Science.gov

Sample records for acoustic sounding system

  1. Early forest fire detection using radio-acoustic sounding system.

    PubMed

    Sahin, Yasar Guneri; Ince, Turker

    2009-01-01

    Automated early fire detection systems have recently received a significant amount of attention due to their importance in protecting the global environment. Some emergent technologies such as ground-based, satellite-based remote sensing and distributed sensor networks systems have been used to detect forest fires in the early stages. In this study, a radio-acoustic sounding system with fine space and time resolution capabilities for continuous monitoring and early detection of forest fires is proposed. Simulations show that remote thermal mapping of a particular forest region by the proposed system could be a potential solution to the problem of early detection of forest fires. PMID:22573967

  2. Early Forest Fire Detection Using Radio-Acoustic Sounding System

    PubMed Central

    Sahin, Yasar Guneri; Ince, Turker

    2009-01-01

    Automated early fire detection systems have recently received a significant amount of attention due to their importance in protecting the global environment. Some emergent technologies such as ground-based, satellite-based remote sensing and distributed sensor networks systems have been used to detect forest fires in the early stages. In this study, a radio-acoustic sounding system with fine space and time resolution capabilities for continuous monitoring and early detection of forest fires is proposed. Simulations show that remote thermal mapping of a particular forest region by the proposed system could be a potential solution to the problem of early detection of forest fires. PMID:22573967

  3. Suppression of sound radiation to far field of near-field acoustic communication system using evanescent sound field

    NASA Astrophysics Data System (ADS)

    Fujii, Ayaka; Wakatsuki, Naoto; Mizutani, Koichi

    2016-01-01

    A method of suppressing sound radiation to the far field of a near-field acoustic communication system using an evanescent sound field is proposed. The amplitude of the evanescent sound field generated from an infinite vibrating plate attenuates exponentially with increasing a distance from the surface of the vibrating plate. However, a discontinuity of the sound field exists at the edge of the finite vibrating plate in practice, which broadens the wavenumber spectrum. A sound wave radiates over the evanescent sound field because of broadening of the wavenumber spectrum. Therefore, we calculated the optimum distribution of the particle velocity on the vibrating plate to reduce the broadening of the wavenumber spectrum. We focused on a window function that is utilized in the field of signal analysis for reducing the broadening of the frequency spectrum. The optimization calculation is necessary for the design of window function suitable for suppressing sound radiation and securing a spatial area for data communication. In addition, a wide frequency bandwidth is required to increase the data transmission speed. Therefore, we investigated a suitable method for calculating the sound pressure level at the far field to confirm the variation of the distribution of sound pressure level determined on the basis of the window shape and frequency. The distribution of the sound pressure level at a finite distance was in good agreement with that obtained at an infinite far field under the condition generating the evanescent sound field. Consequently, the window function was optimized by the method used to calculate the distribution of the sound pressure level at an infinite far field using the wavenumber spectrum on the vibrating plate. According to the result of comparing the distributions of the sound pressure level in the cases with and without the window function, it was confirmed that the area whose sound pressure level was reduced from the maximum level to -50 dB was

  4. System and method for characterizing, synthesizing, and/or canceling out acoustic signals from inanimate sound sources

    DOEpatents

    Holzrichter, John F.; Burnett, Greg C.; Ng, Lawrence C.

    2007-10-16

    A system and method for characterizing, synthesizing, and/or canceling out acoustic signals from inanimate sound sources is disclosed. Propagating wave electromagnetic sensors monitor excitation sources in sound producing systems, such as machines, musical instruments, and various other structures. Acoustical output from these sound producing systems is also monitored. From such information, a transfer function characterizing the sound producing system is generated. From the transfer function, acoustical output from the sound producing system may be synthesized or canceled. The methods disclosed enable accurate calculation of matched transfer functions relating specific excitations to specific acoustical outputs. Knowledge of such signals and functions can be used to effect various sound replication, sound source identification, and sound cancellation applications.

  5. System and method for characterizing synthesizing and/or canceling out acoustic signals from inanimate sound sources

    DOEpatents

    Holzrichter, John F.; Burnett, Greg C.; Ng, Lawrence C.

    2003-01-01

    A system and method for characterizing, synthesizing, and/or canceling out acoustic signals from inanimate sound sources is disclosed. Propagating wave electromagnetic sensors monitor excitation sources in sound producing systems, such as machines, musical instruments, and various other structures. Acoustical output from these sound producing systems is also monitored. From such information, a transfer function characterizing the sound producing system is generated. From the transfer function, acoustical output from the sound producing system may be synthesized or canceled. The methods disclosed enable accurate calculation of matched transfer functions relating specific excitations to specific acoustical outputs. Knowledge of such signals and functions can be used to effect various sound replication, sound source identification, and sound cancellation applications.

  6. System and method for characterizing, synthesizing, and/or canceling out acoustic signals from inanimate sound sources

    DOEpatents

    Holzrichter, John F; Burnett, Greg C; Ng, Lawrence C

    2013-05-21

    A system and method for characterizing, synthesizing, and/or canceling out acoustic signals from inanimate sound sources is disclosed. Propagating wave electromagnetic sensors monitor excitation sources in sound producing systems, such as machines, musical instruments, and various other structures. Acoustical output from these sound producing systems is also monitored. From such information, a transfer function characterizing the sound producing system is generated. From the transfer function, acoustical output from the sound producing system may be synthesized or canceled. The methods disclosed enable accurate calculation of matched transfer functions relating specific excitations to specific acoustical outputs. Knowledge of such signals and functions can be used to effect various sound replication, sound source identification, and sound cancellation applications.

  7. Acoustic metamaterials for sound mitigation

    NASA Astrophysics Data System (ADS)

    Assouar, Badreddine; Oudich, Mourad; Zhou, Xiaoming

    2016-05-01

    We provide theoretical and numerical analyses of the behavior of a plate-type acoustic metamaterial considered in an air-borne sound environment in view of sound mitigation application. Two configurations of plate are studied, a spring-mass one and a pillar system-based one. The acoustic performances of the considered systems are investigated with different approaches and show that a high sound transmission loss (STL) up to 82 dB is reached with a metamaterial plate with a thickness of 0.5 mm. The physical understanding of the acoustic behavior of the metamaterial partition is discussed based on both air-borne and structure-borne approaches. Confrontation between the STL, the band structure, the displacement fields and the effective mass density of the plate metamaterial is made to have a complete physical understanding of the different mechanisms involved. xml:lang="fr"

  8. Acoustic Performance of a Real-Time Three-Dimensional Sound-Reproduction System

    NASA Technical Reports Server (NTRS)

    Faller, Kenneth J., II; Rizzi, Stephen A.; Aumann, Aric R.

    2013-01-01

    The Exterior Effects Room (EER) is a 39-seat auditorium at the NASA Langley Research Center and was built to support psychoacoustic studies of aircraft community noise. The EER has a real-time simulation environment which includes a three-dimensional sound-reproduction system. This system requires real-time application of equalization filters to compensate for spectral coloration of the sound reproduction due to installation and room effects. This paper describes the efforts taken to develop the equalization filters for use in the real-time sound-reproduction system and the subsequent analysis of the system s acoustic performance. The acoustic performance of the compensated and uncompensated sound-reproduction system is assessed for its crossover performance, its performance under stationary and dynamic conditions, the maximum spatialized sound pressure level it can produce from a single virtual source, and for the spatial uniformity of a generated sound field. Additionally, application examples are given to illustrate the compensated sound-reproduction system performance using recorded aircraft flyovers

  9. Controlling sound with acoustic metamaterials

    NASA Astrophysics Data System (ADS)

    Cummer, Steven A.; Christensen, Johan; Alù, Andrea

    2016-03-01

    Acoustic metamaterials can manipulate and control sound waves in ways that are not possible in conventional materials. Metamaterials with zero, or even negative, refractive index for sound offer new possibilities for acoustic imaging and for the control of sound at subwavelength scales. The combination of transformation acoustics theory and highly anisotropic acoustic metamaterials enables precise control over the deformation of sound fields, which can be used, for example, to hide or cloak objects from incident acoustic energy. Active acoustic metamaterials use external control to create effective material properties that are not possible with passive structures and have led to the development of dynamically reconfigurable, loss-compensating and parity-time-symmetric materials for sound manipulation. Challenges remain, including the development of efficient techniques for fabricating large-scale metamaterial structures and converting laboratory experiments into useful devices. In this Review, we outline the designs and properties of materials with unusual acoustic parameters (for example, negative refractive index), discuss examples of extreme manipulation of sound and, finally, provide an overview of future directions in the field.

  10. PC-based real-time acoustic source locator and sound capture system for teleconferencing

    NASA Astrophysics Data System (ADS)

    Morde, Ashutosh; Grove, Deborah; Utama, Robert

    2002-05-01

    A PC-based real time acoustic source locator and sound capture system has been developed. The system is implemented using Frontier Design A/D converters and the Intel Signal Processing Library directly on a 1 GHz Pentium III machine, without a DSP board. The source locator uses the cross-power spectral phase to locate a moving talker. The algorithm also uses an energy detector that minimizes incorrect location estimates by neglecting frames with high background noise. The source locator provides 8 location estimates per second. A 16-element 0.90 m linear delay-sum beamformer has also been implemented in the system as a method for selective sound capture. The ability of the source locator to detect talkers in a typical office environment is evaluated. In addition, the array response is measured. [Work supported by Intel.

  11. The utility of a long-term acoustic recording system for detecting white seabass Atractoscion nobilis spawning sounds.

    PubMed

    Aalbers, S A; Sepulveda, C A

    2012-11-01

    This study reports the use of a long-term acoustic recording system (LARS) to remotely monitor white seabass Atractoscion nobilis spawning sounds at three sites along the southern California coastline, adjacent to Camp Pendleton. On the basis of previous studies of A. nobilis sound production relative to periods of known spawning activity, LARS were set to continuously record ambient sounds for a 2 h period around sunset from April to June 2009. Acoustic analyses identified A. nobilis courtship sounds on 89, 28 and 45% of the days at the three locations, respectively. From 474 h of acoustic data, spawning-related sounds (chants) were detected on 19 occasions in 2009 with an additional 11 spawning chants recorded during a 2007 validation period. Most spawning chants occurred within 30 min of sunset during the months of May and June at a mean ±S.D. surface temperature of 18.2 ± 1.2° C. Consecutive daily spawning activity was not apparent at any sites in 2009. Atractoscion nobilis spawning chants were recorded at all three sites, suggesting that shallow rocky reefs which support kelp forests provide suitable A. nobilis spawning habitat. Results confirm the utility of passive acoustic recorders for identifying A. nobilis spawning periods and locations. PMID:23130687

  12. Parallel direct numerical simulation of wake vortex detection using monostatic and bistatic radio acoustic sounding systems

    NASA Astrophysics Data System (ADS)

    Boluriaan Esfahaani, Said

    A parallel two-dimensional code is developed in this thesis to numerically simulate wake vortex detection using a Radio Acoustic Sounding System (RASS). The Maxwell equations for media with non-uniform permittivity and the linearized Euler equations for media with non-uniform mean flow are the main framework for the simulations. The code is written in Fortran 90 with the Message Passing Interface (MPI) for parallel implementation. The main difficulty encountered with a time accurate simulation of a RASS is the number of samples required to resolve the Doppler shift in the scattered electromagnetic signal. Even for a 1D simulation with a typical scatterer size, the CPU time required to run the code is far beyond currently available computer resources. Two solutions that overcome this problem are described. In the first the actual electromagnetic wave propagation speed is replaced with a much lower value. This allows an explicit, time accurate numerical scheme to be used. In the second the governing differential equations are recast in order to remove the carrier frequency and solve only for the frequency shift using an implicit scheme with large time steps. The numerical stability characteristics of the resulting discretized equation with complex coefficients are examined. A number of cases for both the monostatic and bistatic configurations are considered. First, a uniform mean flow is considered and the RASS simulation is performed for two different types of incident acoustic field, namely a short single frequency acoustic pulse and a continuous broadband acoustic source. Both the explicit and implicit schemes are examined and the mean flow velocity is determined from the spectrum of the backscattered electromagnetic signal with very good accuracy. Second, the Taylor and Oseen vortex models are considered and their velocity field along the incident electromagnetic beam is retrieved. The Abel transform is then applied to the velocity profiles determined by both

  13. Sound reproduction in personal audio systems using the least-squares approach with acoustic contrast control constraint.

    PubMed

    Cai, Yefeng; Wu, Ming; Yang, Jun

    2014-02-01

    This paper describes a method for focusing the reproduced sound in the bright zone without disturbing other people in the dark zone in personal audio systems. The proposed method combines the least-squares and acoustic contrast criteria. A constrained parameter is introduced to tune the balance between two performance indices, namely, the acoustic contrast and the spatial average error. An efficient implementation of this method using convex optimization is presented. Offline simulations and real-time experiments using a linear loudspeaker array are conducted to evaluate the performance of the presented method. Results show that compared with the traditional acoustic contrast control method, the proposed method can improve the flatness of response in the bright zone by sacrificing the level of acoustic contrast. PMID:25234882

  14. Acoustic Gaits: Gait Analysis With Footstep Sounds.

    PubMed

    Altaf, M Umair Bin; Butko, Taras; Juang, Biing-Hwang Fred

    2015-08-01

    We describe the acoustic gaits-the natural human gait quantitative characteristics derived from the sound of footsteps as the person walks normally. We introduce the acoustic gait profile, which is obtained from temporal signal analysis of sound of footsteps collected by microphones and illustrate some of the spatio-temporal gait parameters that can be extracted from the acoustic gait profile by using three temporal signal analysis methods-the squared energy estimate, Hilbert transform and Teager-Kaiser energy operator. Based on the statistical analysis of the parameter estimates, we show that the spatio-temporal parameters and gait characteristics obtained using the acoustic gait profile can consistently and reliably estimate a subset of clinical and biometric gait parameters currently in use for standardized gait assessments. We conclude that the Teager-Kaiser energy operator provides the most consistent gait parameter estimates showing the least variation across different sessions and zones. Acoustic gaits use an inexpensive set of microphones with a computing device as an accurate and unintrusive gait analysis system. This is in contrast to the expensive and intrusive systems currently used in laboratory gait analysis such as the force plates, pressure mats and wearable sensors, some of which may change the gait parameters that are being measured. PMID:25769144

  15. Refractive acoustic devices for airborne sound.

    PubMed

    Cervera, F; Sanchis, L; Sánchez-Pérez, J V; Martínez-Sala, R; Rubio, C; Meseguer, F; López, C; Caballero, D; Sánchez-Dehesa, J

    2002-01-14

    We show that a sonic crystal made of periodic distributions of rigid cylinders in air acts as a new material which allows the construction of refractive acoustic devices for airborne sound. It is demonstrated that, in the long-wave regime, the crystal has low impedance and the sound is transmitted at subsonic velocities. Here, the fabrication and characterization of a convergent lens are presented. Also, an example of a Fabry-Perot interferometer based on this crystal is analyzed. It is concluded that refractive devices based on sonic crystals behave in a manner similar to that of optical systems. PMID:11801014

  16. Sound reduction by metamaterial-based acoustic enclosure

    SciTech Connect

    Yao, Shanshan; Li, Pei; Zhou, Xiaoming; Hu, Gengkai

    2014-12-15

    In many practical systems, acoustic radiation control on noise sources contained within a finite volume by an acoustic enclosure is of great importance, but difficult to be accomplished at low frequencies due to the enhanced acoustic-structure interaction. In this work, we propose to use acoustic metamaterials as the enclosure to efficiently reduce sound radiation at their negative-mass frequencies. Based on a circularly-shaped metamaterial model, sound radiation properties by either central or eccentric sources are analyzed by numerical simulations for structured metamaterials. The parametric analyses demonstrate that the barrier thickness, the cavity size, the source type, and the eccentricity of the source have a profound effect on the sound reduction. It is found that increasing the thickness of the metamaterial barrier is an efficient approach to achieve large sound reduction over the negative-mass frequencies. These results are helpful in designing highly efficient acoustic enclosures for blockage of sound in low frequencies.

  17. Anatomic and acoustic sexual dimorphism in the sound emission system of Phoenicoprocta capistrata (Lepidoptera: Arctiidae)

    NASA Astrophysics Data System (ADS)

    Rodríguez-Loeches, Laura; Barro, Alejandro; Pérez, Martha; Coro, Frank

    2009-04-01

    Both sexes of Phoenicoprocta capistrata have functional tymbals. The scanning electron microscopy revealed differences in the morphology of these organs in males and females. Male tymbals have a well-developed striated band, constituted by 21 ± 2 regularly arranged striae whereas female tymbals lack a striated band. This type of sexual dimorphism is rare in Arctiidae. The recording of the sound produced by moths held by the wings revealed that while males produced trains of pulses organized in modulation cycles, females produced clicks at low repetition rate following very irregular patterns. Statistically, there are differences between sexes in terms of the duration of pulses, which were 355 ± 24 μs in the case of males and 289 ± 29 μs for females. The spectral characteristics of the pulses also show sexual dimorphism. Male pulses are more tuned ( Q 10 = 5.2 ± 0.5) than female pulses ( Q 10 = 2.7 ± 0.5) and have a higher best frequency (42 ± 1 kHz vs. 29 ± 2 kHz). To our knowledge, this is the first report on an arctiid moth showing sexual dimorphism in tymbal’s anatomy that leads to a best frequency dimorphism. Males produce sound at mating attempts. The sounds recorded during mating are modulation cycles with the same spectral characteristics as those recorded when males are held by the wings. The morphological and acoustic features of female tymbals could indicate a process of degeneration and adaptation to conditions under which the emission of complex patterns is not necessary.

  18. Compressive acoustic sound speed profile estimation.

    PubMed

    Bianco, Michael; Gerstoft, Peter

    2016-03-01

    Ocean acoustic sound speed profile (SSP) estimation requires the inversion of acoustic fields using limited observations. Compressive sensing (CS) asserts that certain underdetermined problems can be solved in high resolution, provided their solutions are sparse. Here, CS is used to estimate SSPs in a range-independent shallow ocean by inverting a non-linear acoustic propagation model. It is shown that SSPs can be estimated using CS to resolve fine-scale structure. PMID:27036293

  19. The Sounds of Nanoscience: Acoustic STM Analogues

    ERIC Educational Resources Information Center

    Euler, Manfred

    2013-01-01

    A hands-on model of scanning tunnelling microscopy (STM) is presented. It uses near-field imaging with sound and computer assisted visualization to create acoustic mappings of resonator arrangements. Due to the (partial) analogy of matter and sound waves the images closely resemble STM scans of atoms. Moreover, the method can be extended to build…

  20. Acoustical comfort of vehicles: A combination of sound and vibration

    NASA Astrophysics Data System (ADS)

    Genuit, Klaus; Schutte-Fortkamp, Brigitte; Fiebig, Andre

    2005-09-01

    As vehicles become more and more quiet, the customer's sensitivity to acoustical comfort increases. The acoustical comfort is not independent of the vibrations the driver can feel in the seat and at the steering. The passenger of a vehicle must be regarded as part of a vibro-acoustic system. Correspondingly, the subjective judgement which passengers make about their impression of levels of acoustic comfort encompasses both sound and vibration. Achievement in this field depends on obtaining knowledge about the interaction between sound and vibration and how these factors impact subjective evaluation. To save time and money prediction tools for the estimation of sound and vibration contributions into the vehicle cabin are very important in order to simulate the final comfort with respect to sound and vibration. Based on the binaural transfer path analysis in combination with the binaural transfer path synthesis a sound and vibration reproduction in a so-called SoundCar can be realized with a very good simulation of a real situation of a car. First research tests completed for the European research project OBELICS (Objective Evaluation of Interior Car Sound) have shown that the use of SoundCar may result in more reliable sound characteristic and quality evaluation.

  1. Physics of thermo-acoustic sound generation

    NASA Astrophysics Data System (ADS)

    Daschewski, M.; Boehm, R.; Prager, J.; Kreutzbruck, M.; Harrer, A.

    2013-09-01

    We present a generalized analytical model of thermo-acoustic sound generation based on the analysis of thermally induced energy density fluctuations and their propagation into the adjacent matter. The model provides exact analytical prediction of the sound pressure generated in fluids and solids; consequently, it can be applied to arbitrary thermal power sources such as thermophones, plasma firings, laser beams, and chemical reactions. Unlike existing approaches, our description also includes acoustic near-field effects and sound-field attenuation. Analytical results are compared with measurements of sound pressures generated by thermo-acoustic transducers in air for frequencies up to 1 MHz. The tested transducers consist of titanium and indium tin oxide coatings on quartz glass and polycarbonate substrates. The model reveals that thermo-acoustic efficiency increases linearly with the supplied thermal power and quadratically with thermal excitation frequency. Comparison of the efficiency of our thermo-acoustic transducers with those of piezoelectric-based airborne ultrasound transducers using impulse excitation showed comparable sound pressure values. The present results show that thermo-acoustic transducers can be applied as broadband, non-resonant, high-performance ultrasound sources.

  2. Measurement of the speed of sound in trabecular bone by using a time reversal acoustics focusing system

    NASA Astrophysics Data System (ADS)

    Lee, Kang Il; Choi, Bok Kyoung

    2014-10-01

    A new method for measuring the speed of sound (SOS) in trabecular bone by using a time reversal acoustics (TRA) focusing system was proposed and validated with measurements obtained by using the conventional pulse-transmission technique. The SOS measured in 14 bovine femoral trabecular bone samples by using the two methods was highly correlated each other, although the SOS measured by using the TRA focusing system was slightly lower by an average of 2.2 m/s. The SOS measured by using the two methods showed high correlation coefficients of r = 0.92 with the apparent bone density, consistent with the behavior in human trabecular bone in vitro. These results prove the efficacy of the new method based on the principle of TRA to measure the SOS in trabecular bone.

  3. Sound Advice on Classroom Acoustics.

    ERIC Educational Resources Information Center

    Sturgeon, Julie

    2003-01-01

    Discusses the importance of acoustic standards in classroom design, presenting an interview with the Acoustical Society of America's (ASA's) standards manager which focuses on reasons for the new ASA standards, the standards document (which was written for K-12 classroom but applies to college classrooms), the need to avoid echo and be able to…

  4. Results from long-term detection of mixing layer height: ceilometer and comparison with Radio-Acoustic Sounding System

    NASA Astrophysics Data System (ADS)

    Schäfer, Klaus; Emeis, Stefan; Jahn, Carsten; Tuma, Michael; Münkel, Christoph; Suppan, Peter

    2012-11-01

    The mixing layer height (MLH) is an important factor which influences exchange processes of ground level emissions. The continuous knowledge of MLH is supporting the understanding of processes directing air quality. If the MLH is located near to the ground, which occurs mainly during winter and night-time, air pollution can be high due to a strongly limited air mass dilution. Since 2006 different methods for long-term continuous remote sensing of mixing layer height (MLH) are operated in Augsburg. The Vaisala ceilometers LD40 and CL31 are used which are eye-safe commercial mini-lidar systems. The ceilometer measurements provide information about the range-dependent aerosol concentration; gradient minima within this profile mark the borders of mixed layers. Special software for these ceilometers provides routine retrievals of lower atmosphere layering from vertical profiles of laser backscatter data. The radiosonde data from the station Oberschleissheim near Munich (about 50 km away from Augsburg city) are also used for MLH determination. The profile behavior of relative humidity (strong decrease) and virtual potential temperature (inversion) of the radiosonde agree mostly well with the MLH indication from ceilometer laser backscatter density gradients. A RASS (Radio-Acoustic Sounding System) from Metek is applied which detects the height of a turbulent layer characterized by high acoustic backscatter intensities due to thermal fluctuations and a high variance of the vertical velocity component as well as the vertical temperature profile from the detection of acoustic signal propagation and thus temperature inversions which mark atmospheric layers. These data of RASS measurements are the input for a software-based determination of MLH. A comparison of the results of the remote sensing methods during simultaneous measurements was performed. The information content of the different remote sensing instruments for MLH in dependence from different weather classes was

  5. Characterizing, synthesizing, and/or canceling out acoustic signals from sound sources

    DOEpatents

    Holzrichter, John F.; Ng, Lawrence C.

    2007-03-13

    A system for characterizing, synthesizing, and/or canceling out acoustic signals from inanimate and animate sound sources. Electromagnetic sensors monitor excitation sources in sound producing systems, such as animate sound sources such as the human voice, or from machines, musical instruments, and various other structures. Acoustical output from these sound producing systems is also monitored. From such information, a transfer function characterizing the sound producing system is generated. From the transfer function, acoustical output from the sound producing system may be synthesized or canceled. The systems disclosed enable accurate calculation of transfer functions relating specific excitations to specific acoustical outputs. Knowledge of such signals and functions can be used to effect various sound replication, sound source identification, and sound cancellation applications.

  6. Sound Science: Taking Action with Acoustics

    SciTech Connect

    Sinha, Dipen

    2014-07-16

    From tin whistles to sonic booms, sound waves interact with each other and with the medium through which they travel. By observing these interactions, we can identify substances that are hidden in sealed containers and obtain images of buried objects. By manipulating the ability of sound to push matter around, we can create novel structures and unique materials. Join the Lab's own sound hound, Dipen Sinha, as he describes how he uses fundamental research in acoustics for solving problems in industry, security and health.

  7. Sound Science: Taking Action with Acoustics

    ScienceCinema

    Sinha, Dipen

    2014-07-21

    From tin whistles to sonic booms, sound waves interact with each other and with the medium through which they travel. By observing these interactions, we can identify substances that are hidden in sealed containers and obtain images of buried objects. By manipulating the ability of sound to push matter around, we can create novel structures and unique materials. Join the Lab's own sound hound, Dipen Sinha, as he describes how he uses fundamental research in acoustics for solving problems in industry, security and health.

  8. Acoustic radar sounding of the lower atmosphere

    NASA Technical Reports Server (NTRS)

    Mcallister, L. G.

    1972-01-01

    Acoustic radar sounding techniques were used to measure the wind velocity and direction in the first 300 m of the atmosphere. Angle-of-arrival and Doppler techniques were developed to obtain two independent measurements of the wind field. These techniques and preliminary experimental results are described briefly.

  9. Perception of acoustic scale and size in musical instrument sounds

    PubMed Central

    van Dinther, Ralph; Patterson, Roy D.

    2010-01-01

    There is size information in natural sounds. For example, as humans grow in height, their vocal tracts increase in length, producing a predictable decrease in the formant frequencies of speech sounds. Recent studies have shown that listeners can make fine discriminations about which of two speakers has the longer vocal tract, supporting the view that the auditory system discriminates changes on the acoustic-scale dimension. Listeners can also recognize vowels scaled well beyond the range of vocal tracts normally experienced, indicating that perception is robust to changes in acoustic scale. This paper reports two perceptual experiments designed to extend research on acoustic scale and size perception to the domain of musical sounds: The first study shows that listeners can discriminate the scale of musical instrument sounds reliably, although not quite as well as for voices. The second experiment shows that listeners can recognize the family of an instrument sound which has been modified in pitch and scale beyond the range of normal experience. We conclude that processing of acoustic scale in music perception is very similar to processing of acoustic scale in speech perception. PMID:17069313

  10. Advances In Atmospheric Acoustic Sounding

    NASA Astrophysics Data System (ADS)

    Bradley, S. G.; von Hunerbein, S.

    Acoustic sounders (SODAR) have developed as a useful and reliable operational tool for atmospheric boundary layer studies. This means that the effort in SODAR design can now be directed toward extended range, more compact design, use in more dif- ficult environments, and into extracting more information content from the scattered signals. We describe leading-edge developments and approaches in each of these ar- eas, but particularly with reference to the work by the Salford UK team. Specifically, we discuss: new hardware implementations using pulse-coding; progress and the pro- jected use of a suitcase-SODAR; baffle/beam requirements for use in urban environ- ments; multi-frequency methods of separating observables; use of multiple-SODAR arrays; multi-phase precipitation measurements; and inverse-method techniques for systematic optimization of data retrievals.

  11. Visualizing Sound: Demonstrations to Teach Acoustic Concepts

    NASA Astrophysics Data System (ADS)

    Rennoll, Valerie

    Interference, a phenomenon in which two sound waves superpose to form a resultant wave of greater or lower amplitude, is a key concept when learning about the physics of sound waves. Typical interference demonstrations involve students listening for changes in sound level as they move throughout a room. Here, new tools are developed to teach this concept that provide a visual component, allowing individuals to see changes in sound level on a light display. This is accomplished using a microcontroller that analyzes sound levels collected by a microphone and displays the sound level in real-time on an LED strip. The light display is placed on a sliding rail between two speakers to show the interference occurring between two sound waves. When a long-exposure photograph is taken of the light display being slid from one end of the rail to the other, a wave of the interference pattern can be captured. By providing a visual component, these tools will help students and the general public to better understand interference, a key concept in acoustics.

  12. Acoustic cloaking by extraordinary sound transmission

    NASA Astrophysics Data System (ADS)

    Zhao, Jiajun; Chen, Zhi Ning; Li, Baowen; Qiu, Cheng-Wei

    2015-06-01

    Isotropic acoustic cloaking is proposed using density-near-zero materials for extraordinary sound transmission. The cloaking cell is made by single-piece homogeneous elastic copper, which can be detached and assembled arbitrarily. We theoretically and numerically demonstrate the cloaking performance by deploying density-near-zero cells in various ways in two-dimensional space as well as in acoustic waveguides. The density-near-zero material can make any inside objects imperceptible along undistorted sound paths. Individually and collectively, the cloaking cell maintains both the planar wavefront and the nearly perfect one-dimensional transmission, in presence of any inserted object. The overall cloaked space can be designed by adding cells without the limit of the total cloaked volume.

  13. Numerical analysis of sound propagation for acoustic lens array in different fluid mediums

    NASA Astrophysics Data System (ADS)

    Fujisawa, Kei; Asada, Akira

    2014-11-01

    In this paper, an acoustic sound focusing method using acoustic lens array is investigated numerically. To understand the sound propagation in the acoustic field in water with a lens material of glycerin, compressible Navier-Stokes equation, the mass conservation, energy equation, state equation in cylindrical coordinate system are solved without applying parabolic approximation. The numerical method is based on the finite difference time domain method. The numerical calculation of the sound propagation is carried out in the near field of the acoustic lens array of variable thickness normal to the acoustic beam. The numerical result shows that the sound pressure level along the beam axis increases due to the influence of the acoustic lens array, which indicates the capability of the acoustic lens array to the sound focusing.

  14. Fourth-order acoustic torque in intense sound fields

    NASA Technical Reports Server (NTRS)

    Wang, T. G.; Kanber, H.; Olli, E. E.

    1978-01-01

    The observation of a fourth-order acoustic torque in intense sound fields is reported. The torque was determined by measuring the acoustically induced angular deflection of a polished cylinder suspended by a torsion fiber. This torque was measured in a sound field of amplitude greater than that in which first-order acoustic torque has been observed.

  15. Sound isolation performance of interior acoustical sash

    NASA Astrophysics Data System (ADS)

    Tocci, Gregory

    2002-05-01

    In existing, as well as new buildings, an interior light of glass mounted on the inside of a prime window is used to improve the sound transmission loss otherwise obtained by the prime window alone. Interior acoustical sash is most often 1/4 in. (6 mm) monolithic or laminated glass, and is typically spaced 3 in. to 6 in. from the glass of the prime window. This paper presents TL data measured at Riverbank Acoustical Laboratories by Solutia (formerly Monsanto) for lightweight prime windows of various types, with and without interior acoustical sash glazed with 1/4 in. laminated glass. The TL data are used to estimate the A-weighted insertion loss of interior acoustical sash when applied to prime windows glazed with lightweight glass for four transportation noise source types-highway traffic, aircraft, electric rail, and diesel rail. The analysis also has been extended to determine the insertion loss expressed as a change in OITC. The data also exhibit the reductions in insertion loss that can result from short-circuiting the interior acoustical sash with the prime window. [Work supported by Solutia, Inc.

  16. Acoustic boundary control method for interior sound suppression

    NASA Astrophysics Data System (ADS)

    Sun, Jian Q.; Hirsch, S. M.

    1997-06-01

    Suppressing interior sound radiation in helicopters, fixed- wing aircraft and land vehicles is a very important problem. It has been studied quite extensively in the past few decades. There are two mainstream methods for this problem: active noise cancellation (ANC) using loudspeakers and sound radiation reduction via structural controls (often called active structural acoustic control or ASAC). An ANC system often requires an impractically high dimensionality to achieve the level of global noise reduction in a three dimensional volume that ASAC systems with a relatively low dimensionality are capable of, while actuators for structural control systems are power intensive and less reliable. This paper presents an acoustic boundary control method that may reserve the advantages of both ANC and ASAC. Numerical simulation results of interior noise control are presented to demonstrate the ability of the acoustic boundary control to cancel sound fields due to different primary sources. A discussion is also presented on the spatial characteristics of the acoustic boundary control as a function of frequency. An interesting phenomenon is discovered that may have significant implications to the actuator grouping studies.

  17. Sound absorption of microperforated panels inside compact acoustic enclosures

    NASA Astrophysics Data System (ADS)

    Yang, Cheng; Cheng, Li

    2016-01-01

    This paper investigates the sound absorption effect of microperforated panels (MPPs) in small-scale enclosures, an effort stemming from the recent interests in using MPPs for noise control in compact mechanical systems. Two typical MPP backing cavity configurations (an empty backing cavity and a honeycomb backing structure) are studied. Although both configurations provide basically the same sound absorption curves from standard impedance tube measurements, their in situ sound absorption properties, when placed inside a small enclosure, are drastically different. This phenomenon is explained using a simple system model based on modal analyses. It is shown that the accurate prediction of the in situ sound absorption of the MPPs inside compact acoustic enclosures requires meticulous consideration of the configuration of the backing cavity and its coupling with the enclosure in front. The MPP structure should be treated as part of the entire system, rather than an absorption boundary characterized by the surface impedance, calculated or measured in simple acoustic environment. Considering the spatial matching between the acoustic fields across the MPP, the possibility of attenuating particular enclosure resonances by partially covering the enclosure wall with a properly designed MPP structure is also demonstrated.

  18. Origami acoustics: using principles of folding structural acoustics for simple and large focusing of sound energy

    NASA Astrophysics Data System (ADS)

    Harne, Ryan L.; Lynd, Danielle T.

    2016-08-01

    Fixed in spatial distribution, arrays of planar, electromechanical acoustic transducers cannot adapt their wave energy focusing abilities unless each transducer is externally controlled, creating challenges for the implementation and portability of such beamforming systems. Recently, planar, origami-based structural tessellations are found to facilitate great versatility in system function and properties through kinematic folding. In this research we bridge the physics of acoustics and origami-based design to discover that the simple topological reconfigurations of a Miura-ori-based acoustic array yield many orders of magnitude worth of reversible change in wave energy focusing: a potential for acoustic field morphing easily obtained through deployable, tessellated architectures. Our experimental and theoretical studies directly translate the roles of folding the tessellated array to the adaptations in spectral and spatial wave propagation sensitivities for far field energy transmission. It is shown that kinematic folding rules and flat-foldable tessellated arrays collectively provide novel solutions to the long-standing challenges of conventional, electronically-steered acoustic beamformers. While our examples consider sound radiation from the foldable array in air, linear acoustic reciprocity dictates that the findings may inspire new innovations for acoustic receivers, e.g. adaptive sound absorbers and microphone arrays, as well as concepts that include water-borne waves.

  19. Ares I Scale Model Acoustic Test Above Deck Water Sound Suppression Results

    NASA Technical Reports Server (NTRS)

    Counter, Douglas D.; Houston, Janice D.

    2011-01-01

    The Ares I Scale Model Acoustic Test (ASMAT) program test matrix was designed to determine the acoustic reduction for the Liftoff acoustics (LOA) environment with an above deck water sound suppression system. The scale model test can be used to quantify the effectiveness of the water suppression system as well as optimize the systems necessary for the LOA noise reduction. Several water flow rates were tested to determine which rate provides the greatest acoustic reductions. Preliminary results are presented.

  20. Monaural sound localization based on structure-induced acoustic resonance.

    PubMed

    Kim, Keonwook; Kim, Youngwoong

    2015-01-01

    A physical structure such as a cylindrical pipe controls the propagated sound spectrum in a predictable way that can be used to localize the sound source. This paper designs a monaural sound localization system based on multiple pyramidal horns around a single microphone. The acoustic resonance within the horn provides a periodicity in the spectral domain known as the fundamental frequency which is inversely proportional to the radial horn length. Once the system accurately estimates the fundamental frequency, the horn length and corresponding angle can be derived by the relationship. The modified Cepstrum algorithm is employed to evaluate the fundamental frequency. In an anechoic chamber, localization experiments over azimuthal configuration show that up to 61% of the proper signal is recognized correctly with 30% misfire. With a speculated detection threshold, the system estimates direction 52% in positive-to-positive and 34% in negative-to-positive decision rate, on average. PMID:25668214

  1. Monaural Sound Localization Based on Structure-Induced Acoustic Resonance

    PubMed Central

    Kim, Keonwook; Kim, Youngwoong

    2015-01-01

    A physical structure such as a cylindrical pipe controls the propagated sound spectrum in a predictable way that can be used to localize the sound source. This paper designs a monaural sound localization system based on multiple pyramidal horns around a single microphone. The acoustic resonance within the horn provides a periodicity in the spectral domain known as the fundamental frequency which is inversely proportional to the radial horn length. Once the system accurately estimates the fundamental frequency, the horn length and corresponding angle can be derived by the relationship. The modified Cepstrum algorithm is employed to evaluate the fundamental frequency. In an anechoic chamber, localization experiments over azimuthal configuration show that up to 61% of the proper signal is recognized correctly with 30% misfire. With a speculated detection threshold, the system estimates direction 52% in positive-to-positive and 34% in negative-to-positive decision rate, on average. PMID:25668214

  2. Acoustic signatures of sound source-tract coupling

    NASA Astrophysics Data System (ADS)

    Arneodo, Ezequiel M.; Perl, Yonatan Sanz; Mindlin, Gabriel B.

    2011-04-01

    Birdsong is a complex behavior, which results from the interaction between a nervous system and a biomechanical peripheral device. While much has been learned about how complex sounds are generated in the vocal organ, little has been learned about the signature on the vocalizations of the nonlinear effects introduced by the acoustic interactions between a sound source and the vocal tract. The variety of morphologies among bird species makes birdsong a most suitable model to study phenomena associated to the production of complex vocalizations. Inspired by the sound production mechanisms of songbirds, in this work we study a mathematical model of a vocal organ, in which a simple sound source interacts with a tract, leading to a delay differential equation. We explore the system numerically, and by taking it to the weakly nonlinear limit, we are able to examine its periodic solutions analytically. By these means we are able to explore the dynamics of oscillatory solutions of a sound source-tract coupled system, which are qualitatively different from those of a sound source-filter model of a vocal organ. Nonlinear features of the solutions are proposed as the underlying mechanisms of observed phenomena in birdsong, such as unilaterally produced “frequency jumps,” enhancement of resonances, and the shift of the fundamental frequency observed in heliox experiments.

  3. Radio wave propagation and acoustic sounding

    NASA Astrophysics Data System (ADS)

    Singal, S. P.

    Radio wave propagation of the decimetric and centimetric waves depends to a large extent on the boundary layer meteorological conditions which give rise to severe fadings, very often due to multipath propagation. Sodar is one of the inexpensive remote sensing techniques which can be employed to probe the boundary layer structure. In the paper a historical perspective has been given of the simultaneously conducted studies on radio waves and sodar at various places. The radio meteorological information needed for propagation studies has been clearly spelt out and conditions of a ray path especially in the presence of a ducting layer have been defined as giving rise to fading or signal enhancement conditions. Finally the potential of the sodar studies to obtain information about the boundary layer phenomena has been stressed, clearly spelling out the use of acoustic sounding in radio wave propagation studies.

  4. Emission Enhancement of Sound Emitters using an Acoustic Metamaterial Cavity

    PubMed Central

    Song, Kyungjun; Lee, Seong-Hyun; Kim, Kiwon; Hur, Shin; Kim, Jedo

    2014-01-01

    The emission enhancement of sound without electronic components has wide applications in a variety of remote systems, especially when highly miniaturized (smaller than wavelength) structures can be used. The recent advent of acoustic metamaterials has made it possible to realize this. In this study, we propose, design, and demonstrate a new class of acoustic cavity using a double-walled metamaterial structure operating at an extremely low frequency. Periodic zigzag elements which exhibit Fabry-Perot resonant behavior below the phononic band-gap are used to yield strong sound localization within the subwavelength gap, thus providing highly effective emission enhancement. We show, both theoretically and experimentally, 10 dB sound emission enhancement near 1060 Hz that corresponds to a wavelength approximately 30 times that of the periodicity. We also provide a general guideline for the independent tuning of the quality factor and effective volume of acoustic metamaterials. This approach shows the flexibility of our design in the efficient control of the enhancement rate. PMID:24584552

  5. Design and evaluation of a higher-order spherical microphone/ambisonic sound reproduction system for the acoustical assessment of concert halls

    NASA Astrophysics Data System (ADS)

    Clapp, Samuel W.

    Previous studies of the perception of concert hall acoustics have generally employed two methods for soliciting listeners' judgments. One method is to have listeners rate the sound in a hall while physically present in that hall. The other method is to make recordings of different halls and seat positions, and then recreate the environment for listeners in a laboratory setting via loudspeakers or headphones. In situ evaluations offer a completely faithful rendering of all aspects of the concert hall experience. However, many variables cannot be controlled and the short duration of auditory memory precludes an objective comparison of different spaces. Simulation studies allow for more control over various aspects of the evaluations, as well as A/B comparisons of different halls and seat positions. The drawback is that all simulation methods suffer from limitations in the accuracy of reproduction. If the accuracy of the simulation system is improved, then the advantages of the simulation method can be retained, while mitigating its disadvantages. Spherical microphone array technology has received growing interest in the acoustics community in recent years for many applications including beamforming, source localization, and other forms of three-dimensional sound field analysis. These arrays can decompose a measured sound field into its spherical harmonic components, the spherical harmonics being a set of spatial basis functions on the sphere that are derived from solving the wave equation in spherical coordinates. Ambisonics is a system for two- and three-dimensional spatialized sound that is based on recreating a sound field from its spherical harmonic components. Because of these shared mathematical underpinnings, ambisonics provides a natural way to present fully spatialized renderings of recordings made with a spherical microphone array. Many of the previously studied applications of spherical microphone arrays have used a narrow frequency range where the array

  6. On the detection of acoustic-gravity waves generated by typhoon by use of real time HF Doppler frequency shift sounding system

    NASA Astrophysics Data System (ADS)

    Huang, Yinn-Nien; Cheng, Kang; Chen, Sen-Wen

    1985-07-01

    A development of a direct vision type high-frequency Doppler frequency sounder and a setup of HF Doppler frequency sounding array at the northern part of Taiwan Island were presented. By use of all typhoons that occurred in 1982 and 1983, the detectability of the typhoon-generated acoustic-gravity waves by use of this HF Doppler frequency sounding array was presented. The results show that the acoustic-gravity waves generated by a typhoon can be detected by this sounding array; however, the detectability is only 2 out of 12.

  7. Geometrical acoustics and transonic helicopter sound

    NASA Technical Reports Server (NTRS)

    Isom, Morris; Purcell, Timothy W.; Strawn, Roger C.

    1987-01-01

    A new method is presented for predicting the impulsive noise generated by a transonic rotor blade. The method is a combined approach involving computational fluid dynamics and geometrical acoustics. A full-potential finite-difference method is used to obtain the pressure field close to the blade. A Kirchhoff integral formulation is then used to extend these finite-difference results into the far field. This Kirchhoff formula is based on geometrical acoustics approximations. It requires initial data across a plane at the sonic radius in a blade-fixed coordinate system. This data is provided by the finite-difference solution. Acoustic pressure predictions show good agreement with hover experimental data for cases with hover tip Mach numbers of 0.88 through 0.96. The cases above 0.92 tip Mach number are dominated by non-linear transonic effects seen as strong shocks on and off the blade tip. This paper gives the first successful predictions of far-field acoustic pressures for high-speed impulsive noise over a range of Mach numbers after delocalization.

  8. Acoustic comunication systems and sounds in three species of crickets from central Italy: musical instruments for a three-voices composition

    NASA Astrophysics Data System (ADS)

    Monacchi, David; Valentini, Laura

    2016-04-01

    Natural soundscape has always constituted a reference in cognitive and emotional processes. The imitation of natural sounds contributed to the origin of the verbal language, which has been then subjected to an even more refined process of abstraction throughout history. The musical language also evolved along the same path of imitation. Among the many sonic elements of a natural environment, the stridulation of crickets is one of the most consistent for its timbre, articulation, diffusion and intrinsic emotional power. More than 900 species of crickets, in fact, have been described. They can be found in all parts of the world with the exception of cold regions at latitudes higher than 55° North and South. Among the many species we're working on (Order Orthoptera and Suborder Ensifera), we refer here of a comparison between the morphology of the acoustic emission systems and the corresponding waveforms/spectral patterns of sound in three widespread species from central Italy: Gryllus Bimaculatus, Acheta Domesticus (Gryllidae), and Ruspolia Nitidula (Conocephalidae). The samples of the acoustic apparatus of the target individuals, stored in ethanol, were observed under a Field Emission Gun Environmental Electron Scanning Microscope (FEG-ESEM, Quanta 200, FEI, The Netherlands). The use of this type of microscope allowed to analyze the samples without any kind of manipulation (dehydration and/or metallization), while maintaining the morphological features of the fragile acoustic apparatus. The observations were made with different sensors (SE: secondary-electron sensor and BSE: backscattered-electron sensor), and performed at low-medium vacuum with energies varying from c.ca 10 to 30kV. Male individuals have an acoustic apparatus consisting in two cuticular structures (tegmina) positioned above wings, while both male and females have receiving organs (tympanum) in forelegs. Stridulation mechanism is produced when the file and the scraper (plectrum) scrub one another

  9. Laser Schlieren System Detects Sounds Of Leaks

    NASA Technical Reports Server (NTRS)

    Shakkottai, Parthasarathy P.; Alwar, A. Vijayaragavan

    1990-01-01

    Hostile environments monitored safely and noninvasively. Modified laser schlieren system acts as microphone to detect sounds of leaks remotely. Sensitive to acoustical frequencies above audible range and especially suited for monitoring leaks of high-pressure steam from boilers or chemical vapors from processing equipment. Does not require placement of delicate equipment in harsh environment monitored, and no contact needed with boiler or other unit being monitored. Detects sound waves via variation of index of refraction of air at acoustical frequencies. Used to monitor sound frequencies beyond range of human hearing.

  10. Acoustic velocity meter systems

    USGS Publications Warehouse

    Laenen, Antonius

    1985-01-01

    Acoustic velocity meter (AVM) systems operate on the principles that the point-to-point upstream traveltime of an acoustic pulse is longer than the downstream traveltime and that this difference in traveltime can be accurately measured by electronic devices. An AVM system is capable of recording water velocity (and discharge) under a wide range of conditions, but some constraints apply: 1. Accuracy is reduced and performance is degraded if the acoustic path is not a continuous straight line. The path can be bent by reflection if it is too close to a stream boundary or by refraction if it passes through density gradients resulting from variations in either water temperature or salinity. For paths of less than 100 m, a temperature gradient of 0.1' per meter causes signal bending less than 0.6 meter at midchannel, and satisfactory velocity results can be obtained. Reflection from stream boundaries can cause signal cancellation if boundaries are too close to signal path. 2. Signal strength is attenuated by particles or bubbles that absorb, spread, or scatter sound. The concentration of particles or bubbles that can be tolerated is a function of the path length and frequency of the acoustic signal. 3. Changes in streamline orientation can affect system accuracy if the variability is random. 4. Errors relating to signal resolution are much larger for a single threshold detection scheme than for multiple threshold schemes. This report provides methods for computing the effect of various conditions on the accuracy of a record obtained from an AVM. The equipment must be adapted to the site. Field reconnaissance and preinstallation analysis to detect possible problems are critical for proper installation and operation of an AVM system.

  11. Structural-acoustic model of a rectangular plate-cavity system with an attached distributed mass and internal sound source: Theory and experiment

    NASA Astrophysics Data System (ADS)

    Pirnat, Miha; Čepon, Gregor; Boltežar, Miha

    2014-03-01

    In this paper three approaches are combined to develop a structural-acoustic model of a rectangular plate-cavity system with an attached distributed mass and internal sound source. The first approach results from a recently presented analysis based on the Rayleigh-Ritz method and is used to circumvent the difficulties in obtaining the natural frequencies and mode shapes of a plate with an attached, distributed mass. Furthermore, different plate boundary conditions can be accommodated. The resulting mode shapes are defined as continuous functions; this is advantageous as they can be directly used in the second approach, i.e., the classic modal-interaction approach in order to obtain the coupled equations of the system. Finally, in the third approach a group of point sources emitting a pressure pulse in the time domain is used to model an internal sound source. For the validation of the developed model an experiment was conducted in two configurations using a simply supported aluminium plate and a clamped plate coupled with a plexiglas box containing a loudspeaker. Good agreement was found between the analytical and experimental data.

  12. Teaching room acoustics as a product sound quality issue

    NASA Astrophysics Data System (ADS)

    Kleiner, Mendel; Vastfjall, Daniel

    2003-04-01

    The department of Applied Acoustics teaches engineering and architect students at Chalmers University of Technology. The teaching of room acoustics to architectural students has been under constant development under several years and is now based on the study of room acoustics as a product sound quality issue. Various listening sessions using binaural sound recording and reproduction is used to focus students' learning on simple, easy to remember concepts. Computer modeling using ray tracing software and auralization is also used extensively as a tool to demonstrate concepts in addition to other software for simple sound generation and manipulation. Sound in general is the focus of an interdisciplinary course for students from Chalmers as well as from a school of art, a school of design, and a school of music which offers particular challenges and which is almost all listening based.

  13. Wireless Acoustic Measurement System

    NASA Technical Reports Server (NTRS)

    Anderson, Paul D.; Dorland, Wade D.; Jolly, Ronald L.

    2007-01-01

    A prototype wireless acoustic measurement system (WAMS) is one of two main subsystems of the Acoustic Prediction/ Measurement Tool, which comprises software, acoustic instrumentation, and electronic hardware combined to afford integrated capabilities for predicting and measuring noise emitted by rocket and jet engines. The other main subsystem is described in the article on page 8. The WAMS includes analog acoustic measurement instrumentation and analog and digital electronic circuitry combined with computer wireless local-area networking to enable (1) measurement of sound-pressure levels at multiple locations in the sound field of an engine under test and (2) recording and processing of the measurement data. At each field location, the measurements are taken by a portable unit, denoted a field station. There are ten field stations, each of which can take two channels of measurements. Each field station is equipped with two instrumentation microphones, a micro- ATX computer, a wireless network adapter, an environmental enclosure, a directional radio antenna, and a battery power supply. The environmental enclosure shields the computer from weather and from extreme acoustically induced vibrations. The power supply is based on a marine-service lead-acid storage battery that has enough capacity to support operation for as long as 10 hours. A desktop computer serves as a control server for the WAMS. The server is connected to a wireless router for communication with the field stations via a wireless local-area network that complies with wireless-network standard 802.11b of the Institute of Electrical and Electronics Engineers. The router and the wireless network adapters are controlled by use of Linux-compatible driver software. The server runs custom Linux software for synchronizing the recording of measurement data in the field stations. The software includes a module that provides an intuitive graphical user interface through which an operator at the control server

  14. Wireless Acoustic Measurement System

    NASA Technical Reports Server (NTRS)

    Anderson, Paul D.; Dorland, Wade D.

    2005-01-01

    A prototype wireless acoustic measurement system (WAMS) is one of two main subsystems of the Acoustic Prediction/Measurement Tool, which comprises software, acoustic instrumentation, and electronic hardware combined to afford integrated capabilities for predicting and measuring noise emitted by rocket and jet engines. The other main subsystem is described in "Predicting Rocket or Jet Noise in Real Time" (SSC-00215-1), which appears elsewhere in this issue of NASA Tech Briefs. The WAMS includes analog acoustic measurement instrumentation and analog and digital electronic circuitry combined with computer wireless local-area networking to enable (1) measurement of sound-pressure levels at multiple locations in the sound field of an engine under test and (2) recording and processing of the measurement data. At each field location, the measurements are taken by a portable unit, denoted a field station. There are ten field stations, each of which can take two channels of measurements. Each field station is equipped with two instrumentation microphones, a micro-ATX computer, a wireless network adapter, an environmental enclosure, a directional radio antenna, and a battery power supply. The environmental enclosure shields the computer from weather and from extreme acoustically induced vibrations. The power supply is based on a marine-service lead-acid storage battery that has enough capacity to support operation for as long as 10 hours. A desktop computer serves as a control server for the WAMS. The server is connected to a wireless router for communication with the field stations via a wireless local-area network that complies with wireless-network standard 802.11b of the Institute of Electrical and Electronics Engineers. The router and the wireless network adapters are controlled by use of Linux-compatible driver software. The server runs custom Linux software for synchronizing the recording of measurement data in the field stations. The software includes a module that

  15. Aerogel as a Soft Acoustic Metamaterial for Airborne Sound

    NASA Astrophysics Data System (ADS)

    Guild, Matthew D.; García-Chocano, Victor M.; Sánchez-Dehesa, José; Martin, Theodore P.; Calvo, David C.; Orris, Gregory J.

    2016-03-01

    Soft acoustic metamaterials utilizing mesoporous structures have been proposed recently as a means for tuning the overall effective properties of the metamaterial and providing better coupling to the surrounding air. In this paper, the use of silica aerogel is examined theoretically and experimentally as part of a compact soft acoustic metamaterial structure, which enables a wide range of exotic effective macroscopic properties to be demonstrated, including negative density, density near zero, and nonresonant broadband slow-sound propagation. Experimental data are obtained on the effective density and sound speed using an air-filled acoustic impedance tube for flexural metamaterial elements, which have been investigated previously only indirectly due to the large contrast in acoustic impedance compared to that of air. Experimental results are presented for silica aerogel arranged in parallel with either one or two acoustic ports and are in very good agreement with the theoretical model.

  16. Dust-Acoustic Waves: Visible Sound Waves

    SciTech Connect

    Merlino, Robert L.

    2009-11-10

    A historical overview of some of the early theoretical and experimental work on dust acoustic waves is given. The basic physics of the dust acoustic wave and some of the theoretical refinements that have been made, including the effects of collisions, plasma absorption, dust charge fluctuations, particle drifts and strong coupling effects are discussed. Some recent experimental findings and outstanding problems are also presented.

  17. Uncovering Spatial Variation in Acoustic Environments Using Sound Mapping

    PubMed Central

    Job, Jacob R.; Myers, Kyle; Naghshineh, Koorosh; Gill, Sharon A.

    2016-01-01

    Animals select and use habitats based on environmental features relevant to their ecology and behavior. For animals that use acoustic communication, the sound environment itself may be a critical feature, yet acoustic characteristics are not commonly measured when describing habitats and as a result, how habitats vary acoustically over space and time is poorly known. Such considerations are timely, given worldwide increases in anthropogenic noise combined with rapidly accumulating evidence that noise hampers the ability of animals to detect and interpret natural sounds. Here, we used microphone arrays to record the sound environment in three terrestrial habitats (forest, prairie, and urban) under ambient conditions and during experimental noise introductions. We mapped sound pressure levels (SPLs) over spatial scales relevant to diverse taxa to explore spatial variation in acoustic habitats and to evaluate the number of microphones needed within arrays to capture this variation under both ambient and noisy conditions. Even at small spatial scales and over relatively short time spans, SPLs varied considerably, especially in forest and urban habitats, suggesting that quantifying and mapping acoustic features could improve habitat descriptions. Subset maps based on input from 4, 8, 12 and 16 microphones differed slightly (< 2 dBA/pixel) from those based on full arrays of 24 microphones under ambient conditions across habitats. Map differences were more pronounced with noise introductions, particularly in forests; maps made from only 4-microphones differed more (> 4 dBA/pixel) from full maps than the remaining subset maps, but maps with input from eight microphones resulted in smaller differences. Thus, acoustic environments varied over small spatial scales and variation could be mapped with input from 4–8 microphones. Mapping sound in different environments will improve understanding of acoustic environments and allow us to explore the influence of spatial variation

  18. Uncovering Spatial Variation in Acoustic Environments Using Sound Mapping.

    PubMed

    Job, Jacob R; Myers, Kyle; Naghshineh, Koorosh; Gill, Sharon A

    2016-01-01

    Animals select and use habitats based on environmental features relevant to their ecology and behavior. For animals that use acoustic communication, the sound environment itself may be a critical feature, yet acoustic characteristics are not commonly measured when describing habitats and as a result, how habitats vary acoustically over space and time is poorly known. Such considerations are timely, given worldwide increases in anthropogenic noise combined with rapidly accumulating evidence that noise hampers the ability of animals to detect and interpret natural sounds. Here, we used microphone arrays to record the sound environment in three terrestrial habitats (forest, prairie, and urban) under ambient conditions and during experimental noise introductions. We mapped sound pressure levels (SPLs) over spatial scales relevant to diverse taxa to explore spatial variation in acoustic habitats and to evaluate the number of microphones needed within arrays to capture this variation under both ambient and noisy conditions. Even at small spatial scales and over relatively short time spans, SPLs varied considerably, especially in forest and urban habitats, suggesting that quantifying and mapping acoustic features could improve habitat descriptions. Subset maps based on input from 4, 8, 12 and 16 microphones differed slightly (< 2 dBA/pixel) from those based on full arrays of 24 microphones under ambient conditions across habitats. Map differences were more pronounced with noise introductions, particularly in forests; maps made from only 4-microphones differed more (> 4 dBA/pixel) from full maps than the remaining subset maps, but maps with input from eight microphones resulted in smaller differences. Thus, acoustic environments varied over small spatial scales and variation could be mapped with input from 4-8 microphones. Mapping sound in different environments will improve understanding of acoustic environments and allow us to explore the influence of spatial variation

  19. Acoustic metamaterials capable of both sound insulation and energy harvesting

    NASA Astrophysics Data System (ADS)

    Li, Junfei; Zhou, Xiaoming; Huang, Guoliang; Hu, Gengkai

    2016-04-01

    Membrane-type acoustic metamaterials are well known for low-frequency sound insulation. In this work, by introducing a flexible piezoelectric patch, we propose sound-insulation metamaterials with the ability of energy harvesting from sound waves. The dual functionality of the metamaterial device has been verified by experimental results, which show an over 20 dB sound transmission loss and a maximum energy conversion efficiency up to 15.3% simultaneously. This novel property makes the metamaterial device more suitable for noise control applications.

  20. Enhancement of acoustical performance of hollow tube sound absorber

    NASA Astrophysics Data System (ADS)

    Putra, Azma; Khair, Fazlin Abd; Nor, Mohd Jailani Mohd

    2016-03-01

    This paper presents acoustical performance of hollow structures utilizing the recycled lollipop sticks as acoustic absorbers. The hollow cross section of the structures is arranged facing the sound incidence. The effects of different length of the sticks and air gap on the acoustical performance are studied. The absorption coefficient was measured using impedance tube method. Here it is found that improvement on the sound absorption performance is achieved by introducing natural kapok fiber inserted into the void between the hollow structures. Results reveal that by inserting the kapok fibers, both the absorption bandwidth and the absorption coefficient increase. For test sample backed by a rigid surface, best performance of sound absorption is obtained for fibers inserted at the front and back sides of the absorber. And for the case of test sample with air gap, this is achieved for fibers introduced only at the back side of the absorber.

  1. Sound insulation and energy harvesting based on acoustic metamaterial plate

    NASA Astrophysics Data System (ADS)

    Assouar, Badreddine; Oudich, Mourad; Zhou, Xiaoming

    2015-03-01

    The emergence of artificially designed sub-wavelength acoustic materials, denoted acoustic metamaterials (AMM), has significantly broadened the range of materials responses found in nature. These engineered materials can indeed manipulate sound/vibration in surprising ways, which include vibration/sound insulation, focusing, cloaking, acoustic energy harvesting …. In this work, we report both on the analysis of the airborne sound transmission loss (STL) through a thin metamaterial plate and on the possibility of acoustic energy harvesting. We first provide a theoretical study of the airborne STL and confronted them to the structure-borne dispersion of a metamaterial plate. Second, we propose to investigate the acoustic energy harvesting capability of the plate-type AMM. We have developed semi-analytical and numerical methods to investigate the STL performances of a plate-type AMM with an airborne sound excitation having different incident angles. The AMM is made of silicone rubber stubs squarely arranged in a thin aluminum plate, and the STL is calculated at low-frequency range [100Hz to 3kHz] for an incoming incident sound pressure wave. The obtained analytical and numerical STL present a very good agreement confirming the reliability of developed approaches. A comparison between computed STL and the band structure of the considered AMM shows an excellent agreement and gives a physical understanding of the observed behavior. On another hand, the acoustic energy confinement in AMM with created defects with suitable geometry was investigated. The first results give a general view for assessing the acoustic energy harvesting performances making use of AMM.

  2. Sound field simulation and acoustic animation in urban squares

    NASA Astrophysics Data System (ADS)

    Kang, Jian; Meng, Yan

    2005-04-01

    Urban squares are important components of cities, and the acoustic environment is important for their usability. While models and formulae for predicting the sound field in urban squares are important for their soundscape design and improvement, acoustic animation tools would be of great importance for designers as well as for public participation process, given that below a certain sound level, the soundscape evaluation depends mainly on the type of sounds rather than the loudness. This paper first briefly introduces acoustic simulation models developed for urban squares, as well as empirical formulae derived from a series of simulation. It then presents an acoustic animation tool currently being developed. In urban squares there are multiple dynamic sound sources, so that the computation time becomes a main concern. Nevertheless, the requirements for acoustic animation in urban squares are relatively low compared to auditoria. As a result, it is important to simplify the simulation process and algorithms. Based on a series of subjective tests in a virtual reality environment with various simulation parameters, a fast simulation method with acceptable accuracy has been explored. [Work supported by the European Commission.

  3. Transversal Anderson localization of sound in acoustic waveguide arrays.

    PubMed

    Ye, Yangtao; Ke, Manzhu; Feng, Junheng; Wang, Mudi; Qiu, Chunyin; Liu, Zhengyou

    2015-04-22

    We present designs of one-dimensional acoustic waveguide arrays and investigate wave propagation inside. Under the condition of single identical waveguide mode and weak coupling, the acoustic wave motion in waveguide arrays can be modeled with a discrete mode-coupling theory. The coupling constants can be retrieved from simulations or experiments as the function of neighboring waveguide separations. Sound injected into periodic arrays gives rise to the discrete diffraction, exhibiting ballistic or extended transport in transversal direction. But sound injected into randomized waveguide arrays readily leads to Anderson localization transversally. The experimental results show good agreement with simulations and theoretical predictions. PMID:25812602

  4. Acoustics Research of Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Gao, Ximing; Houston, Janice D.

    2014-01-01

    The liftoff phase induces some of the highest acoustic loading over a broad frequency for a launch vehicle. These external acoustic environments are used in the prediction of the internal vibration responses of the vehicle and components. Thus, predicting these liftoff acoustic environments is critical to the design requirements of any launch vehicle but there are challenges. Present liftoff vehicle acoustic environment prediction methods utilize stationary data from previously conducted hold-down tests; i.e. static firings conducted in the 1960's, to generate 1/3 octave band Sound Pressure Level (SPL) spectra. These data sets are used to predict the liftoff acoustic environments for launch vehicles. To facilitate the accuracy and quality of acoustic loading, predictions at liftoff for future launch vehicles such as the Space Launch System (SLS), non-stationary flight data from the Ares I-X were processed in PC-Signal in two forms which included a simulated hold-down phase and the entire launch phase. In conjunction, the Prediction of Acoustic Vehicle Environments (PAVE) program was developed in MATLAB to allow for efficient predictions of sound pressure levels (SPLs) as a function of station number along the vehicle using semiempirical methods. This consisted, initially, of generating the Dimensionless Spectrum Function (DSF) and Dimensionless Source Location (DSL) curves from the Ares I-X flight data. These are then used in the MATLAB program to generate the 1/3 octave band SPL spectra. Concluding results show major differences in SPLs between the hold-down test data and the processed Ares IX flight data making the Ares I-X flight data more practical for future vehicle acoustic environment predictions.

  5. Acoustical Characteristics of Mastication Sounds: Application of Speech Analysis Techniques

    NASA Astrophysics Data System (ADS)

    Brochetti, Denise

    Food scientists have used acoustical methods to study characteristics of mastication sounds in relation to food texture. However, a model for analysis of the sounds has not been identified, and reliability of the methods has not been reported. Therefore, speech analysis techniques were applied to mastication sounds, and variation in measures of the sounds was examined. To meet these objectives, two experiments were conducted. In the first experiment, a digital sound spectrograph generated waveforms and wideband spectrograms of sounds by 3 adult subjects (1 male, 2 females) for initial chews of food samples differing in hardness and fracturability. Acoustical characteristics were described and compared. For all sounds, formants appeared in the spectrograms, and energy occurred across a 0 to 8000-Hz range of frequencies. Bursts characterized waveforms for peanut, almond, raw carrot, ginger snap, and hard candy. Duration and amplitude of the sounds varied with the subjects. In the second experiment, the spectrograph was used to measure the duration, amplitude, and formants of sounds for the initial 2 chews of cylindrical food samples (raw carrot, teething toast) differing in diameter (1.27, 1.90, 2.54 cm). Six adult subjects (3 males, 3 females) having normal occlusions and temporomandibular joints chewed the samples between the molar teeth and with the mouth open. Ten repetitions per subject were examined for each food sample. Analysis of estimates of variation indicated an inconsistent intrasubject variation in the acoustical measures. Food type and sample diameter also affected the estimates, indicating the variable nature of mastication. Generally, intrasubject variation was greater than intersubject variation. Analysis of ranks of the data indicated that the effect of sample diameter on the acoustical measures was inconsistent and depended on the subject and type of food. If inferences are to be made concerning food texture from acoustical measures of mastication

  6. Acoustic sounding in the planetary boundary layer

    NASA Technical Reports Server (NTRS)

    Kelly, E. H.

