Science.gov

Sample records for acoustic signature recognition

  1. Event identification by acoustic signature recognition

    SciTech Connect

    Dress, W.B.; Kercel, S.W.

    1995-07-01

    Many events of interest to the security commnnity produce acoustic emissions that are, in principle, identifiable as to cause. Some obvious examples are gunshots, breaking glass, takeoffs and landings of small aircraft, vehicular engine noises, footsteps (high frequencies when on gravel, very low frequencies. when on soil), and voices (whispers to shouts). We are investigating wavelet-based methods to extract unique features of such events for classification and identification. We also discuss methods of classification and pattern recognition specifically tailored for acoustic signatures obtained by wavelet analysis. The paper is divided into three parts: completed work, work in progress, and future applications. The completed phase has led to the successful recognition of aircraft types on landing and takeoff. Both small aircraft (twin-engine turboprop) and large (commercial airliners) were included in the study. The project considered the design of a small, field-deployable, inexpensive device. The techniques developed during the aircraft identification phase were then adapted to a multispectral electromagnetic interference monitoring device now deployed in a nuclear power plant. This is a general-purpose wavelet analysis engine, spanning 14 octaves, and can be adapted for other specific tasks. Work in progress is focused on applying the methods previously developed to speaker identification. Some of the problems to be overcome include recognition of sounds as voice patterns and as distinct from possible background noises (e.g., music), as well as identification of the speaker from a short-duration voice sample. A generalization of the completed work and the work in progress is a device capable of classifying any number of acoustic events-particularly quasi-stationary events such as engine noises and voices and singular events such as gunshots and breaking glass. We will show examples of both kinds of events and discuss their recognition likelihood.

  2. Noise-robust acoustic signature recognition using nonlinear Hebbian learning.

    PubMed

    Lu, Bing; Dibazar, Alireza; Berger, Theodore W

    2010-12-01

    We propose using a new biologically inspired approach, nonlinear Hebbian learning (NHL), to implement acoustic signal recognition in noisy environments. The proposed learning processes both spectral and temporal features of input acoustic data. The spectral analysis is realized by using auditory gammatone filterbanks. The temporal dynamics is addressed by analyzing gammatone-filtered feature vectors over multiple temporal frames, which is called a spectro-temporal representation (STR). Given STR features, the exact acoustic signatures of signals of interest and the mixing property between signals of interest and noises are generally unknown. The nonlinear Hebbian learning is then employed to extract representative independent features from STRs, and to reduce their dimensionality. The extracted independent features of signals of interest are called signatures. In the meantime of learning, the synaptic weight vectors between input and output neurons are adaptively updated. These weight vectors project data into a feature subspace, in which signals of interest are selected, while noises are attenuated. Compared with linear Hebbian learning (LHL) which explores the second-order moment of data, the applied NHL involves the higher-order statistics of data. Therefore, NHL can capture representative features that are more statistically independent than LHL can. Besides, the nonlinear activation function of NHL can be chosen to refer to the implicit distribution of many acoustic sounds, and thus making the learning optimized in an aspect of mutual information. Simulation results show that the whole proposed system can more accurately recognize signals of interest than other conventional methods in severely noisy circumstances. One applicable project is detecting moving vehicles. Noise-contaminated vehicle sound is recognized while other non-vehicle sounds are rejected. When vehicle is contaminated by human vowel, bird chirp, or additive white Gaussian noise (AWGN) at SNR=0

  3. A survey on acoustic signature recognition and classification techniques for persistent surveillance systems

    NASA Astrophysics Data System (ADS)

    Shirkhodaie, Amir; Alkilani, Amjad

    2012-06-01

    Application of acoustic sensors in Persistent Surveillance Systems (PSS) has received considerable attention over the last two decades because they can be rapidly deployed and have low cost. Conventional utilization of acoustic sensors in PSS spans a wide range of applications including: vehicle classification, target tracking, activity understanding, speech recognition, shooter detection, etc. This paper presents a current survey of physics-based acoustic signature classification techniques for outdoor sounds recognition and understanding. Particularly, this paper focuses on taxonomy and ontology of acoustic signatures resulted from group activities. The taxonomy and supportive ontology considered include: humanvehicle, human-objects, and human-human interactions. This paper, in particular, exploits applicability of several spectral analysis techniques as a means to maximize likelihood of correct acoustic source detection, recognition, and discrimination. Spectral analysis techniques based on Fast Fourier Transform, Discrete Wavelet Transform, and Short Time Fourier Transform are considered for extraction of features from acoustic sources. In addition, comprehensive overviews of most current research activities related to scope of this work are presented with their applications. Furthermore, future potential direction of research in this area is discussed for improvement of acoustic signature recognition and classification technology suitable for PSS applications.

  4. Acoustic signature recognition technique for Human-Object Interactions (HOI) in persistent surveillance systems

    NASA Astrophysics Data System (ADS)

    Alkilani, Amjad; Shirkhodaie, Amir

    2013-05-01

    Handling, manipulation, and placement of objects, hereon called Human-Object Interaction (HOI), in the environment generate sounds. Such sounds are readily identifiable by the human hearing. However, in the presence of background environment noises, recognition of minute HOI sounds is challenging, though vital for improvement of multi-modality sensor data fusion in Persistent Surveillance Systems (PSS). Identification of HOI sound signatures can be used as precursors to detection of pertinent threats that otherwise other sensor modalities may miss to detect. In this paper, we present a robust method for detection and classification of HOI events via clustering of extracted features from training of HOI acoustic sound waves. In this approach, salient sound events are preliminary identified and segmented from background via a sound energy tracking method. Upon this segmentation, frequency spectral pattern of each sound event is modeled and its features are extracted to form a feature vector for training. To reduce dimensionality of training feature space, a Principal Component Analysis (PCA) technique is employed to expedite fast classification of test feature vectors, a kd-tree and Random Forest classifiers are trained for rapid classification of training sound waves. Each classifiers employs different similarity distance matching technique for classification. Performance evaluations of classifiers are compared for classification of a batch of training HOI acoustic signatures. Furthermore, to facilitate semantic annotation of acoustic sound events, a scheme based on Transducer Mockup Language (TML) is proposed. The results demonstrate the proposed approach is both reliable and effective, and can be extended to future PSS applications.

  5. Acoustic emission signature analysis

    NASA Astrophysics Data System (ADS)

    Buck, O.; Pardee, J. W.

    1981-03-01

    Acoustic emission (AE) in plate glass and steel was studied as a function of angle. The low frequency AE in glass was studied in detail, and contributions from P, S, and Rayleigh waves identified. These results were isotropic, as expected theoretically. Limited high frequency (5 to 20 MHz) results were obtained in glass. The measurement of AE on transgranular crack growth in steel during fatigue crack growth was accomplished by use of a low noise manual hydraulic loading system and an electronic gate to reject grip noise. The concept of the wave momentum of an AE was elaborated and a measurement technique suggested. The theoretical study of this problem led to the discovery of an infinite family of elastic surface (Rayleigh-like) waves, and to further cylindrical, radially propagating plate waves.

  6. Early recognition of newborn goat kids by their mother: II. Auditory recognition and evidence of an individual acoustic signature in the neonate.

    PubMed

    Terrazas, Angelica; Serafin, Norma; Hernández, Horacio; Nowak, Raymond; Poindron, Pascal

    2003-12-01

    The vocal recognition of newborn kids by their mother at 2 days postpartum and the possible existence of interindividual differences in the voice structure of newborn kids were investigated in two separate studies. The ability of goats to discriminate between the bleats of their own versus an alien kid was tested at 2 days postpartum in mothers being prevented access to visual and olfactory cues from the young. Goats spent significantly more time on the side of the enclosure from which their own kid was bleating, looked in its direction for longer, and responded more frequently to the bleats of their own than to those of the alien kid (p < 0.05). In the second study, the sonograms of 13 kids, studied from Days 1 to 5, showed significant interindividual differences for the five variables taken into account and on each of the 5 days (duration of bleat, fundamental frequency, peak frequency, and numbers of segments and of harmonics). The potential for individual coding ranged between 1.1 and 4.1, indicating that for some variables variations between individuals were greater than intraindividual variations. Furthermore, when considering the five parameters together, the discriminating scores showed an average of 95% in the 78 combinations of any 2 kids for any given day. Finally, some significant intraindividual differences also were found between days, suggesting ontogenic changes in the characteristics of the kid's voice in early life. Therefore, mother goats are likely to recognize the vocalizations of their 48-hr-old kids, as they show sufficient interindividual variability to allow the existence of individual vocal signatures, even though some of the characteristics of the bleats change rapidly over time.

  7. Methods and apparatus for multi-parameter acoustic signature inspection

    DOEpatents

    Diaz, Aaron A.; Samuel, Todd J.; Valencia, Juan D.; Gervais, Kevin L.; Tucker, Brian J.; Kirihara, Leslie J.; Skorpik, James R.; Reid, Larry D.; Munley, John T.; Pappas, Richard A.; Wright, Bob W.; Panetta, Paul D.; Thompson, Jason S.

    2007-07-24

    A multiparameter acoustic signature inspection device and method are described for non-invasive inspection of containers. Dual acoustic signatures discriminate between various fluids and materials for identification of the same.

  8. Speech Recognition: Acoustic, Phonetic and Lexical

    DTIC Science & Technology

    1985-10-01

    sffl^ss^t-iftsasisiiBiSiBa :.%^v 00 o o o CO < I Q < "END-OF-FISCAL YEAR" REPORT Speech Recognition; Acoustic, Phonetic and Lexical...Virginia 22217 10. SOURCg OP PUNOINO NQS. PROGRAM I Li MINT NO. 1. TITUS Inciua* itcnniy dauifltaiuuii Speech Recognition; Acoustic, Phonetic and...34 Letter 1. Contract Information (a) Title: Speech Recognition: Acoustic, Phonetic , and Lexical Knowledge Representation (b) ONR Contract No.: N00014

  9. Speech Recognition: Acoustic, Phonetic and Lexical Knowledge

    DTIC Science & Technology

    2013-04-04

    REPORT Speech Recognition: Acoustic, Phonetic and Lexical Office of Natfal Research Contract iSr00014.82-K-0727 covering the period 1 July 1984...Steunty Clautfieatiom Speech Recognition; Acoustic, Phonetic and Lexical PROJECT NO. NR 049-542 TASK NO. WORK UNII NO. i2. PERSONAL AUTHORISI...July 1, 1984 to June 30, 1985, we have^continued to make progress on the acquisition of acoustic- phonetic and lexical knowledge: Specifically

  10. Acoustic/infrasonic rocket engine signatures

    NASA Astrophysics Data System (ADS)

    Tenney, Stephen M.; Noble, John M.; Whitaker, Rodney W.; ReVelle, Douglas O.

    2003-09-01

    Infrasonics offers the potential of long-range acoustic detection of explosions, missiles and even sounds created by manufacturing plants. The atmosphere attenuates acoustic energy above 20 Hz quite rapidly, but signals below 10 Hz can propagate to long ranges. Space shuttle launches have been detected infrasonically from over 1000 km away and the Concorde airliner from over 400 km. This technology is based on microphones designed to respond to frequencies from .1 to 300 Hz that can be operated outdoors for extended periods of time with out degrading their performance. The US Army Research Laboratory and Los Alamos National Laboratory have collected acoustic and infrasonic signatures of static engine testing of two missiles. Signatures were collected of a SCUD missile engine at Huntsville, AL and a Minuteman engine at Edwards AFB. The engines were fixed vertically in a test stand during the burn. We will show the typical time waveform signals of these static tests and spectrograms for each type. High resolution, 24-bit data were collected at 512 Hz and 16-bit acoustic data at 10 kHz. Edwards data were recorded at 250 Hz and 50 Hz using a Geotech Instruments 24 bit digitizer. Ranges from the test stand varied from 1 km to 5 km. Low level and upper level meteorological data was collected to provide full details of atmospheric propagation during the engine test. Infrasonic measurements were made with the Chaparral Physics Model 2 microphone with porous garden hose attached for wind noise suppression. A B&K microphone was used for high frequency acoustic measurements. Results show primarily a broadband signal with distinct initiation and completion points. There appear to be features present in the signals that would allow identification of missile type. At 5 km the acoustic/infrasonic signal was clearly present. Detection ranges for the types of missile signatures measured will be predicted based on atmospheric modeling. As part of an experiment conducted by ARL

  11. Mother-lamb acoustic recognition in sheep: a frequency coding.

    PubMed Central

    Searby, Amanda; Jouventin, Pierre

    2003-01-01

    Ewes of the domestic sheep ( Ovis aries ) display selective maternal investment by restricting care to their own offspring and rejecting alien young. This trait relies on individual recognition processes between ewes and lambs. Whereas identification at the udder is only olfactory, distance recognition is performed through visual and acoustic cues. We studied the effectiveness and modalities of mutual acoustic recognition between ewes and lambs by spectrographic analysis of their vocal signatures and by playbacks of modified calls in the field. Our results show that ewes and their lambs can recognize each other based solely on their calls. The coding of identity within the vocal signatures, previously unknown in sheep, is similar in lamb and ewe: it uses the mean frequency and the spectral energy distribution of the call, namely the timbre of the call. These results point out a simple signature system in sheep that uses only the frequency domain. This engenders a signal with low information content, as opposed to some highly social birds and mammal species that may integrate information both in the temporal and spectral domains. The simplicity of this system is linked to the roles played by vision and olfaction that corroborate the information brought by the vocal signature. PMID:12964977

  12. Modeling ground vehicle acoustic signatures for analysis and synthesis

    SciTech Connect

    Haschke, G.; Stanfield, R.

    1995-07-01

    Security and weapon systems use acoustic sensor signals to classify and identify moving ground vehicles. Developing robust signal processing algorithms for this is expensive, particularly in presence of acoustic clutter or countermeasures. This paper proposes a parametric ground vehicle acoustic signature model to aid the system designer in understanding which signature features are important, developing corresponding feature extraction algorithms and generating low-cost, high-fidelity synthetic signatures for testing. The authors have proposed computer-generated acoustic signatures of armored, tracked ground vehicles to deceive acoustic-sensored smart munitions. They have developed quantitative measures of how accurately a synthetic acoustic signature matches those produced by actual vehicles. This paper describes parameters of the model used to generate these synthetic signatures and suggests methods for extracting these parameters from signatures of valid vehicle encounters. The model incorporates wide-bandwidth and narrow- bandwidth components that are modulated in a pseudo-random fashion to mimic the time dynamics of valid vehicle signatures. Narrow- bandwidth feature extraction techniques estimate frequency, amplitude and phase information contained in a single set of narrow frequency- band harmonics. Wide-bandwidth feature extraction techniques estimate parameters of a correlated-noise-floor model. Finally, the authors propose a method of modeling the time dynamics of the harmonic amplitudes as a means adding necessary time-varying features to the narrow-bandwidth signal components. The authors present results of applying this modeling technique to acoustic signatures recorded during encounters with one armored, tracked vehicle. Similar modeling techniques can be applied to security systems.

  13. The Acoustic Signature of Glaciated Margins

    NASA Astrophysics Data System (ADS)

    Newton, A. M. W.; Huuse, M.

    2016-12-01

    As climate warms it has become increasingly clear that, in order to fully understand how it might evolve in the future, we need to look for examples of how climate has changed in the past. The Late Cenozoic history of the Arctic Ocean and its surrounding seas has been dominated by glacial-interglacials cycles. This has resulted in major environmental changes in relative sea levels, ice volumes, sea ice conditions, and ocean circulation as marine and terrestrially-based ice sheets waxed and waned. In this work, the acoustic signatures of several glaciated margins in the Northern Hemisphere are investigated and compared. This includes: NW Greenland, West Greenland, East Greenland, mid-Norway, Northern Norway, and the North Sea. These shelf successions preserve a geomorphological record of multiple glaciations and are imaged using seismic reflection data. To date, the majority of work in these areas has tended to focus on the most recent glaciations, which are well known. Here, the focus of the work is to look at the overall stratigraphic setting and how it influences (and is influenced by) the evolution of ice sheets throughout the glacial succession. Landform records are imaged using seismic data to provide a long-term insight into the styles of glaciation on each margin and what relation this may have had on climate, whilst the stratigraphic architectures across each site demonstrate how the inherited geology and tectonic setting can provide a fundamental control on the ice sheet and depositional styles. For example, Scoresby Sund is characterised by significant aggradation that is likely related to subsidence induced by lithospheric cooling rather than rapid glacial deposition, whilst the subsidence of the mid-Norwegian margin can be related to rapid glacial deposition and trapping of sediments behind inversion structures such as the Helland-Hansen Arch. The insights from this multi-margin study allow for regional, basin-wide, glaciological records to be developed

  14. Automatic target recognition in acoustics: An overview

    NASA Astrophysics Data System (ADS)

    Sacha, John R.

    2002-11-01

    Automatic target recognition (ATR) constitutes one of the major uses for acoustical signal processing. ATR is employed in manned systems for operator workload reduction and performance improvement, as well as in autonomous applications. An overview of some of the major components involved in the architecture of such systems is provided. Feature extraction is the most critical step of ATR and is necessarily application specific. Generic feature selection and ranking methods are presented, including heuristic search and information-theoretic measures. Basic pattern recognition definitions and techniques are reviewed. Commonly used classification paradigms include classical statistical formulations, both parametric and nonparametric, and neural nets; support vector machines and nonmetric methods such as decision forests are some alternative techniques that have received recent attention. A few practical issues often encountered when constructing recognition systems, including training data requirements, ground truth labeling, and performance evaluation methodologies and metrics, are also addressed.

  15. Acoustic ship signature measurements by cross-correlation method.

    PubMed

    Fillinger, Laurent; Sutin, Alexander; Sedunov, Alexander

    2011-02-01

    Cross-correlation methods were applied for the estimation of the power spectral density and modulation spectrum of underwater noise generated by moving vessels. The cross-correlation of the signal from two hydrophones allows the separation of vessel acoustic signatures in a busy estuary. Experimental data recorded in the Hudson River are used for demonstration that cross-correlation method measured the same ship noise and ship noise modulation spectra as conventional methods. The cross-correlation method was then applied for the separation of the acoustic signatures of two ships present simultaneously. Presented methods can be useful for ship traffic monitoring and small ship classification, even in noisy harbor environments.

  16. Gunshot acoustic signature specific features and false alarms reduction

    NASA Astrophysics Data System (ADS)

    Donzier, Alain; Millet, Joel

    2005-05-01

    This paper provides a detailed analysis of the most specific parameters of gunshot signatures through models as well as through real data. The models for the different contributions to gunshot typical signature (shock and muzzle blast) are presented and used to discuss the variation of measured signatures over the different environmental conditions and shot configurations. The analysis is followed by a description of the performance requirements for gunshot detection systems, from sniper detection that was the main concern 10 years ago, to the new and more challenging conditions faced in today operations. The work presented examines the process of how systems are deployed and used as well as how the operational environment has changed. The main sources of false alarms and new threats such as RPGs and mortars that acoustic gunshot detection systems have to face today are also defined and discussed. Finally, different strategies for reducing false alarms are proposed based on the acoustic signatures. Different strategies are presented through various examples of specific missions ranging from vehicle protection to area protection. These strategies not only include recommendation on how to handle acoustic information for the best efficiency of the acoustic detector but also recommends some add-on sensors to enhance system overall performance.

  17. Detection and Identification of Acoustic Signatures

    DTIC Science & Technology

    2011-08-01

    Sound Answers Inc. Canton, MI Gabriella Cerrato, PhD Sound Answers Inc. Canton, MI Robert E. Smith RDECOM-TARDEC Warren, MI...or one-third octave band based spectra and that the temporal pattern of a sound should be considered. INTRODUCTION Acoustic cues have significant...fairly simplistic terms, using the overall sound pressure level (SPL), or some weighted or adjusted SPL. Improvements on this approach involve

  18. Finding Acoustic Regularities in Speech: Applications to Phonetic Recognition

    DTIC Science & Technology

    1988-12-01

    Phonetic recognition can be viewed as a process through which the acoustic signal is mapped to a set of phonological units used to represent a lexicon...the phonological interpretation of the acoustic organization, only 5 regions which aligned with the phonetic transcription were used as training data...9Jnt itLL O. C I I I | Finding Acoustic Regularities in Speech: | Applications to Phonetic Recognition I lo RLE Technical Report No. 536 I December

  19. Feasibility of a phased acoustic array for monitoring acoustic signatures from meshing gear teeth.

    PubMed

    Hood, Adrian A; Pines, Darryll J

    2002-12-01

    This paper investigates the feasibility of sensing damage emanating from rotating drivetrain elements such as bearings, gear teeth, and drive shafts via airborne paths. A planar phased acoustic array is evaluated as a potential fault detection scheme for detecting spatially filtered acoustic signatures radiating from gearbox components. Specifically, the use of beam focusing and steering to monitor individual tooth mesh dynamics is analyzed taking into consideration the constraints of the array/gearbox geometry and the spectral content of typical gear noise. Experimental results for a linear array are presented to illustrate the concepts of adaptive beam steering and spatial acoustic filtering. This feasibility study indicates that the planar array can be used to track the acoustic signatures at higher harmonics of the gear mesh frequency.

  20. Feasibility of a phased acoustic array for monitoring acoustic signatures from meshing gear teeth

    NASA Astrophysics Data System (ADS)

    Hood, Adrian A.; Pines, Darryll J.

    2002-12-01

    This paper investigates the feasibility of sensing damage emanating from rotating drivetrain elements such as bearings, gear teeth, and drive shafts via airborne paths. A planar phased acoustic array is evaluated as a potential fault detection scheme for detecting spatially filtered acoustic signatures radiating from gearbox components. Specifically, the use of beam focusing and steering to monitor individual tooth mesh dynamics is analyzed taking into consideration the constraints of the array/gearbox geometry and the spectral content of typical gear noise. Experimental results for a linear array are presented to illustrate the concepts of adaptive beam steering and spatial acoustic filtering. This feasibility study indicates that the planar array can be used to track the acoustic signatures at higher harmonics of the gear mesh frequency.

  1. Toward an automated signature recognition toolkit for mission operations

    NASA Technical Reports Server (NTRS)

    Cleghorn, T.; Laird, P; Perrine, L.; Culbert, C.; Macha, M.; Saul, R.; Hammen, D.; Moebes, T.; Shelton, R.

    1994-01-01

    Signature recognition is the problem of identifying an event or events from its time series. The generic problem has numerous applications to science and engineering. At NASA's Johnson Space Center, for example, mission control personnel, using electronic displays and strip chart recorders, monitor telemetry data from three-phase electrical buses on the Space Shuttle and maintain records of device activation and deactivation. Since few electrical devices have sensors to indicate their actual status, changes of state are inferred from characteristic current and voltage fluctuations. Controllers recognize these events both by examining the waveform signatures and by listening to audio channels between ground and crew. Recently the authors have developed a prototype system that identifies major electrical events from the telemetry and displays them on a workstation. Eventually the system will be able to identify accurately the signatures of over fifty distinct events in real time, while contending with noise, intermittent loss of signal, overlapping events, and other complications. This system is just one of many possible signature recognition applications in Mission Control. While much of the technology underlying these applications is the same, each application has unique data characteristics, and every control position has its own interface and performance requirements. There is a need, therefore, for CASE tools that can reduce the time to implement a running signature recognition application from months to weeks or days. This paper describes our work to date and our future plans.

  2. Influence of the acoustic reflex on vowel recognition.

    PubMed

    Dorman, M; Cedar, I; Hannley, M; Leek, M; Lindholm, J M

    1986-09-01

    Computer synthesized vowels of 50- and 300-ms duration were presented to normal-hearing listeners at a moderate and high sound pressure level (SPL). Presentation at the high SPL resulted in poor recognition accuracy for vowels of a duration (50 ms) shorter than the latency of the acoustic stapedial reflex. Presentation level had no effect on recognition accuracy for vowels of sufficient duration (300 ms) to elicit the reflex. The poor recognition accuracy for the brief, high intensity vowels was significantly improved when the reflex was preactivated. These results demonstrate the importance of the acoustic reflex in extending the dynamic range of the auditory system for speech recognition.

  3. A smart pattern recognition system for the automatic identification of aerospace acoustic sources

    NASA Technical Reports Server (NTRS)

    Cabell, R. H.; Fuller, C. R.

    1989-01-01

    An intelligent air-noise recognition system is described that uses pattern recognition techniques to distinguish noise signatures of five different types of acoustic sources, including jet planes, propeller planes, a helicopter, train, and wind turbine. Information for classification is calculated using the power spectral density and autocorrelation taken from the output of a single microphone. Using this system, as many as 90 percent of test recordings were correctly identified, indicating that the linear discriminant functions developed can be used for aerospace source identification.

  4. Excavation Equipment Recognition Based on Novel Acoustic Statistical Features.

    PubMed

    Cao, Jiuwen; Wang, Wei; Wang, Jianzhong; Wang, Ruirong

    2016-09-30

    Excavation equipment recognition attracts increasing attentions in recent years due to its significance in underground pipeline network protection and civil construction management. In this paper, a novel classification algorithm based on acoustics processing is proposed for four representative excavation equipments. New acoustic statistical features, namely, the short frame energy ratio, concentration of spectrum amplitude ratio, truncated energy range, and interval of pulse are first developed to characterize acoustic signals. Then, probability density distributions of these acoustic features are analyzed and a novel classifier is presented. Experiments on real recorded acoustics of the four excavation devices are conducted to demonstrate the effectiveness of the proposed algorithm. Comparisons with two popular machine learning methods, support vector machine and extreme learning machine, combined with the popular linear prediction cepstral coefficients are provided to show the generalization capability of our method. A real surveillance system using our algorithm is developed and installed in a metro construction site for real-time recognition performance validation.

  5. Reduced acoustic and electric integration in concurrent-vowel recognition

    PubMed Central

    Yang, Hsin-I; Zeng, Fan-Gang

    2013-01-01

    The present study used concurrent-vowel recognition to measure integration efficiency of combined acoustic and electric stimulation in eight actual cochlear-implant subjects who had normal or residual low-frequency acoustic hearing contralaterally. Although these subjects could recognize single vowels (>90% correct) with either electric or combined stimulation, their performance degraded significantly in concurrent-vowel recognition. Compared with previous simulation results using normal-hearing subjects, the present subjects produced similar performance with acoustic or electric stimulation alone, but significantly lower performance with combined stimulation. A probabilistic model found reduced integration efficiency between acoustic and electric stimulation in the present subjects. The integration efficiency was negatively correlated with residual acoustic hearing in the non-implanted ear and duration of deafness in the implanted ear. The present result suggests a central origin of the integration deficit and that this integration be evaluated and considered in future management of hearing impairment and design of auditory prostheses. PMID:23474462

  6. Excavation Equipment Recognition Based on Novel Acoustic Statistical Features.

    PubMed

    Cao, Jiuwen; Wang, Wei; Wang, Jianzhong; Wang, Ruirong

    2016-09-30

    Excavation equipment recognition attracts increasing attentions in recent years due to its significance in underground pipeline network protection and civil construction management. In this paper, a novel classification algorithm based on acoustics processing is proposed for four representative excavation equipments. New acoustic statistical features, namely, the short frame energy ratio, concentration of spectrum amplitude ratio, truncated energy range, and interval of pulse are first developed to characterize acoustic signals. Then, probability density distributions of these acoustic features are analyzed and a novel classifier is presented. Experiments on real recorded acoustics of the four excavation devices are conducted to demonstrate the effectiveness of the proposed algorithm. Comparisons with two popular machine learning methods, support vector machine and extreme learning machine, combined with the popular linear prediction cepstral coefficients are provided to show the generalization capability of our method. A real surveillance system using our algorithm is developed and installed in a metro construction site for real-time recognition performance validation.

  7. A static acoustic signature system for the analysis of dynamic flight information

    NASA Technical Reports Server (NTRS)

    Ramer, D. J.

    1978-01-01

    The Army family of helicopters was analyzed to measure the polar octave band acoustic signature in various modes of flight. A static array of calibrated microphones was used to simultaneously acquire the signature and differential times required to mathematically position the aircraft in space. The signature was then reconstructed, mathematically normalized to a fixed radius around the aircraft.

  8. The acoustic signature of decaying resonant phospholipid microbubbles.

    PubMed

    Thomas, D H; Butler, M; Pelekasis, N; Anderson, T; Stride, E; Sboros, V

    2013-02-07

    Sub-capillary sized microbubbles offer improved techniques for diagnosis and therapy of vascular related disease using ultrasound. Their physical interaction with ultrasound remains an active research field that aims to optimize techniques. The aim of this study is to investigate whether controlled microbubble disruption upon exposure to consecutive ultrasound exposures can be achieved. Single lipid-shelled microbubble scattered echoes have been measured in response to two consecutive imaging pulses, using a calibrated micro-acoustic system. The nonlinear evolution of microbubble echoes provides an exact signature above and below primary and secondary resonance, which has been identified using theoretical results based on the Mooney-Rivlin strain softening shell model. Decaying microbubbles follow an irreversible trajectory through the resonance peak, causing the evolution of specific microbubble spectral signatures. The characteristics of the microbubble motion causes varying amounts of shell material to be lost during microbubble decay. Incident ultrasound field parameters can thus accurately manipulate the regulated shedding of shell material, which has applications for both imaging applications and localized drug delivery strategies.

  9. The acoustic signature of decaying resonant phospholipid microbubbles

    NASA Astrophysics Data System (ADS)

    Thomas, D. H.; Butler, M.; Pelekasis, N.; Anderson, T.; Stride, E.; Sboros, V.

    2013-02-01

    Sub-capillary sized microbubbles offer improved techniques for diagnosis and therapy of vascular related disease using ultrasound. Their physical interaction with ultrasound remains an active research field that aims to optimize techniques. The aim of this study is to investigate whether controlled microbubble disruption upon exposure to consecutive ultrasound exposures can be achieved. Single lipid-shelled microbubble scattered echoes have been measured in response to two consecutive imaging pulses, using a calibrated micro-acoustic system. The nonlinear evolution of microbubble echoes provides an exact signature above and below primary and secondary resonance, which has been identified using theoretical results based on the Mooney-Rivlin strain softening shell model. Decaying microbubbles follow an irreversible trajectory through the resonance peak, causing the evolution of specific microbubble spectral signatures. The characteristics of the microbubble motion causes varying amounts of shell material to be lost during microbubble decay. Incident ultrasound field parameters can thus accurately manipulate the regulated shedding of shell material, which has applications for both imaging applications and localized drug delivery strategies.

  10. Shape recognition of acoustic scatterers using the singularity expansion method

    NASA Astrophysics Data System (ADS)

    Cao, Pei; Wu, Jiu Hui

    2017-03-01

    Acoustic target recognition for two-dimensional (2D) acoustic scatterers is investigated using the singularity expansion method (SEM). Based on the Watson transformation series of the scattering field, the SEM poles can be calculated and their physical interpretation given, along with the exact normal mode for any acoustic scattering problem. Typical oscillatory phenomena appear as a series of damped sinusoidal signals in the time domain and as a standing-wave distribution in the space. These external oscillation modes are associated with the SEM poles. We note that the positions of these poles in the complex frequency plane are uniquely determined by the shape and flexible characteristics of the target regardless of the waveforms and positions of the incident signals. We then infer that SEM poles can be used as the characteristic parameters for target shape recognition. The relationship between the positions of SEM poles and the geometrical characters of 2D scatterers has been established not only for cylinders but also for other general 2D scatterers. The new method and the related calculation results provide an effective way to perform shape recognition using an acoustic scattering field, with potential applications in non-destructive testing and acoustic imaging.

  11. Adding articulatory features to acoustic features for automatic speech recognition

    SciTech Connect

    Zlokarnik, I.

    1995-05-01

    A hidden-Markov-model (HMM) based speech recognition system was evaluated that makes use of simultaneously recorded acoustic and articulatory data. The articulatory measurements were gathered by means of electromagnetic articulography and describe the movement of small coils fixed to the speakers` tongue and jaw during the production of German V{sub 1}CV{sub 2} sequences [P. Hoole and S. Gfoerer, J. Acoust. Soc. Am. Suppl. 1 {bold 87}, S123 (1990)]. Using the coordinates of the coil positions as an articulatory representation, acoustic and articulatory features were combined to make up an acoustic--articulatory feature vector. The discriminant power of this combined representation was evaluated for two subjects on a speaker-dependent isolated word recognition task. When the articulatory measurements were used both for training and testing the HMMs, the articulatory representation was capable of reducing the error rate of comparable acoustic-based HMMs by a relative percentage of more than 60%. In a separate experiment, the articulatory movements during the testing phase were estimated using a multilayer perceptron that performed an acoustic-to-articulatory mapping. Under these more realistic conditions, when articulatory measurements are only available during the training, the error rate could be reduced by a relative percentage of 18% to 25%.

  12. Feature extraction from time domain acoustic signatures of weapons systems fire

    NASA Astrophysics Data System (ADS)

    Yang, Christine; Goldman, Geoffrey H.

    2014-06-01

    The U.S. Army is interested in developing algorithms to classify weapons systems fire based on their acoustic signatures. To support this effort, an algorithm was developed to extract features from acoustic signatures of weapons systems fire and applied to over 1300 signatures. The algorithm filtered the data using standard techniques then estimated the amplitude and time of the first five peaks and troughs and the location of the zero crossing in the waveform. The results were stored in Excel spreadsheets. The results are being used to develop and test acoustic classifier algorithms.

  13. Speech coding, reconstruction and recognition using acoustics and electromagnetic waves

    DOEpatents

    Holzrichter, J.F.; Ng, L.C.

    1998-03-17

    The use of EM radiation in conjunction with simultaneously recorded acoustic speech information enables a complete mathematical coding of acoustic speech. The methods include the forming of a feature vector for each pitch period of voiced speech and the forming of feature vectors for each time frame of unvoiced, as well as for combined voiced and unvoiced speech. The methods include how to deconvolve the speech excitation function from the acoustic speech output to describe the transfer function each time frame. The formation of feature vectors defining all acoustic speech units over well defined time frames can be used for purposes of speech coding, speech compression, speaker identification, language-of-speech identification, speech recognition, speech synthesis, speech translation, speech telephony, and speech teaching. 35 figs.

  14. Speech coding, reconstruction and recognition using acoustics and electromagnetic waves

    DOEpatents

    Holzrichter, John F.; Ng, Lawrence C.

    1998-01-01

    The use of EM radiation in conjunction with simultaneously recorded acoustic speech information enables a complete mathematical coding of acoustic speech. The methods include the forming of a feature vector for each pitch period of voiced speech and the forming of feature vectors for each time frame of unvoiced, as well as for combined voiced and unvoiced speech. The methods include how to deconvolve the speech excitation function from the acoustic speech output to describe the transfer function each time frame. The formation of feature vectors defining all acoustic speech units over well defined time frames can be used for purposes of speech coding, speech compression, speaker identification, language-of-speech identification, speech recognition, speech synthesis, speech translation, speech telephony, and speech teaching.

  15. Multiexpert automatic speech recognition using acoustic and myoelectric signals.

    PubMed

    Chan, Adrian D C; Englehart, Kevin B; Hudgins, Bernard; Lovely, Dennis F

    2006-04-01

    Classification accuracy of conventional automatic speech recognition (ASR) systems can decrease dramatically under acoustically noisy conditions. To improve classification accuracy and increase system robustness a multiexpert ASR system is implemented. In this system, acoustic speech information is supplemented with information from facial myoelectric signals (MES). A new method of combining experts, known as the plausibility method, is employed to combine an acoustic ASR expert and a MES ASR expert. The plausibility method of combining multiple experts, which is based on the mathematical framework of evidence theory, is compared to the Borda count and score-based methods of combination. Acoustic and facial MES data were collected from 5 subjects, using a 10-word vocabulary across an 18-dB range of acoustic noise. As expected the performance of an acoustic expert decreases with increasing acoustic noise; classification accuracies of the acoustic ASR expert are as low as 11.5%. The effect of noise is significantly reduced with the addition of the MES ASR expert. Classification accuracies remain above 78.8% across the 18-dB range of acoustic noise, when the plausibility method is used to combine the opinions of multiple experts. In addition, the plausibility method produced classification accuracies higher than any individual expert at all noise levels, as well as the highest classification accuracies, except at the 9-dB noise level. Using the Borda count and score-based multiexpert systems, classification accuracies are improved relative to the acoustic ASR expert but are as low as 51.5% and 59.5%, respectively.

  16. Acoustic signatures of sound source-tract coupling

    NASA Astrophysics Data System (ADS)

    Arneodo, Ezequiel M.; Perl, Yonatan Sanz; Mindlin, Gabriel B.

    2011-04-01

    Birdsong is a complex behavior, which results from the interaction between a nervous system and a biomechanical peripheral device. While much has been learned about how complex sounds are generated in the vocal organ, little has been learned about the signature on the vocalizations of the nonlinear effects introduced by the acoustic interactions between a sound source and the vocal tract. The variety of morphologies among bird species makes birdsong a most suitable model to study phenomena associated to the production of complex vocalizations. Inspired by the sound production mechanisms of songbirds, in this work we study a mathematical model of a vocal organ, in which a simple sound source interacts with a tract, leading to a delay differential equation. We explore the system numerically, and by taking it to the weakly nonlinear limit, we are able to examine its periodic solutions analytically. By these means we are able to explore the dynamics of oscillatory solutions of a sound source-tract coupled system, which are qualitatively different from those of a sound source-filter model of a vocal organ. Nonlinear features of the solutions are proposed as the underlying mechanisms of observed phenomena in birdsong, such as unilaterally produced “frequency jumps,” enhancement of resonances, and the shift of the fundamental frequency observed in heliox experiments.

  17. Acoustic signatures of sound source-tract coupling

    PubMed Central

    Arneodo, Ezequiel M.; Perl, Yonatan Sanz; Mindlin, Gabriel B.

    2014-01-01

    Birdsong is a complex behavior, which results from the interaction between a nervous system and a biomechanical peripheral device. While much has been learned about how complex sounds are generated in the vocal organ, little has been learned about the signature on the vocalizations of the nonlinear effects introduced by the acoustic interactions between a sound source and the vocal tract. The variety of morphologies among bird species makes birdsong a most suitable model to study phenomena associated to the production of complex vocalizations. Inspired by the sound production mechanisms of songbirds, in this work we study a mathematical model of a vocal organ, in which a simple sound source interacts with a tract, leading to a delay differential equation. We explore the system numerically, and by taking it to the weakly nonlinear limit, we are able to examine its periodic solutions analytically. By these means we are able to explore the dynamics of oscillatory solutions of a sound source-tract coupled system, which are qualitatively different from those of a sound source-filter model of a vocal organ. Nonlinear features of the solutions are proposed as the underlying mechanisms of observed phenomena in birdsong, such as unilaterally produced “frequency jumps,” enhancement of resonances, and the shift of the fundamental frequency observed in heliox experiments. PMID:21599213

  18. Wavelet-based acoustic recognition of aircraft

    SciTech Connect

    Dress, W.B.; Kercel, S.W.

    1994-09-01

    We describe a wavelet-based technique for identifying aircraft from acoustic emissions during take-off and landing. Tests show that the sensor can be a single, inexpensive hearing-aid microphone placed close to the ground the paper describes data collection, analysis by various technique, methods of event classification, and extraction of certain physical parameters from wavelet subspace projections. The primary goal of this paper is to show that wavelet analysis can be used as a divide-and-conquer first step in signal processing, providing both simplification and noise filtering. The idea is to project the original signal onto the orthogonal wavelet subspaces, both details and approximations. Subsequent analysis, such as system identification, nonlinear systems analysis, and feature extraction, is then carried out on the various signal subspaces.

  19. The acoustic-modeling problem in automatic speech recognition

    NASA Astrophysics Data System (ADS)

    Brown, Peter F.

    1987-12-01

    This thesis examines the acoustic-modeling problem in automatic speech recognition from an information-theoretic point of view. This problem is to design a speech-recognition system which can extract from the speech waveform as much information as possible about the corresponding word sequence. The information extraction process is broken down into two steps: a signal processing step which converts a speech waveform into a sequence of information bearing acoustic feature vectors, and a step which models such a sequence. This thesis is primarily concerned with the use of hidden Markov models to model sequences of feature vectors which lie in a continuous space such as R sub N. It explores the trade-off between packing a lot of information into such sequences and being able to model them accurately. The difficulty of developing accurate models of continuous parameter sequences is addressed by investigating a method of parameter estimation which is specifically designed to cope with inaccurate modeling assumptions.

  20. Unvoiced Speech Recognition Using Tissue-Conductive Acoustic Sensor

    NASA Astrophysics Data System (ADS)

    Heracleous, Panikos; Kaino, Tomomi; Saruwatari, Hiroshi; Shikano, Kiyohiro

    2006-12-01

    We present the use of stethoscope and silicon NAM (nonaudible murmur) microphones in automatic speech recognition. NAM microphones are special acoustic sensors, which are attached behind the talker's ear and can capture not only normal (audible) speech, but also very quietly uttered speech (nonaudible murmur). As a result, NAM microphones can be applied in automatic speech recognition systems when privacy is desired in human-machine communication. Moreover, NAM microphones show robustness against noise and they might be used in special systems (speech recognition, speech transform, etc.) for sound-impaired people. Using adaptation techniques and a small amount of training data, we achieved for a 20 k dictation task a[InlineEquation not available: see fulltext.] word accuracy for nonaudible murmur recognition in a clean environment. In this paper, we also investigate nonaudible murmur recognition in noisy environments and the effect of the Lombard reflex on nonaudible murmur recognition. We also propose three methods to integrate audible speech and nonaudible murmur recognition using a stethoscope NAM microphone with very promising results.

  1. The Production and Recognition of Acoustic Frequency Cues in Chickadees

    NASA Astrophysics Data System (ADS)

    Lohr, Bernard Stephen

    1995-01-01

    The production and recognition of songs with appropriate species-typical features underlies a songbird's success in defending a breeding territory. The ability to recognize a song that is characteristic of one's own species presents an interesting problem, given the variety of types of information often encoded in song. Information in song may involve cues for individual identity, neighbor/stranger recognition, reproductive status, and motivational state. This thesis is concerned with the use of acoustic frequency as a cue for species-recognition of birdsong, and the various forms of frequency production and perception that may provide such cues. Carolina chickadees (Parus carolinensis) sing songs characterized by a succession of unmodulated, pure -tonal notes that alternate between high (approximately 5400-7000 Hz) and low (approximately 3000-4200 Hz) frequencies. Mechanisms of acoustic frequency perception in male territorial Carolina chickadees were evaluated using playback experiments designed to vary specific note frequencies, note frequency ranges, and the frequency range of the entire song type. Note frequency ranges provide the primary acoustic frequency cues for song recognition in this species. A gap between note frequency ranges exists in this species. Tones in this intermediate frequency range do not receive responses in the context of territorial song recognition. This kind of gap in frequency perception has not been demonstrated for other songbirds. Song playback experiments also were designed to vary systematically the contours (inter-note frequency sequences) of notes in song. Note frequency ranges provide the principal cues for song recognition, while the contour between note frequencies plays a supplementary role. The presence of a single descending interval between notes in the appropriate note frequency ranges of Carolina chickadee song generates full species-typical responses to song. Additionally, response to a descending contour between note

  2. The acoustic signatures of cavitation erosion on grade DH36 steel

    NASA Astrophysics Data System (ADS)

    Armakolas, I.; Carlton, J.; Vidakovic, M.; Sun, T.; Grattan, K. T. V.

    2015-12-01

    Cavitation can cause considerable erosion to adjacent materials. Erosion is accompanied by acoustic emissions, related to crack formation and propagation inside the material. In this study a piezoelectric acoustic sensor mounted on the back of a grade DH36 steel plate is used to identify the acoustic signatures of cavitation. Cavitation is induced near the plate by means of an ultrasonic transducer (sonotrode). Various ‘non-erosive’ and erosive test rig configurations are examined and an acoustic threshold value for the onset of cavitation erosion is identified and presented. The use of a fibre Bragg grating (FBG)-based acoustic sensor developed at City University London for acoustic monitoring purposes is also examined. Acoustic signals from both sensors are analysed, by means of a fast Fourier transform, showing a very good agreement in terms of captured frequencies.

  3. Acoustic censusing using automatic vocalization classification and identity recognition.

    PubMed

    Adi, Kuntoro; Johnson, Michael T; Osiejuk, Tomasz S

    2010-02-01

    This paper presents an advanced method to acoustically assess animal abundance. The framework combines supervised classification (song-type and individual identity recognition), unsupervised classification (individual identity clustering), and the mark-recapture model of abundance estimation. The underlying algorithm is based on clustering using hidden Markov models (HMMs) and Gaussian mixture models (GMMs) similar to methods used in the speech recognition community for tasks such as speaker identification and clustering. Initial experiments using a Norwegian ortolan bunting (Emberiza hortulana) data set show the feasibility and effectiveness of the approach. Individually distinct acoustic features have been observed in a wide range of animal species, and this combined with the widespread success of speaker identification and verification methods for human speech suggests that robust automatic identification of individuals from their vocalizations is attainable. Only a few studies, however, have yet attempted to use individual acoustic distinctiveness to directly assess population density and structure. The approach introduced here offers a direct mechanism for using individual vocal variability to create simpler and more accurate population assessment tools in vocally active species.

  4. Speech recognition: Acoustic-phonetic knowledge acquisition and representation

    NASA Astrophysics Data System (ADS)

    Zue, Victor W.

    1988-09-01

    The long-term research goal is to develop and implement speaker-independent continuous speech recognition systems. It is believed that the proper utilization of speech-specific knowledge is essential for such advanced systems. This research is thus directed toward the acquisition, quantification, and representation, of acoustic-phonetic and lexical knowledge, and the application of this knowledge to speech recognition algorithms. In addition, we are exploring new speech recognition alternatives based on artificial intelligence and connectionist techniques. We developed a statistical model for predicting the acoustic realization of stop consonants in various positions in the syllable template. A unification-based grammatical formalism was developed for incorporating this model into the lexical access algorithm. We provided an information-theoretic justification for the hierarchical structure of the syllable template. We analyzed segmented duration for vowels and fricatives in continuous speech. Based on contextual information, we developed durational models for vowels and fricatives that account for over 70 percent of the variance, using data from multiple, unknown speakers. We rigorously evaluated the ability of human spectrogram readers to identify stop consonants spoken by many talkers and in a variety of phonetic contexts. Incorporating the declarative knowledge used by the readers, we developed a knowledge-based system for stop identification. We achieved comparable system performance to that to the readers.

  5. Mate vocal recognition in the Scopoli's shearwater Calonectris diomedea: do females and males share the same acoustic code?

    PubMed

    Curé, Charlotte; Mathevon, Nicolas; Aubin, Thierry

    2016-07-01

    Vocal recognition is an important process allowing partners' reunion in most seabirds. Although the acoustic basis of this recognition has been explored in several species, only a few studies have experimentally tested the acoustic coding-decoding strategy used for mate identification. Here, we investigated mate recognition in the Scopoli's shearwater (Calonectris diomedea) by conducting playbacks of calls with modified acoustic features. We showed that females and males in a seabird species with a moderate vocal dimorphism are likely to share the same coding-decoding rule for vocal mate identification. Specifically, a disruption of call temporal structure prevented mate recognition in both sexes, in line with the parameters previously identified as supporting an individual signature. Modifications of spectral cues and envelope structure also impaired recognition, but at a lesser extent: almost half of the tested males and females were still able to recognise their partner. It is likely that this equal ability of female and male Scopoli's shearwaters to vocally recognise their partner could be found in other seabirds.

  6. Brain signatures of meaning access in action word recognition.

    PubMed

    Pulvermüller, Friedemann; Shtyrov, Yury; Ilmoniemi, Risto

    2005-06-01

    The brain basis of action words may be neuron ensembles binding language- and action-related information that are dispersed over both language- and action-related cortical areas. This predicts fast spreading of neuronal activity from language areas to specific sensorimotor areas when action words semantically related to different parts of the body are being perceived. To test this, fast neurophysiological imaging was applied to reveal spatiotemporal activity patterns elicited by words with different action-related meaning. Spoken words referring to actions involving the face or leg were presented while subjects engaged in a distraction task and their brain activity was recorded using high-density magnetoencephalography. Shortly after the words could be recognized as unique lexical items, objective source localization using minimum norm current estimates revealed activation in superior temporal (130 msec) and inferior frontocentral areas (142-146 msec). Face-word stimuli activated inferior frontocentral areas more strongly than leg words, whereas the reverse was found at superior central sites (170 msec), thus reflecting the cortical somatotopy of motor actions signified by the words. Significant correlations were found between local source strengths in the frontocentral cortex calculated for all participants and their semantic ratings of the stimulus words, thus further establishing a close relationship between word meaning access and neurophysiology. These results show that meaning access in action word recognition is an early automatic process ref lected by spatiotemporal signatures of word-evoked activity. Word-related distributed neuronal assemblies with specific cortical topographies can explain the observed spatiotemporal dynamics reflecting word meaning access.

  7. Location and acoustic scale cues in concurrent speech recognition.

    PubMed

    Ives, D Timothy; Vestergaard, Martin D; Kistler, Doris J; Patterson, Roy D

    2010-06-01

    Location and acoustic scale cues have both been shown to have an effect on the recognition of speech in multi-speaker environments. This study examines the interaction of these variables. Subjects were presented with concurrent triplets of syllables from a target voice and a distracting voice, and asked to recognize a specific target syllable. The task was made more or less difficult by changing (a) the location of the distracting speaker, (b) the scale difference between the two speakers, and/or (c) the relative level of the two speakers. Scale differences were produced by changing the vocal tract length and glottal pulse rate during syllable synthesis: 32 acoustic scale differences were used. Location cues were produced by convolving head-related transfer functions with the stimulus. The angle between the target speaker and the distracter was 0 degrees, 4 degrees, 8 degrees, 16 degrees, or 32 degrees on the 0 degrees horizontal plane. The relative level of the target to the distracter was 0 or -6 dB. The results show that location and scale difference interact, and the interaction is greatest when one of these cues is small. Increasing either the acoustic scale or the angle between target and distracter speakers quickly elevates performance to ceiling levels.

  8. Location and acoustic scale cues in concurrent speech recognition1

    PubMed Central

    Ives, D. Timothy; Vestergaard, Martin D.; Kistler, Doris J.; Patterson, Roy D.

    2010-01-01

    Location and acoustic scale cues have both been shown to have an effect on the recognition of speech in multi-speaker environments. This study examines the interaction of these variables. Subjects were presented with concurrent triplets of syllables from a target voice and a distracting voice, and asked to recognize a specific target syllable. The task was made more or less difficult by changing (a) the location of the distracting speaker, (b) the scale difference between the two speakers, and∕or (c) the relative level of the two speakers. Scale differences were produced by changing the vocal tract length and glottal pulse rate during syllable synthesis: 32 acoustic scale differences were used. Location cues were produced by convolving head-related transfer functions with the stimulus. The angle between the target speaker and the distracter was 0°, 4°, 8°, 16°, or 32° on the 0° horizontal plane. The relative level of the target to the distracter was 0 or −6 dB. The results show that location and scale difference interact, and the interaction is greatest when one of these cues is small. Increasing either the acoustic scale or the angle between target and distracter speakers quickly elevates performance to ceiling levels. PMID:20550271

  9. Door latching recognition apparatus and process

    DOEpatents

    Eakle, Jr., Robert F.

    2012-05-15

    An acoustic door latch detector is provided in which a sound recognition sensor is integrated into a door or door lock mechanism. The programmable sound recognition sensor can be trained to recognize the acoustic signature of the door and door lock mechanism being properly engaged and secured. The acoustic sensor will signal a first indicator indicating that proper closure was detected or sound an alarm condition if the proper acoustic signature is not detected within a predetermined time interval.

  10. Time and timing in the acoustic recognition system of crickets

    PubMed Central

    Hennig, R. Matthias; Heller, Klaus-Gerhard; Clemens, Jan

    2014-01-01

    The songs of many insects exhibit precise timing as the result of repetitive and stereotyped subunits on several time scales. As these signals encode the identity of a species, time and timing are important for the recognition system that analyzes these signals. Crickets are a prominent example as their songs are built from sound pulses that are broadcast in a long trill or as a chirped song. This pattern appears to be analyzed on two timescales, short and long. Recent evidence suggests that song recognition in crickets relies on two computations with respect to time; a short linear-nonlinear (LN) model that operates as a filter for pulse rate and a longer integration time window for monitoring song energy over time. Therefore, there is a twofold role for timing. A filter for pulse rate shows differentiating properties for which the specific timing of excitation and inhibition is important. For an integrator, however, the duration of the time window is more important than the precise timing of events. Here, we first review evidence for the role of LN-models and integration time windows for song recognition in crickets. We then parameterize the filter part by Gabor functions and explore the effects of duration, frequency, phase, and offset as these will correspond to differently timed patterns of excitation and inhibition. These filter properties were compared with known preference functions of crickets and katydids. In a comparative approach, the power for song discrimination by LN-models was tested with the songs of over 100 cricket species. It is demonstrated how the acoustic signals of crickets occupy a simple 2-dimensional space for song recognition that arises from timing, described by a Gabor function, and time, the integration window. Finally, we discuss the evolution of recognition systems in insects based on simple sensory computations. PMID:25161622

  11. Pattern recognition algorithm reveals how birds evolve individual egg pattern signatures.

    PubMed

    Stoddard, Mary Caswell; Kilner, Rebecca M; Town, Christopher

    2014-06-18

    Pattern-based identity signatures are commonplace in the animal kingdom, but how they are recognized is poorly understood. Here we develop a computer vision tool for analysing visual patterns, NATUREPATTERNMATCH, which breaks new ground by mimicking visual and cognitive processes known to be involved in recognition tasks. We apply this tool to a long-standing question about the evolution of recognizable signatures. The common cuckoo (Cuculus canorus) is a notorious cheat that sneaks its mimetic eggs into nests of other species. Can host birds fight back against cuckoo forgery by evolving highly recognizable signatures? Using NATUREPATTERNMATCH, we show that hosts subjected to the best cuckoo mimicry have evolved the most recognizable egg pattern signatures. Theory predicts that effective pattern signatures should be simultaneously replicable, distinctive and complex. However, our results reveal that recognizable signatures need not incorporate all three of these features. Moreover, different hosts have evolved effective signatures in diverse ways.

  12. Online signature recognition using principal component analysis and artificial neural network

    NASA Astrophysics Data System (ADS)

    Hwang, Seung-Jun; Park, Seung-Je; Baek, Joong-Hwan

    2016-12-01

    In this paper, we propose an algorithm for on-line signature recognition using fingertip point in the air from the depth image acquired by Kinect. We extract 10 statistical features from X, Y, Z axis, which are invariant to changes in shifting and scaling of the signature trajectories in three-dimensional space. Artificial neural network is adopted to solve the complex signature classification problem. 30 dimensional features are converted into 10 principal components using principal component analysis, which is 99.02% of total variances. We implement the proposed algorithm and test to actual on-line signatures. In experiment, we verify the proposed method is successful to classify 15 different on-line signatures. Experimental result shows 98.47% of recognition rate when using only 10 feature vectors.

  13. Detection of acoustic, electro-optical and RADAR signatures of small unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Hommes, Alexander; Shoykhetbrod, Alex; Noetel, Denis; Stanko, Stephan; Laurenzis, Martin; Hengy, Sebastien; Christnacher, Frank

    2016-10-01

    We investigated signatures of small unmanned aerial vehicles (UAV) with different sensor technologies ranging from acoustical antennas, passive and active optical imaging devices to small-size FMCW RADAR systems. These sensor technologies have different advantages and drawbacks and can be applied in a complementary sensor network to benefit from their different strengths.

  14. Acoustic Emission Signatures During Failure of Vertebra and Long Bone.

    PubMed

    Goodwin, Brian D; Pintar, Frank A; Yoganandan, Narayan

    2017-03-14

    Clinical classification of an injury has traditionally involved medical imaging, patient history, and physical examination. The pathogenesis or process of injury has been viewed as a crucial component to estimating fracture stability and direct treatment. However, injury classification systems generally exclude pathogenesis and injury mechanisms because these components are often difficult to elucidate. Furthermore, the development of bone damage relative to the mechanical response is difficult to quantify, which limits the ability to define injury and develop injury criteria. Past advents of new knowledge about the mechanisms and progression of fracture have refined safety standards and engineering design for limiting injury. Post-hoc methodologies for identifying and classifying injuries for post-mortem human surrogate (PMHS) research are well established. Though bone fractures can be classified post hoc, questions remain. Surface acoustic sensing (SAS) is an effective approach to augment PMHS experimentation. The objective was to develop and validate an acoustic-emission-based method to characterize bone fractures during injurious loading conditions using acoustic emissions (AEs) in two bone types: vertebral body (VB) and long bone (LB). The newly developed method incorporated the Stockwell transform to estimate the relative energy release rate (RERR) from bone fracture using acoustic signal processing. Fractures were characterized through AE burst durations and frequency content. Results indicated that VB fractures from compression are prolonged processes compared to LB fracture, which was staccato in nature. Significant (p < 0.01) differences between burst duration and frequency content were identified between the two bone types.

  15. Online signature verification and recognition: an approach based on symbolic representation.

    PubMed

    Guru, D S; Prakash, H N

    2009-06-01

    In this paper, we propose a new method of representing on-line signatures by interval valued symbolic features. Global features of on-line signatures are used to form an interval valued feature vectors. Methods for signature verification and recognition based on the symbolic representation are also proposed. We exploit the notions of writer dependent threshold and introduce the concept of feature dependent threshold to achieve a significant reduction in equal error rate. Several experiments are conducted to demonstrate the ability of the proposed scheme in discriminating the genuine signatures from the forgeries. We investigate the feasibility of the proposed representation scheme for signature verification and also signature recognition using all 16500 signatures from 330 individuals of the MCYT bimodal biometric database. Further, extensive experimentations are conducted to evaluate the performance of the proposed methods by projecting features onto Eigenspace and Fisherspace. Unlike other existing signature verification methods, the proposed method is simple and efficient. The results of the experimentations reveal that the proposed scheme outperforms several other existing verification methods including the state-of-the-art method for signature verification.

  16. Vegetation effects on impulsive events in the acoustic signature of fires.

    PubMed

    Yedinak, Kara M; Anderson, Michael J; Apostol, Kent G; Smith, Alistair M S

    2017-01-01

    Acoustic impulse events have long been used as diagnostics for discrete phenomena in the natural world, including the detection of meteor impacts and volcanic eruptions. Wildland fires display an array of such acoustic impulse events in the form of crackling noises. Exploratory research into the properties of these impulse events revealed information regarding the specific properties of plant material. Unique acoustic frequency bands in the upper end of the sonic spectrum correlated to changes in vegetation properties. The signature of acoustic impulse events as they relate to plant species and plant water stress, were investigated in controlled laboratory combustion experiments. Correlation in the frequency range of 6.0-15.0 kHz was found for both species and water stress, indicating the possibility that a digital filter may be capable of identifying vegetation properties during wildland fire events.

  17. Signatures analysis and recognition of severe weather patterns

    NASA Technical Reports Server (NTRS)

    Wang, P. P.; Burns, R. C.

    1975-01-01

    The feasibility of designing a prediction and warning system for severe weather conditions on the basis of time series analysis and pattern recognition is examined. Data accumulated by Taylor (1972) on the rate of atmospherics produced by severe, tornado-producing storms that struck Oklahoma City during April 1970 are analyzed by time series analysis and pattern recognition. Power spectra, cross-power spectra, coherence functions, and time-varying patterns are analyzed.

  18. Signatures analysis and recognition of severe weather patterns

    NASA Technical Reports Server (NTRS)

    Wang, P. P.; Burns, R. C.

    1975-01-01

    The feasibility of designing a prediction and warning system for severe weather conditions on the basis of time series analysis and pattern recognition is examined. Data accumulated by Taylor (1972) on the rate of atmospherics produced by severe, tornado-producing storms that struck Oklahoma City during April 1970 are analyzed by time series analysis and pattern recognition. Power spectra, cross-power spectra, coherence functions, and time-varying patterns are analyzed.

  19. Development of a Transient Acoustic Boundary Element Method to Predict the Noise Signature of Swimming Fish

    NASA Astrophysics Data System (ADS)

    Wagenhoffer, Nathan; Moored, Keith; Jaworski, Justin

    2015-11-01

    Animals have evolved flexible wings and fins to efficiently and quietly propel themselves through the air and water. The design of quiet and efficient bio-inspired propulsive concepts requires a rapid, unified computational framework that integrates three essential features: the fluid mechanics, the elastic structural response, and the noise generation. This study focuses on the development, validation, and demonstration of a transient, two-dimensional acoustic boundary element solver accelerated by a fast multipole algorithm. The resulting acoustic solver is used to characterize the acoustic signature produced by a vortex street advecting over a NACA 0012 airfoil, which is representative of vortex-body interactions that occur in schools of swimming fish. Both 2S and 2P canonical vortex streets generated by fish are investigated over the range of Strouhal number 0 . 2 < St < 0 . 4 , and the acoustic signature of the airfoil is quantified. This study provides the first estimate of the noise signature of a school of swimming fish. Lehigh University CORE Grant.

  20. The applicability of free-field acoustic signatures to quality inspection of rotating machinery

    NASA Astrophysics Data System (ADS)

    Paustian, Andrew Brattain

    Quality assessment tools are used to increase productivity of a production line by ensuring that the produced item is fit for consumer use. In order for a quality inspection tool to be useful, the process must not affect the item and should not significantly slow down the manufacturing process. Acoustic production can be quickly assessed in a non-intrusive manner and can depict significant information about the generation source. This thesis seeks to assess the usefulness of an acoustic quality inspection tool for rotating machinery and develop such a tool for a small air pump. The acoustics of several pumps were sampled and Fourier analyses were performed. Defects were introduced to the pump specimen and the acoustics were once again sampled. Comparing the divergence of a defective pump acoustic signature lead to the generation of a quality inspection prototype tool. An instrument was created and was able to diagnose two of the three selected pump defects based on its acoustic output. The third defect did not alter the pump acoustics but was still diagnosable by monitoring motor rotational velocity.

