Science.gov

Sample records for acoustic source location

  1. Acoustic emission source location

    NASA Astrophysics Data System (ADS)

    Promboon, Yajai

    The objective of the research program was development of reliable source location techniques. The study comprised two phases. First, the research focused on development of source location methods for homogeneous plates. The specimens used in the program were steel railroad tank cars. Source location methods were developed and demonstrated for empty and water filled tanks. The second phase of the research was an exploratory study of source location method for fiber reinforced composites. Theoretical analysis and experimental measurement of wave propagation were carried out. This data provided the basis for development of a method using the intersection of the group velocity curves for the first three wave propagation modes. Simplex optimization was used to calculate the location of the source. Additional source location methods have been investigated and critically examined. Emphasis has been placed on evaluating different methods for determining the time of arrival of a wave. The behavior of wave in a water filled tank was studied and source location methods suitable for use in this situation have been examined through experiment and theory. Particular attention is paid to the problem caused by leaky Lamb waves. A preliminary study into the use of neural networks for source location in fiber reinforced composites was included in the research program. A preliminary neural network model and the results from training and testing data are reported.

  2. Hyperbolic source location of crack related acoustic emission in bone.

    PubMed

    O'Toole, John; Creedon, Leo; Hession, John; Muir, Gordon

    2013-01-01

    Little work has been done on the localization of microcracks in bone using acoustic emission. Microcrack localization is useful to study the fracture process in bone and to prevent fractures in patients. Locating microcracks that occur before fracture allows one to predict where fracture will occur if continued stress is applied to the bone. Two source location algorithms were developed to locate microcracks on rectangular bovine bone samples. The first algorithm uses a constant velocity approach which has some difficulty dealing with the anisotropic nature of bone. However, the second algorithm uses an iterative technique to estimate the correct velocity for the acoustic emission source location being located. In tests with simulated microcracks, the constant velocity algorithm achieves a median error of 1.78 mm (IQR 1.51 mm) and the variable velocity algorithm improves this to a median error of 0.70 mm (IQR 0.79 mm). An experiment in which the bone samples were loaded in a three point bend test until they fractured showed a good correlation between the computed location of detected microcracks and where the final fracture occurred. Microcracks can be located on bovine bone samples using acoustic emission with good accuracy and precision. PMID:23363217

  3. The application of Shuffled Frog Leaping Algorithm to Wavelet Neural Networks for acoustic emission source location

    NASA Astrophysics Data System (ADS)

    Cheng, Xinmin; Zhang, Xiaodan; Zhao, Li; Deng, Aideng; Bao, Yongqiang; Liu, Yong; Jiang, Yunliang

    2014-04-01

    When using acoustic emission to locate the friction fault source of rotating machinery, the effects of strong noise and waveform distortion make accurate locating difficult. Applying neural network for acoustic emission source location could be helpful. In the BP Wavelet Neural Network, BP is a local search algorithm, which falls into local minimum easily. The probability of successful search is low. We used Shuffled Frog Leaping Algorithm (SFLA) to optimize the parameters of the Wavelet Neural Network, and the optimized Wavelet Neural Network to locate the source. After having performed the experiments of friction acoustic emission's source location on the rotor friction test machine, the results show that the calculation of SFLA is simple and effective, and that locating is accurate with proper structure of the network and input parameters.

  4. The location of the source of high-frequency solar acoustic oscillations

    SciTech Connect

    Kumar, Pawan; Lu, Edward )

    1991-07-01

    Recently Libbrecht and Jefferies et al. have reported regular peaks in the solar oscillation power spectrum extending well above 5.3 mHz, the maximum frequency of trapped acoustic modes. Kumar et al. argued that these peaks are primarily due to the interference of traveling waves which are excited due to acoustic emission from turbulent convection. In contrast with the standing wave P-mode frequencies below 5.3 mHz, the positions of the high-frequency interference peaks (HIPs) are dependent on the location of the source of the acoustic oscillations. In the present work, Kumar et al.'s argument is strengthened, and more importantly, use is made of the above dependence to determine the acoustic source strength as a function of depth. It is found that the acoustic source profile, and thus the convective velocity, is peaked about 200 km deeper than what is expected from standard mixing length theory. 13 refs.

  5. Continuous wavelet transform analysis and modal location analysis acoustic emission source location for nuclear piping crack growth monitoring

    SciTech Connect

    Mohd, Shukri; Holford, Karen M.; Pullin, Rhys

    2014-02-12

    Source location is an important feature of acoustic emission (AE) damage monitoring in nuclear piping. The ability to accurately locate sources can assist in source characterisation and early warning of failure. This paper describe the development of a novelAE source location technique termed 'Wavelet Transform analysis and Modal Location (WTML)' based on Lamb wave theory and time-frequency analysis that can be used for global monitoring of plate like steel structures. Source location was performed on a steel pipe of 1500 mm long and 220 mm outer diameter with nominal thickness of 5 mm under a planar location test setup using H-N sources. The accuracy of the new technique was compared with other AE source location methods such as the time of arrival (TOA) techniqueand DeltaTlocation. Theresults of the study show that the WTML method produces more accurate location resultscompared with TOA and triple point filtering location methods. The accuracy of the WTML approach is comparable with the deltaT location method but requires no initial acoustic calibration of the structure.

  6. PC-based real-time acoustic source locator and sound capture system for teleconferencing

    NASA Astrophysics Data System (ADS)

    Morde, Ashutosh; Grove, Deborah; Utama, Robert

    2002-05-01

    A PC-based real time acoustic source locator and sound capture system has been developed. The system is implemented using Frontier Design A/D converters and the Intel Signal Processing Library directly on a 1 GHz Pentium III machine, without a DSP board. The source locator uses the cross-power spectral phase to locate a moving talker. The algorithm also uses an energy detector that minimizes incorrect location estimates by neglecting frames with high background noise. The source locator provides 8 location estimates per second. A 16-element 0.90 m linear delay-sum beamformer has also been implemented in the system as a method for selective sound capture. The ability of the source locator to detect talkers in a typical office environment is evaluated. In addition, the array response is measured. [Work supported by Intel.

  7. Acoustic emission non-destructive testing of structures using source location techniques.

    SciTech Connect

    Beattie, Alan G.

    2013-09-01

    The technology of acoustic emission (AE) testing has been advanced and used at Sandia for the past 40 years. AE has been used on structures including pressure vessels, fire bottles, wind turbines, gas wells, nuclear weapons, and solar collectors. This monograph begins with background topics in acoustics and instrumentation and then focuses on current acoustic emission technology. It covers the overall design and system setups for a test, with a wind turbine blade as the object. Test analysis is discussed with an emphasis on source location. Three test examples are presented, two on experimental wind turbine blades and one on aircraft fire extinguisher bottles. Finally, the code for a FORTRAN source location program is given as an example of a working analysis program. Throughout the document, the stress is on actual testing of real structures, not on laboratory experiments.

  8. An efficient closed-form solution for acoustic emission source location in three-dimensional structures

    SciTech Connect

    Li, Xibing; Dong, Longjun

    2014-02-15

    This paper presents an efficient closed-form solution (ECS) for acoustic emission(AE) source location in three-dimensional structures using time difference of arrival (TDOA) measurements from N receivers, N ≥ 6. The nonlinear location equations of TDOA are simplified to linear equations. The unique analytical solution of AE sources for unknown velocity system is obtained by solving the linear equations. The proposed ECS method successfully solved the problems of location errors resulting from measured deviations of velocity as well as the existence and multiplicity of solutions induced by calculations of square roots in existed close-form methods.

  9. Locating the acoustic source in thin glass plate using low sampling rate data.

    PubMed

    Hoseini Sabzevari, S Amir; Moavenian, Majid

    2016-08-01

    Acoustic source localization is an important step for structural health monitoring (SHM). There are many research studies dealing with localization based on high sampling rate data. In this paper, for the first time, acoustic source is localized on an isotropic plate using low sampling rate data. Previous studies have mainly used a cluster of specific sensors to easily record high sampling rate signals containing qualitative time domain features. This paper proposes a novel technique to localize the acoustic source on isotropic plates by simply implementing a combination of two simple electret microphones and Loci of k-Tuple Distances (LkTD) from the two sensors with low sampling rate data. In fact the method proposes substitution of previous methods based on solving the system of equations and increasing the number of sensors by implementing the selection of LkTD. Unlike most previous studies, estimation of time difference of arrival (TDOA) is based on the frequency properties of the signal rather than it's time properties. An experimental set-up is prepared and experiments are conducted to validate the proposed technique by prediction of the acoustic source location. The experimental results show that TDOA estimations based on low sampling rate data can produce more accurate predictions in comparison with previous studies. It is also shown that the selection of LkTD on the plate has noticeable effects on the performance of this technique. PMID:27110914

  10. Acoustic Emission Source Location Using a Distributed Feedback Fiber Laser Rosette

    PubMed Central

    Huang, Wenzhu; Zhang, Wentao; Li, Fang

    2013-01-01

    This paper proposes an approach for acoustic emission (AE) source localization in a large marble stone using distributed feedback (DFB) fiber lasers. The aim of this study is to detect damage in structures such as those found in civil applications. The directional sensitivity of DFB fiber laser is investigated by calculating location coefficient using a method of digital signal analysis. In this, autocorrelation is used to extract the location coefficient from the periodic AE signal and wavelet packet energy is calculated to get the location coefficient of a burst AE source. Normalization is processed to eliminate the influence of distance and intensity of AE source. Then a new location algorithm based on the location coefficient is presented and tested to determine the location of AE source using a Delta (Δ) DFB fiber laser rosette configuration. The advantage of the proposed algorithm over the traditional methods based on fiber Bragg Grating (FBG) include the capability of: having higher strain resolution for AE detection and taking into account two different types of AE source for location. PMID:24141266

  11. Acoustic emission source location in complex structures using full automatic delta T mapping technique

    NASA Astrophysics Data System (ADS)

    Al-Jumaili, Safaa Kh.; Pearson, Matthew R.; Holford, Karen M.; Eaton, Mark J.; Pullin, Rhys

    2016-05-01

    An easy to use, fast to apply, cost-effective, and very accurate non-destructive testing (NDT) technique for damage localisation in complex structures is key for the uptake of structural health monitoring systems (SHM). Acoustic emission (AE) is a viable technique that can be used for SHM and one of the most attractive features is the ability to locate AE sources. The time of arrival (TOA) technique is traditionally used to locate AE sources, and relies on the assumption of constant wave speed within the material and uninterrupted propagation path between the source and the sensor. In complex structural geometries and complex materials such as composites, this assumption is no longer valid. Delta T mapping was developed in Cardiff in order to overcome these limitations; this technique uses artificial sources on an area of interest to create training maps. These are used to locate subsequent AE sources. However operator expertise is required to select the best data from the training maps and to choose the correct parameter to locate the sources, which can be a time consuming process. This paper presents a new and improved fully automatic delta T mapping technique where a clustering algorithm is used to automatically identify and select the highly correlated events at each grid point whilst the "Minimum Difference" approach is used to determine the source location. This removes the requirement for operator expertise, saving time and preventing human errors. A thorough assessment is conducted to evaluate the performance and the robustness of the new technique. In the initial test, the results showed excellent reduction in running time as well as improved accuracy of locating AE sources, as a result of the automatic selection of the training data. Furthermore, because the process is performed automatically, this is now a very simple and reliable technique due to the prevention of the potential source of error related to manual manipulation.

  12. Acoustic emission source location on large plate-like structures using a local triangular sensor array

    NASA Astrophysics Data System (ADS)

    Aljets, Dirk; Chong, Alex; Wilcox, Steve; Holford, Karen

    2012-07-01

    A new acoustic emission (AE) source location method was developed for large plate-like structures, which evaluates the location of the source using a combined time of flight and modal source location algorithm. Three sensors are installed in a triangular array with a sensor to sensor distance of just a few centimeters. The direction from the sensor array to the AE source can be established by analysing the arrival times of the A0 component of the signal to the three sensors whilst the distance can be evaluated using the separation of S0 and A0 mode at each sensor respectively. The close positioning of the sensors allows the array to be installed in a single housing. This simplifies mounting, wiring and calibration procedures for non-destructive testing (NDT) and structural health monitoring (SHM) applications. Furthermore, this array could reduce the number of sensors needed to monitor large structures compared to other methods. An automatic wave mode identification method is also presented.

  13. Acoustic source location in the secondary mixing region of a jet-blown flap using a cross-correlation technique

    NASA Technical Reports Server (NTRS)

    Becker, R. S.; Maus, J. R.

    1977-01-01

    An experimental investigation of the acoustic sources in the secondary mixing region of a laboratory-scale jet-flap was made using a causality correlation technique. The processed signal of a hot-film anemometer probe was cross correlated with the output signal of a far-field microphone. Axial acoustic source strength distributions were measured for three far-field microphone locations: plus or minus 45 deg in the flyover plane and 45 deg in the sideline plane. These measurements showed that the acoustic sources in the secondary mixing region are highly directional, radiating much more effectively to the -45 deg-microphone, located below the plane of the flap surface. A relative maximum in the acoustic source strength measured for the microphones in the flyover plane occurred very near the flap trailing edge, which may be due to an edge amplification effect predicted by the theoretical work of Ffowcs Williams and Hall.

  14. Structural health monitoring of liquid-filled tanks: a Bayesian approach for location of acoustic emission sources

    NASA Astrophysics Data System (ADS)

    Zárate, Boris A.; Pollock, Adrian; Momeni, Sepand; Ley, Obdulia

    2015-01-01

    Acoustic emission (AE) is a well-established nondestructive testing method for assessing the condition of liquid-filled tanks. Often the tank can be tested without the need for accurate location of AE sources. But sometimes, accurate location is required, such as in the case of follow-up inspections after AE has indicated a significant defect. Traditional computed location techniques that considered only the wave traveling through the shell of the tank have not proved reliable when applied to liquid-filled tanks. This because AE sensors are often responding to liquid-borne waves, that are not considered in the traditional algorithms. This paper describes an approach for locating AE sources on the wall of liquid filled tanks that includes two novel aspects: (i) the use of liquid-borne waves, and (ii) the use of a probabilistic algorithm. The proposed algorithm is developed within a Bayesian framework that considers uncertainties in the wave velocities and the time of arrival. A Markov Chain Monte Carlo is used to estimate the distribution of the AE source location. This approach was applied on a 102 inch diameter (29 000 gal) railroad tank car by estimating the source locations from pencil lead break with waveforms recorded. Results show that the proposed Bayesian approach for source location can be used to calculate the most probable region of the tank wall where the AE source is located.

  15. Macro-fiber composite piezoelectric rosettes for acoustic source location in complex structures

    NASA Astrophysics Data System (ADS)

    Matt, Howard; Lanza di Scalea, Francesco

    2007-04-01

    An approach based upon the employment of piezoelectric transducer rosettes is proposed for passive damage or impact location in anisotropic or geometrically-complex structures. The rosettes are comprised of rectangular Macro-Fiber Composite (MFC) transducers which exhibit a highly directive response to ultrasonic guided waves. The MFC response to flexural (A 0) motion is decomposed into axial and transverse sensitivity factors, which allow extraction of the direction of an incoming wave using rosette principles. The wave source location in a plane is then simply determined by intersecting the wave directions detected by two rosettes. The rosette approach is applicable to anisotropic or geometrically-complex structures where conventional time-of-flight source location is challenging due to the direction-dependent wave velocity. The performance of the rosettes for source location is validated through pencil-lead breaks performed on an aluminum plate, an anisotropic CFRP laminate, and a complex CFRP-honeycomb sandwich panel.

  16. Acoustic source location in a jet-blown flap using a cross-correlation technique

    NASA Technical Reports Server (NTRS)

    Becker, R. S.; Maus, J. R.

    1977-01-01

    The acoustic source strength distribution in a turbulent flow field was measured for two far field microphones at 45 deg above and below the plane of the flap surface. A processed signal from an inclined hot-film anemometry probe was cross correlated with the signal from the appropriate far field microphone. The contribution made by the sources associated with the fluctuating pressure on the flap surface to the sound received at far field microphone was estimated by cross correlating the processed signals of microphones which were embedded in the flap surface with the far field microphone signals. In addition, detailed fluid dynamic measurements were made in the flow field of the jet flap using dual sensor hot-film anemometry probes.

  17. Acoustic Location of Lightning Using Interferometric Techniques

    NASA Astrophysics Data System (ADS)

    Erives, H.; Arechiga, R. O.; Stock, M.; Lapierre, J. L.; Edens, H. E.; Stringer, A.; Rison, W.; Thomas, R. J.

    2013-12-01

    Acoustic arrays have been used to accurately locate thunder sources in lightning flashes. The acoustic arrays located around the Magdalena mountains of central New Mexico produce locations which compare quite well with source locations provided by the New Mexico Tech Lightning Mapping Array. These arrays utilize 3 outer microphones surrounding a 4th microphone located at the center, The location is computed by band-passing the signal to remove noise, and then computing the cross correlating the outer 3 microphones with respect the center reference microphone. While this method works very well, it works best on signals with high signal to noise ratios; weaker signals are not as well located. Therefore, methods are being explored to improve the location accuracy and detection efficiency of the acoustic location systems. The signal received by acoustic arrays is strikingly similar to th signal received by radio frequency interferometers. Both acoustic location systems and radio frequency interferometers make coherent measurements of a signal arriving at a number of closely spaced antennas. And both acoustic and interferometric systems then correlate these signals between pairs of receivers to determine the direction to the source of the received signal. The primary difference between the two systems is the velocity of propagation of the emission, which is much slower for sound. Therefore, the same frequency based techniques that have been used quite successfully with radio interferometers should be applicable to acoustic based measurements as well. The results presented here are comparisons between the location results obtained with current cross correlation method and techniques developed for radio frequency interferometers applied to acoustic signals. The data were obtained during the summer 2013 storm season using multiple arrays sensitive to both infrasonic frequency and audio frequency acoustic emissions from lightning. Preliminary results show that

  18. Effect of Anisotropic Velocity Structure on Acoustic Emission Source Location during True-Triaxial Deformation Experiments

    NASA Astrophysics Data System (ADS)

    Ghofrani Tabari, Mehdi; Goodfellow, Sebastian; Young, R. Paul

    2016-04-01

    Although true-triaxial testing (TTT) of rocks is now more extensive worldwide, stress-induced heterogeneity due to the existence of several loading boundary effects is not usually accounted for and simplified anisotropic models are used. This study focuses on the enhanced anisotropic velocity structure to improve acoustic emission (AE) analysis for an enhanced interpretation of induced fracturing. Data from a TTT on a cubic sample of Fontainebleau sandstone is used in this study to evaluate the methodology. At different stages of the experiment the True-Triaxial Geophysical Imaging Cell (TTGIC), armed with an ultrasonic and AE monitoring system, performed several velocity surveys to image velocity structure of the sample. Going beyond a hydrostatic stress state (poro-elastic phase), the rock sample went through a non-dilatational elastic phase, a dilatational non-damaging elasto-plastic phase containing initial AE activity and finally a dilatational and damaging elasto-plastic phase up to the failure point. The experiment was divided into these phases based on the information obtained from strain, velocity and AE streaming data. Analysis of the ultrasonic velocity survey data discovered that a homogeneous anisotropic core in the center of the sample is formed with ellipsoidal symmetry under the standard polyaxial setup. Location of the transducer shots were improved by implementation of different velocity models for the sample starting from isotropic and homogeneous models going toward anisotropic and heterogeneous models. The transducer shot locations showed a major improvement after the velocity model corrections had been applied especially at the final phase of the experiment. This location improvement validated our velocity model at the final phase of the experiment consisting lower-velocity zones bearing partially saturated fractures. The ellipsoidal anisotropic velocity model was also verified at the core of the cubic rock specimen by AE event location of

  19. Acoustic emission source location and damage detection in a metallic structure using a graph-theory-based geodesic approach

    NASA Astrophysics Data System (ADS)

    Gangadharan, R.; Prasanna, G.; Bhat, M. R.; Murthy, C. R. L.; Gopalakrishnan, S.

    2009-11-01

    A geodesic-based approach using Lamb waves is proposed to locate the acoustic emission (AE) source and damage in an isotropic metallic structure. In the case of the AE (passive) technique, the elastic waves take the shortest path from the source to the sensor array distributed in the structure. The geodesics are computed on the meshed surface of the structure using graph theory based on Dijkstra's algorithm. By propagating the waves in reverse virtually from these sensors along the geodesic path and by locating the first intersection point of these waves, one can get the AE source location. The same approach is extended for detection of damage in a structure. The wave response matrix of the given sensor configuration for the healthy and the damaged structure is obtained experimentally. The healthy and damage response matrix is compared and their difference gives the information about the reflection of waves from the damage. These waves are backpropagated from the sensors and the above method is used to locate the damage by finding the point where intersection of geodesics occurs. In this work, the geodesic approach is shown to be suitable to obtain a practicable source location solution in a more general set-up on any arbitrary surface containing finite discontinuities. Experiments were conducted on aluminum specimens of simple and complex geometry to validate this new method.

  20. Acoustic Emission Source Location in Unidirectional Carbon-Fibre-Reinforced Plastic Plates Using Virtually Trained Artificial Neural Networks

    SciTech Connect

    Caprino, G.; Lopresto, V.; Leone, C.; Papa, I.

    2010-06-02

    Acoustic emission source location in a unidirectional carbon-fibre-reinforced plastic plate was attempted employing Artificial Neural Network (ANN) technology. The acoustic emission events were produced by a lead break, and the response wave received by piezoelectric sensors, type VS150-M resonant at 150 kHz. The waves were detected by a Vallen AMSY4 eight-channel instrumentation. The time of arrival, determined through the conventional threshold crossing technique, was used to measure the dependence of wave velocity on fibre orientation. A simple empirical formula, relying on classical lamination and suggested by wave propagation theory, was able to accurately model the experimental trend. Based on the formula, virtual training and testing data sets were generated for the case of a plate monitored by three transducers, and adopted to select two potentially effective ANN architectures. For final validation, experimental tests were carried out, positioning the source at predetermined points evenly distributed within the plate area. A very satisfactory correlation was found between the actual source locations and the ANN predictions.

  1. Explosion Source Location Study Using Collocated Acoustic and Seismic Networks in Israel

    NASA Astrophysics Data System (ADS)

    Pinsky, V.; Gitterman, Y.; Arrowsmith, S.; Ben-Horin, Y.

    2013-12-01

    infrasonic phases of the two distant arrays; 2) a standard robust grid-search location procedure based on phase picks and a constant celerity for a phase (tropospheric or stratospheric) was applied; 3) a joint coordinate grid-search procedure using array waveforms and phase picks was tested, 4) the Bayesian Infrasonic Source Localization (BISL) method, incorporating semi-empirical model-based prior information, was modified for array+network configuration and applied to the ground-truth events. For this purpose we accumulated data of the former observations of the air-to-ground infrasonic phases to compute station specific ground-truth Celerity-Range Histograms (ssgtCRH) and/or model-based CRH (mbCRH), which allow to essentially improve the location results. For building the mbCRH the local meteo-data and the ray-tracing modeling in 3 available azimuth ranges, accounting seasonal variations of winds directivity (quadrants North:315-45, South: 135-225, East 45-135) have been used.

  2. Acoustic vs VHF Lightning Location Systems

    NASA Astrophysics Data System (ADS)

    Arechiga, R. O.; Lapierre, J. L.; Stock, M.; Erives, H.; Edens, H. E.; Stringer, A.; Rison, W.; Thomas, R. J.

    2013-12-01

    A single acoustic array can determine the 3-D location of lightning sources by using time of arrival differences arriving at the microphones and ranging techniques. The range is obtained from the time difference between the electromagnetic emission (detected by the acoustic data logger) and the acoustic signal produced by lightning. Audio frequency acoustic location systems are sensitive to the gas dynamic expansion of portions of a rapidly heating lightning channel, and so acoustic signatures are produced by a wide variety of different lightning discharge processes including: return strokes, K changes, M components, leader stepping and more. Infrasonic frequency range acoustic sensors are also sensitive to gas dynamic expansion, and in addition are also sensitive to processes which are electro-static in nature. RF location systems such as the Lightning Mapping Array (LMA) and the Continuous Sampling Broadband VHF Digital Interferometer (DITF) from New Mexico Tech (NMT) produce high quality maps of lightning discharges; however, they are sensitive to breakdown processes only and can not locate sources originating in already well conducting channels. During the summer of 2013 an acoustic audio-range array and an infrasound array were co-located with the NMT DITF in the Magdalena mountains of central New Mexico, where an LMA is also operating. The audio-range acoustic array consists of custom-designed GPS-synced data loggers with a 50 kHz sampling rate and audio range omnidirectional dynamic microphones. The infrasound array uses GPS time-synced data logger and custom-designed broadband microphones with flat response in the band of 0.01 to 500 Hz. The DITF uses flat plate dE/dt antennas bandpass filtered to 20 to 80 MHz, providing 2D maps of lightning emissions with very high (sub-microsecond) timing resolution. Both acoustic and interferometric arrays of antennas determine location of sources by coherently comparing the signals arriving at the antennas (or

  3. Theory on acoustic sources

    NASA Technical Reports Server (NTRS)

    Wright, S. E.

    1978-01-01

    A theory is described for the radiation emission emission from acoustic multipole sources. The sources can be stationary or moving at speeds including supersonic and experience stationary or moving disturbances. The effect of finite source distributions and disturbances is investigated as well as the manner in which they interact. Distinction is made between source distributions that responsed as a function of time and those that respond as a function of space.

  4. Cosmic microwave background acoustic peak locations

    NASA Astrophysics Data System (ADS)

    Pan, Z.; Knox, L.; Mulroe, B.; Narimani, A.

    2016-07-01

    The Planck collaboration has measured the temperature and polarization of the cosmic microwave background well enough to determine the locations of eight peaks in the temperature (TT) power spectrum, five peaks in the polarization (EE) power spectrum and 12 extrema in the cross (TE) power spectrum. The relative locations of these extrema give a striking, and beautiful, demonstration of what we expect from acoustic oscillations in the plasma; e.g. that EE peaks fall half way between TT peaks. We expect this because the temperature map is predominantly sourced by temperature variations in the last scattering surface, while the polarization map is predominantly sourced by gradients in the velocity field, and the harmonic oscillations have temperature and velocity 90 deg out of phase. However, there are large differences in expectations for extrema locations from simple analytic models versus numerical calculations. Here, we quantitatively explore the origin of these differences in gravitational potential transients, neutrino free-streaming, the breakdown of tight coupling, the shape of the primordial power spectrum, details of the geometric projection from three to two dimensions, and the thickness of the last scattering surface. We also compare the peak locations determined from Planck measurements to expectations under the Λ cold dark matter model. Taking into account how the peak locations were determined, we find them to be in agreement.

  5. Acoustic source for generating an acoustic beam

    DOEpatents

    Vu, Cung Khac; Sinha, Dipen N.; Pantea, Cristian

    2016-05-31

    An acoustic source for generating an acoustic beam includes a housing; a plurality of spaced apart piezo-electric layers disposed within the housing; and a non-linear medium filling between the plurality of layers. Each of the plurality of piezoelectric layers is configured to generate an acoustic wave. The non-linear medium and the plurality of piezo-electric material layers have a matching impedance so as to enhance a transmission of the acoustic wave generated by each of plurality of layers through the remaining plurality of layers.

  6. Acoustic Emission tomography based on simultaneous algebraic reconstruction technique to visualize the damage source location in Q235B steel plate

    NASA Astrophysics Data System (ADS)

    Jiang, Yu; Xu, Feiyun; Xu, Bingsheng

    2015-12-01

    Acoustic Emission (AE) tomography based on Simultaneous Algebraic Reconstruction Technique (SART), which combines the traditional location algorithm with the SART algorithm by using AE events as its signal sources, is a new visualization method for inspecting and locating the internal damages in the structure. In this paper, the proposed method is applied to examine and visualize two man-made damage source locations in the Q235B steel plate to validate its effectiveness. Firstly, the Q235B steel plate with two holes specimen is fabricated and the pencil lead break (PLB) signal is taken as the exciting source for AE tomography.Secondly, A 6-step description of the SART algorithm is provided and the three dimensional(3D)image contained the damage source locations is visualized by using the proposed algorithm in terms of a locally varying wave velocity distribution. It is shown that the AE tomography based on SART has great potential in the application of structure damage detection. Finally, to further improve the quality of 3D imaging, the Median Filter and the Adaptive Median Filter are used to reduce the noises resulting from AE tomography. The experiment results indicate that Median Filter is the optimal method to remove Salt & Pepper noises.

  7. Acoustic source localization.

    PubMed

    Kundu, Tribikram

    2014-01-01

    In this article different techniques for localizing acoustic sources are described and the advantages/disadvantages of these techniques are discussed. Some source localization techniques are restricted to isotropic structures while other methods can be applied to anisotropic structures as well. Some techniques require precise knowledge of the direction dependent velocity profiles in the anisotropic body while other techniques do not require that knowledge. Some methods require accurate values of the time of arrival of the acoustic waves at the receivers while other techniques can function without that information. Published papers introducing various techniques emphasize the advantages of the introduced techniques while ignoring and often not mentioning the limitations and weaknesses of the new techniques. What is lacking in the literature is a comprehensive review and comparison of the available techniques; this article attempts to do that. After reviewing various techniques the paper concludes which source localization technique should be most effective for what type of structure and what the current research needs are. PMID:23870388

  8. Acoustic wave-equation-based earthquake location

    NASA Astrophysics Data System (ADS)

    Tong, Ping; Yang, Dinghui; Liu, Qinya; Yang, Xu; Harris, Jerry

    2016-04-01

    We present a novel earthquake location method using acoustic wave-equation-based traveltime inversion. The linear relationship between the location perturbation (δt0, δxs) and the resulting traveltime residual δt of a particular seismic phase, represented by the traveltime sensitivity kernel K(t0, xs) with respect to the earthquake location (t0, xs), is theoretically derived based on the adjoint method. Traveltime sensitivity kernel K(t0, xs) is formulated as a convolution between the forward and adjoint wavefields, which are calculated by numerically solving two acoustic wave equations. The advantage of this newly derived traveltime kernel is that it not only takes into account the earthquake-receiver geometry but also accurately honours the complexity of the velocity model. The earthquake location is obtained by solving a regularized least-squares problem. In 3-D realistic applications, it is computationally expensive to conduct full wave simulations. Therefore, we propose a 2.5-D approach which assumes the forward and adjoint wave simulations within a 2-D vertical plane passing through the earthquake and receiver. Various synthetic examples show the accuracy of this acoustic wave-equation-based earthquake location method. The accuracy and efficiency of the 2.5-D approach for 3-D earthquake location are further verified by its application to the 2004 Big Bear earthquake in Southern California.

  9. Properties of acoustic sources in the Sun

    NASA Technical Reports Server (NTRS)

    Kumar, Pawan

    1994-01-01

    The power spectrum of solar acoustic oscillations shows peaks extending out to frequencies much greater than the acoustic cutoff frequency of approximately 5.3 mHz, where waves are no longer trapped. Kumar & Lu (1991) proposed that these peaks arise from the interference of traveling waves which are generated by turbulent convection. According to this model, the frequencies of the peaks in the power spectrum depend on the static structure of the Sun as well as the radial location of the sources. Kumar & Lu used this idea to determine the depth of the acoustic sources. However, they ignored dissipative effects and found that the theoretically computed power spectrum was falling off much more rapidly than the observed spectrum. In this paper, we include the interaction of radiation with acoustic waves in the computation of the power spectrum. We find that the theoretically calculated power spectra, when radiative damping is included are in excellent agreement with the observed power spectra over the entire observed frequency range of 5.3 to 7.5 mHz above the acoustic cutoff frequency. Moreover, by matching the peak frequencies in the observed and theoretical spectra we find the mean depth of acoustic sources to be 140 +/- 60 km below the photosphere. We show that the spectrum of solar turbulence near the top of the solar convection zone is consistent with the Kolmogorov spectrum, and that the observed high frequency power spectrum provides strong evidence that the acoustic sources in the Sun are quadrupolar. The data, in fact, rules out dipole sources as significant contributors to acoustic wave generation in the Sun. The radial extent of the sources is poorly determined and is estimated to be less than about 550 km.

  10. Strength Restoration of Cracked Sandstone and Coal under a Uniaxial Compression Test and Correlated Damage Source Location Based on Acoustic Emissions.

    PubMed

    Feng, Xiaowei; Zhang, Nong; Zheng, Xigui; Pan, Dongjiang

    2015-01-01

    Underground rock masses have shown a general trend of natural balance over billions of years of ground movement. Nonetheless, man-made underground constructions disturb this balance and cause rock stability failure. Fractured rock masses are frequently encountered in underground constructions, and this study aims to restore the strength of rock masses that have experienced considerable fracturing under uniaxial compression. Coal and sandstone from a deep-buried coal mine were chosen as experimental subjects; they were crushed by uniaxial compression and then carefully restored by a chemical adhesive called MEYCO 364 with an innovative self-made device. Finally, the restored specimens were crushed once again by uniaxial compression. Axial stress, axial strain, circumferential strain, and volumetric strain data for the entire process were fully captured and are discussed here. An acoustic emission (AE) testing system was adopted to cooperate with the uniaxial compression system to provide better definitions for crack closure thresholds, crack initiation thresholds, crack damage thresholds, and three-dimensional damage source locations in intact and restored specimens. Several remarkable findings were obtained. The restoration effects of coal are considerably better than those of sandstone because the strength recovery coefficient of the former is 1.20, whereas that of the latter is 0.33, which indicates that MEYCO 364 is particularly valid for fractured rocks whose initial intact peak stress is less than that of MEYCO 364. Secondary cracked traces of restored sandstone almost follow the cracked traces of the initial intact sandstone, and the final failure is mainly caused by decoupling between the adhesive and the rock mass. However, cracked traces of restored coal only partially follow the traces of intact coal, with the final failure of the restored coal being caused by both bonding interface decoupling and self-breakage in coal. Three-dimensional damage source

  11. Strength Restoration of Cracked Sandstone and Coal under a Uniaxial Compression Test and Correlated Damage Source Location Based on Acoustic Emissions

    PubMed Central

    Feng, Xiaowei; Zhang, Nong; Zheng, Xigui; Pan, Dongjiang

    2015-01-01

    Underground rock masses have shown a general trend of natural balance over billions of years of ground movement. Nonetheless, man-made underground constructions disturb this balance and cause rock stability failure. Fractured rock masses are frequently encountered in underground constructions, and this study aims to restore the strength of rock masses that have experienced considerable fracturing under uniaxial compression. Coal and sandstone from a deep-buried coal mine were chosen as experimental subjects; they were crushed by uniaxial compression and then carefully restored by a chemical adhesive called MEYCO 364 with an innovative self-made device. Finally, the restored specimens were crushed once again by uniaxial compression. Axial stress, axial strain, circumferential strain, and volumetric strain data for the entire process were fully captured and are discussed here. An acoustic emission (AE) testing system was adopted to cooperate with the uniaxial compression system to provide better definitions for crack closure thresholds, crack initiation thresholds, crack damage thresholds, and three-dimensional damage source locations in intact and restored specimens. Several remarkable findings were obtained. The restoration effects of coal are considerably better than those of sandstone because the strength recovery coefficient of the former is 1.20, whereas that of the latter is 0.33, which indicates that MEYCO 364 is particularly valid for fractured rocks whose initial intact peak stress is less than that of MEYCO 364. Secondary cracked traces of restored sandstone almost follow the cracked traces of the initial intact sandstone, and the final failure is mainly caused by decoupling between the adhesive and the rock mass. However, cracked traces of restored coal only partially follow the traces of intact coal, with the final failure of the restored coal being caused by both bonding interface decoupling and self-breakage in coal. Three-dimensional damage source

  12. Acoustic gunshot location in complex environments: concepts and results

    NASA Astrophysics Data System (ADS)

    Showen, R. L.; Calhoun, R. B.; Chu, Wai C.; Dunham, J. W.

    2008-04-01

    A gunshot location system can be implemented in complex urban environments using a distributed array of acoustic sensors. A primary difficulty in computing the source location is that unknown path obstructions in the environment interfere with the reception of the sound at the sensor, by blocking the sound entirely, by refracting the path, or by creating echoes. Other complications are created by the similarity between gunshot sounds and other less interesting urban noises, frequency-dependent absorption of sound, and possible computational difficulty when multiple gunshots generate large data sets that stress real-time analysis routines. The ShotSpotter Gunshot Location System®1, deployed in over two dozen cities in the United States, detects and locates gunfire using a network of acoustic sensors placed on rooftops and utility poles, on moving vehicles, or on personnel. This sensor network, combined with a software system to collate and compute location results from the array of sensors, accurately locates gunshot sounds in complex urban environments. A classifier discards solutions incorporating non-gunshot audio pulses produced by the complex environment. Examples of difficult detection problems, including gunshots from a moving source, show that the detection and classification algorithms described are effective at recovering useful results from signals found in real-world urban scenarios.

  13. ACOUSTIC DETECTING AND LOCATING GAS PIPE LINE INFRINGEMENT

    SciTech Connect

    John L. Loth; Gary J. Morris; George M. Palmer; Richard Guiler; Patrick Browning

    2004-12-01

    The extensive network of high-pressure natural gas transmission pipelines covering the United States provides an important infrastructure for our energy independence. Early detection of pipeline leaks and infringements by construction equipment, resulting in corrosion fractures, presents an important aspect of our national security policy. The National Energy Technology Laboratory Strategic Center for Natural Gas (SCVG) is and has been funding research on various applicable techniques. The WVU research team has focused on monitoring pipeline background acoustic signals generated and transmitted by gas flowing through the gas inside the pipeline. In case of a pipeline infringement, any mechanical impact on the pipe wall, or escape of high-pressure gas, generates acoustic signals traveling both up and down stream through the gas. Sudden changes in flow noise are detectable with a Portable Acoustic Monitoring Package (PAMP), developed under this contract. It incorporates a pressure compensating microphone and a signal- recording device. Direct access to the gas inside the line is obtained by mounting such a PAMP, with a 1/2 inch NPT connection, to a pipeline pressure port found near most shut-off valves. An FFT of the recorded signal subtracted by that of the background noise recorded one-second earlier appears to sufficiently isolate the infringement signal to allow source interpretation. Using cell phones for data downloading might allow a network of such 1000-psi rated PAMP's to acoustically monitor a pipeline system and be trained by neural network software to positively identify and locate any pipeline infringement.

  14. ACOUSTIC DETECTING AND LOCATING GAS PIPE LINE INFRINGEMENT

    SciTech Connect

    John L. Loth; Gary J. Morris; George M. Palmer; Richard Guiler; Patrick Browning

    2004-10-31

    The extensive network of high-pressure natural gas transmission pipelines covering the United States provides an important infrastructure for our energy independence. Early detection of pipeline leaks and infringements by construction equipment, resulting in corrosion fractures, presents an important aspect of our national security policy. The National Energy Technology Laboratory Strategic Center for Natural Gas (SCVG) is and has been funding research on various applicable techniques. The WVU research team has focused on monitoring pipeline background acoustic signals generated and transmitted by gas flowing through the gas inside the pipeline. In case of a pipeline infringement, any mechanical impact on the pipe wall, or escape of high-pressure gas, generates acoustic signals traveling both up and down stream through the gas. Sudden changes in flow noise are detectable with a Portable Acoustic Monitoring Package (PAMP), developed under this contract. It incorporates a pressure compensating microphone and a signal- recording device. Direct access to the gas inside the line is obtained by mounting such a PAMP, with a 1/2 inch NPT connection, to a pipeline pressure port found near most shut-off valves. An FFT of the recorded signal subtracted by that of the background noise recorded one-second earlier appears to sufficiently isolate the infringement signal to allow source interpretation. Using cell phones for data downloading might allow a network of such 1000-psi rated PAMP's to acoustically monitor a pipeline system and be trained by neural network software to positively identify and locate any pipeline infringement.

  15. 76 FR 52734 - Underwater Locating Devices (Acoustic) (Self-Powered)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-23

    ...This notice announces the planned revocation of all Technical Standard Order authorizations (TSOA) issued for the production of Underwater Locating Devices (Acoustic) (Self-Powered) manufactured to the TSO-C121 and TSO-C121a specifications. These actions are necessary because the planned issuance of TSO-C121b, Underwater Locating Devices (Acoustic) (Self-Powered), with a minimum performance......

  16. 77 FR 13174 - Underwater Locating Devices (Acoustic) (Self-Powered)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-05

    ...This is a confirmation notice for the planned revocation of all Technical Standard Order authorizations issued for the production of Underwater Locating Devices (Acoustic) (Self-Powered) manufactured to the TSO-C121 and TSO-C121a specifications. These actions are necessary because the planned issuance of TSO-C121b, Underwater Locating Devices (Acoustic) (Self-Powered), minimum performance......

  17. Shallow-water sparsity-cognizant source-location mapping.

    PubMed

    Forero, Pedro A; Baxley, Paul A

    2014-06-01

    Using passive sonar for underwater acoustic source localization in a shallow-water environment is challenging due to the complexities of underwater acoustic propagation. Matched-field processing (MFP) exploits both measured and model-predicted acoustic pressures to localize acoustic sources. However, the ambiguity surface obtained through MFP contains artifacts that limit its ability to reveal the location of the acoustic sources. This work introduces a robust scheme for shallow-water source localization that exploits the inherent sparse structure of the localization problem and the use of a model characterizing the acoustic propagation environment. To this end, the underwater acoustic source-localization problem is cast as a sparsity-inducing stochastic optimization problem that is robust to model mismatch. The resulting source-location map (SLM) yields reduced ambiguities and improved resolution, even at low signal-to-noise ratios, when compared to those obtained via classical MFP approaches. An iterative solver based on block-coordinate descent is developed whose computational complexity per iteration is linear with respect to the number of locations considered for the SLM. Numerical tests illustrate the performance of the algorithm. PMID:24907812

  18. Source Identification and Location Techniques

    NASA Technical Reports Server (NTRS)

    Weir, Donald; Bridges, James; Agboola, Femi; Dougherty, Robert

    2001-01-01

    Mr. Weir presented source location results obtained from an engine test as part of the Engine Validation of Noise Reduction Concepts program. Two types of microphone arrays were used in this program to determine the jet noise source distribution for the exhaust from a 4.3 bypass ratio turbofan engine. One was a linear array of 16 microphones located on a 25 ft. sideline and the other was a 103 microphone 3-D "cage" array in the near field of the jet. Data were obtained from a baseline nozzle and from numerous nozzle configuration using chevrons and/or tabs to reduce the jet noise. Mr. Weir presented data from two configurations: the baseline nozzle and a nozzle configuration with chevrons on both the core and bypass nozzles. This chevron configuration had achieved a jet noise reduction of 4 EPNdB in small scale tests conducted at the Glenn Research Center. IR imaging showed that the chevrons produced significant improvements in mixing and greatly reduced the length of the jet potential core. Comparison of source location data from the 1-D phased array showed a shift of the noise sources towards the nozzle and clear reductions of the sources due to the noise reduction devices. Data from the 3-D array showed a single source at a frequency of 125 Hz. located several diameters downstream from the nozzle exit. At 250 and 400 Hz., multiple sources, periodically spaced, appeared to exist downstream of the nozzle. The trend of source location moving toward the nozzle exit with increasing frequency was also observed. The 3-D array data also showed a reduction in source strength with the addition of chevrons. The overall trend of source location with frequency was compared for the two arrays and with classical experience. Similar trends were observed. Although overall trends with frequency and addition of suppression devices were consistent between the data from the 1-D and the 3-D arrays, a comparison of the details of the inferred source locations did show differences. A

  19. Acoustic sources' localization in presence of reverberation

    NASA Astrophysics Data System (ADS)

    Julliard, E.; Pauzin, S.; Simon, F.; Biron, D.

    2005-09-01

    For several years, aeronautical industries have wished to improve internal acoustical comfort. In order to make it, they need metrological tools which are able to help them to spot acoustical sources and the associated path in a specific frequency range (i.e., for helicopters' internal noise: 1000-5000 Hz). Two major source' localization' tools exist: holography and beamforming, but these two techniques are based on a free field's hypothesis. So, problems appear when these techniques are used in a reverberant medium. This paper deals with the study and the comparison of holography and beamforming results in an enclosed area. To complete the study, intensimetry is also implemented to have information on the energy propagation. In order to test the performances of each method, two reflecting panels are put at right angles to create a reverberant environment, in an anechoic chamber. We seek to locate loudspeakers clamped in one panel, in the presence of parasite loudspeakers located on the other one. Then, a parametrical study is led: localization and number of sources, coherent or noncoherent sources. Thus, using limitations, precautions to take, and a base of comparison three methods are put forward. Finally, some envisaged solutions to limit problems of reflections (signal processing, overturning, etc.) are presented.

  20. Point Source Location Sensitivity Analysis

    NASA Astrophysics Data System (ADS)

    Cox, J. Allen

    1986-11-01

    This paper presents the results of an analysis of point source location accuracy and sensitivity as a function of focal plane geometry, optical blur spot, and location algorithm. Five specific blur spots are treated: gaussian, diffraction-limited circular aperture with and without central obscuration (obscured and clear bessinc, respectively), diffraction-limited rectangular aperture, and a pill box distribution. For each blur spot, location accuracies are calculated for square, rectangular, and hexagonal detector shapes of equal area. The rectangular detectors are arranged on a hexagonal lattice. The two location algorithms consist of standard and generalized centroid techniques. Hexagonal detector arrays are shown to give the best performance under a wide range of conditions.

  1. Passive acoustic source localization using sources of opportunity.

    PubMed

    Verlinden, Christopher M A; Sarkar, J; Hodgkiss, W S; Kuperman, W A; Sabra, K G

    2015-07-01

    The feasibility of using data derived replicas from ships of opportunity for implementing matched field processing is demonstrated. The Automatic Identification System (AIS) is used to provide the library coordinates for the replica library and a correlation based processing procedure is used to overcome the impediment that the replica library is constructed from sources with different spectra and will further be used to locate another source with its own unique spectral structure. The method is illustrated with simulation and then verified using acoustic data from a 2009 experiment for which AIS information was retrieved from the United States Coast Guard Navigation Center Nationwide AIS database. PMID:26233061

  2. Optimal estimation of undersea acoustic transponder locations

    NASA Technical Reports Server (NTRS)

    Carta, D. G.

    1978-01-01

    Using principles from multilateration and optimal estimation theories an approach is derived for estimating the relative positions of three or more submerged and anchored acoustic transponders. The procedure is not constrained to processing range data collected at special points or on special trajectories. While the data normally collected over transponders and between transponder pairs can be processed, simultaneous ranges from anywhere on the surface to three or more transponders can also be processed. Simulated examples involving four stations in different geometries with different range collection schemes demonstrate the effectiveness of the procedure.

  3. Vehicular sources in acoustic propagation experiments

    NASA Technical Reports Server (NTRS)

    Prado, Gervasio; Fitzgerald, James; Arruda, Anthony; Parides, George

    1990-01-01

    One of the most important uses of acoustic propagation models lies in the area of detection and tracking of vehicles. Propagation models are used to compute transmission losses in performance prediction models and to analyze the results of past experiments. Vehicles can also provide the means for cost effective experiments to measure acoustic propagation conditions over significant ranges. In order to properly correlate the information provided by the experimental data and the propagation models, the following issues must be taken into consideration: the phenomenology of the vehicle noise sources must be understood and characterized; the vehicle's location or 'ground truth' must be accurately reproduced and synchronized with the acoustic data; and sufficient meteorological data must be collected to support the requirements of the propagation models. The experimental procedures and instrumentation needed to carry out propagation experiments are discussed. Illustrative results are presented for two cases. First, a helicopter was used to measure propagation losses at a range of 1 to 10 Km. Second, a heavy diesel-powered vehicle was used to measure propagation losses in the 300 to 2200 m range.

  4. System and method for sonic wave measurements using an acoustic beam source

    DOEpatents

    Vu, Cung Khac; Sinha, Dipen N.; Pantea, Cristian

    2015-08-11

    A method and system for investigating structure near a borehole are described herein. The method includes generating an acoustic beam by an acoustic source; directing at one or more azimuthal angles the acoustic beam towards a selected location in a vicinity of a borehole; receiving at one or more receivers an acoustic signal, the acoustic signal originating from a reflection or a refraction of the acoustic wave by a material at the selected location; and analyzing the received acoustic signal to characterize features of the material around the borehole.

  5. Pulsed-Source Interferometry in Acoustic Imaging

    NASA Technical Reports Server (NTRS)

    Shcheglov, Kirill; Gutierrez, Roman; Tang, Tony K.

    2003-01-01

    A combination of pulsed-source interferometry and acoustic diffraction has been proposed for use in imaging subsurface microscopic defects and other features in such diverse objects as integrated-circuit chips, specimens of materials, and mechanical parts. A specimen to be inspected by this technique would be mounted with its bottom side in contact with an acoustic transducer driven by a continuous-wave acoustic signal at a suitable frequency, which could be as low as a megahertz or as high as a few hundred gigahertz. The top side of the specimen would be coupled to an object that would have a flat (when not vibrating) top surface and that would serve as the acoustical analog of an optical medium (in effect, an acoustical "optic").

  6. Calculating room acoustic parameters from pseudo-impulsive acoustic sources

    NASA Astrophysics Data System (ADS)

    San Martin, Maria L.; Vela, Antonio; San Martin, Ricardo; Arana, Miguel A.

    2002-11-01

    The impulse response function provides complete information to predict the acoustic response of a room to an acoustic input of arbitrary characteristics. At this job study, small explosions of firecrackers are proposed to be used as pseudo-impulsive acoustics sources to determine some acoustic parameters of a room such as reverberation time, definition, and clarity, comparing these results to those obtained with other techniques. A previous characterization of these sources allows us to state that they can be used for this purpose because they are, in practice, omnidirectional, their temporary pattern is highly repetitive and their spectral power is, as well, repetitive and with enough power in octave bands from 125 Hz to 8 kHz. If the linear time-invariant system impulse response h(t) is known, output signal s(t) regarding any arbitrary signal s(t) can be obtained. For our pseudo-impulsive sources, the output signal s(t) has been taken as impulse response h(t). Using the integrated impulse response method suggested by Schroeder, it has been stated that both the mean values and standard deviations for some parameters are practically identical to results obtained with other usual techniques. (To be presented in Spanish.)

  7. Acoustic Source Bearing Estimation (ASBE) computer program development

    NASA Technical Reports Server (NTRS)

    Wiese, Michael R.

    1987-01-01

    A new bearing estimation algorithm (Acoustic Source Analysis Technique - ASAT) and an acoustic analysis computer program (Acoustic Source Bearing Estimation - ASBE) are described, which were developed by Computer Sciences Corporation for NASA Langley Research Center. The ASBE program is used by the Acoustics Division/Applied Acoustics Branch and the Instrument Research Division/Electro-Mechanical Instrumentation Branch to analyze acoustic data and estimate the azimuths from which the source signals radiated. Included are the input and output from a benchmark test case.

  8. Locating groundwater flow in karst by acoustic emission surveys

    SciTech Connect

    Stokowski, S.J. Jr.; Clark, D.A.

    1985-01-01

    An acoustic emission survey of Newala Fm. (primarily dolomite) karst has helped to locate subsurface water flow. This survey was performed on the Rock Quarry Dome, Sevier County, Tennessee. A Dresser RS-4 recording seismograph, adjusted to provide a gain of 1000, collected acoustic emission data using Mark Products CN368 vertical geophones with 3-inch spikes. Data was collected for 5-15 second intervals. The geophones were laid out along traverses with 10, 20, or 30-ft spacing and covered with sand bags in locations of high ambient noise. Traverses were laid out: along and across lineaments known to correspond with groundwater flow in natural subsurface channels; across and along a joint-controlled sink suspected of directing groundwater flow; and across a shallow sinkhole located tangentially to the Little Pigeon River and suspected of capturing river water for the groundwater system. Acoustic emissions of channelized flowing groundwater have a characteristic erratic spiked spectral signature. These acoustic emission signatures increase in amplitude and number in the immediate vicinity of the vertical projection of channelized groundwater flow if it occurs within approximately 30 feet of the surface. If the groundwater flow occurs at greater depths the emissions may be offset from the projection of the actual flow, due to propagation of the signal along rock pinnacles or attenuation by residual soils.

  9. Location Dependence of Mass Sensitivity for Acoustic Wave Devices

    PubMed Central

    Zhang, Kewei; Chai, Yuesheng; Cheng, Z.-Y.

    2015-01-01

    It is introduced that the mass sensitivity (Sm) of an acoustic wave (AW) device with a concentrated mass can be simply determined using its mode shape function: the Sm is proportional to the square of its mode shape. By using the Sm of an AW device with a uniform mass, which is known for almost all AW devices, the Sm of an AW device with a concentrated mass at different locations can be determined. The method is confirmed by numerical simulation for one type of AW device and the results from two other types of AW devices. PMID:26404313

  10. Acoustic emission location on aluminum alloy structure by using FBG sensors and PSO method

    NASA Astrophysics Data System (ADS)

    Lu, Shizeng; Jiang, Mingshun; Sui, Qingmei; Dong, Huijun; Sai, Yaozhang; Jia, Lei

    2016-04-01

    Acoustic emission location is important for finding the structural crack and ensuring the structural safety. In this paper, an acoustic emission location method by using fiber Bragg grating (FBG) sensors and particle swarm optimization (PSO) algorithm were investigated. Four FBG sensors were used to form a sensing network to detect the acoustic emission signals. According to the signals, the quadrilateral array location equations were established. By analyzing the acoustic emission signal propagation characteristics, the solution of location equations was converted to an optimization problem. Thus, acoustic emission location can be achieved by using an improved PSO algorithm, which was realized by using the information fusion of multiple standards PSO, to solve the optimization problem. Finally, acoustic emission location system was established and verified on an aluminum alloy plate. The experimental results showed that the average location error was 0.010 m. This paper provided a reliable method for aluminum alloy structural acoustic emission location.

  11. Acoustic-Gravity Waves from Bolide Sources

    NASA Astrophysics Data System (ADS)

    Revelle, Douglas O.

    2008-06-01

    We have developed a new approach to modeling the acoustic-gravity wave (AGW) radiation from bolide sources. This first effort involves entry modeling of bolide sources that have available satellite data through procedures developed in ReVelle (Earth Moon Planets 95, 441-476, 2004a; in: A. Milani, G. Valsecchi, D. Vokrouhlicky (eds) NEO Fireball Diversity: Energetics-based Entry Modeling and Analysis Techniques, Near-earth Objects: Our Celestial Neighbors (IAU S236), 2007b). Results from the entry modeling are directly coupled to AGW production through line source blast wave theory for the initial wave amplitude and period at x=10 (at 10 blast wave radii and perpendicular to the trajectory). The second effort involves the prediction of the formation and or dominance of the propagation of the atmospheric Lamb, edge-wave composite mode in a viscous fluid (Pierce, J. Acoust. Soc. Amer. 35, 1798-1807, 1963) as a function of the source energy, horizontal range and source altitude using the Lamb wave frequency that was deduced directly during the entry modeling and that is used as a surrogate for the source energy. We have also determined that Lamb wave production by bolides at close range decreases dramatically as either the source energy decreases or the source altitude increases. Finally using procedures in Gill ( Atmospheric-Ocean Dynamics, 1982) and in Tolstoy ( Wave Propagation, 1973), we have analyzed two simple dispersion relationships and have calculated the expected dispersion for the Lamb edge-wave mode and for the excited, propagating internal acoustic waves. Finally, we have used the above formalism to fully evaluate these techniques for four large bolides, namely: the Tunguska bolide of June 30, 1908; the Revelstoke bolide of March 31, 1965; the Crete bolide of June 6, 2002 and the Antarctic bolide of September 3, 2004. Due to page limitations, we will only present results in detail for the Revelstoke bolide.

  12. Optical Sensor/Actuator Locations for Active Structural Acoustic Control

    NASA Technical Reports Server (NTRS)

    Padula, Sharon L.; Palumbo, Daniel L.; Kincaid, Rex K.

    1998-01-01

    Researchers at NASA Langley Research Center have extensive experience using active structural acoustic control (ASAC) for aircraft interior noise reduction. One aspect of ASAC involves the selection of optimum locations for microphone sensors and force actuators. This paper explains the importance of sensor/actuator selection, reviews optimization techniques, and summarizes experimental and numerical results. Three combinatorial optimization problems are described. Two involve the determination of the number and position of piezoelectric actuators, and the other involves the determination of the number and location of the sensors. For each case, a solution method is suggested, and typical results are examined. The first case, a simplified problem with simulated data, is used to illustrate the method. The second and third cases are more representative of the potential of the method and use measured data. The three case studies and laboratory test results establish the usefulness of the numerical methods.

  13. The acoustical cues to sound location in the rat: Measurements of directional transfer functions

    PubMed Central

    Koka, Kanthaiah; Read, Heather L.; Tollin, Daniel J.

    2008-01-01

    The acoustical cues for sound location are generated by spatial- and frequency-dependent filtering of propagating sound waves by the head and external ears. Although rats have been a common model system for anatomy, physiology, and psychophysics of localization, there have been few studies of the acoustical cues available to rats. Here, directional transfer functions (DTFs), the directional components of the head-related transfer functions, were measured in six adult rats. The cues to location were computed from the DTFs. In the frontal hemisphere, spectral notches were present for frequencies from ∼16 to 30 kHz; in general, the frequency corresponding to the notch increased with increases in source elevation and in azimuth toward the ipsilateral ear. The maximum high-frequency envelope-based interaural time differences (ITDs) were 130 μs, whereas low-frequency (<3.5 kHz) fine-structure ITDs were 160 μs; both types of ITDs were larger than predicted from spherical head models. Interaural level differences (ILDs) strongly depended on location and frequency. Maximum ILDs were <10 dB for frequencies <8 kHz and were as large as 20–40 dB for frequencies >20 kHz. Removal of the pinna eliminated the spectral notches, reduced the acoustic gain and ILDs, altered the acoustical axis, and reduced the ITDs. PMID:18537381

  14. The acoustical cues to sound location in the rat: measurements of directional transfer functions.

    PubMed

    Koka, Kanthaiah; Read, Heather L; Tollin, Daniel J

    2008-06-01

    The acoustical cues for sound location are generated by spatial- and frequency-dependent filtering of propagating sound waves by the head and external ears. Although rats have been a common model system for anatomy, physiology, and psychophysics of localization, there have been few studies of the acoustical cues available to rats. Here, directional transfer functions (DTFs), the directional components of the head-related transfer functions, were measured in six adult rats. The cues to location were computed from the DTFs. In the frontal hemisphere, spectral notches were present for frequencies from approximately 16 to 30 kHz; in general, the frequency corresponding to the notch increased with increases in source elevation and in azimuth toward the ipsilateral ear. The maximum high-frequency envelope-based interaural time differences (ITDs) were 130 mus, whereas low-frequency (<3.5 kHz) fine-structure ITDs were 160 mus; both types of ITDs were larger than predicted from spherical head models. Interaural level differences (ILDs) strongly depended on location and frequency. Maximum ILDs were <10 dB for frequencies <8 kHz and were as large as 20-40 dB for frequencies >20 kHz. Removal of the pinna eliminated the spectral notches, reduced the acoustic gain and ILDs, altered the acoustical axis, and reduced the ITDs. PMID:18537381

  15. Identifying Potential Noise Sources within Acoustic Signals

    NASA Astrophysics Data System (ADS)

    Holcomb, Victoria; Lewalle, Jacques

    2013-11-01

    We test a new algorithm for its ability to detect sources of noise within random background. The goal of these tests is to better understand how to identify sources within acoustic signals while simultaneously determining the strengths and weaknesses of the algorithm in question. Unlike previously published algorithms, the antenna method does not pinpoint events by looking for the most energetic portions of a signal. The algorithm searches for the ideal lag combinations between three signals by taking excerpts of possible events. The excerpt with the lowest calculated minimum distance between possible events is how the algorithm identifies sources. At the minimum distance, the events are close in time and frequency. This method can be compared to the cross correlation and denoising methods to better understand its effectiveness. This work is supported in part by Spectral Energies LLC, under an SBIR grant from AFRL, as well as the Syracuse University MAE department.

  16. Locating Microseism Sources in Offshore Southern California

    NASA Astrophysics Data System (ADS)

    Tian, X.; Clayton, R. W.

    2007-12-01

    We use the broadband stations from the S. California network to locate the apparent origin of secondary microseisms energy (5-8 Hz band). The procedure is to grid the offshore region and using each grid point as the source point, predict the response of a Rayleigh wave at each station. These predicted waveforms are then correlated with the data over a time window that is typically a 1/2 hour in length and composited at the grid point. The length of the time window controls a tradeoff between the spatial-temporal resolution of the sources and the robustness on the image. The procedure is valid for multiple sources. This results show that during periods of high microseism activity the sources are distinct at several locations in a region approximately 50-100 km offshore. For an 11/09/2002 Southern Ocean storm, for example, two zones parallel to each other and perpendicular to the coast are imaged.

  17. Locating POPs Sources with Tree Bark.

    PubMed

    Peverly, Angela A; Salamova, Amina; Hites, Ronald A

    2015-12-01

    Locating sources of persistent organic pollutants (POPs) to the atmosphere can sometimes be difficult. We suggest that tree bark makes an excellent passive atmospheric sampler and that spatial analysis of tree bark POPs concentrations can often pinpoint their sources. This is an effective strategy because tree bark is lipophilic and readily adsorbs and collects POPs from the atmosphere. As such, tree bark is an ideal sampler to find POPs sources globally, regionally, or locally. This article summarizes some work on this subject with an emphasis on kriged maps and a simple power-law model, both of which have been used to locate sources. Three of the four examples led directly to the pollutant's manufacturing plant. PMID:25629888

  18. Dimensional feature weighting utilizing multiple kernel learning for single-channel talker location discrimination using the acoustic transfer function.

    PubMed

    Takashima, Ryoichi; Takiguchi, Tetsuya; Ariki, Yasuo

    2013-02-01

    This paper presents a method for discriminating the location of the sound source (talker) using only a single microphone. In a previous work, the single-channel approach for discriminating the location of the sound source was discussed, where the acoustic transfer function from a user's position is estimated by using a hidden Markov model of clean speech in the cepstral domain. In this paper, each cepstral dimension of the acoustic transfer function is newly weighted, in order to obtain the cepstral dimensions having information that is useful for classifying the user's position. Then, this paper proposes a feature-weighting method for the cepstral parameter using multiple kernel learning, defining the base kernels for each cepstral dimension of the acoustic transfer function. The user's position is trained and classified by support vector machine. The effectiveness of this method has been confirmed by sound source (talker) localization experiments performed in different room environments. PMID:23363107

  19. The acoustical cues to sound location in the Guinea pig (cavia porcellus)

    PubMed Central

    Greene, Nathanial T; Anbuhl, Kelsey L; Williams, Whitney; Tollin, Daniel J.

    2014-01-01

    There are three main acoustical cues to sound location, each attributable to space-and frequency-dependent filtering of the propagating sound waves by the outer ears, head, and torso: Interaural differences in time (ITD) and level (ILD) as well as monaural spectral shape cues. While the guinea pig has been a common model for studying the anatomy, physiology, and behavior of binaural and spatial hearing, extensive measurements of their available acoustical cues are lacking. Here, these cues were determined from directional transfer functions (DTFs), the directional components of the head-related transfer functions, for eleven adult guinea pigs. In the frontal hemisphere, monaural spectral notches were present for frequencies from ~10 to 20 kHz; in general, the notch frequency increased with increasing sound source elevation and in azimuth toward the contralateral ear. The maximum ITDs calculated from low-pass filtered (2 kHz cutoff frequency) DTFs were ~250 µs, whereas the maximum ITD measured with low frequency tone pips was over 320 µs. A spherical head model underestimates ITD magnitude under normal conditions, but closely approximates values when the pinnae were removed. Interaural level differences (ILDs) strongly depended on location and frequency; maximum ILDs were < 10 dB for frequencies < 4 kHz and were as large as 40 dB for frequencies > 10 kHz. Removal of the pinna reduced the depth and sharpness of spectral notches, altered the acoustical axis, and reduced the acoustical gain, ITDs, and ILDs; however, spectral shape features and acoustical gain were not completely eliminated, suggesting a substantial contribution of the head and torso in altering the sounds present at the tympanic membrane. PMID:25051197

  20. Equivalent Source Method Applied to Launch Acoustic Simulations

    NASA Technical Reports Server (NTRS)

    Housman, Jeffrey A.; Barad, Michael F.; Kiris, Cetin

    2012-01-01

    Aeroacoustic simulations of the launch environment are described. A hybrid computational fluid dynamics (CFD)/computational aeroacoustic (CAA) approach is developed in order to accurately and efficiently predict the sound pressure level spectrum on the launch vehicle and surrounding structures. The high-fidelity CFD code LAVA (Launch Ascent and Vehicle Analysis), is used to generate pressure time history at select locations in the flow field. A 3D exterior Helmholtz solver is then used to iteratively determine a set of monopole sources which mimic the noise generating mechanisms identified by the CFD solver. The acoustic pressure field generated from the Helmholtz solver is then used to evaluate the sound pressure levels.

  1. Determination of acoustic speed for improving leak detection and location in gas pipelines

    NASA Astrophysics Data System (ADS)

    Li, Shuaiyong; Wen, Yumei; Li, Ping; Yang, Jin; Yang, Lili

    2014-02-01

    The commonly used cross-correlation technique for leak location requires that the acoustic speed is known and invariable. In practice, the gas leakage-induced acoustic waves propagate along multiple paths including in-pipe gas and pipe wall, and the acoustic waves in different transmission paths exhibit different acoustic speeds and different dispersive behaviors, which bring a great challenge for leak detection and location in the gas pipelines. In this study, based on the vibration theory of cylindrical elastic thin shell, the wavenumber formulae in different transmission paths are derived to predict the acoustic speeds and the acoustical coupling between the in-pipe gas and the pipe wall is analyzed to determine the dominant transmission path. In addition, the velocity dispersions in the dominant transmission path are suppressed by selection of a characteristic frequency band of the gas leakage-induced acoustic waves. The theoretical predictions are verified in the experiment and the results show that the theoretical acoustic speed is slightly larger than the measured acoustic speed. Thus, the theoretical acoustic speed formula is modified considering the effect of the structural loss factor and consequently the location error using the modified acoustic speed is reduced by two times compared to that using the theoretical acoustic speed.

  2. Determination of acoustic speed for improving leak detection and location in gas pipelines.

    PubMed

    Li, Shuaiyong; Wen, Yumei; Li, Ping; Yang, Jin; Yang, Lili

    2014-02-01

    The commonly used cross-correlation technique for leak location requires that the acoustic speed is known and invariable. In practice, the gas leakage-induced acoustic waves propagate along multiple paths including in-pipe gas and pipe wall, and the acoustic waves in different transmission paths exhibit different acoustic speeds and different dispersive behaviors, which bring a great challenge for leak detection and location in the gas pipelines. In this study, based on the vibration theory of cylindrical elastic thin shell, the wavenumber formulae in different transmission paths are derived to predict the acoustic speeds and the acoustical coupling between the in-pipe gas and the pipe wall is analyzed to determine the dominant transmission path. In addition, the velocity dispersions in the dominant transmission path are suppressed by selection of a characteristic frequency band of the gas leakage-induced acoustic waves. The theoretical predictions are verified in the experiment and the results show that the theoretical acoustic speed is slightly larger than the measured acoustic speed. Thus, the theoretical acoustic speed formula is modified considering the effect of the structural loss factor and consequently the location error using the modified acoustic speed is reduced by two times compared to that using the theoretical acoustic speed. PMID:24593385

  3. Acoustic radiation from lined, unflanged ducts: Acoustic source distribution program

    NASA Technical Reports Server (NTRS)

    Beckemeyer, R. J.; Sawdy, D. T.

    1971-01-01

    An acoustic radiation analysis was developed to predict the far-field characteristics of fan noise radiated from an acoustically lined unflanged duct. This analysis is comprised of three modular digital computer programs which together provide a capability of accounting for the impedance mismatch at the duct exit plane. Admissible duct configurations include circular or annular, with or without an extended centerbody. This variation in duct configurations provides a capability of modeling inlet and fan duct noise radiation. The computer programs are described in detail.

  4. Broadband acoustic source processing in a noisy shallow ocean environment

    SciTech Connect

    Candy, J.V.; Sullivan, E.J.

    1996-07-18

    Acoustic sources found in the ocean environment are spatially complex and broadband, complicating the analysis of received acoustic data considerably. A model-based approach is developed for a broadband source in a shallow ocean environment characterized by a normal-mode propagation model. Here we develop the optimal Bayesian solution to the broadband pressure-field enhancement and modal function extraction problem.

  5. Seismo-Acoustic Observations of Explosive Sources

    NASA Astrophysics Data System (ADS)

    Chael, E. P.; Hart, D. M.; Jones, K. R.