    1974-01-01

    Three case studies are presented involving data from an acoustic radar. The first two cases examine data collected during the passage of a mesoscale cold-air intrusion, probably thunderstorm outflow, and a synoptic-scale cold front. In these studies the radar data are compared to conventional meteorological data obtained from the WKY tower facility for the purpose of radar data interpretation. It is shown that the acoustic radar echoes reveal the boundary between warm and cold air and other areas of turbulent mixing, regions of strong vertical temperature gradients, and areas of weak or no wind shear. The third case study examines the relationship between the nocturnal radiation inversion and the low-level wind maximum or jet in the light of conclusions presented by Blackadar (1957). The low-level jet is seen forming well above the top of the inversion. Sudden rapid growth of the inversion occurs which brings the top of the inversion to a height equal that of the jet. Coincident with the rapid growth of the inversion is a sudden decrease in the intensity of the acoustic radar echoes in the inversion layer. It is suggested that the decrease in echo intensity reveals a decrease in turbulent mixing in the inversion layer as predicted by Blackadar. It is concluded that the acoustic radar can be a valuable tool for study in the lower atmosphere.

  7. Effects of individual sound sources on the subjective loudness and acoustic comfort in underground shopping streets.

    PubMed

    Kang, Jian; Meng, Qi; Jin, Hong

    2012-10-01

    Previous studies have demonstrated that human evaluation of subjective loudness and acoustic comfort depends on a series of factors in a particular situation rather than only on sound pressure levels. In the present study, a large-scale subjective survey has been undertaken on underground shopping streets in Harbin, China, to determine how individual sound sources influence subjective loudness and acoustic comfort evaluation. Based on the analysis of case study results, it has been shown that all individual sound sources can increase subjective loudness to a certain degree. However, their levels of influence on acoustic comfort are different. Background music and the public address system can increase acoustic comfort, with a mean difference of 0.18 to 0.32 and 0.21 to 0.27, respectively, where a five-point bipolar category scale is used. Music from shops and vendor shouts can decrease acoustic comfort, with a mean difference of -0.11 to -0.38 and -0.39 to -0.62, respectively. The feasibility of improving acoustic comfort by changing certain sound sources is thus demonstrated. PMID:22846767

  8. Acoustic contrast, planarity and robustness of sound zone methods using a circular loudspeaker array.

    PubMed

    Coleman, Philip; Jackson, Philip J B; Olik, Marek; Møller, Martin; Olsen, Martin; Abildgaard Pedersen, Jan

    2014-04-01

    Since the mid 1990s, acoustics research has been undertaken relating to the sound zone problem-using loudspeakers to deliver a region of high sound pressure while simultaneously creating an area where the sound is suppressed-in order to facilitate independent listening within the same acoustic enclosure. The published solutions to the sound zone problem are derived from areas such as wave field synthesis and beamforming. However, the properties of such methods differ and performance tends to be compared against similar approaches. In this study, the suitability of energy focusing, energy cancelation, and synthesis approaches for sound zone reproduction is investigated. Anechoic simulations based on two zones surrounded by a circular array show each of the methods to have a characteristic performance, quantified in terms of acoustic contrast, array control effort and target sound field planarity. Regularization is shown to have a significant effect on the array effort and achieved acoustic contrast, particularly when mismatched conditions are considered between calculation of the source weights and their application to the system. PMID:25234991

  9. Sound and sight: acoustic figures and visual phenomena.

    PubMed

    Wade, Nicholas J

    2005-01-01

    The impact that the analysis of sound waves has made on theories of light is well known, and is touched upon here. However, the acoustic figures described initially by Robert Hooke in 1665 and in more detail by Ernst Chladni in 1787 (often referred to as Chladni figures) were instrumental in vision in two specific respects. First, their representation by Tyndall [1867 Sound. A Course of Eight Lectures Delivered at the Royal Institution of Great Britain (London: Longmans, Green)] in a book on sound resulted in the description of a visual illusion, the Hermann grid. Secondly, attempts to render the acoustic figures visible (on the basis of briefly persisting images) led to the discovery of instruments that could synthesise movement. These two developments are discussed in their historical contexts. PMID:16309120

  10. Field support, data analysis and associated research for the acoustic grenade sounding program

    NASA Technical Reports Server (NTRS)

    Barnes, T. G.; Bullard, E. R.

    1976-01-01

    Temperature and horizontal winds in the 30 to 90 km altitude range of the upper atmosphere, were determined by acoustic grenade soundings conducted at Wallops Island, Virginia and Kourou, French Guiana. Field support provided at these locations included deployment of the large area microphone system, supervision, maintenance and operation of sound ranging stations; and coordination of activities. Data analysis efforts included the analysis of field data to determine upper atmospheric meteorological parameters. Profiles for upper atmospheric temperature, wind and density are provided in plots and tables for each of the acoustic grenade soundings conducted during the contract period. Research efforts were directed toward a systematic comparison of temperature data from acoustic grenade with other meteorological sensor probes in the upper atmosphere.

  11. Radiometric sounding system

    SciTech Connect

    Whiteman, C.D.; Anderson, G.A.; Alzheimer, J.M.; Shaw, W.J.

    1995-04-01

    Vertical profiles of solar and terrestrial radiative fluxes are key research needs for global climate change research. These fluxes are expected to change as radiatively active trace gases are emitted to the earth`s atmosphere as a consequence of energy production and industrial and other human activities. Models suggest that changes in the concentration of such gases will lead to radiative flux divergences that will produce global warming of the earth`s atmosphere. Direct measurements of the vertical variation of solar and terrestrial radiative fluxes that lead to these flux divergences have been largely unavailable because of the expense of making such measurements from airplanes. These measurements are needed to improve existing atmospheric radiative transfer models, especially under the cloudy conditions where the models have not been adequately tested. A tethered-balloon-borne Radiometric Sounding System has been developed at Pacific Northwest Laboratory to provide an inexpensive means of making routine vertical soundings of radiative fluxes in the earth`s atmospheric boundary layer to altitudes up to 1500 m above ground level. Such vertical soundings would supplement measurements being made from aircraft and towers. The key technical challenge in the design of the Radiometric Sounding System is to develop a means of keeping the radiometers horizontal while the balloon ascends and descends in a turbulent atmospheric environment. This problem has been addressed by stabilizing a triangular radiometer-carrying platform that is carried on the tetherline of a balloon sounding system. The platform, carried 30 m or more below the balloon to reduce the balloon`s effect on the radiometric measurements, is leveled by two automatic control loops that activate motors, gears and pulleys when the platform is off-level. The sensitivity of the automatic control loops to oscillatory motions of various frequencies and amplitudes can be adjusted using filters.

  12. Acoustical studies of the steelpan and HANG: Phase-sensitive holography and sound intensity measurements

    NASA Astrophysics Data System (ADS)

    Morrison, Andrew C. H.

    The Caribbean steelpan and an instrument closely related, the HANG, are two of the most, interesting acoustic musical instruments developed in the last century. Although simple in design, the acoustic properties of the steelpan and HANG are surprisingly complicated. Holographic interferometry was used to determine the resonances of a low tenor steelpan and a pentatonic HANG. Placement of a vibrating mirror in the optical path of the reference beam expands the capabilities of the holography system to include phase measurements. Phase maps and phase response curves of several low resonances of notes on a steelpan and HANG are shown. Sound intensity measurements were acquired to explore the relationship between the resonances and the radiated sound field. The instruments were placed in an anechoic chamber, and selected notes were excited electromagnetically with a swept sinusoid signal. A two-microphone probe was used to gather sound intensity measurements. Sound intensity reaps of the first three harmonics are shown for notes on both instruments.

  13. Sound-maps of environmentally sensitive areas constructed from Wireless Acoustic Sensors Network data

    NASA Astrophysics Data System (ADS)

    Michailidis, E. T.; Liaperdos, J.; Tatlas, N.-A.; Potirakis, S. M.; Rangoussi, M.

    2016-03-01

    “E-SOUNDMAPS” is a distributed microelectronic system for the sound/acoustic monitoring of areas of environmental interest that is based on an appropriately designed wireless acoustic sensor network (WASN). It involves the automated generation of multi-level sound-maps for environmental assessment of areas of interest. This paper focuses on the method and the software application for the construction of sound-maps, which is developed as part of the integrated “E-SOUNDMAPS” system. The software application periodically produces geographically-referenced, accurate environmental sound information, based on real- field measurement data, and integrates them in the geographic map of the area of interest in a concise and comprehensive manner. Following the field recording of sound and the hierarchical recognition/classification of sound events and corresponding sources, the obtained sound sources characterization tags feed the specific software application. The output is a multilevel soundmap, constructed on the basis of the data and published electronically on the Web, for human inspection and assessment. All necessary steps for handling, archiving, monitoring, visualization and retrieval of sound data are also presented.

  14. The Development of a Plan for the Assessment, Improvement and Deployment of a Radar Acoustic Sounding System (RASS) for Wake Vortex Detection

    NASA Technical Reports Server (NTRS)

    Morris, Philip J.; McLaughlin, Dennis K.; Gabrielson, Thomas B.; Boluriaan, Said

    2004-01-01

    This report describes the activities completed under a grant from the NASA Langley Research Center to develop a plan for the assessment, improvement, and deployment of a Radar Acoustic Sounding System (RASS) for the detection of wake vortices. A brief review is provided of existing alternative instruments for wake vortex detection. This is followed by a review of previous implementations and assessment of a RASS. As a result of this review, it is concluded that the basic features of a RASS have several advantages over other commonly used wake vortex detection and measurement systems. Most important of these features are the good fidelity of the measurements and the potential for all weather operation. To realize the full potential of this remote sensing instrument, a plan for the development of a RASS designed specifically for wake vortex detection and measurement has been prepared. To keep costs to a minimum, this program would start with the development an inexpensive laboratory-scale version of a RASS system. The new instrument would be developed in several stages, each allowing for a critical assessment of the instrument s potential and limitations. The instrument, in its initial stages of development, would be tested in a controlled laboratory environment. A jet vortex simulator, a prototype version of which has already been fabricated, would be interrogated by the RASS system. The details of the laboratory vortex would be measured using a Particle Image Velocimetry (PIV) system. In the early development stages, the scattered radar signal would be digitized and the signal post-processed to determine how extensively and accurately the RASS could measure properties of the wake vortex. If the initial tests prove to be successful, a real-time, digital signal processing system would be developed as a component of the RASS system. At each stage of the instrument development and testing, the implications of the scaling required for a full-scale instrument would be

  15. Advanced Systems for Monitoring Underwater Sounds

    NASA Technical Reports Server (NTRS)

    Lane, Michael; Van Meter, Steven; Gilmore, Richard Grant; Sommer, Keith

    2007-01-01

    The term "Passive Acoustic Monitoring System" (PAMS) describes a developmental sensing-and-data-acquisition system for recording underwater sounds. The sounds (more precisely, digitized and preprocessed versions from acoustic transducers) are subsequently analyzed by a combination of data processing and interpretation to identify and/or, in some cases, to locate the sources of those sounds. PAMS was originally designed to locate the sources such as fish of species that one knows or seeks to identify. The PAMS unit could also be used to locate other sources, for example, marine life, human divers, and/or vessels. The underlying principles of passive acoustic sensing and analyzing acoustic-signal data in conjunction with temperature and salinity data are not new and not unique to PAMS. Part of the uniqueness of the PAMS design is that it is the first deep-sea instrumentation design to provide a capability for studying soniferous marine animals (especially fish) over the wide depth range described below. The uniqueness of PAMS also lies partly in a synergistic combination of advanced sensing, packaging, and data-processing design features with features adapted from proven marine instrumentation systems. This combination affords a versatility that enables adaptation to a variety of undersea missions using a variety of sensors. The interpretation of acoustic data can include visual inspection of power-spectrum plots for identification of spectral signatures of known biological species or artificial sources. Alternatively or in addition, data analysis could include determination of relative times of arrival of signals at different acoustic sensors arrayed at known locations. From these times of arrival, locations of acoustic sources (and errors in those locations) can be estimated. Estimates of relative locations of sources and sensors can be refined through analysis of the attenuation of sound in the intervening water in combination with water-temperature and salinity

  16. A sound absorptive element comprising an acoustic resonance nanofibrous membrane.

    PubMed

    Kalinova, Klara

    2015-01-01

    As absorption of sound of lower frequencies is quite problematic with fibrous material made up of coarser fibers, development of highly efficient sound absorption material is called for. This is why this work deals with the development of new high sound absorption material. To absorb the low frequencies, especially the structures based on resonance principle of nanofibrous layers are used, when through resonance of some elements the acoustic energy is transferred into thermal energy. The goal of the invention is achieved by a sound absorbing means which contains resonance membrane formed by a layer of polymeric nanofibers, which is attached to a frame. For production of nanofibrous membranes, the cord electrospinning was used. The resonance membrane was then, upon impact of sound waves of low frequency, brought into forced vibrations, whereby the kinetic energy of the membrane was converted into thermal energy by friction of individual nanofibers, by the friction of the membrane with ambient air and possibly with other layers of material arranged in its proximity, and some of the energy was also transmitted to the frame, through which the vibrations of the resonance membrane were damped. The density and shape of the mesh of frame formations determine the resonance frequency of the acoustic means. The goal of the invention is therefore to eliminate or at least reduce the disadvantages of the present state of the art and to propose sound absorbing means that would be capable of absorbing, with good results sounds in as broadest frequency range as possible. Here, we also discussed some patents relevant to the topic. PMID:25986230

  17. Acoustic radiosity for computation of sound fields in diffuse environments

    NASA Astrophysics Data System (ADS)

    Muehleisen, Ralph T.; Beamer, C. Walter

    2002-05-01

    The use of image and ray tracing methods (and variations thereof) for the computation of sound fields in rooms is relatively well developed. In their regime of validity, both methods work well for prediction in rooms with small amounts of diffraction and mostly specular reflection at the walls. While extensions to the method to include diffuse reflections and diffraction have been made, they are limited at best. In the fields of illumination and computer graphics the ray tracing and image methods are joined by another method called luminous radiative transfer or radiosity. In radiosity, an energy balance between surfaces is computed assuming diffuse reflection at the reflective surfaces. Because the interaction between surfaces is constant, much of the computation required for sound field prediction with multiple or moving source and receiver positions can be reduced. In acoustics the radiosity method has had little attention because of the problems of diffraction and specular reflection. The utility of radiosity in acoustics and an approach to a useful development of the method for acoustics will be presented. The method looks especially useful for sound level prediction in industrial and office environments. [Work supported by NSF.

  18. Study of the Acoustic Effects of Hydrokinetic Tidal Turbines in Admiralty Inlet, Puget Sound

    SciTech Connect

    Brian Polagye; Jim Thomson; Chris Bassett; Jason Wood; Dom Tollit; Robert Cavagnaro; Andrea Copping

    2012-03-30

    community as to whether strong currents produce propagating sound. (2) Analyzed data collected from a tidal turbine operating at the European Marine Energy Center to develop a profile of turbine sound and developed a framework to evaluate the acoustic effects of deploying similar devices in other locations. This framework has been applied to Public Utility District No. 1 of Snohomish Country's demonstration project in Admiralty Inlet to inform postinstallation acoustic and marine mammal monitoring plans. (3) Demonstrated passive acoustic techniques to characterize the ambient noise environment at tidal energy sites (fixed, long-term observations recommended) and characterize the sound from anthropogenic sources (drifting, short-term observations recommended). (4) Demonstrated the utility and limitations of instrumentation, including bottom mounted instrumentation packages, infrared cameras, and vessel monitoring systems. In doing so, also demonstrated how this type of comprehensive information is needed to interpret observations from each instrument (e.g., hydrophone data can be combined with vessel tracking data to evaluate the contribution of vessel sound to ambient noise). (5) Conducted a study that suggests harbor porpoise in Admiralty Inlet may be habituated to high levels of ambient noise due to omnipresent vessel traffic. The inability to detect behavioral changes associated with a high intensity source of opportunity (passenger ferry) has informed the approach for post-installation marine mammal monitoring. (6) Conducted laboratory exposure experiments of juvenile Chinook salmon and showed that exposure to a worse than worst case acoustic dose of turbine sound does not result in changes to hearing thresholds or biologically significant tissue damage. Collectively, this means that Chinook salmon may be at a relatively low risk of injury from sound produced by tidal turbines located in or near their migration path. In achieving these accomplishments, the project has

  19. Recognition of Sound Environment by a Bathroom Monitoring System

    NASA Astrophysics Data System (ADS)

    Komoguchi, Naoyuki; Yamane, Kenji; Tanaka, Shogo

    Developing a monitoring system for a bathroom is important to prevent aged persons from accidents. The authors previously developed a bathroom monitoring system using an acoustic sensor which measured the water level of a bathtub and the temperature and also recognized the sound environment. The sound environment was however occasionally mis-recognized with the system. The present paper proposes a new method which recognizes the sound environment in the bathroom more accurately. Experiments demonstrate the effectiveness of the method.

  20. Features vs. Feelings: Dissociable representations of the acoustic features and valence of aversive sounds

    PubMed Central

    Kumar, Sukhbinder; von Kriegstein, Katharina; Friston, Karl; Griffiths, Timothy D

    2012-01-01

    This study addresses the neuronal representation of aversive sounds that are perceived as unpleasant. Functional magnetic resonance imaging (fMRI) in humans demonstrated responses in the amygdala and auditory cortex to aversive sounds. We show that the amygdala encodes both the acoustic features of a stimulus and its valence (perceived unpleasantness). Dynamic Causal Modelling (DCM) of this system revealed that evoked responses to sounds are relayed to the amygdala via auditory cortex. While acoustic features modulate effective connectivity from auditory cortex to the amygdala, the valence modulates the effective connectivity from amygdala to the auditory cortex. These results support a complex (recurrent) interaction between the auditory cortex and amygdala based on object-level analysis in the auditory cortex that portends the assignment of emotional valence in amygdala that in turn influences the representation of salient information in auditory cortex. PMID:23055488

  1. Generation and control of sound bullets with a nonlinear acoustic lens.

    PubMed

    Spadoni, Alessandro; Daraio, Chiara

    2010-04-20

    Acoustic lenses are employed in a variety of applications, from biomedical imaging and surgery to defense systems and damage detection in materials. Focused acoustic signals, for example, enable ultrasonic transducers to image the interior of the human body. Currently however the performance of acoustic devices is limited by their linear operational envelope, which implies relatively inaccurate focusing and low focal power. Here we show a dramatic focusing effect and the generation of compact acoustic pulses (sound bullets) in solid and fluid media, with energies orders of magnitude greater than previously achievable. This focusing is made possible by a tunable, nonlinear acoustic lens, which consists of ordered arrays of granular chains. The amplitude, size, and location of the sound bullets can be controlled by varying the static precompression of the chains. Theory and numerical simulations demonstrate the focusing effect, and photoelasticity experiments corroborate it. Our nonlinear lens permits a qualitatively new way of generating high-energy acoustic pulses, which may improve imaging capabilities through increased accuracy and signal-to-noise ratios and may lead to more effective nonintrusive scalpels, for example, for cancer treatment. PMID:20368461

  2. Generation and control of sound bullets with a nonlinear acoustic lens

    PubMed Central

    Spadoni, Alessandro; Daraio, Chiara

    2010-01-01

    Acoustic lenses are employed in a variety of applications, from biomedical imaging and surgery to defense systems and damage detection in materials. Focused acoustic signals, for example, enable ultrasonic transducers to image the interior of the human body. Currently however the performance of acoustic devices is limited by their linear operational envelope, which implies relatively inaccurate focusing and low focal power. Here we show a dramatic focusing effect and the generation of compact acoustic pulses (sound bullets) in solid and fluid media, with energies orders of magnitude greater than previously achievable. This focusing is made possible by a tunable, nonlinear acoustic lens, which consists of ordered arrays of granular chains. The amplitude, size, and location of the sound bullets can be controlled by varying the static precompression of the chains. Theory and numerical simulations demonstrate the focusing effect, and photoelasticity experiments corroborate it. Our nonlinear lens permits a qualitatively new way of generating high-energy acoustic pulses, which may improve imaging capabilities through increased accuracy and signal-to-noise ratios and may lead to more effective nonintrusive scalpels, for example, for cancer treatment. PMID:20368461

  3. Acoustic imaging system

    DOEpatents

    Smith, Richard W.

    1979-01-01

    An acoustic imaging system for displaying an object viewed by a moving array of transducers as the array is pivoted about a fixed point within a given plane. A plurality of transducers are fixedly positioned and equally spaced within a laterally extending array and operatively directed to transmit and receive acoustic signals along substantially parallel transmission paths. The transducers are sequentially activated along the array to transmit and receive acoustic signals according to a preestablished sequence. Means are provided for generating output voltages for each reception of an acoustic signal, corresponding to the coordinate position of the object viewed as the array is pivoted. Receptions from each of the transducers are presented on the same display at coordinates corresponding to the actual position of the object viewed to form a plane view of the object scanned.

  4. Membrane-constrained acoustic metamaterials for low frequency sound insulation

    NASA Astrophysics Data System (ADS)

    Wang, Xiaole; Zhao, Hui; Luo, Xudong; Huang, Zhenyu

    2016-01-01

    We present a constrained membrane-type acoustic metamaterial (CMAM) that employs constraint sticks to add out-of-plane dimensions in the design space of MAM. A CMAM sample, which adopts constraint sticks to suppress vibrations at the membrane center, was fabricated to achieve a sound transmission loss (STL) peak of 26 dB at 140 Hz, with the static areal density of 6.0 kg/m2. The working mechanism of the CMAM as an acoustic metamaterial is elucidated by calculating the averaged normal displacement, the equivalent areal density, and the effective dynamic mass of a unit cell through finite element simulations. Furthermore, the vibration modes of the CMAM indicate that the eigenmodes related to STL dips are shifted into high frequencies, thus broadening its effective bandwidth significantly. Three samples possessing the same geometry and material but different constraint areas were fabricated to illustrate the tunability of STL peaks at low frequencies.

  5. Sound pressure level gain in an acoustic metamaterial cavity.

    PubMed

    Song, Kyungjun; Kim, Kiwon; Hur, Shin; Kwak, Jun-Hyuk; Park, Jihyun; Yoon, Jong Rak; Kim, Jedo

    2014-01-01

    The inherent attenuation of a homogeneous viscous medium limits radiation propagation, thereby restricting the use of many high-frequency acoustic devices to only short-range applications. Here, we design and experimentally demonstrate an acoustic metamaterial localization cavity which is used for sound pressure level (SPL) gain using double coiled up space like structures thereby increasing the range of detection. This unique behavior occurs within a subwavelength cavity that is 1/10(th) of the wavelength of the incident acoustic wave, which provides up to a 13 dB SPL gain. We show that the amplification results from the Fabry-Perot resonance of the cavity, which has a simultaneously high effective refractive index and effective impedance. We also experimentally verify the SPL amplification in an underwater environment at higher frequencies using a sample with an identical unit cell size. The versatile scalability of the design shows promising applications in many areas, especially in acoustic imaging and underwater communication. PMID:25502279

  6. Digital servo control of random sound test excitation. [in reverberant acoustic chamber

    NASA Technical Reports Server (NTRS)

    Nakich, R. B. (Inventor)

    1974-01-01

    A digital servocontrol system for random noise excitation of a test object in a reverberant acoustic chamber employs a plurality of sensors spaced in the sound field to produce signals in separate channels which are decorrelated and averaged. The average signal is divided into a plurality of adjacent frequency bands cyclically sampled by a time division multiplex system, converted into digital form, and compared to a predetermined spectrum value stored in digital form. The results of the comparisons are used to control a time-shared up-down counter to develop gain control signals for the respective frequency bands in the spectrum of random sound energy picked up by the microphones.

  7. Acoustic and Categorical Dissimilarity of Musical Timbre: Evidence from Asymmetries Between Acoustic and Chimeric Sounds

    PubMed Central

    Siedenburg, Kai; Jones-Mollerup, Kiray; McAdams, Stephen

    2016-01-01

    This paper investigates the role of acoustic and categorical information in timbre dissimilarity ratings. Using a Gammatone-filterbank-based sound transformation, we created tones that were rated as less familiar than recorded tones from orchestral instruments and that were harder to associate with an unambiguous sound source (Experiment 1). A subset of transformed tones, a set of orchestral recordings, and a mixed set were then rated on pairwise dissimilarity (Experiment 2A). We observed that recorded instrument timbres clustered into subsets that distinguished timbres according to acoustic and categorical properties. For the subset of cross-category comparisons in the mixed set, we observed asymmetries in the distribution of ratings, as well as a stark decay of inter-rater agreement. These effects were replicated in a more robust within-subjects design (Experiment 2B) and cannot be explained by acoustic factors alone. We finally introduced a novel model of timbre dissimilarity based on partial least-squares regression that compared the contributions of both acoustic and categorical timbre descriptors. The best model fit (R2 = 0.88) was achieved when both types of descriptors were taken into account. These findings are interpreted as evidence for an interplay of acoustic and categorical information in timbre dissimilarity perception. PMID:26779086

  8. Acoustic and Categorical Dissimilarity of Musical Timbre: Evidence from Asymmetries Between Acoustic and Chimeric Sounds.

    PubMed

    Siedenburg, Kai; Jones-Mollerup, Kiray; McAdams, Stephen

    2015-01-01

    This paper investigates the role of acoustic and categorical information in timbre dissimilarity ratings. Using a Gammatone-filterbank-based sound transformation, we created tones that were rated as less familiar than recorded tones from orchestral instruments and that were harder to associate with an unambiguous sound source (Experiment 1). A subset of transformed tones, a set of orchestral recordings, and a mixed set were then rated on pairwise dissimilarity (Experiment 2A). We observed that recorded instrument timbres clustered into subsets that distinguished timbres according to acoustic and categorical properties. For the subset of cross-category comparisons in the mixed set, we observed asymmetries in the distribution of ratings, as well as a stark decay of inter-rater agreement. These effects were replicated in a more robust within-subjects design (Experiment 2B) and cannot be explained by acoustic factors alone. We finally introduced a novel model of timbre dissimilarity based on partial least-squares regression that compared the contributions of both acoustic and categorical timbre descriptors. The best model fit (R (2) = 0.88) was achieved when both types of descriptors were taken into account. These findings are interpreted as evidence for an interplay of acoustic and categorical information in timbre dissimilarity perception. PMID:26779086

  9. Aquatic Acoustic Metrics Interface Utility for Underwater Sound Monitoring and Analysis

    PubMed Central

    Ren, Huiying; Halvorsen, Michele B.; Deng, Zhiqun Daniel; Carlson, Thomas J.

    2012-01-01

    Fishes and marine mammals may suffer a range of potential effects from exposure to intense underwater sound generated by anthropogenic activities such as pile driving, shipping, sonars, and underwater blasting. Several underwater sound recording (USR) devices have been built to acquire samples of the underwater sound generated by anthropogenic activities. Software becomes indispensable for processing and analyzing the audio files recorded by these USRs. In this paper, we provide a detailed description of a new software package, the Aquatic Acoustic Metrics Interface (AAMI), specifically designed for analysis of underwater sound recordings to provide data in metrics that facilitate evaluation of the potential impacts of the sound on aquatic animals. In addition to the basic functions, such as loading and editing audio files recorded by USRs and batch processing of sound files, the software utilizes recording system calibration data to compute important parameters in physical units. The software also facilitates comparison of the noise sound sample metrics with biological measures such as audiograms of the sensitivity of aquatic animals to the sound, integrating various components into a single analytical frame. The features of the AAMI software are discussed, and several case studies are presented to illustrate its functionality. PMID:22969353

  10. Nonlinear acoustics: Noncollinear interaction, reflection and refraction, and scattering of sound by sound

    NASA Astrophysics Data System (ADS)

    Blackstock, David T.

    1987-07-01

    Research on four topics in nonlinear acoustics is described. (1) Dependence of three coefficients of nonlinearity for sea water on pressure, temperature, and density. Computation of the coefficients from a combination of theoretical and empirical relations is in progress. (2) Nonlinear, noncollinear interaction of sound waves. Three journal articles have been written, two on interaction in a rectangular waveguide and one on coefficient of nonlinearity for collinear and noncollinear interaction. (3) Reflection and refraction of finite amplitude sound at a plane interface between two fluids. A new form of Snell's law valid for waves of finite amplitude is derived. An experiment to test the implications of the new law is being carried out. (4) Scattering of sound by sound. The classical problem of the secondary radiation produced by interaction of two crossed sound beams is discussed. An experimental test of recent theoretical treatments is in preparation. A preliminary experiment is the measurement of the range dependence of finger lobes in the second harmonic radiation produced in the field of a monochromatically driven piston.

  11. Field theory for zero sound and ion acoustic wave in astrophysical matter

    NASA Astrophysics Data System (ADS)

    Gabadadze, Gregory; Rosen, Rachel A.

    2016-02-01

    We set up a field theory model to describe the longitudinal low-energy modes in high density matter present in white dwarf stars. At the relevant scales, ions—the nuclei of oxygen, carbon, and helium—are treated as heavy pointlike spin-0 charged particles in an effective field theory approach, while the electron dynamics is described by the Dirac Lagrangian at the one-loop level. We show that there always exists a longitudinal gapless mode in the system irrespective of whether the ions are in a plasma, crystal, or quantum liquid state. For certain values of the parameters, the gapless mode can be interpreted as a zero sound mode and, for other values, as an ion acoustic wave; we show that the zero sound and ion acoustic wave are complementary to each other. We discuss possible physical consequences of these modes for properties of white dwarfs.

  12. Teaching Acoustic Properties of Materials in Secondary School: Testing Sound Insulators

    ERIC Educational Resources Information Center

    Hernandez, M. I.; Couso, D.; Pinto, R.

    2011-01-01

    Teaching the acoustic properties of materials is a good way to teach physics concepts, extending them into the technological arena related to materials science. This article describes an innovative approach for teaching sound and acoustics in combination with sound insulating materials in secondary school (15-16-year-old students). Concerning the…

  13. Nonlinear acoustics: Reflection and refraction, scattering of sound by sound, and periodic media

    NASA Astrophysics Data System (ADS)

    Blackstock, David T.

    1988-07-01

    Research on three topics in nonlinear acoustics is described: (1) reflection and refraction at a plane interface between two fluids. Previously a modified form of Snell's law was derived; theoretical work is underway to investigate assumptions on which the derivation was based, (2) scattering of sound by sound. Work on a single beam experiment and a crossed-beams experiment is in progress, and (3) propagation in periodic media. An experiment is being designed to measure finite-amplitude distortion in a plane wave tube loaded periodically with reactive branch elements. Other work, on noncollinear interaction and on biomedical ultrasonics, is described briefly. Two journal articles, five oral papers, and one technical report are listed.

  14. The acoustical cues to sound location in the rat: Measurements of directional transfer functions

    PubMed Central

    Koka, Kanthaiah; Read, Heather L.; Tollin, Daniel J.

    2008-01-01

    The acoustical cues for sound location are generated by spatial- and frequency-dependent filtering of propagating sound waves by the head and external ears. Although rats have been a common model system for anatomy, physiology, and psychophysics of localization, there have been few studies of the acoustical cues available to rats. Here, directional transfer functions (DTFs), the directional components of the head-related transfer functions, were measured in six adult rats. The cues to location were computed from the DTFs. In the frontal hemisphere, spectral notches were present for frequencies from ∼16 to 30 kHz; in general, the frequency corresponding to the notch increased with increases in source elevation and in azimuth toward the ipsilateral ear. The maximum high-frequency envelope-based interaural time differences (ITDs) were 130 μs, whereas low-frequency (<3.5 kHz) fine-structure ITDs were 160 μs; both types of ITDs were larger than predicted from spherical head models. Interaural level differences (ILDs) strongly depended on location and frequency. Maximum ILDs were <10 dB for frequencies <8 kHz and were as large as 20–40 dB for frequencies >20 kHz. Removal of the pinna eliminated the spectral notches, reduced the acoustic gain and ILDs, altered the acoustical axis, and reduced the ITDs. PMID:18537381

  15. The acoustical cues to sound location in the rat: measurements of directional transfer functions.

    PubMed

    Koka, Kanthaiah; Read, Heather L; Tollin, Daniel J

    2008-06-01

    The acoustical cues for sound location are generated by spatial- and frequency-dependent filtering of propagating sound waves by the head and external ears. Although rats have been a common model system for anatomy, physiology, and psychophysics of localization, there have been few studies of the acoustical cues available to rats. Here, directional transfer functions (DTFs), the directional components of the head-related transfer functions, were measured in six adult rats. The cues to location were computed from the DTFs. In the frontal hemisphere, spectral notches were present for frequencies from approximately 16 to 30 kHz; in general, the frequency corresponding to the notch increased with increases in source elevation and in azimuth toward the ipsilateral ear. The maximum high-frequency envelope-based interaural time differences (ITDs) were 130 mus, whereas low-frequency (<3.5 kHz) fine-structure ITDs were 160 mus; both types of ITDs were larger than predicted from spherical head models. Interaural level differences (ILDs) strongly depended on location and frequency. Maximum ILDs were <10 dB for frequencies <8 kHz and were as large as 20-40 dB for frequencies >20 kHz. Removal of the pinna eliminated the spectral notches, reduced the acoustic gain and ILDs, altered the acoustical axis, and reduced the ITDs. PMID:18537381

  16. Acoustic Echo-Sounding Experiments in an Urban Environment

    NASA Technical Reports Server (NTRS)

    Damkevala, R. J.

    1971-01-01

    A 1320 Hz tuned source was mounted on a 4 ft diameter parabolic reflector, with the same driver working as the receiving transducer. This highly directional system is able to detect the small amount of energy backscattered from a vertically directed pulse of sound by inhomogeneities in the density structure of the atmosphere even in the presence of city noises which include rapid-transit and express-way traffic sounds. Results showing thermal plumes and the formation and breakup of radiation inversions are presented. A network of such echo-sounding stations in and around a city could be used to give early warning of atmospheric conditions which might lead to a pollution incident.

  17. A modal test method using sound pressure transducers based on vibro-acoustic reciprocity

    NASA Astrophysics Data System (ADS)

    Zhu, W. D.; Liu, J. M.; Xu, Y. F.; Ying, H. Q.

    2014-06-01

    A modal test method that uses sound pressure transducers at fixed locations and an impact hammer roving over a test structure is developed in this work. Since sound pressure transducers are used, the current method deals with a coupled structural-acoustic system. Based on the vibro-acoustic reciprocity, the method is equivalent to one, where acoustic excitations at fixed locations are given and the resulting acceleration of the test structure is measured. The current method can eliminate mass loading due to use of accelerometers, which can destroy existence of repeated or close natural frequencies of a symmetric structure. It can also avoid effects of a nodal line of a mode and an inactive area of a local mode, and measure all the out-of-plane modes within a frequency range of interest, including global and local ones. The coupling between the structure and the acoustic field in a structural-acoustic system introduces asymmetry in the model formulation. An equivalent state space formulation is used for a damped structural-acoustic system and the associated eigenvalue problem is derived. The biorthonormality relations between the left and right eigenvectors and the relations between the structural and acoustic components in the left and right eigenvectors are proved. The frequency response functions associated with the current method are derived and their physical meanings are explained. The guidelines for using the current method, including the types of structures that are suitable for the method, the positions of the sound pressure transducers, and the orientation of the test structure relative to the transducers, are provided. Modal tests were carried out on an automotive disk brake using the traditional and current methods, where multiple accelerometers and microphones were used to measure its dynamic responses induced by impacts, respectively. The differences between the measured natural frequencies using the current method and those from the finite element

  18. Sound velocity estimation: A system theoretic approach

    SciTech Connect

    Candy, J.V.; Sullivan, E.J.

    1993-07-30

    A system-theoretic approach is proposed to investigate the feasibility of reconstructing a sound velocity profile (SVP) from acoustical hydrophone measurements. This problem is based on a state-space representation of the normal-mode propagation model. It is shown that this representation can be utilized to investigate the so-called observability of the SVP from noisy measurement data. A model-based processor is developed to extract this information and it is shown that even in cases where limited SVP information is available, the SVP can be estimated using this approach.

  19. On the Acoustics of Emotion in Audio: What Speech, Music, and Sound have in Common

    PubMed Central

    Weninger, Felix; Eyben, Florian; Schuller, Björn W.; Mortillaro, Marcello; Scherer, Klaus R.

    2013-01-01

    Without doubt, there is emotional information in almost any kind of sound received by humans every day: be it the affective state of a person transmitted by means of speech; the emotion intended by a composer while writing a musical piece, or conveyed by a musician while performing it; or the affective state connected to an acoustic event occurring in the environment, in the soundtrack of a movie, or in a radio play. In the field of affective computing, there is currently some loosely connected research concerning either of these phenomena, but a holistic computational model of affect in sound is still lacking. In turn, for tomorrow’s pervasive technical systems, including affective companions and robots, it is expected to be highly beneficial to understand the affective dimensions of “the sound that something makes,” in order to evaluate the system’s auditory environment and its own audio output. This article aims at a first step toward a holistic computational model: starting from standard acoustic feature extraction schemes in the domains of speech, music, and sound analysis, we interpret the worth of individual features across these three domains, considering four audio databases with observer annotations in the arousal and valence dimensions. In the results, we find that by selection of appropriate descriptors, cross-domain arousal, and valence regression is feasible achieving significant correlations with the observer annotations of up to 0.78 for arousal (training on sound and testing on enacted speech) and 0.60 for valence (training on enacted speech and testing on music). The high degree of cross-domain consistency in encoding the two main dimensions of affect may be attributable to the co-evolution of speech and music from multimodal affect bursts, including the integration of nature sounds for expressive effects. PMID:23750144

  20. Sound source localization by hearing preservation patients with and without symmetric, low-frequency acoustic hearing

    PubMed Central

    Loiselle, Louise H.; Dorman, Michael F.; Yost, William A.; Gifford, Rene H.

    2015-01-01

    The aim of this paper was to study sound source localization by cochlear implant (CI) listeners with low-frequency (LF) acoustic hearing in both the operated ear and in the contralateral ear. Eight CI listeners had symmetrical LF acoustic hearing (symm) and four had asymmetric LF acoustic hearing (asymm). The effects of two variables were assessed: (i) the symmetry of the LF thresholds in the two ears and (ii) the presence/absence of bilateral acoustic amplification. Stimuli consisted of low-pass, high pass, and wide-band noise bursts presented in the frontal horizontal plane. Localization accuracy was 23 degrees of error for the symm listeners and 76 degrees of error for the asymm listeners. The presence of a unilateral CI used in conjunction with bilateral LF acoustic hearing does not impair sound source localization accuracy, but amplification for acoustic hearing can be detrimental to sound source localization accuracy. PMID:25832907

  1. Acoustics Research of Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Gao, Ximing; Houston, Janice

    2014-01-01

    The liftoff phase induces high acoustic loading over a broad frequency range for a launch vehicle. These external acoustic environments are used in the prediction of the internal vibration responses of the vehicle and components. Present liftoff vehicle acoustic environment prediction methods utilize stationary data from previously conducted hold-down tests to generate 1/3 octave band Sound Pressure Level (SPL) spectra. In an effort to update the accuracy and quality of liftoff acoustic loading predictions, non-stationary flight data from the Ares I-X were processed in PC-Signal in two flight phases: simulated hold-down and liftoff. In conjunction, the Prediction of Acoustic Vehicle Environments (PAVE) program was developed in MATLAB to allow for efficient predictions of sound pressure levels (SPLs) as a function of station number along the vehicle using semi-empirical methods. This consisted of generating the Dimensionless Spectrum Function (DSF) and Dimensionless Source Location (DSL) curves from the Ares I-X flight data. These are then used in the MATLAB program to generate the 1/3 octave band SPL spectra. Concluding results show major differences in SPLs between the hold-down test data and the processed Ares I-X flight data making the Ares I-X flight data more practical for future vehicle acoustic environment predictions.

  2. Localization of virtual sound sources with bilateral hearing aids in realistic acoustical scenes.

    PubMed

    Mueller, Martin F; Kegel, Andrea; Schimmel, Steven M; Dillier, Norbert; Hofbauer, Markus

    2012-06-01

    Sound localization with hearing aids has traditionally been investigated in artificial laboratory settings. These settings are not representative of environments in which hearing aids are used. With individual Head-Related Transfer Functions (HRTFs) and room simulations, realistic environments can be reproduced and the performance of hearing aid algorithms can be evaluated. In this study, four different environments with background noise have been implemented in which listeners had to localize different sound sources. The HRTFs were measured inside the ear canals of the test subjects and by the microphones of Behind-The-Ear (BTEs) hearing aids. In the first experiment the system for virtual acoustics was evaluated by comparing perceptual sound localization results for the four scenes in a real room with a simulated one. In the second experiment, sound localization with three BTE algorithms, an omnidirectional microphone, a monaural cardioid-shaped beamformer and a monaural noise canceler, was examined. The results showed that the system for generating virtual environments is a reliable tool to evaluate sound localization with hearing aids. With BTE hearing aids localization performance decreased and the number of front-back confusions was at chance level. The beamformer, due to its directivity characteristics, allowed the listener to resolve the front-back ambiguity. PMID:22712946

  3. Investigation on the reproduction performance versus acoustic contrast control in sound field synthesis.

    PubMed

    Bai, Mingsian R; Wen, Jheng-Ciang; Hsu, Hoshen; Hua, Yi-Hsin; Hsieh, Yu-Hao

    2014-10-01

    A sound reconstruction system is proposed for audio reproduction with extended sweet spot and reduced reflections. An equivalent source method (ESM)-based sound field synthesis (SFS) approach, with the aid of dark zone minimization is adopted in the study. Conventional SFS that is based on the free-field assumption suffers from synthesis error due to boundary reflections. To tackle the problem, the proposed system utilizes convex optimization in designing array filters with both reproduction performance and acoustic contrast taken into consideration. Control points are deployed in the dark zone to minimize the reflections from the walls. Two approaches are employed to constrain the pressure and velocity in the dark zone. Pressure matching error (PME) and acoustic contrast (AC) are used as performance measures in simulations and experiments for a rectangular loudspeaker array. Perceptual Evaluation of Audio Quality (PEAQ) is also used to assess the audio reproduction quality. The results show that the pressure-constrained (PC) method yields better acoustic contrast, but poorer reproduction performance than the pressure-velocity constrained (PVC) method. A subjective listening test also indicates that the PVC method is the preferred method in a live room. PMID:25324063

  4. Guided acoustic wave inspection system

    DOEpatents

    Chinn, Diane J.

    2004-10-05

    A system for inspecting a conduit for undesirable characteristics. A transducer system induces guided acoustic waves onto said conduit. The transducer system detects the undesirable characteristics of the conduit by receiving guided acoustic waves that contain information about the undesirable characteristics. The conduit has at least two sides and the transducer system utilizes flexural modes of propagation to provide inspection using access from only the one side of the conduit. Cracking is detected with pulse-echo testing using one transducer to both send and receive the guided acoustic waves. Thinning is detected in through-transmission testing where one transducer sends and another transducer receives the guided acoustic waves.

  5. Sound

    NASA Astrophysics Data System (ADS)

    Capstick, J. W.

    2013-01-01

    1. The nature of sound; 2. Elasticity and vibrations; 3. Transverse waves; 4. Longitudinal waves; 5. Velocity of longitudinal waves; 6. Reflection and refraction. Doppler's principle; 7. Interference. Beats. Combination tones; 8. Resonance and forced vibrations; 9. Quality of musical notes; 10. Organ pipes; 11. Rods. Plates. Bells; 12. Acoustical measurements; 13. The phonograph, microphone and telephone; 14. Consonance; 15. Definition of intervals. Scales. Temperament; 16. Musical instruments; 17. Application of acoustical principles to military purposes; Questions; Answers to questions; Index.

  6. Investigation of reverberation synthesized by electro-acoustic enhancement systems, from a subjective and physical acoustic standpoint

    NASA Astrophysics Data System (ADS)

    Shimizu, Yasushi

    2002-05-01

    Current electro-acoustic enhancement technology enables wide control over concert hall acoustics. The goal of sound field synthesis in anechoic space is to reconstruct a specific sound field. However, applying acoustic enhancement technology to existing reverberant spaces is a less developed research direction. This presentation demonstrates a methodology of electro-acoustic enhancement using regenerative reverberation through SAAF (spatially averaged acoustic feedback), an acceptable variation of RT and SPL in enhanced acoustical conditions. That was presented by YAMAHA Acoustic Research Laboratories. SAAF technology can flatten amplitude peaks at the howling frequency of acoustical feedback loops by using time variant finite impulse response filters. Therefore it enables regeneration of reverberated sound by wide band feedback in frequency without coloration. This system has been applied to ``negative absorption control'' and loudness equalization of under-balcony seats in current concert halls, to optimize concert hall acoustics electronically instead of architecturally. Adjusted reverberation time in enhanced condition should be between 1.5 and 2.0 times higher than the natural RT (ex. RTon/Rtoff=1.8). The SPL increases about 1 dB to 3 dB based on measured results of more than 30 performing halls integrated with acoustic enhancement system in Japan. Examples of the major Japanese concert halls with acoustic enhancement systems are presented.

  7. Improving Classroom Acoustics (ICA): A Three-Year FM Sound Field Classroom Amplification Study.

    ERIC Educational Resources Information Center

    Rosenberg, Gail Gegg; Blake-Rahter, Patricia; Heavner, Judy; Allen, Linda; Redmond, Beatrice Myers; Phillips, Janet; Stigers, Kathy

    1999-01-01

    The Improving Classroom Acoustics (ICA) special project was designed to determine if students' listening and learning behaviors improved as a result of an acoustical environment enhanced through the use of FM sound field classroom amplification. The 3-year project involved 2,054 students in 94 general education kindergarten, first-, and…

  8. A novel acoustically quiet coil for neonatal MRI system

    PubMed Central

    Ireland, Christopher M.; Giaquinto, Randy O.; Loew, Wolfgang; Tkach, Jean A.; Pratt, Ronald G.; Kline-Fath, Beth M.; Merhar, Stephanie L.; Dumoulin, Charles L.

    2015-01-01

    MRI acoustic exposure has the potential to elicit physiological distress and impact development in preterm and term infants. To mitigate this risk, a novel acoustically quiet coil was developed to reduce the sound pressure level experienced by neonates during MR procedures. The new coil has a conventional high-pass birdcage RF design, but is built on a framework of sound abating material. We evaluated the acoustic and MR imaging performance of the quiet coil and a conventional body coil on two small footprint NICU MRI systems. Sound pressure level and frequency response measurements were made for six standard clinical MR imaging protocols. The average sound pressure level, reported for all six imaging pulse sequences, was 82.2 dBA for the acoustically quiet coil, and 91.1 dBA for the conventional body coil. The sound pressure level values measured for the acoustically quiet coil were consistently lower, 9 dBA (range 6-10 dBA) quieter on average. The acoustic frequency response of the two coils showed a similar harmonic profile for all imaging sequences. However, the amplitude was lower for the quiet coil, by as much as 20 dBA. PMID:26457072

  9. Some Sound Advice or a Short Course in School Acoustics

    ERIC Educational Resources Information Center

    McCandless, David

    1977-01-01

    The two major areas of acoustical problems are room acoustics and noise control. Some parameters of these areas are identified to illustrate that the best acoustical solutions occur in comprehensive planning at the very beginning of a project. (Author/MLF)

  10. Variance of speed of sound and correlation with acoustic impedance in canine corneas.

    PubMed

    Tang, Junhua; Liu, Jun

    2011-10-01

    The clinical standard for measuring corneal thickness is ultrasound pachymetry that assumes a constant speed of sound. The purpose of this study was to examine the variance of speed of sound and its relationship with acoustic impedance in healthy eyes of canines with a large age span. Corneal speed of sound and acoustic impedance were measured in 34 canine eyes at room temperature (21 ± 1°C). The mean speed of sound was 1577 ± 10 m/s ranging from 1553 to 1594 m/s. There was a strong correlation between speed of sound and acoustic impedance (R = 0.84, p < 0.001). Corneal speed of sound had a small variance in healthy canines over 1-year-old, but was significantly lower in younger canines suggesting an age effect. The strong correlation between corneal speed of sound and acoustic impedance may offer a potential means to noninvasively detect abnormal speed of sound for more accurate corneal thickness estimation. PMID:21821348

  11. Concerning the sound insulation of building elements made up of light concretes. [acoustic absorption efficiency calculations

    NASA Technical Reports Server (NTRS)

    Giurgiu, I. I.

    1974-01-01

    The sound insulating capacity of building elements made up of light concretes is considered. Analyzing differentially the behavior of light concrete building elements under the influence of incident acoustic energy and on the basis of experimental measurements, coefficients of correction are introduced into the basic formulas for calculating the sound insulating capacity for the 100-3,2000 Hz frequency band.

  12. Sound field diffusivity in NASA Langley Research Center hardwalled acoustic facilities

    NASA Technical Reports Server (NTRS)

    Mcgary, M. C.

    1982-01-01

    Cross correlation measurements were performed to determine the quality of the sound fields in the ANRL reverberation room and the ANRL transmission loss facility. The results indicate the level of sound field diffuseness which may be attained in these hardwalled acoustic facilities.

  13. Truck acoustic data analyzer system

    DOEpatents

    Haynes, Howard D.; Akerman, Alfred; Ayers, Curtis W.

    2006-07-04

    A passive vehicle acoustic data analyzer system having at least one microphone disposed in the acoustic field of a moving vehicle and a computer in electronic communication the microphone(s). The computer detects and measures the frequency shift in the acoustic signature emitted by the vehicle as it approaches and passes the microphone(s). The acoustic signature of a truck driving by a microphone can provide enough information to estimate the truck speed in miles-per-hour (mph), engine speed in rotations-per-minute (RPM), turbocharger speed in RPM, and vehicle weight.

  14. Plant acoustics: in the search of a sound mechanism for sound signaling in plants.

    PubMed

    Mishra, Ratnesh Chandra; Ghosh, Ritesh; Bae, Hanhong

    2016-08-01

    Being sessile, plants continuously deal with their dynamic and complex surroundings, identifying important cues and reacting with appropriate responses. Consequently, the sensitivity of plants has evolved to perceive a myriad of external stimuli, which ultimately ensures their successful survival. Research over past centuries has established that plants respond to environmental factors such as light, temperature, moisture, and mechanical perturbations (e.g. wind, rain, touch, etc.) by suitably modulating their growth and development. However, sound vibrations (SVs) as a stimulus have only started receiving attention relatively recently. SVs have been shown to increase the yields of several crops and strengthen plant immunity against pathogens. These vibrations can also prime the plants so as to make them more tolerant to impending drought. Plants can recognize the chewing sounds of insect larvae and the buzz of a pollinating bee, and respond accordingly. It is thus plausible that SVs may serve as a long-range stimulus that evokes ecologically relevant signaling mechanisms in plants. Studies have suggested that SVs increase the transcription of certain genes, soluble protein content, and support enhanced growth and development in plants. At the cellular level, SVs can change the secondary structure of plasma membrane proteins, affect microfilament rearrangements, produce Ca(2+) signatures, cause increases in protein kinases, protective enzymes, peroxidases, antioxidant enzymes, amylase, H(+)-ATPase / K(+) channel activities, and enhance levels of polyamines, soluble sugars and auxin. In this paper, we propose a signaling model to account for the molecular episodes that SVs induce within the cell, and in so doing we uncover a number of interesting questions that need to be addressed by future research in plant acoustics. PMID:27342223

  15. Acoustic Suppression Systems and Related Methods

    NASA Technical Reports Server (NTRS)

    Kolaini, Ali R. (Inventor); Kern, Dennis L. (Inventor)

    2013-01-01

    An acoustic suppression system for absorbing and/or scattering acoustic energy comprising a plurality of acoustic targets in a containment is described, the acoustic targets configured to have resonance frequencies allowing the targets to be excited by incoming acoustic waves, the resonance frequencies being adjustable to suppress acoustic energy in a set frequency range. Methods for fabricating and implementing the acoustic suppression system are also provided.

  16. Outdoor sound propagation effects on aircraft detection through passive phased-array acoustic antennas: 3D numerical simulations

    NASA Astrophysics Data System (ADS)

    Roselli, Ivan; Testa, Pierluigi; Caronna, Gaetano; Barbagelata, Andrea; Ferrando, Alessandro

    2005-09-01

    The present paper describes some of the main acoustic issues connected with the SAFE-AIRPORT European Project for the development of an innovative acoustic system for the improvement of air traffic management. The system sensors are two rotating passive phased-array antennas with 512 microphones each. In particular, this study focused on the propagation of sound waves in the atmosphere and its influence on the system detection efficiency. The effects of air temperature and wind gradients on aircraft tracking were analyzed. Algorithms were implemented to correct output data errors on aircraft location due to acoustic ray deviation in 3D environment. Numerical simulations were performed using several temperature and wind profiles according to common and critical meteorological conditions. Aircraft location was predicted through 3D acoustic ray triangulation methods, taking into account variation in speed of sound waves along rays path toward each antenna. The system range was also assessed considering aircraft noise spectral emission. Since the speed of common airplanes is not negligible with respect to sound speed during typical airport operations such as takeoff and approach, the influence of the Doppler effect on range calculation was also considered and most critical scenarios were simulated.

  17. Ultra-broadband sound absorption by acoustic metamaterials

    NASA Astrophysics Data System (ADS)

    Jiang, Xue; Liang, Bin; Cheng, Jian-Chun

    2015-03-01

    Metamaterials with extraordinary properties unavailable in nature have opened up new design possibilities. Acoustic absorbers are of particular significances for acoustics-based devices and find applications in various scenarios, but subject to the inherent restriction of the natural acoustical parameters and limited operating bandwidth. We report the theoretical design, numerical calculation and experimental study on the realization of a metamaterial-based acoustic absorber with a simple yet efficient structure. The proposed acoustic absorber works in an ultra-broad band without restricted by the material type or requiring extra absorbing material. Such distinct effects stem from the localization and dissipation of different spectrum components at predesigned spatial positions. Theoretical predictions developed based on classical acoustic theory agree well with numerical and experimental results. The realization of ultra-broadband acoustic absorber with unique properties of stiffness and environmental-friendliness has paved the way for designing conceptual acoustic devices, and has potential applications in situations with special requirements on acoustic absorption characteristics. Key Laboratory of Modern Acoustics, MOE, Department of Physics, Collaborative Innovation Center for Advanced Microstructures, Nanjing University, Nanjing 210093, China.

  18. Effect of temperature on acoustic communication: sound production in the croaking gourami (labyrinth fishes).

    PubMed

    Ladich, Friedrich; Schleinzer, Günter

    2015-04-01

    Sound communication comprising the production and detection of acoustic signals is affected by ambient temperature in ectothermic animals. In the present study we investigated the effects of temperature on sound production and characteristics in the croaking gourami Trichopsis vittata, a freshwater fish from Southeast Asia possessing a highly specialized sound-generating mechanism found only in a single genus. The croaking gourami produces pulsed sounds by stretching and plucking two enhanced pectoral fin tendons during rapid pectoral fin beating. Croaking sounds typically consist of a series of double-pulsed bursts with main energies between 1 and 1.5 kHz. Sounds were recorded during dyadic contests between two males at three different temperatures (25°, 30° and 35°C). The mean dominant frequency increased with rising temperature from 1.18 to 1.33 kHz, whereas temporal characteristics decreased. The sound interval dropped from 492 to 259 ms, the burst period from 51 to 35 ms and the pulse period from 5.8 to 5.1 ms. In contrast, the number of sounds and number of bursts within a sound were not affected by temperature. The current study shows that spectral and temporal characteristics of sounds are affected in different ways by temperature in the croaking gourami, whereas the numbers of sounds and bursts remain unaffected. We conclude that acoustic communication in gouramis is affected by changes in ambient temperature. PMID:25433336

  19. Acoustic Test Results of Melamine Foam with Application to Payload Fairing Acoustic Attenuation Systems

    NASA Technical Reports Server (NTRS)

    Hughes, William O.; McNelis, Anne M.

    2014-01-01

    A spacecraft at launch is subjected to a harsh acoustic and vibration environment resulting from the passage of acoustic energy, created during the liftoff of a launch vehicle, through the vehicle's payload fairing. In order to ensure the mission success of the spacecraft it is often necessary to reduce the resulting internal acoustic sound pressure levels through the usage of acoustic attenuation systems. Melamine foam, lining the interior walls of the payload fairing, is often utilized as the main component of such a system. In order to better understand the acoustic properties of melamine foam, with the goal of developing improved acoustic attenuation systems, NASA has recently performed panel level testing on numerous configurations of melamine foam acoustic treatments at the Riverbank Acoustical Laboratory. Parameters assessed included the foam's thickness and density, as well as the effects of a top outer cover sheet material and mass barriers embedded within the foam. This testing followed the ASTM C423 standard for absorption and the ASTM E90 standard for transmission loss. The acoustic test data obtained and subsequent conclusions are the subjects of this paper.

  20. Sound Exposure Calculations for Transient Events and Other Improvements to an Acoustical Tactical Decision Aid

    NASA Astrophysics Data System (ADS)

    Wilson, D. K.; Nguyen, V. A.; Srour, Nassy; Noble, John

    2002-08-01

    Recent enhancements to an acoustical tactical decision aid, called the Acoustic Battlefield Aid (ABFA), are described. ABFA predicts the effects of the atmosphere and local terrain on the performance of acoustical sensors, using advanced sound propagation models. Among the enhancements are: (1) sound-exposure and detection calculations for moving and transient sources, (2) new display capabilities including loading of vector-map features from CDs, (3) an interactive menu for entering and managing acoustical and meteorological ground properties, (4) initialization of runs from field trials stored in the U.S. Army Research Laboratory's Automatic Target Recognition Acoustic Database, (5) a Java-based interface to numerical weather forecast data over the Internet, and (6) creation of a Windows executable version using the MATLAB compiler.

  1. Diversity of acoustic tracheal system and its role for directional hearing in crickets

    PubMed Central

    2013-01-01

    Background Sound localization in small insects can be a challenging task due to physical constraints in deriving sufficiently large interaural intensity differences (IIDs) between both ears. In crickets, sound source localization is achieved by a complex type of pressure difference receiver consisting of four potential sound inputs. Sound acts on the external side of two tympana but additionally reaches the internal tympanal surface via two external sound entrances. Conduction of internal sound is realized by the anatomical arrangement of connecting trachea. A key structure is a trachea coupling both ears which is characterized by an enlarged part in its midline (i.e., the acoustic vesicle) accompanied with a thin membrane (septum). This facilitates directional sensitivity despite an unfavorable relationship between wavelength of sound and body size. Here we studied the morphological differences of the acoustic tracheal system in 40 cricket species (Gryllidae, Mogoplistidae) and species of outgroup taxa (Gryllotalpidae, Rhaphidophoridae, Gryllacrididae) of the suborder Ensifera comprising hearing and non hearing species. Results We found a surprisingly high variation of acoustic tracheal systems and almost all investigated species using intraspecific acoustic communication were characterized by an acoustic vesicle associated with a medial septum. The relative size of the acoustic vesicle - a structure most crucial for deriving high IIDs - implies an important role for sound localization. Most remarkable in this respect was the size difference of the acoustic vesicle between species; those with a more unfavorable ratio of body size to sound wavelength tend to exhibit a larger acoustic vesicle. On the other hand, secondary loss of acoustic signaling was nearly exclusively associated with the absence of both acoustic vesicle and septum. Conclusion The high diversity of acoustic tracheal morphology observed between species might reflect different steps in the evolution

  2. Acoustic emission monitoring system

    DOEpatents

    Romrell, Delwin M.

    1977-07-05

    Methods and apparatus for identifying the source location of acoustic emissions generated within an acoustically conductive medium. A plurality of acoustic receivers are communicably coupled to the surface of the medium at a corresponding number of spaced locations. The differences in the reception time of the respective sensors in response to a given acoustic event are measured among various sensor combinations prescribed by the monitoring mode employed. Acoustic reception response encountered subsequent to the reception by a predetermined number of the prescribed sensor combinations are inhibited from being communicated to the processing circuitry, while the time measurements obtained from the prescribed sensor combinations are translated into a position measurement representative of the location on the surface most proximate the source of the emission. The apparatus is programmable to function in six separate and five distinct operating modes employing either two, three or four sensory locations. In its preferred arrangement the apparatus of this invention will re-initiate a monitoring interval if the predetermined number of sensors do not respond to a particular emission within a given time period.

  3. A synthetic aperture acoustic prototype system

    NASA Astrophysics Data System (ADS)

    Luke, Robert H.; Bishop, Steven S.; Chan, Aaron M.; Gugino, Peter M.; Donzelli, Thomas P.; Soumekh, Mehrdad

    2015-05-01

    A novel quasi-monostatic system operating in a side-scan synthetic aperture acoustic (SAA) imaging mode is presented. This research project's objectives are to explore the military utility of outdoor continuous sound imaging of roadside foliage and target detection. The acoustic imaging method has several military relevant advantages such as being immune to RF jamming, superior spatial resolution as compared to 0.8-2.4 GHz ground penetrating radar (GPR), capable of standoff side and forward-looking scanning, and relatively low cost, weight and size when compared to GPR technologies. The prototype system's broadband 2-17 kHz LFM chirp transceiver is mounted on a manned all-terrain vehicle. Targets are positioned within the acoustic main beam at slant ranges of two to seven meters and on surfaces such as dirt, grass, gravel and weathered asphalt and with an intervening metallic chain link fence. Acoustic image reconstructions and signature plots result in means for literal interpretation and quantifiable analyses.

  4. Acoustic Analysis of Inhaler Sounds From Community-Dwelling Asthmatic Patients for Automatic Assessment of Adherence

    PubMed Central

    D'arcy, Shona; Costello, Richard W.

    2014-01-01

    Inhalers are devices which deliver medication to the airways in the treatment of chronic respiratory diseases. When used correctly inhalers relieve and improve patients' symptoms. However, adherence to inhaler medication has been demonstrated to be poor, leading to reduced clinical outcomes, wasted medication, and higher healthcare costs. There is a clinical need for a system that can accurately monitor inhaler adherence as currently no method exists to evaluate how patients use their inhalers between clinic visits. This paper presents a method of automatically evaluating inhaler adherence through acoustic analysis of inhaler sounds. An acoustic monitoring device was employed to record the sounds patients produce while using a Diskus dry powder inhaler, in addition to the time and date patients use the inhaler. An algorithm was designed and developed to automatically detect inhaler events from the audio signals and provide feedback regarding patient adherence. The algorithm was evaluated on 407 audio files obtained from 12 community dwelling asthmatic patients. Results of the automatic classification were compared against two expert human raters. For patient data for whom the human raters Cohen's kappa agreement score was \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}${>}{0.81}$\\end{document}, results indicated that the algorithm's accuracy was 83% in determining the correct inhaler technique score compared with the raters. This paper has several clinical implications as it demonstrates the feasibility of using acoustics to objectively monitor patient inhaler adherence and provide real-time personalized medical care for a chronic respiratory illness. PMID:27170883

  5. Monitoring Anthropogenic Ocean Sound from Shipping Using an Acoustic Sensor Network and a Compressive Sensing Approach.

    PubMed

    Harris, Peter; Philip, Rachel; Robinson, Stephen; Wang, Lian

    2016-01-01

    Monitoring ocean acoustic noise has been the subject of considerable recent study, motivated by the desire to assess the impact of anthropogenic noise on marine life. A combination of measuring ocean sound using an acoustic sensor network and modelling sources of sound and sound propagation has been proposed as an approach to estimating the acoustic noise map within a region of interest. However, strategies for developing a monitoring network are not well established. In this paper, considerations for designing a network are investigated using a simulated scenario based on the measurement of sound from ships in a shipping lane. Using models for the sources of the sound and for sound propagation, a noise map is calculated and measurements of the noise map by a sensor network within the region of interest are simulated. A compressive sensing algorithm, which exploits the sparsity of the representation of the noise map in terms of the sources, is used to estimate the locations and levels of the sources and thence the entire noise map within the region of interest. It is shown that although the spatial resolution to which the sound sources can be identified is generally limited, estimates of aggregated measures of the noise map can be obtained that are more reliable compared with those provided by other approaches. PMID:27011187

  6. Evaluation of sound field systems in elementary school classrooms

    NASA Astrophysics Data System (ADS)

    Vigeant, Michelle C.; Kruger, Kelly

    2003-10-01

    Our primary purpose in this study was to determine the relevant ergonomic issues associated with daily use of sound field systems in elementary school classrooms, in order to develop a purchasing guideline and technical specification. The secondary purpose was to evaluate these systems to identify if one or more acoustical parameters could be used to determine the quality and effectiveness of a system. Six sound field systems, with varying numbers and types of speakers, were chosen as a cross-section of available systems on the market. Six representative classrooms, currently in use, were selected based on a range of reverberation times and background noise levels. All systems were installed for two weeks in each classroom. Student speech intelligibility (SI) tests using phonetically balanced word lists were conducted, as well as teacher interviews. The acoustical parameters measured were clarity ratios C50 and C80, speech transmission indices STI and R(rapid)STI, sound pressure level (SPL) uniformity and frequency response. An improvement in SI was found for all systems. Only SPL uniformity and frequency response were found to be useful distinguishing performance parameters between systems. Ergonomic design aspects of sound field systems had a significant influence on the acceptance and usage in the classroom.