  1. Toward noncooperative iris recognition: a classification approach using multiple signatures.

    PubMed

    Proença, Hugo; Alexandre, Luís A

    2007-04-01

    This paper focuses on noncooperative iris recognition, i.e., the capture of iris images at large distances, under less controlled lighting conditions, and without active participation of the subjects. This increases the probability of capturing very heterogeneous images (regarding focus, contrast, or brightness) and with several noise factors (iris obstructions and reflections). Current iris recognition systems are unable to deal with noisy data and substantially increase their error rates, especially the false rejections, in these conditions. We propose an iris classification method that divides the segmented and normalized iris image into six regions, makes an independent feature extraction and comparison for each region, and combines each of the dissimilarity values through a classification rule. Experiments show a substantial decrease, higher than 40 percent, of the false rejection rates in the recognition of noisy iris images.

  2. A hippocampal signature of perceptual learning in object recognition.

    PubMed

    Guggenmos, Matthias; Rothkirch, Marcus; Obermayer, Klaus; Haynes, John-Dylan; Sterzer, Philipp

    2015-04-01

    Perceptual learning is the improvement in perceptual performance through training or exposure. Here, we used fMRI before and after extensive behavioral training to investigate the effects of perceptual learning on the recognition of objects under challenging viewing conditions. Objects belonged either to trained or untrained categories. Trained categories were further subdivided into trained and untrained exemplars and were coupled with high or low monetary rewards during training. After a 3-day training, object recognition was markedly improved. Although there was a considerable transfer of learning to untrained exemplars within categories, an enhancing effect of reward reinforcement was specific to trained exemplars. fMRI showed that hippocampus responses to both trained and untrained exemplars of trained categories were enhanced by perceptual learning and correlated with the effect of reward reinforcement. Our results suggest a key role of hippocampus in object recognition after perceptual learning.

  3. Identification of cavitation signatures using both optical and PZT acoustic sensors

    NASA Astrophysics Data System (ADS)

    Vidakovic, M.; Armakolas, I.; Sun, T.; Carlton, J.; Grattan, K. T. V.

    2015-09-01

    This paper presents the results obtained from monitoring a simulated material cavitation process using both a fibre Bragg grating (FBG)-based acoustic sensor system developed at City University London and a commercial PZT (Piezoelectric Transducer) acoustic sensor, with an aim to identify the cavitation signatures. In the experiment, a sample metal plate with its back surface being instrumented with both sensors is positioned very close to an excitation sonotrode with a standard frequency of 19.5kHz. The data obtained from both sensors are recorded and analyzed, showing a very good agreement.

  4. A New Adaptive Structural Signature for Symbol Recognition by Using a Galois Lattice as a Classifier.

    PubMed

    Coustaty, M; Bertet, K; Visani, M; Ogier, J

    2011-08-01

    In this paper, we propose a new approach for symbol recognition using structural signatures and a Galois lattice as a classifier. The structural signatures are based on topological graphs computed from segments which are extracted from the symbol images by using an adapted Hough transform. These structural signatures-that can be seen as dynamic paths which carry high-level information-are robust toward various transformations. They are classified by using a Galois lattice as a classifier. The performance of the proposed approach is evaluated based on the GREC'03 symbol database, and the experimental results we obtain are encouraging.

  5. FY-93 noncontacting acoustic ultrasonic signature analysis development

    SciTech Connect

    Tow, D.M.; Rodriguez, J.G.; Williamson, R.L.; Blackwood, L.G.

    1994-04-01

    A noncontacting, long-standoff inspection system with proven capabilities in container fill identification has been under development at the Idaho National Engineering Laboratory. The system detects subtle change in container vibration characteristics caused by differences in the physical properties of the fill materials. A container is inspected by acoustically inducting it to vibrate and sensing the vibrational response with a laser vibrometer. A standoff distance of several meters is feasible. In previous work the system proved to be a reliable means of distinguishing between munitions with a variety of chemical fills. During FY-93, the system was modified to improve performance and simplify operation. Other FY-93 accomplishments include progress in modeling the vibrational characteristics of containers and refinements to the statistical classification algorithms. Progress was also made in identifying other applications for this technology.

  6. Acoustic signature reduction using feedback of piezoelectric layers

    NASA Astrophysics Data System (ADS)

    Hamberg, Johan; Malmgren, Anders

    2000-06-01

    The possibilities of using dynamic feedback of piezoelectric layers for controlling the acoustic properties of a surface are investigated. The investigation shows that in principle it is possible to achieve desired properties (e.g. no reflection, artificial transparency or simultaneous transmission and reception of information) using a single piezo-electric layer. The layer then operates both as a sensor and as an actuator. This approach can be described as controlling the boundary conditions of the acoustic field. The study shows that this will work well, also in practice, if the material has an electromechanic coupling factor that is large enough. Explicit controllers for these cases are given. However, for the values of electro-mechanic coupling factors of available materials, the above construction is not suitable for practical purposes, due to non-robustness. Therefore, the possibility of using multiple layers is also investigated. It turns out that a two layer construction can achieve the properties of a single layer with large electro-mechanic coupling factor. For the specific problem of achieving no reflection, an explicit construction of a realistic controller is given. Requirements of robust stability and limited voltage amplitudes imply that low reflection cannot be achieved at low and high frequencies. However for a large frequency interval, it is possible to obtain low reflection. It is shown that both the gain and phase margins are infinite with this controller. Our work makes extensive use of the Redheffer star-product for systematic modeling, analysis and synthesis of the system and the regulator.

  7. Micro-Doppler Radar Signatures for Itelligent Target Recognition

    DTIC Science & Technology

    2004-09-01

    es. En tant qu’outil d’identification et de reconnaissance, l’effet m-D semble prometteur pour les syst~mes op ~ rationnels susceptibles d’am~liorer...Defence Research and Recherche et developpement Development Canada pour la defense Canada DEFENCE DE7 DEFENS . Micro-Doppler radar signatures for... recherche permettant d’atteindre les objectifs techniques d6sir6s. ii DRDC Ottawa TM 2004-170 Executive summary Mechanical vibrations or rotations of

  8. Mechanical and Acoustic Signature of Slow Earthquakes on Laboratory Faults

    NASA Astrophysics Data System (ADS)

    Scuderi, Marco Maria; Marone, Chris; Tinti, Elisa; Scognamiglio, Laura; Di Stefano, Giuseppe; Collettini, Cristiano

    2015-04-01

    Recent seismic and geodetic observations show that fault slip occurs via a spectrum of behaviors that range from seismic (fast dynamic) to aseismic (creep). Indeed faults can slip via a variety of quasi-dynamic processes such as Slow-Slip, Low Frequency Earthquakes (LFE), and Tremor. These transient modes of slip represent slow, but self-propagating acceleration of slip along fault zones. These phenomena have been observed worldwide in a variety of active tectonic environments, however the physics of quasi-dynamic rupture and the underlying fault zone processes are still poorly understood. Rate- and State- frictional constitutive equations predict that fast dynamic slip will occur when the stiffness of the loading system (k) is less than a critical stiffness (kc) characterizing the fault gouge. In order to investigate quasi-dynamic transients, we performed laboratory experiments on simulated fault gouge (silica powders) in the double direct shear configuration with a compliant central block allowing boundary conditions where k≈kc. In addition, PZTs were used to measure acoustical properties of the gouge layers during shear. We document an evolution of the fault mechanical properties as the σn is increased. For σn < 10 MPa we observe a steady state frictional type of shear. When σn ≥ 15 MPa we observe emergent slow-slip events from steady state shear with accumulated shear displacement of about 10 mm. The typical values of stress drop (Δτ) vary between 0.2 and 0.8 MPa, and have typical duration from 0.5 up to 3 seconds giving the characteristics of slow stick-slip. As σn is varied we observe different characteristics of slow slip. For σn = 15MPa a repetitive double period oscillation is observed with slow slip growing until a maximum stress drop and then self attenuating. When σn is increased to 20 and 25 MPa slow slip are characterized by larger Δτ with constant τmax and τmin, however still showing a co-seismic duration of ~2 seconds. Our results

  9. Selective habituation shapes acoustic predator recognition in harbour seals.

    PubMed

    Deecke, Volker B; Slater, Peter J B; Ford, John K B

    2002-11-14

    Predation is a major force in shaping the behaviour of animals, so that precise identification of predators will confer substantial selective advantages on animals that serve as food to others. Because experience with a predator can be lethal, early researchers studying birds suggested that predator recognition does not require learning. However, a predator image that can be modified by learning and experience will be advantageous in situations where cues associated with the predator are highly variable or change over time. In this study, we investigated the response of harbour seals (Phoca vitulina) to the underwater calls of different populations of killer whales (Orcinus orca). We found that the seals responded strongly to the calls of mammal-eating killer whales and unfamiliar fish-eating killer whales but not to the familiar calls of the local fish-eating population. This demonstrates that wild harbour seals are capable of complex acoustic discrimination and that they modify their predator image by selectively habituating to the calls of harmless killer whales. Fear in these animals is therefore focused on local threats by learning and experience.

  10. Acoustic interference and recognition space within a complex assemblage of dendrobatid frogs.

    PubMed

    Amézquita, Adolfo; Flechas, Sandra Victoria; Lima, Albertina Pimentel; Gasser, Herbert; Hödl, Walter

    2011-10-11

    In species-rich assemblages of acoustically communicating animals, heterospecific sounds may constrain not only the evolution of signal traits but also the much less-studied signal-processing mechanisms that define the recognition space of a signal. To test the hypothesis that the recognition space is optimally designed, i.e., that it is narrower toward the species that represent the higher potential for acoustic interference, we studied an acoustic assemblage of 10 diurnally active frog species. We characterized their calls, estimated pairwise correlations in calling activity, and, to model the recognition spaces of five species, conducted playback experiments with 577 synthetic signals on 531 males. Acoustic co-occurrence was not related to multivariate distance in call parameters, suggesting a minor role for spectral or temporal segregation among species uttering similar calls. In most cases, the recognition space overlapped but was greater than the signal space, indicating that signal-processing traits do not act as strictly matched filters against sounds other than homospecific calls. Indeed, the range of the recognition space was strongly predicted by the acoustic distance to neighboring species in the signal space. Thus, our data provide compelling evidence of a role of heterospecific calls in evolutionarily shaping the frogs' recognition space within a complex acoustic assemblage without obvious concomitant effects on the signal.

  11. Speech and melody recognition in binaurally combined acoustic and electric hearing

    NASA Astrophysics Data System (ADS)

    Kong, Ying-Yee; Stickney, Ginger S.; Zeng, Fan-Gang

    2005-03-01

    Speech recognition in noise and music perception is especially challenging for current cochlear implant users. The present study utilizes the residual acoustic hearing in the nonimplanted ear in five cochlear implant users to elucidate the role of temporal fine structure at low frequencies in auditory perception and to test the hypothesis that combined acoustic and electric hearing produces better performance than either mode alone. The first experiment measured speech recognition in the presence of competing noise. It was found that, although the residual low-frequency (<1000 Hz) acoustic hearing produced essentially no recognition for speech recognition in noise, it significantly enhanced performance when combined with the electric hearing. The second experiment measured melody recognition in the same group of subjects and found that, contrary to the speech recognition result, the low-frequency acoustic hearing produced significantly better performance than the electric hearing. It is hypothesized that listeners with combined acoustic and electric hearing might use the correlation between the salient pitch in low-frequency acoustic hearing and the weak pitch in the envelope to enhance segregation between signal and noise. The present study suggests the importance and urgency of accurately encoding the fine-structure cue in cochlear implants. .

  12. In situ measurements of the fragipan acoustic to seismic coupling signature

    NASA Astrophysics Data System (ADS)

    Howard, Wheeler; Hickey, Craig J.

    2002-05-01

    The phenomena of acoustic to seismic (A/S) coupling, observed and studied since the 1950s, has most recently been used to detect shallow buried objects [Sabatier and Xiang, J. Acoust. Soc. Am. 105, 1383 (1999); 106, 2143 (1999)] and monitor detonation of nuclear weapons [Orcutt, J. Acoust. Soc. Am. 105, 1038 (1999)]. At an air-surface interface airborne acoustic energy is coupled into the ground as seismic energy. The ratio of the seismic and airborne waves constitutes the A/S coupling signature, which is distinctive to the underlying structure. Seismic energy received by a geophone at the interface contains information, via reflected waves, about the underlying subsurface layer, media, and boundaries. Of particular interest in the Mississippi River Valley is the fragipan layer. The fragipan is the layer that directly affects the growth of crops, rate of soil erosion, and rate of water absorption in underlying layers. In this presentation, the A/S coupling signature data taken at an agricultural field station and forward model are discussed.

  13. The benefits of combining acoustic and electric stimulation for the recognition of speech, voice and melodies.

    PubMed

    Dorman, Michael F; Gifford, Rene H; Spahr, Anthony J; McKarns, Sharon A

    2008-01-01

    Fifteen patients fit with a cochlear implant in one ear and a hearing aid in the other ear were presented with tests of speech and melody recognition and voice discrimination under conditions of electric (E) stimulation, acoustic (A) stimulation and combined electric and acoustic stimulation (EAS). When acoustic information was added to electrically stimulated information performance increased by 17-23 percentage points on tests of word and sentence recognition in quiet and sentence recognition in noise. On average, the EAS patients achieved higher scores on CNC words than patients fit with a unilateral cochlear implant. While the best EAS patients did not outperform the best patients fit with a unilateral cochlear implant, proportionally more EAS patients achieved very high scores on tests of speech recognition than unilateral cochlear implant patients. (c) 2007 S. Karger AG, Basel

  14. Combining acoustic and electric stimulation in the service of speech recognition

    PubMed Central

    Dorman, Michael F.; Gifford, Rene H.

    2010-01-01

    The majority of recently implanted, cochlear implant patients can potentially benefit from a hearing aid in the ear contralateral to the implant. When patients combine electric and acoustic stimulation, word recognition in quiet and sentence recognition in noise increase significantly. Several studies suggest that the acoustic information that leads to the increased level of performance resides mostly in the frequency region of the voice fundamental, e.g. 125 Hz for a male voice. Recent studies suggest that this information aids speech recognition in noise by improving the recognition of lexical boundaries or word onsets. In some noise environments, patients with bilateral implants can achieve similar levels of performance as patients who combine electric and acoustic stimulation. Patients who have undergone hearing preservation surgery, and who have electric stimulation from a cochlear implant and who have low-frequency hearing in both the implanted and not-implanted ears, achieve the best performance in a high noise environment. PMID:20874053

  15. Acoustic Signatures of a Model Fan in the NASA-Lewis Anechoic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Dietrich, D. A.; Heidmann, M. F.; Abbott, J. M.

    1977-01-01

    One-third octave band and narrowband spectra and continuous directivity patterns radiated from an inlet are presented over ranges of fan operating conditions, tunnel velocity, and angle of attack. Tunnel flow markedly reduced the unsteadiness and level of the blade passage tone, revealed the cutoff design feature of the blade passage tone, and exposed a lobular directivity pattern for the second harmonic tone. The full effects of tunnel flow are shown to be complete above a tunnel velocity of 20 meters/second. The acoustic signatures are also shown to be strongly affected by fan rotational speed, fan blade loading, and inlet angle of attack.

  16. Structural changes and imaging signatures of acoustically sensitive microcapsules under ultrasound.

    PubMed

    Sridhar-Keralapura, Mallika; Thirumalai, Shruthi; Mobed-Miremadi, Maryam

    2013-07-01

    The ultrasound drug delivery field is actively designing new agents that would obviate the problems of just using microbubbles for drug delivery. Microbubbles have very short circulation time (minutes), low payload and large size (2-10μm), all of these aspects are not ideal for systemic drug delivery. However, microbubble carriers provide excellent image contrast and their use for image guidance can be exploited. In this paper, we suggest an alternative approach by developing acoustically sensitive microcapsule reservoirs that have future applications for treating large ischemic tumors through intratumoral therapy. We call these agents Acoustically Sensitized Microcapsules (ASMs) and these are not planned for the circulation. ASMs are very simple in their formulation, robust and reproducible. They have been designed to offer high payload (because of their large size), be acoustically sensitive and reactive (because of the Ultrasound Contrast Agents (UCAs) encapsulated) and mechanically robust for future injections/implantations within tumors. We describe three different aspects - (1) effect of therapeutic ultrasound; (2) mechanical properties and (3) imaging signatures of these agents. Under therapeutic ultrasound, the formation of a cavitational bubble was seen prior to rupture. The time to rupture was size dependent. Size dependency was also seen when measuring mechanical properties of these ASMs. % Alginate and permeability also affected the Young's modulus estimates. For study of imaging signatures of these agents, we show six schemes. For example, with harmonic imaging, tissue phantoms and controls did not generate higher harmonic components. Only ASM phantoms created a harmonic signal, whose sensitivity increased with applied acoustic pressure. Future work includes developing schemes combining both sonication and imaging to help detect ASMs before, during and after release of drug substance.

  17. A Hybrid Acoustic and Pronunciation Model Adaptation Approach for Non-native Speech Recognition

    NASA Astrophysics Data System (ADS)

    Oh, Yoo Rhee; Kim, Hong Kook

    In this paper, we propose a hybrid model adaptation approach in which pronunciation and acoustic models are adapted by incorporating the pronunciation and acoustic variabilities of non-native speech in order to improve the performance of non-native automatic speech recognition (ASR). Specifically, the proposed hybrid model adaptation can be performed at either the state-tying or triphone-modeling level, depending at which acoustic model adaptation is performed. In both methods, we first analyze the pronunciation variant rules of non-native speakers and then classify each rule as either a pronunciation variant or an acoustic variant. The state-tying level hybrid method then adapts pronunciation models and acoustic models by accommodating the pronunciation variants in the pronunciation dictionary and by clustering the states of triphone acoustic models using the acoustic variants, respectively. On the other hand, the triphone-modeling level hybrid method initially adapts pronunciation models in the same way as in the state-tying level hybrid method; however, for the acoustic model adaptation, the triphone acoustic models are then re-estimated based on the adapted pronunciation models and the states of the re-estimated triphone acoustic models are clustered using the acoustic variants. From the Korean-spoken English speech recognition experiments, it is shown that ASR systems employing the state-tying and triphone-modeling level adaptation methods can relatively reduce the average word error rates (WERs) by 17.1% and 22.1% for non-native speech, respectively, when compared to a baseline ASR system.

  18. Speaker recognition with temporal cues in acoustic and electric hearing

    NASA Astrophysics Data System (ADS)

    Vongphoe, Michael; Zeng, Fan-Gang

    2005-08-01

    Natural spoken language processing includes not only speech recognition but also identification of the speaker's gender, age, emotional, and social status. Our purpose in this study is to evaluate whether temporal cues are sufficient to support both speech and speaker recognition. Ten cochlear-implant and six normal-hearing subjects were presented with vowel tokens spoken by three men, three women, two boys, and two girls. In one condition, the subject was asked to recognize the vowel. In the other condition, the subject was asked to identify the speaker. Extensive training was provided for the speaker recognition task. Normal-hearing subjects achieved nearly perfect performance in both tasks. Cochlear-implant subjects achieved good performance in vowel recognition but poor performance in speaker recognition. The level of the cochlear implant performance was functionally equivalent to normal performance with eight spectral bands for vowel recognition but only to one band for speaker recognition. These results show a disassociation between speech and speaker recognition with primarily temporal cues, highlighting the limitation of current speech processing strategies in cochlear implants. Several methods, including explicit encoding of fundamental frequency and frequency modulation, are proposed to improve speaker recognition for current cochlear implant users.

  19. Speaker recognition with temporal cues in acoustic and electric hearing.

    PubMed

    Vongphoe, Michael; Zeng, Fan-Gang

    2005-08-01

    Natural spoken language processing includes not only speech recognition but also identification of the speaker's gender, age, emotional, and social status. Our purpose in this study is to evaluate whether temporal cues are sufficient to support both speech and speaker recognition. Ten cochlear-implant and six normal-hearing subjects were presented with vowel tokens spoken by three men, three women, two boys, and two girls. In one condition, the subject was asked to recognize the vowel. In the other condition, the subject was asked to identify the speaker. Extensive training was provided for the speaker recognition task. Normal-hearing subjects achieved nearly perfect performance in both tasks. Cochlear-implant subjects achieved good performance in vowel recognition but poor performance in speaker recognition. The level of the cochlear implant performance was functionally equivalent to normal performance with eight spectral bands for vowel recognition but only to one band for speaker recognition. These results show a disassociation between speech and speaker recognition with primarily temporal cues, highlighting the limitation of current speech processing strategies in cochlear implants. Several methods, including explicit encoding of fundamental frequency and frequency modulation, are proposed to improve speaker recognition for current cochlear implant users.

  20. True and False Recognition Memories of Odors Induce Distinct Neural Signatures

    PubMed Central

    Royet, Jean-Pierre; Morin-Audebrand, Léri; Cerf-Ducastel, Barbara; Haase, Lori; Issanchou, Sylvie; Murphy, Claire; Fonlupt, Pierre; Sulmont-Rossé, Claire; Plailly, Jane

    2011-01-01

    Neural bases of human olfactory memory are poorly understood. Very few studies have examined neural substrates associated with correct odor recognition, and none has tackled neural networks associated with incorrect odor recognition. We investigated the neural basis of task performance during a yes–no odor recognition memory paradigm in young and elderly subjects using event-related functional magnetic resonance imaging. We explored four response categories: correct (Hit) and incorrect false alarm (FA) recognition, as well as correct (CR) and incorrect (Miss) rejection, and we characterized corresponding brain responses using multivariate analysis and linear regression analysis. We hypothesized that areas of the medial temporal lobe were differentially involved depending on the accuracy of odor recognition. In young adults, we found that significant activity in the hippocampus and the parahippocampal gyrus was associated with correct (true) recognition of odors, whereas the perirhinal cortex was associated with FAs and Misses. These findings are consistent with literature regarding hypothetical functional organization for memory processing. We also found that for correct recognition and rejection responses, the involvement of the hippocampus decreased when memory performances improved. In contrast to young individuals, elderly subjects were more prone to false memories and exhibited less specific activation patterns for the four response categories. Activation in the hippocampus and the parahippocampal gyrus was positively correlated with response bias scores for true and false recognition, demonstrating that conservative subjects produced an additional search effort leading to more activation of these two medial temporal lobe regions. These findings demonstrate that correct and incorrect recognition and rejection induce distinct neural signatures. PMID:21811450

  1. Mortar and artillery variants classification by exploiting characteristics of the acoustic signature

    NASA Astrophysics Data System (ADS)

    Hohil, Myron E.; Grasing, David; Desai, Sachi; Morcos, Amir

    2007-10-01

    Feature extraction methods based on the discrete wavelet transform and multiresolution analysis facilitate the development of a robust classification algorithm that reliably discriminates mortar and artillery variants via acoustic signals produced during the launch/impact events. Utilizing acoustic sensors to exploit the sound waveform generated from the blast for the identification of mortar and artillery variants. Distinct characteristics arise within the different mortar variants because varying HE mortar payloads and related charges emphasize concussive and shrapnel effects upon impact employing varying magnitude explosions. The different mortar variants are characterized by variations in the resulting waveform of the event. The waveform holds various harmonic properties distinct to a given mortar/artillery variant that through advanced signal processing techniques can employed to classify a given set. The DWT and other readily available signal processing techniques will be used to extract the predominant components of these characteristics from the acoustic signatures at ranges exceeding 2km. Exploiting these techniques will help develop a feature set highly independent of range, providing discrimination based on acoustic elements of the blast wave. Highly reliable discrimination will be achieved with a feed-forward neural network classifier trained on a feature space derived from the distribution of wavelet coefficients, frequency spectrum, and higher frequency details found within different levels of the multiresolution decomposition. The process that will be described herein extends current technologies, which emphasis multi modal sensor fusion suites to provide such situational awareness. A two fold problem of energy consumption and line of sight arise with the multi modal sensor suites. The process described within will exploit the acoustic properties of the event to provide variant classification as added situational awareness to the solider.

  2. Methods and apparatus for non-acoustic speech characterization and recognition

    DOEpatents

    Holzrichter, John F.

    1999-01-01

    By simultaneously recording EM wave reflections and acoustic speech information, the positions and velocities of the speech organs as speech is articulated can be defined for each acoustic speech unit. Well defined time frames and feature vectors describing the speech, to the degree required, can be formed. Such feature vectors can uniquely characterize the speech unit being articulated each time frame. The onset of speech, rejection of external noise, vocalized pitch periods, articulator conditions, accurate timing, the identification of the speaker, acoustic speech unit recognition, and organ mechanical parameters can be determined.

  3. Automatic speech recognition using articulatory features from subject-independent acoustic-to-articulatory inversion

    PubMed Central

    Ghosh, Prasanta Kumar; Narayanan, Shrikanth

    2011-01-01

    An automatic speech recognition approach is presented which uses articulatory features estimated by a subject-independent acoustic-to-articulatory inversion. The inversion allows estimation of articulatory features from any talker’s speech acoustics using only an exemplary subject’s articulatory-to-acoustic map. Results are reported on a broad class phonetic classification experiment on speech from English talkers using data from three distinct English talkers as exemplars for inversion. Results indicate that the inclusion of the articulatory information improves classification accuracy but the improvement is more significant when the speaking style of the exemplar and the talker are matched compared to when they are mismatched. PMID:21974500

  4. Automatic speech recognition using articulatory features from subject-independent acoustic-to-articulatory inversion.

    PubMed

    Ghosh, Prasanta Kumar; Narayanan, Shrikanth

    2011-10-01

    An automatic speech recognition approach is presented which uses articulatory features estimated by a subject-independent acoustic-to-articulatory inversion. The inversion allows estimation of articulatory features from any talker's speech acoustics using only an exemplary subject's articulatory-to-acoustic map. Results are reported on a broad class phonetic classification experiment on speech from English talkers using data from three distinct English talkers as exemplars for inversion. Results indicate that the inclusion of the articulatory information improves classification accuracy but the improvement is more significant when the speaking style of the exemplar and the talker are matched compared to when they are mismatched.

  5. Methods and apparatus for non-acoustic speech characterization and recognition

    SciTech Connect

    Holzrichter, J.F.

    1999-12-21

    By simultaneously recording EM wave reflections and acoustic speech information, the positions and velocities of the speech organs as speech is articulated can be defined for each acoustic speech unit. Well defined time frames and feature vectors describing the speech, to the degree required, can be formed. Such feature vectors can uniquely characterize the speech unit being articulated each time frame. The onset of speech, rejection of external noise, vocalized pitch periods, articulator conditions, accurate timing, the identification of the speaker, acoustic speech unit recognition, and organ mechanical parameters can be determined.

  6. Acoustic hole filling for sparse enrollment data using a cohort universal corpus for speaker recognition.

    PubMed

    Suh, Jun-Won; Hansen, John H L

    2012-02-01

    In this study, the problem of sparse enrollment data for in-set versus out-of-set speaker recognition is addressed. The challenge here is that both the training speaker data (5 s) and test material (2~6 s) is of limited test duration. The limited enrollment data result in a sparse acoustic model space for the desired speaker model. The focus of this study is on filling these acoustic holes by harvesting neighbor speaker information to leverage overall system performance. Acoustically similar speakers are selected from a separate available corpus via three different methods for speaker similarity measurement. The selected data from these similar acoustic speakers are exploited to fill the lack of phone coverage caused by the original sparse enrollment data. The proposed speaker modeling process mimics the naturally distributed acoustic space for conversational speech. The Gaussian mixture model (GMM) tagging process allows simulated natural conversation speech to be included for in-set speaker modeling, which maintains the original system requirement of text independent speaker recognition. A human listener evaluation is also performed to compare machine versus human speaker recognition performance, with machine performance of 95% compared to 72.2% accuracy for human in-set/out-of-set performance. Results show that for extreme sparse train/reference audio streams, human speaker recognition is not nearly as reliable as machine based speaker recognition. The proposed acoustic hole filling solution (MRNC) produces an averaging 7.42% relative improvement over a GMM-Cohort UBM baseline and a 19% relative improvement over the Eigenvoice baseline using the FISHER corpus.

  7. A simulation-based approach towards automatic target recognition of high resolution space borne radar signatures

    NASA Astrophysics Data System (ADS)

    Anglberger, H.; Kempf, T.

    2016-10-01

    Specific imaging effects that are caused mainly by the range measurement principle of a radar device, its much lower frequency range as compared to the optical spectrum, the slanted imaging geometry and certainly the limited spatial resolution complicates the interpretation of radar signatures decisively. Especially the coherent image formation which causes unwanted speckle noise aggravates the problem of visually recognizing target objects. Fully automatic approaches with acceptable false alarm rates are therefore an even harder challenge. At the Microwaves and Radar Institute of the German Aerospace Center (DLR) the development of methods to implement a robust overall processing workflow for automatic target recognition (ATR) out of high resolution synthetic aperture radar (SAR) image data is under progress. The heart of the general approach is to use time series exploitation for the former detection step and simulation-based signature matching for the subsequent recognition. This paper will show the overall ATR chain as a proof of concept for the special case of airplane recognition on image data from the space borne SAR sensor TerraSAR-X.

  8. Effects of the acoustic properties of infant-directed speech on infant word recognition1

    PubMed Central

    Song, Jae Yung; Demuth, Katherine; Morgan, James

    2010-01-01

    A number of studies have examined the acoustic differences between infant-directed speech (IDS) and adult-directed speech, suggesting that the exaggerated acoustic properties of IDS might facilitate infants’ language development. However, there has been little empirical investigation of the acoustic properties that infants use for word learning. The goal of this study was thus to examine how 19-month-olds’ word recognition is affected by three acoustic properties of IDS: slow speaking rate, vowel hyper-articulation, and wide pitch range. Using the intermodal preferential looking procedure, infants were exposed to half of the test stimuli (e.g., Where’s the book?) in typical IDS style. The other half of the stimuli were digitally altered to remove one of the three properties under investigation. After the target word (e.g., book) was spoken, infants’ gaze toward target and distractor referents was measured frame by frame to examine the time course of word recognition. The results showed that slow speaking rate and vowel hyper-articulation significantly improved infants’ ability to recognize words, whereas wide pitch range did not. These findings suggest that 19-month-olds’ word recognition may be affected only by the linguistically relevant acoustic properties in IDS. PMID:20649233

  9. Effects of the acoustic properties of infant-directed speech on infant word recognition.

    PubMed

    Song, Jae Yung; Demuth, Katherine; Morgan, James

    2010-07-01

    A number of studies have examined the acoustic differences between infant-directed speech (IDS) and adult-directed speech, suggesting that the exaggerated acoustic properties of IDS might facilitate infants' language development. However, there has been little empirical investigation of the acoustic properties that infants use for word learning. The goal of this study was thus to examine how 19-month-olds' word recognition is affected by three acoustic properties of IDS: slow speaking rate, vowel hyper-articulation, and wide pitch range. Using the intermodal preferential looking procedure, infants were exposed to half of the test stimuli (e.g., Where's the book?) in typical IDS style. The other half of the stimuli were digitally altered to remove one of the three properties under investigation. After the target word (e.g., book) was spoken, infants' gaze toward target and distractor referents was measured frame by frame to examine the time course of word recognition. The results showed that slow speaking rate and vowel hyper-articulation significantly improved infants' ability to recognize words, whereas wide pitch range did not. These findings suggest that 19-month-olds' word recognition may be affected only by the linguistically relevant acoustic properties in IDS.

  10. What's in a voice? Cues used by dolphins in individual recognition of signature whistles

    NASA Astrophysics Data System (ADS)

    Sayigh, Laela S.; Janik, Vincent M.; Wells, Randall S.

    2005-09-01

    Cues that bottlenose dolphins may use for individual recognition of signature whistles are (1) the individually distinctive frequency modulation patterns of whistles; and (2) voice cues caused by the anatomy of the vocal apparatus. Experiments were designed to determine whether dolphins use either or both of these cues in recognizing whistles. Temporarily held wild dolphins listened to whistles of a close relative and of a known conspecific of the same sex and similar age. To test the hypothesis that dolphins recognize the frequency modulation patterns of whistles, signature whistles were synthesized and all general voice features removed. In playbacks to 14 individuals, dolphins turned significantly more often towards the speaker if they heard the synthetic signature whistle of a close relative than that of another individual. To test the hypothesis that dolphins may also be using voice cues to recognize whistles, natural variant (nonsignature) whistles were played back, which are highly variable in contour. Preliminary analysis of seven playbacks showed no difference in responses to variant whistles of kin versus nonkin. Thus, the frequency modulation pattern of signature whistles alone provides information on the identity of the caller, and voice cues are likely not used by dolphins to identify individuals.

  11. Talker variability effects on vocal emotion recognition in acoustic and simulated electric hearing.

    PubMed

    Luo, Xin

    2016-12-01

    Vocal emotion production varies across talkers. Effects of talker variability (i.e., same talker vs different talkers across trials) on vocal emotion recognition were tested in babble noise and with cochlear implant (CI) simulations in normal-hearing listeners. Results showed significant talker variability effects in noise but not with CI simulations, suggesting that the degree of talker variability effects on vocal emotion recognition may vary with listeners' weighting of acoustic cues for emotions (e.g., pitch and duration) and the availability of these cues in different listening conditions. Vocal emotion recognition significantly improved with higher signal-to-noise ratio and more vocoder channels.

  12. Post-analysis report on Chesapeake Bay data processing. [spectral analysis and recognition computer signature extension

    NASA Technical Reports Server (NTRS)

    Thomson, F.

    1972-01-01

    The additional processing performed on data collected over the Rhode River Test Site and Forestry Site in November 1970 is reported. The techniques and procedures used to obtain the processed results are described. Thermal data collected over three approximately parallel lines of the site were contoured, and the results color coded, for the purpose of delineating important scene constituents and to identify trees attacked by pine bark beetles. Contouring work and histogram preparation are reviewed and the important conclusions from the spectral analysis and recognition computer (SPARC) signature extension work are summarized. The SPARC setup and processing records are presented and recommendations are made for future data collection over the site.

  13. Speech recognition in noise for cochlear implant listeners: Benefits of residual acoustic hearing

    NASA Astrophysics Data System (ADS)

    Turner, Christopher W.; Gantz, Bruce J.; Vidal, Corina; Behrens, Amy; Henry, Belinda A.

    2004-04-01

    The purpose of this study was to explore the potential advantages, both theoretical and applied, of preserving low-frequency acoustic hearing in cochlear implant patients. Several hypotheses are presented that predict that residual low-frequency acoustic hearing along with electric stimulation for high frequencies will provide an advantage over traditional long-electrode cochlear implants for the recognition of speech in competing backgrounds. A simulation experiment in normal-hearing subjects demonstrated a clear advantage for preserving low-frequency residual acoustic hearing for speech recognition in a background of other talkers, but not in steady noise. Three subjects with an implanted ``short-electrode'' cochlear implant and preserved low-frequency acoustic hearing were also tested on speech recognition in the same competing backgrounds and compared to a larger group of traditional cochlear implant users. Each of the three short-electrode subjects performed better than any of the traditional long-electrode implant subjects for speech recognition in a background of other talkers, but not in steady noise, in general agreement with the simulation studies. When compared to a subgroup of traditional implant users matched according to speech recognition ability in quiet, the short-electrode patients showed a 9-dB advantage in the multitalker background. These experiments provide strong preliminary support for retaining residual low-frequency acoustic hearing in cochlear implant patients. The results are consistent with the idea that better perception of voice pitch, which can aid in separating voices in a background of other talkers, was responsible for this advantage.

  14. Acoustic emission and acousto-ultrasonic signature analysis of failure mechanisms in carbon fiber reinforced polymer materials

    NASA Astrophysics Data System (ADS)

    Carey, Shawn Allen

    Fiber reinforced polymer composite materials, particularly carbon (CFRPs), are being used for primary structural applications, particularly in the aerospace and naval industries. Advantages of CFRP materials, compared to traditional materials such as steel and aluminum, include: light weight, high strength to weight ratio, corrosion resistance, and long life expectancy. A concern with CFRPs is that despite quality control during fabrication, the material can contain many hidden internal flaws. These flaws in combination with unseen damage due to fatigue and low velocity impact have led to catastrophic failure of structures and components. Therefore a large amount of research has been conducted regarding nondestructive testing (NDT) and structural health monitoring (SHM) of CFRP materials. The principal objective of this research program was to develop methods to characterize failure mechanisms in CFRP materials used by the U.S. Army using acoustic emission (AE) and/or acousto-ultrasonic (AU) data. Failure mechanisms addressed include fiber breakage, matrix cracking, and delamination due to shear between layers. CFRP specimens were fabricated and tested in uniaxial tension to obtain AE and AU data. The specimens were designed with carbon fibers in different orientations to produce the different failure mechanisms. Some specimens were impacted with a blunt indenter prior to testing to simulate low-velocity impact. A signature analysis program was developed to characterize the AE data based on data examination using visual pattern recognition techniques. It was determined that it was important to characterize the AE event , using the location of the event as a parameter, rather than just the AE hit (signal recorded by an AE sensor). A back propagation neural network was also trained based on the results of the signature analysis program. Damage observed on the specimens visually with the aid of a scanning electron microscope agreed with the damage type assigned by the

  15. [Acoustic recognition of emotions and musical perceptive abilities in young deaf person].

    PubMed

    Fiol, L; Rousteau, G

    2012-01-01

    What influence does being deaf have on the ability to recognise emotions in other people? What perceptive abilities can be found in deaf people that are based on the acoustic recognition of emotions? Studies concerning the most useful acoustic clues in the recognition of emotions remain scarce. Beyond the uttered words, emotions are perceptible through the music of speech i.e. its words, its parameters (namely the intensity), the pitch and the timbre or colour of a sound, as well as its rhythm. The protocol of assessment developed in this study shows evidence of a correlation between the recognition of fundamental emotions and the perceptive musical abilities of deaf patients. This concept is relevant when regarding any deaf patient; irrespective of hearing aid type or re-education method.

  16. An acoustic range for the measurement of the noise signature of aircraft during flyby operations

    NASA Technical Reports Server (NTRS)

    Hilton, D. A.; Henderson, H. R.

    1978-01-01

    The remotely operated multiple array acoustic range (ROMAAR), which has been developed to give direct measurement and display of aircraft noise in several measurement units during takeoff, landing, and flyby operations, is described. The ROMAAR, which provides information on the ground noise signature of aircraft, represents a unique combination of state-of-the-art digital and analog noise-recording methods, computer-controlled digital communication methods, radar tracking facilities, quick-look weather (profile) capabilities, and sophisticated data handling routines and facilities. The ROMAAR, which is operated by NASA, allows direct data feedback to the NASA Aircraft Noise Prediction Office. As many as 38 simultaneous noise measurements can be made for each aircraft overflight.

  17. Statistical analysis of infrasound signatures in airglow observations: Indications for acoustic resonance

    NASA Astrophysics Data System (ADS)

    Pilger, Christoph; Schmidt, Carsten; Bittner, Michael

    2013-02-01

    The detection of infrasonic signals in temperature time series of the mesopause altitude region (at about 80-100 km) is performed at the German Remote Sensing Data Center of the German Aerospace Center (DLR-DFD) using GRIPS instrumentation (GRound-based Infrared P-branch Spectrometers). Mesopause temperature values with a temporal resolution of up to 10 s are derived from the observation of nocturnal airglow emissions and permit the identification of signals within the long-period infrasound range.Spectral intensities of wave signatures with periods between 2.5 and 10 min are estimated applying the wavelet analysis technique to one minute mean temperature values. Selected events as well as the statistical distribution of 40 months of observation are presented and discussed with respect to resonant modes of the atmosphere. The mechanism of acoustic resonance generated by strong infrasonic sources is a potential explanation of distinct features with periods between 3 and 5 min observed in the dataset.

  18. Individual MHCI-Restricted T-Cell Receptors are Characterized by a Unique Peptide Recognition Signature.

    PubMed

    Wooldridge, Linda

    2013-01-01

    Effective immunity requires that a limited TCR repertoire is able to recognize a vast number of foreign peptide-MHCI (peptide-major histocompatibility complex class I) molecules. This challenge is overcome by the ability of individual TCRs to recognize large numbers of peptides. Recently, it was demonstrated that MHCI-restricted TCRs can recognize up to 10(6) peptides of a defined length. Astonishingly, this remarkable level of promiscuity does not extend to peptides of different lengths, a fundamental observation that has broad implications for CD8(+) T-cell immunity. In particular, the findings suggest that effective immunity can only be achieved by mobilization of "length-matched" CD8(+) T-cell clonotypes. Overall, recent findings suggest that every TCR is specific for a unique set of peptides, which can be described as a unique "peptide recognition signature" (PRS) and consists of three components: (1) peptide length preference, (2) number of peptides recognized; and, (3) sequence identity (e.g., self versus pathogen derived). In future, the ability to de-convolute peptide recognition signatures across the normal and pathogenic repertoire will be essential for understanding the system requirements for effective CD8(+) T-cell immunity and elucidating mechanisms which underlie CD8(+) T-cell mediated disease.

  19. Segment-based acoustic models for continuous speech recognition

    NASA Astrophysics Data System (ADS)

    Ostendorf, Mari; Rohlicek, J. R.

    1993-07-01

    This research aims to develop new and more accurate stochastic models for speaker-independent continuous speech recognition, by extending previous work in segment-based modeling and by introducing a new hierarchical approach to representing intra-utterance statistical dependencies. These techniques, which are more costly than traditional approaches because of the large search space associated with higher order models, are made feasible through rescoring a set of HMM-generated N-best sentence hypotheses. We expect these different modeling techniques to result in improved recognition performance over that achieved by current systems, which handle only frame-based observations and assume that these observations are independent given an underlying state sequence. In the fourth quarter of the project, we have completed the following: (1) ported our recognition system to the Wall Street Journal task, a standard task in the ARPA community; (2) developed an initial dependency-tree model of intra-utterance observation correlation; and (3) implemented baseline language model estimation software. Our initial results on the Wall Street Journal task are quite good and represent significantly improved performance over most HMM systems reporting on the Nov. 1992 5k vocabulary test set.

  20. [Recognition of vocal expression of emotion and its acoustic attributes].

    PubMed

    Shigeno, Sumi

    2004-02-01

    The vocal expression of emotion was examined with both an auditory experiment and objective acoustic analyses. In the auditory experiment the stimuli were words or short sentences with six basic emotions expressed by two actors. Forty-five undergraduate and graduate students participated in the experiment. The results showed that the vocal expression of emotion was strongly identified, except in the case of fear, and that the six basic emotions could be plotted in a psychological space with two dimensions calculated from multidimensional scaling. The plot formed a roughly circular surface, with locations very similar to those of the facial expressions. One dimension was considered to represent the element of pleasantness-unpleasantness. The actors voices were then acoustically analyzed. The results suggested that the mean fundamental frequency (F0), the standard deviation (SD) of F0, and the SD of the energy are the important factors that define the characteristics of the vocal expression of emotions. To determine the most important parameter(s) and explain the two dimensions of the psychological space, canonical correlation analysis was conducted. The analysis indicated that F0 was correlated with the pleasantness-unpleasantness dimension.

  1. Implementation of algorithms to discriminate chemical/biological airbursts from high explosive airbursts utilizing acoustic signatures

    NASA Astrophysics Data System (ADS)

    Hohil, Myron E.; Desai, Sachi; Morcos, Amir

    2006-05-01

    The Army is currently developing acoustic sensor systems that will provide extended range surveillance, detection, and identification for force protection and tactical security. A network of such sensors remotely deployed in conjunction with a central processing node (or gateway) will provide early warning and assessment of enemy threats, near real-time situational awareness to commanders, and may reduce potential hazards to the soldier. In contrast, the current detection of chemical/biological (CB) agents expelled into a battlefield environment is limited to the response of chemical sensors that must be located within close proximity to the CB agent. Since chemical sensors detect hazardous agents through contact, the sensor range to an airburst is the key-limiting factor in identifying a potential CB weapon attack. The associated sensor reporting latencies must be minimized to give sufficient preparation time to field commanders, who must assess if an attack is about to occur, has occurred, or if occurred, the type of agent that soldiers might be exposed to. The long-range propagation of acoustic blast waves from heavy artillery blasts, which are typical in a battlefield environment, introduces a feature for using acoustics and other sensor suite technologies for the early detection and identification of CB threats. Employing disparate sensor technologies implies that warning of a potential CB attack can be provided to the solider more rapidly and from a safer distance when compared to current conventional methods. Distinct characteristics arise within the different airburst signatures because High Explosive (HE) warheads emphasize concussive and shrapnel effects, while chemical/biological warheads are designed to disperse their contents over immense areas, therefore utilizing a slower burning, less intensive explosion to mix and distribute their contents. Highly reliable discrimination (100%) has been demonstrated at the Portable Area Warning Surveillance System

  2. Pattern recognition and tomography using crosswell acoustic data

    SciTech Connect

    Albright, J.N.; Terry, D.A.; Bradley, C.R.

    1985-01-01

    Measurements of the travel time of acoustic signals transmitted between wells at the Department of Energy Multi-Well Experiment site (MWX) near Rifle, Colorado, are processed and analyzed. Interpretations relevant to sand geometry and continuity have proved possible through inspection of the signal travel time plotted against the coordinates of transmitter and receiver wellbore positions, or against the depth of receiver and ray path inclination. The continuity of several sands between wells is corroborated. A major lenticular sand terminating between wells could be inferred. To explore the possible distortions in tomographic images derived from crosswell data, synthetic tomographs are constructed from computed travel times of signals transmitted through idealized models from stratigraphy thought to be present at the MWX site. The synthetic tomographs, although preserving the general character of the model stratigraphy, are distorted enough that detailed interpretations are not possible. Horizontal distortions predominate in reconstructions of flat-lying stratigraphy. 7 refs., 9 figs.

  3. Paternal signature in kin recognition cues of a social insect: concealed in juveniles, revealed in adults.

    PubMed

    Wong, Janine W Y; Meunier, Joël; Lucas, Christophe; Kölliker, Mathias

    2014-10-22

    Kin recognition is a key mechanism to direct social behaviours towards related individuals or avoid inbreeding depression. In insects, recognition is generally mediated by cuticular hydrocarbon (CHC) compounds, which are partly inherited from parents. However, in social insects, potential nepotistic conflicts between group members from different patrilines are predicted to select against the expression of patriline-specific signatures in CHC profiles. Whereas this key prediction in the evolution of insect signalling received empirical support in eusocial insects, it remains unclear whether it can be generalized beyond eusociality to less-derived forms of social life. Here, we addressed this issue by manipulating the number of fathers siring clutches tended by females of the European earwig, Forficula auricularia, analysing the CHC profiles of the resulting juvenile and adult offspring, and using discriminant analysis to estimate the information content of CHC with respect to the maternal and paternal origin of individuals. As predicted, if paternally inherited cues are concealed during family life, increases in mating number had no effect on information content of CHC profiles among earwig juveniles, but significantly decreased the one among adult offspring. We suggest that age-dependent expression of patriline-specific cues evolved to limit the risks of nepotism as family-living juveniles and favour sibling-mating avoidance as group-living adults. These results highlight the role of parental care and social life in the evolution of chemical communication and recognition cues.

  4. Recognition test for an open set of talkers represented by their acoustic parameters

    NASA Astrophysics Data System (ADS)

    Federico, A.; Ibba, G.; Paoloni, A.; Ragona, R.

    1981-03-01

    A method based on a precise statistical formulation is presented which allows the use of a limited set of acoustic parameters for the recognition of the speaker in an open test. A number of speech realizations are collected for a group of different speakers. A second collection is made of utterances to be compared with the known speakers. In the general case a new utterance may not belong to any of the talkers referred to the test. Error of false identification and rejection is estimated as a measure of procedure effectiveness. Some considerations are made about the feasibility of the proposed method in the field practice of speaker recognition.

  5. An acoustic basis for maternal recognition in timber wolves (Canis lupus)?

    PubMed

    Goldman, J A; Phillips, D P; Fentress, J C

    1995-03-01

    An in-den recording system was used to monitor the vocalizations and behavior of adult wolves tending to a litter of pups during the first five postnatal weeks. Two female adults, one of them the mother, tended to the pups on nonoverlapping schedules. The distributions of the fundamental frequencies of the adults' squeak vocalizations were largely nonoverlapping, suggesting that this feature may be available as an acoustic cue to individual recognition. Squeaks emitted outside the den, and which were associated with pup exit responses, had fundamental frequencies wholly within the range of the mother's, raising the possibility that the pups used this as a cue for maternal recognition.

  6. What parameters can be used for individual acoustic recognition by the greater flamingo?

    PubMed

    Mathevon, N

    1996-01-01

    The greater flamingo Phoenicopterus ruber is a colonial bird for which acoustic communication plays a great role, in particular during the mating period. The study of contact calls emitted by the adults allow enables identification of some acoustic parameters which may be used for individual recognition. It appears that the frequential values of the harmonics, the distribution of energy in the spectrum as well as beats (mimicking amplitude modulations) are susceptible to represent individual markers. On the contrary, the coding of the individual identity does not depend on frequency modulation since this latter is practically lacking. These results are remarkably similar to those obtained from another colonial bird species, the emperor penguin Aptenodytes forsteri, and may correspond to signal adaptations to special acoustic constraints of the colonial way of life.

  7. Detection of Delamination in Composite Beams Using Broadband Acoustic Emission Signatures

    NASA Technical Reports Server (NTRS)

    Okafor, A. C.; Chandrashekhara, K.; Jiang, Y. P.

    1996-01-01

    Delamination in composite structure may be caused by imperfections introduced during the manufacturing process or by impact loads by foreign objects during the operational life. There are some nondestructive evaluation methods to detect delamination in composite structures such as x-radiography, ultrasonic testing, and thermal/infrared inspection. These methods are expensive and hard to use for on line detection. Acoustic emission testing can monitor the material under test even under the presence of noise generated under load. It has been used extensively in proof-testing of fiberglass pressure vessels and beams. In the present work, experimental studies are conducted to investigate the use of broadband acoustic emission signatures to detect delaminations in composite beams. Glass/epoxy beam specimens with full width, prescribed delamination sizes of 2 inches and 4 inches are investigated. The prescribed delamination is produced by inserting Teflon film between laminae during the fabrication of composite laminate. The objectives of this research is to develop a method for predicting delamination size and location in laminated composite beams by combining smart materials concept and broadband AE analysis techniques. More specifically, a piezoceramic (PZT) patch is bonded on the surface of composite beams and used as a pulser. The piezoceramic patch simulates the AE wave source as a 3 cycles, 50KHz, burst sine wave. One broadband AE sensor is fixed near the PZT patch to measure the AE wave near the AE source. A second broadband AE sensor, which is used as a receiver, is scanned along the composite beams at 0.25 inch step to measure propagation of AE wave along the composite beams. The acquired AE waveform is digitized and processed. Signal strength, signal energy, cross-correlation of AE waveforms, and tracking of specific cycle of AE waveforms are used to detect delamination size and location.

  8. Auditory emotion recognition impairments in schizophrenia: relationship to acoustic features and cognition.

    PubMed

    Gold, Rinat; Butler, Pamela; Revheim, Nadine; Leitman, David I; Hansen, John A; Gur, Ruben C; Kantrowitz, Joshua T; Laukka, Petri; Juslin, Patrik N; Silipo, Gail S; Javitt, Daniel C

    2012-04-01

    Schizophrenia is associated with deficits in the ability to perceive emotion based on tone of voice. The basis for this deficit remains unclear, however, and relevant assessment batteries remain limited. The authors evaluated performance in schizophrenia on a novel voice emotion recognition battery with well-characterized physical features, relative to impairments in more general emotional and cognitive functioning. The authors studied a primary sample of 92 patients and 73 comparison subjects. Stimuli were characterized according to both intended emotion and acoustic features (e.g., pitch, intensity) that contributed to the emotional percept. Parallel measures of visual emotion recognition, pitch perception, general cognition, and overall outcome were obtained. More limited measures were obtained in an independent replication sample of 36 patients, 31 age-matched comparison subjects, and 188 general comparison subjects. Patients showed statistically significant large-effect-size deficits in voice emotion recognition (d=1.1) and were preferentially impaired in recognition of emotion based on pitch features but not intensity features. Emotion recognition deficits were significantly correlated with pitch perception impairments both across (r=0.56) and within (r=0.47) groups. Path analysis showed both sensory-specific and general cognitive contributions to auditory emotion recognition deficits in schizophrenia. Similar patterns of results were observed in the replication sample. The results demonstrate that patients with schizophrenia show a significant deficit in the ability to recognize emotion based on tone of voice and that this deficit is related to impairment in detecting the underlying acoustic features, such as change in pitch, required for auditory emotion recognition. This study provides tools for, and highlights the need for, greater attention to physical features of stimuli used in studying social cognition in neuropsychiatric disorders.

  9. Illumination analysis of the digital pattern recognition system by Bessel masks and one-dimensional signatures

    NASA Astrophysics Data System (ADS)

    Solorza, S.; Álvarez-Borrego, J.

    2013-11-01

    The effects of illumination variations in digital images are a trend topic of the pattern recognition field. The luminance information of the objects help to classify them, however the environment illumination could cause a lot of problem if the system is not illumination invariant. Some applications of this topic include image and video quality, biometrics classification, etc. In this work an illumination analysis for a digital system invariant to position and rotation based on Fourier transform, Bessel masks, one-dimensional signatures and linear correlations are presented. The digital system was tested using a reference database of 21 fossil diatoms images of gray-scale and 307 x 307 pixels. The digital system has shown an excellent performance in the classification of 60,480 problem images which have different non-homogeneous illumination.

  10. Automatic and real time recognition of microalgae by means of pigment signature and shape.

    PubMed

    Coltelli, Primo; Barsanti, Laura; Evangelista, Valtere; Frassanito, Anna Maria; Passarelli, Vincenzo; Gualtieri, Paolo

    2013-07-01

    Microalgae are unicellular photoautotrophic organisms that grow in any habitat such as fresh and salt water bodies, hot springs, ice, air, and in or on other organisms and substrates. Massive growth of microalgae may produce harmful effects on the marine and freshwater ecological environment and fishery resources. Therefore, rapid and accurate recognition and classification of microalgae is one of the most important issues in water resource management. In this paper, a new methodology for automatic and real time identification of microalgae by means of microscopy image analysis is presented. This methodology is based on segmentation, shape features extraction, and characteristic colour (i.e. pigment signature) determination. A classifier algorithm based on the minimum distance criterion was used for microalgae grouping according to the measured features. 96.6% accuracy from a set of 3423 images of 24 different microalgae representing the major algal phyla was achieved by this methodology.

  11. Speech Recognition and Acoustic Features in Combined Electric and Acoustic Stimulation

    ERIC Educational Resources Information Center

    Yoon, Yang-soo; Li, Yongxin; Fu, Qian-Jie

    2012-01-01

    Purpose: In this study, the authors aimed to identify speech information processed by a hearing aid (HA) that is additive to information processed by a cochlear implant (CI) as a function of signal-to-noise ratio (SNR). Method: Speech recognition was measured with CI alone, HA alone, and CI + HA. Ten participants were separated into 2 groups; good…

  12. Speech Recognition and Acoustic Features in Combined Electric and Acoustic Stimulation

    ERIC Educational Resources Information Center

    Yoon, Yang-soo; Li, Yongxin; Fu, Qian-Jie

    2012-01-01

    Purpose: In this study, the authors aimed to identify speech information processed by a hearing aid (HA) that is additive to information processed by a cochlear implant (CI) as a function of signal-to-noise ratio (SNR). Method: Speech recognition was measured with CI alone, HA alone, and CI + HA. Ten participants were separated into 2 groups; good…

  13. Optimal design and evaluation criteria for acoustic emission pulse signature analysis

    NASA Technical Reports Server (NTRS)

    Houghton, J. R.; Townsend, M. A.; Packman, P. F.

    1977-01-01

    Successful pulse recording and evaluation is strongly dependent on the instrumentation system selected and the method of analyzing the pulse signature. The paper studies system design, signal analysis techniques, and interdependences with a view toward defining optimal approaches to pulse signal analysis. For this purpose, the instrumentation system is modeled, and analytical pulses, representative of the types of acoustic emissions to be distinguished are passed through the system. Particular attention is given to comparing frequency spectrum analysis and deconvolution referred to as time domain reconstruction of the pulse or pulse train. The possibility of optimal transducer-filter system parameters is investigated. Deconvolution of a pulse is shown to be a superior approach for transient pulse analysis. Reshaping of a transducer output back to the original input pulse is possible and gives an accurate representation of the generating pulse in the time domain. Any definable transducer and filter system can be used for measurement of pulses by means of the deconvolution method. Selection of design variables for general usage is discussed.

  14. Optimal design and evaluation criteria for acoustic emission pulse signature analysis

    NASA Technical Reports Server (NTRS)

    Houghton, J. R.; Townsend, M. A.; Packman, P. F.

    1977-01-01

    Successful pulse recording and evaluation is strongly dependent on the instrumentation system selected and the method of analyzing the pulse signature. The paper studies system design, signal analysis techniques, and interdependences with a view toward defining optimal approaches to pulse signal analysis. For this purpose, the instrumentation system is modeled, and analytical pulses, representative of the types of acoustic emissions to be distinguished are passed through the system. Particular attention is given to comparing frequency spectrum analysis and deconvolution referred to as time domain reconstruction of the pulse or pulse train. The possibility of optimal transducer-filter system parameters is investigated. Deconvolution of a pulse is shown to be a superior approach for transient pulse analysis. Reshaping of a transducer output back to the original input pulse is possible and gives an accurate representation of the generating pulse in the time domain. Any definable transducer and filter system can be used for measurement of pulses by means of the deconvolution method. Selection of design variables for general usage is discussed.

  15. Health sensor for human body by using infrared, acoustic energy and magnetic signature

    NASA Astrophysics Data System (ADS)

    Wu, Jerry

    2013-05-01

    There is a general chain of events that applies to infections. Human body infection could causes by many different types of bacteria and virus in different areas or organ systems. In general, doctor can't find out the right solution/treatment for infections unless some certain types of bacteria or virus are detected. These detecting processes, usually, take few days to one week to accomplish. However, some infections of the body may not be able to detect at first round and the patient may lose the timing to receive the proper treatment. In this works, we base on Chi's theory which is an invisible circulation system existed inside the body and propose a novel health sensor which summarizes human's infrared, acoustic energy and magnetic signature and find out, in minutes, the most possible area or organ system that cause the infection just like what Chi-Kung master can accomplish. Therefore, the detection process by doctor will be shortened and it raises the possibility to give the proper treatment to the patient in the earliest timing.

  16. Individual MHCI-Restricted T-Cell Receptors are Characterized by a Unique Peptide Recognition Signature

    PubMed Central

    Wooldridge, Linda

    2013-01-01

    Effective immunity requires that a limited TCR repertoire is able to recognize a vast number of foreign peptide-MHCI (peptide-major histocompatibility complex class I) molecules. This challenge is overcome by the ability of individual TCRs to recognize large numbers of peptides. Recently, it was demonstrated that MHCI-restricted TCRs can recognize up to 106 peptides of a defined length. Astonishingly, this remarkable level of promiscuity does not extend to peptides of different lengths, a fundamental observation that has broad implications for CD8+ T-cell immunity. In particular, the findings suggest that effective immunity can only be achieved by mobilization of “length-matched” CD8+ T-cell clonotypes. Overall, recent findings suggest that every TCR is specific for a unique set of peptides, which can be described as a unique “peptide recognition signature” (PRS) and consists of three components: (1) peptide length preference, (2) number of peptides recognized; and, (3) sequence identity (e.g., self versus pathogen derived). In future, the ability to de-convolute peptide recognition signatures across the normal and pathogenic repertoire will be essential for understanding the system requirements for effective CD8+ T-cell immunity and elucidating mechanisms which underlie CD8+ T-cell mediated disease. PMID:23888160

  17. On the acoustic signature of tandem airfoils: The sound of an elastic airfoil in the wake of a vortex generator

    NASA Astrophysics Data System (ADS)

    Manela, A.

    2016-07-01

    The acoustic signature of an acoustically compact tandem airfoil setup in uniform high-Reynolds number flow is investigated. The upstream airfoil is considered rigid and is actuated at its leading edge with small-amplitude harmonic pitching motion. The downstream airfoil is taken passive and elastic, with its motion forced by the vortex-street excitation of the upstream airfoil. The non-linear near-field description is obtained via potential thin-airfoil theory. It is then applied as a source term into the Powell-Howe acoustic analogy to yield the far-field dipole radiation of the system. To assess the effect of downstream-airfoil elasticity, results are compared with counterpart calculations for a non-elastic setup, where the downstream airfoil is rigid and stationary. Depending on the separation distance between airfoils, airfoil-motion and airfoil-wake dynamics shift between in-phase (synchronized) and counter-phase behaviors. Consequently, downstream airfoil elasticity may act to amplify or suppress sound through the direct contribution of elastic-airfoil motion to the total signal. Resonance-type motion of the elastic airfoil is found when the upstream airfoil is actuated at the least stable eigenfrequency of the downstream structure. This, again, results in system sound amplification or suppression, depending on the separation distance between airfoils. With increasing actuation frequency, the acoustic signal becomes dominated by the direct contribution of the upstream airfoil motion, whereas the relative contribution of the elastic airfoil to the total signature turns negligible.

  18. On the acoustic signature of tandem airfoils: The sound of an elastic airfoil in the wake of a vortex generator

    SciTech Connect

    Manela, A.

