Thin sample, which is less than one wavelength of pulse, and thick sample, which is larger than one wavelength, showed different summed waveform and frequency characteristics, due to difference of summing thickness. Experimental results verified theoretical analysis and simulation results. This research has laid a foundation for acoustic source and conductivity reconstruction to the medium with different thickness in magneto-acoustic imaging.

  2. Nonlinear propagation of dust-acoustic waves in an unmagnetized dusty plasma with nonthermal electron and vortex-like ion distribution

    SciTech Connect

    Paul, A.; Mandal, G.; Amin, M. R.; Mamun, A. A.

    2013-10-15

    The nonlinear propagation of dust-acoustic (DA) waves in an unmagnetized dusty plasma consisting of nonthermal electrons, vortex-like (trapped) distributed ions and mobile negative dust have been investigated by employing the reductive perturbation technique. The effects of nonthermal electrons and trapped ions are found to modify the properties of the DA solitary waves.

  3. Ductile Deformation of Dehydrating Serpentinite Evidenced by Acoustic Signal Monitoring

    NASA Astrophysics Data System (ADS)

    Gasc, J.; Hilairet, N.; Wang, Y.; Schubnel, A. J.

    2012-12-01

    Serpentinite dehydration is believed to be responsible for triggering earthquakes at intermediate depths (i.e., 60-300 km) in subduction zones. Based on experimental results, some authors have proposed mechanisms that explain how brittle deformation can occur despite high pressure and temperature conditions [1]. However, reproducing microseismicity in the laboratory associated with the deformation of dehydrating serpentinite remains challenging. A recent study showed that, even for fast dehydration kinetics, ductile deformation could take place rather than brittle faulting in the sample [2]. This latter study was conducted in a multi-anvil apparatus without the ability to control differential stress during dehydration. We have since conducted controlled deformation experiments in the deformation-DIA (D-DIA) on natural serpentinite samples at sector 13 (GSECARS) of the APS. Monochromatic radiation was used with both a 2D MAR-CCD detector and a CCD camera to determine the stress and the strain of the sample during the deformation process [3]. In addition, an Acoustic Emission (AE) recording setup was used to monitor the microseismicity from the sample, using piezo-ceramic transducers glued on the basal truncation of the anvils. The use of six independent transducers allows locating the AEs and calculating the corresponding focal mechanisms. The samples were deformed at strain rates of 10-5-10-4 s-1 under confining pressures of 3-5 GPa. Dehydration was triggered during the deformation by heating the samples at rates ranging from 5 to 60 K/min. Before the onset of the dehydration, X-ray diffraction data showed that the serpentinite sustained ~1 GPa of stress which plummeted when dehydration occurred. Although AEs were recorded during the compression and decompression stages, no AEs ever accompanied this stress drop, suggesting ductile deformation of the samples. Hence, unlike many previous studies, no evidence for fluid embrittlement and anticrack generation was found

  4. Asymmetric Acoustic Propagation of Wave Packets Via the Self-Demodulation Effect

    NASA Astrophysics Data System (ADS)

    Devaux, Thibaut; Tournat, Vincent; Richoux, Olivier; Pagneux, Vincent

    2015-12-01

    This Letter presents the experimental characterization of nonreciprocal elastic wave transmission in a single-mode elastic waveguide. This asymmetric system is obtained by coupling a selection layer with a conversion layer: the selection component is provided by a phononic crystal, while the conversion is achieved by a nonlinear self-demodulation effect in a 3D unconsolidated granular medium. A quantitative experimental study of this acoustic rectifier indicates a high rectifying ratio, up to 1 06, with wide band (10 kHz) and an audible effect. Moreover, this system allows for wave-packet rectification and extends the future applications of asymmetric systems.

  5. Acoustic cardiac signals analysis: a Kalman filter-based approach.

    PubMed

    Salleh, Sheik Hussain; Hussain, Hadrina Sheik; Swee, Tan Tian; Ting, Chee-Ming; Noor, Alias Mohd; Pipatsart, Surasak; Ali, Jalil; Yupapin, Preecha P

    2012-01-01

    Auscultation of the heart is accompanied by both electrical activity and sound. Heart auscultation provides clues to diagnose many cardiac abnormalities. Unfortunately, detection of relevant symptoms and diagnosis based on heart sound through a stethoscope is difficult. The reason GPs find this difficult is that the heart sounds are of short duration and separated from one another by less than 30 ms. In addition, the cost of false positives constitutes wasted time and emotional anxiety for both patient and GP. Many heart diseases cause changes in heart sound, waveform, and additional murmurs before other signs and symptoms appear. Heart-sound auscultation is the primary test conducted by GPs. These sounds are generated primarily by turbulent flow of blood in the heart. Analysis of heart sounds requires a quiet environment with minimum ambient noise. In order to address such issues, the technique of denoising and estimating the biomedical heart signal is proposed in this investigation. Normally, the performance of the filter naturally depends on prior information related to the statistical properties of the signal and the background noise. This paper proposes Kalman filtering for denoising statistical heart sound. The cycles of heart sounds are certain to follow first-order Gauss-Markov process. These cycles are observed with additional noise for the given measurement. The model is formulated into state-space form to enable use of a Kalman filter to estimate the clean cycles of heart sounds. The estimates obtained by Kalman filtering are optimal in mean squared sense.

  6. Biological invasions and the acoustic niche: the effect of bullfrog calls on the acoustic signals of white-banded tree frogs.

    PubMed

    Both, Camila; Grant, Taran

    2012-10-23

    Invasive species are known to affect native species in a variety of ways, but the effect of acoustic invaders has not been examined previously. We simulated an invasion of the acoustic niche by exposing calling native male white-banded tree frogs (Hypsiboas albomarginatus) to recorded invasive American bullfrog (Lithobates catesbeianus) calls. In response, tree frogs immediately shifted calls to significantly higher frequencies. In the post-stimulus period, they continued to use higher frequencies while also decreasing signal duration. Acoustic signals are the primary basis of mate selection in many anurans, suggesting that such changes could negatively affect the reproductive success of native species. The effects of bullfrog vocalizations on acoustic communities are expected to be especially severe due to their broad frequency band, which masks the calls of multiple species simultaneously. PMID:22675139

  7. Biological invasions and the acoustic niche: the effect of bullfrog calls on the acoustic signals of white-banded tree frogs

    PubMed Central

    Both, Camila; Grant, Taran

    2012-01-01

    Invasive species are known to affect native species in a variety of ways, but the effect of acoustic invaders has not been examined previously. We simulated an invasion of the acoustic niche by exposing calling native male white-banded tree frogs (Hypsiboas albomarginatus) to recorded invasive American bullfrog (Lithobates catesbeianus) calls. In response, tree frogs immediately shifted calls to significantly higher frequencies. In the post-stimulus period, they continued to use higher frequencies while also decreasing signal duration. Acoustic signals are the primary basis of mate selection in many anurans, suggesting that such changes could negatively affect the reproductive success of native species. The effects of bullfrog vocalizations on acoustic communities are expected to be especially severe due to their broad frequency band, which masks the calls of multiple species simultaneously. PMID:22675139

  8. Biological invasions and the acoustic niche: the effect of bullfrog calls on the acoustic signals of white-banded tree frogs.

    PubMed

    Both, Camila; Grant, Taran

    2012-10-23

    Invasive species are known to affect native species in a variety of ways, but the effect of acoustic invaders has not been examined previously. We simulated an invasion of the acoustic niche by exposing calling native male white-banded tree frogs (Hypsiboas albomarginatus) to recorded invasive American bullfrog (Lithobates catesbeianus) calls. In response, tree frogs immediately shifted calls to significantly higher frequencies. In the post-stimulus period, they continued to use higher frequencies while also decreasing signal duration. Acoustic signals are the primary basis of mate selection in many anurans, suggesting that such changes could negatively affect the reproductive success of native species. The effects of bullfrog vocalizations on acoustic communities are expected to be especially severe due to their broad frequency band, which masks the calls of multiple species simultaneously.

  9. Extraction of fault component from abnormal sound in diesel engines using acoustic signals

    NASA Astrophysics Data System (ADS)

    Dayong, Ning; Changle, Sun; Yongjun, Gong; Zengmeng, Zhang; Jiaoyi, Hou

    2016-06-01

    In this paper a method for extracting fault components from abnormal acoustic signals and automatically diagnosing diesel engine faults is presented. The method named dislocation superimposed method (DSM) is based on the improved random decrement technique (IRDT), differential function (DF) and correlation analysis (CA). The aim of DSM is to linearly superpose multiple segments of abnormal acoustic signals because of the waveform similarity of faulty components. The method uses sample points at the beginning of time when abnormal sound appears as the starting position for each segment. In this study, the abnormal sound belonged to shocking faulty type; thus, the starting position searching method based on gradient variance was adopted. The coefficient of similar degree between two same sized signals is presented. By comparing with a similar degree, the extracted fault component could be judged automatically. The results show that this method is capable of accurately extracting the fault component from abnormal acoustic signals induced by faulty shocking type and the extracted component can be used to identify the fault type.

  10. Further Investigation of Acoustic Propagation Codes for Three-Dimensional Geometries

    NASA Technical Reports Server (NTRS)

    Nark, Douglas M.; Watson, Willie R.; Jones, Michael G.

    2006-01-01

    The ability to predict fan noise within complex three-dimensional aircraft engine nacelle geometries is a valuable tool in designing and assessing low-noise concepts. This work begins a systematic study to identify the areas of the design space in which propagation codes of varying fidelity may be used effectively to provide efficient design and assessment. An efficient lower-fidelity code is used in conjunction with two higher-fidelity, more computationally intensive methods to solve benchmark problems of increasing complexity. The codes represent a small sampling of the current propagation codes available or under development. Results of this initial study indicate that the lower-fidelity code provides satisfactory results for cases involving low to moderate attenuation rates, whereas, the two higher-fidelity codes perform well across the range of problems.

  11. On the propagation of long waves in acoustically treated, curved ducts

    NASA Technical Reports Server (NTRS)

    Rostafinski, W.

    1981-01-01

    A two dimensional study is presented on the behavior of long waves in lined, curved ducts. The analysis includes a comparison between the propagation in curved and straight lined ducts. A parametric study was conducted over a range of wall admittance and duct wall separation. The complex eigenvalues of the characteristic equation, which in the case of a curved duct are also the angular wavenumbers, were obtained by successive approximations.

  12. Nonlinear propagation of ion-acoustic waves in electron-positron-ion plasma with trapped electrons

    NASA Astrophysics Data System (ADS)

    Alinejad, H.; Sobhanian, S.; Mahmoodi, J.

    2006-01-01

    A theoretical investigation has been made for ion-acoustic waves in an unmagnetized electron-positron-ion plasma. A more realistic situation in which plasma consists of a negatively charged ion fluid, free positrons, and trapped as well as free electrons is considered. The properties of stationary structures are studied by the reductive perturbation method, which is valid for small but finite amplitude limit, and by pseudopotential approach, which is valid for large amplitude. With an appropriate modified form of the electron number density, two new equations for the ion dynamics have been found. When deviations from isothermality are finite, the modified Korteweg-deVries equation has been found, and for the case that deviations from isothermality are small, calculations lead to a generalized Korteweg-deVries equation. It is shown from both weakly and highly nonlinear analysis that the presence of the positrons may allow solitary waves to exist. It is found that the effect of the positron density changes the maximum value of the amplitude and M (Mach number) for which solitary waves can exist. The present theory is applicable to analyze arbitrary amplitude ion-acoustic waves associated with positrons which may occur in space plasma.

  13. Nonlinear propagation of ion-acoustic waves in electron-positron-ion plasma with trapped electrons

    SciTech Connect

    Alinejad, H.; Sobhanian, S.; Mahmoodi, J.

    2006-01-15

    A theoretical investigation has been made for ion-acoustic waves in an unmagnetized electron-positron-ion plasma. A more realistic situation in which plasma consists of a negatively charged ion fluid, free positrons, and trapped as well as free electrons is considered. The properties of stationary structures are studied by the reductive perturbation method, which is valid for small but finite amplitude limit, and by pseudopotential approach, which is valid for large amplitude. With an appropriate modified form of the electron number density, two new equations for the ion dynamics have been found. When deviations from isothermality are finite, the modified Korteweg-deVries equation has been found, and for the case that deviations from isothermality are small, calculations lead to a generalized Korteweg-deVries equation. It is shown from both weakly and highly nonlinear analysis that the presence of the positrons may allow solitary waves to exist. It is found that the effect of the positron density changes the maximum value of the amplitude and M (Mach number) for which solitary waves can exist. The present theory is applicable to analyze arbitrary amplitude ion-acoustic waves associated with positrons which may occur in space plasma.

  14. The influence of polarization on millimeter wave propagation through rain. [radio signals

    NASA Technical Reports Server (NTRS)

    Bostian, C. W.; Stutzman, W. L.; Wiley, P. H.; Marshall, R. E.

    1973-01-01

    The measurement and analysis of the depolarization and attenuation that occur when millimeter wave radio signals propagate through rain are described. Progress was made in three major areas: the processing of recorded 1972 data, acquisition and processing of a large amount of 1973 data, and the development of a new theoretical model to predict rain cross polarization and attenuation. Each of these topics is described in detail along with radio frequency system design for cross polarization measurements.

  15. Range safety signal propagation through the SRM exhaust plume of the space shuttle

    NASA Technical Reports Server (NTRS)

    Boynton, F. P.; Davies, A. R.; Rajasekhar, P. S.; Thompson, J. A.

    1977-01-01

    Theoretical predictions of plume interference for the space shuttle range safety system by solid rocket booster exhaust plumes are reported. The signal propagation was calculated using a split operator technique based upon the Fresnel-Kirchoff integral, using fast Fourier transforms to evaluate the convolution and treating the plume as a series of absorbing and phase-changing screens. Talanov's lens transformation was applied to reduce aliasing problems caused by ray divergence.

  16. A Probe of Magnetosphere-Ionosphere Coupling using the Propagation Characteristics of Very Low Frequency Signal

    NASA Astrophysics Data System (ADS)

    Nwankwo, V. U. J.; Chakrabarti, S. K.; Ogunmodimu, O. A.

    2015-12-01

    The amplitude and phase of VLF/LF radio signal are sensitive to changes in the electrical conductivity of the lower ionosphere when propagated in the Earth-ionosphere waveguide. This unique characteristic makes it useful in studying sudden ionospheric disturbances and/or anomaly especially those related to prompt X-ray flux output from solar flares and gamma ray bursts (GRBs). However, strong geomagnetic disturbances and/or storm conditions are known to produce large and global ionospheric disturbances, which can significantly affect VLF radio propagation in the D region ionosphere. Other than X-ray flux enhancement of amplitude and phase, diurnal VLF signature may convey other important information especially those related to geomagnetic disturbance/storm induced ionospheric changes. In this paper, using the data of three propagation paths (at latitudes 40-54), we performed detail analysis of the trend of variations of aspects VLF diurnal signal under varying solar and/or geomagnetic space environmental conditions for identification of possible geomagnetic footprint on the ionosphere. We found that trend of variations significantly reflected the prevailing space weather conditions of various time scales. The `dipping' of the signal diurnal amplitude have shown noteworthy consistency with significantly geomagnetic perturbed and/or storm conditions in the time scale of 1-2 days. We also found that dipping of most MDP signal occurred irrespective of the time (of the day), which an event happened, while those of MBSR, MASS, SRT and SST appear to largely depend on event occurrence time and/or duration. Pre-sunset event had more influence on the SST and MASS (dusk signal), while pre-sunrise event had more influence on the SRT and MBSR (dawn signal), and depending on the duration of the event, impact could be extended to the neighbouring point/component in succession. The induced dipping varied with geomagnetic activity/event intensity and/or duration, as well as the

  17. Time delay and Doppler estimation for wideband acoustic signals in multipath environments.

    PubMed

    Jiang, Xue; Zeng, Wen-Jun; Li, Xi-Lin

    2011-08-01

    Estimation of the parameters of a multipath underwater acoustic channel is of great interest for a variety of applications. This paper proposes a high-resolution method for jointly estimating the multipath time delays, Doppler scales, and attenuation amplitudes of a time-varying acoustical channel. The proposed method formulates the estimation of channel parameters into a sparse representation problem. With the [script-l](1)-norm as the measure of sparsity, the proposed method makes use of the basis pursuit (BP) criterion to find the sparse solution. The ill-conditioning can be effectively reduced by the [script-l](1)-norm regularization. Unlike many existing methods that are only applicable to narrowband signals, the proposed method can handle both narrowband and wideband signals. Simulation results are provided to verify the performance and effectiveness of the proposed algorithm, indicating that it has a super-resolution in both delay and Doppler domain, and it is robust to noise.

  18. Seismo-acoustic signals associated with degassing explosions recorded at Shishaldin Volcano, Alaska, 2003-2004

    USGS Publications Warehouse

    Petersen, T.

    2007-01-01

    In summer 2003, a Chaparral Model 2 microphone was deployed at Shishaldin Volcano, Aleutian Islands, Alaska. The pressure sensor was co-located with a short-period seismometer on the volcano’s north flank at a distance of 6.62 km from the active summit vent. The seismo-acoustic data exhibit a correlation between impulsive acoustic signals (1–2 Pa) and long-period (LP, 1–2 Hz) earthquakes. Since it last erupted in 1999, Shishaldin has been characterized by sustained seismicity consisting of many hundreds to two thousand LP events per day. The activity is accompanied by up to ∼200 m high discrete gas puffs exiting the small summit vent, but no significant eruptive activity has been confirmed. The acoustic waveforms possess similarity throughout the data set (July 2003–November 2004) indicating a repetitive source mechanism. The simplicity of the acoustic waveforms, the impulsive onsets with relatively short (∼10–20 s) gradually decaying codas and the waveform similarities suggest that the acoustic pulses are generated at the fluid–air interface within an open-vent system. SO2 measurements have revealed a low SO2 flux, suggesting a hydrothermal system with magmatic gases leaking through. This hypothesis is supported by the steady-state nature of Shishaldin’s volcanic system since 1999. Time delays between the seismic LP and infrasound onsets were acquired from a representative day of seismo-acoustic data. A simple model was used to estimate source depths. The short seismo-acoustic delay times have revealed that the seismic and acoustic sources are co-located at a depth of 240±200 m below the crater rim. This shallow depth is confirmed by resonance of the upper portion of the open conduit, which produces standing waves with f=0.3 Hz in the acoustic waveform codas. The infrasound data has allowed us to relate Shishaldin’s LP earthquakes to degassing explosions, created by gas volume ruptures from a fluid–air interface.