  7. Intelligent Engine Systems: Acoustics

    NASA Technical Reports Server (NTRS)

    Wojno, John; Martens, Steve; Simpson, Benjamin

    2008-01-01

    An extensive study of new fan exhaust nozzle technologies was performed. Three new uniform chevron nozzles were designed, based on extensive CFD analysis. Two new azimuthally varying variants were defined. All five were tested, along with two existing nozzles, on a representative model-scale, medium BPR exhaust nozzle. Substantial acoustic benefits were obtained from the uniform chevron nozzle designs, the best benefit being provided by an existing design. However, one of the azimuthally varying nozzle designs exhibited even better performance than any of the uniform chevron nozzles. In addition to the fan chevron nozzles, a new technology was demonstrated, using devices that enhance mixing when applied to an exhaust nozzle. The acoustic benefits from these devices applied to medium BPR nozzles were similar, and in some cases superior to, those obtained from conventional uniform chevron nozzles. However, none of the low noise technologies provided equivalent acoustic benefits on a model-scale high BPR exhaust nozzle, similar to current large commercial applications. New technologies must be identified to improve the acoustics of state-of-the-art high BPR jet engines.

  8. Sound isolation and giant linear nonreciprocity in a compact acoustic circulator.

    PubMed

    Fleury, Romain; Sounas, Dimitrios L; Sieck, Caleb F; Haberman, Michael R; Alù, Andrea

    2014-01-31

    Acoustic isolation and nonreciprocal sound transmission are highly desirable in many practical scenarios. They may be realized with nonlinear or magneto-acoustic effects, but only at the price of high power levels and impractically large volumes. In contrast, nonreciprocal electromagnetic propagation is commonly achieved based on the Zeeman effect, or modal splitting in ferromagnetic atoms induced by a magnetic bias. Here, we introduce the acoustic analog of this phenomenon in a subwavelength meta-atom consisting of a resonant ring cavity biased by a circulating fluid. The resulting angular momentum bias splits the ring's azimuthal resonant modes, producing giant acoustic nonreciprocity in a compact device. We applied this concept to build a linear, magnetic-free circulator for airborne sound waves, observing up to 40-decibel nonreciprocal isolation at audible frequencies. PMID:24482477

  9. Biology-inspired acoustic sensors for sound source localization

    NASA Astrophysics Data System (ADS)

    Liu, Haijun; Chen, Zhong; Yu, Miao

    2008-03-01

    In this article, the design of a biology-inspired miniature directional microphone is presented. This microphone consists of two clamped circular diaphragms, which are mechanically coupled by a connecting bridge that is pivoted at its center. A theoretical model is constructed to determine the microphone response to sound incident from an arbitrary direction. Both the simulation and preliminary experimental results show that the proposed microphone provides a remarkable amplification of the time delay associated with the sound induced diaphragm responses. This study should be relevant to various sound source localization applications.

  10. Prediction of sound fields in acoustical cavities using the boundary element method. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Kipp, C. R.; Bernhard, R. J.

    1985-01-01

    A method was developed to predict sound fields in acoustical cavities. The method is based on the indirect boundary element method. An isoparametric quadratic boundary element is incorporated. Pressure, velocity and/or impedance boundary conditions may be applied to a cavity by using this method. The capability to include acoustic point sources within the cavity is implemented. The method is applied to the prediction of sound fields in spherical and rectangular cavities. All three boundary condition types are verified. Cases with a point source within the cavity domain are also studied. Numerically determined cavity pressure distributions and responses are presented. The numerical results correlate well with available analytical results.

  11. An open-structure sound insulator against low-frequency and wide-band acoustic waves

    NASA Astrophysics Data System (ADS)

    Chen, Zhe; Fan, Li; Zhang, Shu-yi; Zhang, Hui; Li, Xiao-juan; Ding, Jin

    2015-10-01

    To block sound, i.e., the vibration of air, most insulators are based on sealed structures and prevent the flow of the air. In this research, an acoustic metamaterial adopting side structures, loops, and labyrinths, arranged along a main tube, is presented. By combining the accurately designed side structures, an extremely wide forbidden band with a low cut-off frequency of 80 Hz is produced, which demonstrates a powerful low-frequency and wide-band sound insulation ability. Moreover, by virtue of the bypass arrangement, the metamaterial is based on an open structure, and thus air flow is allowed while acoustic waves can be insulated.

  12. Experimental and numerical characterization of the sound pressure in standing wave acoustic levitators

    NASA Astrophysics Data System (ADS)

    Stindt, A.; Andrade, M. A. B.; Albrecht, M.; Adamowski, J. C.; Panne, U.; Riedel, J.

    2014-01-01

    A novel method for predictions of the sound pressure distribution in acoustic levitators is based on a matrix representation of the Rayleigh integral. This method allows for a fast calculation of the acoustic field within the resonator. To make sure that the underlying assumptions and simplifications are justified, this approach was tested by a direct comparison to experimental data. The experimental sound pressure distributions were recorded by high spatially resolved frequency selective microphone scanning. To emphasize the general applicability of the two approaches, the comparative studies were conducted for four different resonator geometries. In all cases, the results show an excellent agreement, demonstrating the accuracy of the matrix method.

  13. Acoustical and perceptual assessment of water sounds and their use over road traffic noise.

    PubMed

    Galbrun, Laurent; Ali, Tahrir T

    2013-01-01

    This paper examines physical and perceptual properties of water sounds generated by small to medium sized water features that have applications for road traffic noise masking. A large variety of water sounds were produced in the laboratory by varying design parameters. Analysis showed that estimations can be made on how these parameters affect sound pressure levels, frequency content, and psychoacoustic properties. Comparisons with road traffic noise showed that there is a mismatch between the frequency responses of traffic noise and water sounds, with the exception of waterfalls with high flow rates, which can generate large low frequency levels comparable to traffic noise. Perceptual assessments were carried out in the context of peacefulness and relaxation, where both water sounds and noise from dense road traffic were audible. Results showed that water sounds should be similar or not less than 3 dB below the road traffic noise level (confirming previous research), and that stream sounds tend to be preferred to fountain sounds, which are in turn preferred to waterfall sounds. Analysis made on groups of sounds also indicated that low sharpness and large temporal variations were preferred on average, although no acoustical or psychoacoustical parameter correlated well with the individual sound preferences. PMID:23297897

  14. Acoustics

    NASA Technical Reports Server (NTRS)

    Goodman, Jerry R.; Grosveld, Ferdinand

    2007-01-01

    The acoustics environment in space operations is important to maintain at manageable levels so that the crewperson can remain safe, functional, effective, and reasonably comfortable. High acoustic levels can produce temporary or permanent hearing loss, or cause other physiological symptoms such as auditory pain, headaches, discomfort, strain in the vocal cords, or fatigue. Noise is defined as undesirable sound. Excessive noise may result in psychological effects such as irritability, inability to concentrate, decrease in productivity, annoyance, errors in judgment, and distraction. A noisy environment can also result in the inability to sleep, or sleep well. Elevated noise levels can affect the ability to communicate, understand what is being said, hear what is going on in the environment, degrade crew performance and operations, and create habitability concerns. Superfluous noise emissions can also create the inability to hear alarms or other important auditory cues such as an equipment malfunctioning. Recent space flight experience, evaluations of the requirements in crew habitable areas, and lessons learned (Goodman 2003; Allen and Goodman 2003; Pilkinton 2003; Grosveld et al. 2003) show the importance of maintaining an acceptable acoustics environment. This is best accomplished by having a high-quality set of limits/requirements early in the program, the "designing in" of acoustics in the development of hardware and systems, and by monitoring, testing and verifying the levels to ensure that they are acceptable.

  15. A nonlinear acoustic metamaterial: Realization of a backwards-traveling second-harmonic sound wave.

    PubMed

    Quan, Li; Qian, Feng; Liu, Xiaozhou; Gong, Xiufen

    2016-06-01

    An ordinary waveguide with periodic vibration plates and side holes can realize an acoustic metamaterial that simultaneously possesses a negative bulk modulus and a negative mass density. The study is further extended to a nonlinear case and it is predicted that a backwards-traveling second-harmonic sound wave can be obtained through the nonlinear propagation of a sound wave in such a metamaterial. PMID:27369164

  16. Acoustical pipe lagging systems design and performance

    SciTech Connect

    Stevens, R.D.; Chapnik, B.V.; Howe, B.

    1998-10-30

    HGC Engineering was retained by the PRC International at the American Gas Association, to undertake a study of acoustical pipe lagging systems. The study included gathering input from PRCI member companies regarding their concerns and their established material specifications for lagging systems; conducting a comprehensive acoustical measurement program; using the measured results in conjunction with computer modeling to identify optimal lagging configurations; and developing material specifications for several standardized lagging systems for use by PRCI member companies. For all the lagging configurations, the measurement and modeling results showed amplification of sound at frequencies less than about 315 Hz. This result is a well known phenomenon, widely discussed the published acoustical literature, which means that pipe lagging is only effective for controlling higher frequencies noise (above about 500 Hz). Fortunately, in many gas piping applications, it is this higher frequency range that is of concern. The measurement and modeling results further showed that the high frequency performance of a lagging system is dependent primarily on having sufficient jacket mass and insulation thickness. The performance can be improved using an intermediate mass loaded barrier layer.

  17. The concept of cyclic sound intensity and its application to acoustical imaging

    NASA Astrophysics Data System (ADS)

    Lafon, B.; Antoni, J.; Sidahmed, M.; Polac, L.

    2011-04-01

    This paper demonstrates how to take advantage of the cyclostationarity property of engine signals to define a new acoustical quantity, the cyclic sound intensity, which displays the instantaneous flux of acoustical energy in the angle-frequency domain during an average engine cycle. This quantity is attractive in that it possesses the ability of being instantaneous and averaged at the same time, thus reconciling two conflicting properties into a rigourous and unambiguous framework. Cyclic sound intensity is a rich concept with several original ramifications. Among other things, it returns a unique decomposition into instantaneous active and reactive parts. Associated to acoustical imaging techniques, it allows the construction of sound radiation movies that evolve within the engine cycle and whose each frame is a sound intensity map calculated at a specific time - or crankshaft angle - in the engine cycle. This enables the accurate localisation of sources in space, in frequency and in time (crankshaft angle). Furthermore, associated to cyclic Wiener filtering, this methodology makes it possible to decompose the overall radiated sound into several noise source contributions whose cyclic sound intensities can then be analysed independently.

  18. An Aquatic Acoustic Metrics Interface Utility for Underwater Sound Monitoring and Analysis

    SciTech Connect

    Ren, Huiying; Halvorsen, Michele B.; Deng, Zhiqun; Carlson, Thomas J.

    2012-05-31

    Fishes and other marine mammals suffer a range of potential effects from intense sound sources generated by anthropogenic underwater processes such as pile driving, shipping, sonars, and underwater blasting. Several underwater sound recording devices (USR) were built to monitor the acoustic sound pressure waves generated by those anthropogenic underwater activities, so the relevant processing software becomes indispensable for analyzing the audio files recorded by these USRs. However, existing software packages did not meet performance and flexibility requirements. In this paper, we provide a detailed description of a new software package, named Aquatic Acoustic Metrics Interface (AAMI), which is a Graphical User Interface (GUI) designed for underwater sound monitoring and analysis. In addition to the general functions, such as loading and editing audio files recorded by USRs, the software can compute a series of acoustic metrics in physical units, monitor the sound's influence on fish hearing according to audiograms from different species of fishes and marine mammals, and batch process the sound files. The detailed applications of the software AAMI will be discussed along with several test case scenarios to illustrate its functionality.

  19. Perceptual factors contribute more than acoustical factors to sound localization abilities with virtual sources

    PubMed Central

    Andéol, Guillaume; Savel, Sophie; Guillaume, Anne

    2015-01-01

    Human sound localization abilities rely on binaural and spectral cues. Spectral cues arise from interactions between the sound wave and the listener's body (head-related transfer function, HRTF). Large individual differences were reported in localization abilities, even in young normal-hearing adults. Several studies have attempted to determine whether localization abilities depend mostly on acoustical cues or on perceptual processes involved in the analysis of these cues. These studies have yielded inconsistent findings, which could result from methodological issues. In this study, we measured sound localization performance with normal and modified acoustical cues (i.e., with individual and non-individual HRTFs, respectively) in 20 naïve listeners. Test conditions were chosen to address most methodological issues from past studies. Procedural training was provided prior to sound localization tests. The results showed no direct relationship between behavioral results and an acoustical metrics (spectral-shape prominence of individual HRTFs). Despite uncertainties due to technical issues with the normalization of the HRTFs, large acoustical differences between individual and non-individual HRTFs appeared to be needed to produce behavioral effects. A subset of 15 listeners then trained in the sound localization task with individual HRTFs. Training included either visual correct-answer feedback (for the test group) or no feedback (for the control group), and was assumed to elicit perceptual learning for the test group only. Few listeners from the control group, but most listeners from the test group, showed significant training-induced learning. For the test group, learning was related to pre-training performance (i.e., the poorer the pre-training performance, the greater the learning amount) and was retained after 1 month. The results are interpreted as being in favor of a larger contribution of perceptual factors than of acoustical factors to sound localization

  20. On the acoustic signature of tandem airfoils: The sound of an elastic airfoil in the wake of a vortex generator

    NASA Astrophysics Data System (ADS)

    Manela, A.

    2016-07-01

    The acoustic signature of an acoustically compact tandem airfoil setup in uniform high-Reynolds number flow is investigated. The upstream airfoil is considered rigid and is actuated at its leading edge with small-amplitude harmonic pitching motion. The downstream airfoil is taken passive and elastic, with its motion forced by the vortex-street excitation of the upstream airfoil. The non-linear near-field description is obtained via potential thin-airfoil theory. It is then applied as a source term into the Powell-Howe acoustic analogy to yield the far-field dipole radiation of the system. To assess the effect of downstream-airfoil elasticity, results are compared with counterpart calculations for a non-elastic setup, where the downstream airfoil is rigid and stationary. Depending on the separation distance between airfoils, airfoil-motion and airfoil-wake dynamics shift between in-phase (synchronized) and counter-phase behaviors. Consequently, downstream airfoil elasticity may act to amplify or suppress sound through the direct contribution of elastic-airfoil motion to the total signal. Resonance-type motion of the elastic airfoil is found when the upstream airfoil is actuated at the least stable eigenfrequency of the downstream structure. This, again, results in system sound amplification or suppression, depending on the separation distance between airfoils. With increasing actuation frequency, the acoustic signal becomes dominated by the direct contribution of the upstream airfoil motion, whereas the relative contribution of the elastic airfoil to the total signature turns negligible.

  1. Experimental investigation of sound absorption of acoustic wedges for anechoic chambers

    NASA Astrophysics Data System (ADS)

    Belyaev, I. V.; Golubev, A. Yu.; Zverev, A. Ya.; Makashov, S. Yu.; Palchikovskiy, V. V.; Sobolev, A. F.; Chernykh, V. V.

    2015-09-01

    The results of measuring the sound absorption by acoustic wedges, which were performed in AC-3 and AC-11 reverberation chambers at the Central Aerohydrodynamic Institute (TsAGI), are presented. Wedges of different densities manufactured from superfine basaltic and thin mineral fibers were investigated. The results of tests of these wedges were compared to the sound absorption of wedges of the operating AC-2 anechoic facility at TsAGI. It is shown that basaltic-fiber wedges have better sound-absorption characteristics than the investigated analogs and can be recommended for facing anechoic facilities under construction.

  2. An acoustic dual filter in the audio frequencies with two local resonant systems

    NASA Astrophysics Data System (ADS)

    Liu, Zhao-qun; Zhang, Hui; Zhang, Shu-yi; Fan, Li

    2014-08-01

    We report an acoustic dual filter to realize the sound regulation in the audio frequency range, in which resonant vibrations of two membrane-air and metal-elastomer systems generate two sound transmission peaks and a sound blocking below 3000 Hz. The local vibrational profiles manifest that the transmission peak at lower frequency is mainly dependent on the resonant vibration of the membrane-air system, and the coupling vibrations of two systems generate the blocking frequency and transmission peak at higher frequency. Importantly, two transmission peaks can be controlled independently. It is feasible to realize the acoustic device in sound shield and dual filters.

  3. Acoustic counter-sniper system

    NASA Astrophysics Data System (ADS)

    Duckworth, Gregory L.; Gilbert, Douglas C.; Barger, James E.

    1997-02-01

    BBN has developed, tested, and fielded pre-production versions of a versatile acoustics-based counter-sniper system. This system was developed by BBN for the DARPA Tactical Technology Office to provide a low cost and accurate sniper detection and localization system. The system uses observations of the shock wave from supersonic bullets to estimate the bullet trajectory, Mach number, and caliber. If muzzle blast observations are also available from unsilenced weapons, the exact sniper location along the trajectory is also estimated. A newly developed and very accurate model of the bullet ballistics and acoustic radiation is used which includes bullet deceleration. This allows the use of very flexible acoustic sensor types and placements, since the system can model the bullet's flight, and hence the acoustic observations, over a wide area very accurately. System sensor configurations can be as simple as two small four element tetrahedral microphone arrays on either side of the area to be protected, or six omnidirectional microphones spread over the area to be monitored. Increased performance can be obtained by expanding the sensor field in size or density, and the system software is easily reconfigured to accommodate this at deployment time. Sensor nodes can be added using wireless network telemetry or hardwired cables to the command node processing and display computer. The system has been field tested in three government sponsored tests in both rural and simulated urban environments at the Camp Pendleton MOUT facility. Performance was characterized during these tests for various shot geometries and bullet speeds and calibers.

  4. Dorsal Cochlear Nucleus of the Rat: Representation of Complex Sounds in Ears Damaged by Acoustic Trauma.

    PubMed

    Li, Yang; Ropp, Tessa-Jonne F; May, Bradford J; Young, Eric D

    2015-08-01

    Acoustic trauma damages the cochlea but secondarily modifies circuits of the central auditory system. Changes include decreases in inhibitory neurotransmitter systems, degeneration and rewiring of synaptic circuits, and changes in neural activity. Little is known about the consequences of these changes for the representation of complex sounds. Here, we show data from the dorsal cochlear nucleus (DCN) of rats with a moderate high-frequency hearing loss following acoustic trauma. Single-neuron recording was used to estimate the organization of neurons' receptive fields, the balance of inhibition and excitation, and the representation of the spectra of complex broadband stimuli. The complex stimuli had random spectral shapes (RSSs), and the responses were fit with a model that allows the quality of the representation and its degree of linearity to be estimated. Tone response maps of DCN neurons in rat are like those in other species investigated previously, suggesting the same general organization of this nucleus. Following acoustic trauma, abnormal response types appeared. These can be interpreted as reflecting degraded tuning in auditory nerve fibers plus loss of inhibitory inputs in DCN. Abnormal types are somewhat more prevalent at later times (103-376 days) following the exposure, but not significantly so. Inhibition became weaker in post-trauma neurons that retained inhibitory responses but also disappeared in many neurons. The quality of the representation of spectral shape, measured by sensitivity to the spectral shapes of RSS stimuli, was decreased following trauma; in fact, neurons with abnormal response types responded mainly to overall stimulus level, and not spectral shape. PMID:25967754

  5. Acoustics in Research Facilities--Control of Wanted and Unwanted Sound. Laboratory Design Notes.

    ERIC Educational Resources Information Center

    Newman, Robert B.

    Common and special acoustics problems are discussed in relation to the design and construction of research facilities. Following a brief examination of design criteria for the control of wanted and unwanted sound, the technology for achieving desired results is discussed. Emphasis is given to various design procedures and materials for the control…

  6. Acoustic radiation torque on an irregularly shaped scatterer in an arbitrary sound field.

    PubMed

    Fan, Zongwei; Mei, Deqing; Yang, Keji; Chen, Zichen

    2008-11-01

    To eliminate the limitation of the conventional acoustic radiation torque theory, which is only applicable to a disklike scatterer in a plane sound field, a new theory is established to calculate the radiation torque on any irregularly shaped scatterer in any arbitrary sound field. First, with the aid of the conservation law of angular momentum, the acoustic radiation torque is expressed as the angular momentum flux through a spherical surface with the center at the scatterer's centroid. Second, the velocity potential of the scattered field is derived, taking into account the influences of the translational and rotational movements of the scatterer induced by the first order stress of the incident sound field. Finally, a general calculating formula of the acoustic radiation torque is achieved. For a disklike scatterer in a plane sound filed, results from the above formula are well identical with those conventional formulas. By studying the case of a semicircular cylinder scatterer in a standing-wave sound field, it is found that for an irregularly shaped scatterer its rotation velocity is normally nonzero and the radiation torque changes with the spatial attitude. PMID:19045760

  7. Observations of acoustic surface waves in outdoor sound propagation

    NASA Astrophysics Data System (ADS)

    Albert, Donald G.

    2003-05-01

    Acoustic surface waves have been detected propagating outdoors under natural conditions. Two critical experimental conditions were employed to ensure the conclusive detection of these waves. First, acoustic pulses rather than a continuous wave source allowed an examination of the waveform shape and avoided the masking of wave arrivals. Second, a snow cover provided favorable ground impedance conditions for surface waves to exist. The acoustic pulses were generated by blank pistol shots fired 1 m above the snow. The resultant waveforms were measured using a vertical array of six microphones located 60 m away from the source at heights between 0.1 and 4.75 m. A strong, low frequency ``tail'' following the initial arrival was recorded near the snow surface. This tail, and its exponential decay with height (z) above the surface (~e-αz), are diagnostic features of surface waves. The measured attenuation coefficient α was 0.28 m-1. The identification of the surface wave is confirmed by comparing the measured waveforms with waveforms predicted by the theoretical evaluation of the explicit surface wave pole term using residue theory.

  8. A lightweight low-frequency sound insulation membrane-type acoustic metamaterial

    NASA Astrophysics Data System (ADS)

    Lu, Kuan; Wu, Jiu Hui; Guan, Dong; Gao, Nansha; Jing, Li

    2016-02-01

    A novel membrane-type acoustic metamaterial with a high sound transmission loss (STL) at low frequencies (⩽500Hz) was designed and the mechanisms were investigated by using negative mass density theory. This metamaterial's structure is like a sandwich with a thin (thickness=0.25mm) lightweight flexible rubber material within two layers of honeycomb cell plates. Negative mass density was demonstrated at frequencies below the first natural frequency, which results in the excellent low-frequency sound insulation. The effects of different structural parameters of the membrane on the sound-proofed performance at low frequencies were investigated by using finite element method (FEM). The numerical results show that, the STL can be modulated to higher value by changing the structural parameters, such as the membrane surface density, the unite cell film shape, and the membrane tension. The acoustic metamaterial proposed in this study could provide a potential application in the low-frequency noise insulation.

  9. Sound velocity of iron up to 152 GPa by picosecond acoustics in diamond anvil cell

    NASA Astrophysics Data System (ADS)

    Decremps, F.; Antonangeli, D.; Gauthier, M.; Ayrinhac, S.; Morand, M.; Marchand, G. Le; Bergame, F.; Philippe, J.

    2014-03-01

    High-pressure method combining diamond anvil cell with picosecond ultrasonics technique is demonstrated to be a very suitable tool to measure the acoustic properties of iron up to 152 GPa. Such innovative approach allows to measure directly the longitudinal sound velocity under pressure of hundreds of GPa in laboratory, overcoming most of the drawbacks of traditional techniques. The very high accuracy, comparable to piezoacoustics technique, allows to observe the kink in elastic properties at the body-centered cubic-hexagonal close packed transition and to show with a good confidence that the Birch's law still stands up to 1.5 Mbar and ambient temperature. The linear extrapolation of the measured sound velocities versus densities of hcp iron is out of the preliminary reference Earth model, arguing for alloying effects or anharmonic high-temperature effects. A comparison between our measurements and shock wave experiments allowed us to quantify temperature corrections at constant pressure in ~-0.35 and ~-0.30 m s-1/K at 100 and 150 GPa, respectively. More in general, the here-presented technique allows detailed elastic and viscoelastic studies under extreme thermodynamic conditions on a wide variety of systems as liquids, crystalline, or polycrystalline solids, metallic or not, with very broad applications in Earth and planetary science.

  10. Acoustic intensity-based method for sound radiations in a uniform flow.

    PubMed

    Yu, Chao; Zhou, Zhengfang; Zhuang, Mei

    2009-11-01

    An acoustic intensity-based method (AIBM) is extended and verified for predicting sound radiation in a subsonic uniform flow. The method assumes that the acoustic propagation is governed by the modified Helmholtz equation on and outside of a control surface, which encloses all the noise sources and nonlinear effects. With acoustic pressure derivative and its co-located acoustic pressure as input from an open control surface, the unique solution of the modified Helmholtz equation is obtained by solving the least squares problem. The AIBM is coupled with near-field Computational Fluid Dynamics (CFD)/Computational Aeroacoustics (CAA) methods to predict sound radiation of model aeroacoustic problems. The effectiveness of this hybrid approach has been demonstrated by examples of both tonal and broadband noise. Since the AIBM method is stable and accurate based on the input acoustic data from an open surface in a radiated field, it is therefore advantageous for the far-field prediction of aerodynamics noise propagation when an acoustic input from a closed control surface, like the Ffowcs Williams-Hawkings surface, is not available [Philos. Trans. R. Soc. London, Ser. A 264, 321-342 (1969)]. PMID:19894800

  11. 78 FR 78822 - Draft Guidance for Assessing the Effects of Anthropogenic Sound on Marine Mammals-Acoustic...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-27

    ... Anthropogenic Sound on Marine Mammals--Acoustic Threshold Levels for Onset of Permanent and Temporary Threshold... the effects of anthropogenic sound on marine mammal species under NOAA's jurisdiction. The guidance... anthropogenic sound sources. NOAA solicits public comment on the draft guidance. DATES: Comments must...

  12. Auditory object salience: human cortical processing of non-biological action sounds and their acoustic signal attributes

    PubMed Central

    Lewis, James W.; Talkington, William J.; Tallaksen, Katherine C.; Frum, Chris A.

    2012-01-01

    Whether viewed or heard, an object in action can be segmented as a distinct salient event based on a number of different sensory cues. In the visual system, several low-level attributes of an image are processed along parallel hierarchies, involving intermediate stages wherein gross-level object form and/or motion features are extracted prior to stages that show greater specificity for different object categories (e.g., people, buildings, or tools). In the auditory system, though relying on a rather different set of low-level signal attributes, meaningful real-world acoustic events and “auditory objects” can also be readily distinguished from background scenes. However, the nature of the acoustic signal attributes or gross-level perceptual features that may be explicitly processed along intermediate cortical processing stages remain poorly understood. Examining mechanical and environmental action sounds, representing two distinct non-biological categories of action sources, we had participants assess the degree to which each sound was perceived as object-like versus scene-like. We re-analyzed data from two of our earlier functional magnetic resonance imaging (fMRI) task paradigms (Engel et al., 2009) and found that scene-like action sounds preferentially led to activation along several midline cortical structures, but with strong dependence on listening task demands. In contrast, bilateral foci along the superior temporal gyri (STG) showed parametrically increasing activation to action sounds rated as more “object-like,” independent of sound category or task demands. Moreover, these STG regions also showed parametric sensitivity to spectral structure variations (SSVs) of the action sounds—a quantitative measure of change in entropy of the acoustic signals over time—and the right STG additionally showed parametric sensitivity to measures of mean entropy and harmonic content of the environmental sounds. Analogous to the visual system, intermediate stages

  13. A low order flow/acoustics interaction method for the prediction of sound propagation using 3D adaptive hybrid grids

    SciTech Connect

    Kallinderis, Yannis; Vitsas, Panagiotis A.; Menounou, Penelope

    2012-07-15

    A low-order flow/acoustics interaction method for the prediction of sound propagation and diffraction in unsteady subsonic compressible flow using adaptive 3-D hybrid grids is investigated. The total field is decomposed into the flow field described by the Euler equations, and the acoustics part described by the Nonlinear Perturbation Equations. The method is shown capable of predicting monopole sound propagation, while employment of acoustics-guided adapted grid refinement improves the accuracy of capturing the acoustic field. Interaction of sound with solid boundaries is also examined in terms of reflection, and diffraction. Sound propagation through an unsteady flow field is examined using static and dynamic flow/acoustics coupling demonstrating the importance of the latter.

  14. Generalized acoustic energy density based active noise control in single frequency diffuse sound fields.

    PubMed

    Xu, Buye; Sommerfeldt, Scott D

    2014-09-01

    In a diffuse sound field, prior research has established that a secondary source can theoretically achieve perfect cancellation at an error microphone in the far field of the secondary source. However, the sound pressure level is generally only reduced in a small zone around the error sensor, and at a distance half of a wavelength away from the error sensor, the averaged sound pressure level will be increased by more than 10 dB. Recently an acoustic energy quantity, referred to as the generalized acoustic energy density (GED), has been introduced. The GED is obtained by using a weighting factor in the formulation of total acoustic energy density. Different values of the weighting factor can be chosen for different applications. When minimizing the GED at the error sensor, one can adjust the weighting factor to increase the spatial extent of the "quiet zone" and to achieve a desired balance between the degree of attenuation in the quiet zone and the total energy added into the sound field. PMID:25190386

  15. The acoustical cues to sound location in the Guinea pig (cavia porcellus)

    PubMed Central

    Greene, Nathanial T; Anbuhl, Kelsey L; Williams, Whitney; Tollin, Daniel J.

    2014-01-01

    There are three main acoustical cues to sound location, each attributable to space-and frequency-dependent filtering of the propagating sound waves by the outer ears, head, and torso: Interaural differences in time (ITD) and level (ILD) as well as monaural spectral shape cues. While the guinea pig has been a common model for studying the anatomy, physiology, and behavior of binaural and spatial hearing, extensive measurements of their available acoustical cues are lacking. Here, these cues were determined from directional transfer functions (DTFs), the directional components of the head-related transfer functions, for eleven adult guinea pigs. In the frontal hemisphere, monaural spectral notches were present for frequencies from ~10 to 20 kHz; in general, the notch frequency increased with increasing sound source elevation and in azimuth toward the contralateral ear. The maximum ITDs calculated from low-pass filtered (2 kHz cutoff frequency) DTFs were ~250 µs, whereas the maximum ITD measured with low frequency tone pips was over 320 µs. A spherical head model underestimates ITD magnitude under normal conditions, but closely approximates values when the pinnae were removed. Interaural level differences (ILDs) strongly depended on location and frequency; maximum ILDs were < 10 dB for frequencies < 4 kHz and were as large as 40 dB for frequencies > 10 kHz. Removal of the pinna reduced the depth and sharpness of spectral notches, altered the acoustical axis, and reduced the acoustical gain, ITDs, and ILDs; however, spectral shape features and acoustical gain were not completely eliminated, suggesting a substantial contribution of the head and torso in altering the sounds present at the tympanic membrane. PMID:25051197

  16. Aerodynamic sound generation due to vortex-aerofoil interaction. Part 2: Analysis of the acoustic field

    NASA Technical Reports Server (NTRS)

    Parasarathy, R.; Karamcheti, K.

    1972-01-01

    The Lighthill method was the basic procedure used to analyze the sound field associated with a vortex of modified strength interacting with an airfoil. A free vortex interacting with an airfoil in uniform motion was modeled in order to determine the sound field due to all the acoustic sources, not only on the airfoil surfaces (dipoles), but also the ones distributed on the perturbed flow field (quadrupoles) due to the vortex-airfoil interaction. Because inviscid flow is assumed in the study of the interaction, the quadrupoles considered in the perturbed flow field are entirely due to an unsteady flow field. The effects of airfoil thickness on the second radiation are examined by using a symmetric Joukowski airfoil for the vortex-airfoil interaction. Sound radiation in a plane, far field simplification, and computation of the sound field are discussed.

  17. Ultra-thin smart acoustic metasurface for low-frequency sound insulation

    NASA Astrophysics Data System (ADS)

    Zhang, Hao; Xiao, Yong; Wen, Jihong; Yu, Dianlong; Wen, Xisen

    2016-04-01

    Insulating low-frequency sound is a conventional challenge due to the high areal mass required by mass law. In this letter, we propose a smart acoustic metasurface consisting of an ultra-thin aluminum foil bonded with piezoelectric resonators. Numerical and experimental results show that the metasurface can break the conventional mass law of sound insulation by 30 dB in the low frequency regime (<1000 Hz), with an ultra-light areal mass density (<1.6 kg/m2) and an ultra-thin thickness (1000 times smaller than the operating wavelength). The underlying physical mechanism of such extraordinary sound insulation performance is attributed to the infinite effective dynamic mass density produced by the smart resonators. It is also demonstrated that the excellent sound insulation property can be conveniently tuned by simply adjusting the external circuits instead of modifying the structure of the metasurface.

  18. Miniature acoustic guidance system for endotracheal tubes

    NASA Astrophysics Data System (ADS)

    Juan, Eduardo J.

    Ensuring that the distal end of an endotracheal tube is properly located within the trachea, and that the tube is not obstructed by mucous deposition, is a major clinical concern in patients that require mechanical ventilation. A novel acoustic system was developed to allow for the continuous monitoring of endotracheal tube position and patency. A miniature sound source and two sensing microphones are placed in-line between the ventilator hose and the proximal end of the endotracheal tube. Reflections of an acoustic pulse from the endotracheal tube lumen and the airways are digitally analyzed to estimate the location and degree of obstruction, as well as the position of the distal end of the tube in the airway. The system was evaluated through computer simulations, in vitro studies, and in a rabbit model. The system noninvasively estimated tube position in vivo to within roughly 4.5 mm, and differentiated between proper tracheal, and erroneous bronchial or esophageal intubation in all cases. In addition, the system estimated the area and location of lumen obstructions in vitro to within 14% and 3.5 mm, respectively. These findings indicate that this miniature technology could improve the quality of care provided to the ventilated adult and infant.

  19. Towards direct realisation of the SI unit of sound pressure in the audible hearing range based on optical free-field acoustic particle measurements

    NASA Astrophysics Data System (ADS)

    Koukoulas, Triantafillos; Piper, Ben

    2015-04-01

    Since the introduction of the International System of Units (the SI system) in 1960, weights, measures, standardised approaches, procedures, and protocols have been introduced, adapted, and extensively used. A major international effort and activity concentrate on the definition and traceability of the seven base SI units in terms of fundamental constants, and consequently those units that are derived from the base units. In airborne acoustical metrology and for the audible range of frequencies up to 20 kHz, the SI unit of sound pressure, the pascal, is realised indirectly and without any knowledge or measurement of the sound field. Though the principle of reciprocity was originally formulated by Lord Rayleigh nearly two centuries ago, it was devised in the 1940s and eventually became a calibration standard in the 1960s; however, it can only accommodate a limited number of acoustic sensors of specific types and dimensions. International standards determine the device sensitivity either through coupler or through free-field reciprocity but rely on the continuous availability of specific acoustical artefacts. Here, we show an optical method based on gated photon correlation spectroscopy that can measure sound pressures directly and absolutely in fully anechoic conditions, remotely, and without disturbing the propagating sound field. It neither relies on the availability or performance of any measurement artefact nor makes any assumptions of the device geometry and sound field characteristics. Most importantly, the required units of sound pressure and microphone sensitivity may now be experimentally realised, thus providing direct traceability to SI base units.

  20. Towards direct realisation of the SI unit of sound pressure in the audible hearing range based on optical free-field acoustic particle measurements

    SciTech Connect

    Koukoulas, Triantafillos Piper, Ben

    2015-04-20

    Since the introduction of the International System of Units (the SI system) in 1960, weights, measures, standardised approaches, procedures, and protocols have been introduced, adapted, and extensively used. A major international effort and activity concentrate on the definition and traceability of the seven base SI units in terms of fundamental constants, and consequently those units that are derived from the base units. In airborne acoustical metrology and for the audible range of frequencies up to 20 kHz, the SI unit of sound pressure, the pascal, is realised indirectly and without any knowledge or measurement of the sound field. Though the principle of reciprocity was originally formulated by Lord Rayleigh nearly two centuries ago, it was devised in the 1940s and eventually became a calibration standard in the 1960s; however, it can only accommodate a limited number of acoustic sensors of specific types and dimensions. International standards determine the device sensitivity either through coupler or through free-field reciprocity but rely on the continuous availability of specific acoustical artefacts. Here, we show an optical method based on gated photon correlation spectroscopy that can measure sound pressures directly and absolutely in fully anechoic conditions, remotely, and without disturbing the propagating sound field. It neither relies on the availability or performance of any measurement artefact nor makes any assumptions of the device geometry and sound field characteristics. Most importantly, the required units of sound pressure and microphone sensitivity may now be experimentally realised, thus providing direct traceability to SI base units.

  1. Acoustic Response to Playback of Pile-Driving Sounds by Snapping Shrimp.

    PubMed

    Spiga, Ilaria

    2016-01-01

    There is concern about the effects of noise from impact pile driving as this constructional technique becomes increasingly widespread in coastal areas. The habitats of most marine invertebrate species are likely to overlap with the areas of human activities along the coast and be affected by the increased levels of noise produced. This paper investigates the acoustic response of chorusing snapping shrimp to different sound pressure levels. A significant increase in the snap number and snap amplitude was recorded during the playback of piling noise, suggesting that noise exposure affected the acoustic behavior of these animals. PMID:26611071

  2. Acoustical characteristics of water sounds for soundscape enhancement in urban open spaces.

    PubMed

    Jeon, Jin Yong; Lee, Pyoung Jik; You, Jin; Kang, Jian

    2012-03-01

    The goal of the present study is to characterize water sounds that can be used in urban open spaces to mask road traffic noise. Sounds and visual images of a number of water features located in urban open places were obtained and subsequently analyzed in terms of psychoacoustical metrics and acoustical measures. Laboratory experiments were then conducted to investigate which water sound is appropriate for masking urban noise. The experiments consisted of two sessions: (1) Audio-only condition and (2) combined audio-visual condition. Subjective responses to stimuli were rated through the use of preference scores and 15 adjectives. The results of the experiments revealed that preference scores for the urban soundscape were affected by the acoustical characteristics of water sounds and visual images of water features; Sharpness that was used to explain the spectral envelopes of water sounds was proved to be a dominant factor for urban soundscape perception; and preferences regarding the urban soundscape were significantly related to adjectives describing "freshness" and "calmness." PMID:22423706

  3. Acoustic communication in two freshwater gobies: the relationship between ambient noise, hearing thresholds and sound spectrum.

    PubMed

    Lugli, M; Yan, H Y; Fine, M L

    2003-04-01

    Two freshwater gobies Padogobius martensii and Gobius nigricans live in shallow (5-70 cm) stony streams, and males of both species produce courtship sounds. A previous study demonstrated high noise levels near waterfalls, a quiet window in the noise around 100 Hz at noisy locations, and extremely short-range propagation of noise and goby signals. To investigate the relationship of this acoustic environment to communication, we determined audiograms for both species and measured parameters of courtship sounds produced in the streams. We also deflated the swimbladder in P. martensii to determine its effect on frequency utilization in sound production and hearing. Both species are maximally sensitive at 100 Hz and produce low-frequency sounds with main energy from 70 to 100-150 Hz. Swimbladder deflation does not affect auditory threshold or dominant frequency of courtship sounds and has no or minor effects on sound amplitude. Therefore, both species utilize frequencies for hearing and sound production that fall within the low-frequency quiet region, and the equivalent relationship between auditory sensitivity and maximum ambient noise levels in both species further suggests that ambient noise shapes hearing sensitivity. PMID:12665991

  4. Broadband Acoustic Environment at a Tidal Energy Site in Puget Sound

    SciTech Connect

    Xu, Jinshan; Deng, Zhiqun; Martinez, Jayson J.; Carlson, Thomas J.; Myers, Joshua R.; Weiland, Mark A.

    2012-04-04

    Admiralty Inlet has been selected as a potential tidal energy site. It is located near shipping lanes, is a highly variable acoustic environment, and is frequented by the endangered southern resident killer whale (SRKW). Resolving environmental impacts is the first step to receiving approval to deploy tidal turbines. Several monitoring technologies are being considered to determine the presence of SRKW near the turbines. Broadband noise level measurements are critical for determining design and operational specifications of these technologies. Acoustic environment data at the proposed site was acquired at different depths using a cabled vertical line array from three different cruises during high tidal period in February, May, and June 2011. The ambient noise level decreases approximately 25 dB re 1 μPa per octave from frequency ranges of 1 kHz to 70 kHz, and increases approximately 20 dB re 1 μPa per octave for the frequency from 70 kHz to 200 kHz. The difference of noise pressure levels in different months varies from 10 to 30 dB re 1 μPa for the frequency range below 70 kHz. Commercial shipping and ferry vessel traffic were found to be the most significant contributors to sound pressure levels for the frequency range from 100 Hz to 70 kHz, and the variation could be as high as 30 dB re 1 μPa. These noise level measurements provide the basic information for designing and evaluating both active and passive monitoring systems proposed for deploying and operating for tidal power generation alert system.

  5. Changing space and sound: Parametric design and variable acoustics

    NASA Astrophysics Data System (ADS)

    Norton, Christopher William

    This thesis examines the potential for parametric design software to create performance based design using acoustic metrics as the design criteria. A former soundstage at the University of Southern California used by the Thornton School of Music is used as a case study for a multiuse space for orchestral, percussion, master class and recital use. The criteria used for each programmatic use include reverberation time, bass ratio, and the early energy ratios of the clarity index and objective support. Using a panelized ceiling as a design element to vary the parameters of volume, panel orientation and type of absorptive material, the relationships between these parameters and the design criteria are explored. These relationships and subsequently derived equations are applied to Grasshopper parametric modeling software for Rhino 3D (a NURBS modeling software). Using the target reverberation time and bass ratio for each programmatic use as input for the parametric model, the genomic optimization function of Grasshopper - Galapagos - is run to identify the optimum ceiling geometry and material distribution.

  6. Passive probing of the sound fixing and ranging channel with hydro-acoustic observations from ridge earthquakes.

    PubMed

    Evers, Läslo G; Snellen, Mirjam

    2015-04-01

    The International Monitoring System includes a hydro-acoustic part to verify the Comprehensive Nuclear-Test-Ban Treaty. Besides explosive signals, monitoring stations also detect acoustic waves from earthquakes that travel through the SOund Fixing And Ranging (SOFAR) channel. The travel times of such detections are listed in the Reviewed Event Bulletin, which is statistically evaluated for the stations located in the Pacific, Indian, and Atlantic Oceans. The celerities of ridge earthquakes are calculated to build up a homogeneous data-set, based on similar source mechanisms. The celerity is defined as the epicentral distance divided by the travel time. The global characteristics of these celerities can be well understood in terms of temperature variations in the SOFAR channel. A detailed velocity profile has been retrieved for the Atlantic Ocean where large differences (14 m/s) are found between the southern and northern parts of the basin. Propagation modeling with normal modes supports these findings, which shows that the celerity gives an estimate of the sound speed in the SOFAR channel. These results compare remarkably well with those from active experiments, showing the ability of passively probing the SOFAR channel with hydro-acoustic waves from earthquake sources. PMID:25920862

  7. Acoustic method for measuring the sound speed of gases over small path lengths.

    PubMed

    Olfert, J S; Checkel, M D; Koch, C R

    2007-05-01

    Acoustic "phase shift" methods have been used in the past to accurately measure the sound speed of gases. In this work, a phase shift method for measuring the sound speed of gases over small path lengths is presented. We have called this method the discrete acoustic wave and phase detection (DAWPD) method. Experimental results show that the DAWPD method gives accurate (+/-3.2 ms) and predictable measurements that closely match theory. The sources of uncertainty in the DAWPD method are examined and it is found that ultrasonic reflections and changes in the frequency ratio of the transducers (the ratio of driving frequency to resonant frequency) can be major sources of error. Experimentally, it is shown how these sources of uncertainty can be minimized. PMID:17552851

  8. Vibro-acoustic response and sound transmission loss analysis of functionally graded plates

    NASA Astrophysics Data System (ADS)

    Chandra, N.; Raja, S.; Nagendra Gopal, K. V.

    2014-10-01

    This paper presents analytical studies on the vibro-acoustic and sound transmission loss characteristics of functionally graded material (FGM) plates using a simple first-order shear deformation theory. The material properties of the plate are assumed to vary according to power law distribution of the constituent materials in terms of volume fraction. The sound radiation due to sinusoidally varying point load, uniformly distributed load and obliquely incident sound wave is computed by solving the Rayleigh integral with a primitive numerical scheme. Displacement, velocity, acceleration, radiated sound power level, radiated sound pressure level and radiation efficiency of FGM plate for varying power law index are examined. The sound transmission loss of the FGM plate for several incidence angles and varying power law index is studied in detail. It has been found that, for the plate being considered, the sound power level increases monotonically with increase in power law index at lower frequency range (0-500 Hz) and a non-monotonic trend is appeared towards higher frequencies for both point and distributed force excitations. Increased vibration and acoustic response is observed for ceramic-rich FGM plate at higher frequency band; whereas a similar trend is seen for metal-rich FGM plate at lower frequency band. The dBA values are found to be decreasing with increase in power law index. The radiation efficiency of ceramic-rich FGM plate is noticed to be higher than that of metal and metal-rich FGM plates. The transmission loss below the first resonance frequency is high for ceramic-rich FGM plate and low for metal-rich FGM plate and further depends on the specific material property. The study has found that increased transmission loss can be achieved at higher frequencies with metal-rich FGM plates.

  9. Sound propagation in and radiation from acoustically lined flow ducts: A comparison of experiment and theory

    NASA Technical Reports Server (NTRS)

    Plumblee, H. E., Jr.; Dean, P. D.; Wynne, G. A.; Burrin, R. H.

    1973-01-01

    The results of an experimental and theoretical study of many of the fundamental details of sound propagation in hard wall and soft wall annular flow ducts are reported. The theory of sound propagation along such ducts and the theory for determining the complex radiation impedance of higher order modes of an annulus are outlined, and methods for generating acoustic duct modes are developed. The results of a detailed measurement program on propagation in rigid wall annular ducts with and without airflow through the duct are presented. Techniques are described for measuring cut-on frequencies, modal phase speed, and radial and annular mode shapes. The effects of flow velocity on cut-on frequencies and phase speed are measured. Comparisons are made with theoretical predictions for all of the effects studies. The two microphone method of impedance is used to measure the effects of flow on acoustic liners. A numerical study of sound propagation in annular ducts with one or both walls acoustically lined is presented.

  10. Acoustical cues for sound localization by the Mongolian gerbil, Meriones unguiculatus

    NASA Astrophysics Data System (ADS)

    Maki, Katuhiro; Furukawa, Shigeto

    2005-08-01

    The present study measured the head-related transfer functions (HRTFs) of the Mongolian gerbil for various sound-source directions, and explored acoustical cues for sound localization that could be available to the animals. The HRTF exhibited spectral notches for frequencies above 25 kHz. The notch frequency varied systematically with source direction, and thereby characterized the source directions well. The frequency dependence of the acoustical axis, the direction for which the HRTF amplitude was maximal, was relatively irregular and inconsistent between ears and animals. The frequency-by-frequency plot of the interaural level difference (ILD) exhibited positive and negative peaks, with maximum values of 30 dB at around 30 kHz. The ILD peak frequency had a relatively irregular spatial distribution, implying a poor sound localization cue. The binaural acoustical axis (the direction with the maximum ILD magnitude) showed relatively orderly clustering around certain frequencies, the pattern being fairly consistent among animals. The interaural time differences (ITDs) were also measured and fell in a +/-120 μs range. When two different animal postures were compared (i.e., the animal was standing on its hind legs and prone), small but consistent differences were found for the lower rear directions on the HRTF amplitudes, the ILDs, and the ITDs.

  11. Optimizing stepwise rotation of dodecahedron sound source to improve the accuracy of room acoustic measures.

    PubMed

    Martellotta, Francesco

    2013-09-01

    Dodecahedron sound sources are widely used for acoustical measurement purposes as they produce a good approximation of omnidirectional radiation. Evidence shows that such an assumption is acceptable only in the low-frequency range (namely below 1 kHz), while at higher frequencies sound radiation is far from being uniform. In order to improve the accuracy of acoustical measurements obtained from dodecahedron sources, international standard ISO 3382 suggests an averaging of results after a source rotation. This paper investigates the effects of such rotations, both in terms of variations in acoustical parameters and spatial distribution of sound reflections. Taking advantage of a spherical microphone array, the different reflection patterns were mapped as a function of source rotation, showing that some reflections may be considerably attenuated for different aiming directions. This paper investigates the concept of averaging results while changing rotation angles and the minimum number of rotations required to improve the accuracy of the average value. Results show that averages of three measurements carried out at 30° angular steps are closer to actual values and show much less fluctuation. In addition, an averaging of the directional intensity components of the selected responses stabilizes the spatial distribution of the reflections. PMID:23967936

  12. Acoustic one-way metasurfaces: Asymmetric Phase Modulation of Sound by Subwavelength Layer

    PubMed Central

    Jiang, Xue; Liang, Bin; Zou, Xin-ye; Yang, Jing; Yin, Lei-lei; Yang, Jun; Cheng, Jian-chun

    2016-01-01

    We theoretically design and numerically demonstrate an acoustic one-way metasurface, which is a planar and acoustically subwavelength layer behaving like a nearly-reflectionless surface with arbitrary wave-steering capability for incident wave impinging on one side, while virtually blocking the reversed wave. The underlying mechanism is based on an asymmetric phase modulation by coupling a phase array and a near-zero-index medium. We exemplify a metastructure-based implementation by combining the hybrid metastuctures and labyrinthine structures. Moreover, the performance of the proposed implementation is demonstrated via three distinct phenomena of anomalous refraction, wave splitting and conversion of propagation wave to surface wave. Our findings may offer more possibilities for sound manipulation and improve the application potential of acoustic artificial devices in situations such as ultrasonic imaging and therapy. PMID:27305973

  13. Acoustic one-way metasurfaces: Asymmetric Phase Modulation of Sound by Subwavelength Layer

    NASA Astrophysics Data System (ADS)

    Jiang, Xue; Liang, Bin; Zou, Xin-Ye; Yang, Jing; Yin, Lei-Lei; Yang, Jun; Cheng, Jian-Chun

    2016-06-01

    We theoretically design and numerically demonstrate an acoustic one-way metasurface, which is a planar and acoustically subwavelength layer behaving like a nearly-reflectionless surface with arbitrary wave-steering capability for incident wave impinging on one side, while virtually blocking the reversed wave. The underlying mechanism is based on an asymmetric phase modulation by coupling a phase array and a near-zero-index medium. We exemplify a metastructure-based implementation by combining the hybrid metastuctures and labyrinthine structures. Moreover, the performance of the proposed implementation is demonstrated via three distinct phenomena of anomalous refraction, wave splitting and conversion of propagation wave to surface wave. Our findings may offer more possibilities for sound manipulation and improve the application potential of acoustic artificial devices in situations such as ultrasonic imaging and therapy.

  14. Modelling acoustic scattering, sound speed, and attenuation in gassy soft marine sediments.

    PubMed

    Mantouka, A; Dogan, H; White, P R; Leighton, T G

    2016-07-01

    A model for nonlinear gas bubble pulsation in marine sediments is presented. This model is then linearized to determine the resonance frequency and the damping terms for linear radial oscillations. The linear model is then used to predict the effects that such bubble pulsations will have on the sound speed and attenuation of acoustic waves propagating in gassy marine sediment. The results are compared for monodisperse populations against the predictions of a model of Anderson and Hampton and, furthermore, the additional abilities of the model introduced in this paper are discussed. These features include the removal of the sign ambiguities in the expressions, the straightforward implementation for acoustic propagation through polydisperse bubble populations, the capability to estimate bubble size distributions through a full acoustic inversion, and the capability to predict nonlinear effects. PMID:27475152

  15. Acoustic one-way metasurfaces: Asymmetric Phase Modulation of Sound by Subwavelength Layer.

    PubMed

    Jiang, Xue; Liang, Bin; Zou, Xin-Ye; Yang, Jing; Yin, Lei-Lei; Yang, Jun; Cheng, Jian-Chun

    2016-01-01

    We theoretically design and numerically demonstrate an acoustic one-way metasurface, which is a planar and acoustically subwavelength layer behaving like a nearly-reflectionless surface with arbitrary wave-steering capability for incident wave impinging on one side, while virtually blocking the reversed wave. The underlying mechanism is based on an asymmetric phase modulation by coupling a phase array and a near-zero-index medium. We exemplify a metastructure-based implementation by combining the hybrid metastuctures and labyrinthine structures. Moreover, the performance of the proposed implementation is demonstrated via three distinct phenomena of anomalous refraction, wave splitting and conversion of propagation wave to surface wave. Our findings may offer more possibilities for sound manipulation and improve the application potential of acoustic artificial devices in situations such as ultrasonic imaging and therapy. PMID:27305973

  16. Mean Flow Augmented Acoustics in Rocket Systems

    NASA Technical Reports Server (NTRS)

    Fischbach, Sean R.

    2014-01-01

    Oscillatory motion in solid rocket motors and liquid engines has long been a subject of concern. Many rockets display violent fluctuations in pressure, velocity, and temperature originating from the complex interactions between the combustion process and gas dynamics. The customary approach to modeling acoustic waves inside a rocket chamber is to apply the classical inhomogeneous wave equation to the combustion gas. The assumption of a linear, non-dissipative wave in a quiescent fluid remains valid while the acoustic amplitudes are small and local gas velocities stay below Mach 0.2. The converging section of a rocket nozzle, where gradients in pressure, density, and velocity become large, is a notable region where this approach is not applicable. The expulsion of unsteady energy through the nozzle of a rocket is identified as the predominate source of acoustic damping for most rocket systems. An accurate model of the acoustic behavior within this region where acoustic modes are influenced by the presence of a steady mean flow is required for reliable stability predictions. Recently, an approach to address nozzle damping with mean flow effects was implemented by French [1]. This new approach extends the work originated by Sigman and Zinn [2] by solving the acoustic velocity potential equation (AVPE) formulated by perturbing the Euler equations [3]. The acoustic velocity potential (psi) describing the acoustic wave motion in the presence of an inhomogeneous steady high-speed flow is defined by, (del squared)(psi) - (lambda/c)(exp 2)(psi) - M(dot)[M(dot)(del)(del(psi))] - 2(lambda(M/c) + (M(dot)del(M))(dot)del(psi)-2(lambda)(psi)[M(dot)del(1/c)]=0 (1) with M as the Mach vector, c as the speed of sound, and lambda as the complex eigenvalue. French apply the finite volume method to solve the steady flow field within the combustion chamber and nozzle with inviscid walls. The complex eigenvalues and eigenvector are determined with the use of the ARPACK eigensolver. The

  17. A Subject-Specific Acoustic Model of the Upper Airway for Snoring Sounds Generation

    PubMed Central

    Saha, Shumit; Bradley, T. Douglas; Taheri, Mahsa; Moussavi, Zahra; Yadollahi, Azadeh

    2016-01-01

    Monitoring variations in the upper airway narrowing during sleep is invasive and expensive. Since snoring sounds are generated by air turbulence and vibrations of the upper airway due to its narrowing; snoring sounds may be used as a non-invasive technique to assess upper airway narrowing. Our goal was to develop a subject-specific acoustic model of the upper airway to investigate the impacts of upper airway anatomy, e.g. length, wall thickness and cross-sectional area, on snoring sounds features. To have a subject-specific model for snoring generation, we used measurements of the upper airway length, cross-sectional area and wall thickness from every individual to develop the model. To validate the proposed model, in 20 male individuals, intensity and resonant frequencies of modeled snoring sounds were compared with those measured from recorded snoring sounds during sleep. Based on both modeled and measured results, we found the only factor that may positively and significantly contribute to snoring intensity was narrowing in the upper airway. Furthermore, measured resonant frequencies of snoring were inversely correlated with the upper airway length, which is a risk factor for upper airway collapsibility. These results encourage the use of snoring sounds analysis to assess the upper airway anatomy during sleep. PMID:27210576

  18. A Subject-Specific Acoustic Model of the Upper Airway for Snoring Sounds Generation.

    PubMed

    Saha, Shumit; Bradley, T Douglas; Taheri, Mahsa; Moussavi, Zahra; Yadollahi, Azadeh

    2016-01-01

    Monitoring variations in the upper airway narrowing during sleep is invasive and expensive. Since snoring sounds are generated by air turbulence and vibrations of the upper airway due to its narrowing; snoring sounds may be used as a non-invasive technique to assess upper airway narrowing. Our goal was to develop a subject-specific acoustic model of the upper airway to investigate the impacts of upper airway anatomy, e.g. length, wall thickness and cross-sectional area, on snoring sounds features. To have a subject-specific model for snoring generation, we used measurements of the upper airway length, cross-sectional area and wall thickness from every individual to develop the model. To validate the proposed model, in 20 male individuals, intensity and resonant frequencies of modeled snoring sounds were compared with those measured from recorded snoring sounds during sleep. Based on both modeled and measured results, we found the only factor that may positively and significantly contribute to snoring intensity was narrowing in the upper airway. Furthermore, measured resonant frequencies of snoring were inversely correlated with the upper airway length, which is a risk factor for upper airway collapsibility. These results encourage the use of snoring sounds analysis to assess the upper airway anatomy during sleep. PMID:27210576

  19. Resonant modal group theory of membrane-type acoustical metamaterials for low-frequency sound attenuation

    NASA Astrophysics Data System (ADS)

    Ma, Fuyin; Wu, Jiu Hui; Huang, Meng

    2015-09-01

    In order to overcome the influence of the structural resonance on the continuous structures and obtain a lightweight thin-layer structure which can effectively isolate the low-frequency noises, an elastic membrane structure was proposed. In the low-frequency range below 500 Hz, the sound transmission loss (STL) of this membrane type structure is greatly higher than that of the current sound insulation material EVA (ethylene-vinyl acetate copo) of vehicle, so it is possible to replace the EVA by the membrane-type metamaterial structure in practice engineering. Based on the band structure, modal shapes, as well as the sound transmission simulation, the sound insulation mechanism of the designed membrane-type acoustic metamaterials was analyzed from a new perspective, which had been validated experimentally. It is suggested that in the frequency range above 200 Hz for this membrane-mass type structure, the sound insulation effect was principally not due to the low-level locally resonant mode of the mass block, but the continuous vertical resonant modes of the localized membrane. So based on such a physical property, a resonant modal group theory is initially proposed in this paper. In addition, the sound insulation mechanism of the membrane-type structure and thin plate structure were combined by the membrane/plate resonant theory.

  20. Heart sounds as a result of acoustic dipole radiation of heart valves

    NASA Astrophysics Data System (ADS)

    Kasoev, S. G.

    2005-11-01

    Heart sounds are associated with impulses of force acting on heart valves at the moment they close under the action of blood-pressure difference. A unified model for all the valves represents this impulse as an acoustic dipole. The near pressure field of this dipole creates a distribution of the normal velocity on the breast surface with features typical of auscultation practice: a pronounced localization of heart sound audibility areas, an individual area for each of the valves, and a noncoincidence of these areas with the projections of the valves onto the breast surface. In the framework of the dipole theory, the optimum size of the stethoscope’s bell is found and the spectrum of the heart sounds is estimated. The estimates are compared with the measured spectrum.

  1. The effect of two different rooms on acoustical and perceptual measures of SATB choir sound

    NASA Astrophysics Data System (ADS)

    Hom, Kathryn S.

    The purpose of this study was to explore the effect of two different rooms (choir rehearsal room, performance hall) on acoustical (LTAS, one-third octave bands) and perceptual (singer [N = 11] survey, listener [N = 33] survey, Pitch Analyzer 2.1) measures of soprano, alto, tenor, and bass (SATB) choir sound. Primary findings of this investigation indicated: (a) significant differences in spectral energy comparisons of choir sound between rooms, (b) choristers' perceptions of hearing and monitoring their own voices differed significantly depending on room, (c) most choristers (82%) perceived that the choir performed best within the Performance Hall, (d) perceived pitch of selected sung vowels within recordings differed significantly based on room conditions, (e) 97% of listeners perceived a difference in choir sound between room recordings, and (f) most listeners (91%) indicated preference for the Rehearsal Room recording.

  2. Innovative system architecture for spatial volumetric acoustic seeing

    NASA Astrophysics Data System (ADS)

    Levin, Eugene; Sergeyev, Aleksandr V.

    2009-04-01

    Situational awareness is a critical issue for the modern battle and security systems improvement of which will increase human performance efficiency. There are multiple research project and development efforts based on omni-directional (fish-eye) electro-optical and other frequency sensor fusion systems implementing head-mounted visualization systems. However, the efficiency of these systems is limited by the human eye-brain system perception limitations. Humans are capable to naturally perceive the situations in front of them, but interpretation of omni-directional visual scenes increases the user's mental workload, increasing human fatigue and disorientation requiring more effort for object recognition. It is especially important to reduce this workload making rear scenes perception intuitive in battlefield situations where a combatant can be attacked from both directions. This paper describes an experimental model of the system fusion architecture of the Visual Acoustic Seeing (VAS) for representation spatial geometric 3D model in form of 3D volumetric sound. Current research in the area of auralization points to the possibility of identifying sound direction. However, for complete spatial perception it is necessary to identify the direction and the distance to an object by an expression of volumetric sound, we initially assume that the distance can be encoded by the sound frequency. The chain: object features -> sensor -> 3D geometric model-> auralization constitutes Volumetric Acoustic Seeing (VAS). Paper describes VAS experimental research for representing and perceiving spatial information by means of human hearing cues in more details.

  3. Acoustic space learning for sound-source separation and localization on binaural manifolds.

    PubMed

    Deleforge, Antoine; Forbes, Florence; Horaud, Radu

    2015-02-01

    In this paper, we address the problems of modeling the acoustic space generated by a full-spectrum sound source and using the learned model for the localization and separation of multiple sources that simultaneously emit sparse-spectrum sounds. We lay theoretical and methodological grounds in order to introduce the binaural manifold paradigm. We perform an in-depth study of the latent low-dimensional structure of the high-dimensional interaural spectral data, based on a corpus recorded with a human-like audiomotor robot head. A nonlinear dimensionality reduction technique is used to show that these data lie on a two-dimensional (2D) smooth manifold parameterized by the motor states of the listener, or equivalently, the sound-source directions. We propose a probabilistic piecewise affine mapping model (PPAM) specifically designed to deal with high-dimensional data exhibiting an intrinsic piecewise linear structure. We derive a closed-form expectation-maximization (EM) procedure for estimating the model parameters, followed by Bayes inversion for obtaining the full posterior density function of a sound-source direction. We extend this solution to deal with missing data and redundancy in real-world spectrograms, and hence for 2D localization of natural sound sources such as speech. We further generalize the model to the challenging case of multiple sound sources and we propose a variational EM framework. The associated algorithm, referred to as variational EM for source separation and localization (VESSL) yields a Bayesian estimation of the 2D locations and time-frequency masks of all the sources. Comparisons of the proposed approach with several existing methods reveal that the combination of acoustic-space learning with Bayesian inference enables our method to outperform state-of-the-art methods. PMID:25164245

  4. Acoustic-tomographical sounding technique in near-surface atmospheric layers - applicability and limitations

    NASA Astrophysics Data System (ADS)

    Ziemann, A.; Arnold, K.; Raabe, A.

    2003-04-01

    Acoustic tomography of the atmosphere is proposed as a ground-based remote sensing and imaging scheme that uses the sound propagation through the turbulent atmosphere. Measured travel-time values of sound signals between different fixed transmitters and receivers are used as initial line-integrated values to derive spatially averaged temperature and wind fields inside the atmospheric surface layer. Because each single measurement includes information on the properties of the atmospheric layer through which the sound propagates, a tomographic inversion algorithm is able to provide a spatial mapping of meteorological data derived from the measured acoustic parameters. To evaluate the certainty and the spatial resolution of the tomographically derived data, the data accuracy as well as the validity of applied simplifications have to be investigated. Thereby, the determination of the sound path under different atmospheric conditions plays an important role. For this purpose a ray-tracing model based on a generalized version of Snells law corresponding to the coupled influence of temperature and wind vector gradients on the sound-ray refraction is used. The simulated acoustic travel-time values will be compared with theoretical values of a straight-line sound propagation to estimate the validity of this approximation for the tomographically inverse algorithm. To investigate the possible spatial resolution and the reached certainty of the reconstructed meteorological fields, the geometrical properties of the measuring field and the measurement accuracy itself are essential. Generalized results of such investigations for different measurement geometries will be presented. The resulting spatially averaged meteorological quantities can be used for the evaluation of micrometeorological test sites. The application of acoustic tomography provides information on the temperature and wind field over surfaces with different land uses. First results from measuring campaigns within

  5. Analyzing panel acoustic contributions toward the sound field inside the passenger compartment of a full-size automobile.

    PubMed

    Wu, Sean F; Moondra, Manmohan; Beniwal, Ravi

    2015-04-01

    The Helmholtz equation least squares (HELS)-based nearfield acoustical holography (NAH) is utilized to analyze panel acoustic contributions toward the acoustic field inside the interior region of an automobile. Specifically, the acoustic power flows from individual panels are reconstructed, and relative contributions to sound pressure level and spectrum at any point of interest are calculated. Results demonstrate that by correlating the acoustic power flows from individual panels to the field acoustic pressure, one can correctly locate the panel allowing the most acoustic energy transmission into the vehicle interior. The panel on which the surface acoustic pressure amplitude is the highest should not be used as indicative of the panel responsible for the sound field in the vehicle passenger compartment. Another significant advantage of this HELS-based NAH is that measurements of the input data only need to be taken once by using a conformal array of microphones in the near field, and ranking of panel acoustic contributions to any field point can be readily performed. The transfer functions between individual panels of any vibrating structure to the acoustic pressure anywhere in space are calculated not measured, thus significantly reducing the time and effort involved in panel acoustic contributions analyses. PMID:25920860

  6. Shift of the interference extrema of low-frequency acoustic propagations near the axis of a deep sound channel

    NASA Astrophysics Data System (ADS)

    Lee, Seongwook; Na, Jungyul; Yoo, Jae Myung; Jurng, Moon-Sub; Oh, Suntaek

    2015-07-01

    Broadband interference patterns measured from acoustic propagations near the axis of a deep sound channel are interpreted. Analyses using mode theory for the waveguide with bilinear sound speed profiles show that the increase in sound speed without gradient variation shifts the positions of intensity maxima to higher frequencies in a fixed range whereas the increase in the gradient shifts the maxima to lower frequencies. Analytic results imply that the frequency shift of intensity extrema appearing in the measurements could be explained by the increase in the sound speed gradient above the axis of the deep sound channel.