    2016-07-15

    The acoustic signature of an acoustically compact tandem airfoil setup in uniform high-Reynolds number flow is investigated. The upstream airfoil is considered rigid and is actuated at its leading edge with small-amplitude harmonic pitching motion. The downstream airfoil is taken passive and elastic, with its motion forced by the vortex-street excitation of the upstream airfoil. The non-linear near-field description is obtained via potential thin-airfoil theory. It is then applied as a source term into the Powell-Howe acoustic analogy to yield the far-field dipole radiation of the system. To assess the effect of downstream-airfoil elasticity, results are compared with counterpart calculations for a non-elastic setup, where the downstream airfoil is rigid and stationary. Depending on the separation distance between airfoils, airfoil-motion and airfoil-wake dynamics shift between in-phase (synchronized) and counter-phase behaviors. Consequently, downstream airfoil elasticity may act to amplify or suppress sound through the direct contribution of elastic-airfoil motion to the total signal. Resonance-type motion of the elastic airfoil is found when the upstream airfoil is actuated at the least stable eigenfrequency of the downstream structure. This, again, results in system sound amplification or suppression, depending on the separation distance between airfoils. With increasing actuation frequency, the acoustic signal becomes dominated by the direct contribution of the upstream airfoil motion, whereas the relative contribution of the elastic airfoil to the total signature turns negligible.

  19. Neuronal precision and the limits for acoustic signal recognition in a small neuronal network.

    PubMed

    Neuhofer, Daniela; Stemmler, Martin; Ronacher, Bernhard

    2011-03-01

    Recognition of acoustic signals may be impeded by two factors: extrinsic noise, which degrades sounds before they arrive at the receiver's ears, and intrinsic neuronal noise, which reveals itself in the trial-to-trial variability of the responses to identical sounds. Here we analyzed how these two noise sources affect the recognition of acoustic signals from potential mates in grasshoppers. By progressively corrupting the envelope of a female song, we determined the critical degradation level at which males failed to recognize a courtship call in behavioral experiments. Using the same stimuli, we recorded intracellularly from auditory neurons at three different processing levels, and quantified the corresponding changes in spike train patterns by a spike train metric, which assigns a distance between spike trains. Unexpectedly, for most neurons, intrinsic variability accounted for the main part of the metric distance between spike trains, even at the strongest degradation levels. At consecutive levels of processing, intrinsic variability increased, while the sensitivity to external noise decreased. We followed two approaches to determine critical degradation levels from spike train dissimilarities, and compared the results with the limits of signal recognition measured in behaving animals.

  20. Advanced vapor recognition materials for selective and fast responsive surface acoustic wave sensors: a review.

    PubMed

    Afzal, Adeel; Iqbal, Naseer; Mujahid, Adnan; Schirhagl, Romana

    2013-07-17

    The necessity of selectively detecting various organic vapors is primitive not only with respect to regular environmental and industrial hazard monitoring, but also in detecting explosives to combat terrorism and for defense applications. Today, the huge arsenal of micro-sensors has revolutionized the traditional methods of analysis by, e.g. replacing expensive laboratory equipment, and has made the remote screening of atmospheric threats possible. Surface acoustic wave (SAW) sensors - based on piezoelectric crystal resonators - are extremely sensitive to even very small perturbations in the external atmosphere, because the energy associated with the acoustic waves is confined to the crystal surface. Combined with suitably designed molecular recognition materials SAW devices could develop into highly selective and fast responsive miniaturized sensors, which are capable of continuously monitoring a specific organic gas, preferably in the sub-ppm regime. For this purpose, different types of recognition layers ranging from nanostructured metal oxides and carbons to pristine or molecularly imprinted polymers and self-assembled monolayers have been applied in the past decade. We present a critical review of the recent developments in nano- and micro-engineered synthetic recognition materials predominantly used for SAW-based organic vapor sensors. Besides highlighting their potential to realize real-time vapor sensing, their limitations and future perspectives are also discussed.

  1. Speech Recognition and Acoustic Features in Combined Electric and Acoustic Stimulation

    PubMed Central

    Yoon, Yang-soo; Li, Yongxin; Fu, Qian-Jie

    2011-01-01

    Purpose This study aimed to identify speech information processed by a hearing aid (HA) that is additive to information processed by a cochlear implant (CI) as a function of signal-to-noise ratio (SNR). Method Speech recognition was measured with CI alone, HA alone, and CI+HA. Ten participants were separated into two groups; good (aided pure-tone average (PTA) < 55 dB) and poor (aided PTA ≥ 55 dB) at audiometric frequencies ≤ 1 kHz in HA. Results Results showed that the good aided PTA group derived a clear bimodal benefit (performance difference between CI+HA and CI alone) for vowel and sentence recognition in noise while the poor aided PTA group received little benefit across speech tests and SNRs. Results also showed that a better aided PTA helped in processing cues embedded in both low and high frequencies; none of these cues were significantly perceived by the poor aided PTA group. Conclusions The aided PTA is an important indicator for bimodal advantage in speech perception. The lack of bimodal benefits in the poor group may be attributed to the non-optimal HA fitting. Bimodal listening provides a synergistic effect for cues in both low and high frequency components in speech. PMID:22199183

  2. Auditory emotion recognition impairments in Schizophrenia: Relationship to acoustic features and cognition

    PubMed Central

    Gold, Rinat; Butler, Pamela; Revheim, Nadine; Leitman, David; Hansen, John A.; Gur, Ruben; Kantrowitz, Joshua T.; Laukka, Petri; Juslin, Patrik N.; Silipo, Gail S.; Javitt, Daniel C.

    2013-01-01

    Objective Schizophrenia is associated with deficits in ability to perceive emotion based upon tone of voice. The basis for this deficit, however, remains unclear and assessment batteries remain limited. We evaluated performance in schizophrenia on a novel voice emotion recognition battery with well characterized physical features, relative to impairments in more general emotional and cognitive function. Methods We studied in a primary sample of 92 patients relative to 73 controls. Stimuli were characterized according to both intended emotion and physical features (e.g., pitch, intensity) that contributed to the emotional percept. Parallel measures of visual emotion recognition, pitch perception, general cognition, and overall outcome were obtained. More limited measures were obtained in an independent replication sample of 36 patients, 31 age-matched controls, and 188 general comparison subjects. Results Patients showed significant, large effect size deficits in voice emotion recognition (F=25.4, p<.00001, d=1.1), and were preferentially impaired in recognition of emotion based upon pitch-, but not intensity-features (group X feature interaction: F=7.79, p=.006). Emotion recognition deficits were significantly correlated with pitch perception impairments both across (r=56, p<.0001) and within (r=.47, p<.0001) group. Path analysis showed both sensory-specific and general cognitive contributions to auditory emotion recognition deficits in schizophrenia. Similar patterns of results were observed in the replication sample. Conclusions The present study demonstrates impairments in auditory emotion recognition in schizophrenia relative to acoustic features of underlying stimuli. Furthermore, it provides tools and highlights the need for greater attention to physical features of stimuli used for study of social cognition in neuropsychiatric disorders. PMID:22362394

  3. Investigation of the ocean acoustic signatures from strong explosions at a long distance in the ocean sound channel by computer simulation

    SciTech Connect

    Kamegai, M.; White, J.W.; Clarke, D.B.

    1994-05-01

    The principal objective of the non-proliferation program is to discourage clandestine testing of nuclear explosives by maintaining an effective global surveillance system. The methods of detection include underwater and atmospheric acoustics, seismology and atmospheric photometry. The goals of the underwater acoustics are the identification and location of ocean acoustic signatures. The investigation is directed toward obtaining t quantitative correlation between the initial explosion source under various conditions and the final acoustical signatures received at a great distance for different paths. By computer simulations, we calculated the energy coupling and dissipation in the water and studied the signature patterns. In this paper, we report preliminary results of the study on the signals from 1 kt explosions after the signals have propagated a significant distance in the SOFAR channel. The third step in the model has not yet been addressed.

  4. Pattern recognition techniques applied to acoustic detection of liquid-metal fast breeder reactor cooling defects

    SciTech Connect

    Brunet, M.; Dubuisson, B.

    1983-08-01

    In the event of a partial or total blockage of a liquid-metal fast breeder reactor core subassembly, a boiling zone may be created. Acoustic signals from such a zone could provide a means of early detection of accident conditions. A three-step method, based on pattern recognition techniques, is described and used to analyze data from three experiments that simulate core cooling fault conditions. This method is shown to be capable of detecting the abnormal situation in each of the experiments analyzed.

  5. An Energy Signature Scheme for Steam Trap Assessment and Flow Rate Estimation Using Pipe-Induced Acoustic Measurements

    SciTech Connect

    Olama, Mohammed M; Allgood, Glenn O; Kuruganti, Phani Teja; Lake, Joe E

    2012-01-01

    The US Congress has passed legislation dictating that all government agencies establish a plan and process for improving energy efficiencies at their sites. In response to this legislation, Oak Ridge National Laboratory (ORNL) has recently conducted a pilot study to explore the deployment of a wireless sensor system for a real-time measurement-based energy efficiency optimization framework within the steam distribution system within the ORNL campus. We make assessments on the real-time status of the distribution system by observing the state measurements of acoustic sensors mounted on the steam pipes/traps/valves. In this paper, we describe a spectral-based energy signature scheme that interprets acoustic vibration sensor data to estimate steam flow rates and assess steam traps health status. Experimental results show that the energy signature scheme has the potential to identify different steam trap health status and it has sufficient sensitivity to estimate steam flow rate. Moreover, results indicate a nearly quadratic relationship over the test region between the overall energy signature factor and flow rate in the pipe. The analysis based on estimated steam flow and steam trap status helps generate alerts that enable operators and maintenance personnel to take remedial action. The goal is to achieve significant energy-saving in steam lines by monitoring and acting on leaking steam pipes/traps/valves.

  6. Problems Associated with Statistical Pattern Recognition of Acoustic Emission Signals in a Compact Tension Fatigue Specimen

    NASA Technical Reports Server (NTRS)

    Hinton, Yolanda L.

    1999-01-01

    Acoustic emission (AE) data were acquired during fatigue testing of an aluminum 2024-T4 compact tension specimen using a commercially available AE system. AE signals from crack extension were identified and separated from noise spikes, signals that reflected from the specimen edges, and signals that saturated the instrumentation. A commercially available software package was used to train a statistical pattern recognition system to classify the signals. The software trained a network to recognize signals with a 91-percent accuracy when compared with the researcher's interpretation of the data. Reasons for the discrepancies are examined and it is postulated that additional preprocessing of the AE data to focus on the extensional wave mode and eliminate other effects before training the pattern recognition system will result in increased accuracy.

  7. A Bayesian view on acoustic model-based techniques for robust speech recognition

    NASA Astrophysics Data System (ADS)

    Maas, Roland; Huemmer, Christian; Sehr, Armin; Kellermann, Walter

    2015-12-01

    This article provides a unifying Bayesian view on various approaches for acoustic model adaptation, missing feature, and uncertainty decoding that are well-known in the literature of robust automatic speech recognition. The representatives of these classes can often be deduced from a Bayesian network that extends the conventional hidden Markov models used in speech recognition. These extensions, in turn, can in many cases be motivated from an underlying observation model that relates clean and distorted feature vectors. By identifying and converting the observation models into a Bayesian network representation, we formulate the corresponding compensation rules. We thus summarize the various approaches as approximations or modifications of the same Bayesian decoding rule leading to a unified view on known derivations as well as to new formulations for certain approaches.

  8. Functional signature for the recognition of specific target mRNAs by human Staufen1 protein

    PubMed Central

    de Lucas, Susana; Oliveros, Juan Carlos; Chagoyen, Mónica; Ortín, Juan

    2014-01-01

    Cellular messenger RNAs (mRNAs) are associated to proteins in the form of ribonucleoprotein particles. The double-stranded RNA-binding (DRB) proteins play important roles in mRNA synthesis, modification, activity and decay. Staufen is a DRB protein involved in the localized translation of specific mRNAs during Drosophila early development. The human Staufen1 (hStau1) forms RNA granules that contain translation regulation proteins as well as cytoskeleton and motor proteins to allow the movement of the granule on microtubules, but the mechanisms of hStau1-RNA recognition are still unclear. Here we used a combination of affinity chromatography, RNAse-protection, deep-sequencing and bioinformatic analyses to identify mRNAs differentially associated to hStau1 or a mutant protein unable to bind RNA and, in this way, defined a collection of mRNAs specifically associated to wt hStau1. A common sequence signature consisting of two opposite-polarity Alu motifs was present in the hStau1-associated mRNAs and was shown to be sufficient for binding to hStau1 and hStau1-dependent stimulation of protein expression. Our results unravel how hStau1 identifies a wide spectrum of cellular target mRNAs to control their localization, expression and fate. PMID:24470147

  9. Constraint on the growth factor of the cosmic structure from the damping of the baryon acoustic oscillation signature

    SciTech Connect

    Nakamura, Gen; Sato, Takahiro; Yamamoto, Kazuhiro; Huetsi, Gert

    2009-12-15

    We determine a constraint on the growth factor by measuring the damping of the baryon acoustic oscillations in the matter power spectrum using the Sloan digital sky survey luminous red galaxy sample. We obtain an effective upper limit on {sigma}{sub 8}D{sub 1}(z=0.3) using the damping of the baryon acoustic oscillation signature, where {sigma}{sub 8} is the root mean square overdensity in a sphere of radius 8h{sup -1} Mpc and D{sub 1}(z) is the growth factor at redshift z. The above result assumes that other parameters are fixed and the cosmology is taken to be a spatially flat cold dark matter universe with the cosmological constant.

  10. Improved speech recognition in noise in simulated binaurally combined acoustic and electric stimulation.

    PubMed

    Kong, Ying-Yee; Carlyon, Robert P

    2007-06-01

    Speech recognition in noise improves with combined acoustic and electric stimulation compared to electric stimulation alone [Kong et al., J. Acoust. Soc. Am. 117, 1351-1361 (2005)]. Here the contribution of fundamental frequency (F0) and low-frequency phonetic cues to speech recognition in combined hearing was investigated. Normal-hearing listeners heard vocoded speech in one ear and low-pass (LP) filtered speech in the other. Three listening conditions (vocode-alone, LP-alone, combined) were investigated. Target speech (average F0=120 Hz) was mixed with a time-reversed masker (average F0=172 Hz) at three signal-to-noise ratios (SNRs). LP speech aided performance at all SNRs. Low-frequency phonetic cues were then removed by replacing the LP speech with a LP equal-amplitude harmonic complex, frequency and amplitude modulated by the F0 and temporal envelope of voiced segments of the target. The combined hearing advantage disappeared at 10 and 15 dB SNR, but persisted at 5 dB SNR. A similar finding occurred when, additionally, F0 contour cues were removed. These results are consistent with a role for low-frequency phonetic cues, but not with a combination of F0 information between the two ears. The enhanced performance at 5 dB SNR with F0 contour cues absent suggests that voicing or glimpsing cues may be responsible for the combined hearing benefit.

  11. The role of acoustic signals for species recognition in redfronted lemurs (Eulemur rufifrons).

    PubMed

    Rakotonirina, Hanitriniaina; Kappeler, Peter M; Fichtel, Claudia

    2016-05-12

    Signals are essential for communication and play a fundamental role in the evolution and diversification of species. Olfactory, visual and acoustic species-specific signals have been shown to function for species recognition in non-human primates, but the relative contributions of selection for species recognition driven by sexual selection, natural selection, or genetic drift for the diversification of these signals remain largely unexplored. This study investigates the importance of acoustic signals for species recognition in redfronted lemurs (Eulemur rufifrons). We conducted playback experiments in both major populations of this species separated by several hundred kilometers: Kirindy Forest in the west and Ranomafana National Park in the east of Madagascar. The playback stimuli were composed of species-specific loud calls of E. rufifrons, three closely related species (E. albifrons, E. fulvus and E. rufus) and one genetically more distant species (E. rubriventer) that occurs in sympatry with eastern redfronted lemurs. We tested the ability of redfronted lemurs to discriminate conspecific from heterospecific loud calls by measuring the time spent looking towards the speaker after presentation of each loud call. We also tested the difference between female and male responses because loud calls may play a role in mate choice and the avoidance of heterospecific mating. Redfronted lemurs in Kirindy Forest did not discriminate their own loud calls from those of E. albifrons, E. fulvus and E. rufus, but they discriminated loud calls of E. rubriventer from their own. The Ranomafana population was tested only with three playback stimuli (E. rufifrons, E. albifrons, E. rubriventer) and did not discriminate between their own loud calls and those of E. albifrons and E. rubriventer. The response of females and males to playbacks did not differ in both populations. However, subjects in Ranomafana National Park responded more strongly to playback stimuli from E. rubriventer

  12. Acoustic detection and classification of Microchiroptera using machine learning: lessons learned from automatic speech recognition.

    PubMed

    Skowronski, Mark D; Harris, John G

    2006-03-01

    Current automatic acoustic detection and classification of microchiroptera utilize global features of individual calls (i.e., duration, bandwidth, frequency extrema), an approach that stems from expert knowledge of call sonograms. This approach parallels the acoustic phonetic paradigm of human automatic speech recognition (ASR), which relied on expert knowledge to account for variations in canonical linguistic units. ASR research eventually shifted from acoustic phonetics to machine learning, primarily because of the superior ability of machine learning to account for signal variation. To compare machine learning with conventional methods of detection and classification, nearly 3000 search-phase calls were hand labeled from recordings of five species: Pipistrellus bodenheimeri, Molossus molossus, Lasiurus borealis, L. cinereus semotus, and Tadarida brasiliensis. The hand labels were used to train two machine learning models: a Gaussian mixture model (GMM) for detection and classification and a hidden Markov model (HMM) for classification. The GMM detector produced 4% error compared to 32% error for a baseline broadband energy detector, while the GMM and HMM classifiers produced errors of 0.6 +/- 0.2% compared to 16.9 +/- 1.1% error for a baseline discriminant function analysis classifier. The experiments showed that machine learning algorithms produced errors an order of magnitude smaller than those for conventional methods.

  13. Significance of temporal and spectral acoustic cues for sexual recognition in Xenopus laevis

    PubMed Central

    Vignal, Clémentine; Kelley, Darcy

    2006-01-01

    As in many anurans, males of the totally aquatic species, Xenopus laevis, advertise their sexual receptivity using vocalizations. Unusually for anurans, X. laevis females also advertise producing a fertility call that results in courtship duets between partners. Although all X. laevis calls consist of repetitive click trains, male and female calls exhibit sex-specific acoustic features that might convey sexual identity. We tested the significance of the carrier frequency and the temporal pattern of calls using underwater playback experiments in which modified calls were used to evoke vocal responses in males. Since males respond differently to male and female calls, the modification of a key component of sexual identity in calls should change the male's response. We found that a female-like slow call rhythm triggers more vocal activity than a male-like fast rhythm. A call containing both a female-like temporal pattern and a female-like carrier frequency elicits higher levels of courtship display than either feature alone. In contrast, a male-like temporal pattern is sufficient to trigger typical male–male encounter vocalizations regardless of spectral cues. Thus, our evidence supports a role for temporal acoustic cues in sexual identity recognition and for spectral acoustic cues in conveying female attractiveness in X. laevis. PMID:17476767

  14. Analysis and prediction of acoustic speech features from mel-frequency cepstral coefficients in distributed speech recognition architectures.

    PubMed

    Darch, Jonathan; Milner, Ben; Vaseghi, Saeed

    2008-12-01

    The aim of this work is to develop methods that enable acoustic speech features to be predicted from mel-frequency cepstral coefficient (MFCC) vectors as may be encountered in distributed speech recognition architectures. The work begins with a detailed analysis of the multiple correlation between acoustic speech features and MFCC vectors. This confirms the existence of correlation, which is found to be higher when measured within specific phonemes rather than globally across all speech sounds. The correlation analysis leads to the development of a statistical method of predicting acoustic speech features from MFCC vectors that utilizes a network of hidden Markov models (HMMs) to localize prediction to specific phonemes. Within each HMM, the joint density of acoustic features and MFCC vectors is modeled and used to make a maximum a posteriori prediction. Experimental results are presented across a range of conditions, such as with speaker-dependent, gender-dependent, and gender-independent constraints, and these show that acoustic speech features can be predicted from MFCC vectors with good accuracy. A comparison is also made against an alternative scheme that substitutes the higher-order MFCCs with acoustic features for transmission. This delivers accurate acoustic features but at the expense of a significant reduction in speech recognition accuracy.

  15. Acoustic diagnosis of pulmonary hypertension: automated speech- recognition-inspired classification algorithm outperforms physicians.

    PubMed

    Kaddoura, Tarek; Vadlamudi, Karunakar; Kumar, Shine; Bobhate, Prashant; Guo, Long; Jain, Shreepal; Elgendi, Mohamed; Coe, James Y; Kim, Daniel; Taylor, Dylan; Tymchak, Wayne; Schuurmans, Dale; Zemp, Roger J; Adatia, Ian

    2016-09-09

    We hypothesized that an automated speech- recognition-inspired classification algorithm could differentiate between the heart sounds in subjects with and without pulmonary hypertension (PH) and outperform physicians. Heart sounds, electrocardiograms, and mean pulmonary artery pressures (mPAp) were recorded simultaneously. Heart sound recordings were digitized to train and test speech-recognition-inspired classification algorithms. We used mel-frequency cepstral coefficients to extract features from the heart sounds. Gaussian-mixture models classified the features as PH (mPAp ≥ 25 mmHg) or normal (mPAp < 25 mmHg). Physicians blinded to patient data listened to the same heart sound recordings and attempted a diagnosis. We studied 164 subjects: 86 with mPAp ≥ 25 mmHg (mPAp 41 ± 12 mmHg) and 78 with mPAp < 25 mmHg (mPAp 17 ± 5 mmHg) (p  < 0.005). The correct diagnostic rate of the automated speech-recognition-inspired algorithm was 74% compared to 56% by physicians (p = 0.005). The false positive rate for the algorithm was 34% versus 50% (p = 0.04) for clinicians. The false negative rate for the algorithm was 23% and 68% (p = 0.0002) for physicians. We developed an automated speech-recognition-inspired classification algorithm for the acoustic diagnosis of PH that outperforms physicians that could be used to screen for PH and encourage earlier specialist referral.

  16. Acoustic diagnosis of pulmonary hypertension: automated speech- recognition-inspired classification algorithm outperforms physicians

    NASA Astrophysics Data System (ADS)

    Kaddoura, Tarek; Vadlamudi, Karunakar; Kumar, Shine; Bobhate, Prashant; Guo, Long; Jain, Shreepal; Elgendi, Mohamed; Coe, James Y.; Kim, Daniel; Taylor, Dylan; Tymchak, Wayne; Schuurmans, Dale; Zemp, Roger J.; Adatia, Ian

    2016-09-01

    We hypothesized that an automated speech- recognition-inspired classification algorithm could differentiate between the heart sounds in subjects with and without pulmonary hypertension (PH) and outperform physicians. Heart sounds, electrocardiograms, and mean pulmonary artery pressures (mPAp) were recorded simultaneously. Heart sound recordings were digitized to train and test speech-recognition-inspired classification algorithms. We used mel-frequency cepstral coefficients to extract features from the heart sounds. Gaussian-mixture models classified the features as PH (mPAp ≥ 25 mmHg) or normal (mPAp < 25 mmHg). Physicians blinded to patient data listened to the same heart sound recordings and attempted a diagnosis. We studied 164 subjects: 86 with mPAp ≥ 25 mmHg (mPAp 41 ± 12 mmHg) and 78 with mPAp < 25 mmHg (mPAp 17 ± 5 mmHg) (p  < 0.005). The correct diagnostic rate of the automated speech-recognition-inspired algorithm was 74% compared to 56% by physicians (p = 0.005). The false positive rate for the algorithm was 34% versus 50% (p = 0.04) for clinicians. The false negative rate for the algorithm was 23% and 68% (p = 0.0002) for physicians. We developed an automated speech-recognition-inspired classification algorithm for the acoustic diagnosis of PH that outperforms physicians that could be used to screen for PH and encourage earlier specialist referral.

  17. Acoustic diagnosis of pulmonary hypertension: automated speech- recognition-inspired classification algorithm outperforms physicians

    PubMed Central

    Kaddoura, Tarek; Vadlamudi, Karunakar; Kumar, Shine; Bobhate, Prashant; Guo, Long; Jain, Shreepal; Elgendi, Mohamed; Coe, James Y; Kim, Daniel; Taylor, Dylan; Tymchak, Wayne; Schuurmans, Dale; Zemp, Roger J.; Adatia, Ian

    2016-01-01

    We hypothesized that an automated speech- recognition-inspired classification algorithm could differentiate between the heart sounds in subjects with and without pulmonary hypertension (PH) and outperform physicians. Heart sounds, electrocardiograms, and mean pulmonary artery pressures (mPAp) were recorded simultaneously. Heart sound recordings were digitized to train and test speech-recognition-inspired classification algorithms. We used mel-frequency cepstral coefficients to extract features from the heart sounds. Gaussian-mixture models classified the features as PH (mPAp ≥ 25 mmHg) or normal (mPAp < 25 mmHg). Physicians blinded to patient data listened to the same heart sound recordings and attempted a diagnosis. We studied 164 subjects: 86 with mPAp ≥ 25 mmHg (mPAp 41 ± 12 mmHg) and 78 with mPAp < 25 mmHg (mPAp 17 ± 5 mmHg) (p  < 0.005). The correct diagnostic rate of the automated speech-recognition-inspired algorithm was 74% compared to 56% by physicians (p = 0.005). The false positive rate for the algorithm was 34% versus 50% (p = 0.04) for clinicians. The false negative rate for the algorithm was 23% and 68% (p = 0.0002) for physicians. We developed an automated speech-recognition-inspired classification algorithm for the acoustic diagnosis of PH that outperforms physicians that could be used to screen for PH and encourage earlier specialist referral. PMID:27609672

  18. Effect of Digital Frequency Compression (DFC) on Speech Recognition in Candidates for Combined Electric and Acoustic Stimulation (EAS)

    ERIC Educational Resources Information Center

    Gifford, Rene H.; Dorman, Michael F.; Spahr, Anthony J.; McKarns, Sharon A.

    2007-01-01

    Purpose: To compare the effects of conventional amplification (CA) and digital frequency compression (DFC) amplification on the speech recognition abilities of candidates for a partial-insertion cochlear implant, that is, candidates for combined electric and acoustic stimulation (EAS). Method: The participants were 6 patients whose audiometric…

  19. Effect of Digital Frequency Compression (DFC) on Speech Recognition in Candidates for Combined Electric and Acoustic Stimulation (EAS)

    ERIC Educational Resources Information Center

    Gifford, Rene H.; Dorman, Michael F.; Spahr, Anthony J.; McKarns, Sharon A.

    2007-01-01

    Purpose: To compare the effects of conventional amplification (CA) and digital frequency compression (DFC) amplification on the speech recognition abilities of candidates for a partial-insertion cochlear implant, that is, candidates for combined electric and acoustic stimulation (EAS). Method: The participants were 6 patients whose audiometric…

  20. Damage Modes Recognition and Hilbert-Huang Transform Analyses of CFRP Laminates Utilizing Acoustic Emission Technique

    NASA Astrophysics Data System (ADS)

    WenQin, Han; Ying, Luo; AiJun, Gu; Yuan, Fuh-Gwo

    2016-04-01

    Discrimination of acoustic emission (AE) signals related to different damage modes is of great importance in carbon fiber-reinforced plastic (CFRP) composite materials. To gain a deeper understanding of the initiation, growth and evolution of the different types of damage, four types of specimens for different lay-ups and orientations and three types of specimens for interlaminar toughness tests are subjected to tensile test along with acoustic emission monitoring. AE signals have been collected and post-processed, the statistical results show that the peak frequency of AE signal can distinguish various damage modes effectively. After a AE signal were decomposed by Empirical Mode Decomposition (EMD) method, it may separate and extract all damage modes included in this AE signal apart from damage mode corresponding to the peak frequency. Hilbert-Huang Transform (HHT) of AE signals can clearly illustrate the frequency distribution of Intrinsic Mode Functions (IMF) components in time-scale in different damage stages, and can calculate accurate instantaneous frequency for damage modes recognition to help understanding the damage process.

  1. Effects of temporal envelope modulation on acoustic signal recognition in a vocal fish, the plainfin midshipman.

    PubMed

    McKibben, J R; Bass, A H

    2001-06-01

    Amplitude modulation is an important parameter defining vertebrate acoustic communication signals. Nesting male plainfin midshipman fish, Porichthys notatus, emit simple, long duration hums in which modulation is strikingly absent. Envelope modulation is, however, introduced when the hums of adjacent males overlap to produce acoustic beats. Hums attract gravid females and can be mimicked with continuous tones at the fundamental frequency. While individual hums have flat envelopes, other midshipman signals are amplitude modulated. This study used one-choice playback tests with gravid females to examine the role of envelope modulation in hum recognition. Various pulse train and two-tone beat stimuli resembling natural communication signals were presented individually, and the responses compared to those for continuous pure tones. The effectiveness of pulse trains was graded and depended upon both pulse duration and the ratio of pulse to gap length. Midshipman were sensitive to beat modulations from 0.5 to 10 Hz, with fewer fish approaching the beat than the pure tone. Reducing the degree of modulation increased the effectiveness of beat stimuli. Hence, the lack of modulation in the midshipman's advertisement call corresponds to the importance of envelope modulation for the categorization of communication signals even in this relatively simple system.

  2. Effects of contextual cues on speech recognition in simulated electric-acoustic stimulation

    PubMed Central

    Kong, Ying-Yee; Donaldson, Gail; Somarowthu, Ala

    2015-01-01

    Low-frequency acoustic cues have shown to improve speech perception in cochlear-implant listeners. However, the mechanisms underlying this benefit are still not well understood. This study investigated the extent to which low-frequency cues can facilitate listeners' use of linguistic knowledge in simulated electric-acoustic stimulation (EAS). Experiment 1 examined differences in the magnitude of EAS benefit at the phoneme, word, and sentence levels. Speech materials were processed via noise-channel vocoding and lowpass (LP) filtering. The amount of spectral degradation in the vocoder speech was varied by applying different numbers of vocoder channels. Normal-hearing listeners were tested on vocoder-alone, LP-alone, and vocoder + LP conditions. Experiment 2 further examined factors that underlie the context effect on EAS benefit at the sentence level by limiting the low-frequency cues to temporal envelope and periodicity (AM + FM). Results showed that EAS benefit was greater for higher-context than for lower-context speech materials even when the LP ear received only low-frequency AM + FM cues. Possible explanations for the greater EAS benefit observed with higher-context materials may lie in the interplay between perceptual and expectation-driven processes for EAS speech recognition, and/or the band-importance functions for different types of speech materials. PMID:25994712

  3. Effects of contextual cues on speech recognition in simulated electric-acoustic stimulation.

    PubMed

    Kong, Ying-Yee; Donaldson, Gail; Somarowthu, Ala

    2015-05-01

    Low-frequency acoustic cues have shown to improve speech perception in cochlear-implant listeners. However, the mechanisms underlying this benefit are still not well understood. This study investigated the extent to which low-frequency cues can facilitate listeners' use of linguistic knowledge in simulated electric-acoustic stimulation (EAS). Experiment 1 examined differences in the magnitude of EAS benefit at the phoneme, word, and sentence levels. Speech materials were processed via noise-channel vocoding and lowpass (LP) filtering. The amount of spectral degradation in the vocoder speech was varied by applying different numbers of vocoder channels. Normal-hearing listeners were tested on vocoder-alone, LP-alone, and vocoder + LP conditions. Experiment 2 further examined factors that underlie the context effect on EAS benefit at the sentence level by limiting the low-frequency cues to temporal envelope and periodicity (AM + FM). Results showed that EAS benefit was greater for higher-context than for lower-context speech materials even when the LP ear received only low-frequency AM + FM cues. Possible explanations for the greater EAS benefit observed with higher-context materials may lie in the interplay between perceptual and expectation-driven processes for EAS speech recognition, and/or the band-importance functions for different types of speech materials.

  4. EFFECT OF COMBUSTOR INLET GEOMETRY ON ACOUSTIC SIGNATURE AND FLOW FIELD BEHAVIOUR OF THE LOW SWIRL INJECTOR

    SciTech Connect

    Therkelsen, Peter L.; Littlejohn, David; Cheng, Robert K.; Portillo, J. Enrique; Martin, Scott M.

    2009-11-30

    Low Swirl Injector (LSI) technology is a lean premixed combustion method that is being developed for fuel-flexible gas turbines. The objective of this study is to characterize the fuel effects and influences of combustor geometry on the LSI's overall acoustic signatures and flowfields. The experiments consist of 24 flames at atmospheric condition with bulk flows ranging between 10 and 18 m/s. The flames burn CH{sub 4} (at {phi} = 0.6 & 0.7) and a blend of 90% H{sub 2} - 10% CH{sub 4} by volume (at {phi} = 0.35 & 0.4). Two combustor configurations are used, consisting of a cylindrical chamber with and without a divergent quarl at the dump plane. The data consist of pressure spectral distributions at five positions within the system and 2D flowfield information measured by Particle Imaging Velocimetry (PIV). The results show that acoustic oscillations increase with U{sub 0} and {phi}. However, the levels in the 90% H{sub 2} flames are significantly higher than in the CH{sub 4} flames. For both fuels, the use of the quarl reduces the fluctuating pressures in the combustion chamber by up to a factor of 7. The PIV results suggest this to be a consequence of the quarl restricting the formation of large vortices in the outer shear layer. A Generalized Instability Model (GIM) was applied to analyze the acoustic response of baseline flames for each of the two fuels. The measured frequencies and the stability trends for these two cases are predicted and the triggered acoustic mode shapes identified.

  5. A Frame-Based Context-Dependent Acoustic Modeling for Speech Recognition

    NASA Astrophysics Data System (ADS)

    Terashima, Ryuta; Zen, Heiga; Nankaku, Yoshihiko; Tokuda, Keiichi

    We propose a novel acoustic model for speech recognition, named FCD (Frame-based Context Dependent) model. It can obtain a probability distribution by using a top-down clustering technique to simultaneously consider the local frame position in phoneme, phoneme duration, and phoneme context. The model topology is derived from connecting left-to-right HMM models without self-loop transition for each phoneme duration. Because the FCD model can change the probability distribution into a sequence corresponding with one phoneme duration, it can has the ability to generate a smooth trajectory of speech feature vector. We also performed an experiment to evaluate the performance of speech recognition for the model. In the experiment, 132 questions for frame position, 66 questions for phoneme duration and 134 questions for phoneme context were used to train the sub-phoneme FCD model. In order to compare the performance, left-to-right HMM and two types of HSMM models with almost same number of states were also trained. As a result, 18% of relative improvement of tri-phone accuracy was achieved by the FCD model.

  6. Acoustic sleepiness detection: framework and validation of a speech-adapted pattern recognition approach.

    PubMed

    Krajewski, Jarek; Batliner, Anton; Golz, Martin

    2009-08-01

    This article describes a general framework for detecting sleepiness states on the basis of prosody, articulation, and speech-quality-related speech characteristics. The advantages of this automatic real-time approach are that obtaining speech data is nonobstrusive and is free from sensor application and calibration efforts. Different types of acoustic features derived from speech, speaker, and emotion recognition were employed (frame-level-based speech features). Combing these features with high-level contour descriptors, which capture the temporal information of frame-level descriptor contours, results in 45,088 features per speech sample. In general, the measurement process follows the speech-adapted steps of pattern recognition: (1) recording speech, (2) preprocessing, (3) feature computation (using perceptual and signal-processing-related features such as, e.g., fundamental frequency, intensity, pause patterns, formants, and cepstral coefficients), (4) dimensionality reduction, (5) classification, and (6) evaluation. After a correlation-filter-based feature subset selection employed on the feature space in order to find most relevant features, different classification models were trained. The best model-namely, the support-vector machine-achieved 86.1% classification accuracy in predicting sleepiness in a sleep deprivation study (two-class problem, N=12; 01.00-08.00 a.m.).

  7. Evaluation of MPEG-7-Based Audio Descriptors for Animal Voice Recognition over Wireless Acoustic Sensor Networks.

    PubMed

    Luque, Joaquín; Larios, Diego F; Personal, Enrique; Barbancho, Julio; León, Carlos

    2016-05-18

    Environmental audio monitoring is a huge area of interest for biologists all over the world. This is why some audio monitoring system have been proposed in the literature, which can be classified into two different approaches: acquirement and compression of all audio patterns in order to send them as raw data to a main server; or specific recognition systems based on audio patterns. The first approach presents the drawback of a high amount of information to be stored in a main server. Moreover, this information requires a considerable amount of effort to be analyzed. The second approach has the drawback of its lack of scalability when new patterns need to be detected. To overcome these limitations, this paper proposes an environmental Wireless Acoustic Sensor Network architecture focused on use of generic descriptors based on an MPEG-7 standard. These descriptors demonstrate it to be suitable to be used in the recognition of different patterns, allowing a high scalability. The proposed parameters have been tested to recognize different behaviors of two anuran species that live in Spanish natural parks; the Epidalea calamita and the Alytes obstetricans toads, demonstrating to have a high classification performance.

  8. Evaluation of MPEG-7-Based Audio Descriptors for Animal Voice Recognition over Wireless Acoustic Sensor Networks

    PubMed Central

    Luque, Joaquín; Larios, Diego F.; Personal, Enrique; Barbancho, Julio; León, Carlos

    2016-01-01

    Environmental audio monitoring is a huge area of interest for biologists all over the world. This is why some audio monitoring system have been proposed in the literature, which can be classified into two different approaches: acquirement and compression of all audio patterns in order to send them as raw data to a main server; or specific recognition systems based on audio patterns. The first approach presents the drawback of a high amount of information to be stored in a main server. Moreover, this information requires a considerable amount of effort to be analyzed. The second approach has the drawback of its lack of scalability when new patterns need to be detected. To overcome these limitations, this paper proposes an environmental Wireless Acoustic Sensor Network architecture focused on use of generic descriptors based on an MPEG-7 standard. These descriptors demonstrate it to be suitable to be used in the recognition of different patterns, allowing a high scalability. The proposed parameters have been tested to recognize different behaviors of two anuran species that live in Spanish natural parks; the Epidalea calamita and the Alytes obstetricans toads, demonstrating to have a high classification performance. PMID:27213375

  9. Recognition of Diagnostic Acoustic Signatures in Shelf and Slope Deposits: The STRATAFORM California Site

    DTIC Science & Technology

    2016-06-07

    gravity deposits, reflector geometry, and inferred sediment processes. Sediment is deposited on shelves and slopes in distinctive packages or sequences...presence and distinctive characteristics of marine sediment- gravity deposits and record the diagnostic geometric patterns of shallow subsurface...is also evident from Huntec DTS lines of the lower slope that sediment gravity flows have occurred on the slope and in the channels fed by gullies

  10. Captive dolphins, Tursiops truncatus, develop signature whistles that match acoustic features of human-made model sounds.

    PubMed

    Miksis, Jennifer L; Tyack, Peter L; Buck, John R

    2002-08-01

    This paper presents a cross-sectional study testing whether dolphins that are born in aquarium pools where they hear trainers' whistles develop whistles that are less frequency modulated than those of wild dolphins. Ten pairs of captive and wild dolphins were matched for age and sex. Twenty whistles were sampled from each dolphin. Several traditional acoustic features (total duration, duration minus any silent periods, etc.) were measured for each whistle, in addition to newly defined flatness parameters: total flatness ratio (percentage of whistle scored as unmodulated), and contiguous flatness ratio (duration of longest flat segment divided by total duration). The durations of wild dolphin whistles were found to be significantly longer, and the captive dolphins had whistles that were less frequency modulated and more like the trainers' whistles. Using a standard t-test, the captive dolphin had a significantly higher total flatness ratio in 9/10 matched pairs, and in 8/10 pairs the captive dolphin had significantly higher contiguous flatness ratios. These results suggest that captive-born dolphins can incorporate features of artificial acoustic models made by humans into their signature whistles.

  11. Acoustic Communication and Sound Degradation: How Do the Individual Signatures of Male and Female Zebra Finch Calls Transmit over Distance?

    PubMed Central

    Mouterde, Solveig C.; Theunissen, Frédéric E.; Elie, Julie E.; Vignal, Clémentine; Mathevon, Nicolas

    2014-01-01

    Background Assessing the active space of the various types of information encoded by songbirds' vocalizations is important to address questions related to species ecology (e.g. spacing of individuals), as well as social behavior (e.g. territorial and/or mating strategies). Up to now, most of the previous studies have investigated the degradation of species-specific related information (species identity), and there is a gap of knowledge of how finer-grained information (e.g. individual identity) can transmit through the environment. Here we studied how the individual signature coded in the zebra finch long distance contact call degrades with propagation. Methodology We performed sound transmission experiments of zebra finches' distance calls at various propagation distances. The propagated calls were analyzed using discriminant function analyses on a set of analytical parameters describing separately the spectral and temporal envelopes, as well as on a complete spectrographic representation of the signals. Results/Conclusion We found that individual signature is remarkably resistant to propagation as caller identity can be recovered even at distances greater than a hundred meters. Male calls show stronger discriminability at long distances than female calls, and this difference can be explained by the more pronounced frequency modulation found in their calls. In both sexes, individual information is carried redundantly using multiple acoustical features. Interestingly, features providing the highest discrimination at short distances are not the same ones that provide the highest discrimination at long distances. PMID:25061795

  12. Acoustic emission signature of mechanical failure: Insights from ring-shear friction experiments on granular materials

    NASA Astrophysics Data System (ADS)

    Jiang, Yao; Wang, Gonghui; Kamai, Toshitaka

    2017-03-01

    The generation of acoustic emission (AE) in a material relates to the rapid energy release process, which delivers important information concerning the failure mechanism for stressed geologic materials. Here we report on ring-shear friction experiments to investigate the mechanical behavior and AEs for sheared granular materials with different particle sizes under constant normal stress and a range of shear rates. Results show that the mechanical behavior of shear resistance, sample compaction and slip displacement, and the release of acoustic energy can be affected by both shear rate and particle size. The main AEs are strongly correlated with the global mechanical failure, and the maximum absolute amplitude of AEs generally increases with increase of the magnitude of stress drops. By analyzing the event sequences, it is found that the onset of AEs precedes the beginning of stress drop, which provides more useful information on the failure mechanisms of geologic granular materials.

  13. Bio-inspired UAV routing, source localization, and acoustic signature classification for persistent surveillance

    NASA Astrophysics Data System (ADS)

    Burman, Jerry; Hespanha, Joao; Madhow, Upamanyu; Pham, Tien

    2011-06-01

    A team consisting of Teledyne Scientific Company, the University of California at Santa Barbara and the Army Research Laboratory* is developing technologies in support of automated data exfiltration from heterogeneous battlefield sensor networks to enhance situational awareness for dismounts and command echelons. Unmanned aerial vehicles (UAV) provide an effective means to autonomously collect data from a sparse network of unattended ground sensors (UGSs) that cannot communicate with each other. UAVs are used to reduce the system reaction time by generating autonomous collection routes that are data-driven. Bio-inspired techniques for search provide a novel strategy to detect, capture and fuse data. A fast and accurate method has been developed to localize an event by fusing data from a sparse number of UGSs. This technique uses a bio-inspired algorithm based on chemotaxis or the motion of bacteria seeking nutrients in their environment. A unique acoustic event classification algorithm was also developed based on using swarm optimization. Additional studies addressed the problem of routing multiple UAVs, optimally placing sensors in the field and locating the source of gunfire at helicopters. A field test was conducted in November of 2009 at Camp Roberts, CA. The field test results showed that a system controlled by bio-inspired software algorithms can autonomously detect and locate the source of an acoustic event with very high accuracy and visually verify the event. In nine independent test runs of a UAV, the system autonomously located the position of an explosion nine times with an average accuracy of 3 meters. The time required to perform source localization using the UAV was on the order of a few minutes based on UAV flight times. In June 2011, additional field tests of the system will be performed and will include multiple acoustic events, optimal sensor placement based on acoustic phenomenology and the use of the International Technology Alliance (ITA

  14. Acoustic Event Signatures for Damage Control: Water Events and Shipboard Ambient Noise

    DTIC Science & Technology

    2007-11-02

    documents some of the acoustic work done for the Advanced Volume Sensor (AVS) Project, Dr. Susan Rose-Pehrsson, NRL Code 6112. The AVS project is an...element of the ONR FNC Advanced Damage Countermeasures (ADC) Program, managed at NRL by Dr. Fred Williams, Code 6180. The ADC program seeks to develop...also installed and recorded to provide a visual record of the events and to test the response of fire alarm systems to the events. The results of the

  15. Phase change events of volatile liquid perfluorocarbon contrast agents produce unique acoustic signatures

    PubMed Central

    Sheeran, Paul S.; Matsunaga, Terry O.; Dayton, Paul A.

    2015-01-01

    Phase-change contrast agents (PCCAs) provide a dynamic platform to approach problems in medical ultrasound (US). Upon US-mediated activation, the liquid core vaporizes and expands to produce a gas bubble ideal for US imaging and therapy. In this study, we demonstrate through high-speed video microscopy and US interrogation that PCCAs composed of highly volatile perfluorocarbons (PFCs) exhibit unique acoustic behavior that can be detected and differentiated from standard microbubble contrast agents. Experimental results show that when activated with short pulses PCCAs will over-expand and undergo unforced radial oscillation while settling to a final bubble diameter. The size-dependent oscillation phenomenon generates a unique acoustic signal that can be passively detected in both time and frequency domain using confocal piston transducers with an ‘activate high’ (8 MHz, 2 cycles), ‘listen low’ (1 MHz) scheme. Results show that the magnitude of the acoustic ‘signature’ increases as PFC boiling point decreases. By using a band-limited spectral processing technique, the droplet signals can be isolated from controls and used to build experimental relationships between concentration and vaporization pressure. The techniques shown here may be useful for physical studies as well as development of droplet-specific imaging techniques. PMID:24351961

  16. Acoustic signatures of the phases and phase transitions in Yb2Ti2O7

    NASA Astrophysics Data System (ADS)

    Bhattacharjee, Subhro; Erfanifam, S.; Green, E. L.; Naumann, M.; Wang, Zhaosheng; Granovsky, S.; Doerr, M.; Wosnitza, J.; Zvyagin, A. A.; Moessner, R.; Maljuk, A.; Wurmehl, S.; Büchner, B.; Zherlitsyn, S.

    2016-04-01

    We report on measurements of the sound velocity and attenuation in a single crystal of the candidate quantum-spin-ice material Yb2Ti2O7 as a function of temperature and magnetic field. The acoustic modes couple to the spins magnetoelastically and, hence, carry information about the spin correlations that sheds light on the intricate magnetic phase diagram of Yb2Ti2O7 and the nature of spin dynamics in the material. Particularly, we find a pronounced thermal hysteresis in the acoustic data with a concomitant peak in the specific heat indicating a possible first-order phase transition at about 0.17 K. At low temperatures, the acoustic response to magnetic field saturates hinting at the development of magnetic order. The experimental data are consistent with a first-order phase transition from a cooperative paramagnet to a ferromagnet below T ≈0.17 K, as shown by fitting the data with a phenomenological mean-field theory.

  17. Real-time decomposition and recognition of acoustical patterns with an analog neural computer

    NASA Astrophysics Data System (ADS)

    Mueller, Paul; Van der Spiegel, Jan; Blackman, David; Donham, Christopher; Cummings, Ralph

    1992-09-01

    A prototype programmable analog neural computer has been assembled from over 100 custom VLSI modules containing neurons, synapses, routing switches, and programmable synaptic time constants. The modules are directly interconnected and arbitrary network configurations can be programmed. Connection symmetry and modular construction allow expansion of the network to any size. The network runs in real time analog mode, but connection architecture as well as neuron and synapse parameters are controlled by a digital host. Network performance is monitored by the host through an A/D interface and used in the implementation of learning algorithms. The machine is intended for real time, real world computations. In its current configuration maximal speed is equivalent to that of a digital machine capable of 1011 FLOPS. The programmable synaptic time constants permit the real time computation of temporal patterns as they occur in speech and other acoustic signals. Several applications involving the dynamic decomposition and recognition of acoustical patterns including speech signals (phonemes) are described. The decomposition network is loosely based on the primary auditory system of higher vertebrates. It extracts and represents by the activity in different neuron arrays the following pattern primitives: frequency, bandwidth, amplitude, amplitude modulation, amplitude modulation frequency, frequency modulation, frequency modulation frequency, duration, sequence. The frequency tuned units are the first stage and form the input space for subsequent stages that extract the other primitives, e.g., bandwidth, amplitude modulation, etc., for different frequency bands. Acoustic input generates highly specific, relatively sparse distributed activity in this feature space, which is decoded and recognized by units trained by specific input patterns such as phonemes or diphones or active sonar patterns. Through simple feedback connections in conjunction with synaptic time constants the

  18. Analysis of the acoustic spectral signature of prosthetic heart valves in patients experiencing atrial fibrillation

    SciTech Connect

    Scott, D.D.; Jones, H.E.

    1994-05-06

    Prosthetic heart valves have increased the life span of many patients with life threatening heart conditions. These valves have proven extremely reliable adding years to what would have been weeks to a patient`s life. Prosthetic valves, like the heart however, can suffer from this constant work load. A small number of valves have experienced structural fractures of the outlet strut due to fatigue. To study this problem a non-intrusive method to classify valves has been developed. By extracting from an acoustic signal the opening sounds which directly contain information from the outlet strut and then developing features which are supplied to an adaptive classification scheme (neural network) the condition of the valve can be determined. The opening sound extraction process has proved to be a classification problem itself. Due to the uniqueness of each heart and the occasional irregularity of the acoustic pattern it is often questionable as to the integrity of a given signal (beat), especially one occurring during an irregular beat pattern. A common cause of these irregular patterns is a condition known as atrial fibrillation, a prevalent arrhythmia among patients with prosthetic hear valves. Atrial fibrillation is suspected when the ECG shows no obvious P-waves. The atria do not contract and relax correctly to help contribute to ventricular filling during a normal cardiac cycle. Sometimes this leads to irregular patterns in the acoustic data. This study compares normal beat patterns to irregular patterns of the same heart. By analyzing the spectral content of the beats it can be determined whether or not these irregular patterns can contribute to the classification of a heart valve or if they should be avoided. The results have shown that the opening sounds which occur during irregular beat patterns contain the same spectral information as the opening which occur during a normal beat pattern of the same heart and these beats can be used for classification.

  19. Small Vocabulary Recognition Using Surface Electromyography in an Acoustically Harsh Environment

    NASA Technical Reports Server (NTRS)

    Betts, Bradley J.; Jorgensen, Charles

    2005-01-01

    This paper presents results of electromyographic-based (EMG-based) speech recognition on a small vocabulary of 15 English words. The work was motivated in part by a desire to mitigate the effects of high acoustic noise on speech intelligibility in communication systems used by first responders. Both an off-line and a real-time system were constructed. Data were collected from a single male subject wearing a fireghter's self-contained breathing apparatus. A single channel of EMG data was used, collected via surface sensors at a rate of 104 samples/s. The signal processing core consisted of an activity detector, a feature extractor, and a neural network classifier. In the off-line phase, 150 examples of each word were collected from the subject. Generalization testing, conducted using bootstrapping, produced an overall average correct classification rate on the 15 words of 74%, with a 95% confidence interval of [71%, 77%]. Once the classifier was trained, the subject used the real-time system to communicate and to control a robotic device. The real-time system was tested with the subject exposed to an ambient noise level of approximately 95 decibels.

  20. Transcranial ultrasonic therapy based on time reversal of acoustically induced cavitation bubble signature

    PubMed Central

    Gâteau, Jérôme; Marsac, Laurent; Pernot, Mathieu; Aubry, Jean-Francois; Tanter, Mickaël; Fink, Mathias

    2010-01-01

    Brain treatment through the skull with High Intensity Focused Ultrasound (HIFU) can be achieved with multichannel arrays and adaptive focusing techniques such as time-reversal. This method requires a reference signal to be either emitted by a real source embedded in brain tissues or computed from a virtual source, using the acoustic properties of the skull derived from CT images. This non-invasive computational method focuses with precision, but suffers from modeling and repositioning errors that reduce the accessible acoustic pressure at the focus in comparison with fully experimental time-reversal using an implanted hydrophone. In this paper, this simulation-based targeting has been used experimentally as a first step for focusing through an ex vivo human skull at a single location. It has enabled the creation of a cavitation bubble at focus that spontaneously emitted an ultrasonic wave received by the array. This active source signal has allowed 97%±1.1% of the reference pressure (hydrophone-based) to be restored at the geometrical focus. To target points around the focus with an optimal pressure level, conventional electronic steering from the initial focus has been combined with bubble generation. Thanks to step by step bubble generation, the electronic steering capabilities of the array through the skull were improved. PMID:19770084

  1. Are you a good mimic? Neuro-acoustic signatures for speech imitation ability.

    PubMed

    Reiterer, Susanne M; Hu, Xiaochen; Sumathi, T A; Singh, Nandini C

    2013-01-01

    We investigated individual differences in speech imitation ability in late bilinguals using a neuro-acoustic approach. One hundred and thirty-eight German-English bilinguals matched on various behavioral measures were tested for "speech imitation ability" in a foreign language, Hindi, and categorized into "high" and "low ability" groups. Brain activations and speech recordings were obtained from 26 participants from the two extreme groups as they performed a functional neuroimaging experiment which required them to "imitate" sentences in three conditions: (A) German, (B) English, and (C) German with fake English accent. We used recently developed novel acoustic analysis, namely the "articulation space" as a metric to compare speech imitation abilities of the two groups. Across all three conditions, direct comparisons between the two groups, revealed brain activations (FWE corrected, p < 0.05) that were more widespread with significantly higher peak activity in the left supramarginal gyrus and postcentral areas for the low ability group. The high ability group, on the other hand showed significantly larger articulation space in all three conditions. In addition, articulation space also correlated positively with imitation ability (Pearson's r = 0.7, p < 0.01). Our results suggest that an expanded articulation space for high ability individuals allows access to a larger repertoire of sounds, thereby providing skilled imitators greater flexibility in pronunciation and language learning.

  2. Are you a good mimic? Neuro-acoustic signatures for speech imitation ability

    PubMed Central

    Reiterer, Susanne M.; Hu, Xiaochen; Sumathi, T. A.; Singh, Nandini C.

    2013-01-01

    We investigated individual differences in speech imitation ability in late bilinguals using a neuro-acoustic approach. One hundred and thirty-eight German-English bilinguals matched on various behavioral measures were tested for “speech imitation ability” in a foreign language, Hindi, and categorized into “high” and “low ability” groups. Brain activations and speech recordings were obtained from 26 participants from the two extreme groups as they performed a functional neuroimaging experiment which required them to “imitate” sentences in three conditions: (A) German, (B) English, and (C) German with fake English accent. We used recently developed novel acoustic analysis, namely the “articulation space” as a metric to compare speech imitation abilities of the two groups. Across all three conditions, direct comparisons between the two groups, revealed brain activations (FWE corrected, p < 0.05) that were more widespread with significantly higher peak activity in the left supramarginal gyrus and postcentral areas for the low ability group. The high ability group, on the other hand showed significantly larger articulation space in all three conditions. In addition, articulation space also correlated positively with imitation ability (Pearson's r = 0.7, p < 0.01). Our results suggest that an expanded articulation space for high ability individuals allows access to a larger repertoire of sounds, thereby providing skilled imitators greater flexibility in pronunciation and language learning. PMID:24155739

  3. Signal/Image Processing of Acoustic Flaw Signatures for Detection and Localization

    SciTech Connect

    Candy, J V; Meyer, A W

    2001-06-01

    The timely, nondestructive evaluation (NDE) of critical optics in high energy, pulsed laser experiments is a crucial analysis that must be performed for the experiment to be successful. Failure to detect flaws of critical sizes in vacuum-loaded optical windows can result in a catastrophic failure jeopardizing the safety of both personnel and costly equipment. We discuss the development of signal/image processing techniques to both detect critical flaws and locate their position on the window. The data measured from two Orthogonal arrays of narrow beamwidth ultrasonic transducers are preprocessed using a model-based scheme based on the Green's function of the medium providing individual channel signatures. These signatures are then transformed to the two-dimensional image space using a power-based estimator. A 2D-replicant is then constructed based on the underlying physics of the material along with the geometry of the window. Correlating the replicant with the enhanced power image leads to the optimal 2D-matched filter solution detecting and localizing the flaw. Controlled experimental results on machined flaws are discussed.

  4. Methods of extending signatures and training without ground information. [data processing, pattern recognition

    NASA Technical Reports Server (NTRS)

    Henderson, R. G.; Thomas, G. S.; Nalepka, R. F.

    1975-01-01

    Methods of performing signature extension, using LANDSAT-1 data, are explored. The emphasis is on improving the performance and cost-effectiveness of large area wheat surveys. Two methods were developed: ASC, and MASC. Two methods, Ratio, and RADIFF, previously used with aircraft data were adapted to and tested on LANDSAT-1 data. An investigation into the sources and nature of between scene data variations was included. Initial investigations into the selection of training fields without in situ ground truth were undertaken.

  5. Recognition of emotions in Mexican Spanish speech: an approach based on acoustic modelling of emotion-specific vowels.

    PubMed

    Caballero-Morales, Santiago-Omar

    2013-01-01

    An approach for the recognition of emotions in speech is presented. The target language is Mexican Spanish, and for this purpose a speech database was created. The approach consists in the phoneme acoustic modelling of emotion-specific vowels. For this, a standard phoneme-based Automatic Speech Recognition (ASR) system was built with Hidden Markov Models (HMMs), where different phoneme HMMs were built for the consonants and emotion-specific vowels associated with four emotional states (anger, happiness, neutral, sadness). Then, estimation of the emotional state from a spoken sentence is performed by counting the number of emotion-specific vowels found in the ASR's output for the sentence. With this approach, accuracy of 87-100% was achieved for the recognition of emotional state of Mexican Spanish speech.

  6. Recognition of Emotions in Mexican Spanish Speech: An Approach Based on Acoustic Modelling of Emotion-Specific Vowels

    PubMed Central

    Caballero-Morales, Santiago-Omar

    2013-01-01

    An approach for the recognition of emotions in speech is presented. The target language is Mexican Spanish, and for this purpose a speech database was created. The approach consists in the phoneme acoustic modelling of emotion-specific vowels. For this, a standard phoneme-based Automatic Speech Recognition (ASR) system was built with Hidden Markov Models (HMMs), where different phoneme HMMs were built for the consonants and emotion-specific vowels associated with four emotional states (anger, happiness, neutral, sadness). Then, estimation of the emotional state from a spoken sentence is performed by counting the number of emotion-specific vowels found in the ASR's output for the sentence. With this approach, accuracy of 87–100% was achieved for the recognition of emotional state of Mexican Spanish speech. PMID:23935410

  7. Fissile and Non-Fissile Material Detection using Nuclear Acoustic Resonance Signatures: Final Report

    SciTech Connect

    Herberg, J; Maxwell, R; Tittmann, B R; Lenahan, P M; Yerkes, S; Jayaraman, S B

    2006-11-02

    This is final report on NA-22 project LL251DP, where the goal was to develop a novel technique, Nuclear Acoustic Resonance (NAR), for remote, non-destructive, nonradiation-based detection of materials of interest to Nonproliferation Programs, including {sup 235}U and {sup 239}Pu. In short, we have developed a magnetic shield chamber and magnetic field, develop a digital lock-in amplifier computer to integrate both the ultrasound radiation with the detector, developed strain measurements, and begun to perform initial measurements to obtain a NAR signal from aluminum at room temperature and near the earth's magnetic field. Since our funding was cut in FY06, I will discuss where this project can go in the future with this technology.

  8. Fissile and Non-Fissile Material Detection using Nuclear Acoustic Resonance Signatures

    SciTech Connect

    Herberg, J; Maxwell, R; Tittmann, B R; Lenahan, P M; Yerkes, S; Jayaraman, S

    2005-10-04

    This report reviews progress made on NA22 project LL251DP to develop a novel technique, Nuclear Acoustic Resonance (NAR), for remote, non-destructive, nonradiation-based detection of materials of interest to Nonproliferation Programs, including {sup 235}U and {sup 239}Pu. We have met all milestones and deliverables for FY05, as shown in Table 1. In short, we have developed a magnetic shield chamber and magnetic field, develop a digital lock-in amplifier computer to integrate both the ultrasound radiation with the detector, developed strain measurements, and begin to perform initial measurements to obtain a NAR signal from aluminum at room temperature and near the earth's magnetic field. The results obtained in FY05 further support the feasibility of successful demonstration of an NAR experiment for remote, non-destructive, non-radiation-based detection of materials of interest to Nonproliferation Programs.

  9. Motorcyclists safety system to avoid rear end collisions based on acoustic signatures

    NASA Astrophysics Data System (ADS)

    Muzammel, M.; Yusoff, M. Zuki; Malik, A. Saeed; Mohamad Saad, M. Naufal; Meriaudeau, F.

    2017-03-01

    In many Asian countries, motorcyclists have a higher fatality rate as compared to other vehicles. Among many other factors, rear end collisions are also contributing for these fatalities. Collision detection systems can be useful to minimize these accidents. However, the designing of efficient and cost effective collision detection system for motorcyclist is still a major challenge. In this paper, an acoustic information based, cost effective and efficient collision detection system is proposed for motorcycle applications. The proposed technique uses the Short time Fourier Transform (STFT) to extract the features from the audio signal and Principal component analysis (PCA) has been used to reduce the feature vector length. The reduction of feature length, further increases the performance of this technique. The proposed technique has been tested on self recorded dataset and gives accuracy of 97.87%. We believe that this method can help to reduce a significant number of motorcycle accidents.

