Science.gov

Sample records for acoustic source localization

  1. Broadband source localization using horizontal-beam acoustic intensity striations.

    PubMed

    Turgut, Altan; Orr, Marshall; Rouseff, Daniel

    2010-01-01

    Waveguide invariant theory is applied to horizontal line array (HLA) beamformer output to localize moving broadband noise sources from measured acoustic intensity striation patterns. Acoustic signals emitted by ships of opportunity (merchant ships) were simultaneously recorded on a HLA and three hydrophones separated by 10 km during the RAGS03 (relationship between array gain and shelf-break fluid processes) experiment. Hough transforms are used to estimate both the waveguide invariant parameter "beta" and the ratio of source range at the closest point of approach to source speed from the observed striation patterns. Broadband (50-150-Hz) acoustic data-sets are used to demonstrate source localization capability as well as inversion capability of waveguide invariant parameter beta. Special attention is paid to bathymetric variability since the acoustic intensity striation patterns seem to be influenced by range-dependent bathymetry of the experimental area. The Hough transform method is also applied to the HLA beam-time record data and to the acoustic intensity data from three distant receivers to validate the estimation results from HLA beamformer output. Good agreement of the results from all three approaches suggests the feasibility of locating broadband noise sources and estimating waveguide invariant parameter beta in shallow waters.

  2. Passive acoustic source localization using sources of opportunity.

    PubMed

    Verlinden, Christopher M A; Sarkar, J; Hodgkiss, W S; Kuperman, W A; Sabra, K G

    2015-07-01

    The feasibility of using data derived replicas from ships of opportunity for implementing matched field processing is demonstrated. The Automatic Identification System (AIS) is used to provide the library coordinates for the replica library and a correlation based processing procedure is used to overcome the impediment that the replica library is constructed from sources with different spectra and will further be used to locate another source with its own unique spectral structure. The method is illustrated with simulation and then verified using acoustic data from a 2009 experiment for which AIS information was retrieved from the United States Coast Guard Navigation Center Nationwide AIS database.

  3. Acoustic source localization in mixed field using spherical microphone arrays

    NASA Astrophysics Data System (ADS)

    Huang, Qinghua; Wang, Tong

    2014-12-01

    Spherical microphone arrays have been used for source localization in three-dimensional space recently. In this paper, a two-stage algorithm is developed to localize mixed far-field and near-field acoustic sources in free-field environment. In the first stage, an array signal model is constructed in the spherical harmonics domain. The recurrent relation of spherical harmonics is independent of far-field and near-field mode strengths. Therefore, it is used to develop spherical estimating signal parameter via rotational invariance technique (ESPRIT)-like approach to estimate directions of arrival (DOAs) for both far-field and near-field sources. In the second stage, based on the estimated DOAs, simple one-dimensional MUSIC spectrum is exploited to distinguish far-field and near-field sources and estimate the ranges of near-field sources. The proposed algorithm can avoid multidimensional search and parameter pairing. Simulation results demonstrate the good performance for localizing far-field sources, or near-field ones, or mixed field sources.

  4. Near-field beamforming analysis for acoustic emission source localization.

    PubMed

    He, Tian; Pan, Qiang; Liu, Yaoguang; Liu, Xiandong; Hu, Dayong

    2012-07-01

    This paper attempts to introduce a near-field acoustic emission (AE) beamforming method to estimate the AE source locations by using a small array of sensors closely placed in a local region. The propagation characteristics of AE signals are investigated based on guided wave theory to discuss the feasibility of using beamforming techniques in AE signal processing. To validate the effectiveness of the AE beamforming method, a series of pencil lead break tests at various regions of a thin steel plate are conducted. The potential of this method for engineering applications are explored through rotor-stator rubbing tests. The experimental results demonstrate that the proposed method can effectively determine the region where rubbing occurs. It is expected that the work of this paper may provide a helpful analysis tool for near-field AE source localization.

  5. Developing a system for blind acoustic source localization and separation

    NASA Astrophysics Data System (ADS)

    Kulkarni, Raghavendra

    This dissertation presents innovate methodologies for locating, extracting, and separating multiple incoherent sound sources in three-dimensional (3D) space; and applications of the time reversal (TR) algorithm to pinpoint the hyper active neural activities inside the brain auditory structure that are correlated to the tinnitus pathology. Specifically, an acoustic modeling based method is developed for locating arbitrary and incoherent sound sources in 3D space in real time by using a minimal number of microphones, and the Point Source Separation (PSS) method is developed for extracting target signals from directly measured mixed signals. Combining these two approaches leads to a novel technology known as Blind Sources Localization and Separation (BSLS) that enables one to locate multiple incoherent sound signals in 3D space and separate original individual sources simultaneously, based on the directly measured mixed signals. These technologies have been validated through numerical simulations and experiments conducted in various non-ideal environments where there are non-negligible, unspecified sound reflections and reverberation as well as interferences from random background noise. Another innovation presented in this dissertation is concerned with applications of the TR algorithm to pinpoint the exact locations of hyper-active neurons in the brain auditory structure that are directly correlated to the tinnitus perception. Benchmark tests conducted on normal rats have confirmed the localization results provided by the TR algorithm. Results demonstrate that the spatial resolution of this source localization can be as high as the micrometer level. This high precision localization may lead to a paradigm shift in tinnitus diagnosis, which may in turn produce a more cost-effective treatment for tinnitus than any of the existing ones.

  6. Acoustic Source Localization in Aircraft Interiors Using Microphone Array Technologies

    NASA Technical Reports Server (NTRS)

    Sklanka, Bernard J.; Tuss, Joel R.; Buehrle, Ralph D.; Klos, Jacob; Williams, Earl G.; Valdivia, Nicolas

    2006-01-01

    Using three microphone array configurations at two aircraft body stations on a Boeing 777-300ER flight test, the acoustic radiation characteristics of the sidewall and outboard floor system are investigated by experimental measurement. Analysis of the experimental data is performed using sound intensity calculations for closely spaced microphones, PATCH Inverse Boundary Element Nearfield Acoustic Holography, and Spherical Nearfield Acoustic Holography. Each method is compared assessing strengths and weaknesses, evaluating source identification capability for both broadband and narrowband sources, evaluating sources during transient and steady-state conditions, and quantifying field reconstruction continuity using multiple array positions.

  7. Sound source localization by hearing preservation patients with and without symmetrical low-frequency acoustic hearing.

    PubMed

    Loiselle, Louise H; Dorman, Michael F; Yost, William A; Gifford, René H

    2015-01-01

    The aim of this article was to study sound source localization by cochlear implant (CI) listeners with low-frequency (LF) acoustic hearing in both the operated ear and in the contralateral ear. Eight CI listeners had symmetrical LF acoustic hearing and 4 had asymmetrical LF acoustic hearing. The effects of two variables were assessed: (i) the symmetry of the LF thresholds in the two ears and (ii) the presence/absence of bilateral acoustic amplification. Stimuli consisted of low-pass, high-pass, and wideband noise bursts presented in the frontal horizontal plane. Localization accuracy was 23° of error for the symmetrical listeners and 76° of error for the asymmetrical listeners. The presence of a unilateral CI used in conjunction with bilateral LF acoustic hearing does not impair sound source localization accuracy, but amplification for acoustic hearing can be detrimental to sound source localization accuracy.

  8. Underwater acoustic source localization using closely spaced hydrophone pairs

    NASA Astrophysics Data System (ADS)

    Sim, Min Seop; Choi, Bok-Kyoung; Kim, Byoung-Nam; Lee, Kyun Kyung

    2016-07-01

    Underwater sound source position is determined using a line array. However, performance degradation occurs owing to a multipath environment, which generates incoherent signals. In this paper, a hydrophone array is proposed for underwater source position estimation robust to a multipath environment. The array is composed of three pairs of sensors placed on the same line. The source position is estimated by performing generalized cross-correlation (GCC). The proposed system is not affected by a multipath time delay because of the close distance between closely spaced sensors. The validity of the array is confirmed by simulation using acoustic signals synthesized by eigenrays.

  9. Energy-Based Acoustic Source Localization Methods: A Survey

    PubMed Central

    Meng, Wei; Xiao, Wendong

    2017-01-01

    Energy-based source localization is an important problem in wireless sensor networks (WSNs), which has been studied actively in the literature. Numerous localization algorithms, e.g., maximum likelihood estimation (MLE) and nonlinear-least-squares (NLS) methods, have been reported. In the literature, there are relevant review papers for localization in WSNs, e.g., for distance-based localization. However, not much work related to energy-based source localization is covered in the existing review papers. Energy-based methods are proposed and specially designed for a WSN due to its limited sensor capabilities. This paper aims to give a comprehensive review of these different algorithms for energy-based single and multiple source localization problems, their merits and demerits and to point out possible future research directions. PMID:28212281

  10. Energy-Based Acoustic Source Localization Methods: A Survey.

    PubMed

    Meng, Wei; Xiao, Wendong

    2017-02-15

    Energy-based source localization is an important problem in wireless sensor networks (WSNs), which has been studied actively in the literature. Numerous localization algorithms, e.g., maximum likelihood estimation (MLE) and nonlinear-least-squares (NLS) methods, have been reported. In the literature, there are relevant review papers for localization in WSNs, e.g., for distance-based localization. However, not much work related to energy-based source localization is covered in the existing review papers. Energy-based methods are proposed and specially designed for a WSN due to its limited sensor capabilities. This paper aims to give a comprehensive review of these different algorithms for energy-based single and multiple source localization problems, their merits and demerits and to point out possible future research directions.

  11. Localization of random acoustic sources in an inhomogeneous medium

    NASA Astrophysics Data System (ADS)

    Khazaie, Shahram; Wang, Xun; Sagaut, Pierre

    2016-12-01

    In this paper, the localization of a random sound source via different source localization methods is considered, the emphasis being put on the robustness and the accuracy of classical methods in the presence of uncertainties. The sound source position is described by a random variable and the sound propagation medium is assumed to have spatially varying parameters with known values. Two approaches are used for the source identification: time reversal and beamforming. The probability density functions of the random source position are estimated using both methods. The focal spot resolutions of the time reversal estimates are also evaluated. In the numerical simulations, two media with different correlation lengths are investigated to account for two different scattering regimes: one has a correlation length relatively larger than the wavelength and the other has a correlation length comparable to the wavelength. The results show that the required sound propagation time and source estimation robustness highly depend on the ratio between the correlation length and the wavelength. It is observed that source identification methods have different robustness in the presence of uncertainties. Advantages and weaknesses of each method are discussed.

  12. Similarity assessment of acoustic emission signals and its application in source localization.

    PubMed

    Chen, Shiwan; Yang, Chunhe; Wang, Guibin; Liu, Wei

    2017-03-01

    In conventional AE source localization acoustic emission (AE) signals are applied directly to localize the source without any waveform identification or quality evaluation, which always leads to large errors in source localization. To improve the reliability and accuracy of acoustic emission source localization, an identification procedure is developed to assess the similarity of AE signals to select signals with high quality to localize the AE source. Magnitude square coherence (MSC), wavelet coherence and dynamic timing warping (DTW) are successively applied for similarity assessment. Results show that cluster analysis based on DTW distance is effective to select AE signals with high similarity. Similarity assessment results of the proposed method are almost completely consistent with manual identification. A novel AE source localization procedure is developed combining the selected AE signals with high quality and a direct source localization algorithm. AE data from thermal-cracking tests in Beishan granite are analyzed to demonstrate the effectiveness of the proposed AE localization procedure. AE events are re-localized by the proposed AE localization procedure. And the accuracy of events localization has been improved significantly. The reliability and credibility of AE source localization will be improved by the proposed method.

  13. Source localization from an elevated acoustic sensor array in a refractive atmosphere.

    PubMed

    Ostashev, Vladimir E; Scanlon, Michael V; Wilson, D Keith; Vecherin, Sergey N

    2008-12-01

    Localization of sound sources on the ground from an acoustic sensor array elevated on a tethered aerostat is considered. To improve estimation of the source coordinates, one should take into account refraction of sound rays due to atmospheric stratification. Using a geometrical acoustics approximation for a stratified moving medium, formulas for the source coordinates are derived that account for sound refraction. The source coordinates are expressed in terms of the direction of sound propagation as measured by the sensor array, its coordinates, and the vertical profiles of temperature and wind velocity. Employing these formulas and typical temperature and wind velocity profiles in the atmosphere, it is shown numerically that sound refraction is important for accurate predictions of the source coordinates. Furthermore, it is shown that the effective sound speed approximation, which is widely used in atmospheric acoustics, fails to correctly predict the source coordinates if the grazing angle of sound propagation is relatively large.

  14. Source localization with acoustic sensor arrays using generative model based fitting with sparse constraints.

    PubMed

    Velasco, Jose; Pizarro, Daniel; Macias-Guarasa, Javier

    2012-10-15

    This paper presents a novel approach for indoor acoustic source localization using sensor arrays. The proposed solution starts by defining a generative model, designed to explain the acoustic power maps obtained by Steered Response Power (SRP) strategies. An optimization approach is then proposed to fit the model to real input SRP data and estimate the position of the acoustic source. Adequately fitting the model to real SRP data, where noise and other unmodelled effects distort the ideal signal, is the core contribution of the paper. Two basic strategies in the optimization are proposed. First, sparse constraints in the parameters of the model are included, enforcing the number of simultaneous active sources to be limited. Second, subspace analysis is used to filter out portions of the input signal that cannot be explained by the model. Experimental results on a realistic speech database show statistically significant localization error reductions of up to 30% when compared with the SRP-PHAT strategies.

  15. Source Localization with Acoustic Sensor Arrays Using Generative Model Based Fitting with Sparse Constraints

    PubMed Central

    Velasco, Jose; Pizarro, Daniel; Macias-Guarasa, Javier

    2012-01-01

    This paper presents a novel approach for indoor acoustic source localization using sensor arrays. The proposed solution starts by defining a generative model, designed to explain the acoustic power maps obtained by Steered Response Power (SRP) strategies. An optimization approach is then proposed to fit the model to real input SRP data and estimate the position of the acoustic source. Adequately fitting the model to real SRP data, where noise and other unmodelled effects distort the ideal signal, is the core contribution of the paper. Two basic strategies in the optimization are proposed. First, sparse constraints in the parameters of the model are included, enforcing the number of simultaneous active sources to be limited. Second, subspace analysis is used to filter out portions of the input signal that cannot be explained by the model. Experimental results on a realistic speech database show statistically significant localization error reductions of up to 30% when compared with the SRP-PHAT strategies. PMID:23202021

  16. Localization of short-range acoustic and seismic wideband sources: Algorithms and experiments

    NASA Astrophysics Data System (ADS)

    Stafsudd, J. Z.; Asgari, S.; Hudson, R.; Yao, K.; Taciroglu, E.

    2008-04-01

    We consider the determination of the location (source localization) of a disturbance source which emits acoustic and/or seismic signals. We devise an enhanced approximate maximum-likelihood (AML) algorithm to process data collected at acoustic sensors (microphones) belonging to an array of, non-collocated but otherwise identical, sensors. The approximate maximum-likelihood algorithm exploits the time-delay-of-arrival of acoustic signals at different sensors, and yields the source location. For processing the seismic signals, we investigate two distinct algorithms, both of which process data collected at a single measurement station comprising a triaxial accelerometer, to determine direction-of-arrival. The direction-of-arrivals determined at each sensor station are then combined using a weighted least-squares approach for source localization. The first of the direction-of-arrival estimation algorithms is based on the spectral decomposition of the covariance matrix, while the second is based on surface wave analysis. Both of the seismic source localization algorithms have their roots in seismology; and covariance matrix analysis had been successfully employed in applications where the source and the sensors (array) are typically separated by planetary distances (i.e., hundreds to thousands of kilometers). Here, we focus on very-short distances (e.g., less than one hundred meters) instead, with an outlook to applications in multi-modal surveillance, including target detection, tracking, and zone intrusion. We demonstrate the utility of the aforementioned algorithms through a series of open-field tests wherein we successfully localize wideband acoustic and/or seismic sources. We also investigate a basic strategy for fusion of results yielded by acoustic and seismic arrays.

  17. Quantitative acoustic emission from localized sources in material fatigue processes

    NASA Astrophysics Data System (ADS)

    Shi, Zhiqiang; Jarzynski, Jacek; Jacobs, Laurence

    2000-05-01

    Fretting fatigue is the phenomenon where two contacting bodies undergoing a cyclic fatigue loading experience small amplitude oscillatory motion. Fretting fatigue is characterized by crack nucleation and the subsequent propagation of these cracks. The coupling of fatigue with fretting leads to the premature nucleation and acceleration of the early growth of fatigue cracks, resulting in a significant reduction in a structure's service life. A better understanding of the mechanics of fretting fatigue is needed to prevent and reduce the severe consequences of such damage. This research uses quantitative acoustic emission (AE) techniques to study the fretting fatigue of PH 13-8 stainless steel under different loading conditions. Specifically, this work correlates AE signals to specific fretting characteristics such as frictional force history and frictional force-displacement hysteresis loops. These results indicate a close correlation between the various stages of fretting fatigue with the frequency of AE events. For example, AE waveform characteristics (such as amplitude, energy, and frequency spectrum) enable the identification and characterization of the different stages of fatigue. As a result, it is possible to establish a relationship between AE observations and fretting crack initiation and growth.

  18. Properties and Localizations of Acoustic Sources in High Speed Jet

    NASA Astrophysics Data System (ADS)

    Kan, Pinqing; Lewalle, Jacques; Berger, Zachary; Berry, Matthew; Glauser, Mark; Syracuse University Team

    2014-11-01

    Jet noise has become one major concern for aircraft engine design in recent decades. The problem is to identify the near-field (NF) structures that produce far-field (FF) noise and develop noise control and reduction strategies. We developed an algorithm to identify the events that are responsible for NF and FF cross-correlations. Two sets of experimental data from Mach 0.6 jets are analyzed. They consist of 10 kHz TRPIV measurement and pressure sampling in both near- and far-field. Several NF diagnostics (velocity, vorticity, Q criterion, etc.) are calculated to represent the 2D velocity fields. The main contributors between these NF diagnostics and FF pressure are extracted as Diagnostic-Microphone (DM) events. The NF localization of DM event clusters will be compared to the NF triangulation of MM events, which were acquired using FF signals alone. In the time-frequency domain, the events are short wave packets, distorted by ambient perturbations. As a result, the matching of DM to MM events at physical lags is particularly difficult. We will report on different algorithms using time, frequency and space information to improve the reliability of the matches. We will also relate the event localization to the NF flow fields that correspond to FF ``loud'' POD modes (Low et al. 2013 and Berger et al. 2014). This work is supported by Spectra Energies LLC, Syracuse University MAE Department and the Glauser group at Syracuse University.

  19. New approaches for automatic threedimensional source localization of acoustic emissions--Applications to concrete specimens.

    PubMed

    Kurz, Jochen H

    2015-12-01

    The task of locating a source in space by measuring travel time differences of elastic or electromagnetic waves from the source to several sensors is evident in varying fields. The new concepts of automatic acoustic emission localization presented in this article are based on developments from geodesy and seismology. A detailed description of source location determination in space is given with the focus on acoustic emission data from concrete specimens. Direct and iterative solvers are compared. A concept based on direct solvers from geodesy extended by a statistical approach is described which allows a stable source location determination even for partly erroneous onset times. The developed approach is validated with acoustic emission data from a large specimen leading to travel paths up to 1m and therefore to noisy data with errors in the determined onsets. The adaption of the algorithms from geodesy to the localization procedure of sources of elastic waves offers new possibilities concerning stability, automation and performance of localization results. Fracture processes can be assessed more accurately.

  20. Perceptual factors contribute more than acoustical factors to sound localization abilities with virtual sources

    PubMed Central

    Andéol, Guillaume; Savel, Sophie; Guillaume, Anne

    2015-01-01

    Human sound localization abilities rely on binaural and spectral cues. Spectral cues arise from interactions between the sound wave and the listener's body (head-related transfer function, HRTF). Large individual differences were reported in localization abilities, even in young normal-hearing adults. Several studies have attempted to determine whether localization abilities depend mostly on acoustical cues or on perceptual processes involved in the analysis of these cues. These studies have yielded inconsistent findings, which could result from methodological issues. In this study, we measured sound localization performance with normal and modified acoustical cues (i.e., with individual and non-individual HRTFs, respectively) in 20 naïve listeners. Test conditions were chosen to address most methodological issues from past studies. Procedural training was provided prior to sound localization tests. The results showed no direct relationship between behavioral results and an acoustical metrics (spectral-shape prominence of individual HRTFs). Despite uncertainties due to technical issues with the normalization of the HRTFs, large acoustical differences between individual and non-individual HRTFs appeared to be needed to produce behavioral effects. A subset of 15 listeners then trained in the sound localization task with individual HRTFs. Training included either visual correct-answer feedback (for the test group) or no feedback (for the control group), and was assumed to elicit perceptual learning for the test group only. Few listeners from the control group, but most listeners from the test group, showed significant training-induced learning. For the test group, learning was related to pre-training performance (i.e., the poorer the pre-training performance, the greater the learning amount) and was retained after 1 month. The results are interpreted as being in favor of a larger contribution of perceptual factors than of acoustical factors to sound localization

  1. Acoustic sniper localization system

    NASA Astrophysics Data System (ADS)

    Prado, Gervasio; Dhaliwal, Hardave; Martel, Philip O.

    1997-02-01

    Technologies for sniper localization have received increased attention in recent months as American forces have been deployed to various trouble spots around the world. Among the technologies considered for this task acoustics is a natural choice for various reasons. The acoustic signatures of gunshots are loud and distinctive, making them easy to detect even in high noise background environments. Acoustics provides a passive sensing technology with excellent range and non line of sight capabilities. Last but not least, an acoustic sniper location system can be built at a low cost with off the shelf components. Despite its many advantages, the performance of acoustic sensors can degrade under adverse propagation conditions. Localization accuracy, although good, is usually not accurate enough to pinpoint a sniper's location in some scenarios (for example which widow in a building or behind which tree in a grove). For these more demanding missions, the acoustic sensor can be used in conjunction with an infra red imaging system that detects the muzzle blast of the gun. The acoustic system can be used to cue the pointing system of the IR camera in the direction of the shot's source.

  2. Three-dimensional localization of transient acoustic sources using an ice-mounted geophone.

    PubMed

    Dosso, Stan E

    2014-01-01

    This paper presents an approach to three-dimensional (3D) localization of ocean acoustic sources using a single three-component geophone on Arctic sea ice. Source bearing is estimated by maximizing the radial signal power as a function of horizontal look angle, applying seismic polarization filters to suppress shear waves with transverse particle motion. The inherent 180° ambiguity is resolved by requiring outgoing (prograde) particle motion in the radial-vertical plane. Source range and depth estimates and uncertainties are computed by Bayesian inversion of arrival-time differences of the water-borne acoustic wave and ice seismic waves, including the horizontally-polarized shear wave and longitudinal plate wave. The 3D localization is applied to geophone recordings of impulsive sources deployed in the water column at a series of ranges (200 to 1000 m) and bearings (0° to 90°) for three sites in the Lincoln Sea characterized by smooth annual ice, rough/ridged annual ice, and thick multi-year ice. Good bearing estimates are obtained in all cases. Range-depth localization is successful for ranges over which ice seismic arrivals could be reliably detected, approximately 200 m on rough ice, 500 m on smooth ice, and 800 m on multi-year ice. Effects of environmental uncertainty on localization are quantified by marginalizing over unknown environmental parameters.

  3. Acoustic source localization using a polyhedral microphone array and an improved generalized cross-correlation technique

    NASA Astrophysics Data System (ADS)

    Padois, Thomas; Sgard, Franck; Doutres, Olivier; Berry, Alain

    2017-01-01

    Millions of workers are exposed to excessive noise levels each day. Acoustic solutions have to be developed to protect workers from hearing loss. The first step of an acoustic diagnosis is the source localization which can be performed with a microphone array. Spherical microphone arrays can be used to detect the acoustic source positions in a workplace. In this study, a spherical microphone array, with polyhedral discretization, is proposed and compared with a spherical array with a slightly different geometry. The generalized cross-correlation technique is used to detect the source positions. Moreover, two criteria are introduced to improve the noise source map. The first is based on the geometric properties of the microphone array and the scan zone whereas the second is based on the energy of the spatial likelihood function. Numerical data are used to provide a systematic comparison of both geometries and criteria. Finally, experiments in a reverberant room reveal that the polyhedral microphone array associated with both criteria provides the best noise source map.

  4. Time-distance domain transformation for Acoustic Emission source localization in thin metallic plates.

    PubMed

    Grabowski, Krzysztof; Gawronski, Mateusz; Baran, Ireneusz; Spychalski, Wojciech; Staszewski, Wieslaw J; Uhl, Tadeusz; Kundu, Tribikram; Packo, Pawel

    2016-05-01

    Acoustic Emission used in Non-Destructive Testing is focused on analysis of elastic waves propagating in mechanical structures. Then any information carried by generated acoustic waves, further recorded by a set of transducers, allow to determine integrity of these structures. It is clear that material properties and geometry strongly impacts the result. In this paper a method for Acoustic Emission source localization in thin plates is presented. The approach is based on the Time-Distance Domain Transform, that is a wavenumber-frequency mapping technique for precise event localization. The major advantage of the technique is dispersion compensation through a phase-shifting of investigated waveforms in order to acquire the most accurate output, allowing for source-sensor distance estimation using a single transducer. The accuracy and robustness of the above process are also investigated. This includes the study of Young's modulus value and numerical parameters influence on damage detection. By merging the Time-Distance Domain Transform with an optimal distance selection technique, an identification-localization algorithm is achieved. The method is investigated analytically, numerically and experimentally. The latter involves both laboratory and large scale industrial tests.

  5. Bio-inspired UAV routing, source localization, and acoustic signature classification for persistent surveillance

    NASA Astrophysics Data System (ADS)

    Burman, Jerry; Hespanha, Joao; Madhow, Upamanyu; Pham, Tien

    2011-06-01

    A team consisting of Teledyne Scientific Company, the University of California at Santa Barbara and the Army Research Laboratory* is developing technologies in support of automated data exfiltration from heterogeneous battlefield sensor networks to enhance situational awareness for dismounts and command echelons. Unmanned aerial vehicles (UAV) provide an effective means to autonomously collect data from a sparse network of unattended ground sensors (UGSs) that cannot communicate with each other. UAVs are used to reduce the system reaction time by generating autonomous collection routes that are data-driven. Bio-inspired techniques for search provide a novel strategy to detect, capture and fuse data. A fast and accurate method has been developed to localize an event by fusing data from a sparse number of UGSs. This technique uses a bio-inspired algorithm based on chemotaxis or the motion of bacteria seeking nutrients in their environment. A unique acoustic event classification algorithm was also developed based on using swarm optimization. Additional studies addressed the problem of routing multiple UAVs, optimally placing sensors in the field and locating the source of gunfire at helicopters. A field test was conducted in November of 2009 at Camp Roberts, CA. The field test results showed that a system controlled by bio-inspired software algorithms can autonomously detect and locate the source of an acoustic event with very high accuracy and visually verify the event. In nine independent test runs of a UAV, the system autonomously located the position of an explosion nine times with an average accuracy of 3 meters. The time required to perform source localization using the UAV was on the order of a few minutes based on UAV flight times. In June 2011, additional field tests of the system will be performed and will include multiple acoustic events, optimal sensor placement based on acoustic phenomenology and the use of the International Technology Alliance (ITA

  6. Multiple concurrent sources localization based on a two-node distributed acoustic sensor network

    NASA Astrophysics Data System (ADS)

    Xu, Jiaxin; Zhao, Zhao; Chen, Chunzeng; Xu, Zhiyong

    2017-01-01

    In this work, we propose a new approach to localize multiple concurrent sources using a distributed acoustic sensor network. Only two node-arrays are required in this sensor network, and each node-array consists of only two widely spaced sensors. Firstly, direction-of-arrivals (DOAs) of multiple sources are estimated at each node-array by utilizing a new pooled angular spectrum proposed in this paper, which can implement the spatial aliasing suppression effectively. Based on minimum variance distortionless response (MVDR) beamforming and the DOA estimates of the sources, the time-frequency spectra containing the corresponding energy distribution features associated with those sources are reconstructed in each node-array. Then, scale invariant feature transform (SIFT) is employed to solve the DOA association problem. Performance evaluation is conducted with field recordings and experimental results prove the effectivity and feasibility of the proposed method.

  7. Nonlinear Kalman Filtering for acoustic emission source localization in anisotropic panels.

    PubMed

    Dehghan Niri, E; Farhidzadeh, A; Salamone, S

    2014-02-01

    Nonlinear Kalman Filtering is an established field in applied probability and control systems, which plays an important role in many practical applications from target tracking to weather and climate prediction. However, its application for acoustic emission (AE) source localization has been very limited. In this paper, two well-known nonlinear Kalman Filtering algorithms are presented to estimate the location of AE sources in anisotropic panels: the Extended Kalman Filter (EKF) and Unscented Kalman Filter (UKF). These algorithms are applied to two cases: velocity profile known (CASE I) and velocity profile unknown (CASE II). The algorithms are compared with a more traditional nonlinear least squares method. Experimental tests are carried out on a carbon-fiber reinforced polymer (CFRP) composite panel instrumented with a sparse array of piezoelectric transducers to validate the proposed approaches. AE sources are simulated using an instrumented miniature impulse hammer. In order to evaluate the performance of the algorithms, two metrics are used: (1) accuracy of the AE source localization and (2) computational cost. Furthermore, it is shown that both EKF and UKF can provide a confidence interval of the estimated AE source location and can account for uncertainty in time of flight measurements.

  8. A reliable acoustic path: Physical properties and a source localization method

    NASA Astrophysics Data System (ADS)

    Duan, Rui; Yang, Kun-De; Ma, Yuan-Liang; Lei, Bo

    2012-12-01

    The physical properties of a reliable acoustic path (RAP) are analysed and subsequently a weighted-subspace-fitting matched field (WSF-MF) method for passive localization is presented by exploiting the properties of the RAP environment. The RAP is an important acoustic duct in the deep ocean, which occurs when the receiver is placed near the bottom where the sound velocity exceeds the maximum sound velocity in the vicinity of the surface. It is found that in the RAP environment the transmission loss is rather low and no blind zone of surveillance exists in a medium range. The ray theory is used to explain these phenomena. Furthermore, the analysis of the arrival structures shows that the source localization method based on arrival angle is feasible in this environment. However, the conventional methods suffer from the complicated and inaccurate estimation of the arrival angle. In this paper, a straightforward WSF-MF method is derived to exploit the information about the arrival angles indirectly. The method is to minimize the distance between the signal subspace and the spanned space by the array manifold in a finite range-depth space rather than the arrival-angle space. Simulations are performed to demonstrate the features of the method, and the results are explained by the arrival structures in the RAP environment.

  9. A hybrid algorithm for robust acoustic source localization in noisy and reverberant environments

    NASA Astrophysics Data System (ADS)

    Rajagopalan, Ramesh; Dessonville, Timothy

    2014-09-01

    Acoustic source localization using microphone arrays is widely used in videoconferencing and surveillance systems. However, it still remains a challenging task to develop efficient algorithms for accurate estimation of source location using distributed data processing. In this work, we propose a new algorithm for efficient localization of a speaker in noisy and reverberant environments such as videoconferencing. We propose a hybrid algorithm that combines generalized cross correlation based phase transform method (GCC-PHAT) and Tabu search to obtain a robust and accurate estimate of the speaker location. The Tabu Search algorithm iteratively improves the time difference of arrival (TDOA) estimate of GCC-PHAT by examining the neighboring solutions until a convergence in the TDOA value is obtained. Experiments were performed based on real world data recorded from a meeting room in the presence of noise such as computer and fans. Our results demonstrate that the proposed hybrid algorithm outperforms GCC-PHAT especially when the noise level is high. This shows the robustness of the proposed algorithm in noisy and realistic videoconferencing systems.

  10. Method of monaural localization of the acoustic source direction from the standpoint of the active perception theory

    NASA Astrophysics Data System (ADS)

    Gai, V. E.; Polyakov, I. V.; Krasheninnikov, M. S.; Koshurina, A. A.; Dorofeev, R. A.

    2017-01-01

    Currently, the scientific and educational center of the “Transport” of NNSTU performs work on the creation of the universal rescue vehicle. This vehicle is a robot, and intended to reduce the number of human victims in accidents on offshore oil platforms. An actual problem is the development of a method for determining the location of a person overboard in low visibility conditions, when a traditional vision is not efficient. One of the most important sensory robot systems is the acoustic sensor system, because it is omnidirectional and does not require finding of an acoustic source in visibility scope. Features of the acoustic sensor robot system can complement the capabilities of the video sensor in the solution of the problem of localization of a person or some event in the environment. This paper describes the method of determination of the direction of the acoustic source using just one microphone. The proposed method is based on the active perception theory.

  11. Acoustic Localization with Infrasonic Signals

    NASA Astrophysics Data System (ADS)

    Threatt, Arnesha; Elbing, Brian

    2015-11-01

    Numerous geophysical and anthropogenic events emit infrasonic frequencies (<20 Hz), including volcanoes, hurricanes, wind turbines and tornadoes. These sounds, which cannot be heard by the human ear, can be detected from large distances (in excess of 100 miles) due to low frequency acoustic signals having a very low decay rate in the atmosphere. Thus infrasound could be used for long-range, passive monitoring and detection of these events. An array of microphones separated by known distances can be used to locate a given source, which is known as acoustic localization. However, acoustic localization with infrasound is particularly challenging due to contamination from other signals, sensitivity to wind noise and producing a trusted source for system development. The objective of the current work is to create an infrasonic source using a propane torch wand or a subwoofer and locate the source using multiple infrasonic microphones. This presentation will present preliminary results from various microphone configurations used to locate the source.

  12. Acoustic emission source localization in thin metallic plates: A single-sensor approach based on multimodal edge reflections.

    PubMed

    Ebrahimkhanlou, A; Salamone, S

    2017-03-14

    This paper presents a new acoustic emission (AE) source localization for isotropic plates with reflecting boundaries. This approach that has no blind spot leverages multimodal edge reflections to identify AE sources with only a single sensor. The implementation of the proposed approach involves three main steps. First, the continuous wavelet transform (CWT) and the dispersion curves of the fundamental Lamb wave modes are utilized to estimate the distance between an AE source and a sensor. This step uses a modal acoustic emission approach. Then, an analytical model is proposed that uses the estimated distances to simulate the edge-reflected waves. Finally, the correlation between the experimental and the simulated waveforms is used to estimate the location of AE sources. Hsu-Nielsen pencil lead break (PLB) tests were performed on an aluminum plate to validate this algorithm and promising results were achieved. Based on these results, the paper reports the statistics of the localization errors.

  13. Experimental Results of Underwater Cooperative Source Localization Using a Single Acoustic Vector Sensor

    PubMed Central

    Felisberto, Paulo; Rodriguez, Orlando; Santos, Paulo; Ey, Emanuel; Jesus, Sérgio M.

    2013-01-01

    This paper aims at estimating the azimuth, range and depth of a cooperative broadband acoustic source with a single vector sensor in a multipath underwater environment, where the received signal is assumed to be a linear combination of echoes of the source emitted waveform. A vector sensor is a device that measures the scalar acoustic pressure field and the vectorial acoustic particle velocity field at a single location in space. The amplitudes of the echoes in the vector sensor components allow one to determine their azimuth and elevation. Assuming that the environmental conditions of the channel are known, source range and depth are obtained from the estimates of elevation and relative time delays of the different echoes using a ray-based backpropagation algorithm. The proposed method is tested using simulated data and is further applied to experimental data from the Makai'05 experiment, where 8–14 kHz chirp signals were acquired by a vector sensor array. It is shown that for short ranges, the position of the source is estimated in agreement with the geometry of the experiment. The method is low computational demanding, thus well-suited to be used in mobile and light platforms, where space and power requirements are limited. PMID:23857257

  14. Experimental results of underwater cooperative source localization using a single acoustic vector sensor.

    PubMed

    Felisberto, Paulo; Rodriguez, Orlando; Santos, Paulo; Ey, Emanuel; Jesus, Sérgio M

    2013-07-12

    This paper aims at estimating the azimuth, range and depth of a cooperative broadband acoustic source with a single vector sensor in a multipath underwater environment, where the received signal is assumed to be a linear combination of echoes of the source emitted waveform. A vector sensor is a device that measures the scalar acoustic pressure field and the vectorial acoustic particle velocity field at a single location in space. The amplitudes of the echoes in the vector sensor components allow one to determine their azimuth and elevation. Assuming that the environmental conditions of the channel are known, source range and depth are obtained from the estimates of elevation and relative time delays of the different echoes using a ray-based backpropagation algorithm. The proposed method is tested using simulated data and is further applied to experimental data from the Makai'05 experiment, where 8-14 kHz chirp signals were acquired by a vector sensor array. It is shown that for short ranges, the position of the source is estimated in agreement with the geometry of the experiment. The method is low computational demanding, thus well-suited to be used in mobile and light platforms, where space and power requirements are limited.

  15. Deconvolution of acoustic emissions for source localization using time reverse modeling

    NASA Astrophysics Data System (ADS)

    Kocur, Georg Karl

    2017-01-01

    Impact experiments on small-scale slabs made of concrete and aluminum were carried out. Wave motion radiated from the epicenter of the impact was recorded as voltage signals by resonant piezoelectric transducers. Numerical simulations of the elastic wave propagation are performed to simulate the physical experiments. The Hertz theory of contact is applied to estimate the force impulse, which is subsequently used for the numerical simulation. Displacements at the transducer positions are calculated numerically. A deconvolution function is obtained by comparing the physical (voltage signal) and the numerical (calculated displacement) experiments. Acoustic emission signals due to pencil-lead breaks are recorded, deconvolved and applied for localization using time reverse modeling.

  16. Acoustic source localization using time-difference of arrival and neural-network analysis

    NASA Astrophysics Data System (ADS)

    Jiang, Nan; Dong, Jiancheng; Ying, Ren D.

    2013-03-01

    The developing embedded technology requires revolutions in human-machine interaction. In this paper, we propose a novel method using localization of the taping sound on the table to replace the keyboard as manual input device. The method is applicable with a quad-channel-array collection of acoustic signals, from which the time-of-arrival differences and the position information could be estimated. In practice, as our table is in a limited size and the material properties are complex, the traditional localization algorithm based on time-of-arrival differences contains a sizable margin for error. Furthermore, we use neural-network analysis to improve recognition accuracy. Then experiments and simulations are carried out to verify this signal processing algorithm.

  17. Passive Acoustic Source Localization at a Low Sampling Rate Based on a Five-Element Cross Microphone Array

    PubMed Central

    Kan, Yue; Wang, Pengfei; Zha, Fusheng; Li, Mantian; Gao, Wa; Song, Baoyu

    2015-01-01

    Accurate acoustic source localization at a low sampling rate (less than 10 kHz) is still a challenging problem for small portable systems, especially for a multitasking micro-embedded system. A modification of the generalized cross-correlation (GCC) method with the up-sampling (US) theory is proposed and defined as the US-GCC method, which can improve the accuracy of the time delay of arrival (TDOA) and source location at a low sampling rate. In this work, through the US operation, an input signal with a certain sampling rate can be converted into another signal with a higher frequency. Furthermore, the optimal interpolation factor for the US operation is derived according to localization computation time and the standard deviation (SD) of target location estimations. On the one hand, simulation results show that absolute errors of the source locations based on the US-GCC method with an interpolation factor of 15 are approximately from 1/15- to 1/12-times those based on the GCC method, when the initial same sampling rates of both methods are 8 kHz. On the other hand, a simple and small portable passive acoustic source localization platform composed of a five-element cross microphone array has been designed and set up in this paper. The experiments on the established platform, which accurately locates a three-dimensional (3D) near-field target at a low sampling rate demonstrate that the proposed method is workable. PMID:26057042

  18. Passive Acoustic Source Localization at a Low Sampling Rate Based on a Five-Element Cross Microphone Array.

    PubMed

    Kan, Yue; Wang, Pengfei; Zha, Fusheng; Li, Mantian; Gao, Wa; Song, Baoyu

    2015-06-05

    Accurate acoustic source localization at a low sampling rate (less than 10 kHz) is still a challenging problem for small portable systems, especially for a multitasking micro-embedded system. A modification of the generalized cross-correlation (GCC) method with the up-sampling (US) theory is proposed and defined as the US-GCC method, which can improve the accuracy of the time delay of arrival (TDOA) and source location at a low sampling rate. In this work, through the US operation, an input signal with a certain sampling rate can be converted into another signal with a higher frequency. Furthermore, the optimal interpolation factor for the US operation is derived according to localization computation time and the standard deviation (SD) of target location estimations. On the one hand, simulation results show that absolute errors of the source locations based on the US-GCC method with an interpolation factor of 15 are approximately from 1/15- to 1/12-times those based on the GCC method, when the initial same sampling rates of both methods are 8 kHz. On the other hand, a simple and small portable passive acoustic source localization platform composed of a five-element cross microphone array has been designed and set up in this paper. The experiments on the established platform, which accurately locates a three-dimensional (3D) near-field target at a low sampling rate demonstrate that the proposed method is workable.

  19. A "looming bias" in spatial hearing? Effects of acoustic intensity and spectrum on categorical sound source localization.

    PubMed

    McCarthy, Lisa; Olsen, Kirk N

    2017-01-01

    Continuous increases of acoustic intensity (up-ramps) can indicate a looming (approaching) sound source in the environment, whereas continuous decreases of intensity (down-ramps) can indicate a receding sound source. From psychoacoustic experiments, an "adaptive perceptual bias" for up-ramp looming tonal stimuli has been proposed (Neuhoff, 1998). This theory postulates that (1) up-ramps are perceptually salient because of their association with looming and potentially threatening stimuli in the environment; (2) tonal stimuli are perceptually salient because of an association with single and potentially threatening biological sound sources in the environment, relative to white noise, which is more likely to arise from dispersed signals and nonthreatening/nonbiological sources (wind/ocean). In the present study, we extrapolated the "adaptive perceptual bias" theory and investigated its assumptions by measuring sound source localization in response to acoustic stimuli presented in azimuth to imply looming, stationary, and receding motion in depth. Participants (N = 26) heard three directions of intensity change (up-ramps, down-ramps, and steady state, associated with looming, receding, and stationary motion, respectively) and three levels of acoustic spectrum (a 1-kHz pure tone, the tonal vowel /ә/, and white noise) in a within-subjects design. We first hypothesized that if up-ramps are "perceptually salient" and capable of eliciting adaptive responses, then they would be localized faster and more accurately than down-ramps. This hypothesis was supported. However, the results did not support the second hypothesis. Rather, the white-noise and vowel conditions were localized faster and more accurately than the pure-tone conditions. These results are discussed in the context of auditory and visual theories of motion perception, auditory attentional capture, and the spectral causes of spatial ambiguity.

  20. Acoustic emission source location on large plate-like structures using a local triangular sensor array

    NASA Astrophysics Data System (ADS)

    Aljets, Dirk; Chong, Alex; Wilcox, Steve; Holford, Karen

    2012-07-01

    A new acoustic emission (AE) source location method was developed for large plate-like structures, which evaluates the location of the source using a combined time of flight and modal source location algorithm. Three sensors are installed in a triangular array with a sensor to sensor distance of just a few centimeters. The direction from the sensor array to the AE source can be established by analysing the arrival times of the A0 component of the signal to the three sensors whilst the distance can be evaluated using the separation of S0 and A0 mode at each sensor respectively. The close positioning of the sensors allows the array to be installed in a single housing. This simplifies mounting, wiring and calibration procedures for non-destructive testing (NDT) and structural health monitoring (SHM) applications. Furthermore, this array could reduce the number of sensors needed to monitor large structures compared to other methods. An automatic wave mode identification method is also presented.

  1. Acoustics Local Area Network

    DTIC Science & Technology

    2013-01-31

    contract was to provide a shared computing i : resource - the acou tics local area network (ALAN) - to support ocean acoustic and related oceanographic...SECURITY CLASSIFICATION 20. UMITATION OF ABSTRACT OF REPORT: THIS PAGE OF ABSTRACT Unclassified I I ONRCtI COMPUTER V 10 11/94 STANDARD FORM 233 (REV 241) oo 0 90 " VLNV1LV HNO Og6OuLtOI, CT:tT 96/OT/0

  2. Acoustic Source Localization via Time Difference of Arrival Estimation for Distributed Sensor Networks Using Tera-Scale Optical Core Devices

    DOE PAGES

    Imam, Neena; Barhen, Jacob

    2009-01-01

    For real-time acoustic source localization applications, one of the primary challenges is the considerable growth in computational complexity associated with the emergence of ever larger, active or passive, distributed sensor networks. These sensors rely heavily on battery-operated system components to achieve highly functional automation in signal and information processing. In order to keep communication requirements minimal, it is desirable to perform as much processing on the receiver platforms as possible. However, the complexity of the calculations needed to achieve accurate source localization increases dramatically with the size of sensor arrays, resulting in substantial growth of computational requirements that cannot bemore » readily met with standard hardware. One option to meet this challenge builds upon the emergence of digital optical-core devices. The objective of this work was to explore the implementation of key building block algorithms used in underwater source localization on the optical-core digital processing platform recently introduced by Lenslet Inc. This demonstration of considerably faster signal processing capability should be of substantial significance to the design and innovation of future generations of distributed sensor networks.« less

  3. Acoustic source for generating an acoustic beam

    DOEpatents

    Vu, Cung Khac; Sinha, Dipen N.; Pantea, Cristian

    2016-05-31

    An acoustic source for generating an acoustic beam includes a housing; a plurality of spaced apart piezo-electric layers disposed within the housing; and a non-linear medium filling between the plurality of layers. Each of the plurality of piezoelectric layers is configured to generate an acoustic wave. The non-linear medium and the plurality of piezo-electric material layers have a matching impedance so as to enhance a transmission of the acoustic wave generated by each of plurality of layers through the remaining plurality of layers.

  4. Application of Acoustic Signal Processing Techniques for Improved Underwater Source Detection and Localization

    DTIC Science & Technology

    1988-08-31

    Systems Center, San Diego; the Electric Boat Division of General ambiguities in the beam patterns, provided the bearmforming is done with Dynamics. ] the...Am. Suppl. 1. Vol. 60. Fall 1986 112th Meeting: Acoustical Socity of America A wearable multichannel signal processor for stimulation of single... electrical dynamic range 1Hi4 & Channel interaction measured by forward-masked "pla of the patient. Several processor configurations with different resonator

  5. Passive Acoustic Vessel Localization

    NASA Astrophysics Data System (ADS)

    Suwal, Pasang Sherpa

    This thesis investigates the development of a low-cost passive acoustic system for localizing moving vessels to monitor areas where human activities such as fishing, snorkeling and poaching are restricted. The system uses several off-the-shelf sensors with unsynchronized clocks where the Time Difference of Arrival (TDOA) or time delay is extracted by cross-correlation of the signal between paired sensors. The cross-correlation function uses phase correlation or Phase Transform (PHAT) which whitens the cross-spectrum in order to de-emphasize dominant frequency components. Using the locations of pairs of sensors as foci, hyperbolic equations can be defined using the time delay between them. With three or more sensors, multiple hyperbolic functions can be calculated which intersect at a unique point: the boat's location. It is also found that increasing separation distances between sensors decreased the correlation between the signals. However larger separation distances have better localization capability than with small distances. Experimental results from the Columbia and Willamette Rivers are presented to demonstrate performance.

  6. Experimental localization of an acoustic sound source in a wind-tunnel flow by using a numerical time-reversal technique.

    PubMed

    Padois, Thomas; Prax, Christian; Valeau, Vincent; Marx, David

    2012-10-01

    The possibility of using the time-reversal technique to localize acoustic sources in a wind-tunnel flow is investigated. While the technique is widespread, it has scarcely been used in aeroacoustics up to now. The proposed method consists of two steps: in a first experimental step, the acoustic pressure fluctuations are recorded over a linear array of microphones; in a second numerical step, the experimental data are time-reversed and used as input data for a numerical code solving the linearized Euler equations. The simulation achieves the back-propagation of the waves from the array to the source and takes into account the effect of the mean flow on sound propagation. The ability of the method to localize a sound source in a typical wind-tunnel flow is first demonstrated using simulated data. A generic experiment is then set up in an anechoic wind tunnel to validate the proposed method with a flow at Mach number 0.11. Monopolar sources are first considered that are either monochromatic or have a narrow or wide-band frequency content. The source position estimation is well-achieved with an error inferior to the wavelength. An application to a dipolar sound source shows that this type of source is also very satisfactorily characterized.

  7. A novel multi-segment path analysis based on a heterogeneous velocity model for the localization of acoustic emission sources in complex propagation media.

    PubMed

    Gollob, Stephan; Kocur, Georg Karl; Schumacher, Thomas; Mhamdi, Lassaad; Vogel, Thomas

    2017-02-01

    In acoustic emission analysis, common source location algorithms assume, independently of the nature of the propagation medium, a straight (shortest) wave path between the source and the sensors. For heterogeneous media such as concrete, the wave travels in complex paths due to the interaction with the dissimilar material contents and with the possible geometrical and material irregularities present in these media. For instance, cracks and large air voids present in concrete influence significantly the way the wave travels, by causing wave path deviations. Neglecting these deviations by assuming straight paths can introduce significant errors to the source location results. In this paper, a novel source localization method called FastWay is proposed. It accounts, contrary to most available shortest path-based methods, for the different effects of material discontinuities (cracks and voids). FastWay, based on a heterogeneous velocity model, uses the fastest rather than the shortest travel paths between the source and each sensor. The method was evaluated both numerically and experimentally and the results from both evaluation tests show that, in general, FastWay was able to locate sources of acoustic emissions more accurately and reliably than the traditional source localization methods.

  8. Multiple-input multiple-output (MIMO) analog-to-feature converter chipsets for sub-wavelength acoustic source localization and bearing estimation

    NASA Astrophysics Data System (ADS)

    Chakrabartty, Shantanu

    2010-04-01

    Localization of acoustic sources using miniature microphone arrays poses a significant challenge due to fundamental limitations imposed by the physics of sound propagation. With sub-wavelength distances between the microphones, resolving acute localization cues become difficult due to precision artifacts. In this work, we present the design of a miniature, microphone array sensor based on a patented Multiple-input Multiple-output (MIMO) analog-to-feature converter (AFC) chip-sets which overcomes the limitations due to precision artifacts. Measured results from fabricated prototypes demonstrate a bearing range of 0 degrees to 90 degrees with a resolution less than 2 degrees. The power dissipation of the MIMO-ADC chip-set for this task was measured to be less than 75 microwatts making it ideal for portable, battery powered sniper and gunshot detection applications.

  9. Acoustic Source Localization via Time Difference of Arrival Estimation for Distributed Sensor Networks using Tera-scale Optical-Core Devices

    SciTech Connect

    Imam, Neena; Barhen, Jacob

    2009-01-01

    For real-time acoustic source localization applications, one of the primary challenges is the considerable growth in computational complexity associated with the emergence of ever larger, active or passive, distributed sensor networks. These sensors rely heavily on battery-operated system components to achieve highly functional automation in signal and information processing. In order to keep communication requirements minimal, it is desirable to perform as much processing on the receiver platforms as possible. However, the complexity of the calculations needed to achieve accurate source localization increases dramatically with the size of sensor arrays, resulting in substantial growth of computational requirements that cannot be readily met with standard hardware. One option to meet this challenge builds upon the emergence of digital optical-core devices. The objective of this work was to explore the implementation of key building block algorithms used in underwater source localization on the optical-core digital processing platform recently introduced by Lenslet Inc. This demonstration of considerably faster signal processing capability should be of substantial significance to the design and innovation of future generations of distributed sensor networks.

  10. Sparsity-driven Passive Tracking of Underwater Acoustic Sources

    DTIC Science & Technology

    2015-08-01

    bend ✴ Temperature , pressure and salinity D epth Range Source localization map (SLM) 2 Shallow water sound -speed profile Modeling...Difficult due to complexities of the propagation environment • Ocean behaves as an acoustic waveguide • Varying sound -speed causes acoustic signals to

  11. Acoustic sensor networks for woodpecker localization

    NASA Astrophysics Data System (ADS)

    Wang, H.; Chen, C. E.; Ali, A.; Asgari, S.; Hudson, R. E.; Yao, K.; Estrin, D.; Taylor, C.

    2005-08-01

    Sensor network technology can revolutionize the study of animal ecology by providing a means of non-intrusive, simultaneous monitoring of interaction among multiple animals. In this paper, we investigate design, analysis, and testing of acoustic arrays for localizing acorn woodpeckers using their vocalizations. Each acoustic array consists of four microphones arranged in a square. All four audio channels within the same acoustic array are finely synchronized within a few micro seconds. We apply the approximate maximum likelihood (AML) method to synchronized audio channels of each acoustic array for estimating the direction-of-arrival (DOA) of woodpecker vocalizations. The woodpecker location is estimated by applying least square (LS) methods to DOA bearing crossings of multiple acoustic arrays. We have revealed the critical relation between microphone spacing of acoustic arrays and robustness of beamforming of woodpecker vocalizations. Woodpecker localization experiments using robust array element spacing in different types of environments are conducted and compared. Practical issues about calibration of acoustic array orientation are also discussed.

  12. Properties of acoustic sources in the Sun

    NASA Technical Reports Server (NTRS)

    Kumar, Pawan

    1994-01-01

    The power spectrum of solar acoustic oscillations shows peaks extending out to frequencies much greater than the acoustic cutoff frequency of approximately 5.3 mHz, where waves are no longer trapped. Kumar & Lu (1991) proposed that these peaks arise from the interference of traveling waves which are generated by turbulent convection. According to this model, the frequencies of the peaks in the power spectrum depend on the static structure of the Sun as well as the radial location of the sources. Kumar & Lu used this idea to determine the depth of the acoustic sources. However, they ignored dissipative effects and found that the theoretically computed power spectrum was falling off much more rapidly than the observed spectrum. In this paper, we include the interaction of radiation with acoustic waves in the computation of the power spectrum. We find that the theoretically calculated power spectra, when radiative damping is included are in excellent agreement with the observed power spectra over the entire observed frequency range of 5.3 to 7.5 mHz above the acoustic cutoff frequency. Moreover, by matching the peak frequencies in the observed and theoretical spectra we find the mean depth of acoustic sources to be 140 +/- 60 km below the photosphere. We show that the spectrum of solar turbulence near the top of the solar convection zone is consistent with the Kolmogorov spectrum, and that the observed high frequency power spectrum provides strong evidence that the acoustic sources in the Sun are quadrupolar. The data, in fact, rules out dipole sources as significant contributors to acoustic wave generation in the Sun. The radial extent of the sources is poorly determined and is estimated to be less than about 550 km.

  13. Pulsed-Source Interferometry in Acoustic Imaging

    NASA Technical Reports Server (NTRS)

    Shcheglov, Kirill; Gutierrez, Roman; Tang, Tony K.

    2003-01-01

    A combination of pulsed-source interferometry and acoustic diffraction has been proposed for use in imaging subsurface microscopic defects and other features in such diverse objects as integrated-circuit chips, specimens of materials, and mechanical parts. A specimen to be inspected by this technique would be mounted with its bottom side in contact with an acoustic transducer driven by a continuous-wave acoustic signal at a suitable frequency, which could be as low as a megahertz or as high as a few hundred gigahertz. The top side of the specimen would be coupled to an object that would have a flat (when not vibrating) top surface and that would serve as the acoustical analog of an optical medium (in effect, an acoustical "optic").

  14. Acoustic Source Bearing Estimation (ASBE) computer program development

    NASA Technical Reports Server (NTRS)

    Wiese, Michael R.

    1987-01-01

    A new bearing estimation algorithm (Acoustic Source Analysis Technique - ASAT) and an acoustic analysis computer program (Acoustic Source Bearing Estimation - ASBE) are described, which were developed by Computer Sciences Corporation for NASA Langley Research Center. The ASBE program is used by the Acoustics Division/Applied Acoustics Branch and the Instrument Research Division/Electro-Mechanical Instrumentation Branch to analyze acoustic data and estimate the azimuths from which the source signals radiated. Included are the input and output from a benchmark test case.

  15. Directivity of acoustic radiation from sources

    NASA Technical Reports Server (NTRS)

    Lansing, D. L.

    1979-01-01

    The radiation properties of acoustic monopoles and dipoles are described. The directivity of radiation from these sources in a free field and in the presence of an absorptive surface is described. The kinematic effects on source radiation due to translation and rotation are discussed. Experimental measurements of sound from an acoustic monopole in motion and the characteristics of helicopter rotor and propeller noise are reviewed. An introduction is provided to several essential concepts required by noise control engineers making measurements of noise from moving sources in the proximity of the ground.

  16. Directivity of acoustic radiation from sources

    NASA Technical Reports Server (NTRS)

    Lansing, D. L.

    1979-01-01

    The radiation properties of acoustic monopoles and dipoles are described, as well as the directivity of radiation from these sources in a free field and in the presence of an absorptive surface. The kinematic effects on source radiation due to translation and rotation are discussed. Experimental measurements of sound from an acoustic monopole in motion and the characteristics of helicopter rotor and propeller noise are reviewed. Several essential concepts required by noise control engineers making measurements of noise from moving sources in the proximity of the ground are introduced.

  17. An Architecture for Cooperative Localization in Underwater Acoustic Networks

    DTIC Science & Technology

    2015-10-24

    An Architecture for Cooperative Localization in Underwater Acoustic Networks ∗ Jeffrey M. Walls University of Michigan Ann Arbor, Michigan jmwalls...acoustic cooperative localization. Our system leverages communica- tion within an acoustic network to both share navigation information and measure the...three vehicle cooperative network and provide a performance summary over several field trials. Categories and Subject Descriptors I.2.9 [Robotics

  18. THz Local Oscillator Sources

    NASA Astrophysics Data System (ADS)

    Mehdi, Imran; Schlecht, Erich; Chattopadhyay, Goutam; Siegel, Peter H.

    Most operational Submillimeter-wave radio telescopes, both space borne and ground based, employ local oscillator sources based on Gunn diodes followed by whisker contacted Schottky multipliers. Enough progress, however, has been made on a number of fronts to conclude that next generation of radio telescopes that become operational in the new Millennium will have a different local oscillator (LO) generation architecture. MMIC power amplifiers with impressive gain in the Ka- to-W band have enabled the use of microwave synthesizers which can then be actively multiplied to provide a frequency agile power source beyond 100 GHz. This medium power millimeter source can then be amplified to enable efficient pumping of follow-on balanced multiplier stages. Input power to the multipliers can be further enhanced by power combining to achieve close to half a Watt at W-band. An 800 GHz three-stage multiplier chain, implemented this way has demonstrated a peak output power of 1 mW. A second advance in LO generation lies in the Schottky diode varactor technology. Planar Schottky diode multipliers have now been demonstrated up to 1500 GHz and it can be assumed that most of the future multiplier chains will be based on these robust devices rather than the whisker contacted diode of the past. The ability to produce planar GaAs diode chips deep into the THz range, with submicron dimensions, has opened up a wide range of circuit design space which can be taken advantage of to improve efficiency, bandwidth, and power handling capability of the multipliers. A third breakthrough has been the demonstration of photonic based LO sources utilizing GaAs photomixers. These sources, though not yet implemented in robust space borne missions, offer a number of advantages over their electronic counterparts, including extremely broad tuning, fiber coupled components, and solid-state implementation. Another development, which holds some promise, is the use of micro-machining technology to implement

  19. Fatigue crack localization with near-field acoustic emission signals

    NASA Astrophysics Data System (ADS)

    Zhou, Changjiang; Zhang, Yunfeng

    2013-04-01

    This paper presents an AE source localization technique using near-field acoustic emission (AE) signals induced by crack growth and propagation. The proposed AE source localization technique is based on the phase difference in the AE signals measured by two identical AE sensing elements spaced apart at a pre-specified distance. This phase difference results in canceling-out of certain frequency contents of signals, which can be related to AE source direction. Experimental data from simulated AE source such as pencil breaks was used along with analytical results from moment tensor analysis. It is observed that the theoretical predictions, numerical simulations and the experimental test results are in good agreement. Real data from field monitoring of an existing fatigue crack on a bridge was also used to test this system. Results show that the proposed method is fairly effective in determining the AE source direction in thick plates commonly encountered in civil engineering structures.

  20. Measurements of acoustic sources in motion

    NASA Technical Reports Server (NTRS)

    Maestrello, L.; Norum, T. D.

    1978-01-01

    Results of the far-field pressures measured from three different types of moving sources are presented. These acoustic sources consist of a point monopole, a small model jet, and an aircraft. Results for the pressure time history produced by the point source show good agreement with those predicted analytically. Both actual and simulated forward motion of the model jet show reductions in noise levels with forward speed at all angles between the source and observer. Measurement with the aircraft over both an anechoic floor and over the ground yields a method for evaluating the transfer function for ground reflections at various angles between the moving aircraft and measurement position.

  1. Acoustic and non-acoustic factors in modeling listener-specific performance of sagittal-plane sound localization

    PubMed Central

    Majdak, Piotr; Baumgartner, Robert; Laback, Bernhard

    2014-01-01

    The ability of sound-source localization in sagittal planes (along the top-down and front-back dimension) varies considerably across listeners. The directional acoustic spectral features, described by head-related transfer functions (HRTFs), also vary considerably across listeners, a consequence of the listener-specific shape of the ears. It is not clear whether the differences in localization ability result from differences in the encoding of directional information provided by the HRTFs, i.e., an acoustic factor, or from differences in auditory processing of those cues (e.g., spectral-shape sensitivity), i.e., non-acoustic factors. We addressed this issue by analyzing the listener-specific localization ability in terms of localization performance. Directional responses to spatially distributed broadband stimuli from 18 listeners were used. A model of sagittal-plane localization was fit individually for each listener by considering the actual localization performance, the listener-specific HRTFs representing the acoustic factor, and an uncertainty parameter representing the non-acoustic factors. The model was configured to simulate the condition of complete calibration of the listener to the tested HRTFs. Listener-specifically calibrated model predictions yielded correlations of, on average, 0.93 with the actual localization performance. Then, the model parameters representing the acoustic and non-acoustic factors were systematically permuted across the listener group. While the permutation of HRTFs affected the localization performance, the permutation of listener-specific uncertainty had a substantially larger impact. Our findings suggest that across-listener variability in sagittal-plane localization ability is only marginally determined by the acoustic factor, i.e., the quality of directional cues found in typical human HRTFs. Rather, the non-acoustic factors, supposed to represent the listeners' efficiency in processing directional cues, appear to be

  2. On the output of acoustical sources

    NASA Technical Reports Server (NTRS)

    Levine, H.

    1979-01-01

    Contents: (1) a theoretical basis for local power calculation; (2) source radiation in the presence of a half-plane; (3) radiation from a line source near an edge at which a Kutta condition holds; (4) radiation by a point source above a plane independence boundary; and (5) power output of a point source in a uniform flow.

  3. Development and Application of Acoustic Metamaterials with Locally Resonant Microstructures

    DTIC Science & Technology

    2012-08-02

    August 2, 2012 Development and Application of Acoustic Metamaterials with Locally Resonant Microstructures Report Documentation Page Form...COVERED 00-00-2012 to 00-00-2012 4. TITLE AND SUBTITLE Development and Application of Acoustic Metamaterials with Locally Resonant Microstructures 5a...Publications •H. H. Huang and C. T. Sun, “Locally Resonant Acoustic Metamaterials with 2D Anisotropic Effective Mass Density,” Philosophical Magazine

  4. An Expendable Source for Measuring Shallow Water Acoustic Propagation and Geo-Acoustic Bottom Properties

    DTIC Science & Technology

    2015-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. An Expendable Source for Measuring Shallow Water Acoustic ...Propagation and Geo- Acoustic Bottom Properties Harry A DeFerrari RSMAS – University of Miami 4600 Rickenbacker Causeway Miami FL. 33149...broadband source is being developed that transmits high gain m-sequence to clandestinly measure pulse response of shallow water acoustic propagation

  5. Networked localization of sniper shots using acoustics

    NASA Astrophysics Data System (ADS)

    Hengy, S.; Hamery, P.; De Mezzo, S.; Duffner, P.

    2011-06-01

    The presence of snipers in modern conflicts leads to high insecurity for the soldiers. In order to improve the soldier's protection against this threat, the French German Research Institute of Saint-Louis (ISL) initiated studies in the domain of acoustic localization of shots. Mobile antennas mounted on the soldier's helmet were initially used for real-time detection, classification and localization of sniper shots. It showed good performances in land scenarios, but also in urban scenarios if the array was in the shot corridor, meaning that the microphones first detect the direct wave and then the reflections of the Mach and muzzle waves. As soon as the acoustic arrays were not near to the shot corridor (only reflections are detected) this solution lost its efficiency and erroneous estimated position were given. In order to estimate the position of the shooter in every kind of urban scenario, ISL started studying time reversal techniques. Knowing the position of every reflective object in the environment (buildings, walls, ...) it should be possible to estimate the position of the shooter. First, a synthetic propagation algorithm has been developed and validated for real scale applications. It has then been validated for small scale models, allowing us to test our time reversal based algorithms in our laboratory. In this paper we discuss all the challenges that are induced by the application of sniper detection using time reversal techniques. We will discuss all the hard points that can be encountered and try to find some solutions in order to optimize the use of this technique.

  6. Vehicular sources in acoustic propagation experiments

    NASA Technical Reports Server (NTRS)

    Prado, Gervasio; Fitzgerald, James; Arruda, Anthony; Parides, George

    1990-01-01

    One of the most important uses of acoustic propagation models lies in the area of detection and tracking of vehicles. Propagation models are used to compute transmission losses in performance prediction models and to analyze the results of past experiments. Vehicles can also provide the means for cost effective experiments to measure acoustic propagation conditions over significant ranges. In order to properly correlate the information provided by the experimental data and the propagation models, the following issues must be taken into consideration: the phenomenology of the vehicle noise sources must be understood and characterized; the vehicle's location or 'ground truth' must be accurately reproduced and synchronized with the acoustic data; and sufficient meteorological data must be collected to support the requirements of the propagation models. The experimental procedures and instrumentation needed to carry out propagation experiments are discussed. Illustrative results are presented for two cases. First, a helicopter was used to measure propagation losses at a range of 1 to 10 Km. Second, a heavy diesel-powered vehicle was used to measure propagation losses in the 300 to 2200 m range.

  7. Monaural sound localization based on structure-induced acoustic resonance.

    PubMed

    Kim, Keonwook; Kim, Youngwoong

    2015-02-06

    A physical structure such as a cylindrical pipe controls the propagated sound spectrum in a predictable way that can be used to localize the sound source. This paper designs a monaural sound localization system based on multiple pyramidal horns around a single microphone. The acoustic resonance within the horn provides a periodicity in the spectral domain known as the fundamental frequency which is inversely proportional to the radial horn length. Once the system accurately estimates the fundamental frequency, the horn length and corresponding angle can be derived by the relationship. The modified Cepstrum algorithm is employed to evaluate the fundamental frequency. In an anechoic chamber, localization experiments over azimuthal configuration show that up to 61% of the proper signal is recognized correctly with 30% misfire. With a speculated detection threshold, the system estimates direction 52% in positive-to-positive and 34% in negative-to-positive decision rate, on average.