  7. A model for the pressure excitation spectrum and acoustic impedance of sound absorbers in the presence of grazing flow

    NASA Technical Reports Server (NTRS)

    Rice, E. J.

    1973-01-01

    The acoustic impedance of sound absorbers in the presence of grazing flow is essential information when analyzing sound propagation within ducts. A unification of the theory of the nonlinear acoustic resistance of Helmholtz resonators including grazing flow is presented. The nonlinear resistance due to grazing flow is considered to be caused by an exciting pressure spectrum produced by the interaction of the grazing flow and the jets flowing from the resonator orifices. With this exciting pressure spectrum the resonator can be treated in the same manner as a resonator without grazing flow but with an exciting acoustic spectrum.

  8. An acoustical study of sound production in biphonic singing, Xöömij.

    PubMed

    Adachi, S; Yamada, M

    1999-05-01

    A theory that the high melody pitch of biphonic singing, Xöömij, is produced by the pipe resonance of the rear cavity in the vocal tract is proposed. The front cavity resonance is not critical to the production of the melody pitch. This theory is derived from acoustic investigations on several three-dimensional shapes of a Xöömij singer's vocal tract measured by magnetic resonance imaging. Four different shapes of the vocal tract are examined, with which the melody pitches of F6, G6, A6, and C7 are sung, along with the F3 drone of a specific pressed voice. The second formant frequency calculated from each tract shape is close to the melody pitch within an error of 36 cents. Sounds are synthesized by convolving a glottal source waveform provided by the Rosenberg model with transfer functions calculated from the vocal tract shapes. Two pitches are found to be successfully perceived when the synthesized sounds are listened to. In a frequency range below 2 kHz, their spectra have a strong resemblance to those of the sounds actually sung. The synthesized sounds, however, fail to replicate the harmonic clustering at 4-5 kHz observed in the actual sounds. This is speculated to originate from the glottal source specific to the "pressed" timbre of the drone. PMID:10335641

  9. Exploring violin sound quality: investigating English timbre descriptors and correlating resynthesized acoustical modifications with perceptual properties.

    PubMed

    Fritz, Claudia; Blackwell, Alan F; Cross, Ian; Woodhouse, Jim; Moore, Brian C J

    2012-01-01

    Performers often discuss the sound quality of a violin or the sound obtained by particular playing techniques, calling upon a diverse vocabulary. This study explores the verbal descriptions, made by performers, of the distinctive timbres of different violins. Sixty-one common descriptors were collected and then arranged by violinists on a map, so that words with similar meanings lay close together, and those with different meanings lay far apart. The results of multidimensional scaling demonstrated consistent use among violinists of many words, and highlighted which words are used for similar purposes. These terms and their relations were then used to investigate the perceptual effect of acoustical modifications of violin sounds produced by roving of the levels in five one-octave wide bands, 190-380, 380-760, 760-1520, 1520-3040, and 3040-6080 Hz. Pairs of sounds were presented, and each participant was asked to indicate which of the sounds was more bright, clear, harsh, nasal, or good (in separate runs for each descriptor). Increased brightness and clarity were associated with moderately increased levels in bands 4 and 5, whereas increased harshness was associated with a strongly increased level in band 4. Judgments differed across participants for the qualities nasal and good. PMID:22280701

  10. Extraction of fault component from abnormal sound in diesel engines using acoustic signals

    NASA Astrophysics Data System (ADS)

    Dayong, Ning; Changle, Sun; Yongjun, Gong; Zengmeng, Zhang; Jiaoyi, Hou

    2016-06-01

    In this paper a method for extracting fault components from abnormal acoustic signals and automatically diagnosing diesel engine faults is presented. The method named dislocation superimposed method (DSM) is based on the improved random decrement technique (IRDT), differential function (DF) and correlation analysis (CA). The aim of DSM is to linearly superpose multiple segments of abnormal acoustic signals because of the waveform similarity of faulty components. The method uses sample points at the beginning of time when abnormal sound appears as the starting position for each segment. In this study, the abnormal sound belonged to shocking faulty type; thus, the starting position searching method based on gradient variance was adopted. The coefficient of similar degree between two same sized signals is presented. By comparing with a similar degree, the extracted fault component could be judged automatically. The results show that this method is capable of accurately extracting the fault component from abnormal acoustic signals induced by faulty shocking type and the extracted component can be used to identify the fault type.

  11. Acoustic signature recognition technique for Human-Object Interactions (HOI) in persistent surveillance systems

    NASA Astrophysics Data System (ADS)

    Alkilani, Amjad; Shirkhodaie, Amir

    2013-05-01

    Handling, manipulation, and placement of objects, hereon called Human-Object Interaction (HOI), in the environment generate sounds. Such sounds are readily identifiable by the human hearing. However, in the presence of background environment noises, recognition of minute HOI sounds is challenging, though vital for improvement of multi-modality sensor data fusion in Persistent Surveillance Systems (PSS). Identification of HOI sound signatures can be used as precursors to detection of pertinent threats that otherwise other sensor modalities may miss to detect. In this paper, we present a robust method for detection and classification of HOI events via clustering of extracted features from training of HOI acoustic sound waves. In this approach, salient sound events are preliminary identified and segmented from background via a sound energy tracking method. Upon this segmentation, frequency spectral pattern of each sound event is modeled and its features are extracted to form a feature vector for training. To reduce dimensionality of training feature space, a Principal Component Analysis (PCA) technique is employed to expedite fast classification of test feature vectors, a kd-tree and Random Forest classifiers are trained for rapid classification of training sound waves. Each classifiers employs different similarity distance matching technique for classification. Performance evaluations of classifiers are compared for classification of a batch of training HOI acoustic signatures. Furthermore, to facilitate semantic annotation of acoustic sound events, a scheme based on Transducer Mockup Language (TML) is proposed. The results demonstrate the proposed approach is both reliable and effective, and can be extended to future PSS applications.

  12. Sounds of emotion: production and perception of affect-related vocal acoustics.

    PubMed

    Bachorowski, Jo-Anne; Owren, Michael J

    2003-12-01

    In his writing Darwin emphasized direct veridical links between vocal acoustics and vocalizer emotional state. Yet he also recognized that acoustics influence the emotional state of listeners. This duality-that particular vocal expressions are likely linked to particular internal states, yet may specifically function to influence others-lies at the heart of contemporary efforts aimed at understanding affect-related vocal acoustics. That work has focused most on speech acoustics and laughter, where the most common approach has been to argue that these signals reflect the occurrence of discrete emotional states in the vocalizer. An alternative view is that the underlying states can be better characterized using a small number of continuous dimensions such as arousal (or activation) and a valenced dimension such as pleasantness. A brief review of the evidence suggests, however, that neither approach is correct. Data from speech-related research provides little support for a discrete-emotions view, with emotion-related aspects of the acoustics seeming more to reflect to vocalizer arousal. However, links to a corresponding emotional valence dimension have also been difficult to demonstrate, suggesting a need for interpretations outside this traditional dichotomy. We therefore suggest a different perspective in which the primary function of signaling is not to express signaler emotion, but rather to impact listener affect and thereby influence the behavior of these individuals. In this view, it is not expected that nuances of signaler states will be highly correlated with particular features of the sounds produced, but rather that vocalizers will be using acoustics that readily affect listener arousal and emotion. Attributions concerning signaler states thus become a secondary outcome, reflecting inferences that listeners base on their own affective responses to the sounds, their past experience with such signals, and the context in which signaling is occurring. This

  13. Cutting sound enhancement system for mining machines

    DOEpatents

    Leigh, Michael C.; Kwitowski, August J.

    1992-01-01

    A cutting sound enhancement system (10) for transmitting an audible signal from the cutting head (101) of a piece of mine machinery (100) to an operator at a remote station (200), wherein, the operator using a headphone unit (14) can monitor the difference in sounds being made solely by the cutting head (101) to determine the location of the roof, floor, and walls of a coal seam (50).

  14. The Impact of Sound-Field Systems on Learning and Attention in Elementary School Classrooms

    ERIC Educational Resources Information Center

    Dockrell, Julie E.; Shield, Bridget

    2012-01-01

    Purpose: The authors evaluated the installation and use of sound-field systems to investigate the impact of these systems on teaching and learning in elementary school classrooms. Methods: The evaluation included acoustic surveys of classrooms, questionnaire surveys of students and teachers, and experimental testing of students with and without…

  15. Aeroelastic-Acoustics Simulation of Flight Systems

    NASA Technical Reports Server (NTRS)

    Gupta, kajal K.; Choi, S.; Ibrahim, A.

    2009-01-01

    This paper describes the details of a numerical finite element (FE) based analysis procedure and a resulting code for the simulation of the acoustics phenomenon arising from aeroelastic interactions. Both CFD and structural simulations are based on FE discretization employing unstructured grids. The sound pressure level (SPL) on structural surfaces is calculated from the root mean square (RMS) of the unsteady pressure and the acoustic wave frequencies are computed from a fast Fourier transform (FFT) of the unsteady pressure distribution as a function of time. The resulting tool proves to be unique as it is designed to analyze complex practical problems, involving large scale computations, in a routine fashion.

  16. Acoustic system for material transport

    NASA Technical Reports Server (NTRS)

    Barmatz, M. B.; Trinh, E. H.; Wang, T. G.; Elleman, D. D.; Jacobi, N. (Inventor)

    1983-01-01

    An object within a chamber is acoustically moved by applying wavelengths of different modes to the chamber to move the object between pressure wells formed by the modes. In one system, the object is placed in one end of the chamber while a resonant mode, applied along the length of the chamber, produces a pressure well at the location. The frequency is then switched to a second mode that produces a pressure well at the center of the chamber, to draw the object. When the object reaches the second pressure well and is still traveling towards the second end of the chamber, the acoustic frequency is again shifted to a third mode (which may equal the first model) that has a pressure well in the second end portion of the chamber, to draw the object. A heat source may be located near the second end of the chamber to heat the sample, and after the sample is heated it can be cooled by moving it in a corresponding manner back to the first end of the chamber. The transducers for levitating and moving the object may be all located at the cool first end of the chamber.

  17. Dependence of acoustic properties of sound absorbing fibrous materials on their structure

    NASA Astrophysics Data System (ADS)

    Voronina, N. N.

    1984-07-01

    The performance of sound absorbing structures is characterized by two acoustic parameters: the dimensionless wave impedance (referred to the wave impedance of air) and the propagation constant. Both parameters can be defined as complex quantities whose real and imaginary parts were evaluated for various materials. On the basis of experimental data, semiempirical relations were established describing these parameters as functions of the density and of the fiber thickness, in the case of fibrous materials, as well as their frequency characteristics. The results given in pertain to fiberglass, mineral cotton wool, and nylon fiber.

  18. Spinning mode sound propagation in ducts with acoustic treatment and sheared flow

    NASA Technical Reports Server (NTRS)

    Rice, E. J.

    1975-01-01

    The propagation of spinning mode sound was considered for a cylindrical duct with sheared steady flow. Calculations concentrated on the determination of the wall optimum acoustic impedance and the maximum possible attenuation. Both the least attenuated and higher radial modes for spinning lobe patterns were considered. A parametric study was conducted over a wide range of Mach numbers, spinning lobe numbers, sound frequency, and boundary layer thickness. A correlation equation was developed from theoretical considerations starting with the thin boundary layer approximation of Eversman. This correlation agrees well with the more exact calculations for inlets and provides a single boundary layer refraction parameter which determines the change in optimum wall impedance due to refraction effects.

  19. Hybrid mode-scattering/sound-absorbing segmented liner system and method

    NASA Technical Reports Server (NTRS)

    Rice, Edward J. (Inventor); Walker, Bruce E. (Inventor); Hersh, Alan S. (Inventor)

    1999-01-01

    A hybrid mode-scattering/sound-absorbing segmented liner system and method in which an initial sound field within a duct is steered or scattered into higher-order modes in a first mode-scattering segment such that it is more readily and effectively absorbed in a second sound-absorbing segment. The mode-scattering segment is preferably a series of active control components positioned along the annulus of the duct, each of which includes a controller and a resonator into which a piezoelectric transducer generates the steering noise. The sound-absorbing segment is positioned acoustically downstream of the mode-scattering segment, and preferably comprises a honeycomb-backed passive acoustic liner. The invention is particularly adapted for use in turbofan engines, both in the inlet and exhaust.

  20. Sensor system for heart sound biomonitor

    NASA Astrophysics Data System (ADS)

    Maple, Jarrad L.; Hall, Leonard T.; Agzarian, John; Abbott, Derek

    1999-09-01

    Heart sounds can be utilized more efficiently by medical doctors when they are displayed visually, rather than through a conventional stethoscope. A system whereby a digital stethoscope interfaces directly to a PC will be directly along with signal processing algorithms, adopted. The sensor is based on a noise cancellation microphone, with a 450 Hz bandwidth and is sampled at 2250 samples/sec with 12-bit resolution. Further to this, we discuss for comparison a piezo-based sensor with a 1 kHz bandwidth. A major problem is that the recording of the heart sound into these devices is subject to unwanted background noise which can override the heart sound and results in a poor visual representation. This noise originates from various sources such as skin contact with the stethoscope diaphragm, lung sounds, and other surrounding sounds such as speech. Furthermore we demonstrate a solution using 'wavelet denoising'. The wavelet transform is used because of the similarity between the shape of wavelets and the time-domain shape of a heartbeat sound. Thus coding of the waveform into the wavelet domain is achieved with relatively few wavelet coefficients, in contrast to the many Fourier components that would result from conventional decomposition. We show that the background noise can be dramatically reduced by a thresholding operation in the wavelet domain. The principle is that the background noise codes into many small broadband wavelet coefficients that can be removed without significant degradation of the signal of interest.

  1. Acoustic characteristics of voluntary expiratory sounds after swallow for detecting dysphagia.

    PubMed

    Yamashita, M; Yokoyama, K; Takei, Y; Furuya, N; Nakamichi, Y; Ihara, Y; Takahashi, K; Groher, M E

    2014-09-01

    This research was designed to investigate the acoustic characteristics of voluntary expiratory sounds after swallow for detecting dysphagia. Forty-nine patients with complaints of swallow difficulty received a videofluorographic (VF) examination. They were divided into three groups: nine who did not have any apparent disease (Group N), 22 patients with head and neck cancer (Group H&N) and 18 patients with other diseases including cerebrovascular disease (Group OD). After liquid barium swallows, they exhaled voluntarily without voicing. Videofluorographic findings were classified into four groups: normal (Normal), acceptable swallow (Acceptable), swallow with residue (Resid) and swallows with penetration or aspiration (Pen/Asp). The duration of expiratory sounds was measured on the time waveform. Frequency characteristics of expiratory sounds were obtained using one-third octave band analysis ranging from 62·5 to 2000·0 Hz of central frequency. The averaged level of the 1000·0-Hz band was chosen as the reference band level (RB level). The revised averaged level of each band was obtained by subtracting the RB level from the averaged level of each band. Zero decibel of the revised magnitude of the 125·0-Hz band was set as the critical value to differentiate dysphagia (Resid or Pen/Asp) from no dysphagia (Normal or Acceptable). Comparison of this assessment with VF findings showed a significant percentage agreement (85·4%). These results suggest that frequency characteristics of post-swallow expiratory sounds can differentiate dysphagia from no dysphagia among multiple dysphagic patient groups. PMID:24841831

  2. Acoustic metafluid with anisotropic mass density and tunable sound speed: An approach based on suspensions of orientable anisotropic particles

    NASA Astrophysics Data System (ADS)

    Seitel, Mark; Tse, Stephen; Shan, Jerry

    2011-11-01

    We investigate liquid suspensions of micron-scale, anisotropic particles as potential acoustic metafluids having anisotropic and actively controllable acoustic properties. The effective mass density (and hence the sound propagation speed) of these metafluids can vary because the added mass of an anisotropic particle suspended in the fluid changes with the particle's orientation relative to the direction of the wave propagation. A suspension with disc-like particles oriented broadside to the direction of wave propagation is thus expected to have higher effective inertia and lower sound speed than a suspension with particles with end-on alignment. To test these predictions, sound speed is measured with a time-of-flight method in suspensions of micron-size nickel flakes suspended in oil, with and without magnetic-field-induced alignment of the particles. The sound speed, relative to the unaligned case, is found to decrease for particles oriented broadside to the sound wave, and increase for edgewise alignment. We also investigate the frequency dependence of the effective sound speed, since the added mass effect is expected to diminish as the flow becomes steady at low frequencies. The experimental results are compared to the predictions of a model proposed by Ahuja & Hardee (J. Acoust. Soc. Am 1978) for the acoustic properties of aligned oblate-spheroid suspensions.

  3. A nonlinear screen as an element for sound absorption and frequency conversion systems

    NASA Astrophysics Data System (ADS)

    Rudenko, O. V.

    2016-01-01

    The paper discusses a model for a screen with dissipative and nonlinear elastic properties that can be used in acoustic sound absorption and frequency conversion systems. Calculation and estimation schemes are explained that are necessary for understanding the functional capabilities of the device. Examples of the nonlinear elements in the screen and promising applications are described.

  4. A System for Heart Sounds Classification

    PubMed Central

    Redlarski, Grzegorz; Gradolewski, Dawid; Palkowski, Aleksander

    2014-01-01

    The future of quick and efficient disease diagnosis lays in the development of reliable non-invasive methods. As for the cardiac diseases – one of the major causes of death around the globe – a concept of an electronic stethoscope equipped with an automatic heart tone identification system appears to be the best solution. Thanks to the advancement in technology, the quality of phonocardiography signals is no longer an issue. However, appropriate algorithms for auto-diagnosis systems of heart diseases that could be capable of distinguishing most of known pathological states have not been yet developed. The main issue is non-stationary character of phonocardiography signals as well as a wide range of distinguishable pathological heart sounds. In this paper a new heart sound classification technique, which might find use in medical diagnostic systems, is presented. It is shown that by combining Linear Predictive Coding coefficients, used for future extraction, with a classifier built upon combining Support Vector Machine and Modified Cuckoo Search algorithm, an improvement in performance of the diagnostic system, in terms of accuracy, complexity and range of distinguishable heart sounds, can be made. The developed system achieved accuracy above 93% for all considered cases including simultaneous identification of twelve different heart sound classes. The respective system is compared with four different major classification methods, proving its reliability. PMID:25393113

  5. A system for heart sounds classification.

    PubMed

    Redlarski, Grzegorz; Gradolewski, Dawid; Palkowski, Aleksander

    2014-01-01

    The future of quick and efficient disease diagnosis lays in the development of reliable non-invasive methods. As for the cardiac diseases - one of the major causes of death around the globe - a concept of an electronic stethoscope equipped with an automatic heart tone identification system appears to be the best solution. Thanks to the advancement in technology, the quality of phonocardiography signals is no longer an issue. However, appropriate algorithms for auto-diagnosis systems of heart diseases that could be capable of distinguishing most of known pathological states have not been yet developed. The main issue is non-stationary character of phonocardiography signals as well as a wide range of distinguishable pathological heart sounds. In this paper a new heart sound classification technique, which might find use in medical diagnostic systems, is presented. It is shown that by combining Linear Predictive Coding coefficients, used for future extraction, with a classifier built upon combining Support Vector Machine and Modified Cuckoo Search algorithm, an improvement in performance of the diagnostic system, in terms of accuracy, complexity and range of distinguishable heart sounds, can be made. The developed system achieved accuracy above 93% for all considered cases including simultaneous identification of twelve different heart sound classes. The respective system is compared with four different major classification methods, proving its reliability. PMID:25393113

  6. Monitoring Anthropogenic Ocean Sound from Shipping Using an Acoustic Sensor Network and a Compressive Sensing Approach †

    PubMed Central

    Harris, Peter; Philip, Rachel; Robinson, Stephen; Wang, Lian

    2016-01-01

    Monitoring ocean acoustic noise has been the subject of considerable recent study, motivated by the desire to assess the impact of anthropogenic noise on marine life. A combination of measuring ocean sound using an acoustic sensor network and modelling sources of sound and sound propagation has been proposed as an approach to estimating the acoustic noise map within a region of interest. However, strategies for developing a monitoring network are not well established. In this paper, considerations for designing a network are investigated using a simulated scenario based on the measurement of sound from ships in a shipping lane. Using models for the sources of the sound and for sound propagation, a noise map is calculated and measurements of the noise map by a sensor network within the region of interest are simulated. A compressive sensing algorithm, which exploits the sparsity of the representation of the noise map in terms of the sources, is used to estimate the locations and levels of the sources and thence the entire noise map within the region of interest. It is shown that although the spatial resolution to which the sound sources can be identified is generally limited, estimates of aggregated measures of the noise map can be obtained that are more reliable compared with those provided by other approaches. PMID:27011187

  7. Sound Transmission Loss Through a Corrugated-Core Sandwich Panel with Integrated Acoustic Resonators

    NASA Technical Reports Server (NTRS)

    Schiller, Noah H.; Allen, Albert R.; Zalewski, Bart F; Beck, Benjamin S.

    2014-01-01

    The goal of this study is to better understand the effect of structurally integrated resonators on the transmission loss of a sandwich panel. The sandwich panel has facesheets over a corrugated core, which creates long aligned chambers that run parallel to the facesheets. When ports are introduced through the facesheet, the long chambers within the core can be used as low-frequency acoustic resonators. By integrating the resonators within the structure they contribute to the static load bearing capability of the panel while also attenuating noise. An analytical model of a panel with embedded resonators is derived and compared with numerical simulations. Predictions show that acoustic resonators can significantly improve the transmission loss of the sandwich panel around the natural frequency of the resonators. In one configuration with 0.813 m long internal chambers, the diffuse field transmission loss is improved by more than 22 dB around 104 Hz. The benefit is achieved with no added mass or volume relative to the baseline structure. The embedded resonators are effective because they radiate sound out-of-phase with the structure. This results in destructive interference, which leads to less transmitted sound power.

  8. A novel method of improving sound quality and reducing acoustic feedback in hearing aids

    NASA Astrophysics Data System (ADS)

    Killion, Mead; French, John; Viranyi, Steve; Preves, David

    2002-05-01

    Most current hearing aids have relatively narrow bandwidths, when compared to high-fidelity equipment, and exhibit undamped peaks because the peaks are considered less troublesome than the problem of wax-clogged dampers. Attempting to make hearing aids wider band has typically resulted in increased acoustic feedback problems. The recent availability of an off-the-shelf digital hearing aid integrated circuit amplifier, which contains several biquad filters, when used with special software, automatically detects and suppresses peaks. The filters then further flatten and extend the hearing aid frequency response to 16 kHz, while the appropriate CORFIG correction is added to the frequency response, producing a transparent sound. Open ear versus aided KEMAR recordings were produced using a live jazz trio and a string quartet. The sound quality ratings for eight commercially available digital hearing aids were obtained from several different listening panels. The new response equalization proved advantageous in all cases. The effects of eliminating the peaks in the response on maximum real ear gain achievable before onset of acoustic feedback oscillation will be reported.

  9. Characterisation of an airborne sound source for use in a virtual acoustic prototype

    NASA Astrophysics Data System (ADS)

    Moorhouse, A. T.; Seiffert, G.

    2006-09-01

    An approach is outlined suitable for constructing 'virtual acoustic prototypes' of machines. Here, the machine is 'sub-structured' into: active components (vibro-acoustic sources), and frame (the remaining passive parts of the machine). The approach is validated using the illustrative example of an electric motor installed in a machine frame. The motor is characterised by a line of four monopoles on its axis, the complex source strengths for which are obtained from the measured anechoic sound field around the motor using an inverse method. A singular value decomposition is carried out both to aid the solution and to shed light on the dominant mechanisms. A set of compatible transfer functions of a machine frame is then measured using a reciprocal technique. The sound power of the assembled machine is then predicted using a 'virtual prototype' approach of combining motor and frame data in the computer. Reasonable agreement is obtained with measurements made on a real prototype, although the agreement was limited at least in part by difficulties in repeating the same operating conditions for the motor. A simplified characterisation, using a single monopole, and with improved motor control produced excellent agreement.

  10. Acoustic systems for the measurement of streamflow

    USGS Publications Warehouse

    Laenen, Antonius; Smith, Winchell

    1983-01-01

    The acoustic velocity meter (AVM), also referred to as an ultrasonic flowmeter, has been an operational tool for the measurement of streamflow since 1965. Very little information is available concerning AVM operation, performance, and limitations. The purpose of this report is to consolidate information in such a manner as to provide a better understanding about the application of this instrumentation to streamflow measurement. AVM instrumentation is highly accurate and nonmechanical. Most commercial AVM systems that measure streamflow use the time-of-travel method to determine a velocity between two points. The systems operate on the principle that point-to-point upstream travel-time of sound is longer than the downstream travel-time, and this difference can be monitored and measured accurately by electronics. AVM equipment has no practical upper limit of measurable velocity if sonic transducers are securely placed and adequately protected. AVM systems used in streamflow measurement generally operate with a resolution of ?0.01 meter per second but this is dependent on system frequency, path length, and signal attenuation. In some applications the performance of AVM equipment may be degraded by multipath interference, signal bending, signal attenuation, and variable streamline orientation. Presently used minicomputer systems, although expensive to purchase and maintain, perform well. Increased use of AVM systems probably will be realized as smaller, less expensive, and more conveniently operable microprocessor-based systems become readily available. Available AVM equipment should be capable of flow measurement in a wide variety of situations heretofore untried. New signal-detection techniques and communication linkages can provide additional flexibility to the systems so that operation is possible in more river and estuary situations.

  11. Acoustic leak-detection system for railroad transportation security

    NASA Astrophysics Data System (ADS)

    Womble, P. C.; Spadaro, J.; Harrison, M. A.; Barzilov, A.; Harper, D.; Hopper, L.; Houchins, E.; Lemoff, B.; Martin, R.; McGrath, C.; Moore, R.; Novikov, I.; Paschal, J.; Rogers, S.

    2007-04-01

    Pressurized rail tank cars transport large volumes of volatile liquids and gases throughout the country, much of which is hazardous and/or flammable. These gases, once released in the atmosphere, can wreak havoc with the environment and local populations. We developed a system which can non-intrusively and non-invasively detect and locate pinhole-sized leaks in pressurized rail tank cars using acoustic sensors. The sound waves from a leak are produced by turbulence from the gas leaking to the atmosphere. For example, a 500 μm hole in an air tank pressurized to 689 kPa produces a broad audio frequency spectrum with a peak near 40 kHz. This signal is detectable at 10 meters with a sound pressure level of 25 dB. We are able to locate a leak source using triangulation techniques. The prototype of the system consists of a network of acoustic sensors and is located approximately 10 meters from the center of the rail-line. The prototype has two types of acoustic sensors, each with different narrow frequency response band: 40 kHz and 80 kHz. The prototype is connected to the Internet using WiFi (802.11g) transceiver and can be remotely operated from anywhere in the world. The paper discusses the construction, operation and performance of the system.

  12. Solving the diffusion equation with a finite element solver: Calculation of diffuse sound field in room acoustics

    NASA Astrophysics Data System (ADS)

    Valeau, Vincent; Sakout, Anas; Li, Feng; Picaut, Judicael

    2002-11-01

    Over the last years, some publications [e.g., Picaut, Simon, and Hardy, J. Acoust. Soc. Am. 106, 2638-2645 (1999)] showed that the acoustic energy density in closed or semiclosed spaces is the solution of a diffusion equation. This approach allows the nonuniform repartition of energy, and is especially relevant in room acoustics for complex spaces or long rooms. In this work, the 3-D diffusion equation is solved directly by using a finite element solver, for a set of long rooms and absorbing rooms. The stationary equation is first solved. A constant-power acoustic source is modelized by setting appropriate boundary conditions. The time-dependent problem is also solved to simulate the sound decay, with an impulse source defined in a subregion with relevant initial conditions. Results concerning sound attenuation and reverberation times match satisfactorily with other theoretical and numerical models. An application is also given for two coupled rooms.

  13. Physics and Psychophysics of High-Fidelity Sound. Part III: The Components of a Sound-Reproducing System: Amplifiers and Loudspeakers.

    ERIC Educational Resources Information Center

    Rossing, Thomas D.

    1980-01-01

    Described are the components for a high-fidelity sound-reproducing system which focuses on various program sources, the amplifier, and loudspeakers. Discussed in detail are amplifier power and distortion, air suspension, loudspeaker baffles and enclosures, bass-reflex enclosure, drone cones, rear horn and acoustic labyrinth enclosures, horn…

  14. Acoustically induced structural fatigue of piping systems

    SciTech Connect

    Eisinger, F.L.; Francis, J.T.

    1999-11-01

    Piping systems handling high-pressure and high-velocity steam and various process and hydrocarbon gases through a pressure-reducing device can produce severe acoustic vibration and metal fatigue in the system. It has been previously shown that the acoustic fatigue of the piping system is governed by the relationship between fluid pressure drop and downstream Mach number, and the dimensionless pipe diameter/wall thickness geometry parameter. In this paper, the devised relationship is extended to cover acoustic fatigue considerations of medium and smaller-diameter piping systems.

  15. Structural sensing of interior sound for active control of noise in structural-acoustic cavities.

    PubMed

    Bagha, Ashok K; Modak, S V

    2015-07-01

    This paper proposes a method for structural sensing of acoustic potential energy for active control of noise in a structural-acoustic cavity. The sensing strategy aims at global control and works with a fewer number of sensors. It is based on the established concept of radiation modes and hence does not add too many states to the order of the system. Acoustic potential energy is sensed using a combination of a Kalman filter and a frequency weighting filter with the structural response measurements as the inputs. The use of Kalman filter also makes the system robust against measurement noise. The formulation of the strategy is presented using finite element models of the system including that of sensors and actuators so that it can be easily applied to practical systems. The sensing strategy is numerically evaluated in the framework of Linear Quadratic Gaussian based feedback control of interior noise in a rectangular box cavity with a flexible plate with single and multiple pairs of piezoelectric sensor-actuator patches when broadband disturbances act on the plate. The performance is compared with an "acoustic filter" that models the complete transfer function from the structure to the acoustic domain. The sensing performance is also compared with a direct estimation strategy. PMID:26233001

  16. Early development and orientation of the acoustic funnel provides insight into the evolution of sound reception pathways in cetaceans.

    PubMed

    Yamato, Maya; Pyenson, Nicholas D

    2015-01-01

    Whales receive underwater sounds through a fundamentally different mechanism than their close terrestrial relatives. Instead of hearing through the ear canal, cetaceans hear through specialized fatty tissues leading to an evolutionarily novel feature: an acoustic funnel located anterior to the tympanic aperture. We traced the ontogenetic development of this feature in 56 fetal specimens from 10 different families of toothed (odontocete) and baleen (mysticete) whales, using X-ray computed tomography. We also charted ear ossification patterns through ontogeny to understand the impact of heterochronic developmental processes. We determined that the acoustic funnel arises from a prominent V-shaped structure established early in ontogeny, formed by the malleus and the goniale. In odontocetes, this V-formation develops into a cone-shaped funnel facing anteriorly, directly into intramandibular acoustic fats, which is likely functionally linked to the anterior orientation of sound reception in echolocation. In contrast, the acoustic funnel in balaenopterids rotates laterally, later in fetal development, consistent with a lateral sound reception pathway. Balaenids and several fossil mysticetes retain a somewhat anteriorly oriented acoustic funnel in the mature condition, indicating that a lateral sound reception pathway in balaenopterids may be a recent evolutionary innovation linked to specialized feeding modes, such as lunge-feeding. PMID:25760328

  17. Early Development and Orientation of the Acoustic Funnel Provides Insight into the Evolution of Sound Reception Pathways in Cetaceans

    PubMed Central

    Yamato, Maya; Pyenson, Nicholas D.

    2015-01-01

    Whales receive underwater sounds through a fundamentally different mechanism than their close terrestrial relatives. Instead of hearing through the ear canal, cetaceans hear through specialized fatty tissues leading to an evolutionarily novel feature: an acoustic funnel located anterior to the tympanic aperture. We traced the ontogenetic development of this feature in 56 fetal specimens from 10 different families of toothed (odontocete) and baleen (mysticete) whales, using X-ray computed tomography. We also charted ear ossification patterns through ontogeny to understand the impact of heterochronic developmental processes. We determined that the acoustic funnel arises from a prominent V-shaped structure established early in ontogeny, formed by the malleus and the goniale. In odontocetes, this V-formation develops into a cone-shaped funnel facing anteriorly, directly into intramandibular acoustic fats, which is likely functionally linked to the anterior orientation of sound reception in echolocation. In contrast, the acoustic funnel in balaenopterids rotates laterally, later in fetal development, consistent with a lateral sound reception pathway. Balaenids and several fossil mysticetes retain a somewhat anteriorly oriented acoustic funnel in the mature condition, indicating that a lateral sound reception pathway in balaenopterids may be a recent evolutionary innovation linked to specialized feeding modes, such as lunge-feeding. PMID:25760328

  18. Measured sound speeds and acoustic nonlinearity parameter in liquid water up to 523 K and 14 MPa

    NASA Astrophysics Data System (ADS)

    Sturtevant, Blake T.; Pantea, Cristian; Sinha, Dipen N.

    2016-07-01

    Sound speed in liquid water at temperatures between 275 and 523 K and pressures up to 14 MPa were experimentally determined using a high temperature/high pressure capable acoustic resonance cell. The measurements enabled the determination of the temperature and pressure dependence of sound speed and thus the parameter of acoustic nonlinearly, B/A, over this entire P-T space. Most of the sound speeds measured in this work were found to be within 0.4% of the IAPWS-IF97 formulation, an international standard for calculating sound speed in water as a function of temperature and pressure. The values for B/A determined at laboratory ambient pressure and at temperatures up to 356 K, were found to be in general agreement with values calculated from the IAPWS-IF97 formulation. Additionally, B/A at 293 K was found to be 4.6, in agreement with established literature values.

  19. An acoustic metamaterial composed of multi-layer membrane-coated perforated plates for low-frequency sound insulation

    NASA Astrophysics Data System (ADS)

    Fan, Li; Chen, Zhe; Zhang, Shu-yi; Ding, Jin; Li, Xiao-juan; Zhang, Hui

    2015-04-01

    Insulating against low-frequency sound (below 500 Hz ) remains challenging despite the progress that has been achieved in sound insulation and absorption. In this work, an acoustic metamaterial based on membrane-coated perforated plates is presented for achieving sound insulation in a low-frequency range, even covering the lower audio frequency limit, 20 Hz . Theoretical analysis and finite element simulations demonstrate that this metamaterial can effectively block acoustic waves over a wide low-frequency band regardless of incident angles. Two mechanisms, non-resonance and monopolar resonance, operate in the metamaterial, resulting in a more powerful sound insulation ability than that achieved using periodically arranged multi-layer solid plates.

  20. Acoustic Switches: Harnessing Deformation to Switch On and Off the Propagation of Sound (Adv. Mater. 8/2016).

    PubMed

    Babaee, Sahab; Viard, Nicolas; Wang, Pai; Fang, Nicholas X; Bertoldi, Katia

    2016-02-01

    Isosurfaces of sound waves traveling through an architected material proposed by K. Bertoldi and co-workers on page 1631 are depicted. The material comprises a square array of elastomeric helices in background air and acts as an on/off acoustic switch. It is characterized by frequency ranges of strong wave attenuation (bandgaps) in the undeformed configuration. Upon deformation, the initial bandgap is suppressed, enabling the propagation of sound over all frequencies. PMID:26891043

  1. Performance of active feedforward control systems in non-ideal, synthesized diffuse sound fields.

    PubMed

    Misol, Malte; Bloch, Christian; Monner, Hans Peter; Sinapius, Michael

    2014-04-01

    The acoustic performance of passive or active panel structures is usually tested in sound transmission loss facilities. A reverberant sending room, equipped with one or a number of independent sound sources, is used to generate a diffuse sound field excitation which acts as a disturbance source on the structure under investigation. The spatial correlation and coherence of such a synthesized non-ideal diffuse-sound-field excitation, however, might deviate significantly from the ideal case. This has consequences for the operation of an active feedforward control system which heavily relies on the acquisition of coherent disturbance source information. This work, therefore, evaluates the spatial correlation and coherence of ideal and non-ideal diffuse sound fields and considers the implications on the performance of a feedforward control system. The system under consideration is an aircraft-typical double panel system, equipped with an active sidewall panel (lining), which is realized in a transmission loss facility. Experimental results for different numbers of sound sources in the reverberation room are compared to simulation results of a comparable generic double panel system excited by an ideal diffuse sound field. It is shown that the number of statistically independent noise sources acting on the primary structure of the double panel system depends not only on the type of diffuse sound field but also on the sample lengths of the processed signals. The experimental results show that the number of reference sensors required for a defined control performance exhibits an inverse relationship to control filter length. PMID:25234987

  2. Acoustically-driven microfluidic systems

    SciTech Connect

    Wang, A W; Benett, W J; Tarte, L R

    2000-06-23

    We have demonstrated a non-contact method of concentrating and mixing particles in a plastic microfluidic chamber employing acoustic radiation pressure. A flaw cell package has also been designed that integrates liquid sample interconnects, electrical contacts and a removable sample chamber. Experiments were performed on 1, 3, 6, and 10 {micro}m polystyrene beads. Increased antibody binding to a solid-phase substrate was observed in the presence of acoustic mixing due to improve mass transport.

  3. Gaseous Absorption and Dispersion of Sound in a Resonant Cylindrical Cavity: AN Acoustic and Photoacoustic Study

    NASA Astrophysics Data System (ADS)

    Beckwith, Clyfe Gordon

    This research investigated the feasibility of accurately measuring Virial coefficients in an acoustically resonant cylindrical cavity. Gases studied were: Argon, Helium, Nitrogen, Carbon Dioxide, and Methane. Parameters considered were: resonant frequencies (f_ {rm r}- also a measure of speed of sound), quality factors (Q), and signal amplitudes. We studied the longitudinal modes smaller than 2000 Hz, at room temperature and at pressures of 200, 500, and 800 mm of Hg. The choice of the longitudinal modes was predetermined by our wish to compare acoustic and photoacoustic resonance techniques of the same mode. The acoustic excitation is limited to the longitudinal modes and is achieved by placing a loudspeaker close to one end of the cavity. Photoacoustically we excite a small concentration of molecular Iodine, mixed in with the buffer gases, by a periodically interrupted Xenon light beam. By increasing the length of the cavity we could decrease the space between the modes of frequency. Our observations focused on the behaviors that (a) f_{rm r} shifted with pressure, (b) the f_{rm r} deviated from the simple laws of harmonics, and (c) the amplitudes for the two techniques varied differently with frequency. Effect (a) is due to the fact that the gases are not "ideal", and due to the presence of boundary layers caused by thermal conduction and viscosity gradients. Effect (b) arises because of the f_{rm r}'s mode dependence, caused by the wave scattering due to imperfect geometrical symmetries. Effect (c) is governed by the coupling factors. All measurements could theoretically be justified to within instrumental error, the only noted discrepancy is the lack of a theoretical mode dependence. We conclude that it is feasible to study the accuracy of Virial coefficients of simple gases provided that the boundary layer loss effects and the mode dependent wave scattering can be quantified; in regions of high pressures and high frequencies the Virial effects dominate the

  4. The African Cichlid Fish Astatotilapia burtoni Uses Acoustic Communication for Reproduction: Sound Production, Hearing, and Behavioral Significance

    PubMed Central

    Maruska, Karen P.; Ung, Uyhun S.; Fernald, Russell D.

    2012-01-01

    Sexual reproduction in all animals depends on effective communication between signalers and receivers. Many fish species, especially the African cichlids, are well known for their bright coloration and the importance of visual signaling during courtship and mate choice, but little is known about what role acoustic communication plays during mating and how it contributes to sexual selection in this phenotypically diverse group of vertebrates. Here we examined acoustic communication during reproduction in the social cichlid fish, Astatotilapia burtoni. We characterized the sounds and associated behaviors produced by dominant males during courtship, tested for differences in hearing ability associated with female reproductive state and male social status, and then tested the hypothesis that female mate preference is influenced by male sound production. We show that dominant males produce intentional courtship sounds in close proximity to females, and that sounds are spectrally similar to their hearing abilities. Females were 2–5-fold more sensitive to low frequency sounds in the spectral range of male courtship sounds when they were sexually-receptive compared to during the mouthbrooding parental phase. Hearing thresholds were also negatively correlated with circulating sex-steroid levels in females but positively correlated in males, suggesting a potential role for steroids in reproductive-state auditory plasticity. Behavioral experiments showed that receptive females preferred to affiliate with males that were associated with playback of courtship sounds compared to noise controls, indicating that acoustic information is likely important for female mate choice. These data show for the first time in a Tanganyikan cichlid that acoustic communication is important during reproduction as part of a multimodal signaling repertoire, and that perception of auditory information changes depending on the animal's internal physiological state. Our results highlight the

  5. Leak detection using the pattern of sound signals in water supply systems

    NASA Astrophysics Data System (ADS)

    Sato, Toshitaka; Mita, Akira

    2007-04-01

    Water supply systems in Japan contribute significantly to improve public health. Unfortunately, there are many age-deteriorated pipes of various sizes and leaks frequently occur. Particularly devastating are hidden leaks occurring underground because when left undetected for years these leaks result in secondary damage. Thus, early detection and treatment of leaks is an important civil engineering challenge. At present the acoustic method is the most popular leak detection method. The purpose of this study is to propose an easy and stable leak detection method using the acoustic method assisted by pattern recognition techniques. In the proposed method we collect in the form of digital signals sound and pseudo-sound samples of underground leaking pipes. Principal component analysis (PCA) of the power spectrum of one leak sound is made, and a new coordinate system is constructed. We project the other sounds in the coordinate system, and evaluate if the sounds are similar to the sample sound or not by comparing the residual between the original and the projection. Next, we evaluate the DSF (Damage Sensitive Feature), which is a function of the first three AR model. At last, the feature vectors are created by combining the residuals, the DSF, and the damping ratio of the AR model, and a leak detection method is proposed using the Support Vector Machine (SVM) based upon them. In this study, it is shown that the residual and DSF are useful indices for leak detection. Furthermore, the proposed method shows high accuracy in recognizing leaks.

  6. Non-contact acoustic tests based on nanosecond laser ablation: Generation of a pulse sound source with a small amplitude

    NASA Astrophysics Data System (ADS)

    Hosoya, Naoki; Kajiwara, Itsuro; Inoue, Tatsuo; Umenai, Koh

    2014-09-01

    A method to generate a pulse sound source for acoustic tests based on nanosecond laser ablation with a plasma plume is discussed. Irradiating a solid surface with a laser beam expands a high-temperature plasma plume composed of free electrons, ionized atoms, etc. at a high velocity throughout ambient air. The shockwave generated by the plasma plume becomes the pulse sound source. A laser ablation sound source has two features. Because laser ablation is induced when the laser fluence reaches 1012-1014 W/m2, which is less than that for laser-induced breakdown (1015 W/m2), laser ablation can generate a lower sound pressure, and the sound source has a hemispherical radiation pattern on the surface where laser ablation is generated. Additionally, another feature is that laser-induced breakdown sound sources can fluctuate, whereas laser ablation sound sources do not because laser ablation is produced at a laser beam-irradiation point. We validate this laser ablation method for acoustic tests by comparing the measured and theoretical resonant frequencies of an impedance tube.

  7. Experimental study using Nearfield Acoustical Holography of sound transmission fuselage sidewall structures

    NASA Technical Reports Server (NTRS)

    Maynard, J. D.

    1983-01-01

    This project involves the development of the Nearfield Acoustic Holography (NAH) technique (in particular its extension from single frequency to wideband noise measurement) and its application in a detailed study of the noise radiation characteristics of several samples of aircraft sidewall panels. With the extensive amount of information provided by the NAH technique, the properties of the sound field radiated by the panels may be correlated with their structure, mounting, and excitation (single frequency or wideband, spatially correlated or uncorrelated, structure-borne). The work accomplished at the beginning of this grant period included: (1) Calibration of the 256 microphone array and test of its accuracy. (2) extension of the facility to permit measurements on wideband noise sources. The extensions incuded the addition of high-speed data acquisition hardware and an array processor, and the development of new software. (3) Installation of motion picture graphics for correlating panel motion with structure, mounting, radiation, etc. (4) Development of new holographic data processing techniques.

  8. Integration of Acoustical Information in the Perception of Impacted Sound Sources: The Role of Information Accuracy and Exploitability

    ERIC Educational Resources Information Center

    Giordano, Bruno L.; Rocchesso, Davide; McAdams, Stephen

    2010-01-01

    Sound sources are perceived by integrating information from multiple acoustical features. The factors influencing the integration of information are largely unknown. We measured how the perceptual weighting of different features varies with the accuracy of information and with a listener's ability to exploit it. Participants judged the hardness of…

  9. Relaxation of sound fields in rooms of diffusely reflecting boundaries and its application in acoustical radiosity simulation.

    PubMed

    Zhang, Honghu

    2006-04-01

    The acoustical radiosity method is a computationally expensive acoustical simulation algorithm that assumes an enclosure with ideal diffuse reflecting boundaries. Miles observed that for such an enclosure, the sound energy decay of every point on the boundaries will gradually converge to exponential manner with a uniform decay rate. Therefore, the ratio of radiosity between every pair of points on the boundaries will converge to a constant, and the radiosity across the boundaries will approach a fixed distribution during the sound decay process, where radiosity is defined as the acoustic power per unit area leaving (or being received by) a point on a boundary. We call this phenomenon the "relaxation" of the sound field. In this paper, we study the relaxation in rooms of different shapes with different boundary absorptions. Criteria based on the relaxation of the sound field are proposed to terminate the costly and unnecessary radiosity computation in the later phase, which can then be replaced by a fast regression step to speed up the acoustical radiosity simulation. PMID:16642833

  10. Perceptual and Acoustic Reliability Estimates for the Speech Disorders Classification System (SDCS)

    ERIC Educational Resources Information Center

    Shriberg, Lawrence D.; Fourakis, Marios; Hall, Sheryl D.; Karlsson, Heather B.; Lohmeier, Heather L.; McSweeny, Jane L.; Potter, Nancy L.; Scheer-Cohen, Alison R.; Strand, Edythe A.; Tilkens, Christie M.; Wilson, David L.

    2010-01-01

    A companion paper describes three extensions to a classification system for paediatric speech sound disorders termed the Speech Disorders Classification System (SDCS). The SDCS uses perceptual and acoustic data reduction methods to obtain information on a speaker's speech, prosody, and voice. The present paper provides reliability estimates for…

  11. Intensive sound speed monitoring in ocean and its impact on the GPS/acoustic seafloor geodetic measurement

    NASA Astrophysics Data System (ADS)

    Kido, Motoyuki

    2016-04-01

    GPS/acoustic (GPS/A) technique, based on GPS positioning and acoustic ranging, is now getting a popular tool to measure seafloor crustal movement. Several groups in the world have been intensively conducted campaign surveys in the region of scientifically interest. As the technology of measurement has been matured and plenty of data are accumulated, researchers are now aware of the limit of its precision mainly due to unexpected undulation of sound speed in ocean, which significantly degrades acoustic ranging. If sound speed structure keeps its figure during survey period, e.g., more than a couple of hours, it can be estimated by a moving survey to get sufficient paths from various directions to illustrate the structure. However the sound speed structure often varies quickly with in a hour due to internal gravitational wave excited by interaction of tidal current and seafloor topography. In this case one cannot separate temporal and spatial variations. We revisited our numerous sound speed profile data derived from numbers of XBT measurements, which were concurrently carried out with GPS/A survey along the Nankai Trough and Japan Trench. Among the measurements, we found notably short-period variation in sound speed profile through intensive XBT survey repeatedly cast every 6 minutes for one hour, which also appeared in residuals in traveltime of acoustic ranging. The same feature is also found in more moderate rate for semidiurnal undulation, in which vertical oscillation of the middle of the profile can be clearly seen rather than variation of absolute sound speed. This also reflects traveltime residuals in the GPS/A measurement. These typical frequencies represent dominant wavelengths of spatial sound speed variation. In the latter, local horizontal variation can be negligible in the vicinity of a point survey area and the traditional analysis can be applicable that assumes time-varying stratified sound speed structure. In the former case, on the contrary, local

  12. Acoustic surface perception from naturally occurring step sounds of a dexterous hexapod robot

    NASA Astrophysics Data System (ADS)

    Cuneyitoglu Ozkul, Mine; Saranli, Afsar; Yazicioglu, Yigit

    2013-10-01

    Legged robots that exhibit dynamic dexterity naturally interact with the surface to generate complex acoustic signals carrying rich information on the surface as well as the robot platform itself. However, the nature of a legged robot, which is a complex, hybrid dynamic system, renders the more common approach of model-based system identification impractical. The present paper focuses on acoustic surface identification and proposes a non-model-based analysis and classification approach adopted from the speech processing literature. A novel feature set composed of spectral band energies augmented by their vector time derivatives and time-domain averaged zero crossing rate is proposed. Using a multi-dimensional vector classifier, these features carry enough information to accurately classify a range of commonly occurring indoor and outdoor surfaces without using of any mechanical system model. A comparative experimental study is carried out and classification performance and computational complexity are characterized. Different feature combinations, classifiers and changes in critical design parameters are investigated. A realistic and representative acoustic data set is collected with the robot moving at different speeds on a number of surfaces. The study demonstrates promising performance of this non-model-based approach, even in an acoustically uncontrolled environment. The approach also has good chance of performing in real-time.

  13. Copper vapor laser acoustic thermometry system

    DOEpatents

    Galkowski, Joseph J.

    1987-01-01

    A copper vapor laser (CVL) acoustic thermometry system is disclosed. The invention couples an acoustic pulse a predetermined distance into a laser tube by means of a transducer and an alumina rod such that an echo pulse is returned along the alumina rod to the point of entry. The time differential between the point of entry of the acoustic pulse into the laser tube and the exit of the echo pulse is related to the temperature at the predetermined distance within the laser tube. This information is processed and can provide an accurate indication of the average temperature within the laser tube.

  14. MEMS Biomimetic Acoustic Pressure Gradient Sensitive Structure for Sound Source Localization

    PubMed Central

    An, Peng; Yuan, Weizheng; Ren, Sen

    2009-01-01

    The parasitoid fly Ormia ochracea shows an astonishing localization ability with its tiny hearing organ. A novel MEMS biomimetic acoustic pressure gradient sensitive structure was designed and fabricated by mimicking the mechanically coupled tympana of the fly. Firstly, the analytic representation formulas of the resultant force and resultant moment of the incoming plane wave acting on the structure were derived. After that, structure modal analysis was performed and the results show that the structure has out-of-phase and in-phase vibration modes, and the corresponding eigenfrequency is decided by the stiffness of vertical torsional beam and horizontal beam respectively. Acoustic-structural coupled analysis was performed and the results show that phase difference and amplitude difference between the responses of the two square diaphragms of the sensitive structure are effectively enlarged through mechanical coupling beam. The phase difference and amplitude difference increase with increasing incident angle and can be used to distinguish the direction of sound arrival. At last, the fabrication process and results of the device is also presented. PMID:22346718

  15. Acoustic Test Characterization of Melamine Foam for Usage in NASA's Payload Fairing Acoustic Attenuation Systems

    NASA Technical Reports Server (NTRS)

    Hughes, William O.; McNelis, Anne M.; McNelis, Mark E.

    2014-01-01

    The external acoustic liftoff levels predicted for NASA's future heavy lift launch vehicles are expected to be significantly higher than the environment created by today's commercial launch vehicles. This creates a need to develop an improved acoustic attenuation system for future NASA payload fairings. NASA Glenn Research Center initiated an acoustic test series to characterize the acoustic performance of melamine foam, with and without various acoustic enhancements. This testing was denoted as NEMFAT, which stands for NESC Enhanced Melamine Foam Acoustic Test, and is the subject of this paper. Both absorption and transmission loss testing of numerous foam configurations were performed at the Riverbank Acoustical Laboratory in July 2013. The NEMFAT test data provides an initial acoustic characterization and database of melamine foam for NASA. Because of its acoustic performance and lighter mass relative to fiberglass blankets, melamine foam is being strongly considered for use in the acoustic attenuation systems of NASA's future launch vehicles.

  16. A novel acoustic sensor approach to classify seeds based on sound absorption spectra.

    PubMed

    Gasso-Tortajada, Vicent; Ward, Alastair J; Mansur, Hasib; Brøchner, Torben; Sørensen, Claus G; Green, Ole

    2010-01-01

    A non-destructive and novel in situ acoustic sensor approach based on the sound absorption spectra was developed for identifying and classifying different seed types. The absorption coefficient spectra were determined by using the impedance tube measurement method. Subsequently, a multivariate statistical analysis, i.e., principal component analysis (PCA), was performed as a way to generate a classification of the seeds based on the soft independent modelling of class analogy (SIMCA) method. The results show that the sound absorption coefficient spectra of different seed types present characteristic patterns which are highly dependent on seed size and shape. In general, seed particle size and sphericity were inversely related with the absorption coefficient. PCA presented reliable grouping capabilities within the diverse seed types, since the 95% of the total spectral variance was described by the first two principal components. Furthermore, the SIMCA classification model based on the absorption spectra achieved optimal results as 100% of the evaluation samples were correctly classified. This study contains the initial structuring of an innovative method that will present new possibilities in agriculture and industry for classifying and determining physical properties of seeds and other materials. PMID:22163455

  17. Chelyabinsk meteoroid entry: analysis of acoustic signals in the area of direct sound propagation

    NASA Astrophysics Data System (ADS)

    Podobnaya, Elena; Popova, Olga; Glazachev, Dmitry; Rybnov, Yurij; Shuvalov, Valery; Jenniskens, Peter; Kharlamov, Vladimir

    E.Podobnaya, Yu.Rybnov, O.Popova, V. Shuvalov, P. Jenniskens, V.Kharlamov, D.Glazachev The Chelyabinsk airburst of 15 February 2013, was exceptional because of the large kinetic energy of the impacting body and the airburst that was generated, creating significant damage and injuries in a populated area. The meteor and the effects of the airburst were extraordinarily well documented. Numerous video records provided an accurate record of the trajectory and orbit of the cosmic body as well as features of its interaction with the atmosphere (Borovicka et al., 2013; Popova et al. 2013). In this presentation, we discuss the information on shock wave arrival times. Arrival times of the shock wave were derived from the shaking of the camera, the movement of smoke or car exhaust, and the movement of cables in the field of view, as well as directly from the audio record. From the analysis of these shock wave arrival times, the altitudes of the energy deposition were derived (Popova et al. 2013). Borovicka et al (2013) suggested that subsequent acoustic arrivals corresponded to separate fragmentation events. The observed arrival times will be compared with model estimates taking into account the real wind and atmospheric conditions (i.e. sound velocity changes with altitude). Results of numerical simulations will be compared with recorded sound signals. References Borovicka J. et al., 2013, Nature 503, 235 Popova O. et al., 2013, Science, 342, 1096

  18. A Novel Acoustic Sensor Approach to Classify Seeds Based on Sound Absorption Spectra

    PubMed Central

    Gasso-Tortajada, Vicent; Ward, Alastair J.; Mansur, Hasib; Brøchner, Torben; Sørensen, Claus G.; Green, Ole

    2010-01-01

    A non-destructive and novel in situ acoustic sensor approach based on the sound absorption spectra was developed for identifying and classifying different seed types. The absorption coefficient spectra were determined by using the impedance tube measurement method. Subsequently, a multivariate statistical analysis, i.e., principal component analysis (PCA), was performed as a way to generate a classification of the seeds based on the soft independent modelling of class analogy (SIMCA) method. The results show that the sound absorption coefficient spectra of different seed types present characteristic patterns which are highly dependent on seed size and shape. In general, seed particle size and sphericity were inversely related with the absorption coefficient. PCA presented reliable grouping capabilities within the diverse seed types, since the 95% of the total spectral variance was described by the first two principal components. Furthermore, the SIMCA classification model based on the absorption spectra achieved optimal results as 100% of the evaluation samples were correctly classified. This study contains the initial structuring of an innovative method that will present new possibilities in agriculture and industry for classifying and determining physical properties of seeds and other materials. PMID:22163455

  19. A gearbox fault diagnosis scheme based on near-field acoustic holography and spatial distribution features of sound field

    NASA Astrophysics Data System (ADS)

    Lu, Wenbo; Jiang, Weikang; Yuan, Guoqing; Yan, Li

    2013-05-01

    Vibration signal analysis is the main technique in machine condition monitoring or fault diagnosis, whereas in some cases vibration-based diagnosis is restrained because of its contact measurement. Acoustic-based diagnosis (ABD) with non-contact measurement has received little attention, although sound field may contain abundant information related to fault pattern. A new scheme of ABD for gearbox based on near-field acoustic holography (NAH) and spatial distribution features of sound field is presented in this paper. It focuses on applying distribution information of sound field to gearbox fault diagnosis. A two-stage industrial helical gearbox is experimentally studied in a semi-anechoic chamber and a lab workshop, respectively. Firstly, multi-class faults (mild pitting, moderate pitting, severe pitting and tooth breakage) are simulated, respectively. Secondly, sound fields and corresponding acoustic images in different gearbox running conditions are obtained by fast Fourier transform (FFT) based NAH. Thirdly, by introducing texture analysis to fault diagnosis, spatial distribution features are extracted from acoustic images for capturing fault patterns underlying the sound field. Finally, the features are fed into multi-class support vector machine for fault pattern identification. The feasibility and effectiveness of our proposed scheme is demonstrated on the good experimental results and the comparison with traditional ABD method. Even with strong noise interference, spatial distribution features of sound field can reliably reveal the fault patterns of gearbox, and thus the satisfactory accuracy can be obtained. The combination of histogram features and gray level gradient co-occurrence matrix features is suggested for good diagnosis accuracy and low time cost.

  20. Sound Transduction in the Auditory System of Bushcrickets

    NASA Astrophysics Data System (ADS)

    Nowotny, Manuela; Udayashankar, Arun Palghat; Weber, Melanie; Hummel, Jennifer; Kössl, Manfred

    2011-11-01

    Place based frequency representation, called tonotopy,is a typical property of hearing organs for the discrimination of different frequencies. Due to its coiled structure and secure housing, it is difficult access the mammalian cochlea. Hence, our knowledge about in vivo inner-ear mechanics is restricted to small regions. In this study, we present in vivo measurements that focus on the easily accessible, uncoiled auditory organs in bushcrickets, which are located in their foreleg tibiae. Sound enters the body via an opening at the lateral side of the thorax and passes through a horn-shaped acoustic trachea before reaching the high frequency hearing organ called crista acustica. In addition to the acoustic trachea as structure that transmits incoming sound towards the hearing organ, bushcrickets also possess two tympana, specialized plate-like structures, on the anterior and posterior side of each tibia. They provide a secondary path of excitation for the sensory receptors at low frequencies. We investigated the mechanics of the crista acustica in the tropical bushcricket Mecopoda elongata. The frequency-dependent motion of the crista acustica was captured using a laser-Doppler-vibrometer system. Using pure tone stimulation of the crista acustica, we could elicit traveling waves along the length of the hearing organ that move from the distal high frequency to the proximal low frequency region. In addition, distinct maxima in the velocity response of the crista acustica could be measured at ˜7 and ˜17 kHz. The travelling-wave-based tonotopy provides the basis for mechanical frequency discrimination along the crista acustica and opens up new possibility to investigate traveling wave mechanics in vivo.

  1. Overview on the Diversity of Sounds Produced by Clownfishes (Pomacentridae): Importance of Acoustic Signals in Their Peculiar Way of Life

    PubMed Central

    Colleye, Orphal; Parmentier, Eric

    2012-01-01

    Background Clownfishes (Pomacentridae) are brightly colored coral reef fishes well known for their mutualistic symbiosis with tropical sea anemones. These fishes live in social groups in which there is a size-based dominance hierarchy. In this structure where sex is socially controlled, agonistic interactions are numerous and serve to maintain size differences between individuals adjacent in rank. Clownfishes are also prolific callers whose sounds seem to play an important role in the social hierarchy. Here, we aim to review and to synthesize the diversity of sounds produced by clownfishes in order to emphasize the importance of acoustic signals in their way of life. Methodology/Principal Findings Recording the different acoustic behaviors indicated that sounds are divided into two main categories: aggressive sounds produced in conjunction with threat postures (charge and chase), and submissive sounds always emitted when fish exhibited head shaking movements (i.e. a submissive posture). Both types of sounds showed size-related intraspecific variation in dominant frequency and pulse duration: smaller individuals produce higher frequency and shorter duration pulses than larger ones, and inversely. Consequently, these sonic features might be useful cues for individual recognition within the group. This observation is of significant importance due to the size-based hierarchy in clownfish group. On the other hand, no acoustic signal was associated with the different reproductive activities. Conclusions/Significance Unlike other pomacentrids, sounds are not produced for mate attraction in clownfishes but to reach and to defend the competition for breeding status, which explains why constraints are not important enough for promoting call diversification in this group. PMID:23145114

  2. Acoustical and anatomical determination of sound production and transmission in West Indian (Trichechus manatus) and Amazonian (T. inunguis) manatees.

    PubMed

    Landrau-Giovannetti, Nelmarie; Mignucci-Giannoni, Antonio A; Reidenberg, Joy S

    2014-10-01

    West Indian (Trichechus manatus) and Amazonian (T. inunguis) manatees are vocal mammals, with most sounds produced for communication between mothers and calves. While their hearing and vocalizations have been well studied, the actual mechanism of sound production is unknown. Acoustical recordings and anatomical examination were used to determine the source of sound generation. Recordings were performed on live captive manatees from Puerto Rico, Cuba and Colombia (T. manatus) and from Peru (T. inunguis) to determine focal points of sound production. The manatees were recorded using two directional hydrophones placed on the throat and nasal region and an Edirol-R44 digital recorder. The average sound intensity level was analyzed to evaluate the sound source with a T test: paired two sample for means. Anatomical examinations were conducted on six T. manatus carcasses from Florida and Puerto Rico. During necropsies, the larynx, trachea, and nasal areas were dissected, with particular focus on identifying musculature and soft tissues capable of vibrating or constricting the airway. From the recordings we found that the acoustical intensity was significant (P < 0.0001) for both the individuals and the pooled manatees in the ventral throat region compared to the nasal region. From the dissection we found two raised areas of tissue in the lateral walls of the manatee's laryngeal lumen that are consistent with mammalian vocal folds. They oppose each other and may be able to regulate airflow between them when they are adducted or abducted by muscular control of arytenoid cartilages. Acoustic and anatomical evidence taken together suggest vocal folds as the mechanism for sound production in manatees. PMID:25044536

  3. Acoustic dispersion in a two-dimensional dipole system

    SciTech Connect

    Golden, Kenneth I.; Kalman, Gabor J.; Donko, Zoltan; Hartmann, Peter

    2008-07-15

    We calculate the full density response function and from it the long-wavelength acoustic dispersion for a two-dimensional system of strongly coupled point dipoles interacting through a 1/r{sup 3} potential at arbitrary degeneracy. Such a system has no random-phase-approximation (RPA) limit and the calculation has to include correlations from the outset. We follow the quasilocalized charge (QLC) approach, accompanied by molecular-dynamics (MD) simulations. Similarly to what has been recently reported for the closely spaced classical electron-hole bilayer [G. J. Kalman et al., Phys. Rev. Lett. 98, 236801 (2007)] and in marked contrast to the RPA, we report a long-wavelength acoustic phase velocity that is wholly maintained by particle correlations and varies linearly with the dipole moment p. The oscillation frequency, calculated both in an extended QLC approximation and in the Singwi-Tosi-Land-Sjolander approximation [Phys. Rev. 176, 589 (1968)], is invariant in form over the entire classical to quantum domains all the way down to zero temperature. Based on our classical MD-generated pair distribution function data and on ground-state energy data generated by recent quantum Monte Carlo simulations on a bosonic dipole system [G. E. Astrakharchik et al., Phys. Rev. Lett. 98, 060405 (2007)], there is a good agreement between the QLC approximation kinetic sound speeds and the standard thermodynamic sound speeds in both the classical and quantum domains.

  4. Acoustic design of the QCSEE propulsion systems

    NASA Technical Reports Server (NTRS)

    Loeffler, I. J.; Smith, E. B.; Sowers, H. D.

    1976-01-01

    Acoustic design features and techniques employed in the Quiet Clean Short-Haul Experimental Engine (QCSEE) Program are described. The role of jet/flap noise in selecting the engine fan pressure ratio for powered lift propulsion systems is discussed. The QCSEE acoustic design features include a hybrid inlet (near-sonic throat velocity with acoustic treatment); low fan and core pressure ratios; low fan tip speeds; gear-driven fans; high and low frequency stacked core noise treatment; multiple-thickness treatment; bulk absorber treatment; and treatment on the stator vanes. The QCSEE designs represent and anticipated acoustic technology improvement of 12 to 16 PNdb relative to the noise levels of the low-noise engines used on current wide-body commercial jet transport aircraft.

  5. Acoustic vs VHF Lightning Location Systems

    NASA Astrophysics Data System (ADS)

    Arechiga, R. O.; Lapierre, J. L.; Stock, M.; Erives, H.; Edens, H. E.; Stringer, A.; Rison, W.; Thomas, R. J.

