Science.gov

Sample records for acoustic target strength

  1. Acoustic backscattering by Hawaiian lutjanid snappers. I. Target strength and swimbladder characteristics

    NASA Astrophysics Data System (ADS)

    Benoit-Bird, Kelly J.; Au, Whitlow W. L.; Kelley, Christopher D.

    2003-11-01

    The target strengths and swimbladder morphology of six snapper species were investigated using broadband sonar, x rays, and swimbladder casts. Backscatter data were obtained using a frequency-modulated sweep (60-200 kHz) and a broadband, dolphinlike click (peak frequency 120 kHz) from live fish, mounted and rotated around each of their three axes. X rays revealed species-specific differences in the shape, size, and orientation of the swimbladders. The angle between the fish's dorsal aspect and the major axis of its swimbladder ranged from 3° to 12° and was consistent between individuals within a species. This angle had a one-to-one relationship with the angle at which the maximum dorsal aspect target strength was measured (r2=0.93), regardless of species. Maximum dorsal aspect target strength was correlated with length within species. However, the swimbladder modeled as an air-filled prolate spheroid with axes measured from the x rays of the swimbladder predicted maximum target strength significantly better than models based on fish length or swimbladder volume. For both the dorsal and lateral aspects, the prolate spheroid model's predictions were not significantly different from the measured target strengths (observed power >0.75) and were within 3 dB of the measured values. This model predicts the target strengths of all species equally well, unlike those based on length.

  2. Acoustic backscattering by Hawaiian lutjanid snappers. 1. Target strength and swimbladder characteristics.

    PubMed

    Benoit-Bird, Kelly J; Au, Whitlow W L; Kelley, Christopher D

    2003-11-01

    The target strengths and swimbladder morphology of six snapper species were investigated using broadband sonar, x rays, and swimbladder casts. Backscatter data were obtained using a frequency-modulated sweep (60-200 kHz) and a broadband, dolphinlike click (peak frequency 120 kHz) from live fish, mounted and rotated around each of their three axes. X rays revealed species-specific differences in the shape, size, and orientation of the swimbladders. The angle between the fish's dorsal aspect and the major axis of its swimbladder ranged from 3 degrees to 12 degrees and was consistent between individuals within a species. This angle had a one-to-one relationship with the angle at which the maximum dorsal aspect target strength was measured (r2 = 0.93), regardless of species. Maximum dorsal aspect target strength was correlated with length within species. However, the swimbladder modeled as an air-filled prolate spheroid with axes measured from the x rays of the swimbladder predicted maximum target strength significantly better than models based on fish length or swimbladder volume. For both the dorsal and lateral aspects, the prolate spheroid model's predictions were not significantly different from the measured target strengths (observed power >0.75) and were within 3 dB of the measured values. This model predicts the target strengths of all species equally well, unlike those based on length.

  3. A Connection Model between the Positioning Mechanism and Ultrasonic Measurement System via a Web Browser to Assess Acoustic Target Strength

    NASA Astrophysics Data System (ADS)

    Ishii, Ken; Imaizumi, Tomohito; Abe, Koki; Takao, Yoshimi; Tamura, Shuko

    This paper details a network-controlled measurement system for use in fisheries engineering. The target strength (TS) of fish is important in order to convert acoustic integration values obtained during acoustic surveys into estimates of fish abundance. The target strength pattern is measured with the combination of the rotation system for the aspect of the sample and the echo data acquisition system using the underwater supersonic wave. The user interface of the network architecture is designed for collaborative use with researchers in other organizations. The flexible network architecture is based on the web direct-access model for the rotation mechanism. The user interface is available for monitoring and controlling via a web browser that is installed in any terminal PC (personal computer). Previously the combination of two applications was performed not by a web browser but by the exclusive interface program. So a connection model is proposed between two applications by indirect communication via the DCOM (Distributed Component Object Model) server and added in the web direct-access model. A prompt report system in the TS measurement system and a positioning and measurement system using an electric flatcar via a web browser are developed. By a secure network architecture, DCOM communications via both Intranet and LAN are successfully certificated.