  8. Acoustic localization of breakdown in radio frequency accelerating cavities

    NASA Astrophysics Data System (ADS)

    Lane, Peter

    Current designs for muon accelerators require high-gradient radio frequency (RF) cavities to be placed in solenoidal magnetic fields. These fields help contain and efficiently reduce the phase space volume of source muons in order to create a usable muon beam for collider and neutrino experiments. In this context and in general, the use of RF cavities in strong magnetic fields has its challenges. It has been found that placing normal conducting RF cavities in strong magnetic fields reduces the threshold at which RF cavity breakdown occurs. To aid the effort to study RF cavity breakdown in magnetic fields, it would be helpful to have a diagnostic tool which can localize the source of breakdown sparks inside the cavity. These sparks generate thermal shocks to small regions of the inner cavity wall that can be detected and localized using microphones attached to the outer cavity surface. Details on RF cavity sound sources as well as the hardware, software, and algorithms used to localize the source of sound emitted from breakdown thermal shocks are presented. In addition, results from simulations and experiments on three RF cavities, namely the Aluminum Mock Cavity, the High-Pressure Cavity, and the Modular Cavity, are also given. These results demonstrate the validity and effectiveness of the described technique for acoustic localization of breakdown.

  9. Acoustic source analysis of a supersonic rectangular chevron jet

    NASA Astrophysics Data System (ADS)

    Kreitzman, Jordan Richard

    Source terms corresponding to Goldstein's generalized acoustic analogy are computed from a high-fidelity simulation of a supersonic jet issuing from a rectangular nozzle with chevrons. Simulated data are validated against experimental data. We investigate the theoretical underpinning of reduced-order acoustic source models by testing the assumptions of quasi-normality and statistical axisymmetry. It is found that the flow is not quasi-normal in the axial direction but is quasi-normal in the transverse directions. Our analysis also shows that the flow is locally statistically axisymmetric close to the edges of the flow but not near the center. Fourth order correlation statistics are fit to previously used acoustic source models originally developed for axisymmetric jets. This thesis performs a detailed analysis of four different models: the Gaussian, moving-frame, fixed-frame, and modified-distance models. The latter three models are found to be similar in accuracy, while the Gaussian model is found to be a poorer fit.

  10. Acoustic Source Elevation Angle Estimates Using Two Microphones

    DTIC Science & Technology

    2014-06-01

    Acoustic Source Elevation Angle Estimates Using Two Microphones by Kirsten A. Walker and W.C. Kirkpatrick Alberts, II ARL-TR-6976 June...TR-6976 June 2014 Acoustic Source Elevation Angle Estimates Using Two Microphones Kirsten A. Walker and W.C. Kirkpatrick Alberts, II...3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE Acoustic Source Elevation Angle Estimates Using Two Microphones 5a. CONTRACT NUMBER 5b

  11. Developing general acoustic model for noise sources and parameters estimation

    NASA Astrophysics Data System (ADS)

    Madoliat, Reza; Nouri, Nowrouz Mohammad; Rahrovi, Ali

    2017-02-01

    Noise measured at various points around the environment can be evaluated by a series of acoustic sources. Acoustic sources with wide surface can be broken down in fluid environment using some smaller acoustic sources. The aim of this study is to make a model to indicate the type, number, direction, position and strength of these sources in a way that the main sound and the sound of equivalent sources match together in an acceptable way. When position and direction of the source is given, the strength of the source can be found using inverse method. On the other hand, considering the non-uniqueness of solution in inverse method, a different acoustic strength is obtained for the sources if different positions are selected. Selecting an arrangement of general source and using the optimization algorithm, the least possible mismatch between the main sound and the sound of equivalent sources can be achieved.

  12. Seismo-Acoustic Observations of Explosive Sources

    NASA Astrophysics Data System (ADS)

    Chael, E. P.; Hart, D. M.; Jones, K. R.

    2011-12-01

    Since January 2011, the Sandia National Laboratories Facility for Acceptance, Calibration and Testing (FACT) has operated a seismo-acoustic station with the purpose of recording local explosions on Kirtland Air Force Base (KAFB). Our immediate goals are to develop a catalog of events and a database of seismo-acoustic waveforms from ordnance disposal and Defense Threat Reduction Agency (DTRA) events. The catalog of events will include metadata such as shot time, size, type and location. The waveform archive includes a three-channel GS-13 seismometer and a single infrasound sensor (Chaparral 25 with 50' porous hose wind reduction system). In June of 2011 a weather station was added to complement the monitoring system by providing accurate wind conditions at the times of the explosive events. Monthly internal reports compiled by KAFB provided us with the metadata for the ordnance disposal explosions, and an agreement with DTRA has enabled us to obtain metadata on their events. To date 157 explosions have been identified, including 153 ordnance disposal events and 4 DTRA tests. Along with the catalog of events we have developed automated processing routines to extract both seismic and infrasound arrivals and measure basic waveform characteristics. These include amplitudes of pre-event noise, the direct seismic arrival, air-coupled seismic arrival, infrasound arrival, and wind speed/direction. Using the waveform measurements from the pre-event noise and air-coupled seismic arrival we calculate the SNR for the seismic component of the event. We also calculate the SNR for the infrasonic component of the event using pre-event noise and the direct infrasound arrival. Using the metadata and seismic and infrasonic SNR values we are able to calculate an air-to-ground coupling ratio for each event. For local (<10 km) explosion monitoring, the wind speed and direction can influence all of the analysis parameters. It will affect the pre-event noise level as well as the infrasound

  13. System and method for investigating sub-surface features of a rock formation using compressional acoustic sources

    DOEpatents

    Vu, Cung Khac; Skelt, Christopher; Nihei, Kurt; Johnson, Paul A.; Guyer, Robert; Ten Cate, James A.; Le Bas, Pierre-Yves; Larmat, Carene S.

    2016-09-27

    A system and method for investigating rock formations outside a borehole are provided. The method includes generating a first compressional acoustic wave at a first frequency by a first acoustic source; and generating a second compressional acoustic wave at a second frequency by a second acoustic source. The first and the second acoustic sources are arranged within a localized area of the borehole. The first and the second acoustic waves intersect in an intersection volume outside the borehole. The method further includes receiving a third shear acoustic wave at a third frequency, the third shear acoustic wave returning to the borehole due to a non-linear mixing process in a non-linear mixing zone within the intersection volume at a receiver arranged in the borehole. The third frequency is equal to a difference between the first frequency and the second frequency.

  14. Acoustic radiation from lined, unflanged ducts: Acoustic source distribution program

    NASA Technical Reports Server (NTRS)

    Beckemeyer, R. J.; Sawdy, D. T.

    1971-01-01

    An acoustic radiation analysis was developed to predict the far-field characteristics of fan noise radiated from an acoustically lined unflanged duct. This analysis is comprised of three modular digital computer programs which together provide a capability of accounting for the impedance mismatch at the duct exit plane. Admissible duct configurations include circular or annular, with or without an extended centerbody. This variation in duct configurations provides a capability of modeling inlet and fan duct noise radiation. The computer programs are described in detail.

  15. The source of solar high-frequency acoustic modes - Theoretical expectations

    NASA Technical Reports Server (NTRS)

    Brown, Timothy M.

    1991-01-01

    The source exciting the solar p-modes is likely to be acoustic noise generated in the top part of the sun's convection zone. If so, then simple arguments suggest that most of the emitted energy may come from rare localized events that are well separated from one another in space and time. This note describes the acoustic emission that would be expected from such events, based on a ray-theory analysis. Most of the acoustic energy is found to emerge very close to the source, so that observations to identify emission events will require high spatial resolution.

  16. Acoustic intensity in the interaction region of a parametric source

    NASA Astrophysics Data System (ADS)

    Lauchle, G. C.; Gabrielson, T. B.; van Tol, D. J.; Kottke, N. F.; McConnell, J. A.

    2003-10-01

    The goal of this project was to measure acoustic intensity in the strong interaction region of a parametric source in order to obtain a clear definition of the source-generation region and to separate the local generation (the reactive field) from propagation (the real or active field). The acoustic intensity vector was mapped in the interaction region of a parametric projector at Lake Seneca. The source was driven with primary signals at 22 kHz and 27 kHz. Receiving sensors were located 8.5 meters from the projector. At that range, the secondary at 5 kHz was between 40 and 45 dB below either primary. For the primary levels used, the plane-wave shock inception distance would have been at least 14 meters. Furthermore, the Rayleigh distance for the projector was about 4 meters so the measurements at 8.5 meters were in the strong interaction region but not in saturation. Absorption was negligible over these ranges. The intensity measurements were made at fixed range but varying azimuth angle and varying depth thus developing a two-dimensional cross-section of the secondary beam. Measurements of both the active and reactive intensity vectors will be presented along with a discussion of measurement error. [Work supported by ONR Code 321SS.

  17. Erratum: Modeling sound-source localization in sagittal planes for human listeners [J. Acoust. Soc. Am. 136, 791-802 (2014)].

    PubMed

    Baumgartner, Robert; Majdak, Piotr; Laback, Bernhard

    2016-10-01

    This erratum concerns Eq. (4) of the original article, which defines the distance metric of the comparison process of the sagittal-plane sound localization model. The distance metric was actually implemented as a mean absolute difference but was erroneously described as a L1-norm difference.

  18. Acoustic metamaterials: From local resonances to broad horizons.

    PubMed

    Ma, Guancong; Sheng, Ping

    2016-02-01

    Within a time span of 15 years, acoustic metamaterials have emerged from academic curiosity to become an active field driven by scientific discoveries and diverse application potentials. This review traces the development of acoustic metamaterials from the initial findings of mass density and bulk modulus frequency dispersions in locally resonant structures to the diverse functionalities afforded by the perspective of negative constitutive parameter values, and their implications for acoustic wave behaviors. We survey the more recent developments, which include compact phase manipulation structures, superabsorption, and actively controllable metamaterials as well as the new directions on acoustic wave transport in moving fluid, elastic, and mechanical metamaterials, graphene-inspired metamaterials, and structures whose characteristics are best delineated by non-Hermitian Hamiltonians. Many of the novel acoustic metamaterial structures have transcended the original definition of metamaterials as arising from the collective manifestations of constituent resonating units, but they continue to extend wave manipulation functionalities beyond those found in nature.

  19. Acoustic metamaterials: From local resonances to broad horizons

    PubMed Central

    Ma, Guancong; Sheng, Ping

    2016-01-01

    Within a time span of 15 years, acoustic metamaterials have emerged from academic curiosity to become an active field driven by scientific discoveries and diverse application potentials. This review traces the development of acoustic metamaterials from the initial findings of mass density and bulk modulus frequency dispersions in locally resonant structures to the diverse functionalities afforded by the perspective of negative constitutive parameter values, and their implications for acoustic wave behaviors. We survey the more recent developments, which include compact phase manipulation structures, superabsorption, and actively controllable metamaterials as well as the new directions on acoustic wave transport in moving fluid, elastic, and mechanical metamaterials, graphene-inspired metamaterials, and structures whose characteristics are best delineated by non-Hermitian Hamiltonians. Many of the novel acoustic metamaterial structures have transcended the original definition of metamaterials as arising from the collective manifestations of constituent resonating units, but they continue to extend wave manipulation functionalities beyond those found in nature. PMID:26933692

  20. Tracking Moving Acoustic Sources With a Network of Sensors

    DTIC Science & Technology

    2002-10-01

    Tracking Moving Acoustic Sources With a Network of Sensors by Richard J. Kozick and Brian M. Sadler ARL-TR-2750 October 2002 Approved for public...October 2002 Tracking Moving Acoustic Sources With a Network of Sensors Richard J. Kozick Bucknell University, Electrical Engineering Department Brian M...Model for a Nonmoving Source 4 2.1 Cramér-Rao Bound (CRB) . . . . . . . . . . . . . . . . . . . . 6 2.2 Examples

  1. Blind deconvolution and source separation in acoustics

    NASA Astrophysics Data System (ADS)

    Sibul, Leon H.; Roan, Michael J.; Coviello, Christian M.

    2005-09-01

    Blind deconvolution (BDC) and blind source separation (BSS) are active research topics with many important applications in acoustics. The goal of deconvolution is to recover original input signal from the output of a convolution filter. In blind deconvolution details of the convolution filter and input signals are not known. The fundamental assumption in BDC is that the input signal is a non-Gaussian stochastic process. A topic closely related to BDC is BSS. BSS is a process that is an inverse operation to a mixing process. In BSS it is assumed that inputs to the mixing systems are statistically independent stochastic processes, where only one input may be Gaussian, others must be non-Gaussian. Standard criterion functions for BDC and BSS are reviewed. Limitations of the second-order statistics and need for higher-order statistics (HOS) or information theoretic criteria that lead to nonlinear optimization algorithms are pointed out. Advantages of various information theoretic criteria for BDC and BSS are discussed. Because gradients of these criteria are nonlinear, resulting optimization algorithms are nonlinear. Linear and non-linear algorithms for BDC and BSS are examined. [Work supported by ONR Codes 321US and 333.

  2. Localized ultrahigh frequency acoustic fields induced micro-vortices for submilliseconds microfluidic mixing

    NASA Astrophysics Data System (ADS)

    Cui, Weiwei; Zhang, Hao; Zhang, Hongxiang; Yang, Yang; He, Meihang; Qu, Hemi; Pang, Wei; Zhang, Daihua; Duan, Xuexin

    2016-12-01

    We present an acoustic microfluidic mixing approach via acousto-mechanically induced micro-vortices sustained by localized ultrahigh frequency (UHF) acoustic fields. A micro-fabricated solid-mounted thin-film piezoelectric resonator (SMR) with a frequency of 1.54 GHz has been integrated into microfluidic systems. Experimental and simulation results show that UHF-SMR triggers strong acoustic field gradients to produce efficient and highly localized acoustic streaming vortices, providing a powerful source for microfluidic mixing. Homogeneous mixing with 87% mixing efficiency at a Peclet number of 35520 within 1 ms has been achieved. The proposed strategy shows a great potential for microfluidic mixing and enhanced molecule transportation in minimized analytical systems.

  3. Localization of acoustic modes in periodic porous silicon structures

    PubMed Central

    2014-01-01

    The propagation of longitudinal acoustic waves in multilayer structures based on porous silicon and the experimental measurement of acoustic transmission for the structures in the gigahertz range are reported and studied theoretically. The considered structures exhibit band gaps in the transmission spectrum and these are localized modes inside the band gap, coming from defect layers introduced in periodic systems. The frequency at which the acoustic resonances appear can be tuned by changing the porosity and/or thickness of the defect layer. PMID:25206317

  4. A non-local computational boundary condition for duct acoustics

    NASA Technical Reports Server (NTRS)

    Zorumski, William E.; Watson, Willie R.; Hodge, Steve L.

    1994-01-01

    A non-local boundary condition is formulated for acoustic waves in ducts without flow. The ducts are two dimensional with constant area, but with variable impedance wall lining. Extension of the formulation to three dimensional and variable area ducts is straightforward in principle, but requires significantly more computation. The boundary condition simulates a nonreflecting wave field in an infinite duct. It is implemented by a constant matrix operator which is applied at the boundary of the computational domain. An efficient computational solution scheme is developed which allows calculations for high frequencies and long duct lengths. This computational solution utilizes the boundary condition to limit the computational space while preserving the radiation boundary condition. The boundary condition is tested for several sources. It is demonstrated that the boundary condition can be applied close to the sound sources, rendering the computational domain small. Computational solutions with the new non-local boundary condition are shown to be consistent with the known solutions for nonreflecting wavefields in an infinite uniform duct.

  5. An optoacoustic point source for acoustic scale model measurements.

    PubMed

    Bolaños, Javier Gómez; Pulkki, Ville; Karppinen, Pasi; Hæggström, Edward

    2013-04-01

    A massless acoustic source is proposed for scale model work. This source is generated by focusing a pulsed laser beam to rapidly heat the air at the focal point. This produces an expanding small plasma ball which generates a sonic impulse that may be used as an acoustic point source. Repeatability, frequency response, and directivity of the source were measured to show that it can serve as a massless point source. The impulse response of a rectangular space was determined using this type of source. A good match was found between the predicted and the measured impulse responses of the space.

  6. Acoustic source analysis of supersonic jets from complex nozzles

    NASA Astrophysics Data System (ADS)

    Nichols, Joseph W.; Kreitzman, Jordan

    2015-11-01

    We compute acoustic source terms corresponding to Goldstein's generalized acoustic analogy from an unstructured high-fidelity large eddy simulation of a supersonic jet issuing from a rectangular nozzle with chevrons. The simulation data are validated against experimental measurements of mean and turbulence flow statistics as well as far-field noise. We evaluate fourth-order correlations from the simulation data to assess assumptions of quasi-normality and statistical axisymmetry that underpin reduced-order acoustic source models originally developed for round jets. A spatial analysis of these correlations in relation to the complex geometry of the nozzle reveals locations where the validity of these assumptions begins to break down. Using two point two-time correlations of the simulation data, we also directly evaluate and compare the accuracy of four different acoustic source models, including the Gaussian, moving-frame, fixed-frame, and modified distance models. Computational resources were provided by the Argonne Leadership Computing Facility.

  7. Analysis on accuracy improvement of rotor-stator rubbing localization based on acoustic emission beamforming method.

    PubMed

    He, Tian; Xiao, Denghong; Pan, Qiang; Liu, Xiandong; Shan, Yingchun

    2014-01-01

    This paper attempts to introduce an improved acoustic emission (AE) beamforming method to localize rotor-stator rubbing fault in rotating machinery. To investigate the propagation characteristics of acoustic emission signals in casing shell plate of rotating machinery, the plate wave theory is used in a thin plate. A simulation is conducted and its result shows the localization accuracy of beamforming depends on multi-mode, dispersion, velocity and array dimension. In order to reduce the effect of propagation characteristics on the source localization, an AE signal pre-process method is introduced by combining plate wave theory and wavelet packet transform. And the revised localization velocity to reduce effect of array size is presented. The accuracy of rubbing localization based on beamforming and the improved method of present paper are compared by the rubbing test carried on a test table of rotating machinery. The results indicate that the improved method can localize rub fault effectively.

  8. Acoustic NLOS Identification Using Acoustic Channel Characteristics for Smartphone Indoor Localization.

    PubMed

    Zhang, Lei; Huang, Danjie; Wang, Xinheng; Schindelhauer, Christian; Wang, Zhi

    2017-03-30

    As the demand for indoor localization is increasing to support our daily life in large and complex indoor environments, sound-based localization technologies have attracted researchers' attention because they have the advantages of being fully compatible with commercial off-the-shelf (COTS) smartphones, they have high positioning accuracy and low-cost infrastructure. However, the non-line-of-sight (NLOS) phenomenon poses a great challenge and has become the technology bottleneck for practical applications of acoustic smartphone indoor localization. Through identifying and discarding the NLOS measurements, the positioning performance can be improved by incorporating only the LOS measurements. In this paper, we focus on identifying NLOS components by characterizing the acoustic channels. Firstly, by analyzing indoor acoustic propagations, the changes of acoustic channel from the line-of-sight (LOS) condition to the NLOS condition are characterized as the difference of channel gain and channel delay between the two propagation scenarios. Then, an efficient approach to estimate relative channel gain and delay based on the cross-correlation method is proposed, which considers the mitigation of the Doppler Effect and reduction of the computational complexity. Nine novel features have been extracted, and a support vector machine (SVM) classifier with a radial-based function (RBF) kernel is used to realize NLOS identification. The experimental result with an overall 98.9% classification accuracy based on a data set with more than 10 thousand measurements shows that the proposed identification approach and features are effective in acoustic NLOS identification for acoustic indoor localization via a smartphone. In order to further evaluate the performance of the proposed SVM classifier, the performance of an SVM classifier is compared with that of traditional classifiers based on logistic regression (LR) and linear discriminant analysis (LDA). The results also show that a

  9. Speaker compensation for local perturbation of fricative acoustic feedback.

    PubMed

    Casserly, Elizabeth D

    2011-04-01

    Feedback perturbation studies of speech acoustics have revealed a great deal about how speakers monitor and control their productions of segmental (e.g., formant frequencies) and non-segmental (e.g., pitch) linguistic elements. The majority of previous work, however, overlooks the role of acoustic feedback in consonant production and makes use of acoustic manipulations that effect either entire utterances or the entire acoustic signal, rather than more temporally and phonetically restricted alterations. This study, therefore, seeks to expand the feedback perturbation literature by examining perturbation of consonant acoustics that is applied in a time-restricted and phonetically specific manner. The spectral center of the alveopalatal fricative [∫] produced in vowel-fricative-vowel nonwords was incrementally raised until it reached the potential for [s]-like frequencies, but the characteristics of high-frequency energy outside the target fricative remained unaltered. An "offline," more widely accessible signal processing method was developed to perform this manipulation. The local feedback perturbation resulted in changes to speakers' fricative production that were more variable, idiosyncratic, and restricted than the compensation seen in more global acoustic manipulations reported in the literature. Implications and interpretations of the results, as well as future directions for research based on the findings, are discussed.

  10. Note: Localization based on estimated source energy homogeneity

    NASA Astrophysics Data System (ADS)

    Turkaya, Semih; Toussaint, Renaud; Eriksen, Fredrik Kvalheim; Lengliné, Olivier; Daniel, Guillaume; Flekkøy, Eirik G.; Mâløy, Knut Jørgen

    2016-09-01

    Acoustic signal localization is a complex problem with a wide range of industrial and academic applications. Herein, we propose a localization method based on energy attenuation and inverted source amplitude comparison (termed estimated source energy homogeneity, or ESEH). This inversion is tested on both synthetic (numerical) data using a Lamb wave propagation model and experimental 2D plate data (recorded with 4 accelerometers sensitive up to 26 kHz). We compare the performance of this technique with classic source localization algorithms: arrival time localization, time reversal localization, and localization based on energy amplitude. Our technique is highly versatile and out-performs the conventional techniques in terms of error minimization and cost (both computational and financial).

  11. Directional Hearing and Sound Source Localization in Fishes.

    PubMed

    Sisneros, Joseph A; Rogers, Peter H

    2016-01-01

    Evidence suggests that the capacity for sound source localization is common to mammals, birds, reptiles, and amphibians, but surprisingly it is not known whether fish locate sound sources in the same manner (e.g., combining binaural and monaural cues) or what computational strategies they use for successful source localization. Directional hearing and sound source localization in fishes continues to be important topics in neuroethology and in the hearing sciences, but the empirical and theoretical work on these topics have been contradictory and obscure for decades. This chapter reviews the previous behavioral work on directional hearing and sound source localization in fishes including the most recent experiments on sound source localization by the plainfin midshipman fish (Porichthys notatus), which has proven to be an exceptional species for fish studies of sound localization. In addition, the theoretical models of directional hearing and sound source localization for fishes are reviewed including a new model that uses a time-averaged intensity approach for source localization that has wide applicability with regard to source type, acoustic environment, and time waveform.

  12. Microphones' directivity for the localization of sound sources

    NASA Astrophysics Data System (ADS)

    Rizzo, Piervincenzo; Tajari, Mahdi; Spada, Antonino

    2011-06-01

    In a recent paper [P. Rizzo, G. Bordoni, A. Marzani, and J. Vipperman, "Localization of Sound Sources by Means of Unidirectional Microphones, Meas. Sci. Tech., 20, 055202 (12pp), 2009] the proof-of-concept of an approach for the localization of acoustic sources was presented. The method relies on the use of unidirectional microphones and amplitude-based signals' features to extract information about the direction of the incoming sound. By intersecting the directions identified by a pair of microphones, the position of the emitting source can be identified. In this paper we expand the work presented previously by assessing the effectiveness of the approach for the localization of an acoustic source in an indoor setting. As the method relies on the accurate knowledge of the microphones directivity, analytical expression of the acoustic sensors polar pattern were derived by testing them in an anechoic chamber. Then an experiment was conducted in an empty laboratory by using an array of three unidirectional microphones. The ability to locate the position of a commercial speaker placed at different positions in the room is discussed. The objective of this study is to propose a valid alternative to the common application of spaced arrays and therefore to introduce a new generation of reduced size sound detectors and localizers. The ability of the proposed methodology to locate the position of a commercial speaker placed at different positions in the room was evaluated and compared to the accuracy provided by a conventional time delay estimate algorithm.

  13. Transversal Anderson localization of sound in acoustic waveguide arrays.

    PubMed

    Ye, Yangtao; Ke, Manzhu; Feng, Junheng; Wang, Mudi; Qiu, Chunyin; Liu, Zhengyou

    2015-04-22

    We present designs of one-dimensional acoustic waveguide arrays and investigate wave propagation inside. Under the condition of single identical waveguide mode and weak coupling, the acoustic wave motion in waveguide arrays can be modeled with a discrete mode-coupling theory. The coupling constants can be retrieved from simulations or experiments as the function of neighboring waveguide separations. Sound injected into periodic arrays gives rise to the discrete diffraction, exhibiting ballistic or extended transport in transversal direction. But sound injected into randomized waveguide arrays readily leads to Anderson localization transversally. The experimental results show good agreement with simulations and theoretical predictions.

  14. Aero-acoustics source separation with sparsity inducing priors in the frequency domain

    NASA Astrophysics Data System (ADS)

    Schwander, Olivier; Picheral, José; Gac, Nicolas; Mohammad-Djafari, Ali; Blacodon, Daniel

    2015-01-01

    The characterization of acoustic sources is of great interest in many industrial applications, in particular for the aeronautic or automotive industry for the development of new products. While localization of sources using observations from a wind tunnel is a well-known subject, the characterization and separation of the sources still needs to be explored. We present here a Bayesian approach for sources separation. Two prior modeling of the sources are considered: a sparsity inducing prior in the frequency domain and an autoregressive model in the time domain. The proposed methods are evaluated on synthetic data simulating noise sources emitting from an airfoil inside a wind tunnel.

  15. Scaling of membrane-type locally resonant acoustic metamaterial arrays.

    PubMed

    Naify, Christina J; Chang, Chia-Ming; McKnight, Geoffrey; Nutt, Steven R

    2012-10-01

    Metamaterials have emerged as promising solutions for manipulation of sound waves in a variety of applications. Locally resonant acoustic materials (LRAM) decrease sound transmission by 500% over acoustic mass law predictions at peak transmission loss (TL) frequencies with minimal added mass, making them appealing for weight-critical applications such as aerospace structures. In this study, potential issues associated with scale-up of the structure are addressed. TL of single-celled and multi-celled LRAM was measured using an impedance tube setup with systematic variation in geometric parameters to understand the effects of each parameter on acoustic response. Finite element analysis was performed to predict TL as a function of frequency for structures with varying complexity, including stacked structures and multi-celled arrays. Dynamic response of the array structures under discrete frequency excitation was investigated using laser vibrometry to verify negative dynamic mass behavior.

  16. Reconstruction of moving acoustic sources in heterogeneous elastic solid

    NASA Astrophysics Data System (ADS)

    Lloyd, Stephen F.; Jeong, Chanseok

    2016-04-01

    A novel computational framework for reconstructing spatial and temporal profiles of moving acoustic sources from wave responses measured at sparsely distributes sensors is introduced in this paper. This method can be applied to a broad range of acoustic-source inversion (ASI) problems for heterogeneous, complex-shaped coupled dynamic systems. The finite element method (FEM) is used to obtain wave response solutions due guessed moving sources. An adjoint-gradient based optimization technique iteratively improves the guesses so that the guessed moving sources converge on the actual moving sources. To reconstruct acoustic source profiles without a-priori knowledge of sources, we will employ high-resolution discretization of source functions in space and time. Because of such dense discretization, the order of magnitude of number of inversion parameters could range from millions to billions. Numerical experiments prove the robustness of this method by reconstructing spatial and temporal profiles of multiple dynamic moving body forces in a one-dimensional heterogeneous solid bar. The sources create stress waves propagating through the bar. The guessed source functions are spatially discretized by using linear shape functions with an element size of 1m at discrete times with a time step of 0.001s. Thus, the total number of control parameters in this example is 100,000 (i.e., 100 (in space) by 1000 (in time)). The convergence toward the target in the numerical examples is excellent, reconstructing the spatial and temporal footprints of the sources.

  17. Acoustic source analysis of a rectangular supersonic jet

    NASA Astrophysics Data System (ADS)

    Kreitzman, Jordan; Nichols, Joseph W.

    2014-11-01

    We apply Goldstein's generalized acoustic analogy to identify acoustic sources in two high-fidelity unstructured large eddy simulation databases of a Mach 1.4 rectangular jet with and without chevrons. Two-point, two-time correlations of the acoustic source terms are evaluated at different positions in the three dimensional flow that develops downstream of the complex nozzle. Two-point statistics are compared to single-point statistics to test the quasi-normality hypothesis and other noise source models for a non-axisymmetric jet. In particular, we assess the predictive capability of a Gaussian model, a fixed-frame model and a modified-distance model. The nozzle geometries used for the simulations exactly match an experimental configuration tested at the NASA Glenn Research Center, allowing for validation in terms of both farfield noise as well as turbulence statistics. We gratefully acknowledge computational resources provided by the Argonne Leadership Computing Facility.

  18. A sparse equivalent source method for near-field acoustic holography.

    PubMed

    Fernandez-Grande, Efren; Xenaki, Angeliki; Gerstoft, Peter

    2017-01-01

    This study examines a near-field acoustic holography method consisting of a sparse formulation of the equivalent source method, based on the compressive sensing (CS) framework. The method, denoted Compressive-Equivalent Source Method (C-ESM), encourages spatially sparse solutions (based on the superposition of few waves) that are accurate when the acoustic sources are spatially localized. The importance of obtaining a non-redundant representation, i.e., a sensing matrix with low column coherence, and the inherent ill-conditioning of near-field reconstruction problems is addressed. Numerical and experimental results on a classical guitar and on a highly reactive dipole-like source are presented. C-ESM is valid beyond the conventional sampling limits, making wide-band reconstruction possible. Spatially extended sources can also be addressed with C-ESM, although in this case the obtained solution does not recover the spatial extent of the source.

  19. Determining low-frequency source location from acoustic phase measurements

    NASA Astrophysics Data System (ADS)

    Poole, Travis L.; Frisk, George V.

    2002-11-01

    For low-frequency cw sound sources in shallow water, the time rate-of-change of the measured acoustic phase is well approximated by the time rate-of-change of the source-receiver separation distance. An algorithm for determining a locus of possible source locations based on this idea has been developed. The locus has the general form of a hyperbola, which can be used to provide a bearing estimation at long ranges, and an estimate of source location at short ranges. The algorithm uses only acoustic phase data and receiver geometry as input, and can be used even when the source frequency is slightly unstable and/or imprecisely known. The algorithm has been applied to data from low-frequency experiments (20-300 Hz), both for stable and unstable source frequencies, and shown to perform well. [Work supported by ONR and WHOI Academic Programs Office.

  20. Localization in an Acoustic Cavitation Cloud

    NASA Astrophysics Data System (ADS)

    Miao, Bo-Ya; An, Yu

    2017-03-01

    Using a nonlinear sound wave equation for a bubbly liquid in conjunction with an equation for bubble pulsation, we predict and experimentally demonstrate the appearance of a gap in the frequency spectrum of a sound wave propagating in a cavitation cloud comprising bubbles. For bubbles with an ambient radius of 100 {\\mu}m, the calculations revealed that this gap corresponds to the phenomenon of sound wave localization. For bubbles with an ambient radius of 120 {\\mu}m, this spectral gap relates to a forbidden band of the sound wave. In the experiment, we observed the predicted gap in the frequency spectrum in soda water; however, in tap water, no spectral gap was present because the bubbles were much smaller than 100 {\\mu}m.

  1. A refined wideband acoustical holography based on equivalent source method

    PubMed Central

    Ping, Guoli; Chu, Zhigang; Xu, Zhongming; Shen, Linbang

    2017-01-01

    This paper is concerned with acoustical engineering and mathematical physics problem for the near-field acoustical holography based on equivalent source method (ESM-based NAH). An important mathematical physics problem in ESM-based NAH is to solve the equivalent source strength, which has multiple solving algorithms, such as Tikhonov regularization ESM (TRESM), iterative weighted ESM (IWESM) and steepest descent iteration ESM (SDIESM). To explore a new solving algorithm which can achieve better reconstruction performance in wide frequency band, a refined wideband acoustical holography (RWAH) is proposed. RWAH adopts IWESM below a transition frequency and switches to SDIESM above that transition frequency, and the principal components of input data in RWAH have been truncated. Further, the superiority of RWAH is verified by the comparison of comprehensive performance of TRESM, IWESM, SDIESM and RWAH. Finally, the experiments are conducted, confirming that RWAH can achieve better reconstruction performance in wide frequency band. PMID:28266531

  2. A refined wideband acoustical holography based on equivalent source method

    NASA Astrophysics Data System (ADS)

    Ping, Guoli; Chu, Zhigang; Xu, Zhongming; Shen, Linbang

    2017-03-01

    This paper is concerned with acoustical engineering and mathematical physics problem for the near-field acoustical holography based on equivalent source method (ESM-based NAH). An important mathematical physics problem in ESM-based NAH is to solve the equivalent source strength, which has multiple solving algorithms, such as Tikhonov regularization ESM (TRESM), iterative weighted ESM (IWESM) and steepest descent iteration ESM (SDIESM). To explore a new solving algorithm which can achieve better reconstruction performance in wide frequency band, a refined wideband acoustical holography (RWAH) is proposed. RWAH adopts IWESM below a transition frequency and switches to SDIESM above that transition frequency, and the principal components of input data in RWAH have been truncated. Further, the superiority of RWAH is verified by the comparison of comprehensive performance of TRESM, IWESM, SDIESM and RWAH. Finally, the experiments are conducted, confirming that RWAH can achieve better reconstruction performance in wide frequency band.

  3. Solder joint failure localization of welded joint based on acoustic emission beamforming.

    PubMed

    Liu, Xiandong; Xiao, Denghong; Shan, Yingchun; Pan, Qiang; He, Tian; Gao, Yong

    2017-02-01

    A localization approach of welded joint damage is proposed based on acoustic emission (AE) beamforming. In this method, a uniform line array is introduced to detect the AE signal of welded joints in specified area. In order to investigate the influence of fillet and crimping commonly existing in a welded plate structure during the AE wave propagation process, the finite element method (FEM) is applied to simulate the behavior of AE wave in the specimen. The simulation localization results indicate that the proposed localization approach can effectively localize AE sources although there exist the fillet and crimping, and it is also validated by the pencil-lead-broken test on rectangular steel tube with welded joints. Finally, the proposed method is adopted to localize the failure of solder joint in operation vibration condition. The proposed method is successful to localize the compact AE source caused by the cracked joint based on wavelet packet transform.

  4. Acoustic-articulatory mapping in vowels by locally weighted regression.

    PubMed

    McGowan, Richard S; Berger, Michael A

    2009-10-01

    A method for mapping between simultaneously measured articulatory and acoustic data is proposed. The method uses principal components analysis on the articulatory and acoustic variables, and mapping between the domains by locally weighted linear regression, or loess [Cleveland, W. S. (1979). J. Am. Stat. Assoc. 74, 829-836]. The latter method permits local variation in the slopes of the linear regression, assuming that the function being approximated is smooth. The methodology is applied to vowels of four speakers in the Wisconsin X-ray Microbeam Speech Production Database, with formant analysis. Results are examined in terms of (1) examples of forward (articulation-to-acoustics) mappings and inverse mappings, (2) distributions of local slopes and constants, (3) examples of correlations among slopes and constants, (4) root-mean-square error, and (5) sensitivity of formant frequencies to articulatory change. It is shown that the results are qualitatively correct and that loess performs better than global regression. The forward mappings show different root-mean-square error properties than the inverse mappings indicating that this method is better suited for the forward mappings than the inverse mappings, at least for the data chosen for the current study. Some preliminary results on sensitivity of the first two formant frequencies to the two most important articulatory principal components are presented.

  5. Acoustic metamaterials with coupled local resonators for broadband vibration suppression

    NASA Astrophysics Data System (ADS)

    Hu, Guobiao; Tang, Lihua; Das, Raj; Gao, Shiqiao; Liu, Haipeng

    2017-02-01

    This paper investigates a modified acoustic metamaterial system with local resonators coupled through linear springs. The proposed acoustic metamaterial system can provide three band gaps for broadband vibration suppression. First, the band structure of the modified acoustic metamaterial is calculated by using Bloch's theorem under the assumption of infinite lattice. The existence of three band gaps is confirmed in the band structure. Effects of mass and spring parameters on the band gap behaviour of the modified metamaterial are investigated through a dimensionless parametric study. Based on the parametric study, optimal dimensionless parameters are proposed to achieve maximal total band gap width in the low frequency range. Subsequently, a more realistic finite lattice model is established. The transmittances of the conventional and modified metamaterial systems are compared. The three band gaps predicted from transmittances and broadband vibration suppression behaviour are consistent with the predictions from infinite lattice model using Bloch's theorem. Finally, the time-domain responses are simulated and the superiority of the modified acoustic metamaterial over the conventional one is demonstrated.

  6. Bayesian multiple-source localization in an uncertain ocean environment.

    PubMed

    Dosso, Stan E; Wilmut, Michael J

    2011-06-01

    This paper considers simultaneous localization of multiple acoustic sources when properties of the ocean environment (water column and seabed) are poorly known. A Bayesian formulation is developed in which the environmental parameters, noise statistics, and locations and complex strengths (amplitudes and phases) of multiple sources are considered to be unknown random variables constrained by acoustic data and prior information. Two approaches are considered for estimating source parameters. Focalization maximizes the posterior probability density (PPD) over all parameters using adaptive hybrid optimization. Marginalization integrates the PPD using efficient Markov-chain Monte Carlo methods to produce joint marginal probability distributions for source ranges and depths, from which source locations are obtained. This approach also provides quantitative uncertainty analysis for all parameters, which can aid in understanding of the inverse problem and may be of practical interest (e.g., source-strength probability distributions). In both approaches, closed-form maximum-likelihood expressions for source strengths and noise variance at each frequency allow these parameters to be sampled implicitly, substantially reducing the dimensionality and difficulty of the inversion. Examples are presented of both approaches applied to single- and multi-frequency localization of multiple sources in an uncertain shallow-water environment, and a Monte Carlo performance evaluation study is carried out.

  7. Impact of source depth on coherent underwater acoustic communications.

    PubMed

    Song, Aijun; Badiey, Mohsen; Song, H C; Hodgkiss, W S

    2010-08-01

    A recent paper [Song et al., J. Acoust. Soc. Am. 123, 856-865 (2008)] investigated ocean variability impact on coherent underwater acoustic communications (8-16 kHz) for a single near-seafloor transmitter in shallow water during an extended period (27 h). This letter extends that investigation to various source depths and receiver subarrays. Specifically, the middle water column source, which is either in or out of the thermocline, experiences performance variability of 6-7 dB in terms of output signal-to-noise ratio. Further, the source below the thermocline consistently outperforms the source above the thermocline when the receiver subarray is located below the thermocline.

  8. Highly Localized Acoustic Streaming and Size-Selective Submicrometer Particle Concentration Using High Frequency Microscale Focused Acoustic Fields.

    PubMed

    Collins, David J; Ma, Zhichao; Ai, Ye

    2016-05-17

    Concentration and separation of particles and biological specimens are fundamental functions of micro/nanofluidic systems. Acoustic streaming is an effective and biocompatible way to create rapid microscale fluid motion and induce particle capture, though the >100 MHz frequencies required to directly generate acoustic body forces on the microscale have traditionally been difficult to generate and localize in a way that is amenable to efficient generation of streaming. Moreover, acoustic, hydrodynamic, and electrical forces as typically applied have difficulty manipulating specimens in the submicrometer regime. In this work, we introduce highly focused traveling surface acoustic waves (SAW) at high frequencies between 193 and 636 MHz for efficient and highly localized production of acoustic streaming vortices on microfluidic length scales. Concentration occurs via a novel mechanism, whereby the combined acoustic radiation and streaming field results in size-selective aggregation in fluid streamlines in the vicinity of a high-amplitude acoustic beam, as opposed to previous acoustic radiation induced particle concentration where objects typically migrate toward minimum pressure locations. Though the acoustic streaming is induced by a traveling wave, we are able to manipulate particles an order of magnitude smaller than possible using the traveling wave force alone. We experimentally and theoretically examine the range of particle sizes that can be captured in fluid streamlines using this technique, with rapid particle concentration demonstrated down to 300 nm diameters. We also demonstrate that locations of trapping and concentration are size-dependent, which is attributed to the combined effects of the acoustic streaming and acoustic forces.

  9. Mapping thunder sources by inverting acoustic and electromagnetic observations

    NASA Astrophysics Data System (ADS)

    Anderson, J. F.; Johnson, J. B.; Arechiga, R. O.; Thomas, R. J.

    2014-12-01

    We present a new method of locating current flow in lightning strikes by inversion of thunder recordings constrained by Lightning Mapping Array observations. First, radio frequency (RF) pulses are connected to reconstruct conductive channels created by leaders. Then, acoustic signals that would be produced by current flow through each channel are forward modeled. The recorded thunder is considered to consist of a weighted superposition of these acoustic signals. We calculate the posterior distribution of acoustic source energy for each channel with a Markov Chain Monte Carlo inversion that fits power envelopes of modeled and recorded thunder; these results show which parts of the flash carry current and produce thunder. We examine the effects of RF pulse location imprecision and atmospheric winds on quality of results and apply this method to several lightning flashes over the Magdalena Mountains in New Mexico, USA. This method will enable more detailed study of lightning phenomena by allowing researchers to map current flow in addition to leader propagation.

  10. Localization with a mobile beacon in underwater acoustic sensor networks.

    PubMed

    Lee, Sangho; Kim, Kiseon

    2012-01-01

    Localization is one of the most important issues associated with underwater acoustic sensor networks, especially when sensor nodes are randomly deployed. Given that it is difficult to deploy beacon nodes at predetermined locations, localization schemes with a mobile beacon on the sea surface or along the planned path are inherently convenient, accurate, and energy-efficient. In this paper, we propose a new range-free Localization with a Mobile Beacon (LoMoB). The mobile beacon periodically broadcasts a beacon message containing its location. Sensor nodes are individually localized by passively receiving the beacon messages without inter-node communications. For location estimation, a set of potential locations are obtained as candidates for a node's location and then the node's location is determined through the weighted mean of all the potential locations with the weights computed based on residuals.

  11. Studies of acoustic emission from point and extended sources

    NASA Technical Reports Server (NTRS)

    Sachse, W.; Kim, K. Y.; Chen, C. P.

    1986-01-01

    The use of simulated and controlled acoustic emission signals forms the basis of a powerful tool for the detailed study of various deformation and wave interaction processes in materials. The results of experiments and signal analyses of acoustic emission resulting from point sources such as various types of indentation-produced cracks in brittle materials and the growth of fatigue cracks in 7075-T6 aluminum panels are discussed. Recent work dealing with the modeling and subsequent signal processing of an extended source of emission in a material is reviewed. Results of the forward problem and the inverse problem are presented with the example of a source distributed through the interior of a specimen.

  12. Determining the sources of sounds: Psychological acoustics

    NASA Astrophysics Data System (ADS)

    Yost, William A.

    2002-05-01

    Perhaps the most important task performed by an organism's sensory system is determining objects in the world surrounding the organism. This is a challenging task for the auditory system, especially when many objects exist at the same time. The peripheral auditory system provides the neural code for the spectral-temporal structure of the complex sound impinging on the ears. It does not code for the sources of the sound. Neural centers beyond the periphery most analyze this spectral-temporal code in order to form perceptual images that make up the auditory scene. Recent psychoacoustical and perceptual research on sound source determination and segregation will be described. This research is just beginning to suggest ways in which the auditory scene is determined. [Work sponsored by NIDCD.

  13. Initial Arctic Acoustic Source Design Study

    DTIC Science & Technology

    1995-01-01

    Novgorod, Russia, 1995. This work was supported in part by Subcontract No. 31-960019-94. The United States Government has a royalty- free license...source for cable emitting complex 5. Weght-size and energy characteristics of emitting complex 6. Installation and elevation of emitting complex 7...transition of the shelf to the region of the continental boderland slope. This will permit, on the one hand, to avoid additional loss caused by - 5

  14. Long range source localization from single hydrophone spectrograms.

    PubMed

    Kuperman, W A; D'Spain, G L; Heaney, K D

    2001-05-01

    A source near the deep sound channel axis excites mode groups (or paths) that involve both deep sound channel and boundary interacting propagation. Dispersion from a broadband source as measured on a single hydrophone can be used to estimate source range. Furthermore, modal group speeds have a functional transition when passing through purely refractive to boundary reflecting phase speed regions which, under certain conditions, provides additional arrival structure to aid in source localization. This additional arrival structure is in the form of a focal region in a spectrogram. Indeed, different data sets from the Acoustic Thermometry of the Ocean Climate (ATOC) Program [ATOC Consortium, Science 281, 1327-1332 (1998)] show that localization can be accomplished using this focal region and/or the overall dispersion properties as originally suggested fifty years ago [M. Ewing and J. L. Worzel, Geo. Soc. Am., Memoir 27 (1948)].

  15. Invariant currents in lossy acoustic waveguides with complete local symmetry

    NASA Astrophysics Data System (ADS)

    Kalozoumis, P. A.; Richoux, O.; Diakonos, F. K.; Theocharis, G.; Schmelcher, P.

    2015-07-01

    We implement the concept of complete local symmetry in lossy acoustic waveguides. Despite the presence of losses, the existence of a spatially invariant current is shown theoretically and observed experimentally. We demonstrate how this invariant current leads to the generalization of the Bloch and parity theorems for lossy systems defining a mapping of the pressure field between symmetry-related spatial domains. Using experimental data, we verify this mapping with remarkable accuracy. For the performed experiment, we employ a construction technique based on local symmetries that allows the design of setups with prescribed perfect transmission resonances in the lossless case. Our results reveal the fundamental role of symmetries in restricted spatial domains, and they clearly indicate that completely locally symmetric devices constitute a promising class of setups with regard to the manipulation of wave propagation.

  16. Acoustic Emission Beamforming for Detection and Localization of Damage

    NASA Astrophysics Data System (ADS)

    Rivey, Joshua Callen

    The aerospace industry is a constantly evolving field with corporate manufacturers continually utilizing innovative processes and materials. These materials include advanced metallics and composite systems. The exploration and implementation of new materials and structures has prompted the development of numerous structural health monitoring and nondestructive evaluation techniques for quality assurance purposes and pre- and in-service damage detection. Exploitation of acoustic emission sensors coupled with a beamforming technique provides the potential for creating an effective non-contact and non-invasive monitoring capability for assessing structural integrity. This investigation used an acoustic emission detection device that employs helical arrays of MEMS-based microphones around a high-definition optical camera to provide real-time non-contact monitoring of inspection specimens during testing. The study assessed the feasibility of the sound camera for use in structural health monitoring of composite specimens during tensile testing for detecting onset of damage in addition to nondestructive evaluation of aluminum inspection plates for visualizing stress wave propagation in structures. During composite material monitoring, the sound camera was able to accurately identify the onset and location of damage resulting from large amplitude acoustic feedback mechanisms such as fiber breakage. Damage resulting from smaller acoustic feedback events such as matrix failure was detected but not localized to the degree of accuracy of larger feedback events. Findings suggest that beamforming technology can provide effective non-contact and non-invasive inspection of composite materials, characterizing the onset and the location of damage in an efficient manner. With regards to the nondestructive evaluation of metallic plates, this remote sensing system allows us to record wave propagation events in situ via a single-shot measurement. This is a significant improvement over

  17. S-Band Shallow Bulk Acoustic Wave (SBAW) microwave source

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Techniques necessary to fabricate a high performance S-band microwave single source using state-of-the-art shallow bulk acoustic wave (SBAW) were explored. The bulk wave structures of the AlN/Al 2O3 were investigated for both the R plane and basal plane of sapphire. A 1.072 GHz SBAW delay line and oscillators were developed. A method of selecting and setting oscillator output frequency by selecting substrate orientation angle was also established.

  18. Ray-theoretic localization of an impulsive source in a stratified ocean using two hydrophones

    NASA Astrophysics Data System (ADS)

    Skarsoulis, E. K.; Kalogerakis, M. A.

    2005-11-01

    A method is presented for passive localization of impulsive acoustic sources in a stratified ocean by measuring relative times of direct and surface-reflected arrivals at two hydrophones. The proposed method is based on ray theory and takes into account the effects of refraction on the geometry of acoustic paths (ray bending) and travel times, generalizing previous approaches based on the homogeneous-ocean assumption (straight-line localization). If the hydrophone depths are known, then the source depth and distance from each hydrophone can be estimated from the three differential arrival times. If in addition the hydrophone separation is known, the bearing of the source can be estimated as well. Apart from the effects on ray geometry and travel times, stratification affects localization by introducing shadow zones and caustics. For source locations in the neighborhood of caustics, the localization problem accepts two solutions, one of which is the true source location and the other one which is an artifact (ghost solution). This ambiguity can be resolved in the case of tracking moving sources since as the source moves away from the caustic only the track corresponding to the true source position will be continued. The present method has been developed primarily for monitoring the dive behavior of sperm whales producing acoustic clicks, yet it is general and can be applied for the localization and tracking of any kind of impulsive acoustic source in the ocean.

  19. Acoustic emission localization based on FBG sensing network and SVR algorithm

    NASA Astrophysics Data System (ADS)

    Sai, Yaozhang; Zhao, Xiuxia; Hou, Dianli; Jiang, Mingshun

    2016-11-01

    In practical application, carbon fiber reinforced plastics (CFRP) structures are easy to appear all sorts of invisible damages. So the damages should be timely located and detected for the safety of CFPR structures. In this paper, an acoustic emission (AE) localization system based on fiber Bragg grating (FBG) sensing network and support vector regression (SVR) is proposed for damage localization. AE signals, which are caused by damage, are acquired by high speed FBG interrogation. According to the Shannon wavelet transform, time differences between AE signals are extracted for localization algorithm based on SVR. According to the SVR model, the coordinate of AE source can be accurately predicted without wave velocity. The FBG system and localization algorithm are verified on a 500 mm×500 mm×2 mm CFRP plate. The experimental results show that the average error of localization system is 2.8 mm and the training time is 0.07 s.

  20. Acoustic emission localization based on FBG sensing network and SVR algorithm

    NASA Astrophysics Data System (ADS)

    Sai, Yaozhang; Zhao, Xiuxia; Hou, Dianli; Jiang, Mingshun

    2017-03-01

    In practical application, carbon fiber reinforced plastics (CFRP) structures are easy to appear all sorts of invisible damages. So the damages should be timely located and detected for the safety of CFPR structures. In this paper, an acoustic emission (AE) localization system based on fiber Bragg grating (FBG) sensing network and support vector regression (SVR) is proposed for damage localization. AE signals, which are caused by damage, are acquired by high speed FBG interrogation. According to the Shannon wavelet transform, time differences between AE signals are extracted for localization algorithm based on SVR. According to the SVR model, the coordinate of AE source can be accurately predicted without wave velocity. The FBG system and localization algorithm are verified on a 500 mm×500 mm×2 mm CFRP plate. The experimental results show that the average error of localization system is 2.8 mm and the training time is 0.07 s.

  1. Prediction of the Acoustic Field Associated with Instability Wave Source Model for a Compressible Jet

    NASA Technical Reports Server (NTRS)

    Golubev, Vladimir; Mankbadi, Reda R.; Dahl, Milo D.; Kiraly, L. James (Technical Monitor)

    2002-01-01

    This paper provides preliminary results of the study of the acoustic radiation from the source model representing spatially-growing instability waves in a round jet at high speeds. The source model is briefly discussed first followed by the analysis of the produced acoustic directivity pattern. Two integral surface techniques are discussed and compared for prediction of the jet acoustic radiation field.

  2. Influence of sound source width on human sound localization.

    PubMed

    Greene, Nathaniel T; Paige, Gary D

    2012-01-01

    Free-field sound localization experiments generally assume that a loudspeaker can be approximated by a point-source; however, a large loudspeaker may extend beyond the width that two sources can be discriminated. Humans can accurately discriminate sound source locations within a few degrees, thus one might expect localization precision to decrease as a function of sound source diameter, much as precision is lower for localizing the center of a wide, blurry light source. In order to test the degree to which humans differentially localize small and large sound sources, auditory targets were presented using a single 25.4 cm by 10.2 cm elliptical loudspeaker with the primary axis oriented both horizontally and vertically in different sessions. Subjects were seated with their heads fixed by a bite bar in a darkened, echo-attenuating room facing a cylindrical, acoustically transparent screen at a distance of 2 meters. Auditory targets consisted of repeating bursts (5 Hz) of low frequency band-pass noise (0.2 - 1 kHz, 75 dB SPL). Subjects were instructed to quickly and accurately guide a laser pointer mounted on a cylindrical joystick towards targets, presented randomly within a field ± 40° in azimuth by ± 10° in elevation, with oversampled points located every ten degrees along the primary meridians. Localization accuracy and precision (mean and standard deviation of localization error at oversampled locations) were not significantly different between speaker orientations, and were comparable to baseline measurements recorded using a 7.6 cm circular speaker. We conclude that low frequency sound localization performance is not dependent upon the size of the sound source as predicted theoretically, and is well approximated by a point source.

  3. System and method for sonic wave measurements using an acoustic beam source

    DOEpatents

    Vu, Cung Khac; Sinha, Dipen N.; Pantea, Cristian

    2015-08-11

    A method and system for investigating structure near a borehole are described herein. The method includes generating an acoustic beam by an acoustic source; directing at one or more azimuthal angles the acoustic beam towards a selected location in a vicinity of a borehole; receiving at one or more receivers an acoustic signal, the acoustic signal originating from a reflection or a refraction of the acoustic wave by a material at the selected location; and analyzing the received acoustic signal to characterize features of the material around the borehole.

  4. Localization from near-source quasi-static electromagnetic fields

    SciTech Connect

    Mosher, John Compton

    1993-09-01

    A wide range of research has been published on the problem of estimating the parameters of electromagnetic and acoustical sources from measurements of signals measured at an array of sensors. In the quasi-static electromagnetic cases examined here, the signal variation from a point source is relatively slow with respect to the signal propagation and the spacing of the array of sensors. As such, the location of the point sources can only be determined from the spatial diversity of the received signal across the array. The inverse source localization problem is complicated by unknown model order and strong local minima. The nonlinear optimization problem is posed for solving for the parameters of the quasi-static source model. The transient nature of the sources can be exploited to allow subspace approaches to separate out the signal portion of the spatial correlation matrix. Decomposition techniques are examined for improved processing, and an adaptation of MUtiple SIgnal Characterization (MUSIC) is presented for solving the source localization problem. Recent results on calculating the Cramer-Rao error lower bounds are extended to the multidimensional problem here. This thesis focuses on the problem of source localization in magnetoencephalography (MEG), with a secondary application to thunderstorm source localization. Comparisons are also made between MEG and its electrical equivalent, electroencephalography (EEG). The error lower bounds are examined in detail for several MEG and EEG configurations, as well as localizing thunderstorm cells over Cape Canaveral and Kennedy Space Center. Time-eigenspectrum is introduced as a parsing technique for improving the performance of the optimization problem.

  5. Robotic vehicle uses acoustic array for detection and localization in urban environments

    NASA Astrophysics Data System (ADS)

    Young, Stuart H.; Scanlon, Michael V.

    2001-09-01

    Sophisticated robotic platforms with diverse sensor suites are quickly replacing the eyes and ears of soldiers on the complex battlefield. The Army Research Laboratory (ARL) in Adelphi, Maryland has developed a robot-based acoustic detection system that will detect an impulsive noise event, such as a sniper's weapon firing or door slam, and activate a pan-tilt to orient a visible and infrared camera toward the detected sound. Once the cameras are cued to the target, onboard image processing can then track the target and/or transmit the imagery to a remote operator for navigation, situational awareness, and target detection. Such a vehicle can provide reconnaissance, surveillance, and target acquisition for soldiers, law enforcement, and rescue personnel, and remove these people from hazardous environments. ARL's primary robotic platforms contain 16-in. diameter, eight-element acoustic arrays. Additionally, a 9- in. array is being developed in support of DARPA's Tactical Mobile Robot program. The robots have been tested in both urban and open terrain. The current acoustic processing algorithm has been optimized to detect the muzzle blast from a sniper's weapon, and reject many interfering noise sources such as wind gusts, generators, and self-noise. However, other detection algorithms for speech and vehicle detection/tracking are being developed for implementation on this and smaller robotic platforms. The collaboration between two robots, both with known positions and orientations, can provide useful triangulation information for more precise localization of the acoustic events. These robots can be mobile sensor nodes in a larger, more expansive, sensor network that may include stationary ground sensors, UAVs, and other command and control assets. This report will document the performance of the robot's acoustic localization, describe the algorithm, and outline future work.

  6. Acoustic emission localization in plates with dispersion and reverberations using sparse PZT sensors in passive mode

    NASA Astrophysics Data System (ADS)

    Perelli, Alessandro; De Marchi, Luca; Marzani, Alessandro; Speciale, Nicolò

    2012-02-01

    A strategy for the localization of acoustic emissions (AE) in plates with dispersion and reverberation is proposed. The procedure exploits signals received in passive mode by sparse conventional piezoelectric transducers and a three-step processing framework. The first step consists in a signal dispersion compensation procedure, which is achieved by means of the warped frequency transform. The second step concerns the estimation of the differences in arrival time (TDOA) of the acoustic emission at the sensors. Complexities related to reflections and plate resonances are overcome via a wavelet decomposition of cross-correlating signals where the mother function is designed by a synthetic warped cross-signal. The magnitude of the wavelet coefficients in the warped distance-frequency domain, in fact, precisely reveals the TDOA of an acoustic emission at two sensors. Finally, in the last step the TDOA data are exploited to locate the acoustic emission source through hyperbolic positioning. The proposed procedure is tested with a passive network of three/four piezo-sensors located symmetrically and asymmetrically with respect to the plate edges. The experimentally estimated AE locations are close to those theoretically predicted by the Cramèr-Rao lower bound.

  7. Accurate Simulation of Acoustic Emission Sources in Composite Plates

    NASA Technical Reports Server (NTRS)

    Prosser, W. H.; Gorman, M. R.

    1994-01-01

    Acoustic emission (AE) signals propagate as the extensional and flexural plate modes in thin composite plates and plate-like geometries such as shells, pipes, and tubes. The relative amplitude of the two modes depends on the directionality of the source motion. For source motions with large out-of-plane components such as delaminations or particle impact, the flexural or bending plate mode dominates the AE signal with only a small extensional mode detected. A signal from such a source is well simulated with the standard pencil lead break (Hsu-Neilsen source) on the surface of the plate. For other sources such as matrix cracking or fiber breakage in which the source motion is primarily in-plane, the resulting AE signal has a large extensional mode component with little or no flexural mode observed. Signals from these type sources can also be simulated with pencil lead breaks. However, the lead must be fractured on the edge of the plate to generate an in-plane source motion rather than on the surface of the plate. In many applications such as testing of pressure vessels and piping or aircraft structures, a free edge is either not available or not in a desired location for simulation of in-plane type sources. In this research, a method was developed which allows the simulation of AE signals with a predominant extensional mode component in composite plates requiring access to only the surface of the plate.

  8. An autonomous surveillance system for blind sources localization and separation

    NASA Astrophysics Data System (ADS)

    Wu, Sean; Kulkarni, Raghavendra; Duraiswamy, Srikanth

    2013-05-01

    This paper aims at developing a new technology that will enable one to conduct an autonomous and silent surveillance to monitor sound sources stationary or moving in 3D space and a blind separation of target acoustic signals. The underlying principle of this technology is a hybrid approach that uses: 1) passive sonic detection and ranging method that consists of iterative triangulation and redundant checking to locate the Cartesian coordinates of arbitrary sound sources in 3D space, 2) advanced signal processing to sanitizing the measured data and enhance signal to noise ratio, and 3) short-time source localization and separation to extract the target acoustic signals from the directly measured mixed ones. A prototype based on this technology has been developed and its hardware includes six B and K 1/4-in condenser microphones, Type 4935, two 4-channel data acquisition units, Type NI-9234, with a maximum sampling rate of 51.2kS/s per channel, one NI-cDAQ 9174 chassis, a thermometer to measure the air temperature, a camera to view the relative positions of located sources, and a laptop to control data acquisition and post processing. Test results for locating arbitrary sound sources emitting continuous, random, impulsive, and transient signals, and blind separation of signals in various non-ideal environments is presented. This system is invisible to any anti-surveillance device since it uses the acoustic signal emitted by a target source. It can be mounted on a robot or an unmanned vehicle to perform various covert operations, including intelligence gathering in an open or a confined field, or to carry out the rescue mission to search people trapped inside ruins or buried under wreckages.

  9. Boundary element model for simulating sound propagation and source localization within the lungs.

    PubMed

    Ozer, M B; Acikgoz, S; Royston, T J; Mansy, H A; Sandler, R H

    2007-07-01

    An acoustic boundary element (BE) model is used to simulate sound propagation in the lung parenchyma. It is computationally validated and then compared with experimental studies on lung phantom models. Parametric studies quantify the effect of different model parameters on the resulting acoustic field within the lung phantoms. The BE model is then coupled with a source localization algorithm to predict the position of an acoustic source within the phantom. Experimental studies validate the BE-based source localization algorithm and show that the same algorithm does not perform as well if the BE simulation is replaced with a free field assumption that neglects reflections and standing wave patterns created within the finite-size lung phantom. The BE model and source localization procedure are then applied to actual lung geometry taken from the National Library of Medicine's Visible Human Project. These numerical studies are in agreement with the studies on simpler geometry in that use of a BE model in place of the free field assumption alters the predicted acoustic field and source localization results. This work is relevant to the development of advanced auscultatory techniques that utilize multiple noninvasive sensors to construct acoustic images of sound generation and transmission to identify pathologies.

  10. Target detection and localization in shallow water: an experimental demonstration of the acoustic barrier problem at the laboratory scale.

    PubMed

    Marandet, Christian; Roux, Philippe; Nicolas, Barbara; Mars, Jérôme

    2011-01-01

    This study demonstrates experimentally at the laboratory scale the detection and localization of a wavelength-sized target in a shallow ultrasonic waveguide between two source-receiver arrays at 3 MHz. In the framework of the acoustic barrier problem, at the 1/1000 scale, the waveguide represents a 1.1-km-long, 52-m-deep ocean acoustic channel in the kilohertz frequency range. The two coplanar arrays record in the time-domain the transfer matrix of the waveguide between each pair of source-receiver transducers. Invoking the reciprocity principle, a time-domain double-beamforming algorithm is simultaneously performed on the source and receiver arrays. This array processing projects the multireverberated acoustic echoes into an equivalent set of eigenrays, which are defined by their launch and arrival angles. Comparison is made between the intensity of each eigenray without and with a target for detection in the waveguide. Localization is performed through tomography inversion of the acoustic impedance of the target, using all of the eigenrays extracted from double beamforming. The use of the diffraction-based sensitivity kernel for each eigenray provides both the localization and the signature of the target. Experimental results are shown in the presence of surface waves, and methodological issues are discussed for detection and localization.

  11. An Amplitude-Based Estimation Method for International Space Station (ISS) Leak Detection and Localization Using Acoustic Sensor Networks

    NASA Technical Reports Server (NTRS)

    Tian, Jialin; Madaras, Eric I.

    2009-01-01

    The development of a robust and efficient leak detection and localization system within a space station environment presents a unique challenge. A plausible approach includes the implementation of an acoustic sensor network system that can successfully detect the presence of a leak and determine the location of the leak source. Traditional acoustic detection and localization schemes rely on the phase and amplitude information collected by the sensor array system. Furthermore, the acoustic source signals are assumed to be airborne and far-field. Likewise, there are similar applications in sonar. In solids, there are specialized methods for locating events that are used in geology and in acoustic emission testing that involve sensor arrays and depend on a discernable phase front to the received signal. These methods are ineffective if applied to a sensor detection system within the space station environment. In the case of acoustic signal location, there are significant baffling and structural impediments to the sound path and the source could be in the near-field of a sensor in this particular setting.

  12. Performance evaluation of an acoustic indoor localization system based on a fingerprinting technique

    NASA Astrophysics Data System (ADS)

    Aloui, Nadia; Raoof, Kosai; Bouallegue, Ammar; Letourneur, Stephane; Zaibi, Sonia

    2014-12-01

    We present an acoustic location system that adopts the time of arrival of the path of maximum amplitude as a signature and estimates the target position through nonparametric kernel regression. The system was evaluated in experiments for two main configurations: a privacy-oriented configuration with code division multiple access operation and a centralized configuration with time division multiple access operation. The effects of the number and positions of sources on the performance of the privacy-oriented system was studied. Moreover, the effect of the number of fingerprint positions on the performance of both systems was investigated. Results showed that our privacy-oriented scheme provides an accuracy of 8.5 cm with 87% precision, whereas our centralized system provides an accuracy of 2.7 cm for 93% of measurements. A comparison between our privacy-oriented system and another acoustic location system based on code division multiple access operation and lateration was conducted on our test bench and revealed that the cumulative error distribution function of the fingerprint-based system is better than that of the lateration-based system. This result is similar to that found for Wi-Fi radio-based localization. However, our experiments are the first to demonstrate the detrimental effect that reverberation has on naive acoustic localization approaches.

  13. Propagation and localization of acoustic waves in Fibonacci phononic circuits

    NASA Astrophysics Data System (ADS)

    Aynaou, H.; El Boudouti, E. H.; Djafari-Rouhani, B.; Akjouj, A.; Velasco, V. R.

    2005-07-01

    A theoretical investigation is made of acoustic wave propagation in one-dimensional phononic bandgap structures made of slender tube loops pasted together with slender tubes of finite length according to a Fibonacci sequence. The band structure and transmission spectrum is studied for two particular cases. (i) Symmetric loop structures, which are shown to be equivalent to diameter-modulated slender tubes. In this case, it is found that besides the existence of extended and forbidden modes, some narrow frequency bands appear in the transmission spectra inside the gaps as defect modes. The spatial localization of the modes lying in the middle of the bands and at their edges is examined by means of the local density of states. The dependence of the bandgap structure on the slender tube diameters is presented. An analysis of the transmission phase time enables us to derive the group velocity as well as the density of states in these structures. In particular, the stop bands (localized modes) may give rise to unusual (strong normal) dispersion in the gaps, yielding fast (slow) group velocities above (below) the speed of sound. (ii) Asymmetric tube loop structures, where the loops play the role of resonators that may introduce transmission zeros and hence new gaps unnoticed in the case of simple diameter-modulated slender tubes. The Fibonacci scaling property has been checked for both cases (i) and (ii), and it holds for a periodicity of three or six depending on the nature of the substrates surrounding the structure.