    2013-12-01

    A single acoustic array can determine the 3-D location of lightning sources by using time of arrival differences arriving at the microphones and ranging techniques. The range is obtained from the time difference between the electromagnetic emission (detected by the acoustic data logger) and the acoustic signal produced by lightning. Audio frequency acoustic location systems are sensitive to the gas dynamic expansion of portions of a rapidly heating lightning channel, and so acoustic signatures are produced by a wide variety of different lightning discharge processes including: return strokes, K changes, M components, leader stepping and more. Infrasonic frequency range acoustic sensors are also sensitive to gas dynamic expansion, and in addition are also sensitive to processes which are electro-static in nature. RF location systems such as the Lightning Mapping Array (LMA) and the Continuous Sampling Broadband VHF Digital Interferometer (DITF) from New Mexico Tech (NMT) produce high quality maps of lightning discharges; however, they are sensitive to breakdown processes only and can not locate sources originating in already well conducting channels. During the summer of 2013 an acoustic audio-range array and an infrasound array were co-located with the NMT DITF in the Magdalena mountains of central New Mexico, where an LMA is also operating. The audio-range acoustic array consists of custom-designed GPS-synced data loggers with a 50 kHz sampling rate and audio range omnidirectional dynamic microphones. The infrasound array uses GPS time-synced data logger and custom-designed broadband microphones with flat response in the band of 0.01 to 500 Hz. The DITF uses flat plate dE/dt antennas bandpass filtered to 20 to 80 MHz, providing 2D maps of lightning emissions with very high (sub-microsecond) timing resolution. Both acoustic and interferometric arrays of antennas determine location of sources by coherently comparing the signals arriving at the antennas (or

  6. Assessing Acoustic Sound Levels Associated with Active Source Seismic Surveys in Shallow Marine Environments

    NASA Astrophysics Data System (ADS)

    Bohnenstiehl, D. R.; Tolstoy, M.; Thode, A.; Diebold, J. B.; Webb, S. C.

    2004-12-01

    . At various times or positions along the ship's track, the predicted mean and maximum sound level in the water column are contoured. By reconstructing the possible positions of the whales during the survey, based on the time of their stranding and reasonable swim velocities, we constrain the sound levels that they may have been subjected to for a series of scenarios. It is hoped that this work will facilitate a better understanding of acoustic propagation during future airgun experiments in similar environments.

  7. Large Field of View PIV Measurements of Air Entrainment by SLS SMAT Water Sound Suppression System

    NASA Astrophysics Data System (ADS)

    Stegmeir, Matthew; Pothos, Stamatios; Bissell, Dan

    2015-11-01

    Water-based sound suppressions systems have been used to reduce the acoustic impact of space vehicle launches. Water flows at a high rate during launch in order to suppress Engine Generated Acoustics and other potentially damaging sources of noise. For the Space Shuttle, peak flow rates exceeded 900,000 gallons per minute. Such large water flow rates have the potential to induce substantial entrainment of the surrounding air, affecting the launch conditions and generating airflow around the launch vehicle. Validation testing is necessary to quantify this impact for future space launch systems. In this study, PIV measurements were performed to map the flow field above the SMAT sub-scale launch vehicle scaled launch stand. Air entrainment effects generated by a water-based sound suppression system were studied. Mean and fluctuating fluid velocities were mapped up to 1m above the test stand deck and compared to simulation results. Measurements performed with NASA MSFC.

  8. Automatic detection system for cough sounds as a symptom of abnormal health condition.

    PubMed

    Shin, Sung-Hwan; Hashimoto, Takeo; Hatano, Shigeko

    2009-07-01

    The problem of attending to the health of the aged who live alone has became an important issue in developed countries. One way of solving the problem is to check their health condition by a remote-monitoring technique and support them with well-timed treatment. The purpose of this study is to develop an automatic system that can monitor a health condition in real time using acoustical information and detect an abnormal symptom. In this study, cough sound was chosen as a representative acoustical symptom of abnormal health conditions. For the development of the system distinguishing a cough sound from other environmental sounds, a hybrid model was proposed that consists of an artificial neural network (ANN) model and a hidden Markov model (HMM). The ANN model used energy cepstral coefficients obtained by filter banks based on human auditory characteristics as input parameters representing a spectral feature of a sound signal. Subsequently, an output of this ANN model and a filtered envelope of the signal were used for making an input sequence for the HMM that deals with the temporal variation of the sound signal. Compared with the conventional HMM using Mel-frequency cepstral coefficients, the proposed hybrid model improved recognition rates on low SNR from 5 dB down to -10 dB. Finally, a preliminary prototype of the automatic detection system was simply illustrated. PMID:19273017

  9. Influence of Acoustic Feedback on the Learning Strategies of Neural Network-Based Sound Classifiers in Digital Hearing Aids

    NASA Astrophysics Data System (ADS)

    Cuadra, Lucas; Alexandre, Enrique; Gil-Pita, Roberto; Vicen-Bueno, Raúl; Álvarez, Lorena

    2009-12-01

    Sound classifiers embedded in digital hearing aids are usually designed by using sound databases that do not include the distortions associated to the feedback that often occurs when these devices have to work at high gain and low gain margin to oscillation. The consequence is that the classifier learns inappropriate sound patterns. In this paper we explore the feasibility of using different sound databases (generated according to 18 configurations of real patients), and a variety of learning strategies for neural networks in the effort of reducing the probability of erroneous classification. The experimental work basically points out that the proposed methods assist the neural network-based classifier in reducing its error probability in more than 18%. This helps enhance the elderly user's comfort: the hearing aid automatically selects, with higher success probability, the program that is best adapted to the changing acoustic environment the user is facing.

  10. Orthogonal Cherenkov sound in spin-orbit coupled systems

    NASA Astrophysics Data System (ADS)

    Smirnov, Sergey

    2015-06-01

    Conventionally the Cherenkov sound is governed by orbital degrees of freedom and is excited by supersonic particles. Additionally, it usually has a forward nature with a conic geometry known as the Cherenkov cone whose axis is oriented along the supersonic particle motion. Here we predict Cherenkov sound of a unique nature entirely resulting from the electronic spin degree of freedom and demonstrate a fundamentally distinct Cherenkov effect originating from essentially subsonic electrons in two-dimensional gases with both Bychkov-Rashba and Dresselhaus spin-orbit interactions. Specifically, we show that the axis of the conventional forward Cherenkov cone gets a nontrivial quarter-turn and at the same time the sound distribution strongly localizes around this rotated axis being now orthogonal to the subsonic particle motion. Apart from its fundamentally appealing nature, the orthogonal Cherenkov sound could have applications in planar semiconductor technology combining spin and acoustic phenomena to develop, e.g., acoustic amplifiers or sound sources with a flexible spin dependent orientation of the sound propagation.

  11. Study on the Non-contact Acoustic Inspection Method for Concrete Structures by using Strong Ultrasonic Sound source

    NASA Astrophysics Data System (ADS)

    Sugimoto, Tsuneyoshi; Uechi, Itsuki; Sugimoto, Kazuko; Utagawa, Noriyuki; Katakura, Kageyoshi

    Hammering test is widely used to inspect the defects in concrete structures. However, this method has a major difficulty in inspect at high-places, such as a tunnel ceiling or a bridge girder. Moreover, its detection accuracy is dependent on a tester's experience. Therefore, we study about the non-contact acoustic inspection method of the concrete structure using the air borne sound wave and a laser Doppler vibrometer. In this method, the concrete surface is excited by air-borne sound wave emitted with a long range acoustic device (LRAD), and the vibration velocity on the concrete surface is measured by a laser Doppler vibrometer. A defect part is detected by the same flexural resonance as the hammer method. It is already shown clearly that detection of a defect can be performed from a long distance of 5 m or more using a concrete test object. Moreover, it is shown that a real concrete structure can also be applied. However, when the conventional LRAD was used as a sound source, there were problems, such as restrictions of a measurement angle and the surrounding noise. In order to solve these problems, basic examination which used the strong ultrasonic wave sound source was carried out. In the experiment, the concrete test object which includes an imitation defect from 5-m distance was used. From the experimental result, when the ultrasonic sound source was used, restrictions of a measurement angle become less severe and it was shown that circumference noise also falls dramatically.

  12. Acoustic Doppler discharge-measurement system

    USGS Publications Warehouse

    Simpson, Michael R.; Oltmann, Richard N.

    1990-01-01

    A discharge-measurement system that uses a vessel-mounted acoustic Doppler current profiler has been developed and tested by the U.S. Geological Survey. Discharge measurements using the system require a fraction of the time needed for conventional current-meter discharge measurements and do not require shore-based navigational aids or tag lines for positioning the vessel.

  13. Ray chaos in an architectural acoustic semi-stadium system.

    PubMed

    Yu, Xiaojian; Zhang, Yu

    2013-03-01

    The semi-stadium system is composed of a semicircular cap and a rectilinear platform. In this study, a dynamic model of the side, position, and angle variables is applied to investigate the acoustic ray chaos of the architectural semi-stadium system. The Lyapunov exponent is calculated in order to quantitatively describe ray instability. The model can be reduced to the semi-circular and rectilinear platform systems when the rectilinear length is sufficiently small and large. The quasi-rectilinear platform and the semicircular systems both produce regular trajectories with the maximal Lyapunov exponent approaching zero. Ray localizations, such as flutter-echo and sound focusing, are found in these two systems. However, the semi-stadium system produces chaotic ray behaviors with positive Lyapunov exponents and reduces ray localizations. Furthermore, as the rectilinear length increases, the scaling laws of the Lyapunov exponent of the semi-stadium system are revealed and compared with those of the stadium system. The results suggest the potential application of the proposed model to simulate chaotic dynamics of acoustic ray in architectural enclosed systems. PMID:23556944

  14. 40 CFR 205.54-2 - Sound data acquisition system.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Sound data acquisition system. 205.54... ABATEMENT PROGRAMS TRANSPORTATION EQUIPMENT NOISE EMISSION CONTROLS Medium and Heavy Trucks § 205.54-2 Sound... established as equivalent to a Type I—ANSI S1.4-1971 sound level meter for use in determining compliance...

  15. Vibro-acoustic model of a piezoelectric-based stethoscope for chest sound measurements

    NASA Astrophysics Data System (ADS)

    Nelson, G.; Rajamani, R.; Erdman, A.

    2015-09-01

    This article focuses on the influence of noise and vibration on chest sound measurements with a piezoelectric stethoscope. Two types of vibrations, namely inputs through the patient chest and disturbances from the physician, influence the acoustic measurement. The goal of this work is to develop a model to understand the propagation of these vibrational noises through the stethoscope and to the piezoelectric sensing element. Using the model, methods to reduce the influence of disturbances acting on the stethoscope from the physician handling the device are explored. A multi-DOF rigid body vibration model consisting of discrete connected components is developed for the piezoelectric stethoscope. Using a two-port lumped parameter model, the mechanical vibrations are related to the resulting electrical signal. The parameterized state space model is experimentally validated and its parameters are identified by using a thorax simulator and vibration shaker. Based on predictions from the model, the introduction of vibration isolation to reduce the influence of physician noise on the transducer is then pursued. It is shown that direct vibration isolation between the transducer and the rest of the stethoscope structure leads to a reduction in coupling with the patient’s chest. However, if isolation is instead introduced between the transducer housing and the rest of the stethoscope, then vibration isolation from the physician is achieved with far less reduction in patient coupling. Experimental results are presented to study the influence of the proposed design changes and confirm the predicted model behavior.

  16. Propagation of finite amplitude sound through turbulence: modeling with geometrical acoustics and the parabolic approximation.

    PubMed

    Blanc-Benon, Philippe; Lipkens, Bart; Dallois, Laurent; Hamilton, Mark F; Blackstock, David T

    2002-01-01

    Sonic boom propagation can be affected by atmospheric turbulence. It has been shown that turbulence affects the perceived loudness of sonic booms, mainly by changing its peak pressure and rise time. The models reported here describe the nonlinear propagation of sound through turbulence. Turbulence is modeled as a set of individual realizations of a random temperature or velocity field. In the first model, linear geometrical acoustics is used to trace rays through each realization of the turbulent field. A nonlinear transport equation is then derived along each eigenray connecting the source and receiver. The transport equation is solved by a Pestorius algorithm. In the second model, the KZK equation is modified to account for the effect of a random temperature field and it is then solved numerically. Results from numerical experiments that simulate the propagation of spark-produced N waves through turbulence are presented. It is observed that turbulence decreases, on average, the peak pressure of the N waves and increases the rise time. Nonlinear distortion is less when turbulence is present than without it. The effects of random vector fields are stronger than those of random temperature fields. The location of the caustics and the deformation of the wave front are also presented. These observations confirm the results from the model experiment in which spark-produced N waves are used to simulate sonic boom propagation through a turbulent atmosphere. PMID:11837954

  17. Satellite sound broadcasting system study: Mobile considerations

    NASA Technical Reports Server (NTRS)

    Golshan, Nasser

    1990-01-01

    Discussed here is the mobile reception part of a study to investigate a satellite sound broadcast system in the UHF or L bands. Existing propagation and reception measurements are used with proper interpretation to evaluate the signaling, coding, and diversity alternatives suitable for the system. Signal attenuation in streets shadowed by buildings appear to be around 29 db, considerably higher than the 10 db adopted by CCIR. With the marriage of proper technologies, an LMSS class satellite can provide substantial direct satellite audio broadcast capability in UHF or L bands for high quality mobile and portable indoor reception by low cost radio receivers. This scheme requires terrestrial repeaters for satisfactory mobile reception in urban areas. A specialized bandwidth efficient spread spectrum signalling technique is particularly suitable for the terrestrial repeaters.

  18. Acoustic microscope surface inspection system and method

    DOEpatents

    Khuri-Yakub, Butrus T.; Parent, Philippe; Reinholdtsen, Paul A.

    1991-01-01

    An acoustic microscope surface inspection system and method in which pulses of high frequency electrical energy are applied to a transducer which forms and focuses acoustic energy onto a selected location on the surface of an object and receives energy from the location and generates electrical pulses. The phase of the high frequency electrical signal pulses are stepped with respected to the phase of a reference signal at said location. An output signal is generated which is indicative of the surface of said selected location. The object is scanned to provide output signals representative of the surface at a plurality of surface locations.

  19. Acoustic microscope surface inspection system and method

    DOEpatents

    Khuri-Yakub, B.T.; Parent, P.; Reinholdtsen, P.A.

    1991-02-26

    An acoustic microscope surface inspection system and method are described in which pulses of high frequency electrical energy are applied to a transducer which forms and focuses acoustic energy onto a selected location on the surface of an object and receives energy from the location and generates electrical pulses. The phase of the high frequency electrical signal pulses are stepped with respect to the phase of a reference signal at said location. An output signal is generated which is indicative of the surface of said selected location. The object is scanned to provide output signals representative of the surface at a plurality of surface locations. 7 figures.

  20. PhotoAcoustic-guided Focused UltraSound imaging (PAFUSion) for reducing reflection artifacts in photoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Singh, Mithun K.; Steenbergen, Wiendelt

    2015-07-01

    Reflection artifacts caused by acoustic reflectors is an important problem in reflection-mode photoacoustic imaging. The light absorbed by skin and superficial optical absorbers may produce high photoacoustic signals, which traverse into the tissue and get reflected from structures having different acoustic impedance. These reflected photoacoustic signals, when reconstructed may appear in the region of interest, which causes complications in interpreting the images. We propose a novel method to identify and reduce reflection artifacts in photoacoustic images by making use of PhotoAcoustic-guided Focused UltraSound [PAFUSion]. Our method ultrasonically mimics the photoacoustic image formation process and thus delivers a clinically feasible way to reduce reflection artifacts. Simulation and phantom measurement results are presented to demonstrate the validity and impact of this method. Results show that PAFUSion technique can identify and differentiate reflection signals from the signals of interest and thus foresees good potential for improving photoacoustic imaging of deep tissue.

  1. Improved algorithms and methods for room sound-field prediction by acoustical radiosity in arbitrary polyhedral rooms.

    PubMed

    Nosal, Eva-Marie; Hodgson, Murray; Ashdown, Ian

    2004-08-01

    This paper explores acoustical (or time-dependent) radiosity--a geometrical-acoustics sound-field prediction method that assumes diffuse surface reflection. The literature of acoustical radiosity is briefly reviewed and the advantages and disadvantages of the method are discussed. A discrete form of the integral equation that results from meshing the enclosure boundaries into patches is presented and used in a discrete-time algorithm. Furthermore, an averaging technique is used to reduce computational requirements. To generalize to nonrectangular rooms, a spherical-triangle method is proposed as a means of evaluating the integrals over solid angles that appear in the discrete form of the integral equation. The evaluation of form factors, which also appear in the numerical solution, is discussed for rectangular and nonrectangular rooms. This algorithm and associated methods are validated by comparison of the steady-state predictions for a spherical enclosure to analytical solutions. PMID:15376663

  2. Improved algorithms and methods for room sound-field prediction by acoustical radiosity in arbitrary polyhedral rooms

    NASA Astrophysics Data System (ADS)

    Nosal, Eva-Marie; Hodgson, Murray; Ashdown, Ian

    2004-08-01

    This paper explores acoustical (or time-dependent) radiosity-a geometrical-acoustics sound-field prediction method that assumes diffuse surface reflection. The literature of acoustical radiosity is briefly reviewed and the advantages and disadvantages of the method are discussed. A discrete form of the integral equation that results from meshing the enclosure boundaries into patches is presented and used in a discrete-time algorithm. Furthermore, an averaging technique is used to reduce computational requirements. To generalize to nonrectangular rooms, a spherical-triangle method is proposed as a means of evaluating the integrals over solid angles that appear in the discrete form of the integral equation. The evaluation of form factors, which also appear in the numerical solution, is discussed for rectangular and nonrectangular rooms. This algorithm and associated methods are validated by comparison of the steady-state predictions for a spherical enclosure to analytical solutions.

  3. Laser-Induced Thermal Acoustics (LITA): Four-wave mixing measurement of sound speed, thermal diffusivity, and viscosity

    NASA Astrophysics Data System (ADS)

    Cummings, Eric B.

    1994-08-01

    Laser-induced thermal acoustics (LITA) is a promising optical four-wave mixing technique for gasdynamic measurement. The Chi(3) nonlinear process is a sequence of two opto-acoustic effects, electrostriction and absorption/ rapid-thermalization, and the acousto-optic effect. The evolution of the laser-induced acoustic structures temporally modulates Chi(3) and thereby the LITA signal. Time resolution of the signal provides the sound speed, thermal diffusivity, and acoustic damping rate, along with information about atomic or molecular energy transfer rates. LITA can also measure spectra of both the real and imaginary gas susceptibility. The physics of LITA is discussed and the derivation is sketched of a simple analytical expression that accurately describes both the magnitude and time history of the LITA signal. Early experimental results are presented. Sound speeds accurate to 0.5% and transport properties accurate to 30% have been measured in a single-shot without calibration. More realistic modeling should dramatically improve transport-property measurement. LITA spectra have been taken of weak spectral lines of NO2 in concentrations less than 50 ppb. Signal reflectivities as high as 0.0001 have been estimated. New applications of LITA, including velocimetry, are suggested.

  4. An integrated system for dynamic control of auditory perspective in a multichannel sound field

    NASA Astrophysics Data System (ADS)

    Corey, Jason Andrew

    An integrated system providing dynamic control of sound source azimuth, distance and proximity to a room boundary within a simulated acoustic space is proposed for use in multichannel music and film sound production. The system has been investigated, implemented, and psychoacoustically tested within the ITU-R BS.775 recommended five-channel (3/2) loudspeaker layout. The work brings together physical and perceptual models of room simulation to allow dynamic placement of virtual sound sources at any location of a simulated space within the horizontal plane. The control system incorporates a number of modules including simulated room modes, "fuzzy" sources, and tracking early reflections, whose parameters are dynamically changed according to sound source location within the simulated space. The control functions of the basic elements, derived from theories of perception of a source in a real room, have been carefully tuned to provide efficient, effective, and intuitive control of a sound source's perceived location. Seven formal listening tests were conducted to evaluate the effectiveness of the algorithm design choices. The tests evaluated: (1) loudness calibration of multichannel sound images; (2) the effectiveness of distance control; (3) the resolution of distance control provided by the system; (4) the effectiveness of the proposed system when compared to a commercially available multichannel room simulation system in terms of control of source distance and proximity to a room boundary; (5) the role of tracking early reflection patterns on the perception of sound source distance; (6) the role of tracking early reflection patterns on the perception of lateral phantom images. The listening tests confirm the effectiveness of the system for control of perceived sound source distance, proximity to room boundaries, and azimuth, through fine, dynamic adjustment of parameters according to source location. All of the parameters are grouped and controlled together to

  5. Airborne Tomographic Swath Ice Sounding Processing System

    NASA Technical Reports Server (NTRS)

    Wu, Xiaoqing; Rodriquez, Ernesto; Freeman, Anthony; Jezek, Ken

    2013-01-01

    Glaciers and ice sheets modulate global sea level by storing water deposited as snow on the surface, and discharging water back into the ocean through melting. Their physical state can be characterized in terms of their mass balance and dynamics. To estimate the current ice mass balance, and to predict future changes in the motion of the Greenland and Antarctic ice sheets, it is necessary to know the ice sheet thickness and the physical conditions of the ice sheet surface and bed. This information is required at fine resolution and over extensive portions of the ice sheets. A tomographic algorithm has been developed to take raw data collected by a multiple-channel synthetic aperture sounding radar system over a polar ice sheet and convert those data into two-dimensional (2D) ice thickness measurements. Prior to this work, conventional processing techniques only provided one-dimensional ice thickness measurements along profiles.

  6. Satellite sound broadcasting system, portable reception

    NASA Technical Reports Server (NTRS)

    Golshan, Nasser; Vaisnys, Arvydas

    1990-01-01

    Studies are underway at JPL in the emerging area of Satellite Sound Broadcast Service (SSBS) for direct reception by low cost portable, semi portable, mobile and fixed radio receivers. This paper addresses the portable reception of digital broadcasting of monophonic audio with source material band limited to 5 KHz (source audio comparable to commercial AM broadcasting). The proposed system provides transmission robustness, uniformity of performance over the coverage area and excellent frequency reuse. Propagation problems associated with indoor portable reception are considered in detail and innovative antenna concepts are suggested to mitigate these problems. It is shown that, with the marriage of proper technologies a single medium power satellite can provide substantial direct satellite audio broadcast capability to CONUS in UHF or L Bands, for high quality portable indoor reception by low cost radio receivers.

  7. Acoustic Characterization and Impact Sensing for Ceramic Thermal Protection Systems (TPS)

    SciTech Connect

    Kuhr, S. J.; Reibel, R.; Sathish, S.; Jata, K. V.

    2006-03-06

    A study was conducted to understand acoustic wave propagation characteristics in a ceramic matrix composite (CMC) wrapped tile thermal protection system (CMC+ Foam+ RTV+ SIP+ RTV+ Al) and ceramic foam. Sound velocities were measured in three orthogonal directions on the above material. The attenuation coefficients were also determined for a uncoated ceramic foam. Commercially available standard acoustic emission transducers, piezo-wafers and polymer based PVDF (polyvinylidiene fluoride) film were employed in the experiments to acquire the acoustic data. The performance characteristics of these sensors will be discussed in light of impact detection. Variation in the wave propagation characteristics along different directions and the role of processing in causing anisotropic acoustic properties in thermal protection systems will be discussed.

  8. Paradoxical lateral suppression in the dolphin's auditory system: weak sounds suppress response to strong sounds.

    PubMed

    Popov, V V; Supin AYa; Klishin, V O

    1997-09-26

    A paradoxical phenomenon was found in the auditory system of dolphins: weak sounds suppressed the brain responses to much stronger sounds. This occurred when the brain evoked potentials to rhythmic sound amplitude modulations were recorded. The response was markedly suppressed by addition of another sound of higher frequency and down to 40 dB lower intensity than the amplitude-modulated signal. Only the sustained rhythmic response was suppressed while transient on-response was not, thus indicating that the suppression influenced the ability of evoked potentials to follow rapid amplitude modulations. This prevents weak sounds from being masked by stronger ones. It may help a dolphin to perceive weaker echo-signals in the background of stronger emitted pulses. PMID:9347944

  9. Moving to the Speed of Sound: Context Modulation of the Effect of Acoustic Properties of Speech

    ERIC Educational Resources Information Center

    Shintel, Hadas; Nusbaum, Howard C.

    2008-01-01

    Suprasegmental acoustic patterns in speech can convey meaningful information and affect listeners' interpretation in various ways, including through systematic analog mapping of message-relevant information onto prosody. We examined whether the effect of analog acoustic variation is governed by the acoustic properties themselves. For example, fast…

  10. 40 CFR 205.54-2 - Sound data acquisition system.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Sound data acquisition system. 205.54-2 Section 205.54-2 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) NOISE ABATEMENT PROGRAMS TRANSPORTATION EQUIPMENT NOISE EMISSION CONTROLS Medium and Heavy Trucks § 205.54-2 Sound data acquisition system. (a) Systems...

  11. 40 CFR 205.54-2 - Sound data acquisition system.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Sound data acquisition system. 205.54-2 Section 205.54-2 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) NOISE ABATEMENT PROGRAMS TRANSPORTATION EQUIPMENT NOISE EMISSION CONTROLS Medium and Heavy Trucks § 205.54-2 Sound data acquisition system. (a) Systems...

  12. 40 CFR 205.54-2 - Sound data acquisition system.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Sound data acquisition system. 205.54-2 Section 205.54-2 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) NOISE ABATEMENT PROGRAMS TRANSPORTATION EQUIPMENT NOISE EMISSION CONTROLS Medium and Heavy Trucks § 205.54-2 Sound data acquisition system. (a) Systems...

  13. 40 CFR 205.54-2 - Sound data acquisition system.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Sound data acquisition system. 205.54-2 Section 205.54-2 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) NOISE ABATEMENT PROGRAMS TRANSPORTATION EQUIPMENT NOISE EMISSION CONTROLS Medium and Heavy Trucks § 205.54-2 Sound data acquisition system. (a) Systems...

  14. Selective adaptation to "oddball" sounds by the human auditory system.

    PubMed

    Simpson, Andrew J R; Harper, Nicol S; Reiss, Joshua D; McAlpine, David

    2014-01-29

    Adaptation to both common and rare sounds has been independently reported in neurophysiological studies using probabilistic stimulus paradigms in small mammals. However, the apparent sensitivity of the mammalian auditory system to the statistics of incoming sound has not yet been generalized to task-related human auditory perception. Here, we show that human listeners selectively adapt to novel sounds within scenes unfolding over minutes. Listeners' performance in an auditory discrimination task remains steady for the most common elements within the scene but, after the first minute, performance improves for distinct and rare (oddball) sound elements, at the expense of rare sounds that are relatively less distinct. Our data provide the first evidence of enhanced coding of oddball sounds in a human auditory discrimination task and suggest the existence of an adaptive mechanism that tracks the long-term statistics of sounds and deploys coding resources accordingly. PMID:24478375

  15. Sound broadcasting satellite systems for individual reception by mobile receivers

    NASA Technical Reports Server (NTRS)

    Park, Y. H.

    1982-01-01

    In this paper, the feasibility of a multi-channel sound broadcasting satellite system for operation in a band between 0.5 and 2.0 GHz is investigated. Considered are sound broadcasting satellite systems that provide conventional FM sound broadcasting for individual receivers in a wide geographical area. Comparative weight estimation of sound broadcasting satellites is carried out for various sizes of coverage area and spacecraft antenna, and for different carrier frequencies in the band from 0.5 to 2.0 GHz. It is concluded that relatively light (1200 to about 1500 lbs) spacecraft are feasible, even with low-cost portable or mobile receiving systems.

  16. Objective evaluation of interior trim effects on sound quality and noise reduction of a coupled plate cavity system

    NASA Astrophysics Data System (ADS)

    Egab, Laith; Wang, Xu

    2016-03-01

    In this study, the impedance mobility and psychoacoustic analysis methods are combined to develop a structural-acoustic model of a plate-cavity coupling system. The objective is to evaluate the effect of interior trim materials on sound loudness and sharpness of a plate-cavity coupling system. The impedance mobility method is applied to calculate the pressure frequency responses of the interior acoustic field for the plate-cavity coupling system. The sound pressure results calculated by the impedance mobility method are then directly used to calculate the psychoacoustic metrics using psychoacoustic analysis method. A good agreement was found between the experimental and analytical results. The results show that the interior trim has a large influence on the distribution of the sound loudness and sharpness inside the cavity in the middle and high frequency ranges.

  17. Psychophysiological acoustics of indoor sound due to traffic noise during sleep

    NASA Astrophysics Data System (ADS)

    Tulen, J. H. M.; Kumar, A.; Jurriëns, A. A.

    1986-10-01

    The relation between the physical characteristics of sound and an individual's perception of its as annoyance is complex and unclear. Sleep disturbance by sound is manifested in the physiological responses to the sound stimuli and the quality of sleep perceived in the morning. Both may result in deterioration of functioning during wakefulness. Therefore, psychophysiological responses to noise during sleep should be studied for the evaluation of the efficacy of sound insulation. Nocturnal sleep and indoor sound level were recorded in the homes of 12 subjects living along a highway with high traffic density. Double glazing sound insulation was used to create two experimental conditions: low insulation and high insulation. Twenty recordings were made per subject, ten recordings in each condition. During the nights with low insulation the quality of sleep was so low that both performance and mood were negatively affected. The enhancement of sound insulation was not effective enough to increase the restorative effects of sleep. The transient and peaky characteristics of traffic sound were also found to result in non-adaptive physiological responses during sleep. Sound insulation did have an effect on noise peak characteristics such as peak level, peak duration and slope. However, the number of sound peaks were found to be the same in both conditions. The relation of these sound peaks detected in the indoor recorded sound level signal to characteristics of passing vehicles was established, indicating that the sound peaks causing the psychophysiological disturbances during sleep were generated by the passing vehicles. Evidence is presented to show that the reduction in sound level is not a good measure of efficacy of sound insulation. The parameters of the sound peaks, as described in this paper, are a better representation of psychophysiological efficacy of sound insulation.

  18. Numerical modeling and experimental validation of the acoustic transmission of aircraft's double-wall structures including sound package

    NASA Astrophysics Data System (ADS)

    Rhazi, Dilal

    In the field of aeronautics, reducing the harmful effects of acoustics constitutes a major concern at the international level and justifies the call for further research, particularly in Canada where aeronautics is a key economic sector, which operates in a context of global competition. Aircraft sidewall structure is usually of a double wall construction with a curved ribbed metallic skin and a lightweight composite or sandwich trim separated by a cavity filled with a noise control treatment. The latter is of a great importance in the transport industry, and continues to be of interest in many engineering applications. However, the insertion loss noise control treatment depends on the excitation of the supporting structure. In particular, Turbulent Boundary Layer is of interest to several industries. This excitation is difficult to simulate in laboratory conditions, given the prohibiting costs and difficulties associated with wind tunnel and in-flight tests. Numerical simulation is the only practical way to predict the response to such excitations and to analyze effects of design changes to the response to such excitation. Another kinds of excitations encountered in industrial are monopole, rain on the Roof and diffuse acoustic field. Deterministic methods can calculate in each point the spectral response of the system. Most known are numerical methods such as finite elements and boundary elements methods. These methods generally apply to the low frequency where modal behavior of the structure dominates. However, the high limit of calculation in frequency of these methods cannot be defined in a strict way because it is related to the capacity of data processing and to the nature of the studied mechanical system. With these challenges in mind, and with limitations of the main numerical codes on the market, the manufacturers have expressed the need for simple models immediately available as early as the stage of preliminary drafts. This thesis represents an attempt

  19. Mean Flow Augmented Acoustics in Rocket Systems

    NASA Technical Reports Server (NTRS)

    Fischbach, Sean

    2014-01-01

    Combustion instability in solid rocket motors and liquid engines has long been a subject of concern. Many rockets display violent fluctuations in pressure, velocity, and temperature originating from the complex interactions between the combustion process and gas dynamics. Recent advances in energy based modeling of combustion instabilities require accurate determination of acoustic frequencies and mode shapes. Of particular interest is the acoustic mean flow interactions within the converging section of a rocket nozzle, where gradients of pressure, density, and velocity become large. The expulsion of unsteady energy through the nozzle of a rocket is identified as the predominate source of acoustic damping for most rocket systems. Recently, an approach to address nozzle damping with mean flow effects was implemented by French [1]. This new approach extends the work originated by Sigman and Zinn [2] by solving the acoustic velocity potential equation (AVPE) formulated by perturbing the Euler equations [3]. The present study aims to implement the French model within the COMSOL Multiphysiscs framework and analyzes one of the author's presented test cases.

  20. Acoustic imaging systems (for robotic object acquisition)

    NASA Astrophysics Data System (ADS)

    Richardson, J. M.; Martin, J. F.; Marsh, K. A.; Schoenwald, J. S.

    1985-03-01

    The long-term objective of the effort is to establish successful approaches for 3D acoustic imaging of dense solid objects in air to provide the information required for acquisition and manipulation of these objects by a robotic system. The objective of this first year's work was to achieve and demonstrate the determination of the external geometry (shape) of such objects with a fixed sparse array of sensors, without the aid of geometrical models or extensive training procedures. Conventional approaches for acoustic imaging fall into two basic categories. The first category is used exclusively for dense solid objects. It involves echo-ranging from a large number of sensor positions, achieved either through the use of a larger array of transducers or through extensive physical scanning of a small array. This approach determines the distance to specular reflection points from each sensor position; with suitable processing an image can be inferred. The second category uses the full acoustic waveforms to provide an image, but is strictly applicable only to weak inhomogeneities. The most familiar example is medical imaging of the soft tissue portions of the body where the range of acoustic impedance is relatively small.

  1. Direct-field acoustic testing of a flight system : logistics, challenges, and results.

    SciTech Connect

    Stasiunas, Eric Carl; Gurule, David Joseph; Babuska, Vit; Skousen, Troy J.

    2010-10-01

    Before a spacecraft can be considered for launch, it must first survive environmental testing that simulates the launch environment. Typically, these simulations include vibration testing performed using an electro-dynamic shaker. For some spacecraft however, acoustic excitation may provide a more severe loading environment than base shaker excitation. Because this was the case for a Sandia Flight System, it was necessary to perform an acoustic test prior to launch in order to verify survival due to an acoustic environment. Typically, acoustic tests are performed in acoustic chambers, but because of scheduling, transportation, and cleanliness concerns, this was not possible. Instead, the test was performed as a direct field acoustic test (DFAT). This type of test consists of surrounding a test article with a wall of speakers and controlling the acoustic input using control microphones placed around the test item, with a closed-loop control system. Obtaining the desired acoustic input environment - proto-flight random noise input with an overall sound pressure level (OASPL) of 146.7 dB-with this technique presented a challenge due to several factors. An acoustic profile with this high OASPL had not knowingly been obtained using the DFAT technique prior to this test. In addition, the test was performed in a high-bay, where floor space and existing equipment constrained the speaker circle diameter. And finally, the Flight System had to be tested without contamination of the unit, which required a contamination bag enclosure of the test unit. This paper describes in detail the logistics, challenges, and results encountered while performing a high-OASPL, direct-field acoustic test on a contamination-sensitive Flight System in a high-bay environment.

  2. The EarLens system: new sound transduction methods.

    PubMed

    Perkins, Rodney; Fay, Jonathan P; Rucker, Paul; Rosen, Micha; Olson, Lisa; Puria, Sunil

    2010-05-01

    The hypothesis is tested that an open-canal hearing device, with a microphone in the ear canal, can be designed to provide amplification over a wide bandwidth and without acoustic feedback. In the design under consideration, a transducer consisting of a thin silicone platform with an embedded magnet is placed directly on the tympanic membrane. Sound picked up by a microphone in the ear canal, including sound-localization cues thought to be useful for speech perception in noisy environments, is processed and amplified, and then used to drive a coil near the tympanic-membrane transducer. The perception of sound results from the vibration of the transducer in response the electromagnetic field produced by the coil. Sixteen subjects (ranging from normal-hearing to moderately hearing-impaired) wore this transducer for up to a 10-month period, and were monitored for any adverse reactions. Three key functional characteristics were measured: (1) the maximum equivalent pressure output (MEPO) of the transducer; (2) the feedback gain margin (GM), which describes the maximum allowable gain before feedback occurs; and (3) the tympanic-membrane damping effect (D(TM)), which describes the change in hearing level due to placement of the transducer on the eardrum. Results indicate that the tympanic-membrane transducer remains in place and is well tolerated. The system can produce sufficient output to reach threshold for those with as much as 60 dBHL of hearing impairment for up to 8 kHz in 86% of the study population, and up to 11.2 kHz in 50% of the population. The feedback gain margin is on average 30 dB except at the ear-canal resonance frequencies of 3 and 9 kHz, where the average was reduced to 12 dB and 23 dB, respectively. The average value of D(TM) is close to 0 dB everywhere except in the 2-4 kHz range, where it peaks at 8dB. A new alternative system that uses photonic energy to transmit both the signal and power to a photodiode and micro-actuator on an EarLens platform is

  3. Experimental and theoretical identification of a four- acoustic-inputs/two-vibration-outputs hearing system

    NASA Astrophysics Data System (ADS)

    Balaji, P. A.

    1999-07-01

    A cricket's ear is a directional acoustic sensor. It has a remarkable level of sensitivity to the direction of sound propagation in a narrow frequency bandwidth of 4-5 KHz. Because of its complexity, the directional sensitivity has long intrigued researchers. The cricket's ear is a four-acoustic-inputs/two-vibration-outputs system. In this dissertation, this system is examined in depth, both experimentally and theoretically, with a primary goal to understand the mechanics involved in directional hearing. Experimental identification of the system is done by using random signal processing techniques. Theoretical identification of the system is accomplished by analyzing sound transmission through complex trachea of the ear. Finally, a description of how the cricket achieves directional hearing sensitivity is proposed. The fundamental principle involved in directional heating of the cricket has been utilized to design a device to obtain a directional signal from non- directional inputs.

  4. Comparison of PAM Systems for Acoustic Monitoring and Further Risk Mitigation Application.

    PubMed

    Ludwig, Stefan; Kreimeyer, Roman; Knoll, Michaela

    2016-01-01

    We present results of the SIRENA 2011 research cruises conducted by the NATO Undersea Research Centre (NURC) and joined by the Research Department for Underwater Acoustics and Geophysics (FWG), Bundeswehr Technical Centre (WTD 71) and the Universities of Kiel and Pavia. The cruises were carried out in the Ligurian Sea. The main aim of the FWG was to test and evaluate the newly developed towed hydrophone array as a passive acoustic monitoring (PAM) tool for risk mitigation applications. The system was compared with the PAM equipment used by the other participating institutions. Recorded sounds were used to improve an automatic acoustic classifier for marine mammals, and validated acoustic detections by observers were compared with the results of the classifier. PMID:26611016

  5. Computational dynamics of acoustically driven microsphere systems

    NASA Astrophysics Data System (ADS)

    Glosser, Connor; Piermarocchi, Carlo; Li, Jie; Dault, Dan; Shanker, B.

    2016-01-01

    We propose a computational framework for the self-consistent dynamics of a microsphere system driven by a pulsed acoustic field in an ideal fluid. Our framework combines a molecular dynamics integrator describing the dynamics of the microsphere system with a time-dependent integral equation solver for the acoustic field that makes use of fields represented as surface expansions in spherical harmonic basis functions. The presented approach allows us to describe the interparticle interaction induced by the field as well as the dynamics of trapping in counter-propagating acoustic pulses. The integral equation formulation leads to equations of motion for the microspheres describing the effect of nondissipative drag forces. We show (1) that the field-induced interactions between the microspheres give rise to effective dipolar interactions, with effective dipoles defined by their velocities and (2) that the dominant effect of an ultrasound pulse through a cloud of microspheres gives rise mainly to a translation of the system, though we also observe both expansion and contraction of the cloud determined by the initial system geometry.

  6. Computational dynamics of acoustically driven microsphere systems.

    PubMed

    Glosser, Connor; Piermarocchi, Carlo; Li, Jie; Dault, Dan; Shanker, B

    2016-01-01

    We propose a computational framework for the self-consistent dynamics of a microsphere system driven by a pulsed acoustic field in an ideal fluid. Our framework combines a molecular dynamics integrator describing the dynamics of the microsphere system with a time-dependent integral equation solver for the acoustic field that makes use of fields represented as surface expansions in spherical harmonic basis functions. The presented approach allows us to describe the interparticle interaction induced by the field as well as the dynamics of trapping in counter-propagating acoustic pulses. The integral equation formulation leads to equations of motion for the microspheres describing the effect of nondissipative drag forces. We show (1) that the field-induced interactions between the microspheres give rise to effective dipolar interactions, with effective dipoles defined by their velocities and (2) that the dominant effect of an ultrasound pulse through a cloud of microspheres gives rise mainly to a translation of the system, though we also observe both expansion and contraction of the cloud determined by the initial system geometry. PMID:26871188

  7. Portable system for auscultation and lung sound analysis.

    PubMed

    Nabiev, Rustam; Glazova, Anna; Olyinik, Valery; Makarenkova, Anastasiia; Makarenkov, Anatolii; Rakhimov, Abdulvosid; Felländer-Tsai, Li

    2014-01-01

    A portable system for auscultation and lung sound analysis has been developed, including the original electronic stethoscope coupled with mobile devices and special algorithms for the automated analysis of pulmonary sound signals. It's planned that the developed system will be used for monitoring of health status of patients with various pulmonary diseases. PMID:24732524

  8. The virtual microphone technique in active sound field control systems

    NASA Astrophysics Data System (ADS)

    Lampropoulos, Iraklis E.; Shimizu, Yasushi

    2003-04-01

    Active Sound Field Control (AFC) has been proven very useful in reverberation enhancement applications in large rooms. However, feedback control is required in order to eliminate peaks in the frequency response of the system. The present research closely follows the studies of Shimizu in AFC, in which smoothing of the rooms transfer function is achieved by averaging the impulse responses of multiple microphones. ``The virtual or rotating microphone technique'' reduces the number of microphones in the aforementioned AFC technology, while still achieving the same acoustical effects in the room. After the impulse responses at previously specified pairs of microphone positions are measured, the ratio of transfer functions for every pair is calculated, thus yielding a constant K. Next, microphones are removed and their impulse responses are reproduced by processing the incoming signal of each pair through a convolver, where the computed K constants have been previously stored. Band limiting, windowing and time variance effects are critical factors, in order to reduce incoherence effects and yield reliable approximations of inverse filters and consequently calculations of K. The project is implemented in a church lacking low frequency reverberation for music and makes use of 2 physical and 2 virtual microphones.

  9. Activities of the Institute of Sound and Vibration Research

    NASA Astrophysics Data System (ADS)

    Research in fluid dynamics, acoustics, automotive engineering, audiology, noise and vibration effects (on human beings), and structural response to noise and vibration was carried out. Aircraft noise, acoustics of flow duct systems and enclosures, acoustic modeling, sound propagation, and acoustic measurement techniques were studied. Auditory and vestibular functions and electrophysiology were investigated.

  10. In situ acoustic and laboratory ultrasonic sound speed and attenuation measured in heterogeneous soft seabed sediments: Eel River shelf, California

    USGS Publications Warehouse

    Gorgas, T.J.; Wilkens, R.H.; Fu, S.S.; Neil, Frazer L.; Richardson, M.D.; Briggs, K.B.; Lee, H.

    2002-01-01

    We compared in situ and laboratory velocity and attenuation values measured in seafloor sediments from the shallow water delta of the Eel River, California. This region receives a substantial volume of fluvial sediment that is discharged annually onto the shelf. Additionally, a high input of fluvial sediments during storms generates flood deposits that are characterized by thin beds of variable grain-sizes between the 40- and 90-m isobaths. The main objectives of this study were (1) to investigate signatures of seafloor processes on geoacoustic and physical properties, and (2) to evaluate differences between geoacoustic parameters measured in situ at acoustic (7.5 kHz) and in the laboratory at ultrasonic (400 kHz) frequencies. The in situ acoustic measurements were conducted between 60 and 100 m of water depth. Wet-bulk density and porosity profiles were obtained to 1.15 m below seafloor (m bsf) using gravity cores of the mostly cohesive fine-grained sediments across- and along-shelf. Physical and geoacoustic properties from six selected sites obtained on the Eel margin revealed the following. (1) Sound speed and wet-bulk density strongly correlated in most cases. (2) Sediment compaction with depth generally led to increased sound speed and density, while porosity and in situ attenuation values decreased. (3) Sound speed was higher in coarser- than in finer-grained sediments, on a maximum average by 80 m s-1. (4) In coarse-grained sediments sound speed was higher in the laboratory (1560 m s-1) than in situ (1520 m s-1). In contrast, average ultrasonic and in situ sound speed in fine-grained sediments showed only little differences (both approximately 1480 m s-1). (5) Greater attenuation was commonly measured in the laboratory (0.4 and 0.8 dB m-1 kHz-1) than in situ (0.02 and 0.65 dB m-1 kHz-1), and remained almost constant below 0.4 m bsf. We attributed discrepancies between laboratory ultrasonic and in situ acoustic measurements to a frequency dependence of

  11. Dynamic acoustics for the STAR-100. [computer algorithms for time dependent sound waves in jet

    NASA Technical Reports Server (NTRS)

    Bayliss, A.; Turkel, E.

    1979-01-01

    An algorithm is described to compute time dependent acoustic waves in a jet. The method differs from previous methods in that no harmonic time dependence is assumed, thus permitting the study of nonharmonic acoustical behavior. Large grids are required to resolve the acoustic waves. Since the problem is nonstiff, explicit high order schemes can be used. These have been adapted to the STAR-100 with great efficiencies and permitted the efficient solution of problems which would not be feasible on a scalar machine.

  12. Joint inversion for transponder localization and sound-speed profile temporal variation in high-precision acoustic surveys.

    PubMed

    Li, Zhao; Dosso, Stan E; Sun, Dajun

    2016-07-01

    This letter develops a Bayesian inversion for localizing underwater acoustic transponders using a surface ship which compensates for sound-speed profile (SSP) temporal variation during the survey. The method is based on dividing observed acoustic travel-time data into time segments and including depth-independent SSP variations for each segment as additional unknown parameters to approximate the SSP temporal variation. SSP variations are estimated jointly with transponder locations, rather than calculated separately as in existing two-step inversions. Simulation and sea-trial results show this localization/SSP joint inversion performs better than two-step inversion in terms of localization accuracy, agreement with measured SSP variations, and computational efficiency. PMID:27475210

  13. Vibro-acoustic analysis procedures for the evaluation of the sound insulation characteristics of agricultural machinery cabins

    NASA Astrophysics Data System (ADS)

    Desmet, W.; Pluymers, B.; Sas, P.

    2003-09-01

    Over the last few years, customer demands regarding acoustic performance, along with the tightening of legal regulations on noise emission levels and human exposure to noise, have made the noise and vibration properties into important design criteria for agricultural machinery cabins. In this framework, both experimental analysis procedures for prototype testing as well as reliable numerical prediction tools for early design assessment are compulsory for an efficient optimization of the cabin noise and vibration comfort. This paper discusses several numerical approaches, which are based on the finite element and boundary element method, in terms of their practical use for airborne sound insulation predictions. To illustrate the efficiency and reliability of the various vibro-acoustic analysis procedures, the numerical procedures are applied for the case of a harvester driver's cabin and validated with experimental results.

  14. Response of a thermal barrier system to acoustic excitation in a gas turbine nuclear reactor

    SciTech Connect

    Betts, W.S. Jr.; Blevins, R.D.

    1980-11-01

    A gas turbine located within a High-Temperature Gas-Cooled Reactor (HTGR) induces high acoustic sound pressure levels into the primary coolant (helium). This acoustic loading induces high cycle fatigue stresses which may control the design of the thermal barrier system. This study examines the dynamic response of a thermal barrier configuration consisting of a fibrous insulation compressed against the reactor vessel by a coverplate which is held in position by a central attachment fixture. The results of dynamic vibration analyses indicate the effect of the plate size and curvature and the attachment size on the response of the thermal barrier.

  15. System for Multiplexing Acoustic Emission (AE) Instrumentation

    NASA Technical Reports Server (NTRS)

    Prosser, William H. (Inventor); Perey, Daniel F. (Inventor); Gorman, Michael R. (Inventor); Scales, Edgar F. (Inventor)

    2003-01-01

    An acoustic monitoring device has at least two acoustic sensors with a triggering mechanism and a multiplexing circuit. After the occurrence of a triggering event at a sensor, the multiplexing circuit allows a recording component to record acoustic emissions at adjacent sensors. The acoustic monitoring device is attached to a solid medium to detect the occurrence of damage.

  16. Acoustic Remote Sensing

    NASA Astrophysics Data System (ADS)

    Dowling, David R.; Sabra, Karim G.

    2015-01-01

    Acoustic waves carry information about their source and collect information about their environment as they propagate. This article reviews how these information-carrying and -collecting features of acoustic waves that travel through fluids can be exploited for remote sensing. In nearly all cases, modern acoustic remote sensing involves array-recorded sounds and array signal processing to recover multidimensional results. The application realm for acoustic remote sensing spans an impressive range of signal frequencies (10-2 to 107 Hz) and distances (10-2 to 107 m) and involves biomedical ultrasound imaging, nondestructive evaluation, oil and gas exploration, military systems, and Nuclear Test Ban Treaty monitoring. In the past two decades, approaches have been developed to robustly localize remote sources; remove noise and multipath distortion from recorded signals; and determine the acoustic characteristics of the environment through which the sound waves have traveled, even when the recorded sounds originate from uncooperative sources or are merely ambient noise.

  17. Plane waves at or near grazing incidence in the parabolic approximation. [acoustic equations of motion for sound fields

    NASA Technical Reports Server (NTRS)

    Mcaninch, G. L.; Myers, M. K.

    1980-01-01

    The parabolic approximation for the acoustic equations of motion is applied to the study of the sound field generated by a plane wave at or near grazing incidence to a finite impedance boundary. It is shown how this approximation accounts for effects neglected in the usual plane wave reflection analysis which, at grazing incidence, erroneously predicts complete cancellation of the incident field by the reflected field. Examples are presented which illustrate that the solution obtained by the parabolic approximation contains several of the physical phenomena known to occur in wave propagation near an absorbing boundary.

  18. A survey on acoustic signature recognition and classification techniques for persistent surveillance systems

    NASA Astrophysics Data System (ADS)

    Shirkhodaie, Amir; Alkilani, Amjad

    2012-06-01

    Application of acoustic sensors in Persistent Surveillance Systems (PSS) has received considerable attention over the last two decades because they can be rapidly deployed and have low cost. Conventional utilization of acoustic sensors in PSS spans a wide range of applications including: vehicle classification, target tracking, activity understanding, speech recognition, shooter detection, etc. This paper presents a current survey of physics-based acoustic signature classification techniques for outdoor sounds recognition and understanding. Particularly, this paper focuses on taxonomy and ontology of acoustic signatures resulted from group activities. The taxonomy and supportive ontology considered include: humanvehicle, human-objects, and human-human interactions. This paper, in particular, exploits applicability of several spectral analysis techniques as a means to maximize likelihood of correct acoustic source detection, recognition, and discrimination. Spectral analysis techniques based on Fast Fourier Transform, Discrete Wavelet Transform, and Short Time Fourier Transform are considered for extraction of features from acoustic sources. In addition, comprehensive overviews of most current research activities related to scope of this work are presented with their applications. Furthermore, future potential direction of research in this area is discussed for improvement of acoustic signature recognition and classification technology suitable for PSS applications.

  19. Transmitted sound field due to an impulsive line acoustic source bounded by a plate followed by a vortex sheet

    NASA Technical Reports Server (NTRS)

    Miura, T.; Chao, C. C.

    1980-01-01

    The propagation of sound due to a line acoustic source in the moving stream across a semiinfinite vortex sheet which trails from a rigid plate is examined in a linear theory for the subsonic case. A solution for the transmitted sound field is obtained with the aid of multiple integral transforms and the Wiener-Hopf technique for both the steady state (time harmonic) and initial value (impulsive source) situations. The contour of inverse transform and hence the decomposition of the functions are determined through causality and radiation conditions. The solution obtained satisfies causality and the full Kutta conditions. The transmitted sound field is composed of two waves in both the stady state and initial value problems. One is the wave scattered from the edge of the plate which is associated with the bow wave and the instability wave. These waves exist in the downstream sectors. The other is the wave transmitted through the vortex sheet which is also associated with the instability wave. Regional divisions of the transmitted sound field are identified.

  20. Smart DNA Fabrication Using Sound Waves: Applying Acoustic Dispensing Technologies to Synthetic Biology.

    PubMed

    Kanigowska, Paulina; Shen, Yue; Zheng, Yijing; Rosser, Susan; Cai, Yizhi

    2016-02-01

    Acoustic droplet ejection (ADE) technology uses focused acoustic energy to transfer nanoliter-scale liquid droplets with high precision and accuracy. This noncontact, tipless, low-volume dispensing technology minimizes the possibility of cross-contamination and potentially reduces the costs of reagents and consumables. To date, acoustic dispensers have mainly been used in screening libraries of compounds. In this paper, we describe the first application of this powerful technology to the rapidly developing field of synthetic biology, for DNA synthesis and assembly at the nanoliter scale using a Labcyte Echo 550 acoustic dispenser. We were able to successfully downscale PCRs and the popular one-pot DNA assembly methods, Golden Gate and Gibson assemblies, from the microliter to the nanoliter scale with high assembly efficiency, which effectively cut the reagent cost by 20- to 100-fold. We envision that acoustic dispensing will become an instrumental technology in synthetic biology, in particular in the era of DNA foundries. PMID:26163567

  1. Acoustic communication in plant-animal interactions.

    PubMed

    Schöner, Michael G; Simon, Ralph; Schöner, Caroline R

    2016-08-01

    Acoustic communication is widespread and well-studied in animals but has been neglected in other organisms such as plants. However, there is growing evidence for acoustic communication in plant-animal interactions. While knowledge about active acoustic signalling in plants (i.e. active sound production) is still in its infancy, research on passive acoustic signalling (i.e. reflection of animal sounds) revealed that bat-dependent plants have adapted to the bats' echolocation systems by providing acoustic reflectors to attract their animal partners. Understanding the proximate mechanisms and ultimate causes of acoustic communication will shed light on an underestimated dimension of information transfer between plants and animals. PMID:27423052

  2. Acoustic emission monitoring of composite containment systems

    NASA Astrophysics Data System (ADS)

    Maguire, John R.

    2011-07-01

    This paper considers two different types of composite containment system, and two different types of acoustic emission (AE) monitoring approach. The first system is a composite reinforced pressure vessel (CRPV) which is monitored both during construction and in-service using a broadband modal acoustic emission (MAE) technique. The second system is a membrane cargo containment system which is monitored using both a global as well as a local AE technique. For the CRPV, the damage assessment is concerned mainly with the integrity of the composite outer layer at the construction stage, and possible fatigue cracking of the inner steel liner at the in-service stage. For the membrane tank, the damage assessment is concerned with locating and quantifying any abnormal porosities that might develop in-service. By comparing and contrasting the different types of structural system and different monitoring approaches inferences are drawn as to what role AE monitoring could take in the damage assessment of other types of composite containment system. (Detailed technical data have not been included, due to client confidentiality constraints.)

  3. Speaker verification system using acoustic data and non-acoustic data

    DOEpatents

    Gable, Todd J.; Ng, Lawrence C.; Holzrichter, John F.; Burnett, Greg C.

    2006-03-21

    A method and system for speech characterization. One embodiment includes a method for speaker verification which includes collecting data from a speaker, wherein the data comprises acoustic data and non-acoustic data. The data is used to generate a template that includes a first set of "template" parameters. The method further includes receiving a real-time identity claim from a claimant, and using acoustic data and non-acoustic data from the identity claim to generate a second set of parameters. The method further includes comparing the first set of parameters to the set of parameters to determine whether the claimant is the speaker. The first set of parameters and the second set of parameters include at least one purely non-acoustic parameter, including a non-acoustic glottal shape parameter derived from averaging multiple glottal cycle waveforms.

  4. Bayesian characterization of multiple-slope sound energy decays in coupled-volume systems.

    PubMed

    Xiang, Ning; Goggans, Paul; Jasa, Tomislav; Robinson, Philip

    2011-02-01

    Due to recent developments in concert hall design, there is an increasing interest in the analysis of sound energy decays consisting of multiple exponential decay rates. It has been considered challenging to estimate parameters associated with double-rate (slope) decay characteristics, and even more challenging when the coupled-volume systems contain more than two decay processes. To meet the need of characterizing energy decays of multiple decay processes, this work investigates coupled-volume systems using acoustic scale-models of three coupled rooms. Two Bayesian formulations are compared using the experimentally measured sound energy decay data. A fully parameterized Bayesian formulation has been found to be capable of characterization of multiple-slope decays beyond the single-slope and double-slope energy decays. Within the Bayesian framework using this fully parameterized formulation, an in-depth analysis of likelihood distributions over multiple-dimensional decay parameter space motivates the use of Bayesian information criterion, an efficient approach to solving Bayesian model selection problems that are suitable for estimating the number of exponential decays. The analysis methods are then applied to a geometric-acoustics simulation of a conceptual concert hall. Sound energy decays more complicated than single-slope and double-slope nature, such as triple-slope decays have been identified and characterized. PMID:21361433

  5. On the acoustic analysis and optimization of ducted ventilation systems using a sub-structuring approach.

    PubMed

    Yu, X; Cui, F S; Cheng, L

    2016-01-01

    This paper presents a general sub-structuring approach to predict the acoustic performance of ducted ventilation systems. The modeling principle is to determine the subsystem characteristics by calculating the transfer functions at their coupling interfaces, and the assembly is enabled by using a patch-based interface matching technique. For a particular example of a bended ventilation duct connecting an inlet and an outlet acoustic domain, a numerical model is developed to predict its sound attenuation performance. The prediction accuracy is thoroughly validated against finite element models. Through numerical examples, the rigid-walled duct is shown to provide relatively weak transmission loss (TL) across the frequency range of interest, and exhibit only the reactive behavior for sound reflection. By integrating sound absorbing treatment such as micro-perforated absorbers into the system, the TL can be significantly improved, and the system is seen to exhibit hybrid mechanisms for sound attenuation. The dissipative effect dominates at frequencies where the absorber is designed to be effective, and the reactive effect provides compensations at the absorption valleys attributed to the resonant behavior of the absorber. This ultimately maintains the system TL at a relatively high level across the entire frequency of interest. The TL of the system can be tuned or optimized in a very efficient way using the proposed approach due to its modular nature. It is shown that a balance of the hybrid mechanism is important to achieve an overall broadband attenuation performance in the design frequency range. PMID:26827024

  6. Heart Sound Biometric System Based on Marginal Spectrum Analysis

    PubMed Central

    Zhao, Zhidong; Shen, Qinqin; Ren, Fangqin

    2013-01-01

    This work presents a heart sound biometric system based on marginal spectrum analysis, which is a new feature extraction technique for identification purposes. This heart sound identification system is comprised of signal acquisition, pre-processing, feature extraction, training, and identification. Experiments on the selection of the optimal values for the system parameters are conducted. The results indicate that the new spectrum coefficients result in a significant increase in the recognition rate of 94.40% compared with that of the traditional Fourier spectrum (84.32%) based on a database of 280 heart sounds from 40 participants. PMID:23429515

  7. Effect of sound on gap-junction-based intercellular signaling: Calcium waves under acoustic irradiation

    NASA Astrophysics Data System (ADS)

    Deymier, P. A.; Swinteck, N.; Runge, K.; Deymier-Black, A.; Hoying, J. B.

    2015-11-01

    We present a previously unrecognized effect of sound waves on gap-junction-based intercellular signaling such as in biological tissues composed of endothelial cells. We suggest that sound irradiation may, through temporal and spatial modulation of cell-to-cell conductance, create intercellular calcium waves with unidirectional signal propagation associated with nonconventional topologies. Nonreciprocity in calcium wave propagation induced by sound wave irradiation is demonstrated in the case of a linear and a nonlinear reaction-diffusion model. This demonstration should be applicable to other types of gap-junction-based intercellular signals, and it is thought that it should be of help in interpreting a broad range of biological phenomena associated with the beneficial therapeutic effects of sound irradiation and possibly the harmful effects of sound waves on health.

  8. Acoustic characteristics of sounds from temporomandibular joints with and without effusion: an MRI study.

    PubMed

    Sano, T; Widmalm, S E; Westesson, P L; Yamaga, T; Yamamoto, M; Takahashi, K; Michi, K I; Okano, T

    2002-02-01

    Joint effusion has been associated with temporomandibular joint (TMJ) pain but can only be diagnosed by magnetic resonance imaging (MRI). For screening of patients with suspected effusion a simple and less expensive method would be desirable. We recorded joint sounds during jaw opening and closing movement from 34 TMJs with internal derangement (ID). Seventeen joints had joint effusion seen on MRI. Spectrograms of the sounds were displayed as waterfall plots showing profiles of the consecutive Hamming windows. If the profiles were similar, as judged by initial evaluation, the displayed pattern was classified as stable. If some profiles were distinctly deviating in their pattern, this was classified as unstable. Joints with effusion showed unstable sound pattern more often than joints without effusion (P < 0.001). It was concluded that TMJ sound analyses have a potential to identify joints with effusion based on their unstable sound pattern. PMID:11856395

  9. Acoustic communication in the Greater Sage-Grouse (Centrocercus urophasianus) an examination into vocal sacs, sound propagation, and signal directionality

    NASA Astrophysics Data System (ADS)

    Dantzker, Marc Steven

    The thesis is an inquiry into the acoustic communication of a very unusual avian species, the Greater Sage-Grouse, Centrocercus urophasianus. One of the most outstanding features of this animal's dynamic mating display is its use of paired air sacs that emerge explosively from an esophageal pouch. My first line of inquiry into this system is a review of the form and function of similar vocal apparatuses, collectively called vocal sacs, in birds. Next, with a combination of mathematical models and field measurements, My collaborator and I investigate the acoustic environment where the Greater Sage-Grouse display. The complexities of this acoustic environment are relevant both to the birds and to the subsequent examinations of the display's properties. Finally, my collaborators and I examine a cryptic component of the acoustic display --- directionality --- which we measured simultaneously from multiple locations around free moving grouse on their mating grounds.

  10. A computer based ionospheric sounding and HF noise measuring system

    NASA Astrophysics Data System (ADS)

    Earl, G. F.

    1980-09-01

    A system for the automated collection of ionospheric backscatter sounding and HF noise measurement data is described. The system was configured around a PDP 11/40 minicomputer and modified Barry Research FMCW sounding equipment. The real time digital signal processing associated with the backscatter sounder and noise measurement systems is discussed. The data are displayed and recorded in a calibrated mode, and examples are presented.

  11. Nonlinear Acoustics in Fluids

    NASA Astrophysics Data System (ADS)

    Lauterborn, Werner; Kurz, Thomas; Akhatov, Iskander

    At high sound intensities or long propagation distances at in fluids sufficiently low damping acoustic phenomena become nonlinear. This chapter focuses on nonlinear acoustic wave properties in gases and liquids. The origin of nonlinearity, equations of state, simple nonlinear waves, nonlinear acoustic wave equations, shock-wave formation, and interaction of waves are presented and discussed. Tables are given for the nonlinearity parameter B/A for water and a range of organic liquids, liquid metals and gases. Acoustic cavitation with its nonlinear bubble oscillations, pattern formation and sonoluminescence (light from sound) are modern examples of nonlinear acoustics. The language of nonlinear dynamics needed for understanding chaotic dynamics and acoustic chaotic systems is introduced.

  12. Acoustical study on the impact of sound absorptions, distances of workstations, and height of partitions in open plan offices

    NASA Astrophysics Data System (ADS)

    Utami, Sentagi Sesotya; Al Rochmadi, Nurwachid; Sarwono, R. Sugeng Joko

    2015-09-01

    Low partitions are commonly found in open-plan offices as the boundaries of workstation islands or groups of workstations. This room layout often cause excessive speech intelligibility, which creates work distraction and reduce the quality of speech privacy. Sound absorption, distance between workstations, and height of partitions are factors that were investigated on their impact to the room acoustics condition, referred to ISO 3382-3:2012. Observed room acoustics conditions were speech intelligibility, speech privacy, and distraction to concentrate in work using parameters of T30, C50, and RASTI. Parameters of T30, C50, and RASTI were used to evaluate the speech intelligibility. The level of speech privacy was indicated by parameter of privacy distance (rP). Distraction to concentrate in work was indicated by distraction distance (rD). The results from 2 experimental setups show that sound absorption, distance between workstations, and partitions influenced the level of speech intelligibility, speech privacy, and distraction to concentration at work. The value of C50 decline, by 76.9% and 77.4%, each for scenario A and B. RASTI decline, by 18.7% and 14.8%. Difference in percentage of speech privacy, by 6% and 11%. Difference in percentage of distraction to concentration at work, by 79% and 70%.

  13. Acoustic Flow Monitor System - User Manual

    USGS Publications Warehouse

    LaHusen, Richard

    2005-01-01

    INTRODUCTION The Acoustic Flow Monitor (AFM) is a portable system that was designed by the U.S. Geological Survey Cascades Volcano Observatory to detect and monitor debris flows associated with volcanoes. It has been successfully used internationally as part of real-time warning systems in valleys threatened by such flows (Brantley, 1990; Marcial and others, 1996; Lavigne and others, 2000). The AFM system has also been proven to be an effective tool for monitoring some non-volcanic debris flows. This manual is intended to serve as a basic guide for the installation, testing, and maintenance of AFM systems. An overview of how the system works, as well as instructions for installation and guidelines for testing, is included. Interpretation of data is not covered in this manual; rather, the user should refer to the references provided for published examples of AFM data.