    2011-12-01

    Since January 2011, the Sandia National Laboratories Facility for Acceptance, Calibration and Testing (FACT) has operated a seismo-acoustic station with the purpose of recording local explosions on Kirtland Air Force Base (KAFB). Our immediate goals are to develop a catalog of events and a database of seismo-acoustic waveforms from ordnance disposal and Defense Threat Reduction Agency (DTRA) events. The catalog of events will include metadata such as shot time, size, type and location. The waveform archive includes a three-channel GS-13 seismometer and a single infrasound sensor (Chaparral 25 with 50' porous hose wind reduction system). In June of 2011 a weather station was added to complement the monitoring system by providing accurate wind conditions at the times of the explosive events. Monthly internal reports compiled by KAFB provided us with the metadata for the ordnance disposal explosions, and an agreement with DTRA has enabled us to obtain metadata on their events. To date 157 explosions have been identified, including 153 ordnance disposal events and 4 DTRA tests. Along with the catalog of events we have developed automated processing routines to extract both seismic and infrasound arrivals and measure basic waveform characteristics. These include amplitudes of pre-event noise, the direct seismic arrival, air-coupled seismic arrival, infrasound arrival, and wind speed/direction. Using the waveform measurements from the pre-event noise and air-coupled seismic arrival we calculate the SNR for the seismic component of the event. We also calculate the SNR for the infrasonic component of the event using pre-event noise and the direct infrasound arrival. Using the metadata and seismic and infrasonic SNR values we are able to calculate an air-to-ground coupling ratio for each event. For local (<10 km) explosion monitoring, the wind speed and direction can influence all of the analysis parameters. It will affect the pre-event noise level as well as the infrasound

  6. Developing a system for blind acoustic source localization and separation

    NASA Astrophysics Data System (ADS)

    Kulkarni, Raghavendra

    This dissertation presents innovate methodologies for locating, extracting, and separating multiple incoherent sound sources in three-dimensional (3D) space; and applications of the time reversal (TR) algorithm to pinpoint the hyper active neural activities inside the brain auditory structure that are correlated to the tinnitus pathology. Specifically, an acoustic modeling based method is developed for locating arbitrary and incoherent sound sources in 3D space in real time by using a minimal number of microphones, and the Point Source Separation (PSS) method is developed for extracting target signals from directly measured mixed signals. Combining these two approaches leads to a novel technology known as Blind Sources Localization and Separation (BSLS) that enables one to locate multiple incoherent sound signals in 3D space and separate original individual sources simultaneously, based on the directly measured mixed signals. These technologies have been validated through numerical simulations and experiments conducted in various non-ideal environments where there are non-negligible, unspecified sound reflections and reverberation as well as interferences from random background noise. Another innovation presented in this dissertation is concerned with applications of the TR algorithm to pinpoint the exact locations of hyper-active neurons in the brain auditory structure that are directly correlated to the tinnitus perception. Benchmark tests conducted on normal rats have confirmed the localization results provided by the TR algorithm. Results demonstrate that the spatial resolution of this source localization can be as high as the micrometer level. This high precision localization may lead to a paradigm shift in tinnitus diagnosis, which may in turn produce a more cost-effective treatment for tinnitus than any of the existing ones.

  7. The Effects of Nonlinear Propagation on Acoustic Source Imaging in One-Dimension

    NASA Astrophysics Data System (ADS)

    Shepherd, Micah; Gee, Kent L.

    2006-10-01

    The acoustics of finite-amplitude (nonlinear) sound sources, such as rockets and jets, are not well understood. Characterization of sound pressure amplitudes, aeroacoustic source locations and frequency dependence of these sources is needed to assess the impact of the acoustic field on the launch equipment and surrounding environment. Nonlinear propagation of high-amplitude sound is being studied to determine if a source-imaging method called near-field acoustical holography (NAH), which is based on linear assumptions, can be used to estimate the source information mentioned. A one-dimensional numerical algorithm is being used to linearly and nonlinearly propagate the radiation from a monofrequency source. NAH is used to reconstruct the source information from the simulated data and the error is determined in decibels.

  8. Acoustic monitoring of laboratory faults: locating the origin of unstable slip events

    NASA Astrophysics Data System (ADS)

    Korkolis, Evangelos; Niemeijer, André; Spiers, Christopher

    2015-04-01

    Over the past several decades, much work has been done on studying the frictional properties of fault gouges at earthquake nucleation velocities. In addition, post-experiment microstructural analyses have been performed in an attempt to link microphysical mechanisms to the observed mechanical data. However, all observations are necessarily post-mortem and it is thus difficult to directly link transients to microstructural characteristics. We are developing an acoustic monitoring system to be used in sliding experiments using a ring shear apparatus. The goal is to locate acoustic emission sources in sheared granular assemblages and link them to processes that act on microstructures responsible for the frictional stability of the simulated fault gouge. The results will be used to develop and constrain microphysical models that explain the relation of these processes to empirical friction laws, such as rate- and state-dependent friction. The acoustic monitoring setup is comprised of an array of 16 piezo-electric sensors installed on the top and bottom sides of an annular sample, at 45 degree intervals. Acoustic emissions associated with slip events can be recorded at sampling rates of up to 50 MHz, in triggered mode. Initial experiments on 0.1 to 0.2 mm and 0.4 to 0.5 mm diameter glass beads, at 1 to 5 MPa normal stress and 1 to 30 um/s load point velocity, have been conducted to estimate the sensitivity of the sensor array. Preliminary results reveal that the intensity of the audible signal is not necessarily proportional to the magnitude of the associated stress drop for constant loading conditions, and that acoustic emissions precede slip events by a small amount of time, in the order of a few milliseconds. Currently, our efforts are focused on developing a suitable source location algorithm with the aim to identify differences in the mode of (unstable) sliding for different types of materials. This will help to identify the micromechanical mechanisms operating

  9. Statistical analysis of storm electrical discharges reconstituted from a lightning mapping system, a lightning location system, and an acoustic array

    NASA Astrophysics Data System (ADS)

    Gallin, Louis-Jonardan; Farges, Thomas; Marchiano, Régis; Coulouvrat, François; Defer, Eric; Rison, William; Schulz, Wolfgang; Nuret, Mathieu

    2016-04-01

    In the framework of the European Hydrological Cycle in the Mediterranean Experiment project, a field campaign devoted to the study of electrical activity during storms took place in the south of France in 2012. An acoustic station composed of four microphones and four microbarometers was deployed within the coverage of a Lightning Mapping Array network. On the 26 October 2012, a thunderstorm passed just over the acoustic station. Fifty-six natural thunder events, due to cloud-to-ground and intracloud flashes, were recorded. This paper studies the acoustic reconstruction, in the low frequency range from 1 to 40 Hz, of the recorded flashes and their comparison with detections from electromagnetic networks. Concurrent detections from the European Cooperation for Lightning Detection lightning location system were also used. Some case studies show clearly that acoustic signal from thunder comes from the return stroke but also from the horizontal discharges which occur inside the clouds. The huge amount of observation data leads to a statistical analysis of lightning discharges acoustically recorded. Especially, the distributions of altitudes of reconstructed acoustic detections are explored in detail. The impact of the distance to the source on these distributions is established. The capacity of the acoustic method to describe precisely the lower part of nearby cloud-to-ground discharges, where the Lightning Mapping Array network is not effective, is also highlighted.

  10. Optimal Localization of Ocean Acoustic Sources in AN Uncertain Environment

    NASA Astrophysics Data System (ADS)

    Richardson, Anthony Merle

    1990-01-01

    In this paper, a method for determining the position of an underwater acoustic source from observations of the associated acoustic field and information about the acoustic environment is presented. This algorithm, unlike matched field processing algorithms, does not require complete knowledge of the acoustic environment, but can determine source position even with uncertain or imprecise information about the environment. The algorithm is termed the optimum uncertain field processing algorithm. Parameter estimation theory is utilized to derive the new algorithm. This provides a systematic, optimal approach to the problem, and allows environmental uncertainty to be easily incorporated into the algorithm. In addition to estimating source position, estimates of parameters of the acoustic environment can also be calculated. This makes simultaneous source localization and acoustic tomographic estimation of ocean parameters possible. A detailed discussion of the acoustic propagation models used in the research is presented. The defining equation for the optimum uncertain field processor is then derived. It is shown that the algorithm reduces to a popular matched field processing technique for the special case in which the environment is completely known. A series of studies that illustrate the robust performance of the uncertain field processor, relative to the performance of matched field processing methods, is made. Estimation of ocean acoustic parameters is also illustrated. The affects of environmental uncertainty, source position, and frequency on localization performance are examined.

  11. Locating industrial VOC sources with aircraft observations.

    PubMed

    Toscano, P; Gioli, B; Dugheri, S; Salvini, A; Matese, A; Bonacchi, A; Zaldei, A; Cupelli, V; Miglietta, F

    2011-05-01

    Observation and characterization of environmental pollution, focussing on Volatile Organic Compounds (VOCs), in a high-risk industrial area, are particularly important in order to provide indications on a safe level of exposure, indicate eventual priorities and advise on policy interventions. The aim of this study is to use the Solid Phase Micro Extraction (SPME) method to measure VOCs, directly coupled with atmospheric measurements taken on a small aircraft environmental platform, to evaluate and locate the presence of VOC emission sources in the Marghera industrial area. Lab analysis of collected SPME fibres and subsequent analysis of mass spectrum and chromatograms in Scan Mode allowed the detection of a wide range of VOCs. The combination of this information during the monitoring campaign allowed a model (Gaussian Plume) to be implemented that estimates the localization of emission sources on the ground. PMID:21376441

  12. ACOUSTIC LOCATION OF LEAKS IN PRESSURIZED UNDERGROUND PETROLEUM PIPELINES

    EPA Science Inventory

    Experiments were conducted at the UST Test Apparatus Pipeline in which three acoustic sensors separated by a maximum distance of 38 m (125-ft) were used to monitor signals produced by 3.0-, 1.5-, and 1.0-gal/h leaks in the wall of a 2-in.-diameter pressurized petroleum pipeline. ...

  13. Study of acoustic emission sources and signals

    NASA Astrophysics Data System (ADS)

    Pumarega, M. I. López; Armeite, M.; Oliveto, M. E.; Piotrkowski, R.; Ruzzante, J. E.

    2002-05-01

    Methods of acoustic emission (AE) signal analysis give information about material conditions, since AE generated in stressed solids can be used to indicate cracks and defect positions so as their damaging potential. We present a review of results of laboratory AE tests on metallic materials. Rings of seamless steel tubes, with and without oxide layers, were cut and then deformed by opening their ends. Seamless Zry-4 tubes were submitted to hydraulic stress tests until rupture with a purposely-constructed hydraulic system. In burst type signals, their parameters, Amplitude (A), Duration (D) and Risetime (R), were statistically studied. Amplitudes were found to follow the Log-normal distribution. This led to infer that the detected AE signal, is the complex consequence of a great number of random independent sources, which individual effects are linked. We could show, using cluster analysis for A, D and R mean values, with 5 clusters, coincidence between the clusters and the test types. A slight linear correlation was obtained for the parameters A and D. The arrival time of the AE signals was also studied, which conducted to discussing Poisson and Polya processes. The digitized signals were studied as (1/f)β noises. The general results are coherent if we consider the AE phenomena in the frame of Self Organized Criticality theory.

  14. Acoustic Source Localization in Aircraft Interiors Using Microphone Array Technologies

    NASA Technical Reports Server (NTRS)

    Sklanka, Bernard J.; Tuss, Joel R.; Buehrle, Ralph D.; Klos, Jacob; Williams, Earl G.; Valdivia, Nicolas

    2006-01-01

    Using three microphone array configurations at two aircraft body stations on a Boeing 777-300ER flight test, the acoustic radiation characteristics of the sidewall and outboard floor system are investigated by experimental measurement. Analysis of the experimental data is performed using sound intensity calculations for closely spaced microphones, PATCH Inverse Boundary Element Nearfield Acoustic Holography, and Spherical Nearfield Acoustic Holography. Each method is compared assessing strengths and weaknesses, evaluating source identification capability for both broadband and narrowband sources, evaluating sources during transient and steady-state conditions, and quantifying field reconstruction continuity using multiple array positions.

  15. ACOUSTIC LOCATION OF LEAKS IN PRESSURIZED UNDER- GROUND PETROLEUM PIPELINES

    EPA Science Inventory

    Experiments were conducted at the Underground Storage Tank (UST) Test Apparatus Pipeline in which three acoustic sensors separated by a maximum distance of 38.1 m (125 ft) were used to monitor signals produced by 11.4-, 5.7-, and 3.8-L/h (3.0-, 1.5-, and 1.0-gal/h) leaks in th...

  16. Acoustic positioning using a tetrahedral ultrashort baseline array of an acoustic modem source transmitting frequency-hopped sequences.

    PubMed

    Beaujean, Pierre-Philippe J; Mohamed, Asif I; Warin, Raphael

    2007-01-01

    Acoustic communications and positioning are vital aspects of unmanned underwater vehicle operations. The usage of separate units on each vehicle has become an issue in terms of frequency bandwidth, space, power, and cost. Most vehicles rely on acoustic modems transmitting frequency-hopped multiple frequency-shift keyed sequences for command-and-control operations, which can be used to locate the vehicle with a good level of accuracy without requiring extra signal transmission. In this paper, an ultrashort baseline acoustic positioning technique has been designed, simulated, and tested to locate an acoustic modem source in three dimensions using a tetrahedral, half-wavelength acoustic antenna. The position estimation is performed using the detection sequence contained in each message, which is a series of frequency-hopped pulses. Maximum likelihood estimation of azimuth and elevation estimation is performed using a varying number of pulse and various signal-to-noise ratios. Simulated and measured position estimation error match closely, and indicate that the accuracy of this system improves dramatically as the number of pulses processed increases, given a fixed signal-to-noise ratio. PMID:17297770

  17. A method based on acoustic emission for locating debris cloud impact

    NASA Astrophysics Data System (ADS)

    Liu, Zhidong; Pang, Baojun

    2009-12-01

    Due to the threat of impact to spacecraft from space debris and meteoroid, space debris and meteoroid shields have been raised and used in many spacecrafts. In order to conduct an assessment of spacecraft module-wall damage impacted by debris cloud created by space debris and meteoroid high-velocity impact on the shields, it's necessary to develop a location method for the debris cloud impact. The method based on virtual wave front for acoustic emission source location has been investigated and extended to locate the impact position of the debris cloud. Debris cloud hypervelocity impact experiments were conducted by using a two-stage light gas gun, the experimental results indicate that: The signals induced by debris cloud contain a0, s0, s2 mode wave, the virtual wave front location method can be extended to locate the impact position of the debris cloud effectively, the AE signals contain more high frequency components than AE signals created by single projectile impact event. The results provide a reference for the development of the sensor systems to detect impacts on spacecraft.

  18. A method based on acoustic emission for locating debris cloud impact

    NASA Astrophysics Data System (ADS)

    Liu, Zhidong; Pang, Baojun

    2010-03-01

    Due to the threat of impact to spacecraft from space debris and meteoroid, space debris and meteoroid shields have been raised and used in many spacecrafts. In order to conduct an assessment of spacecraft module-wall damage impacted by debris cloud created by space debris and meteoroid high-velocity impact on the shields, it's necessary to develop a location method for the debris cloud impact. The method based on virtual wave front for acoustic emission source location has been investigated and extended to locate the impact position of the debris cloud. Debris cloud hypervelocity impact experiments were conducted by using a two-stage light gas gun, the experimental results indicate that: The signals induced by debris cloud contain a0, s0, s2 mode wave, the virtual wave front location method can be extended to locate the impact position of the debris cloud effectively, the AE signals contain more high frequency components than AE signals created by single projectile impact event. The results provide a reference for the development of the sensor systems to detect impacts on spacecraft.

  19. Normal mode solutions for seismo-acoustic propagation resulting from shear and combined wave point sources.

    PubMed

    Nealy, Jennifer L; Collis, Jon M; Frank, Scott D

    2016-04-01

    Normal mode solutions to range-independent seismo-acoustic problems are benchmarked against elastic parabolic equation solutions and then used to benchmark the shear elastic parabolic equation self-starter [Frank, Odom, and Collis, J. Acoust. Soc. Am. 133, 1358-1367 (2013)]. The Pekeris waveguide with an elastic seafloor is considered for a point source located in the ocean emitting compressional waves, or in the seafloor, emitting both compressional and shear waves. Accurate solutions are obtained when the source is in the seafloor, and when the source is at the interface between the fluid and elastic layers. PMID:27106346

  20. Optimization of Microphone Locations for Acoustic Liner Impedance Eduction

    NASA Technical Reports Server (NTRS)

    Jones, M. G.; Watson, W. R.; June, J. C.

    2015-01-01

    Two impedance eduction methods are explored for use with data acquired in the NASA Langley Grazing Flow Impedance Tube. The first is an indirect method based on the convected Helmholtz equation, and the second is a direct method based on the Kumaresan and Tufts algorithm. Synthesized no-flow data, with random jitter to represent measurement error, are used to evaluate a number of possible microphone locations. Statistical approaches are used to evaluate the suitability of each set of microphone locations. Given the computational resources required, small sample statistics are employed for the indirect method. Since the direct method is much less computationally intensive, a Monte Carlo approach is employed to gather its statistics. A comparison of results achieved with full and reduced sets of microphone locations is used to determine which sets of microphone locations are acceptable. For the indirect method, each array that includes microphones in all three regions (upstream and downstream hard wall sections, and liner test section) provides acceptable results, even when as few as eight microphones are employed. The best arrays employ microphones well away from the leading and trailing edges of the liner. The direct method is constrained to use microphones opposite the liner. Although a number of arrays are acceptable, the optimum set employs 14 microphones positioned well away from the leading and trailing edges of the liner. The selected sets of microphone locations are also evaluated with data measured for ceramic tubular and perforate-over-honeycomb liners at three flow conditions (Mach 0.0, 0.3, and 0.5). They compare favorably with results attained using all 53 microphone locations. Although different optimum microphone locations are selected for the two impedance eduction methods, there is significant overlap. Thus, the union of these two microphone arrays is preferred, as it supports usage of both methods. This array contains 3 microphones in the upstream

  1. Combination of acoustical radiosity and the image source method.

    PubMed

    Koutsouris, Georgios I; Brunskog, Jonas; Jeong, Cheol-Ho; Jacobsen, Finn

    2013-06-01

    A combined model for room acoustic predictions is developed, aiming to treat both diffuse and specular reflections in a unified way. Two established methods are incorporated: acoustical radiosity, accounting for the diffuse part, and the image source method, accounting for the specular part. The model is based on conservation of acoustical energy. Losses are taken into account by the energy absorption coefficient, and the diffuse reflections are controlled via the scattering coefficient, which defines the portion of energy that has been diffusely reflected. The way the model is formulated allows for a dynamic control of the image source production, so that no fixed maximum reflection order is required. The model is optimized for energy impulse response predictions in arbitrary polyhedral rooms. The predictions are validated by comparison with published measured data for a real music studio hall. The proposed model turns out to be promising for acoustic predictions providing a high level of detail and accuracy. PMID:23742350

  2. Acoustic focusing by an array of heat sources in air

    NASA Astrophysics Data System (ADS)

    Ge, Yong; Sun, Hong-xiang; Liu, Chen; Qian, Jiao; Yuan, Shou-qi; Xia, Jian-ping; Guan, Yi-jun; Zhang, Shu-yi

    2016-06-01

    We report on a broadband acoustic focusing lens comprising 20 heat sources of different temperatures, 10 on each side of the array, in air. This focusing phenomenon is attributed to temperature gradients inducing the desired refractive index in one medium (air) and to the continuously changing acoustic impedance, which avoids any acoustic impedance difference that would occur between a lens and air. The results indicate that this focusing lens has a broader bandwidth (>3.5 kHz), higher intensity amplification (about 5.0 times), and a simpler structure. This focusing lens has great potential for applications in ultrasonic devices.

  3. ACOUSTIC DETECTING AND LOCATING GAS PIPE LINE INFRINGEMENT

    SciTech Connect

    John L Loth; Gary J. Morris; George M. Palmer; Richard Guiler; Deepak Mehra

    2003-04-01

    The West Virginia University natural gas transmission line leak detection research is only considering using readily available 1/2 inch pipeline access ports for the detection of leak generated signals. The main problem with leak signals is the low signal to noise ratio. One of the acoustic signals associated with gas escaping through a leak is only temporary and is in the form of a rarefaction wave originating when the leak is formed. Due to pipeline friction, over distance such a step function transitions to a ramp function. The ability to identify a leak by pipeline monitoring and signal processing depends a great deal on the quality and signal to noise ratio of the characteristics of the detectors used. Combinations of sensing devices are being used for the WVU sensor package and are contained in a removable sensor housing. The four sensors currently installed are a 1/2 inch 3 Hz-40 Khz microphone, an audible range moving coil sensor, a piezo-electric pressure transducer, and the WVU designed floating 3 inch diameter diaphragm to detect flow transient induced pressure ramp type signals. The WVU diaphragm sensor, which is currently under development, uses the same diaphragm principle as a high quality capacitance type microphone, but utilizes aerodynamic signal amplification. This type of amplification only amplifies the ramp-signal itself, not the random pipeline noise.

  4. A review of underwater acoustic systems and methods for locating objects lost at sea

    NASA Technical Reports Server (NTRS)

    Lovelady, R. W.; Ferguson, R. L.

    1983-01-01

    Information related to the location of objects lost at sea is presented. Acoustic devices attached to an object prior to being transported is recommended as a homing beacon. Minimum requirements and some environmental constraints are defined. Methods and procedures for search and recovery are also discussed. Both an interim system and a more advanced system are outlined. Controlled acoustic emission to enhance security is the theme followed.

  5. Information-theoretic analysis of iterated Bayesian acoustic source localization in a static ocean waveguide.

    PubMed

    Hayward, Thomas J

    2015-05-01

    Fundamental constructs of information theory are applied to quantify the performance of iterated (sequential) Bayesian localization of a time-harmonic source in a range- and time-invariant acoustic waveguide using the segmented Fourier transforms of the received pressure time series. The nonlinear relation, defined by acoustic propagation, between the source location and the received narrowband spectral components is treated as a nonlinear communication channel. The performance analysis includes mismatch between the acoustic channel and the model channel on which the Bayesian inference is based. Source location uncertainty is quantified by the posterior probability density of source location, by the posterior entropy and associated uncertainty area, by the information gain (relative entropy) at each iteration, and by large-ensemble limits of these quantities. A computational example for a vertical receiver array in a shallow-water waveguide is presented with acoustic propagation represented by normal modes and ambient noise represented by a Kuperman-Ingenito model. Performance degradation due to noise-model mismatch is quantified in an example. Potential extensions to uncertain and stochastic environments are discussed. PMID:25994704

  6. Helicopter blade-vortex interaction locations: Scale-model acoustics and free-wake analysis results

    NASA Technical Reports Server (NTRS)

    Hoad, Danny R.

    1987-01-01

    The results of a model rotor acoustic test in the Langley 4by 7-Meter Tunnel are used to evaluate a free-wake analytical technique. An acoustic triangulation technique is used to locate the position in the rotor disk where the blade-vortex interaction noise originates. These locations, along with results of the rotor free-wake analysis, are used to define the geometry of the blade-vortex interaction noise phenomena as well as to determine if the free-wake analysis is a capable diagnostic tool. Data from tests of two teetering rotor systems are used in these analyses.

  7. B-Scan Based Acoustic Source Reconstruction for Magnetoacoustic Tomography with Magnetic Induction (MAT-MI)

    PubMed Central

    Mariappan, Leo; Li, Xu; He, Bin

    2011-01-01

    We present in this study an acoustic source reconstruction method using focused transducer with B mode imaging for magnetoacoustic tomography with magnetic induction (MAT-MI). MAT-MI is an imaging modality proposed for non-invasive conductivity imaging with high spatial resolution. In MAT-MI acoustic sources are generated in a conductive object by placing it in a static and a time-varying magnetic field. The acoustic waves from these sources propagate in all directions and are collected with transducers placed around the object. The collected signal is then usedto reconstruct the acoustic source distribution and to further estimate the electrical conductivity distribution of the object. A flat piston transducer acting as a point receiver has been used in previous MAT-MI systems to collect acoustic signals. In the present study we propose to use B mode scan scheme with a focused transducer that gives a signal gain in its focus region and improves the MAT-MI signal quality. A simulation protocol that can take into account different transducer designs and scan schemes for MAT-MI imaging is developed and used in our evaluation of different MAT-MI system designs. It is shown in our computer simulations that, as compared to the previous approach, the MAT-MI system using B-scan with a focused transducer allows MAT-MI imaging at a closer distance and has improved system sensitivity. In addition, the B scan imaging technique allows reconstruction of the MAT-MI acoustic sources with a discrete number of scanning locations which greatly increases the applicability of the MAT-MI approach especially when a continuous acoustic window is not available in real clinical applications. We have also conducted phantom experiments to evaluate the proposed method and the reconstructed image shows a good agreement with the target phantom. PMID:21097372

  8. Effective AE source location of damages in the wind turbine blade

    NASA Astrophysics Data System (ADS)

    Yoon, D. J.; Han, B. H.

    2012-05-01

    Acoustic emission (AE) has emerged as a powerful nondestructive tool to detect preexisting defects or to characterize failure mechanisms. Recently, this technique or this kind of principle, that is an in-situ monitoring of inside damages of materials or structures, becomes increasingly popular for monitoring the integrity of large structures like a huge wind blade. Therefore, it is required to find a symptom of damage propagation before catastrophic failure through a continuous monitoring. In this study, we have tried to develop a source location algorithm for damage identification on the part of real wind turbine blade. First, it was focused to understand the activities of acoustic emission events generated from the glass fiber reinforced plastic (GFRP) structures such as a wind blade. Secondly, this study aims to identify and locate the damages from blade specimens. In this work, the activities of AE signals generated from external artificial sources was evaluated and located by new developed source location algorithm. The results show that new suggested source location algorithm was much higher performance than conventional source location method.

  9. Localization of short-range acoustic and seismic wideband sources: Algorithms and experiments

    NASA Astrophysics Data System (ADS)

    Stafsudd, J. Z.; Asgari, S.; Hudson, R.; Yao, K.; Taciroglu, E.

    2008-04-01

    We consider the determination of the location (source localization) of a disturbance source which emits acoustic and/or seismic signals. We devise an enhanced approximate maximum-likelihood (AML) algorithm to process data collected at acoustic sensors (microphones) belonging to an array of, non-collocated but otherwise identical, sensors. The approximate maximum-likelihood algorithm exploits the time-delay-of-arrival of acoustic signals at different sensors, and yields the source location. For processing the seismic signals, we investigate two distinct algorithms, both of which process data collected at a single measurement station comprising a triaxial accelerometer, to determine direction-of-arrival. The direction-of-arrivals determined at each sensor station are then combined using a weighted least-squares approach for source localization. The first of the direction-of-arrival estimation algorithms is based on the spectral decomposition of the covariance matrix, while the second is based on surface wave analysis. Both of the seismic source localization algorithms have their roots in seismology; and covariance matrix analysis had been successfully employed in applications where the source and the sensors (array) are typically separated by planetary distances (i.e., hundreds to thousands of kilometers). Here, we focus on very-short distances (e.g., less than one hundred meters) instead, with an outlook to applications in multi-modal surveillance, including target detection, tracking, and zone intrusion. We demonstrate the utility of the aforementioned algorithms through a series of open-field tests wherein we successfully localize wideband acoustic and/or seismic sources. We also investigate a basic strategy for fusion of results yielded by acoustic and seismic arrays.

  10. A Deconvolution Approach for the Mapping of Acoustic Sources (DAMAS) Determined from Phased Microphone Arrays

    NASA Technical Reports Server (NTRS)

    Brooks, Thomas F.; Humphreys, William M.

    2006-01-01

    Current processing of acoustic array data is burdened with considerable uncertainty. This study reports an original methodology that serves to demystify array results, reduce misinterpretation, and accurately quantify position and strength of acoustic sources. Traditional array results represent noise sources that are convolved with array beamform response functions, which depend on array geometry, size (with respect to source position and distributions), and frequency. The Deconvolution Approach for the Mapping of Acoustic Sources (DAMAS) method removes beamforming characteristics from output presentations. A unique linear system of equations accounts for reciprocal influence at different locations over the array survey region. It makes no assumption beyond the traditional processing assumption of statistically independent noise sources. The full rank equations are solved with a new robust iterative method. DAMAS is quantitatively validated using archival data from a variety of prior high-lift airframe component noise studies, including flap edge/cove, trailing edge, leading edge, slat, and calibration sources. Presentations are explicit and straightforward, as the noise radiated from a region of interest is determined by simply summing the mean-squared values over that region. DAMAS can fully replace existing array processing and presentations methodology in most applications. It appears to dramatically increase the value of arrays to the field of experimental acoustics.

  11. A Deconvolution Approach for the Mapping of Acoustic Sources (DAMAS) Determined from Phased Microphone Arrays

    NASA Technical Reports Server (NTRS)

    Brooks, Thomas F.; Humphreys, William M., Jr.

    2004-01-01

    Current processing of acoustic array data is burdened with considerable uncertainty. This study reports an original methodology that serves to demystify array results, reduce misinterpretation, and accurately quantify position and strength of acoustic sources. Traditional array results represent noise sources that are convolved with array beamform response functions, which depend on array geometry, size (with respect to source position and distributions), and frequency. The Deconvolution Approach for the Mapping of Acoustic Sources (DAMAS) method removes beamforming characteristics from output presentations. A unique linear system of equations accounts for reciprocal influence at different locations over the array survey region. It makes no assumption beyond the traditional processing assumption of statistically independent noise sources. The full rank equations are solved with a new robust iterative method. DAMAS is quantitatively validated using archival data from a variety of prior high-lift airframe component noise studies, including flap edge/cove, trailing edge, leading edge, slat, and calibration sources. Presentations are explicit and straightforward, as the noise radiated from a region of interest is determined by simply summing the mean-squared values over that region. DAMAS can fully replace existing array processing and presentations methodology in most applications. It appears to dramatically increase the value of arrays to the field of experimental acoustics.

  12. Military jet noise source imaging using multisource statistically optimized near-field acoustical holography.

    PubMed

    Wall, Alan T; Gee, Kent L; Neilsen, Tracianne B; McKinley, Richard L; James, Michael M

    2016-04-01

    The identification of acoustic sources is critical to targeted noise reduction efforts for jets on high-performance tactical aircraft. This paper describes the imaging of acoustic sources from a tactical jet using near-field acoustical holography techniques. The measurement consists of a series of scans over the hologram with a dense microphone array. Partial field decomposition methods are performed to generate coherent holograms. Numerical extrapolation of data beyond the measurement aperture mitigates artifacts near the aperture edges. A multisource equivalent wave model is used that includes the effects of the ground reflection on the measurement. Multisource statistically optimized near-field acoustical holography (M-SONAH) is used to reconstruct apparent source distributions between 20 and 1250 Hz at four engine powers. It is shown that M-SONAH produces accurate field reconstructions for both inward and outward propagation in the region spanned by the physical hologram measurement. Reconstructions across the set of engine powers and frequencies suggests that directivity depends mainly on estimated source location; sources farther downstream radiate at a higher angle relative to the inlet axis. At some frequencies and engine powers, reconstructed fields exhibit multiple radiation lobes originating from overlapped source regions, which is a phenomenon relatively recently reported for full-scale jets. PMID:27106340

  13. New approaches for automatic threedimensional source localization of acoustic emissions--Applications to concrete specimens.

    PubMed

    Kurz, Jochen H

    2015-12-01

    The task of locating a source in space by measuring travel time differences of elastic or electromagnetic waves from the source to several sensors is evident in varying fields. The new concepts of automatic acoustic emission localization presented in this article are based on developments from geodesy and seismology. A detailed description of source location determination in space is given with the focus on acoustic emission data from concrete specimens. Direct and iterative solvers are compared. A concept based on direct solvers from geodesy extended by a statistical approach is described which allows a stable source location determination even for partly erroneous onset times. The developed approach is validated with acoustic emission data from a large specimen leading to travel paths up to 1m and therefore to noisy data with errors in the determined onsets. The adaption of the algorithms from geodesy to the localization procedure of sources of elastic waves offers new possibilities concerning stability, automation and performance of localization results. Fracture processes can be assessed more accurately. PMID:26233938

  14. The Doppler Effect based acoustic source separation for a wayside train bearing monitoring system

    NASA Astrophysics Data System (ADS)

    Zhang, Haibin; Zhang, Shangbin; He, Qingbo; Kong, Fanrang

    2016-01-01

    Wayside acoustic condition monitoring and fault diagnosis for train bearings depend on acquired acoustic signals, which consist of mixed signals from different train bearings with obvious Doppler distortion as well as background noises. This study proposes a novel scheme to overcome the difficulties, especially the multi-source problem in wayside acoustic diagnosis system. In the method, a time-frequency data fusion (TFDF) strategy is applied to weaken the Heisenberg's uncertainty limit for a signal's time-frequency distribution (TFD) of high resolution. Due to the Doppler Effect, the signals from different bearings have different time centers even with the same frequency. A Doppler feature matching search (DFMS) algorithm is then put forward to locate the time centers of different bearings in the TFD spectrogram. With the determined time centers, time-frequency filters (TFF) are designed with thresholds to separate the acoustic signals in the time-frequency domain. Then the inverse STFT (ISTFT) is taken and the signals are recovered and filtered aiming at each sound source. Subsequently, a dynamical resampling method is utilized to remove the Doppler Effect. Finally, accurate diagnosis for train bearing faults can be achieved by applying conventional spectrum analysis techniques to the resampled data. The performance of the proposed method is verified by both simulated and experimental cases. It shows that it is effective to detect and diagnose multiple defective bearings even though they produce multi-source acoustic signals.

  15. Accelerated food source location in aging Drosophila.

    PubMed

    Egenriether, Sada M; Chow, Eileen S; Krauth, Nathalie; Giebultowicz, Jadwiga M

    2015-10-01

    Adequate energy stores are essential for survival, and sophisticated neuroendocrine mechanisms evolved to stimulate foraging in response to nutrient deprivation. Food search behavior is usually investigated in young animals, and it is not known how aging alters this behavior. To address this question in Drosophila melanogaster, we compared the ability to locate food by olfaction in young and old flies using a food-filled trap. As aging is associated with a decline in motor functions, learning, and memory, we expected that aged flies would take longer to enter the food trap than their young counterparts. Surprisingly, old flies located food with significantly shorter latency than young ones. Robust food search behavior was associated with significantly lower fat reserves and lower starvation resistance in old flies. Food-finding latency (FFL) was shortened in young wild-type flies that were starved until their fat was depleted but also in heterozygous chico mutants with reduced insulin receptor activity and higher fat deposits. Conversely, food trap entry was delayed in old flies with increased insulin signaling. Our results suggest that the difference in FFL between young and old flies is linked to age-dependent differences in metabolic status and may be mediated by reduced insulin signaling. PMID:26102220

  16. Deconvolution methods and systems for the mapping of acoustic sources from phased microphone arrays

    NASA Technical Reports Server (NTRS)

    Brooks, Thomas F. (Inventor); Humphreys, Jr., William M. (Inventor)

    2010-01-01

    A method and system for mapping acoustic sources determined from a phased microphone array. A plurality of microphones are arranged in an optimized grid pattern including a plurality of grid locations thereof. A linear configuration of N equations and N unknowns can be formed by accounting for a reciprocal influence of one or more beamforming characteristics thereof at varying grid locations among the plurality of grid locations. A full-rank equation derived from the linear configuration of N equations and N unknowns can then be iteratively determined. A full-rank can be attained by the solution requirement of the positivity constraint equivalent to the physical assumption of statically independent noise sources at each N location. An optimized noise source distribution is then generated over an identified aeroacoustic source region associated with the phased microphone array in order to compile an output presentation thereof, thereby removing the beamforming characteristics from the resulting output presentation.

  17. Acoustic source identification using a Generalized Weighted Inverse Beamforming technique

    NASA Astrophysics Data System (ADS)

    Presezniak, Flavio; Zavala, Paulo A. G.; Steenackers, Gunther; Janssens, Karl; Arruda, Jose R. F.; Desmet, Wim; Guillaume, Patrick

    2012-10-01

    In the last years, acoustic source identification has gained special attention, mainly due to new environmental norms, urbanization problems and more demanding acoustic comfort expectation of consumers. From the current methods, beamforming techniques are of common use, since normally demands affordable data acquisition effort, while producing clear source identification in most of the applications. In order to improve the source identification quality, this work presents a method, based on the Generalized Inverse Beamforming, that uses a weighted pseudo-inverse approach and an optimization procedure, called Weighted Generalized Inverse Beamforming. To validate this method, a simple case of two compact sources in close vicinity in coherent radiation was investigated by numerical and experimental assessment. Weighted generalized inverse results are compared to the ones obtained by the conventional beamforming, MUltiple Signal Classification, and Generalized Inverse Beamforming. At the end, the advantages of the proposed method are outlined together with the computational effort increase compared to the Generalized Inverse Beamforming.

  18. Damage Source Identification of Reinforced Concrete Structure Using Acoustic Emission Technique

    PubMed Central

    Panjsetooni, Alireza; Bunnori, Norazura Muhamad; Vakili, Amir Hossein

    2013-01-01

    Acoustic emission (AE) technique is one of the nondestructive evaluation (NDE) techniques that have been considered as the prime candidate for structural health and damage monitoring in loaded structures. This technique was employed for investigation process of damage in reinforced concrete (RC) frame specimens. A number of reinforced concrete RC frames were tested under loading cycle and were simultaneously monitored using AE. The AE test data were analyzed using the AE source location analysis method. The results showed that AE technique is suitable to identify the sources location of damage in RC structures. PMID:23997681

  19. Experimental source characterization techniques for studying the acoustic properties of perforates under high level acoustic excitation.

    PubMed

    Bodén, Hans

    2011-11-01

    This paper discusses experimental techniques for obtaining the acoustic properties of in-duct samples with non-linear acoustic characteristic. The methods developed are intended both for studies of non-linear energy transfer to higher harmonics for samples only accessible from one side such as wall treatment in aircraft engine ducts or automotive exhaust systems and for samples accessible from both sides such as perforates or other top sheets. When harmonic sound waves are incident on the sample nonlinear energy transfer results in sound generation at higher harmonics at the sample (perforate) surface. The idea is that these sources can be characterized using linear system identification techniques similar to one-port or two-port techniques which are traditionally used for obtaining source data for in-duct sources such as IC-engines or fans. The starting point will be so called polyharmonic distortion modeling which is used for characterization of nonlinear properties of microwave systems. It will be shown how acoustic source data models can be expressed using this theory. Source models of different complexity are developed and experimentally tested. The results of the experimental tests show that these techniques can give results which are useful for understanding non-linear energy transfer to higher harmonics. PMID:22087890

  20. Acoustic analysis of the interaction of choral arrangements, musical selection, and microphone location.

    PubMed

    Morris, Richard J; Mustafa, Ashley J; McCrea, Christopher R; Fowler, Linda P; Aspaas, Christopher

    2007-09-01

    Acoustic differences were evaluated among three choral arrangements and two choral textures recorded at three microphone locations. A choir was recorded when singing two musical selections of different choral texture, one homophonic and one polyphonic. Both musical selections were sung in three choral arrangements: block sectional, sectional-in-columns, and mixed. Microphones were placed at the level of the choristers, the conductor, and the audience. The recordings at each location were analyzed using long-term average spectrum (LTAS). The LTAS from the mixed arrangement exhibited more signal amplitude than the other arrangements in the range of 1000-3500Hz. When considering the musical selections, the chorus produced more signal amplitude in the region of 1800-2200Hz for the homophonic selection. In addition, the LTAS produced by the choir for the homophonic selection varied across the microphone locations. As for the microphone location, the LTAS of the signal detected directly in front of the chorus had a greater slope than the other two locations. Thus, the acoustic signal near the choristers differed from the signals near the conductor and in the audience. Conductors may be using acoustic information from the region of the second and third formants when they decide how to arrange a choir for a particular musical selection. PMID:16806816

  1. Observations and Bayesian location methodology of transient acoustic signals (likely blue whales) in the Indian Ocean, using a hydrophone triplet.

    PubMed

    Le Bras, Ronan J; Kuzma, Heidi; Sucic, Victor; Bokelmann, Götz

    2016-05-01

    A notable sequence of calls was encountered, spanning several days in January 2003, in the central part of the Indian Ocean on a hydrophone triplet recording acoustic data at a 250 Hz sampling rate. This paper presents signal processing methods applied to the waveform data to detect, group, extract amplitude and bearing estimates for the recorded signals. An approximate location for the source of the sequence of calls is inferred from extracting the features from the waveform. As the source approaches the hydrophone triplet, the source level (SL) of the calls is estimated at 187 ± 6 dB re: 1 μPa-1 m in the 15-60 Hz frequency range. The calls are attributed to a subgroup of blue whales, Balaenoptera musculus, with a characteristic acoustic signature. A Bayesian location method using probabilistic models for bearing and amplitude is demonstrated on the calls sequence. The method is applied to the case of detection at a single triad of hydrophones and results in a probability distribution map for the origin of the calls. It can be extended to detections at multiple triads and because of the Bayesian formulation, additional modeling complexity can be built-in as needed. PMID:27250159

  2. Deconvolution Methods and Systems for the Mapping of Acoustic Sources from Phased Microphone Arrays

    NASA Technical Reports Server (NTRS)

    Brooks, Thomas F. (Inventor); Humphreys, Jr., William M. (Inventor)

    2012-01-01

    Mapping coherent/incoherent acoustic sources as determined from a phased microphone array. A linear configuration of equations and unknowns are formed by accounting for a reciprocal influence of one or more cross-beamforming characteristics thereof at varying grid locations among the plurality of grid locations. An equation derived from the linear configuration of equations and unknowns can then be iteratively determined. The equation can be attained by the solution requirement of a constraint equivalent to the physical assumption that the coherent sources have only in phase coherence. The size of the problem may then be reduced using zoning methods. An optimized noise source distribution is then generated over an identified aeroacoustic source region associated with a phased microphone array (microphones arranged in an optimized grid pattern including a plurality of grid locations) in order to compile an output presentation thereof, thereby removing beamforming characteristics from the resulting output presentation.

  3. On the location of frequencies of maximum acoustic-to-seismic coupling

    SciTech Connect

    Sabatier, J.M.; Bass, H.E.; Elliott, G.R.

    1986-10-01

    Measurements of the acoustic-to-seismic transfer function (ratio of the normal soil particle velocity at a depth d to the acoustic pressure at the surface) for outdoor ground surfaces quite typically reveal a series of maxima and minima. In a publication (Sabatier et al., J. Acoust. Soc. Am. 80, 646--649 (1986)), the location and magnitude of these maxima are measured and predicted for several outdoor ground surfaces using a layered poroelastic model of the ground surface. In this paper, the seismic transfer function for a desert site is compared to the seismic transfer function for holes dug in the desert floor which were filled with pumice (volcanic rock). The hole geometry was rectangular and the hole depths varied from 0.25--2.0 m. The p- and s-wave speeds, densities, porosities, and flow resistivities for the desert floor and pumice were all measured. By varying the hole depth and the fill material, the maxima in the seismic transfer function can be shifted in frequency and the locations of the maxima compare reasonably with that of a hard-backed layer calculation. The area or extent of the acoustic-to-seismic coupling for pumice was determined to be less than 1 m/sup 2/.

  4. A covariance fitting approach for correlated acoustic source mapping.

    PubMed

    Yardibi, Tarik; Li, Jian; Stoica, Petre; Zawodny, Nikolas S; Cattafesta, Louis N

    2010-05-01

    Microphone arrays are commonly used for noise source localization and power estimation in aeroacoustic measurements. The delay-and-sum (DAS) beamformer, which is the most widely used beamforming algorithm in practice, suffers from low resolution and high sidelobe level problems. Therefore, deconvolution approaches, such as the deconvolution approach for the mapping of acoustic sources (DAMAS), are often used for extracting the actual source powers from the contaminated DAS results. However, most deconvolution approaches assume that the sources are uncorrelated. Although deconvolution algorithms that can deal with correlated sources, such as DAMAS for correlated sources, do exist, these algorithms are computationally impractical even for small scanning grid sizes. This paper presents a covariance fitting approach for the mapping of acoustic correlated sources (MACS), which can work with uncorrelated, partially correlated or even coherent sources with a reasonably low computational complexity. MACS minimizes a quadratic cost function in a cyclic manner by making use of convex optimization and sparsity, and is guaranteed to converge at least locally. Simulations and experimental data acquired at the University of Florida Aeroacoustic Flow Facility with a 63-element logarithmic spiral microphone array in the absence of flow are used to demonstrate the performance of MACS. PMID:21117743

  5. Underwater acoustic source localization using closely spaced hydrophone pairs

    NASA Astrophysics Data System (ADS)

    Sim, Min Seop; Choi, Bok-Kyoung; Kim, Byoung-Nam; Lee, Kyun Kyung

    2016-07-01

    Underwater sound source position is determined using a line array. However, performance degradation occurs owing to a multipath environment, which generates incoherent signals. In this paper, a hydrophone array is proposed for underwater source position estimation robust to a multipath environment. The array is composed of three pairs of sensors placed on the same line. The source position is estimated by performing generalized cross-correlation (GCC). The proposed system is not affected by a multipath time delay because of the close distance between closely spaced sensors. The validity of the array is confirmed by simulation using acoustic signals synthesized by eigenrays.

  6. S-Band Shallow Bulk Acoustic Wave (SBAW) microwave source

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Techniques necessary to fabricate a high performance S-band microwave single source using state-of-the-art shallow bulk acoustic wave (SBAW) were explored. The bulk wave structures of the AlN/Al 2O3 were investigated for both the R plane and basal plane of sapphire. A 1.072 GHz SBAW delay line and oscillators were developed. A method of selecting and setting oscillator output frequency by selecting substrate orientation angle was also established.

  7. Three precise gamma-ray burst source locations

    NASA Technical Reports Server (NTRS)

    Cline, T. L.; Desai, U. D.; Teegarden, B. J.; Barat, C.; Hurley, K.; Niel, M.; Vedrenne, G.; Evans, W. D.; Klebesadel, R. W.; Laros, J. G.

    1984-01-01

    The precise source regions of three moderately intense gamma ray bursts are derived. These events were observed with the first interplanetary burst sensor network. The optimum locations of the detectors, widely separated throughout the inner solar system, allowed for high accuracy, over-determined source fields of size 0.7 to 7.0 arc-min(2). All three locations are at fairly high galactic latitude in regions of low source confusion; none can be identified with a steady source object. Archived photographs were searched for optical transients that are able to be associated with these source fields; one such association was made.

  8. Acoustic centering of sources with high-order radiation patterns.

    PubMed

    Shabtai, Noam R; Vorländer, Michael

    2015-04-01

    Surrounding spherical microphone arrays have recently been used in order to model the radiation pattern of acoustic sources that are assumed to be at the center of the array. Source centering algorithms are applied to the measurements in order to reduce the negative effect of acoustic source misalignment with regard to the physical center of the microphone array. Recent works aim to minimize the energy that is contained in the high-order coefficients of the radiation pattern in the spherical harmonics domain, in order to directly address the problem of increased order and spatial aliasing resulted by this misalignment. However, objective functions which directly minimize the norm of these coefficients were shown to be convex only when employed on sources with low-order radiation patterns. This work presents a source centering algorithm that operates on plane sections and aims to achieve a convex objective function on every plane section. The results of the proposed algorithm are shown to be more convex than the previous algorithms for sources with higher-order radiation pattern, usually at higher frequencies. PMID:25920846

  9. Three-dimensional acoustic radiation force on an arbitrarily located elastic sphere.

    PubMed

    Baresch, Diego; Thomas, Jean-Louis; Marchiano, Régis

    2013-01-01

    This work aims to model the acoustic radiation forces acting on an elastic sphere placed in an inviscid fluid. An expression of the axial and transverse forces exerted on the sphere is derived. The analysis is based on the scattering of an arbitrary acoustic field expanded in the spherical coordinate system centered on the spherical scatterer. The sphere is allowed to be arbitrarily located. The special case of high order Bessel beams, acoustical vortices, are considered. These types of beams have a helicoidal wave front, i.e., a screw-type phase singularity and hence, the beam has a central dark core of zero amplitude surrounded by an intense ring. Depending on the sphere's radius, different radial equilibrium positions may exist and the sphere can be set in rotation around the beam axis by an azimuthal force. This confirms the pseudo-angular moment transfer from the beam to the sphere. Cases where the axial force is directed opposite to the direction of the beam propagation are investigated and the potential use of Bessel beams as tractor beams is demonstrated. Numerical results provide an impetus for further designing acoustical tweezers for potential applications in particle entrapment and remote controlled manipulation. PMID:23297880

  10. Prediction of the Acoustic Field Associated with Instability Wave Source Model for a Compressible Jet

    NASA Technical Reports Server (NTRS)

    Golubev, Vladimir; Mankbadi, Reda R.; Dahl, Milo D.; Kiraly, L. James (Technical Monitor)

    2002-01-01

    This paper provides preliminary results of the study of the acoustic radiation from the source model representing spatially-growing instability waves in a round jet at high speeds. The source model is briefly discussed first followed by the analysis of the produced acoustic directivity pattern. Two integral surface techniques are discussed and compared for prediction of the jet acoustic radiation field.

  11. Acoustic emission source modeling using a data-driven approach

    NASA Astrophysics Data System (ADS)

    Cuadra, J.; Vanniamparambil, P. A.; Servansky, D.; Bartoli, I.; Kontsos, A.

    2015-04-01

    The next generation of acoustics-based non-destructive evaluation for structural health monitoring applications will depend, among other reasons, on the capability to effectively characterize the transient stress wave effects related to acoustic emission (AE) generated due to activation of failure mechanisms in materials and structures. In this context, the forward problem of simulating AE is addressed herein by a combination of experimental, analytical and computational methods, which are used to form a data-driven finite element (FE) model for AE generation and associated transient elastic wave propagation. Acoustic emission is viewed for this purpose as part of the dynamic process of energy release caused by crack initiation. To this aim, full field experimental data obtained from crack initiation monitored by digital image correlation is used to construct a traction-separation law and to define damage initiation parameters. Subsequently, 3D FE simulations based on this law are performed using both a cohesive and an extended finite element modeling approach. To create a realistic computational AE source model, the transition between static and dynamic responses is evaluated. Numerically simulated AE signals from the dynamic response due to the onset of crack growth are analyzed in the context of the inverse problem of source identification and demonstrate the effects of material and geometry in crack-induced wave propagation.

  12. Bio-inspired UAV routing, source localization, and acoustic signature classification for persistent surveillance

    NASA Astrophysics Data System (ADS)

    Burman, Jerry; Hespanha, Joao; Madhow, Upamanyu; Pham, Tien

    2011-06-01

    A team consisting of Teledyne Scientific Company, the University of California at Santa Barbara and the Army Research Laboratory* is developing technologies in support of automated data exfiltration from heterogeneous battlefield sensor networks to enhance situational awareness for dismounts and command echelons. Unmanned aerial vehicles (UAV) provide an effective means to autonomously collect data from a sparse network of unattended ground sensors (UGSs) that cannot communicate with each other. UAVs are used to reduce the system reaction time by generating autonomous collection routes that are data-driven. Bio-inspired techniques for search provide a novel strategy to detect, capture and fuse data. A fast and accurate method has been developed to localize an event by fusing data from a sparse number of UGSs. This technique uses a bio-inspired algorithm based on chemotaxis or the motion of bacteria seeking nutrients in their environment. A unique acoustic event classification algorithm was also developed based on using swarm optimization. Additional studies addressed the problem of routing multiple UAVs, optimally placing sensors in the field and locating the source of gunfire at helicopters. A field test was conducted in November of 2009 at Camp Roberts, CA. The field test results showed that a system controlled by bio-inspired software algorithms can autonomously detect and locate the source of an acoustic event with very high accuracy and visually verify the event. In nine independent test runs of a UAV, the system autonomously located the position of an explosion nine times with an average accuracy of 3 meters. The time required to perform source localization using the UAV was on the order of a few minutes based on UAV flight times. In June 2011, additional field tests of the system will be performed and will include multiple acoustic events, optimal sensor placement based on acoustic phenomenology and the use of the International Technology Alliance (ITA

  13. Computation of instantaneous and time-averaged active acoustic intensity field around rotating source

    NASA Astrophysics Data System (ADS)

    Mao, Yijun; Xu, Chen; Qi, Datong

    2015-02-01

    A vector aeroacoustics method is developed to analyze the acoustic energy flow path from the rotating source. In this method, the instantaneous and time-averaged active acoustic intensity vectors are evaluated from the time-domain and frequency-domain acoustic pressure and acoustic velocity formulations, respectively. With the above method, the acoustic intensity vectors and the acoustic energy streamlines are visualized to investigate the propagation feature of the noise radiated from the monopole and dipole point sources and the rotor in subsonic rotation. The result reveals that a portion of the acoustic energy spirals many circles before moving towards the far field, and another portion of the acoustic energy firstly flows inward along the radial direction and then propagates along the axial direction. Further, an acoustic black hole exists in the plane of source rotation, from which the acoustic energy cannot escape once the acoustic energy flows into it. Moreover, by visualizing the acoustic intensity field around the rotating sources, the acoustic-absorption performance of the acoustic liner built in the casing and centerbody is discussed.

  14. Subjective Preference for Sound Sources Located on the Stage and in the Orchestra Pit of AN Opera House

    NASA Astrophysics Data System (ADS)

    Sato, S.; Sakai, H.; Prodi, N.

    2002-11-01

    The present study investigates whether the subjective preference theory can be applied to the sound field in an opera house. Paired-comparison tests were conducted to obtain scale values of subjective preference. As the source locations of the music on the stage and in the orchestra pit were moved, listeners were asked to give their acoustical preference. The acoustical factors at each listening position were obtained from the interaural cross-correlation function and binaural impulse responses measured at each listening position. The relationship between the scale values of subjective preference and orthogonal acoustical factors ( LL, IACC, τIACC, Δt 1 for the pit source, Δt 1 for the stage, T sub for the pit source, and T sub for the stage source) was determined by using factor analysis, which shows that the preference theory is applicable. Total scores obtained from factor analysis and measured scale values are in good agreement.

  15. 48 CFR 319.202-2 - Locating small business sources.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 4 2014-10-01 2014-10-01 false Locating small business... SOCIOECONOMIC PROGRAMS SMALL BUSINESS PROGRAMS Policies 319.202-2 Locating small business sources. (a) OPDIVs shall foster, to the extent practicable, maximum participation by small businesses in HHS...

  16. 48 CFR 319.202-2 - Locating small business sources.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 4 2012-10-01 2012-10-01 false Locating small business... SOCIOECONOMIC PROGRAMS SMALL BUSINESS PROGRAMS Policies 319.202-2 Locating small business sources. (a) OPDIVs shall foster, to the extent practicable, maximum participation by small businesses in HHS...

  17. 48 CFR 319.202-2 - Locating small business sources.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 4 2013-10-01 2013-10-01 false Locating small business... SOCIOECONOMIC PROGRAMS SMALL BUSINESS PROGRAMS Policies 319.202-2 Locating small business sources. (a) OPDIVs shall foster, to the extent practicable, maximum participation by small businesses in HHS...

  18. 48 CFR 2919.202-2 - Locating small business sources.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 7 2013-10-01 2012-10-01 true Locating small business... SOCIOECONOMIC PROGRAMS SMALL BUSINESS AND SMALL DISADVANTAGED BUSINESS CONCERNS Policies 2919.202-2 Locating small business sources. Any procurement conducted on an unrestricted basis will include solicitations...

  19. 48 CFR 19.202-2 - Locating small business sources.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 1 2012-10-01 2012-10-01 false Locating small business... SOCIOECONOMIC PROGRAMS SMALL BUSINESS PROGRAMS Policies 19.202-2 Locating small business sources. The contracting officer must, to the extent practicable, encourage maximum participation by small...

  20. 48 CFR 2919.202-2 - Locating small business sources.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 7 2010-10-01 2010-10-01 false Locating small business... SOCIOECONOMIC PROGRAMS SMALL BUSINESS AND SMALL DISADVANTAGED BUSINESS CONCERNS Policies 2919.202-2 Locating small business sources. Any procurement conducted on an unrestricted basis will include solicitations...

  1. 48 CFR 19.202-2 - Locating small business sources.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 1 2011-10-01 2011-10-01 false Locating small business... SOCIOECONOMIC PROGRAMS SMALL BUSINESS PROGRAMS Policies 19.202-2 Locating small business sources. The contracting officer must, to the extent practicable, encourage maximum participation by small...

  2. 48 CFR 319.202-2 - Locating small business sources.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 4 2011-10-01 2011-10-01 false Locating small business... SOCIOECONOMIC PROGRAMS SMALL BUSINESS PROGRAMS Policies 319.202-2 Locating small business sources. (a) OPDIVs... small business concerns that can compete for the proposed requirement—see FAR 19.202, 10.001(2)(v),...

  3. 48 CFR 319.202-2 - Locating small business sources.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 4 2010-10-01 2010-10-01 false Locating small business... SOCIOECONOMIC PROGRAMS SMALL BUSINESS PROGRAMS Policies 319.202-2 Locating small business sources. (a) OPDIVs... small business concerns that can compete for the proposed requirement—see FAR 19.202, 10.001(2)(v),...

  4. 48 CFR 19.202-2 - Locating small business sources.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 1 2010-10-01 2010-10-01 false Locating small business... SOCIOECONOMIC PROGRAMS SMALL BUSINESS PROGRAMS Policies 19.202-2 Locating small business sources. The contracting officer must, to the extent practicable, encourage maximum participation by small...

  5. 48 CFR 2919.202-2 - Locating small business sources.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 7 2011-10-01 2011-10-01 false Locating small business... SOCIOECONOMIC PROGRAMS SMALL BUSINESS AND SMALL DISADVANTAGED BUSINESS CONCERNS Policies 2919.202-2 Locating small business sources. Any procurement conducted on an unrestricted basis will include solicitations...

  6. Experimental Results of Underwater Cooperative Source Localization Using a Single Acoustic Vector Sensor

    PubMed Central

    Felisberto, Paulo; Rodriguez, Orlando; Santos, Paulo; Ey, Emanuel; Jesus, Sérgio M.

    2013-01-01

    This paper aims at estimating the azimuth, range and depth of a cooperative broadband acoustic source with a single vector sensor in a multipath underwater environment, where the received signal is assumed to be a linear combination of echoes of the source emitted waveform. A vector sensor is a device that measures the scalar acoustic pressure field and the vectorial acoustic particle velocity field at a single location in space. The amplitudes of the echoes in the vector sensor components allow one to determine their azimuth and elevation. Assuming that the environmental conditions of the channel are known, source range and depth are obtained from the estimates of elevation and relative time delays of the different echoes using a ray-based backpropagation algorithm. The proposed method is tested using simulated data and is further applied to experimental data from the Makai'05 experiment, where 8–14 kHz chirp signals were acquired by a vector sensor array. It is shown that for short ranges, the position of the source is estimated in agreement with the geometry of the experiment. The method is low computational demanding, thus well-suited to be used in mobile and light platforms, where space and power requirements are limited. PMID:23857257

  7. Experimental results of underwater cooperative source localization using a single acoustic vector sensor.

    PubMed

    Felisberto, Paulo; Rodriguez, Orlando; Santos, Paulo; Ey, Emanuel; Jesus, Sérgio M

    2013-01-01

    This paper aims at estimating the azimuth, range and depth of a cooperative broadband acoustic source with a single vector sensor in a multipath underwater environment, where the received signal is assumed to be a linear combination of echoes of the source emitted waveform. A vector sensor is a device that measures the scalar acoustic pressure field and the vectorial acoustic particle velocity field at a single location in space. The amplitudes of the echoes in the vector sensor components allow one to determine their azimuth and elevation. Assuming that the environmental conditions of the channel are known, source range and depth are obtained from the estimates of elevation and relative time delays of the different echoes using a ray-based backpropagation algorithm. The proposed method is tested using simulated data and is further applied to experimental data from the Makai'05 experiment, where 8-14 kHz chirp signals were acquired by a vector sensor array. It is shown that for short ranges, the position of the source is estimated in agreement with the geometry of the experiment. The method is low computational demanding, thus well-suited to be used in mobile and light platforms, where space and power requirements are limited. PMID:23857257

  8. Control of boundary layer transition location and plate vibration in the presence of an external acoustic field

    NASA Technical Reports Server (NTRS)

    Maestrello, L.; Grosveld, F. W.

    1991-01-01

    The experiment is aimed at controlling the boundary layer transition location and the plate vibration when excited by a flow and an upstream sound source. Sound has been found to affect the flow at the leading edge and the response of a flexible plate in a boundary layer. Because the sound induces early transition, the panel vibration is acoustically coupled to the turbulent boundary layer by the upstream radiation. Localized surface heating at the leading edge delays the transition location downstream of the flexible plate. The response of the plate excited by a turbulent boundary layer (without sound) shows that the plate is forced to vibrate at different frequencies and with different amplitudes as the flow velocity changes indicating that the plate is driven by the convective waves of the boundary layer. The acoustic disturbances induced by the upstream sound dominate the response of the plate when the boundary layer is either turbulent or laminar. Active vibration control was used to reduce the sound induced displacement amplitude of the plate.

  9. Codes for sound-source location in nontonotopic auditory cortex.

    PubMed

    Middlebrooks, J C; Xu, L; Eddins, A C; Green, D M

    1998-08-01

    We evaluated two hypothetical codes for sound-source location in the auditory cortex. The topographical code assumed that single neurons are selective for particular locations and that sound-source locations are coded by the cortical location of small populations of maximally activated neurons. The distributed code assumed that the responses of individual neurons can carry information about locations throughout 360 degrees of azimuth and that accurate sound localization derives from information that is distributed across large populations of such panoramic neurons. We recorded from single units in the anterior ectosylvian sulcus area (area AES) and in area A2 of alpha-chloralose-anesthetized cats. Results obtained in the two areas were essentially equivalent. Noise bursts were presented from loudspeakers spaced in 20 degrees intervals of azimuth throughout 360 degrees of the horizontal plane. Spike counts of the majority of units were modulated >50% by changes in sound-source azimuth. Nevertheless, sound-source locations that produced greater than half-maximal spike counts often spanned >180 degrees of azimuth. The spatial selectivity of units tended to broaden and, often, to shift in azimuth as sound pressure levels (SPLs) were increased to a moderate level. We sometimes saw systematic changes in spatial tuning along segments of electrode tracks as long as 1.5 mm but such progressions were not evident at higher sound levels. Moderate-level sounds presented anywhere in the contralateral hemifield produced greater than half-maximal activation of nearly all units. These results are not consistent with the hypothesis of a topographic code. We used an artificial-neural-network algorithm to recognize spike patterns and, thereby, infer the locations of sound sources. Network input consisted of spike density functions formed by averages of responses to eight stimulus repetitions. Information carried in the responses of single units permitted reasonable estimates of sound-source

  10. Acoustic source localization in mixed field using spherical microphone arrays

    NASA Astrophysics Data System (ADS)

    Huang, Qinghua; Wang, Tong

    2014-12-01

    Spherical microphone arrays have been used for source localization in three-dimensional space recently. In this paper, a two-stage algorithm is developed to localize mixed far-field and near-field acoustic sources in free-field environment. In the first stage, an array signal model is constructed in the spherical harmonics domain. The recurrent relation of spherical harmonics is independent of far-field and near-field mode strengths. Therefore, it is used to develop spherical estimating signal parameter via rotational invariance technique (ESPRIT)-like approach to estimate directions of arrival (DOAs) for both far-field and near-field sources. In the second stage, based on the estimated DOAs, simple one-dimensional MUSIC spectrum is exploited to distinguish far-field and near-field sources and estimate the ranges of near-field sources. The proposed algorithm can avoid multidimensional search and parameter pairing. Simulation results demonstrate the good performance for localizing far-field sources, or near-field ones, or mixed field sources.

  11. Acoustic multipole source model for volcanic explosions and inversion for source parameters

    NASA Astrophysics Data System (ADS)

    Kim, Keehoon; Lees, Jonathan M.; Ruiz, Mario

    2012-12-01

    Volcanic explosions are accompanied by strong acoustic pressure disturbances in the atmosphere. With a proper source model, these acoustic signals provide invaluable information about volcanic explosion dynamics. Far-field solutions to volcanic infrasound radiation have been derived above a rigid half-space boundary, and a simple inversion method was developed based on the half-space model. Acoustic monopole and dipole sources were estimated simultaneously from infrasound waveforms. Stability of the inversion procedure was assessed in terms of variances of source parameters, and the procedure was reliable with at least three stations around the infrasound source. Application of this method to infrasound observations recorded at Tungurahua volcano in Ecuador successfully produced a reasonable range of source parameters with acceptable variances. Observed strong directivity of infrasound radiation from explosions at Tungurahua are successfully explained by the directivity of a dipole source model. The resultant dipole axis, in turn, shows good agreement with the opening direction of the vent at Tungurahua, which is considered to be the origin of the dipole source. The method is general and can be utilized to study any monopole, dipole or combined sources generated by explosions.

  12. Sources and propagation of atmospherical acoustic shock waves

    NASA Astrophysics Data System (ADS)

    Coulouvrat, François

    2012-09-01

    Sources of aerial shock waves are numerous and produce acoustical signals that propagate in the atmosphere over long ranges, with a wide frequency spectrum ranging from infrasonic to audible, and with a complex human response. They can be of natural origin, like meteors, lightning or volcanoes, or human-made as for explosions, so-called "buzz-saw noise" (BSN) from aircraft engines or sonic booms. Their description, modeling and data analysis within the viewpoint of nonlinear acoustics will be the topic of the present lecture, with focus on two main points: the challenges of the source description, and the main features of nonlinear atmospheric propagation. Inter-disciplinary aspects, with links to atmospheric and geo-sciences will be outlined. Detailed description of the source is very dependent on its nature. Mobile supersonic sources can be rotating (fan blades of aircraft engines) or in translation (meteors, sonic boom). Mach numbers range from transonic to hypersonic. Detailed knowledge of geometry is critical for the processes of boom minimization and audible frequency spectrum of BSN. Sources of geophysical nature are poorly known, and various mechanisms for explaining infrasound recorded from meteors or thunderstorms have been proposed. Comparison between recorded data and modeling may be one way to discriminate between them. Moreover, the nearfield of these sources is frequently beyond the limits of acoustical approximation, or too complex for simple modeling. A proper numerical description hence requires specific matching procedures between nearfield behavior and farfield propagation. Nonlinear propagation in the atmosphere is dominated by temperature and wind stratification. Ray theory is an efficient way to analyze observations, but is invalid in various situations. Nonlinear effects are enhanced locally at caustics, or in case of grazing propagation over a rigid surface. Absorption, which controls mostly the high frequency part of the spectrum contained

  13. Uncertain Acoustic Field Modeling and Robust Source Localization in Shallow Water

    NASA Astrophysics Data System (ADS)

    Zhao, Hangfang; Gong, Xianyi; Yu, Zibin

    2010-09-01

    Oceanic environmental uncertainty can cause significant performance degradation of the SONAR system. Understanding and modeling the uncertainty propagating from environment to acoustic field and then to steering vector is necessary for SONAR design and operation to mitigate the uncertainty effect and provide robust detection and location of targets. The statistical property of uncertainty can be described by the probability density functions or second-order moments of environmental parameters and acoustic fields. Based on the probability description, a stochastic response surface method is used to propagate the uncertainty from environment to acoustic field by polynomial chaos expansion. Then covariance matrix and associated ellipsoidal neighboring space are used to describe the uncertainty set of acoustic field and steering vector for sonar signal processing. Finally, a robust Minimum Variance (MV) matched-field processing method is derived by extending the constrained optimization of MV from single point to an uncertainty steering vector ellipsoid. We apply sea test data collected by a vertical array in shallow water to source localization.

  14. A pseudo-inverse algorithm for simultaneous measurements using multiple acoustical sources.

    PubMed

    Xiang, Ning; Li, Shu

    2007-03-01

    Simultaneous multiple acoustical sources measurement (SMASM) has been proposed for more effective and reliable identification of acoustical systems under critical conditions [N. Xiang and M. R. Schroeder, J. Acoust. Soc. Am. 113, 2754-2761 (2003); N. Xiang, J. N. Daigle, and M. Kleiner, J. Acoust. Soc. Am. 117, 1889-1894 (2005)]. This paper presents a pseudo-inverse algorithm for the SMASM correlation technique as an alternative way of extracting impulse responses of acoustical channels. Simulations and room acoustics experiments are carried out and the results prove the feasibility of the proposed algorithm. PMID:17407864

  15. Acoustical analysis and multiple source auralizations of charismatic worship spaces

    NASA Astrophysics Data System (ADS)

    Lee, Richard W.

    2001-05-01

    Because of the spontaneity and high level of call and response, many charismatic churches have verbal and musical communication problems that stem from highly reverberant sound fields, poor speech intelligibility, and muddy music. This research looks at the subjective dimensions of room acoustics perception that affect a charismatic worship space, which is summarized using the acronym RISCS (reverberation, intimacy, strength, coloration, and spaciousness). The method of research is to obtain acoustical measurements for three worship spaces in order to analyze the objective parameters associated with the RISCS subjective dimensions. For the same spaces, binaural room impulse response (BRIR) measurements are done for different receiver positions in order to create an auralization for each position. The subjective descriptors of RISCS are analyzed through the use of listening tests of the three auralized spaces. The results from the measurements and listening tests are analyzed to determine if listeners' perceptions correlate with the objective parameter results, the appropriateness of the subjective parameters for the use of the space, and which parameters seem to take precedent. A comparison of the multi-source auralization to a conventional single-source auralization was done with the mixed down version of the synchronized multi-track anechoic signals.

  16. Measurement and modeling of the acoustic field near an underwater vehicle and implications for acoustic source localization.