  14. Resolving the source of the solar acoustic oscillations: What will be possible with DKIST?

    NASA Astrophysics Data System (ADS)

    Rast, Mark; Martinez Pillet, Valentin

    2016-05-01

    The solar p-modes are likely excited by small-scale convective dynamics in the solar photosphere, but the detailed source properties are not known. Theoretical models differ and observations are yet unable to differentiate between them. Resolving the underlying source events is more than a curiosity. It is important to the veracity of global helioseismic measurements (including local spectral methods such as ring diagram analysis) because global p-mode line shapes and thus accurate frequency determinations depend critically on the relationship between intensity and velocity during the excitation events. It is also fundamental to improving the accuracy of the local time-distance measurements because in these kernel calculations depend on knowledge of the source profile and the properties of the excitation noise. The Daniel K. Inouye Solar Telescope (DKIST) will have the spatial resolution and spectral range needed to resolve the solar acoustic excitation events in both time and space (horizontally and with height) using multi-wavelength observations. Inversions to determine the dynamic and thermodynamic evolution of the discrete small-scale convective events that serve as acoustic sources may also be possible, though determination of the pressure fluctuations associated with the sources is a challenge. We describe the DKIST capabilities anticipated and the preliminary work needed to prepare for them.

  15. Acoustical analysis and multiple source auralizations of charismatic worship spaces

    NASA Astrophysics Data System (ADS)

    Lee, Richard W.

    2004-05-01

    Because of the spontaneity and high level of call and response, many charismatic churches have verbal and musical communication problems that stem from highly reverberant sound fields, poor speech intelligibility, and muddy music. This research looks at the subjective dimensions of room acoustics perception that affect a charismatic worship space, which is summarized using the acronym RISCS (reverberation, intimacy, strength, coloration, and spaciousness). The method of research is to obtain acoustical measurements for three worship spaces in order to analyze the objective parameters associated with the RISCS subjective dimensions. For the same spaces, binaural room impulse response (BRIR) measurements are done for different receiver positions in order to create an auralization for each position. The subjective descriptors of RISCS are analyzed through the use of listening tests of the three auralized spaces. The results from the measurements and listening tests are analyzed to determine if listeners' perceptions correlate with the objective parameter results, the appropriateness of the subjective parameters for the use of the space, and which parameters seem to take precedent. A comparison of the multi-source auralization to a conventional single-source auralization was done with the mixed down version of the synchronized multi-track anechoic signals.

  16. A fast source for quantitative acoustic emission and its application

    NASA Astrophysics Data System (ADS)

    Masaki, Ryuji; Takemoto, Mikio; Ono, Kanji

    1999-12-01

    We demonstrate a new artificial fracture source for quantitative acoustic emission (AE) characterization. The source utilizes the break-down of silicone oil (or other liquids) placed inside a crack (or a slit). This is a dipole source with a rise time under 0.1 μs. It is much faster than a pencil-lead-break source and allows the calibration of a sensor-structure system to 7-10 MHz. We irradiated a focused Q-switched Nd-YAG laser beam (15 to 90 mJ energy) on silicon placed in a slit on a cylindrical block. The out-of-plane displacement produced by the resultant bulk waves was monitored on the outside surface using a heterodyne-type laser interferometer. This break-down source was employed to determine the transfer functions of an AE transducer and propagation medium. Finally, we studied AE signals due to the delayed fracture of a butt-welded dual-phase stainless steel, using the break-down source for calibration. Brittle-fracture events were successfully characterized.

  17. Array Receivers and Sound Sources for Three Dimensional Shallow Water Acoustic Field Experiments

    DTIC Science & Technology

    2016-12-06

    Water Acoustic Field Experiments NOOO 14-15-1-2893 Sc. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Sd. PROJECT NUMBER Ying Tsong-Lin 132893SP Se. TASK...testing. 1S. SUBJECT TERMS acoustics, shallow water , Arctic Ocean , 3-D acoustic propagation, shelfbreak 16. SECURITY CLASSIFICATION OF: R b...Approved f or public release; distribution is unlimited. Array Receivers and Sound Sources for Three-Dimensional Shallow- Water Acoustic Field

  18. Sound source localization and segregation with internally coupled ears: the treefrog model.

    PubMed

    Bee, Mark A; Christensen-Dalsgaard, Jakob

    2016-10-01

    Acoustic signaling plays key roles in mediating many of the reproductive and social behaviors of anurans (frogs and toads). Moreover, acoustic signaling often occurs at night, in structurally complex habitats, such as densely vegetated ponds, and in dense breeding choruses characterized by high levels of background noise and acoustic clutter. Fundamental to anuran behavior is the ability of the auditory system to determine accurately the location from where sounds originate in space (sound source localization) and to assign specific sounds in the complex acoustic milieu of a chorus to their correct sources (sound source segregation). Here, we review anatomical, biophysical, neurophysiological, and behavioral studies aimed at identifying how the internally coupled ears of frogs contribute to sound source localization and segregation. Our review focuses on treefrogs in the genus Hyla, as they are the most thoroughly studied frogs in terms of sound source localization and segregation. They also represent promising model systems for future work aimed at understanding better how internally coupled ears contribute to sound source localization and segregation. We conclude our review by enumerating directions for future research on these animals that will require the collaborative efforts of biologists, physicists, and roboticists.

  19. Acoustic power of a moving point source in a moving medium

    NASA Technical Reports Server (NTRS)

    Cole, J. E., III; Sarris, I. I.

    1976-01-01

    The acoustic power output of a moving point-mass source in an acoustic medium which is in uniform motion and infinite in extent is examined. The acoustic medium is considered to be a homogeneous fluid having both zero viscosity and zero thermal conductivity. Two expressions for the acoustic power output are obtained based on a different definition cited in the literature for the average energy-flux vector in an acoustic medium in uniform motion. The acoustic power output of the source is found by integrating the component of acoustic intensity vector in the radial direction over the surface of an infinitely long cylinder which is within the medium and encloses the line of motion of the source. One of the power expressions is found to give unreasonable results even though the flow is uniform.

  20. Multiple source localization using genetic algorithms.

    PubMed

    McNay, D; Michielssen, E; Rogers, R L; Taylor, S A; Akhtari, M; Sutherling, W W

    1996-02-01

    We present a new procedure for localizing simultaneously active multiple brain sources that overlap in both space and time on EEG recordings. The source localization technique was based on a spatio-temporal model and a genetic algorithm search routine. The method was successfully applied to the localization of two dipole sources from several sets of simulated potentials with various signal-to-noise ratios (SNR). The different SNR values resembled evoked responses and epileptic spikes as commonly seen in the laboratory. Results of the simulation studies yielded localization accuracy ranging from 0.01 to 0.07 cm with an SNR of 10; from 0.02 to 0.26 cm with an SNR of 5; and from 0.06 to 0.73 cm when the SNR was equal to 2. Additionally, two sets of simulations were based on the dipole arrangements and time activities of data obtained during electrical stimulation of the median nerve in human subjects. These studies yielded localization accuracy within 0.1 cm. We also studied the localization accuracy of the algorithm using a physical model incorporating potential measurements of two current dipoles embedded in a sphere. In this situation the algorithm was successful in localizing the two simultaneously active sources to within 0.07-0.15 cm.

  1. A multiple-source consecutive localization algorithm based on quantized measurement for wireless sensor network

    NASA Astrophysics Data System (ADS)

    Chu, Hao; Wu, Chengdong

    2016-10-01

    The source localization base on wireless sensor network has attracted considerable attention in recent years. However, most of the previous works focus on the accurate measurement or single source localization. The multiple-source localization has extensive application prospect in many fields. The quantized measurement is a low-cost and low energy consumption solution for wireless sensor network. In this paper, we present a novel multiple-source consecutive localization algorithm using the quantized measurement. We first introduce the multiple acoustic sources model and quantized measurement method. Then the maximum likelihood method is used to establish the localization function and the particle swarm optimization is employed to estimate the initial position of the source. Finally the Kalman filter is used to mitigate the random processing noise. Simulation results show that the proposed method owns high localization accuracy.

  2. Modal acoustic emission source determination in silicon carbide matrix composites

    NASA Astrophysics Data System (ADS)

    Morscher, G. N.

    2000-05-01

    Modal acoustic emission has been used to monitor damage accumulation in woven silicon carbide (SiC) fiber reinforced SiC matrix composites during tensile testing. There are several potential sources of damage in these systems including transverse matrix cracking, fiber/matrix interphase debonding and sliding, longitudinal cracks in between plies, and fiber breakage. In the past, it has been shown that modal AE is excellent at detecting when damage occurs and subsides, where the damage occurs along the length of the sample, and the loss in material stiffness as a consequence of damage accumulation. The next step is to determine the extent that modal AE can be used to identify specific physical sources. This study will discuss the status of this aim for this composite system. Individual events were analyzed and correlated to specific sources based on the characteristics of the received waveforms, e.g., frequency spectrum and energy, and when the event occurred during the stress-history of the tensile test. Post-test microstructural examination of the test specimens enabled some correlation between specific types of AE events and damage sources.

  3. Acoustic source inversion to estimate volume flux from volcanic explosions

    NASA Astrophysics Data System (ADS)

    Kim, Keehoon; Fee, David; Yokoo, Akihiko; Lees, Jonathan M.

    2015-07-01

    We present an acoustic waveform inversion technique for infrasound data to estimate volume fluxes from volcanic eruptions. Previous inversion techniques have been limited by the use of a 1-D Green's function in a free space or half space, which depends only on the source-receiver distance and neglects volcanic topography. Our method exploits full 3-D Green's functions computed by a numerical method that takes into account realistic topographic scattering. We apply this method to vulcanian eruptions at Sakurajima Volcano, Japan. Our inversion results produce excellent waveform fits to field observations and demonstrate that full 3-D Green's functions are necessary for accurate volume flux inversion. Conventional inversions without consideration of topographic propagation effects may lead to large errors in the source parameter estimate. The presented inversion technique will substantially improve the accuracy of eruption source parameter estimation (cf. mass eruption rate) during volcanic eruptions and provide critical constraints for volcanic eruption dynamics and ash dispersal forecasting for aviation safety. Application of this approach to chemical and nuclear explosions will also provide valuable source information (e.g., the amount of energy released) previously unavailable.

  4. Workshop on the Detection, Classification, Localization and Density Estimation of Marine Mammals Using Passive Acoustics - 2015

    DTIC Science & Technology

    2015-09-30

    and Density Estimation of Marine Mammals Using Passive Acoustics - 2015 John A. Hildebrand Scripps Institution of Oceanography UCSD La Jolla...classification, localization and density estimation of marine mammals using passive acoustics , and by doing so advance the state of the art in this field...Passive Acoustics was organized and held at the Scripps Institution of Oceanography (SIO) in July 2015. The objective of ONR support for the

  5. Towards optimal design of locally resonant acoustic metamaterials

    NASA Astrophysics Data System (ADS)

    Krushynska, A. O.; Kouznetsova, V. G.; Geers, M. G. D.

    2014-11-01

    The paper presents an in-depth analysis of solid locally resonant acoustic metamaterials (LRAMs) consisting of rubber-coated inclusions. Dispersion properties of two-dimensional LRAMs are studied by means of finite-element modal analysis. For an incompressible rubber, only one practically important spectral band gap is found for in-plane modes in a low-frequency range. This result is in striking contrast with the compressible coating case, previously studied in the literature. For inclusions with a circular cross-section, the lower bound of the band gap can be evaluated exactly by means of the derived analytical solution, which is also valid for compressible coatings and can therefore be used to determine lower bounds of higher band gaps as well. The influence of geometric and material parameters, filling fraction and inclusion shape on the width of the lowest band gap is investigated in detail. Based on the results of this analysis, an optimal microstructure of LRAMs yielding the widest low-frequency band gap is proposed. To achieve the band gap at the lowest possible frequencies in LRAMs suitable for practical applications, the use of the tungsten core material is advised, as a safe and economically viable alternative to commonly considered lead and gold. Two configurations of LRAM with various sizes of coated tungsten cylindrical inclusions with circular cross-section are considered. The evolution of dispersion spectra due to the presence of different inclusions is investigated, and the parameters for optimal design of LRAMs are determined.

  6. Detection of impulsive sources from an aerostat-based acoustic array data collection system

    NASA Astrophysics Data System (ADS)

    Prather, Wayne E.; Clark, Robert C.; Strickland, Joshua; Frazier, Wm. Garth; Singleton, Jere

    2009-05-01

    An aerostat based acoustic array data collection system was deployed at the NATO TG-53 "Acoustic Detection of Weapon Firing" Joint Field Experiment conducted in Bourges, France during the final two weeks of June 2008. A variety of impulsive sources including mortar, artillery, gunfire, RPG, and explosive devices were fired during the test. Results from the aerostat acoustic array will be presented against the entire range of sources.

  7. Access to patents as sources to musical acoustics inventions

    NASA Astrophysics Data System (ADS)

    Brock-Nannestad, George

    2005-09-01

    Patents are important sources for the development of any technology. The paper addresses modern methods of access to patent publications relating to musical acoustics, in particular the constructions of instruments and components for instruments, methods for tuning, methods for teaching, and measuring equipment. The patent publications available are, among others, from the U.S., England, France, Germany, Japan, Russia, and the date range is from ca. 1880 to the present day. The two main searchable websites use different classification systems in their approach, and by suitable combination of the information it is possible to target the search efficiently. The paper will demonstrate the recent transfer of inventions relating to physical instruments to electronic simulations, and the fact that most recent inventions were made by independent inventors. A specific example is given by discussing the proposals for improved pipe organ and violin constructions invented in Denmark in the 1930s by Jarnak based on patented improvements for telephone reproducers.

  8. Acoustic Source Modeling for High Speed Air Jets

    NASA Technical Reports Server (NTRS)

    Goldstein, Marvin E.; Khavaran, Abbas

    2005-01-01

    The far field acoustic spectra at 90deg to the downstream axis of some typical high speed jets are calculated from two different forms of Lilley s equation combined with some recent measurements of the relevant turbulent source function. These measurements, which were limited to a single point in a low Mach number flow, were extended to other conditions with the aid of a highly developed RANS calculation. The results are compared with experimental data over a range of Mach numbers. Both forms of the analogy lead to predictions that are in excellent agreement with the experimental data at subsonic Mach numbers. The agreement is also fairly good at supersonic speeds, but the data appears to be slightly contaminated by shock-associated noise in this case.

  9. Round-robin multiple-source localization.

    PubMed

    Mantzel, William; Romberg, Justin; Sabra, Karim G

    2014-01-01

    This paper introduces a round-robin approach for multi-source localization based on matched-field processing. Each new source location is estimated from the ambiguity function after nulling from the data vector the current source location estimates using a robust projection matrix. This projection matrix effectively minimizes mean-square energy near current source location estimates subject to a rank constraint that prevents excessive interference with sources outside of these neighborhoods. Numerical simulations are presented for multiple sources transmitting through a fixed (and presumed known) generic Pekeris ocean waveguide in the single-frequency and broadband-coherent cases that illustrate the performance of the proposed approach which compares favorably against other previously published approaches. Furthermore, the efficacy with which randomized back-propagations may also be incorporated for computational advantage is also presented.

  10. Underwater passive acoustic localization of Pacific walruses in the northeastern Chukchi Sea.

    PubMed

    Rideout, Brendan P; Dosso, Stan E; Hannay, David E

    2013-09-01

    This paper develops and applies a linearized Bayesian localization algorithm based on acoustic arrival times of marine mammal vocalizations at spatially-separated receivers which provides three-dimensional (3D) location estimates with rigorous uncertainty analysis. To properly account for uncertainty in receiver parameters (3D hydrophone locations and synchronization times) and environmental parameters (water depth and sound-speed correction), these quantities are treated as unknowns constrained by prior estimates and prior uncertainties. Unknown scaling factors on both the prior and arrival-time uncertainties are estimated by minimizing Akaike's Bayesian information criterion (a maximum entropy condition). Maximum a posteriori estimates for sound source locations and times, receiver parameters, and environmental parameters are calculated simultaneously using measurements of arrival times for direct and interface-reflected acoustic paths. Posterior uncertainties for all unknowns incorporate both arrival time and prior uncertainties. Monte Carlo simulation results demonstrate that, for the cases considered here, linearization errors are small and the lack of an accurate sound-speed profile does not cause significant biases in the estimated locations. A sequence of Pacific walrus vocalizations, recorded in the Chukchi Sea northwest of Alaska, is localized using this technique, yielding a track estimate and uncertainties with an estimated speed comparable to normal walrus swim speeds.

  11. Sound source localization identification accuracy: bandwidth dependencies.

    PubMed

    Yost, William A; Zhong, Xuan

    2014-11-01

    Sound source localization accuracy using a sound source identification task was measured in the front, right quarter of the azimuth plane as rms (root-mean-square) error (degrees) for stimulus conditions in which the bandwidth (1/20 to 2 octaves wide) and center frequency (250, 2000, 4000 Hz) of 200-ms noise bursts were varied. Tones of different frequencies (250, 2000, 4000 Hz) were also used. As stimulus bandwidth increases, there is an increase in sound source localization identification accuracy (i.e., rms error decreases). Wideband stimuli (>1 octave wide) produce best sound source localization accuracy (~6°-7° rms error), and localization accuracy for these wideband noise stimuli does not depend on center frequency. For narrow bandwidths (<1 octave) and tonal stimuli, accuracy does depend on center frequency such that highest accuracy is obtained for low-frequency stimuli (centered on 250 Hz), worse accuracy for mid-frequency stimuli (centered on 2000 Hz), and intermediate accuracy for high-frequency stimuli (centered on 4000 Hz).

  12. Towards quantifying cochlear implant localization performance in complex acoustic environments.

    PubMed

    Kerber, S; Seeber, B U

    2011-08-01

    Cochlear implant (CI) users frequently report listening difficulties in reverberant and noisy spaces. While it is common to assess speech understanding with implants in background noise, binaural hearing performance has rarely been quantified in the presence of other sources, although the binaural system is a major contributor to the robustness of speech understanding in noisy situations with normal hearing. Here, a pointing task was used to measure horizontal localization ability of a bilateral CI user in quiet and in a continuous diffuse noise interferer at a signal-to-noise ratio of 0 dB. Results were compared to localization performance of six normal hearing listeners. The average localization error of the normal hearing listeners was within normal ranges reported previously and only increased by 1.8° when the interfering noise was introduced. In contrast, the bilateral CI user showed a localization error of 22° in quiet which rose to 31° in noise. This increase was partly due to target sounds being inaudible when presented from frontal locations between -20° and +20°. With the noise present, the implant user was only able to reliably hear target sounds presented from locations well off the median plane. The results give support to the informal complaints raised by CI users and can help to define targets for the design of, e.g., noise reduction algorithms for implant processors.

  13. Local tsunamis and earthquake source parameters

    USGS Publications Warehouse

    Geist, Eric L.; Dmowska, Renata; Saltzman, Barry

    1999-01-01

    This chapter establishes the relationship among earthquake source parameters and the generation, propagation, and run-up of local tsunamis. In general terms, displacement of the seafloor during the earthquake rupture is modeled using the elastic dislocation theory for which the displacement field is dependent on the slip distribution, fault geometry, and the elastic response and properties of the medium. Specifically, nonlinear long-wave theory governs the propagation and run-up of tsunamis. A parametric study is devised to examine the relative importance of individual earthquake source parameters on local tsunamis, because the physics that describes tsunamis from generation through run-up is complex. Analysis of the source parameters of various tsunamigenic earthquakes have indicated that the details of the earthquake source, namely, nonuniform distribution of slip along the fault plane, have a significant effect on the local tsunami run-up. Numerical methods have been developed to address the realistic bathymetric and shoreline conditions. The accuracy of determining the run-up on shore is directly dependent on the source parameters of the earthquake, which provide the initial conditions used for the hydrodynamic models.

  14. Model-independent range localization of a moving source in shallow water.

    PubMed

    Rakotonarivo, S T; Kuperman, W A

    2012-10-01

    A method for range localization with a single sensor in an ocean waveguide is derived. Range localization typically requires an accurate environmental acoustics model used for processing acoustic data on a multi-element array. Recently, an alternative method for estimating range has emerged based on the waveguide invariant which still requires either an array of sufficient horizontal extent or data from a moving source for which range rate is known. In analogy to the waveguide invariant derivation, it is shown that the magnitude of the square of the difference between the acoustic field at two different ranges contains information about the range interval, Δr. Since the range interval is manifest in the time interval, Δt between field measurements, range rate can be ascertained. Experimental results confirm this single sensor localization method.

  15. Role of spectral detail in sound-source localization.

    PubMed

    Kulkarni, A; Colburn, H S

    Sounds heard over headphones are typically perceived inside the head (internalized), unlike real sound sources which are perceived outside the head (externalized). If the acoustical waveforms from a real sound source are reproduced precisely using headphones, auditory images are appropriately externalized and localized. The filtering (relative boosting, attenuation and delaying of component frequencies) of a sound by the head and outer ear provides information about the location of a sound source by means of the differences in the frequency spectra between the ears as well as the overall spectral shape. This location-dependent filtering is explicitly described by the head-related transfer function (HRTF) from sound source to ear canal. Here we present sounds to subjects through open-canal tube-phones and investigate how accurately the HRTFs must be reproduced to achieve true three-dimensional perception of auditory signals in anechoic space. Listeners attempted to discriminate between 'real' sounds presented from a loudspeaker and 'virtual' sounds presented over tube-phones. Our results show that the HRTFs can be smoothed significantly in frequency without affecting the perceived location of a sound. Listeners cannot distinguish real from virtual sources until the HRTF has lost most of its detailed variation in frequency, at which time the perceived elevation of the image is the reported cue.

  16. Experimental Characterization of Centrifugal Pumps as AN Acoustic Source at the Blade-Passing Frequency

    NASA Astrophysics Data System (ADS)

    Rzentkowski, G.; Zbroja, S.

    2000-05-01

    Centrifugal pumps represent the primary source of acoustic energy in industrial piping. For hydraulically similar pumps, the amount of emitted energy may vary significantly between different designs and it is generally not known. The available information, typically presented as a magnitude of pressure pulsations measured at the pump discharge, is not free of resonance effects associated with the piping acoustics and, in some aspects, may be seriously misleading. In this paper, we formulate an experimental method to examine the pump acoustic characteristics at the blade-passing frequency. First, we assess the resonance effects in the test-loop. Next, we decompose the measured signal into the components associated with the pump action and with the loop acoustics by means of a simple pump model which is based on a linear superposition of pressure wave transmission and excitation. We apply this technique to examine the acoustics of a single-stage, double-volute centrifugal pump. We estimate the strength of source variables and establish the pump characteristics as an acoustic source. The results indicate that (i) the source variables represent a jump in the acoustic field and are nearly free of resonance effects in the test-loop and that (ii) the pump may act either as a pressure or as a velocity source. Based on this analysis, we postulate that the pressure wave traveling in the direction of pump discharge should be used to define the pump pulsation level for valid comparison between different designs and for acoustic modelling of piping systems.

  17. Functional delay and sum beamforming for three-dimensional acoustic source identification with solid spherical arrays

    NASA Astrophysics Data System (ADS)

    Yang, Yang; Chu, Zhigang; Shen, Linbang; Xu, Zhongming

    2016-07-01

    parameter, when the focus distance is unequal to the distance from the source to the array center or the focus directions do not embrace the source direction. Fortunately, the deviation can be commendably compensated for by the introduced scale-and-integrate method. This study will be of great significance to the accurate and quick localization and quantification of acoustic sources in cabin environments.

  18. Passive acoustic localization of the Atlantic bottlenose dolphin using whistles and echolocation clicks.

    PubMed

    Freitag, L E; Tyack, P L

    1993-04-01

    A method for localization and tracking of calling marine mammals was tested under realistic field conditions that include noise, multipath, and arbitrarily located sensors. Experiments were performed in two locations using four and six hydrophones with captive Atlantic bottlenose dolphins (Tursiops truncatus). Acoustic signals from the animals were collected in the field using a digital acoustic data acquisition system. The data were then processed off-line to determine relative hydrophone positions and the animal locations. Accurate hydrophone position estimates are achieved by pinging sequentially from each hydrophone to all the others. A two-step least-squares algorithm is then used to determine sensor locations from the calibration data. Animal locations are determined by estimating the time differences of arrival of the dolphin signals at the different sensors. The peak of a matched filter output or the first cycle of the observed waveform is used to determine arrival time of an echolocation click. Cross correlation between hydrophones is used to determine inter-sensor time delays of whistles. Calculation of source location using the time difference of arrival measurements is done using a least-squares solution to minimize error. These preliminary experimental results based on a small set of data show that realistic trajectories for moving animals may be generated from consecutive location estimates.

  19. Cortical source localization of infant cognition.

    PubMed

    Reynolds, Greg D; Richards, John E

    2009-01-01

    Neuroimaging techniques such as positron emission topography (PET) and functional magnetic resonance imaging (fMRI) have been utilized with older children and adults to identify cortical sources of perceptual and cognitive processes. However, due to practical and ethical concerns, these techniques cannot be routinely applied to infant participants. An alternative to such neuroimaging techniques appropriate for use with infant participants is high-density electroencephalogram (EEG) recording and cortical source localization techniques. The current article provides an overview of a method developed for such analyses. The method consists of four steps: (1) recording high-density (e.g., 128-channel) EEG. (2) Analysis of individual participant raw segmented data with independent component analysis (ICA). (3) Estimation of equivalent current dipoles (ECDs) that represent cortical sources for the observed ICA component clusters. (4) Calculation of component activations in relation to experimental factors. We discuss an example of research applying this technique to investigate the development of visual attention and recognition memory. We also describe the application of "realistic head modeling" to address some of the current limitations of infant cortical source localization.

  20. Sound Source Localization through 8 MEMS Microphones Array Using a Sand-Scorpion-Inspired Spiking Neural Network

    PubMed Central

    Beck, Christoph; Garreau, Guillaume; Georgiou, Julius

    2016-01-01

    Sand-scorpions and many other arachnids perceive their environment by using their feet to sense ground waves. They are able to determine amplitudes the size of an atom and locate the acoustic stimuli with an accuracy of within 13° based on their neuronal anatomy. We present here a prototype sound source localization system, inspired from this impressive performance. The system presented utilizes custom-built hardware with eight MEMS microphones, one for each foot, to acquire the acoustic scene, and a spiking neural model to localize the sound source. The current implementation shows smaller localization error than those observed in nature. PMID:27833526

  1. Local oscillator phase noise limitation on the resolution of acoustic delay line wireless passive sensor measurement

    NASA Astrophysics Data System (ADS)

    Chrétien, N.; Friedt, J.-M.; Martin, G.

    2014-06-01

    The role of the phase noise of a local oscillator driving a pulsed-mode RADAR used for probing surface acoustic wave sensors is investigated. The echo delay, representative of the acoustic velocity, and hence the physical quantity probed by the sensor, is finely measured as a phase. Considering that the intrinsic oscillator phase fluctuation defines the phase noise measurement resolution, we experimentally and theoretically assess the relation between phase noise, measurement range, and measurand resolution.

  2. Characterizing, synthesizing, and/or canceling out acoustic signals from sound sources

    DOEpatents

    Holzrichter, John F.; Ng, Lawrence C.

    2007-03-13

    A system for characterizing, synthesizing, and/or canceling out acoustic signals from inanimate and animate sound sources. Electromagnetic sensors monitor excitation sources in sound producing systems, such as animate sound sources such as the human voice, or from machines, musical instruments, and various other structures. Acoustical output from these sound producing systems is also monitored. From such information, a transfer function characterizing the sound producing system is generated. From the transfer function, acoustical output from the sound producing system may be synthesized or canceled. The systems disclosed enable accurate calculation of transfer functions relating specific excitations to specific acoustical outputs. Knowledge of such signals and functions can be used to effect various sound replication, sound source identification, and sound cancellation applications.

  3. Acoustic positioning using a tetrahedral ultrashort baseline array of an acoustic modem source transmitting frequency-hopped sequences.

    PubMed

    Beaujean, Pierre-Philippe J; Mohamed, Asif I; Warin, Raphael

    2007-01-01

    Acoustic communications and positioning are vital aspects of unmanned underwater vehicle operations. The usage of separate units on each vehicle has become an issue in terms of frequency bandwidth, space, power, and cost. Most vehicles rely on acoustic modems transmitting frequency-hopped multiple frequency-shift keyed sequences for command-and-control operations, which can be used to locate the vehicle with a good level of accuracy without requiring extra signal transmission. In this paper, an ultrashort baseline acoustic positioning technique has been designed, simulated, and tested to locate an acoustic modem source in three dimensions using a tetrahedral, half-wavelength acoustic antenna. The position estimation is performed using the detection sequence contained in each message, which is a series of frequency-hopped pulses. Maximum likelihood estimation of azimuth and elevation estimation is performed using a varying number of pulse and various signal-to-noise ratios. Simulated and measured position estimation error match closely, and indicate that the accuracy of this system improves dramatically as the number of pulses processed increases, given a fixed signal-to-noise ratio.

  4. Acoustic localization of antbirds in a Mexican rainforest using a wireless sensor network.

    PubMed

    Collier, Travis C; Kirschel, Alexander N G; Taylor, Charles E

    2010-07-01

    Acoustic localization is a promising method to passively observe vocal animal species, but remains difficult and time consuming to employ. To reduce the labor intensity and impact of deployment, an acoustic localization system has been developed consisting of battery powered wireless sensor nodes. The system also has the ability to perform an acoustic self-survey, which compares favorably in accuracy to global positioning system survey methods, especially in environments such as forest. The self-survey and localization accuracy of the system was tested in the neotropical rainforest of Chiapas, Mexico. A straight-forward and robust correlation sum localization computation method was utilized and is described in detail. Both free-ranging wild antbird songs and songs played from a speaker were localized with mean errors of 0.199 m and 0.445 m, respectively. Finally, additional tests utilizing only a short segment of each song or a subset of sensor nodes were performed and found to minimally affect localization accuracy. The use of a wireless sensor network for acoustic localization of animal vocalizations offers greater ease and flexibility of deployment than wired microphone arrays without sacrificing accuracy.

  5. Spatial resolution limits for the localization of noise sources using direct sound mapping

    NASA Astrophysics Data System (ADS)

    Fernandez Comesaña, D.; Holland, K. R.; Fernandez-Grande, E.

    2016-08-01

    One of the main challenges arising from noise and vibration problems is how to identify the areas of a device, machine or structure that produce significant acoustic excitation, i.e. the localization of main noise sources. The direct visualization of sound, in particular sound intensity, has extensively been used for many years to locate sound sources. However, it is not yet well defined when two sources should be regarded as resolved by means of direct sound mapping. This paper derives the limits of the direct representation of sound pressure, particle velocity and sound intensity by exploring the relationship between spatial resolution, noise level and geometry. The proposed expressions are validated via simulations and experiments. It is shown that particle velocity mapping yields better results for identifying closely spaced sound sources than sound pressure or sound intensity, especially in the acoustic near-field.

  6. Source fields reconstruction with 3D mapping by means of the virtual acoustic volume concept

    NASA Astrophysics Data System (ADS)

    Forget, S.; Totaro, N.; Guyader, J. L.; Schaeffer, M.

    2016-10-01

    This paper presents the theoretical framework of the virtual acoustic volume concept and two related inverse Patch Transfer Functions (iPTF) identification methods (called u-iPTF and m-iPTF depending on the chosen boundary conditions for the virtual volume). They are based on the application of Green's identity on an arbitrary closed virtual volume defined around the source. The reconstruction of sound source fields combines discrete acoustic measurements performed at accessible positions around the source with the modal behavior of the chosen virtual acoustic volume. The mode shapes of the virtual volume can be computed by a Finite Element solver to handle the geometrical complexity of the source. As a result, it is possible to identify all the acoustic source fields at the real surface of an irregularly shaped structure and irrespective of its acoustic environment. The m-iPTF method is introduced for the first time in this paper. Conversely to the already published u-iPTF method, the m-iPTF method needs only acoustic pressure and avoids particle velocity measurements. This paper is focused on its validation, both with numerical computations and by experiments on a baffled oil pan.

  7. Recovery of burner acoustic source structure from far-field sound spectra

    NASA Technical Reports Server (NTRS)

    Mahan, J. R.; Jones, J. D.

    1984-01-01

    A method is presented that permits the thermal-acoustic efficiency spectrum in a long turbulent burner to be recovered from the corresponding far-field sound spectrum. An acoustic source/propagation model is used based on the perturbation solution of the equations describing the unsteady one-dimensional flow of an inviscid ideal gas with a distributed heat source. The technique is applied to a long cylindrical hydrogen-flame burner operating over power levels of 4.5-22.3 kW. The results show that the thermal-acoustic efficiency at a given frequency, defined as the fraction of the total burner power converted to acoustic energy at that frequency, is rather insensitive to burner power, having a maximum value on the order of 10 to the -4th at 150 Hz and rolling off steeply with increasing frequency. Evidence is presented that acoustic agitation of the flame at low frequencies enhances the mixing of the unburned fuel and air with the hot products of combustion. The paper establishes the potential of the technique as a useful tool for characterizing the acoustic source structure in any burner, such as a gas turbine combustor, for which a reasonable acoustic propagation model can be postulated.

  8. Estimating uncertainty in subsurface glider position using transmissions from fixed acoustic tomography sources.

    PubMed

    Van Uffelen, Lora J; Nosal, Eva-Marie; Howe, Bruce M; Carter, Glenn S; Worcester, Peter F; Dzieciuch, Matthew A; Heaney, Kevin D; Campbell, Richard L; Cross, Patrick S

    2013-10-01

    Four acoustic Seagliders were deployed in the Philippine Sea November 2010 to April 2011 in the vicinity of an acoustic tomography array. The gliders recorded over 2000 broadband transmissions at ranges up to 700 km from moored acoustic sources as they transited between mooring sites. The precision of glider positioning at the time of acoustic reception is important to resolve the fundamental ambiguity between position and sound speed. The Seagliders utilized GPS at the surface and a kinematic model below for positioning. The gliders were typically underwater for about 6.4 h, diving to depths of 1000 m and traveling on average 3.6 km during a dive. Measured acoustic arrival peaks were unambiguously associated with predicted ray arrivals. Statistics of travel-time offsets between received arrivals and acoustic predictions were used to estimate range uncertainty. Range (travel time) uncertainty between the source and the glider position from the kinematic model is estimated to be 639 m (426 ms) rms. Least-squares solutions for glider position estimated from acoustically derived ranges from 5 sources differed by 914 m rms from modeled positions, with estimated uncertainty of 106 m rms in horizontal position. Error analysis included 70 ms rms of uncertainty due to oceanic sound-speed variability.

  9. Localization of low-frequency coherent sound sources with compressive beamforming-based passive synthetic aperture.

    PubMed

    Lei, Zhixiong; Yang, Kunde; Duan, Rui; Xiao, Peng

    2015-04-01

    The localization of low-frequency coherent sources requires a proper aperture to ensure a high spatial resolution. Attaining a large aperture is difficult in practice when the conditions involved are limited. This letter investigated a compressive beamforming-based passive synthetic aperture approach with a reference sensor in a fixed position. Localization findings on acoustic sources in a semi-anechoic chamber were compared with conventional beamforming, compressive beamforming, passive synthetic aperture, and compressive beamforming-based passive synthetic aperture. Results suggest that the proposed method can produce a higher spatial resolution and higher detection ability than the others.

  10. Amplification of interaural level differences improves sound localization in acoustic simulations of bimodal hearing.

    PubMed

    Francart, Tom; Van den Bogaert, Tim; Moonen, Marc; Wouters, Jan

    2009-12-01

    Users of a cochlear implant and contralateral hearing aid are sensitive to interaural level differences (ILDs). However, when using their clinical devices, most of these subjects cannot use ILD cues for localization in the horizontal plane. This is partly due to a lack of high-frequency residual hearing in the acoustically stimulated ear. Using acoustic simulations of a cochlear implant and hearing loss, it is shown that localization performance can be improved by up to 14 degrees rms error relative to 48 degrees rms error for broadband noise by artificially introducing ILD cues in the low frequencies. The algorithm that was used for ILD introduction is described.

  11. Characterization of Acoustic Emission Source to Identify Fracture in Concrete

    DTIC Science & Technology

    1993-04-01

    Hardy, "An Approach to Acoustic Emission Signal Analysis," Materials Evaluation, 35, 1977 , pp. 100-106. [5] Hsu, N.N. and F.R. Breckenridge...Measurements," Journal of Applied Mechanics, 53, 1986, pp. 61-68. [17] Mindess , S., "The Fracture Process Zone in Concrete," Toughening Mechanisms in

  12. Issues in Humanoid Audition and Sound Source Localization by Active Audition

    NASA Astrophysics Data System (ADS)

    Nakadai, Kazuhiro; Okuno, Hiroshi G.; Kitano, Hiroaki

    In this paper, we present an active audition system which is implemented on the humanoid robot "SIG the humanoid". The audition system for highly intelligent humanoids localizes sound sources and recognizes auditory events in the auditory scene. Active audition reported in this paper enables SIG to track sources by integrating audition, vision, and motor movements. Given the multiple sound sources in the auditory scene, SIG actively moves its head to improve localization by aligning microphones orthogonal to the sound source and by capturing the possible sound sources by vision. However, such an active head movement inevitably creates motor noises.The system adaptively cancels motor noises using motor control signals and the cover acoustics. The experimental result demonstrates that active audition by integration of audition, vision, and motor control attains sound source tracking in variety of conditions.onditions.

  13. Acoustic Communications Considerations for Collaborative Simultaneous Localization and Mapping

    DTIC Science & Technology

    2014-12-01

    collaborative SLAM framework in Section IV. A. INTRODUCTION 1. Position Uncertainty in Robotics Smith, Self, and Cheeseman [22] first postulated...COMMUNICATIONS CONSIDERATIONS FOR COLLABORATIVE SIMULTANEOUS LOCALIZATION AND MAPPING by Ryan Peter Hilger December 2014 Thesis Advisor... COLLABORATIVE SIMULTANEOUS LOCALIZATION AND MAPPING 6. AUTHOR(S) Ryan Peter Hilger 7. PERFORMING ORGANIZATION NA:i\\IIE(S) AND ADDRESS(ES) Naval Postgraduate

  14. Computational Acoustic Beamforming for Noise Source Identification for Small Wind Turbines

    PubMed Central

    Lien, Fue-Sang

    2017-01-01

    This paper develops a computational acoustic beamforming (CAB) methodology for identification of sources of small wind turbine noise. This methodology is validated using the case of the NACA 0012 airfoil trailing edge noise. For this validation case, the predicted acoustic maps were in excellent conformance with the results of the measurements obtained from the acoustic beamforming experiment. Following this validation study, the CAB methodology was applied to the identification of noise sources generated by a commercial small wind turbine. The simulated acoustic maps revealed that the blade tower interaction and the wind turbine nacelle were the two primary mechanisms for sound generation for this small wind turbine at frequencies between 100 and 630 Hz. PMID:28378012

  15. Toward a Nonlinear Acoustic Analogy: Turbulence as a Source of Sound and Nonlinear Propagation

    NASA Technical Reports Server (NTRS)

    Miller, Steven A. E.

    2015-01-01

    An acoustic analogy is proposed that directly includes nonlinear propagation effects. We examine the Lighthill acoustic analogy and replace the Green's function of the wave equation with numerical solutions of the generalized Burgers' equation. This is justified mathematically by using similar arguments that are the basis of the solution of the Lighthill acoustic analogy. This approach is superior to alternatives because propagation is accounted for directly from the source to the far-field observer instead of from an arbitrary intermediate point. Validation of a numerical solver for the generalized Burgers' equation is performed by comparing solutions with the Blackstock bridging function and measurement data. Most importantly, the mathematical relationship between the Navier- Stokes equations, the acoustic analogy that describes the source, and canonical nonlinear propagation equations is shown. Example predictions are presented for nonlinear propagation of jet mixing noise at the sideline angle

  16. Toward a Nonlinear Acoustic Analogy: Turbulence as a Source of Sound and Nonlinear Propagation

    NASA Technical Reports Server (NTRS)

    Miller, Steven A. E.

    2015-01-01

    An acoustic analogy is proposed that directly includes nonlinear propagation effects. We examine the Lighthill acoustic analogy and replace the Green's function of the wave equation with numerical solutions of the generalized Burgers' equation. This is justified mathematically by using similar arguments that are the basis of the solution of the Lighthill acoustic analogy. This approach is superior to alternatives because propagation is accounted for directly from the source to the far-field observer instead of from an arbitrary intermediate point. Validation of a numerical solver for the generalized Burgers' equation is performed by comparing solutions with the Blackstock bridging function and measurement data. Most importantly, the mathematical relationship between the Navier-Stokes equations, the acoustic analogy that describes the source, and canonical nonlinear propagation equations is shown. Example predictions are presented for nonlinear propagation of jet mixing noise at the sideline angle.

  17. Computational Acoustic Beamforming for Noise Source Identification for Small Wind Turbines.

    PubMed

    Ma, Ping; Lien, Fue-Sang; Yee, Eugene

    2017-01-01

    This paper develops a computational acoustic beamforming (CAB) methodology for identification of sources of small wind turbine noise. This methodology is validated using the case of the NACA 0012 airfoil trailing edge noise. For this validation case, the predicted acoustic maps were in excellent conformance with the results of the measurements obtained from the acoustic beamforming experiment. Following this validation study, the CAB methodology was applied to the identification of noise sources generated by a commercial small wind turbine. The simulated acoustic maps revealed that the blade tower interaction and the wind turbine nacelle were the two primary mechanisms for sound generation for this small wind turbine at frequencies between 100 and 630 Hz.

  18. The theory of magnetohydrodynamic wave generation by localized sources. I - General asymptotic theory

    NASA Technical Reports Server (NTRS)

    Collins, William

    1989-01-01

    The magnetohydrodynamic wave emission from several localized, periodic, kinematically specified fluid velocity fields are calculated using Lighthill's method for finding the far-field wave forms. The waves propagate through an isothermal and uniform plasma with a constant B field. General properties of the energy flux are illustrated with models of pulsating flux tubes and convective rolls. Interference theory from geometrical optics is used to find the direction of minimum fast-wave emission from multipole sources and slow-wave emission from discontinuous sources. The distribution of total flux in fast and slow waves varies with the ratios of the source dimensions l to the acoustic and Alfven wavelengths.

  19. Acoustic detection and localization of weapons fire by unattended ground sensors and aerostat-borne sensors

    NASA Astrophysics Data System (ADS)

    Naz, P.; Marty, Ch.; Hengy, S.; Miller, L. S.

    2009-05-01

    The detection and localization of artillery guns on the battlefield is envisaged by means of acoustic and seismic waves. The main objective of this work is to examine the different frequency ranges usable for the detection of small arms, mortars, and artillery guns on the same hardware platform. The main stages of this study have consisted of: data acquisition of the acoustic signals of the different weapons used, signal processing and evaluation of the localization performance for various types of individual arrays, and modeling of the wave propagation in the atmosphere. The study of the propagation effects on the signatures of these weapons is done by comparing the acoustic signals measured during various days, at ground level and at the altitude of our aerostat (typically 200 m). Numerical modeling has also been performed to reinforce the interpretation of the experimental results.

  20. Particle filtering for arrival time tracking in space and source localization.

    PubMed

    Michalopoulou, Zoi-Heleni; Jain, Rashi

    2012-11-01

    Locating and tracking a source in an ocean environment and estimating environmental parameters of a sound propagation medium are critical tasks in ocean acoustics. Many approaches for both are based on full field calculations which are computationally intensive and sensitive to assumptions on the structure of the environment. Alternative methods that use only select features of the acoustic field for localization and environmental parameter estimation have been proposed. The focus of this paper is the development of a method that extracts arrival times and amplitudes of distinct paths from measured acoustic time-series using sequential Bayesian filtering, namely, particle filtering. These quantities, along with complete posterior probability density functions, also extracted by filtering, are employed in source localization and bathymetry estimation. Aspects of the filtering methodology are presented and studied in terms of their impact on the uncertainty in the arrival time estimates. Using the posterior probability densities of arrival times, source localization and water depth estimation are performed for the Haro Strait Primer experiment; the results are compared to those of conventional methods. The comparison demonstrates a significant advantage in the proposed approach.

  1. Broadband asymmetric acoustic transmission in a single medium by an array of heat sources

    NASA Astrophysics Data System (ADS)

    Guan, Yi-Jun; Sun, Hong-Xiang; Xia, Jian-Ping; Yuan, Shou-Qi

    2017-04-01

    We report the realization of a broadband asymmetric acoustic transmission with six different-temperature heat sources in air. This exotic effect arises from the desired refractive index in propagation paths induced from heat sources of different temperatures and asymmetrical distribution, which avoids acoustic impedance differences between the heat sources and air and has no reflection energy loss. In addition, the influence of the viscosity of air, the thermal convection, and the temperature and length of the heat sources on the asymmetric transmission effect is investigated in detail. The results show that the proposed device has the advantages of broad bandwidth, high transmission contrast, and simple structure, which enable it to provide more schemes for sound manipulation. It has excellent potential applications in acoustic devices.

  2. Energy Source Study Technical Report for Deployable Acoustic Projector System (DAPS)

    DTIC Science & Technology

    1988-12-23

    S SPARTON"- AD-A278 879 7097-0001-1192 ENERGY SOURCE STUDY TECHNICAL REPORT FOR DEPLOYABLE ACOUSTIC PROJECTOR SYSTEM (DAPS) Contract N62190-88-M...SUBTITLE 5. FUNDING NUMBERS Energy Source Study Technical Report for Deployable C:N62190-88-q+0755 Acoustic Projector System (DAPS) 6. AUTHOR(S) 7...Rev 2-89) P~IýAIppd by ill* 164 it- IJs IL- 3 Fst’ rPAITON OWiENSE mac vrroNcS r 7097-0001-1192 ENERGY SOURCE STUDY TECHNICAL REPORT I FOR DEPLOYABLE

  3. Normal mode solutions for seismo-acoustic propagation resulting from shear and combined wave point sources.

    PubMed

    Nealy, Jennifer L; Collis, Jon M; Frank, Scott D

    2016-04-01

    Normal mode solutions to range-independent seismo-acoustic problems are benchmarked against elastic parabolic equation solutions and then used to benchmark the shear elastic parabolic equation self-starter [Frank, Odom, and Collis, J. Acoust. Soc. Am. 133, 1358-1367 (2013)]. The Pekeris waveguide with an elastic seafloor is considered for a point source located in the ocean emitting compressional waves, or in the seafloor, emitting both compressional and shear waves. Accurate solutions are obtained when the source is in the seafloor, and when the source is at the interface between the fluid and elastic layers.

  4. An impulsive source with variable output and stable bandwidth for underwater acoustic experiments.

    PubMed

    McNeese, Andrew R; Wilson, Preston S; Sagers, Jason D; Knobles, David P

    2014-07-01

    The Combustive Sound Source (CSS) is being developed as an environmentally friendly source to be used in ocean acoustics research and surveys. It has the ability to maintain the same wide bandwidth signal over a 20 dB drop in source level. The CSS consists of a submersible combustion chamber filled with a fuel/oxidizer mixture. The mixture is ignited and the ensuing combustion and bubble activity radiates an impulsive, thus broadband, acoustic pulse. The ability to control pulse amplitude while maintaining bandwidth is demonstrated.

  5. Seismic Acoustic Ratio Estimates Using a Moving Vehicle Source

    DTIC Science & Technology

    1999-08-01

    Sabatier et al., 1986b). More complex models for the earth, such as incorporating layering and poroelastic material (e.g., Albert, 1993; Attenborough ...Richard Detsch, David Fisk, Stephen Decato, and Roger Berger for assistance in data collection, Dr. Donald G. Albert for several useful discussions...groundwater and bedrock in an area .of discontinuous permafrost,” Geophysics 63(5), 1573-1584. Attenborough , K. (1985). “Acoustical impedance models for

  6. Design of acoustic logging signal source of imitation based on field programmable gate array

    NASA Astrophysics Data System (ADS)

    Zhang, K.; Ju, X. D.; Lu, J. Q.; Men, B. Y.

    2014-08-01

    An acoustic logging signal source of imitation is designed and realized, based on the Field Programmable Gate Array (FPGA), to improve the efficiency of examining and repairing acoustic logging tools during research and field application, and to inspect and verify acoustic receiving circuits and corresponding algorithms. The design of this signal source contains hardware design and software design,and the hardware design uses an FPGA as the control core. Four signals are made first by reading the Random Access Memory (RAM) data which are inside the FPGA, then dealing with the data by digital to analog conversion, amplification, smoothing and so on. Software design uses VHDL, a kind of hardware description language, to program the FPGA. Experiments illustrate that the ratio of signal to noise for the signal source is high, the waveforms are stable, and also its functions of amplitude adjustment, frequency adjustment and delay adjustment are in accord with the characteristics of real acoustic logging waveforms. These adjustments can be used to imitate influences on sonic logging received waveforms caused by many kinds of factors such as spacing and span of acoustic tools, sonic speeds of different layers and fluids, and acoustic attenuations of different cementation planes.

  7. Effects of individual sound sources on the subjective loudness and acoustic comfort in underground shopping streets.

    PubMed

    Kang, Jian; Meng, Qi; Jin, Hong

    2012-10-01

    Previous studies have demonstrated that human evaluation of subjective loudness and acoustic comfort depends on a series of factors in a particular situation rather than only on sound pressure levels. In the present study, a large-scale subjective survey has been undertaken on underground shopping streets in Harbin, China, to determine how individual sound sources influence subjective loudness and acoustic comfort evaluation. Based on the analysis of case study results, it has been shown that all individual sound sources can increase subjective loudness to a certain degree. However, their levels of influence on acoustic comfort are different. Background music and the public address system can increase acoustic comfort, with a mean difference of 0.18 to 0.32 and 0.21 to 0.27, respectively, where a five-point bipolar category scale is used. Music from shops and vendor shouts can decrease acoustic comfort, with a mean difference of -0.11 to -0.38 and -0.39 to -0.62, respectively. The feasibility of improving acoustic comfort by changing certain sound sources is thus demonstrated.

  8. Analysis of underwater decoupling properties of a locally resonant acoustic metamaterial coating

    NASA Astrophysics Data System (ADS)

    Ling-Zhi, Huang; Yong, Xiao; Ji-Hong, Wen; Hai-Bin, Yang; Xi-Sen, Wen

    2016-02-01

    This paper presents a semi-analytical solution for the vibration and sound radiation of a semi-infinite plate covered by a decoupling layer consisting of locally resonant acoustic metamaterial. Formulations are derived based on a combination use of effective medium theory and the theory of elasticity for the decoupling material. Theoretical results show good agreements between the method developed in this paper and the conventional finite element method (FEM), but the method of this paper is more efficient than FEM. Numerical results also show that system with acoustic metamaterial decoupling layer exhibits significant noise reduction performance at the local resonance frequency of the acoustic metamaterial, and such performance can be ascribed to the vibration suppression of the base plate. It is demonstrated that the effective density of acoustic metamaterial decoupling layer has a great influence on the mechanical impedance of the system. Furthermore, the resonance frequency of locally resonant structure can be effectively predicted by a simple model, and it can be significantly affected by the material properties of the locally resonant structure. Project supported by the National Natural Science Foundation of China (Grant Nos. 51305448 and 51275519).

  9. Search-matching algorithm for acoustics-based automatic sniper localization

    NASA Astrophysics Data System (ADS)

    Aguilar, Juan R.; Salinas, Renato A.; Abidi, Mongi A.

    2007-04-01

    Most of modern automatic sniper localization systems are based on the utilization of the acoustical emissions produced by the gun fire events. In order to estimate the spatial coordinates of the sniper location, these systems measures the time delay of arrival of the acoustical shock wave fronts to a microphone array. In more advanced systems, model based estimation of the nonlinear distortion parameters of the N-waves is used to make projectile trajectory and calibre estimations. In this work we address the sniper localization problem using a model based search-matching approach. The automatic sniper localization algorithm works searching for the acoustics model of ballistic shock waves which best matches the measured data. For this purpose, we implement a previously released acoustics model of ballistic shock waves. Further, the sniper location, the projectile trajectory and calibre, and the muzzle velocity are regarded as the inputs variables of such a model. A search algorithm is implemented in order to found what combination of the input variables minimize a fitness function defined as the distance between measured and simulated data. In such a way, the sniper location, the projectile trajectory and calibre, and the muzzle velocity can be found. In order to evaluate the performance of the algorithm, we conduct computer based experiments using simulated gunfire event data calculated at the nodes of a virtual distributed sensor network. Preliminary simulation results are quite promising showing fast convergence of the algorithm and good localization accuracy.

  10. Local probing of propagating acoustic waves in a gigahertz echo chamber

    NASA Astrophysics Data System (ADS)

    Gustafsson, Martin V.; Santos, Paulo V.; Johansson, Göran; Delsing, Per

    2012-04-01

    In the same way that micro-mechanical resonators resemble guitar strings and drums, surface acoustic waves resemble the sound these instruments produce, but moving over a solid surface rather than through air. In contrast with oscillations in suspended resonators, such propagating mechanical waves have not before been studied near the quantum mechanical limits. Here, we demonstrate local probing of surface acoustic waves with a displacement sensitivity of 30amRMSHz-1/2 and detection sensitivity on the single-phonon level after averaging, at a frequency of 932MHz. Our probe is a piezoelectrically coupled single-electron transistor, which is sufficiently fast, non-destructive and localized to enable us to track pulses echoing back and forth in a long acoustic cavity, self-interfering and ringing the cavity up and down. We project that strong coupling to quantum circuits will enable new experiments, and hybrids using the unique features of surface acoustic waves. Prospects include quantum investigations of phonon-phonon interactions, and acoustic coupling to superconducting qubits for which we present favourable estimates.

  11. Acoustic Blind Deconvolution and Source Localization in Shallow Ocean Environments

    DTIC Science & Technology

    2011-09-01

    2011. PUBLICATIONS [1] Kundu , P.K., Cohen, I.M., and Dowling, D.R., Fluid Mechanics , 5th Ed. (Academic Press, Oxford, 2012), 891 pages. ...Shallow Ocean Environments David R. Dowling Department of Mechanical Engineering University of Michigan Ann Arbor, MI 48109-2133 phone: (734...NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) University of Michigan,Department of Mechanical Engineering,Ann Arbor,MI,48109-2133 8

  12. B-scan based acoustic source reconstruction for magnetoacoustic tomography with magnetic induction (MAT-MI).

    PubMed

    Mariappan, Leo; Li, Xu; He, Bin

    2011-03-01

    We present in this study, an acoustic source reconstruction method using focused transducer with B-mode imaging for magnetoacoustic tomography with magnetic induction (MAT-MI). MAT-MI is an imaging modality proposed for noninvasive conductivity imaging with high spatial resolution. In MAT-MI, acoustic sources are generated in a conductive object by placing it in a static and a time-varying magnetic field. The acoustic waves from these sources propagate in all directions and are collected with transducers placed around the object. The collected signal is then used to reconstruct the acoustic source distribution and to further estimate the electrical conductivity distribution of the object. A flat piston transducer acting as a point receiver has been used in earlier MAT-MI systems to collect acoustic signals. In this study, we propose to use B-mode scan scheme with a focused transducer that gives a signal gain in its focus region and improves the MAT-MI signal quality. A simulation protocol that can take into account different transducer designs and scan schemes for MAT-MI imaging is developed and used in our evaluation of different MAT-MI system designs. It is shown in our computer simulations that as compared to the earlier approach, the MAT-MI system using B-scan with a focused transducer allows MAT-MI imaging at a closer distance and has improved system sensitivity. In addition, the B-scan imaging technique allows reconstruction of the MAT-MI acoustic sources with a discrete number of scanning locations, which greatly increases the applicability of the MAT-MI approach, especially when a continuous acoustic window is not available in real clinical applications. We have also conducted phantom experiments to evaluate the proposed method, and the reconstructed image shows a good agreement with the target phantom.

  13. Judging sound rotation when listeners and sounds rotate: Sound source localization is a multisystem process.

    PubMed

    Yost, William A; Zhong, Xuan; Najam, Anbar

    2015-11-01

    In four experiments listeners were rotated or were stationary. Sounds came from a stationary loudspeaker or rotated from loudspeaker to loudspeaker around an azimuth array. When either sounds or listeners rotate the auditory cues used for sound source localization change, but in the everyday world listeners perceive sound rotation only when sounds rotate not when listeners rotate. In the everyday world sound source locations are referenced to positions in the environment (a world-centric reference system). The auditory cues for sound source location indicate locations relative to the head (a head-centric reference system), not locations relative to the world. This paper deals with a general hypothesis that the world-centric location of sound sources requires the auditory system to have information about auditory cues used for sound source location and cues about head position. The use of visual and vestibular information in determining rotating head position in sound rotation perception was investigated. The experiments show that sound rotation perception when sources and listeners rotate was based on acoustic, visual, and, perhaps, vestibular information. The findings are consistent with the general hypotheses and suggest that sound source localization is not based just on acoustics. It is a multisystem process.

  14. Wireless acoustic modules for real-time data fusion using asynchronous sniper localization algorithms

    NASA Astrophysics Data System (ADS)

    Hengy, S.; De Mezzo, S.; Duffner, P.; Naz, P.

    2012-11-01

    The presence of snipers in modern conflicts leads to high insecurity for the soldiers. In order to improve the soldier's protection against this threat, the French German Research Institute of Saint-Louis (ISL) has been conducting studies in the domain of acoustic localization of shots. Mobile antennas mounted on the soldier's helmet were initially used for real-time detection, classification and localization of sniper shots. It showed good performances in land scenarios, but also in urban scenarios if the array was in the shot corridor, meaning that the microphones first detect the direct wave and then the reflections of the Mach and muzzle waves (15% distance estimation error compared to the actual shooter array distance). Fusing data sent by multiple sensor nodes distributed on the field showed some of the limitations of the technologies that have been implemented in ISL's demonstrators. Among others, the determination of the arrays' orientation was not accurate enough, thereby degrading the performance of data fusion. Some new solutions have been developed in the past year in order to obtain better performance for data fusion. Asynchronous localization algorithms have been developed and post-processed on data measured in both free-field and urban environments with acoustic modules on the line of sight of the shooter. These results are presented in the first part of the paper. The impact of GPS position estimation error is also discussed in the article in order to evaluate the possible use of those algorithms for real-time processing using mobile acoustic nodes. In the frame of ISL's transverse project IMOTEP (IMprovement Of optical and acoustical TEchnologies for the Protection), some demonstrators are developed that will allow real-time asynchronous localization of sniper shots. An embedded detection and classification algorithm is implemented on wireless acoustic modules that send the relevant information to a central PC. Data fusion is then processed and the

  15. Near- and Far-field Response to Compact Acoustic Sources in Stratified Convection Zones

    NASA Astrophysics Data System (ADS)

    Cally, Paul S.

    2013-05-01

    The role of the acoustic continuum associated with compact sources in the Sun's interior wave field is explored for a simple polytropic model. The continuum produces a near-field acoustic structure—the so-called acoustic jacket—that cannot be represented by a superposition of discrete normal modes. Particular attention is paid to monochromatic point sources of various frequency and depth, and to the surface velocity power that results, both in the discrete f- and p-mode spectrum and in the continuum. It is shown that a major effect of the continuum is to heal the surface wave field produced by compact sources, and therefore to hide them from view. It is found that the continuous spectrum is not a significant contributor to observable inter-ridge seismic power.

  16. Deployable Acoustic Projector System (DAPS) Energy Source Study

    DTIC Science & Technology

    1988-12-01

    final, etc. If Statements on Technical applicable, enter inclusive report dates (e.g. 10 Documents. Jun 87 - 30 Jun 88). DOE - See authorities...aJIUILOI NG 20C WIII OCSR L[~,CONNETICUT 0 811 LT = LECT I -w L94 5 06 036 Form Appmv’ovd REPORT DOCUMENTATION PAGE C No. 0A,-0pov pull efa’, m a fm thi...ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED Dec 88 Final 4. TITLE AND SUBTITLE S. FUNDING NUMBERS Deployable Acoustic Projector

  17. Quad Cities Unit 2 Main Steam Line Acoustic Source Identification and Load Reduction

    SciTech Connect

    DeBoo, Guy; Ramsden, Kevin; Gesior, Roman

    2006-07-01

    The Quad Cities Units 1 and 2 have a history of steam line vibration issues. The implementation of an Extended Power Up-rate resulted in significant increases in steam line vibration as well as acoustic loading of the steam dryers, which led to equipment failures and fatigue cracking of the dryers. This paper discusses the results of extensive data collection on the Quad Cities Unit 2 replacement dryer and the Main Steam Lines. This data was taken with the intent of identifying acoustic sources in the steam system. Review of the data confirmed that vortex shedding coupled column resonance in the relief and safety valve stub pipes were the principal sources of large magnitude acoustic loads in the main steam system. Modifications were developed in sub-scale testing to alter the acoustic properties of the valve standpipes and add acoustic damping to the system. The modifications developed and installed consisted of acoustic side branches that were attached to the Electromatic Relief Valve (ERV) and Main Steam Safety Valve (MSSV) attachment pipes. Subsequent post-modification testing was performed in plant to confirm the effectiveness of the modifications. The modifications have been demonstrated to reduce vibration loads at full Extended Power Up-rate (EPU) conditions to levels below those at Original Licensed Thermal Power (OLTP). (authors)

  18. Helmet-mounted acoustic array for hostile fire detection and localization in an urban environment

    NASA Astrophysics Data System (ADS)

    Scanlon, Michael V.

    2008-04-01

    The detection and localization of hostile weapons firing has been demonstrated successfully with acoustic sensor arrays on unattended ground sensors (UGS), ground-vehicles, and unmanned aerial vehicles (UAVs). Some of the more mature systems have demonstrated significant capabilities and provide direct support to ongoing counter-sniper operations. The Army Research Laboratory (ARL) is conducting research and development for a helmet-mounted system to acoustically detect and localize small arms firing, or other events such as RPG, mortars, and explosions, as well as other non-transient signatures. Since today's soldier is quickly being asked to take on more and more reconnaissance, surveillance, & target acquisition (RSTA) functions, sensor augmentation enables him to become a mobile and networked sensor node on the complex and dynamic battlefield. Having a body-worn threat detection and localization capability for events that pose an immediate danger to the soldiers around him can significantly enhance their survivability and lethality, as well as enable him to provide and use situational awareness clues on the networked battlefield. This paper addresses some of the difficulties encountered by an acoustic system in an urban environment. Complex reverberation, multipath, diffraction, and signature masking by building structures makes this a very harsh environment for robust detection and classification of shockwaves and muzzle blasts. Multifunctional acoustic detection arrays can provide persistent surveillance and enhanced situational awareness for every soldier.

  19. Biosonar acoustic images for target localization and classification by bats

    NASA Astrophysics Data System (ADS)

    Simmons, James A.

    1997-07-01

    Echolocating bats use sonar to guide interception of insects, recognize objects by shape, and even track prey in clutter. Broadcasts of the big brown bat are 0.5 to 20 ms FM signals in the 20-100 kHz ultrasonic band. Insects consist of several reflecting glints, each equivalent in cross- section to a small sphere of 2 mm to 2 cm radius, while clutter is typically composed of numerous glints distributed over a large volume. The bats' signals extend in space for many target lengths, while ka values for each glint are 0.5 to 30 across the broadcast band. Bats perceive acoustic images having echo delay as their primary dimension, and space is perceived in terms of the distribution of target glints in range. Range disparities between the ears provide two 'looks' at each target from slightly different locations as well as information about azimuth. The bats auditory system encodes the FM sweeps of broadcasts and echoes as linear-period spectrograms with integration-times of 300-400 micrometers . Bats nevertheless perceive individual glints in targets for echo-delay separations well inside the integration-time window. Deconvolution is achieved by spectrogram correlation in the time domain and spectral shape transformation in the frequency-domain, with all output evidently being displayed in the time domina. Neural responses in the bat's auditory system seem limited in time precision to 20-50 micrometers at best and 300 microsecond(s) to 3 ms in a broader sample, and stimulus phase is thought to be lost for frequencies above 1-3 kHz. Yet bats perceive echo delay with an accuracy of 10-15 ns and have two-echo resolution of about 2 microsecond(s) . Moreover, bats perceive echo phase-shifts as the correctly corresponding shifts in echo delay. Successive images are subtracted to enhance perception of shape from multiple 'looks', and echo phase is an integral part of this critical process. Utterly novel time-scale magnification appears in the bat's neural responses to

  20. Underwater Acoustic Localization and Tracking of Pacific Walruses in the Northeastern Chukchi Sea

    NASA Astrophysics Data System (ADS)

    Rideout, Brendan Pearce

    This thesis develops and demonstrates an approach for estimating the three-dimensional (3D) location of a vocalizing underwater marine mammal using acoustic arrival time measurements at three spatially separated receivers while providing rigorous location uncertainties. To properly account for uncertainty in the measurements of receiver parameters (e.g., 3D receiver locations and synchronization times) and environmental parameters (water depth and sound speed correction), these quantities are treated as unknowns constrained with prior estimates and prior uncertainties. While previous localization algorithms have solved for an unknown scaling factor on the prior uncertainties as part of the inversion, in this work unknown scaling factors on both the prior and arrival time uncertainties are estimated. Maximum a posteriori estimates for sound source locations and times, receiver parameters, and environmental parameters are calculated simultaneously. Posterior uncertainties for all unknowns are calculated and incorporate both arrival time and prior uncertainties. Simulation results demonstrated that, for the case considered here, linearization errors are generally small and that the lack of an accurate sound speed profile does not necessarily cause large uncertainties or biases in the estimated positions. The primary motivation for this work was to develop an algorithm for locating underwater Pacific walruses in the coastal waters around Alaska. In 2009, an array of approximately 40 underwater acoustic receivers was deployed in the northeastern Chukchi Sea (northwest of Alaska) from August to October to record the vocalizations of marine mammals including Pacific walruses and bowhead whales. Three of these receivers were placed in a triangular arrangement approximately 400 m apart near the Hanna Shoal (northwest of Wainwright, Alaska). A sequence of walrus knock vocalizations from this data set was processed using the localization algorithm developed in this thesis

  1. Military jet noise source imaging using multisource statistically optimized near-field acoustical holography.

    PubMed

    Wall, Alan T; Gee, Kent L; Neilsen, Tracianne B; McKinley, Richard L; James, Michael M

    2016-04-01

    The identification of acoustic sources is critical to targeted noise reduction efforts for jets on high-performance tactical aircraft. This paper describes the imaging of acoustic sources from a tactical jet using near-field acoustical holography techniques. The measurement consists of a series of scans over the hologram with a dense microphone array. Partial field decomposition methods are performed to generate coherent holograms. Numerical extrapolation of data beyond the measurement aperture mitigates artifacts near the aperture edges. A multisource equivalent wave model is used that includes the effects of the ground reflection on the measurement. Multisource statistically optimized near-field acoustical holography (M-SONAH) is used to reconstruct apparent source distributions between 20 and 1250 Hz at four engine powers. It is shown that M-SONAH produces accurate field reconstructions for both inward and outward propagation in the region spanned by the physical hologram measurement. Reconstructions across the set of engine powers and frequencies suggests that directivity depends mainly on estimated source location; sources farther downstream radiate at a higher angle relative to the inlet axis. At some frequencies and engine powers, reconstructed fields exhibit multiple radiation lobes originating from overlapped source regions, which is a phenomenon relatively recently reported for full-scale jets.

  2. Impulse source versus dodecahedral loudspeaker for measuring parameters derived from the impulse response in room acoustics.