  14. Toward a Nonlinear Acoustic Analogy: Turbulence as a Source of Sound and Nonlinear Propagation

    NASA Technical Reports Server (NTRS)

    Miller, Steven A. E.

    2015-01-01

    An acoustic analogy is proposed that directly includes nonlinear propagation effects. We examine the Lighthill acoustic analogy and replace the Green's function of the wave equation with numerical solutions of the generalized Burgers' equation. This is justified mathematically by using similar arguments that are the basis of the solution of the Lighthill acoustic analogy. This approach is superior to alternatives because propagation is accounted for directly from the source to the far-field observer instead of from an arbitrary intermediate point. Validation of a numerical solver for the generalized Burgers' equation is performed by comparing solutions with the Blackstock bridging function and measurement data. Most importantly, the mathematical relationship between the Navier-Stokes equations, the acoustic analogy that describes the source, and canonical nonlinear propagation equations is shown. Example predictions are presented for nonlinear propagation of jet mixing noise at the sideline angle.

  15. Toward a Nonlinear Acoustic Analogy: Turbulence as a Source of Sound and Nonlinear Propagation

    NASA Technical Reports Server (NTRS)

    Miller, Steven A. E.

    2015-01-01

    An acoustic analogy is proposed that directly includes nonlinear propagation effects. We examine the Lighthill acoustic analogy and replace the Green's function of the wave equation with numerical solutions of the generalized Burgers' equation. This is justified mathematically by using similar arguments that are the basis of the solution of the Lighthill acoustic analogy. This approach is superior to alternatives because propagation is accounted for directly from the source to the far-field observer instead of from an arbitrary intermediate point. Validation of a numerical solver for the generalized Burgers' equation is performed by comparing solutions with the Blackstock bridging function and measurement data. Most importantly, the mathematical relationship between the Navier- Stokes equations, the acoustic analogy that describes the source, and canonical nonlinear propagation equations is shown. Example predictions are presented for nonlinear propagation of jet mixing noise at the sideline angle

  16. Transmission of sound from air terminal devices through ceiling systems

    SciTech Connect

    Warnock, A.C.C.

    1998-10-01

    Sound from HVAC ducts or devices in ceiling plenums passes through the ceiling system to the room below and can cause annoyance to the occupants of the rooms. ARI Standard 885 provides a method to calculate the level of the sound in the room using the sound power of the device and some attenuation factors for the ceiling. The goal of ASHRAE research project RP-755 was to evaluate and extend the information given in ARI 885. This paper describes the attenuation factors found for six types of ceiling tiles and four air-terminal units. Attenuations at low frequencies were found to correlate with the area of the lower face of the device emitting sound. Sound fields in the room below were essentially uniform; no significant attenuation with distance was found.

  17. The Optimum Loudspeaker Arrangements for Multichannel Sound System

    NASA Astrophysics Data System (ADS)

    Hiyama, Koichiro; Komiyama, Setsu; Hamasaki, Kimio

    2002-09-01

    This paper discusses the number of loudspeakers for multichannel sound systems to reproduce the spatial impression of diffuse sound field, such as in auditorium. Some subjective experiments were conducted in order to find suitable numbers and arrangement of loudspeakers. On the experiments, reference diffuse sound filed was produced by 24 loudspeakers that were placed at every 15 degrees along a concentric circle around the listener in an anechoic room. And then, the number of loudspeakers, which radiated sound sources or reverberations, was reduced from 24 to 12, 8, 6, 4, 3, 2 and then each spatial impression was compared with the reference sound of 24 loudspeakers. For the sound source of these experiments, noises and musical sounds were used. It becomes clear that the spatial impression of diffuse sound field can be reproduced by only two symmetrical pairs of loudspeakers (that is, four loudspeakers in all). On this arrangement, one pair of loudspeakers should be place in the frontal area around the listener with in angle of about 60 deg, and the other pair should be in the rear area with an angle of 120 to 180 deg.

  18. Implementation of a virtual laboratory for training on sound insulation testing and uncertainty calculations in acoustic tests.

    PubMed

    Asensio, C; Gasco, L; Ruiz, M; Recuero, M

    2015-02-01

    This paper describes a methodology and case study for the implementation of educational virtual laboratories for practice training on acoustic tests according to international standards. The objectives of this activity are (a) to help the students understand and apply the procedures described in the standards and (b) to familiarize the students with the uncertainty in measurement and its estimation in acoustics. The virtual laboratory will not focus on the handling and set-up of real acoustic equipment but rather on procedures and uncertainty. The case study focuses on the application of the virtual laboratory for facade sound insulation tests according to ISO 140-5:1998 (International Organization for Standardization, Geneva, Switzerland, 1998), and the paper describes the causal and stochastic models and the constraints applied in the virtual environment under consideration. With a simple user interface, the laboratory will provide measurement data that the students will have to process to report the insulation results that must converge with the "virtual true values" in the laboratory. The main advantage of the virtual laboratory is derived from the customization of factors in which the student will be instructed or examined (for instance, background noise correction, the detection of sporadic corrupted observations, and the effect of instrument precision). PMID:25698032

  19. High spatial resolution passive microwave sounding systems

    NASA Technical Reports Server (NTRS)

    Staelin, D. H.; Rosenkranz, P. W.; Bonanni, P. G.; Gasiewski, A. W.

    1986-01-01

    Two extensive series of flights aboard the ER-2 aircraft were conducted with the MIT 118 GHz imaging spectrometer together with a 53.6 GHz nadir channel and a TV camera record of the mission. Other microwave sensors, including a 183 GHz imaging spectrometer were flown simultaneously by other research groups. Work also continued on evaluating the impact of high-resolution passive microwave soundings upon numerical weather prediction models.

  20. Assisting the Visually Impaired: Obstacle Detection and Warning System by Acoustic Feedback

    PubMed Central

    Rodríguez, Alberto; Yebes, J. Javier; Alcantarilla, Pablo F.; Bergasa, Luis M.; Almazán, Javier; Cela, Andrés

    2012-01-01

    The aim of this article is focused on the design of an obstacle detection system for assisting visually impaired people. A dense disparity map is computed from the images of a stereo camera carried by the user. By using the dense disparity map, potential obstacles can be detected in 3D in indoor and outdoor scenarios. A ground plane estimation algorithm based on RANSAC plus filtering techniques allows the robust detection of the ground in every frame. A polar grid representation is proposed to account for the potential obstacles in the scene. The design is completed with acoustic feedback to assist visually impaired users while approaching obstacles. Beep sounds with different frequencies and repetitions inform the user about the presence of obstacles. Audio bone conducting technology is employed to play these sounds without interrupting the visually impaired user from hearing other important sounds from its local environment. A user study participated by four visually impaired volunteers supports the proposed system. PMID:23247413

  1. Measurement of the absorption coefficient of acoustical materials using the sound intensity method

    NASA Technical Reports Server (NTRS)

    Atwal, Mahabir S.; Crocker, Malcolm J.

    1987-01-01

    In this study the possibility of using the two-microphone sound intensity technique to measure the normal incidence and the random incidence sound absorption coefficient was investigated. The normal incidence absorption coefficient was determined by measuring the intensity incidence on the sample and the intensity reflected by the sample placed in an anechoic chamber. The random incidence absorption coefficient was determined by measuring the intensity incident on the sample and the intensity reflected by the sample placed in a reverberation chamber. Absorption coefficient results obtained by the sound intensity technique were compared with standard techniques, namely the reverberation chamber and the standing wave tube. The major advantages of using the sound intensity technique are that it permits 'in situ' measurements and the absorption coefficient for a large range of frequencies can be obtained from a single measurement.

  2. Using sound of target impact for acoustic reconstructions of shooting events.

    PubMed

    Courtney, Michael W; Courtney, Amy C

    2012-04-01

    The sound of a bullet hitting a target is sometimes discernable in an audio recording of a shooting event and can be used to determine the distance from shooter to target. This paper provides an example where the microphone is adjacent to the shooter and presents the simple mathematics needed in cases where the microphone is adjacent to the target. Spectrograms of the sound of bullet impact on a human-sized animal are also presented. PMID:22422783

  3. Patch nearfield acoustic holography combined with sound field separation technique applied to a non-free field

    NASA Astrophysics Data System (ADS)

    Bi, ChuanXing; Jing, WenQian; Zhang, YongBin; Xu, Liang

    2015-02-01

    The conventional nearfield acoustic holography (NAH) is usually based on the assumption of free-field conditions, and it also requires that the measurement aperture should be larger than the actual source. This paper is to focus on the problem that neither of the above-mentioned requirements can be met, and to examine the feasibility of reconstructing the sound field radiated by partial source, based on double-layer pressure measurements made in a non-free field by using patch NAH combined with sound field separation technique. And also, the sensitivity of the reconstructed result to the measurement error is analyzed in detail. Two experiments involving two speakers in an exterior space and one speaker inside a car cabin are presented. The experimental results demonstrate that the patch NAH based on single-layer pressure measurement cannot obtain a satisfied result due to the influences of disturbing sources and reflections, while the patch NAH based on double-layer pressure measurements can successfully remove these influences and reconstruct the patch sound field effectively.

  4. Floquet topological insulators for sound

    PubMed Central

    Fleury, Romain; Khanikaev, Alexander B; Alù, Andrea

    2016-01-01

    The unique conduction properties of condensed matter systems with topological order have recently inspired a quest for the similar effects in classical wave phenomena. Acoustic topological insulators, in particular, hold the promise to revolutionize our ability to control sound, allowing for large isolation in the bulk and broadband one-way transport along their edges, with topological immunity against structural defects and disorder. So far, these fascinating properties have been obtained relying on moving media, which may introduce noise and absorption losses, hindering the practical potential of topological acoustics. Here we overcome these limitations by modulating in time the acoustic properties of a lattice of resonators, introducing the concept of acoustic Floquet topological insulators. We show that acoustic waves provide a fertile ground to apply the anomalous physics of Floquet topological insulators, and demonstrate their relevance for a wide range of acoustic applications, including broadband acoustic isolation and topologically protected, nonreciprocal acoustic emitters. PMID:27312175

  5. Floquet topological insulators for sound

    NASA Astrophysics Data System (ADS)

    Fleury, Romain; Khanikaev, Alexander B.; Alù, Andrea

    2016-06-01

    The unique conduction properties of condensed matter systems with topological order have recently inspired a quest for the similar effects in classical wave phenomena. Acoustic topological insulators, in particular, hold the promise to revolutionize our ability to control sound, allowing for large isolation in the bulk and broadband one-way transport along their edges, with topological immunity against structural defects and disorder. So far, these fascinating properties have been obtained relying on moving media, which may introduce noise and absorption losses, hindering the practical potential of topological acoustics. Here we overcome these limitations by modulating in time the acoustic properties of a lattice of resonators, introducing the concept of acoustic Floquet topological insulators. We show that acoustic waves provide a fertile ground to apply the anomalous physics of Floquet topological insulators, and demonstrate their relevance for a wide range of acoustic applications, including broadband acoustic isolation and topologically protected, nonreciprocal acoustic emitters.

  6. Floquet topological insulators for sound.

    PubMed

    Fleury, Romain; Khanikaev, Alexander B; Alù, Andrea

    2016-01-01

    The unique conduction properties of condensed matter systems with topological order have recently inspired a quest for the similar effects in classical wave phenomena. Acoustic topological insulators, in particular, hold the promise to revolutionize our ability to control sound, allowing for large isolation in the bulk and broadband one-way transport along their edges, with topological immunity against structural defects and disorder. So far, these fascinating properties have been obtained relying on moving media, which may introduce noise and absorption losses, hindering the practical potential of topological acoustics. Here we overcome these limitations by modulating in time the acoustic properties of a lattice of resonators, introducing the concept of acoustic Floquet topological insulators. We show that acoustic waves provide a fertile ground to apply the anomalous physics of Floquet topological insulators, and demonstrate their relevance for a wide range of acoustic applications, including broadband acoustic isolation and topologically protected, nonreciprocal acoustic emitters. PMID:27312175

  7. Judging sound rotation when listeners and sounds rotate: Sound source localization is a multisystem process.

    PubMed

    Yost, William A; Zhong, Xuan; Najam, Anbar

    2015-11-01

    In four experiments listeners were rotated or were stationary. Sounds came from a stationary loudspeaker or rotated from loudspeaker to loudspeaker around an azimuth array. When either sounds or listeners rotate the auditory cues used for sound source localization change, but in the everyday world listeners perceive sound rotation only when sounds rotate not when listeners rotate. In the everyday world sound source locations are referenced to positions in the environment (a world-centric reference system). The auditory cues for sound source location indicate locations relative to the head (a head-centric reference system), not locations relative to the world. This paper deals with a general hypothesis that the world-centric location of sound sources requires the auditory system to have information about auditory cues used for sound source location and cues about head position. The use of visual and vestibular information in determining rotating head position in sound rotation perception was investigated. The experiments show that sound rotation perception when sources and listeners rotate was based on acoustic, visual, and, perhaps, vestibular information. The findings are consistent with the general hypotheses and suggest that sound source localization is not based just on acoustics. It is a multisystem process. PMID:26627802

  8. Acoustic fatigue and sound transmission characteristics of a ram composite panel design

    NASA Technical Reports Server (NTRS)

    Cockburn, J. A.; Chang, K. Y.; Kao, G. C.

    1972-01-01

    An experimental study to determine the acoustic fatigue characteristics of a flat multi-layered structural panel is described. The test panel represented a proposed design for the outer skin of a research application module to be housed within the space shuttle orbiter vehicle. The test specimen was mounted in one wall of the Wyle 100,000 cu ft reverberation room and exposed to a broadband acoustic environment having an overall level of 145 db. The test panel was exposed to nine separate applications of the acoustic environment, each application consisting of 250 seconds duration. Upon completion of the ninth test run, the specimen was exposed to a simulated micrometeoroid impact near the panel center. One additional test run of 250 seconds duration was then performed to complete the overall simulation of 50 flight missions. The experimental results show that no significant fatigue damage occurred until the test specimen was exposed to a simulated micrometeoroid impact. The intermediate foam layer forming the core of the test specimen suffered considerable damage due to this impact, causing a marked variation in the dynamic characteristics of the overall test panel. During the final application of the acoustic environment, the strain and acceleration response spectra showed considerable variation from those spectra obtained prior to impact of the panel. Fatigue damage from acoustic loading however, was limited to partial de-bonding around the edges of the composite panel.

  9. Characterization of condenser microphones under different environmental conditions for accurate speed of sound measurements with acoustic resonators.

    PubMed

    Guianvarc'h, Cécile; Gavioso, Roberto M; Benedetto, Giuliana; Pitre, Laurent; Bruneau, Michel

    2009-07-01

    Condenser microphones are more commonly used and have been extensively modeled and characterized in air at ambient temperature and static pressure. However, several applications of interest for metrology and physical acoustics require to use these transducers in significantly different environmental conditions. Particularly, the extremely accurate determination of the speed of sound in monoatomic gases, which is pursued for a determination of the Boltzmann constant k by an acoustic method, entails the use of condenser microphones mounted within a spherical cavity, over a wide range of static pressures, at the temperature of the triple point of water (273.16 K). To further increase the accuracy achievable in this application, the microphone frequency response and its acoustic input impedance need to be precisely determined over the same static pressure and temperature range. Few previous works examined the influence of static pressure, temperature, and gas composition on the microphone's sensitivity. In this work, the results of relative calibrations of 1/4 in. condenser microphones obtained using an electrostatic actuator technique are presented. The calibrations are performed in pure helium and argon gas at temperatures near 273 K and in the pressure range between 10 and 600 kPa. These experimental results are compared with the predictions of a realistic model available in the literature, finding a remarkable good agreement. The model provides an estimate of the acoustic impedance of 1/4 in. condenser microphones as a function of frequency and static pressure and is used to calculate the corresponding frequency perturbations induced on the normal modes of a spherical cavity when this is filled with helium or argon gas. PMID:19655971

  10. Field performance of an acoustic scour-depth monitoring system

    USGS Publications Warehouse

    Mason, Jr., Robert R.; Sheppard, D. Max

    1994-01-01

    The Herbert C. Bonner Bridge over Oregon Inlet serves as the only land link between Bodie and Hatteras Islands, part of the Outer Banks of North Carolina. Periodic soundings over the past 30 years have documented channel migration, local scour, and deposition at several pilings that support the bridge. In September 1992, a data-collection system was installed to permit the off-site monitoring of scour at 16 bridge pilings. The system records channel-bed elevations at 15-minute intervals and transmits the data to a satellite receiver. A cellular phone connection also permits downloading and reviewing of the data as they are being collected. A digitally recording, acoustic fathometer is the main component of the system. In November 1993, current velocity, water-surface elevation, wave characteristics, and water temperature measuring instruments were also deployed at the site. Several performance problems relating to the equipment and to the harsh marine environment have not been resolved, but the system has collected and transmitted reliable scour-depth and water-level data.

  11. Experimental study using nearfield acoustic holography of sound transmission through fuselage sidewall structures

    NASA Technical Reports Server (NTRS)

    Maynard, J. D.

    1986-01-01

    The reduction of cabin noise in lightweight, propeller-driven aircraft is an especially difficult problem in noise control. Nearfield Acoustic Holography (NAH) was used to determine the mode of vibration and acoustic intensity for panels which differed in: construction (number of stiffening ribs, size of stifening ribs, construction material, and panel surface curvature); boundary support condition (free edge condition or clamped edge condition); and mode of excitation (structural-borne forces or airborne forces). The different samples of aircraft panels are described and the measurement of the natural response frequencies was discussed under various boundary support and excitation conditions. The results of the NAH measurements are presented.

  12. Acoustic systems for the measurement of streamflow

    USGS Publications Warehouse

    Laenen, Antonius; Smith, Winchell

    1982-01-01

    Very little information is available concerning acoustic velocity meter (AVM) operation, performance, and limitations. This report provides a better understanding about the application of AVM instrumentation to streamflow measurment. Operational U.S. Geological Survey systems have proven that AVM equipment is accurate and dependable. AVM equipment has no practical upper limit of measureable velocity if sonic transducers are securely placed and adequately protected, and will measure velocitites as low as 0.1 meter per second which is normally less than the threshold level for mechanical or head-loss meters. In some situations the performance of AVM equipment may be degraded by multipath interference, signal bending, signal attenuation, and variable streamline orientation. Smaller, less-expensive, more conveniently operable microprocessor equipment is now available which should increase use of AVM systems in streamflow applications. (USGS)

  13. Simulation studies of improved sounding systems

    NASA Technical Reports Server (NTRS)

    Yates, H.; Wark, D.; Aumann, H.; Evans, N.; Phillips, N.; Susskind, J.; Mcmillin, L.; Goldman, A.; Chahine, M.; Crone, L.

    1989-01-01

    Two instrument designs for indirect satellite sounding of the atmosphere in the infrared are represented by the High Resolution Infra-Red Sounder, Model 2 (HIRS-2) and by the Advanced Meteorological Temperature Sounder (AMTS). The relative capabilities of the two instruments were tested by simulating satellite measurements from a group of temperature soundings, allowing the two participants to retrieve the temperature profiles from the simulated data, and comparing the results with the original temperature profiles. Four data sets were produced from radiosondes data extrapolated to a suitable altitude, representing continents and oceans, between 30S and 30N. From the information available, temperature profiles were retrieved by two different methods, statistical regression and inversion of the radiative transfer equation. Results show the consequence of greater spectral purity, concomitant increase in the number of spectral intervals, and the better spatial resolution in partly clouded areas. At the same time, the limitation of the HIRS-2 without its companion instrument leads to some results which should be ignored in comparing the two instruments. A clear superiority of AMTS results is shown.

  14. Real-ear acoustical characteristics of impulse sound generated by golf drivers and the estimated risk to hearing: a cross-sectional study

    PubMed Central

    Zhao, Fei; Bardsley, Barry

    2014-01-01

    Objectives This study investigated real-ear acoustical characteristics in terms of the sound pressure levels (SPLs) and frequency responses in situ generated from golf club drivers at impact with a golf ball. The risk of hearing loss caused by hitting a basket of golf balls using various drivers was then estimated. Design Cross-sectional study. Setting The three driver clubs were chosen on the basis of reflection of the commonality and modern technology of the clubs. The participants were asked to choose the clubs in a random order and hit six two-piece range golf balls with each club. The experiment was carried out at a golf driving range in South Wales, UK. Participants 19 male amateur golfers volunteered to take part in the study, with an age range of 19–54 years. Outcome measures The frequency responses and peak SPLs in situ of the transient sound generated from the club at impact were recorded bilaterally and simultaneously using the GN Otometric Freefit wireless real-ear measurement system. A swing speed radar system was also used to investigate the relationship between noise level and swing speed. Results Different clubs generated significantly different real-ear acoustical characteristics in terms of SPL and frequency responses. However, they did not differ significantly between the ears. No significant correlation was found between the swing speed and noise intensity. On the basis of the SPLs measured in the present study, the percentage of daily noise exposure for hitting a basket of golf balls using the drivers described above was less than 2%. Conclusions The immediate danger of noise-induced hearing loss for amateur golfers is quite unlikely. However, it may be dangerous to hearing if the noise level generated by the golf clubs exceeded 116 dBA. PMID:24448845

  15. Digital data-acquisition system for measuring the free decay of acoustical standing waves in a resonant tube

    NASA Technical Reports Server (NTRS)

    Meredith, R. W.; Zuckerwar, A. J.

    1984-01-01

    A low-cost digital system based on an 8-bit Apple II microcomputer has been designed to provide on-line control, data acquisition, and evaluation of sound absorption measurements in gases. The measurements are conducted in a resonant tube, in which an acoustical standing wave is excited, the excitation removed, and the sound absorption evaluated from the free decay envelope. The free decay is initiated from the computer keyboard after the standing wave is established, and the microphone response signal is the source of the analog signal for the A/D converter. The acquisition software is written in ASSEMBLY language and the evaluation software in BASIC. This paper describes the acoustical measurement, hardware, software, and system performance and presents measurements of sound absorption in air as an example.

  16. Acoustic challenges of the A400M for active systems

    NASA Astrophysics Data System (ADS)

    Breitbach, Harald; Sachau, Delf; Böhme, Sten

    2006-03-01

    In some types of aircraft tonal interior noise with high sound pressure level (up to 110 dB(A)) occurs at low frequencies (f < 500 Hz). Typical examples are propeller driven aircraft, for which the excitation frequencies are given by the blade passage frequency (BPF) and its higher harmonics. The high tonal noise levels at these frequencies can occur due to the fact that the blades' profiles are only optimized in terms of aerodynamics. The acoustic properties are usually not taken into account. In order to obtain an acceptable interior noise level, and to guarantee both work-safety and comfort in the aircraft interiors, passive methods are commonly used - e.g. adding material with high damping or vibration absorbing qualities. Especially when low frequency noise has to be reduced, adding material results in a lot of unwanted additional weight. In order to avoid this extra weight, the concept of active noise reduction (ANR) and tunable vibration absorber systems (TVA), which focus on the unwanted tonal noise, are a good compromise of treating noise and the amount of additional weight in aircraft design. This paper briefly discusses two different possible methods to reduce the low frequency noise. The noise reduction of tuned vibration absorbers (TVA) mounted on the airframe are nowadays commonly used in propeller driven aircraft and can be predicted by vibroacoustic finite element calculations, which is described in this paper. In order to abide to industrial safety regulations, the noise level inside the semi closed loadmaster area (LMA) must be reduced down to a noise level, which is even 8 dB(A) below the specified cargo hold noise level. The paper describes also the phases of development of an ANR system that could be used to control the sound pressure level inside the LMA. The concept is verified by experimental investigations within a mock up of the LMA.

  17. The Sound of Steam: Acoustics as the Integrator Between Arts and STEM

    NASA Astrophysics Data System (ADS)

    Goates, Caleb; Whiting, Jenny; Berardi, Mark; Gee, Kent L.; Neilsen, Tracianne B.

    2016-03-01

    This paper describes the development and presentation of a Science, Technology, Engineering, Arts, and Math (STEAM) workshop for elementary school teachers designed to provide ideas and tools for using acoustics in the classroom. The abundant hands-on activities and concepts in acoustics naturally link science and music in an intuitive way that can assist teachers moving forward on the STEAM initiative. Our workshop gave teachers an introduction to acoustics principles and demonstrations that can be used to tie STEAM techniques with Utah State Education Core standards. These hands-on demonstrations and real-world applications provide an avenue to engage students and support learning outcomes. Feedback indicated that the participants learned from and enjoyed the initial implementation of this workshop, though many elementary school teachers did not immediately see how they could integrate it into their curriculum. While additional efforts might be made to better focus the training workshop for the K-6 level, curriculum developers need to appreciate how acoustics could be used more broadly at the elementary school level if the emphasis changes from STEM to STEAM. ?

  18. Modeling sound transmission through the pulmonary system and chest with application to diagnosis of a collapsed lung

    NASA Astrophysics Data System (ADS)

    Royston, T. J.; Zhang, X.; Mansy, H. A.; Sandler, R. H.

    2002-04-01

    A theoretical and experimental study was undertaken to examine the feasibility of using audible-frequency vibro-acoustic waves for diagnosis of pneumothorax, a collapsed lung. The hypothesis was that the acoustic response of the chest to external excitation would change with this condition. In experimental canine studies, external acoustic energy was introduced into the trachea via an endotracheal tube. For the control (nonpneumothorax) state, it is hypothesized that sound waves primarily travel through the airways, couple to the lung parenchyma, and then are transmitted directly to the chest wall. In contradistinction, when a pneumothorax is present the intervening air presents an added barrier to efficient acoustic energy transfer. Theoretical models of sound transmission through the pulmonary system and chest region to the chest wall surface are developed to more clearly understand the mechanisms of intensity loss when a pneumothorax is present, relative to a baseline case. These models predict significant decreases in acoustic transmission strength when a pneumothorax is present, in qualitative agreement with experimental measurements. Development of the models, their extension via finite element analysis, and comparisons with experimental canine studies are reviewed.

  19. Electret Acoustic Transducer Array For Computerized Ultrasound Risk Evaluation System

    DOEpatents

    Moore, Thomas L.; Fisher, Karl A.

    2005-08-09

    An electret-based acoustic transducer array is provided and may be used in a system for examining tissue. The acoustic transducer array is formed with a substrate that has a multiple distinct cells formed therein. Within each of the distinct cells is positioned an acoustic transducing element formed of an electret material. A conductive membrane is formed over the distinct cells and may be flexible.

  20. Development of a 3D finite element acoustic model to predict the sound reduction index of stud based double-leaf walls

    NASA Astrophysics Data System (ADS)

    Arjunan, A.; Wang, C. J.; Yahiaoui, K.; Mynors, D. J.; Morgan, T.; Nguyen, V. B.; English, M.

    2014-11-01

    Building standards incorporating quantitative acoustical criteria to ensure adequate sound insulation are now being implemented. Engineers are making great efforts to design acoustically efficient double-wall structures. Accordingly, efficient simulation models to predict the acoustic insulation of double-leaf wall structures are needed. This paper presents the development of a numerical tool that can predict the frequency dependent sound reduction index R of stud based double-leaf walls at one-third-octave band frequency range. A fully vibro-acoustic 3D model consisting of two rooms partitioned using a double-leaf wall, considering the structure and acoustic fluid coupling incorporating the existing fluid and structural solvers are presented. The validity of the finite element (FE) model is assessed by comparison with experimental test results carried out in a certified laboratory. Accurate representation of the structural damping matrix to effectively predict the R values are studied. The possibilities of minimising the simulation time using a frequency dependent mesh model was also investigated. The FEA model presented in this work is capable of predicting the weighted sound reduction index Rw along with A-weighted pink noise C and A-weighted urban noise Ctr within an error of 1 dB. The model developed can also be used to analyse the acoustically induced frequency dependent geometrical behaviour of the double-leaf wall components to optimise them for best acoustic performance. The FE modelling procedure reported in this paper can be extended to other building components undergoing fluid-structure interaction (FSI) to evaluate their acoustic insulation.

  1. Effects of head geometry simplifications on acoustic radiation of vowel sounds based on time-domain finite-element simulations.

    PubMed

    Arnela, Marc; Guasch, Oriol; Alías, Francesc

    2013-10-01

    One of the key effects to model in voice production is that of acoustic radiation of sound waves emanating from the mouth. The use of three-dimensional numerical simulations allows to naturally account for it, as well as to consider all geometrical head details, by extending the computational domain out of the vocal tract. Despite this advantage, many approximations to the head geometry are often performed for simplicity and impedance load models are still used as well to reduce the computational cost. In this work, the impact of some of these simplifications on radiation effects is examined for vowel production in the frequency range 0-10 kHz, by means of comparison with radiation from a realistic head. As a result, recommendations are given on their validity depending on whether high frequency energy (above 5 kHz) should be taken into account or not. PMID:24116430

  2. Electromechanical transducer for acoustic telemetry system

    DOEpatents

    Drumheller, Douglas S.

    1993-01-01

    An improved electromechanical transducer is provided for use in an acoustic telemetry system. The transducer of this invention comprises a stack of ferroelectric ceramic disks interleaved with a plurality of spaced electrodes which are used to electrically pole the ceramic disks. The ceramic stack is housed in a metal tubular drill collar segment. The electrodes are preferably alternatively connected to ground potential and driving potential. This alternating connection of electrodes to ground and driving potential subjects each disk to an equal electric field; and the direction of the field alternates to match the alternating direction of polarization of the ceramic disks. Preferably, a thin metal foil is sandwiched between electrodes to facilitate the electrical connection. Alternatively, a thicker metal spacer plate is selectively used in place of the metal foil in order to promote thermal cooling of the ceramic stack.

  3. Extreme low frequency acoustic measurement system

    NASA Technical Reports Server (NTRS)

    Shams, Qamar A. (Inventor); Zuckerwar, Allan J. (Inventor)

    2013-01-01

    The present invention is an extremely low frequency (ELF) microphone and acoustic measurement system capable of infrasound detection in a portable and easily deployable form factor. In one embodiment of the invention, an extremely low frequency electret microphone comprises a membrane, a backplate, and a backchamber. The backchamber is sealed to allow substantially no air exchange between the backchamber and outside the microphone. Compliance of the membrane may be less than ambient air compliance. The backplate may define a plurality of holes and a slot may be defined between an outer diameter of the backplate and an inner wall of the microphone. The locations and sizes of the holes, the size of the slot, and the volume of the backchamber may be selected such that membrane motion is substantially critically damped.

  4. Electromechanical transducer for acoustic telemetry system

    DOEpatents

    Drumheller, D.S.

    1993-06-22

    An improved electromechanical transducer is provided for use in an acoustic telemetry system. The transducer of this invention comprises a stack of ferroelectric ceramic disks interleaved with a plurality of spaced electrodes which are used to electrically pole the ceramic disks. The ceramic stack is housed in a metal tubular drill collar segment. The electrodes are preferably alternatively connected to ground potential and driving potential. This alternating connection of electrodes to ground and driving potential subjects each disk to an equal electric field; and the direction of the field alternates to match the alternating direction of polarization of the ceramic disks. Preferably, a thin metal foil is sandwiched between electrodes to facilitate the electrical connection. Alternatively, a thicker metal spacer plate is selectively used in place of the metal foil in order to promote thermal cooling of the ceramic stack.

  5. Impact of Aberrant Acoustic Properties on the Perception of Sound Quality in Electrolarynx Speech

    ERIC Educational Resources Information Center

    Meltzner, Geoffrey S.; Hillman, Robert E.

    2005-01-01

    A large percentage of patients who have undergone laryngectomy to treat advanced laryngeal cancer rely on an electrolarynx (EL) to communicate verbally. Although serviceable, EL speech is plagued by shortcomings in both sound quality and intelligibility. This study sought to better quantify the relative contributions of previously identified…

  6. Sound strategy: acoustic aposematism in the bat-tiger moth arms race

    NASA Astrophysics Data System (ADS)

    Hristov, Nickolay I.; Conner, William E.

    2005-04-01

    The night sky is the venue for an ancient arms race. Insectivorous bats with their ultrasonic sonar exert an enormous selective pressure on nocturnal insects. In response insects have evolved the ability to hear bat cries, to evade their hunting maneuvers, and some, the tiger moths (Arctiidae), to utter an ultrasonic reply. We here determine what it is that tiger moths "say" to bats. We chose four species of arctiid moths, Cycnia tenera, Euchaetes egle, Utetheisa ornatrix, and Apantesis nais, that naturally differ in their levels of unpalatability and their ability to produce sound. Moths were tethered and offered to free-flying naïve big brown bats, Eptesicus fuscus. The ability of the bats to capture each species was compared to their ability to capture noctuid, geometrid, and wax moth controls over a learning period of 7 days. We repeated the experiment using the single arctiid species E. egle that through diet manipulation and simple surgery could be rendered palatable or unpalatable and sound producing or mute. We again compared the capture rates of these categories of E. egle to control moths. Using both novel learning approaches we have found that the bats only respond to the sounds of arctiids when they are paired with defensive chemistry. The sounds are in essence a warning to the bats that the moth is unpalatable—an aposematic signal.

  7. Sound Absorbers

    NASA Astrophysics Data System (ADS)

    Fuchs, H. V.; Möser, M.

    Sound absorption indicates the transformation of sound energy into heat. It is, for instance, employed to design the acoustics in rooms. The noise emitted by machinery and plants shall be reduced before arriving at a workplace; auditoria such as lecture rooms or concert halls require a certain reverberation time. Such design goals are realised by installing absorbing components at the walls with well-defined absorption characteristics, which are adjusted for corresponding demands. Sound absorbers also play an important role in acoustic capsules, ducts and screens to avoid sound immission from noise intensive environments into the neighbourhood.

  8. Intelligent Systems Approaches to Product Sound Quality Analysis

    NASA Astrophysics Data System (ADS)

    Pietila, Glenn M.

    As a product market becomes more competitive, consumers become more discriminating in the way in which they differentiate between engineered products. The consumer often makes a purchasing decision based on the sound emitted from the product during operation by using the sound to judge quality or annoyance. Therefore, in recent years, many sound quality analysis tools have been developed to evaluate the consumer preference as it relates to a product sound and to quantify this preference based on objective measurements. This understanding can be used to direct a product design process in order to help differentiate the product from competitive products or to establish an impression on consumers regarding a product's quality or robustness. The sound quality process is typically a statistical tool that is used to model subjective preference, or merit score, based on objective measurements, or metrics. In this way, new product developments can be evaluated in an objective manner without the laborious process of gathering a sample population of consumers for subjective studies each time. The most common model used today is the Multiple Linear Regression (MLR), although recently non-linear Artificial Neural Network (ANN) approaches are gaining popularity. This dissertation will review publicly available published literature and present additional intelligent systems approaches that can be used to improve on the current sound quality process. The focus of this work is to address shortcomings in the current paired comparison approach to sound quality analysis. This research will propose a framework for an adaptive jury analysis approach as an alternative to the current Bradley-Terry model. The adaptive jury framework uses statistical hypothesis testing to focus on sound pairings that are most interesting and is expected to address some of the restrictions required by the Bradley-Terry model. It will also provide a more amicable framework for an intelligent systems approach

  9. Contribution to the study of acoustic communication in two Belgian river bullheads (Cottus rhenanus and C. perifretum) with further insight into the sound-producing mechanism

    PubMed Central

    2013-01-01

    Background The freshwater sculpins (genus Cottus) are small, bottom-living fishes widely distributed in North America and Europe. The taxonomy of European species has remained unresolved for a long time due to the overlap of morphological characters. Sound production has already been documented in some cottid representatives, with sounds being involved in courtship and agonistic interactions. Although the movements associated with sound production have been observed, the underlying mechanism remains incomplete. Here, we focus on two closely related species from Belgium: C. rhenanus and C. perifretum. This study aims 1) to record and to compare acoustic communication in both species, 2) to give further insight into the sound-producing mechanism and 3) to look for new morphological traits allowing species differentiation. Results Both Cottus species produce multiple-pulsed agonistic sounds using a similar acoustic pattern: the first interpulse duration is always longer, making the first pulse unit distinct from the others. Recording sound production and hearing abilities showed a clear relationship between the sound spectra and auditory thresholds in both species: the peak frequencies of calls are around 150 Hz, which corresponds to their best hearing sensitivity. However, it appears that these fishes could not hear acoustic signals produced by conspecifics in their noisy habitat considering their hearing threshold expressed as sound pressure (~ 125 dB re 1 μPa). High-speed video recordings highlighted that each sound is produced during a complete back and forth movement of the pectoral girdle. Conclusions Both Cottus species use an acoustic pattern that remained conserved during species diversification. Surprisingly, calls do not seem to have a communicative function. On the other hand, fish could detect substrate vibrations resulting from movements carried out during sound production. Similarities in temporal and spectral characteristics also suggest that both

  10. Abnormal cortical sensorimotor activity during "Target" sound detection in subjects with acute acoustic trauma sequelae: an fMRI study.

    PubMed

    Job, Agnès; Pons, Yoann; Lamalle, Laurent; Jaillard, Assia; Buck, Karl; Segebarth, Christoph; Delon-Martin, Chantal

    2012-03-01

    The most common consequences of acute acoustic trauma (AAT) are hearing loss at frequencies above 3 kHz and tinnitus. In this study, we have used functional Magnetic Resonance Imaging (fMRI) to visualize neuronal activation patterns in military adults with AAT and various tinnitus sequelae during an auditory "oddball" attention task. AAT subjects displayed overactivities principally during reflex of target sound detection, in sensorimotor areas and in emotion-related areas such as the insula, anterior cingulate and prefrontal cortex, in premotor area, in cross-modal sensory associative areas, and, interestingly, in a region of the Rolandic operculum that has recently been shown to be involved in tympanic movements due to air pressure. We propose further investigations of this brain area and fine middle ear investigations, because our results might suggest a model in which AAT tinnitus may arise as a proprioceptive illusion caused by abnormal excitability of middle-ear muscle spindles possibly link with the acoustic reflex and associated with emotional and sensorimotor disturbances. PMID:22574285

  11. Aerodynamic excitation and sound production of blown-closed free reeds without acoustic coupling: The example of the accordion reed

    NASA Astrophysics Data System (ADS)

    Ricot, Denis; Caussé, René; Misdariis, Nicolas

    2005-04-01

    The accordion reed is an example of a blown-closed free reed. Unlike most oscillating valves in wind musical instruments, self-sustained oscillations occur without acoustic coupling. Flow visualizations and measurements in water show that the flow can be supposed incompressible and potential. A model is developed and the solution is calculated in the time domain. The excitation force is found to be associated with the inertial load of the unsteady flow through the reed gaps. Inertial effect leads to velocity fluctuations in the reed opening and then to an unsteady Bernoulli force. A pressure component generated by the local reciprocal air movement around the reed is added to the modeled aerodynamic excitation pressure. Since the model is two-dimensional, only qualitative comparisons with air flow measurements are possible. The agreement between the simulated pressure waveforms and measured pressure in the very near-field of the reed is reasonable. In addition, an aeroacoustic model using the permeable Ffowcs Williams-Hawkings integral method is presented. The integral expressions of the far-field acoustic pressure are also computed in the time domain. In agreement with experimental data, the sound is found to be dominated by the dipolar source associated by the strong momentum fluctuations of the flow through the reed gaps. .

  12. Acoustic Translation of an Acoustically Levitated Sample

    NASA Technical Reports Server (NTRS)

    Barmatz, M. B.; Allen, J. L.

    1986-01-01

    Acoustic-levitation apparatus uses only one acoustic mode to move sample from one region of chamber to another. Sample heated and cooled quickly by translation between hot and cold regions of levitation chamber. Levitated sample is raised into furnace region by raising plunger. Frequency of sound produced by transducers adjusted by feedback system to maintain (102) resonant mode, which levitates sample midway between transducers and plunger regardless of plunger position.

  13. Surface acoustic wave regulated single photon emission from a coupled quantum dot-nanocavity system

    NASA Astrophysics Data System (ADS)

    Weiß, M.; Kapfinger, S.; Reichert, T.; Finley, J. J.; Wixforth, A.; Kaniber, M.; Krenner, H. J.

    2016-07-01

    A coupled quantum dot-nanocavity system in the weak coupling regime of cavity-quantumelectrodynamics is dynamically tuned in and out of resonance by the coherent elastic field of a fSAW ≃ 800 MHz surface acoustic wave. When the system is brought to resonance by the sound wave, light-matter interaction is strongly increased by the Purcell effect. This leads to a precisely timed single photon emission as confirmed by the second order photon correlation function, g(2). All relevant frequencies of our experiment are faithfully identified in the Fourier transform of g(2), demonstrating high fidelity regulation of the stream of single photons emitted by the system.

  14. Biological Significance of Acoustic Impacts on Marine Mammals: Examples Using an Acoustic Recording tag to Define Acoustic Exposure of Sperm Whales, Physeter catodon, Exposed to Airgun Sounds in Controlled Exposure Experiments

    NASA Astrophysics Data System (ADS)

    Tyack, P. L.; Johnson, M. P.; Madsen, P. T.; Miller, P. J.; Lynch, J.

    2006-05-01

    There has been considerable debate about how to regulate behavioral disruption in marine mammals. The U.S. Marine Mammal Protection Act prohibits "taking" marine mammals, including harassment, which is defined as injury or disruption of behavioral patterns. A 2005 report by the National Academy of Sciences focuses on the need to analyze acoustic impacts on marine mammal behavior in terms of biological significance. The report develops a model for predicting population consequences of acoustic impacts. One of the key data gaps involves methods to estimate the impact of disruption on an animal's ability to complete life functions critical for growth, survival, and reproduction. One of the few areas where theory and data are available involves foraging energetics. Patrick Miller in the next talk and I will discuss an example study designed to evaluate the impact of exposure to seismic survey on the foraging energetics of sperm whales. As petroleum exploration moves offshore to deep water, there is increasing overlap between seismic exploration and deep diving toothed whales such as the sperm whale which is listed by the US as an endangered species. With support from the US Minerals Management Service and the Industry Research Funding Coalition, we tagged sperm whales with tags that can record sound, orientation, acceleration, temperature and depth. Eight whales tagged in the Gulf of Mexico during 2002-2003 were subjects in 5 controlled experiments involving exposure to sounds of an airgun array. One critical component of evaluating effects involves quantifying exposure at the animal. While the on-axis signature of airgun arrays has been well quantified, there are few broadband calibrated measurements in the water column displaced horizontally away from the downward-directed beam. The acoustic recording tags provide direct data on sounds as received at the animals. Due to multipath propagation, multiple sound pulses were recorded on the tagged whales for each firing of

  15. Acoustic chaos

    SciTech Connect

    Lauterborn, W.; Parlitz, U.; Holzfuss, J.; Billo, A.; Akhatov, I.

    1996-06-01

    Acoustic cavitation, a complex, spatio-temporal dynamical system, is investigated with respect to its chaotic properties. The sound output, the {open_quote}{open_quote}noise{close_quote}{close_quote}, is subjected to time series analysis. The spatial dynamics of the bubble filaments is captured by high speed holographic cinematography and subsequent digital picture processing from the holograms. Theoretical models are put forward for describing the pattern formation. {copyright} {ital 1996 American Institute of Physics.}

  16. On the soundness and safety of expert systems.

    PubMed

    Fox, J

    1993-04-01

    The problems of developing sound and safe expert systems are discussed, with particular reference to medicine. The concepts, notations, methods, results and technologies which have emerged from the study of mathematical logic as a computational paradigm offer many benefits for improving the quality of expert systems. Logic programming offers a better discipline for design, specification and implementation than ad hoc development methodologies. When logic programming is combined with software engineering methods, such as a software development life-cycle, the probability of routinely developing large-scale yet efficient and sound applications will be increased. However, although soundness is a necessary property of any technology it is not sufficient for assuring safety. Established methods for improved software safety are discussed, and a number of approaches to improving the safety of medical expert systems is identified. The possibility of introducing an appropriately extended life-cycle, and the potential benefits of a formal theory of safety are discussed. PMID:8358492

  17. The integrated sounding system: Description and preliminary observations from TOGA COARE

    SciTech Connect

    Parsons, D.; Dabberdt, W.; Cole, H.; Hock, T.; Martin, C.; Barrett, A.L.; Miller, E.; Spowart, M.; Howard, M. ); Ecklund, W. )

    1994-04-01

    An Integrated Sounding System (ISS) that combines state-of-the-art remote and in situ sensors into a single transportable facility has been developed jointly by the National Center for Atmospheric Research (NCAR) and the Aeronomy Laboratory of the National Oceanic and Atmospheric Administration (NOAA/AL). The instrumentation for each ISS includes a 915-MHz wind profiler, a Radio Acoustic Sounding System (RASS), and Omega-based NAVAID sounding system, and an enhanced surface meteorological station. The general philosophy behind the ISS is that the integration of various measurement systems overcomes each system's respective limitations while taking advantage of its positive attributes. The individual observing systems within the ISS provide high-level data products to a central workstation that manages and integrates these measurements. The ISS software package performs a wide range of functions: real-time data acquisition, database support, and graphical displays; data archival and communications; and operational and posttime analysis. The first deployment of the ISS consists of six sites in the western tropical Pacific - four land-based deployments and two ship-based deployments. The sites serve the Coupled Ocean-Atmosphere Response Experiment (COARE) of the Tropical Ocean and Global Atmosphere (TOGA) program and TOGA's enhanced atmospheric monitoring effort. Examples of ISS data taken during this deployment are shown in order to demonstrate the capabilities of this new sounding system and to demonstrate the performance of these in situ and remote sensing instruments in a moist tropical environment. In particular, a strong convective outflow with a pronounced impact of the atmospheric boundary layer and heat fluxes from the ocean surface was examined with a shipboard ISS. If these strong outflows commonly occur, they may prove to be an important component of the surface energy budget of the western tropical Pacific. 30 refs., 12 figs., 2 tabs.

  18. External and middle ear sound pressure distribution and acoustic coupling to the tympanic membrane

    PubMed Central

    Bergevin, Christopher; Olson, Elizabeth S.

    2014-01-01

    Sound energy is conveyed to the inner ear by the diaphanous, cone-shaped tympanic membrane (TM). The TM moves in a complex manner and transmits sound signals to the inner ear with high fidelity, pressure gain, and a short delay. Miniaturized sensors allowing high spatial resolution in small spaces and sensitivity to high frequencies were used to explore how pressure drives the TM. Salient findings are: (1) A substantial pressure drop exists across the TM, and varies in frequency from ∼10 to 30 dB. It thus appears reasonable to approximate the drive to the TM as being defined solely by the pressure in the ear canal (EC) close to the TM. (2) Within the middle ear cavity (MEC), spatial variations in sound pressure could vary by more than 20 dB, and the MEC pressure at certain locations/frequencies was as large as in the EC. (3) Spatial variations in pressure along the TM surface on the EC-side were typically less than 5 dB up to 50 kHz. Larger surface variations were observed on the MEC-side. PMID:24606269

  19. Acoustic energy density distribution and sound intensity vector field inside coupled spaces.

    PubMed

    Meissner, Mirosław

    2012-07-01

    In this paper, the modal expansion method supported by a computer implementation has been used to predict steady-state distributions of the potential and kinetic energy densities, and the active and reactive sound intensities inside two coupled enclosures. The numerical study was dedicated to low-frequency room responses. Calculation results have shown that the distribution of energetic quantities in coupled spaces is strongly influenced by the modal localization. Appropriate descriptors of the localization effect were introduced to identify localized modes. As was evidenced by numerical data, the characteristic objects in the active intensity field are vortices positioned irregularly inside the room. It was found that vortex centers lie exactly on the lines corresponding to zeros of the eigenfunction for a dominant mode. Finally, an impact of the wall impedance on the quantitative relationship between the active and reactive intensities was analyzed and it was concluded that for very small sound damping the behavior of the sound intensity inside the room space is essentially only oscillatory. PMID:22779472

  20. Nonlinear wave fronts and ionospheric irregularities observed by HF sounding over a powerful acoustic source

    NASA Astrophysics Data System (ADS)

    Blanc, Elisabeth; Rickel, Dwight

    1989-06-01

    Different wave fronts affected by significant nonlinearities have been observed in the ionosphere by a pulsed HF sounding experiment at a distance of 38 km from the source point of a 4800-kg ammonium nitrate and fuel oil (ANFO) explosion on the ground. These wave fronts are revealed by partial reflections of the radio sounding waves. A small-scale irregular structure has been generated by a first wave front at the level of a sporadic E layer which characterized the ionosphere at the time of the experiment. The time scale of these fluctuations is about 1 to 2 s; its lifetime is about 2 min. Similar irregularities were also observed at the level of a second wave front in the F region. This structure appears also as diffusion on a continuous wave sounding at horizontal distances of the order of 200 km from the source. In contrast, a third front unaffected by irregularities may originate from the lowest layers of the ionosphere or from a supersonic wave front propagating at the base of the thermosphere. The origin of these structures is discussed.

  1. Acoustical Environment for Academic Buildings.

    ERIC Educational Resources Information Center

    Lortie, L.J.

    Discussion of the parameters governing noise control and room acoustics are followed by a demonstration on how to achieve a good acoustical environment. Topics emphasized include--(1) design and control objectives, (2) noise sources and propagation, (3) reverberation parameters, (4) noise control factors and parameters, and (5) sound systems. Also…

  2. Acoustic field interaction with a boiling system under terrestrial gravity and microgravity.

    PubMed

    Sitter, J S; Snyder, T J; Chung, J N; Marston, P L

    1998-11-01

    Pool boiling experiments from a platinum wire heater in FC-72 liquid were conducted under terrestrial and microgravity conditions, both with and without the presence of a high-intensity acoustic standing wave within the fluid. The purpose of this research was to study the interaction between an acoustic field and a pool boiling system in normal gravity and microgravity. The absence of buoyancy in microgravity complicates the process of boiling. The acoustic force on a vapor bubble generated from a heated wire in a standing wave was shown to be able to play the role of buoyancy in microgravity. The microgravity environment was achieved with 0.6 and 2.1-s drop towers. The sound was transmitted through the fluid medium by means of a half wavelength sonic transducer driven at 10.18 kHz. At high enough acoustic pressure amplitudes cavitation and streaming began playing an important role in vapor bubble dynamics and heat transfer. Several different fixed heat fluxes were chosen for the microgravity experiment and the effects of acoustics on the surface temperature of the heater were recorded and the vapor bubble movement was filmed. Video images of the pool boiling processes and heat transfer data are presented. PMID:9821335

  3. The Doppler Effect based acoustic source separation for a wayside train bearing monitoring system

    NASA Astrophysics Data System (ADS)

    Zhang, Haibin; Zhang, Shangbin; He, Qingbo; Kong, Fanrang

    2016-01-01

    Wayside acoustic condition monitoring and fault diagnosis for train bearings depend on acquired acoustic signals, which consist of mixed signals from different train bearings with obvious Doppler distortion as well as background noises. This study proposes a novel scheme to overcome the difficulties, especially the multi-source problem in wayside acoustic diagnosis system. In the method, a time-frequency data fusion (TFDF) strategy is applied to weaken the Heisenberg's uncertainty limit for a signal's time-frequency distribution (TFD) of high resolution. Due to the Doppler Effect, the signals from different bearings have different time centers even with the same frequency. A Doppler feature matching search (DFMS) algorithm is then put forward to locate the time centers of different bearings in the TFD spectrogram. With the determined time centers, time-frequency filters (TFF) are designed with thresholds to separate the acoustic signals in the time-frequency domain. Then the inverse STFT (ISTFT) is taken and the signals are recovered and filtered aiming at each sound source. Subsequently, a dynamical resampling method is utilized to remove the Doppler Effect. Finally, accurate diagnosis for train bearing faults can be achieved by applying conventional spectrum analysis techniques to the resampled data. The performance of the proposed method is verified by both simulated and experimental cases. It shows that it is effective to detect and diagnose multiple defective bearings even though they produce multi-source acoustic signals.

  4. Sound insulation property of membrane-type acoustic metamaterials carrying different masses at adjacent cells

    NASA Astrophysics Data System (ADS)

    Zhang, Yuguang; Wen, Jihong; Zhao, Honggang; Yu, Dianlong; Cai, Li; Wen, Xisen

    2013-08-01

    We present the experimental realization and theoretical understanding of membrane-type acoustic metamaterials embedded with different masses at adjacent cells, capable of increasing the transmission loss at low frequency. Owing to the reverse vibration of adjacent cells, Transmission loss (TL) peaks appear, and the magnitudes of the TL peaks exceed the predicted results of the composite wall. Compared with commonly used configuration, i.e., all cells carrying with identical mass, the nonuniformity of attaching masses causes another much low TL peak. Finite element analysis was employed to validate and provide insights into the TL behavior of the structure.

  5. Sound-field reproduction systems using fixed-directivity loudspeakers.

    PubMed

    Poletti, M; Fazi, F M; Nelson, P A

    2010-06-01

    Sound reproduction systems using open arrays of loudspeakers in rooms suffer from degradations due to room reflections. These reflections can be reduced using pre-compensation of the loudspeaker signals, but this requires calibration of the array in the room, and is processor-intensive. This paper examines 3D sound reproduction systems using spherical arrays of fixed-directivity loudspeakers which reduce the sound field radiated outside the array. A generalized form of the simple source formulation and a mode-matching solution are derived for the required loudspeaker weights. The exterior field is derived and expressions for the exterior power and direct to reverberant ratio are derived. The theoretical results and simulations confirm that minimum interference occurs for loudspeakers which have hyper-cardioid polar responses. PMID:20550259

  6. Wearable Eating Habit Sensing System Using Internal Body Sound

    NASA Astrophysics Data System (ADS)

    Shuzo, Masaki; Komori, Shintaro; Takashima, Tomoko; Lopez, Guillaume; Tatsuta, Seiji; Yanagimoto, Shintaro; Warisawa, Shin'ichi; Delaunay, Jean-Jacques; Yamada, Ichiro

    Continuous monitoring of eating habits could be useful in preventing lifestyle diseases such as metabolic syndrome. Conventional methods consist of self-reporting and calculating mastication frequency based on the myoelectric potential of the masseter muscle. Both these methods are significant burdens for the user. We developed a non-invasive, wearable sensing system that can record eating habits over a long period of time in daily life. Our sensing system is composed of two bone conduction microphones placed in the ears that send internal body sound data to a portable IC recorder. Applying frequency spectrum analysis on the collected sound data, we could not only count the number of mastications during eating, but also accurately differentiate between eating, drinking, and speaking activities. This information can be used to evaluate the regularity of meals. Moreover, we were able to analyze sound features to classify the types of foods eaten by food texture.

  7. Acoustical analysis of mechanical heart valve sounds for early detection of malfunction.

    PubMed

    Famaey, Nele; Defever, Korijn; Bielen, Paul; Flameng, Willem; Vander Sloten, Jos; Sas, Paul; Meuris, Bart

    2010-10-01

    Mechanical heart valves carry the disadvantage of lifelong antithrombotic therapy, due to the high risk of thrombus formation on the valve surface. Current diagnostic methods are incapable of detecting thrombus formation in an early stage. This article investigates a new diagnostic method, based on the analysis of the acoustic signal produced by the valve. This method should be capable of early detection of malfunction, thus permitting targeted medication and reducing valve-related complications and mortality. A measurement setup assuring optimal signal quality was developed, and a signal analysis program was implemented and validated on an in vitro mock circulatory loop. Next, four sheep were implanted with a bileaflet mechanical valve. The signals of their valves developing thrombosis were assessed on a weekly basis before explantation. Three sheep were sacrificed shortly after detection of malfunction according to the newly developed method. In each case, thrombus or membrane formation was detected on the leaflets upon explantation. In one sheep, no malfunction was found in the analysis, which was also confirmed by the condition of the valve upon explantation. These preliminary results indicate that acoustical analysis of mechanical heart valves permits early detection of valvular malfunction. Further research with more in vitro and animal testing is required to statistically validate these findings. PMID:20573536

  8. Effects of acoustic variability in the perceptual learning of non-native-accented speech sounds.

    PubMed

    Wade, Travis; Jongman, Allard; Sereno, Joan

    2007-01-01

    This study addressed whether acoustic variability and category overlap in non-native speech contribute to difficulty in its recognition, and more generally whether the benefits of exposure to acoustic variability during categorization training are stable across differences in category confusability. Three experiments considered a set of Spanish-accented English productions. The set was seen to pose learning and recognition difficulty (experiment 1) and was more variable and confusable than a parallel set of native productions (experiment 2). A training study (experiment 3) probed the relative contributions of category central tendency and variability to difficulty in vowel identification using derived inventories in which these dimensions were manipulated based on the results of experiments 1 and 2. Training and test difficulty related straightforwardly to category confusability but not to location in the vowel space. Benefits of high-variability exposure also varied across vowel categories, and seemed to be diminished for highly confusable vowels. Overall, variability was implicated in perception and learning difficulty in ways that warrant further investigation. PMID:17914280

  9. Optimization of a Biometric System Based on Acoustic Images

    PubMed Central

    Izquierdo Fuente, Alberto; Del Val Puente, Lara; Villacorta Calvo, Juan J.; Raboso Mateos, Mariano

    2014-01-01

    On the basis of an acoustic biometric system that captures 16 acoustic images of a person for 4 frequencies and 4 positions, a study was carried out to improve the performance of the system. On a first stage, an analysis to determine which images provide more information to the system was carried out showing that a set of 12 images allows the system to obtain results that are equivalent to using all of the 16 images. Finally, optimization techniques were used to obtain the set of weights associated with each acoustic image that maximizes the performance of the biometric system. These results improve significantly the performance of the preliminary system, while reducing the time of acquisition and computational burden, since the number of acoustic images was reduced. PMID:24616643

  10. Optimization of a biometric system based on acoustic images.

    PubMed

    Izquierdo Fuente, Alberto; Del Val Puente, Lara; Villacorta Calvo, Juan J; Raboso Mateos, Mariano

    2014-01-01

    On the basis of an acoustic biometric system that captures 16 acoustic images of a person for 4 frequencies and 4 positions, a study was carried out to improve the performance of the system. On a first stage, an analysis to determine which images provide more information to the system was carried out showing that a set of 12 images allows the system to obtain results that are equivalent to using all of the 16 images. Finally, optimization techniques were used to obtain the set of weights associated with each acoustic image that maximizes the performance of the biometric system. These results improve significantly the performance of the preliminary system, while reducing the time of acquisition and computational burden, since the number of acoustic images was reduced. PMID:24616643

  11. Acoustical Measurement Of Furnace Temperatures

    NASA Technical Reports Server (NTRS)

    Parthasarathy, Shakkottai; Venkateshan, Shakkottai P.

    1989-01-01

    Simple probes withstand severe conditions, yet give spatially-resolved temperature readings. Prototype acoustical system developed to measure temperatures from ambient to 1,800 degree F in such structures as large industrial lime kilns and recovery-boiler furnaces. Pulses of sound reflected from obstructions in sensing tube. Speed of sound and temperature in each segment deduced from travel times of pulses.

  12. A training system of orientation and mobility for blind people using acoustic virtual reality.

    PubMed

    Seki, Yoshikazu; Sato, Tetsuji

    2011-02-01

    A new auditory orientation training system was developed for blind people using acoustic virtual reality (VR) based on a head-related transfer function (HRTF) simulation. The present training system can reproduce a virtual training environment for orientation and mobility (O&M) instruction, and the trainee can walk through the virtual training environment safely by listening to sounds such as vehicles, stores, ambient noise, etc., three-dimensionally through headphones. The system can reproduce not only sound sources but also sound reflection and insulation, so that the trainee can learn both sound location and obstacle perception skills. The virtual training environment is described in extensible markup language (XML), and the O&M instructor can edit it easily according to the training curriculum. Evaluation experiments were conducted to test the efficiency of some features of the system. Thirty subjects who had not acquired O&M skills attended the experiments. The subjects were separated into three groups: a no-training group, a virtual-training group using the present system, and a real-training group in real environments. The results suggested that virtual-training can reduce "veering" more than real-training and also can reduce stress as much as real training. The subjective technical and anxiety scores also improved. PMID:20805059

  13. Musical Acoustics

    NASA Astrophysics Data System (ADS)

    Gough, Colin

    This chapter provides an introduction to the physical and psycho-acoustic principles underlying the production and perception of the sounds of musical instruments. The first section introduces generic aspects of musical acoustics and the perception of musical sounds, followed by separate sections on string, wind and percussion instruments.

  14. Design of laser monitoring and sound localization system

    NASA Astrophysics Data System (ADS)

    Liu, Yu-long; Xu, Xi-ping; Dai, Yu-ming; Qiao, Yang

    2013-08-01

    In this paper, a novel design of laser monitoring and sound localization system is proposed. It utilizes laser to monitor and locate the position of the indoor conversation. In China most of the laser monitors no matter used in labor in an instrument uses photodiode or phototransistor as a detector at present. At the laser receivers of those facilities, light beams are adjusted to ensure that only part of the window in photodiodes or phototransistors received the beams. The reflection would deviate from its original path because of the vibration of the detected window, which would cause the changing of imaging spots in photodiode or phototransistor. However, such method is limited not only because it could bring in much stray light in receivers but also merely single output of photocurrent could be obtained. Therefore a new method based on quadrant detector is proposed. It utilizes the relation of the optical integral among quadrants to locate the position of imaging spots. This method could eliminate background disturbance and acquired two-dimensional spots vibrating data pacifically. The principle of this whole system could be described as follows. Collimated laser beams are reflected from vibrate-window caused by the vibration of sound source. Therefore reflected beams are modulated by vibration source. Such optical signals are collected by quadrant detectors and then are processed by photoelectric converters and corresponding circuits. Speech signals are eventually reconstructed. In addition, sound source localization is implemented by the means of detecting three different reflected light sources simultaneously. Indoor mathematical models based on the principle of Time Difference Of Arrival (TDOA) are established to calculate the twodimensional coordinate of sound source. Experiments showed that this system is able to monitor the indoor sound source beyond 15 meters with a high quality of speech reconstruction and to locate the sound source position accurately.

  15. Phase change measurement, and speed of sound and attenuation determination, from underwater acoustic panel tests.

    PubMed

    Piquette, Jean C; Paolero, Anthony E

    2003-03-01

    A technique for measuring the change in phase produced by the insertion of a panel between a projector and receiver is described. Presented also is a procedure for determining the phase speed and attenuation of the panel material. Although the methods were developed over the frequency decade 10-100 kHz, they are not limited to that band. It was observed that a "settling time" of approximately 20 min is required to obtain reproducible phase measurements if the experiment is disturbed even slightly. For example, rotating the panel 10 degrees, then immediately returning to the original position, causes the observed phases to differ by up to 10 deg from those obtained prior to the disturbance. These differences are distributed randomly across frequency. Temperature stabilization within the medium as well as the material is also required before measurements can take place. After the stated 20 min settling time, however, the phases return to the values obtained prior to rotation, or after temperature stabilization, to within +/- 1/2 deg. The sound speed and attenuation determination technique employs least-squares fitting of a causal model to the measurements. Four (or fewer) adjusted parameters accommodate the measurements over the stated frequency decade, even for samples that exhibit significant dispersion. The sound speed is typically determined to an accuracy of +/- 30 m/s, as judged from a propagation-of-error calculation. This model assumes single-layered panels. PMID:12656386

  16. Pilot Whales Attracted to Killer Whale Sounds: Acoustically-Mediated Interspecific Interactions in Cetaceans

    PubMed Central

    Curé, Charlotte; Antunes, Ricardo; Samarra, Filipa; Alves, Ana Catarina; Visser, Fleur; Kvadsheim, Petter H.; Miller, Patrick J. O.

    2012-01-01

    In cetaceans’ communities, interactions between individuals of different species are often observed in the wild. Yet, due to methodological and technical challenges very little is known about the mediation of these interactions and their effect on cetaceans’ behavior. Killer whales (Orcinus orca) are a highly vocal species and can be both food competitors and potential predators of many other cetaceans. Thus, the interception of their vocalizations by unintended cetacean receivers may be particularly important in mediating interspecific interactions. To address this hypothesis, we conducted playbacks of killer whale vocalizations recorded during herring-feeding activity to free-ranging long-finned pilot whales (Globicephala melas). Using a multi-sensor tag, we were able to track the whales and to monitor changes of their movements and social behavior in response to the playbacks. We demonstrated that the playback of killer whale sounds to pilot whales induced a clear increase in group size and a strong attraction of the animals towards the sound source. These findings provide the first experimental evidence that the interception of heterospecific vocalizations can mediate interactions between different cetacean species in previously unrecognized ways. PMID:23300613

  17. Pilot whales attracted to killer whale sounds: acoustically-mediated interspecific interactions in cetaceans.

    PubMed

    Curé, Charlotte; Antunes, Ricardo; Samarra, Filipa; Alves, Ana Catarina; Visser, Fleur; Kvadsheim, Petter H; Miller, Patrick J O

    2012-01-01

    In cetaceans' communities, interactions between individuals of different species are often observed in the wild. Yet, due to methodological and technical challenges very little is known about the mediation of these interactions and their effect on cetaceans' behavior. Killer whales (Orcinus orca) are a highly vocal species and can be both food competitors and potential predators of many other cetaceans. Thus, the interception of their vocalizations by unintended cetacean receivers may be particularly important in mediating interspecific interactions. To address this hypothesis, we conducted playbacks of killer whale vocalizations recorded during herring-feeding activity to free-ranging long-finned pilot whales (Globicephala melas). Using a multi-sensor tag, we were able to track the whales and to monitor changes of their movements and social behavior in response to the playbacks. We demonstrated that the playback of killer whale sounds to pilot whales induced a clear increase in group size and a strong attraction of the animals towards the sound source. These findings provide the first experimental evidence that the interception of heterospecific vocalizations can mediate interactions between different cetacean species in previously unrecognized ways. PMID:23300613

  18. Acoustics

    NASA Astrophysics Data System (ADS)

    The acoustics research activities of the DLR fluid-mechanics department (Forschungsbereich Stroemungsmechanik) during 1988 are surveyed and illustrated with extensive diagrams, drawings, graphs, and photographs. Particular attention is given to studies of helicopter rotor noise (high-speed impulsive noise, blade/vortex interaction noise, and main/tail-rotor interaction noise), propeller noise (temperature, angle-of-attack, and nonuniform-flow effects), noise certification, and industrial acoustics (road-vehicle flow noise and airport noise-control installations).