    PubMed

    Lepper, Paul A; D'Spain, Gerald L

    2007-08-01

    The performance of traditional techniques of passive localization in ocean acoustics such as time-of-arrival (phase differences) and amplitude ratios measured by multiple receivers may be degraded when the receivers are placed on an underwater vehicle due to effects of scattering. However, knowledge of the interference pattern caused by scattering provides a potential enhancement to traditional source localization techniques. Results based on a study using data from a multi-element receiving array mounted on the inner shroud of an autonomous underwater vehicle show that scattering causes the localization ambiguities (side lobes) to decrease in overall level and to move closer to the true source location, thereby improving localization performance, for signals in the frequency band 2-8 kHz. These measurements are compared with numerical modeling results from a two-dimensional time domain finite difference scheme for scattering from two fluid-loaded cylindrical shells. Measured and numerically modeled results are presented for multiple source aspect angles and frequencies. Matched field processing techniques quantify the source localization capabilities for both measurements and numerical modeling output. PMID:17672639

  17. The influence of phonetic context and formant measurement location on acoustic vowel space

    NASA Astrophysics Data System (ADS)

    Turner, Greg S.; Hutchings, David T.; Sylvester, Betsy; Weismer, Gary

    2003-04-01

    One way of depicting vowel production is by describing vowels within an F1/F2 acoustic vowel space. This acoustic measure illustrates the dispersion of F1 and F2 values at a specific moment in time (e.g., the temporal midpoint of a vowel) for the vowels of a given language. This measure has recently been used to portray vowel production in individuals with communication disorders such as dysarthria and is moderately related to the severity of the speech disorder. Studies aimed at identifying influential factors effecting measurement stability of vowel space have yet to be completed. The focus of the present study is to evaluate the influence of phonetic context and spectral measurement location on vowel space in a group of neurologically normal American English speakers. For this study, vowel space was defined in terms of the dispersion of the four corner vowels produced within a CVC syllable frame, where C includes six stop consonants in all possible combinations with each vowel. Spectral measures were made at the midpoint and formant extremes of the vowels. A discussion will focus on individual and group variation in vowel space as a function of phonetic context and temporal measurement location.

  18. Equilibrium shape and location of a liquid drop acoustically positioned in a resonant rectangular chamber

    NASA Technical Reports Server (NTRS)

    Jackson, H. W.; Barmatz, M.; Shipley, C.

    1988-01-01

    The effect of a standing wave field in a rectangular chamber on the shape and location of an acoustically positioned drop or bubble is calculated. The sample deformation and equilibrium position are obtained from an analysis of the spherical harmonic projections of the total surface stress tensor. The method of calculation relies on the assumed condition that the sample is only slightly distorted from a spherical form. The equilibrium location of a levitated drop is combined with a formula introduced by Hasegawa (1979) to calcualte the ka dependence of the radiation force function. The present theory is valid for large as well as small ka values. Calculations in the small ka limit agree with previous theories and experimental results. Examples are presented for nonplane-wave modes as well as plane-wave rectangular modes.

  19. Locating an atmospheric contamination source using slow manifolds

    NASA Astrophysics Data System (ADS)

    Tang, Wenbo; Haller, George; Baik, Jong-Jin; Ryu, Young-Hee

    2009-04-01

    Finite-size particle motion in fluids obeys the Maxey-Riley equations, which become singular in the limit of infinitesimally small particle size. Because of this singularity, finding the source of a dispersed set of small particles is a numerically ill-posed problem that leads to exponential blowup. Here we use recent results on the existence of a slow manifold in the Maxey-Riley equations to overcome this difficulty in source inversion. Specifically, we locate the source of particles by projecting their dispersed positions on a time-varying slow manifold, and by advecting them on the manifold in backward time. We use this technique to locate the source of a hypothetical anthrax release in an unsteady three-dimensional atmospheric wind field in an urban street canyon.

  20. a Study of Microphone Arrays for the Location of Vibrational Sound Sources

    NASA Astrophysics Data System (ADS)

    Matzumoto, Andres Esteban Perez

    Available from UMI in association with The British Library. The original objective of the work was to develop an acoustic imaging technique, Nearfield Acoustic Holography (NAH), into a reasonably affordable practical system for in-situ applications in an industrial environment. In order to place NAH in the general context of source identification techniques, the thesis summarizes theoretical considerations about sound sources and sound fields, and the principles of different sound source location techniques used in practical situations. The development of NAH theory for planar arrays is the central point of this summary, and the different systems that apply this theory are discussed. Theoretical research and computer simulations show that, at the present state of the art, sound source reconstructions using NAH can only work in certain cases which have to be analyzed individually. The limitations of the theory are better understood when the source reconstruction is studied using the proper methodology for the inherent ill-posed inverse problem. Such as study allowed us to improve the theoretical framework, and to obtain stable source reconstructions. A reliable system for field measurements of different types of sources was not found to be feasible at present. However, it is shown that the inverse problem theory allows us to overcome some of the limitations of the current theory for field measurements. The difficulties encountered with NAH, and the study of the inverse problem, led us to attempt to develop an alternative, simpler, system which could minimize the inverse problem of source reconstruction. The system considered was a hemispherical array with analogue signal processing. Applying this principle transforms the source reconstruction problem into a re-modelling problem, reducing the inverse problem to the solution of a stable direct problem. Although the antenna could not be tested to its full potential, the initial results were not applicable for source

  1. Accurate Damage Location in Complex Composite Structures and Industrial Environments using Acoustic Emission

    NASA Astrophysics Data System (ADS)

    Eaton, M.; Pearson, M.; Lee, W.; Pullin, R.

    2015-07-01

    The ability to accurately locate damage in any given structure is a highly desirable attribute for an effective structural health monitoring system and could help to reduce operating costs and improve safety. This becomes a far greater challenge in complex geometries and materials, such as modern composite airframes. The poor translation of promising laboratory based SHM demonstrators to industrial environments forms a barrier to commercial up take of technology. The acoustic emission (AE) technique is a passive NDT method that detects elastic stress waves released by the growth of damage. It offers very sensitive damage detection, using a sparse array of sensors to detect and globally locate damage within a structure. However its application to complex structures commonly yields poor accuracy due to anisotropic wave propagation and the interruption of wave propagation by structural features such as holes and thickness changes. This work adopts an empirical mapping technique for AE location, known as Delta T Mapping, which uses experimental training data to account for such structural complexities. The technique is applied to a complex geometry composite aerospace structure undergoing certification testing. The component consists of a carbon fibre composite tube with varying wall thickness and multiple holes, that was loaded under bending. The damage location was validated using X-ray CT scanning and the Delta T Mapping technique was shown to improve location accuracy when compared with commercial algorithms. The onset and progression of damage were monitored throughout the test and used to inform future design iterations.

  2. Acoustic power of a moving point source in a moving medium

    NASA Technical Reports Server (NTRS)

    Cole, J. E., III; Sarris, I. I.

    1976-01-01

    The acoustic power output of a moving point-mass source in an acoustic medium which is in uniform motion and infinite in extent is examined. The acoustic medium is considered to be a homogeneous fluid having both zero viscosity and zero thermal conductivity. Two expressions for the acoustic power output are obtained based on a different definition cited in the literature for the average energy-flux vector in an acoustic medium in uniform motion. The acoustic power output of the source is found by integrating the component of acoustic intensity vector in the radial direction over the surface of an infinitely long cylinder which is within the medium and encloses the line of motion of the source. One of the power expressions is found to give unreasonable results even though the flow is uniform.

  3. Fracture source location in thin plates using the wavelet transform of dispersive waves.

    PubMed

    Jeong, H; Jang, Y S

    2000-01-01

    A new signal processing approach was presented for acoustic emission source location using the dispersive waves in a thin plate. For wave propagation in dispersive media, the accuracy of source location can be improved by using the arrival times of a single frequency component in the output signals at an array of sensors. The wavelet transform (WT) was used to resolve this problem. By utilizing the time-frequency data of the WT, the frequency-dependent arrival time traveling with the group velocity was shown to be easily determined. Experiments were performed using a lead break as the simulated fracture source on the surface of an aluminum plate. Two plate modes corresponding to the S(0) and A(0) Lamb waves were identified, and their group velocities were accurately measured. The source location results based on the WT method agreed well with the true locations. The WT method was also compared with the cross correlation technique, and both methods provide similar results. PMID:18238588

  4. Modal Acoustic Emission Used at Elevated Temperatures to Detect Damage and Failure Location in Ceramic Matrix Composites

    NASA Technical Reports Server (NTRS)

    Morscher, Gregory N.

    1999-01-01

    Ceramic matrix composites are being developed for elevated-temperature engine applications. A leading material system in this class of materials is silicon carbide (SiC) fiber-reinforced SiC matrix composites. Unfortunately, the nonoxide fibers, matrix, and interphase (boron nitride in this system) can react with oxygen or water vapor in the atmosphere, leading to strength degradation of the composite at elevated temperatures. For this study, constant-load stress-rupture tests were performed in air at temperatures ranging from 815 to 960 C until failure. From these data, predictions can be made for the useful life of such composites under similar stressed-oxidation conditions. During these experiments, the sounds of failure events (matrix cracking and fiber breaking) were monitored with a modal acoustic emission (AE) analyzer through transducers that were attached at the ends of the tensile bars. Such failure events, which are caused by applied stress and oxidation reactions, cause these composites to fail prematurely. Because of the nature of acoustic waveform propagation in thin tensile bars, the location of individual source events and the eventual failure event could be detected accurately.

  5. Repetitive Long-Period Seismicity: Source Location and Mechanism Characteristics, Villarrica Volcano, Chile

    NASA Astrophysics Data System (ADS)

    Richardson, J.; Waite, G. P.

    2012-12-01

    Villarrica Volcano, Chile has an exposed magma free-surface, characterized by vigorous degassing ranging from small bubble bursts to Strombolian style slug bursting. Slug bursting events are characterized by both repetitive seismic and acoustic signals within the long-period (LP) band. We use the very repetitive nature of the low amplitude seismic LP signals to identify them with a matched filter on several persistent seismic stations, functional over the three year experiment duration. We stack the seismic and acoustic signals accompanying degassing to increase the signal to noise ratio, and tie signals measured 2010-2012 to produce a synthetic seismic network that recorded LP signals at a wide range of azimuths and distances from the source. Particle motions for most of the 21 stations were dominantly tangential, indicating the presence of a complex source geometry that deviated greatly from the logical axisymmetric geometry visible at the lave lake surface. We use the synthetic network to solve for the moment-tensor and location of the LP source, searching for the best source-time function using combinations of moment components, single force components, and both, for six different homogeneous half-space velocity models. Using the best source configuration and velocity model as a guide, we present forward models of reasonable geometries with geologic significance, including dikes, sills, pipes, and combination mechanisms to validate and test the sensitivity of the results of the free-inversion. Our results indicate that the current repetitive LP seismicity dominated by tangential particle motions is probably associated with relic fissure geometry from the last eruptive phase, and is caused by a conduit constriction through which large gas slugs pass (seismic emission) and subsequently burst at the surface (acoustic emission).

  6. Providing Source-Location Privacy in Wireless Sensor Networks

    NASA Astrophysics Data System (ADS)

    Li, Yun; Ren, Jian

    Wireless sensor networks (WSN) have been widely used in many areas for unattended event monitoring. Mainly due to lack of a protected physical boundary, wireless communications are vulnerable to unauthorized detection, interception and and even node capture. Privacy is becoming one of the major issues that jeopardize the successful deployment and survivability of wireless sensor networks. While confidentiality of the message can be ensured through content encryption, it is much more difficult to adequately address the source-location privacy. For WSN, source-location privacy service is further complicated by the fact that the sensor nodes consist of low-cost and low-power radio devices, computationally intensive cryptographic algorithms (such as public-key cryptosystems) and large scale broadcasting-based protocols are not suitable for WSN. In this paper, we propose a two-step routing strategy for the messages to be routed from the actual source node to the SINK node through either a single, or multiple, randomly selected intermediate node(s) away from the source node so that it is to make it infeasible for the adversaries to trace back to the source node through hop-by-hop routing analysis. In the first protocol, the messages will be routed to a single intermediate node. This scheme can provide very good local source-location privacy. We also propose routing through multiple randomly selected intermediate nodes based on angle and quadrant to further improve the performance and security. While providing source-location privacy for WSN, our simulation results demonstrate that the proposed schemes are very efficient in energy consumption, and transmission latency. The proposed schemes can also assurance high message delivery ratio. Therefore, they can be used for many practical applications.

  7. An information-theoretic approach to microseismic source location

    NASA Astrophysics Data System (ADS)

    Prange, Michael D.; Bose, Sandip; Kodio, Ousmane; Djikpesse, Hugues A.

    2015-04-01

    There has been extensive work on seismic source localization, going as far back as Geiger's 1912 paper, that is based on least-squares fitting of arrival times. The primary advantage of time-based methods over waveform-based methods (e.g. reverse-time migration and beam forming) is that simulated arrival times are considerably more reliable than simulated waveforms, especially in the context of an uncertain velocity model, thereby yielding more reliable estimates of source location. However, time-based methods are bedeviled by the unsolved challenges of accurate time picking and labelling of the seismic phases in the waveforms for each event. Drawing from Woodward's canonical 1953 text on the application of information theory to radar applications, we show that time-based methods can be applied directly to waveform data, thus capturing the advantages of time-based methods without being impacted by the aforementioned hindrances. We extend Woodward's approach to include an unknown distortion on wavelet amplitude and phase, showing that the related marginalization integrals can be analytically evaluated. We also provide extensions for correlation-based location methods such as relative localization and the S-P method. We demonstrate this approach through applications to microseismic event location, presenting formulations and results for both absolute and relative localization approaches, with receiver arrays either in a borehole or on the surface. By properly quantifying uncertainty in our location estimates, our formulations provide an objective measure for ranking the accuracy of microseismic source location methodologies.

  8. Locating and estimating air emissions from sources of nickel

    SciTech Connect

    Not Available

    1984-03-01

    To assist groups interested in inventorying air emissions of various potentially toxic substances, EPA is preparing a series of documents such as this to compile available information on sources and emissions of these substances. This document deals specifically with nickel. Its intended audience includes Federal, State and local air pollution personnel and others interested in locating potential emitters of nickel and in making gross estimates of air emissions therefrom. This document presents information on (1) the types of sources that may emit nickel, (2) process variations and release points that may be expected within these sources, and (3) available emissions information indicating the potential for nickel release into the air from each operation.

  9. Validation of an acoustic location system to monitor Bornean orangutan (Pongo pygmaeus wurmbii) long calls.

    PubMed

    Spillmann, Brigitte; van Noordwijk, Maria A; Willems, Erik P; Mitra Setia, Tatang; Wipfli, Urs; van Schaik, Carel P

    2015-07-01

    The long call is an important vocal communication signal in the widely dispersed, semi-solitary orangutan. Long calls affect individuals' ranging behavior and mediate social relationships and regulate encounters between dispersed individuals in a dense rainforest. The aim of this study was to test the utility of an Acoustic Location System (ALS) for recording and triangulating the loud calls of free-living primates. We developed and validated a data extraction protocol for an ALS used to record wild orangutan males' long calls at the Tuanan field site (Central Kalimantan). We installed an ALS in a grid of 300 ha, containing 20 SM2+ recorders placed in a regular lattice at 500 m intervals, to monitor the distribution of calling males in the area. The validated system had the following main features: (i) a user-trained software algorithm (Song Scope) that reliably recognized orangutan long calls from sound files at distances up to 700 m from the nearest recorder, resulting in a total area of approximately 900 ha that could be monitored continuously; (ii) acoustic location of calling males up to 200 m outside the microphone grid, which meant that within an area of approximately 450 ha, call locations could be calculated through triangulation. The mean accuracy was 58 m, an error that is modest relative to orangutan mobility and average inter-individual distances. We conclude that an ALS is a highly effective method for detecting long-distance calls of wild primates and triangulating their position. In combination with conventional individual focal follow data, an ALS can greatly improve our knowledge of orangutans' social organization, and is readily adaptable for studying other highly vocal animals. PMID:25773926

  10. Inversely tracking indoor airborne particles to locate their release sources

    NASA Astrophysics Data System (ADS)

    Zhang, Tengfei (Tim); Li, Hongzhu; Wang, Shugang

    2012-08-01

    Airborne particles can have numerous adverse effects on human health. Knowing the release locations of airborne particulate sources is helpful in minimizing pollutant exposure. This paper describes a proposal to locate indoor particulate sources by two inverse models: the quasi-reversibility (QR) model and the zone prescription of contaminant sources with the Lagrangian-reversibility (LR) model. The QR model reverses the time marching direction of the Eulerian governing equation and replaces the second-order diffusion term with a fourth-order stabilization term. The zone prescription LR model traces individual particulate motion in a Lagrangian reference frame after reversing the flow field. The particle trajectories are solved backward to the initial release once the conservative forces acting on particles are reversed. The tracked particles are proposed to be placed at the zone boundary of the largest concentration contour within the domain at a given time, which is provided as the initially known information. By connecting all particles at t = 0, a zone is formed that can prescribe the actual contaminant source. This study finds that both models can accurately locate particulate sources released instantaneously at a spot. The QR model performs slightly better than the LR model but is much more computationally demanding.

  11. Acoustic sensor planning for gunshot location in national parks: a pareto front approach.

    PubMed

    González-Castaño, Francisco Javier; Alonso, Javier Vales; Costa-Montenegro, Enrique; López-Matencio, Pablo; Vicente-Carrasco, Francisco; Parrado-García, Francisco J; Gil-Castiñeira, Felipe; Costas-Rodríguez, Sergio

    2009-01-01

    In this paper, we propose a solution for gunshot location in national parks. In Spain there are agencies such as SEPRONA that fight against poaching with considerable success. The DiANa project, which is endorsed by Cabaneros National Park and the SEPRONA service, proposes a system to automatically detect and locate gunshots. This work presents its technical aspects related to network design and planning. The system consists of a network of acoustic sensors that locate gunshots by hyperbolic multi-lateration estimation. The differences in sound time arrivals allow the computation of a low error estimator of gunshot location. The accuracy of this method depends on tight sensor clock synchronization, which an ad-hoc time synchronization protocol provides. On the other hand, since the areas under surveillance are wide, and electric power is scarce, it is necessary to maximize detection coverage and minimize system cost at the same time. Therefore, sensor network planning has two targets, i.e., coverage and cost. We model planning as an unconstrained problem with two objective functions. We determine a set of candidate solutions of interest by combining a derivative-free descent method we have recently proposed with a Pareto front approach. The results are clearly superior to random seeding in a realistic simulation scenario. PMID:22303135

  12. Acoustic Sensor Planning for Gunshot Location in National Parks: A Pareto Front Approach

    PubMed Central

    González-Castaño, Francisco Javier; Alonso, Javier Vales; Costa-Montenegro, Enrique; López-Matencio, Pablo; Vicente-Carrasco, Francisco; Parrado-García, Francisco J.; Gil-Castiñeira, Felipe; Costas-Rodríguez, Sergio

    2009-01-01

    In this paper, we propose a solution for gunshot location in national parks. In Spain there are agencies such as SEPRONA that fight against poaching with considerable success. The DiANa project, which is endorsed by Cabaneros National Park and the SEPRONA service, proposes a system to automatically detect and locate gunshots. This work presents its technical aspects related to network design and planning. The system consists of a network of acoustic sensors that locate gunshots by hyperbolic multi-lateration estimation. The differences in sound time arrivals allow the computation of a low error estimator of gunshot location. The accuracy of this method depends on tight sensor clock synchronization, which an ad-hoc time synchronization protocol provides. On the other hand, since the areas under surveillance are wide, and electric power is scarce, it is necessary to maximize detection coverage and minimize system cost at the same time. Therefore, sensor network planning has two targets, i.e., coverage and cost. We model planning as an unconstrained problem with two objective functions. We determine a set of candidate solutions of interest by combining a derivative-free descent method we have recently proposed with a Pareto front approach. The results are clearly superior to random seeding in a realistic simulation scenario. PMID:22303135

  13. Acoustic source inversion to estimate volume flux from volcanic explosions

    NASA Astrophysics Data System (ADS)

    Kim, Keehoon; Fee, David; Yokoo, Akihiko; Lees, Jonathan M.

    2015-07-01

    We present an acoustic waveform inversion technique for infrasound data to estimate volume fluxes from volcanic eruptions. Previous inversion techniques have been limited by the use of a 1-D Green's function in a free space or half space, which depends only on the source-receiver distance and neglects volcanic topography. Our method exploits full 3-D Green's functions computed by a numerical method that takes into account realistic topographic scattering. We apply this method to vulcanian eruptions at Sakurajima Volcano, Japan. Our inversion results produce excellent waveform fits to field observations and demonstrate that full 3-D Green's functions are necessary for accurate volume flux inversion. Conventional inversions without consideration of topographic propagation effects may lead to large errors in the source parameter estimate. The presented inversion technique will substantially improve the accuracy of eruption source parameter estimation (cf. mass eruption rate) during volcanic eruptions and provide critical constraints for volcanic eruption dynamics and ash dispersal forecasting for aviation safety. Application of this approach to chemical and nuclear explosions will also provide valuable source information (e.g., the amount of energy released) previously unavailable.

  14. Acoustic signatures of sound source-tract coupling

    NASA Astrophysics Data System (ADS)

    Arneodo, Ezequiel M.; Perl, Yonatan Sanz; Mindlin, Gabriel B.

    2011-04-01

    Birdsong is a complex behavior, which results from the interaction between a nervous system and a biomechanical peripheral device. While much has been learned about how complex sounds are generated in the vocal organ, little has been learned about the signature on the vocalizations of the nonlinear effects introduced by the acoustic interactions between a sound source and the vocal tract. The variety of morphologies among bird species makes birdsong a most suitable model to study phenomena associated to the production of complex vocalizations. Inspired by the sound production mechanisms of songbirds, in this work we study a mathematical model of a vocal organ, in which a simple sound source interacts with a tract, leading to a delay differential equation. We explore the system numerically, and by taking it to the weakly nonlinear limit, we are able to examine its periodic solutions analytically. By these means we are able to explore the dynamics of oscillatory solutions of a sound source-tract coupled system, which are qualitatively different from those of a sound source-filter model of a vocal organ. Nonlinear features of the solutions are proposed as the underlying mechanisms of observed phenomena in birdsong, such as unilaterally produced “frequency jumps,” enhancement of resonances, and the shift of the fundamental frequency observed in heliox experiments.

  15. Modeling of Jovian Hectometric Radiation Source Locations: Ulysses Observations

    NASA Technical Reports Server (NTRS)

    Menietti, J. D.; Reiner, M. J.

    1996-01-01

    The Unified Radio and Plasma Wave (URAP) experiment on Ulysses has provided unique high latitude measurements of Jovian hectometric radiation (HOM) during its encounter with Jupiter in February 1992. URAP was the first radio instrument in the Jovian environment with radio direction-finding capability, which was previously used to determine the HOM source locations in the Jovian magnetosphere. These initial source location determinations were based on several assumptions, including the neglect of refractive effects, which may be tested. We have, for the first time, combined the measured incident ray-direction at the spacecraft with a model magnetosphere to directly trace the rays back to the HOM source. We concentrate on the observations of HOM from high northern latitudes when Ulysses was at distances less than 15 R(sub j). The three- dimensional ray-tracing calculations presented here indicate that the HOM sources probably lie on L shells in the range 3 less than or approximately equal to L less than 7 (tilted dipole magnetic field model) consistent with previous determinations that ignored the effects of refraction. The ray-tracing results, however, indicate that wave refraction due to the Io torus and the magnetic field can significantly influence the precise source location. We show that constraints on the locations imposed by the gyroemission mechanism suggest that the lo torus density may have experienced temporal and/or spatial fluctuations during the Ulysses observations of HOM. Finally, in the cold plasma approximation we demonstrate that even if the emission were nearly linearly polarized near the source region, almost circular polarization will be observed at Ulysses, in agreement with observations.

  16. Access to patents as sources to musical acoustics inventions

    NASA Astrophysics Data System (ADS)

    Brock-Nannestad, George

    2005-09-01

    Patents are important sources for the development of any technology. The paper addresses modern methods of access to patent publications relating to musical acoustics, in particular the constructions of instruments and components for instruments, methods for tuning, methods for teaching, and measuring equipment. The patent publications available are, among others, from the U.S., England, France, Germany, Japan, Russia, and the date range is from ca. 1880 to the present day. The two main searchable websites use different classification systems in their approach, and by suitable combination of the information it is possible to target the search efficiently. The paper will demonstrate the recent transfer of inventions relating to physical instruments to electronic simulations, and the fact that most recent inventions were made by independent inventors. A specific example is given by discussing the proposals for improved pipe organ and violin constructions invented in Denmark in the 1930s by Jarnak based on patented improvements for telephone reproducers.

  17. Acoustic Source Modeling for High Speed Air Jets

    NASA Technical Reports Server (NTRS)

    Goldstein, Marvin E.; Khavaran, Abbas

    2005-01-01

    The far field acoustic spectra at 90deg to the downstream axis of some typical high speed jets are calculated from two different forms of Lilley s equation combined with some recent measurements of the relevant turbulent source function. These measurements, which were limited to a single point in a low Mach number flow, were extended to other conditions with the aid of a highly developed RANS calculation. The results are compared with experimental data over a range of Mach numbers. Both forms of the analogy lead to predictions that are in excellent agreement with the experimental data at subsonic Mach numbers. The agreement is also fairly good at supersonic speeds, but the data appears to be slightly contaminated by shock-associated noise in this case.

  18. Near- Source, Seismo-Acoustic Signals Accompanying a NASCAR Race at the Texas Motor Speedway

    NASA Astrophysics Data System (ADS)

    Stump, B. W.; Hayward, C.; Underwood, R.; Howard, J. E.; MacPhail, M. D.; Golden, P.; Endress, A.

    2014-12-01

    Near-source, seismo-acoustic observations provide a unique opportunity to characterize urban sources, remotely sense human activities including vehicular traffic and monitor large engineering structures. Energy separately coupled into the solid earth and atmosphere provides constraints on not only the location of these sources but also the physics of the generating process. Conditions and distances at which these observations can be made are dependent upon not only local geological conditions but also atmospheric conditions at the time of the observations. In order to address this range of topics, an empirical, seismo-acoustic study was undertaken in and around the Texas Motor Speedway in the Dallas-Ft. Worth area during the first week of April 2014 at which time a range of activities associated with a series of NASCAR races occurred. Nine, seismic sensors were deployed around the 1.5-mile track for purposes of documenting the direct-coupled seismic energy from the passage of the cars and other vehicles on the track. Six infrasound sensors were deployed on a rooftop in a rectangular array configuration designed to provide high frequency beam forming for acoustic signals. Finally, a five-element infrasound array was deployed outside the track in order to characterize how the signals propagate away from the sources in the near-source region. Signals recovered from within the track were able to track and characterize the motion of a variety of vehicles during the race weekend including individual racecars. Seismic data sampled at 1000 sps documented strong Doppler effects as the cars approached and moved away from individual sensors. There were faint seismic signals that arrived at seismic velocity but local acoustic to seismic coupling as supported by the acoustic observations generated the majority of seismic signals. Actual seismic ground motions were small as demonstrated by the dominance of regional seismic signals from a magnitude 4.0 earthquake that arrived at

  19. Detection of impulsive sources from an aerostat-based acoustic array data collection system

    NASA Astrophysics Data System (ADS)

    Prather, Wayne E.; Clark, Robert C.; Strickland, Joshua; Frazier, Wm. Garth; Singleton, Jere

    2009-05-01

    An aerostat based acoustic array data collection system was deployed at the NATO TG-53 "Acoustic Detection of Weapon Firing" Joint Field Experiment conducted in Bourges, France during the final two weeks of June 2008. A variety of impulsive sources including mortar, artillery, gunfire, RPG, and explosive devices were fired during the test. Results from the aerostat acoustic array will be presented against the entire range of sources.

  20. Sound source localization by hearing preservation patients with and without symmetric, low-frequency acoustic hearing

    PubMed Central

    Loiselle, Louise H.; Dorman, Michael F.; Yost, William A.; Gifford, Rene H.

    2015-01-01

    The aim of this paper was to study sound source localization by cochlear implant (CI) listeners with low-frequency (LF) acoustic hearing in both the operated ear and in the contralateral ear. Eight CI listeners had symmetrical LF acoustic hearing (symm) and four had asymmetric LF acoustic hearing (asymm). The effects of two variables were assessed: (i) the symmetry of the LF thresholds in the two ears and (ii) the presence/absence of bilateral acoustic amplification. Stimuli consisted of low-pass, high pass, and wide-band noise bursts presented in the frontal horizontal plane. Localization accuracy was 23 degrees of error for the symm listeners and 76 degrees of error for the asymm listeners. The presence of a unilateral CI used in conjunction with bilateral LF acoustic hearing does not impair sound source localization accuracy, but amplification for acoustic hearing can be detrimental to sound source localization accuracy. PMID:25832907

  1. Identifying co-located acoustic emissions with highly correlated waveforms during stick-slip experiments

    NASA Astrophysics Data System (ADS)

    Goebel, T. H.; Zechar, J. D.; Becker, T. W.; Dresen, G. H.

    2012-12-01

    Repeating earthquakes, which may result from the repeated failure of strong fault patches, could help advance the understanding of structural differences of faults. They also provide a framework to test basic assumptions in earthquake physics and to quantify earthquake predictability. Our current efforts concentrate on a broadening of the understanding of micro-seismicity characteristics and its relation to fault structure and larger magnitude seismic events. In this study, we consider the possibly smallest repeating earthquakes: those generated in a laboratory setting. We present results from stick-slip experiments conducted on saw-cut surfaces with different roughness. During these tests we identified repeating acoustic emissions (AEs), i.e, largely co-located AEs with highly similar waveforms, and relate them to the difference in roughness of a particular surfaces. For these test we used three homogeneous Westerly granite cores that were pre-cut at a 30 degree angle to the loading axis. The saw-cuts were ground to be largely parallel and to create a specific roughness using silicon-carbide abrasives with different grain-sizes. We loaded the so prepared surfaces axially at a confining pressure of 120 to 150 MPa until several (up to 7) stick-slips occurred and recorded mechanical data and AEs, including full waveforms. AE locations were determined using automatically-picked first-arrival times of a 14 channel miniature seismic array. The location uncertainty was between 1-4 mm. In identifying repeating AEs, we conducted a systematic sensitivity analysis. Initially, we only imposed constrains on waveforms similarity and tested the influence of distance-constrains on the identification process. For a more restrictive choice of cross-correlation coefficient and correlation windows, the size of clusters did not grow above twice the approximate uncertainties of acoustic emission locations. Thus, repeating AEs identified with our algorithm are representative of tectonic

  2. Acoustic space learning for sound-source separation and localization on binaural manifolds.

    PubMed

    Deleforge, Antoine; Forbes, Florence; Horaud, Radu

    2015-02-01

    In this paper, we address the problems of modeling the acoustic space generated by a full-spectrum sound source and using the learned model for the localization and separation of multiple sources that simultaneously emit sparse-spectrum sounds. We lay theoretical and methodological grounds in order to introduce the binaural manifold paradigm. We perform an in-depth study of the latent low-dimensional structure of the high-dimensional interaural spectral data, based on a corpus recorded with a human-like audiomotor robot head. A nonlinear dimensionality reduction technique is used to show that these data lie on a two-dimensional (2D) smooth manifold parameterized by the motor states of the listener, or equivalently, the sound-source directions. We propose a probabilistic piecewise affine mapping model (PPAM) specifically designed to deal with high-dimensional data exhibiting an intrinsic piecewise linear structure. We derive a closed-form expectation-maximization (EM) procedure for estimating the model parameters, followed by Bayes inversion for obtaining the full posterior density function of a sound-source direction. We extend this solution to deal with missing data and redundancy in real-world spectrograms, and hence for 2D localization of natural sound sources such as speech. We further generalize the model to the challenging case of multiple sound sources and we propose a variational EM framework. The associated algorithm, referred to as variational EM for source separation and localization (VESSL) yields a Bayesian estimation of the 2D locations and time-frequency masks of all the sources. Comparisons of the proposed approach with several existing methods reveal that the combination of acoustic-space learning with Bayesian inference enables our method to outperform state-of-the-art methods. PMID:25164245

  3. PM(10) source characterization at urban and highway roadside locations.

    PubMed

    Furusjö, Erik; Sternbeck, John; Cousins, Anna Palm

    2007-11-15

    Levels of PM(10) were measured at two different roadside locations in the Stockholm region in Sweden, one highway south of Stockholm and one urban street canyon in the center of the city. PM(10) samples were taken during six separate campaigns over one full year, and analyzed for 29 metals, in order to help characterize sources of PM(10). Five contributing factors were identified by multivariate receptor modeling using positive matrix factorization. Factors were classified, based on their seasonal variation and published data on metal composition of different sources, as: 1) resuspension; 2) vehicle derived; 3) road salt; 4) regional combustion and 5) long-range transport. Resuspension and long-range transport were shown to be important contributors to the PM(10) levels at both sites. In fact, long-range transport was the main contributor to the PM(10) levels at the highway roadside. The vehicle source was only of major importance at the urban roadside, where it frequently contributed between 10 and 20 microg m(-3). Brake wear was an important component in the vehicle source. Vehicle exhaust was not detected as a separate source and was not identified as a major source for PM(10). To our knowledge, this is the first study identifying brake wear as a major source of PM(10) during urban driving. PMID:17822744

  4. Functional delay and sum beamforming for three-dimensional acoustic source identification with solid spherical arrays

    NASA Astrophysics Data System (ADS)

    Yang, Yang; Chu, Zhigang; Shen, Linbang; Xu, Zhongming

    2016-07-01

    Solid spherical arrays have become particularly attractive tools for doing acoustic sources identification in cabin environments. Spherical harmonics beamforming (SHB) is the popular conventional algorithm. Regrettably, its results suffer from severe sidelobe contaminations and the existing solutions are incapable of removing these contaminations both significantly and efficiently. This paper focuses on conquering these problems by creating a novel functional delay and sum (FDAS) algorithm. First and foremost, a new delay and sum (DAS) algorithm is established, and for which, the point spread function (PSF) is derived, the determination principle of the truncated upper limit of the spherical harmonics degree is explored, and the performance is examined as well as compared with that of SHB. Next, the FDAS algorithm is created by combining DAS and the functional beamforming (FB) approach initially suggested for planar arrays, and its merits are demonstrated. Additionally, performances of DAS and FDAS are probed into under the situation that the source is not at the focus point. Several interesting results have emerged: (1) the truncated upper limit of the spherical harmonics degree, capable of making DAS meet FB's requirement, exists and its minimum value depends only on the wave number and the array radius. (2) DAS can accurately locate and quantify the single source and the incoherent or coherent sources, and its comprehensive performance is not inferior to that of SHB. (3) For single source or incoherent sources, FDAS can not only accurately locate and quantify the source, but also significantly and efficiently attenuate sidelobes, effectively detect weak sources and acquire somewhat better spatial resolution. In contrast to that, for coherent sources, FDAS is not available. (4) DAS can invariably quantify the source accurately, irrespectively of the focus distance, whereas FDAS is burdened with a quantification deviation growing with the increase of the exponent

  5. Locating and Quantifying Broadband Fan Sources Using In-Duct Microphones

    NASA Technical Reports Server (NTRS)

    Dougherty, Robert P.; Walker, Bruce E.; Sutliff, Daniel L.

    2010-01-01

    In-duct beamforming techniques have been developed for locating broadband noise sources on a low-speed fan and quantifying the acoustic power in the inlet and aft fan ducts. The NASA Glenn Research Center's Advanced Noise Control Fan was used as a test bed. Several of the blades were modified to provide a broadband source to evaluate the efficacy of the in-duct beamforming technique. Phased arrays consisting of rings and line arrays of microphones were employed. For the imaging, the data were mathematically resampled in the frame of reference of the rotating fan. For both the imaging and power measurement steps, array steering vectors were computed using annular duct modal expansions, selected subsets of the cross spectral matrix elements were used, and the DAMAS and CLEAN-SC deconvolution algorithms were applied.

  6. Acoustic emission source localization based on distance domain signal representation

    NASA Astrophysics Data System (ADS)

    Gawronski, M.; Grabowski, K.; Russek, P.; Staszewski, W. J.; Uhl, T.; Packo, P.

    2016-04-01

    Acoustic emission is a vital non-destructive testing technique and is widely used in industry for damage detection, localisation and characterization. The latter two aspects are particularly challenging, as AE data are typically noisy. What is more, elastic waves generated by an AE event, propagate through a structural path and are significantly distorted. This effect is particularly prominent for thin elastic plates. In these media the dispersion phenomenon results in severe localisation and characterization issues. Traditional Time Difference of Arrival methods for localisation techniques typically fail when signals are highly dispersive. Hence, algorithms capable of dispersion compensation are sought. This paper presents a method based on the Time - Distance Domain Transform for an accurate AE event localisation. The source localisation is found through a minimization problem. The proposed technique focuses on transforming the time signal to the distance domain response, which would be recorded at the source. Only, basic elastic material properties and plate thickness are used in the approach, avoiding arbitrary parameters tuning.

  7. Performance Bounds on the Passive Localization of a Moving Source for Ocean Acoustics.

    NASA Astrophysics Data System (ADS)

    Song, Hee Chun

    Matched field processing for locating a point acoustic source in the ocean using a vertical array is extended to treat a moving source problem. The extension involves both temporally nonstationary and spatially inhomogeneous nature of the sound field generated by a time-harmonic point source moving uniformly in a stratified oceanic waveguide. Using normal mode description of the sound field, we focused on the effect of source motion on matched field processing. An optimum receiver based on maximum likelihood method is developed in the presence of spatially and temporally white noise. We used the generalized ambiguity function (GAF) to analyze problems of accuracy, ambiguity, and resolution. The principal result is the demonstration that a moving source problem can be treated as a stationary source problem if the source travel distance (uncompensated speed x time window) is less than half the wavelength of trapped modes. Also a closed-form expression for the optimum potential resolution is derived based on the Cramer-Rao bound. The lower bound provides physical insight of how each mode contributes to the localization process, and can be easily evaluated for a wide range of source positions in any sound channel using sound channel eigenfunctions, eigenvalues, and the number of modes involved. Simulations of GAF and the bounds for Arctic environment illustrate the coupling of ocean environment to the localization performance. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253 -1690.).

  8. Accurate source location from waves scattered by surface topography

    NASA Astrophysics Data System (ADS)

    Wang, Nian; Shen, Yang; Flinders, Ashton; Zhang, Wei

    2016-06-01

    Accurate source locations of earthquakes and other seismic events are fundamental in seismology. The location accuracy is limited by several factors, including velocity models, which are often poorly known. In contrast, surface topography, the largest velocity contrast in the Earth, is often precisely mapped at the seismic wavelength (>100 m). In this study, we explore the use of P coda waves generated by scattering at surface topography to obtain high-resolution locations of near-surface seismic events. The Pacific Northwest region is chosen as an example to provide realistic topography. A grid search algorithm is combined with the 3-D strain Green's tensor database to improve search efficiency as well as the quality of hypocenter solutions. The strain Green's tensor is calculated using a 3-D collocated-grid finite difference method on curvilinear grids. Solutions in the search volume are obtained based on the least squares misfit between the "observed" and predicted P and P coda waves. The 95% confidence interval of the solution is provided as an a posteriori error estimation. For shallow events tested in the study, scattering is mainly due to topography in comparison with stochastic lateral velocity heterogeneity. The incorporation of P coda significantly improves solution accuracy and reduces solution uncertainty. The solution remains robust with wide ranges of random noises in data, unmodeled random velocity heterogeneities, and uncertainties in moment tensors. The method can be extended to locate pairs of sources in close proximity by differential waveforms using source-receiver reciprocity, further reducing errors caused by unmodeled velocity structures.

  9. Nonlinear Kalman Filtering for acoustic emission source localization in anisotropic panels.

    PubMed

    Dehghan Niri, E; Farhidzadeh, A; Salamone, S

    2014-02-01

    Nonlinear Kalman Filtering is an established field in applied probability and control systems, which plays an important role in many practical applications from target tracking to weather and climate prediction. However, its application for acoustic emission (AE) source localization has been very limited. In this paper, two well-known nonlinear Kalman Filtering algorithms are presented to estimate the location of AE sources in anisotropic panels: the Extended Kalman Filter (EKF) and Unscented Kalman Filter (UKF). These algorithms are applied to two cases: velocity profile known (CASE I) and velocity profile unknown (CASE II). The algorithms are compared with a more traditional nonlinear least squares method. Experimental tests are carried out on a carbon-fiber reinforced polymer (CFRP) composite panel instrumented with a sparse array of piezoelectric transducers to validate the proposed approaches. AE sources are simulated using an instrumented miniature impulse hammer. In order to evaluate the performance of the algorithms, two metrics are used: (1) accuracy of the AE source localization and (2) computational cost. Furthermore, it is shown that both EKF and UKF can provide a confidence interval of the estimated AE source location and can account for uncertainty in time of flight measurements. PMID:23972569

  10. Measurement of Turbulence with Acoustic Doppler Current Profilers - Sources of Error and Laboratory Results

    USGS Publications Warehouse

    Nystrom, E.A.; Oberg, K.A.; Rehmann, C.R.

    2002-01-01

    Acoustic Doppler current profilers (ADCPs) provide a promising method for measuring surface-water turbulence because they can provide data from a large spatial range in a relatively short time with relative ease. Some potential sources of errors in turbulence measurements made with ADCPs include inaccuracy of Doppler-shift measurements, poor temporal and spatial measurement resolution, and inaccuracy of multi-dimensional velocities resolved from one-dimensional velocities measured at separate locations. Results from laboratory measurements of mean velocity and turbulence statistics made with two pulse-coherent ADCPs in 0.87 meters of water are used to illustrate several of inherent sources of error in ADCP turbulence measurements. Results show that processing algorithms and beam configurations have important effects on turbulence measurements. ADCPs can provide reasonable estimates of many turbulence parameters; however, the accuracy of turbulence measurements made with commercially available ADCPs is often poor in comparison to standard measurement techniques.

  11. Accurate source location from P waves scattered by surface topography

    NASA Astrophysics Data System (ADS)

    Wang, N.; Shen, Y.

    2015-12-01

    Accurate source locations of earthquakes and other seismic events are fundamental in seismology. The location accuracy is limited by several factors, including velocity models, which are often poorly known. In contrast, surface topography, the largest velocity contrast in the Earth, is often precisely mapped at the seismic wavelength (> 100 m). In this study, we explore the use of P-coda waves generated by scattering at surface topography to obtain high-resolution locations of near-surface seismic events. The Pacific Northwest region is chosen as an example. The grid search method is combined with the 3D strain Green's tensor database type method to improve the search efficiency as well as the quality of hypocenter solution. The strain Green's tensor is calculated by the 3D collocated-grid finite difference method on curvilinear grids. Solutions in the search volume are then obtained based on the least-square misfit between the 'observed' and predicted P and P-coda waves. A 95% confidence interval of the solution is also provided as a posterior error estimation. We find that the scattered waves are mainly due to topography in comparison with random velocity heterogeneity characterized by the von Kάrmάn-type power spectral density function. When only P wave data is used, the 'best' solution is offset from the real source location mostly in the vertical direction. The incorporation of P coda significantly improves solution accuracy and reduces its uncertainty. The solution remains robust with a range of random noises in data, un-modeled random velocity heterogeneities, and uncertainties in moment tensors that we tested.

  12. Locating the Source of Diffusion in Large-Scale Networks

    NASA Astrophysics Data System (ADS)

    Pinto, Pedro C.; Thiran, Patrick; Vetterli, Martin

    2012-08-01

    How can we localize the source of diffusion in a complex network? Because of the tremendous size of many real networks—such as the internet or the human social graph—it is usually unfeasible to observe the state of all nodes in a network. We show that it is fundamentally possible to estimate the location of the source from measurements collected by sparsely placed observers. We present a strategy that is optimal for arbitrary trees, achieving maximum probability of correct localization. We describe efficient implementations with complexity O(Nα), where α=1 for arbitrary trees and α=3 for arbitrary graphs. In the context of several case studies, we determine how localization accuracy is affected by various system parameters, including the structure of the network, the density of observers, and the number of observed cascades.

  13. Locating tritium sources in a research reactor building.

    PubMed

    Fukui, Masami

    2005-10-01

    Despite renovation of the D2O facility, tritium concentrations in the condensates of reactor room air showed tens of Bq mL before venting resumption on July 1997. This suggested the presence of tritium sources in the research reactor-containment building. An investigation was therefore initiated to locate the source and determine the distribution of tritium in the containment building. Air monitoring in the working area using a dish of water placed in the building suggested that the source of tritium was near the reactor core. Monitoring exhaust air from the two facilities (a cold neutron source and a D(2)O tank) showed high specific activity on the order of 10 Bq mL(-1), suggesting the presence of tritium in condensates near the reactor core. The major concern was whether the leakage of liquid deuterium (4 L) and heavy water (2 x 10(3) L) used as a moderator had occurred. The concentration of tritium in condensates has not increased over the past few years in either the exhaust line or working area, and the deuterium itself has not been found in the surrounding environment. The concentration of tritium measured using an ionization chamber after Ar decay was dependent on the thermal output of the research reactor, indicating that the tritium was produced by the irradiation process within shielding/moderator materials or cover gas with neutrons. PMID:16155451

  14. Reflection of an acoustic line source by an impedance surface with uniform flow

    NASA Astrophysics Data System (ADS)

    Brambley, E. J.; Gabard, G.

    2014-10-01

    An exact analytic solution is derived for the 2D acoustic pressure field generated by a time-harmonic line mass source located above an impedance surface with uniform grazing flow. Closed-form asymptotic solutions in the far field are also provided. The analysis is valid for both locally-reacting and nonlocally-reacting impedances, as is demonstrated by analyzing a nonlocally reacting effective impedance representing the presence of a thin boundary layer over the surface. The analytic solution may be written in a form suggesting a generalization of the method of images to account for the impedance surface. The line source is found to excite surface waves on the impedance surface, some of which may be leaky waves which contradict the assumption of decay away from the surface predicted in previous analyses of surface waves with flow. The surface waves may be treated either (correctly) as unstable waves or (artificially) as stable waves, enabling comparison with previous numerical or mathematical studies which make either of these assumptions. The computer code for evaluating the analytic solution and far-field asymptotics is provided in the supplementary material. It is hoped this work will provide a useful benchmark solution for validating 2D numerical acoustic codes.

  15. Possible Source Location of the Terrestrial Myriametric Radio Burst

    NASA Astrophysics Data System (ADS)

    Fung, S. F.; Shao, X.; Frey, H. U.; Garcia, L. N.

    2013-12-01

    Fung et al. [2013] reported recently the identification of a terrestrial myriametric radio burst (TMRB) that was possibly a result from a dayside high latitude reconnection process. The TMRB was observed simultaneously by the IMAGE and Geotail satellites when the satellites were located at widely different latitudes on opposite sides of the Earth in nearly the same meridional plane. The TMRB was observed when the interplanetary field was northward. Its intensity seemed to be modulated by the IMF Bz component while the source directions (relative to the Geotail positions over the TMRB interval) also seemed to respond to the changes in the IMF By component. In this paper, we will present further observations from the IMAGE FUV data during the TMRB interval, revealing the presence of a bright proton aurora spot at the cusp foot print and thus confirming the presence of high-latitude dayside reconnection at the time. We have also performed a CCMC run-on-request of a global magnetospheric simulation for a time period over the TMRB interval. We will present the CCMC results and discuss the possible identification of the location of the TMRB source. Fung, S. F., K. Hashimoto, H. Kojima, S. A. Boardsen, L. N. Garcia, H. Matsumoto, J. L. Green, and B. W. Reinisch (2013), Terrestrial myriametric radio burst observed by IMAGE and Geotail satellites, J. Geophys. Res. Space Physics, 118, 1101-1111, doi:10.1002/jgra.50149.

  16. Passive Acoustic Source Localization at a Low Sampling Rate Based on a Five-Element Cross Microphone Array

    PubMed Central

    Kan, Yue; Wang, Pengfei; Zha, Fusheng; Li, Mantian; Gao, Wa; Song, Baoyu

    2015-01-01

    Accurate acoustic source localization at a low sampling rate (less than 10 kHz) is still a challenging problem for small portable systems, especially for a multitasking micro-embedded system. A modification of the generalized cross-correlation (GCC) method with the up-sampling (US) theory is proposed and defined as the US-GCC method, which can improve the accuracy of the time delay of arrival (TDOA) and source location at a low sampling rate. In this work, through the US operation, an input signal with a certain sampling rate can be converted into another signal with a higher frequency. Furthermore, the optimal interpolation factor for the US operation is derived according to localization computation time and the standard deviation (SD) of target location estimations. On the one hand, simulation results show that absolute errors of the source locations based on the US-GCC method with an interpolation factor of 15 are approximately from 1/15- to 1/12-times those based on the GCC method, when the initial same sampling rates of both methods are 8 kHz. On the other hand, a simple and small portable passive acoustic source localization platform composed of a five-element cross microphone array has been designed and set up in this paper. The experiments on the established platform, which accurately locates a three-dimensional (3D) near-field target at a low sampling rate demonstrate that the proposed method is workable. PMID:26057042

  17. Wide aperture arrays for locating impulsive sound sources in air and underwater

    NASA Astrophysics Data System (ADS)

    Ferguson, Brian G.

    2006-05-01

    Passive ranging techniques are used in land-based acoustic surveillance systems and underwater sonar systems to localize sources that radiate acoustic energy into the environment. Passive ranging by wavefront curvature relies on the spherical expansion of the wavefronts as the acoustic energy propagates outwards from the source. A wide-aperture receiving array is used to sense the curvature of the wavefront by estimating the intersensor time delays as the wavefront traverses the array. The time delay estimates are used to calculate the range (which is equal to the radius of curvature of the wavefront) and bearing of the source. The wavefront curvature method is applied here to the passive ranging of sources of four different types of acoustic signals: underwater mechanical transients, underwater biological transients, continuous sound wave transmissions in air and impulsive sounds in air. The method provides precise range and bearing estimates of underwater signal sources. In comparison, large passive ranging errors are observed for in-air sources because the atmosphere is a nonstationary sound propagation medium. Atmospheric turbulence causes perturbations in the curvature of the acoustic wavefronts and leads to random fluctuations in the source position estimates on time scales ranging from seconds to minutes. Background noise at each sensor has only a small effect on the positional uncertainty of in-air sources with random fluctuations in the source position estimates occurring on subsecond time scales.

  18. Spatio-temporal source modeling of evoked potentials to acoustic and cochlear implant stimulation.

    PubMed

    Ponton, C W; Don, M; Waring, M D; Eggermont, J J; Masuda, A

    1993-01-01

    Spatio-temporal source modeling (STSM) of event-related potentials was used to estimate the loci and characteristics of cortical activity evoked by acoustic stimulation in normal hearing subjects and by electrical stimulation in cochlear implant (CI) subjects. In both groups of subjects, source solutions obtained for the N1/P2 complex were located in the superior half of the temporal lobe in the head model. Results indicate that it may be possible to determine whether stimulation of different implant channels activates different regions of cochleotopically organized auditory cortex. Auditory system activation can be assessed further by examining the characteristics of the source wave forms. For example, subjects whose cochlear implants provided auditory sensations and normal hearing subjects had similar source activity. In contrast, a subject in whom implant activation evoked eyelid movements exhibited different source wave forms. STSM analysis may provide an electrophysiological technique for guiding rehabilitation programs based on the capabilities of the individual implant user and for disentangling the complex response patterns to electrical stimulation of the brain. PMID:7694834

  19. Characterizing, synthesizing, and/or canceling out acoustic signals from sound sources

    DOEpatents

    Holzrichter, John F.; Ng, Lawrence C.

    2007-03-13

    A system for characterizing, synthesizing, and/or canceling out acoustic signals from inanimate and animate sound sources. Electromagnetic sensors monitor excitation sources in sound producing systems, such as animate sound sources such as the human voice, or from machines, musical instruments, and various other structures. Acoustical output from these sound producing systems is also monitored. From such information, a transfer function characterizing the sound producing system is generated. From the transfer function, acoustical output from the sound producing system may be synthesized or canceled. The systems disclosed enable accurate calculation of transfer functions relating specific excitations to specific acoustical outputs. Knowledge of such signals and functions can be used to effect various sound replication, sound source identification, and sound cancellation applications.

  20. Neptune's non-thermal radio emissions - Phenomenology and source locations

    NASA Technical Reports Server (NTRS)

    Rabl, Gerald K. F.; Ladreiter, H.-P.; Rucker, Helmut O.; Kaiser, Michael L.

    1992-01-01

    During the inbound and the outbound leg of Voyager 2's encounter with Neptune, the Planetary Radio Astronomy (PRA) experiment aboard the spacecraft detected short radio bursts at frequencies within the range of about 500-1300 kHz, and broad-banded smoothly varying emission patterns within the frequency range from about 40-800 kHz. Both emissions can be described in terms of a period of 16.1 hours determining Neptune's rotation period. Furthermore, just near closest approach, a narrow-banded smoothly varying radio component was observed occurring between 600 and 800 kHz. After giving a brief overview about some general characteristics of Neptune's nonthermal radio emission, the source locations of Neptune's emission components are determined, using an offset tilted dipole model for Neptune's magnetic field. Assuming that the emission originates near the electron gyrofrequency a geometrical beaming model is developed in order to fit the observed emission episodes.

  1. The source of solar high-frequency acoustic modes - Theoretical expectations

    NASA Technical Reports Server (NTRS)

    Brown, Timothy M.

    1991-01-01

    The source exciting the solar p-modes is likely to be acoustic noise generated in the top part of the sun's convection zone. If so, then simple arguments suggest that most of the emitted energy may come from rare localized events that are well separated from one another in space and time. This note describes the acoustic emission that would be expected from such events, based on a ray-theory analysis. Most of the acoustic energy is found to emerge very close to the source, so that observations to identify emission events will require high spatial resolution.

  2. Response of a viscoelastic halfspace to subsurface distributed acoustic sources with application to medical diagnosis

    NASA Astrophysics Data System (ADS)

    Royston, Thomas J.; Yazicioglu, Yigit; Loth, Francis

    2003-04-01

    The response within and at the surface of an isotropic viscoelastic medium to subsurface distributed low audible frequency acoustic sources is considered. Spherically and cylindrically distributed sources are approximated as arrays of infinitesimal point sources. Analytical approximations for the acoustic field radiating from these sources are then obtained as a summation of tractable point source expressions. These theoretical approximations are compared to computational finite element predictions and experimental studies in selected cases. The objective is to better understand low audible frequency sound propagation in soft biological tissue caused by subsurface sources. Distributed acoustic sources could represent vibratory motion of the vascular wall caused by turbulent blood flow past a constriction (stenosis). Additionally focused vibratory stimulation using a dynamic radiation force caused by interfering ultrasound beams effectively creates a distributed subsurface acoustic source. A dynamic radiation force has been investigated as a means of probing subsurface tissue anomalies, including calcified vascular plaque and tumorous growths. In these cases, there is an interest in relating acoustic measurements at the skin surface and within the medium to the underlying flow/constriction environment or tissue anomaly. [Research supported by NIH NCRR 14250 and Whitaker Foundation BME RG 01-0198.

  3. 3D Finite-Difference Modeling of Acoustic Radiation from Seismic Sources

    NASA Astrophysics Data System (ADS)

    Chael, E. P.; Aldridge, D. F.; Jensen, R. P.

    2013-12-01

    Shallow seismic events, earthquakes as well as explosions, often generate acoustic waves in the atmosphere observable at local or even regional distances. Recording both the seismic and acoustic signals can provide additional constraints on source parameters such as epicenter coordinates, depth, origin time, moment, and mechanism. Recent advances in finite-difference (FD) modeling methods enable accurate numerical treatment of wave propagation across the ground surface between the (solid) elastic and (fluid) acoustic domains. Using a fourth-order, staggered-grid, velocity-stress FD algorithm, we are investigating the effects of various source parameters on the acoustic (or infrasound) signals transmitted from the solid earth into the atmosphere. Compressional (P), shear (S), and Rayleigh waves all radiate some acoustic energy into the air at the ground surface. These acoustic wavefronts are typically conical in shape, since their phase velocities along the surface exceed the sound speed in air. Another acoustic arrival with a spherical wavefront can be generated from the vicinity of the epicenter of a shallow event, due to the strong vertical ground motions directly above the buried source. Images of acoustic wavefields just above the surface reveal the radiation patterns and relative amplitudes of the various arrivals. In addition, we compare the relative effectiveness of different seismic source mechanisms for generating acoustic energy. For point sources at a fixed depth, double-couples with almost any orientation produce stronger acoustic signals than isotropic explosions, due to higher-amplitude S and Rayleigh waves. Of course, explosions tend to be shallower than most earthquakes, which can offset the differences due to mechanism. Low-velocity material in the shallow subsurface acts to increase vertical seismic motions there, enhancing the coupling to acoustic waves in air. If either type of source breaks the surface (e.g., an earthquake with surface rupture

  4. Passive acoustic location of bowhead whales in a population census off Point Barrow, Alaska.

    PubMed

    Cummings, W C; Holliday, D V

    1985-10-01

    A sonobuoy array placed in the nearshore lead was used for locating bowhead whale sounds to determine if whales migrated past census stations beyond visual range and were uncounted. Based on a sample of 182 whale sounds (over 48 h) from closest point of approach (CPA) distances out to more than 10 km, 68% originated beyond 2 km (CPA), where only 1% of the 242 whales were sighted. No whales were sighted beyond 3 km during this time, but 53% of the located sounds originated that far and beyond. Thirty-seven other bowhead sounds over 15 h were distributed out to 6 km. Two tracked whales moved at average speeds of 1.5 and 1.8 kn. Maximum location error was 1%-25% in a sector of 120 degrees X 5-10 km, depending upon bearing and range. Most whale sounds were low-frequency moans, trumpeting roars, and repetitive sequences (songs) with peak spectrum source level up to 189 dB re: 1 microPa, 1 m. Lack of correlations between numbers of sounds and sighted whales precluded using bowhead sounds to count individuals or even to extrapolate ratios of unseen to observed whales. PMID:4056210

  5. Investigations of incorporating source directivity into room acoustics computer models to improve auralizations

    NASA Astrophysics Data System (ADS)

    Vigeant, Michelle C.

    Room acoustics computer modeling and auralizations are useful tools when designing or modifying acoustically sensitive spaces. In this dissertation, the input parameter of source directivity has been studied in great detail to determine first its effect in room acoustics computer models and secondly how to better incorporate the directional source characteristics into these models to improve auralizations. To increase the accuracy of room acoustics computer models, the source directivity of real sources, such as musical instruments, must be included in the models. The traditional method for incorporating source directivity into room acoustics computer models involves inputting the measured static directivity data taken every 10° in a sphere-shaped pattern around the source. This data can be entered into the room acoustics software to create a directivity balloon, which is used in the ray tracing algorithm to simulate the room impulse response. The first study in this dissertation shows that using directional sources over an omni-directional source in room acoustics computer models produces significant differences both in terms of calculated room acoustics parameters and auralizations. The room acoustics computer model was also validated in terms of accurately incorporating the input source directivity. A recently proposed technique for creating auralizations using a multi-channel source representation has been investigated with numerous subjective studies, applied to both solo instruments and an orchestra. The method of multi-channel auralizations involves obtaining multi-channel anechoic recordings of short melodies from various instruments and creating individual channel auralizations. These auralizations are then combined to create a total multi-channel auralization. Through many subjective studies, this process was shown to be effective in terms of improving the realism and source width of the auralizations in a number of cases, and also modeling different

  6. A hybrid algorithm for robust acoustic source localization in noisy and reverberant environments

    NASA Astrophysics Data System (ADS)

    Rajagopalan, Ramesh; Dessonville, Timothy

    2014-09-01

    Acoustic source localization using microphone arrays is widely used in videoconferencing and surveillance systems. However, it still remains a challenging task to develop efficient algorithms for accurate estimation of source location using distributed data processing. In this work, we propose a new algorithm for efficient localization of a speaker in noisy and reverberant environments such as videoconferencing. We propose a hybrid algorithm that combines generalized cross correlation based phase transform method (GCC-PHAT) and Tabu search to obtain a robust and accurate estimate of the speaker location. The Tabu Search algorithm iteratively improves the time difference of arrival (TDOA) estimate of GCC-PHAT by examining the neighboring solutions until a convergence in the TDOA value is obtained. Experiments were performed based on real world data recorded from a meeting room in the presence of noise such as computer and fans. Our results demonstrate that the proposed hybrid algorithm outperforms GCC-PHAT especially when the noise level is high. This shows the robustness of the proposed algorithm in noisy and realistic videoconferencing systems.

  7. Locating single-point sources from arrival times containing large picking errors (LPEs): the virtual field optimization method (VFOM)

    NASA Astrophysics Data System (ADS)

    Li, Xi-Bing; Wang, Ze-Wei; Dong, Long-Jun

    2016-01-01

    Microseismic monitoring systems using local location techniques tend to be timely, automatic and stable. One basic requirement of these systems is the automatic picking of arrival times. However, arrival times generated by automated techniques always contain large picking errors (LPEs), which may make the location solution unreliable and cause the integrated system to be unstable. To overcome the LPE issue, we propose the virtual field optimization method (VFOM) for locating single-point sources. In contrast to existing approaches, the VFOM optimizes a continuous and virtually established objective function to search the space for the common intersection of the hyperboloids, which is determined by sensor pairs other than the least residual between the model-calculated and measured arrivals. The results of numerical examples and in-site blasts show that the VFOM can obtain more precise and stable solutions than traditional methods when the input data contain LPEs. Furthermore, we discuss the impact of LPEs on objective functions to determine the LPE-tolerant mechanism, velocity sensitivity and stopping criteria of the VFOM. The proposed method is also capable of locating acoustic sources using passive techniques such as passive sonar detection and acoustic emission.

  8. Locating single-point sources from arrival times containing large picking errors (LPEs): the virtual field optimization method (VFOM).

    PubMed

    Li, Xi-Bing; Wang, Ze-Wei; Dong, Long-Jun

    2016-01-01

    Microseismic monitoring systems using local location techniques tend to be timely, automatic and stable. One basic requirement of these systems is the automatic picking of arrival times. However, arrival times generated by automated techniques always contain large picking errors (LPEs), which may make the location solution unreliable and cause the integrated system to be unstable. To overcome the LPE issue, we propose the virtual field optimization method (VFOM) for locating single-point sources. In contrast to existing approaches, the VFOM optimizes a continuous and virtually established objective function to search the space for the common intersection of the hyperboloids, which is determined by sensor pairs other than the least residual between the model-calculated and measured arrivals. The results of numerical examples and in-site blasts show that the VFOM can obtain more precise and stable solutions than traditional methods when the input data contain LPEs. Furthermore, we discuss the impact of LPEs on objective functions to determine the LPE-tolerant mechanism, velocity sensitivity and stopping criteria of the VFOM. The proposed method is also capable of locating acoustic sources using passive techniques such as passive sonar detection and acoustic emission. PMID:26754955

  9. Locating single-point sources from arrival times containing large picking errors (LPEs): the virtual field optimization method (VFOM)

    PubMed Central

    Li, Xi-Bing; Wang, Ze-Wei; Dong, Long-Jun

    2016-01-01

    Microseismic monitoring systems using local location techniques tend to be timely, automatic and stable. One basic requirement of these systems is the automatic picking of arrival times. However, arrival times generated by automated techniques always contain large picking errors (LPEs), which may make the location solution unreliable and cause the integrated system to be unstable. To overcome the LPE issue, we propose the virtual field optimization method (VFOM) for locating single-point sources. In contrast to existing approaches, the VFOM optimizes a continuous and virtually established objective function to search the space for the common intersection of the hyperboloids, which is determined by sensor pairs other than the least residual between the model-calculated and measured arrivals. The results of numerical examples and in-site blasts show that the VFOM can obtain more precise and stable solutions than traditional methods when the input data contain LPEs. Furthermore, we discuss the impact of LPEs on objective functions to determine the LPE-tolerant mechanism, velocity sensitivity and stopping criteria of the VFOM. The proposed method is also capable of locating acoustic sources using passive techniques such as passive sonar detection and acoustic emission. PMID:26754955

  10. Acoustics

    NASA Astrophysics Data System (ADS)

    The acoustics research activities of the DLR fluid-mechanics department (Forschungsbereich Stroemungsmechanik) during 1988 are surveyed and illustrated with extensive diagrams, drawings, graphs, and photographs. Particular attention is given to studies of helicopter rotor noise (high-speed impulsive noise, blade/vortex interaction noise, and main/tail-rotor interaction noise), propeller noise (temperature, angle-of-attack, and nonuniform-flow effects), noise certification, and industrial acoustics (road-vehicle flow noise and airport noise-control installations).

  11. Successful cuing of gender source memory does not improve location source memory.

    PubMed

    Hicks, Jason L; Starns, Jeffrey J

    2016-05-01

    In three experiments we explored cross-dimensional cuing effects in a multidimensional source encoding and retrieval paradigm. We employed a bias-controlled experimental method of source cuing at retrieval (Starns & Hicks, 2013) in an attempt to improve retrieval of location information indirectly by cuing gender information. Encoded words were situated on the left or right side of a computer monitor and associated with either a male or a female face. When multiple faces were used across the set of encoded words, reinstating the correct face at retrieval alongside an incorrect, opposite-gender face cue improved male/female source decisions for test words. However, this powerful test cue did not improve memory for the encoded location of the words, suggesting that within-dimension cuing does not produce cross-dimensional cuing. This null outcome was found when gender decisions were required (Experiments 1A and 2) or not required (Experiment 1B) prior to location decisions. Nor was cross-dimension cuing found when subjects were told to expect a source test of both gender and location information at retrieval (Experiment 2). Our findings reinforce prior work demonstrating that multiple context dimensions can be bound to item information without any direct binding between the contexts. PMID:26810799

  12. Airborne system for detection and location of radio interference sources

    NASA Astrophysics Data System (ADS)

    Audone, Bruno; Pastore, Alberto

    1992-11-01

    The rapid expansion of telecommunication has practically saturated every band of Radio Frequency Spectrum; a similar expansion of electrical and electronic devices has affected all radio communications which are, in some way, influenced by a large amount of interferences, either intentionally or unintentionally produced. Operational consequences of these interferences, particularly in the frequency channels used for aeronautical services, can be extremely dangerous, making mandatory a tight control of Electromagnetic Spectrum. The present paper analyzes the requirements and the problems related to the surveillance, for civil application, of the Electromagnetic Spectrum between 20 and 1000 MHz, with particular attention to the detection and location of radio interference sources; after a brief introduction and the indication of the advantages of an airborne versus ground installation, the airborne system designed by Alenia in cooperation with Italian Ministry of Post and Telecommunication, its practical implementation and the prototype installation on board of a small twin turboprop aircraft for experimentation purposes is presented. The results of the flight tests are also analyzed and discussed.

  13. A plasma-based non-intrusive point source for acoustic beamforming applications

    NASA Astrophysics Data System (ADS)

    Bahr, Christopher J.; Zawodny, Nikolas S.; Bertolucci, Brandon; Li, Jian; Sheplak, Mark; Cattafesta, Louis N.

    2015-05-01

    A laser-generated plasma acoustic point source is used to directly measure the point spread function (PSF) of a microphone phased array. In beamforming analysis of microphone phased array data, the true acoustic field is convolved with the array's PSF. By directly measuring the PSF, corrections to the array analysis can be computed and applied. The acoustic source is measured in an open-jet aeroacoustic facility to evaluate the effects of sampling rate, microphone installation, source shift, reflections, shear layer refraction and model presence. Results show that measurements exhibit behavior consistent with theory with regard to source shift and shear layer refraction. Application of a measured PSF in beamforming analysis shows that the process provides an effective in situ method for array calibration both with and without flow and allows for corrections to incorporate reflections and scattering. The technique improves the agreement of beamforming results with the true spectrum of a known source, especially in the presence of reflections.

  14. Toward a Nonlinear Acoustic Analogy: Turbulence as a Source of Sound and Nonlinear Propagation

    NASA Technical Reports Server (NTRS)

    Miller, Steven A. E.

    2015-01-01

    An acoustic analogy is proposed that directly includes nonlinear propagation effects. We examine the Lighthill acoustic analogy and replace the Green's function of the wave equation with numerical solutions of the generalized Burgers' equation. This is justified mathematically by using similar arguments that are the basis of the solution of the Lighthill acoustic analogy. This approach is superior to alternatives because propagation is accounted for directly from the source to the far-field observer instead of from an arbitrary intermediate point. Validation of a numerical solver for the generalized Burgers' equation is performed by comparing solutions with the Blackstock bridging function and measurement data. Most importantly, the mathematical relationship between the Navier-Stokes equations, the acoustic analogy that describes the source, and canonical nonlinear propagation equations is shown. Example predictions are presented for nonlinear propagation of jet mixing noise at the sideline angle.

  15. Toward a Nonlinear Acoustic Analogy: Turbulence as a Source of Sound and Nonlinear Propagation

    NASA Technical Reports Server (NTRS)

    Miller, Steven A. E.

    2015-01-01

    An acoustic analogy is proposed that directly includes nonlinear propagation effects. We examine the Lighthill acoustic analogy and replace the Green's function of the wave equation with numerical solutions of the generalized Burgers' equation. This is justified mathematically by using similar arguments that are the basis of the solution of the Lighthill acoustic analogy. This approach is superior to alternatives because propagation is accounted for directly from the source to the far-field observer instead of from an arbitrary intermediate point. Validation of a numerical solver for the generalized Burgers' equation is performed by comparing solutions with the Blackstock bridging function and measurement data. Most importantly, the mathematical relationship between the Navier- Stokes equations, the acoustic analogy that describes the source, and canonical nonlinear propagation equations is shown. Example predictions are presented for nonlinear propagation of jet mixing noise at the sideline angle

  16. Predictions of acoustic signals from explosions above and below the ocean surface: source region calculations

    SciTech Connect

    Clarke, D.B.; Piacsek, A.; White, J.W.