    PubMed

    San Martín, Ricardo; Arana, Miguel; Machín, Jorge; Arregui, Abel

    2013-07-01

    This study investigates the performance of dodecahedral and impulse sources when measuring acoustic parameters in enclosures according to ISO 3382-1 [Acoustics-Measurement of room acoustic parameters. Part 1: Performance spaces (International Organization for Standardization, Geneva, Switzerland, 2009)]. In general, methods using speakers as a sound source are limited by their frequency response and directivity. On the other hand, getting impulse responses from impulse sources typically involves a lack of repeatability, and it is usually necessary to average several measurements for each position. Through experiments in different auditoriums that recreate typical situations in which the measurement standard is applied, it is found that using impulse sources leads to greater variation in the results, especially at low frequencies. However, this prevents subsequent dispersions due to variables that this technique does not require, such as the orientation of the emitting source. These dispersions may be relevant at high frequencies exceeding the established tolerance criteria for certain parameters. Finally, a new descriptor for dodecahedral sources reflecting the influence their lack of omnidirectionality produces on measuring acoustic parameters is proposed.

  3. A Deconvolution Approach for the Mapping of Acoustic Sources (DAMAS) Determined from Phased Microphone Arrays

    NASA Technical Reports Server (NTRS)

    Brooks, Thomas F.; Humphreys, William M., Jr.

    2004-01-01

    Current processing of acoustic array data is burdened with considerable uncertainty. This study reports an original methodology that serves to demystify array results, reduce misinterpretation, and accurately quantify position and strength of acoustic sources. Traditional array results represent noise sources that are convolved with array beamform response functions, which depend on array geometry, size (with respect to source position and distributions), and frequency. The Deconvolution Approach for the Mapping of Acoustic Sources (DAMAS) method removes beamforming characteristics from output presentations. A unique linear system of equations accounts for reciprocal influence at different locations over the array survey region. It makes no assumption beyond the traditional processing assumption of statistically independent noise sources. The full rank equations are solved with a new robust iterative method. DAMAS is quantitatively validated using archival data from a variety of prior high-lift airframe component noise studies, including flap edge/cove, trailing edge, leading edge, slat, and calibration sources. Presentations are explicit and straightforward, as the noise radiated from a region of interest is determined by simply summing the mean-squared values over that region. DAMAS can fully replace existing array processing and presentations methodology in most applications. It appears to dramatically increase the value of arrays to the field of experimental acoustics.

  4. A Deconvolution Approach for the Mapping of Acoustic Sources (DAMAS) Determined from Phased Microphone Arrays

    NASA Technical Reports Server (NTRS)

    Brooks, Thomas F.; Humphreys, William M.

    2006-01-01

    Current processing of acoustic array data is burdened with considerable uncertainty. This study reports an original methodology that serves to demystify array results, reduce misinterpretation, and accurately quantify position and strength of acoustic sources. Traditional array results represent noise sources that are convolved with array beamform response functions, which depend on array geometry, size (with respect to source position and distributions), and frequency. The Deconvolution Approach for the Mapping of Acoustic Sources (DAMAS) method removes beamforming characteristics from output presentations. A unique linear system of equations accounts for reciprocal influence at different locations over the array survey region. It makes no assumption beyond the traditional processing assumption of statistically independent noise sources. The full rank equations are solved with a new robust iterative method. DAMAS is quantitatively validated using archival data from a variety of prior high-lift airframe component noise studies, including flap edge/cove, trailing edge, leading edge, slat, and calibration sources. Presentations are explicit and straightforward, as the noise radiated from a region of interest is determined by simply summing the mean-squared values over that region. DAMAS can fully replace existing array processing and presentations methodology in most applications. It appears to dramatically increase the value of arrays to the field of experimental acoustics.

  5. Array Signal Processing for Source Localization and Digital Communication.

    NASA Astrophysics Data System (ADS)

    Song, Bong-Gee

    Array antennas are used in several areas such as sonar and digital communication. Although array patterns may be different depending on applications, they are used with a view to collecting more data and obtaining better results. We first consider a passive sonar system in random environments where the index of refraction is random. While source localization problems for deterministic environments are well studied, they require accurate propagation models which are not available in random environments. We extend the localization problems to random environments. It has been shown that methods developed for deterministic environments fail in random environments because of the stochastic nature of acoustic propagation. Therefore, we model observations as random, and use a statistical signal processing technique combined with physics. The statistical signal model is provided by physics either empirically or theoretically. The performance technique relies on the accuracy of the statistical models. We have applied the maximum likelihood method to angle of arrival estimation and range estimation problems. The Cramer-Rao lower bounds have been also derived to predict the estimation performance. Next, we use the array antennas for diversity combining equalization in digital communications. Spatial diversity equalization is used in two ways; to improve bit error rate or to improve the transmission rate. This is feasible by using more antennas at the receiver end. We apply Helstrom's saddle point integration method to multi -input multi-output communication systems and show that a factor of 3-4 of channel reuse is possible. It is also shown that the advantage is because of the diversity itself not because of more taps. We further improve the equalization performance by joint pre- and postfilter design. Two different methods have been proposed according to the prefilter type. Although the mean square error is not easy to minimize, appropriate methods have been adopted and show

  6. Use of acoustic intensity measurements in the characterization of jet noise sources

    NASA Astrophysics Data System (ADS)

    Musafir, R. E.; Slama, J. G.; Zindeluk, M.

    The usefulness of two-microphone acoustic-intensity (AI) measurements for characterizing the acoustic field of a jet flow is investigated by means of numerical simulations. The theoretical principles and data basis for the simulations are explained, and the intensity patterns generated by the simulation are presented graphically. It is found that the vector information in AI data from the near field are useful in understanding complex sources, but that far-field intensity charts cannot locate separate sources and may be misleading if not analyzed in terms of a sound physical model.

  7. Acoustic sources in the low Mach number turbulent boundary layer

    NASA Technical Reports Server (NTRS)

    Hardin, Jay C.

    1991-01-01

    The sources of sound production in a low Mach number turbulent boundary layer are examined. The sources are shown to be quadrupole in nature and to result from supersonically convecting wave-number components of the fluctuating Reynolds' normal stresses. The primary Tollmien-Schlichting instability of the boundary layer is found to radiate no sound. Analysis of various vortical phenomena suggests that the primary source is the process of formation of horseshoe vortices, with viscous sublayer bursts a possible secondary source.

  8. The Doppler Effect based acoustic source separation for a wayside train bearing monitoring system

    NASA Astrophysics Data System (ADS)

    Zhang, Haibin; Zhang, Shangbin; He, Qingbo; Kong, Fanrang

    2016-01-01

    Wayside acoustic condition monitoring and fault diagnosis for train bearings depend on acquired acoustic signals, which consist of mixed signals from different train bearings with obvious Doppler distortion as well as background noises. This study proposes a novel scheme to overcome the difficulties, especially the multi-source problem in wayside acoustic diagnosis system. In the method, a time-frequency data fusion (TFDF) strategy is applied to weaken the Heisenberg's uncertainty limit for a signal's time-frequency distribution (TFD) of high resolution. Due to the Doppler Effect, the signals from different bearings have different time centers even with the same frequency. A Doppler feature matching search (DFMS) algorithm is then put forward to locate the time centers of different bearings in the TFD spectrogram. With the determined time centers, time-frequency filters (TFF) are designed with thresholds to separate the acoustic signals in the time-frequency domain. Then the inverse STFT (ISTFT) is taken and the signals are recovered and filtered aiming at each sound source. Subsequently, a dynamical resampling method is utilized to remove the Doppler Effect. Finally, accurate diagnosis for train bearing faults can be achieved by applying conventional spectrum analysis techniques to the resampled data. The performance of the proposed method is verified by both simulated and experimental cases. It shows that it is effective to detect and diagnose multiple defective bearings even though they produce multi-source acoustic signals.

  9. Transient nearfield acoustic holography based on an interpolated time-domain equivalent source method.

    PubMed

    Zhang, Xiao-Zheng; Bi, Chuan-Xing; Zhang, Yong-Bin; Xu, Liang

    2011-09-01

    Transient nearfield acoustic holography based on an interpolated time-domain equivalent source method (ESM) is proposed to reconstruct transient acoustic fields directly in the time domain. Since the equivalent source strengths solved by the traditional time-domain ESM formulation cannot be used to reconstruct the pressure on the source surface directly, an interpolation function is introduced to develop an interpolated time-domain ESM formulation which permits one to deduce an iterative reconstruction process. As the reconstruction process is ill-conditioned and especially there exists a cumulative effect of errors, the Tikhonov regularization is used to stabilize the process. Numerical examples of reconstructing transient acoustic fields from a baffled planar piston, an impulsively accelerating sphere and a cube box, respectively, demonstrate that the proposed method not only can effectively reconstruct transient acoustic fields in the time domain, but also can visualize acoustic fields in the space domain. And, in the first numerical example, the cumulative effect of errors and the validity of using the Tikhonov regularization to suppress the errors are described.

  10. Localization of quenches and mechanical disturbances in the Mu2e transport solenoid prototype using acoustic emission technique

    DOE PAGES

    Marchevsky, M.; Ambrosio, G.; Lamm, M.; ...

    2016-02-12

    Acoustic emission (AE) detection is a noninvasive technique allowing the localization of the mechanical events and quenches in superconducting magnets. Application of the AE technique is especially advantageous in situations where magnet integrity can be jeopardized by the use of voltage taps or inductive pickup coils. As the prototype module of the transport solenoid (TS) for the Mu2e experiment at Fermilab represents such a special case, we have developed a dedicated six-channel AE detection system and accompanying software aimed at localizing mechanical events during the coil cold testing. The AE sensors based on transversely polarized piezoceramic washers combined with cryogenicmore » preamplifiers were mounted at the outer surface of the solenoid aluminum shell, with a 60° angular step around the circumference. Acoustic signals were simultaneously acquired at a rate of 500 kS/s, prefiltered and sorted based on their arrival time. Next, based on the arrival timing, angular and axial coordinates of the AE sources within the magnet structure were calculated. Furthermore, we present AE measurement results obtained during cooldown, spot heater firing, and spontaneous quenching of the Mu2e TS module prototype and discuss their relevance for mechanical stability assessment and quench localization.« less

  11. Localization of quenches and mechanical disturbances in the Mu2e transport solenoid prototype using acoustic emission technique

    SciTech Connect

    Marchevsky, M.; Ambrosio, G.; Lamm, M.; Tartaglia, M. A.; Lopes, M. L.

    2016-02-12

    Acoustic emission (AE) detection is a noninvasive technique allowing the localization of the mechanical events and quenches in superconducting magnets. Application of the AE technique is especially advantageous in situations where magnet integrity can be jeopardized by the use of voltage taps or inductive pickup coils. As the prototype module of the transport solenoid (TS) for the Mu2e experiment at Fermilab represents such a special case, we have developed a dedicated six-channel AE detection system and accompanying software aimed at localizing mechanical events during the coil cold testing. The AE sensors based on transversely polarized piezoceramic washers combined with cryogenic preamplifiers were mounted at the outer surface of the solenoid aluminum shell, with a 60° angular step around the circumference. Acoustic signals were simultaneously acquired at a rate of 500 kS/s, prefiltered and sorted based on their arrival time. Next, based on the arrival timing, angular and axial coordinates of the AE sources within the magnet structure were calculated. Furthermore, we present AE measurement results obtained during cooldown, spot heater firing, and spontaneous quenching of the Mu2e TS module prototype and discuss their relevance for mechanical stability assessment and quench localization.

  12. A method to determine the acoustical properties of locally and nonlocally reacting duct liners in grazing flow

    NASA Technical Reports Server (NTRS)

    Succi, G.

    1982-01-01

    The acoustical properties of locally and nonlocally reacting acoustical liners in grazing flow are described. The effect of mean flow and shear flow are considered as well as the application to rigid and limp bulk reacting materials. The axial wavenumber of the least attenuated mode in a flow duct is measured. The acoustical properties of duct liners is then deduced from the measured axial wavenumber and known flow profile and boundary conditions. This method is a natural extension of impedance-like measurements.

  13. Acoustic source characterization of impulsive Strombolian eruptions from the Mount Erebus lava lake

    NASA Astrophysics Data System (ADS)

    Johnson, Jeffrey; Aster, Richard; Jones, Kyle R.; Kyle, Philip; McIntosh, Bill

    2008-11-01

    We invert for acoustic source volume outflux and momentum imparted to the atmosphere using an infrasonic network distributed about the erupting lava lake at Mount Erebus, Ross Island, Antarctica. By modeling these relatively simple eruptions as monopole point sources we estimate explosively ejected gas volumes that range from 1,000 m 3 to 24,000 m 3 for 312 lava lake eruptions recorded between January 6 and April 13, 2006. Though these volumes are compatible with bubble volumes at rupture (as estimated from explosion video records), departures from isotropic radiation are evident in the recorded acoustic wavefield for many eruptions. A point-source acoustic dipole component with arbitrary axis orientation and strength provides precise fit to the recorded infrasound. This dipole source axis, corresponding to the axis of inferred short-duration material jetting, varies significantly between events. Physical interpretation of dipole orientation as being indicative of eruptive directivity is corroborated by directional emissions of ejecta observed in Erebus eruption video footage. Although three azimuthally distributed stations are insufficient to fully characterize the eruptive acoustic source we speculate that a monopole with a minor amount of oriented dipole radiation may reasonably model the primary features of the recorded infrasound for these eruptions.

  14. Acoustic emission non-destructive testing of structures using source location techniques.

    SciTech Connect

    Beattie, Alan G.

    2013-09-01

    The technology of acoustic emission (AE) testing has been advanced and used at Sandia for the past 40 years. AE has been used on structures including pressure vessels, fire bottles, wind turbines, gas wells, nuclear weapons, and solar collectors. This monograph begins with background topics in acoustics and instrumentation and then focuses on current acoustic emission technology. It covers the overall design and system setups for a test, with a wind turbine blade as the object. Test analysis is discussed with an emphasis on source location. Three test examples are presented, two on experimental wind turbine blades and one on aircraft fire extinguisher bottles. Finally, the code for a FORTRAN source location program is given as an example of a working analysis program. Throughout the document, the stress is on actual testing of real structures, not on laboratory experiments.

  15. Fly Ear Inspired Miniature Acoustic Sensors for Detection and Localization

    DTIC Science & Technology

    2011-07-31

    Journal of Biological Physics Research) 2) A. Lisiewshi, H. Liu , M. Yu, L. Currano, and D . Gee, “Fly-ear inspired micro-sensor for sound source...m Torsional spring k3 5.18 N/m Torsional dashpot c3 2.88×10-5 N s/m Separation of force locations d 1.2×10-3 m Tympanum area s 0.288×10-6 m2...Γ−−Ω + Ω ⎪ ⎪⎩ ⎭ ⎩ ⎭ ⎩ ⎭ , (5) where 2 1 2 2 2 1 2 , 2 sin , 2 j d j ξ φ πχ θ χ η ηξ λ −Ω + Ω Γ = = = −Ω + Ω

  16. Elastic parabolic equation solutions for underwater acoustic problems using seismic sources.

    PubMed

    Frank, Scott D; Odom, Robert I; Collis, Jon M

    2013-03-01

    Several problems of current interest involve elastic bottom range-dependent ocean environments with buried or earthquake-type sources, specifically oceanic T-wave propagation studies and interface wave related analyses. Additionally, observed deep shadow-zone arrivals are not predicted by ray theoretic methods, and attempts to model them with fluid-bottom parabolic equation solutions suggest that it may be necessary to account for elastic bottom interactions. In order to study energy conversion between elastic and acoustic waves, current elastic parabolic equation solutions must be modified to allow for seismic starting fields for underwater acoustic propagation environments. Two types of elastic self-starter are presented. An explosive-type source is implemented using a compressional self-starter and the resulting acoustic field is consistent with benchmark solutions. A shear wave self-starter is implemented and shown to generate transmission loss levels consistent with the explosive source. Source fields can be combined to generate starting fields for source types such as explosions, earthquakes, or pile driving. Examples demonstrate the use of source fields for shallow sources or deep ocean-bottom earthquake sources, where down slope conversion, a known T-wave generation mechanism, is modeled. Self-starters are interpreted in the context of the seismic moment tensor.

  17. Acoustics

    NASA Technical Reports Server (NTRS)

    Goodman, Jerry R.; Grosveld, Ferdinand

    2007-01-01

    The acoustics environment in space operations is important to maintain at manageable levels so that the crewperson can remain safe, functional, effective, and reasonably comfortable. High acoustic levels can produce temporary or permanent hearing loss, or cause other physiological symptoms such as auditory pain, headaches, discomfort, strain in the vocal cords, or fatigue. Noise is defined as undesirable sound. Excessive noise may result in psychological effects such as irritability, inability to concentrate, decrease in productivity, annoyance, errors in judgment, and distraction. A noisy environment can also result in the inability to sleep, or sleep well. Elevated noise levels can affect the ability to communicate, understand what is being said, hear what is going on in the environment, degrade crew performance and operations, and create habitability concerns. Superfluous noise emissions can also create the inability to hear alarms or other important auditory cues such as an equipment malfunctioning. Recent space flight experience, evaluations of the requirements in crew habitable areas, and lessons learned (Goodman 2003; Allen and Goodman 2003; Pilkinton 2003; Grosveld et al. 2003) show the importance of maintaining an acceptable acoustics environment. This is best accomplished by having a high-quality set of limits/requirements early in the program, the "designing in" of acoustics in the development of hardware and systems, and by monitoring, testing and verifying the levels to ensure that they are acceptable.

  18. Lamb waves from airborne explosion sources: Viscous effects and comparisons to ducted acoustic arrivals

    SciTech Connect

    Revelle, D.O.; Whitaker, R.W.

    1996-12-31

    Observations of large explosions in the atmosphere at long range are dominated by a leading pulse of large amplitude and long period that is often followed by a series of higher frequency impulses usually of smaller amplitude. This description can be interpreted using linearized acoustic-gravity wave theory in terms of a Lamb wave arrival followed by ducted acoustic and/or gravity waves. This pattern of arrivals is not the same at all ranges nor is it independent of the source energy or of the altitude of the source. Earlier, Pierce, using an isothermal, windless atmospheric model, theoretically formulated the distances beyond which the Lamb wave would just be discernible and also where it would dominate the arriving signals for a specified explosion source. In this work the authors have evaluated these distances for the cases of both an inviscid and a viscous fluid for the source energies of interest to the CTBT (Comprehensive Test Ban Treaty) R and D work at Los Alamos. Although the inviscid results are analytic, the fully viscous solutions are iterative. For the inviscid solutions, the authors find that the Lamb wave domination distance is proportional to wave frequency at frequencies large with respect to the acoustic waveguide cut-off frequency. Under similar conditions they also find that the computed distances are linearly proportional to the source height. At 1 Hz for example, the Lamb wave must propagate about 200 km before having a significant amplitude. For a viscous fluid they found slight increases in the distances compared to an inviscid fluid with the lower frequencies, near the acoustic cut-off frequency, exhibiting the greatest changes. During the period from 1981--1994 at Los Alamos, they have also observed infrasound from eight point source, near-surface ANFO explosions at White Sands Missile Range events even though the ducted acoustic waves were observed. In this work, they will compare the current theory against some of these observations.

  19. Numerical investigation and electro-acoustic modeling of measurement methods for the in-duct acoustical source parameters.

    PubMed

    Jang, Seung-Ho; Ih, Jeong-Guon

    2003-02-01

    It is known that the direct method yields different results from the indirect (or load) method in measuring the in-duct acoustic source parameters of fluid machines. The load method usually comes up with a negative source resistance, although a fairly accurate prediction of radiated noise can be obtained from any method. This study is focused on the effect of the time-varying nature of fluid machines on the output results of two typical measurement methods. For this purpose, a simplified fluid machine consisting of a reservoir, a valve, and an exhaust pipe is considered as representing a typical periodic, time-varying system and the measurement situations are simulated by using the method of characteristics. The equivalent circuits for such simulations are also analyzed by considering the system as having a linear time-varying source. It is found that the results from the load method are quite sensitive to the change of cylinder pressure or valve profile, in contrast to those from the direct method. In the load method, the source admittance turns out to be predominantly dependent on the valve admittance at the calculation frequency as well as the valve and load admittances at other frequencies. In the direct method, however, the source resistance is always positive and the source admittance depends mainly upon the zeroth order of valve admittance.

  20. Acoustic time delay estimation and sensor network self-localization: Experimental results

    NASA Astrophysics Data System (ADS)

    Ash, Joshua N.; Moses, Randolph L.

    2005-08-01

    Experimental results are presented on propagation, coherence, and time-delay estimation (TDE) from a microphone array in an outdoor aeroacoustic environment. The primary goal is to understand the achievable accuracy of acoustic TDE using low-cost, commercial off-the-shelf (COTS) speakers and microphones. In addition, through the use of modulated pseudo-noise sequences, the experiment seeks to provide an empirical understanding of the effects of center frequency, bandwidth, and signal duration on TDE effectiveness and compares this to the theoretical expectations established by the Weiss-Weinstein lower bound. Finally, sensor network self-localization is performed using a maximum likelihood estimator and the time-delay estimates. Experimental network localization error is presented as a function of the acoustic calibration signal parameters.

  1. Large-region acoustic source mapping using a movable array and sparse covariance fitting.

    PubMed

    Zhao, Shengkui; Tuna, Cagdas; Nguyen, Thi Ngoc Tho; Jones, Douglas L

    2017-01-01

    Large-region acoustic source mapping is important for city-scale noise monitoring. Approaches using a single-position measurement scheme to scan large regions using small arrays cannot provide clean acoustic source maps, while deploying large arrays spanning the entire region of interest is prohibitively expensive. A multiple-position measurement scheme is applied to scan large regions at multiple spatial positions using a movable array of small size. Based on the multiple-position measurement scheme, a sparse-constrained multiple-position vectorized covariance matrix fitting approach is presented. In the proposed approach, the overall sample covariance matrix of the incoherent virtual array is first estimated using the multiple-position array data and then vectorized using the Khatri-Rao (KR) product. A linear model is then constructed for fitting the vectorized covariance matrix and a sparse-constrained reconstruction algorithm is proposed for recovering source powers from the model. The user parameter settings are discussed. The proposed approach is tested on a 30 m × 40 m region and a 60 m × 40 m region using simulated and measured data. Much cleaner acoustic source maps and lower sound pressure level errors are obtained compared to the beamforming approaches and the previous sparse approach [Zhao, Tuna, Nguyen, and Jones, Proc. IEEE Intl. Conf. on Acoustics, Speech and Signal Processing (ICASSP) (2016)].

  2. On Acoustic Source Specification for Rotor-Stator Interaction Noise Prediction

    NASA Technical Reports Server (NTRS)

    Nark, Douglas M.; Envia, Edmane; Burley, Caesy L.

    2010-01-01

    This paper describes the use of measured source data to assess the effects of acoustic source specification on rotor-stator interaction noise predictions. Specifically, the acoustic propagation and radiation portions of a recently developed coupled computational approach are used to predict tonal rotor-stator interaction noise from a benchmark configuration. In addition to the use of full measured data, randomization of source mode relative phases is also considered for specification of the acoustic source within the computational approach. Comparisons with sideline noise measurements are performed to investigate the effects of various source descriptions on both inlet and exhaust predictions. The inclusion of additional modal source content is shown to have a much greater influence on the inlet results. Reasonable agreement between predicted and measured levels is achieved for the inlet, as well as the exhaust when shear layer effects are taken into account. For the number of trials considered, phase randomized predictions follow statistical distributions similar to those found in previous statistical source investigations. The shape of the predicted directivity pattern relative to measurements also improved with phase randomization, having predicted levels generally within one standard deviation of the measured levels.

  3. Advanced Methods for Passive Acoustic Detection, Classification, and Localization of Marine Mammals

    DTIC Science & Technology

    2014-09-30

    in the case of aerial surveys, significantly dangerous . In both the areas critical to the Navy and in other areas critical to marine mammals, PAM... animal calls via hyperbolic methods, Journal of the Acoustical Society of merica 97, 3352–3353 (1995). Morrissey, R. P., J. Ward, N. DiMarzio, S... animal as it follows its prey just prior to capture. Figure 6: Example of tracking highly ambiguous localizations. 15 Figure 7

  4. Photothermal measurements using a localized excitation source

    NASA Astrophysics Data System (ADS)

    Aamodt, L. C.; Murphy, J. C.

    1981-08-01

    Optical-beam deflection (OBD) photothermal imaging uses spatially localized excitation to observe spatial variations in the sample surface temperature. This paper analyzes OBD signals produced by localized excitation in terms of three-dimensional thermal diffusion in the sample and in the fluid region in contact with the sample. The dependence of the signals on the local optical absorption coefficient, on gas/sample thermal properties, on modulation frequency, and on the probe/excitation beam radii are discussed with special attention being given to determining the spatial resolution possible for OBD imaging. A criterion for photothermal ''saturation'' appropriate to localized optical absorption is developed. Finally, a new variant of the OBD technique is introduced, which is especially adapted to studying optical and thermal boundaries in the plane of the sample. Some comparisons between theory and experiment are provided which illustrate transverse thermal diffusion.

  5. Mesospheric airglow and ionospheric responses to upward-propagating acoustic and gravity waves above tropospheric sources

    NASA Astrophysics Data System (ADS)

    Snively, J. B.; Zettergren, M. D.

    2013-12-01

    The existence of acoustic waves (periods ~1-5 minutes) and gravity waves (periods >4 minutes) in the ionosphere above active tropospheric convection has been appreciated for more than forty years [e.g., Georges, Rev. Geophys. and Space Phys., 11(3), 1973]. Likewise, gravity waves exhibiting cylindrical symmetry and curvature of phase fronts have been observed via imaging of the mesospheric airglow layers [e.g., Yue et al., JGR, 118(8), 2013], clearly associated with tropospheric convection; gravity wave signatures have also recently been detected above convection in ionospheric total electron content (TEC) measurements [Lay et al., GRL, 40, 2013]. We here investigate the observable features of acoustic waves, and their relationship to upward-propagating gravity waves generated by the same sources, as they arrive in the mesosphere, lower-thermosphere, and ionosphere (MLTI). Numerical simulations using a nonlinear, cylindrically-axisymmetric, compressible atmospheric dynamics model confirm that acoustic waves generated by transient tropospheric sources may produce "concentric ring" signatures in the mesospheric hydroxyl airglow layer that precede the arrival of gravity waves. As amplitudes increase with altitude and decreasing neutral density, the modeled acoustic waves achieve temperature and vertical wind perturbations on the order of ~10s of Kelvin and m/s throughout the E- and F-region. Using a coupled multi-fluid ionospheric model [Zettergren and Semeter, JGR, 117(A6), 2012], extended for low-latitudes using a 2D dipole magnetic field coordinate system, we investigate acoustic wave perturbations to the ionosphere in the meridional direction. Resulting perturbations are predicted to be detectable by ground-based radar and GPS TEC measurements, or via in situ instrumentation. Although transient and short-lived, the acoustic waves' airglow and ionospheric signatures are likely to in some cases be observable, and may provide important insight into the regional

  6. MEASUREMENTS OF ABSORPTION, EMISSIVITY REDUCTION, AND LOCAL SUPPRESSION OF SOLAR ACOUSTIC WAVES IN SUNSPOTS

    SciTech Connect

    Chou, D.-Y.; Liang, Z.-C.; Yang, M.-H.; Zhao Hui; Sun, M.-T.

    2009-05-01

    The power of solar acoustic waves in magnetic regions is lower relative to the quiet Sun. Absorption, emissivity reduction, and local suppression of acoustic waves contribute to the observed power reduction in magnetic regions. We propose a model for the energy budget of acoustic waves propagating through a sunspot in terms of the coefficients of absorption, emissivity reduction, and local suppression of the sunspot. Using the property that the waves emitted along the wave path between two points have no correlation with the signal at the starting point, we can separate the effects of these three mechanisms. Applying this method to helioseismic data filtered with direction and phase-velocity filters, we measure the fraction of the contribution of each mechanism to the power deficit in the umbra of the leading sunspot of NOAA 9057. The contribution from absorption is 23.3 {+-} 1.3%, emissivity reduction 8.2 {+-} 1.4%, and local suppression 68.5 {+-} 1.5%, for a wave packet corresponding to a phase velocity of 6.98 x 10{sup -5} rad s{sup -1}.

  7. Embedded Acoustic Sensor Array for Engine Fan Noise Source Diagnostic Test: Feasibility of Noise Telemetry via Wireless Smart Sensors

    NASA Technical Reports Server (NTRS)

    Zaman, Afroz; Bauch, Matthew; Raible, Daniel

    2011-01-01

    Aircraft engines have evolved into a highly complex system to meet ever-increasing demands. The evolution of engine technologies has primarily been driven by fuel efficiency, reliability, as well as engine noise concerns. One of the sources of engine noise is pressure fluctuations that are induced on the stator vanes. These local pressure fluctuations, once produced, propagate and coalesce with the pressure waves originating elsewhere on the stator to form a spinning pressure pattern. Depending on the duct geometry, air flow, and frequency of fluctuations, these spinning pressure patterns are self-sustaining and result in noise which eventually radiate to the far-field from engine. To investigate the nature of vane pressure fluctuations and the resulting engine noise, unsteady pressure signatures from an array of embedded acoustic sensors are recorded as a part of vane noise source diagnostics. Output time signatures from these sensors are routed to a control and data processing station adding complexity to the system and cable loss to the measured signal. "Smart" wireless sensors have data processing capability at the sensor locations which further increases the potential of wireless sensors. Smart sensors can process measured data locally and transmit only the important information through wireless communication. The aim of this wireless noise telemetry task was to demonstrate a single acoustic sensor wireless link for unsteady pressure measurement, and thus, establish the feasibility of distributed smart sensors scheme for aircraft engine vane surface unsteady pressure data transmission and characterization.

  8. Exploration of amphoteric and negative refraction imaging of acoustic sources via active metamaterials

    NASA Astrophysics Data System (ADS)

    Wen, Jihong; Shen, Huijie; Yu, Dianlong; Wen, Xisen

    2013-11-01

    The present work describes the design of three flat superlens structures for acoustic source imaging and explores an active acoustic metamaterial (AAM) to realise such a design. The first two lenses are constructed via the coordinate transform method (CTM), and their constituent materials are anisotropic. The third lens consists of a material that has both a negative density and a negative bulk modulus. In these lenses, the quality of the images is “clear” and sharp; thus, the diffraction limit of classical lenses is overcome. Finally, a multi-control strategy is developed to achieve the desired parameters and to eliminate coupling effects in the AAM.

  9. Partial discharge localization in power transformers based on the sequential quadratic programming-genetic algorithm adopting acoustic emission techniques

    NASA Astrophysics Data System (ADS)

    Liu, Hua-Long; Liu, Hua-Dong

    2014-10-01

    Partial discharge (PD) in power transformers is one of the prime reasons resulting in insulation degradation and power faults. Hence, it is of great importance to study the techniques of the detection and localization of PD in theory and practice. The detection and localization of PD employing acoustic emission (AE) techniques, as a kind of non-destructive testing, plus due to the advantages of powerful capability of locating and high precision, have been paid more and more attention. The localization algorithm is the key factor to decide the localization accuracy in AE localization of PD. Many kinds of localization algorithms exist for the PD source localization adopting AE techniques including intelligent and non-intelligent algorithms. However, the existed algorithms possess some defects such as the premature convergence phenomenon, poor local optimization ability and unsuitability for the field applications. To overcome the poor local optimization ability and easily caused premature convergence phenomenon of the fundamental genetic algorithm (GA), a new kind of improved GA is proposed, namely the sequence quadratic programming-genetic algorithm (SQP-GA). For the hybrid optimization algorithm, SQP-GA, the sequence quadratic programming (SQP) algorithm which is used as a basic operator is integrated into the fundamental GA, so the local searching ability of the fundamental GA is improved effectively and the premature convergence phenomenon is overcome. Experimental results of the numerical simulations of benchmark functions show that the hybrid optimization algorithm, SQP-GA, is better than the fundamental GA in the convergence speed and optimization precision, and the proposed algorithm in this paper has outstanding optimization effect. At the same time, the presented SQP-GA in the paper is applied to solve the ultrasonic localization problem of PD in transformers, then the ultrasonic localization method of PD in transformers based on the SQP-GA is proposed. And

  10. Localization of a sound source in a noisy environment by hyperbolic curves in quefrency domain

    NASA Astrophysics Data System (ADS)

    Park, Choon-Su; Jeon, Jong-Hoon; Kim, Yang-Hann

    2014-10-01

    Time Difference of Arrivals (TDOAs) of sound waves between microphones have to do with source localization. How well a sound source can be localized depends on how precisely the TDOAs are estimated. Although many ways to estimate TDOA have been proposed, noise always prevents us from finding exact time differences more or less in practice. Cross correlation has been the most prevalent way to estimate time difference, and various cross correlations robust to noise have also been developed. Nevertheless, much remains to be done for exact TDOA estimation under noisy environments. A novel way to show time delays in quefrency domain by removing noise has been proposed, which is called Minimum Variance Cepstrum (MVC). In particular, it is practically desirable to visualize source position with as few number of sensors as possible. Once TDOAs are obtained precisely, it is enough to show the source position in a 2-D plane using hyperbolic curves with only three sensors. In this work, the MVC is adopted to accurately estimate TDOAs under noise, and a way to localize an acoustic source by intersecting hyperbolic curves using the TDOAs between three microphones is proposed. Numerical simulations on TDOA estimation and source localization with white Gaussian noise demonstrated that the proposed method worked well under the noisy environment, and we compared the results with those of other old but well-established cross correlation estimators. In addition, experiments to detect a leaking point on a pipe successfully showed where the leak sound was generated.

  11. Acoustic noise associated with the MOD-1 wind turbine: its source, impact, and control

    SciTech Connect

    Kelley, N.D.; McKenna, H.E.; Hemphill, R.R.; Etter, C.L.; Garrelts, R.L.; Linn, N.C.

    1985-02-01

    This report summarizes extensive research by staff of the Solar Energy Research Institute and its subcontractors conducted to establish the origin and possible amelioration of acoustic disturbances associated with the operation of the DOE/NASA MOD-1 wind turbine installed in 1979 near Boone, North Carolina. Results have shown that the source of this acoustic annoyance was the transient, unsteady aerodynamic lift imparted to the turbine blades as they passed through the lee wakes of the large, cylindrical tower supports. Nearby residents were annoyed by the low-frequency, acoustic impulses propagated into the structures in which the complainants lived. The situation was aggravated further by a complex sound propagation process controlled by terrain and atmospheric focusing. Several techniques for reducing the abrupt, unsteady blade load transients were researched and are discussed in the report.

  12. An evaluation of differences due to changing source directivity in room acoustic computer modeling

    NASA Astrophysics Data System (ADS)

    Vigeant, Michelle C.; Wang, Lily M.

    2001-05-01

    This project examines the effects of changing source directivity in room acoustic computer models on objective parameters and subjective perception. Acoustic parameters and auralizations calculated from omnidirectional versus directional sources were compared. Three realistic directional sources were used, measured in a limited number of octave bands from a piano, singing voice, and violin. A highly directional source that beams only within a sixteenth-tant of a sphere was also tested. Objectively, there were differences of 5% or more in reverberation time (RT) between the realistic directional and omnidirectional sources. Between the beaming directional and omnidirectional sources, differences in clarity were close to the just-noticeable-difference (jnd) criterion of 1 dB. Subjectively, participants had great difficulty distinguishing between the realistic and omnidirectional sources; very few could discern the differences in RTs. However, a larger percentage (32% vs 20%) could differentiate between the beaming and omnidirectional sources, as well as the respective differences in clarity. Further studies of the objective results from different beaming sources have been pursued. The direction of the beaming source in the room is changed, as well as the beamwidth. The objective results are analyzed to determine if differences fall within the jnd of sound-pressure level, RT, and clarity.

  13. Flux projection beamforming for monochromatic source localization in enclosed space.

    PubMed

    Li, Xiaolei; Yu, Gaokun; Wang, Ning; Gao, Dazhi; Wang, Haozhong

    2017-01-01

    Monochromatic sound source localization becomes difficult in enclosed space. According to the reciprocity theorem, a self-consistent method of source localization in enclosed space, referred to as the flux projection beamforming, is proposed, only using the measurement of the sound pressure and normal velocity on the closed boundary at a single frequency. Its validity is examined both by experiment and simulation.

  14. Acoustic Remote Sensing

    NASA Astrophysics Data System (ADS)

    Dowling, David R.; Sabra, Karim G.

    2015-01-01

    Acoustic waves carry information about their source and collect information about their environment as they propagate. This article reviews how these information-carrying and -collecting features of acoustic waves that travel through fluids can be exploited for remote sensing. In nearly all cases, modern acoustic remote sensing involves array-recorded sounds and array signal processing to recover multidimensional results. The application realm for acoustic remote sensing spans an impressive range of signal frequencies (10-2 to 107 Hz) and distances (10-2 to 107 m) and involves biomedical ultrasound imaging, nondestructive evaluation, oil and gas exploration, military systems, and Nuclear Test Ban Treaty monitoring. In the past two decades, approaches have been developed to robustly localize remote sources; remove noise and multipath distortion from recorded signals; and determine the acoustic characteristics of the environment through which the sound waves have traveled, even when the recorded sounds originate from uncooperative sources or are merely ambient noise.

  15. Electromagnetic acoustic source (EMAS) for generating shock waves and cavitation in mercury

    NASA Astrophysics Data System (ADS)

    Wang, Qi

    In the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory a vessel of liquid mercury is subjected to a proton beam. The resulting nuclear interaction produces neutrons that can be used for materials research, among other things, but also launches acoustic waves with pressures in excess of 10 MPa. The acoustic waves have high enough tensile stress to generate cavitation in the mercury which results in erosion to the steel walls of the vessel. In order to study the cavitation erosion and develop mitigation schemes it would be convenient to have a way of generating similar pressures and cavitation in mercury, without the radiation concerns associated with a proton beam. Here an electromagnetic acoustic source (EMAS) has been developed which consisted of a coil placed close to a metal plate which is in turn is in contact with a fluid. The source is driven by discharging a capacitor through the coil and results in a repulsive force on the plate launching acoustic waves in the fluid. A theoretical model is presented to predict the acoustic field from the EMAS and compares favorably with measurements made in water. The pressure from the EMAS was reported as a function of capacitance, charging voltage, number of coils, mylar thickness, and properties of the plates. The properties that resulted in the highest pressure were employed for experiments in mercury and a maximum pressure recorded was 7.1 MPa. Cavitation was assessed in water and mercury by high speed camera and by detecting acoustic emissions. Bubble clouds with lifetimes on the order of 100 µs were observed in water and on the order of 600 µs in mercury. Based on acoustic emissions the bubble radius in mercury was estimated to be 0.98 mm. Experiments to produce damage to a stainless steel plate in mercury resulted in a minimal effect after 2000 shock waves at a rate of 0.33 Hz - likely because the pressure amplitude was not high enough. In order to replicate the conditions in the SNS it is

  16. Source identification in acoustics and structural mechanics using Sierra/SD.

    SciTech Connect

    Walsh, Timothy Francis; Aquino, Wilkins; Ross, Michael

    2013-03-01

    In this report we derive both time and frequency-domain methods for inverse identification of sources in elastodynamics and acoustics. The inverse/design problem is cast in a PDE-constrained optimization framework with efficient computation of gradients using the adjoint method. The implementation of source inversion in Sierra/SD is described, and results from both time and frequency domain source inversion are compared to actual experimental data for a weapon store used in captive carry on a military aircraft. The inverse methodology is advantageous in that it provides a method for creating ground based acoustic and vibration tests that can reduce the actual number of flight tests, and thus, saving costs and time for the program.

  17. An eighth-scale speech source for subjective assessments in acoustic models

    NASA Astrophysics Data System (ADS)

    Orlowski, R. J.

    1981-08-01

    The design of a source is described which is suitable for making speech recordings in eighth-scale acoustic models of auditoria. An attempt was made to match the directionality of the source with the directionality of the human voice using data reported in the literature. A narrow aperture was required for the design which was provided by mounting an inverted conical horn over the diaphragm of a high frequency loudspeaker. Resonance problems were encountered with the use of a horn and a description is given of the electronic techniques adopted to minimize the effect of these resonances. Subjective and objective assessments on the completed speech source have proved satisfactory. It has been used in a modelling exercise concerned with the acoustic design of a theatre with a thrust-type stage.

  18. Sound source localization identification accuracy: Level and duration dependencies.

    PubMed

    Yost, William A

    2016-07-01

    Sound source localization accuracy for noises was measured for sources in the front azimuthal open field mainly as a function of overall noise level and duration. An identification procedure was used in which listeners identify which loudspeakers presented a sound. Noises were filtered and differed in bandwidth and center frequency. Sound source localization accuracy depended on the bandwidth of the stimuli, and for the narrow bandwidths, accuracy depended on the filter's center frequency. Sound source localization accuracy did not depend on overall level or duration.

  19. Action Enhances Acoustic Cues for 3-D Target Localization by Echolocating Bats.

    PubMed

    Wohlgemuth, Melville J; Kothari, Ninad B; Moss, Cynthia F

    2016-09-01

    Under natural conditions, animals encounter a barrage of sensory information from which they must select and interpret biologically relevant signals. Active sensing can facilitate this process by engaging motor systems in the sampling of sensory information. The echolocating bat serves as an excellent model to investigate the coupling between action and sensing because it adaptively controls both the acoustic signals used to probe the environment and movements to receive echoes at the auditory periphery. We report here that the echolocating bat controls the features of its sonar vocalizations in tandem with the positioning of the outer ears to maximize acoustic cues for target detection and localization. The bat's adaptive control of sonar vocalizations and ear positioning occurs on a millisecond timescale to capture spatial information from arriving echoes, as well as on a longer timescale to track target movement. Our results demonstrate that purposeful control over sonar sound production and reception can serve to improve acoustic cues for localization tasks. This finding also highlights the general importance of movement to sensory processing across animal species. Finally, our discoveries point to important parallels between spatial perception by echolocation and vision.

  20. Action Enhances Acoustic Cues for 3-D Target Localization by Echolocating Bats

    PubMed Central

    Wohlgemuth, Melville J.

    2016-01-01

    Under natural conditions, animals encounter a barrage of sensory information from which they must select and interpret biologically relevant signals. Active sensing can facilitate this process by engaging motor systems in the sampling of sensory information. The echolocating bat serves as an excellent model to investigate the coupling between action and sensing because it adaptively controls both the acoustic signals used to probe the environment and movements to receive echoes at the auditory periphery. We report here that the echolocating bat controls the features of its sonar vocalizations in tandem with the positioning of the outer ears to maximize acoustic cues for target detection and localization. The bat’s adaptive control of sonar vocalizations and ear positioning occurs on a millisecond timescale to capture spatial information from arriving echoes, as well as on a longer timescale to track target movement. Our results demonstrate that purposeful control over sonar sound production and reception can serve to improve acoustic cues for localization tasks. This finding also highlights the general importance of movement to sensory processing across animal species. Finally, our discoveries point to important parallels between spatial perception by echolocation and vision. PMID:27608186

  1. The advantages of sound localization and speech perception of bilateral electric acoustic stimulation

    PubMed Central

    Moteki, Hideaki; Kitoh, Ryosuke; Tsukada, Keita; Iwasaki, Satoshi; Nishio, Shin-Ya

    2015-01-01

    Conclusion: Bilateral electric acoustic stimulation (EAS) effectively improved speech perception in noise and sound localization in patients with high-frequency hearing loss. Objective: To evaluate bilateral EAS efficacy of sound localization detection and speech perception in noise in two cases of high-frequency hearing loss. Methods: Two female patients, aged 38 and 45 years, respectively, received bilateral EAS sequentially. Pure-tone audiometry was performed preoperatively and postoperatively to evaluate the hearing preservation in the lower frequencies. Speech perception outcomes in quiet and noise and sound localization were assessed with unilateral and bilateral EAS. Results: Residual hearing in the lower frequencies was well preserved after insertion of a FLEX24 electrode (24 mm) using the round window approach. After bilateral EAS, speech perception improved in quiet and even more so in noise. In addition, the sound localization ability of both cases with bilateral EAS improved remarkably. PMID:25423260

  2. The application of inverse methods to spatially-distributed acoustic sources

    NASA Astrophysics Data System (ADS)

    Holland, K. R.; Nelson, P. A.

    2013-10-01

    Acoustic inverse methods, based on the output of an array of microphones, can be readily applied to the characterisation of acoustic sources that can be adequately modelled as a number of discrete monopoles. However, there are many situations, particularly in the fields of vibroacoustics and aeroacoustics, where the sources are distributed continuously in space over a finite area (or volume). This paper is concerned with the practical problem of applying inverse methods to such distributed source regions via the process of spatial sampling. The problem is first tackled using computer simulations of the errors associated with the application of spatial sampling to a wide range of source distributions. It is found that the spatial sampling criterion for minimising the errors in the radiated far-field reconstructed from the discretised source distributions is strongly dependent on acoustic wavelength but is only weakly dependent on the details of the source field itself. The results of the computer simulations are verified experimentally through the application of the inverse method to the sound field radiated by a ducted fan. The un-baffled fan source with the associated flow field is modelled as a set of equivalent monopole sources positioned on the baffled duct exit along with a matrix of complimentary non-flow Green functions. Successful application of the spatial sampling criterion involves careful frequency-dependent selection of source spacing, and results in the accurate reconstruction of the radiated sound field. Discussions of the conditioning of the Green function matrix which is inverted are included and it is shown that the spatial sampling criterion may be relaxed if conditioning techniques, such as regularisation, are applied to this matrix prior to inversion.

  3. LOCAL HELIOSEISMIC AND SPECTROSCOPIC ANALYSES OF INTERACTIONS BETWEEN ACOUSTIC WAVES AND A SUNSPOT

    SciTech Connect

    Rajaguru, S. P.; Wachter, R.; Couvidat, S.; Sankarasubramanian, K.

    2010-10-01

    Using a high-cadence imaging spectropolarimetric observation of a sunspot and its surroundings in magnetically sensitive (Fe I 6173 A) and insensitive (Fe I 7090 A) upper photospheric absorption lines, we map the instantaneous wave phases and helioseismic travel times as a function of observation height and inclination of magnetic field to the vertical. We confirm the magnetic inclination-angle-dependent transmission of incident acoustic waves into upward propagating waves and derive (1) proof that helioseismic travel times receive direction-dependent contributions from such waves and hence cause errors in conventional flow inferences, (2) evidences for acoustic wave sources beneath the umbral photosphere, and (3) significant differences in travel times measured from the chosen magnetically sensitive and insensitive spectral lines.

  4. Visualization of localized elastic properties in human tooth and jawbone as revealed by scanning acoustic microscopy.

    PubMed

    Shelke, Amit; Blume, Maximilian; Mularczyk, Michael; Landes, Constantin; Sader, Robert; Bereiter-Hahn, Jurgen

    2013-05-01

    The elastic properties of human canine and supporting alveolar bone are measured by the distribution of localized speed of sound using scanning acoustic microscopy. Methods for the dynamic, non-destructive diagnostics of dental hard tissues can have a key role in the early detection of demineralization processes and carious lesions, and they are supposed to open the possibility of early dental restorations. The localized distribution of the ultrasound velocity in canine tooth and alveolar bone was obtained using scanning acoustic microscopy with a 5- and 30-MHz transducer. An acoustic material signature curve signifies the interference of the waves and quantitatively maps the localized speed of sound in alveolar bone and the canine tooth. Seven samples, consisting of alveolar jawbone and tooth sliced along the coronally apical axis, were investigated. The average speed of sound was determined along three independent cross sections at enamel, dentin and cortical bone. The average speed of sound in enamel, bone and dentin was SD 3460 ± 193 m/s, 3232 ± 113 m/s and 2928 ± 106 m/s. The distribution of sound wave propagation reveals a decrease in sound speed from the peripheral parts within the enamel and dentin layers toward the proximal zones. These results prove the possibility of linking the elastic properties to different areas within the osseous and dental hard tissues and visualize them in an extremely high local resolution. The results serve as a basis for further study and substantiate the enormous potential of ultrasound based analysis in the field of dento-alveolar diagnosis.

  5. Optimizing stepwise rotation of dodecahedron sound source to improve the accuracy of room acoustic measures.

    PubMed

    Martellotta, Francesco

    2013-09-01

    Dodecahedron sound sources are widely used for acoustical measurement purposes as they produce a good approximation of omnidirectional radiation. Evidence shows that such an assumption is acceptable only in the low-frequency range (namely below 1 kHz), while at higher frequencies sound radiation is far from being uniform. In order to improve the accuracy of acoustical measurements obtained from dodecahedron sources, international standard ISO 3382 suggests an averaging of results after a source rotation. This paper investigates the effects of such rotations, both in terms of variations in acoustical parameters and spatial distribution of sound reflections. Taking advantage of a spherical microphone array, the different reflection patterns were mapped as a function of source rotation, showing that some reflections may be considerably attenuated for different aiming directions. This paper investigates the concept of averaging results while changing rotation angles and the minimum number of rotations required to improve the accuracy of the average value. Results show that averages of three measurements carried out at 30° angular steps are closer to actual values and show much less fluctuation. In addition, an averaging of the directional intensity components of the selected responses stabilizes the spatial distribution of the reflections.

  6. Fast implementation of sparse iterative covariance-based estimation for source localization.

    PubMed

    Zhang, Qilin; Abeida, Habti; Xue, Ming; Rowe, William; Li, Jian

    2012-02-01

    Fast implementations of the sparse iterative covariance-based estimation (SPICE) algorithm are presented for source localization with a uniform linear array (ULA). SPICE is a robust, user parameter-free, high-resolution, iterative, and globally convergent estimation algorithm for array processing. SPICE offers superior resolution and lower sidelobe levels for source localization compared to the conventional delay-and-sum beamforming method; however, a traditional SPICE implementation has a higher computational complexity (which is exacerbated in higher dimensional data). It is shown that the computational complexity of the SPICE algorithm can be mitigated by exploiting the Toeplitz structure of the array output covariance matrix using Gohberg-Semencul factorization. The SPICE algorithm is also extended to the acoustic vector-sensor ULA scenario with a specific nonuniform white noise assumption, and the fast implementation is developed based on the block Toeplitz properties of the array output covariance matrix. Finally, numerical simulations illustrate the computational gains of the proposed methods.

  7. Comparison and improvements of LCMV and MUSIC source localization techniques for use in real clinical environments.

    PubMed

    Hoyos, A de; Portillo, J; Portillo, I; Marín, P; Maestú, F; Poch-Broto, J; Ortiz, T; Hernando, Antonio

    2012-04-15

    The present work shows some improvements realized on practical aspects of the implementation of Singular Value Decomposition (SVD) methods to localize the sources of neural activity by means of magnetoencephalograph (MEG). Two methods have been improved and compared i.e. a spatial filter, the Linearly Constrained Minimum Variance Beamformer (LCMV) method, and a signal subspace method that is an implementation of the MUSIC (Multiple Signal Classification) method due to Mosher et al. (1992). It also shows the performance of both methods comparing three different averaging procedures. The influence of the correct selection of the noise subspace dimension has been analyzed. Using acoustic stimulus for real patient measurements, we discuss the relevant differences of both methods and propose an adequate strategy for future diagnosis based on correct source localization.

  8. Moving sound source localization based on triangulation method

    NASA Astrophysics Data System (ADS)

    Miao, Feng; Yang, Diange; Wen, Junjie; Lian, Xiaomin

    2016-12-01

    This study develops a sound source localization method that extends traditional triangulation to moving sources. First, the possible sound source locating plane is scanned. Secondly, for each hypothetical source location in this possible plane, the Doppler effect is removed through the integration of sound pressure. Taking advantage of the de-Dopplerized signals, the moving time difference of arrival (MTDOA) is calculated, and the sound source is located based on triangulation. Thirdly, the estimated sound source location is compared to the original hypothetical location and the deviations are recorded. Because the real sound source location leads to zero deviation, the sound source can be finally located by minimizing the deviation matrix. Simulations have shown the superiority of MTDOA method over traditional triangulation in case of moving sound sources. The MTDOA method can be used to locate moving sound sources with as high resolution as DAMAS beamforming, as shown in the experiments, offering thus a new method for locating moving sound sources.

  9. Numerical investigation of the seismo-acoustic responses of the Source Physics Experiment underground explosions

    NASA Astrophysics Data System (ADS)

    Antoun, T.; Ezzedine, S. M.; Vorobiev, O.; Glenn, L. A.

    2015-12-01

    We have performed three-dimensional high resolution simulations of underground explosions conducted recently in jointed rock outcrop as part of the Source Physics Experiment (SPE) being conducted at the Nevada National Security Site (NNSS). The main goal of the current study is to investigate the effects of the structural and geomechanical properties on the spall phenomena due to underground explosions and its subsequent effect on the seismo-acoustic signature at far distances. Two parametric studies have been undertaken to assess the impact of different 1) conceptual geological models including a single layer and two layers model, with and without joints and with and without varying geomechanical properties, and 2) depth of bursts of the explosions and explosion yields. Through these investigations we have explored not only the near-field response of the explosions but also the far-field responses of the seismic and the acoustic signatures. The near-field simulations were conducted using the Eulerian and Lagrangian codes, GEODYN and GEODYN -L, respectively, while the far-field seismic simulations were conducted using the elastic wave propagation code, WPP, and the acoustic response using the Kirchhoff-Helmholtz-Rayleigh time-dependent approximation code, KHR. Though a series of simulations, we have recorded the velocity field histories a) at the ground surface on an acoustic-source-patch for the acoustic simulations, and 2) on a seismic-source-box for the seismic simulations. We first analyzed the SPE3 and SPE4-prime experimental data and simulated results, and then simulated SPE5, SPE6/7 to anticipate their seismo-acoustic responses given conditions of uncertainties. SPE experiments were conducted in a granitic formation; we have extended the parametric study to include other geological settings such dolomite and alluvial formations. These parametric studies enabled us 1) investigating the geotechnical and geophysical key parameters that impact the seismo-acoustic

  10. A hybrid deconvolution approach to separate static and moving single-tone acoustic sources by phased microphone array measurements

    NASA Astrophysics Data System (ADS)

    Mo, Pinxi; Jiang, Weikang

    2017-02-01

    Beamforming approaches are developed to locate and quantify either static or moving acoustic sources by phased microphone array measurements. They would meet difficulties in mapping combined sources consisting of both static and moving sources. In this work, a hybrid deconvolution approach is proposed to separate static and moving single-tone sources. The approach is derived based on the source independence assumption as in the Deconvolution Approach for the Mapping of Acoustic Sources (DAMAS). The static beamforming and the moving beamforming are integrated to construct a linear matrix equation. The source distributions for the static sources and moving sources are simultaneously obtained by solving the equation. Numerical simulations and experiments were implemented on the combined sources with one static source and one rotating source. From the results, the hybrid deconvolution approach shows its effectiveness in separating the two sources, even with large source strength differences.

  11. MEMS directional acoustic sensor for locating sound sources

    NASA Astrophysics Data System (ADS)

    Karunasiri, Gamani; Alves, Fabio; Swan, William

    2016-02-01

    The conventional directional sound sensing systems employ an array of spatially separated microphones to achieve directional sensing. However, there are insects such as Ormia ochracea fly that can determine the direction of sound using a miniature hearing organ much smaller than the wavelength of sound it detects. The MEMS based sensors mimicking the fly's hearing system was fabricated using SOI substrate with 25 micrometer device layer. The sensor was designed to operate around 1.7 kHz, consists of two 1.2 mm × 1.2 mm wings connected in the middle by a 3 mm × 30 micrometer bridge. The entire structure is connected to the substrate by two torsional legs at the center. The sensor operates at its bending resonance frequency and has cosine directional characteristics similar to that of a pressure gradient microphone. For unambiguously determining the direction of sound, two sensors were assembled with a canted angle and outputs of the two sensors were processed to uniquely locate the bearing. At the bending resonant frequency (1.7 kHz) an output voltage of about 25 V/Pa was measured. The uncertainty of the bearing of sound ranged from less than 0.3 degrees close to the normal axis (0 degree) to 3 degrees at the limits of coverage (+/- 60 degrees) based on the 30 degree canted angle used. These findings indicate the potential use of a dual MEMS direction finding sensor assembly to locate sound sources with high accuracy.

  12. Localization of small arms fire using acoustic measurements of muzzle blast and/or ballistic shock wave arrivals.

    PubMed

    Lo, Kam W; Ferguson, Brian G

    2012-11-01

    The accurate localization of small arms fire using fixed acoustic sensors is considered. First, the conventional wavefront-curvature passive ranging method, which requires only differential time-of-arrival (DTOA) measurements of the muzzle blast wave to estimate the source position, is modified to account for sensor positions that are not strictly collinear (bowed array). Second, an existing single-sensor-node ballistic model-based localization method, which requires both DTOA and differential angle-of-arrival (DAOA) measurements of the muzzle blast wave and ballistic shock wave, is improved by replacing the basic external ballistics model (which describes the bullet's deceleration along its trajectory) with a more rigorous model and replacing the look-up table ranging procedure with a nonlinear (or polynomial) equation-based ranging procedure. Third, a new multiple-sensor-node ballistic model-based localization method, which requires only DTOA measurements of the ballistic shock wave to localize the point of fire, is formulated. The first method is applicable to situations when only the muzzle blast wave is received, whereas the third method applies when only the ballistic shock wave is received. The effectiveness of each of these methods is verified using an extensive set of real data recorded during a 7 day field experiment.

  13. Analysis and modeling of 255 source levels of merchant ships from an acoustic observatory along St. Lawrence Seaway.

    PubMed

    Simard, Yvan; Roy, Nathalie; Gervaise, Cédric; Giard, Samuel

    2016-09-01

    An ensemble of 255 spectral source levels (SSLs) of merchant ships were measured with an opportunistic seaway acoustic observatory adhering to the American National Standards Institute/Acoustical Society of America S12.64-2009 standard as much as possible, and deployed in the 350-m deep lower St. Lawrence Seaway in eastern Canada. The estimated SSLs were sensitive to the transmission loss model. The best transmission loss model at the three measuring depths was an empirical in situ function for ranges larger than 300 m, fused with estimates from a wavenumber integration propagation model fed with inverted local geoacoustic properties for [300 to 1 m] ranges. Resulting SSLs still showed a high variability. Uni- and multi-variate analyses showed weak intermingled relations with ship type, length, breadth, draught, speed, age, and other variables. Cluster analyses distinguished six different SSL patterns, which did not correspond to distinctive physical characteristics of the ships. The broadband [20-500 Hz] source levels varied by 30 dB or more within all four 50-m length categories. Common SSL models based on frequency, length and speed failed to unbiasly replicate the observations. This article presents unbiased SSL models that explain 75%-88% of the variance using frequency, ship speed, and three other automatic identification system ship characteristics.

  14. Improvement of the imaging of moving acoustic sources by the knowledge of their motion

    NASA Astrophysics Data System (ADS)

    Hay, J.

    1981-03-01

    An analytical and experimental study is presented showing that, due to a more precise definition of nonstationary noises of a certain class, and to the preprocessing of microphone signals (termed 'coherent dedopplerization'), one can obtain acoustic imaging for sources whose velocity is greater than may be processed by conventional methods without the generation of blurrs of the same order as the antenna field. A useful application of these techniques would be to two-dimensional antennas.

  15. Homogenization of locally resonant acoustic metamaterials towards an emergent enriched continuum.

    PubMed

    Sridhar, A; Kouznetsova, V G; Geers, M G D

    This contribution presents a novel homogenization technique for modeling heterogeneous materials with micro-inertia effects such as locally resonant acoustic metamaterials. Linear elastodynamics is used to model the micro and macro scale problems and an extended first order Computational Homogenization framework is used to establish the coupling. Craig Bampton Mode Synthesis is then applied to solve and eliminate the microscale problem, resulting in a compact closed form description of the microdynamics that accurately captures the Local Resonance phenomena. The resulting equations represent an enriched continuum in which additional kinematic degrees of freedom emerge to account for Local Resonance effects which would otherwise be absent in a classical continuum. Such an approach retains the accuracy and robustness offered by a standard Computational Homogenization implementation, whereby the problem and the computational time are reduced to the on-line solution of one scale only.

  16. Homogenization of locally resonant acoustic metamaterials towards an emergent enriched continuum

    NASA Astrophysics Data System (ADS)

    Sridhar, A.; Kouznetsova, V. G.; Geers, M. G. D.

    2016-03-01

    This contribution presents a novel homogenization technique for modeling heterogeneous materials with micro-inertia effects such as locally resonant acoustic metamaterials. Linear elastodynamics is used to model the micro and macro scale problems and an extended first order Computational Homogenization framework is used to establish the coupling. Craig Bampton Mode Synthesis is then applied to solve and eliminate the microscale problem, resulting in a compact closed form description of the microdynamics that accurately captures the Local Resonance phenomena. The resulting equations represent an enriched continuum in which additional kinematic degrees of freedom emerge to account for Local Resonance effects which would otherwise be absent in a classical continuum. Such an approach retains the accuracy and robustness offered by a standard Computational Homogenization implementation, whereby the problem and the computational time are reduced to the on-line solution of one scale only.

  17. Acoustical model of small calibre ballistic shock waves in air for automatic sniper localization applications

    NASA Astrophysics Data System (ADS)

    Aguilar, Juan R.; Salinas, Renato A.; Abidi, Mongi A.

    2007-04-01

    The phenomenon of ballistic shock wave emission by a small calibre projectile at supersonic speed is quite relevant in automatic sniper localization applications. When available, ballistic shock wave analysis makes possible the estimation of the main ballistic features of a gunfire event. The propagation of ballistic shock waves in air is a process which mainly involves nonlinear distortion, or steepening, and atmospheric absorption. Current ballistic shock waves propagation models used in automatic sniper localization systems only consider nonlinear distortion effects. This means that only the rates of change of shock peak pressure and the N-wave duration with distance are considered in the determination of the miss distance. In the present paper we present an improved acoustical model of small calibre ballistic shock wave propagation in air, intended to be used in acoustics-based automatic sniper localization applications. In our approach, we have considered nonlinear distortion, but additionally we have also introduced the effects of atmospheric sound absorption. Atmospheric absorption is implemented in the time domain in order to get faster calculation times than those computed in frequency domain. Furthermore, we take advantage of the fact that atmospheric absorption plays a fundamental role in the rise times of the shocks, and introduce the rate of change of the rise time with distance as a third parameter to be used in the determination of the miss distance. This lead us to a more accurate and robust estimation of the miss distance, and consequently of the projectile trajectory, and the spatial coordinates of the gunshot origin.

  18. Acoustic beam steering by light refraction: illustration with directivity patterns of a tilted volume photoacoustic source.

    PubMed

    Raetz, Samuel; Dehoux, Thomas; Perton, Mathieu; Audoin, Bertrand

    2013-12-01

    The symmetry of a thermoelastic source resulting from laser absorption can be broken when the direction of light propagation in an elastic half-space is inclined relatively to the surface. This leads to an asymmetry of the directivity patterns of both compressional and shear acoustic waves. In contrast to classical surface acoustic sources, the tunable volume source allows one to take advantage of the mode conversion at the surface to control the directivity of specific modes. Physical interpretations of the evolution of the directivity patterns with the increasing light angle of incidence and of the relations between the preferential directions of compressional- and shear-wave emission are proposed. In order to compare calculated directivity patterns with measurements of normal displacement amplitudes performed on plates, a procedure is proposed to transform the directivity patterns into pseudo-directivity patterns representative of the experimental conditions. The comparison of the theoretical with measured pseudo-directivity patterns demonstrates the ability to enhance bulk-wave amplitudes and to steer specific bulk acoustic modes by adequately tuning light refraction.

  19. Efficient source separation algorithms for acoustic fall detection using a microsoft kinect.

    PubMed

    Li, Yun; Ho, K C; Popescu, Mihail

    2014-03-01

    Falls have become a common health problem among older adults. In previous study, we proposed an acoustic fall detection system (acoustic FADE) that employed a microphone array and beamforming to provide automatic fall detection. However, the previous acoustic FADE had difficulties in detecting the fall signal in environments where interference comes from the fall direction, the number of interferences exceeds FADE's ability to handle or a fall is occluded. To address these issues, in this paper, we propose two blind source separation (BSS) methods for extracting the fall signal out of the interferences to improve the fall classification task. We first propose the single-channel BSS by using nonnegative matrix factorization (NMF) to automatically decompose the mixture into a linear combination of several basis components. Based on the distinct patterns of the bases of falls, we identify them efficiently and then construct the interference free fall signal. Next, we extend the single-channel BSS to the multichannel case through a joint NMF over all channels followed by a delay-and-sum beamformer for additional ambient noise reduction. In our experiments, we used the Microsoft Kinect to collect the acoustic data in real-home environments. The results show that in environments with high interference and background noise levels, the fall detection performance is significantly improved using the proposed BSS approaches.

  20. System and method for investigating sub-surface features of a rock formation with acoustic sources generating coded signals

    SciTech Connect

    Vu, Cung Khac; Nihei, Kurt; Johnson, Paul A; Guyer, Robert; Ten Cate, James A; Le Bas, Pierre-Yves; Larmat, Carene S

    2014-12-30

    A system and a method for investigating rock formations includes generating, by a first acoustic source, a first acoustic signal comprising a first plurality of pulses, each pulse including a first modulated signal at a central frequency; and generating, by a second acoustic source, a second acoustic signal comprising a second plurality of pulses. A receiver arranged within the borehole receives a detected signal including a signal being generated by a non-linear mixing process from the first-and-second acoustic signal in a non-linear mixing zone within the intersection volume. The method also includes-processing the received signal to extract the signal generated by the non-linear mixing process over noise or over signals generated by a linear interaction process, or both.

  1. Earthquake source localization from the analysis of coseismic landslide catalogues

    NASA Astrophysics Data System (ADS)

    Meunier, Patrick; Marc, Odin; Uchida, Taro; Gorum, Tolga; Robert, Alexandra; Hovius, Niels

    2014-05-01

    In the epicentral area of large continental earthquakes, the density of seismically induced landslides is controlled by the intensity of the ground shaking, the local gradient and lithology. Once corrected for the latter parameters, the decrease of the landslide density with distance to the seismic source in depth is adequately described by a wave attenuation law. This relationship allows to localize the earthquake source using coseismic landslide catalogues and a fault plane geometry [1]. We summarize the results of the inversions of the seismic sources of the 1999 Chichi, the 2004 Niigata, the 2008 Iwate and the 2008 Sichuan earthquakes and discuss the changes in the values of the parameters, namely the source term and the quality factor, with the local geology. [1] Meunier, P., Uchida, T., & Hovius, N. (2013). Landslide patterns reveal the sources of large earthquakes. Earth and Planetary Science Letters, 363, 27-33.

  2. Development of an impulsive noise source to study the acoustic reflection characteristics of hard-walled wind tunnels

    NASA Technical Reports Server (NTRS)

    Salikuddin, M.; Burrin, R. H.; Ahuja, K. K.; Bartel, H. W.