  4. A rail system for circular synthetic aperture sonar imaging and acoustic target strength measurements: Design/operation/preliminary results

    NASA Astrophysics Data System (ADS)

    Kennedy, J. L.; Marston, T. M.; Lee, K.; Lopes, J. L.; Lim, R.

    2014-01-01

    A 22 m diameter circular rail, outfitted with a mobile sonar tower trolley, was designed, fabricated, instrumented with underwater acoustic transducers, and assembled on a 1.5 m thick sand layer at the bottom of a large freshwater pool to carry out sonar design and target scattering response studies. The mobile sonar tower translates along the rail via a drive motor controlled by customized LabVIEW software. The rail system is modular and assembly consists of separately deploying eight circular arc sections, measuring a nominal center radius of 11 m and 8.64 m arc length each, and having divers connect them together in the underwater environment. The system enables full scale measurements on targets of interest with 0.1° angular resolution over a complete 360° aperture, without disrupting target setup, and affording a level of control over target environment conditions and noise sources unachievable in standard field measurements. In recent use, the mobile cart carrying an instrumented sonar tower was translated along the rail in 720 equal position increments and acoustic backscatter data were acquired at each position. In addition, this system can accommodate both broadband monostatic and bistatic scattering measurements on targets of interest, allowing capture of target signature phenomena under diverse configurations to address current scientific and technical issues encountered in mine countermeasure and unexploded ordnance applications. In the work discussed here, the circular rail apparatus is used for acoustic backscatter testing, but this system also has the capacity to facilitate the acquisition of magnetic and optical sensor data from targets of interest. A brief description of the system design and operation will be presented along with preliminary processed results for data acquired from acoustic measurements conducted at the Naval Surface Warfare Center, Panama City Division Test Pond Facility. [Work Supported by the U.S. Office of Naval Research and

  5. A rail system for circular synthetic aperture sonar imaging and acoustic target strength measurements: design/operation/preliminary results.

    PubMed

    Kennedy, J L; Marston, T M; Lee, K; Lopes, J L; Lim, R

    2014-01-01

    A 22 m diameter circular rail, outfitted with a mobile sonar tower trolley, was designed, fabricated, instrumented with underwater acoustic transducers, and assembled on a 1.5 m thick sand layer at the bottom of a large freshwater pool to carry out sonar design and target scattering response studies. The mobile sonar tower translates along the rail via a drive motor controlled by customized LabVIEW software. The rail system is modular and assembly consists of separately deploying eight circular arc sections, measuring a nominal center radius of 11 m and 8.64 m arc length each, and having divers connect them together in the underwater environment. The system enables full scale measurements on targets of interest with 0.1° angular resolution over a complete 360° aperture, without disrupting target setup, and affording a level of control over target environment conditions and noise sources unachievable in standard field measurements. In recent use, the mobile cart carrying an instrumented sonar tower was translated along the rail in 720 equal position increments and acoustic backscatter data were acquired at each position. In addition, this system can accommodate both broadband monostatic and bistatic scattering measurements on targets of interest, allowing capture of target signature phenomena under diverse configurations to address current scientific and technical issues encountered in mine countermeasure and unexploded ordnance applications. In the work discussed here, the circular rail apparatus is used for acoustic backscatter testing, but this system also has the capacity to facilitate the acquisition of magnetic and optical sensor data from targets of interest. A brief description of the system design and operation will be presented along with preliminary processed results for data acquired from acoustic measurements conducted at the Naval Surface Warfare Center, Panama City Division Test Pond Facility. [Work Supported by the U.S. Office of Naval Research and

  6. Low-frequency target strength and abundance of shoaling Atlantic herring (Clupea harengus) in the Gulf of Maine during the Ocean Acoustic Waveguide Remote Sensing 2006 Experiment.