  10. Talker-identification training using simulations of binaurally combined electric and acoustic hearing: generalization to speech and emotion recognition.

    PubMed

    Krull, Vidya; Luo, Xin; Iler Kirk, Karen

    2012-04-01

    Understanding speech in background noise, talker identification, and vocal emotion recognition are challenging for cochlear implant (CI) users due to poor spectral resolution and limited pitch cues with the CI. Recent studies have shown that bimodal CI users, that is, those CI users who wear a hearing aid (HA) in their non-implanted ear, receive benefit for understanding speech both in quiet and in noise. This study compared the efficacy of talker-identification training in two groups of young normal-hearing adults, listening to either acoustic simulations of unilateral CI or bimodal (CI+HA) hearing. Training resulted in improved identification of talkers for both groups with better overall performance for simulated bimodal hearing. Generalization of learning to sentence and emotion recognition also was assessed in both subject groups. Sentence recognition in quiet and in noise improved for both groups, no matter if the talkers had been heard during training or not. Generalization to improvements in emotion recognition for two unfamiliar talkers also was noted for both groups with the simulated bimodal-hearing group showing better overall emotion-recognition performance. Improvements in sentence recognition were retained a month after training in both groups. These results have potential implications for aural rehabilitation of conventional and bimodal CI users.

  11. Deformation and Brittle Failure of Folded Gneiss in Triaxial Compression: Failure Modes, Acoustic Signatures and Microfabric Controls

    NASA Astrophysics Data System (ADS)

    Agliardi, F.; Vinciguerra, S.; Dobbs, M. R.; Zanchetta, S.

    2014-12-01

    Fabric anisotropy is a key control of rock behavior in different geological settings and over different timescales. However, the effect of tectonically folded fabrics on the brittle strength and failure mode of metamorphic rocks is poorly understood. Recent data, obtained from uniaxial compression experiments on folded gneiss (Agliardi et al., 2014), demonstrated that their brittle failure modes depend upon the arrangement of two anisotropies (i.e. foliation and fold axial planes) and that rock strength correlates with failure mode. Since lithostatic pressure may significantly affect this rock behavior, we investigated its effect in triaxial compression experiments. We tested the Monte Canale Gneiss (Italian Alps), characterized by low phyllosilicate content and compositional layering folded at the cm-scale. We used a servo-controlled hydraulic loading system to test 19 air-dry cylindrical specimens (ø = 54 mm) that were characterized both in terms of fold geometry and orientation of foliation and fold axial planes to the axial load direction. The specimens were instrumented with direct contact axial and circumferential strain gauges. Acoustic emissions and P- and S-wave velocities were measured by piezoelectric transducers mounted in the compression platens. The tests were performed at confining pressures of 40 MPa and axial strain rates of 5*10-6 s-1. Post-failure study of fracture mechanisms and related microfabric controls was undertaken using X-ray CT, optical microscopy and SEM. Samples failed in three distinct brittle modes produced by different combinations of fractures parallel to foliation, fractures parallel to fold axial planes, or mm-scale shear bands. The failure modes, consistent with those described in uniaxial compression experiments, were found to be associated with distinct stress-strain and acoustic emission signatures. Failure modes involving quartz-dominated axial plane anisotropy correspond to higher peak strength and axial strain, less

  12. Accentuate or repeat? Brain signatures of developmental periods in infant word recognition.

    PubMed

    Männel, Claudia; Friederici, Angela D

    2013-01-01

    Language acquisition has long been discussed as an interaction between biological preconditions and environmental input. This general interaction seems particularly salient in lexical acquisition, where infants are already able to detect unknown words in sentences at 7 months of age, guided by phonological and statistical information in the speech input. While this information results from the linguistic structure of a given language, infants also exploit situational information, such as speakers' additional word accentuation and word repetition. The current study investigated the developmental trajectory of infants' sensitivity to these two situational input cues in word recognition. Testing infants at 6, 9, and 12 months of age, we hypothesized that different age groups are differentially sensitive to accentuation and repetition. In a familiarization-test paradigm, event-related brain potentials (ERPs) revealed age-related differences in infants' word recognition as a function of situational input cues: at 6 months infants only recognized previously accentuated words, at 9 months both accentuation and repetition played a role, while at 12 months only repetition was effective. These developmental changes are suggested to result from infants' advancing linguistic experience and parallel auditory cortex maturation. Our data indicate very narrow and specific input-sensitive periods in infant word recognition, with accentuation being effective prior to repetition. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Ultrasonic thermometry simulation in a random fluctuating medium: Evidence of the acoustic signature of a one-percent temperature difference.

    PubMed

    Nagaso, M; Moysan, J; Benjeddou, S; Massacret, N; Ploix, M A; Komatitsch, D; Lhuillier, C

    2016-05-01

    We study the development potential of ultrasonic thermometry in a liquid fluctuating sodium environment similar to that present in a Sodium-cooled Fast Reactor, and thus investigate if and how ultrasonic thermometry could be used to monitor the sodium flow at the outlet of the reactor core. In particular we study if small temperature variations in the sodium flow of e.g. about 1% of the sodium temperature, i.e., about 5°C, can have a reliably-measurable acoustic signature. Since to our knowledge no experimental setups are available for such a study, and considering the practical difficulties of experimentation in sodium, we resort to a numerical technique for full wave propagation called the spectral-element method, which is a highly accurate finite-element method owing to the high-degree basis functions it uses. We obtain clear time-of-flight variations in the case of a small temperature difference of one percent in the case of a static temperature gradient as well as in the presence of a random fluctuation of the temperature field in the turbulent flow. The numerical simulations underline the potential of ultrasonic thermometry in such a context.

  14. DEMON-type algorithms for determination of hydro-acoustic signatures of surface ships and of divers

    NASA Astrophysics Data System (ADS)

    Slamnoiu, G.; Radu, O.; Rosca, V.; Pascu, C.; Damian, R.; Surdu, G.; Curca, E.; Radulescu, A.

    2016-08-01

    With the project “System for detection, localization, tracking and identification of risk factors for strategic importance in littoral areas”, developed in the National Programme II, the members of the research consortium intend to develop a functional model for a hydroacoustic passive subsystem for determination of acoustic signatures of targets such as fast boats and autonomous divers. This paper presents some of the results obtained in the area of hydroacoustic signal processing by using DEMON-type algorithms (Detection of Envelope Modulation On Noise). For evaluation of the performance of various algorithm variations we have used both audio recordings of the underwater noise generated by ships and divers in real situations and also simulated noises. We have analysed the results of processing these signals using four DEMON algorithm structures as presented in the reference literature and a fifth DEMON algorithm structure proposed by the authors of this paper. The algorithm proposed by the authors generates similar results to those obtained by applying the traditional algorithms but requires less computing resources than those and at the same time it has proven to be more resilient to random noise influence.

  15. Learned recognition of maternal signature odors mediates the first suckling episode in mice

    PubMed Central

    Logan, Darren W.; Brunet, Lisa J.; Webb, William R.; Cutforth, Tyler; Ngai, John; Stowers, Lisa

    2012-01-01

    Summary Background Soon after birth all mammals must initiate milk suckling to survive. In rodents, this innate behavior is critically dependent on uncharacterized maternally-derived chemosensory ligands. Recently the first pheromone sufficient to initiate suckling was isolated from the rabbit. Identification of the olfactory cues that trigger first suckling in the mouse would provide the means to determine the neural mechanisms that generate innate behavior. Results Here we use behavioral analysis, metabolomics, and calcium imaging of primary sensory neurons and find no evidence of ligands with intrinsic bioactivity, such as pheromones, acting to promote first suckling in the mouse. Instead, we find that the initiation of suckling is dependent on variable blends of maternal ‘signature odors’ that are learned and recognized prior to first suckling. Conclusions As observed with pheromone-mediated behavior, the response to signature odors releases innate behavior. However, this mechanism tolerates variability in both the signaling ligands and sensory neurons which may maximize the probability that this first essential behavior is successfully initiated. These results suggest that mammalian species have evolved multiple strategies to ensure the onset of this critical behavior. PMID:23041191

  16. Correlations Between Large-scale Flow Structures and Acoustic Signatures in an Axisymmetric Jet

    NASA Astrophysics Data System (ADS)

    Magstadt, Andrew; Berry, Matthew; Berger, Zachary; Shea, Patrick; Glauser, Mark

    2014-11-01

    In a test campaign studying jet noise, simultaneous far-field acoustic measurements and near-field particle imaging velocimetry (PIV) data were sampled from a supersonic underexpanded axisymmetric jet operating at a Reynolds number of 1.3×106 . Using overlapping snapshots from three adjacent cameras, separate images of the velocity field were stitched together to form an uninterrupted window. Centered about the axis of the jet, the effective field of view spanned two jet diameters in the cross-stream direction (r) and seven diameters in the streamwise direction (z) . This area proved to be sufficiently large to capture important scales of supersonic flow relevant to noise generation. Specifically, Proper Orthogonal Decomposition (POD) has extracted particular energy modes thought to be associated with the large-scale instability wave, shock cells, and turbulent mixing characteristic of supersonic noise. As example, time-dependent modal correlations present evidence linking the existence of shock cells to screech tones. From the data gathered, these experimental and analytical techniques are believed to be valuable tools in isolating energy-based flow structures relevant to noise generation. The authors would like to thank Spectral Energies for their continued support of research at Syracuse University.

  17. Directionality and maneuvering effects on a surface ship underwater acoustic signature.

    PubMed

    Trevorrow, Mark V; Vasiliev, Boris; Vagle, Svein

    2008-08-01

    This work examines underwater source spectra of a small (560 tons, 40 m length), single-screw oceanographic vessel, focusing on directionality and effects of maneuvers. The measurements utilized a set of four, self-contained buoys with GPS positioning, each recording two calibrated hydrophones with effective acoustic bandwidth from 150 Hz to 5 kHz. In straight, constant-speed runs at speeds up to 6.2 m s(-1), the ship source spectra showed spectral levels in reasonable agreement with reference spectra. The broadband source level was observed to increase as approximately speed to the fourth power over the range of 2.6-6.1 m s(-1), partially biased at low speeds by nonpropulsion machinery signals. Source directionality patterns were extracted from variations in source spectra while the ship transited past the buoy field. The observed spectral source levels exhibited a broadside maximum, with bow and stern aspect reduced by approximately 12-9 dB, respectively, independent of frequency. An empirical model is proposed assuming that spectral source levels exhibit simultaneous variations in aspect angle, speed, and turn rate. After correction for source directionality and speed during turning maneuvers, an excess of up to 18 dB in one-third octave source levels was observed.

  18. Experimental investigation of the effects of the acoustical conditions in a simulated classroom on speech recognition and learning in children.

    PubMed

    Valente, Daniel L; Plevinsky, Hallie M; Franco, John M; Heinrichs-Graham, Elizabeth C; Lewis, Dawna E

    2012-01-01

    The potential effects of acoustical environment on speech understanding are especially important as children enter school where students' ability to hear and understand complex verbal information is critical to learning. However, this ability is compromised because of widely varied and unfavorable classroom acoustics. The extent to which unfavorable classroom acoustics affect children's performance on longer learning tasks is largely unknown as most research has focused on testing children using words, syllables, or sentences as stimuli. In the current study, a simulated classroom environment was used to measure comprehension performance of two classroom learning activities: a discussion and lecture. Comprehension performance was measured for groups of elementary-aged students in one of four environments with varied reverberation times and background noise levels. The reverberation time was either 0.6 or 1.5 s, and the signal-to-noise level was either +10 or +7 dB. Performance is compared to adult subjects as well as to sentence-recognition in the same condition. Significant differences were seen in comprehension scores as a function of age and condition; both increasing background noise and reverberation degraded performance in comprehension tasks compared to minimal differences in measures of sentence-recognition.

  19. Pattern Recognition Analysis of Age-Related Retinal Ganglion Cell Signatures in the Human Eye

    PubMed Central

    Yoshioka, Nayuta; Zangerl, Barbara; Nivison-Smith, Lisa; Khuu, Sieu K.; Jones, Bryan W.; Pfeiffer, Rebecca L.; Marc, Robert E.; Kalloniatis, Michael

    2017-01-01

    Purpose To characterize macular ganglion cell layer (GCL) changes with age and provide a framework to assess changes in ocular disease. This study used data clustering to analyze macular GCL patterns from optical coherence tomography (OCT) in a large cohort of subjects without ocular disease. Methods Single eyes of 201 patients evaluated at the Centre for Eye Health (Sydney, Australia) were retrospectively enrolled (age range, 20–85); 8 × 8 grid locations obtained from Spectralis OCT macular scans were analyzed with unsupervised classification into statistically separable classes sharing common GCL thickness and change with age. The resulting classes and gridwise data were fitted with linear and segmented linear regression curves. Additionally, normalized data were analyzed to determine regression as a percentage. Accuracy of each model was examined through comparison of predicted 50-year-old equivalent macular GCL thickness for the entire cohort to a true 50-year-old reference cohort. Results Pattern recognition clustered GCL thickness across the macula into five to eight spatially concentric classes. F-test demonstrated segmented linear regression to be the most appropriate model for macular GCL change. The pattern recognition–derived and normalized model revealed less difference between the predicted macular GCL thickness and the reference cohort (average ± SD 0.19 ± 0.92 and −0.30 ± 0.61 μm) than a gridwise model (average ± SD 0.62 ± 1.43 μm). Conclusions Pattern recognition successfully identified statistically separable macular areas that undergo a segmented linear reduction with age. This regression model better predicted macular GCL thickness. The various unique spatial patterns revealed by pattern recognition combined with core GCL thickness data provide a framework to analyze GCL loss in ocular disease. PMID:28632847

  20. Neural signatures of recognition memory in 10- to 12-month-old infants.

    PubMed

    Linnert, Szilvia; Tóth, Brigitta; Nagy, Márton; Parise, Eugenio; Király, Ildikó

    2017-08-19

    Understanding memory mechanisms is crucial in the study of infant social and cognitive development. Here, we show that the Nc ERP component, known to reflect frequency-related attentional and/or memory processes, is a good candidate to investigate infant recognition memory. Previous paradigms have only investigated the effect of frequency during on-line stimulus presentation, but not during stimulus encoding. In this paper, we present a novel method for measuring the neural correlates of recognition memory and the 'degree' of familiarity in 10- to 12-month-old infants. During a familiarization phase, two images were presented frequently, while another two images were presented infrequently to the infants. In the test phase, the infrequent familiar, the frequent familiar, and the novel stimuli, were all presented with equal probability. We found larger Nc amplitudes following the familiar stimuli compared to the novel ones. The 'degree' of familiarity, on the other hand, did not modulate the Nc amplitude. These results can only be explained with memory-related processes, since in our paradigm the on-line presentation frequency did not vary. Furthermore, the lack of familiarization frequency effect suggests that the Nc might be a neural correlate of declarative memory. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Comparative analyses of the thermodynamic RNA binding signatures of different types of RNA recognition motifs

    PubMed Central

    Cléry, Antoine; Allain, Frédéric H-T

    2017-01-01

    Abstract RNA recognition motifs (RRMs) are structurally versatile domains important in regulation of alternative splicing. Structural mechanisms of sequence-specific recognition of single-stranded RNAs (ssRNAs) by RRMs are well understood. The thermodynamic strategies are however unclear. Therefore, we utilized microcalorimetry and semi-empirical analyses to comparatively analyze the cognate ssRNA binding thermodynamics of four different RRM domains, each with a different RNA binding mode. The different binding modes are: canonical binding to the β-sheet surface; canonical binding with involvement of N- and C-termini; binding to conserved loops; and binding to an α-helix. Our results identify enthalpy as the sole and general force driving association at physiological temperatures. Also, networks of weak interactions are a general feature regulating stability of the different RRM–ssRNA complexes. In agreement, non-polyelectrolyte effects contributed between ∼75 and 90% of the overall free energy of binding in the considered complexes. The various RNA binding modes also displayed enormous heat capacity differences, that upon dissection revealed large differential changes in hydration, conformations and dynamics upon binding RNA. Altogether, different modes employed by RRMs to bind cognate ssRNAs utilize various thermodynamics strategies during the association process. PMID:28334819

  2. Comparative analyses of the thermodynamic RNA binding signatures of different types of RNA recognition motifs.

    PubMed

    Samatanga, Brighton; Cléry, Antoine; Barraud, Pierre; Allain, Frédéric H-T; Jelesarov, Ilian

    2017-06-02

    RNA recognition motifs (RRMs) are structurally versatile domains important in regulation of alternative splicing. Structural mechanisms of sequence-specific recognition of single-stranded RNAs (ssRNAs) by RRMs are well understood. The thermodynamic strategies are however unclear. Therefore, we utilized microcalorimetry and semi-empirical analyses to comparatively analyze the cognate ssRNA binding thermodynamics of four different RRM domains, each with a different RNA binding mode. The different binding modes are: canonical binding to the β-sheet surface; canonical binding with involvement of N- and C-termini; binding to conserved loops; and binding to an α-helix. Our results identify enthalpy as the sole and general force driving association at physiological temperatures. Also, networks of weak interactions are a general feature regulating stability of the different RRM-ssRNA complexes. In agreement, non-polyelectrolyte effects contributed between ∼75 and 90% of the overall free energy of binding in the considered complexes. The various RNA binding modes also displayed enormous heat capacity differences, that upon dissection revealed large differential changes in hydration, conformations and dynamics upon binding RNA. Altogether, different modes employed by RRMs to bind cognate ssRNAs utilize various thermodynamics strategies during the association process. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  3. Characterization of underwater acoustic sources recorded in reverberant environments with application to SCUBA signatures

    NASA Astrophysics Data System (ADS)

    Gemba, Kay Leonard

    The ability to accurately characterize an underwater sound source is an important prerequisite for many applications including detection, classification, monitoring and mitigation. Unfortunately, anechoic underwater recording environments, required to make ideal recordings, are generally not available. Current methods adjust source recordings with spatially averaged estimates of reverberant levels. However, adjustments can introduce significant errors due to a high degree of energy variability in reverberant enclosures and solutions are inherently limited to incoherent approximations. This dissertation introduces an approach towards a practical, improved procedure to obtain an anechoic estimate of an unknown source recorded in a reverberant environment. Corresponding research is presented in three self-contained chapters. An anechoic estimate of the source is obtained by equalizing the recording with the inverse of the channel's impulse response (IR). The IR is deconvolved using a broadband logarithmic excitation signal. The length of the IR is estimated using methods borrowed from room acoustics and inversion of non-minimum phase IR is accomplished in the least-squares sense. The proposed procedure is validated by several experiments conducted in a reverberant pool environment. Results indicate that the energy of control sources can be recovered coherently and incoherently with root-mean-square error (RMSE) of ˜ -70 dB (10 - 70 kHz band). The proposed method is subsequently applied to four recorded SCUBA configurations. Results indicate that reverberation added as much as 6.8 dB of energy. Mean unadjusted sound pressure levels (0.3 - 80 kHz band) were 130 +/- 5.9 dB re muPa at 1 m. While the dereverberation method is applied here to SCUBA signals, it is generally applicable to other sources if the impulse response of the recording channel can be obtained separately. This dissertation also presents an approach to separate all coloration from the deconvolved IR

  4. Combined Electric and Contralateral Acoustic Hearing: Word and Sentence Recognition with Bimodal Hearing

    ERIC Educational Resources Information Center

    Gifford, Rene H.; Dorman, Michael F.; McKarns, Sharon A.; Spahr, Anthony J.

    2007-01-01

    Purpose: The authors assessed whether (a) a full-insertion cochlear implant would provide a higher level of speech understanding than bilateral low-frequency acoustic hearing, (b) contralateral acoustic hearing would add to the speech understanding provided by the implant, and (c) the level of performance achieved with electric stimulation plus…

  5. Combined Electric and Contralateral Acoustic Hearing: Word and Sentence Recognition with Bimodal Hearing

    ERIC Educational Resources Information Center

    Gifford, Rene H.; Dorman, Michael F.; McKarns, Sharon A.; Spahr, Anthony J.

    2007-01-01

    Purpose: The authors assessed whether (a) a full-insertion cochlear implant would provide a higher level of speech understanding than bilateral low-frequency acoustic hearing, (b) contralateral acoustic hearing would add to the speech understanding provided by the implant, and (c) the level of performance achieved with electric stimulation plus…

  6. The Acoustic Signature of Woodford Shale and Upscale Relationship from Nano-Scale Mechanical Properties and Mineralogy

    NASA Astrophysics Data System (ADS)

    Tran, M. H.; Abousleiman, Y. N.; Hoang, S. K.; Ortega, A. J.; Bobko, C.; Ulm, F.

    2007-12-01

    The complex composition of shale, the most encountered and problematic lithology in the Earth's crust, has puzzled many researchers attempting to find the key for understanding their micro- and macro-scale acoustic and mechanical signatures. Recent advances in nano-technology, in particular the progress of the Atomic Force Microscope (AFM) base indentation technique, have made it possible to mechanically study porous material at a nano scale (10-9 m) and consequently have allowed linking shale mechanical properties to intrinsic micro- and macro-properties such as porosity, packing density, and mineralogy. Based on more than 20,000 nano- indentation tests conducted on a number of shales with varying physical properties, a GeoGenomeTM model was developed to upscale macroscopic shale mechanical parameters from mineralogy composition, porosity, and packing density. In this work, the mechanical properties such as the elastic stiffness coefficients, Cij, and the anisotropic Biot's Pore Pressure Coefficients, αij, of the Woodford shale, were acquired using sonic log data and Ultra-Sonic Pulse Velocity (UPV) measurements conducted on preserved retrieved shale core samples from a 200-ft well drilled in the Woodford formation, in Oklahoma. Furthermore, the dependency of the Cij and αij, on applied stresses and the relationship between the dynamic moduli and the quasi-static moduli were also investigated using an array of piezoelectric crystals mounted around the samples while subjecting the samples to different applied stress states using a series of tri-axial tests. X-Ray Diffraction (XRD) and mercury injection tests were also performed on the retrieved core samples to obtain mineralogy composition and porosity of the shale at different depths. Comparison of the simulated mechanical and poromechanical properties and stiffness coefficients using the Quantitative GeoGenomeTM Mineralogy Simulator (QGGMSTM) with field and acoustic lab measurements showed excellent agreement

  7. Structural and Thermodynamic Signatures of DNA Recognition by Mycobacterium tuberculosis DnaA

    SciTech Connect

    Tsodikov, Oleg V.; Biswas, Tapan

    2011-09-06

    An essential protein, DnaA, binds to 9-bp DNA sites within the origin of replication oriC. These binding events are prerequisite to forming an enigmatic nucleoprotein scaffold that initiates replication. The number, sequences, positions, and orientations of these short DNA sites, or DnaA boxes, within the oriCs of different bacteria vary considerably. To investigate features of DnaA boxes that are important for binding Mycobacterium tuberculosis DnaA (MtDnaA), we have determined the crystal structures of the DNA binding domain (DBD) of MtDnaA bound to a cognate MtDnaA-box (at 2.0 {angstrom} resolution) and to a consensus Escherichia coli DnaA-box (at 2.3 {angstrom}). These structures, complemented by calorimetric equilibrium binding studies of MtDnaA DBD in a series of DnaA-box variants, reveal the main determinants of DNA recognition and establish the [T/C][T/A][G/A]TCCACA sequence as a high-affinity MtDnaA-box. Bioinformatic and calorimetric analyses indicate that DnaA-box sequences in mycobacterial oriCs generally differ from the optimal binding sequence. This sequence variation occurs commonly at the first 2 bp, making an in vivo mycobacterial DnaA-box effectively a 7-mer and not a 9-mer. We demonstrate that the decrease in the affinity of these MtDnaA-box variants for MtDnaA DBD relative to that of the highest-affinity box TTGTCCACA is less than 10-fold. The understanding of DnaA-box recognition by MtDnaA and E. coli DnaA enables one to map DnaA-box sequences in the genomes of M. tuberculosis and other eubacteria.

  8. The expression and recognition of emotions in the voice across five nations: A lens model analysis based on acoustic features.

    PubMed

    Laukka, Petri; Elfenbein, Hillary Anger; Thingujam, Nutankumar S; Rockstuhl, Thomas; Iraki, Frederick K; Chui, Wanda; Althoff, Jean

    2016-11-01

    This study extends previous work on emotion communication across cultures with a large-scale investigation of the physical expression cues in vocal tone. In doing so, it provides the first direct test of a key proposition of dialect theory, namely that greater accuracy of detecting emotions from one's own cultural group-known as in-group advantage-results from a match between culturally specific schemas in emotional expression style and culturally specific schemas in emotion recognition. Study 1 used stimuli from 100 professional actors from five English-speaking nations vocally conveying 11 emotional states (anger, contempt, fear, happiness, interest, lust, neutral, pride, relief, sadness, and shame) using standard-content sentences. Detailed acoustic analyses showed many similarities across groups, and yet also systematic group differences. This provides evidence for cultural accents in expressive style at the level of acoustic cues. In Study 2, listeners evaluated these expressions in a 5 × 5 design balanced across groups. Cross-cultural accuracy was greater than expected by chance. However, there was also in-group advantage, which varied across emotions. A lens model analysis of fundamental acoustic properties examined patterns in emotional expression and perception within and across groups. Acoustic cues were used relatively similarly across groups both to produce and judge emotions, and yet there were also subtle cultural differences. Speakers appear to have a culturally nuanced schema for enacting vocal tones via acoustic cues, and perceivers have a culturally nuanced schema in judging them. Consistent with dialect theory's prediction, in-group judgments showed a greater match between these schemas used for emotional expression and perception. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  9. Microbial Pattern Recognition Causes Distinct Functional Micro-RNA Signatures in Primary Human Monocytes

    PubMed Central

    Häsler, Robert; Jacobs, Gunnar; Till, Andreas; Grabe, Nils; Cordes, Christian; Nikolaus, Susanna; Lao, Kaiqin

    2012-01-01

    Micro-RNAs (miRNAs) are short, non-coding RNAs that regulate gene expression post transcriptionally. Several studies have demonstrated the relevance of miRNAs for a wide range of cellular mechanisms, however, the current knowledge on how miRNAs respond to relevant external stimuli, e.g. in disease scenarios is very limited. To generate a descriptive picture of the miRNA network associated to inflammatory responses, we quantified the levels of 330 miRNAs upon stimulation with a panel of pro-inflammatory components such as microbial pattern molecules (flagellin, diacylated lipopeptide lipopolysaccharide, muramyl dipeptide), infection with Listeria monocytogenes and TNF-α as pro-inflammatory control in primary human monocytes using real time PCR. As a result, we found distinct miRNA response clusters for each stimulus used. Additionally, we identified potential target genes of three selected miRNAs miR-129-5p, miR-146a and miR-378 which were part of PAMP-specific response clusters by transfecting THP1 monocytes with the corresponding pre- or anti-miRNAs and microfluidic PCR arrays. The miRNAs induced distinct transcriptomal signatures, e.g. overexpression of miRNA129-5p, which was selectively upregulated by the NOD2-elicitor MDP, led to an upregulation of DEFB1, IRAK1, FBXW7 and IKK γ (Nemo). Our findings on highly co-regulated clusters of miRNAs support the hypothesis that miRNAs act in functional groups. This study indicates that miRNAs play an important role in fine-tuning inflammatory mechanisms. Further investigation in the field of miRNA responses will help to understand their effects on gene expression and may close the regulatory gap between mRNA and protein expression in inflammatory diseases. PMID:22363568

  10. Microbial pattern recognition causes distinct functional micro-RNA signatures in primary human monocytes.

    PubMed

    Häsler, Robert; Jacobs, Gunnar; Till, Andreas; Grabe, Nils; Cordes, Christian; Nikolaus, Susanna; Lao, Kaiqin; Schreiber, Stefan; Rosenstiel, Philip

    2012-01-01

    Micro-RNAs (miRNAs) are short, non-coding RNAs that regulate gene expression post transcriptionally. Several studies have demonstrated the relevance of miRNAs for a wide range of cellular mechanisms, however, the current knowledge on how miRNAs respond to relevant external stimuli, e.g. in disease scenarios is very limited. To generate a descriptive picture of the miRNA network associated to inflammatory responses, we quantified the levels of 330 miRNAs upon stimulation with a panel of pro-inflammatory components such as microbial pattern molecules (flagellin, diacylated lipopeptide lipopolysaccharide, muramyl dipeptide), infection with Listeria monocytogenes and TNF-α as pro-inflammatory control in primary human monocytes using real time PCR. As a result, we found distinct miRNA response clusters for each stimulus used. Additionally, we identified potential target genes of three selected miRNAs miR-129-5p, miR-146a and miR-378 which were part of PAMP-specific response clusters by transfecting THP1 monocytes with the corresponding pre- or anti-miRNAs and microfluidic PCR arrays. The miRNAs induced distinct transcriptomal signatures, e.g. overexpression of miRNA129-5p, which was selectively upregulated by the NOD2-elicitor MDP, led to an upregulation of DEFB1, IRAK1, FBXW7 and IKK γ (Nemo). Our findings on highly co-regulated clusters of miRNAs support the hypothesis that miRNAs act in functional groups. This study indicates that miRNAs play an important role in fine-tuning inflammatory mechanisms. Further investigation in the field of miRNA responses will help to understand their effects on gene expression and may close the regulatory gap between mRNA and protein expression in inflammatory diseases.

  11. Defining the mRNA recognition signature of a bacterial toxin protein

    PubMed Central

    Schureck, Marc A.; Dunkle, Jack A.; Maehigashi, Tatsuya; Miles, Stacey J.; Dunham, Christine M.

    2015-01-01

    Bacteria contain multiple type II toxins that selectively degrade mRNAs bound to the ribosome to regulate translation and growth and facilitate survival during the stringent response. Ribosome-dependent toxins recognize a variety of three-nucleotide codons within the aminoacyl (A) site, but how these endonucleases achieve substrate specificity remains poorly understood. Here, we identify the critical features for how the host inhibition of growth B (HigB) toxin recognizes each of the three A-site nucleotides for cleavage. X-ray crystal structures of HigB bound to two different codons on the ribosome illustrate how HigB uses a microbial RNase-like nucleotide recognition loop to recognize either cytosine or adenosine at the second A-site position. Strikingly, a single HigB residue and 16S rRNA residue C1054 form an adenosine-specific pocket at the third A-site nucleotide, in contrast to how tRNAs decode mRNA. Our results demonstrate that the most important determinant for mRNA cleavage by ribosome-dependent toxins is interaction with the third A-site nucleotide. PMID:26508639

  12. Defining the mRNA recognition signature of a bacterial toxin protein

    DOE PAGES

    Schureck, Marc A.; Dunkle, Jack A.; Maehigashi, Tatsuya; ...

    2015-10-27

    Bacteria contain multiple type II toxins that selectively degrade mRNAs bound to the ribosome to regulate translation and growth and facilitate survival during the stringent response. Ribosome-dependent toxins recognize a variety of three-nucleotide codons within the aminoacyl (A) site, but how these endonucleases achieve substrate specificity remains poorly understood. In this paper, we identify the critical features for how the host inhibition of growth B (HigB) toxin recognizes each of the three A-site nucleotides for cleavage. X-ray crystal structures of HigB bound to two different codons on the ribosome illustrate how HigB uses a microbial RNase-like nucleotide recognition loop tomore » recognize either cytosine or adenosine at the second A-site position. Strikingly, a single HigB residue and 16S rRNA residue C1054 form an adenosine-specific pocket at the third A-site nucleotide, in contrast to how tRNAs decode mRNA. Finally, our results demonstrate that the most important determinant for mRNA cleavage by ribosome-dependent toxins is interaction with the third A-site nucleotide.« less

  13. Defining the mRNA recognition signature of a bacterial toxin protein

    SciTech Connect

    Schureck, Marc A.; Dunkle, Jack A.; Maehigashi, Tatsuya; Miles, Stacey J.; Dunham, Christine M.

    2015-10-27

    Bacteria contain multiple type II toxins that selectively degrade mRNAs bound to the ribosome to regulate translation and growth and facilitate survival during the stringent response. Ribosome-dependent toxins recognize a variety of three-nucleotide codons within the aminoacyl (A) site, but how these endonucleases achieve substrate specificity remains poorly understood. In this paper, we identify the critical features for how the host inhibition of growth B (HigB) toxin recognizes each of the three A-site nucleotides for cleavage. X-ray crystal structures of HigB bound to two different codons on the ribosome illustrate how HigB uses a microbial RNase-like nucleotide recognition loop to recognize either cytosine or adenosine at the second A-site position. Strikingly, a single HigB residue and 16S rRNA residue C1054 form an adenosine-specific pocket at the third A-site nucleotide, in contrast to how tRNAs decode mRNA. Finally, our results demonstrate that the most important determinant for mRNA cleavage by ribosome-dependent toxins is interaction with the third A-site nucleotide.

  14. Comparing the effects of reverberation and of noise on speech recognition in simulated electric-acoustic listening.

    PubMed

    Helms Tillery, Kate; Brown, Christopher A; Bacon, Sid P

    2012-01-01

    Cochlear implant users report difficulty understanding speech in both noisy and reverberant environments. Electric-acoustic stimulation (EAS) is known to improve speech intelligibility in noise. However, little is known about the potential benefits of EAS in reverberation, or about how such benefits relate to those observed in noise. The present study used EAS simulations to examine these questions. Sentences were convolved with impulse responses from a model of a room whose estimated reverberation times were varied from 0 to 1 sec. These reverberated stimuli were then vocoded to simulate electric stimulation, or presented as a combination of vocoder plus low-pass filtered speech to simulate EAS. Monaural sentence recognition scores were measured in two conditions: reverberated speech and speech in a reverberated noise. The long-term spectrum and amplitude modulations of the noise were equated to the reverberant energy, allowing a comparison of the effects of the interferer (speech vs noise). Results indicate that, at least in simulation, (1) EAS provides significant benefit in reverberation; (2) the benefits of EAS in reverberation may be underestimated by those in a comparable noise; and (3) the EAS benefit in reverberation likely arises from partially preserved cues in this background accessible via the low-frequency acoustic component. © 2012 Acoustical Society of America.

  15. Multivariate data-driven modelling and pattern recognition for damage detection and identification for acoustic emission and acousto-ultrasonics

    NASA Astrophysics Data System (ADS)

    Torres-Arredondo, M.-A.; Tibaduiza, D.-A.; McGugan, M.; Toftegaard, H.; Borum, K.-K.; Mujica, L. E.; Rodellar, J.; Fritzen, C.-P.

    2013-10-01

    Different methods are commonly used for non-destructive testing in structures; among others, acoustic emission and ultrasonic inspections are widely used to assess structures. The research presented in this paper is motivated by the need to improve the inspection capabilities and reliability of structural health monitoring (SHM) systems based on ultrasonic guided waves with focus on the acoustic emission and acousto-ultrasonics techniques. The use of a guided wave based approach is driven by the fact that these waves are able to propagate over relatively long distances, and interact sensitively and uniquely with different types of defect. Special attention is paid here to the development of efficient SHM methodologies. This requires robust signal processing techniques for the correct interpretation of the complex ultrasonic waves. Therefore, a variety of existing algorithms for signal processing and pattern recognition are evaluated and integrated into the different proposed methodologies. As a contribution to solve the problem, this paper presents results in damage detection and classification using a methodology based on hierarchical nonlinear principal component analysis, square prediction measurements and self-organizing maps, which are applied to data from acoustic emission tests and acousto-ultrasonic inspections. At the end, the efficiency of these methodologies is experimentally evaluated in diverse anisotropic composite structures.

  16. Acoustics

    NASA Technical Reports Server (NTRS)

    Goodman, Jerry R.; Grosveld, Ferdinand

    2007-01-01

    The acoustics environment in space operations is important to maintain at manageable levels so that the crewperson can remain safe, functional, effective, and reasonably comfortable. High acoustic levels can produce temporary or permanent hearing loss, or cause other physiological symptoms such as auditory pain, headaches, discomfort, strain in the vocal cords, or fatigue. Noise is defined as undesirable sound. Excessive noise may result in psychological effects such as irritability, inability to concentrate, decrease in productivity, annoyance, errors in judgment, and distraction. A noisy environment can also result in the inability to sleep, or sleep well. Elevated noise levels can affect the ability to communicate, understand what is being said, hear what is going on in the environment, degrade crew performance and operations, and create habitability concerns. Superfluous noise emissions can also create the inability to hear alarms or other important auditory cues such as an equipment malfunctioning. Recent space flight experience, evaluations of the requirements in crew habitable areas, and lessons learned (Goodman 2003; Allen and Goodman 2003; Pilkinton 2003; Grosveld et al. 2003) show the importance of maintaining an acceptable acoustics environment. This is best accomplished by having a high-quality set of limits/requirements early in the program, the "designing in" of acoustics in the development of hardware and systems, and by monitoring, testing and verifying the levels to ensure that they are acceptable.

  17. Development of Microbubble Contrast Agents with Biochemical Recognition and Tunable Acoustic Response

    NASA Astrophysics Data System (ADS)

    Nakatsuka, Matthew Allan Masao

    Microbubbles, consisting of gas-filled cores encapsulated within phospholipid or polymer shells, are the most widely used ultrasound contrast agents in the world. Because of their acoustic impedance mismatch with surrounding tissues and compressible gaseous interiors, they have high echogenicities that allow for efficient backscatter of ultrasound. They can also generate unique harmonic frequencies when insonated near their resonance frequency, depending on physical microbubble properties such as the stiffness and thickness of the encapsulating shell. Microbubbles are used to detect a number of cardiovascular diseases, but current methodologies lack the ability to detect and distinguish small, rapidly growing abnormalities that do not produce visible blockage or slowing of blood flow. This work describes the development, formulation, and validation of microbubbles with various polymer shell architectures designed to modulate their acoustic ability. We demonstrate that the addition of a thick disulfide crosslinked, poly(acrylic acid) encapsulating shell increases a bubble's resistance to cavitation and changes its resonance frequency. Modification of this shell architecture to use hybridized DNA strands to form crosslinks between the polymer chains allows for tuning of the bubble acoustic response. When the DNA crosslinks are in place, shell stiffness is increased so the bubbles do not oscillate and acoustic signal is muted. Subsequently, when these DNA strands are displaced, partial acoustic activity is restored. By using aptamer sequences with a specific affinity towards the biomolecule thrombin as the DNA crosslinking strand, this acoustic "ON/OFF" behavior can be specifically tailored towards the presence of a specific biomarker, and produces a change in acoustic signal at concentrations of thrombin consistent with acute deep venous thrombosis. Incorporation of the emulsifying agent poly(ethylene glycol) into the encapsulating shell improves microbubble yield

  18. Molecular recognition in gas sensing: Results from acoustic wave and in-situ FTIR measurements

    SciTech Connect

    Hierlemann, A.; Ricco, A.J.; Bodenhoefer, K.; Goepel, W.

    1998-06-01

    Surface acoustic wave (SAW) measurements were combined with direct, in-situ molecular spectroscopy to understand the interactions of surface-confined sensing films with gas-phase analytes. This was accomplished by collecting Fourier-transform infrared external-reflectance spectra (FTIR-ERS) on operating SAW devices during dosing of their specifically coated surfaces with key analytes.

  19. Methodical principles of recognition different source types in an acoustic-emission testing of metal objects

    NASA Astrophysics Data System (ADS)

    Bobrov, A. L.

    2017-08-01

    This paper presents issues of identification of various AE sources in order to increase the information value of AE method. This task is especially relevant for complex objects, when factors that affect an acoustic path on an object of testing significantly affect parameters of signals recorded by sensor. Correlation criteria, sensitive to type of AE source in metal objects is determined in the article.

  20. The Role of Secondary-Stressed and Unstressed-Unreduced Syllables in Word Recognition: Acoustic and Perceptual Studies with Russian Learners of English

    ERIC Educational Resources Information Center

    Banzina, Elina; Dilley, Laura C.; Hewitt, Lynne E.

    2016-01-01

    The importance of secondary-stressed (SS) and unstressed-unreduced (UU) syllable accuracy for spoken word recognition in English is as yet unclear. An acoustic study first investigated Russian learners' of English production of SS and UU syllables. Significant vowel quality and duration reductions in Russian-spoken SS and UU vowels were found,…

  1. The Role of Secondary-Stressed and Unstressed-Unreduced Syllables in Word Recognition: Acoustic and Perceptual Studies with Russian Learners of English

    ERIC Educational Resources Information Center

    Banzina, Elina; Dilley, Laura C.; Hewitt, Lynne E.

    2016-01-01

    The importance of secondary-stressed (SS) and unstressed-unreduced (UU) syllable accuracy for spoken word recognition in English is as yet unclear. An acoustic study first investigated Russian learners' of English production of SS and UU syllables. Significant vowel quality and duration reductions in Russian-spoken SS and UU vowels were found,…

  2. Comparing the effects of reverberation and of noise on speech recognition in simulated electric-acoustic listening

    PubMed Central

    Helms Tillery, Kate; Brown, Christopher A.; Bacon, Sid P.

    2012-01-01

    Cochlear implant users report difficulty understanding speech in both noisy and reverberant environments. Electric-acoustic stimulation (EAS) is known to improve speech intelligibility in noise. However, little is known about the potential benefits of EAS in reverberation, or about how such benefits relate to those observed in noise. The present study used EAS simulations to examine these questions. Sentences were convolved with impulse responses from a model of a room whose estimated reverberation times were varied from 0 to 1 sec. These reverberated stimuli were then vocoded to simulate electric stimulation, or presented as a combination of vocoder plus low-pass filtered speech to simulate EAS. Monaural sentence recognition scores were measured in two conditions: reverberated speech and speech in a reverberated noise. The long-term spectrum and amplitude modulations of the noise were equated to the reverberant energy, allowing a comparison of the effects of the interferer (speech vs noise). Results indicate that, at least in simulation, (1) EAS provides significant benefit in reverberation; (2) the benefits of EAS in reverberation may be underestimated by those in a comparable noise; and (3) the EAS benefit in reverberation likely arises from partially preserved cues in this background accessible via the low-frequency acoustic component. PMID:22280603

  3. Finding a mate at a cocktail party: Spatial release from masking improves acoustic mate recognition in grey treefrogs

    PubMed Central

    Bee, Mark A.

    2008-01-01

    The ‘cocktail party problem’ refers to the difficulty that humans have in recognizing speech in noisy social environments. Many non-human animals also communicate acoustically in noisy social aggregations, and thus also encounter – and solve – cocktail-party-like problems. Relatively few studies, however, have investigated the processes by which non-human animals solve sound source segregation problems in the behaviourally relevant context of acoustic communication. In humans, ‘spatial release from masking’ contributes to sound source segregation by improving the ability of listeners to recognize speech that is spatially separated from other sources of speech or ‘speech-shaped’ masking noise. Using a phonotaxis paradigm, I tested the hypothesis that spatial release from masking improves the ability of female grey treefrogs, Hyla chrysoscelis, to discriminate between conspecific and heterospecific calls that were spatially separated from two sources of ‘chorus-shaped’ masking noise by either 15° or 90°. As the signal-to-noise ratio (SNR) was decreased from +3 dB to −15 dB (by decreasing the signal level in 6-dB steps), fewer females made a choice and the likelihood of a female choosing the heterospecific call also increased. At a SNR of −3 dB, females oriented toward and chose the conspecific call in the 90° separation condition, but not when signals and maskers were separated by 15°. These results support the hypothesis that a well-known solution to the cocktail party problem in humans – spatial release from masking – also plays a role in acoustic signal recognition in animals that communicate in biological equivalents of cocktail-party-like environments. PMID:19412318

  4. Effective Use of Molecular Recognition in Gas Sensing: Results from Acoustic Wave and In-Situ FTIR Measurements

    SciTech Connect

    Bodenhofer, K,; Gopel, W.; Hierlemann, A.; Ricco, A.J.

    1998-12-09

    To probe directly the analyte/film interactions that characterize molecular recognition in gas sensors, we recorded changes to the in-situ surface vibrational spectra of specifically fictionalized surface acoustic wave (SAW) devices concurrently with analyte exposure and SAW measurement of the extent of sorption. Fourier-lmnsform infrared external- reflectance spectra (FTIR-ERS) were collected from operating 97-MH2 SAW delay lines during exposure to a range of analytes as they interacted with thin-film coatings previously shown to be selective: cyclodextrins for chiral recognition, Ni-camphorates for Lewis bases such as pyridine and organophosphonates, and phthalocyanines for aromatic compounds. In most cases where specific chemical interactions-metal coordination, "cage" compound inclusion, or z stacking-were expected, analyte dosing caused distinctive changes in the IR spectr~ together with anomalously large SAW sensor responses. In contrast, control experiments involving the physisorption of the same analytes by conventional organic polymers did not cause similar changes in the IR spectra, and the SAW responses were smaller. For a given conventional polymer, the partition coefficients (or SAW sensor signals) roughly followed the analyte fraction of saturation vapor pressure. These SAW/FTIR results support earlier conclusions derived from thickness-shear mode resonator data.

  5. Application of pattern recognition techniques to the identification of aerospace acoustic sources

    NASA Technical Reports Server (NTRS)

    Fuller, Chris R.; Obrien, Walter F.; Cabell, Randolph H.

    1988-01-01

    A pattern recognition system was developed that successfully recognizes simulated spectra of five different types of transportation noise sources. The system generates hyperplanes during a training stage to separate the classes and correctly classify unknown patterns in classification mode. A feature selector in the system reduces a large number of features to a smaller optimal set, maximizing performance and minimizing computation.

  6. Effects of noise and spectral resolution on vowel and consonant recognition: acoustic and electric hearing.

    PubMed

    Fu, Q J; Shannon, R V; Wang, X

    1998-12-01

    Current multichannel cochlear implant devices provide high levels of speech performance in quiet. However, performance deteriorates rapidly with increasing levels of background noise. The goal of this study was to investigate whether the noise susceptibility of cochlear implant users is primarily due to the loss of fine spectral information. Recognition of vowels and consonants was measured as a function of signal-to-noise ratio in four normal-hearing listeners in conditions simulating cochlear implants with both CIS and SPEAK-like strategies. Six conditions were evaluated: 3-, 4-, 8-, and 16-band processors (CIS-like), a 6/20 band processor (SPEAK-like), and unprocessed speech. Recognition scores for vowels and consonants decreased as the S/N level worsened in all conditions, as expected. Phoneme recognition threshold (PRT) was defined as the S/N at which the recognition score fell to 50% of its level in quiet. The unprocessed speech had the best PRT, which worsened as the number of bands decreased. Recognition of vowels and consonants was further measured in three Nucleus-22 cochlear implant users using either their normal SPEAK speech processor or a custom processor with a four-channel CIS strategy. The best cochlear implant user showed similar performance with the CIS strategy in quiet and in noise to that of normal-hearing listeners when listening to correspondingly spectrally degraded speech. These findings suggest that the noise susceptibility of cochlear implant users is at least partly due to the loss of spectral resolution. Efforts to improve the effective number of spectral information channels should improve implant performance in noise.

  7. Speech Recognition of Non-Native Speech Using Native and Non-Native Acoustic Models

    DTIC Science & Technology

    2000-08-01

    NATIVE AND NON-NATIVE ACOUSTIC MODELS David A. van Leeuwen and Rosemary Orr vanLeeuwentm .tno. nl R. 0rr~kno. azn. nl TNO Human Factors Research...a] is pronounced closer to the [c] by the vowels . Journal of Phonetics, 25:437-470, 1997. 32 [2] D. B. Paul and J. M. Baker. The design for [9] R. H...J. Kershaw, [12] Tony Robinson. Private Communication. L. Lamel, D. A. van Leeuwen , D. Pye, A. J. Robinson, H. J. M. Steeneken, and P. C. Wood- [13

  8. Acoustic Feature Optimization Based on F-Ratio for Robust Speech Recognition

    NASA Astrophysics Data System (ADS)

    Sun, Yanqing; Zhou, Yu; Zhao, Qingwei; Yan, Yonghong

    This paper focuses on the problem of performance degradation in mismatched speech recognition. The F-Ratio analysis method is utilized to analyze the significance of different frequency bands for speech unit classification, and we find that frequencies around 1kHz and 3kHz, which are the upper bounds of the first and the second formants for most of the vowels, should be emphasized in comparison to the Mel-frequency cepstral coefficients (MFCC). The analysis result is further observed to be stable in several typical mismatched situations. Similar to the Mel-Frequency scale, another frequency scale called the F-Ratio-scale is thus proposed to optimize the filter bank design for the MFCC features, and make each subband contains equal significance for speech unit classification. Under comparable conditions, with the modified features we get a relative 43.20% decrease compared with the MFCC in sentence error rate for the emotion affected speech recognition, 35.54%, 23.03% for the noisy speech recognition at 15dB and 0dB SNR (signal to noise ratio) respectively, and 64.50% for the three years' 863 test data. The application of the F-Ratio analysis on the clean training set of the Aurora2 database demonstrates its robustness over languages, texts and sampling rates.

  9. The effect of room acoustics and sound-field amplification on word recognition performance in young adult listeners in suboptimal listening conditions.

    PubMed

    Larsen, Jeffery B; Vega, Alison; Ribera, John E

    2008-06-01

    To compare the speech recognition performance of young adult listeners with normal hearing in 2 college classrooms, only 1 of which met American National Standards Institute (ANSI) S12.60-2002 acoustic standards. Also, differences in speech recognition performance were compared in both classrooms with and without the use of a classroom amplification system. The speech was presented at low intensity to simulate listening in the rear seats of a large college classroom. Listeners were randomly assigned seats in the 2 classrooms, and Northwestern University Auditory Test No. 6 (NU-6) words were presented via a loudspeaker from the front of the classroom for all listening conditions as well as through a sound-field infrared system with ceiling-mounted speakers during the amplified condition. Results showed statistically significant differences in speech recognition performance between classrooms, with and without classroom amplification, and across the rows of each classroom when the classroom amplification system was not used. These results demonstrate how meeting the ANSI S12.60-2002 standard, which was written for elementary school classrooms, can benefit young adult listeners in postsecondary classrooms. Also, classroom amplification was shown to improve speech recognition for students across the classroom in both acoustically poor and acoustically sound classroom environments.

  10. A smart sensor system for trace organic vapor detection using a temperature-controlled array of surface acoustic wave vapor sensors, automated preconcentrator tubes, and pattern recognition

    SciTech Connect

    Grate, J.W.; Rose-Pehrsson, S.L.; Klusty, M.; Wohltjen, H.

    1993-05-01

    A smart sensor system for the detection, of toxic organophosphorus and toxic organosulfur vapors at trace concentrations has been designed, fabricated, and tested against a wide variety of vapor challenges. The key features of the system are: An array of four surface acoustic wave (SAW) vapor sensors, temperature control of the vapor sensors, the use of pattern recognition to analyze the sensor data, and an automated sampling system including thermally-desorbed preconcentrator tubes (PCTs).

  11. Computational principles underlying recognition of acoustic signals in grasshoppers and crickets.

    PubMed

    Ronacher, Bernhard; Hennig, R Matthias; Clemens, Jan

    2015-01-01

    Grasshoppers and crickets independently evolved hearing organs and acoustic communication. They differ considerably in the organization of their auditory pathways, and the complexity of their songs, which are essential for mate attraction. Recent approaches aimed at describing the behavioral preference functions of females in both taxa by a simple modeling framework. The basic structure of the model consists of three processing steps: (1) feature extraction with a bank of 'LN models'-each containing a linear filter followed by a nonlinearity, (2) temporal integration, and (3) linear combination. The specific properties of the filters and nonlinearities were determined using a genetic learning algorithm trained on a large set of different song features and the corresponding behavioral response scores. The model showed an excellent prediction of the behavioral responses to the tested songs. Most remarkably, in both taxa the genetic algorithm found Gabor-like functions as the optimal filter shapes. By slight modifications of Gabor filters several types of preference functions could be modeled, which are observed in different cricket species. Furthermore, this model was able to explain several so far enigmatic results in grasshoppers. The computational approach offered a remarkably simple framework that can account for phenotypically rather different preference functions across several taxa.

  12. Effect of Digital Frequency Compression (DFC) on Speech Recognition in Candidates for Combined Electric and Acoustic Stimulation (EAS)

    PubMed Central

    Gifford, René H.; Dorman, Michael F.; Spahr, Anthony J.; McKarns, Sharon A.

    2008-01-01

    Purpose To compare the effects of conventional amplification (CA) and digital frequency compression (DFC) amplification on the speech recognition abilities of candidates for a partial-insertion cochlear implant, that is, candidates for combined electric and acoustic stimulation (EAS). Method The participants were 6 patients whose audiometric thresholds at 500 Hz and below were ≤60 dB HL and whose thresholds at 2000 Hz and above were ≥80 dB HL. Six tests of speech understanding were administered with CA and DFC. The Abbreviated Profile of Hearing Aid Benefit (APHAB) was also administered following use of CA and DFC. Results Group mean scores were not statistically different in the CA and DFC conditions. However, 2 patients received substantial benefit in DFC conditions. APHAB scores suggested increased ease of communication, but also increased aversive sound quality. Conclusion Results suggest that a relatively small proportion of individuals who meet EAS candidacy will receive substantial benefit from a DFC hearing aid and that a larger proportion will receive at least a small benefit when speech is presented against a background of noise. This benefit, however, comes at a cost—aversive sound quality. PMID:17905905

  13. Vowel recognition at fundamental frequencies up to 1 kHz reveals point vowels as acoustic landmarks.

    PubMed

    Friedrichs, Daniel; Maurer, Dieter; Rosen, Stuart; Dellwo, Volker

    2017-08-01

    The phonological function of vowels can be maintained at fundamental frequencies (fo) up to 880 Hz [Friedrichs, Maurer, and Dellwo (2015). J. Acoust. Soc. Am. 138, EL36-EL42]. Here, the influence of talker variability and multiple response options on vowel recognition at high fos is assessed. The stimuli (n = 264) consisted of eight isolated vowels (/i y e ø ε a o u/) produced by three female native German talkers at 11 fos within a range of 220-1046 Hz. In a closed-set identification task, 21 listeners were presented excised 700-ms vowel nuclei with quasi-flat fo contours and resonance trajectories. The results show that listeners can identify the point vowels /i a u/ at fos up to almost 1 kHz, with a significant decrease for the vowels /y ε/ and a drop to chance level for the vowels /e ø o/ toward the upper fos. Auditory excitation patterns reveal highly differentiable representations for /i a u/ that can be used as landmarks for vowel category perception at high fos. These results suggest that theories of vowel perception based on overall spectral shape will provide a fuller account of vowel perception than those based solely on formant frequency patterns.

  14. Signatures support program

    NASA Astrophysics Data System (ADS)

    Hawley, Chadwick T.

    2009-05-01

    The Signatures Support Program (SSP) leverages the full spectrum of signature-related activities (collections, processing, development, storage, maintenance, and dissemination) within the Department of Defense (DOD), the intelligence community (IC), other Federal agencies, and civil institutions. The Enterprise encompasses acoustic, seismic, radio frequency, infrared, radar, nuclear radiation, and electro-optical signatures. The SSP serves the war fighter, the IC, and civil institutions by supporting military operations, intelligence operations, homeland defense, disaster relief, acquisitions, and research and development. Data centers host and maintain signature holdings, collectively forming the national signatures pool. The geographically distributed organizations are the authoritative sources and repositories for signature data; the centers are responsible for data content and quality. The SSP proactively engages DOD, IC, other Federal entities, academia, and industry to locate signatures for inclusion in the distributed national signatures pool and provides world-wide 24/7 access via the SSP application.

  15. Experimental investigation of the effects of the acoustical conditions in a simulated classroom on speech recognition and learning in children a

    PubMed Central

    Valente, Daniel L.; Plevinsky, Hallie M.; Franco, John M.; Heinrichs-Graham, Elizabeth C.; Lewis, Dawna E.

    2012-01-01

    The potential effects of acoustical environment on speech understanding are especially important as children enter school where students’ ability to hear and understand complex verbal information is critical to learning. However, this ability is compromised because of widely varied and unfavorable classroom acoustics. The extent to which unfavorable classroom acoustics affect children’s performance on longer learning tasks is largely unknown as most research has focused on testing children using words, syllables, or sentences as stimuli. In the current study, a simulated classroom environment was used to measure comprehension performance of two classroom learning activities: a discussion and lecture. Comprehension performance was measured for groups of elementary-aged students in one of four environments with varied reverberation times and background noise levels. The reverberation time was either 0.6 or 1.5 s, and the signal-to-noise level was either +10 or +7 dB. Performance is compared to adult subjects as well as to sentence-recognition in the same condition. Significant differences were seen in comprehension scores as a function of age and condition; both increasing background noise and reverberation degraded performance in comprehension tasks compared to minimal differences in measures of sentence-recognition. PMID:22280587

  16. Characterizing riverbed sediment using high-frequency acoustics: 2. Scattering signatures of Colorado River bed sediment in Marble and Grand Canyons

    NASA Astrophysics Data System (ADS)

    Buscombe, D.; Grams, P. E.; Kaplinski, M. A.

    2014-12-01

    In this, the second of a pair of papers on the statistical signatures of riverbed sediment in high-frequency acoustic backscatter, spatially explicit maps of the stochastic geometries (length and amplitude scales) of backscatter are related to patches of riverbed surfaces composed of known sediment types, as determined by georeferenced underwater video observations. Statistics of backscatter magnitudes alone are found to be poor discriminators between sediment types. However, the variance of the power spectrum and the intercept and slope from a power law spectral form (termed the spectral strength and exponent, respectively) successfully discriminate between sediment types. A decision tree approach was able to classify spatially heterogeneous patches of homogeneous sands, gravels (and sand-gravel mixtures), and cobbles/boulders with 95, 88, and 91% accuracy, respectively. Application to sites outside the calibration and surveys made at calibration sites at different times were plausible based on observations from underwater video. Analysis of decision trees built with different training data sets suggested that the spectral exponent was consistently the most important variable in the classification. In the absence of theory concerning how spatially variable sediment surfaces scatter high-frequency sound, the primary advantage of this data-driven approach to classify bed sediment over alternatives is that spectral methods have well-understood properties and make no assumptions about the distributional form of the fluctuating component of backscatter over small spatial scales.

  17. Characterizing riverbed sediment using high-frequency acoustics 2: scattering signatures of Colorado River bed sediment in Marble and Grand Canyons

    USGS Publications Warehouse

    Buscombe, Daniel D.; Grams, Paul E.; Kaplinski, Matt A.

    2014-01-01

    In this, the second of a pair of papers on the statistical signatures of riverbed sediment in high-frequency acoustic backscatter, spatially explicit maps of the stochastic geometries (length- and amplitude-scales) of backscatter are related to patches of riverbed surfaces composed of known sediment types, as determined by geo-referenced underwater video observations. Statistics of backscatter magnitudes alone are found to be poor discriminators between sediment types. However, the variance of the power spectrum, and the intercept and slope from a power-law spectral form (termed the spectral strength and exponent, respectively) successfully discriminate between sediment types. A decision-tree approach was able to classify spatially heterogeneous patches of homogeneous sands, gravels (and sand-gravel mixtures), and cobbles/boulders with 95, 88, and 91% accuracy, respectively. Application to sites outside the calibration, and surveys made at calibration sites at different times, were plausible based on observations from underwater video. Analysis of decision trees built with different training data sets suggested that the spectral exponent was consistently the most important variable in the classification. In the absence of theory concerning how spatially variable sediment surfaces scatter high-frequency sound, the primary advantage of this data-driven approach to classify bed sediment over alternatives is that spectral methods have well understood properties and make no assumptions about the distributional form of the fluctuating component of backscatter over small spatial scales.

  18. Surface gravity waves and their acoustic signatures, 1-30 Hz, on the mid-Pacific sea floor.

    PubMed

    Farrell, W E; Munk, Walter

    2013-10-01

    In 1999, Duennebier et al. deployed a hydrophone and geophone below the conjugate depth in the abyssal Pacific, midway between Hawaii and California. Real time data were transmitted for 3 yr over an abandoned ATT cable. These data have been analyzed in the frequency band 1 to 30 Hz. Between 1 and 6 Hz, the bottom data are interpreted as acoustic radiation from surface gravity waves, an extension to higher frequencies of a non-linear mechanism proposed by Longuet-Higgins in 1950 to explain microseisms. The inferred surface wave spectrum for wave lengths between 6 m and 17 cm is saturated (wind-independent) and roughly consistent with the traditional Phillips κ(-4) wave number spectrum. Shorter ocean waves have a strong wind dependence and a less steep wave number dependence. Similar features are found in the bottom record between 6 and 30 Hz. But this leads to an enigma: The derived surface spectrum inferred from the Longuet-Higgins mechanism with conventional assumptions for the dispersion relation is associated with mean square slopes that greatly exceed those derived from glitter. Regardless of the generation mechanism, the measured bottom intensities between 10 and 30 Hz are well below minimum noise standards reported in the literature.