    1986-01-01

    Two impulsive sound sources, one using multiple acoustic drivers and the other using a spark discharge were developed to study the acoustic reflection characteristics of hard-walled wind tunnels, and the results of laboratory tests are presented. The analysis indicates that though the intensity of the pulse generated by the spark source was higher than that obtained from the acoustic source, the number of averages needed for a particular test may require an unacceptibly long tunnel-run time due to the low spark generation repeat rate because of capacitor charging time. The additional hardware problems associated with the longevity of electrodes and electrode holders in sustaining the impact of repetitive spark discharges, show the multidriver acoustic source to be more suitable for this application.

  3. Output of acoustical sources. [effects of structural elements and background flow on immobile multipolar point radiation

    NASA Technical Reports Server (NTRS)

    Levine, H.

    1980-01-01

    Acoustic radiation from a source, here viewed as an immobile point singularity with periodic strength and a given multipolar nature, is affected by the presence of nearly structural elements (e.g., rigid or impedance surfaces) as well as that of a background flow in the medium. An alternative to the conventional manner of calculating the net source output by integrating the energy flux over a distant control surface is described; this involves a direct evaluation of the secondary wavefunction at the position of the primary source and obviates the need for a (prospectively difficult) flux integration. Various full and half-planar surface configurations with an adjacent source are analyzed in detail, and the explicit results obtained, in particular, for the power factor of a dipole brings out a substantial rise in its output as the source nears the sharp edge of a half-plane.

  4. Identification of blasting sources in the Dobrogea seismogenic region, Romania using seismo-acoustic signals

    NASA Astrophysics Data System (ADS)

    Ghica, Daniela Veronica; Grecu, Bogdan; Popa, Mihaela; Radulian, Mircea

    2016-10-01

    In order to discriminate between quarry blasts and earthquakes observed in the Dobrogea seismogenic region, a seismo-acoustic analysis was performed on 520 events listed in the updated Romanian seismic catalogue from January 2011 to December 2012. During this time interval, 104 seismo-acoustic events observed from a distance between 110 and 230 km and backazimuth interval of 110-160° from the IPLOR infrasound array were identified as explosions by associating with infrasonic signals. WinPMCC software for interactive analysis was applied to detect and characterize infrasonic signals in terms of backazimuth, speed and frequency content. The measured and expected values of both backazimuths and arrival times for the study events were compared in order to identify the sources of infrasound. Two predominant directions for seismo-acoustic sources' aligning were observed, corresponding to the northern and central parts of Dobrogea, and these directions are further considered as references in the process of discriminating explosions from earthquakes. A predominance of high-frequency detections (above 1 Hz) is also observed in the infrasound data. The strong influence of seasonally dependent stratospheric winds on the IPLOR detection capability limits the efficiency of the discrimination procedure, as proposed by this study.

  5. Sound source localization technique using a seismic streamer and its extension for whale localization during seismic surveys.

    PubMed

    Abadi, Shima H; Wilcock, William S D; Tolstoy, Maya; Crone, Timothy J; Carbotte, Suzanne M

    2015-12-01

    Marine seismic surveys are under increasing scrutiny because of concern that they may disturb or otherwise harm marine mammals and impede their communications. Most of the energy from seismic surveys is low frequency, so concerns are particularly focused on baleen whales. Extensive mitigation efforts accompany seismic surveys, including visual and acoustic monitoring, but the possibility remains that not all animals in an area can be observed and located. One potential way to improve mitigation efforts is to utilize the seismic hydrophone streamer to detect and locate calling baleen whales. This study describes a method to localize low frequency sound sources with data recoded by a streamer. Beamforming is used to estimate the angle of arriving energy relative to sub-arrays of the streamer which constrains the horizontal propagation velocity to each sub-array for a given trial location. A grid search method is then used to minimize the time residual for relative arrival times along the streamer estimated by cross correlation. Results from both simulation and experiment are shown and data from the marine mammal observers and the passive acoustic monitoring conducted simultaneously with the seismic survey are used to verify the analysis.

  6. Lightweight filter architecture for energy efficient mobile vehicle localization based on a distributed acoustic sensor network.

    PubMed

    Kim, Keonwook

    2013-08-23

    The generic properties of an acoustic signal provide numerous benefits for localization by applying energy-based methods over a deployed wireless sensor network (WSN). However, the signal generated by a stationary target utilizes a significant amount of bandwidth and power in the system without providing further position information. For vehicle localization, this paper proposes a novel proximity velocity vector estimator (PVVE) node architecture in order to capture the energy from a moving vehicle and reject the signal from motionless automobiles around the WSN node. A cascade structure between analog envelope detector and digital exponential smoothing filter presents the velocity vector-sensitive output with low analog circuit and digital computation complexity. The optimal parameters in the exponential smoothing filter are obtained by analytical and mathematical methods for maximum variation over the vehicle speed. For stationary targets, the derived simulation based on the acoustic field parameters demonstrates that the system significantly reduces the communication requirements with low complexity and can be expected to extend the operation time considerably.

  7. Lightweight Filter Architecture for Energy Efficient Mobile Vehicle Localization Based on a Distributed Acoustic Sensor Network

    PubMed Central

    Kim, Keonwook

    2013-01-01

    The generic properties of an acoustic signal provide numerous benefits for localization by applying energy-based methods over a deployed wireless sensor network (WSN). However, the signal generated by a stationary target utilizes a significant amount of bandwidth and power in the system without providing further position information. For vehicle localization, this paper proposes a novel proximity velocity vector estimator (PVVE) node architecture in order to capture the energy from a moving vehicle and reject the signal from motionless automobiles around the WSN node. A cascade structure between analog envelope detector and digital exponential smoothing filter presents the velocity vector-sensitive output with low analog circuit and digital computation complexity. The optimal parameters in the exponential smoothing filter are obtained by analytical and mathematical methods for maximum variation over the vehicle speed. For stationary targets, the derived simulation based on the acoustic field parameters demonstrates that the system significantly reduces the communication requirements with low complexity and can be expected to extend the operation time considerably. PMID:23979482

  8. Electromagnetic and acoustic bimodality for the detection and localization of electrical arc faults

    NASA Astrophysics Data System (ADS)

    Vasile, C.; Ioana, C.; Digulescu, A.; Candel, I.

    2016-12-01

    Electrical arc faults pose an important problem to electrical installations worldwide, be it production facilities or distribution systems. In this context, it is easy to assess the economic repercussions of such a fault, when power supply is cut off downstream of its location, while also realizing that an early detection of the on-site smaller scale faults would be of great benefit. This articles serves as a review of the current state-of-the-art work that has been carried out on the subject of detection and localization of electrical arc faults, by exploiting the bimodality of this phenomenon, which generates simultaneously electromagnetic and acoustic waves, propagating in a free space path. En experimental setup has been defined, to demonstrate principles stated in previous works by the authors, and signal processing methods have been used in order to determine the DTOA (difference-of-time-of-arrival) of the acoustic signals, which allows localization of the transient fault. In the end there is a discussion regarding the results and further works, which aims to validate this approach in more real-life applications.

  9. Numerical wave modelling for seismo-acoustic noise sources: wave model accuracy issues and evidence for variable seismic attenuation

    NASA Astrophysics Data System (ADS)

    Ardhuin, F.; Lavanant, T.; Obrebski, M. J.; Marié, L.; Royer, J.

    2012-12-01

    Nonlinear wave-wave interactions generate noise that numerical ocean wave models may simulate. The accuracy of the noise source predicted by the theory of Longuet-Higgins (1950) and Hasselmann (1963) depends on the realism of the directional wave distribution, which is generally not very well known. Numerical noise models developed by Kedar et al. (2008) and Ardhuin et al. (2010) also suffer from poorly known seismic wave propagation and attenuation properties. Here, several seismic and ocean pressure records are used here to assess the effects of wave modelling errors on the magnitude of noise sources. Measurements within 200~m from the sea surface are dominated by acoustic-gravity modes, for which bottom effects are negligible. These data show that directional wave spectra are well enough reproduced to estimate seismo-acoustic noise sources at frequencies below 0.3~Hz, whith an underestimation of the noise level by about 50%. In larger water depths, the comparison of a numerical noise model with hydrophone records from two open-ocean sites near Hawaii and Kerguelen islands reveal that a) deep ocean acoustic noise at frequencies 0.1 to 1 Hz is consistent with the Rayleigh wave theory, and is well predicted up to 0.4~Hz. b) In particular, evidence of the vertical modes expected theoretically is given by the local maxima in the noise spectrum. c) noise above 0.6 Hz is not well modeled probably due to a poor estimate of the directional properties of high frequency wind-waves, d) the noise level is strongly influenced by bottom properties, in particular the presence of sediments. Further, for continental coastal seismic stations, an accurate model of noise level variability near the noise spectral peak requires an accurate modelling of coastal reflection (Ardhuin and Roland JGR 2012). In cases where noise sources are confined to a small area (e.g. Obrebski et al. GRL 2012), the source amplitude may be factored out, allowing an estimate of seismic attenuation rates

  10. Light-scattering study of the localization of longitudinal acoustic pseudomodes in a buried silica layer

    NASA Astrophysics Data System (ADS)

    Ghislotti, G.; Bottani, C. E.; Mutti, P.; Byloos, C.; Giovannini, L.; Nizzoli, F.

    1995-04-01

    Brillouin light spectroscopy in p-p backscattering geometry is used to study sagittal surface acoustic phonons in silicon on insulator structures formed on a silicon buffer. The experimental spectra show, near the longitudinal threshold of silicon, two peaks whose physical meaning is discussed by comparison with theoretical cross sections. Calculations of Brillouin cross sections were performed, taking into account both the ripple and elastooptic coupling mechanisms. The peaks originate from two pseudomodes: the first is highly localized in the buried SiO2 layer and the second in the top silicon layer. The dependence of the pseudomode localization and cross section intensity with the parallel wave vector and with the thickness of the top silicon layer are discussed.

  11. Jet Noise Source Localization Using Linear Phased Array

    NASA Technical Reports Server (NTRS)

    Agboola, Ferni A.; Bridges, James

    2004-01-01

    A study was conducted to further clarify the interpretation and application of linear phased array microphone results, for localizing aeroacoustics sources in aircraft exhaust jet. Two model engine nozzles were tested at varying power cycles with the array setup parallel to the jet axis. The array position was varied as well to determine best location for the array. The results showed that it is possible to resolve jet noise sources with bypass and other components separation. The results also showed that a focused near field image provides more realistic noise source localization at low to mid frequencies.

  12. Deconvolution methods and systems for the mapping of acoustic sources from phased microphone arrays

    NASA Technical Reports Server (NTRS)

    Brooks, Thomas F. (Inventor); Humphreys, Jr., William M. (Inventor)

    2010-01-01

    A method and system for mapping acoustic sources determined from a phased microphone array. A plurality of microphones are arranged in an optimized grid pattern including a plurality of grid locations thereof. A linear configuration of N equations and N unknowns can be formed by accounting for a reciprocal influence of one or more beamforming characteristics thereof at varying grid locations among the plurality of grid locations. A full-rank equation derived from the linear configuration of N equations and N unknowns can then be iteratively determined. A full-rank can be attained by the solution requirement of the positivity constraint equivalent to the physical assumption of statically independent noise sources at each N location. An optimized noise source distribution is then generated over an identified aeroacoustic source region associated with the phased microphone array in order to compile an output presentation thereof, thereby removing the beamforming characteristics from the resulting output presentation.

  13. Deconvolution Methods and Systems for the Mapping of Acoustic Sources from Phased Microphone Arrays

    NASA Technical Reports Server (NTRS)

    Brooks, Thomas F. (Inventor); Humphreys, Jr., William M. (Inventor)

    2012-01-01

    Mapping coherent/incoherent acoustic sources as determined from a phased microphone array. A linear configuration of equations and unknowns are formed by accounting for a reciprocal influence of one or more cross-beamforming characteristics thereof at varying grid locations among the plurality of grid locations. An equation derived from the linear configuration of equations and unknowns can then be iteratively determined. The equation can be attained by the solution requirement of a constraint equivalent to the physical assumption that the coherent sources have only in phase coherence. The size of the problem may then be reduced using zoning methods. An optimized noise source distribution is then generated over an identified aeroacoustic source region associated with a phased microphone array (microphones arranged in an optimized grid pattern including a plurality of grid locations) in order to compile an output presentation thereof, thereby removing beamforming characteristics from the resulting output presentation.

  14. Localization of coherent sources by simultaneous MEG and EEG beamformer.

    PubMed

    Hong, Jun Hee; Ahn, Minkyu; Kim, Kiwoong; Jun, Sung Chan

    2013-10-01

    Simultaneous magnetoencephalography (MEG) and electroencephalography (EEG) analysis is known generally to yield better localization performance than a single modality only. For simultaneous analysis, MEG and EEG data should be combined to maximize synergistic effects. Recently, beamformer for simultaneous MEG/EEG analysis was proposed to localize both radial and tangential components well, while single modality analyses could not detect them, or had relatively higher location bias. In practice, most interesting brain sources are likely to be activated coherently; however, conventional beamformer may not work properly for such coherent sources. To overcome this difficulty, a linearly constrained minimum variance (LCMV) beamformer may be used with a source suppression strategy. In this work, simultaneous MEG/EEG LCMV beamformer using source suppression was formulated firstly to investigate its capability over various suppression strategies. The localization performance of our proposed approach was examined mainly for coherent sources and compared thoroughly with the conventional simultaneous and single modality approaches, over various suppression strategies. For this purpose, we used numerous simulated data, as well as empirical auditory stimulation data. In addition, some strategic issues of simultaneous MEG/EEG analysis were discussed. Overall, we found that our simultaneous MEG/EEG LCMV beamformer using a source suppression strategy is greatly beneficial in localizing coherent sources.

  15. Far-field DOA estimation and source localization for different scenarios in a distributed sensor network

    NASA Astrophysics Data System (ADS)

    Asgari, Shadnaz

    Recent developments in the integrated circuits and wireless communications not only open up many possibilities but also introduce challenging issues for the collaborative processing of signals for source localization and beamforming in an energy-constrained distributed sensor network. In signal processing, various sensor array processing algorithms and concepts have been adopted, but must be further tailored to match the communication and computational constraints. Sometimes the constraints are such that none of the existing algorithms would be an efficient option for the defined problem and as the result; the necessity of developing a new algorithm becomes undeniable. In this dissertation, we present the theoretical and the practical issues of Direction-Of-Arrival (DOA) estimation and source localization using the Approximate-Maximum-Likelihood (AML) algorithm for different scenarios. We first investigate a robust algorithm design for coherent source DOA estimation in a limited reverberant environment. Then, we provide a least-square (LS) solution for source localization based on our newly proposed virtual array model. In another scenario, we consider the determination of the location of a disturbance source which emits both wideband acoustic and seismic signals. We devise an enhanced AML algorithm to process the data collected at the acoustic sensors. For processing the seismic signals, two distinct algorithms are investigated to determine the DOAs. Then, we consider a basic algorithm for fusion of the results yielded by the acoustic and seismic arrays. We also investigate the theoretical and practical issues of DOA estimation in a three-dimensional (3D) scenario. We show that the performance of the proposed 3D AML algorithm converges to the Cramer-Rao Bound. We use the concept of an isotropic array to reduce the complexity of the proposed algorithm by advocating a decoupled 3D version. We also explore a modified version of the decoupled 3D AML algorithm which

  16. System and method for characterizing, synthesizing, and/or canceling out acoustic signals from inanimate sound sources

    DOEpatents

    Holzrichter, John F.; Burnett, Greg C.; Ng, Lawrence C.

    2007-10-16

    A system and method for characterizing, synthesizing, and/or canceling out acoustic signals from inanimate sound sources is disclosed. Propagating wave electromagnetic sensors monitor excitation sources in sound producing systems, such as machines, musical instruments, and various other structures. Acoustical output from these sound producing systems is also monitored. From such information, a transfer function characterizing the sound producing system is generated. From the transfer function, acoustical output from the sound producing system may be synthesized or canceled. The methods disclosed enable accurate calculation of matched transfer functions relating specific excitations to specific acoustical outputs. Knowledge of such signals and functions can be used to effect various sound replication, sound source identification, and sound cancellation applications.

  17. System and method for characterizing, synthesizing, and/or canceling out acoustic signals from inanimate sound sources

    SciTech Connect

    Holzrichter, John F; Burnett, Greg C; Ng, Lawrence C

    2013-05-21

    A system and method for characterizing, synthesizing, and/or canceling out acoustic signals from inanimate sound sources is disclosed. Propagating wave electromagnetic sensors monitor excitation sources in sound producing systems, such as machines, musical instruments, and various other structures. Acoustical output from these sound producing systems is also monitored. From such information, a transfer function characterizing the sound producing system is generated. From the transfer function, acoustical output from the sound producing system may be synthesized or canceled. The methods disclosed enable accurate calculation of matched transfer functions relating specific excitations to specific acoustical outputs. Knowledge of such signals and functions can be used to effect various sound replication, sound source identification, and sound cancellation applications.

  18. System and method for characterizing synthesizing and/or canceling out acoustic signals from inanimate sound sources

    DOEpatents

    Holzrichter, John F.; Burnett, Greg C.; Ng, Lawrence C.

    2003-01-01

    A system and method for characterizing, synthesizing, and/or canceling out acoustic signals from inanimate sound sources is disclosed. Propagating wave electromagnetic sensors monitor excitation sources in sound producing systems, such as machines, musical instruments, and various other structures. Acoustical output from these sound producing systems is also monitored. From such information, a transfer function characterizing the sound producing system is generated. From the transfer function, acoustical output from the sound producing system may be synthesized or canceled. The methods disclosed enable accurate calculation of matched transfer functions relating specific excitations to specific acoustical outputs. Knowledge of such signals and functions can be used to effect various sound replication, sound source identification, and sound cancellation applications.

  19. Comparing passive source localization and tracking approaches with a towed horizontal receiver array in an ocean waveguide.

    PubMed

    Gong, Zheng; Tran, Duong D; Ratilal, Purnima

    2013-11-01

    Approaches for instantaneous passive source localization using a towed horizontal receiver array in a random range-dependent ocean waveguide are examined. They include: (1) Moving array triangulation, (2) array invariant, (3) bearings-only target motion analysis in modified polar coordinates via the extended Kalman filter, and (4) bearings-migration minimum mean-square error. These methods are applied to localize and track a vertical source array deployed in the far-field of a towed horizontal receiver array during the Gulf of Maine 2006 Experiment. The source transmitted intermittent broadband pulses in the 300 to 1200 Hz frequency range. A nonlinear matched-filter kernel designed to replicate the acoustic signal measured by the receiver array is applied to enhance the signal-to-noise ratio. The source localization accuracy is found to be highly dependent on source-receiver geometry and the localization approach. For a relatively stationary source drifting at speeds much slower than the receiver array tow-speed, the mean source position can be estimated by moving array triangulation with less than 3% error near broadside direction. For a moving source, the Kalman filter method gives the best performance with 5.5% error. The array invariant is the best approach for localizing sources within the endfire beam of the receiver array with 7% error.

  20. A series expansion of the acoustic power radiated from planar sources

    NASA Technical Reports Server (NTRS)

    Willams, E. G.

    1983-01-01

    A series expansion in ascending powers of the wavenumber k is derived for the acoustic power delivered by baffled or unbaffled planar sources. This series provides a relatively simple means of derving expressions for the power radiated by a baffled source with a known velocity distribution and can be used for unbaffled plates when the velocity field outside the plate is also known. The terms in the series are calculated from the moments of this velocity distribution in the plane containing the source. If these moments are written as derivaties in wavenumber space, it is shown that a MacLaurin expansion of the Fourier transformed velocity provides an easy technique for computing the first few terms of the acoustic power. Examples are provided for baffled, rectangular plates with various boundary conditions. The arbirarily shaped plate with free boundaries is particularly interesting. It is proven that the volume flow across it surface must be zero and as a result corner and edge mode radiation cannot exist for this kind of source.

  1. Network detection of radiation sources using ROSD localization

    SciTech Connect

    Wu, Qishi; Berry, M. L..; Grieme, M.; Rao, Nageswara S; Sen, Satyabrata; Brooks, Richard R

    2015-01-01

    We propose a localization-based radiation source detection (RSD) algorithm using the Ratio of Squared Distance (ROSD) method. Compared with the triangulation-based method, the advantages of this ROSD method are multi-fold: i) source location estimates based on four detectors improve their accuracy, ii) ROSD provides closed-form source location estimates and thus eliminates the imaginary-roots issue, and iii) ROSD produces a unique source location estimate as opposed to two real roots (if any) in triangulation, and obviates the need to identify real phantom roots during clustering.

  2. Passive acoustic mapping of magnetic microbubbles for cavitation enhancement and localization

    NASA Astrophysics Data System (ADS)

    Crake, Calum; de Saint Victor, Marie; Owen, Joshua; Coviello, Christian; Collin, Jamie; Coussios, Constantin-C.; Stride, Eleanor

    2015-01-01

    Magnetic targeting of microbubbles functionalized with superparamagnetic nanoparticles has been demonstrated previously for diagnostic (B-mode) ultrasound imaging and shown to enhance gene delivery in vitro and in vivo. In the present work, passive acoustic mapping (PAM) was used to investigate the potential of magnetic microbubbles for localizing and enhancing cavitation activity under focused ultrasound. Suspensions of magnetic microbubbles consisting of 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC), air and 10 nm diameter iron oxide nanoparticles were injected into a tissue mimicking phantom at different flow velocities (from 0 to 50 mm s-1) with or without an applied magnetic field. Microbubbles were excited using a 500 kHz single element focused transducer at peak negative focal pressures of 0.1-1.0 MPa, while a 64 channel imaging array passively recorded their acoustic emissions. Magnetic localization of microbubble-induced cavitation activity was successfully achieved and could be resolved using PAM as a shift in the spatial distribution and increases in the intensity and sustainability of cavitation activity under the influence of a magnetic field. Under flow conditions at shear rates of up to 100 s-1 targeting efficacy was maintained. Application of a magnetic field was shown to consistently increase the energy of cavitation emissions by a factor of 2-5 times over the duration of exposures compared to the case without targeting, which was approximately equivalent to doubling the injected microbubble dose. These results suggest that magnetic targeting could be used to localize and increase the concentration of microbubbles and hence cavitation activity for a given systemic dose of microbubbles or ultrasound intensity.

  3. Passive acoustic mapping of magnetic microbubbles for cavitation enhancement and localization.

    PubMed

    Crake, Calum; Victor, Marie de Saint; Owen, Joshua; Coviello, Christian; Collin, Jamie; Coussios, Constantin-C; Stride, Eleanor

    2015-01-21

    Magnetic targeting of microbubbles functionalized with superparamagnetic nanoparticles has been demonstrated previously for diagnostic (B-mode) ultrasound imaging and shown to enhance gene delivery in vitro and in vivo. In the present work, passive acoustic mapping (PAM) was used to investigate the potential of magnetic microbubbles for localizing and enhancing cavitation activity under focused ultrasound. Suspensions of magnetic microbubbles consisting of 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC), air and 10 nm diameter iron oxide nanoparticles were injected into a tissue mimicking phantom at different flow velocities (from 0 to 50 mm s(-1)) with or without an applied magnetic field. Microbubbles were excited using a 500 kHz single element focused transducer at peak negative focal pressures of 0.1-1.0 MPa, while a 64 channel imaging array passively recorded their acoustic emissions. Magnetic localization of microbubble-induced cavitation activity was successfully achieved and could be resolved using PAM as a shift in the spatial distribution and increases in the intensity and sustainability of cavitation activity under the influence of a magnetic field. Under flow conditions at shear rates of up to 100 s(-1) targeting efficacy was maintained. Application of a magnetic field was shown to consistently increase the energy of cavitation emissions by a factor of 2-5 times over the duration of exposures compared to the case without targeting, which was approximately equivalent to doubling the injected microbubble dose. These results suggest that magnetic targeting could be used to localize and increase the concentration of microbubbles and hence cavitation activity for a given systemic dose of microbubbles or ultrasound intensity.

  4. Focused acoustic beam imaging of grain structure and local Young's modulus with Rayleigh and surface skimming longitudinal waves

    SciTech Connect

    Martin, R. W.; Sathish, S.; Blodgett, M. P.

    2013-01-25

    The interaction of a focused acoustic beam with materials generates Rayleigh surface waves (RSW) and surface skimming longitudinal waves (SSLW). Acoustic microscopic investigations have used the RSW amplitude and the velocity measurements, extensively for grain structure analysis. Although, the presence of SSLW has been recognized, it is rarely used in acoustic imaging. This paper presents an approach to perform microstructure imaging and local elastic modulus measurements by combining both RSW and SSLW. The acoustic imaging of grain structure was performed by measuring the amplitude of RSW and SSLW signal. The microstructure images obtained on the same region of the samples with RSW and SSLW are compared and the difference in the contrast observed is discussed based on the propagation characteristics of the individual surface waves. The velocity measurements are determined by two point defocus method. The surface wave velocities of RSW and SSLW of the same regions of the sample are combined and presented as average Young's modulus image.

  5. Noncontact detection of surface-breaking cracks using a laser acoustic source and an electromagnetic acoustic receiver

    SciTech Connect

    Dewhurst, R.J.; Edwards, C.; Palmer, S.B.

    1986-08-01

    An electromagnetic acoustic transducer (EMAT) is used to detect laser-generated surface acoustic transients. The surface acoustic waves are broadband and can be used to detect and size surface-breaking cracks if used in conjunction with a broadband detector. A broadband EMAT is described and its use to locate artificial surface-breaking defects in both aluminum and steel is demonstrated. A second study reveals that it can also be used for the detection of real surface-breaking cracks, even on rusty steel surfaces. 10 references.

  6. Real-Time MEG Source Localization Using Regional Clustering.

    PubMed

    Dinh, Christoph; Strohmeier, Daniel; Luessi, Martin; Güllmar, Daniel; Baumgarten, Daniel; Haueisen, Jens; Hämäläinen, Matti S

    2015-11-01

    With its millisecond temporal resolution, Magnetoencephalography (MEG) is well suited for real-time monitoring of brain activity. Real-time feedback allows the adaption of the experiment to the subject's reaction and increases time efficiency by shortening acquisition and off-line analysis. Two formidable challenges exist in real-time analysis: the low signal-to-noise ratio (SNR) and the limited time available for computations. Since the low SNR reduces the number of distinguishable sources, we propose an approach which downsizes the source space based on a cortical atlas and allows to discern the sources in the presence of noise. Each cortical region is represented by a small set of dipoles, which is obtained by a clustering algorithm. Using this approach, we adapted dynamic statistical parametric mapping for real-time source localization. In terms of point spread and crosstalk between regions the proposed clustering technique performs better than selecting spatially evenly distributed dipoles. We conducted real-time source localization on MEG data from an auditory experiment. The results demonstrate that the proposed real-time method localizes sources reliably in the superior temporal gyrus. We conclude that real-time source estimation based on MEG is a feasible, useful addition to the standard on-line processing methods, and enables feedback based on neural activity during the measurements.

  7. Real-Time MEG Source Localization using Regional Clustering

    PubMed Central

    Dinh, Christoph; Strohmeier, Daniel; Luessi, Martin; Güllmar, Daniel; Baumgarten, Daniel; Haueisen, Jens; Hämäläinen, Matti S.

    2015-01-01

    With its millisecond temporal resolution, Magnetoencephalography (MEG) is well suited for real-time monitoring of brain activity. Real-time feedback allows the adaption of the experiment to the subject’s reaction and increases time efficiency by shortening acquisition and offline analysis. Two formidable challenges exist in real-time analysis: the low signal-to-noise ratio (SNR) and the limited time available for computations. Since the low SNR reduces the number of distinguishable sources, we propose an approach which downsizes the source space based on a cortical atlas and allows to discern the sources in the presence of noise. Each cortical region is represented by a small set of dipoles, which is obtained by a clustering algorithm. Using this approach, we adapted dynamic statistical parametric mapping (dSPM) for real-time source localization. In terms of point spread and crosstalk between regions the proposed clustering technique performs better than selecting spatially evenly distributed dipoles. We conducted real-time source localization on MEG data from an auditory experiment. The results demonstrate that the proposed real-time method localizes sources reliably in the superior temporal gyrus. We conclude that real-time source estimation based on MEG is a feasible, useful addition to the standard on-line processing methods, and enables feedback based on neural activity during the measurements. PMID:25782980

  8. INVERSION OF FULL ACOUSTIC WAVEFIELD IN LOCAL HELIOSEISMOLOGY: A STUDY WITH SYNTHETIC DATA

    SciTech Connect

    Cobden, L. J.; Warner, M. R.; Tong, C. H.

    2011-02-01

    We present the first results from the inversion of full acoustic wavefield in the helioseismic context. In contrast to time-distance helioseismology, which involves analyzing the travel times of seismic waves propagating into the solar interior, wavefield tomography models both the travel times and amplitude variations present in the entire seismic record. Unlike the use of ray-based, Fresnel-zone, Born, or Rytov approximations in previous time-distance studies, this method does not require any simplifications to be made to the sensitivity kernel in the inversion. In this study, the acoustic wavefield is simulated for all iterations in the inversion. The sensitivity kernel is therefore updated while lateral variations in sound-speed structure in the model emerge during the course of the inversion. Our results demonstrate that the amplitude-based inversion approach is capable of resolving sound-speed structures defined by relatively sharp vertical and horizontal boundaries. This study therefore provides the foundation for a new type of subsurface imaging in local helioseismology that is based on the inversion of the entire seismic wavefield.

  9. Acoustic flight tests of rotorcraft noise-abatement approaches using local differential GPS guidance

    NASA Technical Reports Server (NTRS)

    Chen, Robert T. N.; Hindson, William S.; Mueller, Arnold W.

    1995-01-01

    This paper presents the test design, instrumentation set-up, data acquisition, and the results of an acoustic flight experiment to study how noise due to blade-vortex interaction (BVI) may be alleviated. The flight experiment was conducted using the NASA/Army Rotorcraft Aircrew Systems Concepts Airborne Laboratory (RASCAL) research helicopter. A Local Differential Global Positioning System (LDGPS) was used for precision navigation and cockpit display guidance. A laser-based rotor state measurement system on board the aircraft was used to measure the main rotor tip-path-plane angle-of-attack. Tests were performed at Crows Landing Airfield in northern California with an array of microphones similar to that used in the standard ICAO/FAA noise certification test. The methodology used in the design of a RASCAL-specific, multi-segment, decelerating approach profile for BVI noise abatement is described, and the flight data pertaining to the flight technical errors and the acoustic data for assessing the noise reduction effectiveness are reported.

  10. Wideband spherically focused PVDF acoustic sources for calibration of ultrasound hydrophone probes.

    PubMed

    Selfridge, A; Lewin, P A

    2000-01-01

    Several broadband sources have been developed for the purpose of calibrating hydrophones. The specific configuration described is intended for the calibration of hydrophones In a frequency range of 1 to 40 MHz. All devices used 25 /spl mu/m film of PVDF bonded to a matched backing. Two had radii of curvatures (ROC) of 25.4 and 127 mm with f numbers of 3.8 and 19, respectively. Their active element diameter was 0.28 in (6.60 mm). The active diameter of the third source used was 25 mm, and it had an ROC of 254 mm and an f number of 10. The use of a focused element minimized frequency-dependent diffraction effects, resulting in a smooth variation of acoustic pressure at the focus from 1 to 40 MHz. Also, using a focused PVDF source permitted calibrations above 20 MHz without resorting to harmonic generation via nonlinear propagation.

  11. Source analysis of auditory steady-state responses in acoustic and electric hearing.

    PubMed

    Luke, Robert; De Vos, Astrid; Wouters, Jan

    2017-02-15

    Speech is a complex signal containing a broad variety of acoustic information. For accurate speech reception, the listener must perceive modulations over a range of envelope frequencies. Perception of these modulations is particularly important for cochlear implant (CI) users, as all commercial devices use envelope coding strategies. Prolonged deafness affects the auditory pathway. However, little is known of how cochlear implantation affects the neural processing of modulated stimuli. This study investigates and contrasts the neural processing of envelope rate modulated signals in acoustic and CI listeners. Auditory steady-state responses (ASSRs) are used to study the neural processing of amplitude modulated (AM) signals. A beamforming technique is applied to determine the increase in neural activity relative to a control condition, with particular attention paid to defining the accuracy and precision of this technique relative to other tomographies. In a cohort of 44 acoustic listeners, the location, activity and hemispheric lateralisation of ASSRs is characterised while systematically varying the modulation rate (4, 10, 20, 40 and 80Hz) and stimulation ear (right, left and bilateral). We demonstrate a complex pattern of laterality depending on both modulation rate and stimulation ear that is consistent with, and extends, existing literature. We present a novel extension to the beamforming method which facilitates source analysis of electrically evoked auditory steady-state responses (EASSRs). In a cohort of 5 right implanted unilateral CI users, the neural activity is determined for the 40Hz rate and compared to the acoustic cohort. Results indicate that CI users activate typical thalamic locations for 40Hz stimuli. However, complementary to studies of transient stimuli, the CI population has atypical hemispheric laterality, preferentially activating the contralateral hemisphere.

  12. A contrast source method for nonlinear acoustic wave fields in media with spatially inhomogeneous attenuation.

    PubMed

    Demi, L; van Dongen, K W A; Verweij, M D

    2011-03-01

    Experimental data reveals that attenuation is an important phenomenon in medical ultrasound. Attenuation is particularly important for medical applications based on nonlinear acoustics, since higher harmonics experience higher attenuation than the fundamental. Here, a method is presented to accurately solve the wave equation for nonlinear acoustic media with spatially inhomogeneous attenuation. Losses are modeled by a spatially dependent compliance relaxation function, which is included in the Westervelt equation. Introduction of absorption in the form of a causal relaxation function automatically results in the appearance of dispersion. The appearance of inhomogeneities implies the presence of a spatially inhomogeneous contrast source in the presented full-wave method leading to inclusion of forward and backward scattering. The contrast source problem is solved iteratively using a Neumann scheme, similar to the iterative nonlinear contrast source (INCS) method. The presented method is directionally independent and capable of dealing with weakly to moderately nonlinear, large scale, three-dimensional wave fields occurring in diagnostic ultrasound. Convergence of the method has been investigated and results for homogeneous, lossy, linear media show full agreement with the exact results. Moreover, the performance of the method is demonstrated through simulations involving steered and unsteered beams in nonlinear media with spatially homogeneous and inhomogeneous attenuation.

  13. Classification of acoustic emission sources produced by carbon/epoxy composite based on support vector machine

    NASA Astrophysics Data System (ADS)

    Ding, Peng; Li, Qin; Huang, Xunlei

    2015-07-01

    Carbon/epoxy specimens were made and stretched to fracture. In the process, acoustic emission (AE) signals were collected and their parameters were set as the input parameters of the neural network. Results show that using support vector machine (SVM) network can recognize the difference of AE sources more accurately than using the BP neural network. In addition, the accuracy of the SVM increases when the number of the training set increases. It is proved that using AE signal parameters and SVM network can recognize the AE sources’ pattern well.

  14. Application of cylindrical near-field acoustical holography to the visualization of aeroacoustic sources.

    PubMed

    Lee, Moohyung; Bolton, J Stuart; Mongeau, Luc

    2003-08-01

    The purpose of this study was to develop methods for visualizing the sound radiation from aeroacoustic sources in order to identify their source strength distribution, radiation patterns, and to quantify the performance of noise control solutions. Here, cylindrical Near-field Acoustical Holography was used for that purpose. In a practical holographic measurement of sources comprising either partially correlated or uncorrelated subsources, it is necessary to use a number of reference microphones so that the sound field on the hologram surface can be decomposed into mutually incoherent partial fields before holographic projection. In this article, procedures are described for determining the number of reference microphones required when visualizing partially correlated aeroacoustic sources; performing source nonstationarity compensation; and applying regularization. The procedures have been demonstrated by application to a ducted fan. Holographic tests were performed to visualize the sound radiation from that source in its original form. The system was then altered to investigate the effect of two modifications on the fan's sound radiation pattern: first, leaks were created in the fan and duct assembly, and second, sound absorbing material was used to line the downstream duct section. Results in all three cases are shown at the blade passing frequency and for a broadband noise component. In the absence of leakage, both components were found to exhibit a dipole-like radiation pattern. Leakage was found to have a strong influence on the directivity of the blade passing tone. The increase of the flow resistance caused by adding the acoustical lining resulted in a nearly symmetric reduction of sound radiation.

  15. Source localization using rational approximation on plane sections

    NASA Astrophysics Data System (ADS)

    Clerc, M.; Leblond, J.; Marmorat, J.-P.; Papadopoulo, T.

    2012-05-01

    In functional neuroimaging, a crucial problem is to localize active sources within the brain non-invasively, from knowledge of electromagnetic measurements outside the head. Identification of point sources from boundary measurements is an ill-posed inverse problem. In the case of electroencephalography (EEG), measurements are only available at electrode positions, the number of sources is not known in advance and the medium within the head is inhomogeneous. This paper presents a new method for EEG source localization, based on rational approximation techniques in the complex plane. The method is used in the context of a nested sphere head model, in combination with a cortical mapping procedure. Results on simulated data prove the applicability of the method in the context of realistic measurement configurations.

  16. Source-space ICA for EEG source separation, localization, and time-course reconstruction.

    PubMed

    Jonmohamadi, Yaqub; Poudel, Govinda; Innes, Carrie; Jones, Richard

    2014-11-01

    We propose source-space independent component analysis (ICA) for separation, tomography, and time-course reconstruction of EEG and MEG source signals. Source-space ICA is based on the application of singular value decomposition and ICA on the neuroelectrical signals from all brain voxels obtained post minimum-variance beamforming of sensor-space EEG or MEG. We describe the theoretical background and equations, then evaluate the performance of this technique in several different situations, including weak sources, bilateral correlated sources, multiple sources, and cluster sources. In this approach, tomographic maps of sources are obtained by back-projection of the ICA mixing coefficients into the source-space (3-D brain template). The advantages of source-space ICA over the popular alternative approaches of sensor-space ICA together with dipole fitting and power mapping via minimum-variance beamforming are demonstrated. Simulated EEG data were produced by forward head modeling to project the simulated sources onto scalp sensors, then superimposed on real EEG background. To illustrate the application of source-space ICA to real EEG source reconstruction, we show the localization and time-course reconstruction of visual evoked potentials. Source-space ICA is superior to the minimum-variance beamforming in the reconstruction of multiple weak and strong sources, as ICA allows weak sources to be identified and reconstructed in the presence of stronger sources. Source-space ICA is also superior to sensor-space ICA on accuracy of localization of sources, as source-space ICA applies ICA to the time-courses of voxels reconstructed from minimum-variance beamforming on a 3D scanning grid and these time-courses are optimally unmixed via the beamformer. Each component identified by source-space ICA has its own tomographic map which shows the extent to which each voxel has contributed to that component.

  17. An alternative subspace approach to EEG dipole source localization

    NASA Astrophysics Data System (ADS)

    Xu, Xiao-Liang; Xu, Bobby; He, Bin

    2004-01-01

    In the present study, we investigate a new approach to electroencephalography (EEG) three-dimensional (3D) dipole source localization by using a non-recursive subspace algorithm called FINES. In estimating source dipole locations, the present approach employs projections onto a subspace spanned by a small set of particular vectors (FINES vector set) in the estimated noise-only subspace instead of the entire estimated noise-only subspace in the case of classic MUSIC. The subspace spanned by this vector set is, in the sense of principal angle, closest to the subspace spanned by the array manifold associated with a particular brain region. By incorporating knowledge of the array manifold in identifying FINES vector sets in the estimated noise-only subspace for different brain regions, the present approach is able to estimate sources with enhanced accuracy and spatial resolution, thus enhancing the capability of resolving closely spaced sources and reducing estimation errors. The present computer simulations show, in EEG 3D dipole source localization, that compared to classic MUSIC, FINES has (1) better resolvability of two closely spaced dipolar sources and (2) better estimation accuracy of source locations. In comparison with RAP-MUSIC, FINES' performance is also better for the cases studied when the noise level is high and/or correlations among dipole sources exist.

  18. An alternative subspace approach to EEG dipole source localization.

    PubMed

    Xu, Xiao-Liang; Xu, Bobby; He, Bin

    2004-01-21

    In the present study, we investigate a new approach to electroencephalography (EEG) three-dimensional (3D) dipole source localization by using a non-recursive subspace algorithm called FINES. In estimating source dipole locations, the present approach employs projections onto a subspace spanned by a small set of particular vectors (FINES vector set) in the estimated noise-only subspace instead of the entire estimated noise-only subspace in the case of classic MUSIC. The subspace spanned by this vector set is, in the sense of principal angle, closest to the subspace spanned by the array manifold associated with a particular brain region. By incorporating knowledge of the array manifold in identifying FINES vector sets in the estimated noise-only subspace for different brain regions, the present approach is able to estimate sources with enhanced accuracy and spatial resolution, thus enhancing the capability of resolving closely spaced sources and reducing estimation errors. The present computer simulations show, in EEG 3D dipole source localization, that compared to classic MUSIC, FINES has (1) better resolvability of two closely spaced dipolar sources and (2) better estimation accuracy of source locations. In comparison with RAP-MUSIC, FINES' performance is also better for the cases studied when the noise level is high and/or correlations among dipole sources exist.

  19. Analogy electromagnetism-acoustics: Validation and application to local impedance active control for sound absorption

    NASA Astrophysics Data System (ADS)

    Nicolas, L.; Furstoss, M.; Galland, M. A.

    1998-10-01

    An analogy between electromagnetism and acoustics is presented in 2D. The propagation of sound in presence of absorbing material is modeled using an open boundary microwave package. Validation is performed through analytical and experimental results. Application to local impedance active control for free field sound absorption is finally described. Une analogie entre acoustique et électromagnétisme est présentée en 2D, afin de modéliser la propagation d'ondes acoustiques, en présence de matériau absorbant et à l'aide d'un logiciel de micro-ondes en domaine ouvert. Cette analogie est validée par des résultats analytiques et expérimentaux. Une application au contrôle actif de l'impédance acoustique de surface de matériaux poreux est finalement décrite.

  20. Dipole source localization of mouse electroencephalogram using the Fieldtrip toolbox.

    PubMed

    Lee, Chungki; Oostenveld, Robert; Lee, Soo Hyun; Kim, Lae Hyun; Sung, Hokun; Choi, Jee Hyun

    2013-01-01

    The mouse model is an important research tool in neurosciences to examine brain function and diseases with genetic perturbation in different brain regions. However, the limited techniques to map activated brain regions under specific experimental manipulations has been a drawback of the mouse model compared to human functional brain mapping. Here, we present a functional brain mapping method for fast and robust in vivo brain mapping of the mouse brain. The method is based on the acquisition of high density electroencephalography (EEG) with a microarray and EEG source estimation to localize the electrophysiological origins. We adapted the Fieldtrip toolbox for the source estimation, taking advantage of its software openness and flexibility in modeling the EEG volume conduction. Three source estimation techniques were compared: Distribution source modeling with minimum-norm estimation (MNE), scanning with multiple signal classification (MUSIC), and single-dipole fitting. Known sources to evaluate the performance of the localization methods were provided using optogenetic tools. The accuracy was quantified based on the receiver operating characteristic (ROC) analysis. The mean detection accuracy was high, with a false positive rate less than 1.3% and 7% at the sensitivity of 90% plotted with the MNE and MUSIC algorithms, respectively. The mean center-to-center distance was less than 1.2 mm in single dipole fitting algorithm. Mouse microarray EEG source localization using microarray allows a reliable method for functional brain mapping in awake mouse opening an access to cross-species study with human brain.

  1. Development of sound localization mechanisms in the mongolian gerbil is shaped by early acoustic experience.

    PubMed

    Seidl, Armin H; Grothe, Benedikt

    2005-08-01

    Sound localization is one of the most important tasks performed by the auditory system. Differences in the arrival time of sound at the two ears are the main cue to localize low-frequency sound in the azimuth. In the mammalian brain, such interaural time differences (ITDs) are encoded in the auditory brain stem; first by the medial superior olive (MSO) and then transferred to higher centers, such as the dorsal nucleus of the lateral lemniscus (DNLL), a brain stem nucleus that gets a direct input from the MSO. Here we demonstrate for the first time that ITD sensitivity in gerbils undergoes a developmental maturation after hearing onset. We further show that this development can be disrupted by altering the animal's acoustic experience during a critical period. In animals that had been exposed to omnidirectional white noise during a restricted time period right after hearing onset, ITD tuning did not develop normally. Instead, it was similar to that of juvenile animals 3 days after hearing onset, with the ITD functions not adjusted to the physiological range. Animals that had been exposed to omnidirectional noise as adults did not show equivalent abnormal ITD tuning. The development presented here is in contrast to that of the development of neuronal representation of ITDs in the midbrain of barn owls and interaural intensity differences in ferrets, where the representations are adjusted by an interaction of auditory and visual inputs. The development of ITD tuning presented here most likely depends on normal acoustic experience and may be related to the maturation of inhibitory inputs to the ITD detector itself.

  2. Detection and localization using an acoustic array on a small robotic platform

    NASA Astrophysics Data System (ADS)

    Young, Stuart H.; Scanlon, Michael V.

    2003-09-01

    The future battlefield will require an unprecedented level of automation in which soldier-operated autonomous and semi-autonomous ground, air and sea platforms along with mounted and dismounted soldiers will function as a tightly coupled team. Sophisticated robotic platforms with diverse sensor suites will be an integral part of the Objective Force, and must be able to collaborate not only amongst themselves but also with their manned partners. The Army Research Laboratory has developed a robot-based acoustic detection system that will detect and localize on an impulsive noise event, such as a sniper's weapon firing. Additionally, acoustic sensor arrays worn on a soldier's helmet or equipment can enhance his situational awareness and RSTA capabilities. The Land Warrior or Objective Force Warrior body-worn computer can detect tactically significant impulsive signatures from bullets, mortars, artillery, and missiles or spectral signatures from tanks, helicopters, UAVs, and mobile robots. Time-difference-of-arrival techniques can determine a sound's direction of arrival, while head attitude sensors can instantly determine the helmet orientation at time of capture. With precision GPS location of the soldier, along with the locations of other soldiers, robots, or unattended ground sensors that heard the same event, triangulation techniques can produce an accurate location of the target. Data from C-4 explosions and 0.50-Caliber shots shows that both helmet and robot systems can localize on the same event. This provides an awesome capability - mobile robots and soldiers working together on an ever-changing battlespace to detect the enemy and improve the survivability, mobility, and lethality of our future warriors.

  3. Measurement of Acoustic Intensity Distribution and Radiation Power of Flat-Plate Phased-Array Sound Source

    NASA Astrophysics Data System (ADS)

    Yokoyama, Tomoki; Takahashi, Kumiko; Seki, Daizaburou; Hasegawa, Akio

    2002-05-01

    The acoustic intensity distribution and radiation power of a flat-plate phased-array sound source consisting of Tonpilz-type transducers were measured. This study shows that the active acoustic intensity is skewed in the direction of wave propagation. In addition, it clarifies that if the measurement is carried out in the immediate vicinity of the sound source, the reactive acoustic intensity distribution is effective for identifying the positions of the individual sound source elements. Experimental values of active radiation power agree well with theoretical values. Conversely, experimental values of reactive radiation power do not agree with theoretical values; it is clear that they fluctuate significantly with distance from the radiating surface. The reason for this is explained in the case of a point sound source.

  4. Quantitative and qualitative analyses of under-balcony acoustics with real and simulated arrays of multiple sources

    NASA Astrophysics Data System (ADS)

    Kwon, Youngmin

    The objective of this study was to quantitatively and qualitatively identify the acoustics of the under-balcony areas in music performance halls under realistic conditions that are close to an orchestral performance in consideration of multiple music instrumental sources and their diverse sound propagation patterns. The study executed monaural and binaural impulse response measurements with an array of sixteen directional sources (loudspeakers) for acoustical assessments. Actual measurements in a performance hall as well as computer simulations were conducted for the quantitative assessments. Psycho-acoustical listening tests were conducted for the qualitative assessments using the music signals binaurally recorded in the hall with the same source array. The results obtained from the multiple directional source tests were analyzed by comparing them to those obtained from the tests performed with a single omni-directional source. These two sets of results obtained in the under-balcony area were also compared to those obtained in the main orchestra area. The quantitative results showed that the use of a single source conforming to conventional measurement protocol seems to be competent for measurements of the room acoustical parameters such as EDTmid, RTmid, C80500-2k, IACCE3 and IACCL3. These quantitative measures, however, did not always agree with the results of the qualitative assessments. The primary reason is that, in many other acoustical analysis respects, the acoustical phenomena shown from the multiple source measurements were not similar to those shown from the single source measurements. Remarkable differences were observed in time-domain impulse responses, frequency content, spectral distribution, directional distribution of the early reflections, and in sound energy density over time. Therefore, the room acoustical parameters alone should not be the acoustical representative characterizing a performance hall or a specific area such as the under

  5. Ultrasonic power transfer from a spherical acoustic wave source to a free-free piezoelectric receiver: Modeling and experiment

    NASA Astrophysics Data System (ADS)

    Shahab, S.; Gray, M.; Erturk, A.

    2015-03-01

    Contactless powering of small electronic components has lately received growing attention for wireless applications in which battery replacement or tethered charging is undesired or simply impossible, and ambient energy harvesting is not a viable solution. As an alternative to well-studied methods of contactless energy transfer, such as the inductive coupling method, the use of ultrasonic waves transmitted and received by piezoelectric devices enables larger power transmission distances, which is critical especially for deep-implanted electronic devices. Moreover, energy transfer by means of acoustic waves is well suited in situations where no electromagnetic fields are allowed. The limited literature of ultrasonic acoustic energy transfer is mainly centered on proof-of-concept experiments demonstrating the feasibility of this method, lacking experimentally validated modeling efforts for the resulting multiphysics problem that couples the source and receiver dynamics with domain acoustics. In this work, we present fully coupled analytical, numerical, and experimental multiphysics investigations for ultrasonic acoustic energy transfer from a spherical wave source to a piezoelectric receiver bar that operates in the 33-mode of piezoelectricity. The fluid-loaded piezoelectric receiver under free-free mechanical boundary conditions is shunted to an electrical load for quantifying the electrical power output for a given acoustic source strength of the transmitter. The analytical acoustic-piezoelectric structure interaction modeling framework is validated experimentally, and the effects of system parameters are reported along with optimal electrical loading and frequency conditions of the receiver.

  6. Ultrasonic power transfer from a spherical acoustic wave source to a free-free piezoelectric receiver: Modeling and experiment

    SciTech Connect

    Shahab, S.; Gray, M.; Erturk, A.

    2015-03-14

    Contactless powering of small electronic components has lately received growing attention for wireless applications in which battery replacement or tethered charging is undesired or simply impossible, and ambient energy harvesting is not a viable solution. As an alternative to well-studied methods of contactless energy transfer, such as the inductive coupling method, the use of ultrasonic waves transmitted and received by piezoelectric devices enables larger power transmission distances, which is critical especially for deep-implanted electronic devices. Moreover, energy transfer by means of acoustic waves is well suited in situations where no electromagnetic fields are allowed. The limited literature of ultrasonic acoustic energy transfer is mainly centered on proof-of-concept experiments demonstrating the feasibility of this method, lacking experimentally validated modeling efforts for the resulting multiphysics problem that couples the source and receiver dynamics with domain acoustics. In this work, we present fully coupled analytical, numerical, and experimental multiphysics investigations for ultrasonic acoustic energy transfer from a spherical wave source to a piezoelectric receiver bar that operates in the 33-mode of piezoelectricity. The fluid-loaded piezoelectric receiver under free-free mechanical boundary conditions is shunted to an electrical load for quantifying the electrical power output for a given acoustic source strength of the transmitter. The analytical acoustic-piezoelectric structure interaction modeling framework is validated experimentally, and the effects of system parameters are reported along with optimal electrical loading and frequency conditions of the receiver.

  7. Blind source separation and localization using microphone arrays

    NASA Astrophysics Data System (ADS)

    Sun, Longji

    The blind source separation and localization problem for audio signals is studied using microphone arrays. Pure delay mixtures of source signals typically encountered in outdoor environments are considered. Our proposed approach utilizes the subspace methods, including multiple signal classification (MUSIC) and estimation of signal parameters via rotational invariance techniques (ESPRIT) algorithms, to estimate the directions of arrival (DOAs) of the sources from the collected mixtures. Since audio signals are generally considered broadband, the DOA estimates at frequencies with the large sum of squared amplitude values are combined to obtain the final DOA estimates. Using the estimated DOAs, the corresponding mixing and demixing matrices are computed, and the source signals are recovered using the inverse short time Fourier transform. Subspace methods take advantage of the spatial covariance matrix of the collected mixtures to achieve robustness to noise. While the subspace methods have been studied for localizing radio frequency signals, audio signals have their special properties. For instance, they are nonstationary, naturally broadband and analog. All of these make the separation and localization for the audio signals more challenging. Moreover, our algorithm is essentially equivalent to the beamforming technique, which suppresses the signals in unwanted directions and only recovers the signals in the estimated DOAs. Several crucial issues related to our algorithm and their solutions have been discussed, including source number estimation, spatial aliasing, artifact filtering, different ways of mixture generation, and source coordinate estimation using multiple arrays. Additionally, comprehensive simulations and experiments have been conducted to examine various aspects of the algorithm. Unlike the existing blind source separation and localization methods, which are generally time consuming, our algorithm needs signal mixtures of only a short duration and

  8. Adaptively Reevaluated Bayesian Localization (ARBL): A novel technique for radiological source localization

    NASA Astrophysics Data System (ADS)

    Miller, Erin A.; Robinson, Sean M.; Anderson, Kevin K.; McCall, Jonathon D.; Prinke, Amanda M.; Webster, Jennifer B.; Seifert, Carolyn E.

    2015-06-01

    We present a novel technique for the localization of radiological sources in urban or rural environments from an aerial platform. The technique is based on a Bayesian approach to localization, in which measured count rates in a time series are compared with predicted count rates from a series of pre-calculated test sources to define likelihood. This technique is expanded by using a localized treatment with a limited field of view (FOV), coupled with a likelihood ratio reevaluation, allowing for real-time computation on commodity hardware for arbitrarily complex detector models and terrain. In particular, detectors with inherent asymmetry of response (such as those employing internal collimation or self-shielding for enhanced directional awareness) are leveraged by this approach to provide improved localization. Results from the localization technique are shown for simulated flight data using monolithic as well as directionally-aware detector models, and the capability of the methodology to locate radioisotopes is estimated for several test cases. This localization technique is shown to facilitate urban search by allowing quick and adaptive estimates of source location, in many cases from a single flyover near a source. In particular, this method represents a significant advancement from earlier methods like full-field Bayesian likelihood, which is not generally fast enough to allow for broad-field search in real time, and highest-net-counts estimation, which has a localization error that depends strongly on flight path and cannot generally operate without exhaustive search.

  9. Adaptively Reevaluated Bayesian Localization (ARBL). A Novel Technique for Radiological Source Localization

    SciTech Connect

    Miller, Erin A.; Robinson, Sean M.; Anderson, Kevin K.; McCall, Jonathon D.; Prinke, Amanda M.; Webster, Jennifer B.; Seifert, Carolyn E.

    2015-01-19

    Here we present a novel technique for the localization of radiological sources in urban or rural environments from an aerial platform. The technique is based on a Bayesian approach to localization, in which measured count rates in a time series are compared with predicted count rates from a series of pre-calculated test sources to define likelihood. Furthermore, this technique is expanded by using a localized treatment with a limited field of view (FOV), coupled with a likelihood ratio reevaluation, allowing for real-time computation on commodity hardware for arbitrarily complex detector models and terrain. In particular, detectors with inherent asymmetry of response (such as those employing internal collimation or self-shielding for enhanced directional awareness) are leveraged by this approach to provide improved localization. Our results from the localization technique are shown for simulated flight data using monolithic as well as directionally-aware detector models, and the capability of the methodology to locate radioisotopes is estimated for several test cases. This localization technique is shown to facilitate urban search by allowing quick and adaptive estimates of source location, in many cases from a single flyover near a source. In particular, this method represents a significant advancement from earlier methods like full-field Bayesian likelihood, which is not generally fast enough to allow for broad-field search in real time, and highest-net-counts estimation, which has a localization error that depends strongly on flight path and cannot generally operate without exhaustive search

  10. MEG source localization using invariance of noise space.

    PubMed

    Zhang, Junpeng; Raij, Tommi; Hämäläinen, Matti; Yao, Dezhong

    2013-01-01

    We propose INvariance of Noise (INN) space as a novel method for source localization of magnetoencephalography (MEG) data. The method is based on the fact that modulations of source strengths across time change the energy in signal subspace but leave the noise subspace invariant. We compare INN with classical MUSIC, RAP-MUSIC, and beamformer approaches using simulated data while varying signal-to-noise ratios as well as distance and temporal correlation between two sources. We also demonstrate the utility of INN with actual auditory evoked MEG responses in eight subjects. In all cases, INN performed well, especially when the sources were closely spaced, highly correlated, or one source was considerably stronger than the other.

  11. Contribution of local sources to Megacities air quality

    NASA Astrophysics Data System (ADS)

    Megaritis, A. G.; Fountoukis, C.; Pandis, S. N.; Megapoli Team

    2012-04-01

    The ongoing urbanization over the past decades has led to an increasing number of large urban agglomerations around the world, now hosting more than half of the world's population (UN 2007). These large urban areas with more than 10 million inhabitants, also known as Megacities (Gurjar and Lelieveld 2005) are substantial sources of anthropogenic pollutants having adverse effects on human health, visibility and ecosystems. Development of emissions control strategies to improve Megacities air quality requires quantification of the fraction of the pollution originating from local and regional sources and to determine to which extent Megacities emissions influence the air quality of surrounding areas. PMCAMx-2008 (Murphy and Pandis, 2009; Fountoukis et al., 2011), a three dimensional chemical transport model (CTM) was applied in Europe, to quantify the influence of emissions in European Megacities (Paris, London, Rhine-Ruhr, PoValley) on the concentration of the major PM2.5 components. Different emissions scenarios were applied (e.g. an "annihilation" scenario zeroing all anthropogenic emissions in Megacities), and the impact of Megacities emissions on air quality within Megacities and also their contribution on the air quality in the surrounding regions was investigated. Two simulation periods were used, summer 2009 and winter 2010, to study the seasonal effect of Megacities emissions. The results show that the impact of the local emissions on the concentration of total PM2.5within Megacities is quite variable in space and time. In Po Valley, total PM2.5was found to be largely local in both periods (over 50% in summer and more than 60% during winter), while in Paris and Rhine-Ruhr the contribution of local sources is significant mainly during winter. On the contrary, London emissions have a much smaller effect on local PM2.5 and long range transport of pollutants dominates. Megacities emissions are important for local black carbon (BC) levels. In both periods BC is

  12. Sparse cortical source localization using spatio-temporal atoms.

    PubMed

    Korats, Gundars; Ranta, Radu; Le Cam, Steven; Louis-Dorr, Valérie

    2015-01-01

    This paper addresses the problem of sparse localization of cortical sources from scalp EEG recordings. Localization algorithms use propagation model under spatial and/or temporal constraints, but their performance highly depends on the data signal-to-noise ratio (SNR). In this work we propose a dictionary based sparse localization method which uses a data driven spatio-temporal dictionary to reconstruct the measurements using Single Best Replacement (SBR) and Continuation Single Best Replacement (CSBR) algorithms. We tested and compared our methods with the well-known MUSIC and RAP-MUSIC algorithms on simulated realistic data. Tests were carried out for different noise levels. The results show that our method has a strong advantage over MUSIC-type methods in case of synchronized sources.

  13. Turbulence generation through intense localized sources of energy

    NASA Astrophysics Data System (ADS)

    Maqui, Agustin; Donzis, Diego

    2015-11-01

    Mechanisms to generate turbulence in controlled conditions have been studied for nearly a century. Most common methods include passive and active grids with a focus on incompressible turbulence. However, little attention has been given to compressible flows, and even less to hypersonic flows, where phenomena such as thermal non-equilibrium can be present. Using intense energy from lasers, extreme molecule velocities can be generated from photo-dissociation. This creates strong localized changes in both the hydrodynamics and thermodynamics of the flow, which may perturb the flow in a way similar to an active grid to generate turbulence in hypersonic flows. A large database of direct numerical simulations (DNS) are used to study the feasibility of such an approach. An extensive analysis of single and two point statistics, as well as spectral dynamics is used to characterize the evolution of the flow towards realistic turbulence. Local measures of enstrophy and dissipation are studied to diagnose the main mechanisms for energy exchange. As commonly done in compressible flows, dilatational and solenoidal components are separated to understand the effect of acoustics on the development of turbulence. Further results for cases that assimilate laboratory conditions will be discussed. The authors gratefully acknowledge the support of AFOSR.

  14. Measurement of Turbulence with Acoustic Doppler Current Profilers - Sources of Error and Laboratory Results

    USGS Publications Warehouse

    Nystrom, E.A.; Oberg, K.A.; Rehmann, C.R.; ,

    2002-01-01

    Acoustic Doppler current profilers (ADCPs) provide a promising method for measuring surface-water turbulence because they can provide data from a large spatial range in a relatively short time with relative ease. Some potential sources of errors in turbulence measurements made with ADCPs include inaccuracy of Doppler-shift measurements, poor temporal and spatial measurement resolution, and inaccuracy of multi-dimensional velocities resolved from one-dimensional velocities measured at separate locations. Results from laboratory measurements of mean velocity and turbulence statistics made with two pulse-coherent ADCPs in 0.87 meters of water are used to illustrate several of inherent sources of error in ADCP turbulence measurements. Results show that processing algorithms and beam configurations have important effects on turbulence measurements. ADCPs can provide reasonable estimates of many turbulence parameters; however, the accuracy of turbulence measurements made with commercially available ADCPs is often poor in comparison to standard measurement techniques.

  15. A high intensity acoustic source for active attenuation of exhaust noise

    NASA Astrophysics Data System (ADS)

    Glendinning, A. G.; Elliott, S. J.; Nelson, P. A.

    1988-04-01

    An electropneumatic sound source was developed for active noise control systems applied in hostile environments such as the exhaust systems of gas turbines and internal combustion engines. It employs a gas bearing to support the friction free motion of a sliding plate which is used to modulate the supply of compressed air. The sliding plate is driven by an electrodynamic vibrator. Experimental results demonstrate that this arrangement reduces harmonic distortion to at least 20 dB below the fundamental driving frequency for most operating conditions. A theoretical analysis of the transducer enables predictions to be made of the acoustic volume velocity (source strength) produced by the transducer as a function of the upstream pressure and displacement of the sliding valve. Applicability of the transducer to gas turbine and internal combustion engine exhaust systems was tested, and net power consumption resulting from the operation of the device was estimated.

  16. Acoustic source location in a jet-blown flap using a cross-correlation technique

    NASA Technical Reports Server (NTRS)

    Becker, R. S.; Maus, J. R.

    1977-01-01

    The acoustic source strength distribution in a turbulent flow field was measured for two far field microphones at 45 deg above and below the plane of the flap surface. A processed signal from an inclined hot-film anemometry probe was cross correlated with the signal from the appropriate far field microphone. The contribution made by the sources associated with the fluctuating pressure on the flap surface to the sound received at far field microphone was estimated by cross correlating the processed signals of microphones which were embedded in the flap surface with the far field microphone signals. In addition, detailed fluid dynamic measurements were made in the flow field of the jet flap using dual sensor hot-film anemometry probes.

  17. Real-time EEG Source-mapping Toolbox (REST): Online ICA and source localization.

    PubMed

    Pion-Tonachini, Luca; Hsu, Sheng-Hsiou; Makeig, Scott; Jung, Tzyy-Ping; Cauwenberghs, Gert

    2015-01-01

    The Electroencephalogram (EEG) is a noninvasive functional brain activity recording method that shows promise for becoming a 3-D cortical imaging modality with high temporal resolution. Currently, most of the tools developed for EEG analysis focus mainly on offline processing. This study introduces and demonstrates the Real-time EEG Source-mapping Toolbox (REST), an extension to the widely distributed EEGLAB environment. REST allows blind source separation of EEG data in real-time using Online Recursive Independent Component Analysis (ORICA), plus near real-time localization of separated sources. Two source localization methods are available to fit equivalent current dipoles or estimate spatial source distributions of selected sources. Selected measures of raw EEG data or component activations (e.g. time series of the data, spectral changes over time, equivalent current dipoles, etc.) can be visualized in near real-time. Finally, this study demonstrates the accuracy and functionality of REST with data from two experiments and discusses some relevant applications.

  18. Acoustic emission source location in complex structures using full automatic delta T mapping technique

    NASA Astrophysics Data System (ADS)

    Al-Jumaili, Safaa Kh.; Pearson, Matthew R.; Holford, Karen M.; Eaton, Mark J.; Pullin, Rhys

    2016-05-01

    An easy to use, fast to apply, cost-effective, and very accurate non-destructive testing (NDT) technique for damage localisation in complex structures is key for the uptake of structural health monitoring systems (SHM). Acoustic emission (AE) is a viable technique that can be used for SHM and one of the most attractive features is the ability to locate AE sources. The time of arrival (TOA) technique is traditionally used to locate AE sources, and relies on the assumption of constant wave speed within the material and uninterrupted propagation path between the source and the sensor. In complex structural geometries and complex materials such as composites, this assumption is no longer valid. Delta T mapping was developed in Cardiff in order to overcome these limitations; this technique uses artificial sources on an area of interest to create training maps. These are used to locate subsequent AE sources. However operator expertise is required to select the best data from the training maps and to choose the correct parameter to locate the sources, which can be a time consuming process. This paper presents a new and improved fully automatic delta T mapping technique where a clustering algorithm is used to automatically identify and select the highly correlated events at each grid point whilst the "Minimum Difference" approach is used to determine the source location. This removes the requirement for operator expertise, saving time and preventing human errors. A thorough assessment is conducted to evaluate the performance and the robustness of the new technique. In the initial test, the results showed excellent reduction in running time as well as improved accuracy of locating AE sources, as a result of the automatic selection of the training data. Furthermore, because the process is performed automatically, this is now a very simple and reliable technique due to the prevention of the potential source of error related to manual manipulation.

  19. On optimal retreat distance for the equivalent source method-based nearfield acoustical holography.

    PubMed

    Bai, Mingsian R; Chen, Ching-Cheng; Lin, Jia-Hong

    2011-03-01

    As a basic form of the equivalent source method (ESM) that is used to nearfield acoustical holography (NAH) problems, discrete monopoles are utilized to represent the sound field of interest. When setting up the virtual source distribution, it is vital to maintain a "retreat distance" between the virtual sources and the actual source surface such that reconstruction would not suffer from singularity problems. However, one cannot increase the distance without bound because of the ill-posedness inherent in the reconstruction process with large distance. In prior research, 1-2 times lattice spacing, or the inter-element distance of microphones, is generally recommended as retreat distance in using the ESM-based NAH. While this rule has shown to yield good results in many cases, the optimal choice is a complicated issue that depends on frequency, geometry of the physical source, content of evanescent waves, distribution of sensors and virtual sources, etc. This paper deals about attaining the best compromise between the reconstruction errors induced by the point source singularity; the reconstruction ill-posedness is an interesting problem in its own right. The paper revisits this issue, with the aid of an optimization algorithm based on the golden section search and parabolic interpolation. Numerical simulations were conducted for a baffled planar piston source and a spherically baffled piston source. The results revealed that the retreat distance appropriate for the ESM ranged from 0.4 to 0.5 times the spacing for the planar piston, while from 0.8 to 1.7 times average spacing for the spherical piston. Experiments carried out for a vibrating aluminum plate also revealed that the retreat distance with 0.5 times the spacing yielded better reconstructed velocity than those with 1/20 and 1 times the spacing.