  19. Lateralization of acoustic signals by dichotically listening budgerigars (Melopsittacus undulatus).

    PubMed

    Welch, Thomas E; Dent, Micheal L

    2011-10-01

    Sound localization allows humans and animals to determine the direction of objects to seek or avoid and indicates the appropriate position to direct visual attention. Interaural time differences (ITDs) and interaural level differences (ILDs) are two primary cues that humans use to localize or lateralize sound sources. There is limited information about behavioral cue sensitivity in animals, especially animals with poor sound localization acuity and small heads, like budgerigars. ITD and ILD thresholds were measured behaviorally in dichotically listening budgerigars equipped with headphones in an identification task. Budgerigars were less sensitive than humans and cats, and more similar to rabbits, barn owls, and monkeys, in their abilities to lateralize dichotic signals. Threshold ITDs were relatively constant for pure tones below 4 kHz, and were immeasurable at higher frequencies. Threshold ILDs were relatively constant over a wide range of frequencies, similar to humans. Thresholds in both experiments were best for broadband noise stimuli. These lateralization results are generally consistent with the free field localization abilities of these birds, and add support to the idea that budgerigars may be able to enhance their cues to directional hearing (e.g., via connected interaural pathways) beyond what would be expected based on head size. PMID:21973385

  20. Measurement of Elastic Properties of Tissue by Shear Wave Propagation Generated by Acoustic Radiation Force

    NASA Astrophysics Data System (ADS)

    Marie Tabaru,; Takashi Azuma,; Kunio Hashiba,

    2010-07-01

    Acoustic radiation force (ARF) imaging has been developed as a novel elastography technology to diagnose hepatic disease and breast cancer. The accuracy of shear wave speed estimation, which is one of the applications of ARF elastography, is studied. The Young’s moduli of pig liver and foie gras samples estimated from the shear wave speed were compared with those measured the static Young’s modulus measurement. The difference in the two methods was 8%. Distance attenuation characteristics of the shear wave were also studied using finite element method (FEM) analysis. We found that the differences in the axial and lateral beam widths in pressure and ARF are 16 and 9% at F-number=0.9. We studied the relationship between two branch points in distance attenuation characteristics and the shape of ARF. We found that the maximum measurable length to estimate shear wave speed for one ARF excitation was 8 mm.

  1. Measurement of Elastic Properties of Tissue by Shear Wave Propagation Generated by Acoustic Radiation Force

    NASA Astrophysics Data System (ADS)

    Tabaru, Marie; Azuma, Takashi; Hashiba, Kunio

    2010-07-01

    Acoustic radiation force (ARF) imaging has been developed as a novel elastography technology to diagnose hepatic disease and breast cancer. The accuracy of shear wave speed estimation, which is one of the applications of ARF elastography, is studied. The Young's moduli of pig liver and foie gras samples estimated from the shear wave speed were compared with those measured the static Young's modulus measurement. The difference in the two methods was 8%. Distance attenuation characteristics of the shear wave were also studied using finite element method (FEM) analysis. We found that the differences in the axial and lateral beam widths in pressure and ARF are 16 and 9% at F-number=0.9. We studied the relationship between two branch points in distance attenuation characteristics and the shape of ARF. We found that the maximum measurable length to estimate shear wave speed for one ARF excitation was 8 mm.

  2. Circuit for echo and noise suppression of acoustic signals transmitted through a drill string

    DOEpatents

    Drumheller, D.S.; Scott, D.D.

    1993-12-28

    An electronic circuit for digitally processing analog electrical signals produced by at least one acoustic transducer is presented. In a preferred embodiment of the present invention, a novel digital time delay circuit is utilized which employs an array of First-in-First-out (FiFo) microchips. Also, a bandpass filter is used at the input to this circuit for isolating drill string noise and eliminating high frequency output. 20 figures.

  3. Concurrent Visualization of Acoustic Radiation Force Displacement and Shear Wave Propagation with 7T MRI

    PubMed Central

    Liu, Yu; Fite, Brett Z.; Mahakian, Lisa M.; Johnson, Sarah M.; Larrat, Benoit; Dumont, Erik; Ferrara, Katherine W.

    2015-01-01

    Manual palpation is a common and very informative diagnostic tool based on estimation of changes in the stiffness of tissues that result from pathology. In the case of a small lesion or a lesion that is located deep within the body, it is difficult for changes in mechanical properties of tissue to be detected or evaluated via palpation. Furthermore, palpation is non-quantitative and cannot be used to localize the lesion. Magnetic Resonance-guided Focused Ultrasound (MRgFUS) can also be used to evaluate the properties of biological tissues non-invasively. In this study, an MRgFUS system combines high field (7T) MR and 3 MHz focused ultrasound to provide high resolution MR imaging and a small ultrasonic interrogation region (~0.5 x 0.5 x 2 mm), as compared with current clinical systems. MR-Acoustic Radiation Force Imaging (MR-ARFI) provides a reliable and efficient method for beam localization by detecting micron-scale displacements induced by ultrasound mechanical forces. The first aim of this study is to develop a sequence that can concurrently quantify acoustic radiation force displacements and image the resulting transient shear wave. Our motivation in combining these two measurements is to develop a technique that can rapidly provide both ARFI and shear wave velocity estimation data, making it suitable for use in interventional radiology. Secondly, we validate this sequence in vivo by estimating the displacement before and after high intensity focused ultrasound (HIFU) ablation, and we validate the shear wave velocity in vitro using tissue-mimicking gelatin and tofu phantoms. Such rapid acquisitions are especially useful in interventional radiology applications where minimizing scan time is highly desirable. PMID:26439259

  4. Punch stretching process monitoring using acoustic emission signal analysis. II - Application of frequency domain deconvolution

    NASA Technical Reports Server (NTRS)

    Liang, Steven Y.; Dornfeld, David A.; Nickerson, Jackson A.

    1987-01-01

    The coloring effect on the acoustic emission signal due to the frequency response of the data acquisition/processing instrumentation may bias the interpretation of AE signal characteristics. In this paper, a frequency domain deconvolution technique, which involves the identification of the instrumentation transfer functions and multiplication of the AE signal spectrum by the inverse of these system functions, has been carried out. In this way, the change in AE signal characteristics can be better interpreted as the result of the change in only the states of the process. Punch stretching process was used as an example to demonstrate the application of the technique. Results showed that, through the deconvolution, the frequency characteristics of AE signals generated during the stretching became more distinctive and can be more effectively used as tools for process monitoring.

  5. Problems Associated with Statistical Pattern Recognition of Acoustic Emission Signals in a Compact Tension Fatigue Specimen

    NASA Technical Reports Server (NTRS)

    Hinton, Yolanda L.

    1999-01-01

    Acoustic emission (AE) data were acquired during fatigue testing of an aluminum 2024-T4 compact tension specimen using a commercially available AE system. AE signals from crack extension were identified and separated from noise spikes, signals that reflected from the specimen edges, and signals that saturated the instrumentation. A commercially available software package was used to train a statistical pattern recognition system to classify the signals. The software trained a network to recognize signals with a 91-percent accuracy when compared with the researcher's interpretation of the data. Reasons for the discrepancies are examined and it is postulated that additional preprocessing of the AE data to focus on the extensional wave mode and eliminate other effects before training the pattern recognition system will result in increased accuracy.

  6. Non-invasive estimation of static and pulsatile intracranial pressure from transcranial acoustic signals.

    PubMed

    Levinsky, Alexandra; Papyan, Surik; Weinberg, Guy; Stadheim, Trond; Eide, Per Kristian

    2016-05-01

    The aim of the present study was to examine whether a method for estimation of non-invasive ICP (nICP) from transcranial acoustic (TCA) signals mixed with head-generated sounds estimate the static and pulsatile invasive ICP (iICP). For that purpose, simultaneous iICP and mixed TCA signals were obtained from patients undergoing continuous iICP monitoring as part of clinical management. The ear probe placed in the right outer ear channel sent a TCA signal with fixed frequency (621 Hz) that was picked up by the left ear probe along with acoustic signals generated by the intracranial compartment. Based on a mathematical model of the association between mixed TCA and iICP, the static and pulsatile nICP values were determined. Total 39 patients were included in the study; the total number of observations for prediction of static and pulsatile iICP were 5789 and 6791, respectively. The results demonstrated a good agreement between iICP/nICP observations, with mean difference of 0.39 mmHg and 0.53 mmHg for static and pulsatile ICP, respectively. In summary, in this cohort of patients, mixed TCA signals estimated the static and pulsatile iICP with rather good accuracy. Further studies are required to validate whether mixed TCA signals may become useful for measurement of nICP. PMID:26997563

  7. Acoustic wave propagation in continuous functionally graded plates: an extension of the Legendre polynomial approach.

    PubMed

    Lefebvre, J E; Zhang, V; Gazalet, J; Gryba, T; Sadaune, V

    2001-09-01

    The propagation of guided waves in continuous functionally graded plates is studied by using Legendre polynomials. Dispersion curves, and power and field profiles are easily obtained. Our computer program is validated by comparing our results against other calculations from the literature. Numerical results are also given for a graded semiconductor plate. It is felt that the present method could be of quite practical interest in waveguiding engineering, non-destructive testing of functionally graded materials (FGMs) to identify the best inspection strategies, or by means of a numerical inversion algorithm to determine through-thickness gradients in material parameters.

  8. On the one-dimensional acoustic propagation in conical ducts with stationary mean flow.

    PubMed

    Barjau, Ana

    2007-12-01

    This paper proposes a direct time-domain calculation of the time-domain responses of anechoic conical tubes with steady weak mean flow. The starting point is the approximated linear one-dimensional wave equation governing the velocity potential for the case of steady flow with low Mach number. A traveling solution with general space-dependent propagation velocity is then proposed from which the inward and outward pressure and velocity impulse responses can be obtained. The results include the well-known responses of conical and cylindrical ducts with zero mean flow.

  9. Acoustics

    NASA Technical Reports Server (NTRS)

    Goodman, Jerry R.; Grosveld, Ferdinand

    2007-01-01

    The acoustics environment in space operations is important to maintain at manageable levels so that the crewperson can remain safe, functional, effective, and reasonably comfortable. High acoustic levels can produce temporary or permanent hearing loss, or cause other physiological symptoms such as auditory pain, headaches, discomfort, strain in the vocal cords, or fatigue. Noise is defined as undesirable sound. Excessive noise may result in psychological effects such as irritability, inability to concentrate, decrease in productivity, annoyance, errors in judgment, and distraction. A noisy environment can also result in the inability to sleep, or sleep well. Elevated noise levels can affect the ability to communicate, understand what is being said, hear what is going on in the environment, degrade crew performance and operations, and create habitability concerns. Superfluous noise emissions can also create the inability to hear alarms or other important auditory cues such as an equipment malfunctioning. Recent space flight experience, evaluations of the requirements in crew habitable areas, and lessons learned (Goodman 2003; Allen and Goodman 2003; Pilkinton 2003; Grosveld et al. 2003) show the importance of maintaining an acceptable acoustics environment. This is best accomplished by having a high-quality set of limits/requirements early in the program, the "designing in" of acoustics in the development of hardware and systems, and by monitoring, testing and verifying the levels to ensure that they are acceptable.

  10. The Acoustic Structure and Information Content of Female Koala Vocal Signals

    PubMed Central

    Charlton, Benjamin D.

    2015-01-01

    Determining the information content of animal vocalisations can give valuable insights into the potential functions of vocal signals. The source-filter theory of vocal production allows researchers to examine the information content of mammal vocalisations by linking variation in acoustic features with variation in relevant physical characteristics of the caller. Here I used a source-filter theory approach to classify female koala vocalisations into different call-types, and determine which acoustic features have the potential to convey important information about the caller to other conspecifics. A two-step cluster analysis classified female calls into bellows, snarls and tonal rejection calls. Additional results revealed that female koala vocalisations differed in their potential to provide information about a given caller’s phenotype that may be of importance to receivers. Female snarls did not contain reliable acoustic cues to the caller’s identity and age. In contrast, female bellows and tonal rejection calls were individually distinctive, and the tonal rejection calls of older female koalas had consistently lower mean, minimum and maximum fundamental frequency. In addition, female bellows were significantly shorter in duration and had higher fundamental frequency, formant frequencies, and formant frequency spacing than male bellows. These results indicate that female koala vocalisations have the potential to signal the caller’s identity, age and sex. I go on to discuss the anatomical basis for these findings, and consider the possible functional relevance of signalling this type of information in the koala’s natural habitat. PMID:26465340

  11. The Acoustic Structure and Information Content of Female Koala Vocal Signals.

    PubMed

    Charlton, Benjamin D

    2015-01-01

    Determining the information content of animal vocalisations can give valuable insights into the potential functions of vocal signals. The source-filter theory of vocal production allows researchers to examine the information content of mammal vocalisations by linking variation in acoustic features with variation in relevant physical characteristics of the caller. Here I used a source-filter theory approach to classify female koala vocalisations into different call-types, and determine which acoustic features have the potential to convey important information about the caller to other conspecifics. A two-step cluster analysis classified female calls into bellows, snarls and tonal rejection calls. Additional results revealed that female koala vocalisations differed in their potential to provide information about a given caller's phenotype that may be of importance to receivers. Female snarls did not contain reliable acoustic cues to the caller's identity and age. In contrast, female bellows and tonal rejection calls were individually distinctive, and the tonal rejection calls of older female koalas had consistently lower mean, minimum and maximum fundamental frequency. In addition, female bellows were significantly shorter in duration and had higher fundamental frequency, formant frequencies, and formant frequency spacing than male bellows. These results indicate that female koala vocalisations have the potential to signal the caller's identity, age and sex. I go on to discuss the anatomical basis for these findings, and consider the possible functional relevance of signalling this type of information in the koala's natural habitat.

  12. Gearbox fault diagnosis based on deep random forest fusion of acoustic and vibratory signals

    NASA Astrophysics Data System (ADS)

    Li, Chuan; Sanchez, René-Vinicio; Zurita, Grover; Cerrada, Mariela; Cabrera, Diego; Vásquez, Rafael E.

    2016-08-01

    Fault diagnosis is an effective tool to guarantee safe operations in gearboxes. Acoustic and vibratory measurements in such mechanical devices are all sensitive to the existence of faults. This work addresses the use of a deep random forest fusion (DRFF) technique to improve fault diagnosis performance for gearboxes by using measurements of an acoustic emission (AE) sensor and an accelerometer that are used for monitoring the gearbox condition simultaneously. The statistical parameters of the wavelet packet transform (WPT) are first produced from the AE signal and the vibratory signal, respectively. Two deep Boltzmann machines (DBMs) are then developed for deep representations of the WPT statistical parameters. A random forest is finally suggested to fuse the outputs of the two DBMs as the integrated DRFF model. The proposed DRFF technique is evaluated using gearbox fault diagnosis experiments under different operational conditions, and achieves 97.68% of the classification rate for 11 different condition patterns. Compared to other peer algorithms, the addressed method exhibits the best performance. The results indicate that the deep learning fusion of acoustic and vibratory signals may improve fault diagnosis capabilities for gearboxes.

  13. Moisture estimation in power transformer oil using acoustic signals and spectral kurtosis

    NASA Astrophysics Data System (ADS)

    Leite, Valéria C. M. N.; Veloso, Giscard F. C.; Borges da Silva, Luiz Eduardo; Lambert-Torres, Germano; Borges da Silva, Jonas G.; Onofre Pereira Pinto, João

    2016-03-01

    The aim of this paper is to present a new technique for estimating the contamination by moisture in power transformer insulating oil based on the spectral kurtosis analysis of the acoustic signals of partial discharges (PDs). Basically, in this approach, the spectral kurtosis of the PD acoustic signal is calculated and the correlation between its maximum value and the moisture percentage is explored to find a function that calculates the moisture percentage. The function can be easily implemented in DSP, FPGA, or any other type of embedded system for online moisture monitoring. To evaluate the proposed approach, an experiment is assembled with a piezoelectric sensor attached to a tank, which is filled with insulating oil samples contaminated by different levels of moisture. A device generating electrical discharges is submerged into the oil to simulate the occurrence of PDs. Detected acoustic signals are processed using fast kurtogram algorithm to extract spectral kurtosis values. The obtained data are used to find the fitting function that relates the water contamination to the maximum value of the spectral kurtosis. Experimental results show that the proposed method is suitable for online monitoring system of power transformers.