    1996-12-01

    In support of the Comprehensive Test Ban, research is underway on the long range propagation of signals from nuclear explosions in the deep underwater sound (SOFAR) channel. This first phase of our work at LLNL on signals in the source regions considered explosions in or above the deep (5000 m) ocean. We studied the variation of wave properties and source region energy coupling as a function of height or depth of burst. Initial calculations on CALE, a two-dimensional hydrodynamics code developed at LLNL by Robert Tipton, were linked at a few hundred milliseconds to a version of NRL`s weak shock code, NPE, which solves the nonlinear progressive wave equation. The wave propagation simulation was performed down to 5000 m depth and out to 10,000 m range. We have developed a procedure to convert the acoustic signals at 10 km range into `starter fields` for calculations on a linear acoustics code which will extend the propagation to ocean basin distances. Recently we have completed calculations to evaluate environmental effects (shallow water, bottom interactions) on signal propagation. We compared results at 25 km range from three calculations of the same I kiloton burst (50 m height-of-burst) in three different environments, namely, deep water, shallow water, and a case with shallow water sloping to deep water. Several results from this last `sloping bottom` case will be 2016 discussed below. In this shallow water study, we found that propagation through shallow water complicates and attenuates the signal; the changes made to the signal may impact detection and discrimination for bursts in some locations.

  17. A Location Method Using Sensor Arrays for Continuous Gas Leakage in Integrally Stiffened Plates Based on the Acoustic Characteristics of the Stiffener

    PubMed Central

    Bian, Xu; Li, Yibo; Feng, Hao; Wang, Jiaqiang; Qi, Lei; Jin, Shijiu

    2015-01-01

    This paper proposes a continuous leakage location method based on the ultrasonic array sensor, which is specific to continuous gas leakage in a pressure container with an integral stiffener. This method collects the ultrasonic signals generated from the leakage hole through the piezoelectric ultrasonic sensor array, and analyzes the space-time correlation of every collected signal in the array. Meanwhile, it combines with the method of frequency compensation and superposition in time domain (SITD), based on the acoustic characteristics of the stiffener, to obtain a high-accuracy location result on the stiffener wall. According to the experimental results, the method successfully solves the orientation problem concerning continuous ultrasonic signals generated from leakage sources, and acquires high accuracy location information on the leakage source using a combination of multiple sets of orienting results. The mean value of location absolute error is 13.51 mm on the one-square-meter plate with an integral stiffener (4 mm width; 20 mm height; 197 mm spacing), and the maximum location absolute error is generally within a ±25 mm interval. PMID:26404316

  18. A Location Method Using Sensor Arrays for Continuous Gas Leakage in Integrally Stiffened Plates Based on the Acoustic Characteristics of the Stiffener.

    PubMed

    Bian, Xu; Li, Yibo; Feng, Hao; Wang, Jiaqiang; Qi, Lei; Jin, Shijiu

    2015-01-01

    This paper proposes a continuous leakage location method based on the ultrasonic array sensor, which is specific to continuous gas leakage in a pressure container with an integral stiffener. This method collects the ultrasonic signals generated from the leakage hole through the piezoelectric ultrasonic sensor array, and analyzes the space-time correlation of every collected signal in the array. Meanwhile, it combines with the method of frequency compensation and superposition in time domain (SITD), based on the acoustic characteristics of the stiffener, to obtain a high-accuracy location result on the stiffener wall. According to the experimental results, the method successfully solves the orientation problem concerning continuous ultrasonic signals generated from leakage sources, and acquires high accuracy location information on the leakage source using a combination of multiple sets of orienting results. The mean value of location absolute error is 13.51 mm on the one-square-meter plate with an integral stiffener (4 mm width; 20 mm height; 197 mm spacing), and the maximum location absolute error is generally within a ±25 mm interval. PMID:26404316

  19. Program plan: acoustic leak detection/location development at GE-ARSD

    SciTech Connect

    1980-02-01

    Provide the development and subsequent specification, design and testing of an acoustic leak protection system which will detect a leak within a LMFBR steam generator. The goal for this system is to be at least as rapid and no more expensive than the chemical leak detection system under development for the Clinch River Breeder Reactor Plant (CRBRP).

  20. An impulsive source with variable output and stable bandwidth for underwater acoustic experiments.

    PubMed

    McNeese, Andrew R; Wilson, Preston S; Sagers, Jason D; Knobles, David P

    2014-07-01

    The Combustive Sound Source (CSS) is being developed as an environmentally friendly source to be used in ocean acoustics research and surveys. It has the ability to maintain the same wide bandwidth signal over a 20 dB drop in source level. The CSS consists of a submersible combustion chamber filled with a fuel/oxidizer mixture. The mixture is ignited and the ensuing combustion and bubble activity radiates an impulsive, thus broadband, acoustic pulse. The ability to control pulse amplitude while maintaining bandwidth is demonstrated. PMID:24993239

  1. Effects of individual sound sources on the subjective loudness and acoustic comfort in underground shopping streets.

    PubMed

    Kang, Jian; Meng, Qi; Jin, Hong

    2012-10-01

    Previous studies have demonstrated that human evaluation of subjective loudness and acoustic comfort depends on a series of factors in a particular situation rather than only on sound pressure levels. In the present study, a large-scale subjective survey has been undertaken on underground shopping streets in Harbin, China, to determine how individual sound sources influence subjective loudness and acoustic comfort evaluation. Based on the analysis of case study results, it has been shown that all individual sound sources can increase subjective loudness to a certain degree. However, their levels of influence on acoustic comfort are different. Background music and the public address system can increase acoustic comfort, with a mean difference of 0.18 to 0.32 and 0.21 to 0.27, respectively, where a five-point bipolar category scale is used. Music from shops and vendor shouts can decrease acoustic comfort, with a mean difference of -0.11 to -0.38 and -0.39 to -0.62, respectively. The feasibility of improving acoustic comfort by changing certain sound sources is thus demonstrated. PMID:22846767

  2. Source location of the narrowbanded radio bursts at Uranus - Evidence of a cusp source

    NASA Astrophysics Data System (ADS)

    Farrell, W. M.; Desch, M. D.; Kaiser, M. L.; Kurth, W. S.

    1990-03-01

    While Voyager 2 was inbound to Uranus, radio bursts of narrow bandwidth (less than 5 kHz) were detected between 17-116 kHz. These R-X mode bursts, designated n-bursts, were of short duration, tended to occur when the north magnetic pole tipped toward the spacecraft, and increased in occurrence with increasing solar wind density. An explicit determination of the burst source location is presented, based upon fitting the region of detection at high and low frequencies to field-aligned, symmetric cones. The region of good fits was located between the north magnetic pole and the rotational pole, corresponding approximately to the northern polar cusp.

  3. Locating interfaces in vertically-layered materials and determining concentrations in mixed materials utilizing acoustic impedance measurements

    DOEpatents

    Langlois, G.N.

    1983-09-13

    Measurement of the relative and actual value of acoustic characteristic impedances of an unknown substance, location of the interfaces of vertically-layered materials, and the determination of the concentration of a first material mixed in a second material are disclosed. A highly damped ultrasonic pulse is transmitted into one side of a reference plate, such as a tank wall, where the other side of the reference plate is in physical contact with the medium to be measured. The amplitude of a return signal, which is the reflection of the transmitted pulse from the interface between the other side of the reference plate and the medium, is measured. The amplitude value indicates the acoustic characteristic impedance of the substance relative to that of the reference plate or relative to that of other tested materials. Discontinuities in amplitude with repeated measurements for various heights indicate the location of interfaces in vertically-layered materials. Standardization techniques permit the relative acoustic characteristic impedance of a substance to be converted to an actual value. Calibration techniques for mixtures permit the amplitude to be converted to the concentration of a first material mixed in a second material. 6 figs.

  4. Locating interfaces in vertically-layered materials and determining concentrations in mixed materials utilizing acoustic impedance measurements

    DOEpatents

    Langlois, Gary N.

    1983-09-13

    Measurement of the relative and actual value of acoustic characteristic impedances of an unknown substance, location of the interfaces of vertically-layered materials, and the determination of the concentration of a first material mixed in a second material. A highly damped ultrasonic pulse is transmitted into one side of a reference plate, such as a tank wall, where the other side of the reference plate is in physical contact with the medium to be measured. The amplitude of a return signal, which is the reflection of the transmitted pulse from the interface between the other side of the reference plate and the medium, is measured. The amplitude value indicates the acoustic characteristic impedance of the substance relative to that of the reference plate or relative to that of other tested materials. Discontinuities in amplitude with repeated measurements for various heights indicate the location of interfaces in vertically-layered materials. Standardization techniques permit the relative acoustic characteristic impedance of a substance to be converted to an actual value. Calibration techniques for mixtures permit the amplitude to be converted to the concentration of a first material mixed in a second material.

  5. Locating interfaces in vertically-layered materials and determining concentrations in mixed materials utilizing acoustic-impedance measurements. [Patent application

    DOEpatents

    Not Available

    1981-06-10

    Measurement of the relative and actual value of acoustic characteristic impedances of an unknown substance, location of the interfaces of vertically-layered materials, and the determination of the concentration of a first material mixed in a second material are presented. A highly damped ultrasonic pulse is transmitted into one side of a reference plate, such as a tank wall, where the other side of the reference plate is in physical contact with the medium to be measured. The amplitude of a return signal, which is the reflection of the transmitted pulse from the interface between the other side of the reference plate and the medium, is measured. The amplitude value indicates the acoustic characteristic impedance of the substance relative to that of the reference plate or relative to that of other tested materials. Discontinuities in amplitude with repeated measurements for various heights indicate the location of interfaces in vertically-layered materials. Standardization techniques permit the relative acoustic characteristic impedance of a substance to be converted to an actual value. Calibration techniques for mixtures permit the amplitude to be converted to the concentration of a first material mixed in a second material.

  6. The point source method for reconstructing an inclusion from boundary measurements in electrical impedance tomography and acoustic scattering

    NASA Astrophysics Data System (ADS)

    Erhard, Klaus; Potthast, Roland

    2003-10-01

    We employ the point source method (PSM) for the reconstruction of some field u on parts of a domain Omega from the Cauchy data for the field on the boundary partialOmega of the domain. Then, the boundary condition for a perfectly conducting inclusion or a sound-soft object in Omega can be used to find the location and shape of the inhomogeneity. The results show that we can detect perfectly conducting inclusions in impedance tomography from the voltages for one injected current. For acoustic scattering a sound-soft object is found from the knowledge of one (total) field and its normal derivative on partialOmega. The work redesigns the PSM, which was first proposed in the framework of inverse scattering, to solve inverse boundary value problems. Numerical examples are provided for impedance tomography and the sound-soft acoustic boundary value problem.

  7. Field Trial of Distributed Acoustic Sensing Using Active Sources at Garner Valley, California

    NASA Astrophysics Data System (ADS)

    Wang, H. F.; Lord, N. E.; Chalari, A.; Lancelle, C.; Baldwin, J. A.; Castongia, E.; Fratta, D.; Nigbor, R. L.; Karaulanov, R.

    2014-12-01

    An optical fiber Distributed Acoustic Sensor array was deployed in a shallow trench at the site of the Garner Valley Downhole Array (GVDA) in southern California. The site was operated as a collaborator of the Network for Earthquake Engineering Simulation (NEES) by UCSB. The fiber-optic cable layout approximated a rectangle whose dimensions were roughly 160 meters by 80 meters. The layout included two subdiagonals to provide a variety of orientations of the cable relative to source locations. The study included different seismic sources deployed at a number of surveyed positions: a 45 kN shear shaker operated at the site by NEES@UCLA, a portable 450 N shaker, a small Vibroseis truck, and hammer blows on a steel plate to map cable locations. Several dozen separate tests were recorded in which each test typically included ten repeats. The data were utilized for several studies. First, the characteristics of the recorded signals were analyzed for directivity and sensitivity of the cable response (Lancelle et al., 2014, this meeting). The DAS system recorded dynamic ground events in the direction of the cable and hence comparisons with geophones required signal processing. The one-meter spacing of DAS traces could be well correlated over distances of a few meters. Second, swept-sine sources were used to obtain surface-wave velocity dispersion to determine near-surface shear-wave velocity distribution using Multispectral Analysis of Surface Waves (MASW) (Baldwin et al., 2014, this meeting). The results were in good agreement with previous Vibroseis results at the site (Stokoe et al. 2004). Third, a new method for time-frequency filtering was developed for extracting the surface-wave phase velocities from uncorrelated receiver traces (Lord et al., 2014, this meeting).

  8. Acoustics

    NASA Technical Reports Server (NTRS)

    Goodman, Jerry R.; Grosveld, Ferdinand

    2007-01-01

    The acoustics environment in space operations is important to maintain at manageable levels so that the crewperson can remain safe, functional, effective, and reasonably comfortable. High acoustic levels can produce temporary or permanent hearing loss, or cause other physiological symptoms such as auditory pain, headaches, discomfort, strain in the vocal cords, or fatigue. Noise is defined as undesirable sound. Excessive noise may result in psychological effects such as irritability, inability to concentrate, decrease in productivity, annoyance, errors in judgment, and distraction. A noisy environment can also result in the inability to sleep, or sleep well. Elevated noise levels can affect the ability to communicate, understand what is being said, hear what is going on in the environment, degrade crew performance and operations, and create habitability concerns. Superfluous noise emissions can also create the inability to hear alarms or other important auditory cues such as an equipment malfunctioning. Recent space flight experience, evaluations of the requirements in crew habitable areas, and lessons learned (Goodman 2003; Allen and Goodman 2003; Pilkinton 2003; Grosveld et al. 2003) show the importance of maintaining an acceptable acoustics environment. This is best accomplished by having a high-quality set of limits/requirements early in the program, the "designing in" of acoustics in the development of hardware and systems, and by monitoring, testing and verifying the levels to ensure that they are acceptable.

  9. LOCATION OF LEAKS IN PRESSURIZED PETROLEUM PIPELINES BY MEANS OF PASSIVE-ACOUSTIC METHODS

    EPA Science Inventory

    Experiments were conducted on the underground pipeline at the EPA's UST Test Apparatus n which three acoustic sensors separated by a maximum distance of 38m (125 ft) were used to monitor signals produced by 11.4-, 5.7-, and 3.8-L/h (3.0-, 1.5-, and 1.0-gal/h) leaks in the wall of...

  10. Source Localization with Acoustic Sensor Arrays Using Generative Model Based Fitting with Sparse Constraints

    PubMed Central

    Velasco, Jose; Pizarro, Daniel; Macias-Guarasa, Javier

    2012-01-01

    This paper presents a novel approach for indoor acoustic source localization using sensor arrays. The proposed solution starts by defining a generative model, designed to explain the acoustic power maps obtained by Steered Response Power (SRP) strategies. An optimization approach is then proposed to fit the model to real input SRP data and estimate the position of the acoustic source. Adequately fitting the model to real SRP data, where noise and other unmodelled effects distort the ideal signal, is the core contribution of the paper. Two basic strategies in the optimization are proposed. First, sparse constraints in the parameters of the model are included, enforcing the number of simultaneous active sources to be limited. Second, subspace analysis is used to filter out portions of the input signal that cannot be explained by the model. Experimental results on a realistic speech database show statistically significant localization error reductions of up to 30% when compared with the SRP-PHAT strategies. PMID:23202021

  11. Eccentricity effects on acoustic radiation from a spherical source suspended within a thermoviscous fluid sphere.

    PubMed

    Hasheminejad, Seyyed M; Azarpeyvand, Mahdi

    2003-11-01

    Acoustic radiation from a spherical source undergoing angularly periodic axisymmetric harmonic surface vibrations while eccentrically suspended within a thermoviscous fluid sphere, which is immersed in a viscous thermally conducting unbounded fluid medium, is analyzed in an exact fashion. The formulation uses the appropriate wave-harmonic field expansions along with the translational addition theorem for spherical wave functions and the relevant boundary conditions to develop a closed-form solution in form of infinite series. The analytical results are illustrated with a numerical example in which the vibrating source is eccentrically positioned within a chemical fluid sphere submerged in water. The modal acoustic radiation impedance load on the source and the radiated far-field pressure are evaluated and discussed for representative values of the parameters characterizing the system. The proposed model can lead to a better understanding of dynamic response of an underwater acoustic lens. It is equally applicable in miniature transducer analysis and design with applications in medical ultrasonics. PMID:14682628

  12. 48 CFR 2919.202-2 - Locating small business sources.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... small businesses of each category with legislatively established government-wide procurement goals (e.g... businesses) to the extent practicable. ... 48 Federal Acquisition Regulations System 7 2014-10-01 2014-10-01 false Locating small...

  13. 48 CFR 2919.202-2 - Locating small business sources.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... small businesses of each category with legislatively established government-wide procurement goals (e.g... businesses) to the extent practicable. ... 48 Federal Acquisition Regulations System 7 2012-10-01 2012-10-01 false Locating small...

  14. Objective approach for analysis of noise source characteristics and acoustic conditions in noisy computerized embroidery workrooms.

    PubMed

    Aliabadi, Mohsen; Golmohammadi, Rostam; Mansoorizadeh, Muharram

    2014-03-01

    It is highly important to analyze the acoustic properties of workrooms in order to identify best noise control measures from the standpoint of noise exposure limits. Due to the fact that sound pressure is dependent upon environments, it cannot be a suitable parameter for determining the share of workroom acoustic characteristics in producing noise pollution. This paper aims to empirically analyze noise source characteristics and acoustic properties of noisy embroidery workrooms based on special parameters. In this regard, reverberation time as the special room acoustic parameter in 30 workrooms was measured based on ISO 3382-2. Sound power quantity of embroidery machines was also determined based on ISO 9614-3. Multiple linear regression was employed for predicting reverberation time based on acoustic features of the workrooms using MATLAB software. The results showed that the measured reverberation times in most of the workrooms were approximately within the ranges recommended by ISO 11690-1. Similarity between reverberation time values calculated by the Sabine formula and measured values was relatively poor (R (2) = 0.39). This can be due to the inaccurate estimation of the acoustic influence of furniture and formula preconditions. Therefore, this value cannot be considered representative of an actual acoustic room. However, the prediction performance of the regression method with root mean square error (RMSE) = 0.23 s and R (2) = 0.69 is relatively acceptable. Because the sound power of the embroidery machines was relatively high, these sources get the highest priority when it comes to applying noise controls. Finally, an objective approach for the determination of the share of workroom acoustic characteristics in producing noise could facilitate the identification of cost-effective noise controls. PMID:24214295

  15. A comparative evaluation of piezoelectric sensors for acoustic emission-based impact location estimation and damage classification in composite structures

    NASA Astrophysics Data System (ADS)

    Uprety, Bibhisha; Kim, Sungwon; Mathews, V. John; Adams, Daniel O.

    2015-03-01

    Acoustic Emission (AE) based Structural Health Monitoring (SHM) is of great interest for detecting impact damage in composite structures. Within the aerospace industry the need to detect and locate these events, even when no visible damage is present, is important both from the maintenance and design perspectives. In this investigation, four commercially available piezoelectric sensors were evaluated for usage in an AE-based SHM system. Of particular interest was comparing the acoustic response of the candidate piezoelectric sensors for impact location estimations as well as damage classification resulting from the impact in fiber-reinforced composite structures. Sensor assessment was performed based on response signal characterization and performance for active testing at 300 kHz and steel-ball drop testing using both aluminum and carbon/epoxy composite plates. Wave mode velocities calculated from the measured arrival times were found to be in good agreement with predictions obtained using both the Disperse code and finite element analysis. Differences in the relative strength of the received wave modes, the overall signal strengths and signal-to-noise ratios were observed through the use of both active testing as well as passive steel-ball drop testing. Further comparative is focusing on assessing AE sensor performance for use in impact location estimation algorithms as well as detecting and classifying damage produced in composite structures due to impact events.

  16. Grey seals use anthropogenic signals from acoustic tags to locate fish: evidence from a simulated foraging task

    PubMed Central

    Stansbury, Amanda L.; Götz, Thomas; Deecke, Volker B.; Janik, Vincent M.

    2015-01-01

    Anthropogenic noise can have negative effects on animal behaviour and physiology. However, noise is often introduced systematically and potentially provides information for navigation or prey detection. Here, we show that grey seals (Halichoerus grypus) learn to use sounds from acoustic fish tags as an indicator of food location. In 20 randomized trials each, 10 grey seals individually explored 20 foraging boxes, with one box containing a tagged fish, one containing an untagged fish and all other boxes being empty. The tagged box was found after significantly fewer non-tag box visits across trials, and seals revisited boxes containing the tag more often than any other box. The time and number of boxes needed to find both fish decreased significantly throughout consecutive trials. Two additional controls were conducted to investigate the role of the acoustic signal: (i) tags were placed in one box, with no fish present in any boxes and (ii) additional pieces of fish, inaccessible to the seal, were placed in the previously empty 18 boxes, making possible alternative chemosensory cues less reliable. During these controls, the acoustically tagged box was generally found significantly faster than the control box. Our results show that animals learn to use information provided by anthropogenic signals to enhance foraging success. PMID:25411449

  17. Grey seals use anthropogenic signals from acoustic tags to locate fish: evidence from a simulated foraging task.

    PubMed

    Stansbury, Amanda L; Götz, Thomas; Deecke, Volker B; Janik, Vincent M

    2015-01-01

    Anthropogenic noise can have negative effects on animal behaviour and physiology. However, noise is often introduced systematically and potentially provides information for navigation or prey detection. Here, we show that grey seals (Halichoerus grypus) learn to use sounds from acoustic fish tags as an indicator of food location. In 20 randomized trials each, 10 grey seals individually explored 20 foraging boxes, with one box containing a tagged fish, one containing an untagged fish and all other boxes being empty. The tagged box was found after significantly fewer non-tag box visits across trials, and seals revisited boxes containing the tag more often than any other box. The time and number of boxes needed to find both fish decreased significantly throughout consecutive trials. Two additional controls were conducted to investigate the role of the acoustic signal: (i) tags were placed in one box, with no fish present in any boxes and (ii) additional pieces of fish, inaccessible to the seal, were placed in the previously empty 18 boxes, making possible alternative chemosensory cues less reliable. During these controls, the acoustically tagged box was generally found significantly faster than the control box. Our results show that animals learn to use information provided by anthropogenic signals to enhance foraging success. PMID:25411449

  18. Acoustic source characterization of impulsive Strombolian eruptions from the Mount Erebus lava lake

    NASA Astrophysics Data System (ADS)

    Johnson, Jeffrey; Aster, Richard; Jones, Kyle R.; Kyle, Philip; McIntosh, Bill

    2008-11-01

    We invert for acoustic source volume outflux and momentum imparted to the atmosphere using an infrasonic network distributed about the erupting lava lake at Mount Erebus, Ross Island, Antarctica. By modeling these relatively simple eruptions as monopole point sources we estimate explosively ejected gas volumes that range from 1,000 m 3 to 24,000 m 3 for 312 lava lake eruptions recorded between January 6 and April 13, 2006. Though these volumes are compatible with bubble volumes at rupture (as estimated from explosion video records), departures from isotropic radiation are evident in the recorded acoustic wavefield for many eruptions. A point-source acoustic dipole component with arbitrary axis orientation and strength provides precise fit to the recorded infrasound. This dipole source axis, corresponding to the axis of inferred short-duration material jetting, varies significantly between events. Physical interpretation of dipole orientation as being indicative of eruptive directivity is corroborated by directional emissions of ejecta observed in Erebus eruption video footage. Although three azimuthally distributed stations are insufficient to fully characterize the eruptive acoustic source we speculate that a monopole with a minor amount of oriented dipole radiation may reasonably model the primary features of the recorded infrasound for these eruptions.

  19. Source location of the narrowbanded radio bursts at Uranus: Evidence of a cusp source

    SciTech Connect

    Farrell, W.M.; Desch, M.D.; Kaiser, M.L. ); Kurth, W.S. )

    1990-03-01

    While Voyager 2 was inbound to Uranus, radio bursts of narrow bandwidth (< 5 kHz) were detected between 17-116 kHz by both the Planetary Radio Astronomy (PRA) and Plasma Wave (PWS) experiments. These R-X mode bursts, designated n-bursts, were of short duration (about 250 msec), tended to occur when the north magnetic pole tipped toward the spacecraft, and increased in occurrence with increasing solar wind density. In this report, the authors present an explicit determination of the burst source location based upon fitting the region of detection at high and low frequencies to field-aligned, symmetric cones. The region of good fits was located between the north magnetic pole an the rotational pole, corresponding approximately to the northern polar cusp. Based upon the emission power, it is suspected that at certain times large amounts of auroral input power may originate in this cusp.

  20. Elastic parabolic equation solutions for underwater acoustic problems using seismic sources.

    PubMed

    Frank, Scott D; Odom, Robert I; Collis, Jon M

    2013-03-01

    Several problems of current interest involve elastic bottom range-dependent ocean environments with buried or earthquake-type sources, specifically oceanic T-wave propagation studies and interface wave related analyses. Additionally, observed deep shadow-zone arrivals are not predicted by ray theoretic methods, and attempts to model them with fluid-bottom parabolic equation solutions suggest that it may be necessary to account for elastic bottom interactions. In order to study energy conversion between elastic and acoustic waves, current elastic parabolic equation solutions must be modified to allow for seismic starting fields for underwater acoustic propagation environments. Two types of elastic self-starter are presented. An explosive-type source is implemented using a compressional self-starter and the resulting acoustic field is consistent with benchmark solutions. A shear wave self-starter is implemented and shown to generate transmission loss levels consistent with the explosive source. Source fields can be combined to generate starting fields for source types such as explosions, earthquakes, or pile driving. Examples demonstrate the use of source fields for shallow sources or deep ocean-bottom earthquake sources, where down slope conversion, a known T-wave generation mechanism, is modeled. Self-starters are interpreted in the context of the seismic moment tensor. PMID:23464007

  1. The source location of certain Jovian decametric radio emissions

    NASA Technical Reports Server (NTRS)

    Calvert, W.

    1983-01-01

    Evidence is presented which supports the concept that certain of the Jovian decametric radio waves originate as northern hemisphere extraordinary mode cyclotron emissions. The wave signals received by Voyager 1 near 10 MHz shortly after the closest approach to Jupiter were found to exhibit cusps in the fringe pattern which can be attributed to Faraday rotation in the Io plasma torus. At nearly the same time, the wave polarization near 1 MHz was found to exhibit a sudden reversal of its rotation sense, indicating that the wave path for those frequencies had also become perpendicular to the magnetic field at the spacecraft. It was determined that the waves came from the northern hemisphere at progressively lower altitudes with increasing frequency, and if the source is assumed to be associated with an L = 6 field line, the emission appears to have occurred near the source cyclotron frequency somewhere in the local midnight sector. The evidence indicates that the source is at the Io flux tube and that the emitted wave mode must have been extraordinary. In addition, the emitted wave polarization must have been substantially noncircular which would require a low plasma density near the source, much like that which occurs with auroral kilometric radiation at the earth.

  2. Locating Supplemental Sources of Revenue to Finance Universities in Nigeria.

    ERIC Educational Resources Information Center

    Ogunla, Akin L.

    1989-01-01

    Identifies possible sources of supplemental income to finance Nigerian universities, including households and commercial and industrial firms. A consumption tax imposed on certain goods and services would generate needed funds. Also, because firms employ university graduates to earn higher profits, their turnover income should be taxed to support…

  3. Single- and Multiple- Track Location Shear Wave and Acoustic Radiation Force Impulse Imaging: Matched Comparison of Contrast, CNR, and Resolution

    PubMed Central

    Hollender, Peter J.; Rosenzweig, Stephen J.; Nightingale, Kathryn R.; Trahey, Gregg E.

    2014-01-01

    Acoustic radiation force impulse (ARFI) imaging and shear wave elasticity imaging (SWEI) use the dynamic response of tissue to impulsive mechanical stimulus to characterize local elasticity. A variant of conventional, multiple track location SWEI (MTL-SWEI), denoted single track location SWEI (STL-SWEI) offers the promise of creating speckle-free shear wave images. This work compares the three imaging modalities using a high push and track beam density combined acquisition sequence to image inclusions of different sizes and contrasts. STL-SWEI is shown to have significantly higher CNR than MTL-SWEI, allowing for operation at higher resolution. ARFI and STL-SWEI perform similarly in the larger inclusions, with STL-SWEI providing better visualization of small targets ≤2.5 mm in diameter. The processing of each modality introduces different trade-offs between smoothness and resolution of edges and structures; these are discussed in detail. PMID:25701531

  4. Lamb waves from airborne explosion sources: Viscous effects and comparisons to ducted acoustic arrivals

    SciTech Connect

    Revelle, D.O.; Whitaker, R.W.

    1996-12-31

    Observations of large explosions in the atmosphere at long range are dominated by a leading pulse of large amplitude and long period that is often followed by a series of higher frequency impulses usually of smaller amplitude. This description can be interpreted using linearized acoustic-gravity wave theory in terms of a Lamb wave arrival followed by ducted acoustic and/or gravity waves. This pattern of arrivals is not the same at all ranges nor is it independent of the source energy or of the altitude of the source. Earlier, Pierce, using an isothermal, windless atmospheric model, theoretically formulated the distances beyond which the Lamb wave would just be discernible and also where it would dominate the arriving signals for a specified explosion source. In this work the authors have evaluated these distances for the cases of both an inviscid and a viscous fluid for the source energies of interest to the CTBT (Comprehensive Test Ban Treaty) R and D work at Los Alamos. Although the inviscid results are analytic, the fully viscous solutions are iterative. For the inviscid solutions, the authors find that the Lamb wave domination distance is proportional to wave frequency at frequencies large with respect to the acoustic waveguide cut-off frequency. Under similar conditions they also find that the computed distances are linearly proportional to the source height. At 1 Hz for example, the Lamb wave must propagate about 200 km before having a significant amplitude. For a viscous fluid they found slight increases in the distances compared to an inviscid fluid with the lower frequencies, near the acoustic cut-off frequency, exhibiting the greatest changes. During the period from 1981--1994 at Los Alamos, they have also observed infrasound from eight point source, near-surface ANFO explosions at White Sands Missile Range events even though the ducted acoustic waves were observed. In this work, they will compare the current theory against some of these observations.

  5. Quantitative acoustic emission from localized sources in material fatigue processes

    NASA Astrophysics Data System (ADS)

    Shi, Zhiqiang; Jarzynski, Jacek; Jacobs, Laurence

    2000-05-01

    Fretting fatigue is the phenomenon where two contacting bodies undergoing a cyclic fatigue loading experience small amplitude oscillatory motion. Fretting fatigue is characterized by crack nucleation and the subsequent propagation of these cracks. The coupling of fatigue with fretting leads to the premature nucleation and acceleration of the early growth of fatigue cracks, resulting in a significant reduction in a structure's service life. A better understanding of the mechanics of fretting fatigue is needed to prevent and reduce the severe consequences of such damage. This research uses quantitative acoustic emission (AE) techniques to study the fretting fatigue of PH 13-8 stainless steel under different loading conditions. Specifically, this work correlates AE signals to specific fretting characteristics such as frictional force history and frictional force-displacement hysteresis loops. These results indicate a close correlation between the various stages of fretting fatigue with the frequency of AE events. For example, AE waveform characteristics (such as amplitude, energy, and frequency spectrum) enable the identification and characterization of the different stages of fatigue. As a result, it is possible to establish a relationship between AE observations and fretting crack initiation and growth.

  6. Supersonic acoustic source mechanisms for free jets of various geometries

    NASA Astrophysics Data System (ADS)

    Seiner, John M.; Ponton, Michael K.

    1992-04-01

    The aeroacoustic performance of several generic nozzle geometries was tested to evaluate the potential benefits of using non-round jet exit geometries to reduce noise from combat military aircraft. Both the aerodynamics and far field acoustics of several M(sub d) = 1.5 and 2.0 round, elliptic, and rectangular nozzles, including an augmented deflector exhaust nozzle (ADEN), were studied to assess noise emission. The nozzles were operated to jet total temperatures, T(sub 0) = 1160 degree R, and the data scaled to constant thrust. The data were propagated to 1500 ft. and corrected to perceived noise level. The aerodynamic results of the study show that the non-round nozzle geometries mix much faster with the surrounding medium than does an equivalent round nozzle plume. Both the ADEN and elliptic nozzles provide significant reduction of noise, 6 to 7 PNdB, along the major axis direction with little expected impact on nozzle performance. Shock noise processes are eliminated for elliptic nozzles, but are still significant with rectangular nozzles. Comparison of measurements to theoretical predictions of noise using the quasi-linear instability wave model demonstrates good qualitative agreement.

  7. Guided Wave Inspection of Supported Pipe Locations Using Electromagnetic Acoustic Transducers

    NASA Astrophysics Data System (ADS)

    Andruschak, Nicholas

    The goal of the work in this thesis is to develop a rapid and reliable NDT system to detect hidden corrosion at pipe-support interfaces using Electromagnetic Acoustic Transducers (EMATs). Since there are often many support interfaces over a piping run, information is needed on the support interface conditions to optimize subsequent detailed inspections. In this work it is important to be able to isolate the effects produced from the support interface and the incident guided wave. To do this an optimum EMAT operating point is first selected, then the support interfaces and wall loss type defects are independently analyzed through experimentally validated finite element models. It is found that operating the SH1 plate wave mode near the `knee' of its dispersion curve gives a high sensitivity to wall loss type defects while experiencing a minimal effect from the support contact region.

  8. Type III radio source located by Ulysses/Wind triangulation

    NASA Astrophysics Data System (ADS)

    Reiner, M. J.; Fainberg, J.; Kaiser, M. L.; Stone, R. G.

    1998-02-01

    Radio triangulation from the widely separated Ulysses and Wind spacecraft is used to reconstruct the trajectory of a type III radio burst in the 3D heliosphere. The derived radio trajectory follows a (Parker) spiral path corresponding to a solar wind speed of about 200 km/s and progresses to the south of the ecliptic plane. These remote radio observations also measure the interplanetary plasma density along the path of the radio source. The derived average density-distance scale is very similar to the previously derived RAE density scale, which was determined in a different way. The results of the radio triangulation, combined with a drift rate analysis, give an average electron exciter speed of about 0.3 c. The radio source size and the brightness temperature as viewed from Ulysses and Wind are determined and compared as a function of observing frequency.

  9. On Acoustic Source Specification for Rotor-Stator Interaction Noise Prediction

    NASA Technical Reports Server (NTRS)

    Nark, Douglas M.; Envia, Edmane; Burley, Caesy L.

    2010-01-01

    This paper describes the use of measured source data to assess the effects of acoustic source specification on rotor-stator interaction noise predictions. Specifically, the acoustic propagation and radiation portions of a recently developed coupled computational approach are used to predict tonal rotor-stator interaction noise from a benchmark configuration. In addition to the use of full measured data, randomization of source mode relative phases is also considered for specification of the acoustic source within the computational approach. Comparisons with sideline noise measurements are performed to investigate the effects of various source descriptions on both inlet and exhaust predictions. The inclusion of additional modal source content is shown to have a much greater influence on the inlet results. Reasonable agreement between predicted and measured levels is achieved for the inlet, as well as the exhaust when shear layer effects are taken into account. For the number of trials considered, phase randomized predictions follow statistical distributions similar to those found in previous statistical source investigations. The shape of the predicted directivity pattern relative to measurements also improved with phase randomization, having predicted levels generally within one standard deviation of the measured levels.

  10. Source signature and acoustic field of seismic physical modeling

    NASA Astrophysics Data System (ADS)

    Lin, Q.; Jackson, C.; Tang, G.; Burbach, G.

    2004-12-01

    As an important tool of seismic research and exploration, seismic physical modeling simulates the real world data acquisition by scaling the model, acquisition parameters, and some features of the source generated by a transducer. Unlike the numerical simulation where a point source is easily satisfied, the transducer can't be made small enough for approximating the point source in physical modeling, therefore yield different source signature than the sources applied in the field data acquisition. To better understand the physical modeling data, characterizing the wave field generated by ultrasonic transducers is desirable and helpful. In this study, we explode several aspects of source characterization; including their radiation pattern, directivity, sensitivity and frequency response. We also try to figure out how to improve the acquired data quality, such as minimize ambient noise, use encoded chirp to prevent ringing, apply deterministic deconvolution to enhance data resolution and t-P filtering to remove linear events. We found that the transducer and their wave field, the modeling system performance, as well as material properties of the model and their coupling conditions all play roles in the physical modeling data acquisition.

  11. Mesospheric airglow and ionospheric responses to upward-propagating acoustic and gravity waves above tropospheric sources

    NASA Astrophysics Data System (ADS)

    Snively, J. B.; Zettergren, M. D.

    2013-12-01

    The existence of acoustic waves (periods ~1-5 minutes) and gravity waves (periods >4 minutes) in the ionosphere above active tropospheric convection has been appreciated for more than forty years [e.g., Georges, Rev. Geophys. and Space Phys., 11(3), 1973]. Likewise, gravity waves exhibiting cylindrical symmetry and curvature of phase fronts have been observed via imaging of the mesospheric airglow layers [e.g., Yue et al., JGR, 118(8), 2013], clearly associated with tropospheric convection; gravity wave signatures have also recently been detected above convection in ionospheric total electron content (TEC) measurements [Lay et al., GRL, 40, 2013]. We here investigate the observable features of acoustic waves, and their relationship to upward-propagating gravity waves generated by the same sources, as they arrive in the mesosphere, lower-thermosphere, and ionosphere (MLTI). Numerical simulations using a nonlinear, cylindrically-axisymmetric, compressible atmospheric dynamics model confirm that acoustic waves generated by transient tropospheric sources may produce "concentric ring" signatures in the mesospheric hydroxyl airglow layer that precede the arrival of gravity waves. As amplitudes increase with altitude and decreasing neutral density, the modeled acoustic waves achieve temperature and vertical wind perturbations on the order of ~10s of Kelvin and m/s throughout the E- and F-region. Using a coupled multi-fluid ionospheric model [Zettergren and Semeter, JGR, 117(A6), 2012], extended for low-latitudes using a 2D dipole magnetic field coordinate system, we investigate acoustic wave perturbations to the ionosphere in the meridional direction. Resulting perturbations are predicted to be detectable by ground-based radar and GPS TEC measurements, or via in situ instrumentation. Although transient and short-lived, the acoustic waves' airglow and ionospheric signatures are likely to in some cases be observable, and may provide important insight into the regional

  12. 43 CFR 3746.1 - Mining locations for fissionable source materials.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Mining locations for fissionable source... MINERAL DEVELOPMENT Fissionable Source Materials § 3746.1 Mining locations for fissionable source... (68 Stat. 921), it is clear that after enactment of said Act of August 13, 1954, valid...

  13. 43 CFR 3746.1 - Mining locations for fissionable source materials.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Mining locations for fissionable source... MINERAL DEVELOPMENT Fissionable Source Materials § 3746.1 Mining locations for fissionable source... (68 Stat. 921), it is clear that after enactment of said Act of August 13, 1954, valid...

  14. Acoustic waves generated by a laser point source in an isotropic cylinder

    NASA Astrophysics Data System (ADS)

    Pan, Yongdong; Rossignol, Clément; Audoin, Bertrand

    2004-08-01

    The acoustic field of a homogeneous and isotropic cylinder generated by a laser point source in either ablation or thermoelastic regime is obtained theoretically. A three-dimensional Fourier transform is used to calculate the acoustic displacement at the cylinder surface. Experimental waveforms were measured and analyzed for both regimes. Theoretical normal displacements under either regime are calculated and compared to the experimental signals for aluminum cylinders. Very good agreements are observed in the arrival time, shape, and relative amplitude (i) of the cylindrical Rayleigh waves with different round trips, and (ii) of the various longitudinal and transverse bulk waves propagating through the cylinder or reflected at the free circular surface.

  15. Exploration of amphoteric and negative refraction imaging of acoustic sources via active metamaterials

    NASA Astrophysics Data System (ADS)

    Wen, Jihong; Shen, Huijie; Yu, Dianlong; Wen, Xisen

    2013-11-01

    The present work describes the design of three flat superlens structures for acoustic source imaging and explores an active acoustic metamaterial (AAM) to realise such a design. The first two lenses are constructed via the coordinate transform method (CTM), and their constituent materials are anisotropic. The third lens consists of a material that has both a negative density and a negative bulk modulus. In these lenses, the quality of the images is “clear” and sharp; thus, the diffraction limit of classical lenses is overcome. Finally, a multi-control strategy is developed to achieve the desired parameters and to eliminate coupling effects in the AAM.

  16. Pipe Attrition Acoustic Locater (PAAL) from multi-mode dispersion analysis.

    PubMed

    Vogelaar, Bouko; Golombok, Michael; Campman, Xander

    2016-05-01

    Multi-mode dispersion imaging shows that pure dispersion-free torsional waves are reflected at a pipe end and flexural wave modes are suppressed. This effect can be used to locate and assess internal damage. The end reflection coefficient of this single propagating mode decreases with increasing wear. The pipe damage is located from the travel time of the torsional wave component reflected from the damage point. PMID:26922401

  17. Incident signal power comparison for localization of concurrent multiple acoustic sources.

    PubMed

    Salvati, Daniele; Canazza, Sergio

    2014-01-01

    In this paper, a method to solve the localization of concurrent multiple acoustic sources in large open spaces is presented. The problem of the multisource localization in far-field conditions is to correctly associate the direction of arrival (DOA) estimated by a network array system to the same source. The use of systems implementing a Bayesian filter is a traditional approach to address the problem of localization in multisource acoustic scenario. However, in a real noisy open space the acoustic sources are often discontinuous with numerous short-duration events and thus the filtering methods may have difficulty to track the multiple sources. Incident signal power comparison (ISPC) is proposed to compute DOAs association. ISPC is based on identifying the incident signal power (ISP) of the sources on a microphone array using beamforming methods and comparing the ISP between different arrays using spectral distance (SD) measurement techniques. This method solves the ambiguities, due to the presence of simultaneous sources, by identifying sounds through a minimization of an error criterion on SD measures of DOA combinations. The experimental results were conducted in an outdoor real noisy environment and the ISPC performance is reported using different beamforming techniques and SD functions. PMID:24701179

  18. Incident Signal Power Comparison for Localization of Concurrent Multiple Acoustic Sources

    PubMed Central

    2014-01-01

    In this paper, a method to solve the localization of concurrent multiple acoustic sources in large open spaces is presented. The problem of the multisource localization in far-field conditions is to correctly associate the direction of arrival (DOA) estimated by a network array system to the same source. The use of systems implementing a Bayesian filter is a traditional approach to address the problem of localization in multisource acoustic scenario. However, in a real noisy open space the acoustic sources are often discontinuous with numerous short-duration events and thus the filtering methods may have difficulty to track the multiple sources. Incident signal power comparison (ISPC) is proposed to compute DOAs association. ISPC is based on identifying the incident signal power (ISP) of the sources on a microphone array using beamforming methods and comparing the ISP between different arrays using spectral distance (SD) measurement techniques. This method solves the ambiguities, due to the presence of simultaneous sources, by identifying sounds through a minimization of an error criterion on SD measures of DOA combinations. The experimental results were conducted in an outdoor real noisy environment and the ISPC performance is reported using different beamforming techniques and SD functions. PMID:24701179

  19. Time-domain delay-and-sum beamforming for time-reversal detection of intermittent acoustic sources in flows.

    PubMed

    Rakotoarisoa, Ifanila; Fischer, Jeoffrey; Valeau, Vincent; Marx, David; Prax, Christian; Brizzi, Laurent-Emmanuel

    2014-11-01

    This study focuses on the identification of intermittent aeroacoustic sources in flows by using the time-domain beamforming technique. It is first shown that this technique can be seen as a time-reversal (TR) technique, working with approximate Green functions in the case of a shear flow. Some numerical experiments investigate the case of an array measurement of a generic acoustic pulse emitted in a wind-tunnel flow, with a realistic multi-arm spiral array. The results of the time-domain beamforming successfully match those given by a numerical TR technique over a wide range of flow speeds (reaching the transonic regime). It is shown how the results should be analyzed in a focusing plane parallel to the microphone array in order to estimate the location and emission time of the pulse source. An experimental application dealing with the aeroacoustic radiation of a bluff body in a wind-tunnel flow is also considered, and shows that some intermittent events can be clearly identified in the noise radiation. Time-domain beamforming is then an efficient tool for analyzing intermittent acoustic sources in flows, and is a computationally cheaper alternative to the numerical TR technique, which should be used for complex configurations where the Green function is not available. PMID:25373968

  20. Acoustic noise associated with the MOD-1 wind turbine: its source, impact, and control

    SciTech Connect

    Kelley, N.D.; McKenna, H.E.; Hemphill, R.R.; Etter, C.L.; Garrelts, R.L.; Linn, N.C.

    1985-02-01

    This report summarizes extensive research by staff of the Solar Energy Research Institute and its subcontractors conducted to establish the origin and possible amelioration of acoustic disturbances associated with the operation of the DOE/NASA MOD-1 wind turbine installed in 1979 near Boone, North Carolina. Results have shown that the source of this acoustic annoyance was the transient, unsteady aerodynamic lift imparted to the turbine blades as they passed through the lee wakes of the large, cylindrical tower supports. Nearby residents were annoyed by the low-frequency, acoustic impulses propagated into the structures in which the complainants lived. The situation was aggravated further by a complex sound propagation process controlled by terrain and atmospheric focusing. Several techniques for reducing the abrupt, unsteady blade load transients were researched and are discussed in the report.

  1. Extension of deconvolution algorithms for the mapping of moving acoustic sources.

    PubMed

    Fleury, Vincent; Bulté, Jean

    2011-03-01

    Several deconvolution algorithms are commonly used in aeroacoustics to estimate the power level radiated by static sources, for instance, the deconvolution approach for the mapping of acoustic sources (DAMAS), DAMAS2, CLEAN, and the CLEAN based on spatial source coherence algorithm (CLEAN-SC). However, few efficient methodologies are available for moving sources. In this paper, several deconvolution approaches are proposed to estimate the narrow-band spectra of low-Mach number uncorrelated sources. All of them are based on a beamformer output. Due to velocity, the beamformer output is inherently related to the source spectra over the whole frequency range, which makes the deconvolution very complex from a computational point of view. Using the conventional Doppler approximation and for limited time analysis, the problem can be separated into multiple independent problems, each involving a single source frequency, as for static sources. DAMAS, DAMAS2, CLEAN, and CLEAN-SC are then extended to moving sources. These extensions are validated from both synthesized data and real aircraft flyover noise measurements. Comparable performances to those of the corresponding static methodologies are recovered. All these approaches constitute complementary and efficient tools in order to quantify the noise level emitted from moving acoustic sources. PMID:21428506

  2. Electromagnetic acoustic source (EMAS) for generating shock waves and cavitation in mercury

    NASA Astrophysics Data System (ADS)

    Wang, Qi

    In the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory a vessel of liquid mercury is subjected to a proton beam. The resulting nuclear interaction produces neutrons that can be used for materials research, among other things, but also launches acoustic waves with pressures in excess of 10 MPa. The acoustic waves have high enough tensile stress to generate cavitation in the mercury which results in erosion to the steel walls of the vessel. In order to study the cavitation erosion and develop mitigation schemes it would be convenient to have a way of generating similar pressures and cavitation in mercury, without the radiation concerns associated with a proton beam. Here an electromagnetic acoustic source (EMAS) has been developed which consisted of a coil placed close to a metal plate which is in turn is in contact with a fluid. The source is driven by discharging a capacitor through the coil and results in a repulsive force on the plate launching acoustic waves in the fluid. A theoretical model is presented to predict the acoustic field from the EMAS and compares favorably with measurements made in water. The pressure from the EMAS was reported as a function of capacitance, charging voltage, number of coils, mylar thickness, and properties of the plates. The properties that resulted in the highest pressure were employed for experiments in mercury and a maximum pressure recorded was 7.1 MPa. Cavitation was assessed in water and mercury by high speed camera and by detecting acoustic emissions. Bubble clouds with lifetimes on the order of 100 µs were observed in water and on the order of 600 µs in mercury. Based on acoustic emissions the bubble radius in mercury was estimated to be 0.98 mm. Experiments to produce damage to a stainless steel plate in mercury resulted in a minimal effect after 2000 shock waves at a rate of 0.33 Hz - likely because the pressure amplitude was not high enough. In order to replicate the conditions in the SNS it is

  3. An eighth-scale speech source for subjective assessments in acoustic models

    NASA Astrophysics Data System (ADS)

    Orlowski, R. J.

    1981-08-01

    The design of a source is described which is suitable for making speech recordings in eighth-scale acoustic models of auditoria. An attempt was made to match the directionality of the source with the directionality of the human voice using data reported in the literature. A narrow aperture was required for the design which was provided by mounting an inverted conical horn over the diaphragm of a high frequency loudspeaker. Resonance problems were encountered with the use of a horn and a description is given of the electronic techniques adopted to minimize the effect of these resonances. Subjective and objective assessments on the completed speech source have proved satisfactory. It has been used in a modelling exercise concerned with the acoustic design of a theatre with a thrust-type stage.

  4. Source identification in acoustics and structural mechanics using Sierra/SD.

    SciTech Connect

    Walsh, Timothy Francis; Aquino, Wilkins; Ross, Michael

    2013-03-01

    In this report we derive both time and frequency-domain methods for inverse identification of sources in elastodynamics and acoustics. The inverse/design problem is cast in a PDE-constrained optimization framework with efficient computation of gradients using the adjoint method. The implementation of source inversion in Sierra/SD is described, and results from both time and frequency domain source inversion are compared to actual experimental data for a weapon store used in captive carry on a military aircraft. The inverse methodology is advantageous in that it provides a method for creating ground based acoustic and vibration tests that can reduce the actual number of flight tests, and thus, saving costs and time for the program.

  5. Source localization results for airborne acoustic platforms in the 2010 Yuma Proving Ground test

    NASA Astrophysics Data System (ADS)

    Ostashev, Vladimir E.; Collier, Sandra L.; Reiff, Christian G.; Cheinet, Sylvain; Ligon, David A.; Wilson, D. Keith; Noble, John M.; Alberts, William C.

    2013-05-01

    Acoustic sensors are being employed on airborne platforms, such as Persistent Threat Detection System (PTDS) and Persistent Ground Surveillance System (PGSS), for source localization. Under certain atmospheric conditions, airborne sensors offer a distinct advantage over ground sensors. Among other factors, the performance of airborne sensors is affected by refraction of sound signals due to vertical gradients in temperature and wind velocity. A comprehensive experiment in source localization with an aerostat-mounted acoustic system was conducted in summer of 2010 at Yuma Proving Ground (YPG). Acoustic sources on the ground consisted of one-pound TNT denotations and small arms firings. The height of the aerostat was approximately 1 km above the ground. In this paper, horizontal, azimuthal, and elevation errors in source localization and their statistics are studied in detail. Initially, straight-line propagation is assumed; then refraction corrections are introduced to improve source localization and decrease the errors. The corrections are based on a recently developed theory [Ostashev, et. al, JASA 2008] which accounts for sound refraction due to vertical profiles of temperature and wind velocity. During the 2010 YPG field test, the vertical profiles were measured only up to a height of approximately 100 m. Therefore, the European Center for Medium-range Weather Forecasts (ECMWF) is used to generate the profiles for July of 2010.

  6. Surface response of a viscoelastic medium to subsurface acoustic sources with application to medical diagnosis

    NASA Astrophysics Data System (ADS)

    Royston, Thomas J.; Yazicioglu, Yigit; Loth, Francis

    2003-02-01

    The response at the surface of an isotropic viscoelastic medium to buried fundamental acoustic sources is studied theoretically, computationally and experimentally. Finite and infinitesimal monopole and dipole sources within the low audible frequency range (40-400 Hz) are considered. Analytical and numerical integral solutions that account for compression, shear and surface wave response to the buried sources are formulated and compared with numerical finite element simulations and experimental studies on finite dimension phantom models. It is found that at low audible frequencies, compression and shear wave propagation from point sources can both be significant, with shear wave effects becoming less significant as frequency increases. Additionally, it is shown that simple closed-form analytical approximations based on an infinite medium model agree well with numerically obtained ``exact'' half-space solutions for the frequency range and material of interest in this study. The focus here is on developing a better understanding of how biological soft tissue affects the transmission of vibro-acoustic energy from biological acoustic sources below the skin surface, whose typical spectral content is in the low audible frequency range. Examples include sound radiated from pulmonary, gastro-intestinal and cardiovascular system functions, such as breath sounds, bowel sounds and vascular bruits, respectively.

  7. Spin reversal and orbital torques on a viscous fluid Rayleigh sphere located arbitrarily in acoustical Bessel vortex (spiraling) beams.

    PubMed

    Mitri, F G

    2016-12-01

    The goal of this work is to demonstrate the emergence of a spin torque singularity (i.e. zero spin torque) and a spin rotation reversal of a small Rayleigh lipid/fat viscous fluid sphere located arbitrarily in space in the field of an acoustical Bessel vortex beam. This counter-intuitive property of negative spin torque generation suggests a direction of spin rotation in opposite handedness of the angular momentum carried by the incident beam. Such effects may open new capabilities in methods of quantitative characterization to determine physical properties such as viscosity, viscoelasticity, compressibility, stiffness, etc., and other techniques for the rotation and positioning using acoustical tractor beams and tweezers, invisibility cloaks, and acoustically-engineered composite metamaterials to name a few examples. Based on the descriptions for the velocity potential of the incident beam and the scattering coefficients of the sphere in the long-wavelength approximation limit, simplified expressions for the spin and orbital radiation torque components are derived. For beams with (positive or negative) unit topological charge (m=±1), the axial spin torque component for a Rayleigh absorptive sphere is maximal at the center of the beam, while it vanishes for |m|>1 therein. Moreover, the longitudinal orbital torque component, causing the sphere to rotate around the center of the beam is evaluated based on the mathematical decomposition using the gradient, scattering and absorption transverse radiation force vector components. It is shown that there is no contribution of the gradient transverse force to the orbital torque, which is only caused by the scattering and absorption transverse force components. Though the incident acoustical vortex beam carrying angular momentum causes the sphere to rotate in the same orbital direction of the beam handedness, it induces a spin torque singularity (i.e. zero spin torque) and subsequent sign reversal. This phenomenon of

  8. Poynting-vector based method for determining the bearing and location of electromagnetic sources

    DOEpatents

    Simons, David J.; Carrigan, Charles R.; Harben, Philip E.; Kirkendall, Barry A.; Schultz, Craig A.

    2008-10-21

    A method and apparatus is utilized to determine the bearing and/or location of sources, such as, alternating current (A.C.) generators and loads, power lines, transformers and/or radio-frequency (RF) transmitters, emitting electromagnetic-wave energy for which a Poynting-Vector can be defined. When both a source and field sensors (electric and magnetic) are static, a bearing to the electromagnetic source can be obtained. If a single set of electric (E) and magnetic (B) sensors are in motion, multiple measurements permit location of the source. The method can be extended to networks of sensors allowing determination of the location of both stationary and moving sources.

  9. Biology-inspired acoustic sensors for sound source localization

    NASA Astrophysics Data System (ADS)

    Liu, Haijun; Chen, Zhong; Yu, Miao

    2008-03-01

    In this article, the design of a biology-inspired miniature directional microphone is presented. This microphone consists of two clamped circular diaphragms, which are mechanically coupled by a connecting bridge that is pivoted at its center. A theoretical model is constructed to determine the microphone response to sound incident from an arbitrary direction. Both the simulation and preliminary experimental results show that the proposed microphone provides a remarkable amplification of the time delay associated with the sound induced diaphragm responses. This study should be relevant to various sound source localization applications.

  10. Acoustic investigations of lakes as justification for the optimal location of core sampling

    NASA Astrophysics Data System (ADS)

    Krylov, P.; Nourgaliev, D.; Yasonov, P.; Kuzin, D.

    2014-12-01

    Lacustrine sediments contain a long, high-resolution record of sedimentation processes associated with changes in the environment. Paleomagnetic study of the properties of these sediments provide a detailed trace the changes in the paleoenvironment. However, there are factors such as landslides, earthquakes, the presence of gas in the sediments affecting the disturbing sediment stratification. Seismic profiling allows to investigate in detail the bottom relief and get information about the thickness and structure of the deposits, which makes this method ideally suited for determining the configuration of the lake basin and the overlying lake sediment stratigraphy. Most seismic studies have concentrated on large and deep lakes containing a thick sedimentary sequence, but small and shallow lakes containing a thinner sedimentary column located in key geographic locations and geological settings can also provide a valuable record of Holocene history. Seimic data is crucial when choosing the optimal location of core sampling. Thus, continuous seismic profiling should be used regularly before coring lake sediments for the reconstruction of paleoclimate. We have carried out seismic profiling on lakes Balkhash (Kazakhstan), Yarovoye, Beloe, Aslykul and Chebarkul (Russia). The results of the field work will be presented in the report. The work is performed according to the Russian Government Program of Competitive Growth of Kazan Federal University also by RFBR research projects No. 14-05-31376 -a, 14-05-00785-a.

  11. Optimizing stepwise rotation of dodecahedron sound source to improve the accuracy of room acoustic measures.

    PubMed

    Martellotta, Francesco

    2013-09-01

    Dodecahedron sound sources are widely used for acoustical measurement purposes as they produce a good approximation of omnidirectional radiation. Evidence shows that such an assumption is acceptable only in the low-frequency range (namely below 1 kHz), while at higher frequencies sound radiation is far from being uniform. In order to improve the accuracy of acoustical measurements obtained from dodecahedron sources, international standard ISO 3382 suggests an averaging of results after a source rotation. This paper investigates the effects of such rotations, both in terms of variations in acoustical parameters and spatial distribution of sound reflections. Taking advantage of a spherical microphone array, the different reflection patterns were mapped as a function of source rotation, showing that some reflections may be considerably attenuated for different aiming directions. This paper investigates the concept of averaging results while changing rotation angles and the minimum number of rotations required to improve the accuracy of the average value. Results show that averages of three measurements carried out at 30° angular steps are closer to actual values and show much less fluctuation. In addition, an averaging of the directional intensity components of the selected responses stabilizes the spatial distribution of the reflections. PMID:23967936

  12. Numerical investigation of the seismo-acoustic responses of the Source Physics Experiment underground explosions

    NASA Astrophysics Data System (ADS)

    Antoun, T.; Ezzedine, S. M.; Vorobiev, O.; Glenn, L. A.

    2015-12-01

    We have performed three-dimensional high resolution simulations of underground explosions conducted recently in jointed rock outcrop as part of the Source Physics Experiment (SPE) being conducted at the Nevada National Security Site (NNSS). The main goal of the current study is to investigate the effects of the structural and geomechanical properties on the spall phenomena due to underground explosions and its subsequent effect on the seismo-acoustic signature at far distances. Two parametric studies have been undertaken to assess the impact of different 1) conceptual geological models including a single layer and two layers model, with and without joints and with and without varying geomechanical properties, and 2) depth of bursts of the explosions and explosion yields. Through these investigations we have explored not only the near-field response of the explosions but also the far-field responses of the seismic and the acoustic signatures. The near-field simulations were conducted using the Eulerian and Lagrangian codes, GEODYN and GEODYN -L, respectively, while the far-field seismic simulations were conducted using the elastic wave propagation code, WPP, and the acoustic response using the Kirchhoff-Helmholtz-Rayleigh time-dependent approximation code, KHR. Though a series of simulations, we have recorded the velocity field histories a) at the ground surface on an acoustic-source-patch for the acoustic simulations, and 2) on a seismic-source-box for the seismic simulations. We first analyzed the SPE3 and SPE4-prime experimental data and simulated results, and then simulated SPE5, SPE6/7 to anticipate their seismo-acoustic responses given conditions of uncertainties. SPE experiments were conducted in a granitic formation; we have extended the parametric study to include other geological settings such dolomite and alluvial formations. These parametric studies enabled us 1) investigating the geotechnical and geophysical key parameters that impact the seismo-acoustic

  13. Embedded Acoustic Sensor Array for Engine Fan Noise Source Diagnostic Test: Feasibility of Noise Telemetry via Wireless Smart Sensors

    NASA Technical Reports Server (NTRS)

    Zaman, Afroz; Bauch, Matthew; Raible, Daniel

    2011-01-01

    Aircraft engines have evolved into a highly complex system to meet ever-increasing demands. The evolution of engine technologies has primarily been driven by fuel efficiency, reliability, as well as engine noise concerns. One of the sources of engine noise is pressure fluctuations that are induced on the stator vanes. These local pressure fluctuations, once produced, propagate and coalesce with the pressure waves originating elsewhere on the stator to form a spinning pressure pattern. Depending on the duct geometry, air flow, and frequency of fluctuations, these spinning pressure patterns are self-sustaining and result in noise which eventually radiate to the far-field from engine. To investigate the nature of vane pressure fluctuations and the resulting engine noise, unsteady pressure signatures from an array of embedded acoustic sensors are recorded as a part of vane noise source diagnostics. Output time signatures from these sensors are routed to a control and data processing station adding complexity to the system and cable loss to the measured signal. "Smart" wireless sensors have data processing capability at the sensor locations which further increases the potential of wireless sensors. Smart sensors can process measured data locally and transmit only the important information through wireless communication. The aim of this wireless noise telemetry task was to demonstrate a single acoustic sensor wireless link for unsteady pressure measurement, and thus, establish the feasibility of distributed smart sensors scheme for aircraft engine vane surface unsteady pressure data transmission and characterization.

  14. Source localization corrections for airborne acoustic platforms based on a climatological assessment of temperature and wind velocity profiles

    NASA Astrophysics Data System (ADS)

    Ostashev, Vladimir E.; Cheinet, Sylvain; Collier, Sandra L.; Reiff, Christian; Ligon, David A.; Wilson, D. Keith; Noble, John M.; Alberts, W. C. Kirkpatrick, II

    2012-06-01

    Acoustic sensors are being employed on airborne platforms, such as Persistent Threat Detection System (PTDS) and Persistent Ground Surveillance System (PGSS), for source localization. Under certain atmospheric conditions, airborne sensors oer a distinct advantage over ground sensors. The performance of both ground and airborne sensors is aected by environmental factors, such as atmospheric turbulence and wind and temperature proles. For airborne sensors, the eects of refraction must be accounted for in order to determine the source coordinates. Such a method for ground-to-air applications has been developed and is further rened here. Ideally, knowledge of the exact atmospheric proles will allow for the most accurate mitigation of refractive eects. However, acoustic sensors deployed in theater are rarely supported by atmospheric sensing systems that retrieve real-time temperature and wind elds. Atmospheric conditions evolve through seasons, time of day, and are strongly location dependent. Therefore, the development of an atmospheric proles database based on a long time series climatological assessment will provide knowledge for use in physics-based bearing estimation algorithms, where otherwise no correction would have been performed. Long term atmospheric data sets from weather modeling systems are used for a climatological assessment of the refraction corrections and localization errors over selected sites.

  15. Metamaterials-based sensor to detect and locate nonlinear elastic sources

    NASA Astrophysics Data System (ADS)

    Gliozzi, Antonio S.; Miniaci, Marco; Bosia, Federico; Pugno, Nicola M.; Scalerandi, Marco

    2015-10-01

    In recent years, acoustic metamaterials have attracted increasing scientific interest for very diverse technological applications ranging from sound abatement to ultrasonic imaging, mainly due to their ability to act as band-stop filters. At the same time, the concept of chaotic cavities has been recently proposed as an efficient tool to enhance the quality of nonlinear signal analysis, particularly in the ultrasonic/acoustic case. The goal of the present paper is to merge the two concepts in order to propose a metamaterial-based device that can be used as a natural and selective linear filter for the detection of signals resulting from the propagation of elastic waves in nonlinear materials, e.g., in the presence of damage, and as a detector for the damage itself in time reversal experiments. Numerical simulations demonstrate the feasibility of the approach and the potential of the device in providing improved signal-to-noise ratios and enhanced focusing on the defect locations.

  16. Metamaterials-based sensor to detect and locate nonlinear elastic sources

    SciTech Connect

    Gliozzi, Antonio S.; Scalerandi, Marco; Miniaci, Marco; Bosia, Federico; Pugno, Nicola M.

    2015-10-19

    In recent years, acoustic metamaterials have attracted increasing scientific interest for very diverse technological applications ranging from sound abatement to ultrasonic imaging, mainly due to their ability to act as band-stop filters. At the same time, the concept of chaotic cavities has been recently proposed as an efficient tool to enhance the quality of nonlinear signal analysis, particularly in the ultrasonic/acoustic case. The goal of the present paper is to merge the two concepts in order to propose a metamaterial-based device that can be used as a natural and selective linear filter for the detection of signals resulting from the propagation of elastic waves in nonlinear materials, e.g., in the presence of damage, and as a detector for the damage itself in time reversal experiments. Numerical simulations demonstrate the feasibility of the approach and the potential of the device in providing improved signal-to-noise ratios and enhanced focusing on the defect locations.

  17. 43 CFR 3746.1 - Mining locations for fissionable source materials.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... locations under the mining laws of the United States may be based upon a discovery of a mineral deposit..., heretofore located under the mining laws of the United States for or based upon a discovery of a mineral... MINERAL DEVELOPMENT Fissionable Source Materials § 3746.1 Mining locations for fissionable...

  18. 43 CFR 3746.1 - Mining locations for fissionable source materials.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... locations under the mining laws of the United States may be based upon a discovery of a mineral deposit..., heretofore located under the mining laws of the United States for or based upon a discovery of a mineral... MINERAL DEVELOPMENT Fissionable Source Materials § 3746.1 Mining locations for fissionable...

  19. Flight test of a pure-tone acoustic source. [aircraft noise

    NASA Technical Reports Server (NTRS)

    Mueller, A. W.; Preisser, J. S.

    1981-01-01

    Static and flight testing of a pure-tone acoustic source were conducted in order to: (1) determine if a 4-KHz tone radiated by a source in flight and mixed with broadband aircraft flyover noise could be measured on the ground with a high degree of statistical confidence; (2) determine how well a comparison could be made of flight-to-static tone radiation pattern and a static radiation pattern; and (3) determine if there were any installation effects on the radiation pattern due to the flight vehicle. Narrow-band acoustic data were measured and averaged over eight microphones to obtain a high statistical confidence. The flight data were adjusted to an equivalent static condition by applying corrections for retarded time, spherical spreading, atmospheric absorption, ground impedance, instrumentation constraints, convective amplification, and the Doppler shift. The flight-to-static results are in excellent agreement with the measured static data. No installation effects were observed on the radiation pattern.

  20. Rapid estimation of tsunami source centroid location using a dense offshore observation network

    NASA Astrophysics Data System (ADS)

    Yamamoto, N.; Hirata, K.; Aoi, S.; Suzuki, W.; Nakamura, H.; Kunugi, T.

    2016-05-01

    This paper proposes a rapid method of estimating tsunami source locations using real-time ocean-bottom hydrostatic pressure data from a dense offshore observation network. We defined two characteristic locations representing the real-time tsunami disturbance and the initial sea surface height distribution. First, we defined the tsunami centroid location (TCL), which is the centroid location of the maximum absolute amplitude of the real-time ocean-bottom hydrostatic pressure changes. Second, we defined the centroid location of the absolute values of the initial sea surface height displacements. To determine whether the TCL can approximate the centroid location of the tsunami source, we examined approximately 1000 near-field synthetic tsunami scenarios and a realistic tsunami scenario of the 2011 Tohoku earthquake in the Japan Trench. From these examinations, it was confirmed that in most scenarios, the TCLs obtained within a few minutes after the occurrence of an earthquake were close to the actual corresponding tsunami source locations.

  1. Locating the source of diffusion in complex networks by time-reversal backward spreading

    NASA Astrophysics Data System (ADS)

    Shen, Zhesi; Cao, Shinan; Wang, Wen-Xu; Di, Zengru; Stanley, H. Eugene

    2016-03-01

    Locating the source that triggers a dynamical process is a fundamental but challenging problem in complex networks, ranging from epidemic spreading in society and on the Internet to cancer metastasis in the human body. An accurate localization of the source is inherently limited by our ability to simultaneously access the information of all nodes in a large-scale complex network. This thus raises two critical questions: how do we locate the source from incomplete information and can we achieve full localization of sources at any possible location from a given set of observable nodes. Here we develop a time-reversal backward spreading algorithm to locate the source of a diffusion-like process efficiently and propose a general locatability condition. We test the algorithm by employing epidemic spreading and consensus dynamics as typical dynamical processes and apply it to the H1N1 pandemic in China. We find that the sources can be precisely located in arbitrary networks insofar as the locatability condition is assured. Our tools greatly improve our ability to locate the source of diffusion in complex networks based on limited accessibility of nodal information. Moreover, they have implications for controlling a variety of dynamical processes taking place on complex networks, such as inhibiting epidemics, slowing the spread of rumors, pollution control, and environmental protection.

  2. Locating the source of diffusion in complex networks by time-reversal backward spreading.

    PubMed

    Shen, Zhesi; Cao, Shinan; Wang, Wen-Xu; Di, Zengru; Stanley, H Eugene

    2016-03-01

    Locating the source that triggers a dynamical process is a fundamental but challenging problem in complex networks, ranging from epidemic spreading in society and on the Internet to cancer metastasis in the human body. An accurate localization of the source is inherently limited by our ability to simultaneously access the information of all nodes in a large-scale complex network. This thus raises two critical questions: how do we locate the source from incomplete information and can we achieve full localization of sources at any possible location from a given set of observable nodes. Here we develop a time-reversal backward spreading algorithm to locate the source of a diffusion-like process efficiently and propose a general locatability condition. We test the algorithm by employing epidemic spreading and consensus dynamics as typical dynamical processes and apply it to the H1N1 pandemic in China. We find that the sources can be precisely located in arbitrary networks insofar as the locatability condition is assured. Our tools greatly improve our ability to locate the source of diffusion in complex networks based on limited accessibility of nodal information. Moreover, they have implications for controlling a variety of dynamical processes taking place on complex networks, such as inhibiting epidemics, slowing the spread of rumors, pollution control, and environmental protection. PMID:27078360

  3. Establishing a Dynamic Database of Blue and Fin Whale Locations from Recordings at the IMS CTBTO hydro-acoustic network. The Baleakanta Project

    NASA Astrophysics Data System (ADS)

    Le Bras, R. J.; Kuzma, H.