  20. Source Localization using a Directional Gamma Ray Spectrometer

    NASA Astrophysics Data System (ADS)

    Khan, Muhammad Shoaib

    Orphan radioactive sources pose a threat to safety and security and are a concern for various government institutions and the security agencies. It is becoming important to develop robust techniques to find and localise such sources. In the present work, two complementary methods to localize a source have been developed using a directional gamma survey spectrometer. The instrument used consists of four NaI(Tl) detectors oriented vertically in such a way that the crystals on one side shield the crystals on the other side of this arrangement. In the gross count method, the total counts from all four detectors were recorded and a fit was performed to reconstruct the source positions based on total counts versus position. For near sources (less than 15 m), the accuracy of this method is up to 1 m in the position along the road and in the distance from the road. For farther sources (from 22 m to 32 m), it provides accuracy up to 10 m on both. In the directional method, the relative counts in each crystal as a function of position can be used to measure the angle to the source by forming directional vectors. The survey then returns a field of these vectors, which may be fit to reconstruct the coordinates of the source position. For near sources (less than 15 m), this method gives an accuracy of up to 6 m in position along the road and 4 m in the distance from the road. For farther sources (from 22 m to 32 m), the accuracy in the position along the road is up to 5 m and in the distance from the road reduces up to 25 m. The gross count method provides more accurate and reliable source localization, but it does not provide directional information in real time. For this reason, the directional method is used to provide a direction to the source. Multiple truck-borne surveys were conducted using this instrument driving past Na-22 and Cs-137 sources at speeds of 20 km/h and 40 km/h. The surveys were repeated with the sources placed at different distances from the road. Here

  1. An optimal parametrization framework for infrasonic tomography of the stratospheric winds using non-local sources

    NASA Astrophysics Data System (ADS)

    Blom, Philip S.; Marcillo, Omar E.

    2017-03-01

    A method is developed to apply acoustic tomography methods to a localized network of infrasound arrays with intention of monitoring the atmosphere state in the region around the network using non-local sources without requiring knowledge of the precise source location or non-local atmosphere state. Closely spaced arrays provide a means to estimate phase velocities of signals that can provide limiting bounds on certain characteristics of the atmosphere. Larger spacing between such clusters provide a means to estimate celerity from propagation times along multiple unique stratospherically or thermospherically ducted propagation paths and compute more precise estimates of the atmosphere state. In order to avoid the commonly encountered complex, multimodal distributions for parametric atmosphere descriptions and to maximize the computational efficiency of the method, an optimal parametrization framework is constructed. This framework identifies the ideal combination of parameters for tomography studies in specific regions of the atmosphere and statistical model selection analysis shows that high quality corrections to the middle atmosphere winds can be obtained using as few as three parameters. Comparison of the resulting estimates for synthetic data sets shows qualitative agreement between the middle atmosphere winds and those estimated from infrasonic traveltime observations.

  2. An Optimal Parameterization Framework for Infrasonic Tomography of the Stratospheric Winds Using Non-Local Sources

    NASA Astrophysics Data System (ADS)

    Blom, Philip S.; Marcillo, Omar

    2016-12-01

    A method is developed to apply acoustic tomography methods to a localized network of infrasound arrays with intention of monitoring the atmosphere state in the region around the network using non-local sources without requiring knowledge of the precise source location or non-local atmosphere state. Closely spaced arrays provide a means to estimate phase velocities of signals that can provide limiting bounds on certain characteristics of the atmosphere. Larger spacing between such clusters provide a means to estimate celerity from propagation times along multiple unique stratospherically or thermospherically ducted propagation paths and compute more precise estimates of the atmosphere state. In order to avoid the commonly encountered complex, multi-modal distributions for parametric atmosphere descriptions and to maximize the computational efficiency of the method, an optimal parameterization framework is constructed. This framework identifies the ideal combination of parameters for tomography studies in specific regions of the atmosphere and statistical model selection analysis shows that high quality corrections to the middle atmosphere winds can be obtained using as few as three parameters. Comparison of the resulting estimates for synthetic datasets shows qualitative agreement between the middle atmosphere winds and those estimated from infrasonic travel time observations.

  3. An Optimal Parameterization Framework for Infrasonic Tomography of the Stratospheric Winds Using Non-Local Sources

    DOE PAGES

    Blom, Philip Stephen; Marcillo, Omar Eduardo

    2016-12-05

    A method is developed to apply acoustic tomography methods to a localized network of infrasound arrays with intention of monitoring the atmosphere state in the region around the network using non-local sources without requiring knowledge of the precise source location or non-local atmosphere state. Closely spaced arrays provide a means to estimate phase velocities of signals that can provide limiting bounds on certain characteristics of the atmosphere. Larger spacing between such clusters provide a means to estimate celerity from propagation times along multiple unique stratospherically or thermospherically ducted propagation paths and compute more precise estimates of the atmosphere state. Inmore » order to avoid the commonly encountered complex, multimodal distributions for parametric atmosphere descriptions and to maximize the computational efficiency of the method, an optimal parametrization framework is constructed. This framework identifies the ideal combination of parameters for tomography studies in specific regions of the atmosphere and statistical model selection analysis shows that high quality corrections to the middle atmosphere winds can be obtained using as few as three parameters. Lastly, comparison of the resulting estimates for synthetic data sets shows qualitative agreement between the middle atmosphere winds and those estimated from infrasonic traveltime observations.« less

  4. An Optimal Parameterization Framework for Infrasonic Tomography of the Stratospheric Winds Using Non-Local Sources

    SciTech Connect

    Blom, Philip Stephen; Marcillo, Omar Eduardo

    2016-12-05

    A method is developed to apply acoustic tomography methods to a localized network of infrasound arrays with intention of monitoring the atmosphere state in the region around the network using non-local sources without requiring knowledge of the precise source location or non-local atmosphere state. Closely spaced arrays provide a means to estimate phase velocities of signals that can provide limiting bounds on certain characteristics of the atmosphere. Larger spacing between such clusters provide a means to estimate celerity from propagation times along multiple unique stratospherically or thermospherically ducted propagation paths and compute more precise estimates of the atmosphere state. In order to avoid the commonly encountered complex, multimodal distributions for parametric atmosphere descriptions and to maximize the computational efficiency of the method, an optimal parametrization framework is constructed. This framework identifies the ideal combination of parameters for tomography studies in specific regions of the atmosphere and statistical model selection analysis shows that high quality corrections to the middle atmosphere winds can be obtained using as few as three parameters. Lastly, comparison of the resulting estimates for synthetic data sets shows qualitative agreement between the middle atmosphere winds and those estimated from infrasonic traveltime observations.

  5. Acoustic Band Gap Formation in Two-Dimensional Locally Resonant Sonic Crystals Comprised of Helmholtz Resonators

    NASA Astrophysics Data System (ADS)

    Chalmers, L.; Elford, D. P.; Kusmartsev, F. V.; Swallowe, G. M.

    2010-12-01

    We present a new type of sonic crystal technology offering a novel method of achieving broad acoustic band gaps. The proposed design of a locally resonating sonic crystal (LRSC) is constructed from "C"-shaped Helmholtz resonators as opposed to traditional solid scattering units. This unique construction enables a two band gap system to be generated in which the first -- a Bragg type band gap, arises due to the periodic nature of the crystal, whilst the second gap results from resonance of the air column within the resonators. The position of this secondary band gap is found to be dependent upon the dimensions of the resonating cavity. The band gap formation is investigated theoretically using finite element methods, and confirmed through experimental testing. It is noted that the resonance band gaps detected cover a much broader frequency range (in the order of kHz) than has been achieved to date. In addition the possibility of overlapping such a wide band gap with the characteristic Bragg gap generated by the structure itself could yield gaps of even greater range. A design of sonic crystal is proposed, that comprises of several resonators with differing cavity sizes. Such a structure generates multiple resonance gaps corresponding to the various resonator sizes, which may be overlapped to form yet larger band gaps. This multiple resonance gap system can occur in two configurations. Firstly a simple mixed array can be created by alternating resonator sizes in the array and secondly using a System coined the Matryoshka (Russian doll) array in which the resonators are distributed inside one another. The proposed designs of LRSC's offer a real potential for acoustic shielding using sonic crystals, as both the size and position of the band gaps generated can be controlled. This is an application which has been suggested and investigated for several years with little progress. Furthermore the frequency region attenuated by resonance is unrelated to the crystals lattice

  6. Acoustic Band Gap Formation in Two-Dimensional Locally Resonant Sonic Crystals Comprised of Helmholtz Resonators

    NASA Astrophysics Data System (ADS)

    Chalmers, L.; Elford, D. P.; Kusmartsev, F. V.; Swallowe, G. M.

    We present a new type of sonic crystal technology offering a novel method of achieving broad acoustic band gaps. The proposed design of a locally resonating sonic crystal (LRSC) is constructed from "C"-shaped Helmholtz resonators as opposed to traditional solid scattering units. This unique construction enables a two band gap system to be generated in which the first — a Bragg type band gap, arises due to the periodic nature of the crystal, whilst the second gap results from resonance of the air column within the resonators. The position of this secondary band gap is found to be dependent upon the dimensions of the resonating cavity. The band gap formation is investigated theoretically using finite element methods, and confirmed through experimental testing. It is noted that the resonance band gaps detected cover a much broader frequency range (in the order of kHz) than has been achieved to date. In addition the possibility of overlapping such a wide band gap with the characteristic Bragg gap generated by the structure itself could yield gaps of even greater range. A design of sonic crystal is proposed, that comprises of several resonators with differing cavity sizes. Such a structure generates multiple resonance gaps corresponding to the various resonator sizes, which may be overlapped to form yet larger band gaps. This multiple resonance gap system can occur in two configurations. Firstly a simple mixed array can be created by alternating resonator sizes in the array and secondly using a system coined the Matryoshka (Russian doll) array in which the resonators are distributed inside one another. The proposed designs of LRSC's offer a real potential for acoustic shielding using sonic crystals, as both the size and position of the band gaps generated can be controlled. This is an application which has been suggested and investigated for several years with little progress. Furthermore the frequency region attenuated by resonance is unrelated to the crystals

  7. Source localization of turboshaft engine broadband noise using a three-sensor coherence method

    NASA Astrophysics Data System (ADS)

    Blacodon, Daniel; Lewy, Serge

    2015-03-01

    Turboshaft engines can become the main source of helicopter noise at takeoff. Inlet radiation mainly comes from the compressor tones, but aft radiation is more intricate: turbine tones usually are above the audible frequency range and do not contribute to the weighted sound levels; jet is secondary and radiates low noise levels. A broadband component is the most annoying but its sources are not well known (it is called internal or core noise). Present study was made in the framework of the European project TEENI (Turboshaft Engine Exhaust Noise Identification). Its main objective was to localize the broadband sources in order to better reduce them. Several diagnostic techniques were implemented by the various TEENI partners. As regards ONERA, a first attempt at separating sources was made in the past with Turbomeca using a three-signal coherence method (TSM) to reject background non-acoustic noise. The main difficulty when using TSM is the assessment of the frequency range where the results are valid. This drawback has been circumvented in the TSM implemented in TEENI. Measurements were made on a highly instrumented Ardiden turboshaft engine in the Turbomeca open-air test bench. Two engine powers (approach and takeoff) were selected to apply TSM. Two internal pressure probes were located in various cross-sections, either behind the combustion chamber (CC), the high-pressure turbine (HPT), the free-turbine first stage (TL), or in four nozzle sections. The third transducer was a far-field microphone located around the maximum of radiation, at 120° from the intake centerline. The key result is that coherence increases from CC to HPT and TL, then decreases in the nozzle up to the exit. Pressure fluctuations from HPT and TL are very coherent with the far-field acoustic spectra up to 700 Hz. They are thus the main acoustic source and can be attributed to indirect combustion noise (accuracy decreases above 700 Hz because coherence is lower, but far-field sound spectra

  8. Toward a probabilistic acoustic emission source location algorithm: A Bayesian approach

    NASA Astrophysics Data System (ADS)

    Schumacher, Thomas; Straub, Daniel; Higgins, Christopher

    2012-09-01

    Acoustic emissions (AE) are stress waves initiated by sudden strain releases within a solid body. These can be caused by internal mechanisms such as crack opening or propagation, crushing, or rubbing of crack surfaces. One application for the AE technique in the field of Structural Engineering is Structural Health Monitoring (SHM). With piezo-electric sensors mounted to the surface of the structure, stress waves can be detected, recorded, and stored for later analysis. An important step in quantitative AE analysis is the estimation of the stress wave source locations. Commonly, source location results are presented in a rather deterministic manner as spatial and temporal points, excluding information about uncertainties and errors. Due to variability in the material properties and uncertainty in the mathematical model, measures of uncertainty are needed beyond best-fit point solutions for source locations. This paper introduces a novel holistic framework for the development of a probabilistic source location algorithm. Bayesian analysis methods with Markov Chain Monte Carlo (MCMC) simulation are employed where all source location parameters are described with posterior probability density functions (PDFs). The proposed methodology is applied to an example employing data collected from a realistic section of a reinforced concrete bridge column. The selected approach is general and has the advantage that it can be extended and refined efficiently. Results are discussed and future steps to improve the algorithm are suggested.

  9. High order local absorbing boundary conditions for acoustic waves in terms of farfield expansions

    NASA Astrophysics Data System (ADS)

    Villamizar, Vianey; Acosta, Sebastian; Dastrup, Blake

    2017-03-01

    We devise a new high order local absorbing boundary condition (ABC) for radiating problems and scattering of time-harmonic acoustic waves from obstacles of arbitrary shape. By introducing an artificial boundary S enclosing the scatterer, the original unbounded domain Ω is decomposed into a bounded computational domain Ω- and an exterior unbounded domain Ω+. Then, we define interface conditions at the artificial boundary S, from truncated versions of the well-known Wilcox and Karp farfield expansion representations of the exact solution in the exterior region Ω+. As a result, we obtain a new local absorbing boundary condition (ABC) for a bounded problem on Ω-, which effectively accounts for the outgoing behavior of the scattered field. Contrary to the low order absorbing conditions previously defined, the error at the artificial boundary induced by this novel ABC can be easily reduced to reach any accuracy within the limits of the computational resources. We accomplish this by simply adding as many terms as needed to the truncated farfield expansions of Wilcox or Karp. The convergence of these expansions guarantees that the order of approximation of the new ABC can be increased arbitrarily without having to enlarge the radius of the artificial boundary. We include numerical results in two and three dimensions which demonstrate the improved accuracy and simplicity of this new formulation when compared to other absorbing boundary conditions.

  10. Building an open-source simulation platform of acoustic radiation force-based breast elastography

    NASA Astrophysics Data System (ADS)

    Wang, Yu; Peng, Bo; Jiang, Jingfeng

    2017-03-01

    Ultrasound-based elastography including strain elastography, acoustic radiation force impulse (ARFI) imaging, point shear wave elastography and supersonic shear imaging (SSI) have been used to differentiate breast tumors among other clinical applications. The objective of this study is to extend a previously published virtual simulation platform built for ultrasound quasi-static breast elastography toward acoustic radiation force-based breast elastography. Consequently, the extended virtual breast elastography simulation platform can be used to validate image pixels with known underlying soft tissue properties (i.e. ‘ground truth’) in complex, heterogeneous media, enhancing confidence in elastographic image interpretations. The proposed virtual breast elastography system inherited four key components from the previously published virtual simulation platform: an ultrasound simulator (Field II), a mesh generator (Tetgen), a finite element solver (FEBio) and a visualization and data processing package (VTK). Using a simple message passing mechanism, functionalities have now been extended to acoustic radiation force-based elastography simulations. Examples involving three different numerical breast models with increasing complexity—one uniform model, one simple inclusion model and one virtual complex breast model derived from magnetic resonance imaging data, were used to demonstrate capabilities of this extended virtual platform. Overall, simulation results were compared with the published results. In the uniform model, the estimated shear wave speed (SWS) values were within 4% compared to the predetermined SWS values. In the simple inclusion and the complex breast models, SWS values of all hard inclusions in soft backgrounds were slightly underestimated, similar to what has been reported. The elastic contrast values and visual observation show that ARFI images have higher spatial resolution, while SSI images can provide higher inclusion-to-background contrast

  11. Building an open-source simulation platform of acoustic radiation force-based breast elastography.

    PubMed

    Wang, Yu; Peng, Bo; Jiang, Jingfeng

    2017-03-07

    Ultrasound-based elastography including strain elastography, acoustic radiation force impulse (ARFI) imaging, point shear wave elastography and supersonic shear imaging (SSI) have been used to differentiate breast tumors among other clinical applications. The objective of this study is to extend a previously published virtual simulation platform built for ultrasound quasi-static breast elastography toward acoustic radiation force-based breast elastography. Consequently, the extended virtual breast elastography simulation platform can be used to validate image pixels with known underlying soft tissue properties (i.e. 'ground truth') in complex, heterogeneous media, enhancing confidence in elastographic image interpretations. The proposed virtual breast elastography system inherited four key components from the previously published virtual simulation platform: an ultrasound simulator (Field II), a mesh generator (Tetgen), a finite element solver (FEBio) and a visualization and data processing package (VTK). Using a simple message passing mechanism, functionalities have now been extended to acoustic radiation force-based elastography simulations. Examples involving three different numerical breast models with increasing complexity-one uniform model, one simple inclusion model and one virtual complex breast model derived from magnetic resonance imaging data, were used to demonstrate capabilities of this extended virtual platform. Overall, simulation results were compared with the published results. In the uniform model, the estimated shear wave speed (SWS) values were within 4% compared to the predetermined SWS values. In the simple inclusion and the complex breast models, SWS values of all hard inclusions in soft backgrounds were slightly underestimated, similar to what has been reported. The elastic contrast values and visual observation show that ARFI images have higher spatial resolution, while SSI images can provide higher inclusion-to-background contrast. In

  12. Source localization using recursively applied and projected (RAP) MUSIC

    SciTech Connect

    Mosher, J.C.; Leahy, R.M.

    1998-03-01

    A new method for source localization is described that is based on a modification of the well known multiple signal classification (MUSIC) algorithm. In classical MUSIC, the array manifold vector is projected onto an estimate of the signal subspace, but errors in the estimate can make location of multiple sources difficult. Recursively applied and projected (RAP) MUSIC uses each successively located source to form an intermediate array gain matrix, and projects both the array manifold and the signal subspace estimate into its orthogonal complement. The MUSIC projection is then performed in this reduced subspace. Using the metric of principal angles, the authors describe a general form of the RAP-MUSIC algorithm for the case of diversely polarized sources. Through a uniform linear array simulation, the authors demonstrate the improved Monte Carlo performance of RAP-MUSIC relative to MUSIC and two other sequential subspace methods, S and IES-MUSIC.

  13. Estimation of glottal source features from the spectral envelope of the acoustic speech signal

    NASA Astrophysics Data System (ADS)

    Torres, Juan Felix

    Speech communication encompasses diverse types of information, including phonetics, affective state, voice quality, and speaker identity. From a speech production standpoint, the acoustic speech signal can be mainly divided into glottal source and vocal tract components, which play distinct roles in rendering the various types of information it contains. Most deployed speech analysis systems, however, do not explicitly represent these two components as distinct entities, as their joint estimation from the acoustic speech signal becomes an ill-defined blind deconvolution problem. Nevertheless, because of the desire to understand glottal behavior and how it relates to perceived voice quality, there has been continued interest in explicitly estimating the glottal component of the speech signal. To this end, several inverse filtering (IF) algorithms have been proposed, but they are unreliable in practice because of the blind formulation of the separation problem. In an effort to develop a method that can bypass the challenging IF process, this thesis proposes a new glottal source information extraction method that relies on supervised machine learning to transform smoothed spectral representations of speech, which are already used in some of the most widely deployed and successful speech analysis applications, into a set of glottal source features. A transformation method based on Gaussian mixture regression (GMR) is presented and compared to current IF methods in terms of feature similarity, reliability, and speaker discrimination capability on a large speech corpus, and potential representations of the spectral envelope of speech are investigated for their ability represent glottal source variation in a predictable manner. The proposed system was found to produce glottal source features that reasonably matched their IF counterparts in many cases, while being less susceptible to spurious errors. The development of the proposed method entailed a study into the aspects

  14. Consistency of EEG source localization and connectivity estimates.

    PubMed

    Mahjoory, Keyvan; Nikulin, Vadim V; Botrel, Loïc; Linkenkaer-Hansen, Klaus; Fato, Marco M; Haufe, Stefan

    2017-03-12

    As the EEG inverse problem does not have a unique solution, the sources reconstructed from EEG and their connectivity properties depend on forward and inverse modeling parameters such as the choice of an anatomical template and electrical model, prior assumptions on the sources, and further implementational details. In order to use source connectivity analysis as a reliable research tool, there is a need for stability across a wider range of standard estimation routines. Using resting state EEG recordings of N=65 participants acquired within two studies, we present the first comprehensive assessment of the consistency of EEG source localization and functional/effective connectivity metrics across two anatomical templates (ICBM152 and Colin27), three electrical models (BEM, FEM and spherical harmonics expansions), three inverse methods (WMNE, eLORETA and LCMV), and three software implementations (Brainstorm, Fieldtrip and our own toolbox). Source localizations were found to be more stable across reconstruction pipelines than subsequent estimations of functional connectivity, while effective connectivity estimates where the least consistent. All results were relatively unaffected by the choice of the electrical head model, while the choice of the inverse method and source imaging package induced a considerable variability. In particular, a relatively strong difference was found between LCMV beamformer solutions on one hand and eLORETA/WMNE distributed inverse solutions on the other hand. We also observed a gradual decrease of consistency when results are compared between studies, within individual participants, and between individual participants. In order to provide reliable findings in the face of the observed variability, additional simulations involving interacting brain sources are required. Meanwhile, we encourage verification of the obtained results using more than one source imaging procedure.

  15. Information-Driven Active Audio-Visual Source Localization.

    PubMed

    Schult, Niclas; Reineking, Thomas; Kluss, Thorsten; Zetzsche, Christoph

    2015-01-01

    We present a system for sensorimotor audio-visual source localization on a mobile robot. We utilize a particle filter for the combination of audio-visual information and for the temporal integration of consecutive measurements. Although the system only measures the current direction of the source, the position of the source can be estimated because the robot is able to move and can therefore obtain measurements from different directions. These actions by the robot successively reduce uncertainty about the source's position. An information gain mechanism is used for selecting the most informative actions in order to minimize the number of actions required to achieve accurate and precise position estimates in azimuth and distance. We show that this mechanism is an efficient solution to the action selection problem for source localization, and that it is able to produce precise position estimates despite simplified unisensory preprocessing. Because of the robot's mobility, this approach is suitable for use in complex and cluttered environments. We present qualitative and quantitative results of the system's performance and discuss possible areas of application.

  16. Localization of source with unknown amplitude using IPMC sensor arrays

    NASA Astrophysics Data System (ADS)

    Abdulsadda, Ahmad T.; Zhang, Feitian; Tan, Xiaobo

    2011-04-01

    The lateral line system, consisting of arrays of neuromasts functioning as flow sensors, is an important sensory organ for fish that enables them to detect predators, locate preys, perform rheotaxis, and coordinate schooling. Creating artificial lateral line systems is of significant interest since it will provide a new sensing mechanism for control and coordination of underwater robots and vehicles. In this paper we propose recursive algorithms for localizing a vibrating sphere, also known as a dipole source, based on measurements from an array of flow sensors. A dipole source is frequently used in the study of biological lateral lines, as a surrogate for underwater motion sources such as a flapping fish fin. We first formulate a nonlinear estimation problem based on an analytical model for the dipole-generated flow field. Two algorithms are presented to estimate both the source location and the vibration amplitude, one based on the least squares method and the other based on the Newton-Raphson method. Simulation results show that both methods deliver comparable performance in source localization. A prototype of artificial lateral line system comprising four ionic polymer-metal composite (IPMC) sensors is built, and experimental results are further presented to demonstrate the effectiveness of IPMC lateral line systems and the proposed estimation algorithms.

  17. Source Localization using Stochastic Approximation and Least Squares Methods

    SciTech Connect

    Sahyoun, Samir S.; Djouadi, Seddik M.; Qi, Hairong; Drira, Anis

    2009-03-05

    This paper presents two approaches to locate the source of a chemical plume; Nonlinear Least Squares and Stochastic Approximation (SA) algorithms. Concentration levels of the chemical measured by special sensors are used to locate this source. Non-linear Least Squares technique is applied at different noise levels and compared with the localization using SA. For a noise corrupted data collected from a distributed set of chemical sensors, we show that SA methods are more efficient than Least Squares method. SA methods are often better at coping with noisy input information than other search methods.

  18. Multi-resonance tunneling of acoustic waves in two-dimensional locally-resonant phononic crystals

    NASA Astrophysics Data System (ADS)

    Yang, Aichao; He, Wei; Zhang, Jitao; Zhu, Liang; Yu, Lingang; Ma, Jian; Zou, Yang; Li, Min; Wu, Yu

    2017-03-01

    Multi-resonance tunneling of acoustic waves through a two-dimensional phononic crystal (PC) is demonstrated by substituting dual Helmholtz resonators (DHRs) for acoustically-rigid scatterers in the PC. Due to the coupling of the incident waves with the acoustic multi-resonance modes of the DHRs, acoustic waves can tunnel through the PC at specific frequencies which lie inside the band gaps of the PC. This wave tunneling transmission can be further broadened by using the multilayer Helmholtz resonators. Thus, a PC consisting of an array of dual/multilayer Helmholtz resonators can serve as an acoustic band-pass filter, used to pick out acoustic waves with certain frequencies from noise.

  19. Acoustic holography as a metrological tool for characterizing medical ultrasound sources and fields

    PubMed Central

    Sapozhnikov, Oleg A.; Tsysar, Sergey A.; Khokhlova, Vera A.; Kreider, Wayne

    2015-01-01

    Acoustic holography is a powerful technique for characterizing ultrasound sources and the fields they radiate, with the ability to quantify source vibrations and reduce the number of required measurements. These capabilities are increasingly appealing for meeting measurement standards in medical ultrasound; however, associated uncertainties have not been investigated systematically. Here errors associated with holographic representations of a linear, continuous-wave ultrasound field are studied. To facilitate the analysis, error metrics are defined explicitly, and a detailed description of a holography formulation based on the Rayleigh integral is provided. Errors are evaluated both for simulations of a typical therapeutic ultrasound source and for physical experiments with three different ultrasound sources. Simulated experiments explore sampling errors introduced by the use of a finite number of measurements, geometric uncertainties in the actual positions of acquired measurements, and uncertainties in the properties of the propagation medium. Results demonstrate the theoretical feasibility of keeping errors less than about 1%. Typical errors in physical experiments were somewhat larger, on the order of a few percent; comparison with simulations provides specific guidelines for improving the experimental implementation to reduce these errors. Overall, results suggest that holography can be implemented successfully as a metrological tool with small, quantifiable errors. PMID:26428789

  20. Acoustic holography as a metrological tool for characterizing medical ultrasound sources and fields.

    PubMed

    Sapozhnikov, Oleg A; Tsysar, Sergey A; Khokhlova, Vera A; Kreider, Wayne

    2015-09-01

    Acoustic holography is a powerful technique for characterizing ultrasound sources and the fields they radiate, with the ability to quantify source vibrations and reduce the number of required measurements. These capabilities are increasingly appealing for meeting measurement standards in medical ultrasound; however, associated uncertainties have not been investigated systematically. Here errors associated with holographic representations of a linear, continuous-wave ultrasound field are studied. To facilitate the analysis, error metrics are defined explicitly, and a detailed description of a holography formulation based on the Rayleigh integral is provided. Errors are evaluated both for simulations of a typical therapeutic ultrasound source and for physical experiments with three different ultrasound sources. Simulated experiments explore sampling errors introduced by the use of a finite number of measurements, geometric uncertainties in the actual positions of acquired measurements, and uncertainties in the properties of the propagation medium. Results demonstrate the theoretical feasibility of keeping errors less than about 1%. Typical errors in physical experiments were somewhat larger, on the order of a few percent; comparison with simulations provides specific guidelines for improving the experimental implementation to reduce these errors. Overall, results suggest that holography can be implemented successfully as a metrological tool with small, quantifiable errors.

  1. Phase patterns of dispersive waves from moving localized sources

    NASA Astrophysics Data System (ADS)

    Svirkunov, P. N.; Kalashnik, M. V.

    2014-01-01

    A general approach is proposed within which the phase structure of wave perturbations caused by a moving localized source can be described based on the wave dispersion law alone. Applying this approach, a simple analytical expression for the phase surfaces is obtained. It is used to study the details of phase patterns of gravity-capillary waves, the structure of wave trains in the ocean in the wake of a moving tropical hurricane, and the system of lee waves in Earth's atmosphere.

  2. Variational Bayesian localization of EEG sources with generalized Gaussian priors

    NASA Astrophysics Data System (ADS)

    Cortes, J. M.; Lopez, A.; Molina, R.; Katsaggelos, A. K.

    2012-11-01

    Although in the last decades the use of Magnetic Resonance Imaging has grown in popularity as a tool for the structural analysis of the brain, including MRI, fMRI and recently DTI, the ElectroEncephaloGraphy (EEG) is, still today, an interesting technique for the understanding of brain organization and function. The main reason for this is that the EEG is a direct measure of brain bioelectrical activity, and such activity can be monitorized in the millisecond time window. For some situations and cognitive scenarios, such fine temporal resolution might suffice for some aspects of brain function; however, the EEG spatial resolution is very poor since it is based on a small number of scalp recordings, thus turning the source localization problem into an ill-posed one in which infinite possibilities exist for the localization of the neuronal generators. This is an old problem in computational neuroimaging; indeed, many methods have been proposed to overcome this localization. Here, by performing a Variational Bayesian Inference procedure with a generalized Gaussian prior, we come out with an algorithm that performs simultaneously the estimation of both sources and model parameters. The novelty for the inclusion of the generalized Gaussian prior allows to control the smoothness degree of the estimated sources. Finally, the suggested algorithm is validated on simulated data.

  3. Analysis of acoustic scattering from fluid bodies using a multipoint source model.

    PubMed

    Boag, A; Leviatan, Y

    1989-01-01

    A moment-method solution is presented for the problem of acoustic scattering from homogeneous fluid bodies. It uses fictitious isotropic point sources to simulate both the field scattered by the body and the field inside the body and, in turn, point-matches the continuity conditions for the normal component of the velocity and for the pressure across the surface of the body. The procedure is simple to execute and is general in that bodies of arbitrary smooth shape can be handled effectively. Perfectly rigid bodies are treated as reduced cases of the general procedure. Results are given and compared with available analytic solutions, which demonstrate the very good performance of the procedure.

  4. Cross-correlation function of acoustic fields generated by random high-frequency sources.

    PubMed

    Godin, Oleg A

    2010-08-01

    Long-range correlations of noise fields in arbitrary inhomogeneous, moving or motionless fluids are studied in the ray approximation. Using the stationary phase method, two-point cross-correlation function of noise is shown to approximate the sum of the deterministic Green's functions describing sound propagation in opposite directions between the two points. Explicit relations between amplitudes of respective ray arrivals in the noise cross-correlation function and the Green's functions are obtained and verified against specific problems allowing an exact solution. Earlier results are extended by simultaneously accounting for sound absorption, arbitrary distribution of noise sources in a volume and on surfaces, and fluid inhomogeneity and motion. The information content of the noise cross-correlation function is discussed from the viewpoint of passive acoustic characterization of inhomogeneous flows.

  5. Investigation of the Acoustic Source Characteristics of High Energy Laser Pulses: Models and Experiment

    DTIC Science & Technology

    2008-06-01

    consistent with the expected approximately 1/r relationship for pressure amplitudes under 100MPa. The modeling effort employed AUTODYN , a finite...agreed with Vogel’s measured values. The efficiency, pulse length, pulse shape, and variation of pressure amplitude with range achieved with AUTODYN ...Nonlinear Acoustics, AUTODYN , Acoustic Modeling, Shock Acoustics 16. PRICE CODE 17. SECURITY CLASSIFICATION OF REPORT Unclassified 18. SECURITY

  6. Nanohertz gravitational wave sources in the local universe

    NASA Astrophysics Data System (ADS)

    Mingarelli, Chiara M. F.; Croft, Steve; Ellis, Justin; Greene, Jenny E.; Lazio, Joseph; Ma, Chung-Pei; Sesana, Alberto; Burke-Spolaor, Sarah; Taylor, Stephen R.

    2017-01-01

    We look at the 2MASS galaxy catalog to identify potential supermassive black hole binary host galaxies, assess the likelihood of detecting one or more of these sources, and how much they might contribute to the nanohertz gravitational-wave (GW) background (GWB) and its anisotropy. We find that over 10,000 realizations of the local universe, out to 225 Mpc, that the number of sources per realization emitting GWs with f > 1 nHz can be described by a normal distribution with a mean of 130. We find that the detection of these sources is hampered by the small chirp mass of such binaries, and that with current best upper limits from the EPTA for continuous GW sources, the detection probability is < 1%. However, in the next 5-6 years we will begin to probe a region of the parameter space which is rich in sources, making a detection much more likely. Finally we find that a continuous GW source contributes < 1% to the isotropic GWB, but that some may contribute to the level of anisotropy by a few to 10%.

  7. Microwave subsecond pulses in solar flares - source localization, emission mechanism

    NASA Astrophysics Data System (ADS)

    Altyntsev, A. T.; Kardapolova, N. N.; Kuznetsov, A. A.; Lesovoi, S. V.; Meshalkina, N. S.; Yan, Y.

    The observations of bursts with fine temporal structures is one of few ways to study the primary energy release sites in solar flares. The localization of their sources in a flare region using the Siberian Solar Radio Telescope data (5.7 GHz) provide us with the unique possibility to determine plasma parameters, and to verify emission mechanisms. The simultaneous spectral observations (5.2 - 7.7 GHz) were provided by National Astronomical Observatories/Beijing spectropolarimeters. An analysis is made of the subsecond pulses of different types: short duration wide band pulses, U-type cm-bursts, the bursts with the "zebra" pattern. The suggestion is justified that in many cases the frequency drifts are response to the plasma density dynamics in the local sites in flare loops. It is argued that the conditions of emission escaping from the source strongly influent the apparent source sizes and the polarization degree of the subsecond sources. This research was supported by Grants 02-02-39030 and 03-02-16229 of RFBR, and E02-3.2-489 of Education department of Russia.

  8. Improved Bayesian Infrasonic Source Localization for regional infrasound

    DOE PAGES

    Blom, Philip S.; Marcillo, Omar; Arrowsmith, Stephen J.

    2015-10-20

    The Bayesian Infrasonic Source Localization (BISL) methodology is examined and simplified providing a generalized method of estimating the source location and time for an infrasonic event and the mathematical framework is used therein. The likelihood function describing an infrasonic detection used in BISL has been redefined to include the von Mises distribution developed in directional statistics and propagation-based, physically derived celerity-range and azimuth deviation models. Frameworks for constructing propagation-based celerity-range and azimuth deviation statistics are presented to demonstrate how stochastic propagation modelling methods can be used to improve the precision and accuracy of the posterior probability density function describing themore » source localization. Infrasonic signals recorded at a number of arrays in the western United States produced by rocket motor detonations at the Utah Test and Training Range are used to demonstrate the application of the new mathematical framework and to quantify the improvement obtained by using the stochastic propagation modelling methods. Moreover, using propagation-based priors, the spatial and temporal confidence bounds of the source decreased by more than 40 per cent in all cases and by as much as 80 per cent in one case. Further, the accuracy of the estimates remained high, keeping the ground truth within the 99 per cent confidence bounds for all cases.« less

  9. Improved Bayesian Infrasonic Source Localization for regional infrasound

    SciTech Connect

    Blom, Philip S.; Marcillo, Omar; Arrowsmith, Stephen J.

    2015-10-20

    The Bayesian Infrasonic Source Localization (BISL) methodology is examined and simplified providing a generalized method of estimating the source location and time for an infrasonic event and the mathematical framework is used therein. The likelihood function describing an infrasonic detection used in BISL has been redefined to include the von Mises distribution developed in directional statistics and propagation-based, physically derived celerity-range and azimuth deviation models. Frameworks for constructing propagation-based celerity-range and azimuth deviation statistics are presented to demonstrate how stochastic propagation modelling methods can be used to improve the precision and accuracy of the posterior probability density function describing the source localization. Infrasonic signals recorded at a number of arrays in the western United States produced by rocket motor detonations at the Utah Test and Training Range are used to demonstrate the application of the new mathematical framework and to quantify the improvement obtained by using the stochastic propagation modelling methods. Moreover, using propagation-based priors, the spatial and temporal confidence bounds of the source decreased by more than 40 per cent in all cases and by as much as 80 per cent in one case. Further, the accuracy of the estimates remained high, keeping the ground truth within the 99 per cent confidence bounds for all cases.

  10. Experimental validation of a method for the prediction of the acoustic field produced by an acoustic source and the reflected field produced by a solid interface

    NASA Astrophysics Data System (ADS)

    Diaz, Sandra; Chopra, Rajiv; Pichardo, Samuel

    2012-11-01

    In this work we present a model to calculate the acoustic pressure generated by the interaction of forward and reflected waves in the vicinity of a solid interface and compare it to experimental data. An experimental setup was designed to measure the forward and the combined forward-reflected acoustic fields produced by a solid interface. A 0.785mm-needle hydrophone was used to characterize the acoustic field produced by a 7.29MHz-ultrasound transducer focused at 6cm. The hydrophone was positioned perpendicularly to the sound propagation direction and moved between the transducer and a 9mm-thick acrylic sample using a robotic arm. Simulations were carried out using a modified Rayleigh-Sommerfeld integral that calculates the particle displacement over a reflecting surface. This particle displacement at the boundary of the interface is then used as an acoustic source to obtain the reflected particle displacement. The complex sum of the forward and reflected fields was compared to the experimental measurements. The measurements showed an interference pattern that increased the pressure amplitude in average 10.4% with peaks of up to 25.8%. The proposed model is able to represent the interference pattern produced by the reflected wave with an average absolute error of 3.4+/-0.54% and a maximal error of 5.6%. The comparison between the experimental measurements and the simulations indicates that the presented model predicts with good accuracy the acoustic field generated by ultrasound transducers facing a solid interface. This model can be used to foresee the outcome of therapeutic applications where the devices are used in proximity to a bone interface.

  11. EEG and MEG source localization using recursively applied (RAP) MUSIC

    SciTech Connect

    Mosher, J.C.; Leahy, R.M.

    1996-12-31

    The multiple signal characterization (MUSIC) algorithm locates multiple asynchronous dipolar sources from electroencephalography (EEG) and magnetoencephalography (MEG) data. A signal subspace is estimated from the data, then the algorithm scans a single dipole model through a three-dimensional head volume and computes projections onto this subspace. To locate the sources, the user must search the head volume for local peaks in the projection metric. Here we describe a novel extension of this approach which we refer to as RAP (Recursively APplied) MUSIC. This new procedure automatically extracts the locations of the sources through a recursive use of subspace projections, which uses the metric of principal correlations as a multidimensional form of correlation analysis between the model subspace and the data subspace. The dipolar orientations, a form of `diverse polarization,` are easily extracted using the associated principal vectors.

  12. A Numerical Investigation of Turbine Noise Source Hierarchy and Its Acoustic Transmission Characteristics

    NASA Technical Reports Server (NTRS)

    VanZante, Dale; Envia, Edmane

    2008-01-01

    Understanding the relative importance of the various turbine noise generation mechanisms and the characteristics of the turbine acoustic transmission loss are essential ingredients in developing robust reduced-order models for predicting the turbine noise signature. A computationally based investigation has been undertaken to help guide the development of a turbine noise prediction capability that does not rely on empiricism. The investigation relies on highly detailed numerical simulations of the unsteady flowfield inside a modern high-pressure turbine (HPT). The simulations are developed using TURBO, which is an unsteady Reynolds-averaged Navier-Stokes (URANS) code capable of multi-stage simulations. The purpose of this study is twofold. First, to determine an estimate of the relative importance of the contributions to the coherent part of the acoustic signature of a turbine from the three potential sources of turbine noise generation, namely, blade-row viscous interaction, potential field interaction, and entropic source associated with the interaction of the blade rows with the temperature nonuniformities caused by the incomplete mixing of the hot fluid and the cooling flow. Second, to develop an understanding of the turbine acoustic transmission characteristics and to assess the applicability of existing empirical and analytical transmission loss models to realistic geometries and flow conditions for modern turbine designs. The investigation so far has concentrated on two simulations: (1) a single-stage HPT and (2) a two-stage HPT and the associated inter-turbine duct/strut segment. The simulations are designed to resolve up to the second harmonic of the blade passing frequency tone in accordance with accepted rules for second order solvers like TURBO. The calculations include blade and vane cooling flows and a radial profile of pressure and temperature at the turbine inlet. The calculation can be modified later to include the combustor pattern factor at the

  13. Lithosphere-Atmosphere coupling: Spectral element modeling of the evolution of acoustic waves in the atmosphere from an underground source.

    NASA Astrophysics Data System (ADS)

    Averbuch, Gil; Price, Colin

    2015-04-01

    Lithosphere-Atmosphere coupling: Spectral element modeling of the evolution of acoustic waves in the atmosphere from an underground source. G. Averbuch, C. Price Department of Geosciences, Tel Aviv University, Israel Infrasound is one of the four Comprehensive Nuclear-Test Ban Treaty technologies for monitoring nuclear explosions. This technology measures the acoustic waves generated by the explosions followed by their propagation through the atmosphere. There are also natural phenomena that can act as an infrasound sources like sprites, volcanic eruptions and earthquakes. The infrasound waves generated from theses phenomena can also be detected by the infrasound arrays. In order to study the behavior of these waves, i.e. the physics of wave propagation in the atmosphere, their evolution and their trajectories, numerical methods are required. This presentation will deal with the evolution of acoustic waves generated by underground sources (earthquakes and underground explosions). A 2D Spectral elements formulation for lithosphere-atmosphere coupling will be presented. The formulation includes the elastic wave equation for the seismic waves and the momentum, mass and state equations for the acoustic waves in a moving stratified atmosphere. The coupling of the two media is made by boundary conditions that ensures the continuity of traction and velocity (displacement) in the normal component to the interface. This work has several objectives. The first is to study the evolution of acoustic waves in the atmosphere from an underground source. The second is to derive transmission coefficients for the energy flux with respect to the seismic magnitude and earth density. The third will be the generation of seismic waves from acoustic waves in the atmosphere. Is it possible?

  14. Fifth International Workshop on Detection, Classification, Localization and Density Estimation of Marine Mammals using Passive Acoustics

    DTIC Science & Technology

    2013-09-30

    spring 2011 in Seattle) • The Fourth International Conference on Detection and Classification of Marine Mammals using Passive Acoustics ( Pavia ...Italy, 2009) • The International BioAcoustic Congress ( Pavia , Italy, 2009) Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting

  15. Source characterization of a subsonic jet by using near-field acoustical holography.

    PubMed

    Lee, Moohyung; Bolton, J Stuart

    2007-02-01

    In the present study, patch near-field acoustical holography was used in conjunction with a multireference, cross-spectral sound pressure measurement to visualize the sound field emitted by a subsonic jet and to predict its farfield radiation pattern. A strategy for microphone array design is described that accounts for the low spatial coherence of aeroacoustic sources and for microphone self-noise resulting from entrained flow near the jet. In the experiments, a 0.8-cm-diameter burner was used to produce a subsonic, turbulent jet with a Mach number of 0.26. Six fixed, linear arrays holding eight reference microphones apiece were disposed circumferentially around the jet, and a circular array holding sixteen, equally spaced field microphones was traversed along the jet axis to measure the sound field on a 30-cm-diameter cylindrical surface enclosing the jet. The results revealed that the jet could be modeled as a combination of eleven uncorrelated dipole-, quadrupole-, and octupole-like sources, and the contribution of each source type to the total radiated sound power could be identified. Both the total sound field reconstructed in a three-dimensional space and the farfield radiation directivity obtained by using the latter model were successfully validated by comparisons to directly measured results.

  16. Integration of Acoustical Information in the Perception of Impacted Sound Sources: The Role of Information Accuracy and Exploitability

    ERIC Educational Resources Information Center

    Giordano, Bruno L.; Rocchesso, Davide; McAdams, Stephen

    2010-01-01

    Sound sources are perceived by integrating information from multiple acoustical features. The factors influencing the integration of information are largely unknown. We measured how the perceptual weighting of different features varies with the accuracy of information and with a listener's ability to exploit it. Participants judged the hardness of…

  17. Acoustic Scattering by Three-Dimensional Stators and Rotors Using the SOURCE3D Code. Volume 2; Scattering Plots

    NASA Technical Reports Server (NTRS)

    Meyer, Harold D.

    1999-01-01

    This second volume of Acoustic Scattering by Three-Dimensional Stators and Rotors Using the SOURCE3D Code provides the scattering plots referenced by Volume 1. There are 648 plots. Half are for the 8750 rpm "high speed" operating condition and the other half are for the 7031 rpm "mid speed" operating condition.

  18. Field-independent source localization of Neptune's radio bursts

    NASA Technical Reports Server (NTRS)

    Farrell, W. M.; Desch, M. D.; Kaiser, M. L.

    1990-01-01

    During the Voyager 2 encounter with Neptune, a narrowbanded bursty radio component was observed between 500 and 1326 kHz by the Planetary Radio Astronomy instrument. Based on the emission occurrence pattern, the radio source has been localized without the explicit use of the Neptunian offset-tilted dipole magnetic field model, which is accurate only at distances greater than 4 R(N) (Neptune radii) from the planet. Only assumptions based upon the general nature of radio wave propagation in planetary magnetospheres were used. A number of different candidate radial positions were sampled. For example, at 1.5 R(N), the derived source location was positioned only about 10 deg from the south magnetic pole. The radiation from this source was beamed into a cone of 77.5 + or - 6.3 deg half-angle that was tilted about 10 deg from the radial direction to the north-northeast. At other sampled radial positions, similar source locations were obtained. Due to its proximity to the south magnetic pole, the kilometric emission radio source is believed to be associated with an active auroral region, similar in nature to those found at earth and Saturn.

  19. Acoustic Source Characteristics, Across-Formant Integration, and Speech Intelligibility Under Competitive Conditions

    PubMed Central

    2015-01-01

    An important aspect of speech perception is the ability to group or select formants using cues in the acoustic source characteristics—for example, fundamental frequency (F0) differences between formants promote their segregation. This study explored the role of more radical differences in source characteristics. Three-formant (F1+F2+F3) synthetic speech analogues were derived from natural sentences. In Experiment 1, F1+F3 were generated by passing a harmonic glottal source (F0 = 140 Hz) through second-order resonators (H1+H3); in Experiment 2, F1+F3 were tonal (sine-wave) analogues (T1+T3). F2 could take either form (H2 or T2). In some conditions, the target formants were presented alone, either monaurally or dichotically (left ear = F1+F3; right ear = F2). In others, they were accompanied by a competitor for F2 (F1+F2C+F3; F2), which listeners must reject to optimize recognition. Competitors (H2C or T2C) were created using the time-reversed frequency and amplitude contours of F2. Dichotic presentation of F2 and F2C ensured that the impact of the competitor arose primarily through informational masking. In the absence of F2C, the effect of a source mismatch between F1+F3 and F2 was relatively modest. When F2C was present, intelligibility was lowest when F2 was tonal and F2C was harmonic, irrespective of which type matched F1+F3. This finding suggests that source type and context, rather than similarity, govern the phonetic contribution of a formant. It is proposed that wideband harmonic analogues are more effective informational maskers than narrowband tonal analogues, and so become dominant in across-frequency integration of phonetic information when placed in competition. PMID:25751040

  20. Connecting earthquake source products to local tsunami warning

    NASA Astrophysics Data System (ADS)

    Melgar, D.; Allen, R. M.

    2015-12-01

    Issuing warning of a tsunami in advance of its arrival to the coastlines immediately adjacent to large earthquakes remains a challenging problem. The heterogeneous development state of regional geophysical monitoring infrastructure across subduction zones worldwide means that a flexible approach to warning, capable of ingesting multiple data types and earthquake source products, is the most appealing. We will present results from the study of 3 recent large events that have been observed with diverse geophysical measurements; the 2011 Mw9.0 Tohoku-oki, the 2010 Mw8.8 Maule and 2014 Mw8.2 Iquique events. First, we will show that earthquake slip models derived from combination of land (GPS and strong motion) as well as off-shore (tide gauges, ocean-bottom pressure, and GPS buoy) can be coupled to tsunami propagation models to produce simulations that closely match the measured run-up at the local coastlines. Using these models as a baseline for validation we will demonstrate a methodology that takes advantage of simpler, but more readily available earthquake source products such as rapid point-source magnitude estimates from coastal GPS observations and regional moment tensors. We will show that while trading-off precision for speed, these simpler earthquake source models produce inundation forecasts reliable enough to be used for warning within minutes of earthquake onset. Most subduction zones around the world already have some geophysical infrastructure and are producing some form of real-time earthquake source product, our results strongly argue that by coupling these data products to tsunami propagation models local tsunami warning is possible at most subduction zones with already available infrastructure.

  1. Localization of chemical sources using e. coli chemotaxis

    NASA Astrophysics Data System (ADS)

    Davison, Timothy; Nguyen, Hoa; Nickels, Kevin; Frasch, Duncan; Basagaoglu, Hakan

    2016-04-01

    This paper furthers the application of chemotaxis to small-scale robots by simulating a system that localizes a chemical source in a dynamic fluid environment. This type of system responds to a chemical stimulus by mimicking, for example, the way that E. Coli bacteria move toward attractants (nutrients) and away from repellents. E. Coli use the intracellular signaling pathway to process the temporal change in the chemical concentration to determine if the cells should run or tumble. Previous work has shown that this process can be simulated with robots and used to localize chemical sources based upon a fixed nutrient gradient. Our work furthers this study by simulating the injection of an effluent of chemical at a specified location in an environment and uses computational fluid dynamics to model the interactions of the robot with the fluid while performing chemotaxis. The interactions between the chemical and fluid are also modelled with the advection diffusion equation to determine the concentration gradient. This method allows us to compute, over a lattice, the chemical concentration at all points and feed these results into an existing E. Coli controller for the robot, which results in the robot executing a tumble or a run according to a probabilistic formula. By simulating the robot in this complex environment, our work facilitates refinement of the chemotaxis controller while proving the ability of chemotactic robots to localize specific chemicals in environments that more closely resemble those encountered in the wide-ranging types of locations in which this robotic system might be deployed.

  2. Phased Array Noise Source Localization Measurements Made on a Williams International FJ44 Engine

    NASA Technical Reports Server (NTRS)

    Podboy, Gary G.; Horvath, Csaba

    2010-01-01

    A 48-microphone planar phased array system was used to acquire noise source localization data on a full-scale Williams International FJ44 turbofan engine. Data were acquired with the array at three different locations relative to the engine, two on the side and one in front of the engine. At the two side locations the planar microphone array was parallel to the engine centerline; at the front location the array was perpendicular to the engine centerline. At each of the three locations, data were acquired at eleven different engine operating conditions ranging from engine idle to maximum (take off) speed. Data obtained with the array off to the side of the engine were spatially filtered to separate the inlet and nozzle noise. Tones occurring in the inlet and nozzle spectra were traced to the low and high speed spools within the engine. The phased array data indicate that the Inflow Control Device (ICD) used during this test was not acoustically transparent; instead, some of the noise emanating from the inlet reflected off of the inlet lip of the ICD. This reflection is a source of error for far field noise measurements made during the test. The data also indicate that a total temperature rake in the inlet of the engine is a source of fan noise.

  3. Periodic shock-emission from acoustically driven cavitation clouds: a source of the subharmonic signal.

    PubMed

    Johnston, Keith; Tapia-Siles, Cecilia; Gerold, Bjoern; Postema, Michiel; Cochran, Sandy; Cuschieri, Alfred; Prentice, Paul

    2014-12-01

    Single clouds of cavitation bubbles, driven by 254kHz focused ultrasound at pressure amplitudes in the range of 0.48-1.22MPa, have been observed via high-speed shadowgraphic imaging at 1×10(6) frames per second. Clouds underwent repetitive growth, oscillation and collapse (GOC) cycles, with shock-waves emitted periodically at the instant of collapse during each cycle. The frequency of cloud collapse, and coincident shock-emission, was primarily dependent on the intensity of the focused ultrasound driving the activity. The lowest peak-to-peak pressure amplitude of 0.48MPa generated shock-waves with an average period of 7.9±0.5μs, corresponding to a frequency of f0/2, half-harmonic to the fundamental driving. Increasing the intensity gave rise to GOC cycles and shock-emission periods of 11.8±0.3, 15.8±0.3, 19.8±0.2μs, at pressure amplitudes of 0.64, 0.92 and 1.22MPa, corresponding to the higher-order subharmonics of f0/3, f0/4 and f0/5, respectively. Parallel passive acoustic detection, filtered for the fundamental driving, revealed features that correlated temporally to the shock-emissions observed via high-speed imaging, p(two-tailed) < 0.01 (r=0.996, taken over all data). Subtracting the isolated acoustic shock profiles from the raw signal collected from the detector, demonstrated the removal of subharmonic spectral peaks, in the frequency domain. The larger cavitation clouds (>200μm diameter, at maximum inflation), that developed under insonations of peak-to-peak pressure amplitudes >1.0MPa, emitted shock-waves with two or more fronts suggesting non-uniform collapse of the cloud. The observations indicate that periodic shock-emissions from acoustically driven cavitation clouds provide a source for the cavitation subharmonic signal, and that shock structure may be used to study intra-cloud dynamics at sub-microsecond timescales.

  4. Sources and characteristics of acoustic emissions from mechanically stressed geologic granular media — A review

    NASA Astrophysics Data System (ADS)

    Michlmayr, Gernot; Cohen, Denis; Or, Dani

    2012-05-01

    The formation of cracks and emergence of shearing planes and other modes of rapid macroscopic failure in geologic granular media involve numerous grain scale mechanical interactions often generating high frequency (kHz) elastic waves, referred to as acoustic emissions (AE). These acoustic signals have been used primarily for monitoring and characterizing fatigue and progressive failure in engineered systems, with only a few applications concerning geologic granular media reported in the literature. Similar to the monitoring of seismic events preceding an earthquake, AE may offer a means for non-invasive, in-situ, assessment of mechanical precursors associated with imminent landslides or other types of rapid mass movements (debris flows, rock falls, snow avalanches, glacier stick-slip events). Despite diverse applications and potential usefulness, a systematic description of the AE method and its relevance to mechanical processes in Earth sciences is lacking. This review is aimed at providing a sound foundation for linking observed AE with various micro-mechanical failure events in geologic granular materials, not only for monitoring of triggering events preceding mass mobilization, but also as a non-invasive tool in its own right for probing the rich spectrum of mechanical processes at scales ranging from a single grain to a hillslope. We review first studies reporting use of AE for monitoring of failure in various geologic materials, and describe AE generating source mechanisms in mechanically stressed geologic media (e.g., frictional sliding, micro-crackling, particle collisions, rupture of water bridges, etc.) including AE statistical features, such as frequency content and occurrence probabilities. We summarize available AE sensors and measurement principles. The high sampling rates of advanced AE systems enable detection of numerous discrete failure events within a volume and thus provide access to statistical descriptions of progressive collapse of systems

  5. Source localization of brain activity using helium-free interferometer

    NASA Astrophysics Data System (ADS)

    Dammers, Jürgen; Chocholacs, Harald; Eich, Eberhard; Boers, Frank; Faley, Michael; Dunin-Borkowski, Rafal E.; Jon Shah, N.

    2014-05-01

    To detect extremely small magnetic fields generated by the human brain, currently all commercial magnetoencephalography (MEG) systems are equipped with low-temperature (low-Tc) superconducting quantum interference device (SQUID) sensors that use liquid helium for cooling. The limited and increasingly expensive supply of helium, which has seen dramatic price increases recently, has become a real problem for such systems and the situation shows no signs of abating. MEG research in the long run is now endangered. In this study, we report a MEG source localization utilizing a single, highly sensitive SQUID cooled with liquid nitrogen only. Our findings confirm that localization of neuromagnetic activity is indeed possible using high-Tc SQUIDs. We believe that our findings secure the future of this exquisitely sensitive technique and have major implications for brain research and the developments of cost-effective multi-channel, high-Tc SQUID-based MEG systems.

  6. Source localization of brain activity using helium-free interferometer

    SciTech Connect

    Dammers, Jürgen Chocholacs, Harald; Eich, Eberhard; Boers, Frank; Faley, Michael; Dunin-Borkowski, Rafal E.; Jon Shah, N.

    2014-05-26

    To detect extremely small magnetic fields generated by the human brain, currently all commercial magnetoencephalography (MEG) systems are equipped with low-temperature (low-T{sub c}) superconducting quantum interference device (SQUID) sensors that use liquid helium for cooling. The limited and increasingly expensive supply of helium, which has seen dramatic price increases recently, has become a real problem for such systems and the situation shows no signs of abating. MEG research in the long run is now endangered. In this study, we report a MEG source localization utilizing a single, highly sensitive SQUID cooled with liquid nitrogen only. Our findings confirm that localization of neuromagnetic activity is indeed possible using high-T{sub c} SQUIDs. We believe that our findings secure the future of this exquisitely sensitive technique and have major implications for brain research and the developments of cost-effective multi-channel, high-T{sub c} SQUID-based MEG systems.

  7. Ultra-directional source of longitudinal acoustic waves based on a two-dimensional solid/solid phononic crystal

    SciTech Connect

    Morvan, B.; Tinel, A.; Sainidou, R.; Rembert, P.; Vasseur, J. O.; Hladky-Hennion, A.-C.; Swinteck, N.; Deymier, P. A.

    2014-12-07

    Phononic crystals (PC) can be used to control the dispersion properties of acoustic waves, which are essential to direct their propagation. We use a PC-based two-dimensional solid/solid composite to demonstrate experimentally and theoretically the spatial filtering of a monochromatic non-directional wave source and its emission in a surrounding water medium as an ultra-directional beam with narrow angular distribution. The phenomenon relies on square-shaped equifrequency contours (EFC) enabling self-collimation of acoustic waves within the phononic crystal. Additionally, the angular width of collimated beams is controlled via the EFC size-shrinking when increasing frequency.

  8. Insulin in the brain: sources, localization and functions.

    PubMed

    Ghasemi, Rasoul; Haeri, Ali; Dargahi, Leila; Mohamed, Zahurin; Ahmadiani, Abolhassan

    2013-02-01

    Historically, insulin is best known for its role in peripheral glucose homeostasis, and insulin signaling in the brain has received less attention. Insulin-independent brain glucose uptake has been the main reason for considering the brain as an insulin-insensitive organ. However, recent findings showing a high concentration of insulin in brain extracts, and expression of insulin receptors (IRs) in central nervous system tissues have gathered considerable attention over the sources, localization, and functions of insulin in the brain. This review summarizes the current status of knowledge of the peripheral and central sources of insulin in the brain, site-specific expression of IRs, and also neurophysiological functions of insulin including the regulation of food intake, weight control, reproduction, and cognition and memory formation. This review also considers the neuromodulatory and neurotrophic effects of insulin, resulting in proliferation, differentiation, and neurite outgrowth, introducing insulin as an attractive tool for neuroprotection against apoptosis, oxidative stress, beta amyloid toxicity, and brain ischemia.

  9. Extension of the angular spectrum method to calculate pressure from a spherically curved acoustic source.

    PubMed

    Vyas, Urvi; Christensen, Douglas A

    2011-11-01

    The angular spectrum method is an accurate and computationally efficient method for modeling acoustic wave propagation. The use of the typical 2D fast Fourier transform algorithm makes this a fast technique but it requires that the source pressure (or velocity) be specified on a plane. Here the angular spectrum method is extended to calculate pressure from a spherical transducer-as used extensively in applications such as magnetic resonance-guided focused ultrasound surgery-to a plane. The approach, called the Ring-Bessel technique, decomposes the curved source into circular rings of increasing radii, each ring a different distance from the intermediate plane, and calculates the angular spectrum of each ring using a Fourier series. Each angular spectrum is then propagated to the intermediate plane where all the propagated angular spectra are summed to obtain the pressure on the plane; subsequent plane-to-plane propagation can be achieved using the traditional angular spectrum method. Since the Ring-Bessel calculations are carried out in the frequency domain, it reduces calculation times by a factor of approximately 24 compared to the Rayleigh-Sommerfeld method and about 82 compared to the Field II technique, while maintaining accuracies of better than 96% as judged by those methods for cases of both solid and phased-array transducers.

  10. Noise disturbance in open-plan study environments: a field study on noise sources, student tasks and room acoustic parameters.

    PubMed

    Braat-Eggen, P Ella; van Heijst, Anne; Hornikx, Maarten; Kohlrausch, Armin

    2017-04-03

    The aim of this study is to gain more insight in the assessment of noise in open-plan study environments and to reveal correlations between noise disturbance experienced by students and the noise sources they perceive, the tasks they perform and the acoustic parameters of the open-plan study environment they work in. Data were collected in five open-plan study environments at universities in the Netherlands. A questionnaire was used to investigate student tasks, perceived sound sources and their perceived disturbance, and sound measurements were performed to determine the room acoustic parameters. This study shows that 38% of the surveyed students are disturbed by background noise in an open-plan study environment. Students are mostly disturbed by speech when performing complex cognitive tasks like studying for an exam, reading and writing. Significant but weak correlations were found between the room acoustic parameters and noise disturbance of students. Practitioner Summary: A field study was conducted to gain more insight in the assessment of noise in open-plan study environments at universities in the Netherlands. More than one third of the students was disturbed by noise. An interaction effect was found for task type, source type and room acoustic parameters.

  11. 4-D imaging of seepage in earthen embankments with time-lapse inversion of self-potential data constrained by acoustic emissions localization

    NASA Astrophysics Data System (ADS)

    Rittgers, J. B.; Revil, A.; Planes, T.; Mooney, M. A.; Koelewijn, A. R.

    2015-02-01

    New methods are required to combine the information contained in the passive electrical and seismic signals to detect, localize and monitor hydromechanical disturbances in porous media. We propose a field experiment showing how passive seismic and electrical data can be combined together to detect a preferential flow path associated with internal erosion in a Earth dam. Continuous passive seismic and electrical (self-potential) monitoring data were recorded during a 7-d full-scale levee (earthen embankment) failure test, conducted in Booneschans, Netherlands in 2012. Spatially coherent acoustic emissions events and the development of a self-potential anomaly, associated with induced concentrated seepage and internal erosion phenomena, were identified and imaged near the downstream toe of the embankment, in an area that subsequently developed a series of concentrated water flows and sand boils, and where liquefaction of the embankment toe eventually developed. We present a new 4-D grid-search algorithm for acoustic emissions localization in both time and space, and the application of the localization results to add spatially varying constraints to time-lapse 3-D modelling of self-potential data in the terms of source current localization. Seismic signal localization results are utilized to build a set of time-invariant yet spatially varying model weights used for the inversion of the self-potential data. Results from the combination of these two passive techniques show results that are more consistent in terms of focused ground water flow with respect to visual observation on the embankment. This approach to geophysical monitoring of earthen embankments provides an improved approach for early detection and imaging of the development of embankment defects associated with concentrated seepage and internal erosion phenomena. The same approach can be used to detect various types of hydromechanical disturbances at larger scales.

  12. Dynamic behavior of acoustic metamaterials and metaconfigured structures with local oscillators

    NASA Astrophysics Data System (ADS)

    Manimala, James Mathew

    Dynamic behavior of acoustic metamaterials (AM) and metaconfigured structures (MCS) with various oscillator-type microstructures or local attachments was investigated. AM derive their unusual elastic wave manipulation capabilities not just from material constituents but more so from engineered microstructural configurations. Depending on the scale of implementation, these "microstructures" may be deployed as microscopic inclusions in metacomposites or even as complex endo-structures within load-bearing exo-structures in MCS. The frequency-dependent negative effective-mass exhibited by locally resonant microstructures when considered as a single degree of freedom system was experimentally verified using a structure with an internal mass-spring resonator. AM constructed by incorporating resonators in a host material display spatial attenuation of harmonic stress waves within a tunable bandgap frequency range. An apparent damping coefficient was derived to compare the degree of attenuation achieved in these wholly elastic AM to equivalent conventionally damped models illustrating their feasibility as stiff structures that simultaneously act as effective damping elements. Parametric studies were performed using simulations to design and construct MCS with attached resonators for dynamic load mitigation applications. 98% payload isolation at resonance (7 Hz) was experimentally attained using a low-frequency vibration isolator with tip-loaded cantilever beam resonators. Pendulum impact tests on a resonator stack substantiated a peak transmitted stress reduction of about 60% and filtering of the resonator frequencies in the transmitted spectrum. Drop-tower tests were done to gauge the shock mitigation performance of an AM-inspired infrastructural building-block with internal resonators. Proof-of-concept experiments using an array of multifunctional resonators demonstrate the possibility of integrating energy harvesting and transducer capabilities. Stress wave attenuation

  13. Evidence for a neural source of the precedence effect in sound localization.

    PubMed

    Brown, Andrew D; Jones, Heath G; Kan, Alan; Thakkar, Tanvi; Stecker, G Christopher; Goupell, Matthew J; Litovsky, Ruth Y

    2015-11-01

    Normal-hearing human listeners and a variety of studied animal species localize sound sources accurately in reverberant environments by responding to the directional cues carried by the first-arriving sound rather than spurious cues carried by later-arriving reflections, which are not perceived discretely. This phenomenon is known as the precedence effect (PE) in sound localization. Despite decades of study, the biological basis of the PE remains unclear. Though the PE was once widely attributed to central processes such as synaptic inhibition in the auditory midbrain, a more recent hypothesis holds that the PE may arise essentially as a by-product of normal cochlear function. Here we evaluated the PE in a unique human patient population with demonstrated sensitivity to binaural information but without functional cochleae. Users of bilateral cochlear implants (CIs) were tested in a psychophysical task that assessed the number and location(s) of auditory images perceived for simulated source-echo (lead-lag) stimuli. A parallel experiment was conducted in a group of normal-hearing (NH) listeners. Key findings were as follows: 1) Subjects in both groups exhibited lead-lag fusion. 2) Fusion was marginally weaker in CI users than in NH listeners but could be augmented by systematically attenuating the amplitude of the lag stimulus to coarsely simulate adaptation observed in acoustically stimulated auditory nerve fibers. 3) Dominance of the lead in localization varied substantially among both NH and CI subjects but was evident in both groups. Taken together, data suggest that aspects of the PE can be elicited in CI users, who lack functional cochleae, thus suggesting that neural mechanisms are sufficient to produce the PE.