  19. Signatures of the Primordial Universe from Its Emptiness: Measurement of Baryon Acoustic Oscillations from Minima of the Density Field

    NASA Astrophysics Data System (ADS)

    Kitaura, Francisco-Shu; Chuang, Chia-Hsun; Liang, Yu; Zhao, Cheng; Tao, Charling; Rodríguez-Torres, Sergio; Eisenstein, Daniel J.; Gil-Marín, Héctor; Kneib, Jean-Paul; McBride, Cameron; Percival, Will J.; Ross, Ashley J.; Sánchez, Ariel G.; Tinker, Jeremy; Tojeiro, Rita; Vargas-Magana, Mariana; Zhao, Gong-Bo

    2016-04-01

    Sound waves from the primordial fluctuations of the Universe imprinted in the large-scale structure, called baryon acoustic oscillations (BAOs), can be used as standard rulers to measure the scale of the Universe. These oscillations have already been detected in the distribution of galaxies. Here we propose to measure BAOs from the troughs (minima) of the density field. Based on two sets of accurate mock halo catalogues with and without BAOs in the seed initial conditions, we demonstrate that the BAO signal cannot be obtained from the clustering of classical disjoint voids, but it is clearly detected from overlapping voids. The latter represent an estimate of all troughs of the density field. We compute them from the empty circumsphere centers constrained by tetrahedra of galaxies using Delaunay triangulation. Our theoretical models based on an unprecedented large set of detailed simulated void catalogues are remarkably well confirmed by observational data. We use the largest recently publicly available sample of luminous red galaxies from SDSS-III BOSS DR11 to unveil for the first time a >3 σ BAO detection from voids in observations. Since voids are nearly isotropically expanding regions, their centers represent the most quiet places in the Universe, keeping in mind the cosmos origin and providing a new promising window in the analysis of the cosmological large-scale structure from galaxy surveys.

  20. Signatures of the Primordial Universe from Its Emptiness: Measurement of Baryon Acoustic Oscillations from Minima of the Density Field.

    PubMed

    Kitaura, Francisco-Shu; Chuang, Chia-Hsun; Liang, Yu; Zhao, Cheng; Tao, Charling; Rodríguez-Torres, Sergio; Eisenstein, Daniel J; Gil-Marín, Héctor; Kneib, Jean-Paul; McBride, Cameron; Percival, Will J; Ross, Ashley J; Sánchez, Ariel G; Tinker, Jeremy; Tojeiro, Rita; Vargas-Magana, Mariana; Zhao, Gong-Bo

    2016-04-29

    Sound waves from the primordial fluctuations of the Universe imprinted in the large-scale structure, called baryon acoustic oscillations (BAOs), can be used as standard rulers to measure the scale of the Universe. These oscillations have already been detected in the distribution of galaxies. Here we propose to measure BAOs from the troughs (minima) of the density field. Based on two sets of accurate mock halo catalogues with and without BAOs in the seed initial conditions, we demonstrate that the BAO signal cannot be obtained from the clustering of classical disjoint voids, but it is clearly detected from overlapping voids. The latter represent an estimate of all troughs of the density field. We compute them from the empty circumsphere centers constrained by tetrahedra of galaxies using Delaunay triangulation. Our theoretical models based on an unprecedented large set of detailed simulated void catalogues are remarkably well confirmed by observational data. We use the largest recently publicly available sample of luminous red galaxies from SDSS-III BOSS DR11 to unveil for the first time a >3σ BAO detection from voids in observations. Since voids are nearly isotropically expanding regions, their centers represent the most quiet places in the Universe, keeping in mind the cosmos origin and providing a new promising window in the analysis of the cosmological large-scale structure from galaxy surveys.

  1. Different importance of the volatile and non-volatile fractions of an olfactory signature for individual social recognition in rats versus mice and short-term versus long-term memory.

    PubMed

    Noack, Julia; Richter, Karin; Laube, Gregor; Haghgoo, Hojjat Allah; Veh, Rüdiger W; Engelmann, Mario

    2010-11-01

    When tested in the olfactory cued social recognition/discrimination test, rats and mice differ in their retention of a recognition memory for a previously encountered conspecific juvenile: Rats are able to recognize a given juvenile for approximately 45 min only whereas mice show not only short-term, but also long-term recognition memory (≥ 24 h). Here we modified the social recognition/social discrimination procedure to investigate the neurobiological mechanism(s) underlying the species differences. We presented a conspecific juvenile repeatedly to the experimental subjects and monitored the investigation duration as a measure for recognition. Presentation of only the volatile fraction of the juvenile olfactory signature was sufficient for both short- and long-term recognition in mice but not rats. Applying additional volatile, mono-molecular odours to the "to be recognized" juveniles failed to affect short-term memory in both species, but interfered with long-term recognition in mice. Finally immunocytochemical analysis of c-Fos as a marker for cellular activation, revealed that juvenile exposure stimulated areas involved in the processing of olfactory signals in both the main and the accessory olfactory bulb in mice. In rats, we measured an increased c-Fos synthesis almost exclusively in cells of the accessory olfactory bulb. Our data suggest that the species difference in the retention of social recognition memory is based on differences in the processing of the volatile versus non-volatile fraction of the individuals' olfactory signature. The non-volatile fraction is sufficient for retaining a short-term social memory only. Long-term social memory - as observed in mice - requires a processing of both the volatile and non-volatile fractions of the olfactory signature. Copyright © 2010 Elsevier Inc. All rights reserved.

  2. Tracking and understanding the acoustic signature of fluido-fractures: a dual optical/micro-seismic study

    NASA Astrophysics Data System (ADS)

    Turkaya, Semih; Toussaint, Renaud; Kvalheim Eriksen, Fredrik; Zecevic, Megan; Daniel, Guillaume; Jørgen Måløy, Knut; Grude Flekkøy, Eirik

    2015-04-01

    The characterization and comprehension of irreversible rock deformation processes due to fluid flow is a challenging problem with numerous applications in many fields. This phenomenon has received an ever-increasing attention in Earth Science, Physics, with many applications in natural hazard understanding, mitigation or forecast (e.g. earthquakes, control the mechanical stability of rock and soil formations during the injection or extraction of fluids, landslides with hydrological control, volcanic eruptions), or in the industry, as CO2 sequestration. In this study, analogue models are developed (similar to the previous work of Johnsen[1] but in rectangular shape) to study the instabilities developing during motion of fluid in dense porous materials: fracturing, fingering, channelling… We study these complex fluid/solid mechanical systems using two imaging techniques: fast optical imaging and high frequency resolution of acoustic emissions. Additionally, we develop physical models rendering for the fluid mechanics (similar to the work of Niebling[2] but with injection of fluid) in the channels and the propagation of microseismic waves around the fracture. We then confront a numerical resolution of this physical system with the observed experimental system. The experimental setup consists in a rectangular Hele-Shaw cell with three closed boundaries and one semi-permeable boundary which enables the flow of the fluid but not the solid particles. During the experiments, the fluid is injected into the system with a constant injection pressure from the point opposite to the semi-permeable boundary. The fluid penetrates into the solid using the pore network. At the large enough injection pressures, the fluid also makes its way via creating channels, fractures to the semi-permeable boundary. During the experiments acoustic signals are recorded using different sensors then, those signals are compared and investigated further in both time and frequency domains

  3. The Role of Secondary-Stressed and Unstressed-Unreduced Syllables in Word Recognition: Acoustic and Perceptual Studies with Russian Learners of English.

    PubMed

    Banzina, Elina; Dilley, Laura C; Hewitt, Lynne E

    2016-08-01

    The importance of secondary-stressed (SS) and unstressed-unreduced (UU) syllable accuracy for spoken word recognition in English is as yet unclear. An acoustic study first investigated Russian learners' of English production of SS and UU syllables. Significant vowel quality and duration reductions in Russian-spoken SS and UU vowels were found, likely due to a transfer of native phonological features. Next, a cross-modal phonological priming technique combined with a lexical decision task assessed the effect of inaccurate SS and UU syllable productions on native American English listeners' speech processing. Inaccurate UU vowels led to significant inhibition of lexical access, while reduced SS vowels revealed less interference. The results have implications for understanding the role of SS and UU syllables for word recognition and English pronunciation instruction.

  4. Parent-offspring communication in the Nile crocodile Crocodylus niloticus: do newborns' calls show an individual signature?

    NASA Astrophysics Data System (ADS)

    Vergne, Amélie L.; Avril, Alexis; Martin, Samuel; Mathevon, Nicolas

    2007-01-01

    Young Nile crocodiles Crocodylus niloticus start to produce calls inside the egg and carry on emitting sounds after hatching. These vocalizations elicit maternal care and influence the behaviour of other juveniles. In order to investigate the acoustic structure of these calls, focusing on a possible individual signature, we have performed acoustic analyses on 400 calls from ten young crocodiles during the first 4 days after hatching. Calls have a complex acoustic structure and are strongly frequency modulated. We assessed the differences between the calls of the individuals. We found a weak individual signature. An individual call-based recognition of young by the mother is thus unlikely. In other respects, the call acoustic structure changes from the first to the fourth day after hatching: fundamental frequency progressively decreases. These modifications might provide important information to the mother about her offspring—age and size—allowing her to customize her protective care to best suit the needs of each individual.

  5. Acoustic network event classification using swarm optimization

    NASA Astrophysics Data System (ADS)

    Burman, Jerry

    2013-05-01

    Classifying acoustic signals detected by distributed sensor networks is a difficult problem due to the wide variations that can occur in the transmission of terrestrial, subterranean, seismic and aerial events. An acoustic event classifier was developed that uses particle swarm optimization to perform a flexible time correlation of a sensed acoustic signature to reference data. In order to mitigate the effects from interference such as multipath, the classifier fuses signatures from multiple sensors to form a composite sensed acoustic signature and then automatically matches the composite signature with reference data. The approach can classify all types of acoustic events but is particularly well suited to explosive events such as gun shots, mortar blasts and improvised explosive devices that produce an acoustic signature having a shock wave component that is aperiodic and non-linear. The classifier was applied to field data and yielded excellent results in terms of reconstructing degraded acoustic signatures from multiple sensors and in classifying disparate acoustic events.

  6. Speech recognition in noise as a function of the number of spectral channels: comparison of acoustic hearing and cochlear implants.

    PubMed

    Friesen, L M; Shannon, R V; Baskent, D; Wang, X

    2001-08-01

    Speech recognition was measured as a function of spectral resolution (number of spectral channels) and speech-to-noise ratio in normal-hearing (NH) and cochlear-implant (CI) listeners. Vowel, consonant, word, and sentence recognition were measured in five normal-hearing listeners, ten listeners with the Nucleus-22 cochlear implant, and nine listeners with the Advanced Bionics Clarion cochlear implant. Recognition was measured as a function of the number of spectral channels (noise bands or electrodes) at signal-to-noise ratios of + 15, + 10, +5, 0 dB, and in quiet. Performance with three different speech processing strategies (SPEAK, CIS, and SAS) was similar across all conditions, and improved as the number of electrodes increased (up to seven or eight) for all conditions. For all noise levels, vowel and consonant recognition with the SPEAK speech processor did not improve with more than seven electrodes, while for normal-hearing listeners, performance continued to increase up to at least 20 channels. Speech recognition on more difficult speech materials (word and sentence recognition) showed a marginally significant increase in Nucleus-22 listeners from seven to ten electrodes. The average implant score on all processing strategies was poorer than scores of NH listeners with similar processing. However, the best CI scores were similar to the normal-hearing scores for that condition (up to seven channels). CI listeners with the highest performance level increased in performance as the number of electrodes increased up to seven, while CI listeners with low levels of speech recognition did not increase in performance as the number of electrodes was increased beyond four. These results quantify the effect of number of spectral channels on speech recognition in noise and demonstrate that most CI subjects are not able to fully utilize the spectral information provided by the number of electrodes used in their implant.

  7. Individual acoustic variation in Belding's ground squirrel alarm chirps in the High Sierra Nevada

    NASA Astrophysics Data System (ADS)

    McCowan, Brenda; Hooper, Stacie L.

    2002-03-01

    The acoustic structure of calls within call types can vary as function of individual identity, sex, and social group membership and is important in kin and social group recognition. Belding's ground squirrels (Spermophilus beldingi) produce alarm chirps that function in predator avoidance but little is known about the acoustic variability of these alarm chirps. The purpose of this preliminary study was to analyze the acoustic structure of alarm chirps with respect to individual differences (e.g., signature information) from eight Belding's ground squirrels from four different lakes in the High Sierra Nevada. Results demonstrate that alarm chirps are individually distinctive, and that acoustic similarity among individuals may correspond to genetic similarity and thus dispersal patterns in this species. These data suggest, on a preliminary basis, that the acoustic structure of calls might be used as a bioacoustic tool for tracking individuals, dispersal, and other population dynamics in Belding's ground squirrels, and perhaps other vocal species.

  8. Passive acoustic monitoring of human physiology during activity indicates health and performance of soldiers and firefighters

    NASA Astrophysics Data System (ADS)

    Scanlon, Michael V.

    2003-04-01

    The Army Research Laboratory has developed a unique gel-coupled acoustic physiological monitoring sensor that has acoustic impedance properties similar to the skin. This facilitates the transmission of body sounds into the sensor pad, yet significantly repels ambient airborne noises due to an impedance mismatch. The sensor's sensitivity and bandwidth produce excellent signatures for detection and spectral analysis of diverse physiological events. Acoustic signal processing detects heartbeats, breaths, wheezes, coughs, blood pressure, activity, motion, and voice for communication and automatic speech recognition. The health and performance of soldiers, firefighters, and other first responders in strenuous and hazardous environments can be continuously and remotely monitored with body-worn acoustic sensors. Comfortable acoustic sensors can be in a helmet or in a strap around the neck, chest, and wrist. Noise-canceling sensor arrays help remove out-of-phase motion noise and enhance covariant physiology by using two acoustic sensors on the front sides of the neck and two additional acoustic sensors on each wrist. Pulse wave transit time between neck and wrist acoustic sensors will indicate systolic blood pressure. Larger torso-sized arrays can be used to acoustically inspect the lungs and heart, or built into beds for sleep monitoring. Acoustics is an excellent input for sensor fusion.

  9. 5 CFR 850.106 - Electronic signatures.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... recognition; (2) Cryptographic control methods, including— (i) Shared symmetric key cryptography; (ii) Public/private key (asymmetric) cryptography, also known as digital signatures; (3) Any combination of methods...

  10. Structural studies on MtRecA-nucleotide complexes: insights into DNA and nucleotide binding and the structural signature of NTP recognition.

    PubMed

    Datta, S; Ganesh, N; Chandra, Nagasuma R; Muniyappa, K; Vijayan, M

    2003-02-15

    RecA protein plays a crucial role in homologous recombination and repair of DNA. Central to all activities of RecA is its binding to Mg(+2)-ATP. The active form of the protein is a helical nucleoprotein filament containing the nucleotide cofactor and single-stranded DNA. The stability and structure of the helical nucleoprotein filament formed by RecA are modulated by nucleotide cofactors. Here we report crystal structures of a MtRecA-ADP complex, complexes with ATPgammaS in the presence and absence of magnesium as well as a complex with dATP and Mg+2. Comparison with the recently solved crystal structures of the apo form as well as a complex with ADP-AlF4 confirms an expansion of the P-loop region in MtRecA, compared to its homologue in Escherichia coli, correlating with the reduced affinity of MtRecA for ATP. The ligand bound structures reveal subtle variations in nucleotide conformations among different nucleotides that serve in maintaining the network of interactions crucial for nucleotide binding. The nucleotide binding site itself, however, remains relatively unchanged. The analysis also reveals that ATPgammaS rather than ADP-AlF4 is structurally a better mimic of ATP. From among the complexed structures, a definition for the two DNA-binding loops L1 and L2 has clearly emerged for the first time and provides a basis to understand DNA binding by RecA. The structural information obtained from these complexes correlates well with the extensive biochemical data on mutants available in the literature, contributing to an understanding of the role of individual residues in the nucleotide binding pocket, at the molecular level. Modeling studies on the mutants again point to the relative rigidity of the nucleotide binding site. Comparison with other NTP binding proteins reveals many commonalties in modes of binding by diverse members in the structural family, contributing to our understanding of the structural signature of NTP recognition.

  11. Truck acoustic data analyzer system

    SciTech Connect

    Haynes, Howard D.; Akerman, Alfred; Ayers, Curtis W.

    2006-07-04

    A passive vehicle acoustic data analyzer system having at least one microphone disposed in the acoustic field of a moving vehicle and a computer in electronic communication the microphone(s). The computer detects and measures the frequency shift in the acoustic signature emitted by the vehicle as it approaches and passes the microphone(s). The acoustic signature of a truck driving by a microphone can provide enough information to estimate the truck speed in miles-per-hour (mph), engine speed in rotations-per-minute (RPM), turbocharger speed in RPM, and vehicle weight.

  12. On acoustic emission for damage detection and failure prediction in fiber reinforced polymer rods using pattern recognition analysis

    NASA Astrophysics Data System (ADS)

    Shateri, Mohammadhadi; Ghaib, Maha; Svecova, Dagmar; Thomson, Douglas

    2017-06-01

    Fiber reinforced polymer (FRP) rods are used for pre-stressing and reinforcing in civil engineering applications. Damage in FRP rods can lead to sudden brittle failure, therefore, a reliable method that provides indicators of damage progression and potential failure in FRP rods is highly desirable. Acoustic emission (AE) signal analysis has been used for damage detection and monitoring of FRP materials. In this study, a new AE event detection algorithm, utilizing the root mean square envelope of AE signal, is applied to AE data to isolate each AE event separately, even when AE events are nearly coincident. A fuzzy c-means (FCM) clustering algorithm is used to classify these isolated AE events into 3 clusters. Scanning electron microscopy images of FRP rod cross-sections also show 3 types of damage. The hypothesis in this study is that each cluster represents a damage mechanism. The number of events in each cluster is monitored versus the percent of the ultimate load. The ratio of the number of AE events in one of the FCM clusters to the number of AE events in another FCM cluster was useful for providing an indication of when the stress levels have reached the point where the loads may cause the FRP rod to fail. The results of applying this parameter to four FRP rods show a significant slope change (factor of 10) in this ratio at around 40% and 60% of the ultimate load for glass FRP rods and carbon FRP rods, respectively. This method may prove useful in damage progression and failure prediction of the FRP rods in prefabricated structures where pre-stressed FRP is used and in field monitoring of FRP materials.

  13. Evaluation of the in-flight noise signature of a 32-chute suppressor nozzle: Acoustic data report. [outdoor static and 40 x 80 ft. wind tunnel tests

    NASA Technical Reports Server (NTRS)

    Moore, M. T.; Doyle, V. L.

    1977-01-01

    Outdoor static and 40 x 80 FT wind tunnel tests of the J79-15 engine/nacelle system with the conic nozzle and 32-chute exhaust suppressor were conducted to acquire the data necessary to evaluate the simulated in-flight signature of an engine-size 32-chute exhaust nozzle suppressor using the 40 x 80 ft wind tunnel and to study possible engine core noise contamination of the jet signature. The tests are described and and a sampling of the data acquired is presented. Included are aero performance summaries, as-measured and composite 1/3 OBSPL spectra for the 70 ft sideline high and low mics from the outdoor static tests, sideline traverse spectra and internal noise measurements from both the outdoor static and the 40 x 80 ft wind tunnel tests.

  14. Acoustic data transmission through a drill string

    DOEpatents

    Drumheller, D.S.

    1988-04-21

    Acoustical signals are transmitted through a drill string by canceling upward moving acoustical noise and by preconditioning the data in recognition of the comb filter impedance characteristics of the drill string. 5 figs.

  15. Acoustic subwavelength imaging of subsurface objects with acoustic resonant metalens

    SciTech Connect

    Cheng, Ying; Liu, XiaoJun; Zhou, Chen; Wei, Qi; Wu, DaJian

    2013-11-25

    Early research into acoustic metamaterials has shown the possibility of achieving subwavelength near-field acoustic imaging. However, a major restriction of acoustic metamaterials is that the imaging objects must be placed in close vicinity of the devices. Here, we present an approach for acoustic imaging of subsurface objects far below the diffraction limit. An acoustic metalens made of holey-structured metamaterials is used to magnify evanescent waves, which can rebuild an image at the central plane. Without changing the physical structure of the metalens, our proposed approach can image objects located at certain distances from the input surface, which provides subsurface signatures of the objects with subwavelength spatial resolution.

  16. Acoustic neuroma

    MedlinePlus

    Vestibular schwannoma; Tumor - acoustic; Cerebellopontine angle tumor; Angle tumor; Hearing loss - acoustic; Tinnitus - acoustic ... Acoustic neuromas have been linked with the genetic disorder neurofibromatosis type 2 (NF2). Acoustic neuromas are uncommon.

  17. Signature extension through the application of cluster matching algorithms to determine appropriate signature transformations

    NASA Technical Reports Server (NTRS)

    Lambeck, P. F.; Rice, D. P.

    1976-01-01

    Signature extension is intended to increase the space-time range over which a set of training statistics can be used to classify data without significant loss of recognition accuracy. A first cluster matching algorithm MASC (Multiplicative and Additive Signature Correction) was developed at the Environmental Research Institute of Michigan to test the concept of using associations between training and recognition area cluster statistics to define an average signature transformation. A more recent signature extension module CROP-A (Cluster Regression Ordered on Principal Axis) has shown evidence of making significant associations between training and recognition area cluster statistics, with the clusters to be matched being selected automatically by the algorithm.

  18. Acoustic Scattering Models of Zooplankton and Microstructure

    DTIC Science & Technology

    1998-09-30

    Antarctic krill ( Euphausia superba ): implications for inverting zooplankton spectral acoustic signatures for angle of orientation,” J. Acoust. Soc...Traykovski (In press), “Effects of orientation on acoustic scattering from Antarctic Krill at 120 kHz,” Deep Sea Res. Monger, B.C., S. Chinniah-Chandy, E

  19. RESEARCH ON SPEECH COMMUNICATION. AUTOMATIC SPEECH RECOGNITION.

    DTIC Science & Technology

    SPEECH RECOGNITION, AUTOMATIC), EXPERIMENTAL DATA, THEORY, ENGLISH LANGUAGE, PHONETICS, LINGUISTICS, AIR FORCE RESEARCH, FEASIBILITY STUDIES, ACOUSTICS, VOCABULARY, SPEECH REPRESENTATION, WORD ASSOCIATION

  20. Signature control

    NASA Astrophysics Data System (ADS)

    Pyati, Vittal P.

    The reduction of vehicle radar signature is accomplished by means of vehicle shaping, the use of microwave frequencies-absorbent materials, and either passive or active cancellation techniques; such techniques are also useful in the reduction of propulsion system-associated IR emissions. In some anticipated scenarios, the objective is not signature-reduction but signature control, for deception, via decoy vehicles that mimic the signature characteristics of actual weapons systems. As the stealthiness of airframes and missiles increases, their propulsion systems' exhaust plumes assume a more important role in detection by an adversary.

  1. Vibration and sound signatures of human footsteps in buildings.

    PubMed

    Ekimov, Alexander; Sabatier, James M

    2006-08-01

    The acoustic signature of a footstep is one of several signatures that can be exploited for human recognition. Early research showed the maximum value for the force of multiple footsteps to be in the frequency band of 1-4 Hz. This paper reports on the broadband frequency-dependent vibrations and sound pressure responses of human footsteps in buildings. Past studies have shown that the low-frequency band (below 500 Hz) is well known in the literature, and generated by the force normal to the ground/floor. The seismic particle velocity response to footsteps was shown to be site specific and the characteristic frequency band was 20-90 Hz. In this paper, the high-frequency band (above 500 Hz) is investigated. The high-frequency band of the vibration and sound of a human footstep is shown to be generated by the tangential force to the floor and the floor reaction, or friction force. The vibration signals, as a function of floor coverings and walking style, were studied in a broadband frequency range. Different walking styles result in different vibration signatures in the low-frequency range. However, for the walking styles tested, the magnitudes in the high-frequency range are comparable and independent of walking style.

  2. Acoustic sniper localization system

    NASA Astrophysics Data System (ADS)

    Prado, Gervasio; Dhaliwal, Hardave; Martel, Philip O.

    1997-02-01

    Technologies for sniper localization have received increased attention in recent months as American forces have been deployed to various trouble spots around the world. Among the technologies considered for this task acoustics is a natural choice for various reasons. The acoustic signatures of gunshots are loud and distinctive, making them easy to detect even in high noise background environments. Acoustics provides a passive sensing technology with excellent range and non line of sight capabilities. Last but not least, an acoustic sniper location system can be built at a low cost with off the shelf components. Despite its many advantages, the performance of acoustic sensors can degrade under adverse propagation conditions. Localization accuracy, although good, is usually not accurate enough to pinpoint a sniper's location in some scenarios (for example which widow in a building or behind which tree in a grove). For these more demanding missions, the acoustic sensor can be used in conjunction with an infra red imaging system that detects the muzzle blast of the gun. The acoustic system can be used to cue the pointing system of the IR camera in the direction of the shot's source.

  3. Machine Learning Through Signature Trees. Applications to Human Speech.

    ERIC Educational Resources Information Center

    White, George M.

    A signature tree is a binary decision tree used to classify unknown patterns. An attempt was made to develop a computer program for manipulating signature trees as a general research tool for exploring machine learning and pattern recognition. The program was applied to the problem of speech recognition to test its effectiveness for a specific…

  4. Paternal kin recognition in the high frequency / ultrasonic range in a solitary foraging mammal

    PubMed Central

    2012-01-01

    Background Kin selection is a driving force in the evolution of mammalian social complexity. Recognition of paternal kin using vocalizations occurs in taxa with cohesive, complex social groups. This is the first investigation of paternal kin recognition via vocalizations in a small-brained, solitary foraging mammal, the grey mouse lemur (Microcebus murinus), a frequent model for ancestral primates. We analyzed the high frequency/ultrasonic male advertisement (courtship) call and alarm call. Results Multi-parametric analyses of the calls’ acoustic parameters and discriminant function analyses showed that advertisement calls, but not alarm calls, contain patrilineal signatures. Playback experiments controlling for familiarity showed that females paid more attention to advertisement calls from unrelated males than from their fathers. Reactions to alarm calls from unrelated males and fathers did not differ. Conclusions 1) Findings provide the first evidence of paternal kin recognition via vocalizations in a small-brained, solitarily foraging mammal. 2) High predation, small body size, and dispersed social systems may select for acoustic paternal kin recognition in the high frequency/ultrasonic ranges, thus limiting risks of inbreeding and eavesdropping by predators or conspecific competitors. 3) Paternal kin recognition via vocalizations in mammals is not dependent upon a large brain and high social complexity, but may already have been an integral part of the dispersed social networks from which more complex, kin-based sociality emerged. PMID:23198727

  5. Department of Cybernetic Acoustics

    NASA Astrophysics Data System (ADS)

    The development of the theory, instrumentation and applications of methods and systems for the measurement, analysis, processing and synthesis of acoustic signals within the audio frequency range, particularly of the speech signal and the vibro-acoustic signal emitted by technical and industrial equipments treated as noise and vibration sources was discussed. The research work, both theoretical and experimental, aims at applications in various branches of science, and medicine, such as: acoustical diagnostics and phoniatric rehabilitation of pathological and postoperative states of the speech organ; bilateral ""man-machine'' speech communication based on the analysis, recognition and synthesis of the speech signal; vibro-acoustical diagnostics and continuous monitoring of the state of machines, technical equipments and technological processes.

  6. Acoustic Neuroma

    MedlinePlus

    ... search IRSA's site Unique Hits since January 2003 Acoustic Neuroma Click Here for Acoustic Neuroma Practice Guideline ... to microsurgery. One doctor's story of having an acoustic neuroma In August 1991, Dr. Thomas F. Morgan ...

  7. Words from spontaneous conversational speech can be recognized with human-like accuracy by an error-driven learning algorithm that discriminates between meanings straight from smart acoustic features, bypassing the phoneme as recognition unit.

    PubMed

    Arnold, Denis; Tomaschek, Fabian; Sering, Konstantin; Lopez, Florence; Baayen, R Harald

    2017-01-01

    Sound units play a pivotal role in cognitive models of auditory comprehension. The general consensus is that during perception listeners break down speech into auditory words and subsequently phones. Indeed, cognitive speech recognition is typically taken to be computationally intractable without phones. Here we present a computational model trained on 20 hours of conversational speech that recognizes word meanings within the range of human performance (model 25%, native speakers 20-44%), without making use of phone or word form representations. Our model also generates successfully predictions about the speed and accuracy of human auditory comprehension. At the heart of the model is a 'wide' yet sparse two-layer artificial neural network with some hundred thousand input units representing summaries of changes in acoustic frequency bands, and proxies for lexical meanings as output units. We believe that our model holds promise for resolving longstanding theoretical problems surrounding the notion of the phone in linguistic theory.

  8. Acoustic Target Classification Using Multiscale Methods

    DTIC Science & Technology

    1998-01-01

    other vehicular activities well; because it represents dominant spectral peaks better than a short time Fourier transform. In the wavelet transform based...approach; multiscale features are obtained with a wavelet transform . Multiscale classification methods were applied to acoustic data collected at...This study considers the classification of acoustic signatures using features extracted at multiple scales from hierarchical models and a wavelet

  9. Acoustic analysis of the propfan

    NASA Technical Reports Server (NTRS)

    Farassat, F.; Succi, G. P.

    1979-01-01

    A review of propeller noise prediction technology is presented. Two methods for the prediction of the noise from conventional and advanced propellers in forward flight are described. These methods are based on different time domain formulations. Brief descriptions of the computer algorithms based on these formulations are given. The output of the programs (the acoustic pressure signature) was Fourier analyzed to get the acoustic pressure spectrum. The main difference between the two programs is that one can handle propellers with supersonic tip speed while the other is for subsonic tip speed propellers. Comparisons of the calculated and measured acoustic data for a conventional and an advanced propeller show good agreement in general.

  10. ACOUSTIC SIGNATURES OF THE HELIUM CORE FLASH

    SciTech Connect

    Bildsten, Lars; Paxton, Bill; Moore, Kevin; Macias, Phillip J.

    2012-01-15

    All evolved stars with masses M {approx}< 2 M{sub Sun} undergo an initiating off-center helium core flash in their M{sub c} Almost-Equal-To 0.48 M{sub Sun} He core as they ascend the red giant branch (RGB). This off-center flash is the first of a few successive helium shell subflashes that remove the core electron degeneracy over 2 Myr, converting the object into a He-burning star. Though characterized by Thomas over 40 years ago, this core flash phase has yet to be observationally probed. Using the Modules for Experiments in Stellar Astrophysics (MESA) code, we show that red giant asteroseismology enabled by space-based photometry (i.e., Kepler and CoRoT) can probe these stars during the flash. The rapid ({approx}< 10{sup 5} yr) contraction of the red giant envelope after the initiating flash dramatically improves the coupling of the p-modes to the core g-modes, making the detection of l = 1 mixed modes possible for these 2 Myr. This duration implies that 1 in 35 stars near the red clump in the H-R diagram will be in their core flash phase. During this time, the star has a g-mode period spacing of {Delta}P{sub g} Almost-Equal-To 70-100 s, lower than the {Delta}P{sub g} Almost-Equal-To 250 s of He-burning stars in the red clump, but higher than the RGB stars at the same luminosity. This places them in an underpopulated part of the large frequency spacing ({Delta}{nu}) versus {Delta}P{sub g} diagram that should ease their identification among the thousands of observed red giants.

  11. Virtual Acoustics

    NASA Astrophysics Data System (ADS)

    Lokki, Tapio; Savioja, Lauri

    The term virtual acoustics is often applied when sound signal is processed to contain features of a simulated acoustical space and sound is spatially reproduced either with binaural or with multichannel techniques. Therefore, virtual acoustics consists of spatial sound reproduction and room acoustics modeling.

  12. Cytotoxic lesion of the medial prefrontal cortex abolishes the partial reinforcement extinction effect, attenuates prepulse inhibition of the acoustic startle reflex and induces transient hyperlocomotion, while sparing spontaneous object recognition memory in the rat.

    PubMed

    Yee, B K

    2000-01-01

    The partial reinforcement extinction effect refers to the increase in resistance to extinction of an operant response acquired under partial reinforcement relative to that acquired under continuous reinforcement. Prepulse inhibition of the acoustic startle response refers to the reduction in startle reactivity towards an intense acoustic pulse stimulus when it is shortly preceded by a weak prepulse stimulus. These two behavioural phenomena appear to be related to different forms of attentional processes. While the prepulse inhibition effect reflects an inherent early attentional gating mechanism, the partial reinforcement extinction effect is believed to involve the development of acquired inattention, i.e. the latter requires the animals to learn about what to and what not to attend. Impairments in prepulse inhibition and the partial reinforcement extinction effect have been independently linked to the neuropsychology of attentional dysfunctions seen in schizophrenia. The proposed neural substrates underlying these behaviourial phenomena also appear to overlap considerably: both focus on the nucleus accumbens and emphasize the functional importance of its limbic afferents, including that originating from the medial prefrontal cortex, on accumbal output/activity. The present study demonstrated that cytotoxic medial prefrontal cortex lesions which typically damaged the prelimbic, the infralimbic and the dorsal anterior cingulate areas could lead to the abolition of the partial reinforcement extinction effect and the attenuation of prepulse inhibition. The lesions also resulted in a transient elevation of spontaneous locomotor activity. In contrast, the same lesions spared performance in a spontaneous object recognition memory test, in which the lesioned animals displayed normal preference for a novel object when the novel object was presented in conjunction with a familiar object seen 10 min earlier within an open field arena. The present results lend support to the

  13. Detection of ``single-leg separated`` heart valves using statistical pattern recognition with the nearest neighbor classifier. Revision 1

    SciTech Connect

    Buhl, M.R.; Clark, G.A.; Candy, J.V.; Thomas, G.H.

    1993-12-01

    The goal of this work was to detect ``single-leg separated`` Bjoerk-Shiley Convexo-Concave heart valves which had been implanted in sheep. A ``single-leg separated`` heart valve contains a fracture in the outlet strut resulting in an increased risk of mechanical failure. The approach presented in this report detects such fractures by applying statistical pattern recognition with the nearest neighbor classifier to the acoustic signatures of the valve opening. This approach is discussed and results of applying it to real data are given.

  14. Detection of ``single-leg separated`` heart valves using statistical pattern recognition with the nearest neighbor classifier

    SciTech Connect

    Buhl, M.R.; Clark, G.A.; Candy, J.V.; Thomas, G.H.

    1993-07-16

    The goal of this work was to detect ``single-leg separated`` Bjoerk-Shiley Convexo-Concave heart valves which had been implanted in sheep. A ``single-leg separated`` heart valve contains a fracture in the outlet strut resulting in an increased risk of mechanical failure. The approach presented in this report detects such fractures by applying statistical pattern recognition with the nearest neighbor classifier to the acoustic signatures of the valve opening. This approach is discussed and results of applying it to real data are given.

  15. Acoustic Neuroma

    MedlinePlus

    An acoustic neuroma is a benign tumor that develops on the nerve that connects the ear to the brain. ... can press against the brain, becoming life-threatening. Acoustic neuroma can be difficult to diagnose, because the ...

  16. Acoustic Scattering Models of Zooplankton and Microstructures

    DTIC Science & Technology

    1998-09-30

    krill ( Euphausia superba ): implications for inverting zooplankton spectral acoustic signatures for angle of orientation,” J. Acoust. Soc. Am...In press), “Effects of orientation on acoustic scattering from Antarctic Krill at 120 kHz,” Deep Sea Res. Monger, B.C., S. Chinniah-Chandy, E. Meir, S...Sea Res. Martin Traykovski, L.V., R.L. O’Driscoll, and D.E. McGehee (In press), “Effects of orientation on broadband acoustic scattering of Antarctic

  17. Acoustic Seaglider

    DTIC Science & Technology

    2008-03-07

    a national naval responsibility. Acoustic sensors on mobile, autonomous platforms will enable basic research topics on temporal and spatial...problem and acoustic navigation and communications within the context of distributed autonomous persistent undersea surveillance sensor networks...Acoustic sensors on mobile, autonomous platforms will enable basic research topics on temporal and spatial coherence and the description of ambient

  18. Acoustic seal

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M. (Inventor)

    2006-01-01

    The invention relates to a sealing device having an acoustic resonator. The acoustic resonator is adapted to create acoustic waveforms to generate a sealing pressure barrier blocking fluid flow from a high pressure area to a lower pressure area. The sealing device permits noncontacting sealing operation. The sealing device may include a resonant-macrosonic-synthesis (RMS) resonator.

  19. Acoustic Seal

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M. (Inventor)

    2006-01-01

    The invention relates to a sealing device having an acoustic resonator. The acoustic resonator is adapted to create acoustic waveforms to generate a sealing pressure barrier blocking fluid flow from a high pressure area to a lower pressure area. The sealing device permits noncontacting sealing operation. The sealing device may include a resonant-macrosonic-synthesis (RMS) resonator.

  20. Modeling the origins of mammalian sociality: moderate evidence for matrilineal signatures in mouse lemur vocalizations

    PubMed Central

    2014-01-01

    Mouse lemur agonistic calls are moderately distinctive by matriline. Because sleeping groups consisted of close maternal kin, both genetics and social learning may have generated these acoustic signatures. As mouse lemurs are models for solitary foragers, we recommend further studies testing whether the lemurs use these calls to recognize kin. This would enable further modeling of how kin recognition in ancestral species could have shaped the evolution of complex sociality. PMID:24555438

  1. Acoustic habitat and shellfish mapping and monitoring in shallow coastal water - Sidescan sonar experiences in The Netherlands

    NASA Astrophysics Data System (ADS)

    van Overmeeren, Ronnie; Craeymeersch, Johan; van Dalfsen, Jan; Fey, Frouke; van Heteren, Sytze; Meesters, Erik

    2009-11-01

    Sidescan sonar has been applied in a number of shallow water environments along the Dutch coast to map and monitor shellfish and seabed habitats. The littoral setting of these surveys may hamper data acquisition flying the towfish in zones of turbulence and waves, but also offers valuable opportunities for understanding, interpreting and validating sidescan sonar images because of the ability to ground-truth during low water periods, enabling easy identification and validation. Acoustical images of some of the mussel banks on the tidal flats of the Wadden Sea, recorded at high tide, show a marked resemblance with optical Google Earth images of the same banks. These sonar images may thus serve as ' acoustic type signatures' for the interpretation of sonar patterns recorded in deeper water where ground-truthing is more difficult and more expensive. Similarly, acoustic type signatures of (Japanese) oyster banks were obtained in the estuaries in the southwest of the Netherlands. Automated acoustic pattern recognition of different habitats and acoustical estimation of faunal cover and density are possible applications of sidescan sonar. Both require that the backscattering observed on the sidescan sonar images is directly caused by the biological component of the seafloor. Filtering offers a simple and effective pre-processing technique to separate the faunal signals from linear trends such as emanating from wave ripples or the central tracks of the towfish. Acoustically estimating the faunal density is approached by in-situ counting peaks in backscattering in unit squares. These counts must be calibrated by ground-truthing. Ground-truthing on littoral mussel banks in the Wadden Sea has been carried out by measuring their cover along lines during low tide. Due to its capacity of yielding full-cover, high resolution images of large surfaces, sidescan sonar proves to be an excellent, cost-effective tool for quantitative time-lapse monitoring of habitats.

  2. Early recognition of speech

    PubMed Central

    Remez, Robert E; Thomas, Emily F

    2013-01-01

    Classic research on the perception of speech sought to identify minimal acoustic correlates of each consonant and vowel. In explaining perception, this view designated momentary components of an acoustic spectrum as cues to the recognition of elementary phonemes. This conceptualization of speech perception is untenable given the findings of phonetic sensitivity to modulation independent of the acoustic and auditory form of the carrier. The empirical key is provided by studies of the perceptual organization of speech, a low-level integrative function that finds and follows the sensory effects of speech amid concurrent events. These projects have shown that the perceptual organization of speech is keyed to modulation; fast; unlearned; nonsymbolic; indifferent to short-term auditory properties; and organization requires attention. The ineluctably multisensory nature of speech perception also imposes conditions that distinguish language among cognitive systems. WIREs Cogn Sci 2013, 4:213–223. doi: 10.1002/wcs.1213 PMID:23926454

  3. First images of thunder: Acoustic imaging of triggered lightning

    NASA Astrophysics Data System (ADS)

    Dayeh, M. A.; Evans, N. D.; Fuselier, S. A.; Trevino, J.; Ramaekers, J.; Dwyer, J. R.; Lucia, R.; Rassoul, H. K.; Kotovsky, D. A.; Jordan, D. M.; Uman, M. A.

    2015-07-01

    An acoustic camera comprising a linear microphone array is used to image the thunder signature of triggered lightning. Measurements were taken at the International Center for Lightning Research and Testing in Camp Blanding, FL, during the summer of 2014. The array was positioned in an end-fire orientation thus enabling the peak acoustic reception pattern to be steered vertically with a frequency-dependent spatial resolution. On 14 July 2014, a lightning event with nine return strokes was successfully triggered. We present the first acoustic images of individual return strokes at high frequencies (>1 kHz) and compare the acoustically inferred profile with optical images. We find (i) a strong correlation between the return stroke peak current and the radiated acoustic pressure and (ii) an acoustic signature from an M component current pulse with an unusual fast rise time. These results show that acoustic imaging enables clear identification and quantification of thunder sources as a function of lightning channel altitude.

  4. Social Communication and Vocal Recognition in Free-Ranging Rhesus Monkeys

    NASA Astrophysics Data System (ADS)

    Rendall, Christopher Andrew

    Kinship and individual identity are key determinants of primate sociality, and the capacity for vocal recognition of individuals and kin is hypothesized to be an important adaptation facilitating intra-group social communication. Research was conducted on adult female rhesus monkeys on Cayo Santiago, Puerto Rico to test this hypothesis for three acoustically distinct calls characterized by varying selective pressures on communicating identity: coos (contact calls), grunts (close range social calls), and noisy screams (agonistic recruitment calls). Vocalization playback experiments confirmed a capacity for both individual and kin recognition of coos, but not screams (grunts were not tested). Acoustic analyses, using traditional spectrographic methods as well as linear predictive coding techniques, indicated that coos (but not grunts or screams) were highly distinctive, and that the effects of vocal tract filtering--formants --contributed more to statistical discriminations of both individuals and kin groups than did temporal or laryngeal source features. Formants were identified from very short (23 ms.) segments of coos and were stable within calls, indicating that formant cues to individual and kin identity were available throughout a call. This aspect of formant cues is predicted to be an especially important design feature for signaling identity efficiently in complex acoustic environments. Results of playback experiments involving manipulated coo stimuli provided preliminary perceptual support for the statistical inference that formant cues take precedence in facilitating vocal recognition. The similarity of formants among female kin suggested a mechanism for the development of matrilineal vocal signatures from the genetic and environmental determinants of vocal tract morphology shared among relatives. The fact that screams --calls strongly expected to communicate identity--were not individually distinctive nor recognized suggested the possibility that their

  5. Comments on "Intraspecific and geographic variation of West Indian manatee (Trichechus manatus spp.) vocalizations" [J. Acoust. Soc. Am. 114, 66-69 (2003)].

    PubMed

    Sousa-Lima, Renata S

    2006-06-01

    This letter concerns the paper "Intraspecific and geographic variation of West Indian manatee (Trichechus manatus spp.) vocalizations" [Nowacek et al., J. Acoust. Soc. Am. 114, 66-69 (2003)]. The purpose here is to correct the fundamental frequency range and information on intraindividual variation in the vocalizations of Amazonian manatees reported by Nowacek et al. (2003) in citing the paper "Signature information and individual recognition in the isolation calls of Amazonian manatees, Trichechus inunguis (Mammalia: Sirenia)" [Sousa-Lima et al., Anim. Behav. 63, 301-310 (2002)].

  6. Texture recognition of medical images with the ICM method

    NASA Astrophysics Data System (ADS)

    Kinser, Jason M.; Wang, Guisong

    2004-06-01

    The Integrated Cortical Model (ICM) is based upon several models of the mammalian visual cortex and produces pulse images over several iterations. These pulse images tend to isolate segments, edges, and textures that are inherent in the input image. To create a texture recognition engine the pulse spectrum of individual pixels are collected and used to develop a recognition library. Recognition is performed by comparing pulse spectra of unclassified regions of images with the known regions. Because signatures are smaller than images, signature-based computation is quite efficient and parasites can be recognized quickly. The precision of this method depends on the representative of signatures and classification. Our experiment results support the theoretical findings and show perspectives of practical applications of ICM-based method. The advantage of ICM method is using signatures to represent objects. ICM can extract the internal features of objects and represent them with signatures. Signature classification is critical for the precision of recognition.

  7. Acoustic micro-Doppler radar for human gait imaging.

    PubMed

    Zhang, Zhaonian; Pouliquen, Philippe O; Waxman, Allen; Andreou, Andreas G

    2007-03-01

    A portable acoustic micro-Doppler radar system for the acquisition of human gait signatures in indoor and outdoor environments is reported. Signals from an accelerometer attached to the leg support the identification of the components in the measured micro-Doppler signature. The acoustic micro-Doppler system described in this paper is simpler and offers advantages over the widely used electromagnetic wave micro-Doppler radars.

  8. Terrain type recognition using ERTS-1 MSS images

    NASA Technical Reports Server (NTRS)

    Gramenopoulos, N.

    1973-01-01

    For the automatic recognition of earth resources from ERTS-1 digital tapes, both multispectral and spatial pattern recognition techniques are important. Recognition of terrain types is based on spatial signatures that become evident by processing small portions of an image through selected algorithms. An investigation of spatial signatures that are applicable to ERTS-1 MSS images is described. Artifacts in the spatial signatures seem to be related to the multispectral scanner. A method for suppressing such artifacts is presented. Finally, results of terrain type recognition for one ERTS-1 image are presented.

  9. Musical Acoustics

    NASA Astrophysics Data System (ADS)

    Gough, Colin

    This chapter provides an introduction to the physical and psycho-acoustic principles underlying the production and perception of the sounds of musical instruments. The first section introduces generic aspects of musical acoustics and the perception of musical sounds, followed by separate sections on string, wind and percussion instruments.

  10. Real-time simulation of moving ground-target signatures

    NASA Astrophysics Data System (ADS)

    Schmitz, James L.; Gross, David C.; Wasserman, Aaron

    2001-08-01

    Automatic target recognition (ATR) and feature-aided tracking (FAT) algorithms that use one-dimensional (1-D) high range resolution (HRR) profiles require unique or distinguishable target features. This paper explores the use of Xpatch extracted scattering centers to generate synthetic moving ground target signatures. The goal is to develop a real-time prediction capability for generating moving ground target signatures to facilitate the determination of unique and distinguishable target features. The repository of moving ground target signatures is extremely limited in target variation, target articulation, and aspect and illumination angle coverage. The development of a real-time moving target signature capability that provides first order moving target signature will facilitate the development of features and their analysis. The proposed moving target signature simulation is described in detail and includes both the strengths and weaknesses of using a scattering center approach for generation of moving target signatures.

  11. Acoustical oceanography

    NASA Astrophysics Data System (ADS)

    The Acoustical Society of America has formed a Technical Specialty Group on Acoustical Oceanography. At ASA meetings the new group will have special sessions where they will give invited and contributed papers and have panel discussions about ocean parameters that are measured effectively by acoustical techniques.The first special sessions will be May 22-23, 1990, at the ASA meeting at Pennsylvania State University, University Park. The focus on May 22 will be acoustical techniques for detection and measurement of internal waves and turbulence; conveners are Robert Pinkel of Scripps Institution of Oceanography, La Jolla, Calif., and Herman Medwin of the Naval Postgraduate School, Monterey, Calif. Acoustical studies of the physical and biological characteristics of ocean mass boundaries are the discussion topic on May 23. The convener is C. S. Clay, University of Wisconsin, Madison.

  12. Interpreting Underwater Acoustic Images of the Upper Ocean Boundary Layer

    ERIC Educational Resources Information Center

    Ulloa, Marco J.

    2007-01-01

    A challenging task in physical studies of the upper ocean using underwater sound is the interpretation of high-resolution acoustic images. This paper covers a number of basic concepts necessary for undergraduate and postgraduate students to identify the most distinctive features of the images, providing a link with the acoustic signatures of…

  13. Interpreting Underwater Acoustic Images of the Upper Ocean Boundary Layer

    ERIC Educational Resources Information Center

    Ulloa, Marco J.

    2007-01-01

    A challenging task in physical studies of the upper ocean using underwater sound is the interpretation of high-resolution acoustic images. This paper covers a number of basic concepts necessary for undergraduate and postgraduate students to identify the most distinctive features of the images, providing a link with the acoustic signatures of…

  14. Introducing passive acoustic filter in acoustic based condition monitoring: Motor bike piston-bore fault identification

    NASA Astrophysics Data System (ADS)

    Jena, D. P.; Panigrahi, S. N.

    2016-03-01

    Requirement of designing a sophisticated digital band-pass filter in acoustic based condition monitoring has been eliminated by introducing a passive acoustic filter in the present work. So far, no one has attempted to explore the possibility of implementing passive acoustic filters in acoustic based condition monitoring as a pre-conditioner. In order to enhance the acoustic based condition monitoring, a passive acoustic band-pass filter has been designed and deployed. Towards achieving an efficient band-pass acoustic filter, a generalized design methodology has been proposed to design and optimize the desired acoustic filter using multiple filter components in series. An appropriate objective function has been identified for genetic algorithm (GA) based optimization technique with multiple design constraints. In addition, the sturdiness of the proposed method has been demonstrated in designing a band-pass filter by using an n-branch Quincke tube, a high pass filter and multiple Helmholtz resonators. The performance of the designed acoustic band-pass filter has been shown by investigating the piston-bore defect of a motor-bike using engine noise signature. On the introducing a passive acoustic filter in acoustic based condition monitoring reveals the enhancement in machine learning based fault identification practice significantly. This is also a first attempt of its own kind.

  15. Application of Cortical Processing Theory to Acoustical Analysis

    DTIC Science & Technology

    2007-07-27

    intelligibility (albeit with a noticeable degradation in quality ) while the acoustic signature of the phonemic features in the simulated AN representations is... Experiments I and II Application of Cortical Processing Theory to Acoustical Analysis Ghitza (PI) there were four listeners (L1, L2, L4 were female ...among 6 acoustic -phonetic distinctive features and among 8 vowels (hence 2 word-pairs per [quadrantxfeature] cell). The feature classification (outlined

  16. Blind separation of multiple vehicle signatures in frequency domain

    NASA Astrophysics Data System (ADS)

    Azimi-Sadjadi, M. R.; Srinivasan, S.

    2005-05-01

    This paper considers the problem of classifying ground vehicles using their acoustic signatures recorded by unattended passive acoustic sensors. Using these sensors, acoustic signatures of a wide variety of sources such as trucks, tanks, personnel, and airborne targets can be recorded. Additionally, interference sources such as wind noise and ambient noise are typically present. The proposed approach in this paper relies on the blind source separation of the recorded signatures of various sources. Two different frequency domain source separation methods have been employed to separate the vehicle signatures that overlap both spectrally and temporally. These methods rely on the frequency domain extension of the independent component analysis (ICA) method and a joint diagonalization of the time varying spectra. Spectral and temporal-dependent features are then extracted from the separated sources using a new feature extraction method and subsequently used for target classification using a three-layer neural network. The performance of the developed algorithms are demonstrated on a subset of a real acoustic signature database acquired from the US Army TACOM-ARDEC, Picatinny Arsenal, NJ.

  17. Place recognition using batlike sonar.

    PubMed

    Vanderelst, Dieter; Steckel, Jan; Boen, Andre; Peremans, Herbert; Holderied, Marc W

    2016-08-02

    Echolocating bats have excellent spatial memory and are able to navigate to salient locations using bio-sonar. Navigating and route-following require animals to recognize places. Currently, it is mostly unknown how bats recognize places using echolocation. In this paper, we propose template based place recognition might underlie sonar-based navigation in bats. Under this hypothesis, bats recognize places by remembering their echo signature - rather than their 3D layout. Using a large body of ensonification data collected in three different habitats, we test the viability of this hypothesis assessing two critical properties of the proposed echo signatures: (1) they can be uniquely classified and (2) they vary continuously across space. Based on the results presented, we conclude that the proposed echo signatures satisfy both criteria. We discuss how these two properties of the echo signatures can support navigation and building a cognitive map.

  18. Room Acoustics

    NASA Astrophysics Data System (ADS)

    Kuttruff, Heinrich; Mommertz, Eckard

    The traditional task of room acoustics is to create or formulate conditions which ensure the best possible propagation of sound in a room from a sound source to a listener. Thus, objects of room acoustics are in particular assembly halls of all kinds, such as auditoria and lecture halls, conference rooms, theaters, concert halls or churches. Already at this point, it has to be pointed out that these conditions essentially depend on the question if speech or music should be transmitted; in the first case, the criterion for transmission quality is good speech intelligibility, in the other case, however, the success of room-acoustical efforts depends on other factors that cannot be quantified that easily, not least it also depends on the hearing habits of the listeners. In any case, absolutely "good acoustics" of a room do not exist.

  19. Lesson 6: Signature Validation

    EPA Pesticide Factsheets

    Checklist items 13 through 17 are grouped under the Signature Validation Process, and represent CROMERR requirements that the system must satisfy as part of ensuring that electronic signatures it receives are valid.

  20. Pulse analysis of acoustic emission signals

    NASA Technical Reports Server (NTRS)

    Houghton, J. R.; Packman, P. F.

    1977-01-01

    A method for the signature analysis of pulses in the frequency domain and the time domain is presented. Fourier spectrum, Fourier transfer function, shock spectrum and shock spectrum ratio were examined in the frequency domain analysis, and pulse shape deconvolution was developed for use in the time domain analysis. Comparisons of the relative performance of each analysis technique are made for the characterization of acoustic emission pulses recorded by a measuring system. To demonstrate the relative sensitivity of each of the methods to small changes in the pulse shape, signatures of computer modeled systems with analytical pulses are presented. Optimization techniques are developed and used to indicate the best design parameters values for deconvolution of the pulse shape. Several experiments are presented that test the pulse signature analysis methods on different acoustic emission sources. These include acoustic emissions associated with: (1) crack propagation, (2) ball dropping on a plate, (3) spark discharge and (4) defective and good ball bearings. Deconvolution of the first few micro-seconds of the pulse train are shown to be the region in which the significant signatures of the acoustic emission event are to be found.

  1. Pulse analysis of acoustic emission signals

    NASA Technical Reports Server (NTRS)

    Houghton, J. R.; Packman, P. F.

    1977-01-01

    A method for the signature analysis of pulses in the frequency domain and the time domain is presented. Fourier spectrum, Fourier transfer function, shock spectrum and shock spectrum ratio were examined in the frequency domain analysis and pulse shape deconvolution was developed for use in the time domain analysis. Comparisons of the relative performance of each analysis technique are made for the characterization of acoustic emission pulses recorded by a measuring system. To demonstrate the relative sensitivity of each of the methods to small changes in the pulse shape, signatures of computer modeled systems with analytical pulses are presented. Optimization techniques are developed and used to indicate the best design parameter values for deconvolution of the pulse shape. Several experiments are presented that test the pulse signature analysis methods on different acoustic emission sources. These include acoustic emission associated with (a) crack propagation, (b) ball dropping on a plate, (c) spark discharge, and (d) defective and good ball bearings. Deconvolution of the first few micro-seconds of the pulse train is shown to be the region in which the significant signatures of the acoustic emission event are to be found.

  2. Recognition of Frequency Modulated Whistle-Like Sounds by a Bottlenose Dolphin (Tursiops truncatus) and Humans with Transformations in Amplitude, Duration and Frequency

    PubMed Central

    Branstetter, Brian K.; DeLong, Caroline M.; Dziedzic, Brandon; Black, Amy; Bakhtiari, Kimberly

    2016-01-01

    Bottlenose dolphins (Tursiops truncatus) use the frequency contour of whistles produced by conspecifics for individual recognition. Here we tested a bottlenose dolphin’s (Tursiops truncatus) ability to recognize frequency modulated whistle-like sounds using a three alternative matching-to-sample paradigm. The dolphin was first trained to select a specific object (object A) in response to a specific sound (sound A) for a total of three object-sound associations. The sounds were then transformed by amplitude, duration, or frequency transposition while still preserving the frequency contour of each sound. For comparison purposes, 30 human participants completed an identical task with the same sounds, objects, and training procedure. The dolphin’s ability to correctly match objects to sounds was robust to changes in amplitude with only a minor decrement in performance for short durations. The dolphin failed to recognize sounds that were frequency transposed by plus or minus ½ octaves. Human participants demonstrated robust recognition with all acoustic transformations. The results indicate that this dolphin’s acoustic recognition of whistle-like sounds was constrained by absolute pitch. Unlike human speech, which varies considerably in average frequency, signature whistles are relatively stable in frequency, which may have selected for a whistle recognition system invariant to frequency transposition. PMID:26863519

  3. Speech Recognition: Acoustic, Phonetic and Lexical.

    DTIC Science & Technology

    1986-09-15

    training , then the match of /0/ to "vowel" would be segment. assigned a poor score. Insertions and deletions are handled The "best" alignment between...The database was subdivided into training and new from a typical node, here labeled "A". When no insertion speakers and into training and new...0.-:--- . - Table 1: Corpus Subsets J ,oo Total # of Speakers T #. Utterances of Digits 0- 262 training 3 male, 3 female: training 1365 0.0 152

  4. Fast recognition of musical sounds based on timbre.

    PubMed

    Agus, Trevor R; Suied, Clara; Thorpe, Simon J; Pressnitzer, Daniel

    2012-05-01

    Human listeners seem to have an impressive ability to recognize a wide variety of natural sounds. However, there is surprisingly little quantitative evidence to characterize this fundamental ability. Here the speed and accuracy of musical-sound recognition were measured psychophysically with a rich but acoustically balanced stimulus set. The set comprised recordings of notes from musical instruments and sung vowels. In a first experiment, reaction times were collected for three target categories: voice, percussion, and strings. In a go/no-go task, listeners reacted as quickly as possible to members of a target category while withholding responses to distractors (a diverse set of musical instruments). Results showed near-perfect accuracy and fast reaction times, particularly for voices. In a second experiment, voices were recognized among strings and vice-versa. Again, reaction times to voices were faster. In a third experiment, auditory chimeras were created to retain only spectral or temporal features of the voice. Chimeras were recognized accurately, but not as quickly as natural voices. Altogether, the data suggest rapid and accurate neural mechanisms for musical-sound recognition based on selectivity to complex spectro-temporal signatures of sound sources.

  5. Automatic Speech Recognition

    NASA Astrophysics Data System (ADS)

    Potamianos, Gerasimos; Lamel, Lori; Wölfel, Matthias; Huang, Jing; Marcheret, Etienne; Barras, Claude; Zhu, Xuan; McDonough, John; Hernando, Javier; Macho, Dusan; Nadeu, Climent

    Automatic speech recognition (ASR) is a critical component for CHIL services. For example, it provides the input to higher-level technologies, such as summarization and question answering, as discussed in Chapter 8. In the spirit of ubiquitous computing, the goal of ASR in CHIL is to achieve a high performance using far-field sensors (networks of microphone arrays and distributed far-field microphones). However, close-talking microphones are also of interest, as they are used to benchmark ASR system development by providing a best-case acoustic channel scenario to compare against.

  6. Extraction of small boat harmonic signatures from passive sonar.

    PubMed

    Ogden, George L; Zurk, Lisa M; Jones, Mark E; Peterson, Mary E

    2011-06-01

    This paper investigates the extraction of acoustic signatures from small boats using a passive sonar system. Noise radiated from a small boats consists of broadband noise and harmonically related tones that correspond to engine and propeller specifications. A signal processing method to automatically extract the harmonic structure of noise radiated from small boats is developed. The Harmonic Extraction and Analysis Tool (HEAT) estimates the instantaneous fundamental frequency of the harmonic tones, refines the fundamental frequency estimate using a Kalman filter, and automatically extracts the amplitudes of the harmonic tonals to generate a harmonic signature for the boat. Results are presented that show the HEAT algorithms ability to extract these signatures.

  7. Infra-sound Signature of Lightning

    NASA Astrophysics Data System (ADS)

    Arechiga, R. O.; Badillo, E.; Johnson, J.; Edens, H. E.; Rison, W.; Thomas, R. J.

    2012-12-01

    We have analyzed thunder from over 200 lightning flashes to determine which part of thunder comes from the gas dynamic expansion of portions of the rapidly heated lightning channel and which from electrostatic field changes. Thunder signals were recorded by a ~1500 m network of 3 to 4 4-element microphone deployed in the Magdalena mountains of New Mexico in the summers of 2011 and 2012. The higher frequency infra-sound and audio-range portion of thunder is thought to come from the gas dynamic expansion, and the electrostatic mechanism gives rise to a signature infra-sound pulse peaked at a few Hz. More than 50 signature infra-sound pulses were observed in different portions of the thunder signal, with no preference towards the beginning or the end of the signal. Detection of the signature pulse occurs sometimes only for one array and sometimes for several arrays, which agrees with the theory that the pulse is highly directional (i.e., the recordings have to be in a specific position with respect to the cloud generating the pulse to be able to detect it). The detection of these pulses under quiet wind conditions by different acoustic arrays corroborates the electrostatic mechanism originally proposed by Wilson [1920], further studied by Dessler [1973] and Few [1985], observed by Bohannon [1983] and Balachandran [1979, 1983], and recently analyzed by Pasko [2009]. Pasko employed a model to explain the electrostatic-to-acoustic energy conversion and the initial compression waves in observed infrasonic pulses, which agrees with the observations we have made. We present thunder samples that exhibit signature infra-sound pulses at different times and acoustic source reconstruction to demonstrate the beaming effect.

  8. Acoustic biosensors

    PubMed Central

    Fogel, Ronen; Seshia, Ashwin A.