    2013-12-01

    Falling as they do into the frequency range of continuously recording hydrophones (15-100Hz), blue and fin whale songs are a significant source of noise on the hydro-acoustic monitoring array of the International Monitoring System (IMS) of the Comprehensive Nuclear Test Ban Treaty Organization (CTBTO). One researcher's noise, however, can be a very interesting signal in another field of study. The aim of the Baleakanta Project (www.baleakanta.org) is to flag and catalogue these songs, using the azimuth and slowness of the signal measured at multiple hydrophones to solve for the approximate location of singing whales. Applying techniques borrowed from human speaker identification, it may even be possible to recognize the songs of particular individuals. The result will be a dynamic database of whale locations and songs with known individuals noted. This database will be of great value to marine biologists studying cetaceans, as there is no existing dataset which spans the globe over many years (more than 15 years of data have been collected by the IMS). Current whale song datasets from other sources are limited to detections made on small, temporary listening devices. The IMS song catalogue will make it possible to study at least some aspects of the global migration patterns of whales, changes in their songs over time, and the habits of individuals. It is believed that about 10 blue whale 'cultures' exist with distinct vocal patterns; the IMS song catalogue will test that number. Results and a subset of the database (delayed in time to mitigate worries over whaling and harassment of the animals) will be released over the web. A traveling museum exhibit is planned which will not only educate the public about whale songs, but will also make the CTBTO and its achievements more widely known. As a testament to the public's enduring fascination with whales, initial funding for this project has been crowd-sourced through an internet campaign.

  4. System and method for investigating sub-surface features of a rock formation with acoustic sources generating coded signals

    SciTech Connect

    Vu, Cung Khac; Nihei, Kurt; Johnson, Paul A; Guyer, Robert; Ten Cate, James A; Le Bas, Pierre-Yves; Larmat, Carene S

    2014-12-30

    A system and a method for investigating rock formations includes generating, by a first acoustic source, a first acoustic signal comprising a first plurality of pulses, each pulse including a first modulated signal at a central frequency; and generating, by a second acoustic source, a second acoustic signal comprising a second plurality of pulses. A receiver arranged within the borehole receives a detected signal including a signal being generated by a non-linear mixing process from the first-and-second acoustic signal in a non-linear mixing zone within the intersection volume. The method also includes-processing the received signal to extract the signal generated by the non-linear mixing process over noise or over signals generated by a linear interaction process, or both.

  5. A smart pattern recognition system for the automatic identification of aerospace acoustic sources

    NASA Technical Reports Server (NTRS)

    Cabell, R. H.; Fuller, C. R.

    1989-01-01

    An intelligent air-noise recognition system is described that uses pattern recognition techniques to distinguish noise signatures of five different types of acoustic sources, including jet planes, propeller planes, a helicopter, train, and wind turbine. Information for classification is calculated using the power spectral density and autocorrelation taken from the output of a single microphone. Using this system, as many as 90 percent of test recordings were correctly identified, indicating that the linear discriminant functions developed can be used for aerospace source identification.

  6. Perceptual factors contribute more than acoustical factors to sound localization abilities with virtual sources

    PubMed Central

    Andéol, Guillaume; Savel, Sophie; Guillaume, Anne

    2015-01-01

    Human sound localization abilities rely on binaural and spectral cues. Spectral cues arise from interactions between the sound wave and the listener's body (head-related transfer function, HRTF). Large individual differences were reported in localization abilities, even in young normal-hearing adults. Several studies have attempted to determine whether localization abilities depend mostly on acoustical cues or on perceptual processes involved in the analysis of these cues. These studies have yielded inconsistent findings, which could result from methodological issues. In this study, we measured sound localization performance with normal and modified acoustical cues (i.e., with individual and non-individual HRTFs, respectively) in 20 naïve listeners. Test conditions were chosen to address most methodological issues from past studies. Procedural training was provided prior to sound localization tests. The results showed no direct relationship between behavioral results and an acoustical metrics (spectral-shape prominence of individual HRTFs). Despite uncertainties due to technical issues with the normalization of the HRTFs, large acoustical differences between individual and non-individual HRTFs appeared to be needed to produce behavioral effects. A subset of 15 listeners then trained in the sound localization task with individual HRTFs. Training included either visual correct-answer feedback (for the test group) or no feedback (for the control group), and was assumed to elicit perceptual learning for the test group only. Few listeners from the control group, but most listeners from the test group, showed significant training-induced learning. For the test group, learning was related to pre-training performance (i.e., the poorer the pre-training performance, the greater the learning amount) and was retained after 1 month. The results are interpreted as being in favor of a larger contribution of perceptual factors than of acoustical factors to sound localization

  7. Deconvolution for three-dimensional acoustic source identification based on spherical harmonics beamforming

    NASA Astrophysics Data System (ADS)

    Chu, Zhigang; Yang, Yang; He, Yansong

    2015-05-01

    Spherical Harmonics Beamforming (SHB) with solid spherical arrays has become a particularly attractive tool for doing acoustic sources identification in cabin environments. However, it presents some intrinsic limitations, specifically poor spatial resolution and severe sidelobe contaminations. This paper focuses on overcoming these limitations effectively by deconvolution. First and foremost, a new formulation is proposed, which expresses SHB's output as a convolution of the true source strength distribution and the point spread function (PSF) defined as SHB's response to a unit-strength point source. Additionally, the typical deconvolution methods initially suggested for planar arrays, deconvolution approach for the mapping of acoustic sources (DAMAS), nonnegative least-squares (NNLS), Richardson-Lucy (RL) and CLEAN, are adapted to SHB successfully, which are capable of giving rise to highly resolved and deblurred maps. Finally, the merits of the deconvolution methods are validated and the relationships of source strength and pressure contribution reconstructed by the deconvolution methods vs. focus distance are explored both with computer simulations and experimentally. Several interesting results have emerged from this study: (1) compared with SHB, DAMAS, NNLS, RL and CLEAN all can not only improve the spatial resolution dramatically but also reduce or even eliminate the sidelobes effectively, allowing clear and unambiguous identification of single source or incoherent sources. (2) The availability of RL for coherent sources is highest, then DAMAS and NNLS, and that of CLEAN is lowest due to its failure in suppressing sidelobes. (3) Whether or not the real distance from the source to the array center equals the assumed one that is referred to as focus distance, the previous two results hold. (4) The true source strength can be recovered by dividing the reconstructed one by a coefficient that is the square of the focus distance divided by the real distance from

  8. Time-distance domain transformation for Acoustic Emission source localization in thin metallic plates.

    PubMed

    Grabowski, Krzysztof; Gawronski, Mateusz; Baran, Ireneusz; Spychalski, Wojciech; Staszewski, Wieslaw J; Uhl, Tadeusz; Kundu, Tribikram; Packo, Pawel

    2016-05-01

    Acoustic Emission used in Non-Destructive Testing is focused on analysis of elastic waves propagating in mechanical structures. Then any information carried by generated acoustic waves, further recorded by a set of transducers, allow to determine integrity of these structures. It is clear that material properties and geometry strongly impacts the result. In this paper a method for Acoustic Emission source localization in thin plates is presented. The approach is based on the Time-Distance Domain Transform, that is a wavenumber-frequency mapping technique for precise event localization. The major advantage of the technique is dispersion compensation through a phase-shifting of investigated waveforms in order to acquire the most accurate output, allowing for source-sensor distance estimation using a single transducer. The accuracy and robustness of the above process are also investigated. This includes the study of Young's modulus value and numerical parameters influence on damage detection. By merging the Time-Distance Domain Transform with an optimal distance selection technique, an identification-localization algorithm is achieved. The method is investigated analytically, numerically and experimentally. The latter involves both laboratory and large scale industrial tests. PMID:26950889

  9. Resolving the source of the solar acoustic oscillations: What will be possible with DKIST?

    NASA Astrophysics Data System (ADS)

    Rast, Mark; Martinez Pillet, Valentin

    2016-05-01

    The solar p-modes are likely excited by small-scale convective dynamics in the solar photosphere, but the detailed source properties are not known. Theoretical models differ and observations are yet unable to differentiate between them. Resolving the underlying source events is more than a curiosity. It is important to the veracity of global helioseismic measurements (including local spectral methods such as ring diagram analysis) because global p-mode line shapes and thus accurate frequency determinations depend critically on the relationship between intensity and velocity during the excitation events. It is also fundamental to improving the accuracy of the local time-distance measurements because in these kernel calculations depend on knowledge of the source profile and the properties of the excitation noise. The Daniel K. Inouye Solar Telescope (DKIST) will have the spatial resolution and spectral range needed to resolve the solar acoustic excitation events in both time and space (horizontally and with height) using multi-wavelength observations. Inversions to determine the dynamic and thermodynamic evolution of the discrete small-scale convective events that serve as acoustic sources may also be possible, though determination of the pressure fluctuations associated with the sources is a challenge. We describe the DKIST capabilities anticipated and the preliminary work needed to prepare for them.

  10. Design of an Acoustic Array for Comparison with an Alternative Source Localization Method

    NASA Astrophysics Data System (ADS)

    Coombs, Deshawn; Lewalle, Jacques; Glauser, Mark; Wang, Guannan

    2013-11-01

    We report on the design, testing and construction of a conventional acoustic array, and document an alternate method of signal processing. The purpose of the new algorithm is to improve the spatial localization of acoustic sources. The reference results are obtained using the beamforming algorithm. The array design includes 60 microphones with a maximum aperture diameter of 39 inches. The arrays target frequency range is 500-5000 Hz. The new algorithm uses fewer microphones. We will show results with simulated signals and with jet noise experimental data. Details of the array calibration and representative data from measurements will be presented along with data post-processing procedures. Support from Syracuse University MAE department and LSAMP.

  11. Modelling of wind tunnel wall effects on the radiation characteristics of acoustic sources

    NASA Technical Reports Server (NTRS)

    Eversman, W.; Baumeister, K. J.

    1984-01-01

    It is pointed out that the relatively high fuel economy available from propeller-driven aircraft has renewed interest in high speed, highly loaded multiple blade turboprop propulsion systems. Undesirable features related to community noise and the high intensity cabin noise have stimulated new research on the acoustic characteristics of turboprops. The present investigation has the objective to develop a mathematical model of the essential features of the radiation of acoustic disturbances from propellers in a duct and in free space in order to quantify the success with which duct testing can be expected to approximate free field conditions. In connection with the importance of source directionality, a detailed model is considered which consists of a finite element representation of the Gutin propeller theory valid in both the near and far field.

  12. Interaural sound pressure level differences associated with sound-source locations in the frontal hemifield of the domestic cat.

    PubMed

    Martin, R L; Webster, W R

    1989-04-01

    Interaural sound pressure level differences (ILDs) associated with a range of sound-source azimuths and elevations in the frontal hemifields of four cats were measured for each of seven pure-tone stimuli ranging in frequency from 2-32 kHz. The overall pattern of ILD across location at each frequency was remarkably similar in all cats. At 2, 4 and 8 kHz the relationships of ILD to azimuth and elevation were generally monotonic with ILD increasing with increasing azimuth. At 12 kHz and above, however, non-monotonic relationships developed and circumscribed regions of particularly large, positive and negative ILDs were apparent. That ILDs associated with many sound-source locations on the near side of the head are negative in sign has not been widely noted in the previous literature. The data obtained in this study were compared with those from previous studies and the acoustical mechanisms likely to have contributed to production of the observed ILDs were considered. Some implications of the data for auditory localization in three-dimensional space were discussed. PMID:2708168

  13. Sequential Optimal Monitoring Network Design using Iterative Kriging for Identification of Unknown Groundwater Pollution Sources Location

    NASA Astrophysics Data System (ADS)

    Prakash, O.; Datta, B.

    2011-12-01

    Identification of unknown groundwater pollution source characteristics, in terms of location, magnitude and activity duration is important for designing an effective pollution remediation strategy. Precise source characterization also becomes very important to ascertain liability, and to recover the cost of remediation from parties responsible for the groundwater pollution. Due to the uncertainties in accurately predicting the aquifer response to source flux injection, generally encountered sparsity of concentration observation data in the field, and the non uniqueness in the aquifer response to the subjected hydraulic and chemical stresses, groundwater pollution source characterization remains a challenging task. A scientifically designed pollutant concentration monitoring network becomes imperative for accurate pollutant source characterization. The efficiency of the unknown source locations identification process is largely determined by locations of monitoring wells where the pollutant concentration is observed. The proposed method combines spatial interpolation of concentration measurements and Simulated Annealing as optimization algorithm to find the optimum locations for monitoring wells. Initially, the observed concentration data at few sparsely and arbitrarily distributed wells are used to interpolate the concentration data for the aquifer study area. The concentration information is passed to the optimization algorithm (decision model) as concentration gradient which in turn finds the optimum locations for implementing the next sequence of monitoring wells. Concentration measurement data from these designed monitoring wells and already implemented monitoring network are iteratively used as feedback information for potential groundwater pollution source locations identification. The potential applicability of the developed methodology is demonstrated for an illustrative study area.

  14. Determination of Jet Noise Radiation Source Locations using a Dual Sideline Cross-Correlation/Spectrum Technique

    NASA Technical Reports Server (NTRS)

    Allen, C. S.; Jaeger, S. M.

    1999-01-01

    The goal of our efforts is to extrapolate nearfield jet noise measurements to the geometric far field where the jet noise sources appear to radiate from a single point. To accomplish this, information about the location of noise sources in the jet plume, the radiation patterns of the noise sources and the sound pressure level distribution of the radiated field must be obtained. Since source locations and radiation patterns can not be found with simple single microphone measurements, a more complicated method must be used.

  15. Improved source reconstruction in Fourier-based Near-field Acoustic Holography applied to small apertures

    NASA Astrophysics Data System (ADS)

    Lopez Arteaga, I.; Scholte, R.; Nijmeijer, H.

    2012-10-01

    It is well known that Fourier-based Near-field Acoustic Holography fails to produce good source reconstructions when the aperture size of the microphone array is smaller than the source size. In this paper this problem is overcome by pre-conditioning the spatial hologram data using Linear Predictive Border Padding (LPBP) before it is Fourier-transformed to the wave-number domain. It is shown that LPBP allows for very small aperture sizes with a good reconstruction accuracy. An exhaustive analysis of LPBP is presented based on numerical experiments and measured data. The numerical experiments are performed on two different source types: modal patterns and point sources. These two types of sources represent the two limit situations that one can find in practice: modal patterns have a tonal spectrum in the spatial wave-number domain and are relatively easy to reconstruct accurately, while point sources have a broad-band wave-number spectrum which makes them very challenging to reconstruct. In order to illustrate the accuracy of the method in practice, results of measurements on a hard disk drive are presented as well. For a given distance to the source, the position and size of the hologram plane apertures is varied and the reconstructed source information is compared to the original source data. The reconstructed sources are compared both qualitatively and quantitatively. The results show that LPBP is an efficient and accurate extrapolation method, which leads to accurate reconstructions even for very small aperture sizes.

  16. Determination of Jet Noise Radiation Patterns and Source Locations using 2-Dimensional Intensity Measurements

    NASA Technical Reports Server (NTRS)

    Jaeger, S. M.; Allen, C. S.

    1999-01-01

    Contents include the following: (1) Outline Jet Noise extrapolation to far field. (2) Two dimensional sound intensity. (3) Anechoic chamber cold jet test. (4) Results: Intensity levels. Vector maps. Source location centroids. Directivity. and (5) Conclusions.

  17. System and method for characterizing, synthesizing, and/or canceling out acoustic signals from inanimate sound sources

    DOEpatents

    Holzrichter, John F.; Burnett, Greg C.; Ng, Lawrence C.

    2007-10-16

    A system and method for characterizing, synthesizing, and/or canceling out acoustic signals from inanimate sound sources is disclosed. Propagating wave electromagnetic sensors monitor excitation sources in sound producing systems, such as machines, musical instruments, and various other structures. Acoustical output from these sound producing systems is also monitored. From such information, a transfer function characterizing the sound producing system is generated. From the transfer function, acoustical output from the sound producing system may be synthesized or canceled. The methods disclosed enable accurate calculation of matched transfer functions relating specific excitations to specific acoustical outputs. Knowledge of such signals and functions can be used to effect various sound replication, sound source identification, and sound cancellation applications.

  18. System and method for characterizing synthesizing and/or canceling out acoustic signals from inanimate sound sources

    DOEpatents

    Holzrichter, John F.; Burnett, Greg C.; Ng, Lawrence C.

    2003-01-01

    A system and method for characterizing, synthesizing, and/or canceling out acoustic signals from inanimate sound sources is disclosed. Propagating wave electromagnetic sensors monitor excitation sources in sound producing systems, such as machines, musical instruments, and various other structures. Acoustical output from these sound producing systems is also monitored. From such information, a transfer function characterizing the sound producing system is generated. From the transfer function, acoustical output from the sound producing system may be synthesized or canceled. The methods disclosed enable accurate calculation of matched transfer functions relating specific excitations to specific acoustical outputs. Knowledge of such signals and functions can be used to effect various sound replication, sound source identification, and sound cancellation applications.

  19. System and method for characterizing, synthesizing, and/or canceling out acoustic signals from inanimate sound sources

    DOEpatents

    Holzrichter, John F; Burnett, Greg C; Ng, Lawrence C

    2013-05-21

    A system and method for characterizing, synthesizing, and/or canceling out acoustic signals from inanimate sound sources is disclosed. Propagating wave electromagnetic sensors monitor excitation sources in sound producing systems, such as machines, musical instruments, and various other structures. Acoustical output from these sound producing systems is also monitored. From such information, a transfer function characterizing the sound producing system is generated. From the transfer function, acoustical output from the sound producing system may be synthesized or canceled. The methods disclosed enable accurate calculation of matched transfer functions relating specific excitations to specific acoustical outputs. Knowledge of such signals and functions can be used to effect various sound replication, sound source identification, and sound cancellation applications.

  20. Spatial location priors for Gaussian model based reverberant audio source separation

    NASA Astrophysics Data System (ADS)

    Duong, Ngoc QK; Vincent, Emmanuel; Gribonval, Rémi

    2013-12-01

    We consider the Gaussian framework for reverberant audio source separation, where the sources are modeled in the time-frequency domain by their short-term power spectra and their spatial covariance matrices. We propose two alternative probabilistic priors over the spatial covariance matrices which are consistent with the theory of statistical room acoustics and we derive expectation-maximization algorithms for maximum a posteriori (MAP) estimation. We argue that these algorithms provide a statistically principled solution to the permutation problem and to the risk of overfitting resulting from conventional maximum likelihood (ML) estimation. We show experimentally that in a semi-informed scenario where the source positions and certain room characteristics are known, the MAP algorithms outperform their ML counterparts. This opens the way to rigorous statistical treatment of this family of models in other scenarios in the future.

  1. Three-dimensional localization of transient acoustic sources using an ice-mounted geophone.

    PubMed

    Dosso, Stan E

    2014-01-01

    This paper presents an approach to three-dimensional (3D) localization of ocean acoustic sources using a single three-component geophone on Arctic sea ice. Source bearing is estimated by maximizing the radial signal power as a function of horizontal look angle, applying seismic polarization filters to suppress shear waves with transverse particle motion. The inherent 180° ambiguity is resolved by requiring outgoing (prograde) particle motion in the radial-vertical plane. Source range and depth estimates and uncertainties are computed by Bayesian inversion of arrival-time differences of the water-borne acoustic wave and ice seismic waves, including the horizontally-polarized shear wave and longitudinal plate wave. The 3D localization is applied to geophone recordings of impulsive sources deployed in the water column at a series of ranges (200 to 1000 m) and bearings (0° to 90°) for three sites in the Lincoln Sea characterized by smooth annual ice, rough/ridged annual ice, and thick multi-year ice. Good bearing estimates are obtained in all cases. Range-depth localization is successful for ranges over which ice seismic arrivals could be reliably detected, approximately 200 m on rough ice, 500 m on smooth ice, and 800 m on multi-year ice. Effects of environmental uncertainty on localization are quantified by marginalizing over unknown environmental parameters. PMID:24437752

  2. Detection and Location of Gamma-Ray Sources with a Modulating Coded Mask

    SciTech Connect

    Anderson, Dale N.; Stromswold, David C.; Wunschel, Sharon C.; Peurrung, Anthony J.; Hansen, Randy R.

    2006-01-31

    This paper presents methods of detecting and locating a concelaed nuclear gamma-ray source with a coded aperture mask. Energetic gamma rays readily penetrate moderate amounts of shielding material and can be detected at distances of many meters. The detection of high energy gamma-ray sources is vitally important to national security for several reasons, including nuclear materials smuggling interdiction, monitoring weapon components under treaties, and locating nuclear weapons and materials in the possession terrorist organizations.

  3. Solid state sensor for locating and imaging sources of gamma and x-radiation

    SciTech Connect

    Kronenberg, S.; Brucker, G.J.; Bechtel, E.

    1998-06-01

    This paper describes the design and characterization of a directional Solid State Detector (SSD) that generates images of radiation point sources and scatter patterns from irradiated targets, thus accurately identifying their locations. Previous papers demonstrated that other types of directional radiation sensors, such as Ionization Chambers, Geiger-Mueller and Scintillation Counters, can be designed to detect and locate arrays of gamma ray and x-ray point sources and broad scatter patterns.

  4. Identification of contaminant point source in surface waters based on backward location probability density function method

    NASA Astrophysics Data System (ADS)

    Cheng, Wei Ping; Jia, Yafei

    2010-04-01

    A backward location probability density function (BL-PDF) method capable of identifying location of point sources in surface waters is presented in this paper. The relation of forward location probability density function (FL-PDF) and backward location probability density, based on adjoint analysis, is validated using depth-averaged free-surface flow and mass transport models and several surface water test cases. The solutions of the backward location PDF transport equation agreed well to the forward location PDF computed using the pollutant concentration at the monitoring points. Using this relation and the distribution of the concentration detected at the monitoring points, an effective point source identification method is established. The numerical error of the backward location PDF simulation is found to be sensitive to the irregularity of the computational meshes, diffusivity, and velocity gradients. The performance of identification method is evaluated regarding the random error and number of observed values. In addition to hypothetical cases, a real case was studied to identify the source location where a dye tracer was instantaneously injected into a stream. The study indicated the proposed source identification method is effective, robust, and quite efficient in surface waters; the number of advection-diffusion equations needed to solve is equal to the number of observations.

  5. Acoustic Localization with Infrasonic Signals

    NASA Astrophysics Data System (ADS)

    Threatt, Arnesha; Elbing, Brian

    2015-11-01

    Numerous geophysical and anthropogenic events emit infrasonic frequencies (<20 Hz), including volcanoes, hurricanes, wind turbines and tornadoes. These sounds, which cannot be heard by the human ear, can be detected from large distances (in excess of 100 miles) due to low frequency acoustic signals having a very low decay rate in the atmosphere. Thus infrasound could be used for long-range, passive monitoring and detection of these events. An array of microphones separated by known distances can be used to locate a given source, which is known as acoustic localization. However, acoustic localization with infrasound is particularly challenging due to contamination from other signals, sensitivity to wind noise and producing a trusted source for system development. The objective of the current work is to create an infrasonic source using a propane torch wand or a subwoofer and locate the source using multiple infrasonic microphones. This presentation will present preliminary results from various microphone configurations used to locate the source.

  6. DIFFERENT MECHANISMS ARE RESPONSIBLE FOR DISHABITUATION OF ELECTROPHYSIOLOGICAL AUDITORY RESPONSES TO A CHANGE IN ACOUSTIC IDENTITY THAN TO A CHANGE IN STIMULUS LOCATION

    PubMed Central

    Smulders, Tom V.; Jarvis, Erich D.

    2014-01-01

    Repeated exposure to an auditory stimulus leads to habituation of the electrophysiological and immediate-early-gene (IEG) expression response in the auditory system. A novel auditory stimulus reinstates this response in a form of dishabituation. This has been interpreted as the start of new memory formation for this novel stimulus. Changes in the location of an otherwise identical auditory stimulus can also dishabituate the IEG expression response. This has been interpreted as an integration of stimulus identity and stimulus location into a single auditory object, encoded in the firing patterns of the auditory system. In this study, we further tested this hypothesis. Using chronic multi-electrode arrays to record multi-unit activity from the auditory system of awake and behaving zebra finches, we found that habituation occurs to repeated exposure to the same song and dishabituation with a novel song, similar to that described in head-fixed, restrained animals. A large proportion of recording sites also showed dishabituation when the same auditory stimulus was moved to a novel location. However, when the song was randomly moved among 8 interleaved locations, habituation occurred independently of the continuous changes in location. In contrast, when 8 different auditory stimuli were interleaved all from the same location, a separate habituation occurred to each stimulus. This result suggests that neuronal memories of the acoustic identity and spatial location are different, and that allocentric location of a stimulus is not encoded as part of the memory for an auditory object, while its acoustic properties are. We speculate that, instead, the dishabituation that occurs with a change from a stable location of a sound is due to the unexpectedness of the location change, and might be due to different underlying mechanisms than the dishabituation and separate habituations to different acoustic stimuli. PMID:23999220

  7. Locating and quantifying gas emission sources using remotely obtained concentration data

    NASA Astrophysics Data System (ADS)

    Hirst, Bill; Jonathan, Philip; González del Cueto, Fernando; Randell, David; Kosut, Oliver

    2013-08-01

    We describe a method for detecting, locating and quantifying sources of gas emissions to the atmosphere using remotely obtained gas concentration data; the method is applicable to gases of environmental concern. We demonstrate its performance using methane data collected from aircraft. Atmospheric point concentration measurements are modelled as the sum of a spatially and temporally smooth atmospheric background concentration, augmented by concentrations due to local sources. We model source emission rates with a Gaussian mixture model and use a Markov random field to represent the atmospheric background concentration component of the measurements. A Gaussian plume atmospheric eddy dispersion model represents gas dispersion between sources and measurement locations. Initial point estimates of background concentrations and source emission rates are obtained using mixed ℓ2 - ℓ1 optimisation over a discretised grid of potential source locations. Subsequent reversible jump Markov chain Monte Carlo inference provides estimated values and uncertainties for the number, emission rates and locations of sources unconstrained by a grid. Source area, atmospheric background concentrations and other model parameters, including plume model spreading and Lagrangian turbulence time scale, are also estimated. We investigate the performance of the approach first using a synthetic problem, then apply the method to real airborne data from a 1600 km2 area containing two landfills, then a 225 km2 area containing a gas flare stack.

  8. The acoustic gravity wave induced by a point source in the middle atmosphere

    NASA Technical Reports Server (NTRS)

    Zhang, X. J.; Xiong, N. L.

    1985-01-01

    Acoustic gravity wave (AGW) results computed for a stationary impulsive point source and a moving point source in the middle atmosphere are presented. For a stationary impulsive point Row's far field formula of the AGW was extended into the near field one, which comprises the Zeroth order Bessel function and its derivative terms. When (t-t sub o) is not large, the contribution of the derivative terms is important. The computed results agree with the experimental ones. For a moving point source with supersonic velocity, AGW is calculated using the moving point theory. Two solar eclipses that occurred in the lower latitude and over the ocean on Feb. 16, 1980, and June 11, 1983, were compared. The results show that the theoretical curve of AGW is fairly consistent with the observed ones.

  9. Acoustic Source Localization via Distributed Sensor Networks using Tera-scale Optical-Core Devices

    SciTech Connect

    Imam, Neena; Barhen, Jacob; Wardlaw, Michael

    2008-01-01

    For real-time acoustic source localization applications, one of the primary challenges is the considerable growth in computational complexity associated with the emergence of ever larger, active or passive, distributed sensor networks. The complexity of the calculations needed to achieve accurate source localization increases dramatically with the size of sensor arrays, resulting in substantial growth of computational requirements that cannot be met with standard hardware. One option to meet this challenge builds upon the emergence of digital optical-core devices. The objective of this work was to explore the implementation of key building block algorithms used in underwater source localization on an optical-core digital processing platform recently introduced by Lenslet Inc. They investigate key concepts of threat-detection algorithms such as Time Difference Of Arrival (TDOA) estimation via sensor data correlation in the time domain with the purpose of implementation on the optical-core processor. they illustrate their results with the aid of numerical simulation and actual optical hardware runs. The major accomplishments of this research, in terms of computational speedup and numerical accurcy achieved via the deployment of optical processing technology, should be of substantial interest to the acoustic signal processing community.

  10. Network-based evaluation of infrasound source location at Sakurajima Volcano, Japan

    NASA Astrophysics Data System (ADS)

    McKee, K. F.; Fee, D.; Rowell, C. R.; Johnson, J. B.; Yokoo, A.; Matoza, R. S.

    2013-12-01

    An important step in advancing the science and application of volcano infrasound is improved source location and characterization. Here we evaluate different network-based infrasonic source location methods, primarily srcLoc and semblance, using data collected at Sakurajima Volcano, Japan in July 2013. We investigate these methods in 2- and 3-dimensions to assess the necessity of considering 3-D sensor and vent locations. In addition, we compare source locations found using array back azimuth projection from dual arrays. The effect of significant local topography on source location will also be evaluated. Preliminary analysis indicates periods of high- and low-level activity, suggesting different processes occurring in the upper conduit and vent. Network processing will be applied to determine signal versus noise, a technique which illuminates when the volcano is producing infrasound, to further investigate these processes. We combine this with other methods to identify the number and style of eruptions. By bringing together source location, timing of activity level, type of activity (such as tremor, explosions, etc.), and number of events, we aim to improve understanding of the activity and associated infrasound signals at Sakurajima Volcano.

  11. Effective dose equivalent for point gamma sources located 10 cm near the body.

    PubMed

    Xu, X George; Bushart, Sean; Anderson, Ralph

    2006-08-01

    The key component in the so-called EPRI effective dose equivalent (EDE) methodology is an algorithm that utilizes two dosimeters (instead of multiple dosimeters) to predict the EDE for external photon exposures. The exposure scenarios that were previously studied in deriving the algorithm include parallel photon beams and point sources 33 cm from the body surface. The motivation for this study was the need to investigate source locations within 33 cm from the body so the method is more widely applicable. The ORNL stylized mathematical human phantoms and the MCNP code were used to calculate organ doses in this study. This paper presents the EDE data for point gamma sources at 0.3, 1.0, and 1.5 MeV, respectively, which are located at 10 cm from the surface of the body. The results and analyses show that the locations ranging from the overhead to the foot have resulted in conservative ratios except for two general regions near the front upper thigh and directly overhead. If all locations considered in this study were averaged for each photon energy, the overall ratio is on the conservative side. These data suggest that the EPRI EDE methodology is still valid for sources located 10 cm from the body, although the chance for resulting in a non-conservative estimate of the EDE has increased in comparison with the sources located at 30 cm from the body. Finally, this paper provides recommendations on how to apply the EPRI EDE methodology. PMID:16832191

  12. Sound frequency-invariant neural coding of a frequency-dependent cue to sound source location.

    PubMed

    Jones, Heath G; Brown, Andrew D; Koka, Kanthaiah; Thornton, Jennifer L; Tollin, Daniel J

    2015-07-01

    The century-old duplex theory of sound localization posits that low- and high-frequency sounds are localized with two different acoustical cues, interaural time and level differences (ITDs and ILDs), respectively. While behavioral studies in humans and behavioral and neurophysiological studies in a variety of animal models have largely supported the duplex theory, behavioral sensitivity to ILD is curiously invariant across the audible spectrum. Here we demonstrate that auditory midbrain neurons in the chinchilla (Chinchilla lanigera) also encode ILDs in a frequency-invariant manner, efficiently representing the full range of acoustical ILDs experienced as a joint function of sound source frequency, azimuth, and distance. We further show, using Fisher information, that nominal "low-frequency" and "high-frequency" ILD-sensitive neural populations can discriminate ILD with similar acuity, yielding neural ILD discrimination thresholds for near-midline sources comparable to behavioral discrimination thresholds estimated for chinchillas. These findings thus suggest a revision to the duplex theory and reinforce ecological and efficiency principles that hold that neural systems have evolved to encode the spectrum of biologically relevant sensory signals to which they are naturally exposed. PMID:25972580

  13. Correlation of Earthquake Locations with Volumetric Source Components in TauTona Gold Mine, South Africa

    NASA Astrophysics Data System (ADS)

    Kane, D. L.; Boettcher, M. S.

    2013-12-01

    We investigate the source characteristics of earthquakes in TauTona Gold Mine, South Africa, to test if the location of earthquakes relative to mining structures is correlated with significant isotropic source behavior. Earthquakes are well monitored in TauTona Mine, where underground near-source stations record smaller events and higher frequency energy than can generally be observed using surface stations. Our dataset includes -4 < Mw < 4 earthquakes recorded at hypocentral distances of tens of meters to a few kilometers. The locations of structures in the mine, including faults, dikes, tunnels, and stopes, are well known from detailed geologic mapping and surveyed mine plans. We use data collected between 2004 and 2009 from the in-mine array (1-6 kHz), the Natural Earthquake Laboratory in South African Mines (NELSAM) project stations (6-12 kHz), and a short-term PASSCAL experiment (200 Hz) to study source mechanism variability and correlation with mapped structures within the mine. Previous studies of earthquakes in mines suggest a relationship between earthquake size and isotropic moment tensor source characteristics. In TauTona Mine, earthquakes with significant implosive source characteristics tend to be infrequent, larger events (Mw > 1.5), whereas earthquakes with significant explosive source characteristics tend to be smaller (Mw < 0). A possible model for this variability in source behavior relates earthquake size to earthquake location relative to mining and natural structures. Larger events are more likely to produce closure of tunnels and stopes within the mine, whereas the smallest recorded explosive events can be interpreted as opening cracks that form at the edges of mining structures. Double-couple type sources occur throughout the full magnitude range, and are often located along mapped faults and dikes. We focus our analysis on earthquakes located near the NELSAM stations in the deepest part of the mine, and on earthquakes located at depths

  14. Source location of the smooth high-frequency radio emissions from Uranus

    NASA Technical Reports Server (NTRS)

    Farrell, W. M.; Calvert, W.

    1989-01-01

    The source location of the smooth high-frequency radio emissions from Uranus has been determined. Specifically, by fitting the signal dropouts which occurred as Voyager traversed the hollow center of the emission pattern to a symmetrical cone centered on the source magnetic field direction at the cyclotron frequency, a southern-hemisphere (nightside) source was found at approximately 56 deg S, 219 deg W. The half-angle for the hollow portion of the emission pattern was found to be 13 deg.

  15. Precise source location of the anomalous 1979 March 5 gamma ray transient

    NASA Technical Reports Server (NTRS)

    Cline, T. L.; Desai, U. D.; Teegarden, B. J.; Evans, W. D.; Klebesadel, R. W.; Laros, J. G.; Barat, C.; Hurley, K.; Niel, M.; Vedrenne, G.

    1981-01-01

    Refinements in the source direction analysis of the observations of the unusual gamma ray transient are presented. The final results from the interplanetary gamma ray burst network produce a 0.1 arc sq. min. error box. It is nested inside the initially determined 2 arc sq min. source region. This smaller source location is within both the optical and X-ray contours of N49 although not positioned at either contour center.

  16. Bayesian statistics applied to the location of the source of explosions at Stromboli Volcano, Italy

    USGS Publications Warehouse

    Saccorotti, G.; Chouet, B.; Martini, M.; Scarpa, R.

    1998-01-01

    We present a method for determining the location and spatial extent of the source of explosions at Stromboli Volcano, Italy, based on a Bayesian inversion of the slowness vector derived from frequency-slowness analyses of array data. The method searches for source locations that minimize the error between the expected and observed slowness vectors. For a given set of model parameters, the conditional probability density function of slowness vectors is approximated by a Gaussian distribution of expected errors. The method is tested with synthetics using a five-layer velocity model derived for the north flank of Stromboli and a smoothed velocity model derived from a power-law approximation of the layered structure. Application to data from Stromboli allows for a detailed examination of uncertainties in source location due to experimental errors and incomplete knowledge of the Earth model. Although the solutions are not constrained in the radial direction, excellent resolution is achieved in both transverse and depth directions. Under the assumption that the horizontal extent of the source does not exceed the crater dimension, the 90% confidence region in the estimate of the explosive source location corresponds to a small volume extending from a depth of about 100 m to a maximum depth of about 300 m beneath the active vents, with a maximum likelihood source region located in the 120- to 180-m-depth interval.

  17. Acoustic emission monitoring system

    DOEpatents

    Romrell, Delwin M.

    1977-07-05

    Methods and apparatus for identifying the source location of acoustic emissions generated within an acoustically conductive medium. A plurality of acoustic receivers are communicably coupled to the surface of the medium at a corresponding number of spaced locations. The differences in the reception time of the respective sensors in response to a given acoustic event are measured among various sensor combinations prescribed by the monitoring mode employed. Acoustic reception response encountered subsequent to the reception by a predetermined number of the prescribed sensor combinations are inhibited from being communicated to the processing circuitry, while the time measurements obtained from the prescribed sensor combinations are translated into a position measurement representative of the location on the surface most proximate the source of the emission. The apparatus is programmable to function in six separate and five distinct operating modes employing either two, three or four sensory locations. In its preferred arrangement the apparatus of this invention will re-initiate a monitoring interval if the predetermined number of sensors do not respond to a particular emission within a given time period.

  18. Ultrasonic power transfer from a spherical acoustic wave source to a free-free piezoelectric receiver: Modeling and experiment

    NASA Astrophysics Data System (ADS)

    Shahab, S.; Gray, M.; Erturk, A.

    2015-03-01

    Contactless powering of small electronic components has lately received growing attention for wireless applications in which battery replacement or tethered charging is undesired or simply impossible, and ambient energy harvesting is not a viable solution. As an alternative to well-studied methods of contactless energy transfer, such as the inductive coupling method, the use of ultrasonic waves transmitted and received by piezoelectric devices enables larger power transmission distances, which is critical especially for deep-implanted electronic devices. Moreover, energy transfer by means of acoustic waves is well suited in situations where no electromagnetic fields are allowed. The limited literature of ultrasonic acoustic energy transfer is mainly centered on proof-of-concept experiments demonstrating the feasibility of this method, lacking experimentally validated modeling efforts for the resulting multiphysics problem that couples the source and receiver dynamics with domain acoustics. In this work, we present fully coupled analytical, numerical, and experimental multiphysics investigations for ultrasonic acoustic energy transfer from a spherical wave source to a piezoelectric receiver bar that operates in the 33-mode of piezoelectricity. The fluid-loaded piezoelectric receiver under free-free mechanical boundary conditions is shunted to an electrical load for quantifying the electrical power output for a given acoustic source strength of the transmitter. The analytical acoustic-piezoelectric structure interaction modeling framework is validated experimentally, and the effects of system parameters are reported along with optimal electrical loading and frequency conditions of the receiver.

  19. Ultrasonic power transfer from a spherical acoustic wave source to a free-free piezoelectric receiver: Modeling and experiment

    SciTech Connect

    Shahab, S.; Gray, M.; Erturk, A.

    2015-03-14

    Contactless powering of small electronic components has lately received growing attention for wireless applications in which battery replacement or tethered charging is undesired or simply impossible, and ambient energy harvesting is not a viable solution. As an alternative to well-studied methods of contactless energy transfer, such as the inductive coupling method, the use of ultrasonic waves transmitted and received by piezoelectric devices enables larger power transmission distances, which is critical especially for deep-implanted electronic devices. Moreover, energy transfer by means of acoustic waves is well suited in situations where no electromagnetic fields are allowed. The limited literature of ultrasonic acoustic energy transfer is mainly centered on proof-of-concept experiments demonstrating the feasibility of this method, lacking experimentally validated modeling efforts for the resulting multiphysics problem that couples the source and receiver dynamics with domain acoustics. In this work, we present fully coupled analytical, numerical, and experimental multiphysics investigations for ultrasonic acoustic energy transfer from a spherical wave source to a piezoelectric receiver bar that operates in the 33-mode of piezoelectricity. The fluid-loaded piezoelectric receiver under free-free mechanical boundary conditions is shunted to an electrical load for quantifying the electrical power output for a given acoustic source strength of the transmitter. The analytical acoustic-piezoelectric structure interaction modeling framework is validated experimentally, and the effects of system parameters are reported along with optimal electrical loading and frequency conditions of the receiver.

  20. Quantitative and qualitative analyses of under-balcony acoustics with real and simulated arrays of multiple sources

    NASA Astrophysics Data System (ADS)

    Kwon, Youngmin

    The objective of this study was to quantitatively and qualitatively identify the acoustics of the under-balcony areas in music performance halls under realistic conditions that are close to an orchestral performance in consideration of multiple music instrumental sources and their diverse sound propagation patterns. The study executed monaural and binaural impulse response measurements with an array of sixteen directional sources (loudspeakers) for acoustical assessments. Actual measurements in a performance hall as well as computer simulations were conducted for the quantitative assessments. Psycho-acoustical listening tests were conducted for the qualitative assessments using the music signals binaurally recorded in the hall with the same source array. The results obtained from the multiple directional source tests were analyzed by comparing them to those obtained from the tests performed with a single omni-directional source. These two sets of results obtained in the under-balcony area were also compared to those obtained in the main orchestra area. The quantitative results showed that the use of a single source conforming to conventional measurement protocol seems to be competent for measurements of the room acoustical parameters such as EDTmid, RTmid, C80500-2k, IACCE3 and IACCL3. These quantitative measures, however, did not always agree with the results of the qualitative assessments. The primary reason is that, in many other acoustical analysis respects, the acoustical phenomena shown from the multiple source measurements were not similar to those shown from the single source measurements. Remarkable differences were observed in time-domain impulse responses, frequency content, spectral distribution, directional distribution of the early reflections, and in sound energy density over time. Therefore, the room acoustical parameters alone should not be the acoustical representative characterizing a performance hall or a specific area such as the under

  1. Characterisation of an airborne sound source for use in a virtual acoustic prototype

    NASA Astrophysics Data System (ADS)

    Moorhouse, A. T.; Seiffert, G.

    2006-09-01

    An approach is outlined suitable for constructing 'virtual acoustic prototypes' of machines. Here, the machine is 'sub-structured' into: active components (vibro-acoustic sources), and frame (the remaining passive parts of the machine). The approach is validated using the illustrative example of an electric motor installed in a machine frame. The motor is characterised by a line of four monopoles on its axis, the complex source strengths for which are obtained from the measured anechoic sound field around the motor using an inverse method. A singular value decomposition is carried out both to aid the solution and to shed light on the dominant mechanisms. A set of compatible transfer functions of a machine frame is then measured using a reciprocal technique. The sound power of the assembled machine is then predicted using a 'virtual prototype' approach of combining motor and frame data in the computer. Reasonable agreement is obtained with measurements made on a real prototype, although the agreement was limited at least in part by difficulties in repeating the same operating conditions for the motor. A simplified characterisation, using a single monopole, and with improved motor control produced excellent agreement.

  2. An analytic method to determine the effect of source modeling errors on the apparent location and direction of biological sources

    NASA Astrophysics Data System (ADS)

    de Munck, J. C.; van Dijk, B. W.; Spekreijse, H.

    1988-02-01

    Evoked potentials (EPs) and electroencephalograms (EEGs) can be used to determine the location, the direction, and strength of electrical brain activity. For this purpose mathematical models are used which describe regions in the head with different conductivity. In most models, the sources are described by mathematical (current) point dipoles. However, EPs and EEGs are generated with more extensive cortical areas. In this study an analytic method is described to calculate the effect of source extension on the potential distribution measured at the scalp and also on the difference between the location of the extended source and the location of the equivalent point dipole. General formulas are derived which express in spherical harmonics the potential distribution that results from a circularly symmetric extended source. It is shown that for sources that obey specific symmetries the influence of source extension on the potential distribution is a fourth-order effect in the distance between electrode and the origin (the middle point of the head), and a second-order effect in the extension. It is also shown that for such sources the error in localization (i.e., the distance between the position of the equivalent dipole and the center of the extended source) is zero when Geselowitz's method [IEEE Trans. Biomed. Eng. BME-12, 164 (1965)] is used. Because in volume conductor models the relation between source and potential is given by Poisson's equation, it is suggested by the authors that the results of the present study may be extended to applications in other fields of physics as well.

  3. Localization of acoustic emission sources in tensile and ct specimens using a broadband acquisition technique.

    PubMed

    Fleischmann, P; Rouby, D; Malaprade, G; Lanchon, I

    1981-11-01

    The acoustic emission sources in a conventional cylindrical tensile test sample of short transversely-cut carbon manganese steel are localized. There is not always a good correlation between the localization of the first signals and the zone which eventually fractures. During the Lüder's plateau, the ae signals are emitted in the deformation band and, in the hardening range, there is no significant ae in the gauge length of the sample. In ct samples precracked by fatigue, the signals are due to the growth of the plastic zone around the crack tip, and the plastic zone size, measured by source localization, agrees with those provided by models derived from fracture mechanics. PMID:7292774

  4. Descent of tremor source locations before the 2014 phreatic eruption of Ontake volcano, Japan

    NASA Astrophysics Data System (ADS)

    Ogiso, Masashi; Matsubayashi, Hirotoshi; Yamamoto, Tetsuya

    2015-12-01

    On 27 September 2014, Ontake volcano, in central Japan, suddenly erupted without precursory activity. We estimated and tracked the source locations of volcanic tremor associated with the eruption at high temporal resolution, using a method based on the spatial distribution of tremor amplitudes. Although the tremor source locations were not well constrained in depth, their epicenters were well located beneath the erupted crater and the summit. Tremor sources were seen to descend approximately 2 km over a period of several minutes prior to the beginning of the eruption. Detailed analysis of the time series of tremor amplitudes suggests that this descent is a robust feature. Our finding may be an important constraint for modeling the 2014 eruption of Ontake volcano as well as for monitoring activities on this and other volcanoes.

  5. Characterization of Source and Wave Propagation Effects of Volcano-seismic Events and Tremor Using the Amplitude Source Location Method

    NASA Astrophysics Data System (ADS)

    Kumagai, H.; Londono, J. M.; López, C. M.; Ruiz, M. C.; Mothes, P. A.; Maeda, Y.

    2015-12-01

    We propose application of the amplitude source location (ASL) method to characterize source and wave propagation effects of volcano-seismic events and tremor observed at different volcanoes. We used this method to estimate the source location and source amplitude from high-frequency (5-10 Hz) seismic amplitudes under the assumption of isotropic S-wave radiation. We estimated the cumulative source amplitude (Is) as the offset value of the time-integrated envelope of the vertical seismogram corrected for geometrical spreading and medium attenuation in the 5-10 Hz band. We studied these parameters of tremor signals associated with eruptions and explosion events at Tungurahua volcano, Ecuador; long-period (LP) events at Cotopaxi volcano, Ecuador; and LP events at Nevado del Ruiz volcano, Colombia. We identified two types of eruption tremor at Tungurahua; noise-like inharmonic waveforms and harmonic oscillatory signals. We found that Is increased linearly with increasing source amplitude for explosion events and LP events, and that Is increased exponentially with increasing source amplitude for inharmonic eruption tremor signals. The source characteristics of harmonic eruption tremor signals differed from those of inharmonic tremor signals. The Is values we estimated for inharmonic eruption tremor were consistent with previous estimates of volumes of tephra fallout. The linear relationship between the source amplitude and Is for LP events can be explained by the wave propagation effects in the diffusion model for multiple scattering assuming a diffusion coefficient of 105 m2/s and an intrinsic Q factor of around 50. The resultant mean free path is approximately 100 m. Our results suggest that Cotopaxi and Nevado del Ruiz volcanoes have similar highly scattering and attenuating structures. Our approach provides a systematic way to compare the size of volcano-seismic signals observed at different volcanoes. The scaling relations among source parameters that we identified

  6. Quantification of Methane Source Locations and Emissions in AN Urban Setting

    NASA Astrophysics Data System (ADS)

    Crosson, E.; Richardson, S.; Tan, S. M.; Whetstone, J.; Bova, T.; Prasad, K. R.; Davis, K. J.; Phillips, N. G.; Turnbull, J. C.; Shepson, P. B.; Cambaliza, M. L.

    2011-12-01

    The regulation of methane emissions from urban sources such as landfills and waste-water treatment facilities is currently a highly debated topic in the US and in Europe. This interest is fueled, in part, by recent measurements indicating that urban emissions are a significant source of Methane (CH4) and in fact may be substantially higher than current inventory estimates(1). As a result, developing methods for locating and quantifying emissions from urban methane sources is of great interest to industries such as landfill and wastewater treatment facility owners, watchdog groups, and the governmental agencies seeking to evaluate or enforce regulations. In an attempt to identify major methane source locations and emissions in Boston, Indianapolis, and the Bay Area, systematic measurements of CH4 concentrations and meteorology data were made at street level using a vehicle mounted cavity ringdown analyzer. A number of discrete sources were detected at concentration levels in excess of 15 times background levels. Using Gaussian plume models as well as tomographic techniques, methane source locations and emission rates will be presented. In addition, flux chamber measurements of discrete sources such as those found in natural gas leaks will also be presented. (1) Wunch, D., P.O. Wennberg, G.C. Toon, G. Keppel-Aleks, and Y.G. Yavin, Emissions of Greenhouse Gases from a North American Megacity, Geophysical Research Letters, Vol. 36, L15810, doi:10.1029/2009GL)39825, 2009.

  7. Sensor localization using helicopter acoustic and GPS data

    NASA Astrophysics Data System (ADS)

    Damarla, Thyagaraju R.; Mirelli, Vincent

    2004-09-01

    In this paper we present an algorithm to determine the location of an acoustic sensor array using the direction of arrival (DOA) estimates of a moving acoustic source whose ground truth is available. Determination of location and orientation of sensor array based on the statistics of errors in the DOA estimation is a nonlinear regression problem. We formulate and derive the necessary equations to solve this problem in terms of the bearing estimates of the acoustic source and its location. The algorithm is tested against helicopter data from three acoustic sensor arrays distributed over a field.

  8. Accounting for uncertainty in location when detecting point sources using infrared focal plane arrays

    NASA Astrophysics Data System (ADS)

    Nichols, J. M.; Waterman, J. R.

    2016-07-01

    This work derives the modeling and detection theory required to predict the performance of an infrared focal plane array in detecting point source targets. Specifically, we focus on modeling the uncertainty associated with the location of the point source on the array. In the process we derive several new expressions related to pixel-averaged detection performance under a variety of problem assumptions. The resulting predictions are compared to standard approaches where the location is assumed fixed and known. It is further shown how to incorporate these predictions into multi-frame detection strategies.

  9. On optimal retreat distance for the equivalent source method-based nearfield acoustical holography.

    PubMed

    Bai, Mingsian R; Chen, Ching-Cheng; Lin, Jia-Hong

    2011-03-01

    As a basic form of the equivalent source method (ESM) that is used to nearfield acoustical holography (NAH) problems, discrete monopoles are utilized to represent the sound field of interest. When setting up the virtual source distribution, it is vital to maintain a "retreat distance" between the virtual sources and the actual source surface such that reconstruction would not suffer from singularity problems. However, one cannot increase the distance without bound because of the ill-posedness inherent in the reconstruction process with large distance. In prior research, 1-2 times lattice spacing, or the inter-element distance of microphones, is generally recommended as retreat distance in using the ESM-based NAH. While this rule has shown to yield good results in many cases, the optimal choice is a complicated issue that depends on frequency, geometry of the physical source, content of evanescent waves, distribution of sensors and virtual sources, etc. This paper deals about attaining the best compromise between the reconstruction errors induced by the point source singularity; the reconstruction ill-posedness is an interesting problem in its own right. The paper revisits this issue, with the aid of an optimization algorithm based on the golden section search and parabolic interpolation. Numerical simulations were conducted for a baffled planar piston source and a spherically baffled piston source. The results revealed that the retreat distance appropriate for the ESM ranged from 0.4 to 0.5 times the spacing for the planar piston, while from 0.8 to 1.7 times average spacing for the spherical piston. Experiments carried out for a vibrating aluminum plate also revealed that the retreat distance with 0.5 times the spacing yielded better reconstructed velocity than those with 1/20 and 1 times the spacing. PMID:21428505

  10. Automatic estimation of position and orientation of an acoustic source by a microphone array network.

    PubMed

    Nakano, Alberto Yoshihiro; Nakagawa, Seiichi; Yamamoto, Kazumasa

    2009-12-01

    A method which automatically provides the position and orientation of a directional acoustic source in an enclosed environment is proposed. In this method, different combinations of the estimated parameters from the received signals and the microphone positions of each array are used as inputs to the artificial neural network (ANN). The estimated parameters are composed of time delay estimates (TDEs), source position estimates, distance estimates, and energy features. The outputs of the ANN are the source orientation (one out of four possible orientations shifted by 90 degrees and either the best array which is defined as the nearest to the source) or the source position in two dimensional/three dimensional (2D/3D) space. This paper studies the position and orientation estimation performances of the ANN for different input/output combinations (and different numbers of hidden units). The best combination of parameters (TDEs and microphone positions) yields 21.8% reduction in the average position error compared to the following baselines and a correct orientation ratio greater than 99%. Position localization baselines consist of a time delay of arrival based method with an average position error of 34.1 cm and the steered response power with phase transform method with an average position error of 29.8 cm in 3D space. PMID:20000922

  11. East Asia Dust Source Location Using the Naval Research Laboratory's 1-km Dust Enhancement Product

    NASA Astrophysics Data System (ADS)

    Walker, A. L.; Curtis, C. A.; Miller, S. D.; Richardson, K.; Westphal, D. L.

    2011-12-01

    In the effort to predict dust storms and their effects on local, regional and global scales an often cited uncertainty is the precise location of dust sources. Many approaches have been used to identify major dust source regions in East Asia. These approaches include analysis of station data for frequency of dust storms, drifting dust, dusty day, wind speed, and PM10 total suspended particulates. Some approaches emphasize the location of land surface type (Gobi, sandy desert, and loess) and geomorphological setting/features (basins, plateaus, alluvial fans, dry rivers, or oases). Other approaches use remote sensing to locate areas of high dust activity using the Total Ozone Mapping Spectrometer Aerosol Index (TOMS AI) data, to correlate Normalized Difference Vegetation Index (NDVI) vegetation cover with dust storm frequency, or to track dust storm event origination by analyzing Moderate Resolution Imaging Spectroradiometer (MODIS) images. It is also customary for researchers to combine two or more of these approaches to identify dust source regions. In this paper we use a novel approach to locate dust sources in East Asia. Utilizing the Naval Research Laboratory's satellite derived 1-km Dust Enhancement Product (DEP) imagery we can readily distinguish elevated dust over land from other components of the scene and individual dust plumes are readily seen. The high resolution of the DEP allows the many small, eroding point sources (measuring 1-10s km across) that form individual plumes to be located. Five years (2007 - 2011) of East Asia DEP imagery have been analyzed. Dust source frequency plots will be shown highlighting the most active dust source areas in East Asia. Our results show the most active point sources are located along the slopes and around the rim of large basins. Within basins, on plateaus and in valleys point sources are concentrated in smaller depressions relative to the surrounding topography. Point sources are also associated with the action of

  12. Imaging marine geophysical environments with vector acoustics.

    PubMed

    Lindwall, Dennis

    2006-09-01

    Using vector acoustic sensors for marine geoacoustic surveys instead of the usual scalar hydrophones enables one to acquire three-dimensional (3D) survey data with instrumentation and logistics similar to current 2D surveys. Vector acoustic sensors measure the sound wave direction directly without the cumbersome arrays that hydrophones require. This concept was tested by a scaled experiment in an acoustic water tank that had a well-controlled environment with a few targets. Using vector acoustic data from a single line of sources, the three-dimensional tank environment was imaged by directly locating the source and all reflectors. PMID:17004497

  13. Numerical and experimental investigation of noise from small scale axial fans focusing on inflow condition and acoustic source type

    NASA Astrophysics Data System (ADS)

    Shin, Yoon Shik

    The objective of this work was to conduct an experimental and numerical investigation of the noise radiated by a small-scale axial fan from two different points-of-view: the development of an inflow treatment to compensate for unfavorable inflow conditions that result in excessive noise, and a consideration of installation effects for the acoustic source type of small axial fans. The effect of disturbed inflow on axial fans was experimentally investigated by intentionally placing a blockage plate at four different locations upstream of a fan. The blocked inflow made the axial fan perform very poorly; the severely decreased pressure performance introduced an overly strong dependence of flow performance on pressure load condition. An inflow diffuser made from aluminum foam was suggested to improve the aerodynamic and acoustic performance of the axial fan under such unfavorable inflow conditions. The inflow diffuser improved the stability of flow performance and reduced the blade passing tone by a small amount, but the levels of the high frequency harmonics of the blade passing tone were increased. A corresponding numerical model was built to model the flow change due to the inflow foam treatment. The inflow foam diffuser was approximated as a homogeneous porous zone to make the computational cost affordable, and it was shown that the model can predict the foam's influence on the pressure and flow performance of the fan. The aeroacoustic analogy model was applied to the solid surfaces of the fan and its housing to simulate the tonal noise at the blade passing frequency. The validity of the homogeneous foam model in terms of aeroacoustic predictions was also confirmed. As for the second aspect of the axial fan noise source, the dipole-like source behavior of an axial fan at the blade passing frequency was verified by directivity measurements. Thus, dipole modeling of an axial fan was justified. This result is associated with the problem of overestimated fan source

  14. Wave field characterization for non-destructive assessment of elastic properties using laser-acoustic sources in fluids and eye related tissues

    NASA Astrophysics Data System (ADS)

    Windisch, T.; Schubert, F.; Köhler, B.; Spörl, E.

    2010-03-01

    The age-related changes in the visco-elastic properties of the human lens are discussed with respect to presbyopia for a long time. All known measurement techniques are based on extracted lenses or are damaging the tissue. Hence, in vivo studies of lens hardness are not possible at the moment. To close this gap in lens diagnostics this project deals with an approach for a non-contact laser-acoustic characterization technique. Laser-generated wave fronts are reflected by the tissue interfaces and are also affected by the visco-elastic properties of the lens tissue. After propagating through the eye, these waves are recorded as corneal vibrations by laser vibrometry. A systematic analysis of amplitude and phase of these signals and the wave generation process shall give information about the interface locations and the tissues viscoelastic properties. Our recent studies on extracted porcine eyes proved that laser-acoustic sources can be systematically used for non-contacting generation and recording of ultrasound inside the human eye. Furthermore, a specific numerical model provides important contributions to the understanding of the complex wave propagation process. Measurements of the acoustic sources support this approach. Future investigations are scheduled to answer the question, whether this novel technique can be directly used during a laser surgery for monitoring purposes and if a purely diagnostic approach, e.g. by excitation in the aqueous humor, is also possible. In both cases, this technique offers a promising approach for non-contact ultrasound based eye diagnostics.

  15. Estimation of glottal source features from the spectral envelope of the acoustic speech signal

    NASA Astrophysics Data System (ADS)

    Torres, Juan Felix

    Speech communication encompasses diverse types of information, including phonetics, affective state, voice quality, and speaker identity. From a speech production standpoint, the acoustic speech signal can be mainly divided into glottal source and vocal tract components, which play distinct roles in rendering the various types of information it contains. Most deployed speech analysis systems, however, do not explicitly represent these two components as distinct entities, as their joint estimation from the acoustic speech signal becomes an ill-defined blind deconvolution problem. Nevertheless, because of the desire to understand glottal behavior and how it relates to perceived voice quality, there has been continued interest in explicitly estimating the glottal component of the speech signal. To this end, several inverse filtering (IF) algorithms have been proposed, but they are unreliable in practice because of the blind formulation of the separation problem. In an effort to develop a method that can bypass the challenging IF process, this thesis proposes a new glottal source information extraction method that relies on supervised machine learning to transform smoothed spectral representations of speech, which are already used in some of the most widely deployed and successful speech analysis applications, into a set of glottal source features. A transformation method based on Gaussian mixture regression (GMR) is presented and compared to current IF methods in terms of feature similarity, reliability, and speaker discrimination capability on a large speech corpus, and potential representations of the spectral envelope of speech are investigated for their ability represent glottal source variation in a predictable manner. The proposed system was found to produce glottal source features that reasonably matched their IF counterparts in many cases, while being less susceptible to spurious errors. The development of the proposed method entailed a study into the aspects

  16. Identifying pollutant source directions using multiple analysis methods at a rural location in New York

    NASA Astrophysics Data System (ADS)

    Bae, Min-Suk; Schwab, James J.; Chen, Wei-Nai; Lin, Chuan-Yao; Rattigan, Oliver V.; Demerjian, Kenneth L.

    2011-05-01

    We identify the directionality of sources contributing to observed pollutant concentrations at a rural site through the use of the analysis methods of Conditional Probability Function (CPF) and the Source Direction Probability (SDP). Input data consists of hourly averaged PM 2.5 mass, Organic Mass (OM) from Organic Carbon (OC), optical Elemental Carbon (optical EC), SO 2, CO, NOy, O 3 concentrations and metrological data from Pinnacle State Park site in rural New York State for the period of Dec 2004 to Dec 2008. These measured pollutants are coupled with on-site wind data to identify the directionality of the sources; which are then compared to known stationary source locations from the EPA Air Data web site. Although the CPF plot of the O 3 showed no distinct directionality source area, the Pinnacle State Park site was frequently impacted by plumes of relatively high PM 2.5 mass, SO 2, CO, NOy, optical EC and OM concentrations. Further analysis of the enhanced pollution occurrence frequency from the eastern sector revealed two peaks in the time-of-day distribution of elevated CO, NOy, and optical EC, which provides additional information on the sources. This contrasts with the enhanced pollution occurrence frequency from the south for CO, OM, and optical EC, which shows a single morning peak in its time-of-day distribution and indicates a somewhat more distant, but common source for these carbon-containing pollutants. PM 2.5 mass corresponds to the source areas related to emission facilities listed in the EPA Emissions Inventory, which is further confirmed by correlation and analysis of aerosol optical depth (AOD) data from Moderate-resolution Imaging Spectrometer (MODIS) on board Terra and Aqua satellites. We present evidence that most of the high pollution episodes likely arise from emission sources located several hundred kilometers from the site, indicating mid-long range transport of pollutants to this location.

  17. A reliable acoustic path: Physical properties and a source localization method

    NASA Astrophysics Data System (ADS)

    Duan, Rui; Yang, Kun-De; Ma, Yuan-Liang; Lei, Bo

    2012-12-01

    The physical properties of a reliable acoustic path (RAP) are analysed and subsequently a weighted-subspace-fitting matched field (WSF-MF) method for passive localization is presented by exploiting the properties of the RAP environment. The RAP is an important acoustic duct in the deep ocean, which occurs when the receiver is placed near the bottom where the sound velocity exceeds the maximum sound velocity in the vicinity of the surface. It is found that in the RAP environment the transmission loss is rather low and no blind zone of surveillance exists in a medium range. The ray theory is used to explain these phenomena. Furthermore, the analysis of the arrival structures shows that the source localization method based on arrival angle is feasible in this environment. However, the conventional methods suffer from the complicated and inaccurate estimation of the arrival angle. In this paper, a straightforward WSF-MF method is derived to exploit the information about the arrival angles indirectly. The method is to minimize the distance between the signal subspace and the spanned space by the array manifold in a finite range-depth space rather than the arrival-angle space. Simulations are performed to demonstrate the features of the method, and the results are explained by the arrival structures in the RAP environment.

  18. Locating a compact odor source using a four-channel insect electroantennogram sensor.

    PubMed

    Myrick, A J; Baker, T C

    2011-03-01

    Here we demonstrate the feasibility of using an array of live insects to detect concentrated packets of odor and infer the location of an odor source (∼15 m away) using a backward Lagrangian dispersion model based on the Langevin equation. Bayesian inference allows uncertainty to be quantified, which is useful for robotic planning. The electroantennogram (EAG) is the biopotential developed between the tissue at the tip of an insect antenna and its base, which is due to the massed response of the olfactory receptor neurons to an odor stimulus. The EAG signal can carry tens of bits per second of information with a rise time as short as 12 ms (K A Justice 2005 J. Neurophiol. 93 2233-9). Here, instrumentation including a GPS with a digital compass and an ultrasonic 2D anemometer has been integrated with an EAG odor detection scheme, allowing the location of an odor source to be estimated by collecting data at several downwind locations. Bayesian inference in conjunction with a Lagrangian dispersion model, taking into account detection errors, has been implemented resulting in an estimate of the odor source location within 0.2 m of the actual location. PMID:21160116

  19. Source location of the smooth high-frequency radio emissions from Uranus

    SciTech Connect

    Farrell, W.M.; Calvert, W. )

    1989-05-01

    The source location of the smooth high-frequency (SHF) radio emissions from Uranus has been determined using a technique differing from those applied previously. Specifically, by fitting the signal dropouts which occurred as Voyager traversed the hollow center for the emission pattern to a symmetrical cone centered on the source magnetic field direction at the cyclotron frequency, a southern-hemisphere (nightside) source was found at approximately 56{degree} S, 219{degree} W. The half-angle for the hollow portion of the emission pattern was found to be 13{degree}.

  20. Deciphering acoustic emission signals in drought stressed branches: the missing link between source and sensor.

    PubMed

    Vergeynst, Lidewei L; Sause, Markus G R; Hamstad, Marvin A; Steppe, Kathy

    2015-01-01

    When drought occurs in plants, acoustic emission (AE) signals can be detected, but the actual causes of these signals are still unknown. By analyzing the waveforms of the measured signals, it should, however, be possible to trace the characteristics of the AE source and get information about the underlying physiological processes. A problem encountered during this analysis is that the waveform changes significantly from source to sensor and lack of knowledge on wave propagation impedes research progress made in this field. We used finite element modeling and the well-known pencil lead break source to investigate wave propagation in a branch. A cylindrical rod of polyvinyl chloride was first used to identify the theoretical propagation modes. Two wave propagation modes could be distinguished and we used the finite element model to interpret their behavior in terms of source position for both the PVC rod and a wooden rod. Both wave propagation modes were also identified in drying-induced signals from woody branches, and we used the obtained insights to provide recommendations for further AE research in plant science. PMID:26191070

  1. Deciphering acoustic emission signals in drought stressed branches: the missing link between source and sensor

    PubMed Central

    Vergeynst, Lidewei L.; Sause, Markus G. R.; Hamstad, Marvin A.; Steppe, Kathy

    2015-01-01

    When drought occurs in plants, acoustic emission (AE) signals can be detected, but the actual causes of these signals are still unknown. By analyzing the waveforms of the measured signals, it should, however, be possible to trace the characteristics of the AE source and get information about the underlying physiological processes. A problem encountered during this analysis is that the waveform changes significantly from source to sensor and lack of knowledge on wave propagation impedes research progress made in this field. We used finite element modeling and the well-known pencil lead break source to investigate wave propagation in a branch. A cylindrical rod of polyvinyl chloride was first used to identify the theoretical propagation modes. Two wave propagation modes could be distinguished and we used the finite element model to interpret their behavior in terms of source position for both the PVC rod and a wooden rod. Both wave propagation modes were also identified in drying-induced signals from woody branches, and we used the obtained insights to provide recommendations for further AE research in plant science. PMID:26191070

  2. Acoustic holography as a metrological tool for characterizing medical ultrasound sources and fields

    PubMed Central

    Sapozhnikov, Oleg A.; Tsysar, Sergey A.; Khokhlova, Vera A.; Kreider, Wayne

    2015-01-01

    Acoustic holography is a powerful technique for characterizing ultrasound sources and the fields they radiate, with the ability to quantify source vibrations and reduce the number of required measurements. These capabilities are increasingly appealing for meeting measurement standards in medical ultrasound; however, associated uncertainties have not been investigated systematically. Here errors associated with holographic representations of a linear, continuous-wave ultrasound field are studied. To facilitate the analysis, error metrics are defined explicitly, and a detailed description of a holography formulation based on the Rayleigh integral is provided. Errors are evaluated both for simulations of a typical therapeutic ultrasound source and for physical experiments with three different ultrasound sources. Simulated experiments explore sampling errors introduced by the use of a finite number of measurements, geometric uncertainties in the actual positions of acquired measurements, and uncertainties in the properties of the propagation medium. Results demonstrate the theoretical feasibility of keeping errors less than about 1%. Typical errors in physical experiments were somewhat larger, on the order of a few percent; comparison with simulations provides specific guidelines for improving the experimental implementation to reduce these errors. Overall, results suggest that holography can be implemented successfully as a metrological tool with small, quantifiable errors. PMID:26428789

  3. Experimental validation of a method for the prediction of the acoustic field produced by an acoustic source and the reflected field produced by a solid interface

    NASA Astrophysics Data System (ADS)

    Diaz, Sandra; Chopra, Rajiv; Pichardo, Samuel

    2012-11-01

    In this work we present a model to calculate the acoustic pressure generated by the interaction of forward and reflected waves in the vicinity of a solid interface and compare it to experimental data. An experimental setup was designed to measure the forward and the combined forward-reflected acoustic fields produced by a solid interface. A 0.785mm-needle hydrophone was used to characterize the acoustic field produced by a 7.29MHz-ultrasound transducer focused at 6cm. The hydrophone was positioned perpendicularly to the sound propagation direction and moved between the transducer and a 9mm-thick acrylic sample using a robotic arm. Simulations were carried out using a modified Rayleigh-Sommerfeld integral that calculates the particle displacement over a reflecting surface. This particle displacement at the boundary of the interface is then used as an acoustic source to obtain the reflected particle displacement. The complex sum of the forward and reflected fields was compared to the experimental measurements. The measurements showed an interference pattern that increased the pressure amplitude in average 10.4% with peaks of up to 25.8%. The proposed model is able to represent the interference pattern produced by the reflected wave with an average absolute error of 3.4+/-0.54% and a maximal error of 5.6%. The comparison between the experimental measurements and the simulations indicates that the presented model predicts with good accuracy the acoustic field generated by ultrasound transducers facing a solid interface. This model can be used to foresee the outcome of therapeutic applications where the devices are used in proximity to a bone interface.