  14. An impact source localization technique for a nuclear power plant by using sensors of different types.

    PubMed

    Choi, Young-Chul; Park, Jin-Ho; Choi, Kyoung-Sik

    2011-01-01

    In a nuclear power plant, a loose part monitoring system (LPMS) provides information on the location and the mass of a loosened or detached metal impacted onto the inner surface of the primary pressure boundary. Typically, accelerometers are mounted on the surface of a reactor vessel to localize the impact location caused by the impact of metallic substances on the reactor system. However, in some cases, the number of accelerometers is not sufficient to estimate the impact location precisely. In such a case, one of useful methods is to utilize other types of sensor that can measure the vibration of the reactor structure. For example, acoustic emission (AE) sensors are installed on the reactor structure to detect leakage or cracks on the primary pressure boundary. However, accelerometers and AE sensors have a different frequency range. The frequency of interest of AE sensors is higher than that of accelerometers. In this paper, we propose a method of impact source localization by using both accelerometer signals and AE signals, simultaneously. The main concept of impact location estimation is based on the arrival time difference of the impact stress wave between different sensor locations. However, it is difficult to find the arrival time difference between sensors, because the primary frequency ranges of accelerometers and AE sensors are different. To overcome the problem, we used phase delays of an envelope of impact signals. This is because the impact signals from the accelerometer and the AE sensor are similar in the whole shape (envelope). To verify the proposed method, we have performed experiments for a reactor mock-up model and a real nuclear power plant. The experimental results demonstrate that we can enhance the reliability and precision of the impact source localization. Therefore, if the proposed method is applied to a nuclear power plant, we can obtain the effect of additional installed sensors.

  15. Application of acoustic noise and self-potential localization techniques to a buried hydrothermal vent (Waimangu Old Geyser site, New Zealand)

    NASA Astrophysics Data System (ADS)

    Vandemeulebrouck, J.; Roux, P.; Gouédard, P.; Legaz, A.; Revil, A.; Hurst, A. W.; Bolève, A.; Jardani, A.

    2010-02-01

    A seismo-acoustic and self-potential survey has been performed in the hydrothermal area of the old Waimangu Geyser (New Zealand), which was violently erupting a century ago. Nowadays, no surface activity is visible there. We set-up an array of 16 geophones and recorded a high and steady acoustic ambient noise. We applied the matched field processing (MFP) approach to the acoustic data to locate the sources responsible for the ambient noise. The white noise constraint processor reveals the presence of a unique and well-focused acoustic source at a depth of 1.5 m below the seismic array. For this very shallow source, the application of MFP enabled the determination of both the source location and the dispersion curve of seismic velocity. The study was completed by self-potential (SP) measurements on several profiles around the acoustic noise source, which displayed a large positive anomaly above it. The results of the SP inversion gave an electric streaming current density source very close to the acoustic one. Both sources likely belong to a shallow hydrothermal structure interpreted as a small convective cell of boiling water beneath an impermeable layer. The joint application of these methods is a promising technique to recognize hydrothermal structures and to study their dynamics.

  16. Efficient modeling of flat and homogeneous acoustic treatments for vibroacoustic finite element analysis. Finite size correction by image sources

    NASA Astrophysics Data System (ADS)

    Alimonti, L.; Atalla, N.

    2017-02-01

    This work is concerned with the hybrid finite element-transfer matrix methodology recently proposed by the authors. The main assumption behind this hybrid method consists in neglecting the actual finite lateral extent of the acoustic treatment. Although a substantial increase of the computational efficiency can be achieved, the effect of the reflected field (i.e. finite size effects) may be sometimes important, preventing the hybrid model from giving quantitative meaningful results. For this reason, a correction to account for wave reflections at the lateral boundaries of the acoustic treatment is sought. It is shown in the present paper that the image source method can be successfully employed to retrieve such finite size effects. Indeed, such methodology is known to be effective when the response of the system is a smooth function of the frequency, like in the case of highly dissipative acoustic treatments. The main concern of this paper is to assess accuracy and feasibility of the image source method in the context of acoustic treatments modeling. Numerical examples show that the performance of the standard hybrid model can be substantially improved by the proposed correction without deteriorating excessively the computational efficiency.

  17. Characterization and Simulation of an Acoustic Source Moving through an Oceanic Waveguide

    DTIC Science & Technology

    1994-09-01

    algorithms, classical spectrum estimation methods are employed [1, 2] to estimate the auto- and cross-spectra of data received at the array of...Acoust. Soc. Am., 65(3):675-681 (March). [4] Rao, Kodali V., Thomas M. Michaud, and Henrik Schmidt. 1991. "Doppler shifts in underwater acoustics using

  18. High-Q cross-plate phononic crystal resonator for enhanced acoustic wave localization and energy harvesting

    NASA Astrophysics Data System (ADS)

    Yang, Aichao; Li, Ping; Wen, Yumei; Yang, Chao; Wang, Decai; Zhang, Feng; Zhang, Jiajia

    2015-05-01

    A high-Q cross-plate phononic crystal resonator (Cr-PCR) coupled with an electromechanical Helmholtz resonator (EMHR) is proposed to improve acoustic wave localization and energy harvesting. Owing to the strongly directional wave-scattering effect of the cross-plate corners, strong confinement of acoustic waves emerges. Consequently, the proposed Cr-PCR structure exhibits ∼353.5 times higher Q value and ∼6.1 times greater maximum pressure amplification than the phononic crystal resonator (Cy-PCR) (consisting of cylindrical scatterers) of the same size. Furthermore, the harvester using the proposed Cr-PCR and the EMHR has ∼22 times greater maximum output-power volume density than the previous harvester using Cy-PCR and EMHR structures.

  19. Regional versus Local Sources of aerosols over Cyprus

    NASA Astrophysics Data System (ADS)

    Kleanthous, Savvas; Nicolaou, Panagiota; Theodosi, Christina; Zarmpas, Pavlos; Christofides, Ioannis; Mihalopoulos, Nikolaos

    2013-04-01

    Long term monitoring of PM concentrations in Cyprus reported the occurrence of a significant number of PM exceedances above the limits set by EU legislation and point out the need for abatement strategies. To address these critical issues, mass and chemical composition of daily PM10 aerosol samples were collected at a suburban (Limassol; LIM RES), a natural background site (EMEP site, Ayia Marina) and an urban center (Nicosia, NIC TRA) from January 2010 to December 2010. By considering the chemical composition measured at EMEP as representative of the regional background, the contribution of local sources at both NIC TRA and LIM RES sites can be also estimated. In total, "local" ions account for 1.7 and 2.4 μg m-3, i.e 33 and 48% of the total ionic mass recorded in NIC TRA and LIM RES. Sea salt attained levels of 2.3 ± 1.2 μg m-3, 1.9 ± 1.3 μg m-3 and 3.5 ± 2.3 μg m-3, contributing up to 10, 7 and 11% of the PM10 mass measured at EMEP, NIC TRA and LIM RES, respectively. The local concentrations of OC and EC were equal to 3.3±1.1 μg m-3 and 3.2±1.3 μg m-3 for NIC TRA and 1.70±0.03 μg m-3 and 1.39±0.42 μg m-3 for LIM RES relative to the values measured at the EMEP site. The high EC concentrations in NIC TRA underline the major role of traffic-related emissions. As expected for the natural background site, OC/EC ratio equals 4.84, a strong indicator of secondary organic aerosol (SOA) formation. Whereas in the urban and suburban sites, the OC/EC ratio is lower ranging from 1.46 to 1.84, denoting significant influence from fossil fuel primary emissions in the studied areas. Considering that dust at EMEP is due to "regional" dust, the dust measured at both traffic related sites is the sum of "regional" and "local dust", the second most probably originating from soil dust and car/road abrasion. The "local dust" at NIC TRA and LIM RES accounted for 28% and 21% of the total PM10 mass, whilst regional dust at EMEP of 45%. The temporal variation of "local dust

  20. Automated acoustic localization and call association for vocalizing humpback whales on the Navy's Pacific Missile Range Facility.

    PubMed

    Helble, Tyler A; Ierley, Glenn R; D'Spain, Gerald L; Martin, Stephen W

    2015-01-01

    Time difference of arrival (TDOA) methods for acoustically localizing multiple marine mammals have been applied to recorded data from the Navy's Pacific Missile Range Facility in order to localize and track humpback whales. Modifications to established methods were necessary in order to simultaneously track multiple animals on the range faster than real-time and in a fully automated way, while minimizing the number of incorrect localizations. The resulting algorithms were run with no human intervention at computational speeds faster than the data recording speed on over forty days of acoustic recordings from the range, spanning multiple years. Spatial localizations based on correlating sequences of units originating from within the range produce estimates having a standard deviation typically 10 m or less (due primarily to TDOA measurement errors), and a bias of 20 m or less (due primarily to sound speed mismatch). An automated method for associating units to individual whales is presented, enabling automated humpback song analyses to be performed.

  1. A 3D approximate maximum likelihood solver for localization of fish implanted with acoustic transmitters

    PubMed Central

    Li, Xinya; Deng, Z. Daniel; Sun, Yannan; Martinez, Jayson J.; Fu, Tao; McMichael, Geoffrey A.; Carlson, Thomas J.

    2014-01-01

    Better understanding of fish behavior is vital for recovery of many endangered species including salmon. The Juvenile Salmon Acoustic Telemetry System (JSATS) was developed to observe the out-migratory behavior of juvenile salmonids tagged by surgical implantation of acoustic micro-transmitters and to estimate the survival when passing through dams on the Snake and Columbia Rivers. A robust three-dimensional solver was needed to accurately and efficiently estimate the time sequence of locations of fish tagged with JSATS acoustic transmitters, to describe in sufficient detail the information needed to assess the function of dam-passage design alternatives. An approximate maximum likelihood solver was developed using measurements of time difference of arrival from all hydrophones in receiving arrays on which a transmission was detected. Field experiments demonstrated that the developed solver performed significantly better in tracking efficiency and accuracy than other solvers described in the literature. PMID:25427517

  2. A 3D approximate maximum likelihood solver for localization of fish implanted with acoustic transmitters

    SciTech Connect

    Li, Xinya; Deng, Z. Daniel; USA, Richland Washington; Sun, Yannan; USA, Richland Washington; Martinez, Jayson J.; USA, Richland Washington; Fu, Tao; USA, Richland Washington; McMichael, Geoffrey A.; USA, Richland Washington; Carlson, Thomas J.; USA, Richland Washington

    2014-11-27

    Better understanding of fish behavior is vital for recovery of many endangered species including salmon. The Juvenile Salmon Acoustic Telemetry System (JSATS) was developed to observe the out-migratory behavior of juvenile salmonids tagged by surgical implantation of acoustic micro-transmitters and to estimate the survival when passing through dams on the Snake and Columbia Rivers. A robust three-dimensional solver was needed to accurately and efficiently estimate the time sequence of locations of fish tagged with JSATS acoustic transmitters, to describe in sufficient detail the information needed to assess the function of dam-passage design alternatives. An approximate maximum likelihood solver was developed using measurements of time difference of arrival from all hydrophones in receiving arrays on which a transmission was detected. Field experiments demonstrated that the developed solver performed significantly better in tracking efficiency and accuracy than other solvers described in the literature.

  3. A 3D approximate maximum likelihood solver for localization of fish implanted with acoustic transmitters.

    PubMed

    Li, Xinya; Deng, Z Daniel; Sun, Yannan; Martinez, Jayson J; Fu, Tao; McMichael, Geoffrey A; Carlson, Thomas J

    2014-11-27

    Better understanding of fish behavior is vital for recovery of many endangered species including salmon. The Juvenile Salmon Acoustic Telemetry System (JSATS) was developed to observe the out-migratory behavior of juvenile salmonids tagged by surgical implantation of acoustic micro-transmitters and to estimate the survival when passing through dams on the Snake and Columbia Rivers. A robust three-dimensional solver was needed to accurately and efficiently estimate the time sequence of locations of fish tagged with JSATS acoustic transmitters, to describe in sufficient detail the information needed to assess the function of dam-passage design alternatives. An approximate maximum likelihood solver was developed using measurements of time difference of arrival from all hydrophones in receiving arrays on which a transmission was detected. Field experiments demonstrated that the developed solver performed significantly better in tracking efficiency and accuracy than other solvers described in the literature.

  4. A 3D approximate maximum likelihood solver for localization of fish implanted with acoustic transmitters

    DOE PAGES

    Li, Xinya; Deng, Z. Daniel; USA, Richland Washington; ...

    2014-11-27

    Better understanding of fish behavior is vital for recovery of many endangered species including salmon. The Juvenile Salmon Acoustic Telemetry System (JSATS) was developed to observe the out-migratory behavior of juvenile salmonids tagged by surgical implantation of acoustic micro-transmitters and to estimate the survival when passing through dams on the Snake and Columbia Rivers. A robust three-dimensional solver was needed to accurately and efficiently estimate the time sequence of locations of fish tagged with JSATS acoustic transmitters, to describe in sufficient detail the information needed to assess the function of dam-passage design alternatives. An approximate maximum likelihood solver was developedmore » using measurements of time difference of arrival from all hydrophones in receiving arrays on which a transmission was detected. Field experiments demonstrated that the developed solver performed significantly better in tracking efficiency and accuracy than other solvers described in the literature.« less

  5. Water defluoridation using Malawi’s locally sourced gypsum

    NASA Astrophysics Data System (ADS)

    Masamba, W. R. L.; Sajidu, S. M.; Thole, B.; Mwatseteza, J. F.

    Free fluoride levels above the WHO guideline maximum value of 1.5 mg/l have been reported in several parts of Malawi. Dental fluorosis has also been observed in the same areas such that search for local defluoridation techniques has become important in the country. The present research intended to determine the potential of using Malawi gypsum in defluoridation, identify the best pre-treatment of the gypsum and optimum conditions under which effective water defluoridation with the gypsum may be obtained. Laboratory experiments were carried out to explore defluoridation of drinking water using locally sourced gypsum and gypsum calcined at high temperatures. A 400 °C calcined phase of gypsum gave the highest defluoridation capacity of 67.80% compared to raw (uncalcined) gypsum, 200, 300 and 500 °C calcined phases. Powder X-ray diffraction (PXRD) pattern of the 400 °C phase revealed existence of less crystalline CaSO 4 that was thought to be responsible for such relatively high defluoridation capacity. The dependence of the fluoride removal by the 400 °C calcined phase on other drinking water quality parameters was assessed by simple correlation analysis. Reaction kinetics and mechanisms of fluoride removal by the materials were also investigated. It was found that ion exchange was the dominant mechanism through which fluoride was removed from water by the materials.

  6. Sourcing semiclassical gravity from spontaneously localized quantum matter

    NASA Astrophysics Data System (ADS)

    Tilloy, Antoine; Diósi, Lajos

    2016-01-01

    The possibility that a classical space-time and quantum matter cohabit at the deepest level, i.e., the possibility of having a fundamental and not phenomenological semiclassical gravity, is often disregarded for lack of a good candidate theory. The standard semiclassical theory suffers from fundamental inconsistencies (e.g., Schrödinger cat sources, faster-than-light communication and violation of the Born rule) which can only be ignored in simple typical situations. We harness the power of spontaneous localization models, historically constructed to solve the measurement problem in quantum mechanics, to build a consistent theory of (stochastic) semiclassical gravity in the Newtonian limit. Our model makes quantitative and potentially testable predictions: we recover the Newtonian pair potential up to a short distance cutoff (hence, we predict no one-particle self-interaction) and uncover an additional gravitational decoherence term which depends on the specifics of the underlying spontaneous localization model considered. We hint at a possible program to go past the Newtonian limit, towards a consistent general relativistic semiclassical gravity.

  7. Investigation of model based beamforming and Bayesian inversion signal processing methods for seismic localization of underground sources.

    PubMed

    Oh, Geok Lian; Brunskog, Jonas

    2014-08-01

    Techniques have been studied for the localization of an underground source with seismic interrogation signals. Much of the work has involved defining either a P-wave acoustic model or a dispersive surface wave model to the received signal and applying the time-delay processing technique and frequency-wavenumber processing to determine the location of the underground tunnel. Considering the case of determining the location of an underground tunnel, this paper proposed two physical models, the acoustic approximation ray tracing model and the finite difference time domain three-dimensional (3D) elastic wave model to represent the received seismic signal. Two localization algorithms, beamforming and Bayesian inversion, are developed for each physical model. The beam-forming algorithms implemented are the modified time-and-delay beamformer and the F-K beamformer. Inversion is posed as an optimization problem to estimate the unknown position variable using the described physical forward models. The proposed four methodologies are demonstrated and compared using seismic signals recorded by geophones set up on ground surface generated by a surface seismic excitation. The examples show that for field data, inversion for localization is most advantageous when the forward model completely describe all the elastic wave components as is the case of the FDTD 3D elastic model.

  8. Comments on inferring the properties of the solar acoustic sources by modeling the velocity and/or intensity fluctuations

    NASA Astrophysics Data System (ADS)

    Jefferies, Stuart M.; Moretti, Pier-Francesco; Oliviero, Maurizio; Giebink, Cynthia

    2003-02-01

    We model the observed velocity and intensity power spectra and the intensity-velocity cross-spectrum using an updated version of the Severino et al. (2001) model that includes the effects of the acoustic source. We find that in order to accurately describe the data it is necessary to include a correlated background component in both the V and I signals at low frequencies, and in the I signal at high frequencies. Preliminary results show that even using the new model we can not uniquely determine the phase that is related to the acoustic source depth at low frequencies, or the amplitudes and phases of the individual correlated background signals. It appears that further physical or observational constraints are needed before we can obtain this information.

  9. Continuous wavelet transform analysis and modal location analysis acoustic emission source location for nuclear piping crack growth monitoring

    SciTech Connect

    Mohd, Shukri; Holford, Karen M.; Pullin, Rhys

    2014-02-12

    Source location is an important feature of acoustic emission (AE) damage monitoring in nuclear piping. The ability to accurately locate sources can assist in source characterisation and early warning of failure. This paper describe the development of a novelAE source location technique termed 'Wavelet Transform analysis and Modal Location (WTML)' based on Lamb wave theory and time-frequency analysis that can be used for global monitoring of plate like steel structures. Source location was performed on a steel pipe of 1500 mm long and 220 mm outer diameter with nominal thickness of 5 mm under a planar location test setup using H-N sources. The accuracy of the new technique was compared with other AE source location methods such as the time of arrival (TOA) techniqueand DeltaTlocation. Theresults of the study show that the WTML method produces more accurate location resultscompared with TOA and triple point filtering location methods. The accuracy of the WTML approach is comparable with the deltaT location method but requires no initial acoustic calibration of the structure.

  10. Development and validation of a combined phased acoustical radiosity and image source model for predicting sound fields in rooms.

    PubMed

    Marbjerg, Gerd; Brunskog, Jonas; Jeong, Cheol-Ho; Nilsson, Erling

    2015-09-01

    A model, combining acoustical radiosity and the image source method, including phase shifts on reflection, has been developed. The model is denoted Phased Acoustical Radiosity and Image Source Method (PARISM), and it has been developed in order to be able to model both specular and diffuse reflections with complex-valued and angle-dependent boundary conditions. This paper mainly describes the combination of the two models and the implementation of the angle-dependent boundary conditions. It furthermore describes how a pressure impulse response is obtained from the energy-based acoustical radiosity by regarding the model as being stochastic. Three methods of implementation are proposed and investigated, and finally, recommendations are made for their use. Validation of the image source method is done by comparison with finite element simulations of a rectangular room with a porous absorber ceiling. Results from the full model are compared with results from other simulation tools and with measurements. The comparisons of the full model are done for real-valued and angle-independent surface properties. The proposed model agrees well with both the measured results and the alternative theories, and furthermore shows a more realistic spatial variation than energy-based methods due to the fact that interference is considered.

  11. Advanced Methods for Passive Acoustic Detection, Classification, and Localization of Marine Mammals

    DTIC Science & Technology

    2012-09-30

    auditory system has similar units for detecting frequency changes in tonal signals at specific frequencies ( Mendelson and Cynader 1985). Mellinger...contours. J. Acoust. Soc. Am. 129:4055-4061. Mendelson , J.R., and M.S. Cynader. (1985) Sensitivity of cat auditory primary cortex (AI) neurons to the

  12. Concurrent identification of aero-acoustic scattering and noise sources at a flow duct singularity in low Mach number flow

    NASA Astrophysics Data System (ADS)

    Sovardi, Carlo; Jaensch, Stefan; Polifke, Wolfgang

    2016-09-01

    A numerical method to concurrently characterize both aeroacoustic scattering and noise sources at a duct singularity is presented. This approach combines Large Eddy Simulation (LES) with techniques of System Identification (SI): In a first step, a highly resolved LES with external broadband acoustic excitation is carried out. Subsequently, time series data extracted from the LES are post-processed by means of SI to model both acoustic propagation and noise generation. The present work studies the aero-acoustic characteristics of an orifice placed in a duct at low flow Mach numbers with the "LES-SI" method. Parametric SI based on the Box-Jenkins mathematical structure is employed, with a prediction error approach that utilizes correlation analysis of the output residuals to avoid overfitting. Uncertainties of model parameters due to the finite length of times series are quantified in terms of confidence intervals. Numerical results for acoustic scattering matrices and power spectral densities of broad-band noise are validated against experimental measurements over a wide range of frequencies below the cut-off frequency of the duct.

  13. Optoacoustic tweezers: a programmable, localized cell concentrator based on opto-thermally generated, acoustically activated, surface bubbles

    PubMed Central

    Zhao, Yanhui; Li, Sixing; Rufo, Joseph; Yang, Shikuan; Guo, Feng; Huang, Tony Jun

    2014-01-01

    We present a programmable, biocompatible technique for dynamically concentrating and patterning particles and cells in a microfluidic device. Since our technique utilizes opto-thermally generated, acoustically activated, surface bubbles, we name it “optoacoustic tweezers.” The optoacoustic tweezers are capable of concentrating particles/cells at any prescribed locations in a microfluidic chamber without the use of permanent structures, rendering it particularly useful for the formation of flexible, complex cell patterns. Additionally, this technique has demonstrated excellent biocompatibility and can be conveniently integrated with other microfluidic units. In our experiments, micro-bubbles were generated by focusing a 405 nm diode laser onto a gold-coated glass chamber. By properly tuning the laser, we demonstrate precise control over the position and size of the generated bubbles. Acoustic waves were then applied to activate the surface bubbles, causing them to oscillate at an optimized frequency. The resulting acoustic radiation force allowed us to locally trap particles/cells, including 15 μm polystyrene beads and HeLa cells, around each bubble. Cell-adhesion tests were also conducted after cell concentrating to confirm the biocompatibility of this technique. PMID:23511348

  14. Investigation of acoustic gravity waves created by anomalous heat sources: experiments and theoretical analysis

    NASA Astrophysics Data System (ADS)

    Pradipta, R.; Lee, M. C.

    2013-07-01

    We have been investigating high-power radio wave-induced acoustic gravity waves (AGWs) at Gakona, Alaska, using the High-frequency Active Aurora Research Program (HAARP) heating facility (i.e. HF heater) and extensive diagnostic instruments. This work was aimed at performing a controlled study of the space plasma turbulence triggered by the AGWs originating from anomalous heat sources, as observed in our earlier experiments at Arecibo, Puerto Rico (Pradipta 2007 MS Thesis MIT Press, Cambridge, MA). The HF heater operated in continuous wave (CW) O-mode can heat ionospheric plasmas effectively to yield a depleted magnetic flux tube as rising plasma bubbles (Lee et al 1998 Geophys. Res. Lett. 25 579). Two processes are responsible for the depletion of the magnetic flux tube: (i) thermal expansion and (ii) chemical reactions caused by heated ions. The depleted plasmas create large density gradients that can augment spread F processes via generalized Rayleigh-Taylor instabilities (Lee et al 1999 Geophys. Res. Lett. 26 37). It is thus expected that the temperature of neutral particles in the heated ionospheric region can be increased. Such a heat source in the neutral atmosphere may potentially generate AGWs in the form of traveling ionospheric plasma disturbances (TIPDs). We should point out that these TIPDs have features distinctively different from electric and magnetic field (ExB) drifts of HF wave-induced large-scale non-propagating plasma structures. Moreover, it was noted in our recent study of naturally occurring AGW-induced TIDs that only large-scale AGWs can propagate upward to reach higher altitudes. Thus, in our Gakona experiments we select optimum heating schemes for HF wave-induced AGWs that can be distinguished from the naturally occurring ones. The generation and propagation of AGWs are monitored by MUIR (Modular Ultra high-frequency Ionospheric Radar), Digisonde and GPS/low-earth-orbit satellites. Our theoretical and experimental studies have shown that

  15. How to Manual: How to Update and Enhance Your Local Source Water Protection Assessments

    EPA Pesticide Factsheets

    Describes opportunities for improving source water assessments performed under the Safe Drinking Water Act 1453. It includes: local delineations, potential contaminant source inventories, and susceptibility determinations of source water assessment.

  16. Influence of skull modeling approaches on EEG source localization.

    PubMed

    Montes-Restrepo, Victoria; van Mierlo, Pieter; Strobbe, Gregor; Staelens, Steven; Vandenberghe, Stefaan; Hallez, Hans

    2014-01-01

    Electroencephalographic source localization (ESL) relies on an accurate model representing the human head for the computation of the forward solution. In this head model, the skull is of utmost importance due to its complex geometry and low conductivity compared to the other tissues inside the head. We investigated the influence of using different skull modeling approaches on ESL. These approaches, consisting in skull conductivity and geometry modeling simplifications, make use of X-ray computed tomography (CT) and magnetic resonance (MR) images to generate seven different head models. A head model with an accurately segmented skull from CT images, including spongy and compact bone compartments as well as some air-filled cavities, was used as the reference model. EEG simulations were performed for a configuration of 32 and 128 electrodes, and for both noiseless and noisy data. The results show that skull geometry simplifications have a larger effect on ESL than those of the conductivity modeling. This suggests that accurate skull modeling is important in order to achieve reliable results for ESL that are useful in a clinical environment. We recommend the following guidelines to be taken into account for skull modeling in the generation of subject-specific head models: (i) If CT images are available, i.e., if the geometry of the skull and its different tissue types can be accurately segmented, the conductivity should be modeled as isotropic heterogeneous. The spongy bone might be segmented as an erosion of the compact bone; (ii) when only MR images are available, the skull base should be represented as accurately as possible and the conductivity can be modeled as isotropic heterogeneous, segmenting the spongy bone directly from the MR image; (iii) a large number of EEG electrodes should be used to obtain high spatial sampling, which reduces the localization errors at realistic noise levels.

  17. local alternative sources for cogeneration combined heat and power system

    NASA Astrophysics Data System (ADS)

    Agll, Abdulhakim Amer

    Global demand for energy continues to grow while countries around the globe race to reduce their reliance on fossil fuels and greenhouse gas emissions by implementing policy measures and advancing technology. Sustainability has become an important issue in transportation and infrastructure development projects. While several agencies are trying to incorporate a range of sustainability measures in their goals and missions, only a few planning agencies have been able to implement these policies and they are far from perfect. The low rate of success in implementing sustainable policies is primarily due to incomplete understanding of the system and the interaction between various elements of the system. The conventional planning efforts focuses mainly on performance measures pertaining to the system and its impact on the environment but seldom on the social and economic impacts. The objective of this study is to use clean and alternative energy can be produced from many sources, and even use existing materials for energy generation. One such pathway is using wastewater, animal and organic waste, or landfills to create biogas for energy production. There are three tasks for this study. In topic one evaluated the energy saving that produced from combined hydrogen, heat, and power and mitigate greenhouse gas emissions by using local sustainable energy at the Missouri S&T campus to reduce energy consumption and fossil fuel usage. Second topic aimed to estimate energy recovery and power generation from alternative energy source by using Rankin steam cycle from municipal solid waste at Benghazi-Libya. And the last task is in progress. The results for topics one and two have been presented.

  18. A seismic field test with a Low-level Acoustic Combustion Source and Pseudo-Noise codes

    NASA Astrophysics Data System (ADS)

    Askeland, Bjørn; Ruud, Bent Ole; Hobæk, Halvor; Mjelde, Rolf

    2009-01-01

    The Low-level Acoustic Combustion Source (LACS) which can fire its pulses at a high rate, has been tested successfully as a seismic marine source on shallow ice-age sediments in Byfjorden at Bergen, Norway. Pseudo-Noise pulsed signals with spiky autocorrelation functions were used to detect the sediments. Each transmitted sequence lasted 10 s and contained 43 pulses. While correlation gave a blurry result, deconvolution between the near-field recordings and the streamer recordings gave a clear seismic section. Compared to the section acquired with single air-gun shots along the same profile, the LACS gave a more clear presentation of the sediments and basement.

  19. Canonical Acoustics and Its Application to Surface Acoustic Wave on Acoustic Metamaterials

    NASA Astrophysics Data System (ADS)

    Shen, Jian Qi

    2016-08-01

    In a conventional formalism of acoustics, acoustic pressure p and velocity field u are used for characterizing acoustic waves propagating inside elastic/acoustic materials. We shall treat some fundamental problems relevant to acoustic wave propagation alternatively by using canonical acoustics (a more concise and compact formalism of acoustic dynamics), in which an acoustic scalar potential and an acoustic vector potential (Φ ,V), instead of the conventional acoustic field quantities such as acoustic pressure and velocity field (p,u) for characterizing acoustic waves, have been defined as the fundamental variables. The canonical formalism of the acoustic energy-momentum tensor is derived in terms of the acoustic potentials. Both the acoustic Hamiltonian density and the acoustic Lagrangian density have been defined, and based on this formulation, the acoustic wave quantization in a fluid is also developed. Such a formalism of acoustic potentials is employed to the problem of negative-mass-density assisted surface acoustic wave that is a highly localized surface bound state (an eigenstate of the acoustic wave equations). Since such a surface acoustic wave can be strongly confined to an interface between an acoustic metamaterial (e.g., fluid-solid composite structures with a negative dynamical mass density) and an ordinary material (with a positive mass density), it will give rise to an effect of acoustic field enhancement on the acoustic interface, and would have potential applications in acoustic device design for acoustic wave control.

  20. Acoustic and Seismic Modalities for Unattended Ground Sensors

    SciTech Connect

    Elbring, G.J.; Ladd, M.D.; McDonald, T.S.; Sleefe, G.E.

    1999-03-31

    In this paper, we have presented the relative advantages and complementary aspects of acoustic and seismic ground sensors. A detailed description of both acoustic and seismic ground sensing methods has been provided. Acoustic and seismic phenomenology including source mechanisms, propagation paths, attenuation, and sensing have been discussed in detail. The effects of seismo-acoustic and acousto-seismic interactions as well as recommendations for minimizing seismic/acoustic cross talk have been highlighted. We have shown representative acoustic and seismic ground sensor data to illustrate the advantages and complementary aspects of the two modalities. The data illustrate that seismic transducers often respond to acoustic excitation through acousto-seismic coupling. Based on these results, we discussed the implications of this phenomenology on the detection, identification, and localization objectives of unattended ground sensors. We have concluded with a methodology for selecting the preferred modality (acoustic and/or seismic) for a particular application.

  1. A posteriori correction for source decay in 3D bioluminescent source localization using multiview measured data

    NASA Astrophysics Data System (ADS)

    Sun, Li; Wang, Pu; Tian, Jie; Liu, Dan; Wang, Ruifang

    2009-02-01

    As a novel optical molecular imaging technique, bioluminescence tomography (BLT) can be used to monitor the biological activities non-invasively at the cellular and molecular levels. In most of known BLT studies, however, the time variation of the bioluminescent source is neglected. It gives rise to the inconsistent views during the multiview continuous wave measurement. In other words, the real measured data from different measured views come from 'different' bioluminescent sources. It could bring large errors in bioluminescence reconstruction. In this paper, a posteriori correction strategy for adaptive FEM-based reconstruction is proposed and developed. The method helps to improve the source localization considering the bioluminescent energy variance during the multiview measurement. In the method, the correction for boundary signals by means of a posteriori correction strategy, which adopts the energy ratio of measured data in the overlapping domains between the adjacent measurements as the correcting factor, can eliminate the effect of the inconsistent views. Then the adaptive mesh refinement with a posteriori error estimation helps to improve the precision and efficiency of BLT reconstruction. In addition, a priori permissible source region selection based on the surface measured data further reduces the ill-posedness of BLT and enhances numerical stability. Finally, three-dimension numerical simulations using the heterogeneous phantom are performed. The numerically measured data is generated by Monte Carlo (MC) method which is known as the Gold standard and can avoid the inverse crime. The reconstructed result with correction shows more accuracy compared to that without correction.

  2. Assessing Acoustic Sound Levels Associated with Active Source Seismic Surveys in Shallow Marine Environments

    NASA Astrophysics Data System (ADS)

    Bohnenstiehl, D. R.; Tolstoy, M.; Thode, A.; Diebold, J. B.; Webb, S. C.

    2004-12-01

    The potential effect of active source seismic research on marine mammal populations is a topic of increasing concern, and controversy surrounding such operations has begun to impact the planning and permitting of academic surveys [e.g., Malakoff, 2002 Science]. Although no causal relationship between marine mammal strandings and seismic exploration has been proven, any circumstantial evidence must be thoroughly investigated. A 2002 stranding of two beaked whales in the Gulf of California within 50 km of a R/V Ewing seismic survey has been a subject of concern for both marine seismologists and environmentalists. In order to better understand possible received levels for whales in the vicinity of these operations, modeling is combined with ground-truth calibration measurements. A wide-angle parabolic equation model, which is capable of including shear within the sediment and basement layers, is used to generate predictive models of low-frequency transmission loss within the Gulf of California. This work incorporates range-dependent bathymetry, sediment thickness, sound velocity structure and sub-bottom properties. Oceanic sounds speed profiles are derived from the U.S. Navy's seasonal GDEM model and sediment thicknesses are taken from NOAA's worldwide database. The spectral content of the Ewing's 20-airgun seismic array is constrained by field calibration in the spring of 2003 [Tolstoy et al., 2004 GRL], indicating peak energies at frequencies below a few hundred Hz, with energy spectral density showing an approximate power-law decrease at higher frequencies (being ~40 dB below peak at 1 kHz). Transmission loss is estimated along a series of radials extending from multiple positions along the ship's track, with the directivity of the array accounted for by phase-shifting point sources that are scaled by the cube root of the individual airgun volumes. This allows the time-space history of low-frequency received levels to be reconstructed within the Gulf of California

  3. Nonlinear simulations of particle source effects on edge localized mode

    SciTech Connect

    Huang, J.; Tang, C. J.; Chen, S. Y.; Wang, Z. H.

    2015-12-15

    The effects of particle source (PS) with different intensities and located positions on Edge Localized Mode (ELM) are systematically studied with BOUT++ code. The results show the ELM size strongly decreases with increasing the PS intensity once the PS is located in the middle or bottom of the pedestal. The effects of PS on ELM depend on the located position of PS. When it is located at the top of the pedestal, peeling-ballooning (P-B) modes can extract more free energy from the pressure gradient and grow up to be a large filament at the initial crash phase and the broadening of mode spectrum can be suppressed by PS, which leads to more energy loss. When it is located in the middle or bottom of the pedestal, the extraction of free energy by P-B modes can be suppressed, and a small filament is generated. During the turbulence transport phase, the broader mode spectrum suppresses the turbulence transport when PS is located in the middle, while the zonal flow plays an important role in damping the turbulence transport when PS is located at the bottom.

  4. Integration of acoustical information in the perception of impacted sound sources: the role of information accuracy and exploitability.

    PubMed

    Giordano, Bruno L; Rocchesso, Davide; McAdams, Stephen

    2010-04-01

    Sound sources are perceived by integrating information from multiple acoustical features. The factors influencing the integration of information are largely unknown. We measured how the perceptual weighting of different features varies with the accuracy of information and with a listener's ability to exploit it. Participants judged the hardness of two objects whose interaction generates an impact sound: a hammer and a sounding object. In a first discrimination experiment, trained listeners focused on the most accurate information, although with greater difficulty when perceiving the hammer. We inferred a limited exploitability for the most accurate hammer-hardness information. In a second rating experiment, listeners focused on the most accurate information only when estimating sounding-object hardness. In a third rating experiment, we synthesized sounds by independently manipulating source properties that covaried in Experiments 1 and 2: sounding-object hardness and impact properties. Sounding-object hardness perception relied on the most accurate acoustical information, whereas impact-properties influenced more strongly hammer hardness perception. Overall, perceptual weight increased with the accuracy of acoustical information, although information that was not easily exploited was perceptually secondary, even if accurate.

  5. Use of beamforming for detecting an acoustic source inside a cylindrical shell filled with a heavy fluid

    NASA Astrophysics Data System (ADS)

    Moriot, J.; Maxit, L.; Guyader, J. L.; Gastaldi, O.; Périsse, J.

    2015-02-01

    The acoustic detection of defects or leaks inside a cylindrical shell containing a fluid is of prime importance in the industry, particularly in the nuclear field. This paper examines the beamforming technique which is used to detect and locate the presence of an acoustic monopole inside a cylindrical elastic shell by measuring the external shell vibrations. In order to study the effect of fluid-structure interactions and the distance of the source from the array of sensors, a vibro-acoustic model of the fluid-loaded shell is first considered for numerical experiments. The beamforming technique is then applied to radial velocities of the shell calculated with the model. Different parameters such as the distance between sensors, the radial position of the source, the damping loss factor of the shell, or of the fluid, and modifications of fluid properties can be considered without difficulty. Analysis of these different results highlight how the behaviour of the fluid-loaded shell influences the detection. Finally, a test in a water-filled steel pipe is achieved for confirming experimentally the interest of the presented approach.

  6. Phased Array Noise Source Localization Measurements of an F404 Nozzle Plume at Both Full and Model Scale

    NASA Technical Reports Server (NTRS)

    Podboy, Gary G.; Bridges, James E.; Henderson, Brenda S.

    2010-01-01

    A 48-microphone planar phased array system was used to acquire jet noise source localization data on both a full-scale F404-GE-F400 engine and on a 1/4th scale model of a F400 series nozzle. The full-scale engine test data show the location of the dominant noise sources in the jet plume as a function of frequency for the engine in both baseline (no chevron) and chevron configurations. Data are presented for the engine operating both with and without afterburners. Based on lessons learned during this test, a set of recommendations are provided regarding how the phased array measurement system could be modified in order to obtain more useful acoustic source localization data on high-performance military engines in the future. The data obtained on the 1/4th scale F400 series nozzle provide useful insights regarding the full-scale engine jet noise source mechanisms, and document some of the differences associated with testing at model-scale versus fullscale.

  7. Earthquake Source Process from a Tide-Gauge and Hydro-Acoustic Station

    NASA Astrophysics Data System (ADS)

    Barrientos, S. E.

    2013-12-01

    A nearly 450-km-long rupture along the Nazca - South America plate interface, between Pichilemu (33.8°S) and the Arauco Peninsula (37.8°S) was responsible for the large earthquake (Mw=8.8) that took place in south-central Chile on 27 February 2010 at 03:34 (local time). Because of the location of the activated fault, a significant tsunami was generated which caused 156 deaths and 25 missing. Maximum run-ups of the generated tsunami reached 28 m in the neighborhood of Constitución. The most unusual feature of this tsunami was its long duration, it lasted more than 4 and a half hours at tide gages located close to the source region. A triad of hydrophone sensors, part of the International Monitoring System of the Comprehensive Nuclear-Test-Ban Treaty Organization, recorded the complete source process and later phases until the arrival of the tsunami that destroyed the facility. The hydroacoustic station at Juan Fernandez Island, placed around 500-600 km away from the rupture region together with a tide gauge recorder, captured some characteristics of the source processes as well as later arrivals, which have been interpreted as T phases generated by the rupture itself. The possibility of an induced landslide producing an anomalous signal is being investigated.

  8. openPSTD: The open source pseudospectral time-domain method for acoustic propagation

    NASA Astrophysics Data System (ADS)

    Hornikx, Maarten; Krijnen, Thomas; van Harten, Louis

    2016-06-01

    An open source implementation of the Fourier pseudospectral time-domain (PSTD) method for computing the propagation of sound is presented, which is geared towards applications in the built environment. Being a wave-based method, PSTD captures phenomena like diffraction, but maintains efficiency in processing time and memory usage as it allows to spatially sample close to the Nyquist criterion, thus keeping both the required spatial and temporal resolution coarse. In the implementation it has been opted to model the physical geometry as a composition of rectangular two-dimensional subdomains, hence initially restricting the implementation to orthogonal and two-dimensional situations. The strategy of using subdomains divides the problem domain into local subsets, which enables the simulation software to be built according to Object-Oriented Programming best practices and allows room for further computational parallelization. The software is built using the open source components, Blender, Numpy and Python, and has been published under an open source license itself as well. For accelerating the software, an option has been included to accelerate the calculations by a partial implementation of the code on the Graphical Processing Unit (GPU), which increases the throughput by up to fifteen times. The details of the implementation are reported, as well as the accuracy of the code.

  9. Stationary Source Related Documents for State and Local Transportation

    EPA Pesticide Factsheets

    State and Local Transporation Resources is an EPA/OTAQ web page for state and local air quality regulators and transportation planners that offers guidance on how to reduce air pollution from cars, diesel trucks, city and school buses

  10. Test of acoustic tone source and propulsion performance of C8A Buffalo suppressor nozzle

    NASA Technical Reports Server (NTRS)

    Marrs, C. C.; Harkonen, D. L.; Okeefe, J. V.

    1974-01-01

    Results are presented for a static acoustic and propulsion performance ground test conducted at the Boeing hot nozzle facility on the C8A Buffalo noise suppressor nozzle. Various methods to remove a nozzle-associated 2000-Hz tone are evaluated. Results of testing this rectangular-array lobed nozzle for propulsion performance and acoustic directivity are reported. Recommendations for future nozzle modifications and further testing are included. Appendix A contains the test plan. Appendix B presents the test log. Appendix C contains plots of the one-third octave sound pressure levels recorded during the test. Appendix D describes the acoustic data recording and reduction systems. The performance data is tabulated in Appendix E.

  11. Southwest U.S. Seismo-Acoustic Network: An Autonomous Data Aggregation, Detection, Localization and Ground-Truth Bulletin for the Infrasound Community

    NASA Astrophysics Data System (ADS)

    Jones, K. R.; Arrowsmith, S.

    2013-12-01

    The Southwest U.S. Seismo-Acoustic Network (SUSSAN) is a collaborative project designed to produce infrasound event detection bulletins for the infrasound community for research purposes. We are aggregating a large, unique, near real-time data set with available ground truth information from seismo-acoustic arrays across New Mexico, Utah, Nevada, California, Texas and Hawaii. The data are processed in near real-time (~ every 20 minutes) with detections being made on individual arrays and locations determined for networks of arrays. The detection and location data are then combined with any available ground truth information and compiled into a bulletin that will be released to the general public directly and eventually through the IRIS infrasound event bulletin. We use the open source Earthworm seismic data aggregation software to acquire waveform data either directly from the station operator or via the Incorporated Research Institutions for Seismology Data Management Center (IRIS DMC), if available. The data are processed using InfraMonitor, a powerful infrasound event detection and localization software program developed by Stephen Arrowsmith at Los Alamos National Laboratory (LANL). Our goal with this program is to provide the infrasound community with an event database that can be used collaboratively to study various natural and man-made sources. We encourage participation in this program directly or by making infrasound array data available through the IRIS DMC or other means. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. R&A 5317326

  12. Comparison of Acoustic Impedance Eduction Techniques for Locally-Reacting Liners

    NASA Technical Reports Server (NTRS)

    Jones, M. G.; Parrott, T. L.; Watson, W. R.

    2003-01-01

    Typical acoustic liners used in current aircraft inlets and aft-fan ducts consist of some type of perforated facesheet bonded to a honeycomb core. A number of techniques for determining the acoustic impedance of these locallyreacting liners have been developed over the last five decades. In addition, a number of models have been developed to predict the acoustic impedance of locallyreacting liners in the presence of grazing flow, and to use that information together with aeroacoustic propagation codes to assess the noise absorption provided by these liners. These prediction models have incorporated the results from databases acquired with specific impedance eduction techniques. Thus, while these prediction models are acceptable for liners that are similar to those tested in these databases, their application to new liner configurations must be viewed with caution. The primary purpose of this paper is to provide a comparison of impedance eduction techniques that have been implemented at various aerospace research laboratories in the United States (NASA Langley Research Center, General Electric Aircraft Engines, B. F. Goodrich and Boeing). A secondary purpose is to provide data for liner configurations that extend the porosity range beyond that which has been previously used in common aircraft engine nacelles. Two sets of liners were designed to study the effects of three parameters: perforate hole diameter, facesheet thickness and porosity. These two sets of liners were constructed for testing in each of the laboratories listed above. The first set of liners was designed to fit into the NASA Langley and Boeing test facilities. The second set was designed to fit into the General Electric Aircraft Engines and B. F. Goodrich test facilities. By using the same parent material, both sets of liners were identical to within the limits of material and fabrication variability. Baseline data were obtained in the normal incidence impedance tubes at NASA Langley and B. F

  13. Acoustic emissions of digital data video projectors- Investigating noise sources and their change during product aging

    NASA Astrophysics Data System (ADS)

    White, Michael Shane

    2005-09-01

    Acoustic emission testing continues to be a growing part of IT and telecommunication product design, as product noise is increasingly becoming a differentiator in the marketplace. This is especially true for digital/video display companies, such as InFocus Corporation, considering the market shift of these products to the home entertainment consumer as retail prices drop and performance factors increase. Projectors and displays using Digital Light Processing(tm) [DLP(tm)] technology incorporate a device known as a ColorWheel(tm) to generate the colors displayed at each pixel in the image. These ColorWheel(tm) devices spin at very high speeds and can generate high-frequency tones not typically heard in liquid crystal displays and other display technologies. Also, acoustic emission testing typically occurs at the beginning of product life and is a measure of acoustic energy emitted at this point in the lifecycle. Since the product is designed to be used over a long period of time, there is concern as to whether the acoustic emissions change over the lifecycle of the product, whether these changes will result in a level of nuisance to the average customer, and does this nuisance begin to develop prior to the intended lifetime of the product.

  14. Waveform inversion of acoustic waves for explosion yield estimation

    SciTech Connect

    Kim, K.; Rodgers, A. J.

    2016-07-08

    We present a new waveform inversion technique to estimate the energy of near-surface explosions using atmospheric acoustic waves. Conventional methods often employ air blast models based on a homogeneous atmosphere, where the acoustic wave propagation effects (e.g., refraction and diffraction) are not taken into account, and therefore, their accuracy decreases with increasing source-receiver distance. In this study, three-dimensional acoustic simulations are performed with a finite difference method in realistic atmospheres and topography, and the modeled acoustic Green's functions are incorporated into the waveform inversion for the acoustic source time functions. The strength of the acoustic source is related to explosion yield based on a standard air blast model. The technique was applied to local explosions (<10 km) and provided reasonable yield estimates (<~30% error) in the presence of realistic topography and atmospheric structure. In conclusion, the presented method can be extended to explosions recorded at far distance provided proper meteorological specifications.

  15. Fire Source Localization Based on Distributed Temperature Sensing by a Dual-Line Optical Fiber System

    PubMed Central

    Sun, Miao; Tang, Yuquan; Yang, Shuang; Li, Jun; Sigrist, Markus W.; Dong, Fengzhong

    2016-01-01

    We propose a method for localizing a fire source using an optical fiber distributed temperature sensor system. A section of two parallel optical fibers employed as the sensing element is installed near the ceiling of a closed room in which the fire source is located. By measuring the temperature of hot air flows, the problem of three-dimensional fire source localization is transformed to two dimensions. The method of the source location is verified with experiments using burning alcohol as fire source, and it is demonstrated that the method represents a robust and reliable technique for localizing a fire source also for long sensing ranges. PMID:27275822

  16. Fire Source Localization Based on Distributed Temperature Sensing by a Dual-Line Optical Fiber System.

    PubMed

    Sun, Miao; Tang, Yuquan; Yang, Shuang; Li, Jun; Sigrist, Markus W; Dong, Fengzhong

    2016-06-06

    We propose a method for localizing a fire source using an optical fiber distributed temperature sensor system. A section of two parallel optical fibers employed as the sensing element is installed near the ceiling of a closed room in which the fire source is located. By measuring the temperature of hot air flows, the problem of three-dimensional fire source localization is transformed to two dimensions. The method of the source location is verified with experiments using burning alcohol as fire source, and it is demonstrated that the method represents a robust and reliable technique for localizing a fire source also for long sensing ranges.

  17. Fan Noise Prediction System Development: Source/Radiation Field Coupling and Workstation Conversion for the Acoustic Radiation Code

    NASA Technical Reports Server (NTRS)

    Meyer, H. D.

    1993-01-01

    The Acoustic Radiation Code (ARC) is a finite element program used on the IBM mainframe to predict far-field acoustic radiation from a turbofan engine inlet. In this report, requirements for developers of internal aerodynamic codes regarding use of their program output an input for the ARC are discussed. More specifically, the particular input needed from the Bolt, Beranek and Newman/Pratt and Whitney (turbofan source noise generation) Code (BBN/PWC) is described. In a separate analysis, a method of coupling the source and radiation models, that recognizes waves crossing the interface in both directions, has been derived. A preliminary version of the coupled code has been developed and used for initial evaluation of coupling issues. Results thus far have shown that reflection from the inlet is sufficient to indicate that full coupling of the source and radiation fields is needed for accurate noise predictions ' Also, for this contract, the ARC has been modified for use on the Sun and Silicon Graphics Iris UNIX workstations. Changes and additions involved in this effort are described in an appendix.

  18. Study on the Non-contact Acoustic Inspection Method for Concrete Structures by using Strong Ultrasonic Sound source

    NASA Astrophysics Data System (ADS)

    Sugimoto, Tsuneyoshi; Uechi, Itsuki; Sugimoto, Kazuko; Utagawa, Noriyuki; Katakura, Kageyoshi

    Hammering test is widely used to inspect the defects in concrete structures. However, this method has a major difficulty in inspect at high-places, such as a tunnel ceiling or a bridge girder. Moreover, its detection accuracy is dependent on a tester's experience. Therefore, we study about the non-contact acoustic inspection method of the concrete structure using the air borne sound wave and a laser Doppler vibrometer. In this method, the concrete surface is excited by air-borne sound wave emitted with a long range acoustic device (LRAD), and the vibration velocity on the concrete surface is measured by a laser Doppler vibrometer. A defect part is detected by the same flexural resonance as the hammer method. It is already shown clearly that detection of a defect can be performed from a long distance of 5 m or more using a concrete test object. Moreover, it is shown that a real concrete structure can also be applied. However, when the conventional LRAD was used as a sound source, there were problems, such as restrictions of a measurement angle and the surrounding noise. In order to solve these problems, basic examination which used the strong ultrasonic wave sound source was carried out. In the experiment, the concrete test object which includes an imitation defect from 5-m distance was used. From the experimental result, when the ultrasonic sound source was used, restrictions of a measurement angle become less severe and it was shown that circumference noise also falls dramatically.

  19. Ultrasonic condition monitoring of composite structures using a low-profile acoustic source and an embedded optical fiber sensor

    NASA Astrophysics Data System (ADS)

    Pierce, S. Gareth; Staszewski, Wieslaw J.; Gachagan, Anthony; James, I. R.; Philip, Wayne R.; Worden, Keith; Culshaw, Brian; McNab, Alistair; Tomlinson, Geoffrey R.; Hayward, Gordon

    1997-06-01

    The purpose of this paper is to provide a concise introduction to the developments and recent findings of a BRITE-EURAM program of work (BRE2.CT94-0990 , structurally integrated system for the comprehensive evaluation of composites). The aim of the program has been to develop an acoustic/ultrasonic based structural monitoring system for composite structures using material compatible sensors. Since plate-like structures have been investigated, it has been a requirement to utilize the propagation of ultrasonic Lamb waves through the sample materials. Preliminary investigations utilized conventional piezo-electric sources coupled to the sample via perspex wedges. The Lamb waves generated by these sources were monitored using either a fully embedded or surface mounted optical fiber sensors. The system was tested with a variety of different carbon and glass fiber reinforced panels, and the interaction of the lamb waves with different defects in these materials was monitored. Conventional signal processing allowed the location of defects such as impact damage sites, delaminations and holes. Subsequent investigations have endeavored to refine the system. This paper reports the development of advanced wavelet based signal processing techniques to enhance defect visibility, the optical connectorization of composite panels, and the development of flexible low profile acoustic sources for efficient Lamb wave generation.

  20. Acoustic Emission Source Location in Unidirectional Carbon-Fibre-Reinforced Plastic Plates Using Virtually Trained Artificial Neural Networks

    SciTech Connect

    Caprino, G.; Lopresto, V.; Leone, C.; Papa, I.

    2010-06-02

    Acoustic emission source location in a unidirectional carbon-fibre-reinforced plastic plate was attempted employing Artificial Neural Network (ANN) technology. The acoustic emission events were produced by a lead break, and the response wave received by piezoelectric sensors, type VS150-M resonant at 150 kHz. The waves were detected by a Vallen AMSY4 eight-channel instrumentation. The time of arrival, determined through the conventional threshold crossing technique, was used to measure the dependence of wave velocity on fibre orientation. A simple empirical formula, relying on classical lamination and suggested by wave propagation theory, was able to accurately model the experimental trend. Based on the formula, virtual training and testing data sets were generated for the case of a plate monitored by three transducers, and adopted to select two potentially effective ANN architectures. For final validation, experimental tests were carried out, positioning the source at predetermined points evenly distributed within the plate area. A very satisfactory correlation was found between the actual source locations and the ANN predictions.

  1. Time-domain delay-and-sum beamforming for time-reversal detection of intermittent acoustic sources in flows.

    PubMed

    Rakotoarisoa, Ifanila; Fischer, Jeoffrey; Valeau, Vincent; Marx, David; Prax, Christian; Brizzi, Laurent-Emmanuel

    2014-11-01

    This study focuses on the identification of intermittent aeroacoustic sources in flows by using the time-domain beamforming technique. It is first shown that this technique can be seen as a time-reversal (TR) technique, working with approximate Green functions in the case of a shear flow. Some numerical experiments investigate the case of an array measurement of a generic acoustic pulse emitted in a wind-tunnel flow, with a realistic multi-arm spiral array. The results of the time-domain beamforming successfully match those given by a numerical TR technique over a wide range of flow speeds (reaching the transonic regime). It is shown how the results should be analyzed in a focusing plane parallel to the microphone array in order to estimate the location and emission time of the pulse source. An experimental application dealing with the aeroacoustic radiation of a bluff body in a wind-tunnel flow is also considered, and shows that some intermittent events can be clearly identified in the noise radiation. Time-domain beamforming is then an efficient tool for analyzing intermittent acoustic sources in flows, and is a computationally cheaper alternative to the numerical TR technique, which should be used for complex configurations where the Green function is not available.

  2. Mountain chickadees from different elevations sing different songs: acoustic adaptation, temporal drift or signal of local adaptation?

    PubMed

    Branch, Carrie L; Pravosudov, Vladimir V

    2015-04-01

    Song in songbirds is widely thought to function in mate choice and male-male competition. Song is also phenotypically plastic and typically learned from local adults; therefore, it varies across geographical space and can serve as a cue for an individual's location of origin, with females commonly preferring males from their respective location. Geographical variation in song dialect may reflect acoustic adaptation to different environments and/or serve as a signal of local adaptation. In montane environments, environmental differences can occur over an elevation gradient, favouring local adaptations across small spatial scales. We tested whether food caching mountain chickadees, known to exhibit elevation-related differences in food caching intensity, spatial memory and the hippocampus, also sing different dialects despite continuous distribution and close proximity. Male songs were collected from high and low elevations at two different mountains (separated by 35 km) to test whether song differs between elevations and/or between adjacent populations at each mountain. Song structure varied significantly between high and low elevation adjacent populations from the same mountain and between populations from different mountains at the same elevations, despite a continuous distribution across each mountain slope. These results suggest that elevation-related differences in song structure in chickadees might serve as a signal for local adaptation.

  3. Mountain chickadees from different elevations sing different songs: acoustic adaptation, temporal drift or signal of local adaptation?

    PubMed Central

    Branch, Carrie L.; Pravosudov, Vladimir V.

    2015-01-01

    Song in songbirds is widely thought to function in mate choice and male–male competition. Song is also phenotypically plastic and typically learned from local adults; therefore, it varies across geographical space and can serve as a cue for an individual's location of origin, with females commonly preferring males from their respective location. Geographical variation in song dialect may reflect acoustic adaptation to different environments and/or serve as a signal of local adaptation. In montane environments, environmental differences can occur over an elevation gradient, favouring local adaptations across small spatial scales. We tested whether food caching mountain chickadees, known to exhibit elevation-related differences in food caching intensity, spatial memory and the hippocampus, also sing different dialects despite continuous distribution and close proximity. Male songs were collected from high and low elevations at two different mountains (separated by 35 km) to test whether song differs between elevations and/or between adjacent populations at each mountain. Song structure varied significantly between high and low elevation adjacent populations from the same mountain and between populations from different mountains at the same elevations, despite a continuous distribution across each mountain slope. These results suggest that elevation-related differences in song structure in chickadees might serve as a signal for local adaptation. PMID:26064641

  4. Source motion detection, estimation, and compensation for underwater acoustics inversion by wideband ambiguity lag-Doppler filtering.

    PubMed

    Josso, Nicolas F; Ioana, Cornel; Mars, Jérôme I; Gervaise, Cédric

    2010-12-01

    Acoustic channel properties in a shallow water environment with moving source and receiver are difficult to investigate. In fact, when the source-receiver relative position changes, the underwater environment causes multipath and Doppler scale changes on the transmitted signal over low-to-medium frequencies (300 Hz-20 kHz). This is the result of a combination of multiple paths propagation, source and receiver motions, as well as sea surface motion or water column fast changes. This paper investigates underwater acoustic channel properties in a shallow water (up to 150 m depth) and moving source-receiver conditions using extracted time-scale features of the propagation channel model for low-to-medium frequencies. An average impulse response of one transmission is estimated using the physical characteristics of propagation and the wideband ambiguity plane. Since a different Doppler scale should be considered for each propagating signal, a time-warping filtering method is proposed to estimate the channel time delay and Doppler scale attributes for each propagating path. The proposed method enables the estimation of motion-compensated impulse responses, where different Doppler scaling factors are considered for the different time delays. It was validated for channel profiles using real data from the BASE'07 experiment conducted by the North Atlantic Treaty Organization Undersea Research Center in the shallow water environment of the Malta Plateau, South Sicily. This paper provides a contribution to many field applications including passive ocean tomography with unknown natural sources position and movement. Another example is active ocean tomography where sources motion enables to rapidly cover one operational area for rapid environmental assessment and hydrophones may be drifting in order to avoid additional flow noise.

  5. Acoustic radiation force impulse (ARFI) imaging: Characterizing the mechanical properties of tissues using their transient response to localized force

    NASA Astrophysics Data System (ADS)

    Nightingale, Kathryn R.; Palmeri, Mark L.; Congdon, Amy N.; Frinkely, Kristin D.; Trahey, Gregg E.

    2004-05-01

    Acoustic radiation force impulse (ARFI) imaging utilizes brief, high energy, focused acoustic pulses to generate radiation force in tissue, and conventional diagnostic ultrasound methods to detect the resulting tissue displacements in order to image the relative mechanical properties of tissue. The magnitude and spatial extent of the applied force is dependent upon the transmit beam parameters and the tissue attenuation. Forcing volumes are on the order of 5 mm3, pulse durations are less than 1 ms, and tissue displacements are typically several microns. Images of tissue displacement reflect local tissue stiffness, with softer tissues (e.g., fat) displacing farther than stiffer tissues (e.g., muscle). Parametric images of maximum displacement, time to peak displacement, and recovery time provide information about tissue material properties and structure. In both in vivo and ex vivo data, structures shown in matched B-mode images are in good agreement with those shown in ARFI images, with comparable resolution. Potential clinical applications under investigation include soft tissue lesion characterization, assessment of focal atherosclerosis, and imaging of thermal lesion formation during tissue ablation procedures. Results from ongoing studies will be presented. [Work supported by NIH Grant R01 EB002132-03, and the Whitaker Foundation. System support from Siemens Medical Solutions USA, Inc.

  6. On the Estimation of the Number of Dipole Sources in EEG Source Localization

    PubMed Central

    Bai, Xiaoxiao; He, Bin

    2007-01-01

    Background The purpose of the present study was to determine the number of the equivalent dipole sources corresponding to the scalp EEG using the information criterion method based on the instantaneous-state modeling. Methods A three-concentric-spheres head model was used to represent the head volume conductor. The Powell algorithm was used to solve the inverse problem of estimating the equivalent dipoles from the scalp EEG. The information criterion with different penalty functions was used to determine the dipole number. Computer simulations were conducted to evaluate effects of various parameters on the estimation of dipole number. Results The present results suggest that the present method is able to estimate the number of equivalent current dipoles (ECDs) from instantaneous scalp EEG measurements, and that increase in the electrode number can improve the accuracy of estimation of the ECD number. For two ECDs, the best performance of estimation with 20% white noise were 85%, 92% and 94%, when 64, 128 and 256 electrodes are used, respectively. When there are 3 ECDs, the present results suggest that using 256 electrodes gave up to 82% estimation accuracy. The present simulation results also indicate that the accuracies of identification are similar when the minimum distance between dipoles is either 1 or 2 cm, which was used in the simulation. It was also found that the different penalty functions used in the information criterion method could have substantial influence on the estimation accuracy. Conclusions The present method can estimate the number of ECDs from instantaneous scalp EEG distribution for up to three dipoles. Significance The successful estimation of the number of ECDs will play an important role in expanding the applicability of dipole source localization to multiple sources. PMID:16043395

  7. Open Source Communities in Technical Writing: Local Exigence, Global Extensibility

    ERIC Educational Resources Information Center

    Conner, Trey; Gresham, Morgan; McCracken, Jill

    2011-01-01

    By offering open-source software (OSS)-based networks as an affordable technology alternative, we partnered with a nonprofit community organization. In this article, we narrate the client-based experiences of this partnership, highlighting the ways in which OSS and open-source culture (OSC) transformed our students' and our own expectations of…

  8. Classification of acoustic emission signals using wavelets and Random Forests : Application to localized corrosion

    NASA Astrophysics Data System (ADS)

    Morizet, N.; Godin, N.; Tang, J.; Maillet, E.; Fregonese, M.; Normand, B.

    2016-03-01

    This paper aims to propose a novel approach to classify acoustic emission (AE) signals deriving from corrosion experiments, even if embedded into a noisy environment. To validate this new methodology, synthetic data are first used throughout an in-depth analysis, comparing Random Forests (RF) to the k-Nearest Neighbor (k-NN) algorithm. Moreover, a new evaluation tool called the alter-class matrix (ACM) is introduced to simulate different degrees of uncertainty on labeled data for supervised classification. Then, tests on real cases involving noise and crevice corrosion are conducted, by preprocessing the waveforms including wavelet denoising and extracting a rich set of features as input of the RF algorithm. To this end, a software called RF-CAM has been developed. Results show that this approach is very efficient on ground truth data and is also very promising on real data, especially for its reliability, performance and speed, which are serious criteria for the chemical industry.

  9. Transported vs. local contributions from secondary and biomass burning sources to PM2.5

    NASA Astrophysics Data System (ADS)

    Kim, Bong Mann; Seo, Jihoon; Kim, Jin Young; Lee, Ji Yi; Kim, Yumi

    2016-11-01

    The concentration of fine particulates in Seoul, Korea has been lowered over the past 10 years, as a result of the city's efforts in implementing environmental control measures. Yet, the particulate concentration level in Seoul remains high as compared to other urban areas globally. In order to further improve fine particulate air quality in the Korea region and design a more effective control strategy, enhanced understanding of the sources and contribution of fine particulates along with their chemical compositions is necessary. In turn, relative contributions from local and transported sources on Seoul need to be established, as this city is particularly influenced by sources from upwind geographic areas. In this study, PM2.5 monitoring was conducted in Seoul from October 2012 to September 2013. PM2.5 mass concentrations, ions, metals, organic carbon (OC), elemental carbon (EC), water soluble OC (WSOC), humic-like substances of carbon (HULIS-C), and 85 organic compounds were chemically analyzed. The multivariate receptor model SMP was applied to the PM2.5 data, which then identified nine sources and estimated their source compositions as well as source contributions. Prior studies have identified and quantified the transported and local sources. However, no prior studies have distinguished contributions of an individual source between transported contribution and locally produced contribution. We differentiated transported secondary and biomass burning sources from the locally produced secondary and biomass burning sources, which was supported with potential source contribution function (PSCF) analysis. Of the total secondary source contribution, 32% was attributed to transported secondary sources, and 68% was attributed to locally formed secondary sources. Meanwhile, the contribution from the transported biomass burning source was revealed as 59% of the total biomass burning contribution, which was 1.5 times higher than that of the local biomass burning source

  10. Numerical method to compute acoustic scattering effect of a moving source.

    PubMed

    Song, Hao; Yi, Mingxu; Huang, Jun; Pan, Yalin; Liu, Dawei

    2016-01-01

    In this paper, the aerodynamic characteristic of a ducted tail rotor in hover has been numerically studied using CFD method. An analytical time domain formulation based on Ffowcs Williams-Hawkings (FW-H) equation is derived for the prediction of the acoustic velocity field and used as Neumann boundary condition on a rigid scattering surface. In order to predict the aerodynamic noise, a hybrid method combing computational aeroacoustics with an acoustic thin-body boundary element method has been proposed. The aerodynamic results and the calculated sound pressure levels (SPLs) are compared with the known method for validation. Simulation results show that the duct can change the value of SPLs and the sound directivity. Compared with the isolate tail rotor, the SPLs of the ducted tail rotor are smaller at certain azimuth.

  11. Local elastic modulus of RF sputtered HfO{sub 2} thin film by atomic force acoustic microscopy

    SciTech Connect

    Jena, S. Tokas, R. B. Sarkar, P. Thakur, S.; Sahoo, N. K.; Misal, J. S.; Rao, K. D.

    2014-04-24

    Atomic force acoustic microscopy (AFAM) is a useful nondestructive technique for measurement of local elastic modulus of materials at nano-scale spatial resolution by measuring the contact resonance spectra for higher order modes of the AFM cantilever. The elastic modulus of RF sputtered HfO{sub 2} thin film has been measured quantitatively, using reference approach in which measurements are performed on the test and reference samples. Using AFAM, the measured elastic modulus of the HfO{sub 2} thin film is 223±27 GPa, which is in agreement with the literature value of 220±40 GPa for atomic layer deposited HfO{sub 2} thin film using nanoindentation technique.

  12. Nature of localized states in two-dimensional electron systems in the quantum Hall regime: Acoustic studies

    NASA Astrophysics Data System (ADS)

    Drichko, I. L.; Smirnov, I. Yu.; Suslov, A. V.; Galperin, Y. M.; Pfeiffer, L. N.; West, K. W.