    2016-01-01

    Resonant and acoustic wave devices have been researched for several decades for application in the gravimetric sensing of a variety of biological and chemical analytes. These devices operate by coupling the measurand (e.g. analyte adsorption) as a modulation in the physical properties of the acoustic wave (e.g. resonant frequency, acoustic velocity, dissipation) that can then be correlated with the amount of adsorbed analyte. These devices can also be miniaturized with advantages in terms of cost, size and scalability, as well as potential additional features including integration with microfluidics and electronics, scaled sensitivities associated with smaller dimensions and higher operational frequencies, the ability to multiplex detection across arrays of hundreds of devices embedded in a single chip, increased throughput and the ability to interrogate a wider range of modes including within the same device. Additionally, device fabrication is often compatible with semiconductor volume batch manufacturing techniques enabling cost scalability and a high degree of precision and reproducibility in the manufacturing process. Integration with microfluidics handling also enables suitable sample pre-processing/separation/purification/amplification steps that could improve selectivity and the overall signal-to-noise ratio. Three device types are reviewed here: (i) bulk acoustic wave sensors, (ii) surface acoustic wave sensors, and (iii) micro/nano-electromechanical system (MEMS/NEMS) sensors. PMID:27365040

  9. Acoustic biosensors.

    PubMed

    Fogel, Ronen; Limson, Janice; Seshia, Ashwin A

    2016-06-30

    Resonant and acoustic wave devices have been researched for several decades for application in the gravimetric sensing of a variety of biological and chemical analytes. These devices operate by coupling the measurand (e.g. analyte adsorption) as a modulation in the physical properties of the acoustic wave (e.g. resonant frequency, acoustic velocity, dissipation) that can then be correlated with the amount of adsorbed analyte. These devices can also be miniaturized with advantages in terms of cost, size and scalability, as well as potential additional features including integration with microfluidics and electronics, scaled sensitivities associated with smaller dimensions and higher operational frequencies, the ability to multiplex detection across arrays of hundreds of devices embedded in a single chip, increased throughput and the ability to interrogate a wider range of modes including within the same device. Additionally, device fabrication is often compatible with semiconductor volume batch manufacturing techniques enabling cost scalability and a high degree of precision and reproducibility in the manufacturing process. Integration with microfluidics handling also enables suitable sample pre-processing/separation/purification/amplification steps that could improve selectivity and the overall signal-to-noise ratio. Three device types are reviewed here: (i) bulk acoustic wave sensors, (ii) surface acoustic wave sensors, and (iii) micro/nano-electromechanical system (MEMS/NEMS) sensors.

  10. Effects and modeling of phonetic and acoustic confusions in accented speech

    NASA Astrophysics Data System (ADS)

    Fung, Pascale; Liu, Yi

    2005-11-01

    Accented speech recognition is more challenging than standard speech recognition due to the effects of phonetic and acoustic confusions. Phonetic confusion in accented speech occurs when an expected phone is pronounced as a different one, which leads to erroneous recognition. Acoustic confusion occurs when the pronounced phone is found to lie acoustically between two baseform models and can be equally recognized as either one. We propose that it is necessary to analyze and model these confusions separately in order to improve accented speech recognition without degrading standard speech recognition. Since low phonetic confusion units in accented speech do not give rise to automatic speech recognition errors, we focus on analyzing and reducing phonetic and acoustic confusability under high phonetic confusion conditions. We propose using likelihood ratio test to measure phonetic confusion, and asymmetric acoustic distance to measure acoustic confusion. Only accent-specific phonetic units with low acoustic confusion are used in an augmented pronunciation dictionary, while phonetic units with high acoustic confusion are reconstructed using decision tree merging. Experimental results show that our approach is effective and superior to methods modeling phonetic confusion or acoustic confusion alone in accented speech, with a significant 5.7% absolute WER reduction, without degrading standard speech recognition.

  11. Acoustic Transmitters for Underwater Neutrino Telescopes

    PubMed Central

    Ardid, Miguel; Martínez-Mora, Juan A.; Bou-Cabo, Manuel; Larosa, Giuseppina; Adrián-Martínez, Silvia; Llorens, Carlos D.

    2012-01-01

    In this paper acoustic transmitters that were developed for use in underwater neutrino telescopes are presented. Firstly, an acoustic transceiver has been developed as part of the acoustic positioning system of neutrino telescopes. These infrastructures are not completely rigid and require a positioning system in order to monitor the position of the optical sensors which move due to sea currents. To guarantee a reliable and versatile system, the transceiver has the requirements of reduced cost, low power consumption, high pressure withstanding (up to 500 bars), high intensity for emission, low intrinsic noise, arbitrary signals for emission and the capacity of acquiring and processing received signals. Secondly, a compact acoustic transmitter array has been developed for the calibration of acoustic neutrino detection systems. The array is able to mimic the signature of ultra-high-energy neutrino interaction in emission directivity and signal shape. The technique of parametric acoustic sources has been used to achieve the proposed aim. The developed compact array has practical features such as easy manageability and operation. The prototype designs and the results of different tests are described. The techniques applied for these two acoustic systems are so powerful and versatile that may be of interest in other marine applications using acoustic transmitters. PMID:22666022

  12. Acoustic transmitters for underwater neutrino telescopes.

    PubMed

    Ardid, Miguel; Martínez-Mora, Juan A; Bou-Cabo, Manuel; Larosa, Giuseppina; Adrián-Martínez, Silvia; Llorens, Carlos D

    2012-01-01

    In this paper acoustic transmitters that were developed for use in underwater neutrino telescopes are presented. Firstly, an acoustic transceiver has been developed as part of the acoustic positioning system of neutrino telescopes. These infrastructures are not completely rigid and require a positioning system in order to monitor the position of the optical sensors which move due to sea currents. To guarantee a reliable and versatile system, the transceiver has the requirements of reduced cost, low power consumption, high pressure withstanding (up to 500 bars), high intensity for emission, low intrinsic noise, arbitrary signals for emission and the capacity of acquiring and processing received signals. Secondly, a compact acoustic transmitter array has been developed for the calibration of acoustic neutrino detection systems. The array is able to mimic the signature of ultra-high-energy neutrino interaction in emission directivity and signal shape. The technique of parametric acoustic sources has been used to achieve the proposed aim. The developed compact array has practical features such as easy manageability and operation. The prototype designs and the results of different tests are described. The techniques applied for these two acoustic systems are so powerful and versatile that may be of interest in other marine applications using acoustic transmitters.

  13. Leak Detection by Acoustic Emission Monitoring. Phase 1. Feasibility Study

    DTIC Science & Technology

    1994-05-26

    considered the soil composition- and structure , the leak depth and rate, the acoustic array geometry on the 12 PHASE I 03 SflAIASTrNAflc C’ 111 ATON 90111...First Conference on Acoustic Emission/ Microseismic Activilty in Geologic Structures and Materials. H.R. Hardy, Jr. and F.W. Leighton, 2ditors. Trans...Recognition and Acoustical Imaging , Newport Beach, California, February 4-6. 1987. 29. M.C. Junger and D. Feit. Sounds, Structures , and Their Interaction, The

  14. Acoustic Pump

    NASA Technical Reports Server (NTRS)

    Heyman, Joseph S.

    1993-01-01

    Pump uses acoustic-radiation forces. Momentum transferred from sound waves to sound-propagating material in way resulting in net pumping action on material. Acoustic pump is solid-state pump. Requires no moving parts, entirely miniaturized, and does not invade pumped environment. Silent, with no conventional vibration. Used as pump for liquid, suspension, gas, or any other medium interacting with radiation pressure. Also used where solid-state pump needed for reliability and controllability. In microgravity environment, device offers unusual control for low flow rates. For medical or other applications in which contamination cannot be allowed, offers noninvasive pumping force.

  15. Uncertainty in hydrological signatures

    NASA Astrophysics Data System (ADS)

    Westerberg, I. K.; McMillan, H. K.

    2015-09-01

    Information about rainfall-runoff processes is essential for hydrological analyses, modelling and water-management applications. A hydrological, or diagnostic, signature quantifies such information from observed data as an index value. Signatures are widely used, e.g. for catchment classification, model calibration and change detection. Uncertainties in the observed data - including measurement inaccuracy and representativeness as well as errors relating to data management - propagate to the signature values and reduce their information content. Subjective choices in the calculation method are a further source of uncertainty. We review the uncertainties relevant to different signatures based on rainfall and flow data. We propose a generally applicable method to calculate these uncertainties based on Monte Carlo sampling and demonstrate it in two catchments for common signatures including rainfall-runoff thresholds, recession analysis and basic descriptive signatures of flow distribution and dynamics. Our intention is to contribute to awareness and knowledge of signature uncertainty, including typical sources, magnitude and methods for its assessment. We found that the uncertainties were often large (i.e. typical intervals of ±10-40 % relative uncertainty) and highly variable between signatures. There was greater uncertainty in signatures that use high-frequency responses, small data subsets, or subsets prone to measurement errors. There was lower uncertainty in signatures that use spatial or temporal averages. Some signatures were sensitive to particular uncertainty types such as rating-curve form. We found that signatures can be designed to be robust to some uncertainty sources. Signature uncertainties of the magnitudes we found have the potential to change the conclusions of hydrological and ecohydrological analyses, such as cross-catchment comparisons or inferences about dominant processes.

  16. Signature-whistle production in undisturbed free-ranging bottlenose dolphins (Tursiops truncatus).

    PubMed Central

    Cook, Mandy L. H.; Sayigh, Laela S.; Blum, James E.; Wells, Randall S.

    2004-01-01

    Data from behavioural observations and acoustic recordings of free-ranging bottlenose dolphins (Tursiops truncatus) were analysed to determine whether signature whistles are produced by wild undisturbed dolphins, and how whistle production varies with activity and group size. The study animals were part of a resident community of bottlenose dolphins near Sarasota, Florida, USA. This community of dolphins provides a unique opportunity for the study of signature-whistle production, since most animals have been recorded during capture-release events since 1975. Three mother-calf pairs and their associates were recorded for a total of 141.25 h between May and August of 1994 and 1995. Whistles of undisturbed dolphins were compared with those recorded from the same individuals during capture-release events. Whistles were conservatively classified into one of four categories: signature, probable signature, upsweep or other. For statistical analyses, signature and probable signature whistles were combined into a 'signature' category; upsweep and other whistles were combined into a 'non-signature' category. Both 'signature' and 'non-signature' whistle frequencies significantly increased as group size increased. There were significant differences in whistle frequencies across activity types: both 'signature' and 'non-signature' whistles were most likely to occur during socializing and least likely to occur during travelling. There were no significant interactions between group size and activity type. Signature and probable signature whistles made up ca. 52% of all whistles produced by these free-ranging bottlenose dolphins. PMID:15293858

  17. Fingerprint Recognition

    DTIC Science & Technology

    2006-06-01

    their central lines. The rule- based algorithm developed for character recognition by Ahmed and Ward (2002) can be applied to a fingerprint image...REFERENCES Ahmed, M., & Ward, R. (2002). A rotation invariant rule- based thinning algorithm for character recognition . IEEE Transactions on Pattern...various steps present in a fingerprint recognition system. The study develops a working algorithm to extract fingerprint minutiae from an input

  18. Tracking and Characterization of Aircraft Wakes Using Acoustic and Lidar Measurements

    NASA Technical Reports Server (NTRS)

    Booth, Earl R., Jr.; Humphreys, William M., Jr.

    2005-01-01

    Data from the 2003 Denver International Airport Wake Acoustics Test are further examined to discern spectral content of aircraft wake signatures, and to compare three dimensional wake tracking from acoustic data to wake tracking data obtained through use of continuous wave and pulsed lidar. Wake tracking data derived from acoustic array data agree well with both continuous wave and pulsed lidar in the horizontal plane, but less well with pulsed lidar in the vertical direction. Results from this study show that the spectral distribution of acoustic energy in a wake signature varies greatly with aircraft type.

  19. Italians Use Abstract Knowledge about Lexical Stress during Spoken-Word Recognition

    ERIC Educational Resources Information Center

    Sulpizio, Simone; McQueen, James M.

    2012-01-01

    In two eye-tracking experiments in Italian, we investigated how acoustic information and stored knowledge about lexical stress are used during the recognition of tri-syllabic spoken words. Experiment 1 showed that Italians use acoustic cues to a word's stress pattern rapidly in word recognition, but only for words with antepenultimate stress.…

  20. Modeling words with subword units in an articulatorily constrained speech recognition algorithm

    SciTech Connect

    Hogden, J.

    1997-11-20

    The goal of speech recognition is to find the most probable word given the acoustic evidence, i.e. a string of VQ codes or acoustic features. Speech recognition algorithms typically take advantage of the fact that the probability of a word, given a sequence of VQ codes, can be calculated.

  1. Frequency overlap between electric and acoustic stimulation and speech-perception benefit in patients with combined electric and acoustic stimulation

    PubMed Central

    Zhang, Ting; Spahr, Anthony J.; Dorman, Michael F.

    2010-01-01

    Objectives Our aim was to assess, for patients with a cochlear implant in one ear and low-frequency acoustic hearing in the contralateral ear, whether reducing the overlap in frequencies conveyed in the acoustic signal and those analyzed by the cochlear implant speech processor would improve speech recognition. Design The recognition of monosyllabic words in quiet and sentences in noise was evaluated in three listening configurations: electric stimulation alone, acoustic stimulation alone, and combined electric and acoustic stimulation. The acoustic stimuli were either unfiltered or low-pass (LP) filtered at 250 Hz, 500 Hz, or 750 Hz. The electric stimuli were either unfiltered or high-pass (HP) filtered at 250 Hz, 500 Hz or 750 Hz. In the combined condition the unfiltered acoustic signal was paired with the unfiltered electric signal, the 250 LP acoustic signal was paired with the 250 Hz HP electric signal, the 500 Hz LP acoustic signal was paired with the 500 Hz HP electric signal and the 750 Hz LP acoustic signal was paired with the 750 Hz HP electric signal. Results For both acoustic and electric signals performance increased as the bandwith increased. The highest level of performance in the combined condition was observed in the unfiltered acoustic plus unfiltered electric condition. Conclusions Reducing the overlap in frequency representation between acoustic and electric stimulation does not increase speech understanding scores for patients who have residual hearing in the ear contralateral to the implant. We find that acoustic information below 250 Hz significantly improves performance for patients who combine electric and acoustic stimulation and accounts for the majority of the speech-perception benefit when acoustic stimulation is combined with electric stimulation. PMID:19915474

  2. Angular-Similarity-Preserving Binary Signatures for Linear Subspaces.

    PubMed

    Ji, Jianqiu; Li, Jianmin; Tian, Qi; Yan, Shuicheng; Zhang, Bo

    2015-11-01

    We propose a similarity-preserving binary signature method for linear subspaces. In computer vision and pattern recognition, linear subspace is a very important representation for many kinds of data, such as face images, action and gesture videos, and so on. When there is a large amount of subspace data and the ambient dimension is high, the cost of computing the pairwise similarity between the subspaces would be high and it requires a large storage space for storing the subspaces. In this paper, we first define the angular similarity and angular distance between the subspaces. Then, based on this similarity definition, we develop a similarity-preserving binary signature method for linear subspaces, which transforms a linear subspace into a compact binary signature, and the Hamming distance between two signatures provides an unbiased estimate of the angular similarity between the two subspaces. We also provide a lower bound of the signature length sufficient to guarantee uniform distance-preservation between every pair of subspaces in a set. Experiments on face recognition, gesture recognition, and action recognition verify the effectiveness of the proposed method.

  3. An Overview of the SPHINX-II Speech Recognition System

    DTIC Science & Technology

    1993-01-01

    sequence of words wl, w2 , ...w~ with corresponding language and acoustic probabilities. We denote the correct word sequence as 0, and all the incorrect...their help. R e f e r e n c e s 1. Acero , A. Acoustical and Environmental Robustness in Auto- matic Speech Recognition. Department of Electrical

  4. Fourier descriptor features for acoustic landmine detection

    NASA Astrophysics Data System (ADS)

    Keller, James M.; Cheng, Zhanqi; Gader, Paul D.; Hocaoglu, Ali K.

    2002-08-01

    Signatures of buried landmines are often difficult to separate from those of clutter objects. Often, shape information is not directly obtainable from the sensors used for landmine detection. The Acoustic Sensing Technology (AST), which uses a Laser Doppler Vibrometer (LDV) that measures the spatial pattern of particle velocity amplitude of the ground surface in a variety of frequency bands, offers a unique look at subsurface phenomena. It directly records shape related information. Generally, after preprocessing the frequency band images in a downward looking LDV system, landmines have fairly regular shapes (roughly circular) over a range of frequencies while clutter tends to exhibit irregular shapes different from those of landmines. Therefore, shape description has the potential to be used in discriminating mines from clutter. Normalized Fourier Descriptors (NFD) are shape parameters independent of size, angular orientation, position, and contour starting conditions. In this paper, the stack of 2D frequency images from the LDV system are preprocessed by a linear combination of order statistics (LOS) filter, thresholding, and 2D and 3D connected labeling. Contours are extracted form the connected components and aggregated to produce evenly spaced boundary points. Two types of Normalized Fourier Descriptors are computed from the outlines. Using images obtained from a standard data collection site, these features are analyzed for their ability to discriminate landmines from background and clutter such as wood and stones. From a standard feature selection procedure, it was found that a very small number of features are required to effectively separate landmines from background and clutter using simple pattern recognition algorithms. Details of the experiments are included.

  5. Identification and Characteristics of Signature Whistles in Wild Bottlenose Dolphins (Tursiops truncatus) from Namibia

    PubMed Central

    Elwen, Simon Harvey; Nastasi, Aurora

    2014-01-01

    A signature whistle type is a learned, individually distinctive whistle type in a dolphin's acoustic repertoire that broadcasts the identity of the whistle owner. The acquisition and use of signature whistles indicates complex cognitive functioning that requires wider investigation in wild dolphin populations. Here we identify signature whistle types from a population of approximately 100 wild common bottlenose dolphins (Tursiops truncatus) inhabiting Walvis Bay, and describe signature whistle occurrence, acoustic parameters and temporal production. A catalogue of 43 repeatedly emitted whistle types (REWTs) was generated by analysing 79 hrs of acoustic recordings. From this, 28 signature whistle types were identified using a method based on the temporal patterns in whistle sequences. A visual classification task conducted by 5 naïve judges showed high levels of agreement in classification of whistles (Fleiss-Kappa statistic, κ = 0.848, Z = 55.3, P<0.001) and supported our categorisation. Signature whistle structure remained stable over time and location, with most types (82%) recorded in 2 or more years, and 4 identified at Walvis Bay and a second field site approximately 450 km away. Whistle acoustic parameters were consistent with those of signature whistles documented in Sarasota Bay (Florida, USA). We provide evidence of possible two-voice signature whistle production by a common bottlenose dolphin. Although signature whistle types have potential use as a marker for studying individual habitat use, we only identified approximately 28% of those from the Walvis Bay population, despite considerable recording effort. We found that signature whistle type diversity was higher in larger dolphin groups and groups with calves present. This is the first study describing signature whistles in a wild free-ranging T. truncatus population inhabiting African waters and it provides a baseline on which more in depth behavioural studies can be based. PMID:25203814

  6. Seismic augmentation of acoustic monitoring of mortar fire

    NASA Astrophysics Data System (ADS)

    Anderson, Thomas S.

    2007-10-01

    The US Army Corps of Engineers Research and Development Center participated in a joint ARL-NATO TG-53 field experiment and data collect at Yuma Proving Ground, AZ in early November 2005. Seismic and acoustic signatures from both muzzle blasts and impacts of small arms fire and artillery were recorded using 7 seismic arrays and 3 acoustic arrays. Arrays comprised of 12 seismic and 12 acoustic sensors each were located from 700 m to 18 km from gun positions. Preliminary analysis of signatures attributed to 60mm, 81mm, 120 mm mortars recorded at a seismic-acoustic array 1.1 km from gun position are presented. Seismic and acoustic array f-k analysis is performed to detect and characterize the source signature. Horizontal seismic data are analyzed to determine efficacy of a seismic discriminant for mortar and artillery sources. Rotation of North and East seismic components to radial and transverse components relative to the source-receiver path provide maximum surface wave amplitude on the transverse component. Angles of rotation agree well with f-k analysis of both seismic and acoustic signals. The spectral energy of the rotated transverse surface wave is observable on the all caliber of mortars at a distance of 1.1 km and is a reliable source discriminant for mortar sources at this distance. In a step towards automation, travel time stencils using local seismic and acoustic velocities are applied to seismic data for analysis and determination of source characteristics.

  7. Acoustic transducer for acoustic microscopy

    DOEpatents

    Khuri-Yakub, B.T.; Chou, C.H.

    1990-03-20

    A shear acoustic transducer-lens system is described in which a shear polarized piezoelectric material excites shear polarized waves at one end of a buffer rod having a lens at the other end which excites longitudinal waves in a coupling medium by mode conversion at selected locations on the lens. 9 figs.

  8. Acoustic transducer for acoustic microscopy

    DOEpatents

    Khuri-Yakub, Butrus T.; Chou, Ching H.

    1990-01-01

    A shear acoustic transducer-lens system in which a shear polarized piezoelectric material excites shear polarized waves at one end of a buffer rod having a lens at the other end which excites longitudinal waves in a coupling medium by mode conversion at selected locations on the lens.

  9. A micro-Doppler sonar for acoustic surveillance in sensor networks

    NASA Astrophysics Data System (ADS)

    Zhang, Zhaonian

    Wireless sensor networks have been employed in a wide variety of applications, despite the limited energy and communication resources at each sensor node. Low power custom VLSI chips implementing passive acoustic sensing algorithms have been successfully integrated into an acoustic surveillance unit and demonstrated for detection and location of sound sources. In this dissertation, I explore active and passive acoustic sensing techniques, signal processing and classification algorithms for detection and classification in a multinodal sensor network environment. I will present the design and characterization of a continuous-wave micro-Doppler sonar to image objects with articulated moving components. As an example application for this system, we use it to image gaits of humans and four-legged animals. I will present the micro-Doppler gait signatures of a walking person, a dog and a horse. I will discuss the resolution and range of this micro-Doppler sonar and use experimental results to support the theoretical analyses. In order to reduce the data rate and make the system amenable to wireless sensor networks, I will present a second micro-Doppler sonar that uses bandpass sampling for data acquisition. Speech recognition algorithms are explored for biometric identifications from one's gait, and I will present and compare the classification performance of the two systems. The acoustic micro-Doppler sonar design and biometric identification results are the first in the field as the previous work used either video camera or microwave technology. I will also review bearing estimation algorithms and present results of applying these algorithms for bearing estimation and tracking of moving vehicles. Another major source of the power consumption at each sensor node is the wireless interface. To address the need of low power communications in a wireless sensor network, I will also discuss the design and implementation of ultra wideband transmitters in a three dimensional

  10. Digital Signature Management.

    ERIC Educational Resources Information Center

    Hassler, Vesna; Biely, Helmut

    1999-01-01

    Describes the Digital Signature Project that was developed in Austria to establish an infrastructure for applying smart card-based digital signatures in banking and electronic-commerce applications. Discusses the need to conform to international standards, an international certification infrastructure, and security features for a public directory…

  11. Digital Signature Management.

    ERIC Educational Resources Information Center

    Hassler, Vesna; Biely, Helmut

    1999-01-01

    Describes the Digital Signature Project that was developed in Austria to establish an infrastructure for applying smart card-based digital signatures in banking and electronic-commerce applications. Discusses the need to conform to international standards, an international certification infrastructure, and security features for a public directory…

  12. Acoustic chaos

    SciTech Connect

    Lauterborn, W.; Parlitz, U.; Holzfuss, J.; Billo, A.; Akhatov, I.

    1996-06-01

    Acoustic cavitation, a complex, spatio-temporal dynamical system, is investigated with respect to its chaotic properties. The sound output, the {open_quote}{open_quote}noise{close_quote}{close_quote}, is subjected to time series analysis. The spatial dynamics of the bubble filaments is captured by high speed holographic cinematography and subsequent digital picture processing from the holograms. Theoretical models are put forward for describing the pattern formation. {copyright} {ital 1996 American Institute of Physics.}

  13. Medical Acoustics

    NASA Astrophysics Data System (ADS)

    Beach, Kirk W.; Dunmire, Barbrina

    Medical acoustics can be subdivided into diagnostics and therapy. Diagnostics are further separated into auditory and ultrasonic methods, and both employ low amplitudes. Therapy (excluding medical advice) uses ultrasound for heating, cooking, permeablizing, activating and fracturing tissues and structures within the body, usually at much higher amplitudes than in diagnostics. Because ultrasound is a wave, linear wave physics are generally applicable, but recently nonlinear effects have become more important, even in low-intensity diagnostic applications.

  14. Acoustic dose and acoustic dose-rate.

    PubMed

    Duck, Francis

    2009-10-01

    Acoustic dose is defined as the energy deposited by absorption of an acoustic wave per unit mass of the medium supporting the wave. Expressions for acoustic dose and acoustic dose-rate are given for plane-wave conditions, including temporal and frequency dependencies of energy deposition. The relationship between the acoustic dose-rate and the resulting temperature increase is explored, as is the relationship between acoustic dose-rate and radiation force. Energy transfer from the wave to the medium by means of acoustic cavitation is considered, and an approach is proposed in principle that could allow cavitation to be included within the proposed definitions of acoustic dose and acoustic dose-rate.

  15. Theoretical study of different attenuation measurement by acoustic microscopy

    NASA Astrophysics Data System (ADS)

    Hamdi, F.; Bouhedja, S.; Amrani, H.

    2013-10-01

    Many works are devoted to study the attenuation of surface waves in media, particularly, leaky surface acoustic waves (LSAW). In this work, a big part of the study is based on the intensity of the output signal, i.e., acoustic signature, V(z). The latter is obtained by the use of quantitative mode of acoustic microscopy in order to measure the velocity and the attenuation of those excited waves at the limit between the specimen and the coupling liquid. Our aim is to compare the attenuation values of the LSAW propagation in porous silicon obtained with three different methods. The first is obtained by resolving Viktorov equation. The second method is the spectral analysis acoustical signature V(z) curves. The third method uses the dark field. The obtained results are in a good agreement with those experiments.

  16. Novel underwater soundscape: acoustic repertoire of plainfin midshipman fish.

    PubMed

    McIver, Eileen L; Marchaterre, Margaret A; Rice, Aaron N; Bass, Andrew H

    2014-07-01

    Toadfishes are among the best-known groups of sound-producing (vocal) fishes and include species commonly known as toadfish and midshipman. Although midshipman have been the subject of extensive investigation of the neural mechanisms of vocalization, this is the first comprehensive, quantitative analysis of the spectro-temporal characters of their acoustic signals and one of the few for fishes in general. Field recordings of territorial, nest-guarding male midshipman during the breeding season identified a diverse vocal repertoire composed of three basic sound types that varied widely in duration, harmonic structure and degree of amplitude modulation (AM): 'hum', 'grunt' and 'growl'. Hum duration varied nearly 1000-fold, lasting for minutes at a time, with stable harmonic stacks and little envelope modulation throughout the sound. By contrast, grunts were brief, ~30-140 ms, broadband signals produced both in isolation and repetitively as a train of up to 200 at intervals of ~0.5-1.0 s. Growls were also produced alone or repetitively, but at variable intervals of the order of seconds with durations between those of grunts and hums, ranging 60-fold from ~200 ms to 12 s. Growls exhibited prominent harmonics with sudden shifts in pulse repetition rate and highly variable AM patterns, unlike the nearly constant AM of grunt trains and flat envelope of hums. Behavioral and neurophysiological studies support the hypothesis that each sound type's unique acoustic signature contributes to signal recognition mechanisms. Nocturnal production of these sounds against a background chorus dominated constantly for hours by a single sound type, the multi-harmonic hum, reveals a novel underwater soundscape for fish. © 2014. Published by The Company of Biologists Ltd.

  17. Twin Signature Schemes, Revisited

    NASA Astrophysics Data System (ADS)

    Schäge, Sven

    In this paper, we revisit the twin signature scheme by Naccache, Pointcheval and Stern from CCS 2001 that is secure under the Strong RSA (SRSA) assumption and improve its efficiency in several ways. First, we present a new twin signature scheme that is based on the Strong Diffie-Hellman (SDH) assumption in bilinear groups and allows for very short signatures and key material. A big advantage of this scheme is that, in contrast to the original scheme, it does not require a computationally expensive function for mapping messages to primes. We prove this new scheme secure under adaptive chosen message attacks. Second, we present a modification that allows to significantly increase efficiency when signing long messages. This construction uses collision-resistant hash functions as its basis. As a result, our improvements make the signature length independent of the message size. Our construction deviates from the standard hash-and-sign approach in which the hash value of the message is signed in place of the message itself. We show that in the case of twin signatures, one can exploit the properties of the hash function as an integral part of the signature scheme. This improvement can be applied to both the SRSA based and SDH based twin signature scheme.

  18. Traceable Ring Signature

    NASA Astrophysics Data System (ADS)

    Fujisaki, Eiichiro; Suzuki, Koutarou

    The ring signature allows a signer to leak secrets anonymously, without the risk of identity escrow. At the same time, the ring signature provides great flexibility: No group manager, no special setup, and the dynamics of group choice. The ring signature is, however, vulnerable to malicious or irresponsible signers in some applications, because of its anonymity. In this paper, we propose a traceable ring signature scheme. A traceable ring scheme is a ring signature except that it can restrict “excessive” anonymity. The traceable ring signature has a tag that consists of a list of ring members and an issue that refers to, for instance, a social affair or an election. A ring member can make any signed but anonymous opinion regarding the issue, but only once (per tag). If the member submits another signed opinion, possibly pretending to be another person who supports the first opinion, the identity of the member is immediately revealed. If the member submits the same opinion, for instance, voting “yes” regarding the same issue twice, everyone can see that these two are linked. The traceable ring signature can suit to many applications, such as an anonymous voting on a BBS. We formalize the security definitions for this primitive and show an efficient and simple construction in the random oracle model.

  19. An archaeal genomic signature

    NASA Technical Reports Server (NTRS)

    Graham, D. E.; Overbeek, R.; Olsen, G. J.; Woese, C. R.

    2000-01-01

    Comparisons of complete genome sequences allow the most objective and comprehensive descriptions possible of a lineage's evolution. This communication uses the completed genomes from four major euryarchaeal taxa to define a genomic signature for the Euryarchaeota and, by extension, the Archaea as a whole. The signature is defined in terms of the set of protein-encoding genes found in at least two diverse members of the euryarchaeal taxa that function uniquely within the Archaea; most signature proteins have no recognizable bacterial or eukaryal homologs. By this definition, 351 clusters of signature proteins have been identified. Functions of most proteins in this signature set are currently unknown. At least 70% of the clusters that contain proteins from all the euryarchaeal genomes also have crenarchaeal homologs. This conservative set, which appears refractory to horizontal gene transfer to the Bacteria or the Eukarya, would seem to reflect the significant innovations that were unique and fundamental to the archaeal "design fabric." Genomic protein signature analysis methods may be extended to characterize the evolution of any phylogenetically defined lineage. The complete set of protein clusters for the archaeal genomic signature is presented as supplementary material (see the PNAS web site, www.pnas.org).

  20. An archaeal genomic signature.

    PubMed

    Graham, D E; Overbeek, R; Olsen, G J; Woese, C R

    2000-03-28

    Comparisons of complete genome sequences allow the most objective and comprehensive descriptions possible of a lineage's evolution. This communication uses the completed genomes from four major euryarchaeal taxa to define a genomic signature for the Euryarchaeota and, by extension, the Archaea as a whole. The signature is defined in terms of the set of protein-encoding genes found in at least two diverse members of the euryarchaeal taxa that function uniquely within the Archaea; most signature proteins have no recognizable bacterial or eukaryal homologs. By this definition, 351 clusters of signature proteins have been identified. Functions of most proteins in this signature set are currently unknown. At least 70% of the clusters that contain proteins from all the euryarchaeal genomes also have crenarchaeal homologs. This conservative set, which appears refractory to horizontal gene transfer to the Bacteria or the Eukarya, would seem to reflect the significant innovations that were unique and fundamental to the archaeal "design fabric." Genomic protein signature analysis methods may be extended to characterize the evolution of any phylogenetically defined lineage. The complete set of protein clusters for the archaeal genomic signature is presented as supplementary material (see the PNAS web site, www.pnas.org).

  1. An archaeal genomic signature

    PubMed Central

    Graham, David E.; Overbeek, Ross; Olsen, Gary J.; Woese, Carl R.

    2000-01-01

    Comparisons of complete genome sequences allow the most objective and comprehensive descriptions possible of a lineage's evolution. This communication uses the completed genomes from four major euryarchaeal taxa to define a genomic signature for the Euryarchaeota and, by extension, the Archaea as a whole. The signature is defined in terms of the set of protein-encoding genes found in at least two diverse members of the euryarchaeal taxa that function uniquely within the Archaea; most signature proteins have no recognizable bacterial or eukaryal homologs. By this definition, 351 clusters of signature proteins have been identified. Functions of most proteins in this signature set are currently unknown. At least 70% of the clusters that contain proteins from all the euryarchaeal genomes also have crenarchaeal homologs. This conservative set, which appears refractory to horizontal gene transfer to the Bacteria or the Eukarya, would seem to reflect the significant innovations that were unique and fundamental to the archaeal “design fabric.” Genomic protein signature analysis methods may be extended to characterize the evolution of any phylogenetically defined lineage. The complete set of protein clusters for the archaeal genomic signature is presented as supplementary material (see the PNAS web site, www.pnas.org). PMID:10716711

  2. UV Signature Mutations †

    PubMed Central

    2014-01-01

    Sequencing complete tumor genomes and exomes has sparked the cancer field's interest in mutation signatures for identifying the tumor's carcinogen. This review and meta-analysis discusses signatures and their proper use. We first distinguish between a mutagen's canonical mutations – deviations from a random distribution of base changes to create a pattern typical of that mutagen – and the subset of signature mutations, which are unique to that mutagen and permit inference backward from mutations to mutagen. To verify UV signature mutations, we assembled literature datasets on cells exposed to UVC, UVB, UVA, or solar simulator light (SSL) and tested canonical UV mutation features as criteria for clustering datasets. A confirmed UV signature was: ≥60% of mutations are C→T at a dipyrimidine site, with ≥5% CC→TT. Other canonical features such as a bias for mutations on the non-transcribed strand or at the 3' pyrimidine had limited application. The most robust classifier combined these features with criteria for the rarity of non-UV canonical mutations. In addition, several signatures proposed for specific UV wavelengths were limited to specific genes or species; non-signature mutations induced by UV may cause melanoma BRAF mutations; and the mutagen for sunlight-related skin neoplasms may vary between continents. PMID:25354245

  3. An archaeal genomic signature

    NASA Technical Reports Server (NTRS)

    Graham, D. E.; Overbeek, R.; Olsen, G. J.; Woese, C. R.

    2000-01-01

    Comparisons of complete genome sequences allow the most objective and comprehensive descriptions possible of a lineage's evolution. This communication uses the completed genomes from four major euryarchaeal taxa to define a genomic signature for the Euryarchaeota and, by extension, the Archaea as a whole. The signature is defined in terms of the set of protein-encoding genes found in at least two diverse members of the euryarchaeal taxa that function uniquely within the Archaea; most signature proteins have no recognizable bacterial or eukaryal homologs. By this definition, 351 clusters of signature proteins have been identified. Functions of most proteins in this signature set are currently unknown. At least 70% of the clusters that contain proteins from all the euryarchaeal genomes also have crenarchaeal homologs. This conservative set, which appears refractory to horizontal gene transfer to the Bacteria or the Eukarya, would seem to reflect the significant innovations that were unique and fundamental to the archaeal "design fabric." Genomic protein signature analysis methods may be extended to characterize the evolution of any phylogenetically defined lineage. The complete set of protein clusters for the archaeal genomic signature is presented as supplementary material (see the PNAS web site, www.pnas.org).

  4. Acoustic Tooth Cleaner

    NASA Technical Reports Server (NTRS)

    Heyman, J. S.

    1984-01-01

    Acoustically-energized water jet aids in plaque breakdown. Acoustic Wand includes acoustic transducer 1/4 wave plate, and tapered cone. Together elements energize solution of water containing mild abrasive injected into mouth to help prevent calculous buildup.

  5. Effects of Cognitive Load on Speech Recognition

    ERIC Educational Resources Information Center

    Mattys, Sven L.; Wiget, Lukas

    2011-01-01

    The effect of cognitive load (CL) on speech recognition has received little attention despite the prevalence of CL in everyday life, e.g., dual-tasking. To assess the effect of CL on the interaction between lexically-mediated and acoustically-mediated processes, we measured the magnitude of the "Ganong effect" (i.e., lexical bias on phoneme…

  6. Effects of Cognitive Load on Speech Recognition

    ERIC Educational Resources Information Center

    Mattys, Sven L.; Wiget, Lukas

    2011-01-01

    The effect of cognitive load (CL) on speech recognition has received little attention despite the prevalence of CL in everyday life, e.g., dual-tasking. To assess the effect of CL on the interaction between lexically-mediated and acoustically-mediated processes, we measured the magnitude of the "Ganong effect" (i.e., lexical bias on phoneme…

  7. Bottlenose dolphins exchange signature whistles when meeting at sea

    PubMed Central

    Quick, Nicola J.; Janik, Vincent M.

    2012-01-01

    The bottlenose dolphin, Tursiops truncatus, is one of very few animals that, through vocal learning, can invent novel acoustic signals and copy whistles of conspecifics. Furthermore, receivers can extract identity information from the invented part of whistles. In captivity, dolphins use such signature whistles while separated from the rest of their group. However, little is known about how they use them at sea. If signature whistles are the main vehicle to transmit identity information, then dolphins should exchange these whistles in contexts where groups or individuals join. We used passive acoustic localization during focal boat follows to observe signature whistle use in the wild. We found that stereotypic whistle exchanges occurred primarily when groups of dolphins met and joined at sea. A sequence analysis verified that most of the whistles used during joins were signature whistles. Whistle matching or copying was not observed in any of the joins. The data show that signature whistle exchanges are a significant part of a greeting sequence that allows dolphins to identify conspecifics when encountering them in the wild. PMID:22378804

  8. Bottlenose dolphins exchange signature whistles when meeting at sea.

    PubMed

    Quick, Nicola J; Janik, Vincent M

    2012-07-07

    The bottlenose dolphin, Tursiops truncatus, is one of very few animals that, through vocal learning, can invent novel acoustic signals and copy whistles of conspecifics. Furthermore, receivers can extract identity information from the invented part of whistles. In captivity, dolphins use such signature whistles while separated from the rest of their group. However, little is known about how they use them at sea. If signature whistles are the main vehicle to transmit identity information, then dolphins should exchange these whistles in contexts where groups or individuals join. We used passive acoustic localization during focal boat follows to observe signature whistle use in the wild. We found that stereotypic whistle exchanges occurred primarily when groups of dolphins met and joined at sea. A sequence analysis verified that most of the whistles used during joins were signature whistles. Whistle matching or copying was not observed in any of the joins. The data show that signature whistle exchanges are a significant part of a greeting sequence that allows dolphins to identify conspecifics when encountering them in the wild.

  9. Are there molecular signatures?

    SciTech Connect

    Bennett, W.P.

    1995-10-01

    This report describes molecular signatures and mutational spectrum analysis. The mutation spectrum is defined as the type and location of DNA base change. There are currently about five well documented cases. Mutations and radon-associated tumors are discussed.

  10. President Signature Onboard Curiosity

    NASA Image and Video Library

    2012-09-21

    This view of Curiosity deck shows a plaque bearing several signatures of US officials, including that of President Obama and Vice President Biden. The image was taken by the rover Mars Hand Lens Imager MAHLI.

  11. Automatic speech recognition

    NASA Astrophysics Data System (ADS)

    Espy-Wilson, Carol

    2005-04-01

    Great strides have been made in the development of automatic speech recognition (ASR) technology over the past thirty years. Most of this effort has been centered around the extension and improvement of Hidden Markov Model (HMM) approaches to ASR. Current commercially-available and industry systems based on HMMs can perform well for certain situational tasks that restrict variability such as phone dialing or limited voice commands. However, the holy grail of ASR systems is performance comparable to humans-in other words, the ability to automatically transcribe unrestricted conversational speech spoken by an infinite number of speakers under varying acoustic environments. This goal is far from being reached. Key to the success of ASR is effective modeling of variability in the speech signal. This tutorial will review the basics of ASR and the various ways in which our current knowledge of speech production, speech perception and prosody can be exploited to improve robustness at every level of the system.

  12. Meteor signature interpretation

    SciTech Connect

    Canavan, G.H.

    1997-01-01

    Meteor signatures contain information about the constituents of space debris and present potential false alarms to early warnings systems. Better models could both extract the maximum scientific information possible and reduce their danger. Accurate predictions can be produced by models of modest complexity, which can be inverted to predict the sizes, compositions, and trajectories of object from their signatures for most objects of interest and concern.

  13. Acoustic transducer

    DOEpatents

    Drumheller, Douglas S.

    1997-01-01

    An acoustic transducer comprising a one-piece hollow mandrel into the outer surface of which is formed a recess with sides perpendicular to the central axis of the mandrel and separated by a first distance and with a bottom parallel to the central axis and within which recess are a plurality of washer-shaped discs of a piezoelectric material and at least one disc of a temperature-compensating material with the discs being captured between the sides of the recess in a pre-stressed interference fit, typically at 2000 psi of compressive stress. The transducer also includes a power supply and means to connect to a measurement device. The transducer is intended to be used for telemetry between a measurement device located downhole in an oil or gas well and the surface. The transducer is of an construction that is stronger with fewer joints that could leak fluids into the recess holding the piezoelectric elements than is found in previous acoustic transducers.

  14. Acoustic transducer

    DOEpatents

    Drumheller, D.S.

    1997-12-30

    An acoustic transducer is described comprising a one-piece hollow mandrel into the outer surface of which is formed a recess with sides perpendicular to the central axis of the mandrel and separated by a first distance and with a bottom parallel to the central axis and within which recess are a plurality of washer-shaped discs of a piezoelectric material and at least one disc of a temperature-compensating material with the discs being captured between the sides of the recess in a pre-stressed interference fit, typically at 2,000 psi of compressive stress. The transducer also includes a power supply and means to connect to a measurement device. The transducer is intended to be used for telemetry between a measurement device located downhole in an oil or gas well and the surface. The transducer is of an construction that is stronger with fewer joints that could leak fluids into the recess holding the piezoelectric elements than is found in previous acoustic transducers. 4 figs.

  15. Acoustic iridescence.

    PubMed

    Cox, Trevor J

    2011-03-01

    An investigation has been undertaken into acoustic iridescence, exploring how a device can be constructed which alter sound waves, in a similar way to structures in nature that act on light to produce optical iridescence. The main construction had many thin perforated sheets spaced half a wavelength apart for a specified design frequency. The sheets create the necessary impedance discontinuities to create backscattered waves, which then interfere to create strongly reflected sound at certain frequencies. Predictions and measurements show a set of harmonics, evenly spaced in frequency, for which sound is reflected strongly. And the frequency of these harmonics increases as the angle of observation gets larger, mimicking the iridescence seen in natural optical systems. Similar to optical systems, the reflections become weaker for oblique angles of reflection. A second construction was briefly examined which exploited a metamaterial made from elements and inclusions which were much smaller than the wavelength. Boundary element method predictions confirmed the potential for creating acoustic iridescence from layers of such a material.

  16. Characterization of Longitudinal Splitting and Fiber Breakage in Gr/Ep using Acoustic Emission Data

    NASA Technical Reports Server (NTRS)

    Ely, Thomas M.; Hill, Eric K.

    1993-01-01

    A composite tensile test specimen was designed such that fiber breakage and longitudinal splitting occurred at a known position in the specimen. By studying the acoustic signature of each failure mechanism distinct characteristics in the data were identified that uniquely related the acoustic emission parameters with either fiber breakage or longitudinal splitting.

  17. Automatic target recognition based on cross-plot.

    PubMed

    Wong, Kelvin Kian Loong; Abbott, Derek

    2011-01-01

    Automatic target recognition that relies on rapid feature extraction of real-time target from photo-realistic imaging will enable efficient identification of target patterns. To achieve this objective, Cross-plots of binary patterns are explored as potential signatures for the observed target by high-speed capture of the crucial spatial features using minimal computational resources. Target recognition was implemented based on the proposed pattern recognition concept and tested rigorously for its precision and recall performance. We conclude that Cross-plotting is able to produce a digital fingerprint of a target that correlates efficiently and effectively to signatures of patterns having its identity in a target repository.

  18. Automatic Target Recognition Based on Cross-Plot

    PubMed Central

    Wong, Kelvin Kian Loong; Abbott, Derek

    2011-01-01

    Automatic target recognition that relies on rapid feature extraction of real-time target from photo-realistic imaging will enable efficient identification of target patterns. To achieve this objective, Cross-plots of binary patterns are explored as potential signatures for the observed target by high-speed capture of the crucial spatial features using minimal computational resources. Target recognition was implemented based on the proposed pattern recognition concept and tested rigorously for its precision and recall performance. We conclude that Cross-plotting is able to produce a digital fingerprint of a target that correlates efficiently and effectively to signatures of patterns having its identity in a target repository. PMID:21980508

  19. Integral Invariant Signatures

    DTIC Science & Technology

    2004-05-01

    change under the various nui- sances of image formation and viewing geometry was appealing; it held potential for application to recognition...Springer, 1990. 29. S. Z. Li. Shape matching based on invariants. In O. M. Omidvar (ed.), editor, Progress in Neural Networks : Shape Recognition, volume 6

  20. Joint Sparse Representation for Robust Multimodal Biometrics Recognition

    DTIC Science & Technology

    2012-01-01

    occlusion and random pixel corruption. Pillai et al. extended this work for robust cancelable iris recognition in [11]. Nagesh and Li [12] presented... Biometrics Recognition Sumit Shekhar, Student Member, IEEE, Vishal M. Patel, Member, IEEE, Nasser M. Nasrabadi, Fellow, IEEE, and Rama Chellappa, Fellow...IEEE . Abstract—Traditional biometric recognition systems rely on a single biometric signature for authentication. While the advan- tage of using

  1. 3D acoustic atmospheric tomography

    NASA Astrophysics Data System (ADS)

    Rogers, Kevin; Finn, Anthony

    2014-10-01

    This paper presents a method for tomographically reconstructing spatially varying 3D atmospheric temperature profiles and wind velocity fields based. Measurements of the acoustic signature measured onboard a small Unmanned Aerial Vehicle (UAV) are compared to ground-based observations of the same signals. The frequency-shifted signal variations are then used to estimate the acoustic propagation delay between the UAV and the ground microphones, which are also affected by atmospheric temperature and wind speed vectors along each sound ray path. The wind and temperature profiles are modelled as the weighted sum of Radial Basis Functions (RBFs), which also allow local meteorological measurements made at the UAV and ground receivers to supplement any acoustic observations. Tomography is used to provide a full 3D reconstruction/visualisation of the observed atmosphere. The technique offers observational mobility under direct user control and the capacity to monitor hazardous atmospheric environments, otherwise not justifiable on the basis of cost or risk. This paper summarises the tomographic technique and reports on the results of simulations and initial field trials. The technique has practical applications for atmospheric research, sound propagation studies, boundary layer meteorology, air pollution measurements, analysis of wind shear, and wind farm surveys.

  2. Invisibly Sanitizable Signature without Pairings

    NASA Astrophysics Data System (ADS)

    Yum, Dae Hyun; Lee, Pil Joong

    Sanitizable signatures allow sanitizers to delete some pre-determined parts of a signed document without invalidating the signature. While ordinary sanitizable signatures allow verifiers to know how many subdocuments have been sanitized, invisibly sanitizable signatures do not leave any clue to the sanitized subdocuments; verifiers do not know whether or not sanitizing has been performed. Previous invisibly sanitizable signature scheme was constructed based on aggregate signature with pairings. In this article, we present the first invisibly sanitizable signature without using pairings. Our proposed scheme is secure under the RSA assumption.

  3. Offline signature verification and skilled forgery detection using HMM and sum graph features with ANN and knowledge based classifier

    NASA Astrophysics Data System (ADS)

    Mehta, Mohit; Choudhary, Vijay; Das, Rupam; Khan, Ilyas

    2010-02-01

    Signature verification is one of the most widely researched areas in document analysis and signature biometric. Various methodologies have been proposed in this area for accurate signature verification and forgery detection. In this paper we propose a unique two stage model of detecting skilled forgery in the signature by combining two feature types namely Sum graph and HMM model for signature generation and classify them with knowledge based classifier and probability neural network. We proposed a unique technique of using HMM as feature rather than a classifier as being widely proposed by most of the authors in signature recognition. Results show a higher false rejection than false acceptance rate. The system detects forgeries with an accuracy of 80% and can detect the signatures with 91% accuracy. The two stage model can be used in realistic signature biometric applications like the banking applications where there is a need to detect the authenticity of the signature before processing documents like checks.

  4. Perceptual Plasticity for Auditory Object Recognition

    PubMed Central

    Heald, Shannon L. M.; Van Hedger, Stephen C.; Nusbaum, Howard C.

    2017-01-01

    In our auditory environment, we rarely experience the exact acoustic waveform twice. This is especially true for communicative signals that have meaning for listeners. In speech and music, the acoustic signal changes as a function of the talker (or instrument), speaking (or playing) rate, and room acoustics, to name a few factors. Yet, despite this acoustic variability, we are able to recognize a sentence or melody as the same across various kinds of acoustic inputs and determine meaning based on listening goals, expectations, context, and experience. The recognition process relates acoustic signals to prior experience despite variability in signal-relevant and signal-irrelevant acoustic properties, some of which could be considered as “noise” in service of a recognition goal. However, some acoustic variability, if systematic, is lawful and can be exploited by listeners to aid in recognition. Perceivable changes in systematic variability can herald a need for listeners to reorganize perception and reorient their attention to more immediately signal-relevant cues. This view is not incorporated currently in many extant theories of auditory perception, which traditionally reduce psychological or neural representations of perceptual objects and the processes that act on them to static entities. While this reduction is likely done for the sake of empirical tractability, such a reduction may seriously distort the perceptual process to be modeled. We argue that perceptual representations, as well as the processes underlying perception, are dynamically determined by an interaction between the uncertainty of the auditory signal and constraints of context. This suggests that the process of auditory recognition is highly context-dependent in that the identity of a given auditory object may be intrinsically tied to its preceding context. To argue for the flexible neural and psychological updating of sound-to-meaning mappings across speech and music, we draw upon examples

  5. Potential Competitive Dynamics of Acoustic Ecology.

    PubMed

    Radford, C A; Montgomery, J C

    2016-01-01

    The top predators in coastal marine ecosystems, such as whales, dolphins, seabirds, and large predatory fishes (including sharks), may compete with each other to exploit food aggregations. Finding these patchy food sources and being first to a food patch could provide a significant competitive advantage. Our hypothesis is that food patches have specific sound signatures that marine predators could detect and that acoustic sources and animal sensory capabilities may contribute to competition dynamics. Preliminary analysis shows that diving gannets have a distinct spectral signature between 80 and 200 Hz, which falls within the hearing sensitivity of large pelagic fishes. Therefore, we suggest that diving birds may contribute to the sound signatures of food aggregations, linking competition dynamics both above and below the water surface.

  6. The Maximum Likelihood Estimation of Signature Transformation /MLEST/ algorithm. [for affine transformation of crop inventory data

    NASA Technical Reports Server (NTRS)

    Thadani, S. G.

    1977-01-01

    The Maximum Likelihood Estimation of Signature Transformation (MLEST) algorithm is used to obtain maximum likelihood estimates (MLE) of affine transformation. The algorithm has been evaluated for three sets of data: simulated (training and recognition segment pairs), consecutive-day (data gathered from Landsat images), and geographical-extension (large-area crop inventory experiment) data sets. For each set, MLEST signature extension runs were made to determine MLE values and the affine-transformed training segment signatures were used to classify the recognition segments. The classification results were used to estimate wheat proportions at 0 and 1% threshold values.

  7. Assessing the acoustical climate of underground stations.

    PubMed

    Nowicka, Elzbieta

    2007-01-01

    Designing a proper acoustical environment--indispensable to speech recognition--in long enclosures is difficult. Although there is some literature on the acoustical conditions in underground stations, there is still little information about methods that make estimation of correct reverberation conditions possible. This paper discusses the assessment of the reverberation conditions of underground stations. A comparison of the measurements of reverberation time in Warsaw's underground stations with calculated data proves there are divergences between measured and calculated early decay time values, especially for long source-receiver distances. Rapid speech transmission index values for measured stations are also presented.

  8. Acoustic Microfluidics for Bioanalytical Application

    NASA Astrophysics Data System (ADS)

    Lopez, Gabriel

    2013-03-01

    This talk will present new methods the use of ultrasonic standing waves in microfluidic systems to manipulate microparticles for the purpose of bioassays and bioseparations. We have recently developed multi-node acoustic focusing flow cells that can position particles into many parallel flow streams and have demonstrated the potential of such flow cells in the development of high throughput, parallel flow cytometers. These experiments show the potential for the creation of high throughput flow cytometers in applications requiring high flow rates and rapid detection of rare cells. This talk will also present the development of elastomeric capture microparticles and their use in acoustophoretic separations. We have developed simple methods to form elastomeric particles that are surface functionalized with biomolecular recognition reagents. These compressible particles exhibit negative acoustic contrast in ultrasound when suspended in aqueous media, blood serum or diluted blood. These particles can be continuously separated from cells by flowing them through a microfluidic device that uses an ultrasonic standing wave to align the blood cells, which exhibit positive acoustic contrast, at a node in the acoustic pressure distribution while aligning the negative acoustic contrast elastomeric particles at the antinodes. Laminar flow of the separated particles to downstream collection ports allows for collection of the separated negative contrast particles and cells. Separated elastomeric particles were analyzed via flow cytometry to demonstrate nanomolar detection for prostate specific antigen in aqueous buffer and picomolar detection for IgG in plasma and diluted blood samples. This approach has potential applications in the development of rapid assays that detect the presence of low concentrations of biomarkers (including biomolecules and cells) in a number of biological sample types. We acknowledge support through the NSF Research Triangle MRSEC.

  9. Modeling of water-gun signatures

    SciTech Connect

    Landroe, M.; Zaalberg-Metselaar, G.; Owren, B.

    1993-01-01

    A method for calculating the acoustic signal generated by a water gun is presented. The equations describing the shuttle motion and the water jet formation are derived with the assumption that the water is incompressible. The motion of the shuttle is evaluated by assuming adiabatic expansion of the air initially contained in the air chamber of the gun. The formation and dynamics of the water jets emerging from the gun ports are closely connected to the shuttle motion. The combined effect of the water motion through the gun ports and the collapse of a cavity inside the gun nozzle can explain the first part of a water-gun signature, often referred to as the precursor. The last part of the signature is mainly an impulsive shock wave caused by the collapse of external cavities. It is assumed that the external cavities are formed due to the pressure drop behind each water jet, and that the cavities collapse due to the hydrostatic pressure. The main effect of including interaction between the external cavities is to increase the bubble period (i.e. the collapse time). Comparison between modeled and measured near-field signatures for an S80 SODERA water gun show a difference of less than 5 percent of the energy in the measurement.

  10. Acoustic cryocooler

    SciTech Connect

    Swift, G.W.; Martin, R.A.; Radebaugh, R.

    1989-09-26

    An acoustic cryocooler with no moving parts is formed from a thermoacoustic driver (TAD) driving a pulse tube refrigerator (PTR) through a standing wave tube. Thermoacoustic elements in the TAD are spaced apart a distance effective to accommodate the increased thermal penetration length arising from the relatively low TAD operating frequency in the range of 15-60 Hz. At these low operating frequencies, a long tube is required to support the standing wave. The tube may be coiled to reduce the overall length of the cryocooler. One or two PTR's are located on the standing wave tube adjacent antinodes in the standing wave to be driven by the standing wave pressure oscillations. It is predicted that a heat input of 1000 W at 1000 K will maintain a cooling load of 5 W at 80 K. 3 figs.

  11. Acoustic cryocooler

    SciTech Connect

    Swift, G.W.; Martin, R.A.; Radebaugh, R.

    1990-09-04

    This patent describes an acoustic cryocooler with no moving parts is formed from a thermoacoustic driver (TAD) driving a pulse tube refrigerator (PTR) through a standing wave tube. Thermoacoustic elements in the TAD are spaced apart a distance effect to accommodate the increased thermal penetration length arising from the relatively low TAD operating frequency in the range of 15--60 Hz. At these low operating frequencies, a long tube is required to support the standing wave. The tube may be coiled to reduce the overall length of the cryocooler. One or two PTR's are located on the standing wave tube adjacent antinodes in the standing wave to be driven by the standing wave pressure oscillations. It is predicted that a heat input of 1000 W at 1000 K will maintain a cooling load of 5 W at 80 K.

  12. Acoustic cryocooler

    DOEpatents

    Swift, Gregory W.; Martin, Richard A.; Radenbaugh, Ray

    1990-01-01

    An acoustic cryocooler with no moving parts is formed from a thermoacoustic driver (TAD) driving a pulse tube refrigerator (PTR) through a standing wave tube. Thermoacoustic elements in the TAD are spaced apart a distance effective to accommodate the increased thermal penetration length arising from the relatively low TAD operating frequency in the range of 15-60 Hz. At these low operating frequencies, a long tube is required to support the standing wave. The tube may be coiled to reduce the overall length of the cryocooler. One or two PTR's are located on the standing wave tube adjacent antinodes in the standing wave to be driven by the standing wave pressure oscillations. It is predicted that a heat input of 1000 W at 1000 K will maintian a cooling load of 5 W at 80 K.

  13. Acoustic transducer

    DOEpatents

    Drumheller, Douglas S.

    2000-01-01

    An active acoustic transducer tool for use down-hole applications. The tool includes a single cylindrical mandrel including a shoulder defining the boundary of a narrowed portion over which is placed a sandwich-style piezoelectric tranducer assembly. The piezoelectric transducer assembly is prestressed by being placed in a thermal interference fit between the shoulder of the mandrel and the base of an anvil which is likewise positioned over the narrower portion of the mandrel. In the preferred embodiment, assembly of the tool is accomplished using a hydraulic jack to stretch the mandrel prior to emplacement of the cylindrical sandwich-style piezoelectric transducer assembly and anvil. After those elements are positioned and secured, the stretched mandrel is allowed to return substantially to its original (pre-stretch) dimensions with the result that the piezoelectric transducer elements are compressed between the anvil and the shoulder of the mandrel.

  14. Acoustic hemostasis

    NASA Astrophysics Data System (ADS)

    Crum, L.; Andrew, M.; Bailey, M.; Beach, K.; Brayman, A.; Curra, F.; Kaczkowski, P.; Kargl, S.; Martin, R.; Vaezy, S.

    2003-04-01

    Over the past several years, the Center for Industrial and Medical Ultrasound (CIMU) at the Applied Physics Laboratory in the University of Washington has undertaken a broad research program in the general area of High Intensity Focused Ultrasound (HIFU). Our principal emphasis has been on the use of HIFU to induce hemostasis; in particular, CIMU has sought to develop a small, lightweight, portable device that would use ultrasound for both imaging and therapy. Such a technology is needed because nearly 50% of combat casualty mortality results from exsanguinations, or uncontrolled bleeding. A similar percentage occurs for civilian death due to trauma. In this general review, a presentation of the general problem will be given, as well as our recent approaches to the development of an image-guided, transcutaneous, acoustic hemostasis device. [Work supported in part by the USAMRMC, ONR and the NIH.

  15. Acoustic telemetry.

    SciTech Connect

    Drumheller, Douglas Schaeffer; Kuszmaul, Scott S.

    2003-08-01

    Broadcasting messages through the earth is a daunting task. Indeed, broadcasting a normal telephone conversion through the earth by wireless means is impossible with todays technology. Most of us don't care, but some do. Industries that drill into the earth need wireless communication to broadcast navigation parameters. This allows them to steer their drill bits. They also need information about the natural formation that they are drilling. Measurements of parameters such as pressure, temperature, and gamma radiation levels can tell them if they have found a valuable resource such as a geothermal reservoir or a stratum bearing natural gas. Wireless communication methods are available to the drilling industry. Information is broadcast via either pressure waves in the drilling fluid or electromagnetic waves in the earth and well tubing. Data transmission can only travel one way at rates around a few baud. Given that normal Internet telephone modems operate near 20,000 baud, these data rates are truly very slow. Moreover, communication is often interrupted or permanently blocked by drilling conditions or natural formation properties. Here we describe a tool that communicates with stress waves traveling through the steel drill pipe and production tubing in the well. It's based on an old idea called Acoustic Telemetry. But what we present here is more than an idea. This tool exists, it's drilled several wells, and it works. Currently, it's the first and only acoustic telemetry tool that can withstand the drilling environment. It broadcasts one way over a limited range at much faster rates than existing methods, but we also know how build a system that can communicate both up and down wells of indefinite length.

  16. Toward the ultimate synthesis/recognition system.

    PubMed

    Furui, S

    1995-10-24

    This paper predicts speech synthesis, speech recognition, and speaker recognition technology for the year 2001, and it describes the most important research problems to be solved in order to arrive at these ultimate synthesis and recognition systems. The problems for speech synthesis include natural and intelligible voice production, prosody control based on meaning, capability of controlling synthesized voice quality and choosing individual speaking style, multilingual and multidialectal synthesis, choice of application-oriented speaking styles, capability of adding emotion, and synthesis from concepts. The problems for speech recognition include robust recognition against speech variations, adaptation/normalization to variations due to environmental conditions and speakers, automatic knowledge acquisition for acoustic and linguistic modeling, spontaneous speech recognition, naturalness and ease of human-machine interaction, and recognition of emotion. The problems for speaker recognition are similar to those for speech recognition. The research topics related to all these techniques include the use of articulatory and perceptual constraints and evaluation methods for measuring the quality of technology and systems.