  4. A Numerical Investigation of Turbine Noise Source Hierarchy and Its Acoustic Transmission Characteristics

    NASA Technical Reports Server (NTRS)

    VanZante, Dale; Envia, Edmane

    2008-01-01

    Understanding the relative importance of the various turbine noise generation mechanisms and the characteristics of the turbine acoustic transmission loss are essential ingredients in developing robust reduced-order models for predicting the turbine noise signature. A computationally based investigation has been undertaken to help guide the development of a turbine noise prediction capability that does not rely on empiricism. The investigation relies on highly detailed numerical simulations of the unsteady flowfield inside a modern high-pressure turbine (HPT). The simulations are developed using TURBO, which is an unsteady Reynolds-averaged Navier-Stokes (URANS) code capable of multi-stage simulations. The purpose of this study is twofold. First, to determine an estimate of the relative importance of the contributions to the coherent part of the acoustic signature of a turbine from the three potential sources of turbine noise generation, namely, blade-row viscous interaction, potential field interaction, and entropic source associated with the interaction of the blade rows with the temperature nonuniformities caused by the incomplete mixing of the hot fluid and the cooling flow. Second, to develop an understanding of the turbine acoustic transmission characteristics and to assess the applicability of existing empirical and analytical transmission loss models to realistic geometries and flow conditions for modern turbine designs. The investigation so far has concentrated on two simulations: (1) a single-stage HPT and (2) a two-stage HPT and the associated inter-turbine duct/strut segment. The simulations are designed to resolve up to the second harmonic of the blade passing frequency tone in accordance with accepted rules for second order solvers like TURBO. The calculations include blade and vane cooling flows and a radial profile of pressure and temperature at the turbine inlet. The calculation can be modified later to include the combustor pattern factor at the

  5. Characteristics of Love and Rayleigh waves in ambient noise: wavetype ratio, source location and seasonal behavior

    NASA Astrophysics Data System (ADS)

    Juretzek, C.; Perleth, M.; Hadziioannou, C.

    2015-12-01

    Ambient seismic noise has become an important source of signal for tomography and monitoring purposes. Better understanding of the noise field characteristics is crucial to further improve noise applications. Our knowledge about the common and different origins of Love and Rayleigh waves in the microseism bands is still limited. This applies in particular to constraints on source locations and source mechanisms of Love waves. Here, 3-component beamforming is used to distinguish between the differently polarized wave types present in the noise field recorded at several arrays across Europe. The focus lies on frequencies around the primary and secondary microseismic bands. We compare characteristics of Love and Rayleigh wave noise, such as source directions and frequency content. Further, Love to Rayleigh wave ratios are measured at each array, and a dependence on direction is observed. We constrain the corresponding source regions of both wave types by backprojection. By using a full year of data in 2013, we are able to track the seasonal changes in our observations of Love-to-Rayleigh ratio and source locations.

  6. Estimation of source apportionment and potential source locations of PM 2.5 at a west coastal IMPROVE site

    NASA Astrophysics Data System (ADS)

    Hwang, InJo; Hopke, Philip K.

    Particle composition data for PM 2.5 samples collected at Kalmiopsis Interagency Monitoring of Protected Visual Environments (IMPROVE) site in southwestern Oregon from March 2000 to May 2004 were analyzed to provide source identification and apportionment. A total of 493 samples were collected and 32 species were analyzed by particle induced X-ray emission, proton elastic scattering analysis, photon-induced X-ray fluorescence, ion chromatography, and thermal optical reflectance methods. Positive matrix factorization (PMF) was used to estimate the source profiles and their mass contributions. The PMF modeling identified nine sources. In the Kalmiopsis site, the average mass was apportioned to wood/field burning (38.4%), secondary sulfate (26.9%), airborne soil including Asian dust (8.6 %), secondary nitrate (7.6%), fresh sea salt (5.8%), OP-rich sulfate (4.9%), aged sea salt (4.5 %), gasoline vehicle (1.9%), and diesel emission (1.4%). The potential source contribution function (PSCF) was then used to help identify likely locations of the regional sources of pollution. The PSCF map for wood/field burning indicates there is a major potential source area in the Siskiyou County and eastern Oregon. The potential source locations for secondary sulfate are found in western Washington, northwestern Oregon, and the near shore Pacific Ocean where there are extensive shipping lanes. It was not possible to extract a profile directly attributable to ship emissions, but indications of their influence are seen in the secondary sulfate and aged sea salt compositions.

  7. Interaction of an acoustical 2D-beam with an elastic cylinder with arbitrary location in a non-viscous fluid.

    PubMed

    Mitri, F G

    2015-09-01

    The classical Resonance Scattering Theory (RST) for plane waves in acoustics is generalized for the case of a 2D arbitrarily-shaped beam incident upon an elastic cylinder with arbitrary location that is immersed in a nonviscous fluid. The formulation is valid for an elastic (or viscoelastic) cylinder (or a cylindrical shell, a layered cylinder/shell, or a multilayered cylindrical shell, etc.) of any size and material. Partial-wave series expansions (PWSEs) for the incident, internal and scattered fields are derived, and numerical examples illustrate the theory. The wave-fields are expressed using a generalized PWSE involving the beam-shape coefficients (BSCs) and the scattering coefficients of the cylinder. When the beam is shifted off the center of the cylinder, the off-axial BSCs are evaluated by performing standard numerical integration. Acoustic resonance scattering directivity diagrams are calculated by subtracting an appropriate background from the expression of the scattered pressure field. The properties related to the arbitrary scattering of a zeroth-order quasi-Gaussian cylindrical beam (chosen as an example) by an elastic brass cylinder centered on the axis of wave propagation of the beam, and shifted off-axially are analyzed and discussed. Moreover, the total and resonance backscattering form function moduli are numerically computed, and the results discussed with emphasis on the contribution of the surface waves circumnavigating the cylinder circular surface to the resonance backscattering. Furthermore, the analysis is extended to derive general expressions for the axial and transverse acoustic radiation force functions for the cylinder in any 2D beam of arbitrary shape. Examples are provided for a zeroth-order quasi Gaussian cylindrical beam with different waist. Potential applications are in underwater and physical acoustics, however, ongoing research in biomedical ultrasound, non-destructive evaluation, imaging, manufacturing, instrumentation, and

  8. Lithosphere-Atmosphere coupling: Spectral element modeling of the evolution of acoustic waves in the atmosphere from an underground source.

    NASA Astrophysics Data System (ADS)

    Averbuch, Gil; Price, Colin

    2015-04-01

    Lithosphere-Atmosphere coupling: Spectral element modeling of the evolution of acoustic waves in the atmosphere from an underground source. G. Averbuch, C. Price Department of Geosciences, Tel Aviv University, Israel Infrasound is one of the four Comprehensive Nuclear-Test Ban Treaty technologies for monitoring nuclear explosions. This technology measures the acoustic waves generated by the explosions followed by their propagation through the atmosphere. There are also natural phenomena that can act as an infrasound sources like sprites, volcanic eruptions and earthquakes. The infrasound waves generated from theses phenomena can also be detected by the infrasound arrays. In order to study the behavior of these waves, i.e. the physics of wave propagation in the atmosphere, their evolution and their trajectories, numerical methods are required. This presentation will deal with the evolution of acoustic waves generated by underground sources (earthquakes and underground explosions). A 2D Spectral elements formulation for lithosphere-atmosphere coupling will be presented. The formulation includes the elastic wave equation for the seismic waves and the momentum, mass and state equations for the acoustic waves in a moving stratified atmosphere. The coupling of the two media is made by boundary conditions that ensures the continuity of traction and velocity (displacement) in the normal component to the interface. This work has several objectives. The first is to study the evolution of acoustic waves in the atmosphere from an underground source. The second is to derive transmission coefficients for the energy flux with respect to the seismic magnitude and earth density. The third will be the generation of seismic waves from acoustic waves in the atmosphere. Is it possible?

  9. Source location impact on relative tsunami strength along the U.S. West Coast

    NASA Astrophysics Data System (ADS)

    Rasmussen, L.; Bromirski, P. D.; Miller, A. J.; Arcas, D.; Flick, R. E.; Hendershott, M. C.

    2015-07-01

    Tsunami propagation simulations are used to identify which tsunami source locations would produce the highest amplitude waves on approach to key population centers along the U.S. West Coast. The reasons for preferential influence of certain remote excitation sites are explored by examining model time sequences of tsunami wave patterns emanating from the source. Distant bathymetric features in the West and Central Pacific can redirect tsunami energy into narrow paths with anomalously large wave height that have disproportionate impact on small areas of coastline. The source region generating the waves can be as little as 100 km along a subduction zone, resulting in distinct source-target pairs with sharply amplified wave energy at the target. Tsunami spectral ratios examined for transects near the source, after crossing the West Pacific, and on approach to the coast illustrate how prominent bathymetric features alter wave spectral distributions, and relate to both the timing and magnitude of waves approaching shore. To contextualize the potential impact of tsunamis from high-amplitude source-target pairs, the source characteristics of major historical earthquakes and tsunamis in 1960, 1964, and 2011 are used to generate comparable events originating at the highest-amplitude source locations for each coastal target. This creates a type of "worst-case scenario," a replicate of each region's historically largest earthquake positioned at the fault segment that would produce the most incoming tsunami energy at each target port. An amplification factor provides a measure of how the incoming wave height from the worst-case source compares to the historical event.

  10. Multiband array detection and location of seismic sources recorded by dense seismic networks

    NASA Astrophysics Data System (ADS)

    Poiata, Natalia; Satriano, Claudio; Vilotte, Jean-Pierre; Bernard, Pascal; Obara, Kazushige

    2016-06-01

    We present a new methodology for detection and space-time location of seismic sources based on multiscale, frequency-selective coherence of the wave field recorded by dense large-scale seismic networks and local antennas. The method is designed to enhance coherence of the signal statistical features across the array of sensors and consists of three steps: signal processing, space-time imaging, and detection and location. The first step provides, for each station, a simplified representation of seismic signal by extracting multiscale non-stationary statistical characteristics, through multiband higher-order statistics or envelopes. This signal processing scheme is designed to account for a priori unknown transients, potentially associated with a variety of sources (e.g. earthquakes, tremors), and to prepare data for a better performance in posterior steps. Following space-time imaging is carried through 3-D spatial mapping and summation of station-pair time-delay estimate functions. This step produces time-series of 3-D spatial images representing the likelihood that each pixel makes part of a source. Detection and location is performed in the final step by extracting the local maxima from the 3-D spatial images. We demonstrate the efficiency of the method in detecting and locating seismic sources associated with low signal-to-noise ratio on an example of the aftershock earthquake records from local stations of International Maule Aftershock Deployment in Central Chile. The performance and potential of the method to detect, locate and characterize the energy release associated with possibly mixed seismic radiation from earthquakes and low-frequency tectonic tremors is further tested on continuous data from southwestern Japan.

  11. Multi-band array detection and location of seismic sources recorded by dense seismic networks

    NASA Astrophysics Data System (ADS)

    Poiata, Natalia; Satriano, Claudio; Vilotte, Jean-Pierre; Bernard, Pascal; Obara, Kazushige

    2016-02-01

    We present a new methodology for detection and space-time location of seismic sources based on multi-scale, frequency-selective coherence of the wave field recorded by dense large-scale seismic networks and local antennas. The method is designed to enhance coherence of the signal statistical features across the array of sensors and consists of three steps: signal processing, space-time imaging, and detection and location. The first step provides, for each station, a simplified representation of seismic signal by extracting multi-scale non-stationary statistical characteristics, through multi-band higher-order statistics or envelopes. This signal processing scheme is designed to account for a priori unknown transients, potentially associated with a variety of sources (e.g., earthquakes, tremors), and to prepare data for a better performance in posterior steps. Following space-time imaging is carried through 3D spatial mapping and summation of station-pair time-delay estimate functions. This step produces time series of 3D spatial images representing the likelihood that each pixel makes part of a source. Detection and location is performed in the final step by extracting the local maxima from the 3D spatial images. We demonstrate the efficiency of the method in detecting and locating seismic sources associated with low signal-to-noise ratio on an example of the aftershock earthquake records from local stations of International Maule Aftershock Deployment in Central Chile. The performance and potential of the method to detect, locate and characterize the energy release associated with possibly mixed seismic radiation from earthquakes and low-frequency tectonic tremors is further tested on continuous data from southwestern Japan.

  12. Quantifying uncertainties in location and source mechanism for Long-Period events at Mt Etna, Italy.

    NASA Astrophysics Data System (ADS)

    Cauchie, Léna; Saccorotti, Gilberto; Bean, Christopher

    2014-05-01

    The manifestation of Long-Period events is documented at many volcanoes worldwide. However the mechanism at their origin is still object of discussion. Models proposed so far involve (i) the resonance of fluid-filled cracks or conduits that are triggered by fluid instabilities or the brittle failure of high viscous magmas and (ii) the slow-rupture earthquakes in the shallow portion of volcanic edifices. Since LP activity usually precedes and accompanies volcanic eruption, the understanding of these sources is important in terms of hazard assessment and eruption early warning. The work is thus primarily aimed at the assessment of the uncertainties in the determination of LP source properties as a consequence of poor knowledge of the velocity structure and location errors. We used data from temporary networks deployed on Mt Etna in 2005. During August, 2005, about 13000 LP events were detected through a STA/LTA approach, and were classified into two families on the basis of waveform similarity. For each family of events, we located the source using three different approaches: (1) a single-station-location method based on the back-propagation of the polarization vector estimated from covariance analysis of three-component signals; (2) multi-channel analysis of data recorded by two seismic arrays; (3) relative locations based on inversion of differential times obtained through cross-correlation of similar waveforms. For all these three different methods, the solutions are very sensitive to the chosen velocity model. We thus iterated the location procedure for different medium properties; the preferred velocity is that for which the results obtained with the three different methods are consistent each other. For each family, we then defined a volume of possible source location and performed a full-waveform, moment tensor (MT) inversion for the entire catalog of events. In this manner, we obtained a MT solution for each grid node of the investigated volume. The MT

  13. Integration of Acoustical Information in the Perception of Impacted Sound Sources: The Role of Information Accuracy and Exploitability

    ERIC Educational Resources Information Center

    Giordano, Bruno L.; Rocchesso, Davide; McAdams, Stephen

    2010-01-01

    Sound sources are perceived by integrating information from multiple acoustical features. The factors influencing the integration of information are largely unknown. We measured how the perceptual weighting of different features varies with the accuracy of information and with a listener's ability to exploit it. Participants judged the hardness of…

  14. Acoustic Scattering by Three-Dimensional Stators and Rotors Using the SOURCE3D Code. Volume 2; Scattering Plots

    NASA Technical Reports Server (NTRS)

    Meyer, Harold D.

    1999-01-01

    This second volume of Acoustic Scattering by Three-Dimensional Stators and Rotors Using the SOURCE3D Code provides the scattering plots referenced by Volume 1. There are 648 plots. Half are for the 8750 rpm "high speed" operating condition and the other half are for the 7031 rpm "mid speed" operating condition.

  15. Gravitational wave hotspots: Ranking potential locations of single-source gravitational wave emission

    SciTech Connect

    Simon, Joseph; Polin, Abigail; Lommen, Andrea; Christy, B; Stappers, Ben; Finn, Lee Samuel; Jenet, F. A.

    2014-03-20

    The steadily improving sensitivity of pulsar timing arrays (PTAs) suggests that gravitational waves (GWs) from supermassive black hole binary (SMBHB) systems in the nearby universe will be detectable sometime during the next decade. Currently, PTAs assume an equal probability of detection from every sky position, but as evidence grows for a non-isotropic distribution of sources, is there a most likely sky position for a detectable single source of GWs? In this paper, a collection of Galactic catalogs is used to calculate various metrics related to the detectability of a single GW source resolvable above a GW background, assuming that every galaxy has the same probability of containing an SMBHB. Our analyses of these data reveal small probabilities that one of these sources is currently in the PTA band, but as sensitivity is improved regions of consistent probability density are found in predictable locations, specifically around local galaxy clusters.

  16. Location of the effective diffusing-photon source in a strongly scattering medium.

    PubMed

    Kostko, A F; Pavlov, V A

    1997-10-20

    When a narrow laser beam illuminates a strongly scattering medium, the effective pointlike source of diffusing photons appears inside the medium. By the method worked out, which is based on measurements of the diffusive intensity of light emerging from a turbid spherical sample, the depth of this source site (the penetration depth) is determined relatively to the sample diameter, which is known accurately. By using this method of locating the effective source, we have discovered that its position inside the medium is unexpectedly deep. We obtained the penetration depth D(0) = 4.6 l* +/- 0.7 l* instead of one transport mean free path, where l* is the value of D(0) in the standard diffusion theory. Information about this source dipping is useful in diffusing-photon correlation spectroscopy because of its influence on the geometric factor calculated from the diffusion equation. PMID:18264271

  17. Acoustic Source Characteristics, Across-Formant Integration, and Speech Intelligibility Under Competitive Conditions

    PubMed Central

    2015-01-01

    An important aspect of speech perception is the ability to group or select formants using cues in the acoustic source characteristics—for example, fundamental frequency (F0) differences between formants promote their segregation. This study explored the role of more radical differences in source characteristics. Three-formant (F1+F2+F3) synthetic speech analogues were derived from natural sentences. In Experiment 1, F1+F3 were generated by passing a harmonic glottal source (F0 = 140 Hz) through second-order resonators (H1+H3); in Experiment 2, F1+F3 were tonal (sine-wave) analogues (T1+T3). F2 could take either form (H2 or T2). In some conditions, the target formants were presented alone, either monaurally or dichotically (left ear = F1+F3; right ear = F2). In others, they were accompanied by a competitor for F2 (F1+F2C+F3; F2), which listeners must reject to optimize recognition. Competitors (H2C or T2C) were created using the time-reversed frequency and amplitude contours of F2. Dichotic presentation of F2 and F2C ensured that the impact of the competitor arose primarily through informational masking. In the absence of F2C, the effect of a source mismatch between F1+F3 and F2 was relatively modest. When F2C was present, intelligibility was lowest when F2 was tonal and F2C was harmonic, irrespective of which type matched F1+F3. This finding suggests that source type and context, rather than similarity, govern the phonetic contribution of a formant. It is proposed that wideband harmonic analogues are more effective informational maskers than narrowband tonal analogues, and so become dominant in across-frequency integration of phonetic information when placed in competition. PMID:25751040

  18. Acoustic source characteristics, across-formant integration, and speech intelligibility under competitive conditions.

    PubMed

    Roberts, Brian; Summers, Robert J; Bailey, Peter J

    2015-06-01

    An important aspect of speech perception is the ability to group or select formants using cues in the acoustic source characteristics--for example, fundamental frequency (F0) differences between formants promote their segregation. This study explored the role of more radical differences in source characteristics. Three-formant (F1+F2+F3) synthetic speech analogues were derived from natural sentences. In Experiment 1, F1+F3 were generated by passing a harmonic glottal source (F0 = 140 Hz) through second-order resonators (H1+H3); in Experiment 2, F1+F3 were tonal (sine-wave) analogues (T1+T3). F2 could take either form (H2 or T2). In some conditions, the target formants were presented alone, either monaurally or dichotically (left ear = F1+F3; right ear = F2). In others, they were accompanied by a competitor for F2 (F1+F2C+F3; F2), which listeners must reject to optimize recognition. Competitors (H2C or T2C) were created using the time-reversed frequency and amplitude contours of F2. Dichotic presentation of F2 and F2C ensured that the impact of the competitor arose primarily through informational masking. In the absence of F2C, the effect of a source mismatch between F1+F3 and F2 was relatively modest. When F2C was present, intelligibility was lowest when F2 was tonal and F2C was harmonic, irrespective of which type matched F1+F3. This finding suggests that source type and context, rather than similarity, govern the phonetic contribution of a formant. It is proposed that wideband harmonic analogues are more effective informational maskers than narrowband tonal analogues, and so become dominant in across-frequency integration of phonetic information when placed in competition. PMID:25751040

  19. Sources and characteristics of acoustic emissions from mechanically stressed geologic granular media — A review

    NASA Astrophysics Data System (ADS)

    Michlmayr, Gernot; Cohen, Denis; Or, Dani

    2012-05-01

    The formation of cracks and emergence of shearing planes and other modes of rapid macroscopic failure in geologic granular media involve numerous grain scale mechanical interactions often generating high frequency (kHz) elastic waves, referred to as acoustic emissions (AE). These acoustic signals have been used primarily for monitoring and characterizing fatigue and progressive failure in engineered systems, with only a few applications concerning geologic granular media reported in the literature. Similar to the monitoring of seismic events preceding an earthquake, AE may offer a means for non-invasive, in-situ, assessment of mechanical precursors associated with imminent landslides or other types of rapid mass movements (debris flows, rock falls, snow avalanches, glacier stick-slip events). Despite diverse applications and potential usefulness, a systematic description of the AE method and its relevance to mechanical processes in Earth sciences is lacking. This review is aimed at providing a sound foundation for linking observed AE with various micro-mechanical failure events in geologic granular materials, not only for monitoring of triggering events preceding mass mobilization, but also as a non-invasive tool in its own right for probing the rich spectrum of mechanical processes at scales ranging from a single grain to a hillslope. We review first studies reporting use of AE for monitoring of failure in various geologic materials, and describe AE generating source mechanisms in mechanically stressed geologic media (e.g., frictional sliding, micro-crackling, particle collisions, rupture of water bridges, etc.) including AE statistical features, such as frequency content and occurrence probabilities. We summarize available AE sensors and measurement principles. The high sampling rates of advanced AE systems enable detection of numerous discrete failure events within a volume and thus provide access to statistical descriptions of progressive collapse of systems

  20. Ultra-directional source of longitudinal acoustic waves based on a two-dimensional solid/solid phononic crystal

    SciTech Connect

    Morvan, B.; Tinel, A.; Sainidou, R.; Rembert, P.; Vasseur, J. O.; Hladky-Hennion, A.-C.; Swinteck, N.; Deymier, P. A.

    2014-12-07

    Phononic crystals (PC) can be used to control the dispersion properties of acoustic waves, which are essential to direct their propagation. We use a PC-based two-dimensional solid/solid composite to demonstrate experimentally and theoretically the spatial filtering of a monochromatic non-directional wave source and its emission in a surrounding water medium as an ultra-directional beam with narrow angular distribution. The phenomenon relies on square-shaped equifrequency contours (EFC) enabling self-collimation of acoustic waves within the phononic crystal. Additionally, the angular width of collimated beams is controlled via the EFC size-shrinking when increasing frequency.

  1. Travel-time source-specific station correction improves location accuracy

    NASA Astrophysics Data System (ADS)

    Giuntini, Alessandra; Materni, Valerio; Chiappini, Stefano; Carluccio, Roberto; Console, Rodolfo; Chiappini, Massimo

    2013-04-01

    Accurate earthquake locations are crucial for investigating seismogenic processes, as well as for applications like verifying compliance to the Comprehensive Test Ban Treaty (CTBT). Earthquake location accuracy is related to the degree of knowledge about the 3-D structure of seismic wave velocity in the Earth. It is well known that modeling errors of calculated travel times may have the effect of shifting the computed epicenters far from the real locations by a distance even larger than the size of the statistical error ellipses, regardless of the accuracy in picking seismic phase arrivals. The consequences of large mislocations of seismic events in the context of the CTBT verification is particularly critical in order to trigger a possible On Site Inspection (OSI). In fact, the Treaty establishes that an OSI area cannot be larger than 1000 km2, and its larger linear dimension cannot be larger than 50 km. Moreover, depth accuracy is crucial for the application of the depth event screening criterion. In the present study, we develop a method of source-specific travel times corrections based on a set of well located events recorded by dense national seismic networks in seismically active regions. The applications concern seismic sequences recorded in Japan, Iran and Italy. We show that mislocations of the order of 10-20 km affecting the epicenters, as well as larger mislocations in hypocentral depths, calculated from a global seismic network and using the standard IASPEI91 travel times can be effectively removed by applying source-specific station corrections.

  2. Sharks need the lateral line to locate odor sources: rheotaxis and eddy chemotaxis.

    PubMed

    Gardiner, Jayne M; Atema, Jelle

    2007-06-01

    Odor plumes are complex, dynamic, three-dimensional structures used by many animals to locate food, mates, home sites, etc. Yet odor itself has no directional properties. Animals use a variety of different senses to obtain directional information. Since most odor plumes are composed of dispersing odor patches and dissipating vorticity eddies, aquatic animals may localize odor sources by simultaneous analysis of chemical and hydrodynamic dispersal fields, a process referred to as eddy chemotaxis. This study examines the contributions of olfaction, mechanoreception and vision to odor source localization in a shark, the smooth dogfish Mustelus canis. Two parallel, turbulent plumes were created in an 8 m flume: squid rinse odor and seawater control. Minimally turbulent ;oozing' sources of odor and seawater control were physically separated from sources of major turbulence by placing a brick downstream from each oozing source, creating two turbulent wakes, one or the other flavored with food odor. This created four separate targets for the sharks to locate. Animals were tested under two light conditions (fluorescent and infrared) and in two sensory conditions (lateral line intact and lateral line lesioned by streptomycin). Intact animals demonstrated a preference for the odor plume over the seawater plume and for the source of odor/turbulence (the brick on the odor side) over the source of the odor alone (the odor-oozing nozzle). Plume and target preference and search time were not significantly affected by light condition. In the light, lesioning the lateral line increased search time but did not affect success rate or plume preference. However, lesioned animals no longer discriminated between sources of turbulent and oozing odor. In the dark, search time of lesioned animals further increased, and the few animals that located any of the targets did not discriminate between odor and seawater plumes, let alone targets. These results demonstrate for the first time that

  3. Flow noise source-resonator coupling

    SciTech Connect

    Pollack, M.L.

    1997-11-01

    This paper investigates the coupling mechanism between flow noise sources and acoustic resonators. Analytical solutions are developed for the classical cases of monopole and dipole types of flow noise sources. The effectiveness of the coupling between the acoustic resonator and the noise source is shown to be dependent on the type of noise source as well as its location on the acoustic pressure mode shape. For a monopole source, the maximum coupling occurs when the noise source is most intense near an acoustic pressure antinode (i.e., location of maximum acoustic pressure). A numerical study with the impedance method demonstrates this effect. A dipole source couples most effectively when located near an acoustic pressure node.

  4. Acoustic emission from single point machining: Source mechanisms and signal changes with tool wear

    SciTech Connect

    Heiple, C.R.; Carpenter, S.H.; Armentrout, D.L.; McManigle, A.P.

    1994-05-01

    Acoustic emission (AE) was monitored during single point, continuous machining of 4340 steel and Ti-6Al-4V as a function of heat treatment. Heat treatments that increase the strength of 4340 steel substantially increase the amount of AE produced during deformation, while heat treatments that increase the strength of Ti-6Al-4V dramatically decrease the amount of AE produced during deformation. There was little change in root-mean-square (rms) AE level during machining for either alloy as a function of prior heat treatment, demonstrating that chip deformation is not a major source of AE in single point machining. Additional data from a variety of materials suggest that sliding friction between the nose and/or flank of the tool and the newly machined surface is the primary source of AE. Changes in AE signal characteristics with tool wear were also monitored during single point machining. No signal characteristic changed in the same way with tool wear for all materials tested. A single change in a particular AE signal characteristic with tool wear valid for all materials probably does not exist. Nevertheless, changes in various signal characteristics with wear for a given material may be sufficient to be used to monitor tool wear.

  5. High-precision source location of the 1978 November 19 gamma-ray burst

    NASA Technical Reports Server (NTRS)

    Cline, T. L.; Desai, U. D.; Teegarden, B. J.; Pizzichini, G.; Evans, W. D.; Klebesadel, R. W.; Laros, J. G.; Barat, C.; Hurley, K.; Niel, M.

    1981-01-01

    The celestial source location of the November 19, 1978, intense gamma ray burst has been determined from data obtained with the interplanetary gamma-ray sensor network by means of long-baseline wave front timing instruments. Each of the instruments was designed for studying events with observable spectra of approximately greater than 100 keV, and each provides accurate event profile timing in the several millisecond range. The data analysis includes the following: the triangulated region is centered at (gamma, delta) 1950 = (1h16m32s, -28 deg 53 arcmin), at -84 deg galactic latitude, where the star density is very low and the obscuration negligible. The gamma-ray burst source region, consistent with that of a highly polarized radio source described by Hjellming and Ewald (1981), may assist in the source modeling and may facilitate the understanding of the source process. A marginally identifiable X-ray source was also found by an Einstein Observatory investigation. It is concluded that the burst contains redshifted positron annihilation and nuclear first-excited iron lines, which is consistent with a neutron star origin.

  6. Statistical study of coronal mass ejection source locations: Understanding CMEs viewed in coronagraphs

    NASA Astrophysics Data System (ADS)

    Wang, Yuming; Chen, Caixia; Gui, Bin; Shen, Chenglong; Ye, Pinzhong; Wang, S.

    2011-04-01

    How to properly understand coronal mass ejections (CMEs) viewed in white light coronagraphs is crucial to many relative researches in solar and space physics. The issue is now particularly addressed in this paper through studying the source locations of all the 1078 Large Angle and Spectrometric Coronagraph (LASCO) CMEs listed in Coordinated Data Analysis Workshop (CDAW) CME catalog during 1997-1998 and their correlation with CMEs' apparent parameters. By manually checking LASCO and Extreme Ultraviolet Imaging Telescope (EIT) movies of these CMEs, we find that, except 231 CMEs whose source locations cannot be identified due to poor data, there are 288 CMEs with location identified on the frontside solar disk, 234 CMEs appearing above solar limb, and 325 CMEs without evident eruptive signatures in the field of view of EIT. On the basis of the statistical results of CMEs' source locations, there are four physical issues: (1) the missing rate of CMEs by SOHO LASCO and EIT, (2) the mass of CMEs, (3) the causes of halo CMEs, and (4) the deflections of CMEs in the corona, are exhaustively analyzed. It is found that (1) about 32% frontside CMEs cannot be recognized by SOHO, (2) the brightness of a CME at any heliocentric distance is roughly positively correlated with its speed, and the CME mass derived from the brightness is probably overestimated, (3) both projection effect and violent eruption are the major causes of halo CMEs, and especially for limb halo CMEs the latter is the primary one, and (4) most CMEs deflected toward equator near the solar minimum; these deflections can be classified into three types: the asymmetrical expansion, the nonradial ejection, and the deflected propagation.

  7. An Improved Source-Scanning Algorithm for Locating Earthquake Clusters or Aftershock Sequences

    NASA Astrophysics Data System (ADS)

    Liao, Y.; Kao, H.; Hsu, S.

    2010-12-01

    The Source-scanning Algorithm (SSA) was originally introduced in 2004 to locate non-volcanic tremors. Its application was later expanded to the identification of earthquake rupture planes and the near-real-time detection and monitoring of landslides and mud/debris flows. In this study, we further improve SSA for the purpose of locating earthquake clusters or aftershock sequences when only a limited number of waveform observations are available. The main improvements include the application of a ground motion analyzer to separate P and S waves, the automatic determination of resolution based on the grid size and time step of the scanning process, and a modified brightness function to utilize constraints from multiple phases. Specifically, the improved SSA (named as ISSA) addresses two major issues related to locating earthquake clusters/aftershocks. The first one is the massive amount of both time and labour to locate a large number of seismic events manually. And the second one is to efficiently and correctly identify the same phase across the entire recording array when multiple events occur closely in time and space. To test the robustness of ISSA, we generate synthetic waveforms consisting of 3 separated events such that individual P and S phases arrive at different stations in different order, thus making correct phase picking nearly impossible. Using these very complicated waveforms as the input, the ISSA scans all model space for possible combination of time and location for the existence of seismic sources. The scanning results successfully associate various phases from each event at all stations, and correctly recover the input. To further demonstrate the advantage of ISSA, we apply it to the waveform data collected by a temporary OBS array for the aftershock sequence of an offshore earthquake southwest of Taiwan. The overall signal-to-noise ratio is inadequate for locating small events; and the precise arrival times of P and S phases are difficult to

  8. Acoustic concentration of particles in fluid flow

    DOEpatents

    Ward, Michael D.; Kaduchak, Gregory

    2010-11-23

    An apparatus for acoustic concentration of particles in a fluid flow includes a substantially acoustically transparent membrane and a vibration generator that define a fluid flow path therebetween. The fluid flow path is in fluid communication with a fluid source and a fluid outlet and the vibration generator is disposed adjacent the fluid flow path and is capable of producing an acoustic field in the fluid flow path. The acoustic field produces at least one pressure minima in the fluid flow path at a predetermined location within the fluid flow path and forces predetermined particles in the fluid flow path to the at least one pressure minima.

  9. Evolutions of friction properties and acoustic emission source parameters associated with large sliding

    NASA Astrophysics Data System (ADS)

    Yabe, Y.; Tsuda, H.; Iida, T.

    2015-12-01

    It was demonstrated by Yabe (2002) that friction properties and AE (acoustic emission) activities evolve with accumulation of sliding. However, large sliding distances of ~65 mm in his experiments were achieved by recurring ~10 mm sliding on the same fault. The evolution of friction coefficient was discontinuous, when rock samples were reset. Further, normal stress was not kept constant. To overcome these problems and to reexamine the evolutions of friction properties and AE activities with continuous large sliding under a constant normal stress, we developed a rotary shear apparatus. The evolutions of friction and AE up to ~80 mm sliding under a normal stress of 5 MPa were investigated. Rate dependence of friction was the velocity strengthening (a-b>0 in rate and state friction law) at the beginning. The value of a-b gradually decreased with sliding to negative (velocity weakening). Then, it took a constant negative value, when the sliding reached a critical distance. The m-value of Ishimoto-Iida's relation of AE activity increased with sliding at the beginning and converged to a constant value at the critical sliding distance. The m-value showed a negative rate dependence at the beginning, but became neutral after sliding of the critical distance. The sliding distances required to converge the a-b value, the m-value and the rate dependence of the m-value are almost identical to one another. These results are the same as those by Yabe (2002), suggesting the intermission of sliding little affected the evolutions. We, then, examined evolutions of AE source parameters such as source radii and stress drops. The average source radius was constant over the whole sliding distance, while the average stress drop decreased at the beginning of sliding, and converged to a constant value. The sliding distance required to the conversion was the same as that for the above mentioned evolutions of friction property or AE activity.

  10. Characterization of underwater acoustic sources recorded in reverberant environments with application to SCUBA signatures

    NASA Astrophysics Data System (ADS)

    Gemba, Kay Leonard

    The ability to accurately characterize an underwater sound source is an important prerequisite for many applications including detection, classification, monitoring and mitigation. Unfortunately, anechoic underwater recording environments, required to make ideal recordings, are generally not available. Current methods adjust source recordings with spatially averaged estimates of reverberant levels. However, adjustments can introduce significant errors due to a high degree of energy variability in reverberant enclosures and solutions are inherently limited to incoherent approximations. This dissertation introduces an approach towards a practical, improved procedure to obtain an anechoic estimate of an unknown source recorded in a reverberant environment. Corresponding research is presented in three self-contained chapters. An anechoic estimate of the source is obtained by equalizing the recording with the inverse of the channel's impulse response (IR). The IR is deconvolved using a broadband logarithmic excitation signal. The length of the IR is estimated using methods borrowed from room acoustics and inversion of non-minimum phase IR is accomplished in the least-squares sense. The proposed procedure is validated by several experiments conducted in a reverberant pool environment. Results indicate that the energy of control sources can be recovered coherently and incoherently with root-mean-square error (RMSE) of ˜ -70 dB (10 - 70 kHz band). The proposed method is subsequently applied to four recorded SCUBA configurations. Results indicate that reverberation added as much as 6.8 dB of energy. Mean unadjusted sound pressure levels (0.3 - 80 kHz band) were 130 +/- 5.9 dB re muPa at 1 m. While the dereverberation method is applied here to SCUBA signals, it is generally applicable to other sources if the impulse response of the recording channel can be obtained separately. This dissertation also presents an approach to separate all coloration from the deconvolved IR

  11. Visualizing underwater acoustic matched-field processing

    NASA Astrophysics Data System (ADS)

    Rosenblum, Lawrence; Kamgar-Parsi, Behzad; Karahalios, Margarida; Heitmeyer, Richard

    1991-06-01

    Matched-field processing is a new technique for processing ocean acoustic data measured by an array of hydrophones. It produces estimates of the location of sources of acoustic energy. This method differs from source localization techniques in other disciplines in that it uses the complex underwater acoustic environment to improve the accuracy of the source localization. An unexplored problem in matched-field processing has been to separate multiple sources within a matched-field ambiguity function. Underwater acoustic processing is one of many disciplines where a synthesis of computer graphics and image processing is producing new insight. The benefits of different volume visualization algorithms for matched-field display are discussed. The authors show how this led to a template matching scheme for identifying a source within the matched-field ambiguity function that can help move toward an automated source localization process.

  12. Transport of perfluoroalkyl substances (PFAS) from an arctic glacier to downstream locations: implications for sources.

    PubMed

    Kwok, Karen Y; Yamazaki, Eriko; Yamashita, Nobuyoshi; Taniyasu, Sachi; Murphy, Margaret B; Horii, Yuichi; Petrick, Gert; Kallerborn, Roland; Kannan, Kurunthachalam; Murano, Kentaro; Lam, Paul K S

    2013-03-01

    Perfluoroalkyl substances (PFAS) have been globally detected in various environmental matrices, yet their fate and transport to the Arctic is still unclear, especially for the European Arctic. In this study, concentrations of 17 PFAS were quantified in two ice cores (n=26), surface snow (n=9) and surface water samples (n=14) collected along a spatial gradient in Svalbard, Norway. Concentrations of selected ions (Na(+), SO4(2-), etc.) were also determined for tracing the origins and sources of PFAS. Perfluorobutanoate (PFBA), perfluorooctanoate (PFOA) and perfluorononanoate (PFNA) were the dominant compounds found in ice core samples. Taking PFOA, PFNA and perfluorooctane-sulfonate (PFOS) as examples, higher concentrations were detected in the middle layers of the ice cores representing the period of 1997-2000. Lower concentrations of C8-C12 perfluorocarboxylates (PFCAs) were detected in comparison with concentrations measured previously in an ice core from the Canadian Arctic, indicating that contamination levels in the European Arctic are lower. Average PFAS concentrations were found to be lower in surface snow and melted glacier water samples, while increased concentrations were observed in river water downstream near the coastal area. Perfluorohexanesulfonate (PFHxS) was detected in the downstream locations, but not in the glacier, suggesting existence of local sources of this compound. Long-range atmospheric transport of PFAS was the major deposition pathway for the glaciers, while local sources (e.g., skiing activities) were identified in the downstream locations. PMID:23376515

  13. A Method for Monitoring the Underground Mining Position Based on the Blasting Source Location

    NASA Astrophysics Data System (ADS)

    Meng, Xiu-zhi; Wang, Zong-sheng; Zhang, Zeng-zhi; Wang, Feng-qian

    2013-01-01

    Some small and medium-sized coal mines are mining beyond their mining boundary driven by profit. The illegal activities cause many mine disasters but effective supervision is very hard to achieve, especially for underground coal mining. Nowadays, artificial blasting operation is widely used in tunneling or mining in small and medium-sized coal mines. A method for monitoring the underground mining position by monitoring the blasting source position is firstly introduced in this paper. The blasting vibration waves are picked up by the detectors and dealt by the signal acquisition sub-station, and then sent to the principal computer. The blasting source is located by the principal computer and displayed in the mine’s electronic map. The blasting source position is located in 10 seconds after the first P wave reaching the detector, whose error is registered within 20 meters by field-proven method. Auto-monitoring of the underground mining position in real-time is solved better and management level is improved using this method.

  14. Identification of efficient observers for locating spreading source in complex networks

    NASA Astrophysics Data System (ADS)

    Zhang, Xizhe; Zhang, Yubo; Lv, Tianyang; Yin, Ying

    2016-01-01

    Estimating the location of the spreading source of complex networks is a challenging task and plays an important role in many real problems. The hidden source can be localized based on the information gathered by a few nodes, which are called the observers. Identification of the efficient observers is critical to locate the source with high accuracy. Here we analyze several placement strategies of the observers based on centralities of nodes, including the high-degree, high-betweenness, high-clustering coefficient, high-eigenvector and high-closeness. Based on the random spreading experiments on both model and real networks, we find that the localization accuracy of these strategies is decreased with the increase of the connectivity of network, and there is no significant difference between them. Further experiments show that the coverage range of the observers may be the key factor that affects the localization accuracy. Our results can provide a route for the optimal design of placement strategies of the observer nodes.

  15. Source location and characterization of volatile organic compound emissions at a petrochemical plant in Kaohsiung, Taiwan.

    PubMed

    Chen, Chin-Liang; Fang, Hung Yuan; Shu, Chi-Min

    2005-10-01

    This paper elucidated a novel approach to locating volatile organic compound (VOC) emission sources and characterizing their VOCs by database and contour plotting. The target of this survey was a petrochemical plant in Linyan, Kaohsiung County, Taiwan. Samples were taken with canisters from 25 sites inside this plant, twice per season, and analyzed by gas chromatography-mass spectrometry. The survey covered 1 whole year. By consolidated into a database, the data could be readily retrieved, statistically analyzed, and clearly presented in both table and graph forms. It followed from the cross-analysis of the database that the abundant types of VOCs were alkanes, alkenes/dienes, and aromatics, all of which accounted for 99% of total VOCs. By contour plotting, the emission sources for alkanes, aromatics, and alkenes/ dienes were successfully located. Through statistical analysis, the database could provide the range and 90% confidence interval of each species from each emission source. Both alkanes and alkene/dienes came from tank farm and naphtha cracking units and were mainly composed of C3-C5 members. Regarding aromatics, benzene, toluene, and xylenes were the primary species; they were emitted from tank farm, aromatic units, and xylene units. PMID:16295274

  16. Localization of virtual sound sources with bilateral hearing aids in realistic acoustical scenes.

    PubMed

    Mueller, Martin F; Kegel, Andrea; Schimmel, Steven M; Dillier, Norbert; Hofbauer, Markus

    2012-06-01

    Sound localization with hearing aids has traditionally been investigated in artificial laboratory settings. These settings are not representative of environments in which hearing aids are used. With individual Head-Related Transfer Functions (HRTFs) and room simulations, realistic environments can be reproduced and the performance of hearing aid algorithms can be evaluated. In this study, four different environments with background noise have been implemented in which listeners had to localize different sound sources. The HRTFs were measured inside the ear canals of the test subjects and by the microphones of Behind-The-Ear (BTEs) hearing aids. In the first experiment the system for virtual acoustics was evaluated by comparing perceptual sound localization results for the four scenes in a real room with a simulated one. In the second experiment, sound localization with three BTE algorithms, an omnidirectional microphone, a monaural cardioid-shaped beamformer and a monaural noise canceler, was examined. The results showed that the system for generating virtual environments is a reliable tool to evaluate sound localization with hearing aids. With BTE hearing aids localization performance decreased and the number of front-back confusions was at chance level. The beamformer, due to its directivity characteristics, allowed the listener to resolve the front-back ambiguity. PMID:22712946

  17. Do locations of CME source regions relative to the HSB determine the appearance of the CME?

    NASA Astrophysics Data System (ADS)

    Li, Y.; Luhmann, J. G.; Zhao, X. P.

    2002-05-01

    The relationship between CMEs and the coronal helmet streamer belt has been the subject of several studies. Recent studies using SOHO/LASCO observation presented a rather complicated picture of this relationship (Subramanian et al., 1999). It has been suggested that a CME may blowout, create, disturb, have no effect on or be clearly displaced from a streamer. We investigate the possibility that these different interactions may be due to the locations of the CME source regions relative to the helmet streamer belt. Estimated Helmet streamer belt configurations obtained using Potential Field Source Surface Models based on SOHO/MDI synoptic maps are compared with combined LASCO-EIT movies on the LASCO website for this study.

  18. True location and orientation of fractures logged with the acoustic televiewer (including programs to correct fracture orientation)

    USGS Publications Warehouse

    Kierstein, R.A.

    1984-01-01

    The attitude of fractures measured on acoustic-televiewer logs may be misorientated by as much as 180 degrees in a drill hole that is deviated significantly from vertical, because of the effect of the vertical component of the magnetic field on the tilted magnetometer that is used to orient the log. A method has been developed to correct for the misorientation by analyzing the orientation of the magnetometer with respect to the magnetic-field vector acting at the magnetometer 's center. Computer programs were written to correct the attitude of fractures for both magnetic effects and hole deviation. For the reorientation of a single fracture, a stereographic solution is illustrated. Test results suggest that the fracture orientation can be corrected to plus or minus five degrees of true orientation, provided there are no other magnetic effects, such as magnetite in the rocks. (USGS)

  19. Reconstruction of source location in a network of gravitational wave interferometric detectors

    SciTech Connect

    Cavalier, Fabien; Barsuglia, Matteo; Bizouard, Marie-Anne; Brisson, Violette; Clapson, Andre-Claude; Davier, Michel; Hello, Patrice; Kreckelbergh, Stephane; Leroy, Nicolas; Varvella, Monica

    2006-10-15

    This paper deals with the reconstruction of the direction of a gravitational wave source using the detection made by a network of interferometric detectors, mainly the LIGO and Virgo detectors. We suppose that an event has been seen in coincidence using a filter applied on the three detector data streams. Using the arrival time (and its associated error) of the gravitational signal in each detector, the direction of the source in the sky is computed using a {chi}{sup 2} minimization technique. For reasonably large signals (SNR>4.5 in all detectors), the mean angular error between the real location and the reconstructed one is about 1 deg. . We also investigate the effect of the network geometry assuming the same angular response for all interferometric detectors. It appears that the reconstruction quality is not uniform over the sky and is degraded when the source approaches the plane defined by the three detectors. Adding at least one other detector to the LIGO-Virgo network reduces the blind regions and in the case of 6 detectors, a precision less than 1 deg. on the source direction can be reached for 99% of the sky.

  20. Investigation of source location determination from Magsat magnetic anomalies: The Euler method approach

    NASA Technical Reports Server (NTRS)

    Ravat, Dhananjay

    1996-01-01

    The applicability of the Euler method of source location determination was investigated on several model situations pertinent to satellite-data scale situations as well as Magsat data of Europe. Our investigations enabled us to understand the end-member cases for which the Euler method will work with the present satellite magnetic data and also the cases for which the assumptions implicit in the Euler method will not be met by the present satellite magnetic data. These results have been presented in one invited lecture at the Indo-US workshop on Geomagnetism in Studies of the Earth's Interior in August 1994 in Pune, India, and at one presentation at the 21st General Assembly of the IUGG in July 1995 in Boulder, CO. A new method, called Anomaly Attenuation Rate (AAR) Method (based on the Euler method), was developed during this study. This method is scale-independent and is appropriate to locate centroids of semi-compact three dimensional sources of gravity and magnetic anomalies. The method was presented during 1996 Spring AGU meeting and a manuscript describing this method is being prepared for its submission to a high-ranking journal. The grant has resulted in 3 papers and presentations at national and international meetings and one manuscript of a paper (to be submitted shortly to a reputable journal).

  1. The source location of Jovian millisecond radio bursts with respect to Jupiter's magnetic field

    NASA Technical Reports Server (NTRS)

    Genova, Francoise; Calvert, Wynne

    1988-01-01

    The location of the source of the Jovian S bursts was studied by comparing the high-frequency limit of these emissions, recorded in Nancay, to the surface gyrofrequency at the foot of the magnetic field lines which intersect Io's orbit, according to the O4 magnetic field model. For this purpose, the statistical occurrence of the S bursts was examined, both in central meridian longitude versus Io phase and as a function of the relative phase of Io with respect to Jupiter. The S bursts and the Io-dependent L emissions were found to originate from approximately the same locations at Jupiter, and probably under similar conditions of excitation by Io, although the beaming of these S emissions, which is indicated by the compactness of the occurrence patterns, was somewhat narrower than for the corresponding L emissions. Also, like the L emissions, an apparent delay of up to 70 deg was found to occur between the predicted instanteneous Io flux tube and the apparent source field line. The possible origin of this 70 deg delay is discussed.

  2. Solving seismological problems using SGRAPH program: I-source parameters and hypocentral location

    SciTech Connect

    Abdelwahed, Mohamed F.

    2012-09-26

    SGRAPH program is considered one of the seismological programs that maintain seismic data. SGRAPH is considered unique for being able to read a wide range of data formats and manipulate complementary tools in different seismological subjects in a stand-alone Windows-based application. SGRAPH efficiently performs the basic waveform analysis and solves advanced seismological problems. The graphical user interface (GUI) utilities and the Windows facilities such as, dialog boxes, menus, and toolbars simplified the user interaction with data. SGRAPH supported the common data formats like, SAC, SEED, GSE, ASCII, and Nanometrics Y-format, and others. It provides the facilities to solve many seismological problems with the built-in inversion and modeling tools. In this paper, I discuss some of the inversion tools built-in SGRAPH related to source parameters and hypocentral location estimation. Firstly, a description of the SGRAPH program is given discussing some of its features. Secondly, the inversion tools are applied to some selected events of the Dahshour earthquakes as an example of estimating the spectral and source parameters of local earthquakes. In addition, the hypocentral location of these events are estimated using the Hypoinverse 2000 program operated by SGRAPH.

  3. Relation Between Sprite Distribution and Source Locations of VHF Pulses Derived From JEM- GLIMS Measurements

    NASA Astrophysics Data System (ADS)

    Sato, Mitsuteru; Mihara, Masahiro; Ushio, Tomoo; Morimoto, Takeshi; Kikuchi, Hiroshi; Adachi, Toru; Suzuki, Makoto; Yamazaki, Atsushi; Takahashi, Yukihiro

    2015-04-01

    JEM-GLIMS is continuing the comprehensive nadir observations of lightning and TLEs using optical instruments and electromagnetic wave receivers since November 2012. For the period between November 20, 2012 and November 30, 2014, JEM-GLIMS succeeded in detecting 5,048 lightning events. A total of 567 events in 5,048 lightning events were TLEs, which were mostly elves events. To identify the sprite occurrences from the transient optical flash data, it is necessary to perform the following data analysis: (1) a subtraction of the appropriately scaled wideband camera data from the narrowband camera data; (2) a calculation of intensity ratio between different spectrophotometer channels; and (3) an estimation of the polarization and CMC for the parent CG discharges using ground-based ELF measurement data. From a synthetic comparison of these results, it is confirmed that JEM-GLISM succeeded in detecting sprite events. The VHF receiver (VITF) onboard JEM-GLIMS uses two patch-type antennas separated by a 1.6-m interval and can detect VHF pulses emitted by lightning discharges in the 70-100 MHz frequency range. Using both an interferometric technique and a group delay technique, we can estimate the source locations of VHF pulses excited by lightning discharges. In the event detected at 06:41:15.68565 UT on June 12, 2014 over central North America, sprite was distributed with a horizontal displacement of 20 km from the peak location of the parent lightning emission. In this event, a total of 180 VHF pulses were simultaneously detected by VITF. From the detailed data analysis of these VHF pulse data, it is found that the majority of the source locations were placed near the area of the dim lightning emission, which may imply that the VHF pulses were associated with the in-cloud lightning current. At the presentation, we will show detailed comparison between the spatiotemporal characteristics of sprite emission and source locations of VHF pulses excited by the parent lightning

  4. Long Period (LP) volcanic earthquake source location at Merapi volcano by using dense array technics

    NASA Astrophysics Data System (ADS)

    Metaxian, Jean Philippe; Budi Santoso, Agus; Laurin, Antoine; Subandriyo, Subandriyo; Widyoyudo, Wiku; Arshab, Ghofar

    2015-04-01

    Since 2010, Merapi shows unusual activity compared to last decades. Powerful phreatic explosions are observed; some of them are preceded by LP signals. In the literature, LP seismicity is thought to be originated within the fluid, and therefore to be representative of the pressurization state of the volcano plumbing system. Another model suggests that LP events are caused by slow, quasi-brittle, low stress-drop failure driven by transient upper-edifice deformations. Knowledge of the spatial distribution of LP events is fundamental for better understanding the physical processes occurring in the conduit, as well as for the monitoring and the improvement of eruption forecasting. LP events recorded at Merapi have a spectral content dominated by frequencies between 0.8 and 3 Hz. To locate the source of these events, we installed a seismic antenna composed of 4 broadband CMG-6TD Güralp stations. This network has an aperture of 300 m. It is located on the site of Pasarbubar, between 500 and 800 m from the crater rim. Two multi-parameter stations (seismic, tiltmeter, S-P) located in the same area, equipped with broadband CMG-40T Güralp sensors may also be used to complete the data of the antenna. The source of LP events is located by using different approaches. In the first one, we used a method based on the measurement of the time delays between the early beginnings of LP events for each array receiver. The observed differences of time delays obtained for each pair of receivers are compared to theoretical values calculated from the travel times computed between grid nodes, which are positioned in the structure, and each receiver. In a second approach, we estimate the slowness vector by using MUSIC algorithm applied to 3-components data. From the slowness vector, we deduce the back-azimuth and the incident angle, which give an estimation of LP source depth in the conduit. This work is part of the Domerapi project funded by French Agence Nationale de la Recherche (https

  5. Location of Non-volcanic Tremors along the Cascadia Subduction Zone Using the Source- Scanning Algorithm

    NASA Astrophysics Data System (ADS)

    Farahbod, A.; Calvert, A.

    2009-05-01

    Due to the nature of Episodic Tremor and Slip (ETS) events, a long-term study and continuous seismic and geodetic data are required for a detailed study. Here we focus on tremors that occur along the Cascadia subduction zone between southern Vancouver Island and Northern California during slow slip events in two full-life cycles starting February 2003. The origin times and hypocenters of all tremors are estimated using the Source-Scanning Algorithm (SSA) of Kao (2004). We processed more than 200 days of continuously recorded seismic data from the US roughly the same amount of information extracted from the Canadian seismograms by compiling tremor catalogs provided by the Geological Survey of Canada (GSC) or by direct analysis of the waveforms. The majority of the well-located tremors in southern Vancouver Island, the Canada-US border region and northern Washington occur at a depth which ranges from 20 km to 40 km. In central and southern Washington, the depth of the well-located events gradually decreases with a westward shift of the epicenters towards the coast. Also both temporally and spatially it seems that tremors occur in locations with absent or sparse seismicity. In this study we will examine the geographical variability of ETS events as well as hypocentral migration rates and segmentation.

  6. Estimating the acoustic exposure of marine mammals to seismic sources of the R/V Maurice Langseth

    NASA Astrophysics Data System (ADS)

    Frankel, A.; Richardson, W.; Carr, S.; Spaulding, R.; Ellison, W.

    2006-05-01

    As part of the planning process for proposed R/V Maurice Langseth academic marine seismic survey operations, our team is preparing estimates of the acoustic exposure of marine mammals to seismic sources (e.g., airguns). Seven sites around the world have been selected for detailed analysis. This procedure integrates several new aspects. (1) The Acoustic Integration Model - (AIM) will be used to model the four-dimensional movement of marine mammals potentially found in each modeling area in relation to movement of the Langseth. It is critical that the movement and diving behavior of the simulated animals be considered because acoustic propagation through the marine environment has considerable vertical structure. (2) The Marine Operations Noise Model (MONM), a two-step acoustic source and propagation model, is employed to predict the noise field around the ship. The first portion of MONM creates the beam pattern for the relevant airgun array considering the interactions of the individual airgun elements. The second step predicts the range-, azimuth-, and depth-dependent propagation loss and combines it with the directional source level to calculate the three dimensional received sound field. This is calculated with an enhanced version of the RAM PE model, which more completely considers the geoacoustic properties and propagation paths of the substrate. (3) The range, bearing, and depth of each simulated animal, as provided by AIM, are convolved with the received level data from MONM. This is done for each transmission of the source array, allowing for movement of the vessel and simulated animals. (4) From this, an exposure history of each simulated animal for the entire cruise track can be calculated. This exposure history can be used to estimate the RMS received level of the strongest received pulse for each simulated animal, as needed to meet current U.S. regulatory requirements. (5) The exposure history can also be integrated to calculate the total acoustic energy

  7. Induced seismicity during the construction of the Gotthard Base Tunnel, Switzerland: hypocenter locations and source dimensions

    NASA Astrophysics Data System (ADS)

    Husen, Stephan; Kissling, Edi; von Deschwanden, Angela

    2013-01-01

    A series of 112 earthquakes was recorded between October 2005 and August 2007 during the excavation of the MFS Faido, the southernmost access point of the new Gotthard Base Tunnel. Earthquakes were recorded at a dense network of 11 stations, including 2 stations in the tunnel. Local magnitudes computed from Wood-Anderson-filtered horizontal component seismograms ranged from -1.0 to 2.4; the largest earthquake was strongly felt at the surface and caused considerable damage in the tunnel. Hypocenter locations obtained routinely using a regional 3-D P-wave velocity model and a constant Vp/Vs ratio 1.71 were about 2 km below the tunnel. The use of seismic velocities calibrated from a shot in the tunnel revealed that routinely obtained hypocenter locations were systematically biased to greater depth and are now relocated to be on the tunnel level. Relocation of the shot using these calibrated velocities yields a location accuracy of 25 m in longitude, 70 m in latitude, and 250 m in focal depth. Double-difference relative relocations of two clusters with highly similar waveforms showed a NW-SE striking trend that is consistent with the strike of mapped faults in the MFS Faido. Source dimensions computed using the quasidynamic model of Madariaga (Bull Seismo Soc Am 66(3):639-666, 1976) range from 50 to 170 m. Overlapping source dimensions for earthquakes within the two main clusters suggests that the same fault patch was ruptured repeatedly. The observed seismicity was likely caused by stress redistribution due to the excavation work in the MFS Faido.

  8. Induced seismicity during the construction of the Gotthard Base Tunnel, Switzerland: hypocenter locations and source dimensions

    NASA Astrophysics Data System (ADS)

    Husen, Stephan; Kissling, Edi; von Deschwanden, Angela

    2012-04-01

    A series of 112 earthquakes was recorded between October 2005 and August 2007 during the excavation of the MFS Faido, the southernmost access point of the new Gotthard Base Tunnel. Earthquakes were recorded at a dense network of 11 stations, including 2 stations in the tunnel. Local magnitudes computed from Wood-Anderson-filtered horizontal component seismograms ranged from -1.0 to 2.4; the largest earthquake was strongly felt at the surface and caused considerable damage in the tunnel. Hypocenter locations obtained routinely using a regional 3-D P-wave velocity model and a constant Vp/Vs ratio 1.71 were about 2 km below the tunnel. The use of seismic velocities calibrated from a shot in the tunnel revealed that routinely obtained hypocenter locations were systematically biased to greater depth and are now relocated to be on the tunnel level. Relocation of the shot using these calibrated velocities yields a location accuracy of 25 m in longitude, 70 m in latitude, and 250 m in focal depth. Double-difference relative relocations of two clusters with highly similar waveforms showed a NW-SE striking trend that is consistent with the strike of mapped faults in the MFS Faido. Source dimensions computed using the quasidynamic model of Madariaga (Bull Seismo Soc Am 66(3):639-666, 1976) range from 50 to 170 m. Overlapping source dimensions for earthquakes within the two main clusters suggests that the same fault patch was ruptured repeatedly. The observed seismicity was likely caused by stress redistribution due to the excavation work in the MFS Faido.

  9. Development and validation of a combined phased acoustical radiosity and image source model for predicting sound fields in rooms.

    PubMed

    Marbjerg, Gerd; Brunskog, Jonas; Jeong, Cheol-Ho; Nilsson, Erling

    2015-09-01

    A model, combining acoustical radiosity and the image source method, including phase shifts on reflection, has been developed. The model is denoted Phased Acoustical Radiosity and Image Source Method (PARISM), and it has been developed in order to be able to model both specular and diffuse reflections with complex-valued and angle-dependent boundary conditions. This paper mainly describes the combination of the two models and the implementation of the angle-dependent boundary conditions. It furthermore describes how a pressure impulse response is obtained from the energy-based acoustical radiosity by regarding the model as being stochastic. Three methods of implementation are proposed and investigated, and finally, recommendations are made for their use. Validation of the image source method is done by comparison with finite element simulations of a rectangular room with a porous absorber ceiling. Results from the full model are compared with results from other simulation tools and with measurements. The comparisons of the full model are done for real-valued and angle-independent surface properties. The proposed model agrees well with both the measured results and the alternative theories, and furthermore shows a more realistic spatial variation than energy-based methods due to the fact that interference is considered. PMID:26428783

  10. Atmospheric Transport Modelling confining potential source location of East-Asian radionuclide detections in May 2010

    NASA Astrophysics Data System (ADS)

    Ross, J. Ole; Ceranna, Lars

    2016-04-01

    The radionuclide component of the International Monitoring System (IMS) to verify compliance with the Comprehensive Nuclear-Test-Ban Treaty (CTBT) is in place to detect tiny traces of fission products from nuclear explosions in the atmosphere. The challenge for the interpretation of IMS radionuclide data is to discriminate radionuclide sources of CTBT relevance against emissions from nuclear facilities. Remarkable activity concentrations of Ba/La-140 occurred at the IMS radionuclide stations RN 37 (Okinawa) and RN 58 (Ussurysk) mid of May 2010. In those days also an elevated Xe-133 level was measured at RN 38 (Takasaki). Additional regional measurements of radioxenon were reported in the press and further analyzed in various publications. The radionuclide analysis gives evidence for the presence of a nuclear fission source between 10 and 12 May 2010. Backward Atmospheric Transport Modelling (ATM) with HYSPLIT driven by 0.2° ECMWF meteorological data for the IMS samples indicates that, assuming a single source, a wide range of source regions is possible including the Korean Peninsula, the Sea of Japan (East Sea), and parts of China and Russia. Further confinement of the possible source location can be provided by atmospheric backtracking for the assumed sampling periods of the reported regional xenon measurements. New studies indicate a very weak seismic event at the DPRK test site on early 12 May 2010. Forward ATM for a pulse release caused by this event shows fairly good agreement with the observed radionuclide signature. Nevertheless, the underlying nuclear fission scenario remains quite unclear and speculative even if assuming a connection between the waveform and the radionuclide event.

  11. Concurrent identification of aero-acoustic scattering and noise sources at a flow duct singularity in low Mach number flow

    NASA Astrophysics Data System (ADS)

    Sovardi, Carlo; Jaensch, Stefan; Polifke, Wolfgang

    2016-09-01

    A numerical method to concurrently characterize both aeroacoustic scattering and noise sources at a duct singularity is presented. This approach combines Large Eddy Simulation (LES) with techniques of System Identification (SI): In a first step, a highly resolved LES with external broadband acoustic excitation is carried out. Subsequently, time series data extracted from the LES are post-processed by means of SI to model both acoustic propagation and noise generation. The present work studies the aero-acoustic characteristics of an orifice placed in a duct at low flow Mach numbers with the "LES-SI" method. Parametric SI based on the Box-Jenkins mathematical structure is employed, with a prediction error approach that utilizes correlation analysis of the output residuals to avoid overfitting. Uncertainties of model parameters due to the finite length of times series are quantified in terms of confidence intervals. Numerical results for acoustic scattering matrices and power spectral densities of broad-band noise are validated against experimental measurements over a wide range of frequencies below the cut-off frequency of the duct.

  12. Investigation of acoustic gravity waves created by anomalous heat sources: experiments and theoretical analysis

    NASA Astrophysics Data System (ADS)

    Pradipta, R.; Lee, M. C.

    2013-07-01

    We have been investigating high-power radio wave-induced acoustic gravity waves (AGWs) at Gakona, Alaska, using the High-frequency Active Aurora Research Program (HAARP) heating facility (i.e. HF heater) and extensive diagnostic instruments. This work was aimed at performing a controlled study of the space plasma turbulence triggered by the AGWs originating from anomalous heat sources, as observed in our earlier experiments at Arecibo, Puerto Rico (Pradipta 2007 MS Thesis MIT Press, Cambridge, MA). The HF heater operated in continuous wave (CW) O-mode can heat ionospheric plasmas effectively to yield a depleted magnetic flux tube as rising plasma bubbles (Lee et al 1998 Geophys. Res. Lett. 25 579). Two processes are responsible for the depletion of the magnetic flux tube: (i) thermal expansion and (ii) chemical reactions caused by heated ions. The depleted plasmas create large density gradients that can augment spread F processes via generalized Rayleigh-Taylor instabilities (Lee et al 1999 Geophys. Res. Lett. 26 37). It is thus expected that the temperature of neutral particles in the heated ionospheric region can be increased. Such a heat source in the neutral atmosphere may potentially generate AGWs in the form of traveling ionospheric plasma disturbances (TIPDs). We should point out that these TIPDs have features distinctively different from electric and magnetic field (ExB) drifts of HF wave-induced large-scale non-propagating plasma structures. Moreover, it was noted in our recent study of naturally occurring AGW-induced TIDs that only large-scale AGWs can propagate upward to reach higher altitudes. Thus, in our Gakona experiments we select optimum heating schemes for HF wave-induced AGWs that can be distinguished from the naturally occurring ones. The generation and propagation of AGWs are monitored by MUIR (Modular Ultra high-frequency Ionospheric Radar), Digisonde and GPS/low-earth-orbit satellites. Our theoretical and experimental studies have shown that

  13. Sources and Radiation Patterns of Volcano-Acoustic Signals Investigated with Field-Scale Chemical Explosions

    NASA Astrophysics Data System (ADS)

    Bowman, D. C.; Lees, J. M.; Taddeucci, J.; Graettinger, A. H.; Sonder, I.; Valentine, G.

    2014-12-01

    We investigate the processes that give rise to complex acoustic signals during volcanic blasts by monitoring buried chemical explosions with infrasound and audio range microphones, strong motion sensors, and high speed imagery. Acoustic waveforms vary with scaled depth of burial (SDOB, units in meters per cube root of joules), ranging from high amplitude, impulsive, gas expansion dominated signals at low SDOB to low amplitude, longer duration, ground motion dominated signals at high SDOB. Typically, the sudden upward acceleration of the substrate above the blast produces the first acoustic arrival, followed by a second pulse due to the eruption of pressurized gas at the surface. Occasionally, a third overpressure occurs when displaced material decelerates upon impact with the ground. The transition between ground motion dominated and gas release dominated acoustics ranges between 0.0038-0.0018 SDOB, respectively. For example, one explosion registering an SDOB=0.0031 produced two overpressure pulses of approximately equal amplitude, one due to ground motion, the other to gas release. Recorded volcano infrasound has also identified distinct ground motion and gas release components during explosions at Sakurajima, Santiaguito, and Karymsky volcanoes. Our results indicate that infrasound records may provide a proxy for the depth and energy of these explosions. Furthermore, while magma fragmentation models indicate the possibility of several explosions during a single vulcanian eruption (Alidibirov, Bull Volc., 1994), our results suggest that a single explosion can also produce complex acoustic signals. Thus acoustic records alone cannot be used to distinguish between single explosions and multiple closely-spaced blasts at volcanoes. Results from a series of lateral blasts during the 2014 field experiment further indicates whether vent geometry can produce directional acoustic radiation patterns like those observed at Tungarahua volcano (Kim et al., GJI, 2012). Beside

  14. Signatures of shock drivers in the solar wind and their dependence on the solar source location

    NASA Technical Reports Server (NTRS)

    Richardson, I. G.; Cane, H. V.

    1993-01-01

    Solar wind and energetic ion observations following 40 interplanetary shocks with well-established solar source locations have been examined in order to determine whether signatures characteristic of the coronal material forming the shock driver are present. The signatures considered include magnetic-field-aligned bidirectional ion flows observed by the ISEE 3 and IMP 8 spacecraft; bidirectional solar wind electron heat fluxes; solar wind plasma proton and electron temperature depressions; low-beta plasma; enhanced, low-variance magnetic fields; and energetic ion depressions. Several shock driver signatures are commonly observed following shocks originating from within about 50 deg of central meridian, and are generally absent for other events. We conclude that shock drivers generally extend up to about 100 deg in longitude, centered on the solar source longitude. Since shocks from central meridian events are not usually associated with all the shock driver signatures examined, the absence of a driver cannot be confirmed from consideration of one of these signatures alone. We also find evidence that a few bidirectional energetic ion and solar wind electron heat flux events following shocks (in particular from far eastern sources) may occur on open field lines outside of shock drivers.

  15. Locating and estimating air emissions from sources of styrene. Interim report

    SciTech Connect

    Campbell, D.

    1991-10-01

    To assist groups interested in inventorying air emissions of various potentially toxic substances, EPA is preparing a series of documents such as this to compile available information on sources and emission of these substances. The document deals specifically with styrene. Its intended audience includes Federal, State and local air pollution personnel and others interested in locating potential emitters of styrene and in making gross estimates of air emissions therefrom. The document presents information on: (1) the types of sources that may emit styrene; (2) process variations and release points that may be emitted within these sources; and (3) available emissions information indicating the potential for styrene releases into the air from each operation. The document is being released as an interim document pending incorporation of testing results from the U.S. EPA. The EPA is currently testing several unsaturated polyester resin fabricators who produce cultured marble bathroom fixtures. When the test results are available, the EPA will publish a final report including these data.

  16. The impact of runoff generation mechanisms on the location of critical source areas

    USGS Publications Warehouse

    Lyon, S.W.; McHale, M.R.; Walter, M.T.; Steenhuis, T.S.