  19. Estimating surface acoustic impedance with the inverse method.

    PubMed

    Piechowicz, Janusz

    2011-01-01

    Sound field parameters are predicted with numerical methods in sound control systems, in acoustic designs of building and in sound field simulations. Those methods define the acoustic properties of surfaces, such as sound absorption coefficients or acoustic impedance, to determine boundary conditions. Several in situ measurement techniques were developed; one of them uses 2 microphones to measure direct and reflected sound over a planar test surface. Another approach is used in the inverse boundary elements method, in which estimating acoustic impedance of a surface is expressed as an inverse boundary problem. The boundary values can be found from multipoint sound pressure measurements in the interior of a room. This method can be applied to arbitrarily-shaped surfaces. This investigation is part of a research programme on using inverse methods in industrial room acoustics. PMID:21939599

  20. Universal Data Handling System for Sounding Rockets and Balloons

    NASA Astrophysics Data System (ADS)

    Andersson, G.

    2015-09-01

    Data handling systems (DHS) used in service systems and experiment modules on sounding rockets and balloons have traditionally been different in design. A study was performed in 2012 at SSC to evaluate the feasibility of a common system usable across different platforms. The outcome was the “Unified DHS system”. The new DHS is very modular in design and can easily be adapted to different mission scenarios.

  1. Language Sound Systems and Second Language Acquisition.

    ERIC Educational Resources Information Center

    Skaer, Peter M.

    A language typology based on common errors made in pronunciation of English by speakers of other languages is presented and discussed. The classification system was developed from the concept of interlanguage, the intermediate step between a language learner's native and target languages, and the notion that interference in learning a new language…

  2. Dugong (Dugong dugon) vocalization patterns recorded by automatic underwater sound monitoring systems.

    PubMed

    Ichikawa, Kotaro; Tsutsumi, Chika; Arai, Nobuaki; Akamatsu, Tomonari; Shinke, Tomio; Hara, Takeshi; Adulyanukosol, Kanjana

    2006-06-01

    To quantitatively examine the diurnal, or tidal, effects on dugong behavior, we employed passive acoustic observation techniques to monitor the animals. Automatic underwater sound monitoring systems for dugongs (AUSOMS-D) were deployed on the sea floor at depths of about 5 m south of Talibong Island, Thailand. The AUSOMS-D recorded underwater sound in stereo at a sampling frequency of 44.1 kHz for more than 116 consecutive hours. Dugong calls were automatically detected by newly developed software with a detection rate of 36.1% and a false alarm rate of 2.9%. In total, 3453 calls were detected during the 164 h of recording. The autocorrelation of the call rate indicated an attendance cycle of about 24 or 25 h, and the most frequent vocalizations were observed from 0300 to 0500 h. The calculated bearings of the sound sources, i.e., dugongs, were used as an indicator to track the relative numbers of dugongs during the monitoring periods. PMID:16838515

  3. Preliminary characterization of a one-axis acoustic system. [acoustic levitation for space processing

    NASA Technical Reports Server (NTRS)

    Oran, W. A.; Reiss, D. A.; Berge, L. H.; Parker, H. W.

    1979-01-01

    The acoustic fields and levitation forces produced along the axis of a single-axis resonance system were measured. The system consisted of a St. Clair generator and a planar reflector. The levitation force was measured for bodies of various sizes and geometries (i.e., spheres, cylinders, and discs). The force was found to be roughly proportional to the volume of the body until the characteristic body radius reaches approximately 2/k (k = wave number). The acoustic pressures along the axis were modeled using Huygens principle and a method of imaging to approximate multiple reflections. The modeled pressures were found to be in reasonable agreement with those measured with a calibrated microphone.

  4. Sound scattering from rough bubbly ocean surface based on modified sea surface acoustic simulator and consideration of various incident angles and sub-surface bubbles' radii

    NASA Astrophysics Data System (ADS)

    Bolghasi, Alireza; Ghadimi, Parviz; Chekab, Mohammad A. Feizi

    2016-08-01

    The aim of the present study is to improve the capabilities and precision of a recently introduced Sea Surface Acoustic Simulator (SSAS) developed based on optimization of the Helmholtz-Kirchhoff-Fresnel (HKF) method. The improved acoustic simulator, hereby known as the Modified SSAS (MSSAS), is capable of determining sound scattering from the sea surface and includes an extended Hall-Novarini model and optimized HKF method. The extended Hall-Novarini model is used for considering the effects of sub-surface bubbles over a wider range of radii of sub-surface bubbles compared to the previous SSAS version. Furthermore, MSSAS has the capability of making a three-dimensional simulation of scattered sound from the rough bubbly sea surface with less error than that of the Critical Sea Tests (CST) experiments. Also, it presents scattered pressure levels from the rough bubbly sea surface based on various incident angles of sound. Wind speed, frequency, incident angle, and pressure level of the sound source are considered as input data, and scattered pressure levels and scattering coefficients are provided. Finally, different parametric studies were conducted on wind speeds, frequencies, and incident angles to indicate that MSSAS is quite capable of simulating sound scattering from the rough bubbly sea surface, according to the scattering mechanisms determined by Ogden and Erskine. Therefore, it is concluded that MSSAS is valid for both scattering mechanisms and the transition region between them that are defined by Ogden and Erskine.

  5. Influence of panel fastening on the acoustic performance of light-weight building elements: Study by sound transmission and laser scanning vibrometry

    NASA Astrophysics Data System (ADS)

    Roozen, N. B.; Muellner, H.; Labelle, L.; Rychtáriková, M.; Glorieux, C.

    2015-06-01

    Structural details and workmanship can cause considerable differences in sound insulation properties of timber frame partitions. In this study, the influence of panel fastening is investigated experimentally by means of standardized sound reduction index measurements, supported by detailed scanning laser Doppler vibrometry. In particular the effect of the number of screws used to fasten the panels to the studs, and the tightness of the screws, is studied using seven different configurations of lightweight timber frame building elements. In the frequency range from 300 to 4000 Hz, differences in the weighted sound reduction index RW as large as 10 dB were measured, suggesting that the method of fastening can have a large impact on the acoustic performance of building elements. Using the measured vibrational responses of the element, its acoustic radiation efficiency was computed numerically by means of a Rayleigh integral. The increased radiation efficiency partly explains the reduced sound reduction index. Loosening the screws, or reducing the number of screws, lowers the radiation efficiency, and significantly increases the sound reduction index of the partition.

  6. A modal-based reduction method for sound absorbing porous materials in poro-acoustic finite element models.

    PubMed

    Rumpler, Romain; Deü, Jean-François; Göransson, Peter

    2012-11-01

    Structural-acoustic finite element models including three-dimensional (3D) modeling of porous media are generally computationally costly. While being the most commonly used predictive tool in the context of noise reduction applications, efficient solution strategies are required. In this work, an original modal reduction technique, involving real-valued modes computed from a classical eigenvalue solver is proposed to reduce the size of the problem associated with the porous media. In the form presented in this contribution, the method is suited for homogeneous porous layers. It is validated on a 1D poro-acoustic academic problem and tested for its performance on a 3D application, using a subdomain decomposition strategy. The performance of the proposed method is estimated in terms of degrees of freedom downsizing, computational time enhancement, as well as matrix sparsity of the reduced system. PMID:23145601

  7. Dynamic Analysis of Sounding Rocket Pneumatic System Revision

    NASA Technical Reports Server (NTRS)

    Armen, Jerald

    2010-01-01

    The recent fusion of decades of advancements in mathematical models, numerical algorithms and curve fitting techniques marked the beginning of a new era in the science of simulation. It is becoming indispensable to the study of rockets and aerospace analysis. In pneumatic system, which is the main focus of this paper, particular emphasis will be placed on the efforts of compressible flow in Attitude Control System of sounding rocket.

  8. Time and timing in the acoustic recognition system of crickets

    PubMed Central

    Hennig, R. Matthias; Heller, Klaus-Gerhard; Clemens, Jan

    2014-01-01

    The songs of many insects exhibit precise timing as the result of repetitive and stereotyped subunits on several time scales. As these signals encode the identity of a species, time and timing are important for the recognition system that analyzes these signals. Crickets are a prominent example as their songs are built from sound pulses that are broadcast in a long trill or as a chirped song. This pattern appears to be analyzed on two timescales, short and long. Recent evidence suggests that song recognition in crickets relies on two computations with respect to time; a short linear-nonlinear (LN) model that operates as a filter for pulse rate and a longer integration time window for monitoring song energy over time. Therefore, there is a twofold role for timing. A filter for pulse rate shows differentiating properties for which the specific timing of excitation and inhibition is important. For an integrator, however, the duration of the time window is more important than the precise timing of events. Here, we first review evidence for the role of LN-models and integration time windows for song recognition in crickets. We then parameterize the filter part by Gabor functions and explore the effects of duration, frequency, phase, and offset as these will correspond to differently timed patterns of excitation and inhibition. These filter properties were compared with known preference functions of crickets and katydids. In a comparative approach, the power for song discrimination by LN-models was tested with the songs of over 100 cricket species. It is demonstrated how the acoustic signals of crickets occupy a simple 2-dimensional space for song recognition that arises from timing, described by a Gabor function, and time, the integration window. Finally, we discuss the evolution of recognition systems in insects based on simple sensory computations. PMID:25161622

  9. Effects of acoustic hood on noise, CFC-11, and particulate matter in a recycling system for waste refrigerator cabinet.

    PubMed

    Guo, Jie; Fang, Wenxiong; Yang, Yichen; Xu, Zhenming

    2014-11-01

    The mechanical-physical process was proven to be technologically feasible for waste refrigerator recycling and has been widely used in the typical e-waste recycling factories in China. In this study, effects of the acoustic hood on the reduction of noise level, CFC-11, and heavy metals (Cr, Ni, Cu, Cd, and Pb) in particulate matter (PM) were evaluated. For noise pollution, the noise level inside and outside the acoustic hood was 96.4 and 78.9 dB, respectively. Meanwhile, it had a significant effect on A-weighted sound level with a reduction from 98.3 to 63.6 dB. For CFC-11 exposure, abundant CFC-11 (255 mg/m(3)) was detected in the acoustic hood. However, the mean concentration of CFC-11 at the outline of polyurethane foam collection was obviously diminished to 14 mg/m(3), and no CFC-11 was monitored around the acoustic hood. The concentrations of PM and heavy metals in PM outside the acoustic hood were lower than those inside the acoustic hood due to the physical barriers of the acoustic hood. Based on the risk assessment, only adverse health effect caused by Pb might likely appear. All the results can provide the basic data for pollution control and risk assessment in waste refrigerator recycling system. PMID:24965005

  10. Acoustic Communication and Sound Degradation: How Do the Individual Signatures of Male and Female Zebra Finch Calls Transmit over Distance?

    PubMed Central

    Mouterde, Solveig C.; Theunissen, Frédéric E.; Elie, Julie E.; Vignal, Clémentine; Mathevon, Nicolas

    2014-01-01

    Background Assessing the active space of the various types of information encoded by songbirds' vocalizations is important to address questions related to species ecology (e.g. spacing of individuals), as well as social behavior (e.g. territorial and/or mating strategies). Up to now, most of the previous studies have investigated the degradation of species-specific related information (species identity), and there is a gap of knowledge of how finer-grained information (e.g. individual identity) can transmit through the environment. Here we studied how the individual signature coded in the zebra finch long distance contact call degrades with propagation. Methodology We performed sound transmission experiments of zebra finches' distance calls at various propagation distances. The propagated calls were analyzed using discriminant function analyses on a set of analytical parameters describing separately the spectral and temporal envelopes, as well as on a complete spectrographic representation of the signals. Results/Conclusion We found that individual signature is remarkably resistant to propagation as caller identity can be recovered even at distances greater than a hundred meters. Male calls show stronger discriminability at long distances than female calls, and this difference can be explained by the more pronounced frequency modulation found in their calls. In both sexes, individual information is carried redundantly using multiple acoustical features. Interestingly, features providing the highest discrimination at short distances are not the same ones that provide the highest discrimination at long distances. PMID:25061795

  11. Space and time variations in the fine structure of the upper atmosphere according to acoustic sounding data

    NASA Astrophysics Data System (ADS)

    Kulichkov, S. N.; Chunchuzov, I. P.; Bush, G. A.; Mishenin, A. A.; Golikova, E. V.

    2016-03-01

    The results of studying variations in the fine layered structure of the upper atmosphere (heights of 20-140 km) according to data obtained from acoustic sounding within the range of infrasonic waves are given. The sources of infrasounds were surface explosions equivalent to 10 kg to 70 t of TNT. These explosions were set off in different seasons in different regions of Russia. Experimental data obtained in 1981-2011 have been analyzed. It has been found that the fine structure in the form of vertically distributed layered formations occurs in the upper atmosphere in all seasons. Moreover, the vertical distribution of both air-temperature and wind-velocity inhomogeneities in the upper atmosphere may be invariable over a time interval of no less than several hours. It has also been found that, throughout the entire atmospheric thickness from the stratopause to the lower thermosphere heights (up to 140 km), the instantaneous height distribution of layered air-temperature and wind-velocity inhomogeneities may remain almost unchanged during a time interval of no less than 20 min.

  12. Acoustic Analyses of Speech Sounds and Rhythms in Japanese- and English-Learning Infants

    PubMed Central

    Yamashita, Yuko; Nakajima, Yoshitaka; Ueda, Kazuo; Shimada, Yohko; Hirsh, David; Seno, Takeharu; Smith, Benjamin Alexander

    2013-01-01

    The purpose of this study was to explore developmental changes, in terms of spectral fluctuations and temporal periodicity with Japanese- and English-learning infants. Three age groups (15, 20, and 24 months) were selected, because infants diversify phonetic inventories with age. Natural speech of the infants was recorded. We utilized a critical-band-filter bank, which simulated the frequency resolution in adults’ auditory periphery. First, the correlations between the power fluctuations of the critical-band outputs represented by factor analysis were observed in order to see how the critical bands should be connected to each other, if a listener is to differentiate sounds in infants’ speech. In the following analysis, we analyzed the temporal fluctuations of factor scores by calculating autocorrelations. The present analysis identified three factors as had been observed in adult speech at 24 months of age in both linguistic environments. These three factors were shifted to a higher frequency range corresponding to the smaller vocal tract size of the infants. The results suggest that the vocal tract structures of the infants had developed to become adult-like configuration by 24 months of age in both language environments. The amount of utterances with periodic nature of shorter time increased with age in both environments. This trend was clearer in the Japanese environment. PMID:23450824

  13. Verification of Ares I Liftoff Acoustic Environments via the Ares I Scale Model Acoustic Test

    NASA Technical Reports Server (NTRS)

    Counter, Douglas; Houston, Janice

    2012-01-01

    The Ares I Scale Model Acoustic Test (ASMAT) program was implemented to verify the predicted Ares I liftoff acoustic environments and to determine the acoustic reduction gained by using an above deck water sound suppression system. The test article included a 5% scale Ares I vehicle model and Mobile Launcher with tower. Acoustic and pressure data were measured by over 200 instruments. The ASMAT results are compared to Ares I-X flight data.

  14. Acoustic-Modal Testing of the Ares I Launch Abort System Attitude Control Motor Valve

    NASA Technical Reports Server (NTRS)

    Davis, R. Benjamin; Fischbach, Sean R.

    2010-01-01

    The Attitude Control Motor (ACM) is being developed for use in the Launch Abort System (LAS) of NASA's Ares I launch vehicle. The ACM consists of a small solid rocket motor and eight actuated pintle valves that directionally allocate.thrust_- 1t.has-been- predicted-that significant unsteady. pressure.fluctuations.will.exist. inside the-valves during operation. The dominant frequencies of these oscillations correspond to the lowest several acoustic natural frequencies of the individual valves. An acoustic finite element model of the fluid volume inside the valve has been critical to the prediction of these frequencies and their associated mode shapes. This work describes an effort to experimentally validate the acoustic finite model of the valve with an acoustic modal test. The modal test involved instrumenting a flight-like valve with six microphones and then exciting the enclosed air with a loudspeaker. The loudspeaker was configured to deliver broadband noise at relatively high sound pressure levels. The aquired microphone signals were post-processed and compared to results generated from the acoustic finite element model. Initial comparisons between the test data and the model results revealed that additional model refinement was necessary. Specifically, the model was updated to implement a complex impedance boundary condition at the entrance to the valve supply tube. This boundary condition models the frequency-dependent impedance that an acoustic wave will encounter as it reaches the end of the supply tube. Upon invoking this boundary condition, significantly improved agreement between the test data and the model was realized.

  15. Field-Deployable Acoustic Digital Systems for Noise Measurement

    NASA Technical Reports Server (NTRS)

    Shams, Qamar A.; Wright, Kenneth D.; Lunsford, Charles B.; Smith, Charlie D.

    2000-01-01

    Langley Research Center (LaRC) has for years been a leader in field acoustic array measurement technique. Two field-deployable digital measurement systems have been developed to support acoustic research programs at LaRC. For several years, LaRC has used the Digital Acoustic Measurement System (DAMS) for measuring the acoustic noise levels from rotorcraft and tiltrotor aircraft. Recently, a second system called Remote Acquisition and Storage System (RASS) was developed and deployed for the first time in the field along with DAMS system for the Community Noise Flight Test using the NASA LaRC-757 aircraft during April, 2000. The test was performed at Airborne Airport in Wilmington, OH to validate predicted noise reduction benefits from alternative operational procedures. The test matrix was composed of various combinations of altitude, cutback power, and aircraft weight. The DAMS digitizes the acoustic inputs at the microphone site and can be located up to 2000 feet from the van which houses the acquisition, storage and analysis equipment. Digitized data from up to 10 microphones is recorded on a Jaz disk and is analyzed post-test by microcomputer system. The RASS digitizes and stores acoustic inputs at the microphone site that can be located up to three miles from the base station and can compose a 3 mile by 3 mile array of microphones. 16-bit digitized data from the microphones is stored on removable Jaz disk and is transferred through a high speed array to a very large high speed permanent storage device. Up to 30 microphones can be utilized in the array. System control and monitoring is accomplished via Radio Frequency (RF) link. This paper will present a detailed description of both systems, along with acoustic data analysis from both systems.

  16. AST Launch Vehicle Acoustics

    NASA Technical Reports Server (NTRS)

    Houston, Janice; Counter, D.; Giacomoni, D.

    2015-01-01

    The liftoff phase induces acoustic loading over a broad frequency range for a launch vehicle. These external acoustic environments are then used in the prediction of internal vibration responses of the vehicle and components which result in the qualification levels. Thus, predicting these liftoff acoustic (LOA) environments is critical to the design requirements of any launch vehicle. If there is a significant amount of uncertainty in the predictions or if acoustic mitigation options must be implemented, a subscale acoustic test is a feasible pre-launch test option to verify the LOA environments. The NASA Space Launch System (SLS) program initiated the Scale Model Acoustic Test (SMAT) to verify the predicted SLS LOA environments and to determine the acoustic reduction with an above deck water sound suppression system. The SMAT was conducted at Marshall Space Flight Center and the test article included a 5% scale SLS vehicle model, tower and Mobile Launcher. Acoustic and pressure data were measured by approximately 250 instruments. The SMAT liftoff acoustic results are presented, findings are discussed and a comparison is shown to the Ares I Scale Model Acoustic Test (ASMAT) results.

  17. Conceptual Sound System Design for Clifford Odets' "GOLDEN BOY"

    NASA Astrophysics Data System (ADS)

    Yang, Yen Chun

    There are two different aspects in the process of sound design, "Arts" and "Science". In my opinion, the sound design should engage both aspects strongly and in interaction with each other. I started the process of designing the sound for GOLDEN BOY by building the city soundscape of New York City in 1937. The scenic design for this piece is designed in the round, putting the audience all around the stage; this gave me a great opportunity to use surround and specialization techniques to transform the space into a different sonic world. My specialization design is composed of two subsystems -- one is the four (4) speakers center cluster diffusing towards the four (4) sections of audience, and the other is the four (4) speakers on the four (4) corners of the theatre. The outside ring provides rich sound source localization and the inside ring provides more support for control of the specialization details. In my design four (4) lavalier microphones are hung under the center iron cage from the four (4) corners of the stage. Each microphone is ten (10) feet above the stage. The signal for each microphone is sent to the two (2) center speakers in the cluster diagonally opposite the microphone. With the appropriate level adjustment of the microphones, the audience will not notice the amplification of the voices; however, through my specialization system, the presence and location of the voices of all actors are preserved for all audiences clearly. With such vocal reinforcements provided by the microphones, I no longer need to worry about overwhelming the dialogue on stage by the underscoring. A successful sound system design should not only provide a functional system, but also take the responsibility of bringing actors' voices to the audience and engaging the audience with the world that we create on stage. By designing a system which reinforces the actors' voices while at the same time providing control over localization of movement of sound effects, I was able not

  18. The Curious Acoustic Behavior of Estuarine Snapping Shrimp: Temporal Patterns of Snapping Shrimp Sound in Sub-Tidal Oyster Reef Habitat

    PubMed Central

    Bohnenstiehl, DelWayne R.; Lillis, Ashlee; Eggleston, David B.

    2016-01-01

    Ocean soundscapes convey important sensory information to marine life. Like many mid-to-low latitude coastal areas worldwide, the high-frequency (>1.5 kHz) soundscape of oyster reef habitat within the West Bay Marine Reserve (36°N, 76°W) is dominated by the impulsive, short-duration signals generated by snapping shrimp. Between June 2011 and July 2012, a single hydrophone deployed within West Bay was programmed to record 60 or 30 seconds of acoustic data every 15 or 30 minutes. Envelope correlation and amplitude information were then used to count shrimp snaps within these recordings. The observed snap rates vary from 1500–2000 snaps per minute during summer to <100 snaps per minute during winter. Sound pressure levels are positively correlated with snap rate (r = 0.71–0.92) and vary seasonally by ~15 decibels in the 1.5–20 kHz range. Snap rates are positively correlated with water temperatures (r = 0.81–0.93), as well as potentially influenced by climate-driven changes in water quality. Light availability modulates snap rate on diurnal time scales, with most days exhibiting a significant preference for either nighttime or daytime snapping, and many showing additional crepuscular increases. During mid-summer, the number of snaps occurring at night is 5–10% more than predicted by a random model; however, this pattern is reversed between August and April, with an excess of up to 25% more snaps recorded during the day in the mid-winter. Diurnal variability in sound pressure levels is largest in the mid-winter, when the overall rate of snapping is at its lowest, and the percentage difference between daytime and nighttime activity is at its highest. This work highlights our lack of knowledge regarding the ecology and acoustic behavior of one of the most dominant soniforous invertebrate species in coastal systems. It also underscores the necessity of long-duration, high-temporal-resolution sampling in efforts to understand the bioacoustics of animal behaviors

  19. The Curious Acoustic Behavior of Estuarine Snapping Shrimp: Temporal Patterns of Snapping Shrimp Sound in Sub-Tidal Oyster Reef Habitat.

    PubMed

    Bohnenstiehl, DelWayne R; Lillis, Ashlee; Eggleston, David B

    2016-01-01

    Ocean soundscapes convey important sensory information to marine life. Like many mid-to-low latitude coastal areas worldwide, the high-frequency (>1.5 kHz) soundscape of oyster reef habitat within the West Bay Marine Reserve (36°N, 76°W) is dominated by the impulsive, short-duration signals generated by snapping shrimp. Between June 2011 and July 2012, a single hydrophone deployed within West Bay was programmed to record 60 or 30 seconds of acoustic data every 15 or 30 minutes. Envelope correlation and amplitude information were then used to count shrimp snaps within these recordings. The observed snap rates vary from 1500-2000 snaps per minute during summer to <100 snaps per minute during winter. Sound pressure levels are positively correlated with snap rate (r = 0.71-0.92) and vary seasonally by ~15 decibels in the 1.5-20 kHz range. Snap rates are positively correlated with water temperatures (r = 0.81-0.93), as well as potentially influenced by climate-driven changes in water quality. Light availability modulates snap rate on diurnal time scales, with most days exhibiting a significant preference for either nighttime or daytime snapping, and many showing additional crepuscular increases. During mid-summer, the number of snaps occurring at night is 5-10% more than predicted by a random model; however, this pattern is reversed between August and April, with an excess of up to 25% more snaps recorded during the day in the mid-winter. Diurnal variability in sound pressure levels is largest in the mid-winter, when the overall rate of snapping is at its lowest, and the percentage difference between daytime and nighttime activity is at its highest. This work highlights our lack of knowledge regarding the ecology and acoustic behavior of one of the most dominant soniforous invertebrate species in coastal systems. It also underscores the necessity of long-duration, high-temporal-resolution sampling in efforts to understand the bioacoustics of animal behaviors and

  20. Structure-based modeling of head-related transfer functions towards interactive customization of binaural sound systems

    NASA Astrophysics Data System (ADS)

    Gupta, Navarun

    2003-10-01

    One of the most popular techniques for creating spatialized virtual sounds is based on the use of Head-Related Transfer Functions (HRTFs). HRTFs are signal processing models that represent the modifications undergone by the acoustic signal as it travels from a sound source to each of the listener's eardrums. These modifications are due to the interaction of the acoustic waves with the listener's torso, shoulders, head and pinnae, or outer ears. As such, HRTFs are somewhat different for each listener. For a listener to perceive synthesized 3-D sound cues correctly, the synthesized cues must be similar to the listener's own HRTFs. One can measure individual HRTFs using specialized recording systems, however, these systems are prohibitively expensive and restrict the portability of the 3-D sound system. HRTF-based systems also face several computational challenges. This dissertation presents an alternative method for the synthesis of binaural spatialized sounds. The sound entering the pinna undergoes several reflective, diffractive and resonant phenomena, which determine the HRTF. Using signal processing tools, such as Prony's signal modeling method, an appropriate set of time delays and a resonant frequency were used to approximate the measured Head-Related Impulse Responses (HRIRs). Statistical analysis was used to find out empirical equations describing how the reflections and resonances are determined by the shape and size of the pinna features obtained from 3D images of 15 experimental subjects modeled in the project. These equations were used to yield "Model HRTFs" that can create elevation effects. Listening tests conducted on 10 subjects show that these model HRTFs are 5% more effective than generic HRTFs when it comes to localizing sounds in the frontal plane. The number of reversals (perception of sound source above the horizontal plane when actually it is below the plane and vice versa) was also reduced by 5.7%, showing the perceptual effectiveness of this

  1. Vibrations of three-dimensional pipe systems with acoustic coupling

    NASA Technical Reports Server (NTRS)

    El-Raheb, M.

    1981-01-01

    A general algorithm is developed to calculate the beam-type dynamic response of three dimensional multiplane finite length pipe systems, consisting of elbow and straight ducts with continuous interfaces. Emphasis is on secondary acoustic wave effects giving rise to coupling mechanisms; and the simulation accounts for one-dimensional elastoacoustic coupling from a plane acoustic wave and secondary loads resulting from wave asymmetries. The transfer matrix approach is adopted in modeling the elastodynamics of each duct, with allowance for distribution loads. Secondary loads from plane wave distortion are considered with a solution of the Helmholtz equation in an equivalent rigid waveguide, and effects of path imperfection are introduced as a perturbation from the hypothetical perfectly straight pipe. Computations indicate that the one-dimensional acoustic assumption is valid for frequencies below one-half the first cut-off frequency, and the three-dimensional acoustic effects produce an increase in response levels near and above cut-off.

  2. Active vibration and noise control of vibro-acoustic system by using PID controller

    NASA Astrophysics Data System (ADS)

    Li, Yunlong; Wang, Xiaojun; Huang, Ren; Qiu, Zhiping

    2015-07-01

    Active control simulation of the acoustic and vibration response of a vibro-acoustic cavity of an airplane based on a PID controller is presented. A full numerical vibro-acoustic model is developed by using an Eulerian model, which is a coupled model based on the finite element formulation. The reduced order model, which is used to design the closed-loop control system, is obtained by the combination of modal expansion and variable substitution. Some physical experiments are made to validate and update the full-order and the reduced-order numerical models. Optimization of the actuator placement is employed in order to get an effective closed-loop control system. For the controller design, an iterative method is used to determine the optimal parameters of the PID controller. The process is illustrated by the design of an active noise and vibration control system for a cavity structure. The numerical and experimental results show that a PID-based active control system can effectively suppress the noise inside the cavity using a sound pressure signal as the controller input. It is also possible to control the noise by suppressing the vibration of the structure using the structural displacement signal as the controller input. For an airplane cavity structure, considering the issue of space-saving, the latter is more suitable.

  3. Underwater Acoustics

    NASA Astrophysics Data System (ADS)

    Kuperman, William A.; Roux, Philippe

    It is well underwater established that sound waves, compared to electromagnetic waves, propagate long distances in the ocean. Hence, in the ocean as opposed to air or a vacuum, one uses sound navigation and ranging (SONAR) instead navigation and ranging (SONAR) of radar, acoustic communication instead of radio, and acoustic imaging and tomography instead of microwave or optical imaging or X-ray tomography. Underwater acoustics is the science of sound in water (most commonly in the ocean) and encompasses not only the study of sound propagation, but also the masking of sound signals by interfering phenomenon and signal processing for extracting these signals from interference. This chapter we will present the basics physics of ocean acoustics and then discuss applications.

  4. Information and data real time transmission acoustic underwater system: TRIDENT

    NASA Astrophysics Data System (ADS)

    Trubuil, Joel; Labat, Joel; Lapierre, Gerard

    2001-05-01

    The objective of the Groupe d'Etudes Sous-Marines de l'Atlantique (GESMA) is to develop a robust high data rate acoustic link. A real-time receiver recently developed at ENST Bretagne has just been designed to cope with all perturbations induced by such harsh channels. In order to cope with channel features, a spatio-temporal equalizer introduced by J. Labat et al. [Brevet FT no. 9914844, ``Perfectionnements aux dispositifs d'galisation adaptative pour recepteurs de systemes de communications numriques,'' Nov. 1999] was recently implemented and evaluated. This equalizer is the core of the receiver platform [Trubuil et al., ``Real-time high data rate acoustic link based on spatio temporal blind equalization: the TRIDENT acoustic system,'' OCEANS 2002]. This paper provides an overview of this project. The context of the study and the design of high data rate acoustic link are presented. Last Brest harbor experiments (2002, 2003) are described. The real time horizontal acoustic link performances are evaluated. Two carriers frequencies are available (20, 35 kHz). Acoustic communications for bit rate ranging from 10 to 20 kbps and for channel length (shallow water) ranging from 500 to 4000 m have been conducted successfully over several hours.

  5. Acoustic response modeling of energetics systems in confined spaces

    NASA Astrophysics Data System (ADS)

    González, David R.; Hixon, Ray; Liou, William W.; Sanford, Matthew

    2007-04-01

    In recent times, warfighting has been taking place not in far-removed areas but within urban environments. As a consequence, the modern warfighter must adapt. Currently, an effort is underway to develop shoulder-mounted rocket launcher rounds suitable with reduced acoustic signatures for use in such environments. Of prime importance is to ensure that these acoustic levels, generated by propellant burning, reflections from enclosures, etc., are at tolerable levels without requiring excessive hearing protection. Presented below is a proof-of-concept approach aimed at developing a computational tool to aid in the design process. Unsteady, perfectly-expanded-jet simulations at two different Mach numbers and one at an elevated temperature ratio were conducted using an existing computational aeroacoustics code. From the solutions, sound pressure levels and frequency spectra were then obtained. The results were compared to sound pressure levels collected from a live-fire test of the weapon. Lastly, an outline of work that is to continue and be completed in the near future will be presented.

  6. A field-deployable digital acoustic measurement system

    NASA Technical Reports Server (NTRS)

    Gray, David L.; Wright, Kenneth D., II; Rowland, Wayne D.

    1991-01-01

    A field deployable digital acoustic measurement system was developed to support acoustic research programs at the Langley Research Center. The system digitizes the acoustic inputs at the microphone, which can be located up to 1000 feet from the van which houses the acquisition, storage, and analysis equipment. Digitized data from up to 12 microphones is recorded on high density 8mm tape and is analyzed post-test by a microcomputer system. Synchronous and nonsynchronous sampling is available with maximum sample rates of 12,500 and 40,000 samples per second respectively. The high density tape storage system is capable of storing 5 gigabytes of data at transfer rates up to 1 megabyte per second. System overall dynamic range exceeds 83 dB.

  7. Experimental evaluation on the effectiveness of acoustic-laser technique towards the FRP-bonded concrete system

    NASA Astrophysics Data System (ADS)

    Qiu, Qiwen; Lau, Denvid

    2015-04-01

    Nondestructive evaluation (NDE) is essential for the detection of defects in the externally bonded fiber reinforced polymer (FRP) concrete, especially such bonded system can be readily found in strengthened and retrofitted structures nowadays. Among all the current NDE methods, acoustic-laser technique is a non-contact methodology with a high applicability to detect near-surface defect in composite structures, which is very suitable to be used for detecting defect in FRP retrofitted and strengthened concrete structures. The methodology is based on the acoustic excitation on the target surface and the measurement of its vibration using laser beam. To our best knowledge, no comprehensive study has been conducted to examine how the acoustic location and other related parameters affect the measurement sensitivity. In fact, several operational parameters affecting the performance of the test system are discussed here including (i) distance between the acoustic source and the object, (ii) sound pressure level (SPL), (iii) angle of the laser beam incidence and (iv) angle of the acoustic incidence. Here, we perform a series of parametric studies against these four operational parameters. Based on our experimental measurements, all parameters show significant effects on the measurement sensitivity of the acoustic-laser technique. Recommendations on an optimal range of each concerned parameter are provided.

  8. Human-inspired sound environment recognition system for assistive vehicles

    NASA Astrophysics Data System (ADS)

    González Vidal, Eduardo; Fredes Zarricueta, Ernesto; Auat Cheein, Fernando

    2015-02-01

    Objective. The human auditory system acquires environmental information under sound stimuli faster than visual or touch systems, which in turn, allows for faster human responses to such stimuli. It also complements senses such as sight, where direct line-of-view is necessary to identify objects, in the environment recognition process. This work focuses on implementing human reaction to sound stimuli and environment recognition on assistive robotic devices, such as robotic wheelchairs or robotized cars. These vehicles need environment information to ensure safe navigation. Approach. In the field of environment recognition, range sensors (such as LiDAR and ultrasonic systems) and artificial vision devices are widely used; however, these sensors depend on environment constraints (such as lighting variability or color of objects), and sound can provide important information for the characterization of an environment. In this work, we propose a sound-based approach to enhance the environment recognition process, mainly for cases that compromise human integrity, according to the International Classification of Functioning (ICF). Our proposal is based on a neural network implementation that is able to classify up to 15 different environments, each selected according to the ICF considerations on environment factors in the community-based physical activities of people with disabilities. Main results. The accuracy rates in environment classification ranges from 84% to 93%. This classification is later used to constrain assistive vehicle navigation in order to protect the user during daily activities. This work also includes real-time outdoor experimentation (performed on an assistive vehicle) by seven volunteers with different disabilities (but without cognitive impairment and experienced in the use of wheelchairs), statistical validation, comparison with previously published work, and a discussion section where the pros and cons of our system are evaluated. Significance

  9. Education in acoustics in Argentina

    NASA Astrophysics Data System (ADS)

    Miyara, Federico

    2002-11-01

    Over the last decades, education in acoustics (EA) in Argentina has experienced ups and downs due to economic and political issues interfering with long term projects. Unlike other countries, like Chile, where EA has reached maturity in spite of the acoustical industry having shown little development, Argentina has several well-established manufacturers of acoustic materials and equipment but no specific career with a major in acoustics. At the university level, acoustics is taught as a complementary--often elective--course for careers such as architecture, communication engineering, or music. In spite of this there are several research centers with programs covering environmental and community noise, effects of noise on man, acoustic signal processing, musical acoustics and acoustic emission, and several national and international meetings are held each year in which results are communicated and discussed. Several books on a variety of topics such as sound system, architectural acoustics, and noise control have been published as well. Another chapter in EA is technical and vocational education, ranging between secondary and postsecondary levels, with technical training on sound system operation or design. Over the last years there have been several attempts to implement master degrees in acoustics or audio engineering, with little or no success.

  10. Experimental research of the Multi-frequency Acoustic Backscatter System using the field sediment

    NASA Astrophysics Data System (ADS)

    Zhang, wenxiang

    2014-05-01

    The measurements of suspended sediment concentration and particle size profiles are very important to the engineering and environmental applications, especially in the estuarine and coastal areas. In recent years acoustic method has obtained increasing acceptance by many researchers. The theory of this method for measuring them is based on the acoustic backscattering and attenuation properties of the sediment in suspension. The Multi-frequency Acoustic Backscatter System (MABS), which has four acoustic sensors with different frequencies, can be measuring the profiles in the shallow water environment (no more than 10 meters). The experiments were conducted for AQUAscat1000 (MABS) (Made in UK) by the 'test tower' (φ600mm by 1500mm) in Laboratory. The frequency of the acoustic transducer is 0.5MHz, 1MHz, 2MHz and 4MHz, respectively. Two different places sediment were obtained from the Yangtze estuary. The average particle size is about 15μm and 115μm, respectively. Suspended sediment concentration in the 'test tower' was relatively constant during each phase of the sampling. The experimental procedures were as follows: (1) obtaining the background value of the instrument system; (2) add the field sediment to the tower according to the weight and allowing the mixture to homogenize; (3) obtaining water samples in different depths from the 'test tower'; (4) analyzing the water samples. These preliminary results show that (1) the MABS sensors are estimated from a complex function, depending on the receiving information (Voltage), measured at range, the speed of sound in water and the attenuation of sound by water, the sediment density and radius, and backscattering property of the sediment; (2) the appropriate calibration and regression approaches should be selected so as to obtain the reliable results of suspended sediment concentration(**R2 >0.7) and particle size(**R2 >0.5) measurements; (3) the MABS could be applied in the relative fine sediment condition, and

  11. Flip-Flop Recovery System for sounding rocket payloads

    NASA Technical Reports Server (NTRS)

    Flores, A., Jr.

    1986-01-01

    The design, development, and testing of the Flip-Flop Recovery System, which protects sensitive forward-mounted instruments from ground impact during sounding rocket payload recovery operations, are discussed. The system was originally developed to reduce the impact damage to the expensive gold-plated forward-mounted spectrometers in two existing Taurus-Orion rocket payloads. The concept of the recovery system is simple: the payload is flipped over end-for-end at a predetermined time just after parachute deployment, thus minimizing the risk of damage to the sensitive forward portion of the payload from ground impact.

  12. An explosive acoustic telemetry system for seabed penetrators

    SciTech Connect

    Hauser, G.C.; Hickerson, J.

    1988-04-01

    This report discusses the design and past applications of an explosive acoustic telemetry system (EATS) for gathering and transmitting data from seabed penetrators. The system was first fielded in 1982 and has since been used to measure penetrator performance on three other occasions. Descriptions are given of the mechanical hardware, system electronics, and software.

  13. Structural Dynamic Assessment of the GN2 Piping System for NASA's New and Powerful Reverberant Acoustic Test Facility

    NASA Technical Reports Server (NTRS)

    McNelis, Mark E.; Staab, Lucas D.; Akers, James C.; Hughes, WIlliam O.; Chang, Li, C.; Hozman, Aron D.; Henry, Michael W.

    2012-01-01

    The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) has led the design and build of the new world-class vibroacoustic test capabilities at the NASA GRC's Plum Brook Station in Sandusky, Ohio, USA from 2007-2011. SAIC-Benham has completed construction of a new reverberant acoustic test facility to support the future testing needs of NASA's space exploration program and commercial customers. The large Reverberant Acoustic Test Facility (RATF) is approximately 101,000 cu ft in volume and was designed to operate at a maximum empty chamber acoustic overall sound pressure level (OASPL) of 163 dB. This combination of size and acoustic power is unprecedented amongst the world's known active reverberant acoustic test facilities. Initial checkout acoustic testing was performed on March 2011 by SAIC-Benham at test levels up to 161 dB OASPL. During testing, several branches of the gaseous nitrogen (GN2) piping system, which supply the fluid to the noise generating acoustic modulators, failed at their "t-junctions" connecting the 12 inch supply line to their respective 4 inch branch lines. The problem was initially detected when the oxygen sensors in the horn room indicated a lower than expected oxygen level from which was inferred GN2 leaks in the piping system. In subsequent follow up inspections, cracks were identified in the failed "t-junction" connections through non-destructive evaluation testing . Through structural dynamic modeling of the piping system, the root cause of the "t-junction" connection failures was determined. The structural dynamic assessment identified several possible corrective design improvements to the horn room piping system. The effectiveness of the chosen design repairs were subsequently evaluated in September 2011 during acoustic verification testing to 161 dB OASPL.

  14. Structural Dynamic Assessment of the GN2 Piping System for NASA's New and Powerful Reverberant Acoustic Test Facility

    NASA Technical Reports Server (NTRS)

    McNelis, Mark E.; Staab, Lucas D.; Akers, James C.; Hughes, William O.; Chang, Li C.; Hozman, Aron D.; Henry, Michael W.

    2012-01-01

    The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) has led the design and build of the new world-class vibroacoustic test capabilities at the NASA GRC's Plum Brook Station in Sandusky, Ohio, USA from 2007 to 2011. SAIC-Benham has completed construction of a new reverberant acoustic test facility to support the future testing needs of NASA's space exploration program and commercial customers. The large Reverberant Acoustic Test Facility (RATF) is approximately 101,000 cubic feet in volume and was designed to operate at a maximum empty chamber acoustic overall sound pressure level (OASPL) of 163 dB. This combination of size and acoustic power is unprecedented amongst the world s known active reverberant acoustic test facilities. Initial checkout acoustic testing was performed on March 2011 by SAIC-Benham at test levels up to 161 dB OASPL. During testing, several branches of the gaseous nitrogen (GN2) piping system, which supply the fluid to the noise generating acoustic modulators, failed at their T-junctions connecting the 12 in. supply line to their respective 4 in. branch lines. The problem was initially detected when the oxygen sensors in the horn room indicated a lower than expected oxygen level from which was inferred GN2 leaks in the piping system. In subsequent follow up inspections, cracks were identified in the failed T-junction connections through non-destructive evaluation testing. Through structural dynamic modeling of the piping system, the root cause of the T-junction connection failures was determined. The structural dynamic assessment identified several possible corrective design improvements to the horn room piping system. The effectiveness of the chosen design repairs were subsequently evaluated in September 2011 during acoustic verification testing to 161 dB OASPL.

  15. Sound in ecclesiastical spaces in Cordoba. Architectural projects incorporating acoustic methodology (El sonido del espacio eclesial en Cordoba. El proyecto arquitectonico como procedimiento acustico)

    NASA Astrophysics Data System (ADS)

    Suarez, Rafael

    2003-11-01

    This thesis is concerned with the acoustic analysis of ecclesiastical spaces, and the subsequent implementation of acoustic design methodology in architectural renovations. One begins with an adequate architectural design of specific elements (shape, materials, and textures), with the intention of elimination of acoustic deficiencies that are common in such spaces. These are those deficiencies that impair good speech intelligibility and good musical audibility. The investigation is limited to churches in the province of Cordoba and to churches built after the reconquest of Spain (1236) and up until the 18th century. Selected churches are those that have undergone architectural renovations to adapt them to new uses or to make them more suitable for liturgical use. The thesis attempts to summarize the acoustic analyses and the acoustical solutions that have been implemented. The results are presented in a manner that should be useful for the adoption of a model for the functional renovation of ecclesiastical spaces. Such would allow those involved in architectural projects to specify the nature of the sound, even though somewhat intangible, within the ecclesiastical space. Thesis advisors: Jaime Navarro and Juan J. Sendra Copies of this thesis written in Spanish may be obtained by contacting the advisor, Jaime Navarro, E.T.S. de Arquitectura de Sevilla, Dpto. de Construcciones Arquitectonicas I, Av. Reina Mercedes, 2, 41012 Sevilla, Spain. E-mail address: jnavarro@us.es

  16. Anomalous Cherenkov spin-orbit sound

    SciTech Connect

    Smirnov, Sergey

    2011-02-15

    The Cherenkov effect is a well-known phenomenon in the electrodynamics of fast charged particles passing through transparent media. If the particle is faster than the light in a given medium, the medium emits a forward light cone. This beautiful phenomenon has an acoustic counterpart where the role of photons is played by phonons and the role of the speed of light is played by the sound velocity. In this case the medium emits a forward sound cone. Here, we show that in a system with spin-orbit interactions in addition to this normal Cherenkov sound there appears an anomalous Cherenkov sound with forward and backward sound propagation. Furthermore, we demonstrate that the transition from the normal to anomalous Cherenkov sound happens in a singular way at the Cherenkov cone angle. The detection of this acoustic singularity therefore represents an alternative experimental tool for the measurement of the spin-orbit coupling strength.

  17. Modeling sound transmission and reflection in the pulmonary system and chest with application to diagnosis of a collapsed lung

    NASA Astrophysics Data System (ADS)

    Royston, Thomas J.; Zhang, Xiangling; Mansy, Hussein A.; Sandler, Richard H.

    2002-05-01

    Experimental studies have shown that a pneumothorax (collapsed lung) substantially alters the propagation of sound introduced at the mouth of an intubated subject and measured at the chest surface. Thus, it is hypothesized that an inexpensive diagnostic procedure could be developed for detection of a pneumothorax based on a simple acoustic test. In the present study, theoretical models of sound transmission through the pulmonary system and chest region are reviewed in the context of their ability to predict acoustic changes caused by a pneumothorax, as well as other pathologic conditions. Such models could aid in parametric design studies to develop acoustic means of diagnosing pneumothorax and other lung pathologies. Extensions of previously developed simple models of the authors are presented that are in more quantitative agreement with experimental results and that simulate both transmission from the bronchial airways to the chest wall, as well as reflection in the bronchial airways. [Research supported by NIH NCRR Grant No. 14250 and NIH NHLBI Grant No. 61108.

  18. Individual and Sound-Field FM Systems: Rationale, Description, and Use.

    ERIC Educational Resources Information Center

    Flexer, Carol

    1997-01-01

    Describes the rationale for, and the routine use of, individual and sound-field FM technology with children having all degrees of hearing loss. This technology is seen as enhancing acoustic accessibility in home and school environments for children of all ages. (DB)

  19. Generation of half-space sound fields with application to personal sound systems.

    PubMed

    Poletti, M A; Fazi, F M

    2016-03-01

    A method is presented for generating a sound field that is significantly attenuated over half of the reproduction region, which has application to the generation of two independent sound fields for two listeners. The half-space sound field is produced by attenuating the negative or positive modes in the cylindrical or spherical expansion of a plane wave or point source sound field. It is shown that this is equivalent to adding to the original sound field, in quadrature, a second field which is the Hilbert transform of the original field. The resulting analytic field has a small magnitude in one half of the plane. Methods are presented for controlling the attenuation in the unwanted half-space. Finally, a simulation is presented showing the generation of a wideband pulse that propagates across half of the area within a circular array of sources. PMID:27036266

  20. The multipath propagation effect in gunshot acoustics and its impact on the design of sniper positioning systems

    NASA Astrophysics Data System (ADS)

    Ramos, António L. L.; Holm, Sverre; Gudvangen, Sigmund; Otterlei, Ragnvald

    2013-06-01

    Counter sniper systems rely on the detection and parameter estimation of the shockwave and the muzzle blast in order to determine the sniper location. In real-world situations, these acoustical signals can be disturbed by natural phenomena like weather and climate conditions, multipath propagation effect, and background noise. While some of these issues have received some attention in recent publications with application to gunshot acoustics, the multipath propagation phenomenon whose effect can not be neglected, specially in urban environments, has not yet been discussed in details in the technical literature in the same context. Propagating sound waves can be reflected at the boundaries in the vicinity of sound sources or receivers, whenever there is a difference in acoustical impedance between the reflective material and the air. Therefore, the received signal can be composed of a direct-path signal plus N scaled delayed copies of that signal. This paper presents a discussion on the multipath propagation effect and its impact on the performance and reliability of sniper positioning systems. In our formulation, propagation models for both the shockwave and the muzzle blast are considered and analyzed. Conclusions following the theoretical analysis of the problem are fully supported by actual gunshots acoustical signatures.

  1. Analysis of active control with on-line system identification on sound transmission through an elastic plate

    NASA Astrophysics Data System (ADS)

    Koshigoe, Shozo; Teagle, Allen; Tsay, Ching-Hsu

    1995-05-01

    An adaptive control algorithm with on-line system identification capability has been developed. One of the great advantages of this scheme is that an additional system identification mechanism such as an additional uncorrelated random signal generator as the source of system identification [Eriksson and Allie, Acoust. Soc. Am. 85, 797 - 802 (1989)] is not required. A time varying plate-cavity system is used to demonstrate the control performance of this algorithm. The time varying plate-cavity system is used to demonstrate the control performance of this algorithm. The time varying system consists of a stainless steel plate which is simply supported on a rigid cavity where the cavity temperature can depend on time. For a given externally located harmonic sound excitation, the system identification and the control are simultaneously executed to minimize the transmitted sound in the cavity. The control performance of the algorithm is examined for two cases. Keeping the cavity temperature constant for the first case, the external disturbance frequency is swept with 2 Hz/second from below to above a resonance frequency of the plate-cavity system. The simulation shows an excellent frequency tracking capability with cavity internal sound suppression of 40 dB. For the second case, the cavity temperature is lowered to a half of its original value in 60 seconds while the external sound excitation is fixed with a frequency. Hence, the cavity resonant frequency decreased and passes the external sound excitation frequency. The algorithm shows 40 dB transmitted noise suppression without compromising the system identification tracking capability.

  2. 49 CFR 325.37 - Location and operation of sound level measurement system; highway operations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 5 2012-10-01 2012-10-01 false Location and operation of sound level measurement...; Highway Operations § 325.37 Location and operation of sound level measurement system; highway operations. (a) The microphone of a sound level measurement system that conforms to the rules in § 325.23 of...

  3. 49 CFR 325.57 - Location and operation of sound level measurement systems; stationary test.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 5 2013-10-01 2013-10-01 false Location and operation of sound level measurement...; Stationary Test § 325.57 Location and operation of sound level measurement systems; stationary test. (a) The microphone of a sound level measurement system that conforms to the rules in § 325.23 shall be located at...

  4. 49 CFR 325.57 - Location and operation of sound level measurement systems; stationary test.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 5 2012-10-01 2012-10-01 false Location and operation of sound level measurement...; Stationary Test § 325.57 Location and operation of sound level measurement systems; stationary test. (a) The microphone of a sound level measurement system that conforms to the rules in § 325.23 shall be located at...

  5. 49 CFR 325.37 - Location and operation of sound level measurement system; highway operations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 5 2014-10-01 2014-10-01 false Location and operation of sound level measurement...; Highway Operations § 325.37 Location and operation of sound level measurement system; highway operations. (a) The microphone of a sound level measurement system that conforms to the rules in § 325.23 of...

  6. 49 CFR 325.57 - Location and operation of sound level measurement systems; stationary test.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 5 2014-10-01 2014-10-01 false Location and operation of sound level measurement...; Stationary Test § 325.57 Location and operation of sound level measurement systems; stationary test. (a) The microphone of a sound level measurement system that conforms to the rules in § 325.23 shall be located at...

  7. 49 CFR 325.37 - Location and operation of sound level measurement system; highway operations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 5 2013-10-01 2013-10-01 false Location and operation of sound level measurement...; Highway Operations § 325.37 Location and operation of sound level measurement system; highway operations. (a) The microphone of a sound level measurement system that conforms to the rules in § 325.23 of...

  8. Helicopter acoustic alerting system for high-security facilities

    NASA Astrophysics Data System (ADS)

    Steadman, Robert L.; Hansen, Scott; Park, Chris; Power, Dennis

    2009-05-01

    Helicopters present a serious threat to high security facilities such as prisons, nuclear sites, armories, and VIP compounds. They have the ability to instantly bypass conventional security measures focused on ground threats such as fences, check-points, and intrusion sensors. Leveraging the strong acoustic signature inherent in all helicopters, this system would automatically detect, classify, and accurately track helicopters using multi-node acoustic sensor fusion. An alert would be generated once the threat entered a predefined 3-dimension security zone in time for security personnel to repel the assault. In addition the system can precisely identify the landing point on the facility grounds.

  9. Performance evaluation of a biometric system based on acoustic images.

    PubMed

    Izquierdo-Fuente, Alberto; del Val, Lara; Jiménez, María I; Villacorta, Juan J

    2011-01-01

    An acoustic electronic scanning array for acquiring images from a person using a biometric application is developed. Based on pulse-echo techniques, multifrequency acoustic images are obtained for a set of positions of a person (front, front with arms outstretched, back and side). Two Uniform Linear Arrays (ULA) with 15 λ/2-equispaced sensors have been employed, using different spatial apertures in order to reduce sidelobe levels. Working frequencies have been designed on the basis of the main lobe width, the grating lobe levels and the frequency responses of people and sensors. For a case-study with 10 people, the acoustic profiles, formed by all images acquired, are evaluated and compared in a mean square error sense. Finally, system performance, using False Match Rate (FMR)/False Non-Match Rate (FNMR) parameters and the Receiver Operating Characteristic (ROC) curve, is evaluated. On the basis of the obtained results, this system could be used for biometric applications. PMID:22163708

  10. Performance Evaluation of a Biometric System Based on Acoustic Images

    PubMed Central

    Izquierdo-Fuente, Alberto; del Val, Lara; Jiménez, María I.; Villacorta, Juan J.

    2011-01-01

    An acoustic electronic scanning array for acquiring images from a person using a biometric application is developed. Based on pulse-echo techniques, multifrequency acoustic images are obtained for a set of positions of a person (front, front with arms outstretched, back and side). Two Uniform Linear Arrays (ULA) with 15 λ/2-equispaced sensors have been employed, using different spatial apertures in order to reduce sidelobe levels. Working frequencies have been designed on the basis of the main lobe width, the grating lobe levels and the frequency responses of people and sensors. For a case-study with 10 people, the acoustic profiles, formed by all images acquired, are evaluated and compared in a mean square error sense. Finally, system performance, using False Match Rate (FMR)/False Non-Match Rate (FNMR) parameters and the Receiver Operating Characteristic (ROC) curve, is evaluated. On the basis of the obtained results, this system could be used for biometric applications. PMID:22163708

  11. Experimental localization of an acoustic sound source in a wind-tunnel flow by using a numerical time-reversal technique.

    PubMed

    Padois, Thomas; Prax, Christian; Valeau, Vincent; Marx, David

    2012-10-01

    The possibility of using the time-reversal technique to localize acoustic sources in a wind-tunnel flow is investigated. While the technique is widespread, it has scarcely been used in aeroacoustics up to now. The proposed method consists of two steps: in a first experimental step, the acoustic pressure fluctuations are recorded over a linear array of microphones; in a second numerical step, the experimental data are time-reversed and used as input data for a numerical code solving the linearized Euler equations. The simulation achieves the back-propagation of the waves from the array to the source and takes into account the effect of the mean flow on sound propagation. The ability of the method to localize a sound source in a typical wind-tunnel flow is first demonstrated using simulated data. A generic experiment is then set up in an anechoic wind tunnel to validate the proposed method with a flow at Mach number 0.11. Monopolar sources are first considered that are either monochromatic or have a narrow or wide-band frequency content. The source position estimation is well-achieved with an error inferior to the wavelength. An application to a dipolar sound source shows that this type of source is also very satisfactorily characterized. PMID:23039435

  12. Calibration of Sound and Vibration Sensors and Vibration Testing Systems

    NASA Astrophysics Data System (ADS)

    Nicklich, H.

    2004-08-01

    SPEKTRA is a manufacturer of high quality calibration systems for sound and vibration. Under license No DKD-K-27801, a calibration lab was established at SPEKTRA to provide a calibration service. The paper gives a summary of 4 years experience in the calibration of vibration Sensors, measuring systems and vibration test equipment in the industrial field. In practice calibration is often treated as an unpleasant job that is solved by handing out a "Calibration certificate of every part of the system" to the Quality Manager. The paper comes to the conclusion that calibration can help to minimize costs and risks if the customer has basic knowledge in international standards, the used test equipment and the special requirements for testing with this configuration. It is not enough to calibrate one sen- sor of a system in a standard range. The requirements for calibration should be defined individually for every testing system and application.

  13. Developing a system for blind acoustic source localization and separation

    NASA Astrophysics Data System (ADS)

    Kulkarni, Raghavendra

    This dissertation presents innovate methodologies for locating, extracting, and separating multiple incoherent sound sources in three-dimensional (3D) space; and applications of the time reversal (TR) algorithm to pinpoint the hyper active neural activities inside the brain auditory structure that are correlated to the tinnitus pathology. Specifically, an acoustic modeling based method is developed for locating arbitrary and incoherent sound sources in 3D space in real time by using a minimal number of microphones, and the Point Source Separation (PSS) method is developed for extracting target signals from directly measured mixed signals. Combining these two approaches leads to a novel technology known as Blind Sources Localization and Separation (BSLS) that enables one to locate multiple incoherent sound signals in 3D space and separate original individual sources simultaneously, based on the directly measured mixed signals. These technologies have been validated through numerical simulations and experiments conducted in various non-ideal environments where there are non-negligible, unspecified sound reflections and reverberation as well as interferences from random background noise. Another innovation presented in this dissertation is concerned with applications of the TR algorithm to pinpoint the exact locations of hyper-active neurons in the brain auditory structure that are directly correlated to the tinnitus perception. Benchmark tests conducted on normal rats have confirmed the localization results provided by the TR algorithm. Results demonstrate that the spatial resolution of this source localization can be as high as the micrometer level. This high precision localization may lead to a paradigm shift in tinnitus diagnosis, which may in turn produce a more cost-effective treatment for tinnitus than any of the existing ones.

  14. Acoustic energy harvesting based on a planar acoustic metamaterial

    NASA Astrophysics Data System (ADS)

    Qi, Shuibao; Oudich, Mourad; Li, Yong; Assouar, Badreddine

    2016-06-01

    We theoretically report on an innovative and practical acoustic energy harvester based on a defected acoustic metamaterial (AMM) with piezoelectric material. The idea is to create suitable resonant defects in an AMM to confine the strain energy originating from an acoustic incidence. This scavenged energy is converted into electrical energy by attaching a structured piezoelectric material into the defect area of the AMM. We show an acoustic energy harvester based on a meta-structure capable of producing electrical power from an acoustic pressure. Numerical simulations are provided to analyze and elucidate the principles and the performances of the proposed system. A maximum output voltage of 1.3 V and a power density of 0.54 μW/cm3 are obtained at a frequency of 2257.5 Hz. The proposed concept should have broad applications on energy harvesting as well as on low-frequency sound isolation, since this system acts as both acoustic insulator and energy harvester.

  15. Calibration of sound and vibration sensors and vibration testing systems

    NASA Astrophysics Data System (ADS)

    Nicklich, Holger

    2004-08-01

    SPEKTRA is a manufacturer of high quality calibration systems for sound and vibration. Under license No DKD-K-27801, a calibration lab was established at SPEKTRA to provide a calibration service. The paper gives a summary of 4 years experience in the calibration of vibration Sensors, measuring systems and vibration test equipment in the industrial field. In practice calibration is often treated as an unpleasant job that is solved by handing out a “Calibration certificate of every part of the system” to the Quality Manager. The paper comes to the conclusion that calibration can help to minimize costs and risks if the customer has basic knowledge in international standards, the used test equipment and the special requirements for testing with this configuration. It is not enough to calibrate one sensor of a system in a standard range. The requirements for calibration should be defined individually for every testing system and application.

  16. High-spatial-resolution passive microwave sounding systems

    NASA Technical Reports Server (NTRS)

    Staelin, D. H.; Rosenkranz, P. W.

    1994-01-01

    The principal contributions of this combined theoretical and experimental effort were to advance and demonstrate new and more accurate techniques for sounding atmospheric temperature, humidity, and precipitation profiles at millimeter wavelengths, and to improve the scientific basis for such soundings. Some of these techniques are being incorporated in both research and operational systems. Specific results include: (1) development of the MIT Microwave Temperature Sounder (MTS), a 118-GHz eight-channel imaging spectrometer plus a switched-frequency spectrometer near 53 GHz, for use on the NASA ER-2 high-altitude aircraft, (2) conduct of ER-2 MTS missions in multiple seasons and locations in combination with other instruments, mapping with unprecedented approximately 2-km lateral resolution atmospheric temperature and precipitation profiles, atmospheric transmittances (at both zenith and nadir), frontal systems, and hurricanes, (3) ground based 118-GHz 3-D spectral images of wavelike structure within clouds passing overhead, (4) development and analysis of approaches to ground- and space-based 5-mm wavelength sounding of the upper stratosphere and mesosphere, which supported the planning of improvements to operational weather satellites, (5) development of improved multidimensional and adaptive retrieval methods for atmospheric temperature and humidity profiles, (6) development of combined nonlinear and statistical retrieval techniques for 183-GHz humidity profile retrievals, (7) development of nonlinear statistical retrieval techniques for precipitation cell-top altitudes, and (8) numerical analyses of the impact of remote sensing data on the accuracy of numerical weather predictions; a 68-km gridded model was used to study the spectral properties of error growth.

  17. Vertical structure of ionization irregularities observed by HF vertical sounding in the lower E region in the presence of an acoustic wave

    NASA Astrophysics Data System (ADS)

    Blanc, Elisabeth

    1987-06-01

    An acoustic wave produced by a strong explosion at ground level induces in the lower E region partial reflections of the electromagnetic pulses transmitted by a vertical HF sounder at a few kilometers from the source point. Such reflections materialize the vertical path of the acoustic wave during about 40 km below the maximum of the E layer. They give continuous informations on the ionized medium with an altitude resolution determined by the speed of the acoustic wave and the repetition frequency of the sounding pulses of around 12 m. Their amplitude is of the order of 30 dB below the amplitude of the total reflected echoes but during short time range of the order of 0.2-1 s strong amplitude enhancements suggest an irregular small scale structure superimposed on the decreasing gradient of the lower E layer. The vertical scale of these irregularities varies from 150 to 500 m. Their structure and their relation with the studied acoustic wave are discussed.

  18. System and method for sonic wave measurements using an acoustic beam source

    DOEpatents

    Vu, Cung Khac; Sinha, Dipen N.; Pantea, Cristian

    2015-08-11

    A method and system for investigating structure near a borehole are described herein. The method includes generating an acoustic beam by an acoustic source; directing at one or more azimuthal angles the acoustic beam towards a selected location in a vicinity of a borehole; receiving at one or more receivers an acoustic signal, the acoustic signal originating from a reflection or a refraction of the acoustic wave by a material at the selected location; and analyzing the received acoustic signal to characterize features of the material around the borehole.

  19. Acoustic Holography

    NASA Astrophysics Data System (ADS)

    Kim, Yang-Hann

    One of the subtle problems that make noise control difficult for engineers is the invisibility of noise or sound. A visual image of noise often helps to determine an appropriate means for noise control. There have been many attempts to fulfill this rather challenging objective. Theoretical (or numerical) means for visualizing the sound field have been attempted, and as a result, a great deal of progress has been made. However, most of these numerical methods are not quite ready for practical applications to noise control problems. In the meantime, rapid progress with instrumentation has made it possible to use multiple microphones and fast signal-processing systems. Although these systems are not perfect, they are useful. A state-of-the-art system has recently become available, but it still has many problematic issues; for example, how can one implement the visualized noise field. The constructed noise or sound picture always consists of bias and random errors, and consequently, it is often difficult to determine the origin of the noise and the spatial distribution of the noise field. Section 26.2 of this chapter introduces a brief history, which is associated with sound visualization, acoustic source identification methods and what has been accomplished with a line or surface array. Section 26.2.3 introduces difficulties and recent studies, including de-Dopplerization and de-re verberation methods, both essential for visualizing a moving noise source, such as occurs for cars or trains. This section also addresses what produces ambiguity in realizing real sound sources in a room or closed space. Another major issue associated with sound/noise visualization is whether or not we can distinguish between mutual dependencies of noise in space (Sect. 26.2.4); for example, we are asked to answer the question, Can we see two birds singing or one bird with two beaks?

  20. Acoustic Holography

    NASA Astrophysics Data System (ADS)

    Kim, Yang-Hann

    One of the subtle problems that make noise control difficult for engineers is the invisibility of noise or sound. A visual image of noise often helps to determine an appropriate means for noise control. There have been many attempts to fulfill this rather challenging objective. Theoretical (or numerical) means for visualizing the sound field have been attempted, and as a result, a great deal of progress has been made. However, most of these numerical methods are not quite ready for practical applications to noise control problems. In the meantime, rapid progress with instrumentation has made it possible to use multiple microphones and fast signal-processing systems. Although these systems are not perfect, they are useful. A state-of-the-art system has recently become available, but it still has many problematic issues; for example, how can one implement the visualized noise field. The constructed noise or sound picture always consists of bias and random errors, and consequently, it is often difficult to determine the origin of the noise and the spatial distribution of the noise field. Section 26.2 of this chapter introduces a brief history, which is associated with "sound visualization," acoustic source identification methods and what has been accomplished with a line or surface array. Section 26.2.3 introduces difficulties and recent studies, including de-Dopplerization and de-reverberation methods, both essentialfor visualizing a moving noise source, such as occurs for cars or trains. This section also addresses what produces ambiguity in realizing real sound sources in a room or closed space. Another major issue associated with sound/noise visualization is whether or not we can distinguish between mutual dependencies of noise in space (Sect. 26.2.4); for example, we are asked to answer the question, "Can we see two birds singing or one bird with two beaks?"