  17. NATO TG-53: acoustic detection of weapon firing joint field experiment

    NASA Astrophysics Data System (ADS)

    Robertson, Dale N.; Pham, Tien; Scanlon, Michael V.; Srour, Nassy; Reiff, Christian G.; Sim, Leng K.; Solomon, Latasha; Thompson, Dorothea F.

    2006-05-01

    In this paper, we discuss the NATO Task Group 53 (TG-53) acoustic detection of weapon firing field joint experiment at Yuma Proving Ground during 31 October to 4 November 2005. The participating NATO countries include France, the Netherlands, UK and US. The objectives of the joint experiments are: (i) to collect acoustic signatures of direct and indirect firings from weapons such as sniper, mortar, artillery and C4 explosives and (ii) to share signatures among NATO partners from a variety of acoustic sensing platforms on the ground and in the air distributed over a wide area.

  18. Conjoint Recognition.

    ERIC Educational Resources Information Center

    Brainerd, C. J.; Reyna, V. F.; Mojardin, A. H.

    1999-01-01

    Reviews some limiting properties of the process-dissociation model as it applies to the study of dual-process conceptions of memory. A second-generation model (conjoint recognition) is proposed to address these limitations and supply additional capabilities. Worked applications to data are provided. (Author/GCP)

  19. Uncertainty in hydrological signatures

    NASA Astrophysics Data System (ADS)

    McMillan, Hilary; Westerberg, Ida

    2015-04-01

    Information that summarises the hydrological behaviour or flow regime of a catchment is essential for comparing responses of different catchments to understand catchment organisation and similarity, and for many other modelling and water-management applications. Such information types derived as an index value from observed data are known as hydrological signatures, and can include descriptors of high flows (e.g. mean annual flood), low flows (e.g. mean annual low flow, recession shape), the flow variability, flow duration curve, and runoff ratio. Because the hydrological signatures are calculated from observed data such as rainfall and flow records, they are affected by uncertainty in those data. Subjective choices in the method used to calculate the signatures create a further source of uncertainty. Uncertainties in the signatures may affect our ability to compare different locations, to detect changes, or to compare future water resource management scenarios. The aim of this study was to contribute to the hydrological community's awareness and knowledge of data uncertainty in hydrological signatures, including typical sources, magnitude and methods for its assessment. We proposed a generally applicable method to calculate these uncertainties based on Monte Carlo sampling and demonstrated it for a variety of commonly used signatures. The study was made for two data rich catchments, the 50 km2 Mahurangi catchment in New Zealand and the 135 km2 Brue catchment in the UK. For rainfall data the uncertainty sources included point measurement uncertainty, the number of gauges used in calculation of the catchment spatial average, and uncertainties relating to lack of quality control. For flow data the uncertainty sources included uncertainties in stage/discharge measurement and in the approximation of the true stage-discharge relation by a rating curve. The resulting uncertainties were compared across the different signatures and catchments, to quantify uncertainty

  20. Practical quantum digital signature

    NASA Astrophysics Data System (ADS)

    Yin, Hua-Lei; Fu, Yao; Chen, Zeng-Bing

    2016-03-01

    Guaranteeing nonrepudiation, unforgeability as well as transferability of a signature is one of the most vital safeguards in today's e-commerce era. Based on fundamental laws of quantum physics, quantum digital signature (QDS) aims to provide information-theoretic security for this cryptographic task. However, up to date, the previously proposed QDS protocols are impractical due to various challenging problems and most importantly, the requirement of authenticated (secure) quantum channels between participants. Here, we present the first quantum digital signature protocol that removes the assumption of authenticated quantum channels while remaining secure against the collective attacks. Besides, our QDS protocol can be practically implemented over more than 100 km under current mature technology as used in quantum key distribution.

  1. Place recognition using batlike sonar

    PubMed Central

    Vanderelst, Dieter; Steckel, Jan; Boen, Andre; Peremans, Herbert; Holderied, Marc W

    2016-01-01

    Echolocating bats have excellent spatial memory and are able to navigate to salient locations using bio-sonar. Navigating and route-following require animals to recognize places. Currently, it is mostly unknown how bats recognize places using echolocation. In this paper, we propose template based place recognition might underlie sonar-based navigation in bats. Under this hypothesis, bats recognize places by remembering their echo signature - rather than their 3D layout. Using a large body of ensonification data collected in three different habitats, we test the viability of this hypothesis assessing two critical properties of the proposed echo signatures: (1) they can be uniquely classified and (2) they vary continuously across space. Based on the results presented, we conclude that the proposed echo signatures satisfy both criteria. We discuss how these two properties of the echo signatures can support navigation and building a cognitive map. DOI: http://dx.doi.org/10.7554/eLife.14188.001 PMID:27481189

  2. Factor models for cancer signatures

    NASA Astrophysics Data System (ADS)

    Kakushadze, Zura; Yu, Willie

    2016-11-01

    We present a novel method for extracting cancer signatures by applying statistical risk models (http://ssrn.com/abstract=2732453) from quantitative finance to cancer genome data. Using 1389 whole genome sequenced samples from 14 cancers, we identify an ;overall; mode of somatic mutational noise. We give a prescription for factoring out this noise and source code for fixing the number of signatures. We apply nonnegative matrix factorization (NMF) to genome data aggregated by cancer subtype and filtered using our method. The resultant signatures have substantially lower variability than those from unfiltered data. Also, the computational cost of signature extraction is cut by about a factor of 10. We find 3 novel cancer signatures, including a liver cancer dominant signature (96% contribution) and a renal cell carcinoma signature (70% contribution). Our method accelerates finding new cancer signatures and improves their overall stability. Reciprocally, the methods for extracting cancer signatures could have interesting applications in quantitative finance.

  3. Current signature sensor

    NASA Technical Reports Server (NTRS)

    Perotti, Jose M. (Inventor); Lucena, Angel (Inventor); Ihlefeld, Curtis (Inventor); Burns, Bradley (Inventor); Bassignani, Karin E. (Inventor)

    2005-01-01

    A solenoid health monitoring system uses a signal conditioner and controller assembly in one embodiment that includes analog circuitry and a DSP controller. The analog circuitry provides signal conditioning to the low-level raw signal coming from a signal acquisition assembly. Software running in a DSP analyzes the incoming data (recorded current signature) and determines the state of the solenoid whether it is energized, de-energized, or in a transitioning state. In one embodiment, the software identifies key features in the current signature during the transition phase and is able to determine the health of the solenoid.

  4. Current Signature Sensor

    NASA Technical Reports Server (NTRS)

    Perotti, Jose M. (Inventor); Lucena, Angel (Inventor); Ihlefeld, Curtis (Inventor); Burns, Bradley (Inventor); Bassignani, Mario (Inventor); Bassignani, Karin E. (Inventor)

    2005-01-01

    A solenoid health monitoring system uses a signal conditioner and controller assembly in one embodiment that includes analog circuitry and a DSP controller. The analog circuitry provides signal conditioning to the low-level raw signal coming from a signal acquisition assembly. Software running in a DSP analyzes the incoming data (recorded current signature) and determines the state of the solenoid whether it is energized, de-energized, or in a transitioning state. In one embodiment, the software identifies key features in the current signature during the transition phase and is able to determine the health of the solenoid.

  5. Operator-Interactive Signature Formation for Acoustic Undersea Surveillance Systems

    DTIC Science & Technology

    1977-10-01

    STA VC1 0520 FC LDA HCO 0521 ADA DM66 0522 STA HC 0523 LDA HCO 0524 STA HCC 0525 FCF LDB HC 0526 CPB HCC 0527 JMP *+4 0528 LDA MIN 0529 JSB OUT 0530...JMP PNNI 0718 CLB 0719 STB CTI4 0720 JMP PNN.,I P721 LDB CT13 0722 CPB A16 0723 JMP *+5 0724 INB 0725 STB CT13 0726 LDA A2 0727 J[IP PNN.I 0728 CLB

  6. Weapon identification using hierarchical classification of acoustic signatures

    NASA Astrophysics Data System (ADS)

    Khan, Saad; Divakaran, Ajay; Sawhney, Harpreet S.

    2009-05-01

    We apply a unique hierarchical audio classification technique to weapon identification using gunshot analysis. The Audio Classification classifies each audio segment as one of ten weapon classes (e.g., 9mm, 22, shotgun etc.) using lowcomplexity Gaussian Mixture Models (GMM). The first level of hierarchy consists of classification into broad weapons categories such as Rifle, Hand-Gun etc. and the second consists of classification into specific weapons such as 9mm, 357 etc. Our experiments have yielded over 90% classification accuracy at the coarse (rifle-handgun) level of the classification hierarchy and over 85% accuracy at the finer level (weapon category such as 9mm).

  7. On the acoustic signature of golf ball impact.

    PubMed

    Shannon, Kevin; Axe, John D

    2002-08-01

    In this paper, we present results on the measurement and analysis of the sound that is produced by the sharp impact loading of a golf ball by a flat massive object (e.g. the face of a golf club). We discuss: (a) the motivation for such a study; (b) some necessary background information on how golf balls vibrate; (c) the techniques used to acquire and analyse the data; and (d) an analysis of the sound made by dropping balls on a smooth, massive concrete target surface. These results establish a simple method for rapid and non-destructive measurement of the effective high-frequency elastic shear moduli of balls and ball cores.

  8. A Comparison of the Acoustic Hardness of Acoustically Active and Non-Active Solar Flares

    NASA Astrophysics Data System (ADS)

    Beşliu-Ionescu, Diana; Donea, Alina; Cally, Paul

    2008-09-01

    Recent corrections to some of the GONG+intensity images of flares allow us to image the acoustic power of white light flare signatures. The images clearly show compact regions of white light power at 6 mHz, which are well correlated spatially with the seismic signatures of the flares, when the flare proved to be acoustically active. It has been a puzzle why some of the white light flares, mainly very strong flares, did not induced any seismic waves into the photosphere. We believe that a comparison of the white light spectral hardness of two flares (one seismically active and another one seismically quiet) is the clue to understand the physics of the sun quakes.

  9. Improving Acoustic Models by Watching Television

    NASA Technical Reports Server (NTRS)

    Witbrock, Michael J.; Hauptmann, Alexander G.

    1998-01-01

    Obtaining sufficient labelled training data is a persistent difficulty for speech recognition research. Although well transcribed data is expensive to produce, there is a constant stream of challenging speech data and poor transcription broadcast as closed-captioned television. We describe a reliable unsupervised method for identifying accurately transcribed sections of these broadcasts, and show how these segments can be used to train a recognition system. Starting from acoustic models trained on the Wall Street Journal database, a single iteration of our training method reduced the word error rate on an independent broadcast television news test set from 62.2% to 59.5%.

  10. Improving Acoustic Models by Watching Television

    NASA Technical Reports Server (NTRS)

    Witbrock, Michael J.; Hauptmann, Alexander G.

    1998-01-01

    Obtaining sufficient labelled training data is a persistent difficulty for speech recognition research. Although well transcribed data is expensive to produce, there is a constant stream of challenging speech data and poor transcription broadcast as closed-captioned television. We describe a reliable unsupervised method for identifying accurately transcribed sections of these broadcasts, and show how these segments can be used to train a recognition system. Starting from acoustic models trained on the Wall Street Journal database, a single iteration of our training method reduced the word error rate on an independent broadcast television news test set from 62.2% to 59.5%.

  11. Acoustic hemostasis

    NASA Astrophysics Data System (ADS)

    Crum, Lawrence; Beach, Kirk; Carter, Stephen; Chandler, Wayne; Curra, Francesco; Kaczkowski, Peter; Keilman, George; Khokhlova, Vera; Martin, Roy; Mourad, Pierre; Vaezy, Shahram

    2000-07-01

    In cases of severe injury, physicians speak of a "golden hour"—a brief grace period in which quickly applied, proper therapy can save the life of the patient. Much of this mortality results from exsanguination, i.e., bleeding to death—often from internal hemorrhage. The inability of a paramedic to treat breaches in the vascular system deep within the body or to stem the loss of blood from internal organs is a major reason for the high level of mortality associated with blunt trauma. We have undertaken an extensive research program to treat the problem of internal bleeding. Our approach is as follows: (a) We use scanning ultrasound to identify internal bleeding and hemorrhage, (b) we use ultrasound imaging to locate specific breaches in the vascular system, both from damaged vessels and gross damage to the capillary bed, and (c) we use High Intensity Focused Ultrasound (HIFU) to treat the damaged region and to induce hemostasis. We present a general review of this research with some emphasis on the role of nonlinear acoustics.

  12. A Signature Style

    ERIC Educational Resources Information Center

    Smiles, Robin V.

    2005-01-01

    This article discusses Dr. Amalia Amaki and her approach to art as her signature style by turning everyday items into fine art. Amaki is an assistant professor of art, art history, and Black American studies at the University of Delaware. She loves taking unexpected an object and redefining it in the context of art--like a button, a fan, a faded…

  13. A Signature Style

    ERIC Educational Resources Information Center

    Smiles, Robin V.

    2005-01-01

    This article discusses Dr. Amalia Amaki and her approach to art as her signature style by turning everyday items into fine art. Amaki is an assistant professor of art, art history, and Black American studies at the University of Delaware. She loves taking unexpected an object and redefining it in the context of art--like a button, a fan, a faded…

  14. Acoustic communication in insect disease vectors.

    PubMed

    Vigoder, Felipe de Mello; Ritchie, Michael Gordon; Gibson, Gabriella; Peixoto, Alexandre Afranio

    2013-01-01

    Acoustic signalling has been extensively studied in insect species, which has led to a better understanding of sexual communication, sexual selection and modes of speciation. The significance of acoustic signals for a blood-sucking insect was first reported in the XIX century by Christopher Johnston, studying the hearing organs of mosquitoes, but has received relatively little attention in other disease vectors until recently. Acoustic signals are often associated with mating behaviour and sexual selection and changes in signalling can lead to rapid evolutionary divergence and may ultimately contribute to the process of speciation. Songs can also have implications for the success of novel methods of disease control such as determining the mating competitiveness of modified insects used for mass-release control programs. Species-specific sound "signatures" may help identify incipient species within species complexes that may be of epidemiological significance, e.g. of higher vectorial capacity, thereby enabling the application of more focussed control measures to optimise the reduction of pathogen transmission. Although the study of acoustic communication in insect vectors has been relatively limited, this review of research demonstrates their value as models for understanding both the functional and evolutionary significance of acoustic communication in insects.

  15. Conjoint recognition.

    PubMed

    Brainerd, C J; Reyna, V F; Mojardin, A H

    1999-01-01

    The process-dissociation model has stimulated important advances in the study of dual-process conceptions of memory. The authors review some limiting properties of that model and consider the degree of support for its parent theory (the recollection-familiarity distinction). A 2nd-generation model (conjoint recognition) is proposed that addresses these limitations and supplies additional capabilities, such as goodness-of-fit tests, the ability to measure dual processes for false-memory responses, and statistical procedures for testing within- and between-conditions hypotheses about its parameters. The conjoint-recognition model also implements an alternative theoretical interpretation (the identity-similarity distinction of fuzzy-trace theory). Worked applications to data are provided.

  16. Pulse analysis of acoustic emission signals. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Houghton, J. R.

    1976-01-01

    A method for the signature analysis of pulses in the frequency domain and the time domain is presented. Fourier spectrum, Fourier transfer function, shock spectrum and shock spectrum ratio are examined in the frequency domain analysis, and pulse shape deconvolution is developed for use in the time domain analysis. To demonstrate the relative sensitivity of each of the methods to small changes in the pulse shape, signatures of computer modeled systems with analytical pulses are presented. Optimization techniques are developed and used to indicate the best design parameters values for deconvolution of the pulse shape. Several experiments are presented that test the pulse signature analysis methods on different acoustic emission sources. These include acoustic emissions associated with: (1) crack propagation, (2) ball dropping on a plate, (3) spark discharge and (4) defective and good ball bearings.

  17. Dynamic Signature Verification System Based on One Real Signature.

    PubMed

    Diaz, Moises; Fischer, Andreas; Ferrer, Miguel A; Plamondon, Rejean

    2016-12-06

    The dynamic signature is a biometric trait widely used and accepted for verifying a person's identity. Current automatic signature-based biometric systems typically require five, ten, or even more specimens of a person's signature to learn intrapersonal variability sufficient to provide an accurate verification of the individual's identity. To mitigate this drawback, this paper proposes a procedure for training with only a single reference signature. Our strategy consists of duplicating the given signature a number of times and training an automatic signature verifier with each of the resulting signatures. The duplication scheme is based on a sigma lognormal decomposition of the reference signature. Two methods are presented to create human-like duplicated signatures: the first varies the strokes' lognormal parameters (stroke-wise) whereas the second modifies their virtual target points (target-wise). A challenging benchmark, assessed with multiple state-of-the-art automatic signature verifiers and multiple databases, proves the robustness of the system. Experimental results suggest that our system, with a single reference signature, is capable of achieving a similar performance to standard verifiers trained with up to five signature specimens.

  18. Acoustic source for generating an acoustic beam

    DOEpatents

    Vu, Cung Khac; Sinha, Dipen N.; Pantea, Cristian

    2016-05-31

    An acoustic source for generating an acoustic beam includes a housing; a plurality of spaced apart piezo-electric layers disposed within the housing; and a non-linear medium filling between the plurality of layers. Each of the plurality of piezoelectric layers is configured to generate an acoustic wave. The non-linear medium and the plurality of piezo-electric material layers have a matching impedance so as to enhance a transmission of the acoustic wave generated by each of plurality of layers through the remaining plurality of layers.

  19. Molecular Recognition and Ligand Association

    NASA Astrophysics Data System (ADS)

    Baron, Riccardo; McCammon, J. Andrew

    2013-04-01

    We review recent developments in our understanding of molecular recognition and ligand association, focusing on two major viewpoints: (a) studies that highlight new physical insight into the molecular recognition process and the driving forces determining thermodynamic signatures of binding and (b) recent methodological advances in applications to protein-ligand binding. In particular, we highlight the challenges posed by compensating enthalpic and entropic terms, competing solute and solvent contributions, and the relevance of complex configurational ensembles comprising multiple protein, ligand, and solvent intermediate states. As more complete physics is taken into account, computational approaches increase their ability to complement experimental measurements, by providing a microscopic, dynamic view of ensemble-averaged experimental observables. Physics-based approaches are increasingly expanding their power in pharmacology applications.

  20. Canonical Acoustics and Its Application to Surface Acoustic Wave on Acoustic Metamaterials

    NASA Astrophysics Data System (ADS)

    Shen, Jian Qi

    2016-08-01

    In a conventional formalism of acoustics, acoustic pressure p and velocity field u are used for characterizing acoustic waves propagating inside elastic/acoustic materials. We shall treat some fundamental problems relevant to acoustic wave propagation alternatively by using canonical acoustics (a more concise and compact formalism of acoustic dynamics), in which an acoustic scalar potential and an acoustic vector potential (Φ ,V), instead of the conventional acoustic field quantities such as acoustic pressure and velocity field (p,u) for characterizing acoustic waves, have been defined as the fundamental variables. The canonical formalism of the acoustic energy-momentum tensor is derived in terms of the acoustic potentials. Both the acoustic Hamiltonian density and the acoustic Lagrangian density have been defined, and based on this formulation, the acoustic wave quantization in a fluid is also developed. Such a formalism of acoustic potentials is employed to the problem of negative-mass-density assisted surface acoustic wave that is a highly localized surface bound state (an eigenstate of the acoustic wave equations). Since such a surface acoustic wave can be strongly confined to an interface between an acoustic metamaterial (e.g., fluid-solid composite structures with a negative dynamical mass density) and an ordinary material (with a positive mass density), it will give rise to an effect of acoustic field enhancement on the acoustic interface, and would have potential applications in acoustic device design for acoustic wave control.

  1. Acoustic Signal Processing

    NASA Astrophysics Data System (ADS)

    Hartmann, William M.; Candy, James V.

    Signal processing refers to the acquisition, storage, display, and generation of signals - also to the extraction of information from signals and the re-encoding of information. As such, signal processing in some form is an essential element in the practice of all aspects of acoustics. Signal processing algorithms enable acousticians to separate signals from noise, to perform automatic speech recognition, or to compress information for more efficient storage or transmission. Signal processing concepts are the building blocks used to construct models of speech and hearing. Now, in the 21st century, all signal processing is effectively digital signal processing. Widespread access to high-speed processing, massive memory, and inexpensive software make signal processing procedures of enormous sophistication and power available to anyone who wants to use them. Because advanced signal processing is now accessible to everybody, there is a need for primers that introduce basic mathematical concepts that underlie the digital algorithms. The present handbook chapter is intended to serve such a purpose.

  2. Fifty years of progress in acoustic phonetics

    NASA Astrophysics Data System (ADS)

    Stevens, Kenneth N.

    2004-10-01

    Three events that occurred 50 or 60 years ago shaped the study of acoustic phonetics, and in the following few decades these events influenced research and applications in speech disorders, speech development, speech synthesis, speech recognition, and other subareas in speech communication. These events were: (1) the source-filter theory of speech production (Chiba and Kajiyama; Fant); (2) the development of the sound spectrograph and its interpretation (Potter, Kopp, and Green; Joos); and (3) the birth of research that related distinctive features to acoustic patterns (Jakobson, Fant, and Halle). Following these events there has been systematic exploration of the articulatory, acoustic, and perceptual bases of phonological categories, and some quantification of the sources of variability in the transformation of this phonological representation of speech into its acoustic manifestations. This effort has been enhanced by studies of how children acquire language in spite of this variability and by research on speech disorders. Gaps in our knowledge of this inherent variability in speech have limited the directions of applications such as synthesis and recognition of speech, and have led to the implementation of data-driven techniques rather than theoretical principles. Some examples of advances in our knowledge, and limitations of this knowledge, are reviewed.

  3. Feasibility of a linear phased acoustic array for health monitoring of gears

    NASA Astrophysics Data System (ADS)

    Hood, Adrian A.; Pines, Darryll J.

    2001-08-01

    This paper investigates the feasibility of sensing damage emanating from rotating drivetrain elements such as bearings, gear teeth, and drive shafts via airborne paths. A linear phased acoustic array of microphones is evaluated as a potential fault detection scheme for detecting acoustic signatures radiating from gearbox components. Specifically, this paper discusses the minimum spot size for a given linear array geometry and its sensitivity to acoustic sources. In addition, the use of beam focusing and beam steering to track individual tooth mesh dynamics are analyzed. Experimental results for a linear array are presented to illustrate the concepts of adaptive beam steering and acoustic filtering. This feasibility study indicates that the linear array can be used to track the acoustic signatures of gear mesh dynamics at higher harmonics of the mesh frequency.

  4. Acoustic characteristics of clearly spoken English fricatives.

    PubMed

    Maniwa, Kazumi; Jongman, Allard; Wade, Travis

    2009-06-01

    Speakers can adopt a speaking style that allows them to be understood more easily in difficult communication situations, but few studies have examined the acoustic properties of clearly produced consonants in detail. This study attempts to characterize the adaptations in the clear production of American English fricatives in a carefully controlled range of communication situations. Ten female and ten male talkers produced fricatives in vowel-fricative-vowel contexts in both a conversational and a clear style that was elicited by means of simulated recognition errors in feedback received from an interactive computer program. Acoustic measurements were taken for spectral, amplitudinal, and temporal properties known to influence fricative recognition. Results illustrate that (1) there were consistent overall style effects, several of which (consonant duration, spectral peak frequency, and spectral moments) were consistent with previous findings and a few (notably consonant-to-vowel intensity ratio) of which were not; (2) specific acoustic modifications in clear productions of fricatives were influenced by the nature of the recognition errors that prompted the productions and were consistent with efforts to emphasize potentially misperceived contrasts both within the English fricative inventory and based on feedback from the simulated listener; and (3) talkers differed widely in the types and magnitude of all modifications.

  5. Acoustic Holography

    NASA Astrophysics Data System (ADS)

    Kim, Yang-Hann

    One of the subtle problems that make noise control difficult for engineers is the invisibility of noise or sound. A visual image of noise often helps to determine an appropriate means for noise control. There have been many attempts to fulfill this rather challenging objective. Theoretical (or numerical) means for visualizing the sound field have been attempted, and as a result, a great deal of progress has been made. However, most of these numerical methods are not quite ready for practical applications to noise control problems. In the meantime, rapid progress with instrumentation has made it possible to use multiple microphones and fast signal-processing systems. Although these systems are not perfect, they are useful. A state-of-the-art system has recently become available, but it still has many problematic issues; for example, how can one implement the visualized noise field. The constructed noise or sound picture always consists of bias and random errors, and consequently, it is often difficult to determine the origin of the noise and the spatial distribution of the noise field. Section 26.2 of this chapter introduces a brief history, which is associated with "sound visualization," acoustic source identification methods and what has been accomplished with a line or surface array. Section 26.2.3 introduces difficulties and recent studies, including de-Dopplerization and de-reverberation methods, both essentialfor visualizing a moving noise source, such as occurs for cars or trains. This section also addresses what produces ambiguity in realizing real sound sources in a room or closed space. Another major issue associated with sound/noise visualization is whether or not we can distinguish between mutual dependencies of noise in space (Sect. 26.2.4); for example, we are asked to answer the question, "Can we see two birds singing or one bird with two beaks?"

  6. Acoustic Holography

    NASA Astrophysics Data System (ADS)

    Kim, Yang-Hann

    One of the subtle problems that make noise control difficult for engineers is the invisibility of noise or sound. A visual image of noise often helps to determine an appropriate means for noise control. There have been many attempts to fulfill this rather challenging objective. Theoretical (or numerical) means for visualizing the sound field have been attempted, and as a result, a great deal of progress has been made. However, most of these numerical methods are not quite ready for practical applications to noise control problems. In the meantime, rapid progress with instrumentation has made it possible to use multiple microphones and fast signal-processing systems. Although these systems are not perfect, they are useful. A state-of-the-art system has recently become available, but it still has many problematic issues; for example, how can one implement the visualized noise field. The constructed noise or sound picture always consists of bias and random errors, and consequently, it is often difficult to determine the origin of the noise and the spatial distribution of the noise field. Section 26.2 of this chapter introduces a brief history, which is associated with sound visualization, acoustic source identification methods and what has been accomplished with a line or surface array. Section 26.2.3 introduces difficulties and recent studies, including de-Dopplerization and de-re verberation methods, both essential for visualizing a moving noise source, such as occurs for cars or trains. This section also addresses what produces ambiguity in realizing real sound sources in a room or closed space. Another major issue associated with sound/noise visualization is whether or not we can distinguish between mutual dependencies of noise in space (Sect. 26.2.4); for example, we are asked to answer the question, Can we see two birds singing or one bird with two beaks?

  7. Bacterial protease uses distinct thermodynamic signatures for substrate recognition.

    PubMed

    Bezerra, Gustavo Arruda; Ohara-Nemoto, Yuko; Cornaciu, Irina; Fedosyuk, Sofiya; Hoffmann, Guillaume; Round, Adam; Márquez, José A; Nemoto, Takayuki K; Djinović-Carugo, Kristina

    2017-06-06

    Porphyromonas gingivalis and Porphyromonas endodontalis are important bacteria related to periodontitis, the most common chronic inflammatory disease in humans worldwide. Its comorbidity with systemic diseases, such as type 2 diabetes, oral cancers and cardiovascular diseases, continues to generate considerable interest. Surprisingly, these two microorganisms do not ferment carbohydrates; rather they use proteinaceous substrates as carbon and energy sources. However, the underlying biochemical mechanisms of their energy metabolism remain unknown. Here, we show that dipeptidyl peptidase 11 (DPP11), a central metabolic enzyme in these bacteria, undergoes a conformational change upon peptide binding to distinguish substrates from end products. It binds substrates through an entropy-driven process and end products in an enthalpy-driven fashion. We show that increase in protein conformational entropy is the main-driving force for substrate binding via the unfolding of specific regions of the enzyme ("entropy reservoirs"). The relationship between our structural and thermodynamics data yields a distinct model for protein-protein interactions where protein conformational entropy modulates the binding free-energy. Further, our findings provide a framework for the structure-based design of specific DPP11 inhibitors.

  8. NW-MILO Acoustic Data Collection

    SciTech Connect

    Matzner, Shari; Myers, Joshua R.; Maxwell, Adam R.; Jones, Mark E.

    2010-02-17

    There is an enduring requirement to improve our ability to detect potential threats and discriminate these from the legitimate commercial and recreational activity ongoing in the nearshore/littoral portion of the maritime domain. The Northwest Maritime Information and Littoral Operations (NW-MILO) Program at PNNL’s Coastal Security Institute in Sequim, Washington is establishing a methodology to detect and classify these threats - in part through developing a better understanding of acoustic signatures in a near-shore environment. The purpose of the acoustic data collection described here is to investigate the acoustic signatures of small vessels. The data is being recorded continuously, 24 hours a day, along with radar track data and imagery. The recording began in August 2008, and to date the data contains tens of thousands of signals from small vessels recorded in a variety of environmental conditions. The quantity and variety of this data collection, with the supporting imagery and radar track data, makes it particularly useful for the development of robust acoustic signature models and advanced algorithms for signal classification and information extraction. The underwater acoustic sensing system is part of a multi-modal sensing system that is operating near the mouth of Sequim Bay. Sequim Bay opens onto the Straight of Juan de Fuca, which contains part of the border between the U.S. and Canada. Table 1 lists the specific components used for the NW-MILO system. The acoustic sensor is a hydrophone permanently deployed at a mean depth of about 3 meters. In addition to a hydrophone, the other sensors in the system are a marine radar, an electro-optical (EO) camera and an infra-red (IR) camera. The radar is integrated with a vessel tracking system (VTS) that provides position, speed and heading information. The data from all the sensors is recorded and saved to a central server. The data has been validated in terms of its usability for characterizing the

  9. Symptoms of Acoustic Neuroma

    MedlinePlus

    ... Watch and Wait Radiation Microsurgery Acoustic Neuroma Decision Tree Questions for Your Physician Questions to Ask Yourself ... Watch and Wait Radiation Microsurgery Acoustic Neuroma Decision Tree Questions for Your Physician Questions to Ask Yourself ...

  10. Identifying the Acoustic Neuroma

    MedlinePlus

    ... Watch and Wait Radiation Microsurgery Acoustic Neuroma Decision Tree Questions for Your Physician Questions to Ask Yourself ... Watch and Wait Radiation Microsurgery Acoustic Neuroma Decision Tree Questions for Your Physician Questions to Ask Yourself ...

  11. Acoustic Neuroma Educational Video

    MedlinePlus

    ... Watch and Wait Radiation Microsurgery Acoustic Neuroma Decision Tree Questions for Your Physician Questions to Ask Yourself ... Watch and Wait Radiation Microsurgery Acoustic Neuroma Decision Tree Questions for Your Physician Questions to Ask Yourself ...

  12. Acoustic Neuroma Association

    MedlinePlus

    ... Watch and Wait Radiation Microsurgery Acoustic Neuroma Decision Tree Questions for Your Physician Questions to Ask Yourself ... Watch and Wait Radiation Microsurgery Acoustic Neuroma Decision Tree Questions for Your Physician Questions to Ask Yourself ...

  13. Treatment of Acoustic Neuroma

    MedlinePlus

    ... acoustic neuroma. There are several different commercially-available machines that are used to treat acoustic neuromas with ... how the radiation is precisely delivered. Gamma Knife® machines derive their radiation from a fixed-array of ...

  14. NPL closes acoustics department

    NASA Astrophysics Data System (ADS)

    Extance, Andy

    2016-11-01

    The UK's National Physical Laboratory (NPL) has withdrawn funding for its acoustics, polymer and thermoelectrics groups, triggering concern among airborne acoustics specialists that the move could undermine the country's noise-management policies.

  15. Differential phase acoustic microscope for micro-NDE

    NASA Technical Reports Server (NTRS)

    Waters, David D.; Pusateri, T. L.; Huang, S. R.

    1992-01-01

    A differential phase scanning acoustic microscope (DP-SAM) was developed, fabricated, and tested in this project. This includes the acoustic lens and transducers, driving and receiving electronics, scanning stage, scanning software, and display software. This DP-SAM can produce mechanically raster-scanned acoustic microscopic images of differential phase, differential amplitude, or amplitude of the time gated returned echoes of the samples. The differential phase and differential amplitude images provide better image contrast over the conventional amplitude images. A specially designed miniature dual beam lens was used to form two foci to obtain the differential phase and amplitude information of the echoes. High image resolution (1 micron) was achieved by applying high frequency (around 1 GHz) acoustic signals to the samples and placing two foci close to each other (1 micron). Tone burst was used in this system to obtain a good estimation of the phase differences between echoes from the two adjacent foci. The system can also be used to extract the V(z) acoustic signature. Since two acoustic beams and four receiving modes are available, there are 12 possible combinations to produce an image or a V(z) scan. This provides a unique feature of this system that none of the existing acoustic microscopic systems can provide for the micro-nondestructive evaluation applications. The entire system, including the lens, electronics, and scanning control software, has made a competitive industrial product for nondestructive material inspection and evaluation and has attracted interest from existing acoustic microscope manufacturers.

  16. Preserved Acoustic Hearing in Cochlear Implantation Improves Speech Perception

    PubMed Central

    Sheffield, Sterling W.; Jahn, Kelly; Gifford, René H.

    2015-01-01

    Background With improved surgical techniques and electrode design, an increasing number of cochlear implant (CI) recipients have preserved acoustic hearing in the implanted ear, thereby resulting in bilateral acoustic hearing. There are currently no guidelines, however, for clinicians with respect to audio-metric criteria and the recommendation of amplification in the implanted ear. The acoustic bandwidth necessary to obtain speech perception benefit from acoustic hearing in the implanted ear is unknown. Additionally, it is important to determine if, and in which listening environments, acoustic hearing in both ears provides more benefit than hearing in just one ear, even with limited residual hearing. Purpose The purposes of this study were to (1) determine whether acoustic hearing in an ear with a CI provides as much speech perception benefit as an equivalent bandwidth of acoustic hearing in the non-implanted ear, and (2) determine whether acoustic hearing in both ears provides more benefit than hearing in just one ear. Research Design A repeated-measures, within-participant design was used to compare performance across listening conditions. Study Sample Seven adults with CIs and bilateral residual acoustic hearing (hearing preservation) were recruited for the study. Data Collection and Analysis Consonant-nucleus-consonant word recognition was tested in four conditions: CI alone, CI + acoustic hearing in the nonimplanted ear, CI + acoustic hearing in the implanted ear, and CI + bilateral acoustic hearing. A series of low-pass filters were used to examine the effects of acoustic bandwidth through an insert earphone with amplification. Benefit was defined as the difference among conditions. The benefit of bilateral acoustic hearing was tested in both diffuse and single-source background noise. Results were analyzed using repeated-measures analysis of variance. Results Similar benefit was obtained for equivalent acoustic frequency bandwidth in either ear. Acoustic

  17. Deep Water Ocean Acoustics

    DTIC Science & Technology

    2016-10-07

    OASIS, INC. 1 Report No. QSR-14C0172- Ocean Acoustics-093016 Quarterly Progress Report Technical and Financial Deep Water Ocean Acoustics...Award No.: N00014-14-C-0172 Report No. QSR-14C0172- Ocean Acoustics-093016 Prepared for: Office of Naval Research For the period: July 1, 2016...to September 30, 2016 Submitted by: Principal Investigator/Author: Kevin Heaney Ocean Acoustical Services and Instrumentation Systems, Inc. 5

  18. Deep Water Ocean Acoustics

    DTIC Science & Technology

    2016-08-03

    OASIS, INC. 1 Report No. QSR-14C0172- Ocean Acoustics-063016 Quarterly Progress Report Technical and Financial Deep Water Ocean Acoustics...Award No.: N00014-14-C-0172 Report No. QSR-14C0172- Ocean Acoustics-063016 Prepared for: Office of Naval Research For the period: April 1...2016 to June 30, 2016 Submitted by: Principal Investigator/Author: Kevin Heaney Ocean Acoustical Services and Instrumentation Systems, Inc. 5

  19. Deep Water Ocean Acoustics

    DTIC Science & Technology

    2016-04-30

    OASIS, INC. 1 Report No. QSR-14C0172- Ocean Acoustics-043016 Quarterly Progress Report Technical and Financial Deep Water Ocean Acoustics...Award No.: N00014-14-C-0172 Report No. QSR-14C0172- Ocean Acoustics-093015 Prepared for: Office of Naval Research For the period: January 1...2016 to March 31, 2015 Submitted by: Principal Investigator/Author: Kevin Heaney Ocean Acoustical Services and Instrumentation Systems, Inc. 5

  20. Shallow Water Acoustics Studies

    DTIC Science & Technology

    2015-09-30

    this year towards publishing one of the last SW06 papers, on acoustic scattering from crossing nonlinear internal wave trains. This is submitted for...1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Shallow Water Acoustics Studies James F. Lynch MS #12...N00014-14-1-0040 http://acoustics.whoi.edu/sw06/ LONG TERM GOALS The long term goals of our shallow water acoustics work are to: 1) understand the

  1. Acoustic emission frequency discrimination

    NASA Technical Reports Server (NTRS)

    Sugg, Frank E. (Inventor); Graham, Lloyd J. (Inventor)

    1988-01-01

    In acoustic emission nondestructive testing, broadband frequency noise is distinguished from narrow banded acoustic emission signals, since the latter are valid events indicative of structural flaws in the material being examined. This is accomplished by separating out those signals which contain frequency components both within and beyond (either above or below) the range of valid acoustic emission events. Application to acoustic emission monitoring during nondestructive bond verification and proof loading of undensified tiles on the Space Shuttle Orbiter is considered.

  2. Deep Water Ocean Acoustics

    DTIC Science & Technology

    2015-07-17

    under-ice scattering , bathymetric diffraction and the application of the ocean acoustic Parabolic Equation to infrasound. 2. Tasks a. Task 1...QSR-14C0172-Ocean Acoustics -063015 Figure 10. Estimated reflection coefficient as a function of frequency by taking the difference of downgoing and...OASIS, INC. 1 Report No. QSR-14C0172-Ocean Acoustics -063015 Quarterly Progress Report Technical and Financial Deep Water Ocean Acoustics

  3. Theoretical and experimental investigations of acoustic waves in embedded fluid-solid multi-string structures

    NASA Astrophysics Data System (ADS)

    Liu, Yang; D'Angelo, Ralph M.; Sinha, Bikash K.; Zeroug, Smaine

    2017-03-01

    Current acoustic measurements provide viable inspection for single cased wells, yet their interpretation for complicated multi-string wellbores where, for instance, two or more nested steel strings are deployed, is largely hampered by a lack of knowledge of the measured acoustic wave fields. This letter reports on theoretical and experimental investigations of the acoustic wave propagation in fluid-filled double string systems. Experimental measurements show excellent agreement with the theoretical predictions by a Sweeping Frequency Finite Element Method. The results lead to the identification of acoustic signatures that are crucial for an effective diagnosis of cement conditions in double-string cased wellbores.

  4. Speech production knowledge in automatic speech recognition.

    PubMed

    King, Simon; Frankel, Joe; Livescu, Karen; McDermott, Erik; Richmond, Korin; Wester, Mirjam

    2007-02-01

    Although much is known about how speech is produced, and research into speech production has resulted in measured articulatory data, feature systems of different kinds, and numerous models, speech production knowledge is almost totally ignored in current mainstream approaches to automatic speech recognition. Representations of speech production allow simple explanations for many phenomena observed in speech which cannot be easily analyzed from either acoustic signal or phonetic transcription alone. In this article, a survey of a growing body of work in which such representations are used to improve automatic speech recognition is provided.

  5. Stimulated Deep Neural Network for Speech Recognition

    DTIC Science & Technology

    2016-09-08

    Speech, and Language Processing, IEEE Transactions on, vol. 20, no. 1, pp. 30–42, 2012. [2] G. Hinton et al., “Deep neural networks for acoustic modeling...in speech recognition: The shared views of four research groups,” Signal Processing Magazine, IEEE , vol. 29, no. 6, pp. 82–97, 2012. [3] X. Chen, A...Pattern Recognition (CVPR), 2015 IEEE Conference on. IEEE , 2015, pp. 427–436. [5] A. Mahendran and A. Vedaldi, “Understanding deep image rep

  6. Maximum likelihood signature estimation

    NASA Technical Reports Server (NTRS)

    Walker, H. F.

    1975-01-01

    Maximum-likelihood estimates are discussed which are based on an unlabeled sample of observations, of unknown parameters in a mixture of normal distributions. Several successive approximation procedures for obtaining such maximum-likelihood estimates are described. These procedures, which are theoretically justified by the local contractibility of certain maps, are designed to take advantage of good initial estimates of the unknown parameters. They can be applied to the signature extension problem, in which good initial estimates of the unknown parameters are obtained from segments which are geographically near the segments from which the unlabeled samples are taken. Additional problems to which these methods are applicable include: estimation of proportions and adaptive classification (estimation of mean signatures and covariances).

  7. Wake Signature Detection

    NASA Astrophysics Data System (ADS)

    Spedding, Geoffrey R.

    2014-01-01

    An accumulated body of quantitative evidence shows that bluff-body wakes in stably stratified environments have an unusual degree of coherence and organization, so characteristic geometries such as arrays of alternating-signed vortices have very long lifetimes, as measured in units of buoyancy timescales, or in the downstream distance scaled by a body length. The combination of pattern geometry and persistence renders the detection of these wakes possible in principle. It now appears that identifiable signatures can be found from many disparate sources: Islands, fish, and plankton all have been noted to generate features that can be detected by climate modelers, hopeful navigators in open oceans, or hungry predators. The various types of wakes are reviewed with notes on why their signatures are important and to whom. A general theory of wake pattern formation is lacking and would have to span many orders of magnitude in Reynolds number.

  8. SMAWT Signature Test

    DTIC Science & Technology

    1974-10-01

    were generally inversely proportional to the size assesments of the flash and smoke . Table 26 shows the percent of change in average judgments of...Average Time of Gunner’s View Obscuration by Smoke During Firings From the Wood Line .. .. ..... ..... ...... ..... .. 18 7. Average Obscuration Times...of Gunner’s View Obscuration by Smoke - Grass Line 19 8. Normalized Comparisons of the Relative Grades Assigned to Systems Signature Components

  9. Tutorial on architectural acoustics

    NASA Astrophysics Data System (ADS)

    Shaw, Neil; Talaske, Rick; Bistafa, Sylvio

    2002-11-01

    This tutorial is intended to provide an overview of current knowledge and practice in architectural acoustics. Topics covered will include basic concepts and history, acoustics of small rooms (small rooms for speech such as classrooms and meeting rooms, music studios, small critical listening spaces such as home theatres) and the acoustics of large rooms (larger assembly halls, auditoria, and performance halls).

  10. Coding Acoustic Metasurfaces.

    PubMed

    Xie, Boyang; Tang, Kun; Cheng, Hua; Liu, Zhengyou; Chen, Shuqi; Tian, Jianguo

    2017-02-01

    Coding acoustic metasurfaces can combine simple logical bits to acquire sophisticated functions in wave control. The acoustic logical bits can achieve a phase difference of exactly π and a perfect match of the amplitudes for the transmitted waves. By programming the coding sequences, acoustic metasurfaces with various functions, including creating peculiar antenna patterns and waves focusing, have been demonstrated.

  11. Acoustic Casing Treatment Test

    NASA Image and Video Library

    2017-02-14

    Acoustic Casing Treatment Testing Completed in the W-8 Single Stage Axial Compressor Facility at NASA Glenn. Four different over-the-rotor acoustic casing treatment concepts were tested along with two baseline configurations. Testing included steady-aerodynamic measurements of fan performance, hotfilm turbulence measurements, and inlet acoustic measurements with an in-duct array.

  12. Estimation of vowel recognition with cochlear implant simulations.

    PubMed

    Liu, Chuping; Fu, Qian-Jie

    2007-01-01

    Because there are many parameters in the cochlear implant (CI) device that can be optimized for individual patients, it is important to estimate a parameter's effect before patient evaluation. In this paper, Mel-frequency cepstrum coefficients (MFCCs) were used to estimate the acoustic vowel space for vowel stimuli processed by the CI simulations. The acoustic space was then compared to vowel recognition performance by normal-hearing subjects listening to the same processed speech. Five CI speech processor parameters were simulated to produce different degree of spectral resolution, spectral smearing, spectral warping, spectral shifting, and amplitude distortion. The acoustic vowel space was highly correlated with normal hearing subjects' vowel recognition performance for parameters that affected the spectral channels and spectral smearing. However, the acoustic vowel space was not significantly correlated with perceptual performance for parameters that affected the degree of spectral warping, spectral shifting, and amplitude distortion. In particular, while spectral warping and shifting did not significantly reshape the acoustic space, vowel recognition performance was significantly affected by these parameters. The results from the acoustic analysis suggest that the CI device can preserve phonetic distinctions under conditions of spectral warping and shifting. Auditory training may help CI patients better perceive these speech cues transmitted by their speech processors.

  13. Pen-chant: Acoustic emissions of handwriting and drawing

    NASA Astrophysics Data System (ADS)

    Seniuk, Andrew G.

    The sounds generated by a writing instrument ('pen-chant') provide a rich and underutilized source of information for pattern recognition. We examine the feasibility of recognition of handwritten cursive text, exclusively through an analysis of acoustic emissions. We design and implement a family of recognizers using a template matching approach, with templates and similarity measures derived variously from: smoothed amplitude signal with fixed resolution, discrete sequence of magnitudes obtained from peaks in the smoothed amplitude signal, and ordered tree obtained from a scale space signal representation. Test results are presented for recognition of isolated lowercase cursive characters and for whole words. We also present qualitative results for recognizing gestures such as circling, scratch-out, check-marks, and hatching. Our first set of results, using samples provided by the author, yield recognition rates of over 70% (alphabet) and 90% (26 words), with a confidence of +/-8%, based solely on acoustic emissions. Our second set of results uses data gathered from nine writers. These results demonstrate that acoustic emissions are a rich source of information, usable---on their own or in conjunction with image-based features---to solve pattern recognition problems. In future work, this approach can be applied to writer identification, handwriting and gesture-based computer input technology, emotion recognition, and temporal analysis of sketches.

  14. Knowledge Signatures for Information Integration

    SciTech Connect

    Thomson, Judi; Cowell, Andrew J.; Paulson, Patrick R.; Butner, R. Scott; Whiting, Mark A.

    2003-10-25

    This paper introduces the notion of a knowledge signature: a concise, ontologically-driven representation of the semantic characteristics of data. Knowledge signatures provide programmatic access to data semantics while allowing comparisons to be made across different types of data such as text, images or video, enabling efficient, automated information integration. Through observation, which determines the degree of association between data and ontological concepts, and refinement, which uses the axioms and structure of the domain ontology to place the signature more accurately within the context of the domain, knowledge signatures can be created. A comparison of such signatures for two different pieces of data results in a measure of their semantic separation. This paper discusses the definition of knowledge signatures along with the design and prototype implementation of a knowledge signature generator.

  15. Speaker independent acoustic-to-articulatory inversion

    NASA Astrophysics Data System (ADS)

    Ji, An

    Acoustic-to-articulatory inversion, the determination of articulatory parameters from acoustic signals, is a difficult but important problem for many speech processing applications, such as automatic speech recognition (ASR) and computer aided pronunciation training (CAPT). In recent years, several approaches have been successfully implemented for speaker dependent models with parallel acoustic and kinematic training data. However, in many practical applications inversion is needed for new speakers for whom no articulatory data is available. In order to address this problem, this dissertation introduces a novel speaker adaptation approach called Parallel Reference Speaker Weighting (PRSW), based on parallel acoustic and articulatory Hidden Markov Models (HMM). This approach uses a robust normalized articulatory space and palate referenced articulatory features combined with speaker-weighted adaptation to form an inversion mapping for new speakers that can accurately estimate articulatory trajectories. The proposed PRSW method is evaluated on the newly collected Marquette electromagnetic articulography -- Mandarin Accented English (EMA-MAE) corpus using 20 native English speakers. Cross-speaker inversion results show that given a good selection of reference speakers with consistent acoustic and articulatory patterns, the PRSW approach gives good speaker independent inversion performance even without kinematic training data.

  16. Call recognition and individual identification of fish vocalizations based on automatic speech recognition: An example with the Lusitanian toadfish.

    PubMed

    Vieira, Manuel; Fonseca, Paulo J; Amorim, M Clara P; Teixeira, Carlos J C

    2015-12-01

    The study of acoustic communication in animals often requires not only the recognition of species specific acoustic signals but also the identification of individual subjects, all in a complex acoustic background. Moreover, when very long recordings are to be analyzed, automatic recognition and identification processes are invaluable tools to extract the relevant biological information. A pattern recognition methodology based on hidden Markov models is presented inspired by successful results obtained in the most widely known and complex acoustical communication signal: human speech. This methodology was applied here for the first time to the detection and recognition of fish acoustic signals, specifically in a stream of round-the-clock recordings of Lusitanian toadfish (Halobatrachus didactylus) in their natural estuarine habitat. The results show that this methodology is able not only to detect the mating sounds (boatwhistles) but also to identify individual male toadfish, reaching an identification rate of ca. 95%. Moreover this method also proved to be a powerful tool to assess signal durations in large data sets. However, the system failed in recognizing other sound types.

  17. Indoor acoustic gain design

    NASA Astrophysics Data System (ADS)

    Concha-Abarca, Justo Andres

    2002-11-01

    The design of sound reinforcement systems includes many variables and usually some of these variables are discussed. There are criteria to optimize the performance of the sound reinforcement systems under indoor conditions. The equivalent acoustic distance, the necessary acoustic gain, and the potential acoustic gain are parameters which must be adjusted with respect to the loudspeaker array, electric power and directionality of loudspeakers, the room acoustics conditions, the distance and distribution of the audience, and the type of the original sources. The design and installation of front of the house and monitoring systems have individual criteria. This article is about this criteria and it proposes general considerations for the indoor acoustic gain design.

  18. Recognition intent and visual word recognition.

    PubMed

    Wang, Man-Ying; Ching, Chi-Le

    2009-03-01

    This study adopted a change detection task to investigate whether and how recognition intent affects the construction of orthographic representation in visual word recognition. Chinese readers (Experiment 1-1) and nonreaders (Experiment 1-2) detected color changes in radical components of Chinese characters. Explicit recognition demand was imposed in Experiment 2 by an additional recognition task. When the recognition was implicit, a bias favoring the radical location informative of character identity was found in Chinese readers (Experiment 1-1), but not nonreaders (Experiment 1-2). With explicit recognition demands, the effect of radical location interacted with radical function and word frequency (Experiment 2). An estimate of identification performance under implicit recognition was derived in Experiment 3. These findings reflect the joint influence of recognition intent and orthographic regularity in shaping readers' orthographic representation. The implication for the role of visual attention in word recognition was also discussed.

  19. Recognition of information-bearing elements in speech

    NASA Astrophysics Data System (ADS)

    Hermansky, Hynek

    2003-10-01

    An acoustic speech signal carries many different kinds of information: the basic linguistic message, many characteristics of the speaker of the message, details of the environment in which the message was produced and transmitted, etc. The human auditory/cognitive system is able to detect, decode, and separate all these information sources. Understanding this ability and emulating it on a machine has been an important but elusive scientific and engineering goal for a long time. This talk critically surveys the situation in the speech recognition field. It puts automatic recognition of speech in perspective with other acoustic signal detection and classification tasks, reviews some historical, contemporary, and evolving techniques for machine recognition of speech, critically compares competing techniques, and gives some examples of applications in speech, speaker, and language recognition and identification. The talk is intended for an audience interested but not directly involved in the processing of speech.

  20. Irma multisensor predictive signature model

    NASA Astrophysics Data System (ADS)

    Watson, John S.; Wellfare, Michael R.; Chenault, David B.; Talele, Sunjay E.; Blume, Bradley T.; Richards, Mike; Prestwood, Lee

    1997-06-01

    Development of target acquisition and target recognition algorithms in highly cluttered backgrounds in a variety of battlefield conditions demands a flexible, high fidelity capability for synthetic image generation. Cost effective smart weapons research and testing also requires extensive scene generation capability. The Irma software package addresses this need through a first principles, phenomenology based scene generator that enhances research into new algorithms, novel sensors, and sensor fusion approaches. Irma was one of the first high resolution synthetic infrared target and background signature models developed for tactical air-to-surface weapon scenarios. Originally developed in 1980 by the Armament Directorate of the Air Force Wright Laboratory, the Irma model was used exclusively to generate IR scenes for smart weapons research and development. in 1987, Nichols Research Corporation took over the maintenance of Irma and has since added substantial capabilities. The development of Irma has culminated in a program that includes not only passive visible, IR, and millimeter wave (MMW) channels but also active MMW and ladar channels. Each of these channels is co-registered providing the capability to develop algorithms for multi-band sensor fusion concepts and associated algorithms. In this paper, the capabilities of the latest release of Irma, Irma 4.0, will be described. A brief description of the elements of the software that are common to all channels will be provided. Each channel will be described briefly including a summary of the phenomenological effects and the sensor effects modeled in the software. Examples of Irma multi- channel imagery will be presented.

  1. Multiple levels of linguistic and paralinguistic features contribute to voice recognition.

    PubMed

    Zarate, Jean Mary; Tian, Xing; Woods, Kevin J P; Poeppel, David

    2015-06-19

    Voice or speaker recognition is critical in a wide variety of social contexts. In this study, we investigated the contributions of acoustic, phonological, lexical, and semantic information toward voice recognition. Native English speaking participants were trained to recognize five speakers in five conditions: non-speech, Mandarin, German, pseudo-English, and English. We showed that voice recognition significantly improved as more information became available, from purely acoustic features in non-speech to additional phonological information varying in familiarity. Moreover, we found that the recognition performance is transferable between training and testing in phonologically familiar conditions (German, pseudo-English, and English), but not in unfamiliar (Mandarin) or non-speech conditions. These results provide evidence suggesting that bottom-up acoustic analysis and top-down influence from phonological processing collaboratively govern voice recognition.

  2. Multiple levels of linguistic and paralinguistic features contribute to voice recognition

    PubMed Central

    Mary Zarate, Jean; Tian, Xing; Woods, Kevin J. P.; Poeppel, David

    2015-01-01

    Voice or speaker recognition is critical in a wide variety of social contexts. In this study, we investigated the contributions of acoustic, phonological, lexical, and semantic information toward voice recognition. Native English speaking participants were trained to recognize five speakers in five conditions: non-speech, Mandarin, German, pseudo-English, and English. We showed that voice recognition significantly improved as more information became available, from purely acoustic features in non-speech to additional phonological information varying in familiarity. Moreover, we found that the recognition performance is transferable between training and testing in phonologically familiar conditions (German, pseudo-English, and English), but not in unfamiliar (Mandarin) or non-speech conditions. These results provide evidence suggesting that bottom-up acoustic analysis and top-down influence from phonological processing collaboratively govern voice recognition. PMID:26088739

  3. ACOUSTICAL STANDARDS NEWS

    PubMed Central

    Stremmel, Neil B.; Struck, Christopher J.

    2017-01-01

    American National Standards (ANSI Standards) developed by Accredited Standards Committees S1, S2, S3, S3/SC 1, and S12 in the areas of acoustics, mechanical vibration and shock, bioacoustics, animal bioacoustics, and noise, respectively, are published by the Acoustical Society of America (ASA). In addition to these standards, ASA publishes a catalog of Acoustical American National Standards. To receive a copy of the latest Standards catalog, please contact Neil Stremmel. Comments are welcomed on all material in Acoustical Standards News. This Acoustical Standards News section in JASA, as well as the national catalog of Acoustical Standards and other information on the Standards Program of the Acoustical Society of America, are available via the ASA home page: http://acousticalsociety.org. PMID:28599517

  4. Dragon Ears airborne acoustic array: CSP analysis applied to cross array to compute real-time 2D acoustic sound field

    NASA Astrophysics Data System (ADS)

    Cerwin, Steve; Barnes, Julie; Kell, Scott; Walters, Mark

    2003-09-01

    This paper describes development and application of a novel method to accomplish real-time solid angle acoustic direction finding using two 8-element orthogonal microphone arrays. The developed prototype system was intended for localization and signature recognition of ground-based sounds from a small UAV. Recent advances in computer speeds have enabled the implementation of microphone arrays in many audio applications. Still, the real-time presentation of a two-dimensional sound field for the purpose of audio target localization is computationally challenging. In order to overcome this challenge, a crosspower spectrum phase1 (CSP) technique was applied to each 8-element arm of a 16-element cross array to provide audio target localization. In this paper, we describe the technique and compare it with two other commonly used techniques; Cross-Spectral Matrix2 and MUSIC3. The results show that the CSP technique applied to two 8-element orthogonal arrays provides a computationally efficient solution with reasonable accuracy and tolerable artifacts, sufficient for real-time applications. Additional topics include development of a synchronized 16-channel transmitter and receiver to relay the airborne data to the ground-based processor and presentation of test data demonstrating both ground-mounted operation and airborne localization of ground-based gunshots and loud engine sounds.

  5. Recognition Tunneling

    PubMed Central

    Lindsay, Stuart; He, Jin; Sankey, Otto; Hapala, Prokop; Jelinek, Pavel; Zhang, Peiming; Chang, Shuai; Huang, Shuo

    2010-01-01

    Single molecules in a tunnel junction can now be interrogated reliably using chemically-functionalized electrodes. Monitoring stochastic bonding fluctuations between a ligand bound to one electrode and its target bound to a second electrode (“tethered molecule-pair” configuration) gives insight into the nature of the intermolecular bonding at a single molecule-pair level, and defines the requirements for reproducible tunneling data. Simulations show that there is an instability in the tunnel gap at large currents, and this results in a multiplicity of contacts with a corresponding spread in the measured currents. At small currents (i.e. large gaps) the gap is stable, and functionalizing a pair of electrodes with recognition reagents (the “free analyte” configuration) can generate a distinct tunneling signal when an analyte molecule is trapped in the gap. This opens up a new interface between chemistry and electronics with immediate implications for rapid sequencing of single DNA molecules. PMID:20522930

  6. Rotation, scale and translation invariant pattern recognition system for color images

    NASA Astrophysics Data System (ADS)

    Barajas-García, Carolina; Solorza-Calderón, Selene; Álvarez-Borrego, Josué

    2016-12-01

    This work presents a color image pattern recognition system invariant to rotation, scale and translation. The system works with three 1D signatures, one for each RGB color channel. The signatures are constructed based on Fourier transform, analytic Fourier-Mellin transform and Hilbert binary rings mask. According with the statistical theory of box-plots, the pattern recognition system has a confidence level at least of 95.4%.

  7. Recognition of speech spectrograms.

    PubMed

    Greene, B G; Pisoni, D B; Carrell, T D

    1984-07-01

    The performance of eight naive observers in learning to identify speech spectrograms was studied over a 2-month period. Single tokens from a 50-word phonetically balanced (PB) list were recorded by several talkers and displayed on a Spectraphonics Speech Spectrographic Display system. Identification testing occurred immediately after daily training sessions. After approximately 20 h of training, naive subjects correctly identified the 50 PB words from a single talker over 95% of the time. Generalization tests with the same words were then carried out with different tokens from the original talker, new tokens from another male talker, a female talker, and finally, a synthetic talker. The generalization results for these talkers showed recognition performance at 91%, 76%, 76%, and 48%, respectively. Finally, generalization tests with a novel set of PB words produced by the original talker were also carried out to examine in detail the perceptual strategies and visual features that subjects abstracted from the training set. Our results demonstrate that even without formal training in phonetics or acoustics naive observers can learn to identify visual displays of speech at very high levels of accuracy. Analysis of subjects' performance in a verbal protocol task demonstrated that they rely on salient visual correlates of many phonetic features in speech.

  8. Molecular signatures of ribosomal evolution.

    PubMed

    Roberts, Elijah; Sethi, Anurag; Montoya, Jonathan; Woese, Carl R; Luthey-Schulten, Zaida

    2008-09-16

    Ribosomal signatures, idiosyncrasies in the ribosomal RNA (rRNA) and/or proteins, are characteristic of the individual domains of life. As such, insight into the early evolution of the domains can be gained from a comparative analysis of their respective signatures in the translational apparatus. In this work, we identify signatures in both the sequence and structure of the rRNA and analyze their contributions to the universal phylogenetic tree using both sequence- and structure-based methods. Domain-specific ribosomal proteins can be considered signatures in their own right. Although it is commonly assumed that they developed after the universal ribosomal proteins, we present evidence that at least one may have been present before the divergence of the organismal lineages. We find correlations between the rRNA signatures and signatures in the ribosomal proteins showing that the rRNA signatures coevolved with both domain-specific and universal ribosomal proteins. Finally, we show that the genomic organization of the universal ribosomal components contains these signatures as well. From these studies, we propose the ribosomal signatures are remnants of an evolutionary-phase transition that occurred as the cell lineages began to coalesce and so should be reflected in corresponding signatures throughout the fabric of the cell and its genome.

  9. Molecular signatures of ribosomal evolution

    PubMed Central

    Roberts, Elijah; Sethi, Anurag; Montoya, Jonathan; Woese, Carl R.; Luthey-Schulten, Zaida

    2008-01-01

    Ribosomal signatures, idiosyncrasies in the ribosomal RNA (rRNA) and/or proteins, are characteristic of the individual domains of life. As such, insight into the early evolution of the domains can be gained from a comparative analysis of their respective signatures in the translational apparatus. In this work, we identify signatures in both the sequence and structure of the rRNA and analyze their contributions to the universal phylogenetic tree using both sequence- and structure-based methods. Domain-specific ribosomal proteins can be considered signatures in their own right. Although it is commonly assumed that they developed after the universal ribosomal proteins, we present evidence that at least one may have been present before the divergence of the organismal lineages. We find correlations between the rRNA signatures and signatures in the ribosomal proteins showing that the rRNA signatures coevolved with both domain-specific and universal ribosomal proteins. Finally, we show that the genomic organization of the universal ribosomal components contains these signatures as well. From these studies, we propose the ribosomal signatures are remnants of an evolutionary-phase transition that occurred as the cell lineages began to coalesce and so should be reflected in corresponding signatures throughout the fabric of the cell and its genome. PMID:18768810

  10. The Johns Hopkins University multimodal dataset for human action recognition

    NASA Astrophysics Data System (ADS)

    Murray, Thomas S.; Mendat, Daniel R.; Pouliquen, Philippe O.; Andreou, Andreas G.