    2017-01-01

    We review our work on high-frequency conductance in two-dimensional high-mobility electronic systems in wide n-AlGaAs/GaAs/AlGaAs quantum wells. Using simultaneous measurements of the attenuation and velocity of a surface acoustic wave we obtained both real and imaginary components of the complex high-frequency conductance. Based on the experimental results and their analysis we conclude that close to the filling factor ν = 1/5, as well as in the interval 0.18 > ν > 0.125, a Wigner crystal pinned by disorder is formed. Both the melting temperature and the correlation length of the pinning-induced domains in the Wigner crystal were found. In close vicinities of ν = 1 and 2, transitions from single-electron localization to a Wigner crystal were observed.

  13. Discrete-Mode Source Development and Testing for New Seismo-Acoustic Sonar

    DTIC Science & Technology

    1998-03-01

    the English scientist, Lord Rayleigh (J.W. Strutt ) [Ref. 6] demonstrated theoretically that there exist waves that can propagate over the planar...and T.G. Muir, Aug. 1994. 6. Rayleigh , Lord (J.W. Strutt ), "On Waves Propagated along the Plane Surface of an Elastic Solid," Proceedings London...13. ABSTRACT (maximum 200 words) A seismo-acoustic sonar concept that uses guided interface waves ( Rayleigh or Schölte) is being developed to

  14. Simple Database Construction: Using Local Sources of Data

    ERIC Educational Resources Information Center

    Gerber, D. Timothy; Reineke, David M.

    2005-01-01

    Different simple and inexpensive ways of building a database using common computer software and data from local newspaper are presented. Creating one's own database provides an opportunity to discuss ethical issues in data collection as well as data integrity.

  15. Analogies between the measurement of acoustic impedance via the reaction on the source method and the automatic microwave vector network analyzer technique

    NASA Astrophysics Data System (ADS)

    McLean, James; Sutton, Robert; Post, John

    2003-10-01

    One useful method of acoustic impedance measurement involves the measurement of the electrical impedance ``looking into'' the electrical port of a reciprocal electroacoustic transducer. This reaction on the source method greatly facilitates the measurement of acoustic impedance by borrowing highly refined techniques to measure electrical impedance. It is also well suited for in situ acoustic impedance measurements. In order to accurately determine acoustic impedance from the measured electrical impedance, the characteristics of the transducer must be accurately known, i.e., the characteristics of the transducer must be ``removed'' completely from the data. The measurement of acoustic impedance via the measurement of the reaction on the source is analogous to modern microwave measurements made with an automatic vector network analyzer. The action of the analyzer is described as de-embedding the desired data (such as acoustic impedance) from the raw data. Such measurements are fundamentally substitution measurements in that the transducer's characteristics are determined by measuring a set of reference standards. The reaction on the source method is extended to take advantage of improvements in microwave measurement techniques which allow calibration via imperfect standard loads. This removes one of the principal weaknesses of the method in that the requirement of high-quality reference standards is relaxed.

  16. International Workshop on Detection, Classification and Localization of Marine Mammals Using Passive Acoustics (4th). International Workshop on Density Estimation of Marine Mammals Using Passive Acoustics (1st)

    DTIC Science & Technology

    2009-09-13

    Mars 55 Characterisation of sound subunits for humpback whale song analysis. F. Pace, P.R. White, O. Adam 56 Passive acoustic detection of Minke...International Monitoring System. Samaran Flore, Adam Olivier, Guinet Christophe 58 Detection of Minke whale sounds in the Stellwagen Bank National Marine...September 8.40 Characterisation of sound subunits for humpback whale song analysis. F. Pace, P.R. White, O. Adam 9.00 Passive acoustic detection of

  17. Changes in Humpback Whale Song Occurrence in Response to an Acoustic Source 200 km Away

    PubMed Central

    Risch, Denise; Corkeron, Peter J.; Ellison, William T.; Van Parijs, Sofie M.

    2012-01-01

    The effect of underwater anthropogenic sound on marine mammals is of increasing concern. Here we show that humpback whale (Megaptera novaeangliae) song in the Stellwagen Bank National Marine Sanctuary (SBNMS) was reduced, concurrent with transmissions of an Ocean Acoustic Waveguide Remote Sensing (OAWRS) experiment approximately 200 km away. We detected the OAWRS experiment in SBNMS during an 11 day period in autumn 2006. We compared the occurrence of song for 11 days before, during and after the experiment with song over the same 33 calendar days in two later years. Using a quasi-Poisson generalized linear model (GLM), we demonstrate a significant difference in the number of minutes with detected song between periods and years. The lack of humpback whale song during the OAWRS experiment was the most substantial signal in the data. Our findings demonstrate the greatest published distance over which anthropogenic sound has been shown to affect vocalizing baleen whales, and the first time that active acoustic fisheries technology has been shown to have this effect. The suitability of Ocean Acoustic Waveguide Remote Sensing technology for in-situ, long term monitoring of marine ecosystems should be considered, bearing in mind its possible effects on non-target species, in particular protected species. PMID:22253769

  18. Controlled and in situ target strengths of the jumbo squid Dosidicus gigas and identification of potential acoustic scattering sources.

    PubMed

    Benoit-Bird, Kelly J; Gilly, William F; Au, Whitlow W L; Mate, Bruce

    2008-03-01

    This study presents the first target strength measurements of Dosidicus gigas, a large squid that is a key predator, a significant prey, and the target of an important fishery. Target strength of live, tethered squid was related to mantle length with values standardized to the length squared of -62.0, -67.4, -67.9, and -67.6 dB at 38, 70, 120, and 200 kHz, respectively. There were relatively small differences in target strength between dorsal and anterior aspects and none between live and freshly dead squid. Potential scattering mechanisms in squid have been long debated. Here, the reproductive organs had little effect on squid target strength. These data support the hypothesis that the pen may be an important source of squid acoustic scattering. The beak, eyes, and arms, probably via the sucker rings, also play a role in acoustic scattering though their effects were small and frequency specific. An unexpected source of scattering was the cranium of the squid which provided a target strength nearly as high as that of the entire squid though the mechanism remains unclear. Our in situ measurements of the target strength of free-swimming squid support the use of the values presented here in D. gigas assessment studies.

  19. Acoustic Cluster Therapy (ACT) - pre-clinical proof of principle for local drug delivery and enhanced uptake.

    PubMed

    Wamel, Annemieke van; Healey, Andrew; Sontum, Per Christian; Kvåle, Svein; Bush, Nigel; Bamber, Jeff; de Lange Davies, Catharina

    2016-02-28

    Proof of principle for local drug delivery with Acoustic Cluster Therapy (ACT) was demonstrated in a human prostate adenocarcinoma growing in athymic mice, using near infrared (NIR) dyes as model molecules. A dispersion of negatively charged microbubble/positively charged microdroplet clusters are injected i.v., activated within the target pathology by diagnostic ultrasound (US), undergo an ensuing liquid-to-gas phase shift and transiently deposit 20-30μm large bubbles in the microvasculature, occluding blood flow for ~5-10min. Further application of low frequency US induces biomechanical effects that increase the vascular permeability, leading to a locally enhanced extravasation of components from the vascular compartment (e.g., released or co-administered drugs). Results demonstrated deposition of activated bubbles in tumor vasculature. Following ACT treatment, a significant and tumor specific increase in the uptake of a co-administered macromolecular NIR dye was shown. In addition, ACT compound loaded with a lipophilic NIR dye to the microdroplet component was shown to facilitate local release and tumor specific uptake. Whereas the mechanisms behind the observed increased and tumor specific uptake are not fully elucidated, it is demonstrated that the ACT concept can be applied as a versatile technique for targeted drug delivery.

  20. Spatiotemporal reconstruction of auditory steady-state responses to acoustic amplitude modulations: Potential sources beyond the auditory pathway.

    PubMed

    Farahani, Ehsan Darestani; Goossens, Tine; Wouters, Jan; van Wieringen, Astrid

    2017-03-01

    Investigating the neural generators of auditory steady-state responses (ASSRs), i.e., auditory evoked brain responses, with a wide range of screening and diagnostic applications, has been the focus of various studies for many years. Most of these studies employed a priori assumptions regarding the number and location of neural generators. The aim of this study is to reconstruct ASSR sources with minimal assumptions in order to gain in-depth insight into the number and location of brain regions that are activated in response to low- as well as high-frequency acoustically amplitude modulated signals. In order to reconstruct ASSR sources, we applied independent component analysis with subsequent equivalent dipole modeling to single-subject EEG data (young adults, 20-30 years of age). These data were based on white noise stimuli, amplitude modulated at 4, 20, 40, or 80Hz. The independent components that exhibited a significant ASSR were clustered among all participants by means of a probabilistic clustering method based on a Gaussian mixture model. Results suggest that a widely distributed network of sources, located in cortical as well as subcortical regions, is active in response to 4, 20, 40, and 80Hz amplitude modulated noises. Some of these sources are located beyond the central auditory pathway. Comparison of brain sources in response to different modulation frequencies suggested that the identified brain sources in the brainstem, the left and the right auditory cortex show a higher responsiveness to 40Hz than to the other modulation frequencies.

  1. Using ILD or ITD Cues for Sound Source Localization and Speech Understanding in a Complex Listening Environment by Listeners With Bilateral and With Hearing-Preservation Cochlear Implants

    PubMed Central

    Dorman, Michael F.; Yost, William A.; Cook, Sarah J.; Gifford, Rene H.

    2016-01-01

    Purpose To assess the role of interaural time differences and interaural level differences in (a) sound-source localization, and (b) speech understanding in a cocktail party listening environment for listeners with bilateral cochlear implants (CIs) and for listeners with hearing-preservation CIs. Methods Eleven bilateral listeners with MED-EL (Durham, NC) CIs and 8 listeners with hearing-preservation CIs with symmetrical low frequency, acoustic hearing using the MED-EL or Cochlear device were evaluated using 2 tests designed to task binaural hearing, localization, and a simulated cocktail party. Access to interaural cues for localization was constrained by the use of low-pass, high-pass, and wideband noise stimuli. Results Sound-source localization accuracy for listeners with bilateral CIs in response to the high-pass noise stimulus and sound-source localization accuracy for the listeners with hearing-preservation CIs in response to the low-pass noise stimulus did not differ significantly. Speech understanding in a cocktail party listening environment improved for all listeners when interaural cues, either interaural time difference or interaural level difference, were available. Conclusions The findings of the current study indicate that similar degrees of benefit to sound-source localization and speech understanding in complex listening environments are possible with 2 very different rehabilitation strategies: the provision of bilateral CIs and the preservation of hearing. PMID:27411035

  2. Remote ballistic emplacement of an electro-optical and acoustic target detection and localization system

    NASA Astrophysics Data System (ADS)

    West, Aaron; Mellini, Mark

    2015-05-01

    Near real time situational awareness in uncontrolled non line of sight (NLOS) and beyond line of sight (BLOS) environments is critical in the asymmetric battlefield of future conflicts. The ability to detect and accurately locate hostile forces in difficult terrain or urban environments can dramatically increase the survivability and effectiveness of dismounted soldiers, especially when they are limited to the resources available only to the small unit. The Sensor Mortar Network (SMortarNet) is a 60mm Intelligence, Surveillance, and Reconnaissance (ISR) mortar designed to give the Squad near real time situational awareness in uncontrolled NLOS environments. SMortarNet is designed to track targets both acoustically and electro optically and can fuse tracks between, the acoustic, EO, and magnetic modalities on board. The system is linked to other mortar nodes and the user via a masterless frequency hopping spread spectrum ad-hoc mesh radio network. This paper will discuss SMortarNet in the context of a squad level dismounted soldier, its technical capabilities, and its benefit to the small unit Warfighter. The challenges with ballistic remote emplacement of sensitive components and the on board signal processing capabilities of the system will also be covered. The paper will also address how the sensor network can be integrated with existing soldier infrastructure, such as the NettWarrior platform, for rapid transition to soldier systems. Networks of low power sensors can have many forms, but the more practical networks for warfighters are ad hoc radio-based systems that can be rapidly deployed and can leverage a range of assets available at a given time. The low power long life networks typically have limited bandwidth and may have unreliable communication depending on the network health, which makes autonomous sensors a critical component of the network. SMortarNet reduces data to key information features at the sensor itself. The smart sensing approach enables

  3. Tracking Coherent Structures and Source Localization in Geophysical Flows

    NASA Astrophysics Data System (ADS)

    Forgoston, Eric; Hsieh, Ani; Schwartz, Ira; Yecko, Philip

    There has been a steady increase in the deployment of autonomous underwater and surface vehicles for applications such as ocean monitoring, tracking of marine processes, and forecasting contaminant transport. The underwater environment poses unique challenges since robots must operate in a communication and localization-limited environment where their dynamics are tightly coupled with the environmental dynamics. This work presents current efforts in understanding the impact of geophysical fluid dynamics on underwater vehicle control and autonomy. The focus of the talk is on the use of collaborative vehicles to track Lagrangian coherent structures and to localize contaminant spills. Research supported by the National Science Foundation and the Office of Naval Research.

  4. Vibro-Acoustic Analysis of Computer Disk Drive Components with Emphasis on Electro-Mechanical Noise Sources.

    NASA Astrophysics Data System (ADS)

    Lee, Ming-Ran

    Vibro-acoustic characteristics of compact electro -mechanical devices are not well understood. This study examines fundamental research issues in this area through the example case of a 3.5" personal computer hard disk drive. In particular, a narrow band mathematical model of the drive has been developed to predict prominent pure tones over the high frequency range (1-6.5 KHz). Through detailed analytical studies, it has been found that the motor torque pulsation of the brushless d.c. motor is the source for this noise problem. Accordingly, a simplified disk drive model consisting of motor driving a single disk is used to investigate key components, with emphasis on the development of new mathematical models to describe the source, path and radiator characteristics. Two different mathematical models have been developed for brushless d.c. motor to predict the torque spectrum associated with invertor switching logic, pulse width modulation control scheme, eccentricity, and magnetic saturation. Frequency contents of predicted variables are identified and matched with measured sound data. Additionally, the Galerkin's method (or modified harmonic balance) is also employed successfully to develop an efficient computational scheme which predicts the Fourier coefficients of torque pulsations directly including various effects associated with inductance harmonics and the fluctuation of rotor angular velocity. For the radiator (annular disk), modal base formulations of sound radiation have been developed by approximating disk eigen-functions. Specifically, the effects of modal coupling and source rotation on radiated sound are investigated. Analytical predictions match well with numerical results obtained by using a boundary element program. New mobility transfer functions (path) are derived to couple the source and radiator formulations in order to construct an overall vibro-acoustic model. Potential areas of further research including experimental validation are discussed.

  5. Locally Sourced Capital for Small Businesses in Rural Communities

    ERIC Educational Resources Information Center

    Tampien, Jordan

    2016-01-01

    Lack of adequate access to capital is a major barrier for rural entrepreneurs. Washington State University Extension and the Association of Washington Cities partnered to explore and test an innovative local investment approach that provides access to capital and engages the community in the success of individual businesses. The approach offers…

  6. Localizing the sources of two independent noises: role of time varying amplitude differences.

    PubMed

    Yost, William A; Brown, Christopher A

    2013-04-01

    Listeners localized the free-field sources of either one or two simultaneous and independently generated noise bursts. Listeners' localization performance was better when localizing one rather than two sound sources. With two sound sources, localization performance was better when the listener was provided prior information about the location of one of them. Listeners also localized two simultaneous noise bursts that had sinusoidal amplitude modulation (AM) applied, in which the modulation envelope was in-phase across the two source locations or was 180° out-of-phase. The AM was employed to investigate a hypothesis as to what process listeners might use to localize multiple sound sources. The results supported the hypothesis that localization of two sound sources might be based on temporal-spectral regions of the combined waveform in which the sound from one source was more intense than that from the other source. The interaural information extracted from such temporal-spectral regions might provide reliable estimates of the sound source location that produced the more intense sound in that temporal-spectral region.

  7. Local sources of pollution and their impacts in Alaska (Invited)

    NASA Astrophysics Data System (ADS)

    Molders, N.

    2013-12-01

    The movie 'Into the Wilde' evoke the impression of the last frontier in a great wide and pristine land. With over half a million people living in Alaska an area as larger as the distance from the US West to the East Coast, this idea comes naturally. The three major cities are the main emission source in an otherwise relative clean atmosphere. On the North Slope oil drilling and production is the main anthropogenic emission sources. Along Alaska's coasts ship traffic including cruises is another anthropogenic emission source that is expected to increase as sea-ice recedes. In summer, wildfires in Alaska, Canada and/or Siberia may cause poor air quality. In winter inversions may lead poor air quality and in spring. In spring, aged polluted air is often advected into Alaska. These different emission sources yield quite different atmospheric composition and air quality impacts. While this may make understanding Alaska's atmospheric composition at-large a challenging task, it also provides great opportunities to examine impacts without co-founders. The talk will give a review of the performed research, and insight into the challenges.

  8. Indoor localization for global information service using acoustic wireless sensor network

    NASA Astrophysics Data System (ADS)

    Desai, Pratikkumar; Baine, Nicholas; Rattan, Kuldip S.

    2011-06-01

    Indoor localization with sensing capabilities is the missing link for a Geospatial Information System and sensor web. The sensor network is capable of environmental monitoring and geo-tagging sensor data. This paper presents a unique algorithm which uses fusion of Radio Signal Strength Indicator and Time Difference of Arrival for centimeter level accurate indoor localization using wireless sensor network motes. The paper also proposes the integration of various environmental sensors with wireless sensor network. The acquired sensor data can be geo-tagged with the translated global coordinates and additional sensory metadata. With the use of semantic sensor web, this sensor information can be utilized in various decision making scenarios for critical situations. The main goal of the paper is to use indoor localization assisted by sensor fusion and semantic web for first responders in emergency scenarios.

  9. Room Acoustics

    NASA Astrophysics Data System (ADS)

    Kuttruff, Heinrich; Mommertz, Eckard

    The traditional task of room acoustics is to create or formulate conditions which ensure the best possible propagation of sound in a room from a sound source to a listener. Thus, objects of room acoustics are in particular assembly halls of all kinds, such as auditoria and lecture halls, conference rooms, theaters, concert halls or churches. Already at this point, it has to be pointed out that these conditions essentially depend on the question if speech or music should be transmitted; in the first case, the criterion for transmission quality is good speech intelligibility, in the other case, however, the success of room-acoustical efforts depends on other factors that cannot be quantified that easily, not least it also depends on the hearing habits of the listeners. In any case, absolutely "good acoustics" of a room do not exist.

  10. Measurement of Insertion Loss of an Acoustic Treatment in the Presence of Additional Uncorrelated Sound Sources

    NASA Technical Reports Server (NTRS)

    Klos, Jacob; Palumbo, Daniel L.

    2003-01-01

    A method to intended for measurement of the insertion loss of an acoustic treatment applied to an aircraft fuselage in-situ is documented in this paper. Using this method, the performance of a treatment applied to a limited portion of an aircraft fuselage can be assessed even though the untreated fuselage also radiates into the cabin, corrupting the intensity measurement. This corrupting noise in the intensity measurement incoherent with the panel vibration of interest is removed by correlating the intensity to reference transducers such as accelerometers. Insertion loss of the acoustic treatments is estimated from the ratio of correlated intensity measurements with and without a treatment applied. In the case of turbulent boundary layer excitation of the fuselage, this technique can be used to assess the performance of noise control methods without requiring treatment of the entire fuselage. Several experimental studies and numerical simulations have been conducted, and results from three case studies are documented in this paper. Conclusions are drawn about the use of this method to study aircraft sidewall treatments.

  11. Localization of non-stationary sources of electromagnetic radiation with the aid of phasometry

    NASA Technical Reports Server (NTRS)

    Mersov, G. A.

    1978-01-01

    The possibility of localizing sources of electromagnetic radiation by measurement of the time of passage of the radiation or the measurement of its phase at various points of cosmic space, at which are located satellite observatories is examined. Algorithms are proposed for localization using two, three, and four astronomical observatories. The precision of the localization and several partial results of practical significance are deduced.

  12. Passive acoustic detection and localization of whales: effects of shipping noise in Saguenay-St. Lawrence Marine Park.

    PubMed

    Simard, Yvan; Roy, Nathalie; Gervaise, Cédric

    2008-06-01

    The performance of large-aperture hydrophone arrays to detect and localize blue and fin whales' 15-85 Hz signature vocalizations under ocean noise conditions was assessed through simulations from a normal mode propagation model combined to noise statistics from 15 960 h of recordings in Saguenay-St. Lawrence Marine Park. The probability density functions of 2482 summer noise level estimates in the call bands were used to attach a probability of detection/masking to the simulated call levels as a function of whale depth and range for typical environmental conditions. Results indicate that call detection was modulated by the calling depth relative to the sound channel axis and by modal constructive and destructive interferences with range. Masking of loud infrasounds could reach 40% at 30 km for a receiver at the optimal depth. The 30 dB weaker blue whale D-call were subject to severe masking. Mapping the percentages of detection and localization allowed assessing the performance of a six-hydrophone array under mean- and low-noise conditions. This approach is helpful for optimizing hydrophone configuration in implementing passive acoustic monitoring arrays and building their detection function for whale density assessment, as an alternative to or in combination with the traditional undersampling visual methods.

  13. Explosion Source Location Study Using Collocated Acoustic and Seismic Networks in Israel

    NASA Astrophysics Data System (ADS)

    Pinsky, V.; Gitterman, Y.; Arrowsmith, S.; Ben-Horin, Y.

    2013-12-01

    infrasonic phases of the two distant arrays; 2) a standard robust grid-search location procedure based on phase picks and a constant celerity for a phase (tropospheric or stratospheric) was applied; 3) a joint coordinate grid-search procedure using array waveforms and phase picks was tested, 4) the Bayesian Infrasonic Source Localization (BISL) method, incorporating semi-empirical model-based prior information, was modified for array+network configuration and applied to the ground-truth events. For this purpose we accumulated data of the former observations of the air-to-ground infrasonic phases to compute station specific ground-truth Celerity-Range Histograms (ssgtCRH) and/or model-based CRH (mbCRH), which allow to essentially improve the location results. For building the mbCRH the local meteo-data and the ray-tracing modeling in 3 available azimuth ranges, accounting seasonal variations of winds directivity (quadrants North:315-45, South: 135-225, East 45-135) have been used.

  14. A computerized system for localizing sources of cardiac activation.

    PubMed

    Salu, Y; Mehrotra, P

    1984-06-01

    A noninvasive method for locating a source of cardiac electrical activity is described. The data acquisition and its preliminary processing is done with the aid of a microcomputer, while lengthier calculations are done on a large computer. The method was tested on 18 patients, and the results indicate that it is reliable, and with further technical refinements it could be used in research and clinical settings.

  15. Advanced Methods for Passive Acoustic Detection, Classification, and Localization of Marine Mammals

    DTIC Science & Technology

    2015-09-30

    marine mammal vocalizations and ultimately, in some cases, provide data for estimating the population density of the species present. In recent years...pose significant challenges. In this project, we are developing improved methods for detection, classification, and localization of many types of marine mammal sounds.

  16. Model-based source localization of extracellular action potentials.

    PubMed

    Somogyvári, Zoltán; Zalányi, László; Ulbert, István; Erdi, Péter

    2005-09-30

    A new model-based analysis method was set up for revealing information encrypted in extracellular spatial potential patterns of neocortical action potentials. Spikes were measured by extracellular linear multiple microelectrode in vivo cat's primary auditory cortex and were analyzed based on current source density (CSD) distribution models. Validity of the monopole and other point source approximations were tested on the measured potential patterns by numerical fitting. We have found, that point source models could not provide accurate description of the measured patterns. We introduced a new model of the CSD distribution on a spiking cell, called counter-current model (CCM). This new model was shown to provide better description of the spatial current distribution of the cell during the initial negative deflection of the extracellular action potential, from the onset of the spike to the negative peak. The new model was tested on simulated extracellular potentials. We proved numerically, that all the parameters of the model could be determined accurately based on measurements. Thus, fitting of the CCM allowed extraction of these parameters from the measurements. Due to model fitting, CSD could be calculated with much higher accuracy as done with the traditional method because distance dependence of the spatial potential patterns was explicitly taken into consideration in our method. Average CSD distribution of the neocortical action potentials was calculated and spatial decay constant of the dendritic trees was determined by applying our new method.

  17. Acoustic attenuation, phase and group velocities in liquid-filled pipes II: simulation for Spallation Neutron Sources and planetary exploration.

    PubMed

    Jiang, Jian; Baik, Kyungmin; Leighton, Timothy G

    2011-08-01

    This paper uses a finite element method (FEM) to compare predictions of the attenuation and sound speeds of acoustic modes in a fluid-filled pipe with those of the analytical model presented in the first paper in this series. It explains why, when the predictions of the earlier paper were compared with experimental data from a water-filled PMMA pipe, the uncertainties and agreement for attenuation data were worse than those for sound speed data. Having validated the FEM approach in this way, the versatility of FEM is thereafter demonstrated by modeling two practical applications which are beyond the analysis of the earlier paper. These applications model propagation in the mercury-filled steel pipework of the Spallation Neutron Source at the Oak Ridge National Laboratory (Tennessee), and in a long-standing design for acoustic sensors for use on planetary probes. The results show that strong coupling between the fluid and the solid walls means that erroneous interpretations are made of the data if they assume that the sound speed and attenuation in the fluid in the pipe are the same as those that would be measured in an infinite volume of identical fluid, assumptions which are common when such data have previously been interpreted.

  18. Precipitation Recycling and the Vertical Distribution of Local and Remote Sources of Water for Precipitation

    NASA Technical Reports Server (NTRS)

    Bosilovich, Michael G.; Atlas, Robert (Technical Monitor)

    2002-01-01

    Precipitation recycling is defined as the amount of water that evaporates from a region that precipitates within the same region. This is also interpreted as the local source of water for precipitation. In this study, the local and remote sources of water for precipitation have been diagnosed through the use of passive constituent tracers that represent regional evaporative sources along with their transport and precipitation. We will discuss the differences between this method and the simpler bulk diagnostic approach to precipitation recycling. A summer seasonal simulation has been analyzed for the regional sources of the United States Great Plains precipitation. While the tropical Atlantic Ocean (including the Gulf of Mexico) and the local continental sources of precipitation are most dominant, the vertically integrated column of water contains substantial water content originating from the Northern Pacific Ocean, which is not precipitated. The vertical profiles of regional water sources indicate that local Great Plains source of water dominates the lower troposphere, predominantly in the PBL. However, the Pacific Ocean source is dominant over a large portion of the middle to upper troposphere. The influence of the tropical Atlantic Ocean is reasonably uniform throughout the column. While the results are not unexpected given the formulation of the model's convective parameterization, the analysis provides a quantitative assessment of the impact of local evaporation on the occurrence of convective precipitation in the GCM. Further, these results suggest that local source of water is not well mixed throughout the vertical column.

  19. Localization of microseismic events and determination of source parameters

    NASA Astrophysics Data System (ADS)

    Mokshin, E. V.; Berezhnoi, D. V.

    2016-11-01

    We examine the problem of localization determining and a microseismic moment tensor of single microseismic event in the presence of strongly correlated noise. This is a typical problem occurring in monitoring of microseismic events from a daylight surface under conditions of a producing field or surface monitoring of hydraulic fracturing. We offer the solution to this problem based on the method of maximum likelihood. The article presents of decision of this problem and the results of numerical experiments. We discuss some features and problems of the proposed approach and estimate the required computing resources. We develop the problem of determination direction of fracture propagation from microseismic event.

  20. Acoustic Scattering by Three-Dimensional Stators and Rotors Using the SOURCE3D Code. Volume 1; Analysis and Results

    NASA Technical Reports Server (NTRS)

    Meyer, Harold D.

    1999-01-01

    This report provides a study of rotor and stator scattering using the SOURCE3D Rotor Wake/Stator Interaction Code. SOURCE3D is a quasi-three-dimensional computer program that uses three-dimensional acoustics and two-dimensional cascade load response theory to calculate rotor and stator modal reflection and transmission (scattering) coefficients. SOURCE3D is at the core of the TFaNS (Theoretical Fan Noise Design/Prediction System), developed for NASA, which provides complete fully coupled (inlet, rotor, stator, exit) noise solutions for turbofan engines. The reason for studying scattering is that we must first understand the behavior of the individual scattering coefficients provided by SOURCE3D, before eventually understanding the more complicated predictions from TFaNS. To study scattering, we have derived a large number of scattering curves for vane and blade rows. The curves are plots of output wave power divided by input wave power (in dB units) versus vane/blade ratio. Some of these plots are shown in this report. All of the plots are provided in a separate volume. To assist in understanding the plots, formulas have been derived for special vane/blade ratios for which wavefronts are either parallel or normal to rotor or stator chords. From the plots, we have found that, for the most part, there was strong transmission and weak reflection over most of the vane/blade ratio range for the stator. For the rotor, there was little transmission loss.

  1. Multiple Event Localization in a Sparse Acoustic Sensor Network Using UAVs as Data Mules

    DTIC Science & Technology

    2012-12-01

    a Microhard radio to forward the ToAs to the mule-UAV. Two Procerus Unicorn UAVs were used with different payloads. The imaging- UAV was equipped...particularly useful when the regions overlap. We present results from a field test in Section IV and conclude in Section V. II. MULTIPLE EVENT LOCALIZATION...Path taken by mule-UAV during tests . The desired path was sent to autopilot via square waypoints. The sensors and communication regions are

  2. An investigation of acoustic beam patterns for the sonar localization problem using a beam based method.

    PubMed

    Guarato, Francesco; Windmill, James; Gachagan, Anthony; Harvey, Gerald

    2013-06-01

    Target localization can be accomplished through an ultrasonic sonar system equipped with an emitter and two receivers. Time of flight of the sonar echoes allows the calculation of the distance of the target. The orientation can be estimated from knowledge of the beam pattern of the receivers and the ratio, in the frequency domain, between the emitted and the received signals after compensation for distance effects and air absorption. The localization method is described and, as its performance strongly depends on the beam pattern, the search of the most appropriate sonar receiver in order to ensure the highest accuracy of target orientation estimations is developed in this paper. The structure designs considered are inspired by the ear shapes of some bat species. Parameters like flare rate, truncation angle, and tragus are considered in the design of the receiver structures. Simulations of the localization method allow us to state which combination of those parameters could provide the best real world implementation. Simulation results show the estimates of target orientations are, in the worst case, 2° with SNR = 50 dB using the receiver structure chosen for a potential practical implementation of a sonar system.

  3. Matrix kernels for MEG and EEG source localization and imaging

    SciTech Connect

    Mosher, J.C.; Lewis, P.S.; Leahy, R.M.

    1994-12-31

    The most widely used model for electroencephalography (EEG) and magnetoencephalography (MEG) assumes a quasi-static approximation of Maxwell`s equations and a piecewise homogeneous conductor model. Both models contain an incremental field element that linearly relates an incremental source element (current dipole) to the field or voltage at a distant point. The explicit form of the field element is dependent on the head modeling assumptions and sensor configuration. Proper characterization of this incremental element is crucial to the inverse problem. The field element can be partitioned into the product of a vector dependent on sensor characteristics and a matrix kernel dependent only on head modeling assumptions. We present here the matrix kernels for the general boundary element model (BEM) and for MEG spherical models. We show how these kernels are easily interchanged in a linear algebraic framework that includes sensor specifics such as orientation and gradiometer configuration. We then describe how this kernel is easily applied to ``gain`` or ``transfer`` matrices used in multiple dipole and source imaging models.

  4. Experimental study of noise sources and acoustic propagation in a turbofan model

    NASA Astrophysics Data System (ADS)

    Lewy, S.; Canard-Caruana, S.; Julliard, J.

    1990-10-01

    Experimental studies of the acoustic radiation of subsonic fans mainly due to blade and vane presure fluctuations were performed in the SNECMA 5C2 compressor anechoic facility. A brief description of the test rig is presented noting that the CA5 turbojet engine model fan has a diameter of 47 cm, 48 blades, and a nominal rotation speed of 12,600 rpm. The two chief experiments discussed are the measurement of blade and vane pressure fluctuations by thin-film transducers and the spinning mode analysis of the sound field propagating in the intake duct. Several examples of applications are discussed, and it is shown that an inflow control device, as expected, reduces the aerodynamic disturbances by about 10 dB. Rotor-stator interaction tones are determined by the modal analysis, and it is found that a duct lining with a length of one duct radius could give an insertion loss up to 20 dB in flight.

  5. Growth and optimization of piezoelectric single crystal transducers for energy harvesting from acoustic sources

    NASA Astrophysics Data System (ADS)

    Dhar, Romit

    Low power requirements of modern sensors and electronics have led to the examination of the feasibility of several energy harvesting schemes. This thesis describes the fabrication and performance of an acoustic energy harvester with single crystal piezoelectric unimorph. The unimorphs were fabricated from single crystal relaxor ferroelectric (1-x)PMN - xPT grown with x = 0.3 and 0.32 as the starting composition. It is demonstrated that significant power can be harvested using unimorph structures from an acoustic field at resonance. Passive circuit components were used for output circuit with a resistive load in series with a tunable inductor. A tuning capacitor connected in parallel to the device further increased the power output by matching the impedance of the unimorph. The power harvested can be either used directly for running low-power devices or can be stored in a rechargeable battery. A comparison of the performance of PMN-PT and PZT unimorphs at the resonance of the coupled structure under identical excitation conditions was done. For a certain optimized thickness ratio and circuit parameters, the single crystal PMN-PT unimorph generated 30 mW of power while a PZT unimorph generated 7.5 mW at resonance and room temperature. The harvested output power from the single crystal PMN-PT unimorphs depends on several material properties, physical and ambient parameters and an effort has been made to study their effect on the performance. A self-seeding high pressure Bridgman (HPB) technique was used to grow the PMN-PT single crystal ingots in a cost-effective way in our laboratories. Several techniques of material processing were developed to fabricate the PMN-PT single crystal unimorphs from as grown bulk ingots. This growth technique produced good quality single crystals for our experiments, with a k33 = 0.91 for a <001> oriented bar.

  6. Differentiation between sources of mechanoluminescence and acoustic emission in impact-loaded ZnSe and ZnS ceramics.

    PubMed

    Chmel, Alexandre; Dunaev, Anatolij; Shcherbakov, Igor

    2017-03-09

    Ductile semiconductor ceramics ZnSe and ZnS were damaged by a falling weight, and the time series of mechanoluminescence (ML) and acoustic emission (AE) pulses were recorded with the nanosecond resolution. The ML lighting appeared in the instance of shock but the AE generation emerged with a delay of 50-100 μsec; however, the maxima of the light and sound emissions coincided in time. This difference in temporal profiles was explained by the difference in prevailing sources of emissions of two types. The detected luminescence in A2 B6 compounds was excited, mainly, by moving and multiplying dislocations, while the sound was generated by nucleating and growing cracks. The statistical analysis showed that at the stage of pre-failure deformation, the ensemble of dislocations exhibited a trend to self-organizing; the cracking was fully random. The effect of intergranular boundaries on the dislocation motion manifested itself in the statistics of mechanoluminescence generation.

  7. Source localization in electromyography using the inverse potential problem

    NASA Astrophysics Data System (ADS)

    van den Doel, Kees; Ascher, Uri M.; Pai, Dinesh K.

    2011-02-01

    We describe an efficient method for reconstructing the activity in human muscles from an array of voltage sensors on the skin surface. MRI is used to obtain morphometric data which are segmented into muscle tissue, fat, bone and skin, from which a finite element model for volume conduction is constructed. The inverse problem of finding the current sources in the muscles is solved using a careful regularization technique which adds a priori information, yielding physically reasonable solutions from among those that satisfy the basic potential problem. Several regularization functionals are considered and numerical experiments on a 2D test model are performed to determine which performs best. The resulting scheme leads to numerical difficulties when applied to large-scale 3D problems. We clarify the nature of these difficulties and provide a method to overcome them, which is shown to perform well in the large-scale problem setting.

  8. In situ characterization of local elastic properties of thin shape memory films by surface acoustic waves

    NASA Astrophysics Data System (ADS)

    Grabec, Tomáš; Sedlák, Petr; Stoklasová, Pavla; Thomasová, Martina; Shilo, Doron; Kabla, Meni; Seiner, Hanuš; Landa, Michal

    2016-12-01

    The impulse stimulated thermal scattering experimental technique is used for contactless in situ detection of phase transitions in thin nickel-titanium films deposited on silicon substrates. It is shown that this technique enables the determination of the local properties of the film over a fully coated wafer, in particular the thickness of the film and the temperature dependence of the Young’s modulus, and can thus be used for monitoring of the spatial distribution of the functional properties in films prepared by a combinatorial sputtering approach.

  9. Some Results of Coordinate Measurements of Local Radio Sources on the Sun.

    DTIC Science & Technology

    1977-10-03

    7 AD-A VS@ 186 SOME RESULTS OF COORDINATE MEASUREMENTS OF LOCAL RADIO iSOURCES ON THE SUN (U) NAVRL OCEAN SYSTEMS CENTER SRN1) DIEGO CR Y N BOROYIK ET...MEASUREMENTS OF LOCAL RADIO !C~i SOURCES ON THE SUN ell Translated by CM Bigger from an article by VN Borovik and AV Temirova Edited by MP Bleiweiss C...COORDINATE MEASUREMENTS OF LOCAL RADIO SOURCES ON THE SUN 12 PERSOML AJT"ORS V.N. Borovik, A.V. Temirova 1l W 0 REPORT l3b VM COVIRED 4 SAlE 09 9504 f . 4 j

  10. Evaluation of Public Service Advertising Messages with Local and Non-Local Source Attribution: A Controlled Laboratory Experiment.

    ERIC Educational Resources Information Center

    Lynn, Jerry R.; Gagnard, Alice

    A study was conducted to examine message evaluations of selected public service advertisements (PSAs) by a young adult population and to test whether local and nonlocal source attribution would influence those evaluations. In addition, the study investigated the extent to which audience characteristics such as fatalism (the degree to which a…

  11. Normalization and source separation of acoustic emission signals for condition monitoring and fault detection of multi-cylinder diesel engines

    NASA Astrophysics Data System (ADS)

    Wu, Weiliang; Lin, Tian Ran; Tan, Andy C. C.

    2015-12-01

    A signal processing technique is presented in this paper to normalize and separate the source of non-linear acoustic emission (AE) signals of a multi-cylinder diesel engine for condition monitoring applications and fault detection. The normalization technique presented in the paper overcomes the long-existing non-linearity problem of AE sensors so that responses measured by different AE sensors can be quantitatively analysed and compared. A source separation algorithm is also developed in the paper to separate the mixture of the normalized AE signals produced by a multi-cylinder diesel engine by utilising the system parameters (i.e., wave attenuation constant and the arrival time delay) of AE wave propagation determined by a standard pencil lead break test on the engine cylinder head. It is shown that the source separation algorithm is able to separate the signal interference of adjacent cylinders from the monitored cylinder once the wave attenuation constant and the arrival time delay along the propagation path are known. The algorithm is particularly useful in the application of AE technique for condition monitoring of small-size diesel engines where signal interference from the neighbouring cylinders is strong.

  12. PADF electromagnetic source localization using extremum seeking control

    NASA Astrophysics Data System (ADS)

    Al Issa, Huthaifa A.; Ordóñez, Raúl

    2014-10-01

    Wireless Sensor Networks (WSNs) are a significant technology attracting considerable research interest. Recent advances in wireless communications and electronics have enabled the development of low-cost, low-power and multi-functional sensors that are small in size and communicate over short distances. Most WSN applications require knowing or measuring locations of thousands of sensors accurately. For example, sensing data without knowing the sensor location is often meaningless. Locations of sensor nodes are fundamental to providing location stamps, locating and tracking objects, forming clusters, and facilitating routing. This research focused on the modeling and implementation of distributed, mobile radar sensor networks. In particular, we worked on the problem of Position-Adaptive Direction Finding (PADF), to determine the location of a non- collaborative transmitter, possibly hidden within a structure, by using a team of cooperative intelligent sensor networks. Position-Adaptive radar concepts have been formulated and investigated at the Air Force Research Laboratory (AFRL) within the past few years. In this paper, we present the simulation performance analysis on the application aspect. We apply Extremum Seeking Control (ESC) schemes by using the swarm seeking problem, where the goal is to design a control law for each individual sensor that can minimize the error metric by adapting the sensor positions in real-time, thereby minimizing the unknown estimation error. As a result we achieved source seeking and collision avoidance of the entire group of the sensor positions.

  13. Acoustic neuroma

    MedlinePlus

    Vestibular schwannoma; Tumor - acoustic; Cerebellopontine angle tumor; Angle tumor; Hearing loss - acoustic; Tinnitus - acoustic ... Acoustic neuromas have been linked with the genetic disorder neurofibromatosis type 2 (NF2). Acoustic neuromas are uncommon.

  14. Reactive searching and infotaxis in odor source localization.

    PubMed

    Voges, Nicole; Chaffiol, Antoine; Lucas, Philippe; Martinez, Dominique

    2014-10-01

    Male moths aiming to locate pheromone-releasing females rely on stimulus-adapted search maneuvers complicated by a discontinuous distribution of pheromone patches. They alternate sequences of upwind surge when perceiving the pheromone and cross- or downwind casting when the odor is lost. We compare four search strategies: three reactive versus one cognitive. The former consist of pre-programmed movement sequences triggered by pheromone detections while the latter uses Bayesian inference to build spatial probability maps. Based on the analysis of triphasic responses of antennal lobe neurons (On, inhibition, Off), we propose three reactive strategies. One combines upwind surge (representing the On response to a pheromone detection) and spiral casting, only. The other two additionally include crosswind (zigzag) casting representing the Off phase. As cognitive strategy we use the infotaxis algorithm which was developed for searching in a turbulent medium. Detection events in the electroantennogram of a moth attached to a robot indirectly control this cyborg, depending on the strategy in use. The recorded trajectories are analyzed with regard to success rates, efficiency, and other features. In addition, we qualitatively compare our robotic trajectories to behavioral search paths. Reactive searching is more efficient (yielding shorter trajectories) for higher pheromone doses whereas cognitive searching works better for lower doses. With respect to our experimental conditions (2 m from starting position to pheromone source), reactive searching with crosswind zigzag yields the shortest trajectories (for comparable success rates). Assuming that the neuronal Off response represents a short-term memory, zigzagging is an efficient movement to relocate a recently lost pheromone plume. Accordingly, such reactive strategies offer an interesting alternative to complex cognitive searching.

  15. Reactive Searching and Infotaxis in Odor Source Localization

    PubMed Central

    Voges, Nicole; Chaffiol, Antoine; Lucas, Philippe; Martinez, Dominique

    2014-01-01

    Male moths aiming to locate pheromone-releasing females rely on stimulus-adapted search maneuvers complicated by a discontinuous distribution of pheromone patches. They alternate sequences of upwind surge when perceiving the pheromone and cross- or downwind casting when the odor is lost. We compare four search strategies: three reactive versus one cognitive. The former consist of pre-programmed movement sequences triggered by pheromone detections while the latter uses Bayesian inference to build spatial probability maps. Based on the analysis of triphasic responses of antennal lobe neurons (On, inhibition, Off), we propose three reactive strategies. One combines upwind surge (representing the On response to a pheromone detection) and spiral casting, only. The other two additionally include crosswind (zigzag) casting representing the Off phase. As cognitive strategy we use the infotaxis algorithm which was developed for searching in a turbulent medium. Detection events in the electroantennogram of a moth attached to a robot indirectly control this cyborg, depending on the strategy in use. The recorded trajectories are analyzed with regard to success rates, efficiency, and other features. In addition, we qualitatively compare our robotic trajectories to behavioral search paths. Reactive searching is more efficient (yielding shorter trajectories) for higher pheromone doses whereas cognitive searching works better for lower doses. With respect to our experimental conditions (2 m from starting position to pheromone source), reactive searching with crosswind zigzag yields the shortest trajectories (for comparable success rates). Assuming that the neuronal Off response represents a short-term memory, zigzagging is an efficient movement to relocate a recently lost pheromone plume. Accordingly, such reactive strategies offer an interesting alternative to complex cognitive searching. PMID:25330317

  16. Source Localization of Brain States Associated with Canonical Neuroimaging Postures.

    PubMed

    Lifshitz, Michael; Thibault, Robert T; Roth, Raquel R; Raz, Amir

    2017-02-14

    Cognitive neuroscientists rarely consider the influence that body position exerts on brain activity; yet, postural variation holds important implications for the acquisition and interpretation of neuroimaging data. Whereas participants in most behavioral and EEG experiments sit upright, many prominent brain imaging techniques (e.g., fMRI) require participants to lie supine. Here we demonstrate that physical comportment profoundly alters baseline brain activity as measured by magnetoencephalography (MEG)-an imaging modality that permits multipostural acquisition. We collected resting-state MEG data from 12 healthy participants in three postures (lying supine, reclining at 45°, and sitting upright). Source-modeling analysis revealed a broadly distributed influence of posture on resting brain function. Sitting upright versus lying supine was associated with greater high-frequency (i.e., beta and gamma) activity in widespread parieto-occipital cortex. Moreover, sitting upright and reclined postures correlated with dampened activity in prefrontal regions across a range of bandwidths (i.e., from alpha to low gamma). The observed effects were large, with a mean Cohen's d of 0.95 (SD = 0.23). In addition to neural activity, physiological parameters such as muscle tension and eye blinks may have contributed to these posture-dependent changes in brain signal. Regardless of the underlying mechanisms, however, the present results have important implications for the acquisition and interpretation of multimodal imaging data (e.g., studies combining fMRI or PET with EEG or MEG). More broadly, our findings indicate that generalizing results-from supine neuroimaging measurements to erect positions typical of ecological human behavior-would call for considering the influence that posture wields on brain dynamics.

  17. "Closing the Loop": Overcoming barriers to locally sourcing food in Fort Collins, Colorado

    NASA Astrophysics Data System (ADS)

    DeMets, C. M.

    2012-12-01

    Environmental sustainability has become a focal point for many communities in recent years, and restaurants are seeking creative ways to become more sustainable. As many chefs realize, sourcing food locally is an important step towards sustainability and towards building a healthy, resilient community. Review of literature on sustainability in restaurants and the local food movement revealed that chefs face many barriers to sourcing their food locally, but that there are also many solutions for overcoming these barriers that chefs are in the early stages of exploring. Therefore, the purpose of this research is to identify barriers to local sourcing and investigate how some restaurants are working to overcome those barriers in the city of Fort Collins, Colorado. To do this, interviews were conducted with four subjects who guide purchasing decisions for restaurants in Fort Collins. Two of these restaurants have created successful solutions and are able to source most of their food locally. The other two are interested in and working towards sourcing locally but have not yet been able to overcome barriers, and therefore only source a few local items. Findings show that there are four barriers and nine solutions commonly identified by each of the subjects. The research found differences between those who source most of their food locally and those who have not made as much progress in local sourcing. Based on these results, two solution flowcharts were created, one for primary barriers and one for secondary barriers, for restaurants to assess where they are in the local food chain and how they can more successfully source food locally. As there are few explicit connections between this research question and climate change, it is important to consider the implicit connections that motivate and justify this research. The question of whether or not greenhouse gas emissions are lower for locally sourced food is a topic of much debate, and while there are major developments

  18. Beamforming for directional sources: additional estimator and evaluation of performance under different acoustic scenarios.

    PubMed

    Bouchard, Christian; Havelock, David I; Bouchard, Martin

    2011-04-01

    Beamforming is done with an array of sensors to achieve a directional or spatially-specific response by using a model of the arriving wavefront. Conventionally, a plane wave or point source model is used and this can cause decreased array gain or even total breakdown of beamforming when the source is directional. To avoid this, the authors proposed in recent work an alternative beamforming method which defines a set of "sub-beamformers," each designed to respond to a different spatial mode of the source. The outputs of the individual sub-beamformers are combined in a weighted sum to give an overall output of better quality than that of a monopole beamformer. This paper extends the previous work by introducing an additional estimator for the weighted sum and by presenting simulation results to demonstrate the relative performance of the proposed method and the different estimators for a directional source in the presence of diffuse noise, reverberation, and an interfering source. Gain optimization subject to a constraint on the white-noise gain with the proposed beamforming method is also introduced. Generally, when beamforming on directional sources, the proposed method outperforms beamforming with a point source model when the input signal-to-noise ratio (SNR) is 0 dB or higher.

  19. Effects of Active and Passive Hearing Protection Devices on Sound Source Localization, Speech Recognition, and Tone Detection

    PubMed Central

    Brown, Andrew D.; Beemer, Brianne T.; Greene, Nathaniel T.; Argo, Theodore; Meegan, G. Douglas; Tollin, Daniel J.

    2015-01-01

    Hearing protection devices (HPDs) such as earplugs offer to mitigate noise exposure and reduce the incidence of hearing loss among persons frequently exposed to intense sound. However, distortions of spatial acoustic information and reduced audibility of low-intensity sounds caused by many existing HPDs can make their use untenable in high-risk (e.g., military or law enforcement) environments where auditory situational awareness is imperative. Here we assessed (1) sound source localization accuracy using a head-turning paradigm, (2) speech-in-noise recognition using a modified version of the QuickSIN test, and (3) tone detection thresholds using a two-alternative forced-choice task. Subjects were 10 young normal-hearing males. Four different HPDs were tested (two active, two passive), including two new and previously untested devices. Relative to unoccluded (control) performance, all tested HPDs significantly degraded performance across tasks, although one active HPD slightly improved high-frequency tone detection thresholds and did not degrade speech recognition. Behavioral data were examined with respect to head-related transfer functions measured using a binaural manikin with and without tested HPDs in place. Data reinforce previous reports that HPDs significantly compromise a variety of auditory perceptual facilities, particularly sound localization due to distortions of high-frequency spectral cues that are important for the avoidance of front-back confusions. PMID:26313145

  20. 3D source localization of interictal spikes in epilepsy patients with MRI lesions

    NASA Astrophysics Data System (ADS)

    Ding, Lei; Worrell, Gregory A.; Lagerlund, Terrence D.; He, Bin

    2006-08-01

    The present study aims to accurately localize epileptogenic regions which are responsible for epileptic activities in epilepsy patients by means of a new subspace source localization approach, i.e. first principle vectors (FINE), using scalp EEG recordings. Computer simulations were first performed to assess source localization accuracy of FINE in the clinical electrode set-up. The source localization results from FINE were compared with the results from a classic subspace source localization approach, i.e. MUSIC, and their differences were tested statistically using the paired t-test. Other factors influencing the source localization accuracy were assessed statistically by ANOVA. The interictal epileptiform spike data from three adult epilepsy patients with medically intractable partial epilepsy and well-defined symptomatic MRI lesions were then studied using both FINE and MUSIC. The comparison between the electrical sources estimated by the subspace source localization approaches and MRI lesions was made through the coregistration between the EEG recordings and MRI scans. The accuracy of estimations made by FINE and MUSIC was also evaluated and compared by R2 statistic, which was used to indicate the goodness-of-fit of the estimated sources to the scalp EEG recordings. The three-concentric-spheres head volume conductor model was built for each patient with three spheres of different radii which takes the individual head size and skull thickness into consideration. The results from computer simulations indicate that the improvement of source spatial resolvability and localization accuracy of FINE as compared with MUSIC is significant when simulated sources are closely spaced, deep, or signal-to-noise ratio is low in a clinical electrode set-up. The interictal electrical generators estimated by FINE and MUSIC are in concordance with the patients' structural abnormality, i.e. MRI lesions, in all three patients. The higher R2 values achieved by FINE than MUSIC

  1. Immunohistochemical localization and mRNA expression of aquaporins in the macula utriculi of patients with Meniere's disease and acoustic neuroma.

    PubMed

    Ishiyama, Gail; Lopez, Ivan A; Beltran-Parrazal, Luis; Ishiyama, Akira

    2010-06-01

    Meniere's disease is nearly invariably associated with endolymphatic hydrops (the net accumulation of water in the inner ear endolymphatic space). Vestibular maculae utriculi were acquired from patients undergoing surgery for Meniere's disease and acoustic neuroma and from autopsy (subjects with normal hearing and balance). Quantitative immunostaining was conducted with antibodies against aquaporins (AQPs) 1, 4, and 6, Na(+)K(+)ATPase, Na(+)K(+)2Cl co-transporter (NKCC1), and alpha-syntrophin. mRNA was extracted from the surgically acquired utricles from subjects with Meniere's disease and acoustic neuroma to conduct quantitative real-time reverse transcription with polymerase chain reaction for AQP1, AQP4, and AQP6. AQP1 immunoreactivity (-IR) was located in blood vessels and fibrocytes in the underlying stroma, without any apparent alteration in Meniere's specimens when compared with acoustic neuroma and autopsy specimens. AQP4-IR localized to the epithelial basolateral supporting cells in Meniere's disease, acoustic neuroma, and autopsy. In specimens from subjects with Meniere's disease, AQP4-IR was significantly decreased compared with autopsy and acoustic neuroma specimens. AQP6-IR occurred in the sub-apical vestibular supporting cells in acoustic neuroma and autopsy samples. However, in Meniere's disease specimens, AQP6-IR was significantly increased and diffusely redistributed throughout the supporting cell cytoplasm. Na(+)K(+)ATPase, NKCC1, and alpha-syntrophin were expressed within sensory epithelia and were unaltered in Meniere's disease specimens. Expression of AQP1, AQP4, or AQP6 mRNA did not differ in vestibular endorgans from patients with Meniere's disease. Changes in AQP4 (decreased) and AQP6 (increased) expression in Meniere's disease specimens suggest that the supporting cell might be a cellular target.

  2. Adaptive behaviors in multi-agent source localization using passive sensing

    PubMed Central

    Shaukat, Mansoor; Chitre, Mandar

    2016-01-01

    In this paper, the role of adaptive group cohesion in a cooperative multi-agent source localization problem is investigated. A distributed source localization algorithm is presented for a homogeneous team of simple agents. An agent uses a single sensor to sense the gradient and two sensors to sense its neighbors. The algorithm is a set of individualistic and social behaviors where the individualistic behavior is as simple as an agent keeping its previous heading and is not self-sufficient in localizing the source. Source localization is achieved as an emergent property through agent’s adaptive interactions with the neighbors and the environment. Given a single agent is incapable of localizing the source, maintaining team connectivity at all times is crucial. Two simple temporal sampling behaviors, intensity-based-adaptation and connectivity-based-adaptation, ensure an efficient localization strategy with minimal agent breakaways. The agent behaviors are simultaneously optimized using a two phase evolutionary optimization process. The optimized behaviors are estimated with analytical models and the resulting collective behavior is validated against the agent’s sensor and actuator noise, strong multi-path interference due to environment variability, initialization distance sensitivity and loss of source signal. PMID:28018121

  3. Adaptive behaviors in multi-agent source localization using passive sensing.

    PubMed

    Shaukat, Mansoor; Chitre, Mandar

    2016-12-01

    In this paper, the role of adaptive group cohesion in a cooperative multi-agent source localization problem is investigated. A distributed source localization algorithm is presented for a homogeneous team of simple agents. An agent uses a single sensor to sense the gradient and two sensors to sense its neighbors. The algorithm is a set of individualistic and social behaviors where the individualistic behavior is as simple as an agent keeping its previous heading and is not self-sufficient in localizing the source. Source localization is achieved as an emergent property through agent's adaptive interactions with the neighbors and the environment. Given a single agent is incapable of localizing the source, maintaining team connectivity at all times is crucial. Two simple temporal sampling behaviors, intensity-based-adaptation and connectivity-based-adaptation, ensure an efficient localization strategy with minimal agent breakaways. The agent behaviors are simultaneously optimized using a two phase evolutionary optimization process. The optimized behaviors are estimated with analytical models and the resulting collective behavior is validated against the agent's sensor and actuator noise, strong multi-path interference due to environment variability, initialization distance sensitivity and loss of source signal.

  4. SoundCompass: A Distributed MEMS Microphone Array-Based Sensor for Sound Source Localization

    PubMed Central

    Tiete, Jelmer; Domínguez, Federico; da Silva, Bruno; Segers, Laurent; Steenhaut, Kris; Touhafi, Abdellah

    2014-01-01

    Sound source localization is a well-researched subject with applications ranging from localizing sniper fire in urban battlefields to cataloging wildlife in rural areas. One critical application is the localization of noise pollution sources in urban environments, due to an increasing body of evidence linking noise pollution to adverse effects on human health. Current noise mapping techniques often fail to accurately identify noise pollution sources, because they rely on the interpolation of a limited number of scattered sound sensors. Aiming to produce accurate noise pollution maps, we developed the SoundCompass, a low-cost sound sensor capable of measuring local noise levels and sound field directionality. Our first prototype is composed of a sensor array of 52 Microelectromechanical systems (MEMS) microphones, an inertial measuring unit and a low-power field-programmable gate array (FPGA). This article presents the SoundCompass’s hardware and firmware design together with a data fusion technique that exploits the sensing capabilities of the SoundCompass in a wireless sensor network to localize noise pollution sources. Live tests produced a sound source localization accuracy of a few centimeters in a 25-m2 anechoic chamber, while simulation results accurately located up to five broadband sound sources in a 10,000-m2 open field. PMID:24463431

  5. SoundCompass: a distributed MEMS microphone array-based sensor for sound source localization.

    PubMed

    Tiete, Jelmer; Domínguez, Federico; da Silva, Bruno; Segers, Laurent; Steenhaut, Kris; Touhafi, Abdellah

    2014-01-23

    Sound source localization is a well-researched subject with applications ranging from localizing sniper fire in urban battlefields to cataloging wildlife in rural areas. One critical application is the localization of noise pollution sources in urban environments, due to an increasing body of evidence linking noise pollution to adverse effects on human health. Current noise mapping techniques often fail to accurately identify noise pollution sources, because they rely on the interpolation of a limited number of scattered sound sensors. Aiming to produce accurate noise pollution maps, we developed the SoundCompass, a low-cost sound sensor capable of measuring local noise levels and sound field directionality. Our first prototype is composed of a sensor array of 52 Microelectromechanical systems (MEMS) microphones, an inertial measuring unit and a low-power field-programmable gate array (FPGA). This article presents the SoundCompass's hardware and firmware design together with a data fusion technique that exploits the sensing capabilities of the SoundCompass in a wireless sensor network to localize noise pollution sources. Live tests produced a sound source localization accuracy of a few centimeters in a 25-m2 anechoic chamber, while simulation results accurately located up to five broadband sound sources in a 10,000-m2 open field.

  6. West Texas array experiment: Noise and source characterization of short-range infrasound and acoustic signals, along with lab and field evaluation of Intermountain Laboratories infrasound microphones

    NASA Astrophysics Data System (ADS)

    Fisher, Aileen

    spatial wind noise filtering hoses or pipes. The grid was within the distance limits of a single gauge's normal hose array, and data were used to perform a spatial noise correlation study. The highest correlation values were not found in the lower frequencies as anticipated, owing to a lack of sources in the lower range and the uncorrelated nature of wind noise. The highest values, with cross-correlation averages between 0.4 and 0.7 from 3 to 17 m between gauges, were found at night from 10 and 20 Hz due to a continuous local noise source and low wind. Data from the larger array were used to identify continuous and impulsive signals in the area that comprise the ambient noise field. Ground truth infrasound and acoustic, time and location data were taken for a highway site, a wind farm, and a natural gas compressor. Close-range sound data were taken with a single IML "traveler" gauge. Spectrograms and spectrum peaks were used to identify their source signatures. Two regional location techniques were also tested with data from the large array by using a propane cannon as a controlled, impulsive source. A comparison is presented of the Multiple Signal Classification Algorithm (MUSIC) to a simple, quadratic, circular wavefront algorithm. MUSIC was unable to effectively separate noise and source eignenvalues and eigenvectors due to spatial aliasing of the propane cannon signal and a lack of incoherent noise. Only 33 out of 80 usable shots were located by MUSIC within 100 m. Future work with the algorithm should focus on location of impulsive and continuous signals with development of methods for accurate separation of signal and noise eigenvectors in the presence of coherent noise and possible spatial aliasing. The circular wavefront algorithm performed better with our specific dataset and successfully located 70 out of 80 propane cannon shots within 100 m of the original location, 66 of which were within 20 m. This method has low computation requirements, making it well

  7. A new experimental method for the determination of the effective orifice area based on the acoustical source term

    NASA Astrophysics Data System (ADS)

    Kadem, L.; Knapp, Y.; Pibarot, P.; Bertrand, E.; Garcia, D.; Durand, L. G.; Rieu, R.

    2005-12-01

    The effective orifice area (EOA) is the most commonly used parameter to assess the severity of aortic valve stenosis as well as the performance of valve substitutes. Particle image velocimetry (PIV) may be used for in vitro estimation of valve EOA. In the present study, we propose a new and simple method based on Howe’s developments of Lighthill’s aero-acoustic theory. This method is based on an acoustical source term (AST) to estimate the EOA from the transvalvular flow velocity measurements obtained by PIV. The EOAs measured by the AST method downstream of three sharp-edged orifices were in excellent agreement with the EOAs predicted from the potential flow theory used as the reference method in this study. Moreover, the AST method was more accurate than other conventional PIV methods based on streamlines, inflexion point or vorticity to predict the theoretical EOAs. The superiority of the AST method is likely due to the nonlinear form of the AST. There was also an excellent agreement between the EOAs measured by the AST method downstream of the three sharp-edged orifices as well as downstream of a bioprosthetic valve with those obtained by the conventional clinical method based on Doppler-echocardiographic measurements of transvalvular velocity. The results of this study suggest that this new simple PIV method provides an accurate estimation of the aortic valve flow EOA. This new method may thus be used as a reference method to estimate the EOA in experimental investigation of the performance of valve substitutes and to validate Doppler-echocardiographic measurements under various physiologic and pathologic flow conditions.

  8. Transmitted sound field due to an impulsive line acoustic source bounded by a plate followed by a vortex sheet

    NASA Technical Reports Server (NTRS)

    Miura, T.; Chao, C. C.

    1980-01-01

    The propagation of sound due to a line acoustic source in the moving stream across a semiinfinite vortex sheet which trails from a rigid plate is examined in a linear theory for the subsonic case. A solution for the transmitted sound field is obtained with the aid of multiple integral transforms and the Wiener-Hopf technique for both the steady state (time harmonic) and initial value (impulsive source) situations. The contour of inverse transform and hence the decomposition of the functions are determined through causality and radiation conditions. The solution obtained satisfies causality and the full Kutta conditions. The transmitted sound field is composed of two waves in both the stady state and initial value problems. One is the wave scattered from the edge of the plate which is associated with the bow wave and the instability wave. These waves exist in the downstream sectors. The other is the wave transmitted through the vortex sheet which is also associated with the instability wave. Regional divisions of the transmitted sound field are identified.

  9. A time-domain inverse technique for the localization and quantification of rotating sound sources

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao-Zheng; Bi, Chuan-Xing; Zhang, Yong-Bin; Xu, Liang

    2017-06-01

    A time-domain inverse technique based on the time-domain equivalent source method is proposed for the localization and quantification of rotating sound sources. In this technique, the actual rotating sound sources are modeled by a series of rotating equivalent sources distributed on the source surface. The strengths of these equivalent sources are solved based on the exact transfer relationship between the measured pressure at the receiver time and the desired equivalent source strengths at the source time. Compared to the known time-domain rotating beamforming that just owns the function of source localization, the proposed inverse technique not only can locate rotating sources accurately but also can predict sound fields quantitatively. Moreover, due to the use of retarded time approach, the proposed inverse technique avoids the interpolation of measured pressure that is needed in the time-domain rotating beamforming, thus providing the ability of real-time calculation of source strengths. Numerical simulations and experiments examine the validity of the proposed technique and demonstrate its advantages of locating sources more accurately and enabling to predict sound fields quantitatively by comparing with the time-domain rotating beamforming.

  10. Fourier method for recovering acoustic sources from multi-frequency far-field data

    NASA Astrophysics Data System (ADS)

    Wang, Xianchao; Guo, Yukun; Zhang, Deyue; Liu, Hongyu

    2017-03-01

    We consider an inverse source problem of determining a source term in the Helmholtz equation from multi-frequency far-field measurements. Based on the Fourier series expansion, we develop a novel non-iterative reconstruction method for solving the problem. A promising feature of this method is that it utilizes the data from only a few observation directions for each frequency. Theoretical uniqueness and stability analysis are provided. Numerical experiments are conducted to illustrate the effectiveness and efficiency of the proposed method in both two and three dimensions.

  11. Localization of auditory response sources using magnetoencephalography and magnetic resonance imaging.

    PubMed

    Papanicolaou, A C; Baumann, S; Rogers, R L; Saydjari, C; Amparo, E G; Eisenberg, H M

    1990-01-01

    Magnetoencephalography offers the possibility of localizing accurately and noninvasively the source of intracranial currents associated with normal and abnormal brain activity. The purpose of this study was to assess the validity and across-subject reliability of localization of cortical sources responding to ipsilateral and contralateral auditory stimulation. Magnetic evoked fields to both stimulation conditions were measured in eight consecutive normal subjects, and the cortical sources of these fields were estimated on the basis of these measurements. Subsequent projection of the source location coordinates onto magnetic resonance images showed that in all subjects the sources were accurately estimated to fall in the vicinity of the auditory cortex and that two separate sources may account for the response to ipsilateral and contralateral stimulation.

  12. Source localization of narrow band signals in multipath environments, with application to marine mammals

    NASA Astrophysics Data System (ADS)

    Valtierra, Robert Daniel

    Passive acoustic localization has benefited from many major developments and has become an increasingly important focus point in marine mammal research. Several challenges still remain. This work seeks to address several of these challenges such as tracking the calling depths of baleen whales. In this work, data from an array of widely spaced Marine Acoustic Recording Units (MARUs) was used to achieve three dimensional localization by combining the methods Time Difference of Arrival (TDOA) and Direct-Reflected Time Difference of Arrival (DRTD) along with a newly developed autocorrelation technique. TDOA was applied to data for two dimensional (latitude and longitude) localization and depth was resolved using DRTD. Previously, DRTD had been limited to pulsed broadband signals, such as sperm whale or dolphin echolocation, where individual direct and reflected signals are separated in time. Due to the length of typical baleen whale vocalizations, individual multipath signal arrivals can overlap making time differences of arrival difficult to resolve. This problem can be solved using an autocorrelation, which can extract reflection information from overlapping signals. To establish this technique, a derivation was made to model the autocorrelation of a direct signal and its overlapping reflection. The model was exploited to derive performance limits allowing for prediction of the minimum resolvable direct-reflected time difference for a known signal type. The dependence on signal parameters (sweep rate, call duration) was also investigated. The model was then verified using both recorded and simulated data from two analysis cases for North Atlantic right whales (NARWs, Eubalaena glacialis) and humpback whales (Megaptera noveaengliae). The newly developed autocorrelation technique was then combined with DRTD and tested using data from playback transmissions to localize an acoustic transducer at a known depth and location. The combined DRTD-autocorrelation methods

  13. Modeling the Infrasound Acoustic Signal Generation of Underground Explosions at the Source Physics Experiment

    NASA Astrophysics Data System (ADS)

    Whitaker, R. W.; Jones, K. R.; Arrowsmith, S.

    2013-12-01

    One of the primary goals of t