  14. The Acoustic Structure and Information Content of Female Koala Vocal Signals.

    PubMed

    Charlton, Benjamin D

    2015-01-01

    Determining the information content of animal vocalisations can give valuable insights into the potential functions of vocal signals. The source-filter theory of vocal production allows researchers to examine the information content of mammal vocalisations by linking variation in acoustic features with variation in relevant physical characteristics of the caller. Here I used a source-filter theory approach to classify female koala vocalisations into different call-types, and determine which acoustic features have the potential to convey important information about the caller to other conspecifics. A two-step cluster analysis classified female calls into bellows, snarls and tonal rejection calls. Additional results revealed that female koala vocalisations differed in their potential to provide information about a given caller's phenotype that may be of importance to receivers. Female snarls did not contain reliable acoustic cues to the caller's identity and age. In contrast, female bellows and tonal rejection calls were individually distinctive, and the tonal rejection calls of older female koalas had consistently lower mean, minimum and maximum fundamental frequency. In addition, female bellows were significantly shorter in duration and had higher fundamental frequency, formant frequencies, and formant frequency spacing than male bellows. These results indicate that female koala vocalisations have the potential to signal the caller's identity, age and sex. I go on to discuss the anatomical basis for these findings, and consider the possible functional relevance of signalling this type of information in the koala's natural habitat. PMID:26465340

  15. Liquid Helium Acoustic Microscope.

    NASA Astrophysics Data System (ADS)

    Steer, Andrew Paul

    Available from UMI in association with The British Library. In an acoustic microscope, images are generated by monitoring the intensity of the ultrasonic reflection, or echo, from the surface of a sample. In order to achieve this a pulse of acoustic energy is produced by the excitation of a thin film transducer. The pulse thus generated propagates through a crystal and is incident upon the acoustic lens surface, which is the boundary between the crystal and an acoustic coupling liquid. The acoustic lens is a converging element, and brings the ultrasonic beam to a focus within the liquid. A sample, placed at the focus, can act as a reflector, and the returned pulse then contains information regarding the acoustic reflectivity of this specimen. Acoustic pulses are repeatedly launched and detected while the acoustic lens is scanned over the surface of the sample. In this manner an acoustic image is constructed. Acoustic losses in room temperature liquid coupling media represent a considerable source of difficulty in the recovery of acoustic echo signals. At the frequencies of operation required in a microscope which is capable of high resolution, the ultrasonic attenuation is not only large but increases with the square of frequency. In superfluid liquid helium at temperatures below 0.1 K, however, the ultrasonic attenuation becomes negligible. Furthermore, the low sound velocity in liquid helium results in an increase in resolution, since the acoustic wavelength is proportional to velocity. A liquid helium acoustic microscope has been designed and constructed. Details of the various possible detection methods are given, and comparisons are made between them. Measurements of the performance of the system that was adopted are reported. The development of a cooled preamplifier is also described. The variation of reflected signal with object distance has been measured and compared with theoretical predictions. This variation is important in the analysis of acoustic

  16. Stochastic simulation for the propagation of high-frequency acoustic waves through a random velocity field

    NASA Astrophysics Data System (ADS)

    Lu, B.; Darmon, M.; Leymarie, N.; Chatillon, S.; Potel, C.

    2012-05-01

    In-service inspection of Sodium-Cooled Fast Reactors (SFR) requires the development of non-destructive techniques adapted to the harsh environment conditions and the examination complexity. From past experiences, ultrasonic techniques are considered as suitable candidates. The ultrasonic telemetry is a technique used to constantly insure the safe functioning of reactor inner components by determining their exact position: it consists in measuring the time of flight of the ultrasonic response obtained after propagation of a pulse emitted by a transducer and its interaction with the targets. While in-service the sodium flow creates turbulences that lead to temperature inhomogeneities, which translates into ultrasonic velocity inhomogeneities. These velocity variations could directly impact the accuracy of the target locating by introducing time of flight variations. A stochastic simulation model has been developed to calculate the propagation of ultrasonic waves in such an inhomogeneous medium. Using this approach, the travel time is randomly generated by a stochastic process whose inputs are the statistical moments of travel times known analytically. The stochastic model predicts beam deviations due to velocity inhomogeneities, which are similar to those provided by a determinist method, such as the ray method.

  17. Stochastic simulation for the propagation of high-frequency acoustic waves through a random velocity field

    SciTech Connect

    Lu, B.; Darmon, M.; Leymarie, N.; Chatillon, S.; Potel, C.

    2012-05-17

    In-service inspection of Sodium-Cooled Fast Reactors (SFR) requires the development of non-destructive techniques adapted to the harsh environment conditions and the examination complexity. From past experiences, ultrasonic techniques are considered as suitable candidates. The ultrasonic telemetry is a technique used to constantly insure the safe functioning of reactor inner components by determining their exact position: it consists in measuring the time of flight of the ultrasonic response obtained after propagation of a pulse emitted by a transducer and its interaction with the targets. While in-service the sodium flow creates turbulences that lead to temperature inhomogeneities, which translates into ultrasonic velocity inhomogeneities. These velocity variations could directly impact the accuracy of the target locating by introducing time of flight variations. A stochastic simulation model has been developed to calculate the propagation of ultrasonic waves in such an inhomogeneous medium. Using this approach, the travel time is randomly generated by a stochastic process whose inputs are the statistical moments of travel times known analytically. The stochastic model predicts beam deviations due to velocity inhomogeneities, which are similar to those provided by a determinist method, such as the ray method.

  18. Covert communications using random noise signals: effects of atmospheric propagation nulls and rain

    NASA Astrophysics Data System (ADS)

    Mohan, Karen M.; Narayanan, Ram M.

    2005-06-01

    transmissions since these signals are rejected during the correlation process at the receiver. Dispersive effects caused by the atmosphere and other factors are significantly reduced since both polarization channels operate over identical frequency bands. This paper analyzes in detail various atmospheric propagation effects such as nulls, rain, and forests.

  19. Excitation wave propagation as a possible mechanism for signal transmission in pancreatic islets of Langerhans.

    PubMed Central

    Aslanidi, O V; Mornev, O A; Skyggebjerg, O; Arkhammar, P; Thastrup, O; Sørensen, M P; Christiansen, P L; Conradsen, K; Scott, A C

    2001-01-01

    In response to glucose application, beta-cells forming pancreatic islets of Langerhans start bursting oscillations of the membrane potential and intracellular calcium concentration, inducing insulin secretion by the cells. Until recently, it has been assumed that the bursting activity of beta-cells in a single islet of Langerhans is synchronized across the whole islet due to coupling between the cells. However, time delays of several seconds in the activity of distant cells are usually observed in the islets of Langerhans, indicating that electrical/calcium wave propagation through the islets can occur. This work presents both experimental and theoretical evidence for wave propagation in the islets of Langerhans. Experiments with Fura-2 fluorescence monitoring of spatiotemporal calcium dynamics in the islets have clearly shown such wave propagation. Furthermore, numerical simulations of the model describing a cluster of electrically coupled beta-cells have supported our view that the experimentally observed calcium waves are due to electric pulses propagating through the cluster. This point of view is also supported by independent experimental results. Based on the model equations, an approximate analytical expression for the wave velocity is introduced, indicating which parameters can alter the velocity. We point to the possible role of the observed waves as signals controlling the insulin secretion inside the islets of Langerhans, in particular, in the regions that cannot be reached by any external stimuli such as high glucose concentration outside the islets. PMID:11222284

  20. The fading behavior of the propagating VLF signal during the recovery time of solar flares.

    NASA Astrophysics Data System (ADS)

    Bouderba, Yasmina; Tribeche, Mouloud; Nait Amor, Samir

    2016-07-01

    The VLF radio signal propagating in the waveguide delimited by the Earth's surface and the D-layer of the ionosphere undergoes important modifications due to solar flares. In this work we focus on the NRK (37.5 kHz) VLF transmitter signal that propagates along the medium path to Algiers receiver (distance=3495 km). The signal analysis of two different flare classes shows that the perturbation due to a week flare of C2.1 (I _{max}=2.1 x 10 ^{-6} W/m ^{2}) class are less important than the medium one of M3.2 (I _{max}=3.2 x 10 ^{-5} W/m ^{2}) class. This leads to the fast recovery to the normal ionospheric condition after the weak solar flare while the medium solar flare takes more time. Additionally, the study of the signal amplitude behaviors by means of the LWPC code shows that the fading displacement toward the transmitter is more significant in the case of M3.2 flare than C2.1 class.

  1. Numerical study of wave propagation around an underground cavity: acoustic case

    NASA Astrophysics Data System (ADS)

    Esterhazy, Sofi; Perugia, Ilaria; Schöberl, Joachim; Bokelmann, Götz

    2015-04-01

    Motivated by the need to detect an underground cavity within the procedure of an On-Site-Inspection (OSI) of the Comprehensive Nuclear Test Ban Treaty Organization (CTBTO), which might be caused by a nuclear explosion/weapon testing, we aim to provide a basic numerical study of the wave propagation around and inside such an underground cavity. The aim of the CTBTO is to ban all nuclear explosions of any size anywhere, by anyone. Therefore, it is essential to build a powerful strategy to efficiently investigate and detect critical signatures such as gas filled cavities, rubble zones and fracture networks below the surface. One method to investigate the geophysical properties of an underground cavity allowed by the Comprehensive Nuclear-test Ban Treaty is referred to as 'resonance seismometry' - a resonance method that uses passive or active seismic techniques, relying on seismic cavity vibrations. This method is in fact not yet entirely determined by the Treaty and there are also only few experimental examples that have been suitably documented to build a proper scientific groundwork. This motivates to investigate this problem on a purely numerical level and to simulate these events based on recent advances in the mathematical understanding of the underlying physical phenomena. Here, we focus our numerical study on the propagation of P-waves in two dimensions. An extension to three dimensions as well as an inclusion of the full elastic wave field is planned in the following. For the numerical simulations of wave propagation we use a high order finite element discretization which has the significant advantage that it can be extended easily from simple toy designs to complex and irregularly shaped geometries without excessive effort. Our computations are done with the parallel Finite Element Library NGSOLVE ontop of the automatic 2D/3D tetrahedral mesh generator NETGEN (http://sourceforge.net/projects/ngsolve/). Using the basic mathematical understanding of the

  2. Sub-nanosecond signal propagation in anisotropy-engineered nanomagnetic logic chains

    SciTech Connect

    Gu, Zheng; Nowakowski, Mark E.; Carlton, David B.; Storz, Ralph; Im, Mi-Young; Hong, Jeongmin; Chao, Weilun; Lambson, Brian; Bennett, Patrick; Alam, Mohmmad T.; Marcus, Matthew A.; Doran, Andrew; Young, Anthony; Scholl, Andreas; Fischer, Peter; Bokor, Jeffrey

    2015-03-16

    Energy efficient nanomagnetic logic (NML) computing architectures propagate binary information by relying on dipolar field coupling to reorient closely spaced nanoscale magnets. In the past, signal propagation in nanomagnet chains were characterized by static magnetic imaging experiments; however, the mechanisms that determine the final state and their reproducibility over millions of cycles in high-speed operation have yet to be experimentally investigated. Here we present a study of NML operation in a high-speed regime. We perform direct imaging of digital signal propagation in permalloy nanomagnet chains with varying degrees of shape-engineered biaxial anisotropy using full-field magnetic X-ray transmission microscopy and time-resolved photoemission electron microscopy after applying nanosecond magnetic field pulses. Moreover, an intrinsic switching time of 100 ps per magnet is observed. In conclusion these experiments, and accompanying macrospin and micromagnetic simulations, reveal the underlying physics of NML architectures repetitively operated on nanosecond timescales and identify relevant engineering parameters to optimize performance and reliability.

  3. Sub-nanosecond signal propagation in anisotropy-engineered nanomagnetic logic chains

    DOE PAGES

    Gu, Zheng; Nowakowski, Mark E.; Carlton, David B.; Storz, Ralph; Im, Mi-Young; Hong, Jeongmin; Chao, Weilun; Lambson, Brian; Bennett, Patrick; Alam, Mohmmad T.; et al

    2015-03-16

    Energy efficient nanomagnetic logic (NML) computing architectures propagate binary information by relying on dipolar field coupling to reorient closely spaced nanoscale magnets. In the past, signal propagation in nanomagnet chains were characterized by static magnetic imaging experiments; however, the mechanisms that determine the final state and their reproducibility over millions of cycles in high-speed operation have yet to be experimentally investigated. Here we present a study of NML operation in a high-speed regime. We perform direct imaging of digital signal propagation in permalloy nanomagnet chains with varying degrees of shape-engineered biaxial anisotropy using full-field magnetic X-ray transmission microscopy and time-resolvedmore » photoemission electron microscopy after applying nanosecond magnetic field pulses. Moreover, an intrinsic switching time of 100 ps per magnet is observed. In conclusion these experiments, and accompanying macrospin and micromagnetic simulations, reveal the underlying physics of NML architectures repetitively operated on nanosecond timescales and identify relevant engineering parameters to optimize performance and reliability.« less

  4. Sub-nanosecond signal propagation in anisotropy-engineered nanomagnetic logic chains

    PubMed Central

    Gu, Zheng; Nowakowski, Mark E.; Carlton, David B.; Storz, Ralph; Im, Mi-Young; Hong, Jeongmin; Chao, Weilun; Lambson, Brian; Bennett, Patrick; Alam, Mohmmad T.; Marcus, Matthew A.; Doran, Andrew; Young, Anthony; Scholl, Andreas; Fischer, Peter; Bokor, Jeffrey

    2015-01-01

    Energy efficient nanomagnetic logic (NML) computing architectures propagate binary information by relying on dipolar field coupling to reorient closely spaced nanoscale magnets. Signal propagation in nanomagnet chains has been previously characterized by static magnetic imaging experiments; however, the mechanisms that determine the final state and their reproducibility over millions of cycles in high-speed operation have yet to be experimentally investigated. Here we present a study of NML operation in a high-speed regime. We perform direct imaging of digital signal propagation in permalloy nanomagnet chains with varying degrees of shape-engineered biaxial anisotropy using full-field magnetic X-ray transmission microscopy and time-resolved photoemission electron microscopy after applying nanosecond magnetic field pulses. An intrinsic switching time of 100 ps per magnet is observed. These experiments, and accompanying macrospin and micromagnetic simulations, reveal the underlying physics of NML architectures repetitively operated on nanosecond timescales and identify relevant engineering parameters to optimize performance and reliability. PMID:25774621

  5. Behavioral assessment of acoustic parameters relevant to signal recognition and preference in a vocal fish.

    PubMed

    McKibben, J R; Bass, A H

    1998-12-01

    Acoustic signal recognition depends on the receiver's processing of the physical attributes of a sound. This study takes advantage of the simple communication sounds produced by plainfin midshipman fish to examine effects of signal variation on call recognition and preference. Nesting male midshipman generate both long duration (> 1 min) sinusoidal-like "hums" and short duration "grunts." The hums of neighboring males often overlap, creating beat waveforms. Presentation of humlike, single tone stimuli, but not grunts or noise, elicited robust attraction (phonotaxis) by gravid females. In two-choice tests, females differentiated and chose between acoustic signals that differed in duration, frequency, amplitude, and fine temporal content. Frequency preferences were temperature dependent, in accord with the known temperature dependence of hum fundamental frequency. Concurrent hums were simulated with two-tone beat stimuli, either presented from a single speaker or produced more naturally by interference between adjacent sources. Whereas certain single-source beats reduced stimulus attractiveness, beats which resolved into unmodulated tones at their sources did not affect preference. These results demonstrate that phonotactic assessment of stimulus relevance can be applied in a teleost fish, and that multiple signal parameters can affect receiver response in a vertebrate with relatively simple communication signals. PMID:9857511

  6. Large scale propagation intermittency in the atmosphere

    NASA Astrophysics Data System (ADS)

    Mehrabi, Ali

    2000-11-01

    Long-term (several minutes to hours) amplitude variations observed in outdoor sound propagation experiments at Disneyland, California, in February 1998 are explained in terms of a time varying index of refraction. The experimentally propagated acoustic signals were received and recorded at several locations ranging from 300 meters to 2,800 meters. Meteorological data was taken as a function of altitude simultaneously with the received signal levels. There were many barriers along the path of acoustic propagation that affected the received signal levels, especially at short ranges. In a downward refraction situation, there could be a random change of amplitude in the predicted signals. A computer model based on the Fast Field Program (FFP) was used to compute the signal loss at the different receiving locations and to verify that the variations in the received signal levels can be predicted numerically. The calculations agree with experimental data with the same trend variations in average amplitude.

  7. Acoustic wave propagation in air-bubble curtains in water. Part 2. Field experiment

    SciTech Connect

    Domenico, S.N.

    1982-03-01

    A field experiment consisted of hydrophone recordings in a pond, 25 ft deep, of signals transmitted through air-bubble curtains from a water gun source. The air curtains issued from one to 13 pipes (20 ft long and spaced at 1.67-ft intervals). Air pressures used in the pipes were 15, 25, and 50 psi. Length and complexity of the signals indicate that reverberations occurred to an increasing extent as the number of consecutive air curtains was increased. Analysis of the first pulse in the recorded signals, after approximate removal of hydrophone and recorder response, indicates that the reverberations occur principally in the bubble-free corridors between air curtains. This pulse broadens and its peak amplitude is delayed linearly as the number of successive air curtains is increased. The peak amplitude is decreased substantially by the first air curtain and thereafter remains between 0.1 and 0.2 of the amplitude without air curtains.

  8. Effect of sound on gap-junction-based intercellular signaling: Calcium waves under acoustic irradiation

    NASA Astrophysics Data System (ADS)

    Deymier, P. A.; Swinteck, N.; Runge, K.; Deymier-Black, A.; Hoying, J. B.

    2015-11-01

    We present a previously unrecognized effect of sound waves on gap-junction-based intercellular signaling such as in biological tissues composed of endothelial cells. We suggest that sound irradiation may, through temporal and spatial modulation of cell-to-cell conductance, create intercellular calcium waves with unidirectional signal propagation associated with nonconventional topologies. Nonreciprocity in calcium wave propagation induced by sound wave irradiation is demonstrated in the case of a linear and a nonlinear reaction-diffusion model. This demonstration should be applicable to other types of gap-junction-based intercellular signals, and it is thought that it should be of help in interpreting a broad range of biological phenomena associated with the beneficial therapeutic effects of sound irradiation and possibly the harmful effects of sound waves on health.

  9. Effect of sound on gap-junction-based intercellular signaling: Calcium waves under acoustic irradiation.

    PubMed

    Deymier, P A; Swinteck, N; Runge, K; Deymier-Black, A; Hoying, J B

    2015-01-01

    We present a previously unrecognized effect of sound waves on gap-junction-based intercellular signaling such as in biological tissues composed of endothelial cells. We suggest that sound irradiation may, through temporal and spatial modulation of cell-to-cell conductance, create intercellular calcium waves with unidirectional signal propagation associated with nonconventional topologies. Nonreciprocity in calcium wave propagation induced by sound wave irradiation is demonstrated in the case of a linear and a nonlinear reaction-diffusion model. This demonstration should be applicable to other types of gap-junction-based intercellular signals, and it is thought that it should be of help in interpreting a broad range of biological phenomena associated with the beneficial therapeutic effects of sound irradiation and possibly the harmful effects of sound waves on health.

  10. Obliquely propagating ion-acoustic solitons and supersolitons in four-component auroral plasmas

    NASA Astrophysics Data System (ADS)

    Rufai, O. R.; Bharuthram, R.; Singh, S. V.; Lakhina, G. S.