    2006-01-01

    Identifying phosphorus (P) source areas and transport pathways is a key step in decreasing P loading to natural water systems. This study compared the effects of two modeled runoff generation processes - saturation excess and infiltration excess - on total phosphorus (TP) and soluble reactive phosphorus (SRP) concentrations in 10 catchment streams of a Catskill mountain watershed in southeastern New York. The spatial distribution of runoff from forested land and agricultural land was generated for both runoff processes; results of both distributions were consistent with Soil Conservation Service-Curve Number (SCS-CN) theory. These spatial runoff distributions were then used to simulate stream concentrations of TP and SRP through a simple equation derived from an observed relation between P concentration and land use; empirical results indicate that TP and SRP concentrations increased with increasing percentage of agricultural land. Simulated TP and SRP stream concentrations predicted for the 10 catchments were strongly affected by the assumed runoff mechanism. The modeled TP and SRP concentrations produced by saturation excess distribution averaged 31 percent higher and 42 percent higher, respectively, than those produced by the infiltration excess distribution. Misrepresenting the primary runoff mechanism could not only produce erroneous concentrations, it could fail to correctly locate critical source areas for implementation of best management practices. Thus, identification of the primary runoff mechanism is critical in selection of appropriate models in the mitigation of nonpoint source pollution. Correct representation of runoff processes is also critical in the future development of biogeochemical transport models, especially those that address nutrient fluxes.

  17. Source contribution of PM₂.₅ at different locations on the Malaysian Peninsula.

    PubMed

    Ee-Ling, Ooi; Mustaffa, Nur Ili Hamizah; Amil, Norhaniza; Khan, Md Firoz; Latif, Mohd Talib

    2015-04-01

    This study determined the source contribution of PM2.5 (particulate matter <2.5 μm) in air at three locations on the Malaysian Peninsula. PM2.5 samples were collected using a high volume sampler equipped with quartz filters. Ion chromatography was used to determine the ionic composition of the samples and inductively coupled plasma mass spectrometry was used to determine the concentrations of heavy metals. Principal component analysis with multilinear regressions were used to identify the possible sources of PM2.5. The range of PM2.5 was between 10 ± 3 and 30 ± 7 µg m(-3). Sulfate (SO4 (2-)) was the major ionic compound detected and zinc was found to dominate the heavy metals. Source apportionment analysis revealed that motor vehicle and soil dust dominated the composition of PM2.5 in the urban area. Domestic waste combustion dominated in the suburban area, while biomass burning dominated in the rural area. PMID:25652682

  18. Non-contact acoustic tests based on nanosecond laser ablation: Generation of a pulse sound source with a small amplitude

    NASA Astrophysics Data System (ADS)

    Hosoya, Naoki; Kajiwara, Itsuro; Inoue, Tatsuo; Umenai, Koh

    2014-09-01

    A method to generate a pulse sound source for acoustic tests based on nanosecond laser ablation with a plasma plume is discussed. Irradiating a solid surface with a laser beam expands a high-temperature plasma plume composed of free electrons, ionized atoms, etc. at a high velocity throughout ambient air. The shockwave generated by the plasma plume becomes the pulse sound source. A laser ablation sound source has two features. Because laser ablation is induced when the laser fluence reaches 1012-1014 W/m2, which is less than that for laser-induced breakdown (1015 W/m2), laser ablation can generate a lower sound pressure, and the sound source has a hemispherical radiation pattern on the surface where laser ablation is generated. Additionally, another feature is that laser-induced breakdown sound sources can fluctuate, whereas laser ablation sound sources do not because laser ablation is produced at a laser beam-irradiation point. We validate this laser ablation method for acoustic tests by comparing the measured and theoretical resonant frequencies of an impedance tube.

  19. Location, Location, Location!

    ERIC Educational Resources Information Center

    Ramsdell, Kristin

    2004-01-01

    Of prime importance in real estate, location is also a key element in the appeal of romances. Popular geographic settings and historical periods sell, unpopular ones do not--not always with a logical explanation, as the author discovered when she conducted a survey on this topic last year. (Why, for example, are the French Revolution and the…

  20. Outbreaks source: A new mathematical approach to identify their possible location

    NASA Astrophysics Data System (ADS)

    Buscema, Massimo; Grossi, Enzo; Breda, Marco; Jefferson, Tom

    2009-11-01

    Classical epidemiology has generally relied on the description and explanation of the occurrence of infectious diseases in relation to time occurrence of events rather than to place of occurrence. In recent times, computer generated dot maps have facilitated the modeling of the spread of infectious epidemic diseases either with classical statistics approaches or with artificial “intelligent systems”. Few attempts, however, have been made so far to identify the origin of the epidemic spread rather than its evolution by mathematical topology methods. We report on the use of a new artificial intelligence method (the H-PST Algorithm) and we compare this new technique with other well known algorithms to identify the source of three examples of infectious disease outbreaks derived from literature. The H-PST algorithm is a new system able to project a distances matrix of points (events) into a bi-dimensional space, with the generation of a new point, named hidden unit. This new hidden unit deforms the original Euclidean space and transforms it into a new space (cognitive space). The cost function of this transformation is the minimization of the differences between the original distance matrix among the assigned points and the distance matrix of the same points projected into the bi-dimensional map (or any different set of constraints). For many reasons we will discuss, the position of the hidden unit shows to target the outbreak source in many epidemics much better than the other classic algorithms specifically targeted for this task. Compared with main algorithms known in the location theory, the hidden unit was within yards of the outbreak source in the first example (the 2007 epidemic of Chikungunya fever in Italy). The hidden unit was located in the river between the two village epicentres of the spread exactly where the index case was living. Equally in the second (the 1967 foot and mouth disease epidemic in England), and the third (1854 London Cholera epidemic

  1. Locating and Determining the Nature of a Persistent Hard X-Ray Source GROJ1814-12

    NASA Astrophysics Data System (ADS)

    Zhang, Shuang

    We propose to use RXTE in scanning mode to locate a persistent hard X-ray GROJ1814-12 near the Galactic plane, discovered by BATSE. Our location uncertainty is about 2 degrees in radius. Its flux level between 20-100 keV is around 30 mCrab. No flux variation is detectable by BATSE at time scales longer than a month. Candidate high energy sources within the error box are: unidentified variable EGRET source 2EG1813-12, X-ray burster 4U1812-12 and Z-source GX17+2. No persistent hard X-ray emision at this level is known from any class of the above sources. We also request a long exposure after the source is located, for a detailed spectral and timing study to determine its possible nature. Follow up ASCA observations will be proposed for a better location and X-ray spectroscopy.

  2. Stress Tolerance Variations in Saccharomyces cerevisiae Strains from Diverse Ecological Sources and Geographical Locations

    PubMed Central

    Zheng, Yan-Lin; Wang, Shi-An

    2015-01-01

    The budding yeast Saccharomyces cerevisiae is a platform organism for bioethanol production from various feedstocks and robust strains are desirable for efficient fermentation because yeast cells inevitably encounter stressors during the process. Recently, diverse S. cerevisiae lineages were identified, which provided novel resources for understanding stress tolerance variations and related shaping factors in the yeast. This study characterized the tolerance of diverse S. cerevisiae strains to the stressors of high ethanol concentrations, temperature shocks, and osmotic stress. The results showed that the isolates from human-associated environments overall presented a higher level of stress tolerance compared with those from forests spared anthropogenic influences. Statistical analyses indicated that the variations of stress tolerance were significantly correlated with both ecological sources and geographical locations of the strains. This study provides guidelines for selection of robust S. cerevisiae strains for bioethanol production from nature. PMID:26244846

  3. Experimentally determining the locations of two astigmatic images for an underwater light source

    NASA Astrophysics Data System (ADS)

    Yang, Pao-Keng; Liu, Jian-You; Ying, Shang-Ping

    2015-05-01

    Images formed by an underwater object from light rays refracted in the sagittal and tangential planes are located at different positions for an oblique viewing position. The overlapping of these two images from the observer's perspective will thus prevent the image-splitting astigmatism from being directly observable. In this work, we present a heuristic method to experimentally visualize the astigmatism. A point light source is used as an underwater object and the emerging wave front is recorded using a Shack-Hartmann wave-front sensor. The wave front is found to deform from a circular paraboloid to an elliptic paraboloid as the viewing position changes from normal to oblique. Using geometric optics, we derive an analytical expression for the image position as a function of the rotating angle of an arm used to carry the wave-front sensor in our experimental setup. The measured results are seen to be in good agreement with the theoretical predictions.

  4. Stress Tolerance Variations in Saccharomyces cerevisiae Strains from Diverse Ecological Sources and Geographical Locations.

    PubMed

    Zheng, Yan-Lin; Wang, Shi-An

    2015-01-01

    The budding yeast Saccharomyces cerevisiae is a platform organism for bioethanol production from various feedstocks and robust strains are desirable for efficient fermentation because yeast cells inevitably encounter stressors during the process. Recently, diverse S. cerevisiae lineages were identified, which provided novel resources for understanding stress tolerance variations and related shaping factors in the yeast. This study characterized the tolerance of diverse S. cerevisiae strains to the stressors of high ethanol concentrations, temperature shocks, and osmotic stress. The results showed that the isolates from human-associated environments overall presented a higher level of stress tolerance compared with those from forests spared anthropogenic influences. Statistical analyses indicated that the variations of stress tolerance were significantly correlated with both ecological sources and geographical locations of the strains. This study provides guidelines for selection of robust S. cerevisiae strains for bioethanol production from nature. PMID:26244846

  5. Assessing Acoustic Sound Levels Associated with Active Source Seismic Surveys in Shallow Marine Environments

    NASA Astrophysics Data System (ADS)

    Bohnenstiehl, D. R.; Tolstoy, M.; Thode, A.; Diebold, J. B.; Webb, S. C.

    2004-12-01

    The potential effect of active source seismic research on marine mammal populations is a topic of increasing concern, and controversy surrounding such operations has begun to impact the planning and permitting of academic surveys [e.g., Malakoff, 2002 Science]. Although no causal relationship between marine mammal strandings and seismic exploration has been proven, any circumstantial evidence must be thoroughly investigated. A 2002 stranding of two beaked whales in the Gulf of California within 50 km of a R/V Ewing seismic survey has been a subject of concern for both marine seismologists and environmentalists. In order to better understand possible received levels for whales in the vicinity of these operations, modeling is combined with ground-truth calibration measurements. A wide-angle parabolic equation model, which is capable of including shear within the sediment and basement layers, is used to generate predictive models of low-frequency transmission loss within the Gulf of California. This work incorporates range-dependent bathymetry, sediment thickness, sound velocity structure and sub-bottom properties. Oceanic sounds speed profiles are derived from the U.S. Navy's seasonal GDEM model and sediment thicknesses are taken from NOAA's worldwide database. The spectral content of the Ewing's 20-airgun seismic array is constrained by field calibration in the spring of 2003 [Tolstoy et al., 2004 GRL], indicating peak energies at frequencies below a few hundred Hz, with energy spectral density showing an approximate power-law decrease at higher frequencies (being ~40 dB below peak at 1 kHz). Transmission loss is estimated along a series of radials extending from multiple positions along the ship's track, with the directivity of the array accounted for by phase-shifting point sources that are scaled by the cube root of the individual airgun volumes. This allows the time-space history of low-frequency received levels to be reconstructed within the Gulf of California

  6. Automatic Infrasound Detection and Location of Sources in the western US

    NASA Astrophysics Data System (ADS)

    Park, J.; Arrowsmith, S.; Hayward, C.; Stump, B. W.

    2012-12-01

    Infrasound event catalogs can be used to study the characteristics of events as well as the time varying nature of the atmosphere. Additionally, these catalogs can be used to identify sources that repeat and thus provide ground truth for atmospheric studies. We focus on the production of a western US regional infrasound catalog for the time period of April 2011 to March 2012. Data from the University of Utah Seismograph Stations (UUSS) infrasonic arrays are supplemented with data from three additional infrasound arrays in Nevada. An automated detection procedure was applied to the observations based on an adaptive F-detector (Arrowsmith et al., 2009). The detection results document significant seasonal variations in time and space; detections during the winter tend to produce higher correlations relative to those from the summer, and a seasonal variation in azimuth is observed. These results indicate that the bulletin is seasonally variable. Association of detections and event localization was done utilizing the Bayesian infrasonic source location procedure (BISL, Modrak et al., 2010), accounting for unknown atmospheric propagation effects by adding a random component to the infrasonic group velocity. The resulting infrasonic catalog consists of 963 events for the one-year time period with indication of repeated events from a number of locations. The distribution of infrasound events in this study is well matched with the infrasound hot spots identified by Walker et al. (2011) which were based on a back projection procedure applied to seismic signals from USArray Transportable Array. There are common concentrations of events in both catalogs that include New Bomb in Nevada, Utah Test and Training Range (UTTR), and Dugway Proving Ground in Utah, as well as broader areas in central Nevada and southwest Idaho. The two bulletins document that the vast majority of events occur during work hours, suggesting they are related to human activities.

  7. Visibility of Type III burst source location as inferred from stereoscopic space observations

    NASA Astrophysics Data System (ADS)

    Boudjada, M. Y.; Galopeau, P. H. M.; Maksimovic, M.; Rucker, H. O.

    2014-11-01

    We study solar Type III radio bursts simultaneously observed by RPWS/Cassini, URAP/Ulysses and WAVES/Wind experiments. The observations allows us to cover a large frequency bandwidth from 16MHz down to a few kHz. We consider the onset time of each burst, and estimate the corresponding intensity level. Also we measure the Langmuir frequency as observed on the dynamic spectra recorded by the Ulysses spacecraft. The distances of Wind, Ulysses and Cassini spacecraft, with regard to the Sun, were in the order of 1AU, 2.4AU and 4.5AU, respectively. The spacecraft trajectories were localized in the ecliptic plane in the case of Wind and Cassini, and for Ulysses in the southern hemisphere (i.e. heliocentric latitude higher than -50). Despite the different locations, the spectral patterns of the selected solar bursts are found to be similar between 10MHz and 2MHz but unalike at lower frequency. We discuss the variation of the intensity level as recorded by the three spacecraft. We show that the reception system of each experiment affected the way the Type III burst intensity is measured. Also we attempt to estimate the electron beam along the interplanetary magnetic field where the trajectory is an Archimedean spiral. This leads us to infer on the visibility of the source location with regard to the spacecraft position.

  8. Single tracking location acoustic radiation force impulse viscoelasticity estimation (STL-VE): A method for measuring tissue viscoelastic parameters.

    PubMed

    Langdon, Jonathan H; Elegbe, Etana; McAleavey, Stephen A

    2015-07-01

    Single tracking location (STL) shear wave elasticity imaging (SWEI) is a method for detecting elastic differences between tissues. It has the advantage of intrinsic speckle bias suppression compared with multiple tracking location variants of SWEI. However, the assumption of a linear model leads to an overestimation of the shear modulus in viscoelastic media. A new reconstruction technique denoted single tracking location viscosity estimation (STL-VE) is introduced to correct for this overestimation. This technique utilizes the same raw data generated in STL-SWEI imaging. Here, the STL-VE technique is developed by way of a maximum likelihood estimation for general viscoelastic materials. The method is then implemented for the particular case of the Kelvin-Voigt Model. Using simulation data, the STL-VE technique is demonstrated and the performance of the estimator is characterized. Finally, the STL-VE method is used to estimate the viscoelastic parameters of ex vivo bovine liver. We find good agreement between the STL-VE results and the simulation parameters as well as between the liver shear wave data and the modeled data fit. PMID:26168170

  9. Acoustic Database for Turbofan Engine Core-Noise Sources. I; Volume

    NASA Technical Reports Server (NTRS)

    Gordon, Grant

    2015-01-01

    were processed using software that accounts for the effects of convective and conductive heat transfer. The software was developed under previous NASA sponsored programs. Compensated temperature spectra and compensated time histories corresponding to the dynamic temperature of the gas stream were generated. Auto-spectral and cross-spectral analyses of the data were performed to investigate spectral features, acoustic circumferential mode content, signal coherence, and time delays. The dynamic temperature data exhibit a wideband and fairly flat spectral content. The temperature spectra do not change substantially with operating speed. The pressure spectra in the combustor and ITD exhibit generally similar shapes and amplitudes, making it difficult to identify any features that suggest the presence of indirect combustion noise. Cross-spectral analysis reveal a strong correlation between pressure and temperature fluctuations in the ITD, but little correlation between temperature fluctuations at the entrance of the HPT and pressure fluctuations downstream of it. Temperature fluctuations at the entrance of the low pressure turbine were an order of magnitude smaller than those at the entrance to the high pressure turbine. Time delay analysis of the temperature fluctuations in the combustor was inconclusive, perhaps due to the substantial mixing that occurs between the upstream and downstream locations. Time delay analysis of the temperature fluctuations in the ITD indicate that they convect at the mean flow speed. Analysis of the data did not reveal any convincing indications of the presence of indirect combustion noise. However, this analysis has been preliminary and additional exploration of the data is recommended including the use of more sophisticated signal processing to explore subtle issues that have been revealed but which are not yet fully understood or explained.

  10. Site Characterization of the Source Physics Experiment Phase II Location Using Seismic Reflection Data

    NASA Astrophysics Data System (ADS)

    Sexton, E. A.; Snelson, C. M.; Chipman, V.; Emer, D. F.; White, R. L.; Emmitt, R.; Wright, A. A.; Drellack, S.; Huckins-Gang, H.; Mercadante, J.; Floyd, M.; McGowin, C.; Cothrun, C.; Bonal, N.

    2013-12-01

    An objective of the Source Physics Experiment (SPE) is to identify low-yield nuclear explosions from a regional distance. Low-yield nuclear explosions can often be difficult to discriminate among the clutter of natural and man-made explosive events (e.g., earthquakes and mine blasts). The SPE is broken into three phases. Phase I has provided the first of the physics-based data to test the empirical models that have been used to discriminate nuclear events. The Phase I series of tests were placed within a highly fractured granite body. The evolution of the project has led to development of Phase II, to be placed within the opposite end member of geology, an alluvium environment, thereby increasing the database of waveforms to build upon in the discrimination models. Both the granite and alluvium sites have hosted nearby nuclear tests, which provide comparisons for the chemical test data. Phase III of the SPE is yet to be determined. For Phase II of the experiment, characterization of the location is required to develop the geologic/geophysical models for the execution of the experiment. Criteria for the location are alluvium thickness of approximately 170 m and a water table below 170 m; minimal fracturing would be ideal. A P-wave mini-vibroseis survey was conducted at a potential site in alluvium to map out the subsurface geology. The seismic reflection profile consisted of 168 geophone stations, spaced 5 m apart. The mini-vibe was a 7,000-lb peak-force source, starting 57.5 m off the north end of the profile and ending 57.5 m past the southern-most geophone. The length of the profile was 835 m. The source points were placed every 5 m, equally spaced between geophones to reduce clipping. The vibroseis sweep was from 20 Hz down to 180 Hz over 8 seconds, and four sweeps were stacked at each shot location. The shot gathers show high signal-to-noise ratios with clear first arrivals across the entire spread and the suggestion of some shallow reflectors. The data were

  11. Test of acoustic tone source and propulsion performance of C8A Buffalo suppressor nozzle

    NASA Technical Reports Server (NTRS)

    Marrs, C. C.; Harkonen, D. L.; Okeefe, J. V.

    1974-01-01

    Results are presented for a static acoustic and propulsion performance ground test conducted at the Boeing hot nozzle facility on the C8A Buffalo noise suppressor nozzle. Various methods to remove a nozzle-associated 2000-Hz tone are evaluated. Results of testing this rectangular-array lobed nozzle for propulsion performance and acoustic directivity are reported. Recommendations for future nozzle modifications and further testing are included. Appendix A contains the test plan. Appendix B presents the test log. Appendix C contains plots of the one-third octave sound pressure levels recorded during the test. Appendix D describes the acoustic data recording and reduction systems. The performance data is tabulated in Appendix E.

  12. Volumetric Acoustic Vector Intensity Probe

    NASA Technical Reports Server (NTRS)

    Klos, Jacob

    2006-01-01

    A new measurement tool capable of imaging the acoustic intensity vector throughout a large volume is discussed. This tool consists of an array of fifty microphones that form a spherical surface of radius 0.2m. A simultaneous measurement of the pressure field across all the microphones provides time-domain near-field holograms. Near-field acoustical holography is used to convert the measured pressure into a volumetric vector intensity field as a function of frequency on a grid of points ranging from the center of the spherical surface to a radius of 0.4m. The volumetric intensity is displayed on three-dimensional plots that are used to locate noise sources outside the volume. There is no restriction on the type of noise source that can be studied. The sphere is mobile and can be moved from location to location to hunt for unidentified noise sources. An experiment inside a Boeing 757 aircraft in flight successfully tested the ability of the array to locate low-noise-excited sources on the fuselage. Reference transducers located on suspected noise source locations can also be used to increase the ability of this device to separate and identify multiple noise sources at a given frequency by using the theory of partial field decomposition. The frequency range of operation is 0 to 1400Hz. This device is ideal for the study of noise sources in commercial and military transportation vehicles in air, on land and underwater.

  13. Locating ignimbrite source using volcanologic and magnetic proxies: the Afyon-Eskisehir case study (Western Anatolia)

    NASA Astrophysics Data System (ADS)

    Agrò, Alessandro; Zanella, Elena; Le Pennec, Jean-Luc; Temel, Abidin

    2013-04-01

    This study exploits volcanologic and magnetic techniques to the investigation of the Early-Middle Miocene pyroclastic sequence exposed in the ~120 x 80 km area comprised between the cities of Eskisehir to the North and Afyon to the South (Western Anatolia), in order to locate the source by combining flow directions inferred by field analysis (clasts embrication and sedimentary structures) and those obtained by the analysis of magnetic fabric on the ignimbrite deposits (anisotropy of magnetic susceptibility, AMS, and anisotropy of remanent magnetization, ARM). Moreover we integrated directional flow data with preliminary isopleth and isopach maps of the air-fall deposits. The sequence belongs to the most important magmatic activity in the region, named Kırka-Afyon-Isparta Volcanism (KAIV), which originated a calc-alkaline pyroclastic sequence intercalated with some lava and breccias, and the products of an effusive activity with alkaline affinities lasted until Quaternary times. Stratigraphy points out to the presence of two main eruptive events which originated several ignimbrite units distinguished on the basis of macroscopic features (mineralogy and texture) and areal distribution of the deposits; the overall areal extension and volume of the pyroclastic products is ~8,000 km2 and ~200 km3. The oldest event generated the Akcakaya ignimbrites, which are exposed in the Northern part of the area; lacustrine sedimentary deposits separate them from the younger Demirli ignimbrites, cropping out in the Southern part of the area; both the Akcakaya and Demirli ignimbrites are overlain by lava sheets. Magnetic sampling has been carried out at 20 areal distributed localities in the two ignimbrite deposits (30 sites, 600 specimens); each section was sampled from 1 to 3 sites at different stratigraphic height. Rock magnetic measurements point out to the presence of Ti-magnetite as the main magnetic carrier. At some localities AMS fabric is vertically consistent through the

  14. An empirical study of acoustic/infrasonic source and propagation effects using a large dataset of explosions

    NASA Astrophysics Data System (ADS)

    Morton, E.; Arrowsmith, S.

    2013-12-01

    In May 2013, we performed a series of seventy explosion tests, varying the mass, shape, and height of the explosives. Shots were comprised of 11.6 kg, 4.9 kg and 1.7 kg cylinders and 14.9 kg spheres, all composed of Comp-B. Explosive heights varied between 4, 2, 1, and 1/2 m above the surface, with a few additional shots at the surface, and buried 1 m below the surface. Explosives above the surface were suspended by rope between two concrete pillars. In addition, ground surfaces below nine suspended shots were altered from dry sand to chicken wire and concrete blocks. Eight of the suspended shots varied the direction of the detonator on the cylinder explosive. We monitored the explosions on thirteen acoustic stations. Four temporary stations were deployed surrounding the shot site at less than 1 km distance. Ten additional stations were at distances of 1 to less than 9 km from the shot site, and two stations were at larger distances of ~23 km and ~92 km from the shot site. Five of these stations were temporary stations, and five are part of the Los Alamos Seismo-acoustic Network. We report on a detailed analysis of acoustic signal differences related to the variations of explosives and to variations in meteorology from shot to shot through examination of waveforms and effective sound speed. The large quantity of data from repeating shots enables us to formally characterize the relative importance of source and path variations.

  15. Benthic microbial fuel cell as direct power source for an acoustic modem and seawater oxygen/temperature sensor system.

    PubMed

    Gong, Yanming; Radachowsky, Sage E; Wolf, Michael; Nielsen, Mark E; Girguis, Peter R; Reimers, Clare E

    2011-06-01

    Supported by the natural potential difference between anoxic sediment and oxic seawater, benthic microbial fuel cells (BMFCs) promise to be ideal power sources for certain low-power marine sensors and communication devices. In this study a chambered BMFC with a 0.25 m(2) footprint was used to power an acoustic modem interfaced with an oceanographic sensor that measures dissolved oxygen and temperature. The experiment was conducted in Yaquina Bay, Oregon over 50 days. Several improvements were made in the BMFC design and power management system based on lessons learned from earlier prototypes. The energy was harvested by a dynamic gain charge pump circuit that maintains a desired point on the BMFC's power curve and stores the energy in a 200 F supercapacitor. The system also used an ultralow power microcontroller and quartz clock to read the oxygen/temperature sensor hourly, store data with a time stamp, and perform daily polarizations. Data records were transmitted to the surface by the acoustic modem every 1-5 days after receiving an acoustic prompt from a surface hydrophone. After jump-starting energy production with supplemental macroalgae placed in the BMFC's anode chamber, the average power density of the BMFC adjusted to 44 mW/m(2) of seafloor area which is better than past demonstrations at this site. The highest power density was 158 mW/m(2), and the useful energy produced and stored was ≥ 1.7 times the energy required to operate the system. PMID:21545151

  16. Tracking the MSL-SAM methane detection source location Through Mars Regional Atmospheric Modeling System (MRAMS)

    NASA Astrophysics Data System (ADS)

    Pla-García, Jorge

    2016-04-01

    1. Introduction: The putative in situ detection of methane by Sample Analysis at Mars (SAM) instrument suite on Curiosi-ty at Gale crater has garnered significant attention because of the potential implications for the presence of geological methane sources or indigenous Martian organisms [1, 2]. SAM reported detection of back-ground levels of atmospheric methane of mean value 0.69±0.25 parts per billion by volume (ppbv) at the 95% confidence interval (CI). Additionally, in four sequential measurements spanning a 60-sol period, SAM observed elevated levels of methane of 7.2±2.1 ppbv (95% CI), implying that Mars is episodically producing methane from an additional unknown source. There are many major unresolved questions regard-ing this detection: 1) What are the potential sources of the methane release? 2) What causes the rapid decrease in concentration? and 3) Where is the re-lease location? 4) How spatially extensive is the re-lease? 5) For how long is CH4 released? Regarding the first question, the source of methane, is so far not identified. It could be related with geo-logical process like methane release from clathrates [3], serpentinisation [4] and volcanism [5]; or due to biological activity from methanogenesis [6]. To answer the second question, the rapid decrease in concentration, it is important to note that the photo-chemical lifetime of methane is of order 100 years, much longer than the atmospheric mixing time scale, and thus the gas should tend to be well mixed except near a source or shortly after an episodic release. The observed spike of 7 ppb from the background of <1 ppb, and then the rapid return to the background lev-el could be due to a sink (destruction) or due to at-mospheric mixing. A wind mediated erosion process of ordinary quartz crystals was proposed to produce activated quartz grains, which sequester methane by forming covalent Si-C bonds. If this process is op-erational on Mars today, which some recent prelimi-nary studies on

  17. Acoustic Target Location and Scattering Feature identification for a solid cylinder utilizing reversible Synthetic Aperture Sonar filtering

    NASA Astrophysics Data System (ADS)

    Eastland, Grant; Marston, Timothy; Marston, Philip

    2010-10-01

    Understanding the scattering features of proud and partially exposed cylinders is relevant to understanding the high frequency scattering by a variety of simple targets. We performed various experiments where partial exposure was studied by lowering a solid aluminum cylinder through a flat free surface into a tank of water insonified at grazing incidence with short pulses to identify different features while monitoring evolution of the scattering as a function of the amount of exposure. The present investigation also allows for the recording of bistatic scattering and reversible filtering based on a form of synthetic aperture sonar (SAS). The slope of the feature timing, derived using ray theory, expressed by the derivative dt/dh where t is the measured time of the feature, depends on the feature type as well as the source and receiver grazing angles. Free surface interactions for features revealed by the slopes are accurately identified using reversible SAS filtering.

  18. A Review of Advancements in Particulate Matter Sampling and Analysis and its Application to Identifying Source Impacts at Receptor Locations

    EPA Science Inventory

    Time-integrated (typically 24-hr) filter-based methods (historical methods) form the underpinning of our understanding of the fate, impact of source emissions at receptor locations (source impacts), and potential health and welfare effects of particulate matter (PM) in air. Over...

  19. West Texas array experiment: Noise and source characterization of short-range infrasound and acoustic signals, along with lab and field evaluation of Intermountain Laboratories infrasound microphones

    NASA Astrophysics Data System (ADS)

    Fisher, Aileen

    spatial wind noise filtering hoses or pipes. The grid was within the distance limits of a single gauge's normal hose array, and data were used to perform a spatial noise correlation study. The highest correlation values were not found in the lower frequencies as anticipated, owing to a lack of sources in the lower range and the uncorrelated nature of wind noise. The highest values, with cross-correlation averages between 0.4 and 0.7 from 3 to 17 m between gauges, were found at night from 10 and 20 Hz due to a continuous local noise source and low wind. Data from the larger array were used to identify continuous and impulsive signals in the area that comprise the ambient noise field. Ground truth infrasound and acoustic, time and location data were taken for a highway site, a wind farm, and a natural gas compressor. Close-range sound data were taken with a single IML "traveler" gauge. Spectrograms and spectrum peaks were used to identify their source signatures. Two regional location techniques were also tested with data from the large array by using a propane cannon as a controlled, impulsive source. A comparison is presented of the Multiple Signal Classification Algorithm (MUSIC) to a simple, quadratic, circular wavefront algorithm. MUSIC was unable to effectively separate noise and source eignenvalues and eigenvectors due to spatial aliasing of the propane cannon signal and a lack of incoherent noise. Only 33 out of 80 usable shots were located by MUSIC within 100 m. Future work with the algorithm should focus on location of impulsive and continuous signals with development of methods for accurate separation of signal and noise eigenvectors in the presence of coherent noise and possible spatial aliasing. The circular wavefront algorithm performed better with our specific dataset and successfully located 70 out of 80 propane cannon shots within 100 m of the original location, 66 of which were within 20 m. This method has low computation requirements, making it well

  20. System for locating the sources of wideband dE/dt from lightning

    NASA Technical Reports Server (NTRS)

    Thomson, E. M.; Medelius, P. J.; Davis, S.

    1994-01-01

    A system has been developed to measure wideband electic field derivatives (dE/dt) at five ground stations in a 15 km x 15 km network at Kennedy Space Center. Individual station responses are normalized using digital filters. Pulse-timing resolution is improved to much less than 50-ns sample interval by interpolation using packing in the frequency domain. A time tag for each pulse is defined as the mean of the times of the rising-edge half peak, peak, and falling-edge half peak. The standard deviation in these times defines the timing error and is shown to be a function of noise and bandwidth rather than digitization rate. Each of the four unknowns for a pulse source location (x,y,z) and time of occurrence (t) is found from the five time-tag measurements using different weightings for all five combinations of the four-station hyperbolic equations. Weighting factors and errors in x,y,z and t are estimated using error propagation techniques.

  1. How drone flies (Eristalis tenax L., Syrphidae, Diptera) use floral guides to locate food sources.

    PubMed

    Dinkel, T; Lunau, K

    2001-09-01

    In this study we show how inexperienced syrphid flies, Eristalis tenax, orient on artificial flowers by means of floral guides. To test the effect of floral guides such as line and ring markings on the probability and speed of the location of a potential food source, we exploited the spontaneous proboscis reaction triggered by yellow colour stimuli. We tested whether and how fast the flies, when placed on the edge of a circular dummy flower, found a small central yellow spot and touched it with the proboscis extended. The flies found the central yellow spot more often and faster if guide lines from the margin to the yellow spot were present. The effect of guide lines was dependent on the colour of the dummy flower, and independent of the colour of the guide lines, except for yellow guide lines releasing the proboscis reaction. The effect of guide lines was stronger if the yellow spot was hidden in a 2 mm deep depression and thus not as easily visible to the flies. Ring guides had a significant effect on performance only when the intensity of the central yellow spot was low. PMID:12770188

  2. Study on the Non-contact Acoustic Inspection Method for Concrete Structures by using Strong Ultrasonic Sound source

    NASA Astrophysics Data System (ADS)

    Sugimoto, Tsuneyoshi; Uechi, Itsuki; Sugimoto, Kazuko; Utagawa, Noriyuki; Katakura, Kageyoshi

    Hammering test is widely used to inspect the defects in concrete structures. However, this method has a major difficulty in inspect at high-places, such as a tunnel ceiling or a bridge girder. Moreover, its detection accuracy is dependent on a tester's experience. Therefore, we study about the non-contact acoustic inspection method of the concrete structure using the air borne sound wave and a laser Doppler vibrometer. In this method, the concrete surface is excited by air-borne sound wave emitted with a long range acoustic device (LRAD), and the vibration velocity on the concrete surface is measured by a laser Doppler vibrometer. A defect part is detected by the same flexural resonance as the hammer method. It is already shown clearly that detection of a defect can be performed from a long distance of 5 m or more using a concrete test object. Moreover, it is shown that a real concrete structure can also be applied. However, when the conventional LRAD was used as a sound source, there were problems, such as restrictions of a measurement angle and the surrounding noise. In order to solve these problems, basic examination which used the strong ultrasonic wave sound source was carried out. In the experiment, the concrete test object which includes an imitation defect from 5-m distance was used. From the experimental result, when the ultrasonic sound source was used, restrictions of a measurement angle become less severe and it was shown that circumference noise also falls dramatically.

  3. Fan Noise Prediction System Development: Source/Radiation Field Coupling and Workstation Conversion for the Acoustic Radiation Code

    NASA Technical Reports Server (NTRS)

    Meyer, H. D.

    1993-01-01

    The Acoustic Radiation Code (ARC) is a finite element program used on the IBM mainframe to predict far-field acoustic radiation from a turbofan engine inlet. In this report, requirements for developers of internal aerodynamic codes regarding use of their program output an input for the ARC are discussed. More specifically, the particular input needed from the Bolt, Beranek and Newman/Pratt and Whitney (turbofan source noise generation) Code (BBN/PWC) is described. In a separate analysis, a method of coupling the source and radiation models, that recognizes waves crossing the interface in both directions, has been derived. A preliminary version of the coupled code has been developed and used for initial evaluation of coupling issues. Results thus far have shown that reflection from the inlet is sufficient to indicate that full coupling of the source and radiation fields is needed for accurate noise predictions ' Also, for this contract, the ARC has been modified for use on the Sun and Silicon Graphics Iris UNIX workstations. Changes and additions involved in this effort are described in an appendix.

  4. Theoretical study on line source laser-induced surface acoustic waves in two-layer structure in ablative regime

    NASA Astrophysics Data System (ADS)

    Shen, Z. H.; Xu, B. Q.; Ni, X. W.; Lu, J.; Zhang, S. Y.

    2004-03-01

    The generation of ultrasound in film-substrate system by a laser line source is studied in the case of ablation mechanism, which can be realized by adding a liquid layer at the excitation point. The time domain displacement can be yielded by the numerical jointed inversed Laplace-Fourier transformation technique. The typical surface acoustic waves (SAW) of two layer structures, slow film on fast substrate and fast film on slow substrate, are obtained and the effect of the propagation distance and the thickness of the film on the SAW are given.

  5. Locating pollutant emission sources with optical remote sensing measurements and an improved one-dimensional radial plume mapping technique.

    PubMed

    Wu, Chang-fu; Lin, Shih-Chun; Yeh, Cheng-Kai

    2012-04-01

    Previous studies have shown that there was a relatively large amount of uncertainty along the major wind direction in the results of locating emission sources using the one-dimensional radial plume mapping (RPM(1D)) technique based on optical remote sensing measurements. This paper proposes setting up an additional monitoring line that is perpendicular to the original scanning beam geometry to reduce this uncertainty. We first conducted a computer simulation study using the Gaussian dispersion model to generate the downwind concentrations of plumes from 400 source locations in a 201 m × 201 m spatial domain under various wind directions (n = 181). The optical remote sensing instrument was assumed to be at (0, 0) with two perpendicular monitoring lines, each of which had three beam segments of equal length. Each pair of the reconstructed downwind concentration profiles was then used to trace back to the source locations. The results showed that the accuracy of the method and its uncertainty were improved by using the proposed two-line RPM(1D) approach rather than the original one-line RPM(1D) approach at most simulated source locations. In a follow-up field experiment, a tracer gas was released at the coordinate of (100, 100). The release location was covered within the 0.25- to 0.5-probability area of the estimated results, and the distance between the actual and estimated source locations was 18.4 m (9.2% of the longest beam path). PMID:22382995

  6. Locating non-volcanic tremor along the San Andreas Fault using a multiple array source imaging technique

    USGS Publications Warehouse

    Ryberg, T.; Haberland, C.H.; Fuis, G.S.; Ellsworth, W.L.; Shelly, D.R.

    2010-01-01

    Non-volcanic tremor (NVT) has been observed at several subduction zones and at the San Andreas Fault (SAF). Tremor locations are commonly derived by cross-correlating envelope-transformed seismic traces in combination with source-scanning techniques. Recently, they have also been located by using relative relocations with master events, that is low-frequency earthquakes that are part of the tremor; locations are derived by conventional traveltime-based methods. Here we present a method to locate the sources of NVT using an imaging approach for multiple array data. The performance of the method is checked with synthetic tests and the relocation of earthquakes. We also applied the method to tremor occurring near Cholame, California. A set of small-aperture arrays (i.e. an array consisting of arrays) installed around Cholame provided the data set for this study. We observed several tremor episodes and located tremor sources in the vicinity of SAF. During individual tremor episodes, we observed a systematic change of source location, indicating rapid migration of the tremor source along SAF. ?? 2010 The Authors Geophysical Journal International ?? 2010 RAS.

  7. Source motion detection, estimation, and compensation for underwater acoustics inversion by wideband ambiguity lag-Doppler filtering.

    PubMed

    Josso, Nicolas F; Ioana, Cornel; Mars, Jérôme I; Gervaise, Cédric

    2010-12-01

    Acoustic channel properties in a shallow water environment with moving source and receiver are difficult to investigate. In fact, when the source-receiver relative position changes, the underwater environment causes multipath and Doppler scale changes on the transmitted signal over low-to-medium frequencies (300 Hz-20 kHz). This is the result of a combination of multiple paths propagation, source and receiver motions, as well as sea surface motion or water column fast changes. This paper investigates underwater acoustic channel properties in a shallow water (up to 150 m depth) and moving source-receiver conditions using extracted time-scale features of the propagation channel model for low-to-medium frequencies. An average impulse response of one transmission is estimated using the physical characteristics of propagation and the wideband ambiguity plane. Since a different Doppler scale should be considered for each propagating signal, a time-warping filtering method is proposed to estimate the channel time delay and Doppler scale attributes for each propagating path. The proposed method enables the estimation of motion-compensated impulse responses, where different Doppler scaling factors are considered for the different time delays. It was validated for channel profiles using real data from the BASE'07 experiment conducted by the North Atlantic Treaty Organization Undersea Research Center in the shallow water environment of the Malta Plateau, South Sicily. This paper provides a contribution to many field applications including passive ocean tomography with unknown natural sources position and movement. Another example is active ocean tomography where sources motion enables to rapidly cover one operational area for rapid environmental assessment and hydrophones may be drifting in order to avoid additional flow noise. PMID:21218875

  8. Location of the Norma transient with the HEAO 1 scanning modulation collimator. [X ray source in Norma Constellation

    NASA Technical Reports Server (NTRS)

    Fabbiano, G.; Gursky, H.; Schwartz, D. A.; Schwarz, J.; Bradt, H. V.; Doxsey, R. E.

    1978-01-01

    A precise position has been obtained for an X-ray transient source in Norma. The location uncertainty includes a variable star previously suggested to be the optical counterpart. This transient is associated with the steady X-ray source MX 1608-52 and probably with an X-ray burst source. A binary system containing a low-mass primary and a neutron-star or black-hole secondary of a few solar masses is consistent with the observations.

  9. Numerical method to compute acoustic scattering effect of a moving source.

    PubMed

    Song, Hao; Yi, Mingxu; Huang, Jun; Pan, Yalin; Liu, Dawei

    2016-01-01

    In this paper, the aerodynamic characteristic of a ducted tail rotor in hover has been numerically studied using CFD method. An analytical time domain formulation based on Ffowcs Williams-Hawkings (FW-H) equation is derived for the prediction of the acoustic velocity field and used as Neumann boundary condition on a rigid scattering surface. In order to predict the aerodynamic noise, a hybrid method combing computational aeroacoustics with an acoustic thin-body boundary element method has been proposed. The aerodynamic results and the calculated sound pressure levels (SPLs) are compared with the known method for validation. Simulation results show that the duct can change the value of SPLs and the sound directivity. Compared with the isolate tail rotor, the SPLs of the ducted tail rotor are smaller at certain azimuth. PMID:27610323

  10. Characterization and applications of VLF/LF source locations from lightning using the Huntsville Alabama Marx Meter Array

    NASA Astrophysics Data System (ADS)

    Bitzer, Phillip M.; Christian, Hugh J.; Stewart, Mike; Burchfield, Jeff; Podgorny, Scott; Corredor, David; Hall, John; Kuznetsov, Evgeny; Franklin, Veronica

    2013-04-01

    Arrays that detect and locate the four-dimensional spacetime positions of radiation sources from lightning have largely utilized sensors sensitive to the very high frequency (VHF) regime with ˜ 15 km baselines or very low frequency/low frequency (VLF/LF) regime with ˜ 100 km baselines. This paper details initial results from the newly developed Huntsville Alabama Marx Meter Array (HAMMA), consisting of Marx meters (electric field change meters) sensitive to a frequency band ˜ 1 Hz to 400 kHz. The arrival time of HAMMA waveforms due to radiation sources from lightning are used to determine the spacetime position of these sources. The locations are compared with two well-documented and operational arrays, the National Lightning Detection Network (NLDN) and the North Alabama Lightning Mapping Array (NALMA). The standard deviation of the difference between HAMMA and NLDN locations of return strokes is 305 and 266 m in x and y, respectively, while the standard deviation of the difference between HAMMA and NALMA sources is 237, 226, and 688 m in x, y and z, respectively. We further show that NLDN intracloud locations differ in horizontal distance from the corresponding HAMMA locations by a median value of 479 m. In addition, we use HAMMA source locations to map several lightning flashes in the VLF/LF and show HAMMA sources largely map out the same electrical extent as VHF sources and provide unique insights to the properties of the discharges occurring. Finally, we show that VLF/LF sources can determine the leader polarity in several example flashes but not necessarily whether a flash comes to ground. Copyright 2013 American Geophysical Union. All rights reserved.

  11. Acoustic calibration apparatus for calibrating plethysmographic acoustic pressure sensors

    NASA Technical Reports Server (NTRS)

    Zuckerwar, Allan J. (Inventor); Davis, David C. (Inventor)

    1995-01-01

    An apparatus for calibrating an acoustic sensor is described. The apparatus includes a transmission material having an acoustic impedance approximately matching the acoustic impedance of the actual acoustic medium existing when the acoustic sensor is applied in actual in-service conditions. An elastic container holds the transmission material. A first sensor is coupled to the container at a first location on the container and a second sensor coupled to the container at a second location on the container, the second location being different from the first location. A sound producing device is coupled to the container and transmits acoustic signals inside the container.

  12. Changes in Humpback Whale Song Occurrence in Response to an Acoustic Source 200 km Away

    PubMed Central

    Risch, Denise; Corkeron, Peter J.; Ellison, William T.; Van Parijs, Sofie M.

    2012-01-01

    The effect of underwater anthropogenic sound on marine mammals is of increasing concern. Here we show that humpback whale (Megaptera novaeangliae) song in the Stellwagen Bank National Marine Sanctuary (SBNMS) was reduced, concurrent with transmissions of an Ocean Acoustic Waveguide Remote Sensing (OAWRS) experiment approximately 200 km away. We detected the OAWRS experiment in SBNMS during an 11 day period in autumn 2006. We compared the occurrence of song for 11 days before, during and after the experiment with song over the same 33 calendar days in two later years. Using a quasi-Poisson generalized linear model (GLM), we demonstrate a significant difference in the number of minutes with detected song between periods and years. The lack of humpback whale song during the OAWRS experiment was the most substantial signal in the data. Our findings demonstrate the greatest published distance over which anthropogenic sound has been shown to affect vocalizing baleen whales, and the first time that active acoustic fisheries technology has been shown to have this effect. The suitability of Ocean Acoustic Waveguide Remote Sensing technology for in-situ, long term monitoring of marine ecosystems should be considered, bearing in mind its possible effects on non-target species, in particular protected species. PMID:22253769

  13. Changes in humpback whale song occurrence in response to an acoustic source 200 km away.

    PubMed

    Risch, Denise; Corkeron, Peter J; Ellison, William T; Parijs, Sofie M Van

    2012-01-01

    The effect of underwater anthropogenic sound on marine mammals is of increasing concern. Here we show that humpback whale (Megaptera novaeangliae) song in the Stellwagen Bank National Marine Sanctuary (SBNMS) was reduced, concurrent with transmissions of an Ocean Acoustic Waveguide Remote Sensing (OAWRS) experiment approximately 200 km away. We detected the OAWRS experiment in SBNMS during an 11 day period in autumn 2006. We compared the occurrence of song for 11 days before, during and after the experiment with song over the same 33 calendar days in two later years. Using a quasi-Poisson generalized linear model (GLM), we demonstrate a significant difference in the number of minutes with detected song between periods and years. The lack of humpback whale song during the OAWRS experiment was the most substantial signal in the data. Our findings demonstrate the greatest published distance over which anthropogenic sound has been shown to affect vocalizing baleen whales, and the first time that active acoustic fisheries technology has been shown to have this effect. The suitability of Ocean Acoustic Waveguide Remote Sensing technology for in-situ, long term monitoring of marine ecosystems should be considered, bearing in mind its possible effects on non-target species, in particular protected species. PMID:22253769

  14. Acoustic-gravity waves generated by atmospheric and near-surface sources

    NASA Astrophysics Data System (ADS)

    Kunitsyn, Viacheslav E.; Kholodov, Alexander S.; Krysanov, Boris Yu.; Andreeva, Elena S.; Nesterov, Ivan A.; Vorontsov, Artem M.

    2013-04-01

    Numerical simulation of the acoustic-gravity waves (AGW) generated by long-period oscillations of the Earth's (oceanic) surface, earthquakes, explosions, thermal heating, seiches, and tsunami is carried out. Wavelike disturbances are quite frequent phenomena in the atmosphere and ionosphere. These events can be caused by the impacts from space and atmosphere, by oscillations of the Earth'as surface and other near-surface events. These wavelike phenomena in the atmosphere and ionosphere appear as the alternating areas of enhanced and depleted density (in the atmosphere) or electron concentration (in the ionosphere). In the paper, AGW with typical frequencies of a few hertz - millihertz are analyzed. AGW are often observed after the atmospheric perturbations, during the earthquakes, and some time (a few days to hours) in advance of the earthquakes. Numerical simulation of the generation of AGW by long-period oscillations of the Earth's and oceanic surface, earthquakes, explosions, thermal heating, seiches, and tsunami is carried out. The AGW generated by the near-surface phenomena within a few hertz-millihertz frequency range build up at the mid-atmospheric and ionospheric altitudes, where they assume their typical spatial scales of the order of a few hundred kilometers. Oscillations of the ionospheric plasma within a few hertz-millihertz frequency range generate electromagnetic waves with corresponding frequencies as well as travelling ionospheric irregularities (TIDs). Such structures can be successfully monitored using satellite radio tomography (RT) techniques. For the purposes of RT diagnostics, 150/400 MHz transmissions from low-orbiting navigational satellites flying in polar orbits at the altitudes of about 1000 km as well as 1.2-1.5 GHz signals form high-orbiting (orbital altitudes about 20000 km) navigation systems like GPS/GLONASS are used. The results of experimental studies on generation of wavelike disturbances by particle precipitation are presented

  15. Tracking the MSL-SAM methane detection source location Through Mars Regional Atmospheric Modeling System (MRAMS)

    NASA Astrophysics Data System (ADS)

    Pla-García, Jorge

    2016-04-01

    1. Introduction: The putative in situ detection of methane by Sample Analysis at Mars (SAM) instrument suite on Curiosi-ty at Gale crater has garnered significant attention because of the potential implications for the presence of geological methane sources or indigenous Martian organisms [1, 2]. SAM reported detection of back-ground levels of atmospheric methane of mean value 0.69±0.25 parts per billion by volume (ppbv) at the 95% confidence interval (CI). Additionally, in four sequential measurements spanning a 60-sol period, SAM observed elevated levels of methane of 7.2±2.1 ppbv (95% CI), implying that Mars is episodically producing methane from an additional unknown source. There are many major unresolved questions regard-ing this detection: 1) What are the potential sources of the methane release? 2) What causes the rapid decrease in concentration? and 3) Where is the re-lease location? 4) How spatially extensive is the re-lease? 5) For how long is CH4 released? Regarding the first question, the source of methane, is so far not identified. It could be related with geo-logical process like methane release from clathrates [3], serpentinisation [4] and volcanism [5]; or due to biological activity from methanogenesis [6]. To answer the second question, the rapid decrease in concentration, it is important to note that the photo-chemical lifetime of methane is of order 100 years, much longer than the atmospheric mixing time scale, and thus the gas should tend to be well mixed except near a source or shortly after an episodic release. The observed spike of 7 ppb from the background of <1 ppb, and then the rapid return to the background lev-el could be due to a sink (destruction) or due to at-mospheric mixing. A wind mediated erosion process of ordinary quartz crystals was proposed to produce activated quartz grains, which sequester methane by forming covalent Si-C bonds. If this process is op-erational on Mars today, which some recent prelimi-nary studies on

  16. Source amplitudes of volcano-seismic signals determined by the amplitude source location method as a quantitative measure of event size

    NASA Astrophysics Data System (ADS)

    Kumagai, Hiroyuki; Lacson, Rudy; Maeda, Yuta; Figueroa, Melquiades S.; Yamashina, Tadashi; Ruiz, Mario; Palacios, Pablo; Ortiz, Hugo; Yepes, Hugo

    2013-05-01

    The amplitude source location (ASL) method, which uses high-frequency amplitudes under the assumption of isotropic S-wave radiation, has been shown to be useful for locating the sources of various types of volcano-seismic signals. We tested the ASL method by using synthetic seismograms and examined the source amplitudes determined by this method for various types of volcano-seismic signals observed at different volcanoes. Our synthetic tests indicated that, although ASL results are not strongly influenced by velocity structure and noise, they do depend on site amplification factors at individual stations. We first applied the ASL method to volcano-tectonic (VT) earthquakes at Taal volcano, Philippines. Our ASL results for the largest VT earthquake showed that a frequency range of 7-12 Hz and a Q value of 50 were appropriate for the source location determination. Using these values, we systematically estimated source locations and amplitudes of VT earthquakes at Taal. We next applied the ASL method to long-period events at Cotopaxi volcano and to explosions at Tungurahua volcano in Ecuador. We proposed a practical approach to minimize the effects of site amplifications among different volcano seismic networks, and compared the source amplitudes of these various volcano-seismic events with their seismic magnitudes. We found a proportional relation between seismic magnitude and the logarithm of the source amplitude. The ASL method can be used to determine source locations of small events for which onset measurements are difficult, and thus can estimate the sizes of events over a wider range of sizes compared with conventional hypocenter determination approaches. Previously, there has been no parameter widely used to quantify the sources of volcano-seismic signals. This study showed that the source amplitude determined by the ASL method may be a useful quantitative measure of volcano-seismic event size.

  17. Acoustic emission linear pulse holography

    DOEpatents

    Collins, H. Dale; Busse, Lawrence J.; Lemon, Douglas K.

    1985-01-01

    Defects in a structure are imaged as they propagate, using their emitted acoustic energy as a monitored source. Short bursts of acoustic energy propagate through the structure to a discrete element receiver array. A reference timing transducer located between the array and the inspection zone initiates a series of time-of-flight measurements. A resulting series of time-of-flight measurements are then treated as aperture data and are transferred to a computer for reconstruction of a synthetic linear holographic image. The images can be displayed and stored as a record of defect growth.

  18. Acoustic emission linear pulse holography

    SciTech Connect

    Collins, H. D.; Busse, L. J.; Lemon, D. K.

    1985-07-30

    Defects in a structure are imaged as they propagate, using their emitted acoustic energy as a monitored source. Short bursts of acoustic energy propagate through the structure to a discrete element receiver array. A reference timing transducer located between the array and the inspection zone initiates a series of time-of-flight measurements. A resulting series of time-of-flight measurements are then treated as aperture data and are transferred to a computer for reconstruction of a synthetic linear holographic image. The images can be displayed and stored as a record of defect growth.

  19. Nature and location of the source of plasma sheet boundary layer ion beams

    NASA Astrophysics Data System (ADS)

    Elphic, R. C.; Onsager, T. G.; Thomsen, M. F.; Gosling, J. T.

    1995-02-01

    Onsager et al. (1991) have put forward a model of the formation of the plasma sheet boundary layer (PSBL) which relies on a steady source of plasma from a spatially extended plasma sheet, together with steady equatorward and earthward ExB convection of field lines due to reconnection at a downtail neutral line. This model is a synthesis of earlier proposals and it explains such features as an electron layer exterior to the ion boundary layer, ion velocity dispersion, counter streaming beams, low-speed cutoffs in the beams. It also explains the apparent evolution of the ion beams through 'kidney bean' shaped velocity-space distributions toward quasi-isotropic shells without invoking pitch angle scattering or energy diffusion. In this paper we explore two ramifications of the model. In principle we can map, as a function of time, the downtail neutral line distance and establish whether or not it is retreating during substorm recovery. We can also reconstruct the plasma distribution function near the neutral line to see if it is most consistent with mantle or plasma sheet plasma. We perform this analysis using International Sun Earth Explorer (ISEE) Fast Plasma Experiment (FPE) data for two plasma sheet recovery events, one on March 1, 1978, and the other on April 18, 1978. On March 1, 1978, we find evidence for an initial retreat from around 110 to 160 R(sub E) in the first 15 min; little further retreat occurs thereafter. On April 18, 1978, the neutral line location ranges from as little as 40 R(sub E) tailward of the satellite to as much as 200 R(sub E), but there is no evidence for a systematic retreat. The reconstructed ion distributions for these events are most consistent with a plasma sheet origin for the March 1 case and possibly plasma mantle or low-latitude boundary layer for the April 18 case.

  20. Surveillance of nasal and bladder cancer to locate sources of exposure to occupational carcinogens.

    PubMed Central

    Teschke, K; Morgan, M S; Checkoway, H; Franklin, G; Spinelli, J J; van Belle, G; Weiss, N S

    1997-01-01

    OBJECTIVE: To locate sources of occupational exposure to nasal and bladder carcinogens for surveillance follow up in British Columbia, Canada. METHODS: Incident cases of nasal cancer (n = 48), bladder cancer (n = 105), and population based controls (n = 159) matched for sex and age, were interviewed about their jobs, exposures, and smoking histories. Odds ratios (ORs) were calculated for 57 occupational groups with stratified exact methods to control for age, sex, and smoking. RESULTS: Occupational groups at increased risk of nasal cancer included: textile workers (six cases, OR 7.6); miners, drillers, and blasters (six cases, OR 3.5); welders (two cases, OR 3.5); pulp and paper workers (three cases, OR 3.1); and plumbers and pipefitters (two cases, OR 3.0). Nasal cancer ORs were not increased in occupations exposed to wood dust, possibly due to low exposures in local wood industries. Strongly increased risks of bladder cancer were found for sheet metal workers (four cases, OR 5.3), miners (19 cases, OR 4.5), gardeners (six cases, OR 3.7), and hairdressers (three cases, OR 3.2). Among occupations originally considered at risk, the following had increased risks of bladder cancer: painters (four cases, OR 2.8); laundry workers (five cases, OR 2.3); chemical and petroleum workers (15 cases, OR 1.8); machinists (eight cases, OR 1.6); and textile workers (three cases, OR 1.5). CONCLUSIONS: Occupational groups with increased risks and three or more cases with similar duties were selected for surveillance follow up. For nasal cancer, these included textile workers (five were garment makers) and pulp and paper workers (three performed maintenance tasks likely to entail stainless steel welding). For bladder cancer, these included miners (12 worked underground), machinists (five worked in traditional machining), hairdressers (three had applied hair dyes), and laundry workers (three were drycleaners). PMID:9245952

  1. Room Acoustics

    NASA Astrophysics Data System (ADS)

    Kuttruff, Heinrich; Mommertz, Eckard

    The traditional task of room acoustics is to create or formulate conditions which ensure the best possible propagation of sound in a room from a sound source to a listener. Thus, objects of room acoustics are in particular assembly halls of all kinds, such as auditoria and lecture halls, conference rooms, theaters, concert halls or churches. Already at this point, it has to be pointed out that these conditions essentially depend on the question if speech or music should be transmitted; in the first case, the criterion for transmission quality is good speech intelligibility, in the other case, however, the success of room-acoustical efforts depends on other factors that cannot be quantified that easily, not least it also depends on the hearing habits of the listeners. In any case, absolutely "good acoustics" of a room do not exist.

  2. Controlled and in situ target strengths of the jumbo squid Dosidicus gigas and identification of potential acoustic scattering sources.

    PubMed

    Benoit-Bird, Kelly J; Gilly, William F; Au, Whitlow W L; Mate, Bruce

    2008-03-01

    This study presents the first target strength measurements of Dosidicus gigas, a large squid that is a key predator, a significant prey, and the target of an important fishery. Target strength of live, tethered squid was related to mantle length with values standardized to the length squared of -62.0, -67.4, -67.9, and -67.6 dB at 38, 70, 120, and 200 kHz, respectively. There were relatively small differences in target strength between dorsal and anterior aspects and none between live and freshly dead squid. Potential scattering mechanisms in squid have been long debated. Here, the reproductive organs had little effect on squid target strength. These data support the hypothesis that the pen may be an important source of squid acoustic scattering. The beak, eyes, and arms, probably via the sucker rings, also play a role in acoustic scattering though their effects were small and frequency specific. An unexpected source of scattering was the cranium of the squid which provided a target strength nearly as high as that of the entire squid though the mechanism remains unclear. Our in situ measurements of the target strength of free-swimming squid support the use of the values presented here in D. gigas assessment studies. PMID:18345820

  3. Acoustics Research of Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Gao, Ximing; Houston, Janice

    2014-01-01

    The liftoff phase induces high acoustic loading over a broad frequency range for a launch vehicle. These external acoustic environments are used in the prediction of the internal vibration responses of the vehicle and components. Present liftoff vehicle acoustic environment prediction methods utilize stationary data from previously conducted hold-down tests to generate 1/3 octave band Sound Pressure Level (SPL) spectra. In an effort to update the accuracy and quality of liftoff acoustic loading predictions, non-stationary flight data from the Ares I-X were processed in PC-Signal in two flight phases: simulated hold-down and liftoff. In conjunction, the Prediction of Acoustic Vehicle Environments (PAVE) program was developed in MATLAB to allow for efficient predictions of sound pressure levels (SPLs) as a function of station number along the vehicle using semi-empirical methods. This consisted of generating the Dimensionless Spectrum Function (DSF) and Dimensionless Source Location (DSL) curves from the Ares I-X flight data. These are then used in the MATLAB program to generate the 1/3 octave band SPL spectra. Concluding results show major differences in SPLs between the hold-down test data and the processed Ares I-X flight data making the Ares I-X flight data more practical for future vehicle acoustic environment predictions.

  4. MEMS Biomimetic Acoustic Pressure Gradient Sensitive Structure for Sound Source Localization

    PubMed Central

    An, Peng; Yuan, Weizheng; Ren, Sen

    2009-01-01

    The parasitoid fly Ormia ochracea shows an astonishing localization ability with its tiny hearing organ. A novel MEMS biomimetic acoustic pressure gradient sensitive structure was designed and fabricated by mimicking the mechanically coupled tympana of the fly. Firstly, the analytic representation formulas of the resultant force and resultant moment of the incoming plane wave acting on the structure were derived. After that, structure modal analysis was performed and the results show that the structure has out-of-phase and in-phase vibration modes, and the corresponding eigenfrequency is decided by the stiffness of vertical torsional beam and horizontal beam respectively. Acoustic-structural coupled analysis was performed and the results show that phase difference and amplitude difference between the responses of the two square diaphragms of the sensitive structure are effectively enlarged through mechanical coupling beam. The phase difference and amplitude difference increase with increasing incident angle and can be used to distinguish the direction of sound arrival. At last, the fabrication process and results of the device is also presented. PMID:22346718

  5. Acoustic transducer for acoustic microscopy

    DOEpatents

    Khuri-Yakub, Butrus T.; Chou, Ching H.

    1990-01-01

    A shear acoustic transducer-lens system in which a shear polarized piezoelectric material excites shear polarized waves at one end of a buffer rod having a lens at the other end which excites longitudinal waves in a coupling medium by mode conversion at selected locations on the lens.

  6. Acoustic transducer for acoustic microscopy

    DOEpatents

    Khuri-Yakub, B.T.; Chou, C.H.

    1990-03-20

    A shear acoustic transducer-lens system is described in which a shear polarized piezoelectric material excites shear polarized waves at one end of a buffer rod having a lens at the other end which excites longitudinal waves in a coupling medium by mode conversion at selected locations on the lens. 9 figs.

  7. Estimation of source location and ground impedance using a hybrid multiple signal classification and Levenberg-Marquardt approach

    NASA Astrophysics Data System (ADS)

    Tam, Kai-Chung; Lau, Siu-Kit; Tang, Shiu-Keung

    2016-07-01

    A microphone array signal processing method for locating a stationary point source over a locally reactive ground and for estimating ground impedance is examined in detail in the present study. A non-linear least square approach using the Levenberg-Marquardt method is proposed to overcome the problem of unknown ground impedance. The multiple signal classification method (MUSIC) is used to give the initial estimation of the source location, while the technique of forward backward spatial smoothing is adopted as a pre-processer of the source localization to minimize the effects of source coherence. The accuracy and robustness of the proposed signal processing method are examined. Results show that source localization in the horizontal direction by MUSIC is satisfactory. However, source coherence reduces drastically the accuracy in estimating the source height. The further application of Levenberg-Marquardt method with the results from MUSIC as the initial inputs improves significantly the accuracy of source height estimation. The present proposed method provides effective and robust estimation of the ground surface impedance.

  8. The effect of contaminant source location on worker exposure in the near-wake region.

    PubMed

    Kulmala, I; Säämänen, A; Enbom, S

    1996-10-01

    The exposure of workers in the near-wake region due to a recirculating airflow was studied experimentally and numerically. A mannequin was installed in an open-ended tunnel and tracer gas was released at several locations downstream to determine the size and location of the reverse flow region. The contaminant transport into the breathing zone was found to depend strongly on the location of the release point. The airflow field was also determined numerically assuming a steady flow and using the standard k-epsilon turbulence model. After calculating the turbulent airflow field, a large number of submicrometre particles were released in different locations downstream of the mannequin to simulate the transport of gaseous contaminants. Although this method does not provide actual exposures, it does predict the tendencies in exposure variations due to different release points quite satisfactorily. PMID:8888634

  9. Acoustic attenuation, phase and group velocities in liquid-filled pipes II: simulation for Spallation Neutron Sources and planetary exploration.

    PubMed

    Jiang, Jian; Baik, Kyungmin; Leighton, Timothy G

    2011-08-01

    This paper uses a finite element method (FEM) to compare predictions of the attenuation and sound speeds of acoustic modes in a fluid-filled pipe with those of the analytical model presented in the first paper in this series. It explains why, when the predictions of the earlier paper were compared with experimental data from a water-filled PMMA pipe, the uncertainties and agreement for attenuation data were worse than those for sound speed data. Having validated the FEM approach in this way, the versatility of FEM is thereafter demonstrated by modeling two practical applications which are beyond the analysis of the earlier paper. These applications model propagation in the mercury-filled steel pipework of the Spallation Neutron Source at the Oak Ridge National Laboratory (Tennessee), and in a long-standing design for acoustic sensors for use on planetary probes. The results show that strong coupling between the fluid and the solid walls means that erroneous interpretations are made of the data if they assume that the sound speed and attenuation in the fluid in the pipe are the same as those that would be measured in an infinite volume of identical fluid, assumptions which are common when such data have previously been interpreted. PMID:21877784

  10. Source apportionment and location by selective wind sampling and Positive Matrix Factorization.

    PubMed

    Venturini, Elisa; Vassura, Ivano; Raffo, Simona; Ferroni, Laura; Bernardi, Elena; Passarini, Fabrizio

    2014-10-01

    In order to determine the pollution sources in a suburban area and identify the main direction of their origin, PM2.5 was collected with samplers coupled with a wind select sensor and then subjected to Positive Matrix Factorization (PMF) analysis. In each sample, soluble ions, organic carbon, elemental carbon, levoglucosan, metals, and Polycyclic Aromatic Hydrocarbons (PAHs) were determined. PMF results identified six main sources affecting the area: natural gas home appliances, motor vehicles, regional transport, biomass combustion, manufacturing activities, and secondary aerosol. The connection of factor temporal trends with other parameters (i.e., temperature, PM2.5 concentration, and photochemical processes) confirms factor attributions. PMF analysis indicated that the main source of PM2.5 in the area is secondary aerosol. This should be mainly due to regional contributions, owing to both the secondary nature of the source itself and the higher concentration registered in inland air masses. The motor vehicle emission source contribution is also important. This source likely has a prevalent local origin. The most toxic determined components, i.e., PAHs, Cd, Pb, and Ni, are mainly due to vehicular traffic. Even if this is not the main source in the study area, it is the one of greatest concern. The application of PMF analysis to PM2.5 collected with this new sampling technique made it possible to obtain more detailed results on the sources affecting the area compared to a classical PMF analysis. PMID:24488520

  11. Efficient Location of Research Reference Sources in the Field of Dance.

    ERIC Educational Resources Information Center

    Kissinger, Pat; Jay, Danielle

    More than 45 basic dance reference research sources that would be useful to students, scholars, teachers, historians, and therapists are discussed in this bibliographic essay. Aspects of dance covered include choreography, criticism, teaching principles, aesthetic theory, dance therapy, and history. Sources are grouped by type: dictionaries and…

  12. Locating and estimating air emissions from sources of lead and lead compounds

    SciTech Connect

    1998-05-01

    This document describes the properties of lead and lead compounds as air pollutants, defines their production and use patterns, identifies source categories of air emissions, and provides lead emission factors. Lead is primarily used in the manufacture of lead-acid batteries, lead alloys, lead oxides in pigments, glass, lead cable coating, and a variety of lead products including ammunition and radiation shielding. Lead is emitted into the atmosphere from mining and smelting; from its use as feedstock in the production of lead alloys, lead compounds and other lead-containing products; from mobile sources; and from combustion sources. In addition to the lead and lead compound sources and emission factor data, information is provided that specifies how individual sources of lead and lead compounds may be tested to quantify air emissions.

  13. 40 CFR 55.14 - Requirements that apply to OCS sources located within 25 miles of States' seaward boundaries, by...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 6 2013-07-01 2013-07-01 false Requirements that apply to OCS sources located within 25 miles of States' seaward boundaries, by State. 55.14 Section 55.14 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) OUTER CONTINENTAL SHELF AIR REGULATIONS § 55.14 Requirements...

  14. Algorithms for locating celestial sources of X-rays and gamma flares with the aid of several spacecraft

    NASA Technical Reports Server (NTRS)

    Mersov, G. A.

    1979-01-01

    An Algorithm is suggested for defining the coordinates of X-ray and Gamma Ray radiation sources by measuring the time lag of the transmission of radiation flares from various points of space in which spacecraft are located. Instances are cited where the 2-x, 3-x and 4x spacecraft are used.

  15. Coupled High Speed Imaging and Seismo-Acoustic Recordings of Strombolian Explosions at Etna, July 2014: Implications for Source Processes and Signal Inversions.

    NASA Astrophysics Data System (ADS)

    Taddeucci, J.; Del Bello, E.; Scarlato, P.; Ricci, T.; Andronico, D.; Kueppers, U.; Cannata, A.; Sesterhenn, J.; Spina, L.

    2015-12-01

    Seismic and acoustic surveillance is routinely performed at several persistent activity volcanoes worldwide. However, interpretation of the signals associated with explosive activity is still equivocal, due to both source variability and the intrinsically limited information carried by the waves. Comparison and cross-correlation of the geophysical quantities with other information in general and visual recording in particular is therefore actively sought. At Etna (Italy) in July 2014, short-lived Strombolian explosions ejected bomb- to lapilli-sized, molten pyroclasts at a remarkably repeatable time interval of about two seconds, offering a rare occasion to systematically investigate the seismic and acoustic fields radiated by this common volcanic source. We deployed FAMoUS (FAst, MUltiparametric Setup for the study of explosive activity) at 260 meters from the vents, recording more than 60 explosions in thermal and visible high-speed videos (50 to 500 frames per second) and broadband seismic and acoustic instruments (1 to 10000 Hz for the acoustic and from 0.01 to 30 Hz for the seismic). Analysis of this dataset highlights nonlinear relationships between the exit velocity and mass of ejecta and the amplitude and frequency of the acoustic signals. It also allows comparing different methods to estimate source depth, and to validate existing theory on the coupling of airwaves with ground motion.

  16. Acoustic Scattering by Three-Dimensional Stators and Rotors Using the SOURCE3D Code. Volume 1; Analysis and Results

    NASA Technical Reports Server (NTRS)

    Meyer, Harold D.