    2015-05-01

    The Johns Hopkins University MultiModal Action (JHUMMA) dataset contains a set of twenty-one actions recorded with four sensor systems in three different modalities. The data was collected with a data acquisition system that includes three independent active sonar devices at three different frequencies and a Microsoft Kinect sensor that provides both RGB and Depth data. We have developed algorithms for human action recognition from active acoustics and provide benchmark baseline recognition performance results.

  11. Counter-narcotic acoustic buoy (CNAB)

    NASA Astrophysics Data System (ADS)

    Bailey, Mark E.

    2004-09-01

    As a means to detect drug trafficking in a maritime environment, the Counter Narcotic Acoustic Buoy is part of an inexpensive system designed to detect "Go Fast" boats and report via satellite to a designated location. A go fast boat for this evaluation is defined as any boat with twin 200 horsepower outboard engines. The buoy is designed for deployment in salt water at depths ranging from 50 to 600 feet and can be easily deployed by one or two persons. Detections are based on noise energy exceeding a preset level within a frequency band associated with the go fast boat's acoustic signature. Detection ranges have been demonstrated to greater than three nautical miles.

  12. A synthetic aperture acoustic prototype system

    NASA Astrophysics Data System (ADS)

    Luke, Robert H.; Bishop, Steven S.; Chan, Aaron M.; Gugino, Peter M.; Donzelli, Thomas P.; Soumekh, Mehrdad

    2015-05-01

    A novel quasi-monostatic system operating in a side-scan synthetic aperture acoustic (SAA) imaging mode is presented. This research project's objectives are to explore the military utility of outdoor continuous sound imaging of roadside foliage and target detection. The acoustic imaging method has several military relevant advantages such as being immune to RF jamming, superior spatial resolution as compared to 0.8-2.4 GHz ground penetrating radar (GPR), capable of standoff side and forward-looking scanning, and relatively low cost, weight and size when compared to GPR technologies. The prototype system's broadband 2-17 kHz LFM chirp transceiver is mounted on a manned all-terrain vehicle. Targets are positioned within the acoustic main beam at slant ranges of two to seven meters and on surfaces such as dirt, grass, gravel and weathered asphalt and with an intervening metallic chain link fence. Acoustic image reconstructions and signature plots result in means for literal interpretation and quantifiable analyses.

  13. Seismic and acoustic signal identification algorithms

    SciTech Connect

    LADD,MARK D.; ALAM,M. KATHLEEN; SLEEFE,GERARD E.; GALLEGOS,DANIEL E.

    2000-04-03

    This paper will describe an algorithm for detecting and classifying seismic and acoustic signals for unattended ground sensors. The algorithm must be computationally efficient and continuously process a data stream in order to establish whether or not a desired signal has changed state (turned-on or off). The paper will focus on describing a Fourier based technique that compares the running power spectral density estimate of the data to a predetermined signature in order to determine if the desired signal has changed state. How to establish the signature and the detection thresholds will be discussed as well as the theoretical statistics of the algorithm for the Gaussian noise case with results from simulated data. Actual seismic data results will also be discussed along with techniques used to reduce false alarms due to the inherent nonstationary noise environments found with actual data.

  14. Modem Signature Analysis.

    DTIC Science & Technology

    1982-10-01

    RADC-TR-82-269 A. A 9 q _ ___ ___ __ 4. TITLE (and Subtitle) S . TYPE or REPORT & PERIOD COVERED] Final Technical Report MODEM SIGNATURE ANALYSIS Sep 80...Nov 81 a. PERFORMING 011G. REPORT NME N/A 7. AUTI4OR( s ) 4. CONTRACT DOR GRANT oMumEalr) Thomas V. Edwards Dr. Robert J. Dick Dr. James W. Modestino...3-7 3-2 Second NSA Data Collection System . ....... ... 3-8 3-3 Time Plot Paradyne MP-96 AGN 20 dB S /N ..... .... 3-11 3-4 Power Spectral Density

  15. Signatures of nonthermal melting

    PubMed Central

    Zier, Tobias; Zijlstra, Eeuwe S.; Kalitsov, Alan; Theodonis, Ioannis; Garcia, Martin E.

    2015-01-01

    Intense ultrashort laser pulses can melt crystals in less than a picosecond but, in spite of over thirty years of active research, for many materials it is not known to what extent thermal and nonthermal microscopic processes cause this ultrafast phenomenon. Here, we perform ab-initio molecular-dynamics simulations of silicon on a laser-excited potential-energy surface, exclusively revealing nonthermal signatures of laser-induced melting. From our simulated atomic trajectories, we compute the decay of five structure factors and the time-dependent structure function. We demonstrate how these quantities provide criteria to distinguish predominantly nonthermal from thermal melting. PMID:26798822

  16. Signature CERN-URSS

    SciTech Connect

    2006-01-24

    Le DG W.Jentschke souhaite la bienvenue à l'assemblée et aux invités pour la signature du protocole entre le Cern et l'URSS qui est un événement important. C'est en 1955 que 55 visiteurs soviétiques ont visité le Cern pour la première fois. Le premier DG au Cern, F.Bloch, et Mons.Amaldi sont aussi présents. Tandis que le discours anglais de W.Jentschke est traduit en russe, le discours russe de Mons.Morozov est traduit en anglais.

  17. Processing of Acoustic Cues in Lexical-Tone Identification by Pediatric Cochlear-Implant Recipients

    ERIC Educational Resources Information Center

    Peng, Shu-Chen; Lu, Hui-Ping; Lu, Nelson; Lin, Yung-Song; Deroche, Mickael L. D.; Chatterjee, Monita

    2017-01-01

    Purpose: The objective was to investigate acoustic cue processing in lexical-tone recognition by pediatric cochlear-implant (CI) recipients who are native Mandarin speakers. Method: Lexical-tone recognition was assessed in pediatric CI recipients and listeners with normal hearing (NH) in 2 tasks. In Task 1, participants identified naturally…

  18. Privacy protection schemes for fingerprint recognition systems

    NASA Astrophysics Data System (ADS)

    Marasco, Emanuela; Cukic, Bojan

    2015-05-01

    The deployment of fingerprint recognition systems has always raised concerns related to personal privacy. A fingerprint is permanently associated with an individual and, generally, it cannot be reset if compromised in one application. Given that fingerprints are not a secret, potential misuses besides personal recognition represent privacy threats and may lead to public distrust. Privacy mechanisms control access to personal information and limit the likelihood of intrusions. In this paper, image- and feature-level schemes for privacy protection in fingerprint recognition systems are reviewed. Storing only key features of a biometric signature can reduce the likelihood of biometric data being used for unintended purposes. In biometric cryptosystems and biometric-based key release, the biometric component verifies the identity of the user, while the cryptographic key protects the communication channel. Transformation-based approaches only a transformed version of the original biometric signature is stored. Different applications can use different transforms. Matching is performed in the transformed domain which enable the preservation of low error rates. Since such templates do not reveal information about individuals, they are referred to as cancelable templates. A compromised template can be re-issued using a different transform. At image-level, de-identification schemes can remove identifiers disclosed for objectives unrelated to the original purpose, while permitting other authorized uses of personal information. Fingerprint images can be de-identified by, for example, mixing fingerprints or removing gender signature. In both cases, degradation of matching performance is minimized.

  19. Acoustic Event Detection and Classification

    NASA Astrophysics Data System (ADS)

    Temko, Andrey; Nadeu, Climent; Macho, Dušan; Malkin, Robert; Zieger, Christian; Omologo, Maurizio

    The human activity that takes place in meeting rooms or classrooms is reflected in a rich variety of acoustic events (AE), produced either by the human body or by objects handled by humans, so the determination of both the identity of sounds and their position in time may help to detect and describe that human activity. Indeed, speech is usually the most informative sound, but other kinds of AEs may also carry useful information, for example, clapping or laughing inside a speech, a strong yawn in the middle of a lecture, a chair moving or a door slam when the meeting has just started. Additionally, detection and classification of sounds other than speech may be useful to enhance the robustness of speech technologies like automatic speech recognition.

  20. The acoustic communities: Definition, description and ecological role.

    PubMed

    Farina, Almo; James, Philip

    2016-09-01

    An acoustic community is defined as an aggregation of species that produces sound by using internal or extra-body sound-producing tools. Such communities occur in aquatic (freshwater and marine) and terrestrial environments. An acoustic community is the biophonic component of a soundtope and is characterized by its acoustic signature, which results from the distribution of sonic information associated with signal amplitude and frequency. Distinct acoustic communities can be described according to habitat, the frequency range of the acoustic signals, and the time of day or the season. Near and far fields can be identified empirically, thus the acoustic community can be used as a proxy for biodiversity richness. The importance of ecoacoustic research is rapidly growing due to the increasing awareness of the intrusion of anthropogenic sounds (technophonies) into natural and human-modified ecosystems and the urgent need to adopt more efficient predictive tools to compensate for the effects of climate change. The concept of an acoustic community provides an operational scale for a non-intrusive biodiversity survey and analysis that can be carried out using new passive audio recording technology, coupled with methods of vast data processing and storage.

  1. AST Launch Vehicle Acoustics

    NASA Technical Reports Server (NTRS)

    Houston, Janice; Counter, D.; Giacomoni, D.

    2015-01-01

    The liftoff phase induces acoustic loading over a broad frequency range for a launch vehicle. These external acoustic environments are then used in the prediction of internal vibration responses of the vehicle and components which result in the qualification levels. Thus, predicting these liftoff acoustic (LOA) environments is critical to the design requirements of any launch vehicle. If there is a significant amount of uncertainty in the predictions or if acoustic mitigation options must be implemented, a subscale acoustic test is a feasible pre-launch test option to verify the LOA environments. The NASA Space Launch System (SLS) program initiated the Scale Model Acoustic Test (SMAT) to verify the predicted SLS LOA environments and to determine the acoustic reduction with an above deck water sound suppression system. The SMAT was conducted at Marshall Space Flight Center and the test article included a 5% scale SLS vehicle model, tower and Mobile Launcher. Acoustic and pressure data were measured by approximately 250 instruments. The SMAT liftoff acoustic results are presented, findings are discussed and a comparison is shown to the Ares I Scale Model Acoustic Test (ASMAT) results.

  2. Geo-Acoustic Doppler Spectroscopy: A Novel Acoustic Technique For Surveying The Seabed

    NASA Astrophysics Data System (ADS)

    Buckingham, Michael J.

    2010-09-01

    An acoustic inversion technique, known as Geo-Acoustic Doppler Spectroscopy, has recently been developed for estimating the geo-acoustic parameters of the seabed in shallow water. The technique is unusual in that it utilizes a low-flying, propeller-driven light aircraft as an acoustic source. Both the engine and propeller produce sound and, since they are rotating sources, the acoustic signature of each takes the form of a sequence of narrow-band harmonics. Although the coupling of the harmonics across the air-sea interface is inefficient, due to the large impedance mismatch between air and water, sufficient energy penetrates the sea surface to provide a useable underwater signal at sensors either in the water column or buried in the sediment. The received signals, which are significantly Doppler shifted due to the motion of the aircraft, will have experienced a number of reflections from the seabed and thus they contain information about the sediment. A geo-acoustic inversion of the Doppler-shifted modes associated with each harmonic yields an estimate of the sound speed in the sediment; and, once the sound speed has been determined, the known correlations between it and the remaining geo-acoustic parameters allow all of the latter to be computed. This inversion technique has been applied to aircraft data collected in the shallow water north of Scripps pier, returning values of the sound speed, shear speed, porosity, density and grain size that are consistent with the known properties of the sandy sediment in the channel.

  3. Information From the Voice Fundamental Frequency (F0) Region Accounts for the Majority of the Benefit When Acoustic Stimulation Is Added to Electric Stimulation

    PubMed Central

    Zhang, Ting; Dorman, Michael F.; Spahr, Anthony J.

    2013-01-01

    Objectives The aim of this study was to determine the minimum amount of low-frequency acoustic information that is required to achieve speech perception benefit in listeners with a cochlear implant in one ear and low-frequency hearing in the other ear. Design The recognition of monosyllabic words in quiet and sentences in noise was evaluated in three listening conditions: electric stimulation alone, acoustic stimulation alone, and combined electric and acoustic stimulation. The acoustic stimuli presented to the nonimplanted ear were either low-pass-filtered at 125, 250, 500, or 750 Hz, or unfiltered (wideband). Results Adding low-frequency acoustic information to electrically stimulated information led to a significant improvement in word recognition in quiet and sentence recognition in noise. Improvement was observed in the electric and acoustic stimulation condition even when the acoustic information was limited to the 125-Hz-low-passed signal. Further improvement for the sentences in noise was observed when the acoustic signal was increased to wideband. Conclusions Information from the voice fundamental frequency (F0) region accounts for the majority of the speech perception benefit when acoustic stimulation is added to electric stimulation. We propose that, in quiet, low-frequency acoustic information leads to an improved representation of voicing, which in turn leads to a reduction in word candidates in the lexicon. In noise, the robust representation of voicing allows access to low-frequency acoustic landmarks that mark syllable structure and word boundaries. These landmarks can bootstrap word and sentence recognition. PMID:20050394

  4. Advanced spectral signature discrimination algorithm

    NASA Astrophysics Data System (ADS)

    Chakravarty, Sumit; Cao, Wenjie; Samat, Alim

    2013-05-01

    This paper presents a novel approach to the task of hyperspectral signature analysis. Hyperspectral signature analysis has been studied a lot in literature and there has been a lot of different algorithms developed which endeavors to discriminate between hyperspectral signatures. There are many approaches for performing the task of hyperspectral signature analysis. Binary coding approaches like SPAM and SFBC use basic statistical thresholding operations to binarize a signature which are then compared using Hamming distance. This framework has been extended to techniques like SDFC wherein a set of primate structures are used to characterize local variations in a signature together with the overall statistical measures like mean. As we see such structures harness only local variations and do not exploit any covariation of spectrally distinct parts of the signature. The approach of this research is to harvest such information by the use of a technique similar to circular convolution. In the approach we consider the signature as cyclic by appending the two ends of it. We then create two copies of the spectral signature. These three signatures can be placed next to each other like the rotating discs of a combination lock. We then find local structures at different circular shifts between the three cyclic spectral signatures. Texture features like in SDFC can be used to study the local structural variation for each circular shift. We can then create different measure by creating histogram from the shifts and thereafter using different techniques for information extraction from the histograms. Depending on the technique used different variant of the proposed algorithm are obtained. Experiments using the proposed technique show the viability of the proposed methods and their performances as compared to current binary signature coding techniques.

  5. Acoustic Translation of an Acoustically Levitated Sample

    NASA Technical Reports Server (NTRS)

    Barmatz, M. B.; Allen, J. L.

    1986-01-01

    Acoustic-levitation apparatus uses only one acoustic mode to move sample from one region of chamber to another. Sample heated and cooled quickly by translation between hot and cold regions of levitation chamber. Levitated sample is raised into furnace region by raising plunger. Frequency of sound produced by transducers adjusted by feedback system to maintain (102) resonant mode, which levitates sample midway between transducers and plunger regardless of plunger position.

  6. Underwater Acoustic Carbon Nanotube Thermophone

    DTIC Science & Technology

    2016-09-23

    Attorney Docket No. 300042 1 of 10 UNDERWATER ACOUSTIC CARBON NANOTUBE THERMOPHONE STATEMENT OF GOVERNMENT INTEREST [0001] The invention...the Invention [0003] The present invention is an acoustically transparent carbon nanotube underwater acoustic source which acts as a thermophone...development of underwater acoustic carbon nanotube (CNT) yarn sheets capable of producing high acoustic output at low frequencies with broad bandwidth. An

  7. Optical signature modeling at FOI

    NASA Astrophysics Data System (ADS)

    Nelsson, C.; Hermansson, P.; Nyberg, S.; Persson, A.; Persson, R.; Sjökvist, S.; Winzell, T.

    2006-09-01

    Computer programs for prediction of optical signatures of targets and backgrounds are valuable tools for signature assessment and signature management. Simulations make it possible to study optical signatures from targets and backgrounds under conditions where measured signatures are missing or incomplete. Several applications may be identified: Increase understanding, Design and assessment of low signature concepts, Assessment of tactics, Design and assessment of sensor systems, Duel simulations of EW, and Signature awareness. FOI (the Swedish Defence Research Agency) study several methods and modeling programs for detailed physically based prediction of the optical signature of targets in backgrounds. The most important commercial optical signature prediction programs available at FOI are CAMEO-SIM, RadThermIR, and McCavity. The main tasks of the work have been: Assembly of a database of input data, Gain experience of different computer programs, In-house development of complementary algorithms and programs, and Validation and assessment of the simulation results. This paper summarizes the activities and the results obtained. Some application examples will be given as well as results from validations. The test object chosen is the MTLB which is a tracked armored vehicle. It has been used previously at FOI for research purposes and therefore measurement data is available.

  8. Multimodal signature modeling of humans

    NASA Astrophysics Data System (ADS)

    Cathcart, J. Michael; Kocher, Brian; Prussing, Keith; Lane, Sarah; Thomas, Alan

    2010-04-01

    Georgia Tech been investigating method for the detection of covert personnel in traditionally difficult environments (e.g., urban, caves). This program focuses on a detailed phenomenological analysis of human physiology and signatures with the subsequent identification and characterization of potential observables. Both aspects are needed to support the development of personnel detection and tracking algorithms. The difficult nature of these personnel-related problems dictates a multimodal sensing approach. Human signature data of sufficient and accurate quality and quantity do not exist, thus the development of an accurate signature model for a human is needed. This model should also simulate various human activities to allow motion-based observables to be exploited. This paper will describe a multimodal signature modeling approach that incorporates human physiological aspects, thermoregulation, and dynamics into the signature calculation. This approach permits both passive and active signatures to be modeled. The focus of the current effort involved the computation of signatures in urban environments. This paper will discuss the development of a human motion model for use in simulating both electro-optical signatures and radar-based signatures. Video sequences of humans in a simulated urban environment will also be presented; results using these sequences for personnel tracking will be presented.

  9. Helicopter acoustic alerting system for high-security facilities

    NASA Astrophysics Data System (ADS)

    Steadman, Robert L.; Hansen, Scott; Park, Chris; Power, Dennis

    2009-05-01

    Helicopters present a serious threat to high security facilities such as prisons, nuclear sites, armories, and VIP compounds. They have the ability to instantly bypass conventional security measures focused on ground threats such as fences, check-points, and intrusion sensors. Leveraging the strong acoustic signature inherent in all helicopters, this system would automatically detect, classify, and accurately track helicopters using multi-node acoustic sensor fusion. An alert would be generated once the threat entered a predefined 3-dimension security zone in time for security personnel to repel the assault. In addition the system can precisely identify the landing point on the facility grounds.

  10. Phrasal recognition.

    PubMed

    Farhadi, Ali; Sadeghi, Mohammad Amin

    2013-12-01

    In this paper, we introduce visual phrases, complex visual composites like "a person riding a horse." Visual phrases often display significantly reduced visual complexity compared to their component objects because the appearance of those objects can change profoundly when they participate in relations. We introduce a dataset suitable for phrasal recognition that uses familiar PASCAL object categories, and demonstrate significant experimental gains resulting from exploiting visual phrases. We show that a visual phrase detector significantly outperforms a baseline which detects component objects and reasons about relations, even though visual phrase training sets tend to be smaller than those for objects. We argue that any multiclass detection system must decode detector outputs to produce final results; this is usually done with nonmaximum suppression. We describe a novel decoding procedure that can account accurately for local context without solving difficult inference problems. We show this decoding procedure outperforms the state of the art. Finally, we show that decoding a combination of phrasal and object detectors produces real improvements in detector results.

  11. Olfactory kin recognition in a songbird.

    PubMed

    Krause, E Tobias; Krüger, Oliver; Kohlmeier, Philip; Caspers, Barbara A

    2012-06-23

    The ability to recognize close relatives in order to cooperate or to avoid inbreeding is widespread across all taxa. One accepted mechanism for kin recognition in birds is associative learning of visual or acoustic cues. However, how could individuals ever learn to recognize unfamiliar kin? Here, we provide the first evidence for a novel mechanism of kin recognition in birds. Zebra finch (Taeniopygia guttata) fledglings are able to distinguish between kin and non-kin based on olfactory cues alone. Since olfactory cues are likely to be genetically based, this finding establishes a neglected mechanism of kin recognition in birds, particularly in songbirds, with potentially far-reaching consequences for both kin selection and inbreeding avoidance.

  12. Automatic speech recognition for large vocabularies

    NASA Astrophysics Data System (ADS)

    Aktas, A.; Kaemmerer, B.; Kuepper, W.; Lagger, H.

    1985-12-01

    An isolated word recognition system for large vocabularies (1000 to 5000 words) with 98% recognition performance was developed. It was implemented on an array processor for real time requirements. The speech signal is described by short time autocorrelation functions. Short response times as well as high recognition accuracies are achieved by means of a hierarchical classification scheme. A fast preselection stage yields a small number of suitable word candidates to be considered for further classification. To that end a linear segmentation or a segmentation based on acoustic or phonetic cues was performed. High selectivity is obtained by using fine temporal resolution and nonlinear time alignment in the final classification step. By taking into account phonetically identical fragments of words, a distinction between highly confusable words can be made. Speaker adaptation for new system users is performed within a relatively short training phase.

  13. Generalized acoustic energy density.

    PubMed

    Xu, Buye; Sommerfeldt, Scott D; Leishman, Timothy W

    2011-09-01

    The properties of acoustic kinetic energy density and total energy density of sound fields in lightly damped enclosures have been explored thoroughly in the literature. Their increased spatial uniformity makes them more favorable measurement quantities for various applications than acoustic potential energy density (or squared pressure), which is most often used. In this paper, a generalized acoustic energy density (GED), will be introduced. It is defined by introducing weighting factors into the formulation of total acoustic energy density. With an additional degree of freedom, the GED can conform to the traditional acoustic energy density quantities, or it can be optimized for different applications. The properties of the GED will be explored in this paper for individual room modes, a diffuse sound field, and a sound field below the Schroeder frequency. © 2011 Acoustical Society of America

  14. Deep Water Ocean Acoustics

    DTIC Science & Technology

    2016-12-22

    Final Report 3. DATES COVERED (From - To) 7/1/15 to 12/22/16 4. TITLE AND SUBTITLE Deep Water Ocean Acoustics 5a. CONTRACT NUMBER...NUMBER Ocean Acoustical Services and Instrumentation Systems, Inc. 5 Militia Drive, Ste. 104 Lexington, MA 02421-4706...FR-14C0172- Ocean Acoustics- 123116 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) Office of Naval

  15. Asymmetric acoustic gratings

    NASA Astrophysics Data System (ADS)

    He, Zhaojian; Peng, Shasha; Ye, Yangtao; Dai, Zhongwei; Qiu, Chunyin; Ke, Manzhu; Liu, Zhengyou

    2011-02-01

    The unidirectional transmission of acoustic waves is realized by a simple geometrically asymmetric steel grating structure. This exotic phenomenon stems from the one-way diffraction effect induced by the different periods of the slits on the both surfaces of the sample. And the frequency range of unidirectional transmission is simply determined by the structure periods. The experimental results agree well with the theoretical simulation. This remarkable effect is expected potential applications in ultrasonic devices, such as acoustic rectifiers and acoustic diodes.

  16. Nearfield Acoustical Holography

    NASA Astrophysics Data System (ADS)

    Hayek, Sabih I.

    Nearfield acoustical holography (NAH) is a method by which a set of acoustic pressure measurements at points located on a specific surface (called a hologram) can be used to image sources on vibrating surfaces on the acoustic field in three-dimensional space. NAH data are processed to take advantage of the evanescent wavefield to image sources that are separated less that one-eighth of a wavelength.

  17. Low Frequency Acoustics

    DTIC Science & Technology

    2016-06-13

    understanding of very low frequency (VLF) acoustics in the deep ocean as applicable to naval warfare and coexistence with marine mammals. OBJECTIVES The...characteristics in the deep ocean; (3) encourage a cooperative interagency working relationship to investigate acoustic impact on marine mammals; and...with NOAA(NMFS) and other parties has dealt with ocean acoustics related to issues stimulated by the Marine Mammal Protection Act. A focal point has

  18. Acoustic Properties of Return Strokes and M-components From Rocket-Triggered Lightning

    NASA Astrophysics Data System (ADS)

    Dayeh, M. A.; Fuselier, S. A.; Dwyer, J. R.; Uman, M. A.; Jordan, D.; Carvalho, F. L.; Rassoul, H.

    2015-12-01

    Using a linear, one-dimensional array of 15 microphones situated 95 meters from the lightning channel; we measure the acoustic signatures from 11 triggered-lightning events comprising 41 return strokes and 28 M-components. Measurements were taken at the International Center for Lightning Research and Testing (ICLRT) in Camp Blanding, FL during the summer of 2014. Recently, we reported that beamforming signal processing enables acoustic imaging of the lightning channel at high frequencies (Dayeh et al. 2015). Following up on the work, we report on the characteristics of the acoustic measurements in terms of sound pressure amplitude, peak currents, power spectral density (PSD) properties, and the inferred energy input. In addition, we find that M-component do not create acoustic signatures in most occasions; we discuss these cases in context of the associated current amplitude, rise time, and background continuing current.

  19. Neurofunctional Signature of Hyperfamiliarity for Unknown Faces

    PubMed Central

    Negro, Elisa; D’Agata, Federico; Caroppo, Paola; Coriasco, Mario; Ferrio, Federica; Celeghin, Alessia; Diano, Matteo; Rubino, Elisa; de Gelder, Beatrice; Rainero, Innocenzo; Pinessi, Lorenzo; Tamietto, Marco

    2015-01-01

    Hyperfamiliarity for unknown faces is a rare selective disorder that consists of the disturbing and abnormal feeling of familiarity for unknown faces, while recognition of known faces is normal. In one such patient we investigated with a multimodal neuroimaging design the hitherto undescribed neural signature associated with hyperfamiliarity feelings. Behaviorally, signal detection methods revealed that the patient’s discrimination sensitivity between familiar and unfamiliar faces was significantly lower than that of matched controls, and her response criterion for familiarity decisions was significantly more liberal. At the neural level, while morphometric analysis and single-photon emission CT (SPECT) showed the atrophy and hypofunctioning of the left temporal regions, functional magnetic resonance imaging (fMRI) revealed that hyperfamiliarity feelings were selectively associated to enhanced activity in the right medial and inferior temporal cortices. We therefore characterize the neurofunctional signature of hyperfamiliarity for unknown faces as related to the loss of coordinated activity between the complementary face processing functions of the left and right temporal lobes. PMID:26154253

  20. The metabonomic signature of celiac disease.

    PubMed

    Bertini, Ivano; Calabrò, Antonio; De Carli, Valeria; Luchinat, Claudio; Nepi, Stefano; Porfirio, Berardino; Renzi, Daniela; Saccenti, Edoardo; Tenori, Leonardo

    2009-01-01

    Celiac disease (CD) is a multifactorial disorder involving genetic and environmental factors, thus, having great potential impact on metabolism. This study aims at defining the metabolic signature of CD through Nuclear Magnetic Resonance (NMR) of urine and serum samples of CD patients. Thirty-four CD patients at diagnosis and 34 healthy controls were examined by (1)H NMR of their serum and urine. A CD patients' subgroup was also examined after a gluten-free diet (GFD). Projection to Latent Structures provided data reduction and clustering, and Support Vector Machines provided pattern recognition and classification. The classification accuracy of CD and healthy control groups was 79.7-83.4% for serum and 69.3% for urine. Sera of CD patients were characterized by lower levels (P < 0.01) of several metabolites such as amino acids, lipids, pyruvate and choline, and by higher levels of glucose and 3-hydroxybutyric acid, while urines showed altered levels (P < 0.05) of, among others, indoxyl sulfate, meta-[hydroxyphenyl]propionic acid and phenylacetylglycine. After 12 months of GFD, all but one of the patients were classified as healthy by the same statistical analysis. NMR thus reveals a characteristic metabolic signature of celiac disease. Altered serum levels of glucose and ketonic bodies suggest alterations of energy metabolism, while the urine data point to alterations of gut microbiota. Metabolomics may thus provide further hints on the biochemistry of the disease.

  1. Low frequency acoustic microscope

    DOEpatents

    Khuri-Yakub, Butrus T.

    1986-11-04

    A scanning acoustic microscope is disclosed for the detection and location of near surface flaws, inclusions or voids in a solid sample material. A focused beam of acoustic energy is directed at the sample with its focal plane at the subsurface flaw, inclusion or void location. The sample is scanned with the beam. Detected acoustic energy specularly reflected and mode converted at the surface of the sample and acoustic energy reflected by subsurface flaws, inclusions or voids at the focal plane are used for generating an interference signal which is processed and forms a signal indicative of the subsurface flaws, inclusions or voids.

  2. Acoustic dispersive prism

    NASA Astrophysics Data System (ADS)

    Esfahlani, Hussein; Karkar, Sami; Lissek, Herve; Mosig, Juan R.

    2016-01-01

    The optical dispersive prism is a well-studied element, which allows separating white light into its constituent spectral colors, and stands in nature as water droplets. In analogy to this definition, the acoustic dispersive prism should be an acoustic device with capability of splitting a broadband acoustic wave into its constituent Fourier components. However, due to the acoustical nature of materials as well as the design and fabrication difficulties, there is neither any natural acoustic counterpart of the optical prism, nor any artificial design reported so far exhibiting an equivalent acoustic behaviour. Here, based on exotic properties of the acoustic transmission-line metamaterials and exploiting unique physical behaviour of acoustic leaky-wave radiation, we report the first acoustic dispersive prism, effective within the audible frequency range 800 Hz–1300 Hz. The dispersive nature, and consequently the frequency-dependent refractive index of the metamaterial are exploited to split the sound waves towards different and frequency-dependent directions. Meanwhile, the leaky-wave nature of the structure facilitates the sound wave radiation into the ambient medium.

  3. Acoustic dispersive prism.

    PubMed

    Esfahlani, Hussein; Karkar, Sami; Lissek, Herve; Mosig, Juan R

    2016-01-07

    The optical dispersive prism is a well-studied element, which allows separating white light into its constituent spectral colors, and stands in nature as water droplets. In analogy to this definition, the acoustic dispersive prism should be an acoustic device with capability of splitting a broadband acoustic wave into its constituent Fourier components. However, due to the acoustical nature of materials as well as the design and fabrication difficulties, there is neither any natural acoustic counterpart of the optical prism, nor any artificial design reported so far exhibiting an equivalent acoustic behaviour. Here, based on exotic properties of the acoustic transmission-line metamaterials and exploiting unique physical behaviour of acoustic leaky-wave radiation, we report the first acoustic dispersive prism, effective within the audible frequency range 800 Hz-1300 Hz. The dispersive nature, and consequently the frequency-dependent refractive index of the metamaterial are exploited to split the sound waves towards different and frequency-dependent directions. Meanwhile, the leaky-wave nature of the structure facilitates the sound wave radiation into the ambient medium.

  4. Acoustic dispersive prism

    PubMed Central

    Esfahlani, Hussein; Karkar, Sami; Lissek, Herve; Mosig, Juan R.

    2016-01-01

    The optical dispersive prism is a well-studied element, which allows separating white light into its constituent spectral colors, and stands in nature as water droplets. In analogy to this definition, the acoustic dispersive prism should be an acoustic device with capability of splitting a broadband acoustic wave into its constituent Fourier components. However, due to the acoustical nature of materials as well as the design and fabrication difficulties, there is neither any natural acoustic counterpart of the optical prism, nor any artificial design reported so far exhibiting an equivalent acoustic behaviour. Here, based on exotic properties of the acoustic transmission-line metamaterials and exploiting unique physical behaviour of acoustic leaky-wave radiation, we report the first acoustic dispersive prism, effective within the audible frequency range 800 Hz–1300 Hz. The dispersive nature, and consequently the frequency-dependent refractive index of the metamaterial are exploited to split the sound waves towards different and frequency-dependent directions. Meanwhile, the leaky-wave nature of the structure facilitates the sound wave radiation into the ambient medium. PMID:26739504

  5. Effects of Talker Variability on Vowel Recognition in Cochlear Implants

    ERIC Educational Resources Information Center

    Chang, Yi-ping; Fu, Qian-Jie

    2006-01-01

    Purpose: To investigate the effects of talker variability on vowel recognition by cochlear implant (CI) users and by normal-hearing (NH) participants listening to 4-channel acoustic CI simulations. Method: CI users were tested with their clinically assigned speech processors. For NH participants, 3 CI processors were simulated, using different…

  6. Cross-Modal Source Information and Spoken Word Recognition

    ERIC Educational Resources Information Center

    Lachs, Lorin; Pisoni, David B.

    2004-01-01

    In a cross-modal matching task, participants were asked to match visual and auditory displays of speech based on the identity of the speaker. The present investigation used this task with acoustically transformed speech to examine the properties of sound that can convey cross-modal information. Word recognition performance was also measured under…

  7. Distributed Recognition of Natural Songs by European Starlings

    ERIC Educational Resources Information Center

    Knudsen, Daniel; Thompson, Jason V.; Gentner, Timothy Q.

    2010-01-01

    Individual vocal recognition behaviors in songbirds provide an excellent framework for the investigation of comparative psychological and neurobiological mechanisms that support the perception and cognition of complex acoustic communication signals. To this end, the complex songs of European starlings have been studied extensively. Yet, several…

  8. Spoken Word Recognition in Toddlers Who Use Cochlear Implants

    ERIC Educational Resources Information Center

    Grieco-Calub, Tina M.; Saffran, Jenny R.; Litovsky, Ruth Y.

    2009-01-01

    Purpose: The purpose of this study was to assess the time course of spoken word recognition in 2-year-old children who use cochlear implants (CIs) in quiet and in the presence of speech competitors. Method: Children who use CIs and age-matched peers with normal acoustic hearing listened to familiar auditory labels, in quiet or in the presence of…

  9. Distributed Recognition of Natural Songs by European Starlings

    ERIC Educational Resources Information Center

    Knudsen, Daniel; Thompson, Jason V.; Gentner, Timothy Q.

    2010-01-01

    Individual vocal recognition behaviors in songbirds provide an excellent framework for the investigation of comparative psychological and neurobiological mechanisms that support the perception and cognition of complex acoustic communication signals. To this end, the complex songs of European starlings have been studied extensively. Yet, several…

  10. Effects of Talker Variability on Vowel Recognition in Cochlear Implants

    ERIC Educational Resources Information Center

    Chang, Yi-ping; Fu, Qian-Jie

    2006-01-01

    Purpose: To investigate the effects of talker variability on vowel recognition by cochlear implant (CI) users and by normal-hearing (NH) participants listening to 4-channel acoustic CI simulations. Method: CI users were tested with their clinically assigned speech processors. For NH participants, 3 CI processors were simulated, using different…

  11. Landsat Signature Development Program

    NASA Technical Reports Server (NTRS)

    Hall, R. N.; Mcguire, K. G.; Bland, R. A.

    1976-01-01

    The Landsat Signature Development Program, LSDP, is designed to produce an unsupervised classification of a scene from a Landsat tape. This classification is based on the clustering tendencies of the multispectral scanner data processed from the scene. The program will generate a character map that, by identifying each of the general classes of surface features extracted from the scene data with a specific line printer symbol, indicates the approximate locations and distributions of these general classes within the scene. Also provided with the character map are a number of tables each of which describes either some aspect of the spectral properties of the resultant classes, some inter-class relationship, the incidence of picture elements assigned to the various classes in the character map classification of the scene, or some significant intermediate stage in the development of the final classes.

  12. Signatures of aging revisited

    SciTech Connect

    Drell, S.; Jeanloz, R.; Cornwall, J.; Dyson, F.; Eardley, D.

    1998-03-18

    This study is a follow-on to the review made by JASON during its 1997 Summer Study of what is known about the aging of critical constituents, particularly the high explosives, metals (Pu, U), and polymers in the enduring stockpile. The JASON report (JSR-97-320) that summarized the findings was based on briefings by the three weapons labs (LANL, LLNL, SNL). They presented excellent technical analyses covering a broad range of scientific and engineering problems pertaining to determining signatures of aging. But the report also noted: `Missing, however, from the briefings and the written documents made available to us by the labs and DOE, was evidence of an adequately sharp focus and high priorities on a number of essential near-term needs of maintaining weapons in the stockpile.

  13. Signature CERN-URSS

    ScienceCinema

    None

    2016-07-12

    Le DG W.Jentschke souhaite la bienvenue à l'assemblée et aux invités pour la signature du protocole entre le Cern et l'URSS qui est un événement important. C'est en 1955 que 55 visiteurs soviétiques ont visité le Cern pour la première fois. Le premier DG au Cern, F.Bloch, et Mons.Amaldi sont aussi présents. Tandis que le discours anglais de W.Jentschke est traduit en russe, le discours russe de Mons.Morozov est traduit en anglais.

  14. Signatures of Reputation

    NASA Astrophysics Data System (ADS)

    Bethencourt, John; Shi, Elaine; Song, Dawn

    Reputation systems have become an increasingly important tool for highlighting quality information and filtering spam within online forums. However, the dependence of a user's reputation on their history of activities seems to preclude any possibility of anonymity. We show that useful reputation information can, in fact, coexist with strong privacy guarantees. We introduce and formalize a novel cryptographic primitive we call signatures of reputation which supports monotonic measures of reputation in a completely anonymous setting. In our system, a user can express trust in others by voting for them, collect votes to build up her own reputation, and attach a proof of her reputation to any data she publishes, all while maintaining the unlinkability of her actions.

  15. Acoustic Levitation With Less Equipment

    NASA Technical Reports Server (NTRS)

    Barmatz, M. B.; Jacobi, N.

    1983-01-01

    Certain chamber shapes require fewer than three acoustic drivers. Levitation at center of spherical chamber attained using only one acoustic driver. Exitation of lowest spherical mode produces asymmetric acoustic potential well.

  16. Signatures of dark matter

    NASA Astrophysics Data System (ADS)

    Baltz, Edward Anthony

    It is well known that most of the mass in the universe remains unobserved save for its gravitational effect on luminous matter. The nature of this ``dark matter'' remains a mystery. From measurements of the primordial deuterium abundance, the theory of big bang nucleosynthesis predicts that there are not enough baryons to account for the amount of dark matter observed, thus the missing mass must take an exotic form. Several promising candidates have been proposed. In this work I will describe my research along two main lines of inquiry into the dark matter puzzle. The first possibility is that the dark matter is exotic massive particles, such as those predicted by supersymmetric extensions to the standard model of particle physics. Such particles are generically called WIMPs, for weakly interacting massive particles. Focusing on the so-called neutralino in supersymmetric models, I discuss the possible signatures of such particles, including their direct detection via nuclear recoil experiments and their indirect detection via annihilations in the halos of galaxies, producing high energy antiprotons, positrons and gamma rays. I also discuss signatures of the possible slow decays of such particles. The second possibility is that there is a population of black holes formed in the early universe. Any dark objects in galactic halos, black holes included, are called MACHOs, for massive compact halo objects. Such objects can be detected by their gravitational microlensing effects. Several possibilities for sources of baryonic dark matter are also interesting for gravitational microlensing. These include brown dwarf stars and old, cool white dwarf stars. I discuss the theory of gravitational microlensing, focusing on the technique of pixel microlensing. I make predictions for several planned microlensing experiments with ground based and space based telescopes. Furthermore, I discuss binary lenses in the context of pixel microlensing. Finally, I develop a new technique for

  17. Multisensors signature prediction workbench

    NASA Astrophysics Data System (ADS)

    Latger, Jean; Cathala, Thierry

    2015-10-01

    Guidance of weapon systems relies on sensors to analyze targets signature. Defense weapon systems also need to detect then identify threats also using sensors. The sensors performance is very dependent on conditions e.g. time of day, atmospheric propagation, background ... Visible camera are very efficient for diurnal fine weather conditions, long wave infrared sensors for night vision, radar systems very efficient for seeing through atmosphere and/or foliage ... Besides, multi sensors systems, combining several collocated sensors with associated algorithms of fusion, provide better efficiency (typically for Enhanced Vision Systems). But these sophisticated systems are all the more difficult to conceive, assess and qualify. In that frame, multi sensors simulation is highly required. This paper focuses on multi sensors simulation tools. A first part makes a state of the Art of such simulation workbenches with a special focus on SE-Workbench. SEWorkbench is described with regards to infrared/EO sensors, millimeter waves sensors, active EO sensors and GNSS sensors. Then a general overview of simulation of targets and backgrounds signature objectives is presented, depending on the type of simulation required (parametric studies, open loop simulation, closed loop simulation, hybridization of SW simulation and HW ...). After the objective review, the paper presents some basic requirements for simulation implementation such as the deterministic behavior of simulation, mandatory to repeat it many times for parametric studies... Several technical topics are then discussed, such as the rendering technique (ray tracing vs. rasterization), the implementation (CPU vs. GP GPU) and the tradeoff between physical accuracy and performance of computation. Examples of results using SE-Workbench are showed and commented.

  18. Signatures of AGN feedback

    NASA Astrophysics Data System (ADS)

    Wylezalek, D.; Zakamska, N.

    2016-06-01

    Feedback from active galactic nuclei (AGN) is widely considered to be the main driver in regulating the growth of massive galaxies. It operates by either heating or driving the gas that would otherwise be available for star formation out of the galaxy, preventing further increase in stellar mass. Observational proof for this scenario has, however, been hard to come by. We have assembled a large sample of 133 radio-quiet type-2 and red AGN at 0.1signatures are hosted in galaxies that are more `quenched' considering their stellar mass than galaxies with weaker outflow signatures. This correlation is only seen in AGN host galaxies with SFR >100 M_{⊙} yr^{-1} where presumably the coupling of the AGN-driven wind to the gas is strongest. This observation is consistent with the AGN having a net suppression, or `negative' impact, through feedback on the galaxies' star formation history.

  19. Infrared Signature Modeling and Analysis of Aircraft Plume

    NASA Astrophysics Data System (ADS)

    Rao, Arvind G.

    2011-09-01

    In recent years, the survivability of an aircraft has been put to task more than ever before. One of the main reasons is the increase in the usage of Infrared (IR) guided Anti-Aircraft Missiles, especially due to the availability of Man Portable Air Defence System (MANPADS) with some terrorist groups. Thus, aircraft IR signatures are gaining more importance as compared to their radar, visual, acoustic, or any other signatures. The exhaust plume ejected from the aircraft is one of the important sources of IR signature in military aircraft that use low bypass turbofan engines for propulsion. The focus of the present work is modelling of spectral IR radiation emission from the exhaust jet of a typical military aircraft and to evaluate the aircraft susceptibility in terms of the aircraft lock-on range due to its plume emission, for a simple case against a typical Surface to Air Missile (SAM). The IR signature due to the aircraft plume is examined in a holistic manner. A comprehensive methodology of computing IR signatures and its affect on aircraft lock-on range is elaborated. Commercial CFD software has been used to predict the plume thermo-physical properties and subsequently an in-house developed code was used for evaluating the IR radiation emitted by the plume. The LOWTRAN code has been used for modeling the atmospheric IR characteristics. The results obtained from these models are in reasonable agreement with some available experimental data. The analysis carried out in this paper succinctly brings out the intricacy of the radiation emitted by various gaseous species in the plume and the role of atmospheric IR transmissivity in dictating the plume IR signature as perceived by an IR guided SAM.

  20. Mandarin Speech Perception in Combined Electric and Acoustic Stimulation

    PubMed Central

    Li, Yongxin; Zhang, Guoping; Galvin, John J.; Fu, Qian-Jie

    2014-01-01

    For deaf individuals with residual low-frequency acoustic hearing, combined use of a cochlear implant (CI) and hearing aid (HA) typically provides better speech understanding than with either device alone. Because of coarse spectral resolution, CIs do not provide fundamental frequency (F0) information that contributes to understanding of tonal languages such as Mandarin Chinese. The HA can provide good representation of F0 and, depending on the range of aided acoustic hearing, first and second formant (F1 and F2) information. In this study, Mandarin tone, vowel, and consonant recognition in quiet and noise was measured in 12 adult Mandarin-speaking bimodal listeners with the CI-only and with the CI+HA. Tone recognition was significantly better with the CI+HA in noise, but not in quiet. Vowel recognition was significantly better with the CI+HA in quiet, but not in noise. There was no significant difference in consonant recognition between the CI-only and the CI+HA in quiet or in noise. There was a wide range in bimodal benefit, with improvements often greater than 20 percentage points in some tests and conditions. The bimodal benefit was compared to CI subjects’ HA-aided pure-tone average (PTA) thresholds between 250 and 2000 Hz; subjects were divided into two groups: “better” PTA (<50 dB HL) or “poorer” PTA (>50 dB HL). The bimodal benefit differed significantly between groups only for consonant recognition. The bimodal benefit for tone recognition in quiet was significantly correlated with CI experience, suggesting that bimodal CI users learn to better combine low-frequency spectro-temporal information from acoustic hearing with temporal envelope information from electric hearing. Given the small number of subjects in this study (n = 12), further research with Chinese bimodal listeners may provide more information regarding the contribution of acoustic and electric hearing to tonal language perception. PMID:25386962

  1. Quantum Signature of Analog Hawking Radiation in Momentum Space.

    PubMed

    Boiron, D; Fabbri, A; Larré, P-É; Pavloff, N; Westbrook, C I; Ziń, P

    2015-07-10

    We consider a sonic analog of a black hole realized in the one-dimensional flow of a Bose-Einstein condensate. Our theoretical analysis demonstrates that one- and two-body momentum distributions accessible by present-day experimental techniques provide clear direct evidence (i) of the occurrence of a sonic horizon, (ii) of the associated acoustic Hawking radiation, and (iii) of the quantum nature of the Hawking process. The signature of the quantum behavior persists even at temperatures larger than the chemical potential.

  2. Cell short circuit, preshort signature

    NASA Technical Reports Server (NTRS)

    Lurie, C.

    1980-01-01

    Short-circuit events observed in ground test simulations of DSCS-3 battery in-orbit operations are analyzed. Voltage signatures appearing in the data preceding the short-circuit event are evaluated. The ground test simulation is briefly described along with performance during reconditioning discharges. Results suggest that a characteristic signature develops prior to a shorting event.

  3. Index of Spectrum Signature Data

    DTIC Science & Technology

    1985-05-01

    Frederick Research Corporation. Alexandria. VA 163 AN/APG-030 Radar Receiver Heasureaents Electromagnetic Coapatibilitv Analysis Center, US Navv Marine ... Electromagnetic Compatibility Characteristics of the W 86 Gun Fire Control Svstem. Naval HEapons Lab, Dahlgren, VA 501 Partial Spectrum Signature...ECAC-I-IO-(SS) DEPARTMENT OF DEFENSE Electromagnetic Compatibility Analysis Center Annapolis, Maryland 21402 INDEX OF SPECTRUM SIGNATURE DATA

  4. Photonic quantum digital signatures operating over kilometer ranges in installed optical fiber

    NASA Astrophysics Data System (ADS)

    Collins, Robert J.; Fujiwara, Mikio; Amiri, Ryan; Honjo, Toshimori; Shimizu, Kaoru; Tamaki, Kiyoshi; Takeoka, Masahiro; Andersson, Erika; Buller, Gerald S.; Sasaki, Masahide

    2016-10-01

    The security of electronic communications is a topic that has gained noteworthy public interest in recent years. As a result, there is an increasing public recognition of the existence and importance of mathematically based approaches to digital security. Many of these implement digital signatures to ensure that a malicious party has not tampered with the message in transit, that a legitimate receiver can validate the identity of the signer and that messages are transferable. The security of most digital signature schemes relies on the assumed computational difficulty of solving certain mathematical problems. However, reports in the media have shown that certain implementations of such signature schemes are vulnerable to algorithmic breakthroughs and emerging quantum processing technologies. Indeed, even without quantum processors, the possibility remains that classical algorithmic breakthroughs will render these schemes insecure. There is ongoing research into information-theoretically secure signature schemes, where the security is guaranteed against an attacker with arbitrary computational resources. One such approach is quantum digital signatures. Quantum signature schemes can be made information-theoretically secure based on the laws of quantum mechanics while comparable classical protocols require additional resources such as anonymous broadcast and/or a trusted authority. Previously, most early demonstrations of quantum digital signatures required dedicated single-purpose hardware and operated over restricted ranges in a laboratory environment. Here, for the first time, we present a demonstration of quantum digital signatures conducted over several kilometers of installed optical fiber. The system reported here operates at a higher signature generation rate than previous fiber systems.

  5. Dust-acoustic supersolitons in a three-species dusty plasma with kappa distributions†

    NASA Astrophysics Data System (ADS)

    Hellberg, M. A.; Baluku, T. K.; Verheest, F.; Kourakis, I.; Kourakis

    2013-12-01

    Supersolitons are a form of soliton characterised, inter alia, by additional local extrema superimposed on the usual bipolar electric field signature. Previous studies of supersolitons supported by three-component plasmas have dealt with ion-acoustic structures. An analogous problem is now considered, namely, dust-acoustic supersolitons in a plasma composed of fluid negative dust grains and two kappa-distributed positive ion species. Calculations illustrating some supersoliton characteristics are presented.

  6. Maternal signature whistle use aids mother-calf reunions in a bottlenose dolphin, Tursiops truncatus.

    PubMed

    King, Stephanie L; Guarino, Emily; Keaton, Loriel; Erb, Linda; Jaakkola, Kelly

    2016-05-01

    Individual vocal signatures play an important role in parent-offspring recognition in many animals. One species that uses signature calls to accurately facilitate individual recognition is the bottlenose dolphin. Female dolphins and their calves will use their highly individualised signature whistles to identify and maintain contact with one another. Previous studies have shown high signature whistle rates of both mothers and calves during forced separations. In more natural settings, it appears that the calf vocalises more frequently to initiate reunions with its mother. However, little is known about the mechanisms a female dolphin may employ when there is strong motivation for her to reunite with her calf. In this study, we conducted a series of experimental trials in which we asked a female dolphin to retrieve either her wandering calf or a series of inanimate objects (control). Our results show that she used her vocal signature to actively recruit her calf, and produced no such signal when asked to retrieve the objects. This is the first study to clearly manipulate a dolphin's motivation to retrieve her calf with experimental controls. The results highlight that signature whistles are not only used in broadcasting individual identity, but that maternal signature whistle use is important in facilitating mother-calf reunions. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Speech recognition in natural background noise.

    PubMed

    Meyer, Julien; Dentel, Laure; Meunier, Fanny

    2013-01-01

    In the real world, human speech recognition nearly always involves listening in background noise. The impact of such noise on speech signals and on intelligibility performance increases with the separation of the listener from the speaker. The present behavioral experiment provides an overview of the effects of such acoustic disturbances on speech perception in conditions approaching ecologically valid contexts. We analysed the intelligibility loss in spoken word lists with increasing listener-to-speaker distance in a typical low-level natural background noise. The noise was combined with the simple spherical amplitude attenuation due to distance, basically changing the signal-to-noise ratio (SNR). Therefore, our study draws attention to some of the most basic environmental constraints that have pervaded spoken communication throughout human history. We evaluated the ability of native French participants to recognize French monosyllabic words (spoken at 65.3 dB(A), reference at 1 meter) at distances between 11 to 33 meters, which corresponded to the SNRs most revealing of the progressive effect of the selected natural noise (-8.8 dB to -18.4 dB). Our results showed that in such conditions, identity of vowels is mostly preserved, with the striking peculiarity of the absence of confusion in vowels. The results also confirmed the functional role of consonants during lexical identification. The extensive analysis of recognition scores, confusion patterns and associated acoustic cues revealed that sonorant, sibilant and burst properties were the most important parameters influencing phoneme recognition. . Altogether these analyses allowed us to extract a resistance scale from consonant recognition scores. We also identified specific perceptual consonant confusion groups depending of the place in the words (onset vs. coda). Finally our data suggested that listeners may access some acoustic cues of the CV transition, opening interesting perspectives for future studies.

  8. Speech Recognition in Natural Background Noise

    PubMed Central

    Meyer, Julien; Dentel, Laure; Meunier, Fanny

    2013-01-01

    In the real world, human speech recognition nearly always involves listening in background noise. The impact of such noise on speech signals and on intelligibility performance increases with the separation of the listener from the speaker. The present behavioral experiment provides an overview of the effects of such acoustic disturbances on speech perception in conditions approaching ecologically valid contexts. We analysed the intelligibility loss in spoken word lists with increasing listener-to-speaker distance in a typical low-level natural background noise. The noise was combined with the simple spherical amplitude attenuation due to distance, basically changing the signal-to-noise ratio (SNR). Therefore, our study draws attention to some of the most basic environmental constraints that have pervaded spoken communication throughout human history. We evaluated the ability of native French participants to recognize French monosyllabic words (spoken at 65.3 dB(A), reference at 1 meter) at distances between 11 to 33 meters, which corresponded to the SNRs most revealing of the progressive effect of the selected natural noise (−8.8 dB to −18.4 dB). Our results showed that in such conditions, identity of vowels is mostly preserved, with the striking peculiarity of the absence of confusion in vowels. The results also confirmed the functional role of consonants during lexical identification. The extensive analysis of recognition scores, confusion patterns and associated acoustic cues revealed that sonorant, sibilant and burst properties were the most important parameters influencing phoneme recognition. . Altogether these analyses allowed us to extract a resistance scale from consonant recognition scores. We also identified specific perceptual consonant confusion groups depending of the place in the words (onset vs. coda). Finally our data suggested that listeners may access some acoustic cues of the CV transition, opening interesting perspectives for future studies

  9. High-Accuracy Large-Vocabulary Speech Recognition Using Mixture Tying and Consistency Modeling

    DTIC Science & Technology

    1994-01-01

    Hidden Markov Models for Speech Recognition," Proc. ICASSP-87. 21. S. J. Young, "The General Use of Tying in Phoneme -Based HMM Speech Recognizers," Proc. ICASSP, pp. 1-569 - 1- 572, March 1992. 318 ...HIGH-ACCURACY LARGE-VOCABULARY SPEECH RECOGNITION USING MIXTURE TYING AND CONSISTENCY MODELING Vassilios Digalakis and Hy Murveit SRI In ternat...T Improved acoustic modeling can significantly decrease the error rate in large-vocabulary speech recognition. Our approach to the problem is

  10. The research on high speed underwater target recognition based on fuzzy logic inference

    NASA Astrophysics Data System (ADS)

    Jiang, Xiang-Dong; Yang, De-Sen; Shi, Sheng-Guo; Li, Si-Chun

    2006-06-01

    The underwater target recognition is a key technology in acoustic confrontation and underwater defence. In this article, a recognition system based of fuzzy logic inference (FLI) is set up. This system is mainly composed of three parts: the fuzzy input module, the fuzzy logic inference module with a set of inference rules and the de-fuzzy output module. The inference result shows the recognition system is effective in most conditions.

  11. XV-15 Tiltrotor Aircraft: 1997 Acoustic Testing

    NASA Technical Reports Server (NTRS)

    Edwards, Bryan D.; Conner, David A.

    2003-01-01

    XV-15 acoustic test is discussed, and measured results are presented. The test was conducted by NASA Langley and Bell Helicopter Textron, Inc., during June - July 1997, at the BHTI test site near Waxahachie, Texas. This was the second in a series of three XV-15 tests to document the acoustic signature of the XV-15 tiltrotor aircraft for a variety of flight conditions and minimize the noise signature during approach. Tradeoffs between flight procedures and the measured noise are presented to illustrate the noise abatement flight procedures. The test objectives were to: (1) support operation of future tiltrotors by further developing and demonstrating low-noise flight profiles, while maintaining acceptable handling and ride qualities, and (2) refine approach profiles, selected from previous (1995) tiltrotor testing, to incorporate Instrument Flight Rules (IFR), handling qualities constraints, operations and tradeoffs with sound. Primary emphasis was given to the approach flight conditions where blade-vortex interaction (BVI) noise dominates, because this condition influences community noise impact more than any other. An understanding of this part of the noise generating process could guide the development of low noise flight operations and increase the tiltrotor's acceptance in the community.

  12. Acoustics and dynamics of coaxial interacting vortex rings

    NASA Technical Reports Server (NTRS)

    Shariff, Karim; Leonard, Anthony; Zabusky, Norman J.; Ferziger, Joel H.

    1988-01-01

    Using a contour dynamics method for inviscid axisymmetric flow we examine the effects of core deformation on the dynamics and acoustic signatures of coaxial interacting vortex rings. Both 'passage' and 'collision' (head-on) interactions are studied for initially identical vortices. Good correspondence with experiments is obtained. A simple model which retains only the elliptic degree of freedom in the core shape is used to explain some of the calculated features.

  13. Verification of Acoustic Propagation Over Natural and Synthetic Terrain

    DTIC Science & Technology

    2007-06-01

    34Collecting and Modeling Acoustic Signatures for D.F. Aldridge, and D.H. Marlin, "Time-domain calculations of Mortars , Shoulder-Fired Rockets, and UAV’s...Am., 120 (5, Pt. 2), pp. 3336-....... ...................... 3337, 2006. .1 0 so 100 ISO 0 s0 to0 IO 5. Dey , S. and D. K. Datta, "A parallel hp-FEM

  14. R&D 100 Winner 2010: Acoustic Wave Biosensors

    SciTech Connect

    Larson, Richard; Branch, Darren; Edwards, Thayne

    2016-06-07

    The acoustic wave biosensor is innovative device that is a handheld, battery-powered, portable detection system capable of multiplex identification of a wide range of medically relevant pathogens and their biomolecular signatures — viruses, bacteria, proteins, and DNA — at clinically relevant levels. This detection occurs within minutes — not hours — at the point of care, whether that care is in a physician's office, a hospital bed, or at the scene of a biodefense or biomedical emergency.

  15. Acoustic diffusers III

    NASA Astrophysics Data System (ADS)

    Bidondo, Alejandro

    2002-11-01

    This acoustic diffusion research presents a pragmatic view, based more on effects than causes and 15 very useful in the project advance control process, where the sound field's diffusion coefficient, sound field diffusivity (SFD), for its evaluation. Further research suggestions are presented to obtain an octave frequency resolution of the SFD for precise design or acoustical corrections.

  16. The Acoustical Environment.

    ERIC Educational Resources Information Center

    Smith, Melissa

    Asserting that without an adequate acoustical environment, learning activities can be hindered, this paper reviews the literature on classroom acoustics, particularly noise, reverberation, signal-to-noise ratio, task performance, and recommendations for improvement. Through this review, the paper seeks to determine whether portable classrooms…

  17. Acoustics Critical Readiness Review

    NASA Technical Reports Server (NTRS)

    Ballard, Kenny

    2010-01-01

    This presentation reviews the status of the acoustic equipment from the medical operations perspective. Included is information about the acoustic dosimeters, sound level meter, and headphones that are planned for use while on orbit. Finally there is information about on-orbit hearing assessments.

  18. Cystic acoustic schwannomas.

    PubMed

    Lunardi, P; Missori, P; Mastronardi, L; Fortuna, A

    1991-01-01

    Three cases with large space-occupying cysts in the cerebellopontine angle are reported. CT and MRI findings were not typical for acoustic schwannomas but at operation, besides the large cysts, small acoustic schwannomas could be detected and removed. The clinical and neuroradiological features of this unusual variety and the CT and MRI differential diagnosis of cerebellopontine angle lesions are discussed.

  19. The effects of reverberant self- and overlap-masking on speech recognition in cochlear implant listeners.

    PubMed

    Desmond, Jill M; Collins, Leslie M; Throckmorton, Chandra S

    2014-06-01

    Many cochlear implant (CI) listeners experience decreased speech recognition in reverberant environments [Kokkinakis et al., J. Acoust. Soc. Am. 129(5), 3221-3232 (2011)], which may be caused by a combination of self- and overlap-masking [Bolt and MacDonald, J. Acoust. Soc. Am. 21(6), 577-580 (1949)]. Determining the extent to which these effects decrease speech recognition for CI listeners may influence reverberation mitigation algorithms. This study compared speech recognition with ideal self-masking mitigation, with ideal overlap-masking mitigation, and with no mitigation. Under these conditions, mitigating either self- or overlap-masking resulted in significant improvements in speech recognition for both normal hearing subjects utilizing an acoustic model and for CI listeners using their own devices.

  20. Acoustic integrated extinction

    PubMed Central

    Norris, Andrew N.

    2015-01-01

    The integrated extinction (IE) is defined as the integral of the scattering cross section as a function of wavelength. Sohl et al. (2007 J. Acoust. Soc. Am. 122, 3206–3210. (doi:10.1121/1.2801546)) derived an IE expression for acoustic scattering that is causal, i.e. the scattered wavefront in the forward direction arrives later than the incident plane wave in the background medium. The IE formula was based on electromagnetic results, for which scattering is causal by default. Here, we derive a formula for the acoustic IE that is valid for causal and non-causal scattering. The general result is expressed as an integral of the time-dependent forward scattering function. The IE reduces to a finite integral for scatterers with zero long-wavelength monopole and dipole amplitudes. Implications for acoustic cloaking are discussed and a new metric is proposed for broadband acoustic transparency. PMID:27547100