    2016-02-01

    Arbitrary amplitude nonlinear low frequency electrostatic soliton and supersoliton structures are studied in magnetized four-component auroral plasmas composed of a cold singly charged oxygen-ion fluid, Boltzmann distribution of hot protons and two distinct group of electron species. Using the Sagdeev pseudo-potential technique, the characteristics of obliquely propagating nonlinear structures are investigated analytically and numerically. The model supports the evolution of soliton and supersoliton structures in the auroral acceleration region. Depending on the parametric region, the positive and negative potential solitons coexists at lower Mach numbers, but at higher Mach numbers only negative potential solitons and supersolitons can exist. The presence of hot protons restricted the Mach number of the nonlinear structures to exist only at the subsonic region. The present investigation concurs with the Swedish Viking satellite observations in the auroral region.

  11. Development of nonlinear acoustic propagation analysis tool toward realization of loud noise environment prediction in aeronautics

    NASA Astrophysics Data System (ADS)

    Kanamori, Masashi; Takahashi, Takashi; Aoyama, Takashi

    2015-10-01

    Shown in this paper is an introduction of a prediction tool for the propagation of loud noise with the application to the aeronautics in mind. The tool, named SPnoise, is based on HOWARD approach, which can express almost exact multidimensionality of the diffraction effect at the cost of back scattering. This paper argues, in particular, the prediction of the effect of atmospheric turbulence on sonic boom as one of the important issues in aeronautics. Thanks to the simple and efficient modeling of the atmospheric turbulence, SPnoise successfully re-creates the feature of the effect, which often emerges in the region just behind the front and rear shock waves in the sonic boom signature.

  12. Development of nonlinear acoustic propagation analysis tool toward realization of loud noise environment prediction in aeronautics

    SciTech Connect

    Kanamori, Masashi Takahashi, Takashi Aoyama, Takashi

    2015-10-28

    Shown in this paper is an introduction of a prediction tool for the propagation of loud noise with the application to the aeronautics in mind. The tool, named SPnoise, is based on HOWARD approach, which can express almost exact multidimensionality of the diffraction effect at the cost of back scattering. This paper argues, in particular, the prediction of the effect of atmospheric turbulence on sonic boom as one of the important issues in aeronautics. Thanks to the simple and efficient modeling of the atmospheric turbulence, SPnoise successfully re-creates the feature of the effect, which often emerges in the region just behind the front and rear shock waves in the sonic boom signature.

  13. Seismo-acoustic Signals Recorded at KSIAR, the Infrasound Array Installed at PS31

    NASA Astrophysics Data System (ADS)

    Kim, T. S.; Che, I. Y.; Jeon, J. S.; Chi, H. C.; Kang, I. B.

    2014-12-01

    One of International Monitoring System (IMS)'s primary seismic stations, PS31, called Korea Seismic Research Station (KSRS), was installed around Wonju, Korea in 1970s. It has been operated by US Air Force Technical Applications Center (AFTAC) for more than 40 years. KSRS is composed of 26 seismic sensors including 19 short period, 6 long period and 1 broad band seismometers. The 19 short period sensors were used to build an array with a 10-km aperture while the 6 long period sensors were used for a relatively long period array with a 40-km aperture. After KSRS was certified as an IMS station in 2006 by Comprehensive Nuclear Test Ban Treaty Organization (CTBTO), Korea Institute of Geoscience and Mineral Resources (KIGAM) which is the Korea National Data Center started to take over responsibilities on the operation and maintenance of KSRS from AFTAC. In April of 2014, KIGAM installed an infrasound array, KSIAR, on the existing four short period seismic stations of KSRS, the sites KS05, KS06, KS07 and KS16. The collocated KSIAR changed KSRS from a seismic array into a seismo-acoustic array. The aperture of KSIAR is 3.3 km. KSIAR also has a 100-m small aperture infrasound array at KS07. The infrasound data from KSIAR except that from the site KS06 is being transmitted in real time to KIGAM with VPN and internet line. An initial analysis on seismo-acoustic signals originated from local and regional distance ranges has been performed since May 2014. The analysis with the utilization of an array process called Progressive Multi-Channel Correlation (PMCC) detected seismo-acoustic signals caused by various sources including small explosions in relation to constructing local tunnels and roads. Some of them were not found in the list of automatic bulletin of KIGAM. The seismo-acoustic signals recorded by KSIAR are supplying a useful information for discriminating local and regional man-made events from natural events.

  14. Investigation of Hydraulic Fracture Propagation Using a Post-Peak Control System Coupled with Acoustic Emission

    NASA Astrophysics Data System (ADS)

    Chen, Li-Hsien; Chen, Wei-Chih; Chen, Yao-Chung; Benyamin, Leo; Li, An-Jui

    2015-05-01

    This study investigates the fracture mechanism of fluid coupled with a solid resulting from hydraulic fracture. A new loading machine was designed to improve upon conventional laboratory hydraulic fracture testing and to provide a means of better understanding fracture behavior of solid media. Test specimens were made of cement mortar. An extensometer and acoustic emission (AE) monitoring system recorded the circumferential deformation and crack growth location/number during the test. To control the crack growth at the post-peak stage the input fluid rate can be adjusted automatically according to feedback from the extensometer. The complete stress-deformation curve, including pre- and post-peak stages, was therefore obtained. The crack extension/growth developed intensively after the applied stress reached the breakdown pressure. The number of cracks recorded by the AE monitoring system was in good agreement with the amount of deformation (expansion) recorded by the extensometer. The results obtained in this paper provide a better understanding of the hydraulic fracture mechanism which is useful for underground injection projects.

  15. The effect of ocean fronts on acoustic wave propagation in the Celtic Sea

    NASA Astrophysics Data System (ADS)

    Shapiro, G.; Chen, F.; Thain, R.

    2014-11-01

    Underwater noise is now classed as pollution in accordance with the Marine Strategy Framework Directive. Noise from shipping is a major contributor to the ambient noise levels in ocean, particularly at low (< 300 Hz) frequencies. This paper studies patterns and seasonal variations of underwater noise in the Celtic Sea by using a coupled ocean model (POLCOMS) and an acoustic model (HARCAM) in the year 2010. Two sources of sound are considered: (i) representing a typical large cargo ship and (ii) noise from pile-driving activity. In summer, when the source of sound is on the onshore side of the front, the sound energy is mostly concentrated in the near-bottom layer. In winter, the sound from the same source is distributed more evenly in the vertical. The difference between the sound level in summer and winter at 10 m depth is as high as 20 dB at a distance of 40 km. When the source of sound is on the seaward side of the front, the sound level is nearly uniform in the vertical. The transmission loss is also greater (~ 16 dB) in the summer than in the winter for shallow source while it is up to ~ 20 dB for deep source at 30 km.

  16. Propagation and stability of quantum dust-ion-acoustic shock waves in planar and nonplanar geometry

    NASA Astrophysics Data System (ADS)

    Masood, W.; Siddiq, M.; Nargis, Shahida; Mirza, Arshad M.

    2009-01-01

    Dust-ion-acoustic (DIA) shock waves are studied in an unmagnetized quantum plasma consisting of electrons, ions, and dust by employing the quantum hydrodynamic (QHD) model. In this context, a Korteweg-deVries-Burger (KdVB) equation is derived by employing the small amplitude perturbation expansion method. The dissipation is introduced by taking into account the kinematic viscosity among the plasma constituents. It is found that the strength of the quantum DIA shock wave is maximum for spherical, intermediate for cylindrical, and minimum for the planar geometry. The effects of quantum Bohm potential, dust concentration, and kinematic viscosity on the quantum DIA shock structure are also investigated. The temporal evolution of DIA KdV solitons and Burger shocks are also studied by putting the dissipative and dispersive coefficients equal to zero, respectively. The effects of the quantum Bohm potential on the stability of the DIA shock is also investigated. The present investigation may be beneficial to understand the dissipative and dispersive processes that may occur in the quantum dusty plasmas found in microelectronic devices as well as in astrophysical plasmas.

  17. Propagation and stability of quantum dust-ion-acoustic shock waves in planar and nonplanar geometry

    SciTech Connect

    Masood, W.; Siddiq, M.; Nargis, Shahida; Mirza, Arshad M.

    2009-01-15

    Dust-ion-acoustic (DIA) shock waves are studied in an unmagnetized quantum plasma consisting of electrons, ions, and dust by employing the quantum hydrodynamic (QHD) model. In this context, a Korteweg-deVries-Burger (KdVB) equation is derived by employing the small amplitude perturbation expansion method. The dissipation is introduced by taking into account the kinematic viscosity among the plasma constituents. It is found that the strength of the quantum DIA shock wave is maximum for spherical, intermediate for cylindrical, and minimum for the planar geometry. The effects of quantum Bohm potential, dust concentration, and kinematic viscosity on the quantum DIA shock structure are also investigated. The temporal evolution of DIA KdV solitons and Burger shocks are also studied by putting the dissipative and dispersive coefficients equal to zero, respectively. The effects of the quantum Bohm potential on the stability of the DIA shock is also investigated. The present investigation may be beneficial to understand the dissipative and dispersive processes that may occur in the quantum dusty plasmas found in microelectronic devices as well as in astrophysical plasmas.

  18. Comparison of acoustic and seismic excitation, propagation, and scattering at an air-ground interface containing a mine-like inclusion.

    PubMed

    Muir, Thomas G; Costley, R Daniel; Sabatier, James M

    2014-01-01

    Finite element methods are utilized to model and compare the use of both a remote loudspeaker and a vertical shaker in the generation of sound and shear and interface waves in an elastic solid containing an imbedded elastic scatterer, which is resonant. Results for steady state and transient insonification are presented to illustrate excitation, propagation, and scattering mechanisms and effects. Comparisons of acoustic and vibratory excitation of the solid interface are made, with a view towards remote sensing of induced vibratory motion through optical measurement of the ground interface motion above the imbedded inclusion. Some advantages of the acoustic excitation method for exciting plate mode resonances in the target are observed. PMID:24437744

  19. Comparison of acoustic and seismic excitation, propagation, and scattering at an air-ground interface containing a mine-like inclusion.

    PubMed

    Muir, Thomas G; Costley, R Daniel; Sabatier, James M

    2014-01-01

    Finite element methods are utilized to model and compare the use of both a remote loudspeaker and a vertical shaker in the generation of sound and shear and interface waves in an elastic solid containing an imbedded elastic scatterer, which is resonant. Results for steady state and transient insonification are presented to illustrate excitation, propagation, and scattering mechanisms and effects. Comparisons of acoustic and vibratory excitation of the solid interface are made, with a view towards remote sensing of induced vibratory motion through optical measurement of the ground interface motion above the imbedded inclusion. Some advantages of the acoustic excitation method for exciting plate mode resonances in the target are observed.

  20. Acoustic alarm signalling facilitates predator protection of treehoppers by mutualist ant bodyguards

    PubMed Central

    Morales, Manuel A; Barone, Jennifer L; Henry, Charles S

    2008-01-01

    Mutualism is a net positive interaction that includes varying degrees of both costs and benefits. Because tension between the costs and benefits of mutualism can lead to evolutionary instability, identifying mechanisms that regulate investment between partners is critical to understanding the evolution and maintenance of mutualism. Recently, studies have highlighted the importance of interspecific signalling as one mechanism for regulating investment between mutualist partners. Here, we provide evidence for interspecific alarm signalling in an insect protection mutualism and we demonstrate a functional link between this acoustic signalling and efficacy of protection. The treehopper Publilia concava Say (Hemiptera: Membracidae) is an insect that provides ants with a carbohydrate-rich excretion called honeydew in return for protection from predators. Adults of this species produce distinct vibrational signals in the context of predator encounters. In laboratory trials, putative alarm signal production significantly increased following initial contact with ladybeetle predators (primarily Harmonia axyridis Pallas, Coleoptera: Coccinellidae), but not following initial contact with ants. In field trials, playback of a recorded treehopper alarm signal resulted in a significant increase in both ant activity and the probability of ladybeetle discovery by ants relative to both silence and treehopper courtship signal controls. Our results show that P. concava treehoppers produce alarm signals in response to predator threat and that this signalling can increase effectiveness of predator protection by ants. PMID:18480015

  1. Acoustic signal perception in a noisy habitat: lessons from synchronising insects.

    PubMed

    Hartbauer, M; Siegert, M E; Fertschai, I; Römer, H

    2012-06-01

    Acoustically communicating animals often have to cope with ambient noise that has the potential to interfere with the perception of conspecific signals. Here we use the synchronous display of mating signals in males of the tropical katydid Mecopoda elongata in order to assess the influence of nocturnal rainforest noise on signal perception. Loud background noise may disturb chorus synchrony either by masking the signals of males or by interaction of noisy events with the song oscillator. Phase-locked synchrony of males was studied under various signal-to-noise ratios (SNRs) using either native noise or the audio component of noise (<9 kHz). Synchronous entrainment was lost at a SNR of -3 dB when native noise was used, whereas with the audio component still 50% of chirp periods matched the pacer period at a SNR of -7 dB. Since the chirp period of solo singing males remained almost unaffected by noise, our results suggest that masking interference limits chorus synchrony by rendering conspecific signals ambiguous. Further, entrainment with periodic artificial signals indicates that synchrony is achieved by ignoring heterospecific signals and attending to a conspecific signal period. Additionally, the encoding of conspecific chirps was studied in an auditory neuron under the same background noise regimes.

  2. Free films of a partially wetting liquid under the influence of a propagating MHz surface acoustic wave

    NASA Astrophysics Data System (ADS)

    Altshuler, Gennady; Manor, Ofer

    2016-07-01

    We use both theory and experiment to study the response of thin and free films of a partially wetting liquid to a MHz vibration, propagating in the solid substrate in the form of a Rayleigh surface acoustic wave (SAW). We generalise the previous theory for the response of a thin fully wetting liquid film to a SAW by including the presence of a small but finite three phase contact angle between the liquid and the solid. The SAW in the solid invokes a convective drift of mass in the liquid and leaks sound waves. The dynamics of a film that is too thin to support the accumulation of the sound wave leakage is governed by a balance between the drift and capillary stress alone. We use theory to demonstrate that a partially wetting liquid film, supporting a weak capillary stress, will spread along the path of the SAW. A partially wetting film, supporting an appreciable capillary stress, will however undergo a concurrent dynamic wetting and dewetting at the front and the rear, respectively, such that the film will displace, rather than spread, along the path of the SAW. The result of the theory for a weak capillary stress is in agreement with the previous experimental and theoretical studies on the response of thin silicon oil films to a propagating SAW. No corresponding previous results exist for the case of an appreciable capillary stress. We thus complement the large capillary limit of our theory by undertaking an experimental procedure where we explore the response of films of water and a surfactant solutions to a MHz SAW, which is found to be in qualitative agreement with the theory at this limit.

  3. Three-dimensional numerical simulation of nonlinear acoustic-gravity wave propagation from the troposphere to the thermosphere

    NASA Astrophysics Data System (ADS)

    Gavrilov, Nikolai M.; Kshevetskii, Sergey P.

    2014-12-01

    Three-dimensional nonlinear breaking acoustic-gravity waves (AGWs) propagating from the Earth's surface to the upper atmosphere are simulated numerically. Horizontally moving periodical structures of vertical velocity on the Earth's surface are used as AGW sources in the model. The 3D algorithm for hydrodynamic equation solution uses finite-difference analogues of basic conservation laws. This approach allows us to select physically correct generalized wave solutions of hydrodynamic equations. The numerical simulation covers altitudes from the ground up to 500 km. Vertical profiles of the mean temperature, density, molecular viscosity, and thermal conductivity are specified from standard models of the atmosphere. Atmospheric waves in a few minutes can propagate to high altitudes above 100 km after activation of the surface wave forcing. Surfaces of constant phases are quasi-vertical first, and then become inclined to the horizon below about 100 km after some transition time interval. Vertical wavelengths decrease with time and tend to theoretically predicted values after times longer than several periods of the wave forcing. Decrease in vertical wavelengths and increase in AGW amplitudes can lead to wave instabilities, accelerations of the mean flow and wave-induced jet streams at altitudes above 100 km. AGWs may transport amplitude modulation of atmospheric wave sources in horizontal directions up to very high levels. Low wave amplitudes in the beginning of transition processes after activation of atmospheric wave sources could be additional reasons for slower amplitude grows with height compared to the nondissipative exponential growth predicted for stationary linear AGWs. Production of wave-induced mean jets and their superposition with nonlinear unstable dissipative AGWs can produce strong narrow peaks of horizontal speed in the upper atmosphere. This may increase the role of transient nonstationary waves in effective energy transport and variations of

  4. Temporal patterns in the acoustic signals of beaked whales at Cross Seamount.

    PubMed

    Johnston, D W; McDonald, M; Polovina, J; Domokos, R; Wiggins, S; Hildebrand, J

    2008-04-23

    Seamounts may influence the distribution of marine mammals through a combination of increased ocean mixing, enhanced local productivity and greater prey availability. To study the effects of seamounts on the presence and acoustic behaviour of cetaceans, we deployed a high-frequency acoustic recording package on the summit of Cross Seamount during April through October 2005. The most frequently detected cetacean vocalizations were echolocation sounds similar to those produced by ziphiid and mesoplodont beaked whales together with buzz-type signals consistent with prey-capture attempts. Beaked whale signals occurred almost entirely at night throughout the six-month deployment. Measurements of prey presence with a Simrad EK-60 fisheries acoustics echo sounder indicate that Cross Seamount may enhance local productivity in near-surface waters. Concentrations of micronekton were aggregated over the seamount in near-surface waters at night, and dense concentrations of nekton were detected across the surface of the summit. Our results suggest that seamounts may provide enhanced foraging opportunities for beaked whales during the night through a combination of increased productivity, vertical migrations by micronekton and local retention of prey. Furthermore, the summit of the seamount may act as a barrier against which whales concentrate prey. PMID:18252660

  5. Extruded Bread Classification on the Basis of Acoustic Emission Signal With Application of Artificial Neural Networks

    NASA Astrophysics Data System (ADS)

    Świetlicka, Izabela; Muszyński, Siemowit; Marzec, Agata

    2015-04-01

    The presented work covers the problem of developing a method of extruded bread classification with the application of artificial neural networks. Extruded flat graham, corn, and rye breads differening in water activity were used. The breads were subjected to the compression test with simultaneous registration of acoustic signal. The amplitude-time records were analyzed both in time and frequency domains. Acoustic emission signal parameters: single energy, counts, amplitude, and duration acoustic emission were determined for the breads in four water activities: initial (0.362 for rye, 0.377 for corn, and 0.371 for graham bread), 0.432, 0.529, and 0.648. For classification and the clustering process, radial basis function, and self-organizing maps (Kohonen network) were used. Artificial neural networks were examined with respect to their ability to classify or to cluster samples according to the bread type, water activity value, and both of them. The best examination results were achieved by the radial basis function network in classification according to water activity (88%), while the self-organizing maps network yielded 81% during bread type clustering.