    1999-01-01

    This report provides a study of rotor and stator scattering using the SOURCE3D Rotor Wake/Stator Interaction Code. SOURCE3D is a quasi-three-dimensional computer program that uses three-dimensional acoustics and two-dimensional cascade load response theory to calculate rotor and stator modal reflection and transmission (scattering) coefficients. SOURCE3D is at the core of the TFaNS (Theoretical Fan Noise Design/Prediction System), developed for NASA, which provides complete fully coupled (inlet, rotor, stator, exit) noise solutions for turbofan engines. The reason for studying scattering is that we must first understand the behavior of the individual scattering coefficients provided by SOURCE3D, before eventually understanding the more complicated predictions from TFaNS. To study scattering, we have derived a large number of scattering curves for vane and blade rows. The curves are plots of output wave power divided by input wave power (in dB units) versus vane/blade ratio. Some of these plots are shown in this report. All of the plots are provided in a separate volume. To assist in understanding the plots, formulas have been derived for special vane/blade ratios for which wavefronts are either parallel or normal to rotor or stator chords. From the plots, we have found that, for the most part, there was strong transmission and weak reflection over most of the vane/blade ratio range for the stator. For the rotor, there was little transmission loss.

  17. Experimental study of noise sources and acoustic propagation in a turbofan model

    NASA Astrophysics Data System (ADS)

    Lewy, S.; Canard-Caruana, S.; Julliard, J.

    1990-10-01

    Experimental studies of the acoustic radiation of subsonic fans mainly due to blade and vane presure fluctuations were performed in the SNECMA 5C2 compressor anechoic facility. A brief description of the test rig is presented noting that the CA5 turbojet engine model fan has a diameter of 47 cm, 48 blades, and a nominal rotation speed of 12,600 rpm. The two chief experiments discussed are the measurement of blade and vane pressure fluctuations by thin-film transducers and the spinning mode analysis of the sound field propagating in the intake duct. Several examples of applications are discussed, and it is shown that an inflow control device, as expected, reduces the aerodynamic disturbances by about 10 dB. Rotor-stator interaction tones are determined by the modal analysis, and it is found that a duct lining with a length of one duct radius could give an insertion loss up to 20 dB in flight.

  18. Locating Sensors for Detecting Source-to-Target Patterns of Special Nuclear Material Smuggling: A Spatial Information Theoretic Approach

    PubMed Central

    Przybyla, Jay; Taylor, Jeffrey; Zhou, Xuesong

    2010-01-01

    In this paper, a spatial information-theoretic model is proposed to locate sensors for detecting source-to-target patterns of special nuclear material (SNM) smuggling. In order to ship the nuclear materials from a source location with SNM production to a target city, the smugglers must employ global and domestic logistics systems. This paper focuses on locating a limited set of fixed and mobile radiation sensors in a transportation network, with the intent to maximize the expected information gain and minimize the estimation error for the subsequent nuclear material detection stage. A Kalman filtering-based framework is adapted to assist the decision-maker in quantifying the network-wide information gain and SNM flow estimation accuracy. PMID:22163641

  19. Locating sensors for detecting source-to-target patterns of special nuclear material smuggling: a spatial information theoretic approach.

    PubMed

    Przybyla, Jay; Taylor, Jeffrey; Zhou, Xuesong

    2010-01-01

    In this paper, a spatial information-theoretic model is proposed to locate sensors for detecting source-to-target patterns of special nuclear material (SNM) smuggling. In order to ship the nuclear materials from a source location with SNM production to a target city, the smugglers must employ global and domestic logistics systems. This paper focuses on locating a limited set of fixed and mobile radiation sensors in a transportation network, with the intent to maximize the expected information gain and minimize the estimation error for the subsequent nuclear material detection stage. A Kalman filtering-based framework is adapted to assist the decision-maker in quantifying the network-wide information gain and SNM flow estimation accuracy. PMID:22163641

  20. Underwater Measurement of the Sound-Intensity Vector: its Use in Locating Sound Sources, and in Measuring the Sound Power of Stationary and Living Sources

    NASA Astrophysics Data System (ADS)

    Wei, Wei

    Instrumentation was developed to measure the components of the sound-intensity vector (i.e. sound-power flow per unit area) in water using the cross-spectral method. This consists of a probe with four closely-spaced hydrophones in a tetrahedral arrangement, and associated equipment including three two-channel FFT analyzers. The hydrophones are closely spaced (i.e. less than a tenth of a wavelength apart) to permit accurate measurement of the intensity vector at a point in space, over a reasonable frequency range. For the probe used in the dissertation research, the frequency range extends up to about 13 kHz. The accuracy of the prototype probe in measuring the direction of a sound source without noise interference, is shown to be within +/-2 degrees. Tests were conducted in a water tank to test the accuracy of direction finding with different types of acoustic interference: (a) boundary reverberation, (b) ambient background noise and (c) another sound source. It is shown that a source can be detected with good accuracy when the pressure level signal-to-noise ratio is -2dB. Several techniques can be used to separate the directions of multiple sound sources, i.e. (a) spectral weighting, (b) spectral subtraction and (c) solving systems of nonlinear equations based on vector intensity and pressure measurements. The first two are demonstrated in the dissertation. The direction-finding ability of the vector probe was used to determine the sound power of a moving source, the probe being used to track the source and simultaneously to measure its sound intensity. The sound power of the moving source is compared to the sound power of the source: (a) estimated from the measured voltage applied to the hydrophone and the typical transmitting response curve supplied by the hydrophone manufacturer, and (b) measured when the source is stationary. In the first comparison, the sound power of the moving source is about 14% or 0.5dB larger and in the second it is about 18% or 0.7d

  1. Acoustic emission data from the MFTF magnets

    SciTech Connect

    Lore, J.; Horvath, J.; Iwasa, Y.; Tamada, N.; Tsukamoto, O.

    1983-05-01

    An acoustic emission (AE) technique for monitoring mechanical disturbances in large superconducting magnets was applied during testing of the MFTF yin-yang coils. A signal processing method was developed to locate sources of AE in the magnet and distinguish the type of activity. The method was then used to provide information on conductor motion activity and structural integrity of the magnet.

  2. Acoustics Research of Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Gao, Ximing; Houston, Janice D.

    2014-01-01

    The liftoff phase induces some of the highest acoustic loading over a broad frequency for a launch vehicle. These external acoustic environments are used in the prediction of the internal vibration responses of the vehicle and components. Thus, predicting these liftoff acoustic environments is critical to the design requirements of any launch vehicle but there are challenges. Present liftoff vehicle acoustic environment prediction methods utilize stationary data from previously conducted hold-down tests; i.e. static firings conducted in the 1960's, to generate 1/3 octave band Sound Pressure Level (SPL) spectra. These data sets are used to predict the liftoff acoustic environments for launch vehicles. To facilitate the accuracy and quality of acoustic loading, predictions at liftoff for future launch vehicles such as the Space Launch System (SLS), non-stationary flight data from the Ares I-X were processed in PC-Signal in two forms which included a simulated hold-down phase and the entire launch phase. In conjunction, the Prediction of Acoustic Vehicle Environments (PAVE) program was developed in MATLAB to allow for efficient predictions of sound pressure levels (SPLs) as a function of station number along the vehicle using semiempirical methods. This consisted, initially, of generating the Dimensionless Spectrum Function (DSF) and Dimensionless Source Location (DSL) curves from the Ares I-X flight data. These are then used in the MATLAB program to generate the 1/3 octave band SPL spectra. Concluding results show major differences in SPLs between the hold-down test data and the processed Ares IX flight data making the Ares I-X flight data more practical for future vehicle acoustic environment predictions.

  3. Alignment of leading-edge and peak-picking time of arrival methods to obtain accurate source locations

    SciTech Connect

    Roussel-Dupre, R.; Symbalisty, E.; Fox, C.; and Vanderlinde, O.

    2009-08-01

    The location of a radiating source can be determined by time-tagging the arrival of the radiated signal at a network of spatially distributed sensors. The accuracy of this approach depends strongly on the particular time-tagging algorithm employed at each of the sensors. If different techniques are used across the network, then the time tags must be referenced to a common fiducial for maximum location accuracy. In this report we derive the time corrections needed to temporally align leading-edge, time-tagging techniques with peak-picking algorithms. We focus on broadband radio frequency (RF) sources, an ionospheric propagation channel, and narrowband receivers, but the final results can be generalized to apply to any source, propagation environment, and sensor. Our analytic results are checked against numerical simulations for a number of representative cases and agree with the specific leading-edge algorithm studied independently by Kim and Eng (1995) and Pongratz (2005 and 2007).

  4. Broadband acoustic quantification of stratified turbulence.

    PubMed

    Lavery, Andone C; Geyer, W Rockwell; Scully, Malcolm E

    2013-07-01

    High-frequency broadband acoustic scattering techniques have enabled the remote, high-resolution imaging and quantification of highly salt-stratified turbulence in an estuary. Turbulent salinity spectra in the stratified shear layer have been measured acoustically and by in situ turbulence sensors. The acoustic frequencies used span 120-600 kHz, which, for the highly stratified and dynamic estuarine environment, correspond to wavenumbers in the viscous-convective subrange (500-2500 m(-1)). The acoustically measured spectral levels are in close agreement with spectral levels measured with closely co-located micro-conductivity probes. The acoustically measured spectral shapes allow discrimination between scattering dominated by turbulent salinity microstructure and suspended sediments or swim-bladdered fish, the two primary sources of scattering observed in the estuary in addition to turbulent salinity microstructure. The direct comparison of salinity spectra inferred acoustically and by the in situ turbulence sensors provides a test of both the acoustic scattering model and the quantitative skill of acoustical remote sensing of turbulence dissipation in a strongly sheared and salt-stratified estuary. PMID:23862783

  5. Locating and estimating air emissions from sources of chlorobenzenes (revised March 1994). Final report

    SciTech Connect

    Not Available

    1994-03-01

    ;Table of Contents: Background; Emissions from Chlorobenzenes Production; Emissions from Major Uses of Chlorobenzene; Emission from the Use of Materials Containing Chlorobenzenes; Byproduct Emission -- Processes Unrelated to Production or Use of Chlorobenzenes; Ambient Air and Stationary Source Test Procedures; Potential Source Categories of Chlorobenzenes Emissions; Textile Fiber Dyeing Facilities with Annual Sales Greater Than $1 Million; and Summary of Emission Factors Listed in this Document.

  6. Location of odor sources and the affected population in Imperial County, California

    SciTech Connect

    Hahn, J.L.

    1981-08-01

    This report is divided into four sections. The first two sections contain general background information on Imperial County. The third section is a general discussion of odor sources in Imperial County, and the fourth maps the specific odor sources, the expected areas of perception, and the affected populations. this mapping is done for the Imperial Valley and each of the four Imperial County KGRA's (Known Geothermal Resource Areas) where odor from the development of the geothermal energy may affect population.

  7. Hybrid CFD/CAA Modeling for Liftoff Acoustic Predictions

    NASA Technical Reports Server (NTRS)

    Strutzenberg, Louise L.; Liever, Peter A.

    2011-01-01

    This paper presents development efforts at the NASA Marshall Space flight Center to establish a hybrid Computational Fluid Dynamics and Computational Aero-Acoustics (CFD/CAA) simulation system for launch vehicle liftoff acoustics environment analysis. Acoustic prediction engineering tools based on empirical jet acoustic strength and directivity models or scaled historical measurements are of limited value in efforts to proactively design and optimize launch vehicles and launch facility configurations for liftoff acoustics. CFD based modeling approaches are now able to capture the important details of vehicle specific plume flow environment, identifY the noise generation sources, and allow assessment of the influence of launch pad geometric details and sound mitigation measures such as water injection. However, CFD methodologies are numerically too dissipative to accurately capture the propagation of the acoustic waves in the large CFD models. The hybrid CFD/CAA approach combines the high-fidelity CFD analysis capable of identifYing the acoustic sources with a fast and efficient Boundary Element Method (BEM) that accurately propagates the acoustic field from the source locations. The BEM approach was chosen for its ability to properly account for reflections and scattering of acoustic waves from launch pad structures. The paper will present an overview of the technology components of the CFD/CAA framework and discuss plans for demonstration and validation against test data.

  8. Acoustic Source Localization via Time Difference of Arrival Estimation for Distributed Sensor Networks Using Tera-Scale Optical Core Devices

    DOE PAGESBeta

    Imam, Neena; Barhen, Jacob

    2009-01-01

    For real-time acoustic source localization applications, one of the primary challenges is the considerable growth in computational complexity associated with the emergence of ever larger, active or passive, distributed sensor networks. These sensors rely heavily on battery-operated system components to achieve highly functional automation in signal and information processing. In order to keep communication requirements minimal, it is desirable to perform as much processing on the receiver platforms as possible. However, the complexity of the calculations needed to achieve accurate source localization increases dramatically with the size of sensor arrays, resulting in substantial growth of computational requirements that cannot bemore » readily met with standard hardware. One option to meet this challenge builds upon the emergence of digital optical-core devices. The objective of this work was to explore the implementation of key building block algorithms used in underwater source localization on the optical-core digital processing platform recently introduced by Lenslet Inc. This demonstration of considerably faster signal processing capability should be of substantial significance to the design and innovation of future generations of distributed sensor networks.« less

  9. Normalization and source separation of acoustic emission signals for condition monitoring and fault detection of multi-cylinder diesel engines

    NASA Astrophysics Data System (ADS)

    Wu, Weiliang; Lin, Tian Ran; Tan, Andy C. C.

    2015-12-01

    A signal processing technique is presented in this paper to normalize and separate the source of non-linear acoustic emission (AE) signals of a multi-cylinder diesel engine for condition monitoring applications and fault detection. The normalization technique presented in the paper overcomes the long-existing non-linearity problem of AE sensors so that responses measured by different AE sensors can be quantitatively analysed and compared. A source separation algorithm is also developed in the paper to separate the mixture of the normalized AE signals produced by a multi-cylinder diesel engine by utilising the system parameters (i.e., wave attenuation constant and the arrival time delay) of AE wave propagation determined by a standard pencil lead break test on the engine cylinder head. It is shown that the source separation algorithm is able to separate the signal interference of adjacent cylinders from the monitored cylinder once the wave attenuation constant and the arrival time delay along the propagation path are known. The algorithm is particularly useful in the application of AE technique for condition monitoring of small-size diesel engines where signal interference from the neighbouring cylinders is strong.

  10. Technique to determine location of radio sources from measurements taken on spinning spacecraft

    NASA Technical Reports Server (NTRS)

    Fainberg, J.

    1979-01-01

    The procedure developed to extract average source direction and average source size from spin-modulated radio astronomy data measured on the IMP-6 spacecraft is described. Because all measurements are used, rather than just finding maxima or minima in the data, the method is very sensitive, even in the presence of large amounts of noise. The technique is applicable to all experiments with directivity characteristics. It is suitable for onboard processing on satellites to reduce the data flow to Earth. The application to spin-modulated nonpolarized radio astronomy data is made and includes the effects of noise, background, and second source interference. The analysis was tested with computer simulated data and the results agree with analytic predictions. Applications of this method with IMP-6 radio data have led to: (1) determination of source positions of traveling solar radio bursts at large distances from the Sun; (2) mapping of magnetospheric radio emissions by radio triangulation; and (3) detection of low frequency radio emissions from Jupiter and Saturn.

  11. Identifying constituent spectra sources in multispectral images to quantify and locate cervical neoplasia

    NASA Astrophysics Data System (ADS)

    Baker, Kevin C.; Bambot, Shabbir

    2011-02-01

    Optical spectroscopy has been shown to be an effective method for detecting neoplasia. Guided Therapeutics has developed LightTouch, a non invasive device that uses a combination of reflectance and fluorescence spectroscopy for identifying early cancer of the human cervix. The combination of the multispectral information from the two spectroscopic modalities has been shown to be an effective method to screen for cervical cancer. There has however been a relative paucity of work in identifying the individual spectral components that contribute to the measured fluorescence and reflectance spectra. This work aims to identify the constituent source spectra and their concentrations. We used non-negative matrix factorization (NNMF) numerical methods to decompose the mixed multispectral data into the constituent spectra and their corresponding concentrations. NNMF is an iterative approach that factorizes the measured data into non-negative factors. The factors are chosen to minimize the root-mean-squared residual error. NNMF has shown promise for feature extraction and identification in the fields of text mining and spectral data analysis. Since both the constituent source spectra and their corresponding concentrations are assumed to be non-negative by nature NNMF is a reasonable approach to deconvolve the measured multispectral data. Supervised learning methods were then used to determine which of the constituent spectra sources best predict the amount of neoplasia. The constituent spectra sources found to best predict neoplasia were then compared with spectra of known biological chromophores.

  12. Fuel from wastewater : harnessing a potential energy source in Canada through the co-location of algae biofuel production to sources of effluent, heat and CO2.

    SciTech Connect

    Passell, Howard David; Whalen, Jake; Pienkos, Philip P.; O'Leary, Stephen J.; Roach, Jesse Dillon; Moreland, Barbara D.; Klise, Geoffrey Taylor

    2010-12-01

    Sandia National Laboratories is collaborating with the National Research Council (NRC) Canada and the National Renewable Energy Laboratory (NREL) to develop a decision-support model that will evaluate the tradeoffs associated with high-latitude algae biofuel production co-located with wastewater, CO2, and waste heat. This project helps Canada meet its goal of diversifying fuel sources with algae-based biofuels. The biofuel production will provide a wide range of benefits including wastewater treatment, CO2 reuse and reduction of demand for fossil-based fuels. The higher energy density in algae-based fuels gives them an advantage over crop-based biofuels as the 'production' footprint required is much less, resulting in less water consumed and little, if any conversion of agricultural land from food to fuel production. Besides being a potential source for liquid fuel, algae have the potential to be used to generate electricity through the burning of dried biomass, or anaerobically digested to generate methane for electricity production. Co-locating algae production with waste streams may be crucial for making algae an economically valuable fuel source, and will certainly improve its overall ecological sustainability. The modeling process will address these questions, and others that are important to the use of water for energy production: What are the locations where all resources are co-located, and what volumes of algal biomass and oil can be produced there? In locations where co-location does not occur, what resources should be transported, and how far, while maintaining economic viability? This work is being funded through the U.S. Department of Energy (DOE) Biomass Program Office of Energy Efficiency and Renewable Energy, and is part of a larger collaborative effort that includes sampling, strain isolation, strain characterization and cultivation being performed by the NREL and Canada's NRC. Results from the NREL / NRC collaboration including specific

  13. Acoustic neuroma

    MedlinePlus

    Vestibular schwannoma; Tumor - acoustic; Cerebellopontine angle tumor; Angle tumor ... Acoustic neuromas have been linked with the genetic disorder neurofibromatosis type 2 (NF2). Acoustic neuromas are uncommon.

  14. Seismic augmentation of acoustic monitoring of mortar fire

    NASA Astrophysics Data System (ADS)

    Anderson, Thomas S.

    2007-10-01

    The US Army Corps of Engineers Research and Development Center participated in a joint ARL-NATO TG-53 field experiment and data collect at Yuma Proving Ground, AZ in early November 2005. Seismic and acoustic signatures from both muzzle blasts and impacts of small arms fire and artillery were recorded using 7 seismic arrays and 3 acoustic arrays. Arrays comprised of 12 seismic and 12 acoustic sensors each were located from 700 m to 18 km from gun positions. Preliminary analysis of signatures attributed to 60mm, 81mm, 120 mm mortars recorded at a seismic-acoustic array 1.1 km from gun position are presented. Seismic and acoustic array f-k analysis is performed to detect and characterize the source signature. Horizontal seismic data are analyzed to determine efficacy of a seismic discriminant for mortar and artillery sources. Rotation of North and East seismic components to radial and transverse components relative to the source-receiver path provide maximum surface wave amplitude on the transverse component. Angles of rotation agree well with f-k analysis of both seismic and acoustic signals. The spectral energy of the rotated transverse surface wave is observable on the all caliber of mortars at a distance of 1.1 km and is a reliable source discriminant for mortar sources at this distance. In a step towards automation, travel time stencils using local seismic and acoustic velocities are applied to seismic data for analysis and determination of source characteristics.

  15. Can Handheld Plastic Detectors Do Both Gamma and Neutron Isotopic Identification with Directional Source Location?

    SciTech Connect

    Robert Hayes

    2008-04-18

    This paper demonstrates, through MCNPX simulations, that a compact hexagonal array of detectors can be utilized to do both gamma isotopic identification (ID) along with neutron identification while simultaneously finding the direction of the source relative to the detector array. The detector array itself is composed of seven borated polyvinyl toluene (PVT) hexagonal light pipes approximately 4 inches long and with a 1.25 inch face-to-face thickness assembled in a tight configuration. The gamma ID capability is realized through judicious windowing algorithms as is the neutron spectral unfolding. By having multiple detectors in different relative positions, directional determination of the source can be realized. By further adding multiplicity counters to the neutron counts, fission events can be measured.

  16. Locating very high energy gamma-ray sources with arcminute accuracy

    NASA Technical Reports Server (NTRS)

    Akerlof, C. W.; Cawley, M. F.; Chantell, M.; Harris, K.; Lawrence, M. A.; Fegan, D. J.; Lang, M. J.; Hillas, A. M.; Jennings, D. G.; Lamb, R. C.

    1991-01-01

    The angular accuracy of gamma-ray detectors is intrinsically limited by the physical processes involved in photon detection. Although a number of pointlike sources were detected by the COS B satellite, only two have been unambiguously identified by time signature with counterparts at longer wavelengths. By taking advantage of the extended longitudinal structure of VHE gamma-ray showers, measurements in the TeV energy range can pinpoint source coordinates to arcminute accuracy. This has now been demonstrated with new data analysis procedures applied to observations of the Crab Nebula using Cherenkov air shower imaging techniques. With two telescopes in coincidence, the individual event circular probable error will be 0.13 deg. The half-cone angle of the field of view is effectively 1 deg.

  17. Locating very high energy gamma ray sources with arc minute accuracy

    NASA Technical Reports Server (NTRS)

    Akerlof, C. W.; Cawley, M. F.; Chantell, M.; Fegan, D. J.; Harris, K.; Hillas, A. M.; Jennings, D. G.; Lamb, R. C.; Lawrence, M. A.; Lang, M. J.

    1992-01-01

    The angular accuracy of gamma-ray detectors is intrinsically limited by the physical processes involved in photon detection. Although a number of point-like sources were detected by the COS-B satellite, only two were unambiguously identified by time signature with counterparts at longer wavelengths. By taking advantage of the extended longitudinal structure of Very High Energy gamma-ray showers, measurements in the TeV energy range can pinpoint source coordinates to arc minute accuracy. This was demonstrated using Cerenkov air shower imaging techniques. With two telescopes in coincidence, the individual event circular probable error will be 0.13 deg. The half-cone angle of the field of view is effectively 1 deg.

  18. Revision of earthquake hypocenter locations in GEOFON bulletin data using global source-specific station terms technique

    NASA Astrophysics Data System (ADS)

    Nooshiri, N.; Saul, J.; Heimann, S.; Tilmann, F. J.; Dahm, T.

    2015-12-01

    The use of a 1D velocity model for seismic event location is often associated with significant travel-time residuals. Particularly for regional stations in subduction zones, where the velocity structure strongly deviates from the assumed 1D model, residuals of up to ±10 seconds are observed even for clear arrivals, which leads to strongly biased locations. In fact, due to mostly regional travel-time anomalies, arrival times at regional stations do not match the location obtained with teleseismic picks, and vice versa. If the earthquake is weak and only recorded regionally, or if fast locations based on regional stations are needed, the location may be far off the corresponding teleseismic location. In this case, implementation of travel-time corrections may leads to a reduction of the travel-time residuals at regional stations and, in consequence, significantly improve the relative location accuracy. Here, we have extended the source-specific station terms (SSST) technique to regional and teleseismic distances and adopted the algorithm for probabilistic, non-linear, global-search earthquake location. The method has been applied to specific test regions using P and pP phases from the GEOFON bulletin data for all available station networks. By using this method, a set of timing corrections has been calculated for each station varying as a function of source position. In this way, an attempt is made to correct for the systematic errors, introduced by limitations and inaccuracies in the assumed velocity structure, without solving for a new earth model itself. In this presentation, we draw on examples of the application of this global SSST technique to relocate earthquakes from the Tonga-Fiji subduction zone and from the Chilean margin. Our results have been showing a considerable decrease of the root-mean-square (RMS) residual in earthquake location final catalogs, a major reduction of the median absolute deviation (MAD) of the travel

  19. Low frequency acoustic microscope

    DOEpatents

    Khuri-Yakub, Butrus T.

    1986-11-04

    A scanning acoustic microscope is disclosed for the detection and location of near surface flaws, inclusions or voids in a solid sample material. A focused beam of acoustic energy is directed at the sample with its focal plane at the subsurface flaw, inclusion or void location. The sample is scanned with the beam. Detected acoustic energy specularly reflected and mode converted at the surface of the sample and acoustic energy reflected by subsurface flaws, inclusions or voids at the focal plane are used for generating an interference signal which is processed and forms a signal indicative of the subsurface flaws, inclusions or voids.

  20. Source Apportionment of Particle Bound Polycyclic Aromatic Hydrocarbons at an Industrial Location in Agra, India

    PubMed Central

    Lakhani, Anita

    2012-01-01

    16 US EPA priority polycyclic aromatic hydrocarbons (PAHs) were quantified in total suspended ambient particulate matter (TSPM) collected from an industrial site in Agra (India) using gas chromatography. The major industrial activities in Agra are foundries that previously used coal and coke as fuel in cupola furnaces. These foundries have now switched over to natural gas. In addition, use of compressed natural gas has also been promoted and encouraged in automobiles. This study attempts to apportion sources of PAH in the ambient air and the results reflect the advantages associated with the change of fuel. The predominant PAHs in TSPM include high molecular weight (HMW) congeners BghiP, DbA, IP, and BaP. The sum of 16 priority PAHs had a mean value of 72.7 ± 4.7 ng m−3. Potential sources of PAHs in aerosols were identified using diagnostic ratios and principal component analysis. The results reflect a blend of emissions from diesel and natural gas as the major sources of PAH in the city along with contribution from emission of coal, coke, and gasoline. PMID:22606062

  1. Long-term particle measurements in Finnish Arctic: Part II - Trend analysis and source location identification

    NASA Astrophysics Data System (ADS)

    Laing, James R.; Hopke, Philip K.; Hopke, Eleanor F.; Husain, Liaquat; Dutkiewicz, Vincent A.; Paatero, Jussi; Viisanen, Yrjö.

    2014-05-01

    Forty-seven years (1964-2010) of weekly trace metal and major ion concentrations in total suspended particle samples from Kevo, Finland were analyzed for long-term trends and by source identification methods. Significant long-term decreasing trends were detected for most species. The largest decreases over the 47 years were Sb (-3.90% yr-1), Pb (-3.87% yr-1), Mn (-3.45% yr-1), Cd (-3.42% yr-1), and Ca (-3.13% yr-1). As, Pb, and Cd concentrations at Kevo were consistent with the reported time-trends of European emissions inventories. Pb concentrations at Kevo have dramatically decreased (92%) in the past 47 years due to the reduced use of leaded gasoline in automobiles. Back-trajectory analysis suggests that the main source areas of anthropogenic species (V, Cd, Mn, Mo, Sb, Tl, W) were predominantly in Eastern Europe, European Russia, and the Baltics. Markers of stationary fuel combustion (V, Mn, Mo, Sb, Se, and Tl) pointed towards source regions in the Pechora Basin and Ural industrial areas in Russia, and near gas and oil fields in western Kazakhstan.

  2. Source apportionment of particle bound polycyclic aromatic hydrocarbons at an industrial location in Agra, India.

    PubMed

    Lakhani, Anita

    2012-01-01

    16 U.S. EPA priority polycyclic aromatic hydrocarbons (PAHs) were quantified in total suspended ambient particulate matter (TSPM) collected from an industrial site in Agra (India) using gas chromatography. The major industrial activities in Agra are foundries that previously used coal and coke as fuel in cupola furnaces. These foundries have now switched over to natural gas. In addition, use of compressed natural gas has also been promoted and encouraged in automobiles. This study attempts to apportion sources of PAH in the ambient air and the results reflect the advantages associated with the change of fuel. The predominant PAHs in TSPM include high molecular weight (HMW) congeners BghiP, DbA, IP, and BaP. The sum of 16 priority PAHs had a mean value of 72.7 ± 4.7 ng m(-3). Potential sources of PAHs in aerosols were identified using diagnostic ratios and principal component analysis. The results reflect a blend of emissions from diesel and natural gas as the major sources of PAH in the city along with contribution from emission of coal, coke, and gasoline. PMID:22606062

  3. Improvements in mining induced microseismic source locations at the Lucky Friday mine using an automated whole-waveform analysis system

    NASA Astrophysics Data System (ADS)

    Dodge, Douglas A.; Sprenke, Kenneth F.

    1992-09-01

    For years, severe rockburst problems at the Lucky Friday mine in northern Idaho have been a persistent safety hazard and an impediment to production. An MP250 based microseismic monitoring system, which uses simple voltage threshold picking of first arrivals, has been used in this mine since 1973 to provide source locations and energy estimates of seismic events. Recently, interest has been expressed in developing a whole waveform microseismic monitoring system for the mine to provide more accurate source locations and information about source characteristics. For this study, we have developed a prototype whole-waveform microseismic monitoring system based on a 80386 computer equipped with a 50 kHz analog-digital convertor board. The software developed includes a data collection program, a data analysis program, and an event detection program. Whole-waveform data collected and analyzed using this system during a three-day test have been employed to investigate sources of error in the hypocenter location process and to develop an automatic phase picker appropriate for microseismic events. Comparison of hypocenter estimates produced by the MP250 system to those produced by the whole-waveform system shows that significant timing errors are common in the MP250 system and that these errors caused a large part of the scatter evident in the daily activity plots produced at the mine. Simulations and analysis of blast data show that analytical control over the solutions is strongly influenced by the array geometry. Within the geophone array, large errors in the velocity model or moderate timing errors may result in small changes in the solution, but outside the array, the solution is very sensitive to small changes in the data. Our whole-waveform detection program picks event onset times and determines event durations by analysis of a segmented envelope function (SEF) derived from the microseismic signal. The detection program has been tested by comparing its arrival time

  4. Marine cable location system

    SciTech Connect

    Ottsen, H.; Barker, Th.

    1985-04-23

    An acoustic positioning system for locating a marine cable at an exploration site employs a plurality of acoustic transponders, each having a characteristic frequency, at spaced-apart positions along the cable. A marine vessel measures the depth to the transponders as the vessel passes over the cable and measures the slant range from the vessel to each of the acoustic transponders as the vessel travels in a parallel and horizontally offset path to the cable.

  5. Localization of multiple acoustic sources with small arrays using a coherence test

    PubMed Central

    Mohan, Satish; Lockwood, Michael E.; Kramer, Michael L.; Jones, Douglas L.

    2008-01-01

    Direction finding of more sources than sensors is appealing in situations with small sensor arrays. Potential applications include surveillance, teleconferencing, and auditory scene analysis for hearing aids. A new technique for time-frequency-sparse sources, such as speech and vehicle sounds, uses a coherence test to identify low-rank time-frequency bins. These low-rank bins are processed in one of two ways: (1) narrowband spatial spectrum estimation at each bin followed by summation of directional spectra across time and frequency or (2) clustering low-rank covariance matrices, averaging covariance matrices within clusters, and narrowband spatial spectrum estimation of each cluster. Experimental results with omnidirectional microphones and colocated directional microphones demonstrate the algorithm’s ability to localize 3–5 simultaneous speech sources over 4 s with 2–3 microphones to less than 1 degree of error, and the ability to localize simultaneously two moving military vehicles and small arms gunfire. PMID:18397021

  6. Localization of multiple acoustic sources with small arrays using a coherence test.

    PubMed

    Mohan, Satish; Lockwood, Michael E; Kramer, Michael L; Jones, Douglas L

    2008-04-01

    Direction finding of more sources than sensors is appealing in situations with small sensor arrays. Potential applications include surveillance, teleconferencing, and auditory scene analysis for hearing aids. A new technique for time-frequency-sparse sources, such as speech and vehicle sounds, uses a coherence test to identify low-rank time-frequency bins. These low-rank bins are processed in one of two ways: (1) narrowband spatial spectrum estimation at each bin followed by summation of directional spectra across time and frequency or (2) clustering low-rank covariance matrices, averaging covariance matrices within clusters, and narrowband spatial spectrum estimation of each cluster. Experimental results with omnidirectional microphones and colocated directional microphones demonstrate the algorithm's ability to localize 3-5 simultaneous speech sources over 4 s with 2-3 microphones to less than 1 degree of error, and the ability to localize simultaneously two moving military vehicles and small arms gunfire. PMID:18397021

  7. Transmitted sound field due to an impulsive line acoustic source bounded by a plate followed by a vortex sheet

    NASA Technical Reports Server (NTRS)

    Miura, T.; Chao, C. C.

    1980-01-01

    The propagation of sound due to a line acoustic source in the moving stream across a semiinfinite vortex sheet which trails from a rigid plate is examined in a linear theory for the subsonic case. A solution for the transmitted sound field is obtained with the aid of multiple integral transforms and the Wiener-Hopf technique for both the steady state (time harmonic) and initial value (impulsive source) situations. The contour of inverse transform and hence the decomposition of the functions are determined through causality and radiation conditions. The solution obtained satisfies causality and the full Kutta conditions. The transmitted sound field is composed of two waves in both the stady state and initial value problems. One is the wave scattered from the edge of the plate which is associated with the bow wave and the instability wave. These waves exist in the downstream sectors. The other is the wave transmitted through the vortex sheet which is also associated with the instability wave. Regional divisions of the transmitted sound field are identified.

  8. Numerical spatial marching techniques in duct acoustics. [noise source calculation from far field pressure measurements

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J.

    1979-01-01

    Direct calculation of the internal structure of a ducted noise source from farfield pressure measurements is regarded as an initial value problem, where the pressure and pressure gradient (farfield impedance) are assumed to be known along a line in the farfield. If pressure and impedance are known at the boundary of the farfield, the pressure can be uniquely determined in the vicinity of the inlet and inside the inlet ducting. A marching procedure is developed which, with this information obtained from measurements, enables a description of a ducted noise source. The technique uses a finite difference representation of the homogeneous Helmholtz equation.

  9. Arcsec source location measurements in gamma-ray astronomy from a lunar observatory

    NASA Technical Reports Server (NTRS)

    Koch, David G.; Hughes, E. B.

    1990-01-01

    The physical processes typically used in the detection of high energy gamma-rays do not permit good angular resolution, which makes difficult the unambiguous association of discrete gamma-ray sources with objects emitting at other wavelengths. This problem can be overcome by placing gamma-ray detectors on the moon and using the horizon as an occulting edge to achieve arcsec resolution. For the purpose of discussion, this concept is examined for gamma rays above about 20 MeV for which pair production dominates the detection process and locally-generated nuclear gamma rays do not contribute to the background.

  10. On the preferred source location for the convective amplification of ion cyclotron waves

    NASA Technical Reports Server (NTRS)

    Horne, Richard B.; Thorne, Richard M.

    1993-01-01

    The propagation, growth, and absorption of electromagnetic ion cyclotron waves (EMICs) in the Pc1 range are studied using the HOTRAY ray tracing program for a realistic distribution of thermal plasma (H+, He+, O+), which is assumed to be in diffusive equilibrium inside the plasmasphere and collisionless in the low-density region outside the plasmapause. It is demonstrated that there are two principal source regions for the growth of EMIC waves. The theoretical results are related to the most recent satellite and ground-based observations.

  11. XMM-NEWTON OBSERVATIONS OF FIVE INTEGRAL SOURCES LOCATED TOWARD THE SCUTUM ARM

    SciTech Connect

    Bodaghee, A.; Tomsick, J. A.; Rodriguez, J.

    2012-07-01

    Results are presented for XMM-Newton observations of five hard X-ray sources discovered by INTEGRAL in the direction of the Scutum Arm. Each source received {approx}>20 ks of effective exposure time. We provide refined X-ray positions for all five targets enabling us to pinpoint the most likely counterpart in optical/infrared archives. Spectral and timing information (much of which is provided for the first time) allow us to give a firm classification for IGR J18462-0223 and to offer tentative classifications for the others. For IGR J18462-0223, we discovered a coherent pulsation period of 997 {+-} 1 s, which we attribute to the spin of a neutron star in a highly obscured (N{sub H} =2 Multiplication-Sign 10{sup 23} cm{sup -2}) high-mass X-ray binary (HMXB). This makes IGR J18462-0223 the seventh supergiant fast X-ray transient candidate with a confirmed pulsation period. IGR J18457+0244 is a highly absorbed (N{sub H} =8 Multiplication-Sign 10{sup 23} cm{sup -2}) source in which the possible detection of an iron line suggests an active galactic nucleus (AGN) of type Sey-2 situated at z = 0.07(1). A periodic signal at 4.4 ks could be a quasi-periodic oscillation which would make IGR J18457+0244 one of a handful of AGNs in which such features have been claimed, but a slowly rotating neutron star in an HMXB cannot be ruled out. IGR J18482+0049 represents a new obscured HMXB candidate with N{sub H} =4 Multiplication-Sign 10{sup 23} cm{sup -2}. We tentatively propose that IGR J18532+0416 is either an AGN or a pulsar in an HMXB system. The X-ray spectral properties of IGR J18538-0102 are consistent with the AGN classification that has been proposed for this source.

  12. Gamma-ray burst locations from the Burst and Transient Source Experiment

    NASA Technical Reports Server (NTRS)

    Brock, M. N.; Meegan, C. A.; Roberts, F. E.; Fishman, G. J.; Wilson, R. B.; Paciesas, W. S.; Pendleton, G. N.

    1992-01-01

    The Burst and Transient Source Experiment (BATSE) consists of eight anisotropic gamma-ray spectrometers at the corners of the Compton Gamma Ray Observatory. BATSE monitors the full sky from a fixed orientation and determines the direction of gamma-ray bursts with an accuracy appropriate for studying the bursts' celestial distribution. We describe the calculation of gamma-ray burst directions from measurements made by BATSE. We present a sample of calculated directions from BATSE's measurement of solar flaxes and compare the calculated directions with the solar direction. We describe the systematic errors apparent in these data and discuss ongoing efforts to correct them.

  13. Surface Properties Associated With Dust Storm Plume's Point-Source Locations In The Border Region Of The US And Mexico

    NASA Astrophysics Data System (ADS)

    Bleiweiss, M. P.; DuBois, D. W.; Flores, M. I.

    2013-12-01

    Dust storms in the border region of the Southwest US and Northern Mexico are a serious problem for air quality (PM10 exceedances), health (Valley Fever is pandemic in the region) and transportation (road closures and deadly traffic accidents). In order to better understand the phenomena, we are attempting to identify critical characteristics of dust storm sources so that, possibly, one can perform more accurate predictions of events and, thus, mitigate some of the deleterious effects. Besides the emission mechanisms for dust storm production that are tied to atmospheric dynamics, one must know those locations whose source characteristics can be tied to dust production and, therefore, identify locations where a dust storm is eminent under favorable atmospheric dynamics. During the past 13 years, we have observed, on satellite imagery, more than 500 dust events in the region and are in the process of identifying the source regions for the dust plumes that make up an event. Where satellite imagery exists with high spatial resolution (less than or equal to 250m), dust 'plumes' appear to be made up of individual and merged plumes that are emitted from a 'point source' (smaller than the resolution of the imagery). In particular, we have observed events from the ASTER sensor whose spatial resolution is 15m as well as Landsat whose spatial resolution is 30m. Tying these source locations to surface properties such as NDVI, albedo, and soil properties (percent sand, silt, clay, and gravel; soil moisture; etc.) will identify regions with enhanced capability to produce a dust storm. This, along with atmospheric dynamics, will allow the forecast of dust events. The analysis of 10 events from the period 2004-2013, for which we have identified 1124 individual plumes, will be presented.

  14. Estimating colony sizes of emerging bats using acoustic recordings

    PubMed Central

    Kloepper, Laura N.; Linnenschmidt, Meike; Blowers, Zelda; Branstetter, Brian; Ralston, Joel; Simmons, James A.

    2016-01-01

    The decline of bats demands more widespread monitoring of populations for conservation and management. Current censusing methods are either prone to bias or require costly equipment. Here, we report a new method using passive acoustics to determine bat count census from overall acoustic amplitude of the emerging bat stream. We recorded the video and audio of an emerging colony of Mexican free-tailed bats from two cave locations across multiple nights. Instantaneous bat counts were calculated from the video frames, and the bat stream’s acoustic amplitude corresponding to each video frame was determined using three different methods for calculating acoustic intensity. We found a significant link between all three acoustic parameters and bat count, with the highest R2 of 0.742 linking RMS pressure and bat count. Additionally, the relationship between acoustics and population size at one cave location could accurately predict the population size at another cave location. The data were gathered with low-cost, easy-to-operate equipment, and the data analysis can be easily accomplished using automated scripts or with open-source acoustic software. These results are a potential first step towards creating an acoustic model to estimate bat population at large cave colonies worldwide. PMID:27069667

  15. UTILIZING RESULTS FROM INSAR TO DEVELOP SEISMIC LOCATION BENCHMARKS AND IMPLICATIONS FOR SEISMIC SOURCE STUDIES

    SciTech Connect

    M. BEGNAUD; ET AL

    2000-09-01

    Obtaining accurate seismic event locations is one of the most important goals for monitoring detonations of underground nuclear teats. This is a particular challenge at small magnitudes where the number of recording stations may be less than 20. Although many different procedures are being developed to improve seismic location, most procedures suffer from inadequate testing against accurate information about a seismic event. Events with well-defined attributes, such as latitude, longitude, depth and origin time, are commonly referred to as ground truth (GT). Ground truth comes in many forms and with many different levels of accuracy. Interferometric Synthetic Aperture Radar (InSAR) can provide independent and accurate information (ground truth) regarding ground surface deformation and/or rupture. Relating surface deformation to seismic events is trivial when events are large and create a significant surface rupture, such as for the M{sub w} = 7.5 event that occurred in the remote northern region of the Tibetan plateau in 1997. The event, which was a vertical strike slip even appeared anomalous in nature due to the lack of large aftershocks and had an associated surface rupture of over 180 km that was identified and modeled using InSAR. The east-west orientation of the fault rupture provides excellent ground truth for latitude, but is of limited use for longitude. However, a secondary rupture occurred 50 km south of the main shock rupture trace that can provide ground truth with accuracy within 5 km. The smaller, 5-km-long secondary rupture presents a challenge for relating the deformation to a seismic event. The rupture is believed to have a thrust mechanism; the dip of the fimdt allows for some separation between the secondary rupture trace and its associated event epicenter, although not as much as is currently observed from catalog locations. Few events within the time period of the InSAR analysis are candidates for the secondary rupture. Of these, we have

  16. Application of pattern recognition techniques to the identification of aerospace acoustic sources

    NASA Technical Reports Server (NTRS)

    Fuller, Chris R.; Obrien, Walter F.; Cabell, Randolph H.

    1988-01-01

    A pattern recognition system was developed that successfully recognizes simulated spectra of five different types of transportation noise sources. The system generates hyperplanes during a training stage to separate the classes and correctly classify unknown patterns in classification mode. A feature selector in the system reduces a large number of features to a smaller optimal set, maximizing performance and minimizing computation.

  17. The Chelyabinsk Meteorite as a multiple source of acoustic and seismic waves

    NASA Astrophysics Data System (ADS)

    Kitov, I. O.; Bobrov, D. I.; Ovchinnikov, V. M.; Rozhkov, M. V.

    2016-05-01

    Shock waves and impact of the Chelyabinsk Meteorite fragments on the ground initiated various waves in the atmosphere and the earth. Three different sources of seismic and infrasound waves were found by arrival time and azimuth of seismic and infrasound waves recorded by the International Monitoring System.

  18. Location and release time identification of pollution point source in river networks based on the Backward Probability Method.

    PubMed

    Ghane, Alireza; Mazaheri, Mehdi; Mohammad Vali Samani, Jamal

    2016-09-15

    The pollution of rivers due to accidental spills is a major threat to environment and human health. To protect river systems from accidental spills, it is essential to introduce a reliable tool for identification process. Backward Probability Method (BPM) is one of the most recommended tools that is able to introduce information related to the prior location and the release time of the pollution. This method was originally developed and employed in groundwater pollution source identification problems. One of the objectives of this study is to apply this method in identifying the pollution source location and release time in surface waters, mainly in rivers. To accomplish this task, a numerical model is developed based on the adjoint analysis. Then the developed model is verified using analytical solution and some real data. The second objective of this study is to extend the method to pollution source identification in river networks. In this regard, a hypothetical test case is considered. In the later simulations, all of the suspected points are identified, using only one backward simulation. The results demonstrated that all suspected points, determined by the BPM could be a possible pollution source. The proposed approach is accurate and computationally efficient and does not need any simplification in river geometry and flow. Due to this simplicity, it is highly recommended for practical purposes. PMID:27219462

  19. On the location of microseismic sources in instable rock slope areas: heterogeneous vs. homogenous 3D velocity models

    NASA Astrophysics Data System (ADS)

    Coviello, Velio; Manconi, Andrea; Occhiena, Cristina; Arattano, Massimo; Scavia, Claudio

    2013-04-01

    Rock-falls are one of the most common and hazardous phenomena occurring in mountainous areas. The formation of cracks in rocks is often accompanied by a sudden release of energy, which propagates in form of elastic waves and can be detected by a suitable transducer array. Therefore, geophones are among the most effective monitoring devices to investigate eventual precursors of rock-fall phenomena. However, the identification of an efficient procedure to forecast rock-fall occurrence in space and time is still an open challenge. In this study, we aim at developing an efficient procedure to locate microseismic sources relevant to cracking mechanisms, and thus gather indications on eventual precursors of rock-fall phenomena. Common seismic location tools usually implement homogeneous or multilayered velocity models but, in case of high slope gradients and heavily fractured rock masses, these simplifications may lead to errors on the correct estimation of the source location. Thus, we analyzed how the consideration of 3D material properties on the propagation medium may influence the location. In the framework of the Alcotra 2007-2013 Project MASSA (Medium And Small Size rock-fall hazard Assessment), a monitoring system composed by 8 triaxial geophones was installed in 2010 at the J.A. Carrel hut (3829 m a.s.l., Matterhorn, NW Italian Alps) and during the first year of operation the network recorded more than 600 natural events that exceeded a fixed threshold [1]. Despite the harsh environmental conditions of the study area, eighteen points distributed as uniformly as possible in space were selected for hammering. The artificial source dataset of known coordinates was used to constrain a 3D heterogeneous velocity model through a Simultaneous Iterative Reconstructive Technique. In order to mitigate the intrinsic uncertainties of the inversion procedure, bootstrapping was performed to extend the dataset and a statistical analysis was issued to improve the model

  20. Determining the seismic source mechanism and location for an explosive eruption with limited observational data: Augustine Volcano, Alaska

    NASA Astrophysics Data System (ADS)

    Dawson, Phillip B.; Chouet, Bernard A.; Power, John

    2011-02-01

    Waveform inversions of the very-long-period components of the seismic wavefield produced by an explosive eruption that occurred on 11 January, 2006 at Augustine Volcano, Alaska constrain the seismic source location to near sea level beneath the summit of the volcano. The calculated moment tensors indicate the presence of a volumetric source mechanism. Systematic reconstruction of the source mechanism shows the source consists of a sill intersected by either a sub-vertical east-west trending dike or a sub-vertical pipe and a weak single force. The trend of the dike may be controlled by the east-west trending Augustine-Seldovia arch. The data from the network of broadband sensors is limited to fourteen seismic traces, and synthetic modeling confirms the ability of the network to recover the source mechanism. The synthetic modeling also provides a guide to the expected capability of a broadband network to resolve very-long-period source mechanisms, particularly when confronted with limited observational data.

  1. Determining the seismic source mechanism and location for an explosive eruption with limited observational data: Augustine Volcano, Alaska

    USGS Publications Warehouse

    Dawson, P.B.; Chouet, B.A.; Power, J.

    2011-01-01

    Waveform inversions of the very-long-period components of the seismic wavefield produced by an explosive eruption that occurred on 11 January, 2006 at Augustine Volcano, Alaska constrain the seismic source location to near sea level beneath the summit of the volcano. The calculated moment tensors indicate the presence of a volumetric source mechanism. Systematic reconstruction of the source mechanism shows the source consists of a sill intersected by either a sub-vertical east-west trending dike or a sub-vertical pipe and a weak single force. The trend of the dike may be controlled by the east-west trending Augustine-Seldovia arch. The data from the network of broadband sensors is limited to fourteen seismic traces, and synthetic modeling confirms the ability of the network to recover the source mechanism. The synthetic modeling also provides a guide to the expected capability of a broadband network to resolve very-long-period source mechanisms, particularly when confronted with limited observational data. Copyright 2011 by the American Geophysical Union.

  2. Site Characterization of the Source Physics Experiment Phase II Location Using Seismic Reflection Data

    SciTech Connect

    Sexton, Emily; Snelson, Catherine M; Chipman, Veraun D; Emer, Dudley; White, Bob; Emmit, Ryan; Wright, Al; Drellack, Sigmund; Huckins-Gang, Heather; Mercadante, Jennifer; Floyd, Michael; McGowin, Chris; Cothrun, Chris; Bonal, Nedra

    2013-12-05

    An objective of the Source Physics Experiment (SPE) is to identify low-yield nuclear explosions from a regional distance. Low-yield nuclear explosions can often be difficult to discriminate among the clutter of natural and man-made explosive events (e.g., earthquakes and mine blasts). The SPE is broken into three phases. Phase I has provided the first of the physics-based data to test the empirical models that have been used to discriminate nuclear events. The Phase I series of tests were placed within a highly fractured granite body. The evolution of the project has led to development of Phase II, to be placed within the opposite end member of geology, an alluvium environment, thereby increasing the database of waveforms to build upon in the discrimination models. Both the granite and alluvium sites have hosted nearby nuclear tests, which provide comparisons for the chemical test data. Phase III of the SPE is yet to be determined.

  3. Decomposition of frequency characteristics of acoustic emission signals for different types of partial discharges sources

    NASA Astrophysics Data System (ADS)

    Witos, F.; Gacek, Z.; Paduch, P.

    2006-11-01

    The problem touched in the article is decomposition of frequency characteristic of AE signals into elementary form of three-parametrical Gauss function. At the first stage, for modelled curves in form of sum of three-parametrical Gauss peaks, accordance of modelled curve and a curve resulting from a solutions obtained using method with dynamic windows, Levenberg-Marquardt algorithm, genetic algorithms and differential evolution algorithm are discussed. It is founded that analyses carried out by means differential evolution algorithm are effective and the computer system served an analysis of AE signal frequency characteristics was constructed. Decomposition of frequency characteristics for selected AE signals coming from modelled PD sources using different ends of the bushing, and real PD sources in generator coil bars are carried out.

  4. openPSTD: The open source pseudospectral time-domain method for acoustic propagation

    NASA Astrophysics Data System (ADS)

    Hornikx, Maarten; Krijnen, Thomas; van Harten, Louis

    2016-06-01

    An open source implementation of the Fourier pseudospectral time-domain (PSTD) method for computing the propagation of sound is presented, which is geared towards applications in the built environment. Being a wave-based method, PSTD captures phenomena like diffraction, but maintains efficiency in processing time and memory usage as it allows to spatially sample close to the Nyquist criterion, thus keeping both the required spatial and temporal resolution coarse. In the implementation it has been opted to model the physical geometry as a composition of rectangular two-dimensional subdomains, hence initially restricting the implementation to orthogonal and two-dimensional situations. The strategy of using subdomains divides the problem domain into local subsets, which enables the simulation software to be built according to Object-Oriented Programming best practices and allows room for further computational parallelization. The software is built using the open source components, Blender, Numpy and Python, and has been published under an open source license itself as well. For accelerating the software, an option has been included to accelerate the calculations by a partial implementation of the code on the Graphical Processing Unit (GPU), which increases the throughput by up to fifteen times. The details of the implementation are reported, as well as the accuracy of the code.

  5. A source array for generating higher order acoustic modes in circular ducts

    NASA Technical Reports Server (NTRS)

    Wyerman, B. R.; Reethof, G.

    1976-01-01

    A unique source array has been developed for the generation of both spinning and non-spinning higher order modes in a circular duct. The array consists of two concentric rings of sources. Through individual control of the response of each element, the array provided phase and amplitude control in the radial as well as circumferential directions. Radial modes shapes were measured in a 12-inch diameter anechoically-terminated hollow duct. These modes could be generated at their cut-off frequency and throughout a frequency range extending to the cut-off frequency for the next higher order radial mode. Comparisons are given between theory and experiment for the generation of specific modes. The radial dependence of the measured mode shapes was enhanced considerably by the design of this array. The results indicate a significant improvement over previous mode generation mechanisms. The contamination of the generated mode by additional spurious modes is also considered for variations between individual elements within the source array.

  6. Virtual acoustics for music practice rooms

    NASA Astrophysics Data System (ADS)

    Freiheit, Ron

    2003-04-01

    The use of virtual acoustics has provided a new level of practice experience for the musician. By integrating the sound isolation of music practice rooms with the signal processing of an active acoustic system (with time variant-gain before feedback) musicians can now benefit from the experience of practicing in multiple acoustic environments. Musicians select from various acoustics environments from a typical small practice room to that of a large space such as a sports arena. The variability of the acoustic environment allows the musician to hear clearly their intonation and articulation, which may be difficult to discern in a small practice room. To effectively communicate the various acoustics environments, the musicians must be immersed in the sound field of the active acoustics without being able to discern source locations of the speakers. The system must also be able to support the dynamic range of the musicians without presenting artifacts of its own such as system noise or audible distortion. This paper deals with the design constraints needed to meet these requirements as well the antidotal responses from musicians who have used these environments for practice.

  7. Seismic swarm associated with the 2008 eruption of Kasatochi Volcano, Alaska: earthquake locations and source parameters

    USGS Publications Warehouse

    Ruppert, Natalia G.; Prejean, Stephanie G.; Hansen, Roger A.

    2011-01-01

    An energetic seismic swarm accompanied an eruption of Kasatochi Volcano in the central Aleutian volcanic arc in August of 2008. In retrospect, the first earthquakes in the swarm were detected about 1 month prior to the eruption onset. Activity in the swarm quickly intensified less than 48 h prior to the first large explosion and subsequently subsided with decline of eruptive activity. The largest earthquake measured as moment magnitude 5.8, and a dozen additional earthquakes were larger than magnitude 4. The swarm exhibited both tectonic and volcanic characteristics. Its shear failure earthquake features were b value = 0.9, most earthquakes with impulsive P and S arrivals and higher-frequency content, and earthquake faulting parameters consistent with regional tectonic stresses. Its volcanic or fluid-influenced seismicity features were volcanic tremor, large CLVD components in moment tensor solutions, and increasing magnitudes with time. Earthquake location tests suggest that the earthquakes occurred in a distributed volume elongated in the NS direction either directly under the volcano or within 5-10 km south of it. Following the MW 5.8 event, earthquakes occurred in a new crustal volume slightly east and north of the previous earthquakes. The central Aleutian Arc is a tectonically active region with seismicity occurring in the crusts of the Pacific and North American plates in addition to interplate events. We postulate that the Kasatochi seismic swarm was a manifestation of the complex interaction of tectonic and magmatic processes in the Earth's crust. Although magmatic intrusion triggered the earthquakes in the swarm, the earthquakes failed in context of the regional stress field.

  8. Seismic swarm associated with the 2008 eruption of Kasatochi Volcano, Alaska: Earthquake locations and source parameters

    USGS Publications Warehouse

    Ruppert, N.A.; Prejean, S.; Hansen, R.A.

    2011-01-01

    An energetic seismic swarm accompanied an eruption of Kasatochi Volcano in the central Aleutian volcanic arc in August of 2008. In retrospect, the first earthquakes in the swarm were detected about 1 month prior to the eruption onset. Activity in the swarm quickly intensified less than 48 h prior to the first large explosion and subsequently subsided with decline of eruptive activity. The largest earthquake measured as moment magnitude 5.8, and a dozen additional earthquakes were larger than magnitude 4. The swarm exhibited both tectonic and volcanic characteristics. Its shear failure earthquake features were b value = 0.9, most earthquakes with impulsive P and S arrivals and higher-frequency content, and earthquake faulting parameters consistent with regional tectonic stresses. Its volcanic or fluid-influenced seismicity features were volcanic tremor, large CLVD components in moment tensor solutions, and increasing magnitudes with time. Earthquake location tests suggest that the earthquakes occurred in a distributed volume elongated in the NS direction either directly under the volcano or within 5-10 km south of it. Following the MW 5.8 event, earthquakes occurred in a new crustal volume slightly east and north of the previous earthquakes. The central Aleutian Arc is a tectonically active region with seismicity occurring in the crusts of the Pacific and North American plates in addition to interplate events. We postulate that the Kasatochi seismic swarm was a manifestation of the complex interaction of tectonic and magmatic processes in the Earth's crust. Although magmatic intrusion triggered the earthquakes in the swarm, the earthquakes failed in context of the regional stress field. Copyright ?? 2011 by the American Geophysical Union.

  9. Characterizing and locating air pollution sources in a complex industrial district using optical remote sensing technology and multivariate statistical modeling.

    PubMed

    Chang, Pao-Erh Paul; Yang, Jen-Chih Rena; Den, Walter; Wu, Chang-Fu

    2014-09-01

    Emissions of volatile organic compounds (VOCs) are most frequent environmental nuisance complaints in urban areas, especially where industrial districts are nearby. Unfortunately, identifying the responsible emission sources of VOCs is essentially a difficult task. In this study, we proposed a dynamic approach to gradually confine the location of potential VOC emission sources in an industrial complex, by combining multi-path open-path Fourier transform infrared spectrometry (OP-FTIR) measurement and the statistical method of principal component analysis (PCA). Close-cell FTIR was further used to verify the VOC emission source by measuring emitted VOCs from selected exhaust stacks at factories in the confined areas. Multiple open-path monitoring lines were deployed during a 3-month monitoring campaign in a complex industrial district. The emission patterns were identified and locations of emissions were confined by the wind data collected simultaneously. N,N-Dimethyl formamide (DMF), 2-butanone, toluene, and ethyl acetate with mean concentrations of 80.0 ± 1.8, 34.5 ± 0.8, 103.7 ± 2.8, and 26.6 ± 0.7 ppbv, respectively, were identified as the major VOC mixture at all times of the day around the receptor site. As the toxic air pollutant, the concentrations of DMF in air samples were found exceeding the ambient standard despite the path-average effect of OP-FTIR upon concentration levels. The PCA data identified three major emission sources, including PU coating, chemical packaging, and lithographic printing industries. Applying instrumental measurement and statistical modeling, this study has established a systematic approach for locating emission sources. Statistical modeling (PCA) plays an important role in reducing dimensionality of a large measured dataset and identifying underlying emission sources. Instrumental measurement, however, helps verify the outcomes of the statistical modeling. The field study has demonstrated the feasibility of

  10. Locating the sources of an invasive pest, grape phylloxera, using a mitochondrial DNA gene genealogy.

    PubMed

    Downie, D A

    2002-10-01

    Range expansions through human introductions have increased with global commerce and have led to the extinction of native species, alterations in community structure and pest status of the invasive species. Inferring the evolutionary history of invasive species can help to build a firmer footing for management tactics. This study used mitochondrial DNA (mtDNA) sequence comparisons of samples collected from the native and introduced ranges of a pest herbivore of cultivated grapes, grape phylloxera (Daktulosphaira vitifoliae Fitch, Phylloxeridae) to infer the sources and pattern of introductions into worldwide viticulture. Introductions into viticulture from its native North American range first occurred in the mid-19th century. The pattern of spread has suggested a focus of introduction into France, but independent introductions may have occurred elsewhere. The results show that the introduced population represents a limited subsample of the native genetic diversity. The data suggest that most grape phylloxera in viticulture, including all European, have originated in the northeastern USA where the grape species Vitis riparia dominates. There was evidence for independent introductions into South Africa and California. Most California haplotypes were most closely related to native grape phylloxera from the Atlantic Coast on V. vulpina. It is likely that subsequent spread from California into Australia, New Zealand and Peru has occurred. PMID:12296945

  11. Plasma assisted growth of MoO3 films on different substrate locations relative to sublimation source

    NASA Astrophysics Data System (ADS)

    Sharma, Rabindar K.; Saini, Sujit K.; Kumar, Prabhat; Singh, Megha; Reddy, G. B.

    2016-05-01

    In the present paper, we reported the role of substrate locations relative to source on the growth of MoO3 films deposited on Ni coated glass substrates using plasma assisted sublimation process (PASP). According to the XRD and SEM results, substrate location is very crucial factor to control the morphology of MoO3 films and the best nanostructure growth (in terms of alignments and features) is obtained in case of Sample B (in which substrate is placed on source). The structural results point out that all films exhibit only orthorhombic phase of molybdenum oxide (i.e. α-MoO3)but the most preferential growth is recorded in Sample B due to the presence of intense peaks crossponding to only (0 k 0) family of crystal planes (k = 2, 4,6..). The Raman analysis again confirms the orthorhombic nature of MoO3 NFs and details of vibrational bondsin Sample B have been given in the present report. The MoO3 NFs show intense PL emission in wavelength range of 300-700 nm with three peaks located at 415, 490, and 523 nm in accordance to the improved crystallinity in Sample B.

  12. Dynamic surface acoustic response to a thermal expansion source on an anisotropic half space.

    PubMed

    Zhao, Peng; Zhao, Ji-Cheng; Weaver, Richard

    2013-05-01

    The surface displacement response to a distributed thermal expansion source is solved using the reciprocity principle. By convolving the strain Green's function with the thermal stress field created by an ultrafast laser illumination, the complete surface displacement on an anisotropic half space induced by laser absorption is calculated in the time domain. This solution applies to the near field surface displacement due to pulse laser absorption. The solution is validated by performing ultrafast laser pump-probe measurements and showing very good agreement between the measured time-dependent probe beam deflection and the computed surface displacement. PMID:23654371

  13. Location and source mechanism of the Karlsruhe earthquake of 24 September 2014

    NASA Astrophysics Data System (ADS)

    Barth, Andreas

    2016-02-01

    On 24 September 2014, a ML 2.3 earthquake occurred southwest of the urban area of Karlsruhe, Germany, which was felt by a few people (maximum intensity I 0 = III). It was the first seismic event in this highly populated area since an I 0 = VII earthquake in 1948. Data of 35 permanent and temporary seismometers were analysed to localise the event and to determine the focal mechanism to compare it to previous seismicity. Restricting the data to P- and S-phases from 18 nearby stations and optimising the local earth model result in an epicentre in the southwest of the city at 48.986°N/8.302°E and in a hypocentral depth of 10 km. To calculate the focal mechanism, 22 P- and 5 SH-polarities were determined that constrain a stable left lateral strike-slip focal mechanism with a minor thrusting component and nodal planes striking NE-SW and NW-SE. The epicentre lies in the vicinity of the I 0 = VII earthquake of 1948. Both events are part of the graben-parallel flower structure beneath the Upper Rhine Graben, parallel to the active Rastatt source zone, which runs 5 km further east and included the epicentre of the 1933 Rastatt I 0 = VII earthquake. The focal mechanisms of the 2014 and 1948 earthquakes show NE-SW striking nodal planes that dip to the southeast. However, for the 1948 event, a normal faulting mechanism was determined earlier. Taking the uncertainty of the epicentre and focal mechanism in 1948 and its fault dimensions into account, both events might have happened on the same fault plane.

  14. Location and source mechanism of the Karlsruhe earthquake of 24 September 2014

    NASA Astrophysics Data System (ADS)

    Barth, Andreas

    2016-07-01

    On 24 September 2014, a ML 2.3 earthquake occurred southwest of the urban area of Karlsruhe, Germany, which was felt by a few people (maximum intensity I 0 = III). It was the first seismic event in this highly populated area since an I 0 = VII earthquake in 1948. Data of 35 permanent and temporary seismometers were analysed to localise the event and to determine the focal mechanism to compare it to previous seismicity. Restricting the data to P- and S-phases from 18 nearby stations and optimising the local earth model result in an epicentre in the southwest of the city at 48.986°N/8.302°E and in a hypocentral depth of 10 km. To calculate the focal mechanism, 22 P- and 5 SH-polarities were determined that constrain a stable left lateral strike-slip focal mechanism with a minor thrusting component and nodal planes striking NE-SW and NW-SE. The epicentre lies in the vicinity of the I 0 = VII earthquake of 1948. Both events are part of the graben-parallel flower structure beneath the Upper Rhine Graben, parallel to the active Rastatt source zone, which runs 5 km further east and included the epicentre of the 1933 Rastatt I 0 = VII earthquake. The focal mechanisms of the 2014 and 1948 earthquakes show NE-SW striking nodal planes that dip to the southeast. However, for the 1948 event, a normal faulting mechanism was determined earlier. Taking the uncertainty of the epicentre and focal mechanism in 1948 and its fault dimensions into account, both events might have happened on the same fault plane.

  15. Nonlinear wave fronts and ionospheric irregularities observed by HF sounding over a powerful acoustic source

    NASA Astrophysics Data System (ADS)

    Blanc, Elisabeth; Rickel, Dwight

    1989-06-01

    Different wave fronts affected by significant nonlinearities have been observed in the ionosphere by a pulsed HF sounding experiment at a distance of 38 km from the source point of a 4800-kg ammonium nitrate and fuel oil (ANFO) explosion on the ground. These wave fronts are revealed by partial reflections of the radio sounding waves. A small-scale irregular structure has been generated by a first wave front at the level of a sporadic E layer which characterized the ionosphere at the time of the experiment. The time scale of these fluctuations is about 1 to 2 s; its lifetime is about 2 min. Similar irregularities were also observed at the level of a second wave front in the F region. This structure appears also as diffusion on a continuous wave sounding at horizontal distances of the order of 200 km from the source. In contrast, a third front unaffected by irregularities may originate from the lowest layers of the ionosphere or from a supersonic wave front propagating at the base of the thermosphere. The origin of these structures is discussed.

  16. Blind source separation based on time-frequency morphological characteristics for rigid acoustic scattering by underwater objects

    NASA Astrophysics Data System (ADS)

    Yang, Yang; Li, Xiukun

    2016-06-01

    Separation of the components of rigid acoustic scattering by underwater objects is essential in obtaining the structural characteristics of such objects. To overcome the problem of rigid structures appearing to have the same spectral structure in the time domain, time-frequency Blind Source Separation (BSS) can be used in combination with image morphology to separate the rigid scattering components of different objects. Based on a highlight model, the separation of the rigid scattering structure of objects with time-frequency distribution is deduced. Using a morphological filter, different characteristics in a Wigner-Ville Distribution (WVD) observed for single auto term and cross terms can be simplified to remove any cross-term interference. By selecting time and frequency points of the auto terms signal, the accuracy of BSS can be improved. An experimental simulation has been used, with changes in the pulse width of the transmitted signal, the relative amplitude and the time delay parameter, in order to analyzing the feasibility of this new method. Simulation results show that the new method is not only able to separate rigid scattering components, but can also separate the components when elastic scattering and rigid scattering exist at the same time. Experimental results confirm that the new method can be used in separating the rigid scattering structure of underwater objects.

  17. Blind source separation based on time-frequency morphological characteristics for rigid acoustic scattering by underwater objects

    NASA Astrophysics Data System (ADS)

    Yang, Yang; Li, Xiukun

    2016-04-01

    Separation of the components of rigid acoustic scattering by underwater objects is essential in obtaining the structural characteristics of such objects. To overcome the problem of rigid structures appearing to have the same spectral structure in the time domain, time-frequency Blind Source Separation (BSS) can be used in combination with image morphology to separate the rigid scattering components of different objects. Based on a highlight model, the separation of the rigid scattering structure of objects with time-frequency distribution is deduced. Using a morphological filter, different characteristics in a Wigner-Ville Distribution (WVD) observed for single auto term and cross terms can be simplified to remove any cross-term interference. By selecting time and frequency points of the auto terms signal, the accuracy of BSS can be improved. An experimental simulation has been used, with changes in the pulse width of the transmitted signal, the relative amplitude and the time delay parameter, in order to analyzing the feasibility of this new method. Simulation results show that the new method is not only able to separate rigid scattering components, but can also separate the components when elastic scattering and rigid scattering exist at the same time. Experimental results confirm that the new method can be used in separating the rigid scattering structure of underwater objects.

  18. Shifting primary energy source and NOx emission location with plug-in hybrid vehicles

    NASA Astrophysics Data System (ADS)

    Karman, Deniz

    2011-06-01

    Plug-in hybrid vehicles (PHEVs) present an interesting technological opportunity for using non-fossil primary energy in light duty passenger vehicles, with the associated potential for reducing air pollutant and greenhouse gas emissions, to the extent that the electric power grid is fed by non-fossil sources. This perspective, accompanying the article by Thompson et al (2011) in this issue, will touch on two other studies that are directly related: the Argonne study (Elgowainy et al 2010) and a PhD thesis from Utrecht (van Vliet 2010). Thompson et al (2011) have examined air quality effects in a case where the grid is predominantly fossil fed. They estimate a reduction of 7.42 tons/day of NOx from motor vehicles as a result of substituting electric VMTs for 20% of the light duty gasoline vehicle miles traveled. To estimate the impact of this reduction on air quality they also consider the increases in NOx emissions due to the increased load on electricity generating units. The NOx emission increases are estimated as 4.0, 5.5 and 6.3 tons for the Convenience, Battery and Night charging scenarios respectively. The net reductions are thus in the 1.1-3.4 tons/day range. The air quality modelling results presented show that the air quality impact from a ground-level ozone perspective is favorable o