  1. Classrooms for Children with Developmental Disabilities: Sound-Field and Public Address Amplification Systems Compared

    ERIC Educational Resources Information Center

    Leung, Stanley W. H.; McPherson, Bradley

    2006-01-01

    Background noise poses adverse effects on speech sounds and affects student learning, especially for children with developmental disabilities. Sound-field and public address amplification systems can help to solve this problem by amplifying speech sounds relative to background noise. This study surveyed school classrooms for children with special…

  2. A New Wave of Acoustics.

    ERIC Educational Resources Information Center

    Beyer, Robert

    1981-01-01

    Surveys 50 years of acoustical studies by discussing selected topics including the ear, nonlinear representations, underwater sound, acoustical diagnostics, absorption, electrolytes, phonons, magnetic interaction, and superfluidity and the five sounds. (JN)

  3. Fricative Consonants: AN Articulatory, Acoustic, and Systems Study.

    NASA Astrophysics Data System (ADS)

    Narayanan, Shrikanth S.

    1995-01-01

    Accurate knowledge of the articulatory and acoustic details of human speech is crucial for better understanding and modeling of our speech production mechanisms. Such knowledge is important for the development of high-quality speech synthesis, low bit rate speech coding, and improved automatic speech recognition strategies. This dissertation addresses the analysis and modeling of fricatives, a class of speech sounds characterized by turbulence generation in the vocal tract. Extensive data were collected using novel measurement techniques from four phonetically-trained native talkers of American English. Magnetic resonance imaging (MRI) provided a detailed characterization of the 3D geometry of the human vocal-tract shapes and dimensions. Dynamic electropalatography (EPG) was useful for analyzing inter - and intra-speaker variabilities while high-quality recordings provided acoustic data necessary for modeling. Results showed similarities in the general vocal -tract shapes and the corresponding area-function patterns, across subjects. The vocal-tract dimensions showed, however, significant inter-subject differences which are related to differences in the corresponding acoustic spectra. These differences are attributed to variabilities both in the individual's oral morphology and in the way a particular consonant may be articulated. Distinct tongue body shapes were associated with the different fricative places of articulation. For example, the anterior tongue body shapes were concave for the alveolar fricatives and flat/convex in the postalveolars, implying differences in their aerodynamics. Voiced lingual fricatives showed a tendency towards enlarged supraglottal volumes due to tongue-root advancement. Results of the acoustic modeling indicate that a linear source-filter model is fairly adequate for capturing the essential spectral characteristics of sustained fricatives below 10 kHz. The hybrid source models employed a combination of acoustic monopole and dipole

  4. Demonstrating the Alaska Ocean Observing System in Prince William Sound

    NASA Astrophysics Data System (ADS)

    Schoch, G. Carl; McCammon, Molly

    2013-07-01

    The Alaska Ocean Observing System and the Oil Spill Recovery Institute developed a demonstration project over a 5 year period in Prince William Sound. The primary goal was to develop a quasi-operational system that delivers weather and ocean information in near real time to diverse user communities. This observing system now consists of atmospheric and oceanic sensors, and a new generation of computer models to numerically simulate and forecast weather, waves, and ocean circulation. A state of the art data management system provides access to these products from one internet portal at http://www.aoos.org. The project culminated in a 2009 field experiment that evaluated the observing system and performance of the model forecasts. Observations from terrestrial weather stations and weather buoys validated atmospheric circulation forecasts. Observations from wave gages on weather buoys validated forecasts of significant wave heights and periods. There was an emphasis on validation of surface currents forecasted by the ocean circulation model for oil spill response and search and rescue applications. During the 18 day field experiment a radar array mapped surface currents and drifting buoys were deployed. Hydrographic profiles at fixed stations, and by autonomous vehicles along transects, were made to acquire measurements through the water column. Terrestrial weather stations were the most reliable and least costly to operate, and in situ ocean sensors were more costly and considerably less reliable. The radar surface current mappers were the least reliable and most costly but provided the assimilation and validation data that most improved ocean circulation forecasts. We describe the setting of Prince William Sound and the various observational platforms and forecast models of the observing system, and discuss recommendations for future development.

  5. The effect of a low-frequency sound source (acoustic thermometry of the ocean climate) on the diving behavior of juvenile northern elephant seals, Mirounga angustirostris

    NASA Astrophysics Data System (ADS)

    Costa, Daniel P.; Crocker, Daniel E.; Gedamke, Jason; Webb, Paul M.; Houser, Dorian S.; Blackwell, Susanna B.; Waples, Danielle; Hayes, Sean A.; Le Boeuf, Burney J.

    2003-02-01

    Changes in the diving behavior of individual free-ranging juvenile northern elephant seals, Mirounga angustirostris, exposed to the acoustic thermometry of the ocean climate (ATOC) sound source were examined using data loggers. Data loggers were attached to the animals and measured swim speed, maximum depth of dive, dive duration, surface interval, descent and ascent rate, and descent and ascent angle along with sound pressure level (SPL). The ATOC sound source was at a depth of 939 m and transmitted at 195 dB re: 1 μPa at 1 m centered at 75 Hz with a 37.5-Hz bandwidth. Sound pressure levels (SPL) measured at the seal during transmissions averaged 128 dB and ranged from 118 to 137 dB re: 1 μPa for the 60-90 Hz band, in comparison to ambient levels of 87-107 dB within this band. In no case did an animal end its dive or show any other obvious change in behavior upon exposure to the ATOC sound. Subtle changes in diving behavior were detected, however. During exposure, deviations in descent rate were greater than 1 s.d. of the control mean in 9 of 14 seals. Dive depth increased and descent velocity increased in three animals, ascent velocity decreased in two animals, ascent rate increased in one animal and decreased in another, and dive duration decreased in only one animal. There was a highly significant positive correlation between SPL and descent rate. The biological significance of these subtle changes is likely to be minimal. This is the first study to quantify behavioral responses of an animal underwater with simultaneous measurements of SPL of anthropogenic sounds recorded at the animal.

  6. Design of an acoustic telemetry system for rebreathers.

    PubMed

    Egi, S M

    2009-01-01

    Despite the abundance of telemetric applications for ecology, behavior and physiology of marine life, few efforts were reported about the use of acoustic telemetry for SCUBA divers. The objective of this study is to design and test an acoustic telemetry system for monitoring breathing gases of a Dräger Dolphin semi-closed circuit rebreather as well as the depth of the diver. The system is designed around a PC based surface unit and a microcontroller based diver carried module that digitizes the output of CO2 and O2 sensors located in the inhalation side of the canister. One pair of acoustic modems establishes the data link between the microcontroller and the topside PC. The graphical user interface is written in C# and enables the recording of the diving session as well. The system is calibrated in a hyperbaric chamber and tested successfully with four dives in three different environments using 100% O2 and Nitrox (47.9% O2 - 52.1% N2) up to 15 m depth and a distance of 40 m between acoustic modems. The telemetry data cannot be used only for recording physiological data but also provides an important operational safety tool to monitor the rebreather user. The future designs will include actuators for controlling the diluent and oxygen flow to closed circuit mix gas rebreathers. PMID:19341129

  7. Tuning the cognitive environment: Sound masking with 'natural' sounds in open-plan offices

    NASA Astrophysics Data System (ADS)

    DeLoach, Alana

    With the gain in popularity of open-plan office design and the engineering efforts to achieve acoustical comfort for building occupants, a majority of workers still report dissatisfaction in their workplace environment. Office acoustics influence organizational effectiveness, efficiency, and satisfaction through meeting appropriate requirements for speech privacy and ambient sound levels. Implementing a sound masking system is one tried-and-true method of achieving privacy goals. Although each sound masking system is tuned for its specific environment, the signal -- random steady state electronic noise, has remained the same for decades. This research work explores how `natural' sounds may be used as an alternative to this standard masking signal employed so ubiquitously in sound masking systems in the contemporary office environment. As an unobtrusive background sound, possessing the appropriate spectral characteristics, this proposed use of `natural' sounds for masking challenges the convention that masking sounds should be as meaningless as possible. Through the pilot study presented in this work, we hypothesize that `natural' sounds as sound maskers will be as effective at masking distracting background noise as the conventional masking sound, will enhance cognitive functioning, and increase participant (worker) satisfaction.

  8. Resonant acoustic transducer and driver system for a well drilling string communication system

    DOEpatents

    Chanson, Gary J.; Nicolson, Alexander M.

    1981-01-01

    The acoustic data communication system includes an acoustic transmitter and receiver wherein low frequency acoustic waves, propagating in relatively loss free manner in well drilling string piping, are efficiently coupled to the drill string and propagate at levels competitive with the levels of noise generated by drilling machinery also present in the drill string. The transmitting transducer incorporates a mass-spring piezoelectric transmitter and amplifier combination that permits self-oscillating resonant operation in the desired low frequency range.

  9. A light assembly system of sections adaptable to sound or heat insulation, for numerous applications

    NASA Astrophysics Data System (ADS)

    Hundt, W.; Weber, G.

    1983-05-01

    A wall unit system for sound or heat insulation is described. The unit comprises two identical L-shaped shells. Used as a sound protection barrier, the front wall comprises a perforated surface. The two shells are joined by means of a C-section. For use as a roadside sound protection barrier, U-shaped units are assembled at the construction site, and sound insulation mats are inserted. For heat insulation purposes heat insulation mats are used in place of the sound insulation mats. Two non-perforated sections are connected to the wall unit. For both purposes, the number of sound and heat conducting links required is reduced by half, owing to the U-shape of the unit. No welding, riveting or screwing is required. A sound absorption of 10 dB and a sound insulation of 31 dB were obtained. Heat insulation properties depend upon the insulation materials employed (mineral wool, etc).

  10. An approach to generating two zones of silence with application to personal sound systems.

    PubMed

    Poletti, M A; Fazi, F M

    2015-02-01

    An application of current interest in sound reproduction systems is the creation of multizone sound fields which produce multiple independent sound fields for multiple listeners. The challenge in producing such sound fields is the avoidance of interference between sound zones, which is dependent on the geometry of the zone and the direction of arrival of the desired sound fields. This paper provides a theoretical basis for the generation of two zones based on the creation of sound fields with nulls and the positioning of those nulls at arbitrary positions. The nulls are created by suppressing low-order mode terms in the sound field expansion. Simulations are presented for the two-dimensional case which shows that suppression of interference is possible across a broad frequency audio range. PMID:25697994

  11. Possibilities of psychoacoustics to determine sound quality

    NASA Astrophysics Data System (ADS)

    Genuit, Klaus

    For some years, acoustic engineers have increasingly become aware of the importance of analyzing and minimizing noise problems not only with regard to the A-weighted sound pressure level, but to design sound quality. It is relatively easy to determine the A-weighted SPL according to international standards. However, the objective evaluation to describe subjectively perceived sound quality - taking into account psychoacoustic parameters such as loudness, roughness, fluctuation strength, sharpness and so forth - is more difficult. On the one hand, the psychoacoustic measurement procedures which are known so far have yet not been standardized. On the other hand, they have only been tested in laboratories by means of listening tests in the free-field and one sound source and simple signals. Therefore, the results achieved cannot be transferred to complex sound situations with several spatially distributed sound sources without difficulty. Due to the directional hearing and selectivity of human hearing, individual sound events can be selected among many. Already in the late seventies a new binaural Artificial Head Measurement System was developed which met the requirements of the automobile industry in terms of measurement technology. The first industrial application of the Artificial Head Measurement System was in 1981. Since that time the system was further developed, particularly by the cooperation between HEAD acoustics and Mercedes-Benz. In addition to a calibratable Artificial Head Measurement System which is compatible with standard measurement technologies and has transfer characteristics comparable to human hearing, a Binaural Analysis System is now also available. This system permits the analysis of binaural signals regarding physical and psychoacoustic procedures. Moreover, the signals to be analyzed can be simultaneously monitored through headphones and manipulated in the time and frequency domain so that those signal components being responsible for noise

  12. Acoustic design criteria in a general system for structural optimization

    NASA Technical Reports Server (NTRS)

    Brama, Torsten

    1990-01-01

    Passenger comfort is of great importance in most transport vehicles. For instance, in the new generation of regional turboprop aircraft, a low noise level is vital to be competitive on the market. The possibilities to predict noise levels analytically has improved rapidly in recent years. This will make it possible to take acoustic design criteria into account in early project stages. The development of the ASKA FE-system to include also acoustic analysis has been carried out at Saab Aircraft Division and the Aeronautical Research Institute of Sweden in a joint project. New finite elements have been developed to model the free fluid, porous damping materials, and the interaction between the fluid and structural degrees of freedom. The FE approach to the acoustic analysis is best suited for lower frequencies up to a few hundred Hz. For accurate analysis of interior cabin noise, large 3-D FE-models are built, but 2-D models are also considered to be useful for parametric studies and optimization. The interest is here focused on the introduction of an acoustic design criteria in the general structural optimization system OPTSYS available at the Saab Aircraft Division. The first implementation addresses a somewhat limited class of problems. The problems solved are formulated: Minimize the structural weight by modifying the dimensions of the structure while keeping the noise level in the cavity and other structural design criteria within specified limits.

  13. Sound Solutions

    ERIC Educational Resources Information Center

    Starkman, Neal

    2007-01-01

    Poor classroom acoustics are impairing students' hearing and their ability to learn. However, technology has come up with a solution: tools that focus voices in a way that minimizes intrusive ambient noise and gets to the intended receiver--not merely amplifying the sound, but also clarifying and directing it. One provider of classroom audio…

  14. Feasibility of making sound power measurements in the NASA Langley V/STOL tunnel test section

    NASA Technical Reports Server (NTRS)

    Brooks, T. F.; Scheiman, J.; Silcox, R. J.

    1976-01-01

    Based on exploratory acoustic measurements in Langley's V/STOL wind tunnel, recommendations are made on the methodology for making sound power measurements of aircraft components in the closed tunnel test section. During airflow, tunnel self-noise and microphone flow-induced noise place restrictions on the amplitude and spectrum of the sound source to be measured. Models of aircraft components with high sound level sources, such as thrust engines and powered lift systems, seem likely candidates for acoustic testing.

  15. Comments on “The boundary point method for the calculation of exterior acoustic radiation problem” [S.Y. Zhang, X.Z. Chen, Journal of Sound and Vibration 228(4) (1999) 761 772

    NASA Astrophysics Data System (ADS)

    Chen, J. T.; Chen, I. L.; Lee, Y. T.

    2008-03-01

    Zhang and Chen [The boundary point method for the calculation of exterior acoustic radiation problem, Journal of Sound and Vibration 228 (1999) 761-772] proposed a boundary point method (BPM) for exterior acoustic problems. The idea is similar to the CHUNKY CHIEF by Wu [A weighted residual formulation for the CHIEF method in acoustic, Journal of Acoustical Society of America 90 (1991) 1608-1614], but Chunky CHIEF provides constraints using null-field equations while the BPM used the CHUNKY BLOCK singularity outside the domain. The mathematical structure is similar to Trefftz method and method of fundamental solutions [J.T. Chen et al., On the equivalence of the Trefftz method and method of fundamental solutions for Laplace and biharmonic equations, Computers & Mathematics with Applications 53 (2007) 851-879], since the interpolation function satisfies the governing equation. Later, Wu commented twice [Sean F. Wu, Comments on "The boundary point method for the calculation of exterior acoustic radiation" (by S.Y. Zhang, X.Z. Chen, Journal of Sound and Vibration 228(4) (1999) 761-772), Journal of Sound and Vibration, 298 (2006) 1173]; Sean F. Wu, Comments on "Reply to the comments on 'The boundary point method for the calculation of exterior acoustic radiation' (by S.Y. Zhang, X.Z. Chen, Journal of Sound and Vibration 228(4) (1999) 761-772)", Journal of Sound and Vibration, 298 (2006) 1176-1177] that the formulation of BPM is wrong and the authors replied also twice [X.Z. Chen, C.X. Bi, Reply to the comments on "The boundary point method for the calculation of exterior acoustic radiation" (by S.Y. Zhang, X.Z. Chen, Journal of Sound and Vibration 228(4) (1999) 761-772), Journal of Sound and Vibration, 298 (2006) 1174-1175; [X.Z. Chen, C.X. Bi, Reply to the comments on "Reply to the comments on 'The boundary point method for the calculation of exterior acoustic radiation' (by S.Y. Zhang, X.Z. Chen, Journal of Sound and Vibration 228(4) (1999) 761-772)", Journal of Sound

  16. Investigation of the ocean acoustic signatures from strong explosions at a long distance in the ocean sound channel by computer simulation

    SciTech Connect

    Kamegai, M.; White, J.W.; Clarke, D.B.

    1994-05-01

    The principal objective of the non-proliferation program is to discourage clandestine testing of nuclear explosives by maintaining an effective global surveillance system. The methods of detection include underwater and atmospheric acoustics, seismology and atmospheric photometry. The goals of the underwater acoustics are the identification and location of ocean acoustic signatures. The investigation is directed toward obtaining t quantitative correlation between the initial explosion source under various conditions and the final acoustical signatures received at a great distance for different paths. By computer simulations, we calculated the energy coupling and dissipation in the water and studied the signature patterns. In this paper, we report preliminary results of the study on the signals from 1 kt explosions after the signals have propagated a significant distance in the SOFAR channel. The third step in the model has not yet been addressed.

  17. Sound-Field Amplification: Enhancing the Classroom Listening Environment for Aboriginal and Torres Strait Islander Children

    ERIC Educational Resources Information Center

    Massie, Robyn; Theodoros, Deborah; McPherson, Bradley; Smaldino, Joseph

    2004-01-01

    Sound-field amplification is an educational tool that allows control of the acoustic environment in a classroom. Teachers wear small microphones that transmit sound to a receiver system attached to loudspeakers around the classroom. The goal of sound-field amplification is to amplify the teacher's voice by a few decibels, and to provide uniform…

  18. Modelling sound propagation in the Southern Ocean to estimate the acoustic impact of seismic research surveys on marine mammals

    NASA Astrophysics Data System (ADS)

    Breitzke, Monika; Bohlen, Thomas

    2010-05-01

    Modelling sound propagation in the ocean is an essential tool to assess the potential risk of air-gun shots on marine mammals. Based on a 2.5-D finite-difference code a full waveform modelling approach is presented, which determines both sound exposure levels of single shots and cumulative sound exposure levels of multiple shots fired along a seismic line. Band-limited point source approximations of compact air-gun clusters deployed by R/V Polarstern in polar regions are used as sound sources. Marine mammals are simulated as static receivers. Applications to deep and shallow water models including constant and depth-dependent sound velocity profiles of the Southern Ocean show dipole-like directivities in case of single shots and tubular cumulative sound exposure level fields beneath the seismic line in case of multiple shots. Compared to a semi-infinite model an incorporation of seafloor reflections enhances the seismically induced noise levels close to the sea surface. Refraction due to sound velocity gradients and sound channelling in near-surface ducts are evident, but affect only low to moderate levels. Hence, exposure zone radii derived for different hearing thresholds are almost independent of the sound velocity structure. With decreasing thresholds radii increase according to a spherical 20 log10 r law in case of single shots and according to a cylindrical 10 log10 r law in case of multiple shots. A doubling of the shot interval diminishes the cumulative sound exposure levels by -3 dB and halves the radii. The ocean bottom properties only slightly affect the radii in shallow waters, if the normal incidence reflection coefficient exceeds 0.2.

  19. A High-Order Immersed Boundary Method for Acoustic Wave Scattering and Low-Mach Number Flow-Induced Sound in Complex Geometries

    PubMed Central

    Seo, Jung Hee; Mittal, Rajat

    2010-01-01

    A new sharp-interface immersed boundary method based approach for the computation of low-Mach number flow-induced sound around complex geometries is described. The underlying approach is based on a hydrodynamic/acoustic splitting technique where the incompressible flow is first computed using a second-order accurate immersed boundary solver. This is followed by the computation of sound using the linearized perturbed compressible equations (LPCE). The primary contribution of the current work is the development of a versatile, high-order accurate immersed boundary method for solving the LPCE in complex domains. This new method applies the boundary condition on the immersed boundary to a high-order by combining the ghost-cell approach with a weighted least-squares error method based on a high-order approximating polynomial. The method is validated for canonical acoustic wave scattering and flow-induced noise problems. Applications of this technique to relatively complex cases of practical interest are also presented. PMID:21318129

  20. Acoustic characteristics of biosonar sounds of free-ranging botos (Inia geoffrensis) and tucuxis (Sotalia fluviatilis) in the Negro River, Amazon, Brazil.

    PubMed

    Yamamoto, Yukiko; Akamatsu, Tomonari; da Silva, Vera M F; Yoshida, Yayoi; Kohshima, Shiro

    2015-08-01

    Odontoceti emit broadband high-frequency clicks on echolocation for orientation or prey detection. In the Amazon Basin, two odontoceti species, boto (Amazon River dolphin, Inia geoffrensis) and tucuxi (Sotalia fluviatilis), live sympatrically. The acoustic characteristics of the echolocation clicks of free-ranging botos and tucuxis were measured with a hydrophone array consisting of a full-band and an acoustic event recorder (A-tag). The clicks of the two species were short-duration broadband signals. The apparent source level was 201 dB 1 μPa peak-to-peak at 1 m in the botos and 181 dB 1 μPa peak-to-peak at 1 m in the tucuxis, and the centroid frequency was 82.3 kHz in the botos and 93.1 kHz in the tucuxis. The high apparent source level and low centroid frequency are possibly due to the difference in body size or sound production organs, especially the nasal structure, the sound source of clicks in odontoceti. PMID:26328686

  1. Designing piping systems against acoustically-induced structural fatigue

    SciTech Connect

    Eisinger, F.L.

    1996-12-01

    Piping systems adapted for handling fluids such as steam and various process and hydrocarbon gases through a pressure-reducing device at high pressure and velocity conditions can produce severe acoustic vibration and metal fatigue in the system. It has been determined that such vibrations and fatigue are minimized by relating the acoustic power level (PWL) to being a function of the ratio of downstream pipe inside diameter D{sub 2} to its thickness t{sub 2}. Additionally, such vibration and fatigue can be further minimized by relating the fluid pressure drop and downstream mach number to a function of the ratio of downstream piping inside diameter to the pipe wall thickness, as expressed by M{sub 2} {Delta}p = f(D{sub 2}/t{sub 2}). Pressure-reducing piping systems designed according to these criteria exhibit minimal vibrations and metal fatigue failures and have long operating life.

  2. Synthetic gauge flux and Weyl points in acoustic systems

    NASA Astrophysics Data System (ADS)

    Xiao, Meng; Chen, Wen-Jie; He, Wen-Yu; Chan, C. T.

    2015-11-01

    Following the discovery of the quantum Hall effect and topological insulators, the topological properties of classical waves began to draw attention. Topologically non-trivial bands characterized by non-zero Chern numbers are realized through either the breaking of time-reversal symmetry using an external magnetic field or dynamic modulation. Owing to the absence of a Faraday-like effect, the breaking of time-reversal symmetry in an acoustic system is commonly realized with moving background fluids, which drastically increases the engineering complexity. Here we show that we can realize effective inversion symmetry breaking and create an effective gauge flux in a reduced two-dimensional system by engineering interlayer couplings, achieving an acoustic analogue of the topological Haldane model. We show that the synthetic gauge flux is closely related to Weyl points in the three-dimensional band structure and the system supports chiral edge states for fixed values of kz.

  3. PC-based Digital Acoustic Control System (DACS)

    NASA Technical Reports Server (NTRS)

    Shah, Kamlesh C.

    1991-01-01

    The PC-based Digital Acoustic Control System (DACS), which is a closed-loop system capable of precisely controlling the spectrum in real-time mode, is discussed. The system is based on integrated facility hardware including control microphones, signal conditioners, a real-time analyzer (RTA), a shaper, high capacity power amplifiers, and acoustic horns and generators. The DACS provides both an improved spectrum simulation and realtime information of pertinent test parameters that are stored in five separate files. These files can be hard copied and/or transferred to other programs to obtain a specific format of the test data. It is demonstrated that the computer interface with digital RTA and programmable filters are most effective and efficient. This facility runs independently under the control of a computer with an IEEE-488 interface to the facility hardware.

  4. Light diffraction by acoustically induced domains in nematic liquid crystals

    SciTech Connect

    Kapustina, O. A.

    2006-05-15

    The phenomenon of light diffraction by a system of linear domains formed in planar layers of nematic liquid crystals in an oscillating Couette flow, acoustically induced at sound frequencies, is investigated.

  5. Acoustic backscattering enhancements for circular elastic plates and acrylic targets, the application of acoustic holography to the study of scattering from planar elastic objects, and other research on the radiation of sound

    NASA Astrophysics Data System (ADS)

    Hefner, Brian Todd

    2000-08-01

    Backscattering enhancements on both circular elastic plates and acrylic targets are investigated as well as several techniques for the study of the radiation of sound. For sound scattered from a circular plate, two backscattering enhancements associated with the extensional wave are observed. The first of these enhancements involves extensional wave excitation along the diameter of the plate. When the extensional wave strikes the plate edge, reflection occurs which produces radiation into the backscattering direction. For those portions of the leaky wave which strike the edge at oblique incidence, there is mode conversion into a trapped shear wave. For certain angles of incidence on the plate edge, this wave can undergo multiple reflections and convert back into a leaky wave directed in the backscattering direction. Each of these enhancements are modeled using quantitative ray methods. Acoustic holography is also used to image the surface motion of the plate to identify the causes of these enhancements and to assess the validity of the ray model. Backscattering enhancements associated with antisymmetric Lamb wave excitation are also investigated. Scattering at the first-order antisymmetric wave coupling angle is studied using acoustic holography. Significant mode- conversion between the zeroth and first-order antisymmetric waves is observed which plays a significant role in the scattering processes. Quantitative ray models were also used to examine the backscattering from acrylic targets. Polymer solids typically have shear and Rayleigh wave phase velocities which are less than the speed of sound in water. For solid acrylic spheres, low frequency resonances are observed both experimentally and in the exact backscattering form functions which are due to coupling between the incident field and the subsonic Rayleigh wave on the sphere. The effects of material absorption, which is generally high in polymers, is examined in both the exact solutions and the quantitative

  6. The acoustic simulation and analysis of complicated reciprocating compressor piping systems, I: Analysis technique and parameter matrices of acoustic elements

    NASA Astrophysics Data System (ADS)

    To, C. W. S.

    1984-09-01

    This paper describes the mathematical formulation, equations, and procedures employed in the development of a comprehensive digital computer program for acoustic simulation and analysis of large and complicated piping systems. The analysis technique used is the transfer matrix method in which the piping system, with or without multiple inputs and outputs, is represented by a combination of discrete acoustic elements interconnected to one another at two stations such that the acoustic pressure and volume velocity at one station are uniquely related to those at the other by a two-by-two parameter matrix. Parameter matrices of 19 acoustic elements are included in this paper. By making use of these parameter matrices and the analysis technique, any complicated practical reciprocating compressor piping system can be modelled or analyzed.

  7. Acoustic system for communication in pipelines

    DOEpatents

    Martin, II, Louis Peter; Cooper, John F.

    2008-09-09

    A system for communication in a pipe, or pipeline, or network of pipes containing a fluid. The system includes an encoding and transmitting sub-system connected to the pipe, or pipeline, or network of pipes that transmits a signal in the frequency range of 3-100 kHz into the pipe, or pipeline, or network of pipes containing a fluid, and a receiver and processor sub-system connected to the pipe, or pipeline, or network of pipes containing a fluid that receives said signal and uses said signal for a desired application.

  8. Study on demodulated signal distribution and acoustic pressure phase sensitivity of a self-interfered distributed acoustic sensing system

    NASA Astrophysics Data System (ADS)

    Shang, Ying; Yang, Yuan-Hong; Wang, Chen; Liu, Xiao-Hui; Wang, Chang; Peng, Gang-Ding

    2016-06-01

    We propose a demodulated signal distribution theory for a self-interfered distributed acoustic sensing system. The distribution region of Rayleigh backscattering including the acoustic sensing signal in the sensing fiber is investigated theoretically under different combinations of both the path difference and pulse width Additionally we determine the optimal solution between the path difference and pulse width to obtain the maximum phase change per unit length. We experimentally test this theory and realize a good acoustic pressure phase sensitivity of  ‑150 dB re rad/(μPa·m) of fiber in the frequency range from 200 Hz to 1 kHz.

  9. Airborne laser systems for atmospheric sounding in the near infrared

    NASA Astrophysics Data System (ADS)

    Sabatini, Roberto; Richardson, Mark A.; Jia, Huamin; Zammit-Mangion, David

    2012-06-01

    This paper presents new techniques for atmospheric sounding using Near Infrared (NIR) laser sources, direct detection electro-optics and passive infrared imaging systems. These techniques allow a direct determination of atmospheric extinction and, through the adoption of suitable inversion algorithms, the indirect measurement of some important natural and man-made atmospheric constituents, including Carbon Dioxide (CO2). The proposed techniques are suitable for remote sensing missions performed by using aircraft, satellites, Unmanned Aerial Vehicles (UAV), parachute/gliding vehicles, Roving Surface Vehicles (RSV), or Permanent Surface Installations (PSI). The various techniques proposed offer relative advantages in different scenarios. All are based on measurements of the laser energy/power incident on target surfaces of known geometric and reflective characteristics, by means of infrared detectors and/or infrared cameras calibrated for radiance. Experimental results are presented relative to ground and flight trials performed with laser systems operating in the near infrared (NIR) at λ = 1064 nm and λ = 1550 nm. This includes ground tests performed with 10 Hz and 20 KHz PRF NIR laser systems in a variety of atmospheric conditions, and flight trials performed with a 10 Hz airborne NIR laser system installed on a TORNADO aircraft, flying up to altitudes of 22,000 ft above ground level. Future activities are planned to validate the atmospheric retrieval algorithms developed for CO2 column density measurements, with emphasis on aircraft related emissions at airports and other high air-traffic density environments.

  10. Modified modular imaging system designed for a sounding rocket experiment

    NASA Astrophysics Data System (ADS)

    Veach, Todd J.; Scowen, Paul A.; Beasley, Matthew; Nikzad, Shouleh

    2012-09-01

    We present the design and system calibration results from the fabrication of a charge-coupled device (CCD) based imaging system designed using a modified modular imager cell (MIC) used in an ultraviolet sounding rocket mission. The heart of the imaging system is the MIC, which provides the video pre-amplifier circuitry and CCD clock level filtering. The MIC is designed with standard four-layer FR4 printed circuit board (PCB) with surface mount and through-hole components for ease of testing and lower fabrication cost. The imager is a 3.5k by 3.5k LBNL p-channel CCD with enhanced quantum efficiency response in the UV using delta-doping technology at JPL. The recently released PCIe/104 Small-Cam CCD controller from Astronomical Research Cameras, Inc (ARC) performs readout of the detector. The PCIe/104 Small-Cam system has the same capabilities as its larger PCI brethren, but in a smaller form factor, which makes it ideally suited for sub-orbital ballistic missions. The overall control is then accomplished using a PCIe/104 computer from RTD Embedded Technologies, Inc. The design, fabrication, and testing was done at the Laboratory for Astronomical and Space Instrumentation (LASI) at Arizona State University. Integration and flight calibration are to be completed at the University of Colorado Boulder before integration into CHESS.

  11. Smart acoustic emission system for wireless monitoring of concrete structures

    NASA Astrophysics Data System (ADS)

    Yoon, Dong-Jin; Kim, Young-Gil; Kim, Chi-Yeop; Seo, Dae-Cheol

    2008-03-01

    Acoustic emission (AE) has emerged as a powerful nondestructive tool to detect preexisting defects or to characterize failure mechanisms. Recently, this technique or this kind of principle, that is an in-situ monitoring of inside damages of materials or structures, becomes increasingly popular for monitoring the integrity of large structures. Concrete is one of the most widely used materials for constructing civil structures. In the nondestructive evaluation point of view, a lot of AE signals are generated in concrete structures under loading whether the crack development is active or not. Also, it was required to find a symptom of damage propagation before catastrophic failure through a continuous monitoring. Therefore we have done a practical study in this work to fabricate compact wireless AE sensor and to develop diagnosis system. First, this study aims to identify the differences of AE event patterns caused by both real damage sources and the other normal sources. Secondly, it was focused to develop acoustic emission diagnosis system for assessing the deterioration of concrete structures such as a bridge, dame, building slab, tunnel etc. Thirdly, the wireless acoustic emission system was developed for the application of monitoring concrete structures. From the previous laboratory study such as AE event patterns analysis under various loading conditions, we confirmed that AE analysis provided a promising approach for estimating the condition of damage and distress in concrete structures. In this work, the algorithm for determining the damage status of concrete structures was developed and typical criteria for decision making was also suggested. For the future application of wireless monitoring, a low energy consumable, compact, and robust wireless acoustic emission sensor module was developed and applied to the concrete beam for performance test. Finally, based on the self-developed diagnosis algorithm and compact wireless AE sensor, new AE system for practical

  12. a Three-Dimensional Acoustical Imaging System for Zooplankton Observations

    NASA Astrophysics Data System (ADS)

    McGehee, Duncan Ewell

    This dissertation describes the design, testing, and use of a three-dimensional acoustical imaging system, called Fish TV, or FTV, for tracking zooplankton swimming in situ. There is an increasing recognition that three -dimensional tracks of individual plankters are needed for some studies in behavioral ecology including, for example, the role of individual behavior in patch formation and maintenance. Fish TV was developed in part to provide a means of examining zooplankton swimming behavior in a non-invasive way. The system works by forming a set of 64 acoustic beams in an 8 by 8 pattern, each beam 2 ^circ by 2^circ , for a total coverage of 16^circ by 16^circ. The 8 by 8 beams form two dimensions of the image; range provides the third dimension. The system described in the thesis produces three-dimensional images at the rate of approximately one per second. A set of laboratory and field experiments is described that demonstrates the capabilities of the system. The final field experiment was the in situ observation of zooplankton swimming behavior at a site in the San Diego Trough, 15 nautical miles southwest of San Diego. 314 plankters were tracked for one minute. It was observed that there was no connection between the acoustic size of the animals and their repertoire of swimming behaviors. Other contributions of the dissertation include the development of two novel methods for generating acoustic beams with low side lobes. The first is the method of dense random arrays. The second is the optimum mean square quantized aperture method. Both methods were developed originally as ways to "build a better beam pattern" for Fish TV, but also have general significance with respect to aperture theory.

  13. Vibro-acoustic characterization of flexible hose in CO2 car air conditioning systems

    NASA Astrophysics Data System (ADS)

    Angelini, F.; Bergami, A.; Martarelli, M.; Tomasini, E. P.

    2008-06-01

    Following the EU directive 2006/40/EC proscribing from 2011 that refrigerant fluids must have a global warming potential not higher than 150, it will not be allowed anymore to employ the current R134a on car air conditioning systems. Maflow s.p.a (automotive hose maker) is developing products for each possible new refrigerant. This paper is focused on hoses for CO2 refrigerants operating in the worst conditions because of the high pressures and temperatures at which they are working (with R134a the high pressure is 18 bar and low pressure is 3 bar; with CO2 the high pressure is 100 bar and low pressure is 35 bar). Therefore the noise emission control of the CO2 air conditioning systems is very important. The aim of this study is to develop a standard measurement method for the vibro - acoustic characterization of High Pressure (HP - Shark F4) and Low Pressure (LP - ULEV) hoses to reduce noise emission and raise car passenger comfort; in particular deep research on high pressure hose. The method is based on the measurement of the vibration level of the hoses in a standard test bench by means of a Laser Doppler Vibrometer (LDV) and its acoustic emission by a sound intensity probe.

  14. Mean Flow Augmented Acoustics in Rocket Systems

    NASA Technical Reports Server (NTRS)

    Fischbach, Sean R.

    2015-01-01

    Combustion instability in solid rocket motors and liquid engines is a complication that continues to plague designers and engineers. Many rocket systems experience violent fluctuations in pressure, velocity, and temperature originating from the complex interactions between the combustion process and gas dynamics. During sever cases of combustion instability fluctuation amplitudes can reach values equal to or greater than the average chamber pressure. Large amplitude oscillations lead to damaged injectors, loss of rocket performance, damaged payloads, and in some cases breach of case/loss of mission. Historic difficulties in modeling and predicting combustion instability has reduced most rocket systems experiencing instability into a costly fix through testing paradigm or to scrap the system entirely.

  15. The dispersion-focalization theory of sound systems

    NASA Astrophysics Data System (ADS)

    Schwartz, Jean-Luc; Abry, Christian; Boë, Louis-Jean; Vallée, Nathalie; Ménard, Lucie

    2005-04-01

    The Dispersion-Focalization Theory states that sound systems in human languages are shaped by two major perceptual constraints: dispersion driving auditory contrast towards maximal or sufficient values [B. Lindblom, J. Phonetics 18, 135-152 (1990)] and focalization driving auditory spectra towards patterns with close neighboring formants. Dispersion is computed from the sum of the inverse squared inter-spectra distances in the (F1, F2, F3, F4) space, using a non-linear process based on the 3.5 Bark critical distance to estimate F2'. Focalization is based on the idea that close neighboring formants produce vowel spectra with marked peaks, easier to process and memorize in the auditory system. Evidence for increased stability of focal vowels in short-term memory was provided in a discrimination experiment on adult French subjects [J. L. Schwartz and P. Escudier, Speech Comm. 8, 235-259 (1989)]. A reanalysis of infant discrimination data shows that focalization could well be the responsible for recurrent discrimination asymmetries [J. L. Schwartz et al., Speech Comm. (in press)]. Recent data about children vowel production indicate that focalization seems to be part of the perceptual templates driving speech development. The Dispersion-Focalization Theory produces valid predictions for both vowel and consonant systems, in relation with available databases of human languages inventories.

  16. Use of acoustic monitoring system for debris flow discharge evaluation

    NASA Astrophysics Data System (ADS)

    Galgaro, A. G.; Tecca, P. R.; Genevois, R.; Deganutti, A. M.

    2003-04-01

    In 1997 an automated system for monitoring of debris flows has been installed in the Acquabona channel Dolomites, Italy. Induction geophones, with a specific frequency of 10 Hz, measure the amplitude of vertical ground vibrations generated by the passage of a flowing mass along the channel. Continuous acoustic logs and ultrasonic hydrograph recorded at the lower-channel measurement station for the debris flow of August 17, 1998, show a striking correspondence. This correspondence, already observed in different flow sites, is represented by the best fit between flow depth and flow sensor amplitude. Average front velocity for surges, calculated from the signal peak time shift and the distance between the sensors along the flow path, range between 2.00 and 7.7 m/s. As the ultrasonic sensor provides a way to measure the variation of the flow section area with the flow depth, the debris flow peak discharge may be estimated; obtained values of debris flow peak discharge range from 4 and 30 m3/s. Volumes were calculated by integrating instantaneous discharges through the hydrograph and by integrating the geophone log (acoustic flux). Volumes of 13700 m3 and 15500 m3 have been respectively obtained. The slight difference between the two values may result from the fact that acoustic records: i) are sensitive to the high frequencies, typical of the debris flow tails; ii) sum up the contributions sent by the whole flowing mass, while the ecometer detect the flow depth at every time at only one section. As a consequence the rising of the whole geophone log gives a higher value at the integration result. This only acoustic system can give a reasonably proxy for discharge and total volumes involved, which are among the most important parameters for debris flow hazard assessment and planning countermeasures. This methodology can be used in other debris flow sites if they are calibrated by the acoustic characterization of debris, obtained by both seismic surveys and SPT tests, and

  17. Optimal flushing agents for integrated optical and acoustic imaging systems

    PubMed Central

    Li, Jiawen; Minami, Hataka; Steward, Earl; Ma, Teng; Mohar, Dilbahar; Robertson, Claire; Shung, Kirk; Zhou, Qifa; Patel, Pranav; Chen, Zhongping

    2015-01-01

    Abstract. An increasing number of integrated optical and acoustic intravascular imaging systems have been developed and hold great promise for accurately diagnosing vulnerable plaques and guiding atherosclerosis treatment. However, in any intravascular environment, the vascular lumen is filled with blood, a high-scattering source for optical and high-frequency ultrasound signals. Blood must be flushed away to provide clearer images. To our knowledge, no research has been performed to find the ideal flushing agent for combined optical and acoustic imaging techniques. We selected three solutions as potential flushing agents for their image-enhancing effects: mannitol, dextran, and iohexol. Testing of these flushing agents was performed in a closed-loop circulation model and in vivo on rabbits. We found that a high concentration of dextran was the most useful for simultaneous intravascular ultrasound and optical coherence tomography imaging. PMID:25985096

  18. Optimal flushing agents for integrated optical and acoustic imaging systems.

    PubMed

    Li, Jiawen; Minami, Hataka; Steward, Earl; Ma, Teng; Mohar, Dilbahar; Robertson, Claire; Shung, Kirk; Zhou, Qifa; Patel, Pranav; Chen, Zhongping

    2015-05-01

    An increasing number of integrated optical and acoustic intravascular imaging systems have been developed and hold great promise for accurately diagnosing vulnerable plaques and guiding atherosclerosis treatment. However, in any intravascular environment, the vascular lumen is filled with blood, a high-scattering source for optical and high-frequency ultrasound signals. Blood must be flushed away to provide clearer images. To our knowledge, no research has been performed to find the ideal flushing agent for combined optical and acoustic imaging techniques. We selected three solutions as potential flushing agents for their image-enhancing effects: mannitol, dextran, and iohexol. Testing of these flushing agents was performed in a closed-loop circulation model and in vivo on rabbits. We found that a high concentration of dextran was the most useful for simultaneous intravascular ultrasound and optical coherence tomography imaging. PMID:25985096

  19. Optimal flushing agents for integrated optical and acoustic imaging systems

    NASA Astrophysics Data System (ADS)

    Li, Jiawen; Minami, Hataka; Steward, Earl; Ma, Teng; Mohar, Dilbahar; Robertson, Claire; Shung, Kirk; Zhou, Qifa; Patel, Pranav; Chen, Zhongping

    2015-05-01

    An increasing number of integrated optical and acoustic intravascular imaging systems have been developed and hold great promise for accurately diagnosing vulnerable plaques and guiding atherosclerosis treatment. However, in any intravascular environment, the vascular lumen is filled with blood, a high-scattering source for optical and high-frequency ultrasound signals. Blood must be flushed away to provide clearer images. To our knowledge, no research has been performed to find the ideal flushing agent for combined optical and acoustic imaging techniques. We selected three solutions as potential flushing agents for their image-enhancing effects: mannitol, dextran, and iohexol. Testing of these flushing agents was performed in a closed-loop circulation model and in vivo on rabbits. We found that a high concentration of dextran was the most useful for simultaneous intravascular ultrasound and optical coherence tomography imaging.

  20. Ideal flushing agents for integrated optical acoustic imaging systems

    NASA Astrophysics Data System (ADS)

    Li, Jiawen; Minami, Hataka; Steward, Earl; Ma, Teng; Mohar, Dilbahar; Robertson, Claire; Shung, K. Kirk; Zhou, Qifa; Patel, Pranav M.; Chen, Zhongping

    2015-02-01

    An increased number of integrated optical acoustic intravascular imaging systems have been researched and hold great hope for accurate diagnosing of vulnerable plaques and for guiding atherosclerosis treatment. However, in any intravascular environment, vascular lumen is filled with blood, which is a high-scattering source for optical and high frequency ultrasound signals. Blood must be flushed away to make images clear. To our knowledge, no research has been performed to find the ideal flushing agent that works for both optical and acoustic imaging techniques. We selected three solutions, mannitol, dextran and iohexol, as flushing agents because of their image-enhancing effects and low toxicities. Quantitative testing of these flushing agents was performed in a closed loop circulation model and in vivo on rabbits.

  1. Characteristics of the audio sound generated by ultrasound imaging systems

    NASA Astrophysics Data System (ADS)

    Fatemi, Mostafa; Alizad, Azra; Greenleaf, James F.

    2005-03-01

    Medical ultrasound scanners use high-energy pulses to probe the human body. The radiation force resulting from the impact of such pulses on an object can vibrate the object, producing a localized high-intensity sound in the audible range. Here, a theoretical model for the audio sound generated by ultrasound scanners is presented. This model describes the temporal and spectral characteristics of the sound. It has been shown that the sound has rich frequency components at the pulse repetition frequency and its harmonics. Experiments have been conducted in a water tank to measure the sound generated by a clinical ultrasound scanner in various operational modes. Results are in general agreement with the theory. It is shown that a typical ultrasound scanner with a typical spatial-peak pulse-average intensity value at 2 MHz may generate a localized sound-pressure level close to 100 dB relative to 20 μPa in the audible (<20 kHz) range under laboratory conditions. These findings suggest that fetuses may become exposed to a high-intensity audio sound during maternal ultrasound examinations. Therefore, contrary to common beliefs, ultrasound may not be considered a passive tool in fetal imaging..

  2. Acoustical effects of a large ridge on low-frequency sound propagation in stationary and moving atmospheres

    NASA Technical Reports Server (NTRS)

    Robertson, J. S.; Jacobson, M. J.; Siegmann, W. L.; Santandrea, D. P.

    1989-01-01

    The effects of a ridge on a low-frequency acoustic propagation in quiescent and windy atmospheres are investigated using a parabolic approximation. A logarithmic wind-speed profile, commonly employed to model atmospheric wind currents, is modified and used to model two-dimensional atmospheric flow over a triangularly-shaped hill. The parabolic equation is solved using an implicit finite-difference algorithm. Several examples are examined to determine the combined effects of source-ridge distance, ridge dimensions, wind-speed profile, and CW source frequency on the received acoustic field.

  3. Aquatic Acoustic Metrics Interface

    2012-12-18

    Fishes and marine mammals may suffer a range of potential effects from exposure to intense underwater sound generated by anthropogenic activities such as pile driving, shipping, sonars, and underwater blasting. Several underwater sound recording (USR) devices have been built to acquire samples of the underwater sound generated by anthropogenic activities. Software becomes indispensable for processing and analyzing the audio files recorded by these USRs. The new Aquatic Acoustic Metrics Interface Utility Software (AAMI) is specificallymore » designed for analysis of underwater sound recordings to provide data in metrics that facilitate evaluation of the potential impacts of the sound on aquatic animals. In addition to the basic functions, such as loading and editing audio files recorded by USRs and batch processing of sound files, the software utilizes recording system calibration data to compute important parameters in physical units. The software also facilitates comparison of the noise sound sample metrics with biological measures such as audiograms of the sensitivity of aquatic animals to the sound, integrating various components into a single analytical frame.« less

  4. Aquatic Acoustic Metrics Interface

    SciTech Connect

    2012-12-18

    Fishes and marine mammals may suffer a range of potential effects from exposure to intense underwater sound generated by anthropogenic activities such as pile driving, shipping, sonars, and underwater blasting. Several underwater sound recording (USR) devices have been built to acquire samples of the underwater sound generated by anthropogenic activities. Software becomes indispensable for processing and analyzing the audio files recorded by these USRs. The new Aquatic Acoustic Metrics Interface Utility Software (AAMI) is specifically designed for analysis of underwater sound recordings to provide data in metrics that facilitate evaluation of the potential impacts of the sound on aquatic animals. In addition to the basic functions, such as loading and editing audio files recorded by USRs and batch processing of sound files, the software utilizes recording system calibration data to compute important parameters in physical units. The software also facilitates comparison of the noise sound sample metrics with biological measures such as audiograms of the sensitivity of aquatic animals to the sound, integrating various components into a single analytical frame.

  5. Measurement of acoustical characteristics of mosques in Saudi Arabia.

    PubMed

    Abdou, Adel A

    2003-03-01

    The study of mosque acoustics, with regard to acoustical characteristics, sound quality for speech intelligibility, and other applicable acoustic criteria, has been largely neglected. In this study a background as to why mosques are designed as they are and how mosque design is influenced by worship considerations is given. In the study the acoustical characteristics of typically constructed contemporary mosques in Saudi Arabia have been investigated, employing a well-known impulse response. Extensive field measurements were taken in 21 representative mosques of different sizes and architectural features in order to characterize their acoustical quality and to identify the impact of air conditioning, ceiling fans, and sound reinforcement systems on their acoustics. Objective room-acoustic indicators such as reverberation time (RT) and clarity (C50) were measured. Background noise (BN) was assessed with and without the operation of air conditioning and fans. The speech transmission index (STI) was also evaluated with and without the operation of existing sound reinforcement systems. The existence of acoustical deficiencies was confirmed and quantified. The study, in addition to describing mosque acoustics, compares design goals to results obtained in practice and suggests acoustical target values for mosque design. The results show that acoustical quality in the investigated mosques deviates from optimum conditions when unoccupied, but is much better in the occupied condition. PMID:12656385

  6. Measurement of acoustical characteristics of mosques in Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Abdou, Adel A.

    2003-03-01

    The study of mosque acoustics, with regard to acoustical characteristics, sound quality for speech intelligibility, and other applicable acoustic criteria, has been largely neglected. In this study a background as to why mosques are designed as they are and how mosque design is influenced by worship considerations is given. In the study the acoustical characteristics of typically constructed contemporary mosques in Saudi Arabia have been investigated, employing a well-known impulse response. Extensive field measurements were taken in 21 representative mosques of different sizes and architectural features in order to characterize their acoustical quality and to identify the impact of air conditioning, ceiling fans, and sound reinforcement systems on their acoustics. Objective room-acoustic indicators such as reverberation time (RT) and clarity (C50) were measured. Background noise (BN) was assessed with and without the operation of air conditioning and fans. The speech transmission index (STI) was also evaluated with and without the operation of existing sound reinforcement systems. The existence of acoustical deficiencies was confirmed and quantified. The study, in addition to describing mosque acoustics, compares design goals to results obtained in practice and suggests acoustical target values for mosque design. The results show that acoustical quality in the investigated mosques deviates from optimum conditions when unoccupied, but is much better in the occupied condition.

  7. High-Frequency CTD Measurements for Accurate GPS/acoustic Sea-floor Crustal Deformation Measurement System

    NASA Astrophysics Data System (ADS)

    Tadokoro, K.; Yasuda, K.; Taniguchi, S.; Uemura, Y.; Matsuhiro, K.

    2015-12-01

    The GPS/acoustic sea-floor crustal deformation measurement system has developed as a useful tool to observe tectonic deformation especially at subduction zones. One of the factors preventing accurate GPS/acoustic sea-floor crustal deformation measurement is horizontal heterogeneity of sound speed in the ocean. It is therefore necessary to measure the gradient directly from sound speed structure. We report results of high-frequency CTD measurements using Underway CTD (UCTD) in the Kuroshio region. We perform the UCTD measurements on May 2nd, 2015 at two stations (TCA and TOA) above the sea-floor benchmarks installed across the Nankai Trough, off the south-east of Kii Peninsula, middle Japan. The number of measurement points is six at each station along circles with a diameter of 1.8 nautical miles around the sea-floor benchmark. The stations TCA and TOA are located on the edge and the interior of the Kuroshio current, respectively, judging from difference in sea water density measured at the two stations, as well as a satellite image of sea-surface temperature distribution. We detect a sound speed gradient of high speeds in the southern part and low speeds in the northern part at the two stations. At the TCA station, the gradient is noticeable down to 300 m in depth; the maximum difference in sound speed is +/- 5 m/s. The sound speed difference is as small as +/- 1.3 m/s at depths below 300 m, which causes seafloor benchmark positioning error as large as 1 m. At the TOA station, the gradient is extremely small down to 100 m in depth. The maximum difference in sound speed is less than +/- 0.3 m/s that is negligible small for seafloor benchmark positioning error. Clear gradient of high speed is observed to the depths; the maximum difference in sound speed is +/- 0.8-0.9 m/s, causing seafloor benchmark positioning error of several tens centimeters. The UCTD measurement is effective tool to detect sound speed gradient. We establish a method for accurate sea

  8. Motor area activity for action-related and nonaction-related sounds in a three-dimensional sound field reproduction system.

    PubMed

    Tsuchida, Koichiro; Ueno, Kanako; Shimada, Sotaro

    2015-03-25

    The motor cortical area is often activated to auditory stimuli in the human brain. In this study, we examined whether the motor area shows differential activation for action-related and nonaction-related sounds and whether it is susceptible to the quality of the sounds. A three-dimensional sound field recording and reproduction system based on the boundary surface control principle (BoSC system) was used for this purpose. We measured brain activity during hearing action-related or nonaction-related sounds with electroencephalography using mu rhythm suppression (mu-suppression) as an index of motor cortical activation. The results showed that mu-suppression was observed when the participant heard action-related sounds, but it was not evident when hearing nonaction-related sounds. Moreover, this suppression was significantly larger in the 3D sound field (62-ch loudspeaker condition), which generates a more realistic sound field, than in the 1-ch loudspeaker condition. Our results indicate that the motor area was indeed activated for action-related sounds and that its activation was enhanced with a 3D realistic sound field. We discuss our findings in relation to the mirror neuron system and the possibility of using its activity as an objective measure that reflects the subjective sense of reality in various virtual reality settings when interacting with others. PMID:25714418

  9. Speech after Radial Forearm Free Flap Reconstruction of the Tongue: A Longitudinal Acoustic Study of Vowel and Diphthong Sounds

    ERIC Educational Resources Information Center

    Laaksonen, Juha-Pertti; Rieger, Jana; Happonen, Risto-Pekka; Harris, Jeffrey; Seikaly, Hadi

    2010-01-01

    The purpose of this study was to use acoustic analyses to describe speech outcomes over the course of 1 year after radial forearm free flap (RFFF) reconstruction of the tongue. Eighteen Canadian English-speaking females and males with reconstruction for oral cancer had speech samples recorded (pre-operative, and 1 month, 6 months, and 1 year…

  10. How Native Do They Sound? An Acoustic Analysis of the Spanish Vowels of Elementary Spanish Immersion Students

    ERIC Educational Resources Information Center

    Menke, Mandy R.

    2015-01-01

    Language immersion students' lexical, syntactic, and pragmatic competencies are well documented, yet their phonological skill has remained relatively unexplored. This study investigates the Spanish vowel productions of a cross-sectional sample of 35 one-way Spanish immersion students. Learner productions were analyzed acoustically and compared to…

  11. Verification of an acoustic transmission matrix analysis of sound propagation in a variable area duct without flow

    NASA Technical Reports Server (NTRS)

    Miles, J. H.

    1981-01-01

    A predicted standing wave pressure and phase angle profile for a hard wall rectangular duct with a region of converging-diverging area variation is compared to published experimental measurements in a study of sound propagation without flow. The factor of 1/2 area variation used is sufficient magnitude to produce large reflections. The prediction is based on a transmission matrix approach developed for the analysis of sound propagation in a variable area duct with and without flow. The agreement between the measured and predicted results is shown to be excellent.

  12. Interaction of reed and acoustic resonator in clarinetlike systems.

    PubMed

    Silva, Fabrice; Kergomard, Jean; Vergez, Christophe; Gilbert, Joël

    2008-11-01

    Sound emergence in clarinetlike instruments is investigated in terms of instability of the static regime. Various models of reed-bore coupling are considered, from the pioneering work of Wilson and Beavers ["Operating modes of the clarinet," J. Acoust. Soc. Am. 56, 653-658 (1974)] to more recent modeling including viscothermal bore losses and vena contracta at the reed inlet. The pressure threshold above which these models may oscillate as well as the frequency of oscillation at threshold are calculated. In addition to Wilson and Beavers' previous conclusions concerning the role of the reed damping in the selection of the register the instrument will play on, the influence of the reed motion induced flow is also emphasized, particularly its effect on playing frequencies, contributing to reduce discrepancies between Wilson and Beavers' experimental results and theory, despite discrepancies still remain concerning the pressure threshold. Finally, analytical approximations of the oscillating solution based on Fourier series expansion are obtained in the vicinity of the threshold of oscillation. This allows to emphasize the conditions which determine the nature of the bifurcation (direct or inverse) through which the note may emerge, with therefore important consequences on the musical playing performances. PMID:19045811

  13. Optimality criteria-based topology optimization of a bi-material model for acoustic-structural coupled systems

    NASA Astrophysics Data System (ADS)

    Shang, Linyuan; Zhao, Guozhong

    2016-06-01

    This article investigates topology optimization of a bi-material model for acoustic-structural coupled systems. The design variables are volume fractions of inclusion material in a bi-material model constructed by the microstructure-based design domain method (MDDM). The design objective is the minimization of sound pressure level (SPL) in an interior acoustic medium. Sensitivities of SPL with respect to topological design variables are derived concretely by the adjoint method. A relaxed form of optimality criteria (OC) is developed for solving the acoustic-structural coupled optimization problem to find the optimum bi-material distribution. Based on OC and the adjoint method, a topology optimization method to deal with large calculations in acoustic-structural coupled problems is proposed. Numerical examples are given to illustrate the applications of topology optimization for a bi-material plate under a low single-frequency excitation and an aerospace structure under a low frequency-band excitation, and to prove the efficiency of the adjoint method and the relaxed form of OC.

  14. Sounding out erosion on the Mekong river banks: insights from combined terrestrial laser scanning, multibeam echo sounding and acoustic Doppler profiling

    NASA Astrophysics Data System (ADS)

    Best, J.; Hackney, C. R.; Leyland, J.; Darby, S. E.; Parsons, D. R.; Aalto, R. E.; Nicholas, A. P.

    2015-12-01

    Knowledge of bank erosion processes and rates along very large rivers remains incomplete, primarily due to the difficulties of obtaining morphological and flow data close to the bank across various flow stages. Moreover, obtaining such process information through the entire flow and bank depth has also proved challenging. Here, we present data from a series of high spatial resolution topographic (Terrestrial Laser Scanner and Multibeam Echo Sounder) and flow (Acoustic Doppler Current Profiler) surveys undertaken on the Mekong River, Cambodia, which reveal the temporal and spatial evolution of a series of embayments on the outer bank of a large meander. These techniques yield unique data that reveal how the flow field responds to the morphology of the outer bank and subaqueous slump blocks. Specifically, we show that in the early stage of embayment growth, deposited slump blocks induce flow upwelling and bank-directed flow that enhances bank erosion. Our data also suggest that as the initial erosion process continues, a threshold embayment size is reached. Below this threshold, flow separation acts to enhance embayment growth along with the fluid dynamic effects of slump blocks, but above the threshold size, the separation zone in the embayments acts as a protective layer, thus slowing erosion. This field data allows proposition of a new conceptual model of embayment evolution.

  15. Topological Acoustics

    NASA Astrophysics Data System (ADS)

    Yang, Zhaoju; Gao, Fei; Shi, Xihang; Lin, Xiao; Gao, Zhen; Chong, Yidong; Zhang, Baile

    2015-03-01

    The manipulation of acoustic wave propagation in fluids has numerous applications, including some in everyday life. Acoustic technologies frequently develop in tandem with optics, using shared concepts such as waveguiding and metamedia. It is thus noteworthy that an entirely novel class of electromagnetic waves, known as "topological edge states," has recently been demonstrated. These are inspired by the electronic edge states occurring in topological insulators, and possess a striking and technologically promising property: the ability to travel in a single direction along a surface without backscattering, regardless of the existence of defects or disorder. Here, we develop an analogous theory of topological fluid acoustics, and propose a scheme for realizing topological edge states in an acoustic structure containing circulating fluids. The phenomenon of disorder-free one-way sound propagation, which does not occur in ordinary acoustic devices, may have novel applications for acoustic isolators, modulators, and transducers.

  16. Topological acoustics.

    PubMed

    Yang, Zhaoju; Gao, Fei; Shi, Xihang; Lin, Xiao; Gao, Zhen; Chong, Yidong; Zhang, Baile

    2015-03-20

    The manipulation of acoustic wave propagation in fluids has numerous applications, including some in everyday life. Acoustic technologies frequently develop in tandem with optics, using shared concepts such as waveguiding and metamedia. It is thus noteworthy that an entirely novel class of electromagnetic waves, known as "topological edge states," has recently been demonstrated. These are inspired by the electronic edge states occurring in topological insulators, and possess a striking and technologically promising property: the ability to travel in a single direction along a surface without backscattering, regardless of the existence of defects or disorder. Here, we develop an analogous theory of topological fluid acoustics, and propose a scheme for realizing topological edge states in an acoustic structure containing circulating fluids. The phenomenon of disorder-free one-way sound propagation, which does not occur in ordinary acoustic devices, may have novel applications for acoustic isolators, modulators, and transducers. PMID:25839273

  17. Controlling system components with a sound card: A versatile inkjet fluid testing platform

    NASA Astrophysics Data System (ADS)

    Bognet, Brice; Guo, Yang; Ma, Anson W. K.

    2016-01-01

    In this paper, we demonstrate how to use a personal computer sound card to develop an experimental platform for evaluating the jettability and jetting behavior of inkjet fluids. The test fluid is driven out of a nozzle acoustically using a loudspeaker, forming a jet. The subsequent jet breakup process is then captured using a stroboscopic light source and a camera. Instead of using a delay generator as in previous work, the current setup uses a computer sound card and audio amplifier to (i) generate actuation waveforms of arbitrary shapes and (ii) synchronize the jet actuation and imaging with a time precision close to 5 μs. To correct for any signal distortions caused by the built-in high pass filters of the sound card and amplifier, a numerical filter is created and applied before sending the desired signal to the sound card. Such correction method does not require physically modifying the hardware of the sound card or amplifier and is applicable to different waveforms and filters provided that the transfer function is correctly identified. The platform has been tested using 20% (v/v) glycerol in water as a model fluid. Combining this platform with digital image analysis further enables a quantitative assessment of parameters such as the volumes and positions of the jet and drop that are important for quality control and development of new ink formulations.

  18. Controlling system components with a sound card: A versatile inkjet fluid testing platform.

    PubMed

    Bognet, Brice; Guo, Yang; Ma, Anson W K

    2016-01-01

    In this paper, we demonstrate how to use a personal computer sound card to develop an experimental platform for evaluating the jettability and jetting behavior of inkjet fluids. The test fluid is driven out of a nozzle acoustically using a loudspeaker, forming a jet. The subsequent jet breakup process is then captured using a stroboscopic light source and a camera. Instead of using a delay generator as in previous work, the current setup uses a computer sound card and audio amplifier to (i) generate actuation waveforms of arbitrary shapes and (ii) synchronize the jet actuation and imaging with a time precision close to 5 μs. To correct for any signal distortions caused by the built-in high pass filters of the sound card and amplifier, a numerical filter is created and applied before sending the desired signal to the sound card. Such correction method does not require physically modifying the hardware of the sound card or amplifier and is applicable to different waveforms and filters provided that the transfer function is correctly identified. The platform has been tested using 20% (v/v) glycerol in water as a model fluid. Combining this platform with digital image analysis further enables a quantitative assessment of parameters such as the volumes and positions of the jet and drop that are important for quality control and development of new ink formulations. PMID:26827347

  19. Fluid approach to evaluate sound velocity in Yukawa systems and complex plasmas.

    PubMed

    Khrapak, Sergey A; Thomas, Hubertus M

    2015-03-01

    The conventional fluid description of multicomponent plasma, supplemented by an appropriate equation of state for the macroparticle component, is used to evaluate the longitudinal sound velocity of Yukawa fluids. The obtained results are in very good agreement with those obtained earlier employing the quasilocalized charge approximation and molecular dynamics simulations in a rather broad parameter regime. Thus, a simple yet accurate tool to estimate the sound velocity across coupling regimes is proposed, which can be particularly helpful in estimating the dust-acoustic velocity in strongly coupled dusty (complex) plasmas. It is shown that, within the present approach, the sound velocity is completely determined by particle-particle correlations and the neutralizing medium (plasma), apart from providing screening of the Coulomb interaction, has no other effect on the sound propagation. The ratio of the actual sound velocity to its "ideal gas" (weak coupling) scale only weakly depends on the coupling strength in the fluid regime but exhibits a pronounced decrease with the increase of the screening strength. The limitations of the present approach in applications to real complex plasmas are briefly discussed. PMID:25871227

  20. Application of Acoustic Telemetry to Assess Residency and Movements of Rockfish and Lingcod at Created and Natural Habitats in Prince William Sound

    PubMed Central

    Reynolds, Brad F.; Powers, Sean P.; Bishop, Mary Anne

    2010-01-01

    Loss and/or degradation of nearshore habitats have led to increased efforts to restore or enhance many of these habitats, particularly those that are deemed essential for marine fishes. Copper rockfish (Sebastes caurinus) and lingcod (Ophiodon enlongatus) are dominant members of the typical reef fish community that inhabit rocky and high-relief substrates along the Pacific Northwest. We used acoustic telemetry to document their residency and movements in the nearshore waters of Prince William Sound, Alaska in order to assess use of created reef habitat in an individual-based manner. A total of 57 fish were surgically implanted with acoustic transmitters. Forty-five fish were captured and monitored in three habitats: artificial reef, low-relief natural reef, and patchy high-relief natural reef. Within each habitat, both rockfish and lingcod exhibited long periods of residency with limited movements. Twelve rockfish were captured at the natural reefs and displaced a distance of 4.0 km to the artificial reef. Five of the 12 rockfish returned within 10 d of their release to their initial capture site. Another five of the 12 displaced fish established residency at the artificial reef through the duration of our study. Our results suggest the potential for artificial reefs to provide rockfish habitat in the event of disturbances to natural habitat. PMID:20730090