  6. Temporal patterns in the acoustic signals of beaked whales at Cross Seamount.

    PubMed

    Johnston, D W; McDonald, M; Polovina, J; Domokos, R; Wiggins, S; Hildebrand, J

    2008-04-23

    Seamounts may influence the distribution of marine mammals through a combination of increased ocean mixing, enhanced local productivity and greater prey availability. To study the effects of seamounts on the presence and acoustic behaviour of cetaceans, we deployed a high-frequency acoustic recording package on the summit of Cross Seamount during April through October 2005. The most frequently detected cetacean vocalizations were echolocation sounds similar to those produced by ziphiid and mesoplodont beaked whales together with buzz-type signals consistent with prey-capture attempts. Beaked whale signals occurred almost entirely at night throughout the six-month deployment. Measurements of prey presence with a Simrad EK-60 fisheries acoustics echo sounder indicate that Cross Seamount may enhance local productivity in near-surface waters. Concentrations of micronekton were aggregated over the seamount in near-surface waters at night, and dense concentrations of nekton were detected across the surface of the summit. Our results suggest that seamounts may provide enhanced foraging opportunities for beaked whales during the night through a combination of increased productivity, vertical migrations by micronekton and local retention of prey. Furthermore, the summit of the seamount may act as a barrier against which whales concentrate prey.

  7. Incident signal power comparison for localization of concurrent multiple acoustic sources.

    PubMed

    Salvati, Daniele; Canazza, Sergio

    2014-01-01

    In this paper, a method to solve the localization of concurrent multiple acoustic sources in large open spaces is presented. The problem of the multisource localization in far-field conditions is to correctly associate the direction of arrival (DOA) estimated by a network array system to the same source. The use of systems implementing a Bayesian filter is a traditional approach to address the problem of localization in multisource acoustic scenario. However, in a real noisy open space the acoustic sources are often discontinuous with numerous short-duration events and thus the filtering methods may have difficulty to track the multiple sources. Incident signal power comparison (ISPC) is proposed to compute DOAs association. ISPC is based on identifying the incident signal power (ISP) of the sources on a microphone array using beamforming methods and comparing the ISP between different arrays using spectral distance (SD) measurement techniques. This method solves the ambiguities, due to the presence of simultaneous sources, by identifying sounds through a minimization of an error criterion on SD measures of DOA combinations. The experimental results were conducted in an outdoor real noisy environment and the ISPC performance is reported using different beamforming techniques and SD functions. PMID:24701179

  8. Incident Signal Power Comparison for Localization of Concurrent Multiple Acoustic Sources

    PubMed Central

    2014-01-01

    In this paper, a method to solve the localization of concurrent multiple acoustic sources in large open spaces is presented. The problem of the multisource localization in far-field conditions is to correctly associate the direction of arrival (DOA) estimated by a network array system to the same source. The use of systems implementing a Bayesian filter is a traditional approach to address the problem of localization in multisource acoustic scenario. However, in a real noisy open space the acoustic sources are often discontinuous with numerous short-duration events and thus the filtering methods may have difficulty to track the multiple sources. Incident signal power comparison (ISPC) is proposed to compute DOAs association. ISPC is based on identifying the incident signal power (ISP) of the sources on a microphone array using beamforming methods and comparing the ISP between different arrays using spectral distance (SD) measurement techniques. This method solves the ambiguities, due to the presence of simultaneous sources, by identifying sounds through a minimization of an error criterion on SD measures of DOA combinations. The experimental results were conducted in an outdoor real noisy environment and the ISPC performance is reported using different beamforming techniques and SD functions. PMID:24701179

  9. The linear synchronization measures of uterine EMG signals: Evidence of synchronized action potentials during propagation.

    PubMed

    Domino, Malgorzata; Pawlinski, Bartosz; Gajewski, Zdzislaw

    2016-11-01

    Evaluation of synchronization between myoelectric signals can give new insights into the functioning of the complex system of porcine myometrium. We propose a model of uterine contractions according to the hypothesis of action potentials similarity which is possible to detect during propagation in the uterine wall. We introduce similarity measures based on the concept of synchronization as used in matching linear signals such as electromyographic (EMG) time series data. The aim was to present linear measures to assess synchronization between contractions in different topographic regions of the uterus. We use the cross-correlation function (ƒx,y[l], ƒy,z[l]) and the cross-coherence function (Cxy[ƒ], Cyz[ƒ]) to assess synchronization between three data series of a diestral uterine EMG bundles in porcine reproductive tract. Spontaneous uterine activity was recorded using telemetry method directly by three-channel transmitter and three silver bipolar needle electrodes sutured on different topographic regions of the reproductive tract in the sow. The results show the usefulness of the cross-coherence function in that synchronization between uterine horn and corpus uteri for multiple action potentials (bundles) could be observed. The EMG bundles synchronization may be used to investigate the direction and velocity of EMG signals propagation in porcine reproductive tract. PMID:27570104

  10. Mixed signal learning by spike correlation propagation in feedback inhibitory circuits.

    PubMed

    Hiratani, Naoki; Fukai, Tomoki

    2015-04-01

    The brain can learn and detect mixed input signals masked by various types of noise, and spike-timing-dependent plasticity (STDP) is the candidate synaptic level mechanism. Because sensory inputs typically have spike correlation, and local circuits have dense feedback connections, input spikes cause the propagation of spike correlation in lateral circuits; however, it is largely unknown how this secondary correlation generated by lateral circuits influences learning processes through STDP, or whether it is beneficial to achieve efficient spike-based learning from uncertain stimuli. To explore the answers to these questions, we construct models of feedforward networks with lateral inhibitory circuits and study how propagated correlation influences STDP learning, and what kind of learning algorithm such circuits achieve. We derive analytical conditions at which neurons detect minor signals with STDP, and show that depending on the origin of the noise, different correlation timescales are useful for learning. In particular, we show that non-precise spike correlation is beneficial for learning in the presence of cross-talk noise. We also show that by considering excitatory and inhibitory STDP at lateral connections, the circuit can acquire a lateral structure optimal for signal detection. In addition, we demonstrate that the model performs blind source separation in a manner similar to the sequential sampling approximation of the Bayesian independent component analysis algorithm. Our results provide a basic understanding of STDP learning in feedback circuits by integrating analyses from both dynamical systems and information theory. PMID:25910189

  11. Unidirectional signal propagation in primary neurons micropatterned at a single-cell resolution

    NASA Astrophysics Data System (ADS)

    Yamamoto, H.; Matsumura, R.; Takaoki, H.; Katsurabayashi, S.; Hirano-Iwata, A.; Niwano, M.

    2016-07-01

    The structure and connectivity of cultured neuronal networks can be controlled by using micropatterned surfaces. Here, we demonstrate that the direction of signal propagation can be precisely controlled at a single-cell resolution by growing primary neurons on micropatterns. To achieve this, we first examined the process by which axons develop and how synapses form in micropatterned primary neurons using immunocytochemistry. By aligning asymmetric micropatterns with a marginal gap, it was possible to pattern primary neurons with a directed polarization axis at the single-cell level. We then examined how synapses develop on micropatterned hippocampal neurons. Three types of micropatterns with different numbers of short paths for dendrite growth were compared. A normal development in synapse density was observed when micropatterns with three or more short paths were used. Finally, we performed double patch clamp recordings on micropatterned neurons to confirm that these synapses are indeed functional, and that the neuronal signal is transmitted unidirectionally in the intended orientation. This work provides a practical guideline for patterning single neurons to design functional neuronal networks in vitro with the direction of signal propagation being controlled.

  12. Mixed signal learning by spike correlation propagation in feedback inhibitory circuits.

    PubMed

    Hiratani, Naoki; Fukai, Tomoki

    2015-04-01

    The brain can learn and detect mixed input signals masked by various types of noise, and spike-timing-dependent plasticity (STDP) is the candidate synaptic level mechanism. Because sensory inputs typically have spike correlation, and local circuits have dense feedback connections, input spikes cause the propagation of spike correlation in lateral circuits; however, it is largely unknown how this secondary correlation generated by lateral circuits influences learning processes through STDP, or whether it is beneficial to achieve efficient spike-based learning from uncertain stimuli. To explore the answers to these questions, we construct models of feedforward networks with lateral inhibitory circuits and study how propagated correlation influences STDP learning, and what kind of learning algorithm such circuits achieve. We derive analytical conditions at which neurons detect minor signals with STDP, and show that depending on the origin of the noise, different correlation timescales are useful for learning. In particular, we show that non-precise spike correlation is beneficial for learning in the presence of cross-talk noise. We also show that by considering excitatory and inhibitory STDP at lateral connections, the circuit can acquire a lateral structure optimal for signal detection. In addition, we demonstrate that the model performs blind source separation in a manner similar to the sequential sampling approximation of the Bayesian independent component analysis algorithm. Our results provide a basic understanding of STDP learning in feedback circuits by integrating analyses from both dynamical systems and information theory.

  13. openPSTD: The open source pseudospectral time-domain method for acoustic propagation

    NASA Astrophysics Data System (ADS)

    Hornikx, Maarten; Krijnen, Thomas; van Harten, Louis

    2016-06-01

    An open source implementation of the Fourier pseudospectral time-domain (PSTD) method for computing the propagation of sound is presented, which is geared towards applications in the built environment. Being a wave-based method, PSTD captures phenomena like diffraction, but maintains efficiency in processing time and memory usage as it allows to spatially sample close to the Nyquist criterion, thus keeping both the required spatial and temporal resolution coarse. In the implementation it has been opted to model the physical geometry as a composition of rectangular two-dimensional subdomains, hence initially restricting the implementation to orthogonal and two-dimensional situations. The strategy of using subdomains divides the problem domain into local subsets, which enables the simulation software to be built according to Object-Oriented Programming best practices and allows room for further computational parallelization. The software is built using the open source components, Blender, Numpy and Python, and has been published under an open source license itself as well. For accelerating the software, an option has been included to accelerate the calculations by a partial implementation of the code on the Graphical Processing Unit (GPU), which increases the throughput by up to fifteen times. The details of the implementation are reported, as well as the accuracy of the code.

  14. The effect of fluid streams in porous media on acoustic compression wave propagation, transmission, and reflection

    NASA Astrophysics Data System (ADS)

    Madeo, A.; Djeran-Maigre, I.; Rosi, G.; Silvani, C.

    2013-03-01

    In geomechanics, a relevant role is played by coupling phenomena between compressible fluid seepage flow and deformation of the solid matrix. The behavior of complex porous materials can be greatly influenced by such coupling phenomena. A satisfactorily theoretical framework for their description is not yet completely attained. In this paper, we discuss how the model developed in dell'Isola et al. (Int J Solids Struct 46:3150-3164, 2009) can describe how underground flows or, more generally, confined streams of fluid in deformable porous matrices affect compression wave propagation and their reflection and transmission at a solid-material discontinuity surface. Further work will investigate the effect of stream flow in porous media on shear waves, generalizing what done in Djeran Maigre and Kuznetsov (Comptes Rendus Mécanique 336(1-2):102-107, 2008) for shear waves in one-constituent orthotropic two-layered plates. The presented treatment shows that the presence of fluid streams considerably affect reflection and transmission phenomena in porous media.

  15. Demodulation of acoustic telemetry binary phase shift keying signal based on high-order Duffing system

    NASA Astrophysics Data System (ADS)

    Yan, Bing-Nan; Liu, Chong-Xin; Ni, Jun-Kang; Zhao, Liang

    2016-10-01

    In order to grasp the downhole situation immediately, logging while drilling (LWD) technology is adopted. One of the LWD technologies, called acoustic telemetry, can be successfully applied to modern drilling. It is critical for acoustic telemetry technology that the signal is successfully transmitted to the ground. In this paper, binary phase shift keying (BPSK) is used to modulate carrier waves for the transmission and a new BPSK demodulation scheme based on Duffing chaos is investigated. Firstly, a high-order system is given in order to enhance the signal detection capability and it is realized through building a virtual circuit using an electronic workbench (EWB). Secondly, a new BPSK demodulation scheme is proposed based on the intermittent chaos phenomena of the new Duffing system. Finally, a system variable crossing zero-point equidistance method is proposed to obtain the phase difference between the system and the BPSK signal. Then it is determined that the digital signal transmitted from the bottom of the well is ‘0’ or ‘1’. The simulation results show that the demodulation method is feasible. Project supported by the National Natural Science Foundation of China (Grant No. 51177117) and the National Key Science & Technology Special Projects, China (Grant No. 2011ZX05021-005).

  16. A hardware model of the auditory periphery to transduce acoustic signals into neural activity

    PubMed Central

    Tateno, Takashi; Nishikawa, Jun; Tsuchioka, Nobuyoshi; Shintaku, Hirofumi; Kawano, Satoyuki

    2013-01-01

    To improve the performance of cochlear implants, we have integrated a microdevice into a model of the auditory periphery with the goal of creating a microprocessor. We constructed an artificial peripheral auditory system using a hybrid model in which polyvinylidene difluoride was used as a piezoelectric sensor to convert mechanical stimuli into electric signals. To produce frequency selectivity, the slit on a stainless steel base plate was designed such that the local resonance frequency of the membrane over the slit reflected the transfer function. In the acoustic sensor, electric signals were generated based on the piezoelectric effect from local stress in the membrane. The electrodes on the resonating plate produced relatively large electric output signals. The signals were fed into a computer model that mimicked some functions of inner hair cells, inner hair cell–auditory nerve synapses, and auditory nerve fibers. In general, the responses of the model to pure-tone burst and complex stimuli accurately represented the discharge rates of high-spontaneous-rate auditory nerve fibers across a range of frequencies greater than 1 kHz and middle to high sound pressure levels. Thus, the model provides a tool to understand information processing in the peripheral auditory system and a basic design for connecting artificial acoustic sensors to the peripheral auditory nervous system. Finally, we discuss the need for stimulus control with an appropriate model of the auditory periphery based on auditory brainstem responses that were electrically evoked by different temporal pulse patterns with the same pulse number. PMID:24324432

  17. A hardware model of the auditory periphery to transduce acoustic signals into neural activity.

    PubMed

    Tateno, Takashi; Nishikawa, Jun; Tsuchioka, Nobuyoshi; Shintaku, Hirofumi; Kawano, Satoyuki

    2013-01-01

    To improve the performance of cochlear implants, we have integrated a microdevice into a model of the auditory periphery with the goal of creating a microprocessor. We constructed an artificial peripheral auditory system using a hybrid model in which polyvinylidene difluoride was used as a piezoelectric sensor to convert mechanical stimuli into electric signals. To produce frequency selectivity, the slit on a stainless steel base plate was designed such that the local resonance frequency of the membrane over the slit reflected the transfer function. In the acoustic sensor, electric signals were generated based on the piezoelectric effect from local stress in the membrane. The electrodes on the resonating plate produced relatively large electric output signals. The signals were fed into a computer model that mimicked some functions of inner hair cells, inner hair cell-auditory nerve synapses, and auditory nerve fibers. In general, the responses of the model to pure-tone burst and complex stimuli accurately represented the discharge rates of high-spontaneous-rate auditory nerve fibers across a range of frequencies greater than 1 kHz and middle to high sound pressure levels. Thus, the model provides a tool to understand information processing in the peripheral auditory system and a basic design for connecting artificial acoustic sensors to the peripheral auditory nervous system. Finally, we discuss the need for stimulus control with an appropriate model of the auditory periphery based on auditory brainstem responses that were electrically evoked by different temporal pulse patterns with the same pulse number. PMID:24324432

  18. Wavelet Transform Of Acoustic Signal From A Ranque- Hilsch Vortex Tube

    NASA Astrophysics Data System (ADS)

    Istihat, Y.; Wisnoe, W.

    2015-09-01

    This paper presents the frequency analysis of flow in a Ranque-Hilsch Vortex Tube (RHVT) obtained from acoustic signal using microphones in an isolated formation setup. Data Acquisition System (DAS) that incorporates Analog to Digital Converter (ADC) with laptop computer has been used to acquire the wave data. Different inlet pressures (20, 30, 40, 50 and 60 psi) are supplied and temperature differences are recorded. Frequencies produced from a RHVT are experimentally measured and analyzed by means of Wavelet Transform (WT). Morlet Wavelet is used and relation between Pressure variation, Temperature and Frequency are studied. Acoustic data has been analyzed using Matlab® and time-frequency analysis (Scalogram) is presented. Results show that the Pressure is proportional with the Frequency inside the RHVT whereby two distinct working frequencies is pronounced in between 4-8 kHz.

  19. Study of Doppler Shift Correction for Underwater Acoustic Communication Using Orthogonal Signal Division Multiplexing

    NASA Astrophysics Data System (ADS)

    Ebihara, Tadashi; Mizutani, Keiichi

    2011-07-01

    In this study, we apply Doppler shift correction schemes for underwater acoustic (UWA) communication with orthogonal signal division multiplexing (OSDM) to achieve stable communication in underwater acoustic channels. Three Doppler correction schemes, which exploit the guard interval, are applied to UWA communication with OSDM and evaluated in simulations. Through a simulation in which only the Doppler effect is considered, we confirmed that by adapting schemes to UWA communication with OSDM, we can correct large Doppler shifts, which addresses the usual speed of vehicles and ships. Moreover, by considering both the Doppler effect and channel reverberation, we propose the best possible combination of Doppler correction schemes for UWA communication with OSDM. The results suggest that UWA communication with OSDM may lead to high-quality communication by considering channel reverberation and large Doppler shifts.

  20. The effect of artificial rain on backscattered acoustic signal: first measurements

    NASA Astrophysics Data System (ADS)

    Titchenko, Yuriy; Karaev, Vladimir; Meshkov, Evgeny; Goldblat, Vladimir

    The problem of rain influencing on a characteristics of backscattered ultrasonic and microwave signal by water surface is considered. The rain influence on backscattering process of electromagnetic waves was investigated in laboratory and field experiments, for example [1-3]. Raindrops have a significant impact on backscattering of microwave and influence on wave spectrum measurement accuracy by string wave gauge. This occurs due to presence of raindrops in atmosphere and modification of the water surface. For measurements of water surface characteristics during precipitation we propose to use an acoustic system. This allows us obtaining of the water surface parameters independently on precipitation in atmosphere. The measurements of significant wave height of water surface using underwater acoustical systems are well known [4, 5]. Moreover, the variance of orbital velocity can be measure using these systems. However, these methods cannot be used for measurements of slope variance and the other second statistical moments of water surface that required for analyzing the radar backscatter signal. An original design Doppler underwater acoustic wave gauge allows directly measuring the surface roughness characteristics that affect on electromagnetic waves backscattering of the same wavelength [6]. Acoustic wave gauge is Doppler ultrasonic sonar which is fixed near the bottom on the floating disk. Measurements are carried out at vertically orientation of sonar antennas towards water surface. The first experiments were conducted with the first model of an acoustic wave gauge. The acoustic wave gauge (8 mm wavelength) is equipped with a transceiving antenna with a wide symmetrical antenna pattern. The gauge allows us to measure Doppler spectrum and cross section of backscattered signal. Variance of orbital velocity vertical component can be retrieved from Doppler spectrum with high accuracy. The result of laboratory and field experiments during artificial rain is presented

  1. Numerical analysis of wave generation and propagation in a focused surface acoustic wave device for potential microfluidics applications.

    PubMed

    Sankaranarayanan, Subramanian K R S; Bhethanabotla, Venkat R

    2009-03-01

    We develop a 3-D finite element model of a focused surface acoustic wave (F-SAW) device based on LiNbO(3) to analyze the wave generation and propagation characteristics for devices operating at MHz frequencies with varying applied input voltages. We compare the F-SAW device to a conventional SAW device with similar substrate dimensions and transducer finger periodicity. SAW devices with concentrically shaped focused interdigital transducer fingers (F-IDTs) are found to excite waves with high intensity and high beam-width compression ratio, confined to a small localized area. F-SAW devices are more sensitive to amplitude variations at regions close to the focal point than conventional SAW devices having uniform IDT configuration. We compute F-SAW induced streaming forces and velocity fields by applying a successive approximation technique to the Navier-Stokes equation (Nyborg's theory). The maximum streaming force obtained at the focal point varies as the square of the applied input voltage. Computed streaming velocities at the focal point in F-SAW devices are at least an order of magnitude higher than those in conventional SAW devices. Simulated frequency response indicates higher insertion losses in F-SAW devices than in conventional devices, reflecting their greater utility as actuators than as sensors. Our simulation findings suggest that F-SAW devices can be utilized effectively for actuation in microfluidic applications involving diffusion limited transport processes. PMID:19411221

  2. Influence of a Propagating Megahertz Surface Acoustic Wave on the Pattern Deposition of Solute Mass off an Evaporating Solution.

    PubMed

    Mhatre, Sameer; Zigelman, Anna; Abezgauz, Ludmila; Manor, Ofer

    2016-09-20

    We study the influence of a megahertz Rayleigh surface acoustic wave (SAW), propagating in a solid substrate, on the pattern deposition of a solute mass off an evaporating solution. An experimental procedure, where a film of a solution undergoes a controlled evaporation in a chamber, shows that the SAW alters the state of the pattern deposition. Increasing the power of the SAW supports an increase in the density of the deposited patterns. Beyond threshold conditions, the deposited patterns merge and we observe the deposition of a solid film. A simplified theory suggests that the SAW deforms the geometry of the film, which is predominantly governed by the capillary stress. The deformation of the film taking place alongside with the evaporation of the solution increases the concentration near the pinned three phase contact line at the front of the film, which is closer to the source of the SAW, on the expense of the concentration at the rear. The increased concentration translates to the deposition of solute mass over an increased area near the front of the film, which explains the experimental observation.

  3. Influence of a Propagating Megahertz Surface Acoustic Wave on the Pattern Deposition of Solute Mass off an Evaporating Solution.

    PubMed

    Mhatre, Sameer; Zigelman, Anna; Abezgauz, Ludmila; Manor, Ofer

    2016-09-20

    We study the influence of a megahertz Rayleigh surface acoustic wave (SAW), propagating in a solid substrate, on the pattern deposition of a solute mass off an evaporating solution. An experimental procedure, where a film of a solution undergoes a controlled evaporation in a chamber, shows that the SAW alters the state of the pattern deposition. Increasing the power of the SAW supports an increase in the density of the deposited patterns. Beyond threshold conditions, the deposited patterns merge and we observe the deposition of a solid film. A simplified theory suggests that the SAW deforms the geometry of the film, which is predominantly governed by the capillary stress. The deformation of the film taking place alongside with the evaporation of the solution increases the concentration near the pinned three phase contact line at the front of the film, which is closer to the source of the SAW, on the expense of the concentration at the rear. The increased concentration translates to the deposition of solute mass over an increased area near the front of the film, which explains the experimental observation. PMID:27552064

  4. Theoretical investigation of surface acoustic wave propagation characteristics in periodic (AlN/ZnO)N /diamond multilayer structures

    NASA Astrophysics Data System (ADS)

    Qian, Lirong; Li, Cuiping; Li, Mingji; Wang, Fang; Yang, Baohe

    2014-11-01

    Propagation characteristics of surface acoustic wave (SAW) in periodic (AlN/ZnO)N/diamond multilayer structures were theoretically investigated using effective permittivity method. The phase velocity Vp, electromechanical coupling coefficient K2, and temperature coefficient of frequency (TCF) of the Sezawa mode are analyzed for different thicknesses-to-wavelength H/λ, thickness ratios of AlN to ZnO Rh, and periods of alternating ZnO and AlN layers N. Results show that, comparing with AlN/ZnO/diamond multilayer structure, the periodic (AlN/ZnO)N/diamond multilayer structure (N ≥ 2) shows excellent electromechanical coupling and temperature stable characteristics with significantly improved K2 and TCF. The largest coupling coefficient of 3.0% associated with a phase velocity of 5726 m/s and a TCF of -29.2 ppm/°C can be reached for Rh = 0.2 and N = 2. For a low TCF of -24.4 ppm/°C, a large coupling coefficient of 2.0% associated with a phase velocity of 7058 m/s can be obtained for Rh = 1.0 and N = 5. The simulated results can be used to design the low loss and good temperature stability SAW devices of gigahertz-band application.

  5. Comparisons of laboratory scale measurements of three-dimensional acoustic propagation with solutions by a parabolic equation model.

    PubMed

    Sturm, Frédéric; Korakas, Alexios

    2013-01-01

    In this paper, laboratory scale measurements of long range across-slope acoustic propagation in a three-dimensional (3-D) wedge-like environment are compared to numerical solutions. In a previous work, it was shown that the experimental data contain strong 3-D effects like mode shadow zones and multiple mode arrivals, in qualitative agreement with theoretical and numerical predictions. In the present work, the experimental data are compared with numerical solutions obtained using a fully 3-D parabolic equation based model. A subspace inversion approach is used for the refinement of some of the parameters describing the model experiment. The inversion procedure is implemented in a Bayesian framework based on the exhaustive search over the parameter space. The comparisons are performed both in the time and in the frequency domain using the maximum a posteriori estimates of the refined parameters as input in the 3-D model. A very good quantitative agreement is achieved between the numerical predictions provided by the 3-D parabolic equation model and the experimental data.

  6. Stability of three-dimensional obliquely propagating dust acoustic waves in dusty plasma including the polarization force effect

    NASA Astrophysics Data System (ADS)

    El-Labany, S. K.; El-Taibany, W. F.; Behery, E. E.; Zedan, N. A.

    2015-12-01

    Propagation of dust acoustic solitary waves (DASWs) in a magnetized dusty plasma consisting of extremely massive, negatively/positively charged dust fluid and Boltzmann distributed electrons and ions is studied. A nonlinear Zakharov-Kuznetsov (ZK) equation adequate for describing the solitary waves is derived by applying a reductive perturbation technique. Moreover, an extended Zakharov Kuznetsov (EZK) equation is derived at the vicinity of the critical phase velocity. The effects of the polarization force are explicitly discussed and the growth rate of the produced waves is calculated. It is found that the physical parameters have strong effects on the instability criterion as well as on the growth rate. It is noted that the phase velocity decreases as the polarization force, the effective-to-ion temperature ratio, and the ion-to-electron temperature ratio increase. Moreover, the nonlinearity coefficient and the critical phase velocity increase by increasing the polarization force. The relevance of these findings to a recent plasma experiment and astrophysical plasma observations is briefly discussed.

  7. Theoretical analysis of surface acoustic wave propagating properties of Y-cut nano lithium niobate film on silicon dioxide

    SciTech Connect

    Chen, Jing Zhang, Qiaozhen; Han, Tao; Zhou, Liu; Tang, Gongbin; Liu, Boquan; Ji, Xiaojun

    2015-08-15

    The surface acoustic wave (SAW) propagating characteristics of Y-cut nano LiNbO{sub 3} (LN) film on SiO{sub 2}/LN substrate have been theoretically calculated. The simulated results showed a shear horizontal (SH) SAW with enhanced electromechanical coupling factor K{sup 2} owing to a dimensional effect of the nanoscale LN film. However, a Rayleigh SAW and two other resonances related to thickness vibrations caused spurious responses for wideband SAW devices. These spurious waves could be fully suppressed by properly controlling structural parameters including the electrode layer height, thickness, and the Euler angle (θ) of the LN thin film. Finally, a pure SH SAW was obtained with a wide θ range, from 0° to 5° and 165° to 180°. The largest K{sup 2} achieved for the pure SH SAW was about 35.1%. The calculated results demonstrate the promising application of nano LN film to the realization of ultra-wideband SAW devices.

  8. Effect of dust charge fluctuation on the propagation of dust-ion acoustic waves in inhomogeneous mesospheric dusty plasma

    SciTech Connect

    Mowafy, A. E.; El-Shewy, E. K.; Zahran, M. A.; Moslem, W. M.

    2008-07-15

    Investigation of positive and negative dust charge fluctuations on the propagation of dust-ion acoustic waves (DIAWs) in a weakly inhomogeneous, collisionless, unmagnetized dusty plasmas consisting of cold positive ions, stationary positively and negatively charged dust particles and isothermal electrons. The reductive perturbation method is employed to reduce the basic set of fluid equations to the variable coefficients Korteweg-de Varies (KdV) equation. At the critical ion density, the KdV equation is not appropriate for describing the system. Hence, a new set of stretched coordinates is considered to derive the modified variable coefficients KdV equation. It is found that the presence of positively charged dust grains does not only significantly modify the basic properties of solitary structure, but also changes the polarity of the solitary profiles. In the vicinity of the critical ion density, neither KdV nor the modified KdV equation is appropriate for describing the DIAWs. Therefore, a further modified KdV equation is derived, which admits both soliton and double layer solutions.

  9. Study of the propagation characteristics of Very Low Frequency Signal as observed from Indian Permanent station Maitri and Bharati

    NASA Astrophysics Data System (ADS)

    Sasmal, Sudipta; Chakrabarti, Sandip Kumar; Pal, Sujay; Palit, Sourav; Chakraborty, Suman

    2016-07-01

    Propagation of Very Low Frequency (VLF) radio signal through the Earth-ionosphere waveguide strongly depends on the plasma properties of the ionospheric D layer. Solar extreme ultraviolet radiation plays the central role in controlling physical and chemical properties of the lower ionospheric layers and hence determining the quality and propagation characteristics of a VLF signal. The nature of interference among different propagating modes varies widely with the length of the propagation path. For a very long path, exposure of solar radiation and thus the degree of ionization vary by a large amount along the path. Study of radio signal characteristics in the Antarctic region during summer period in the Southern Hemisphere gives us a unique opportunity to explore such a possibility. In addition, there is an extra feature in this path - the presence of solar radiation and hence the D region for the whole day during summer in at least some sections of the path. We present long-distance propagation characteristics of VLF signals transmitted from VTX (18.2 kHz) and NWC (19.8 kHz) transmitters recorded simultaneously at Indian permanent stations Maitri (latitude 70 ^{o}45 ^{'}S, longitude 11 ^{o}40 ^{'}E) and Bharati (69 ^{o}24 ^{'}S, 76 ^{o}10 ^{'}E). A very stable diurnal variation of the signal (both amplitude and phase) has been obtained with no signature of nighttime fluctuation due the presence of 24 h of sunlight for both the stations. We present the attenuation rate of the dominant waveguide modes corresponding to those propagation conditions where the effects of the Antarctic polar ice on the attenuation of different propagating waveguide modes are visible. VLF signals show the effects of high energetic solar events. Using ion production and recombination profiles by solar irradiance and incorporating D region ion chemistry processes, we calculate the electron density profile at different heights. Using this profile in the Long Wavelength Propagation Capability

  10. Phylogenetic signal in the acoustic parameters of the advertisement calls of four clades of anurans

    PubMed Central

    2013-01-01

    Background Anuran vocalizations, especially their advertisement calls, are largely species-specific and can be used to identify taxonomic affiliations. Because anurans are not vocal learners, their vocalizations are generally assumed to have a strong genetic component. This suggests that the degree of similarity between advertisement calls may be related to large-scale phylogenetic relationships. To test this hypothesis, advertisement calls from 90 species belonging to four large clades (Bufo, Hylinae, Leptodactylus, and Rana) were analyzed. Phylogenetic distances were estimated based on the DNA sequences of the 12S mitochondrial ribosomal RNA gene, and, for a subset of 49 species, on the rhodopsin gene. Mean values for five acoustic parameters (coefficient of variation of root-mean-square amplitude, dominant frequency, spectral flux, spectral irregularity, and spectral flatness) were computed for each species. We then tested for phylogenetic signal on the body-size-corrected residuals of these five parameters, using three statistical tests (Moran’s I, Mantel, and Blomberg’s K) and three models of genetic distance (pairwise distances, Abouheif’s proximities, and the variance-covariance matrix derived from the phylogenetic tree). Results A significant phylogenetic signal was detected for most acoustic parameters on the 12S dataset, across statistical tests and genetic distance models, both for the entire sample of 90 species and within clades in several cases. A further analysis on a subset of 49 species using genetic distances derived from rhodopsin and from 12S broadly confirmed the results obtained on the larger sample, indicating that the phylogenetic signals observed in these acoustic parameters can be detected using a variety of genetic distance models derived either from a variable mitochondrial sequence or from a conserved nuclear gene. Conclusions We found a robust relationship, in a large number of species, between anuran phylogenetic relatedness and

  11. A subsequent closed-form description of propagated signaling phenomena in the membrane of an axon

    NASA Astrophysics Data System (ADS)

    Melendy, Robert. F.

    2016-05-01

    I recently introduced a closed-form description of propagated signaling phenomena in the membrane of an axon [R.F. Melendy, Journal of Applied Physics 118, 244701 (2015)]. Those results demonstrate how intracellular conductance, the thermodynamics of magnetization, and current modulation, function together in generating an action potential in a unified, closed-form description. At present, I report on a subsequent closed-form model that unifies intracellular conductance and the thermodynamics of magnetization, with the membrane electric field, Em. It's anticipated this work will compel researchers in biophysics, physical biology, and the computational neurosciences, to probe deeper into the classical and quantum features of membrane magnetization and signaling, informed by the computational features of this subsequent model.

  12. End-binding protein 1 controls signal propagation from the T cell receptor

    PubMed Central

    Martín-Cófreces, Noa B; Baixauli, Francesc; López, María J; Gil, Diana; Monjas, Alicia; Alarcón, Balbino; Sánchez-Madrid, Francisco

    2012-01-01

    The role of microtubules (MTs) in the control and dynamics of the immune synapse (IS) remains unresolved. Here, we show that T cell activation requires the growth of MTs mediated by the plus-end specific protein end-binding 1 (EB1). A direct interaction of the T cell receptor (TCR) complex with EB1 provides the molecular basis for EB1 activity promoting TCR encounter with signalling vesicles at the IS. EB1 knockdown alters TCR dynamics at the IS and prevents propagation of the TCR activation signal to LAT, thus inhibiting activation of PLCγ1 and its localization to the IS. These results identify a role for EB1 interaction with the TCR in controlling TCR sorting and its connection with the LAT/PLCγ1 signalosome. PMID:22922463

  13. Electrostatic waves stimulated by coherent VLF signals propagating in and near the inner radiation belt

    NASA Technical Reports Server (NTRS)

    Bell, T. F.; Ngo, H. D.

    1988-01-01

    The excitation of electrostatic waves by whistler-mode VLF signals propagating along magnetic-field lines in and near the earth's inner radiation belt is examined on the basis of ISEE-1 observations obtained during July-December 1983. The data are presented in extensive graphs and characterized in detail. The effect is seen in about 60 percent of the ISEE-1 orbits penetrating the belt and for signals originating in both hemispheres, with an electrostatic-wave effective bandwidth roughly proportional to the local magnetic-field strength. These results are interpreted in terms of a theoretical model in which scattering of the VLF waves off magnetic-field-aligned plasma density irregularities is followed by particle pitch-angle scattering and precipitation in the radiation belt; the latter effect could then produce new irregularities via a feedback mechanism.

  14. Analog and numerical modeling on the propagation of seismic electromagnetic signals (SEMS)

    NASA Astrophysics Data System (ADS)

    Huang, Q.; Lin, Y.; Wang, Q.

    2010-12-01

    Study on propagation of seismic electromagnetic signals (SEMS) plays an important role in understanding earthquake-related electromagnetic phenomena. Some laboratory analog experiments based on a geographical scaling model and a waveguide model were developed to simulate the propagation of SEMS. These experimental results showed that the geographical effect such as the distribution of ocean and land may lead to some aspect of the selectivity phenomenon. Some analytical and numerical works based on a conductive channel model were also presented as an explanation of the selectivity phenomenon. However, whether or not such conclusion holds for a more realistic 3D model deserves further investigation. In this paper, we simulate the propagation characteristics of SEMS in some typical 3-D models using COMSOL Multiphysics, a software of finite element method (FEM). After some validation tests of the above FEM software, we investigated the possible effects on the propagation characteristics of SEMS from the model parameters. Then, we considered a model with a conductive fault buried in a three-layered media, and an electric dipole source located close to the center of the fault. The simulation results indicated that the amplification effect of a conductive channel, which has been adopted as a possible explanation of some SEMS observations, can be expected only at a much lower frequency. We also simulated the possible ocean effect on the propagation of SEMS. As a case study, we modeled the Greek archipelago, in which numerious SEMS have been reported. The numerical results showed a decayed pattern of SEMS at a frequency lower than the cut-off frequency, and a rippled propagation pattern at a frequency higher than the cut-off frequency. These results are consistent with the previous analog experimental results. Further examples of analog and numerical simulations are investigated. The numerical simulations combined with the analog experiments may provide possible explanation

  15. Finite Difference Simulations of Acoustic and Gravity Wave Propagation in Mars Atmosphere: Applications to INSIGHT NASA Mission and Mars Microphone Experiments

    NASA Astrophysics Data System (ADS)

    Garcia, R.; Brissaud, Q.; Martin, R.; Rolland, L. M.; Komatitsch, D.

    2015-12-01

    A simulation tool of acoustic and gravity wave propagation through finite differences is applied to the case of Mars atmosphere.The details of the code and its validation for Earth atmosphere are presented in session SA003.The simulations include the modeling of both acoustic and gravity waves in the same run, an effects of exponential density decrease, winds and attenuation.The application to Mars requires the inclusion of a specific attenuation effect related to the relaxation induced by vibrational modes of carbon dioxide molecules.Two different applications are presented demonstrating the ability of the simulation tool to work at very different scale length and frequencies.First the propagation of acoustic and gravity waves due to a bolide explosion in the atmosphere of Mars are simulated.This case has a direct application to the atmospheric pressure and seismic measurements that will be performed by INSIGHT NASA discovery mission next year.Then, we also present simulations of sound wave propagation on a scale of meters that can be used to infer the feasability microphone measurements for future Mars missions.

  16. Noise affects the shape of female preference functions for acoustic signals.

    PubMed

    Reichert, Michael S; Ronacher, Bernhard

    2015-02-01

    The shape of female mate preference functions influences the speed and direction of sexual signal evolution. However, the expression of female preferences is modulated by interactions between environmental conditions and the female's sensory processing system. Noise is an especially relevant environmental condition because it interferes directly with the neural processing of signals. Although noise is therefore likely a significant force in the evolution of communication systems, little is known about its effects on preference function shape. In the grasshopper Chorthippus biguttulus, female preferences for male calling song characteristics are likely to be affected by noise because its auditory system is sensitive to fine temporal details of songs. We measured female preference functions for variation in male song characteristics in several levels of masking noise and found strong effects of noise on preference function shape. The overall responsiveness to signals in noise generally decreased. Preference strength increased for some signal characteristics and decreased for others, largely corresponding to expectations based on neurophysiological studies of acoustic signal processing. These results suggest that different signal characteristics will be favored under different noise conditions, and thus that signal evolution may proceed differently depending on the extent and temporal patterning of environmental noise.

  17. Signal diversification in Oecanthus tree crickets is shaped by energetic, morphometric, and acoustic trade-offs.

    PubMed

    Symes, L B; Ayres, M P; Cowdery, C P; Costello, R A

    2015-06-01

    Physiology, physics, and ecological interactions can generate trade-offs within species, but may also shape divergence among species. We tested whether signal divergence in Oecanthus tree crickets is shaped by acoustic, energetic, and behavioral trade-offs. We found that species with faster pulse rates, produced by opening and closing wings up to twice as many times per second, did not have higher metabolic costs of calling. The relatively constant energetic cost across species is explained by trade-offs between the duration and repetition rate of acoustic signals-species with fewer stridulatory teeth closed their wings more frequently such that the number of teeth struck per second of calling and the resulting duty cycle were relatively constant across species. Further trade-offs were evident in relationships between signals and body size. Calling was relatively inexpensive for small males, permitting them to call for much of the night, but at low amplitude. Large males produced much louder calls, reaching up to four times more area, but the energetic costs increased substantially with increasing size and the time spent calling dropped to only 20% of the night. These trade-offs indicate that the trait combinations that arise in these species represent a limited subset of conceivable trait combinations.

  18. Signal diversification in Oecanthus tree crickets is shaped by energetic, morphometric, and acoustic trade-offs.

    PubMed

    Symes, L B; Ayres, M P; Cowdery, C P; Costello, R A

    2015-06-01

    Physiology, physics, and ecological interactions can generate trade-offs within species, but may also shape divergence among species. We tested whether signal divergence in Oecanthus tree crickets is shaped by acoustic, energetic, and behavioral trade-offs. We found that species with faster pulse rates, produced by opening and closing wings up to twice as many times per second, did not have higher metabolic costs of calling. The relatively constant energetic cost across species is explained by trade-offs between the duration and repetition rate of acoustic signals-species with fewer stridulatory teeth closed their wings more frequently such that the number of teeth struck per second of calling and the resulting duty cycle were relatively constant across species. Further trade-offs were evident in relationships between signals and body size. Calling was relatively inexpensive for small males, permitting them to call for much of the night, but at low amplitude. Large males produced much louder calls, reaching up to four times more area, but the energetic costs increased substantially with increasing size and the time spent calling dropped to only 20% of the night. These trade-offs indicate that the trait combinations that arise in these species represent a limited subset of conceivable trait combinations. PMID:25903317

  19. The potential influence of morphology on the evolutionary divergence of an acoustic signal

    PubMed Central

    Pitchers, W. R.; Klingenberg, C.P.; Tregenza, Tom; Hunt, J.; Dworkin, I.

    2014-01-01

    The evolution of acoustic behaviour and that of the morphological traits mediating its production are often coupled. Lack of variation in the underlying morphology of signalling traits has the potential to constrain signal evolution. This relationship is particularly likely in field crickets, where males produce acoustic advertisement signals to attract females by stridulating with specialized structures on their forewings. In this study, we characterise the size and geometric shape of the forewings of males from six allopatric populations of the black field cricket (Teleogryllus commodus) known to have divergent advertisement calls. We sample from each of these populations using both wild-caught and common-garden reared cohorts, allowing us to test for multivariate relationships between wing morphology and call structure. We show that the allometry of shape has diverged across populations. However, there was a surprisingly small amount of covariation between wing shape and call structure within populations. Given the importance of male size for sexual selection in crickets, the divergence we observe among populations has the potential to influence the evolution of advertisement calls in this species. PMID:25223712

  20. Long Recording Sequences: How to Track the Intra-Individual Variability of Acoustic Signals

    PubMed Central

    Lengagne, Thierry; Gomez, Doris; Josserand, Rémy; Voituron, Yann

    2015-01-01

    Recently developed acoustic technologies - like automatic recording units - allow the recording of long sequences in natural environments. These devices are used for biodiversity survey but they could also help researchers to estimate global signal variability at various (individual, population, species) scales. While sexually-selected signals are expected to show a low intra-individual variability at relatively short time scale, this variability has never been estimated so far. Yet, measuring signal variability in controlled conditions should prove useful to understand sexual selection processes and should help design acoustic sampling schedules and to analyse long call recordings. We here use the overall call production of 36 male treefrogs (Hyla arborea) during one night to evaluate within-individual variability in call dominant frequency and to test the efficiency of different sampling methods at capturing such variability. Our results confirm that using low number of calls underestimates call dominant frequency variation of about 35% in the tree frog and suggest that the assessment of this variability is better by using 2 or 3 short and well-distributed records than by using samples made of consecutive calls. Hence, 3 well-distributed 2-minutes records (beginning, middle and end of the calling period) are sufficient to capture on average all the nightly variability, whereas a sample of 10 000 consecutive calls captures only 86% of it. From a biological point of view, the call dominant frequency variability observed in H. arborea (116Hz on average but up to 470 Hz of variability during the course of the night for one male) challenge about its reliability in mate quality assessment. Automatic acoustic recording units will provide long call sequences in the near future and it will be then possible to confirm such results on large samples recorded in more complex field conditions. PMID:25970183

  1. Structural elements of the signal propagation pathway in squid rhodopsin and bovine rhodopsin.

    PubMed

    Sugihara, Minoru; Fujibuchi, Wataru; Suwa, Makiko

    2011-05-19

    Squid and bovine rhodopsins are G-protein coupled receptors (GPCRs) that activate Gq- and Gt-type G-proteins, respectively. To understand the structural elements of the signal propagation pathway, we performed molecular dynamics (MD) simulations of squid and bovine rhodopsins plus a detailed sequence analysis of class A GPCRs. The computations indicate that although the geometry of the retinal is similar in bovine and squid rhodopsins, the important interhelical hydrogen bond networks are different. In squid rhodopsin, an extended hydrogen bond network that spans ∼13 Å to Tyr315 on the cytoplasmic site is present regardless of the protonation state of Asp80. In contrast, the extended hydrogen bond network is interrupted at Tyr306 in bovine rhodopsin. Those differences in the hydrogen bond network may play significant functional roles in the signal propagation from the retinal binding site to the cytoplasmic site, including transmembrane helix (TM) 6 to which the G-protein binds. The MD calculations demonstrate that the elongated conformation of TM6 in squid rhodopsin is stabilized by salt bridges formed with helix (H) 9. Together with the interhelical hydrogen bonds, the salt bridges between TM6 and H9 stabilize the protein conformation of squid rhodopsin and may hinder the occurrence of large conformational changes that are observed upon activation of bovine rhodopsin.

  2. Mate preference in the painted goby: the influence of visual and acoustic courtship signals.

    PubMed

    Amorim, M Clara P; da Ponte, Ana Nunes; Caiano, Manuel; Pedroso, Silvia S; Pereira, Ricardo; Fonseca, Paulo J

    2013-11-01

    We tested the hypothesis that females of a small vocal marine fish with exclusive paternal care, the painted goby, prefer high parental-quality mates such as large or high-condition males. We tested the effect of male body size and male visual and acoustic courtship behaviour (playback experiments) on female mating preferences by measuring time spent near one of a two-choice stimuli. Females did not show preference for male size but preferred males that showed higher levels of courtship, a trait known to advertise condition (fat reserves). Also, time spent near the preferred male depended on male courtship effort. Playback experiments showed that when sound was combined with visual stimuli (a male confined in a small aquarium placed near each speaker), females spent more time near the male associated with courtship sound than with the control male (associated with white noise or silence). Although male visual courtship effort also affected female preference in the pre-playback period, this effect decreased during playback and disappeared in the post-playback period. Courtship sound stimuli alone did not elicit female preference in relation to a control. Taken together, the results suggest that visual and mainly acoustic courtship displays are subject to mate preference and may advertise parental quality in this species. Our results indicate that visual and acoustic signals interplay in a complex fashion and highlight the need to examine how different sensory modalities affect mating preferences in fish and other vertebrates. PMID:23948469

  3. Multichannel signal processing at Bell Labs Acoustics Research-Sampled by a postdoc

    NASA Astrophysics Data System (ADS)

    Kellermann, Walter

    2001-05-01

    In the mid 1980's, the first large microphone arrays for audio capture were designed and realized by Jim Flanagan and Gary Elko. After the author joined Bell Labs in 1989, the first real-time digital beamformer for teleconferencing applications was implemented and formed a starting point for the development of several novel beamforming techniques. In parallel, multichannel loudspeaker systems were already investigated and research on acoustic echo cancellation, small-aperture directional microphones, and sensor technology complemented the research scenario aiming at seamless hands-free acoustic communication. Arrays of many sensors and loudspeakers for sampling the spatial domain combined with advanced signal processing sparked new concepts that are still fueling ongoing research around the world-including the author's research group. Here, robust adaptive beamforming has found its way from large-scale arrays into many applications using smaller apertures. Blind source separation algorithms allow for effective spatial filtering without a priori information on source positions. Full-duplex communication using multiple channels for both reproduction and recording is enabled by multichannel acoustic echo cancellation combined with beamforming. Recently, wave domain adaptive filtering, a new concept for handling many sensors and many loudspeakers, has been verified for arrays that may well remind some observers of former Bell Labs projects.

  4. Neural Mechanisms for Acoustic Signal Detection under Strong Masking in an Insect

    PubMed Central

    Römer, Heiner

    2015-01-01

    Communication is fundamental for our understanding of behavior. In the acoustic modality, natural scenes for communication in humans and animals are often very noisy, decreasing the chances for signal detection and discrimination. We investigated the mechanisms enabling selective hearing under natural noisy conditions for auditory receptors and interneurons of an insect. In the studied katydid Mecopoda elongata species-specific calling songs (chirps) are strongly masked by signals of another species, both communicating in sympatry. The spectral properties of the two signals are similar and differ only in a small frequency band at 2 kHz present in the chirping species. Receptors sharply tuned to 2 kHz are completely unaffected by the masking signal of the other species, whereas receptors tuned to higher audio and ultrasonic frequencies show complete masking. Intracellular recordings of identified interneurons revealed two mechanisms providing response selectivity to the chirp. (1) Response selectivity is when several identified interneurons exhibit remarkably selective responses to the chirps, even at signal-to-noise ratios of −21 dB, since they are sharply tuned to 2 kHz. Their dendritic arborizations indicate selective connectivity with low-frequency receptors tuned to 2 kHz. (2) Novelty detection is when a second group of interneurons is broadly tuned but, because of strong stimulus-specific adaptation to the masker spectrum and “novelty detection” to the 2 kHz band present only in the conspecific signal, these interneurons start to respond selectively to the chirp shortly after the onset of the continuous masker. Both mechanisms provide the sensory basis for hearing at unfavorable signal-to-noise ratios. SIGNIFICANCE STATEMENT Animal and human acoustic communication may suffer from the same “cocktail party problem,” when communication happens in noisy social groups. We address solutions for this problem in a model system of two katydids, where one

  5. Neural Mechanisms for Acoustic Signal Detection under Strong Masking in an Insect.

    PubMed

    Kostarakos, Konstantinos; Römer, Heiner

    2015-07-22

    Communication is fundamental for our understanding of behavior. In the acoustic modality, natural scenes for communication in humans and animals are often very noisy, decreasing the chances for signal detection and discrimination. We investigated the mechanisms enabling selective hearing under natural noisy conditions for auditory receptors and interneurons of an insect. In the studied katydid Mecopoda elongata species-specific calling songs (chirps) are strongly masked by signals of another species, both communicating in sympatry. The spectral properties of the two signals are similar and differ only in a small frequency band at 2 kHz present in the chirping species. Receptors sharply tuned to 2 kHz are completely unaffected by the masking signal of the other species, whereas receptors tuned to higher audio and ultrasonic frequencies show complete masking. Intracellular recordings of identified interneurons revealed two mechanisms providing response selectivity to the chirp. (1) Response selectivity is when several identified interneurons exhibit remarkably selective responses to the chirps, even at signal-to-noise ratios of -21 dB, since they are sharply tuned to 2 kHz. Their dendritic arborizations indicate selective connectivity with low-frequency receptors tuned to 2 kHz. (2) Novelty detection is when a second group of interneurons is broadly tuned but, because of strong stimulus-specific adaptation to the masker spectrum and "novelty detection" to the 2 kHz band present only in the conspecific signal, these interneurons start to respond selectively to the chirp shortly after the onset of the continuous masker. Both mechanisms provide the sensory basis for hearing at unfavorable signal-to-noise ratios. Significance statement: Animal and human acoustic communication may suffer from the same "cocktail party problem," when communication happens in noisy social groups. We address solutions for this problem in a model system of two katydids, where one species

  6. Optical observations of meteors generating infrasound-I: Acoustic signal identification and phenomenology

    NASA Astrophysics Data System (ADS)

    Silber, Elizabeth A.; Brown, Peter G.

    2014-11-01

    We analyse infrasound signals from 71 bright meteors/fireballs simultaneously detected by video to investigate the phenomenology and characteristics of meteor-generated near-field infrasound (<300 km) and shock production. A taxonomy for meteor generated infrasound signal classification has been developed using the time-pressure signal of the infrasound arrivals. Based on the location along the meteor trail where the infrasound signal originates, we find most signals are associated with cylindrical shocks, with about a quarter of events evidencing spherical shocks associated with fragmentation episodes and optical flares. The video data indicate that all events with ray launch angles >117° from the trajectory heading are most likely generated by a spherical shock, while infrasound produced by the meteors with ray launch angles ≤117° can be attributed to both a cylindrical line source and a spherical shock. We find that meteors preferentially produce infrasound toward the end of their trails with a smaller number showing a preference for mid-trail production. Meteors producing multiple infrasound arrivals show a strong infrasound source height skewness to the end of trails and are much more likely to be associated with optical flares. We find that about 1% of all our optically-recorded meteors have associated detected infrasound and estimate that regional meteor infrasound events should occur on the order of once per week and dominate in numbers over infrasound associated with more energetic (but rarer) bolides. While a significant fraction of our meteors generating infrasound (~1/4 of single arrivals) are produced by fragmentation events, we find no instances where acoustic radiation is detectable more than about 60° beyond the ballistic regime at our meteoroid sizes (grams to tens of kilograms) emphasizing the strong anisotropy in acoustic radiation for meteors which are dominated by cylindrical line source geometry, even in the presence of fragmentation.

  7. Multiple target tracking and classification improvement using data fusion at node level using acoustic signals

    NASA Astrophysics Data System (ADS)

    Damarla, T. R.; Whipps, Gene

    2005-05-01

    Target tracking and classification using passive acoustic signals is difficult at best as the signals are contaminated by wind noise, multi-path effects, road conditions, and are generally not deterministic. In addition, microphone characteristics, such as sensitivity, vary with the weather conditions. The problem is further compounded if there are multiple targets, especially if some are measured with higher signal-to-noise ratios (SNRs) than the others and they share spectral information. At the U. S. Army Research Laboratory we have conducted several field experiments with a convoy of two, three, four and five vehicles traveling on different road surfaces, namely gravel, asphalt, and dirt roads. The largest convoy is comprised of two tracked vehicles and three wheeled vehicles. Two of the wheeled vehicles are heavy trucks and one is a light vehicle. We used a super-resolution direction-of-arrival estimator, specifically the minimum variance distortionless response, to compute the bearings of the targets. In order to classify the targets, we modeled the acoustic signals emanated from the targets as a set of coupled harmonics, which are related to the engine-firing rate, and subsequently used a multivariate Gaussian classifier. Independent of the classifier, we find tracking of wheeled vehicles to be intermittent as the signals from vehicles with high SNR dominate the much quieter wheeled vehicles. We used several fusion techniques to combine tracking and classification results to improve final tracking and classification estimates. We will present the improvements (or losses) made in tracking and classification of all targets. Although improvements in the estimates for tracked vehicles are not noteworthy, significant improvements are seen in the case of wheeled vehicles. We will present the fusion algorithm used.

  8. Clustering reveals cavitation-related acoustic emission signals from dehydrating branches.

    PubMed

    Vergeynst, Lidewei L; Sause, Markus G R; De Baerdemaeker, Niels J F; De Roo, Linus; Steppe, Kathy

    2016-06-01

    The formation of air emboli in the xylem during drought is one of the key processes leading to plant mortality due to loss in hydraulic conductivity, and strongly fuels the interest in quantifying vulnerability to cavitation. The acoustic emission (AE) technique can be used to measure hydraulic conductivity losses and construct vulnerability curves. For years, it has been believed that all the AE signals are produced by the formation of gas emboli in the xylem sap under tension. More recent experiments, however, demonstrate that gas emboli formation cannot explain all the signals detected during drought, suggesting that different sources of AE exist. This complicates the use of the AE technique to measure emboli formation in plants. We therefore analysed AE waveforms measured on branches of grapevine (Vitis vinifera L. 'Chardonnay') during bench dehydration with broadband sensors, and applied an automated clustering algorithm in order to find natural clusters of AE signals. We used AE features and AE activity patterns during consecutive dehydration phases to identify the different AE sources. Based on the frequency spectrum of the signals, we distinguished three different types of AE signals, of which the frequency cluster with high 100-200 kHz frequency content was strongly correlated with cavitation. Our results indicate that cavitation-related AE signals can be filtered from other AE sources, which presents a promising avenue into quantifying xylem embolism in plants in laboratory and field conditions. PMID:27095256

  9. Neuroestrogen signaling in the songbird auditory cortex propagates into a sensorimotor network via an 'interface' nucleus.

    PubMed

    Pawlisch, B A; Remage-Healey, L

    2015-01-22

    Neuromodulators rapidly alter activity of neural circuits and can therefore shape higher order functions, such as sensorimotor integration. Increasing evidence suggests that brain-derived estrogens, such as 17-β-estradiol, can act rapidly to modulate sensory processing. However, less is known about how rapid estrogen signaling can impact downstream circuits. Past studies have demonstrated that estradiol levels increase within the songbird auditory cortex (the caudomedial nidopallium, NCM) during social interactions. Local estradiol signaling enhances the auditory-evoked firing rate of neurons in NCM to a variety of stimuli, while also enhancing the selectivity of auditory-evoked responses of neurons in a downstream sensorimotor brain region, HVC (proper name). Since these two brain regions are not directly connected, we employed dual extracellular recordings in HVC and the upstream nucleus interfacialis of the nidopallium (NIf) during manipulations of estradiol within NCM to better understand the pathway by which estradiol signaling propagates to downstream circuits. NIf has direct input into HVC, passing auditory information into the vocal motor output pathway, and is a possible source of the neural selectivity within HVC. Here, during acute estradiol administration in NCM, NIf neurons showed increases in baseline firing rates and auditory-evoked firing rates to all stimuli. Furthermore, when estradiol synthesis was blocked in NCM, we observed simultaneous decreases in the selectivity of NIf and HVC neurons. These effects were not due to direct estradiol actions because NIf has little to no capability for local estrogen synthesis or estrogen receptors, and these effects were specific to NIf because other neurons immediately surrounding NIf did not show these changes. Our results demonstrate that transsynaptic, rapid fluctuations in neuroestrogens are transmitted into NIf and subsequently HVC, both regions important for sensorimotor integration. Overall, these

  10. Noise texture and signal detectability in propagation-based x-ray phase-contrast tomography

    SciTech Connect

    Chou, Cheng-Ying; Anastasio, Mark A.

    2010-01-15

    Purpose: X-ray phase-contrast tomography (PCT) is a rapidly emerging imaging modality for reconstructing estimates of an object's three-dimensional x-ray refractive index distribution. Unlike conventional x-ray computed tomography methods, the statistical properties of the reconstructed images in PCT remain unexplored. The purpose of this work is to quantitatively investigate noise propagation in PCT image reconstruction. Methods: The authors derived explicit expressions for the autocovariance of the reconstructed absorption and refractive index images to characterize noise texture and understand how the noise properties are influenced by the imaging geometry. Concepts from statistical detection theory were employed to understand how the imaging geometry-dependent statistical properties affect the signal detection performance in a signal-known-exactly/background-known-exactly task. Results: The analytical formulas for the phase and absorption autocovariance functions were implemented numerically and compared to the corresponding empirical values, and excellent agreement was found. They observed that the reconstructed refractive images are highly spatially correlated, while the absorption images are not. The numerical results confirm that the strength of the covariance is scaled by the detector spacing. Signal detection studies were conducted, employing a numerical observer. The detection performance was found to monotonically increase as the detector-plane spacing was increased. Conclusions: The authors have conducted the first quantitative investigation of noise propagation in PCT image reconstruction. The reconstructed refractive images were found to be highly spatially correlated, while absorption images were not. This is due to the presence of a Fourier space singularity in the reconstruction formula for the refraction images. The statistical analysis may facilitate the use of task-based image quality measures to further develop and optimize this emerging

  11. Experimental Research Into Generation of Acoustic Emission Signals in the Process of Friction of Hadfield Steel Single Crystals

    NASA Astrophysics Data System (ADS)

    Lychagin, D. V.; Filippov, A. V.; Novitskaia, O. S.; Kolubaev, E. A.; Sizova, O. V.

    2016-08-01

    The results of experimental research into dry sliding friction of Hadfield steel single crystals involving registration of acoustic emission are presented in the paper. The images of friction surfaces of Hadfield steel single crystals and wear grooves of the counterbody surface made after completion of three serial experiments conducted under similar conditions and friction regimes are given. The relation of the acoustic emission waveform envelope to the changing friction factor is revealed. Amplitude-frequency characteristics of acoustic emission signal frames are determined on the base of Fast Fourier Transform and Short Time Fourier Transform during the run-in stage of tribounits and in the process of stable friction.

  12. An automated code generator for three-dimensional acoustic wave propagation with geometrically complex solid-wall boundaries

    NASA Astrophysics Data System (ADS)

    Dyson, Rodger William, Jr.

    1999-10-01

    Finding the sources of noise generation in a turbofan propulsion system requires a computational tool that has sufficient fidelity to simulate steep gradients in the flow field and sufficient efficiency to run on today's computer systems. The goal of this dissertation was to develop an automated code generator for the creation of software that numerically solves the linearized Euler equations on Cartesian grids in three dimensional spatial domains containing bodies with complex shapes. It is based upon the recently developed Modified Expansion Solution Approximation (MESA) series of explicit finite-difference schemes that provide spectral-like resolution with extraordinary efficiency. The accuracy of these methods can, in theory, be arbritarily high in both space and time, without the significant inefficiences of Runge- Kutta based schemes. The complexity of coding these schemes was, however, very high, resulting in code that could not compile or took so long to write in FORTRAN that they were rendered impractical. Therefore, a tool in Mathematica was developed that could automatically code the MESA schemes into FORTRAN and the MESA schemes themselves were reformulated into a very simple form-making them practical to use without automation or very powerful with it. A method for automatically creating the MESA propagation schemes and their FORTRAN code in two and three spatial dimensions is shown with up to 29th order accuracy in space and time. Also, a method for treating solid wall boundaries in two dimensions is shown with up to 11th order accuracy on grid aligned boundaries and with up to 2nd order accuracy on generalized boundaries. Finally, an automated method for parallelizing these approaches on large scale parallel computers with near perfect scalability is presented. All these methods are combined to form a turnkey code generation tool in Mathematica that once provided the CAD geometry file can automatically simulate the acoustical physics by replacing the

  13. Silent katydid females are at higher risk of bat predation than acoustically signalling katydid males.

    PubMed

    Raghuram, Hanumanthan; Deb, Rittik; Nandi, Diptarup; Balakrishnan, Rohini

    2015-01-01

    Males that produce conspicuous mate attraction signals are often at high risk of predation from eavesdropping predators. Females of such species typically search for signalling males and their higher motility may also place them at risk. The relative predation risk faced by males and females in the context of mate-finding using long-distance signals has rarely been investigated. In this study, we show, using a combination of diet analysis and behavioural experiments, that katydid females, who do not produce acoustic signals, are at higher risk of predation from a major bat predator, Megaderma spasma, than calling males. Female katydids were represented in much higher numbers than males in the culled remains beneath roosts of M. spasma. Playback experiments using katydid calls revealed that male calls were approached in only about one-third of the trials overall, whereas tethered, flying katydids were always approached and attacked. Our results question the idea that necessary costs of mate-finding, including risk of predation, are higher in signalling males than in searching females.

  14. Silent katydid females are at higher risk of bat predation than acoustically signalling katydid males

    PubMed Central

    Raghuram, Hanumanthan; Deb, Rittik; Nandi, Diptarup; Balakrishnan, Rohini

    2015-01-01

    Males that produce conspicuous mate attraction signals are often at high risk of predation from eavesdropping predators. Females of such species typically search for signalling males and their higher motility may also place them at risk. The relative predation risk faced by males and females in the context of mate-finding using long-distance signals has rarely been investigated. In this study, we show, using a combination of diet analysis and behavioural experiments, that katydid females, who do not produce acoustic signals, are at higher risk of predation from a major bat predator, Megaderma spasma, than calling males. Female katydids were represented in much higher numbers than males in the culled remains beneath roosts of M. spasma. Playback experiments using katydid calls revealed that male calls were approached in only about one-third of the trials overall, whereas tethered, flying katydids were always approached and attacked. Our results question the idea that necessary costs of mate-finding, including risk of predation, are higher in signalling males than in searching females. PMID:25429019

  15. When males whistle at females: complex FM acoustic signals in cockroaches

    NASA Astrophysics Data System (ADS)

    Sueur, Jérôme; Aubin, Thierry

    2006-10-01

    Male cockroaches of the species Elliptorhina chopardi expel air through a pair of modified abdominal spiracles during courtship. This air expulsion simultaneously produces air and substrate-borne vibrations. We described and compared in details these two types of vibrations. Our analysis of the air-borne signals shows that males can produce three categories of signals with distinct temporal and frequency parameters. “Pure whistles” consist of two independent harmonic series fast frequency modulated with independent harmonics that can cross each other. “Noisy whistles” also possess two independent voices but include a noisy broad-band frequency part in the middle. Hiss sounds are more noise-like, being made of a broad-band frequency spectrum. All three call types are unusually high in dominant frequency (>5 kHz) for cockroaches. The substrate-borne signals are categorised similarly. Some harmonics of the substrate-borne signals were filtered out, however, making the acoustic energy centered on fewer frequency bands. Our analysis shows that cockroach signals are complex, with fast frequency modulations and two distinct voices. These results also readdress the question of what system could potentially receive and decode the information contained within such complex sounds.

  16. Silent katydid females are at higher risk of bat predation than acoustically signalling katydid males.

    PubMed

    Raghuram, Hanumanthan; Deb, Rittik; Nandi, Diptarup; Balakrishnan, Rohini

    2015-01-01

    Males that produce conspicuous mate attraction signals are often at high risk of predation from eavesdropping predators. Females of such species typically search for signalling males and their higher motility may also place them at risk. The relative predation risk faced by males and females in the context of mate-finding using long-distance signals has rarely been investigated. In this study, we show, using a combination of diet analysis and behavioural experiments, that katydid females, who do not produce acoustic signals, are at higher risk of predation from a major bat predator, Megaderma spasma, than calling males. Female katydids were represented in much higher numbers than males in the culled remains beneath roosts of M. spasma. Playback experiments using katydid calls revealed that male calls were approached in only about one-third of the trials overall, whereas tethered, flying katydids were always approached and attacked. Our results question the idea that necessary costs of mate-finding, including risk of predation, are higher in signalling males than in searching females. PMID:25429019

  17. Processing of simple and complex acoustic signals in a tonotopically organized ear

    PubMed Central

    Hummel, Jennifer; Wolf, Konstantin; Kössl, Manfred; Nowotny, Manuela

    2014-01-01

    Processing of complex signals in the hearing organ remains poorly understood. This paper aims to contribute to this topic by presenting investigations on the mechanical and neuronal response of the hearing organ of the tropical bushcricket species Mecopoda elongata to simple pure tone signals as well as to the conspecific song as a complex acoustic signal. The high-frequency hearing organ of bushcrickets, the crista acustica (CA), is tonotopically tuned to frequencies between about 4 and 70 kHz. Laser Doppler vibrometer measurements revealed a strong and dominant low-frequency-induced motion of the CA when stimulated with either pure tone or complex stimuli. Consequently, the high-frequency distal area of the CA is more strongly deflected by low-frequency-induced waves than by high-frequency-induced waves. This low-frequency dominance will have strong effects on the processing of complex signals. Therefore, we additionally studied the neuronal response of the CA to native and frequency-manipulated chirps. Again, we found a dominant influence of low-frequency components within the conspecific song, indicating that the mechanical vibration pattern highly determines the neuronal response of the sensory cells. Thus, we conclude that the encoding of communication signals is modulated by ear mechanics. PMID:25339727

  18. Processing of simple and complex acoustic signals in a tonotopically organized ear.

    PubMed

    Hummel, Jennifer; Wolf, Konstantin; Kössl, Manfred; Nowotny, Manuela

    2014-12-01

    Processing of complex signals in the hearing organ remains poorly understood. This paper aims to contribute to this topic by presenting investigations on the mechanical and neuronal response of the hearing organ of the tropical bushcricket species Mecopoda elongata to simple pure tone signals as well as to the conspecific song as a complex acoustic signal. The high-frequency hearing organ of bushcrickets, the crista acustica (CA), is tonotopically tuned to frequencies between about 4 and 70 kHz. Laser Doppler vibrometer measurements revealed a strong and dominant low-frequency-induced motion of the CA when stimulated with either pure tone or complex stimuli. Consequently, the high-frequency distal area of the CA is more strongly deflected by low-frequency-induced waves than by high-frequency-induced waves. This low-frequency dominance will have strong effects on the processing of complex signals. Therefore, we additionally studied the neuronal response of the CA to native and frequency-manipulated chirps. Again, we found a dominant influence of low-frequency components within the conspecific song, indicating that the mechanical vibration pattern highly determines the neuronal response of the sensory cells. Thus, we conclude that the encoding of communication signals is modulated by ear mechanics.

  19. Wave propagation with different pressure signals: an experimental study on the latex tube.

    PubMed

    Ursino, M; Artioli, E; Gallerani, M

    1993-07-01

    To have deeper insight into the main factors affecting wave propagation in real hydraulic lines, we measured the true propagation coefficient in two latex rubber tubes via the three-point pressure method. The measurements were performed using both sinusoidal pressure signals of different amplitudes and periodic square waves as well as aperiodic pressure impulses. The results obtained were then compared with those predicted by a classic linear model valuable for a purely elastic maximally tethered tube. Our measurements demonstrate that the three-point pressure method may introduce significant errors at low frequencies (below 1 Hz in the present experiments) when the distance between two consecutive transducers becomes much lower than the wavelength. The pattern of phase velocity in the range 2-20 Hz turns out to be about 10 per cent higher than the theoretical one computed using the static value of the Young modulus. This result supports the idea that the dynamic Young modulus of the material is slightly higher than that measured in static conditions. The experimental attenuation per wavelength is significantly higher than the theoretical one over most of the frequencies examined, and settles at a constant value as frequency increases. Introduction of wall viscoelasticity in the theoretical model can explain only a portion of the observed high frequency damping and wave attenuation. Finally, increasing the amplitude of pressure changes significantly affects the measured value of the propagation coefficient, especially at those frequencies for which direct and reflected waves sum together in a positive fashion. In these conditions we observed a moderate increase in phase velocity and a much more evident increase in attenuation per wavelength.

  20. Wave propagation with different pressure signals: an experimental study on the latex tube.

    PubMed

    Ursino, M; Artioli, E; Gallerani, M

    1993-07-01

    To have deeper insight into the main factors affecting wave propagation in real hydraulic lines, we measured the true propagation coefficient in two latex rubber tubes via the three-point pressure method. The measurements were performed using both sinusoidal pressure signals of different amplitudes and periodic square waves as well as aperiodic pressure impulses. The results obtained were then compared with those predicted by a classic linear model valuable for a purely elastic maximally tethered tube. Our measurements demonstrate that the three-point pressure method may introduce significant errors at low frequencies (below 1 Hz in the present experiments) when the distance between two consecutive transducers becomes much lower than the wavelength. The pattern of phase velocity in the range 2-20 Hz turns out to be about 10 per cent higher than the theoretical one computed using the static value of the Young modulus. This result supports the idea that the dynamic Young modulus of the material is slightly higher than that measured in static conditions. The experimental attenuation per wavelength is significantly higher than the theoretical one over most of the frequencies examined, and settles at a constant value as frequency increases. Introduction of wall viscoelasticity in the theoretical model can explain only a portion of the observed high frequency damping and wave attenuation. Finally, increasing the amplitude of pressure changes significantly affects the measured value of the propagation coefficient, especially at those frequencies for which direct and reflected waves sum together in a positive fashion. In these conditions we observed a moderate increase in phase velocity and a much more evident increase in attenuation per wavelength. PMID:8231298