    PubMed

    Gong, Zheng; Andrews, Mark; Jagannathan, Srinivasan; Patel, Ruben; Jech, J Michael; Makris, Nicholas C; Ratilal, Purnima

    2010-01-01

    The low-frequency target strength of shoaling Atlantic herring (Clupea harengus) in the Gulf of Maine during Autumn 2006 spawning season is estimated from experimental data acquired simultaneously at multiple frequencies in the 300-1200 Hz range using (1) a low-frequency ocean acoustic waveguide remote sensing (OAWRS) system, (2) areal population density calibration with several conventional fish finding sonar (CFFS) systems, and (3) low-frequency transmission loss measurements. The OAWRS system's instantaneous imaging diameter of 100 km and regular updating enabled unaliased monitoring of fish populations over ecosystem scales including shoals of Atlantic herring containing hundreds of millions of individuals, as confirmed by concurrent trawl and CFFS sampling. High spatial-temporal coregistration was found between herring shoals imaged by OAWRS and concurrent CFFS line-transects, which also provided fish depth distributions. The mean scattering cross-section of an individual shoaling herring is found to consistently exhibit a strong, roughly 20 dB/octave roll-off with decreasing frequency in the range of the OAWRS survey over all days of the roughly 2-week experiment, consistent with the steep roll-offs expected for sub-resonance scattering from fish with air-filled swimbladders.

  7. Methane gas hydrate effect on sediment acoustic and strength properties

    USGS Publications Warehouse

    Winters, W.J.; Waite, W.F.; Mason, D.H.; Gilbert, L.Y.; Pecher, I.A.

    2007-01-01

    To improve our understanding of the interaction of methane gas hydrate with host sediment, we studied: (1) the effects of gas hydrate and ice on acoustic velocity in different sediment types, (2) effect of different hydrate formation mechanisms on measured acoustic properties (3) dependence of shear strength on pore space contents, and (4) pore pressure effects during undrained shear. A wide range in acoustic p-wave velocities (Vp) were measured in coarse-grained sediment for different pore space occupants. Vp ranged from less than 1 km/s for gas-charged sediment to 1.77–1.94 km/s for water-saturated sediment, 2.91–4.00 km/s for sediment with varying degrees of hydrate saturation, and 3.88–4.33 km/s for frozen sediment. Vp measured in fine-grained sediment containing gas hydrate was substantially lower (1.97 km/s). Acoustic models based on measured Vp indicate that hydrate which formed in high gas flux environments can cement coarse-grained sediment, whereas hydrate formed from methane dissolved in the pore fluid may not. The presence of gas hydrate and other solid pore-filling material, such as ice, increased the sediment shear strength. The magnitude of that increase is related to the amount of hydrate in the pore space and cementation characteristics between the hydrate and sediment grains. We have found, that for consolidation stresses associated with the upper several hundred meters of sub-bottom depth, pore pressures decreased during shear in coarse-grained sediment containing gas hydrate, whereas pore pressure in fine-grained sediment typically increased during shear. The presence of free gas in pore spaces damped pore pressure response during shear and reduced the strengthening effect of gas hydrate in sands.

  8. In situ relations of target strength to fish size for Great Lakes pelagic planktivores

    USGS Publications Warehouse

    Fleischer, Guy W.; Argyle, Ray L.; Curtis, Gary L.

    1997-01-01

    We found mean target strength to be a reliable in situ predictor of fish weight, which allows direct estimation of the pelagic planktivore fish biomass from target strength measurements. Fish were collected by midwater trawling concurrent with target strength measurements (120-kHz frequency) in Lake Michigan. The mean weight of fish caught ranged from 2 to 71 g and mean target strength ranged from –54.9 to –38.0 decibels. Changes in mean target strength explained 73% of the variability in mean weight for combinations of various planktivore species, principally rainbow smelt Osrnerus mordax, bloaters Coregonus hovi, and alewives Alosa pseudoharengus. Bloaters were found to be less acoustically reflective than the other pelagic species, and a linear regression model with a classification variable was used to predict weight from target strength for bloaters and for the other species. We demonstrated that variations in the backscattering properties of different fish species must be considered to obtain accurate acoustic-based estimates of fish biomass.

  9. The acoustic basis for target discrimination by FM echolocating bats.

    PubMed

    Simmons, J A; Chen, L

    1989-10-01

    Past experiments show that echolocating bats of the species Myotis lucifugus and Eptesicus fuscus can discriminate among airborne sonar targets presented in the context of pursuit maneuvers for the interception of prey. These bats distinguish between edible mealworms and inedible spheres of various sizes. Myotis can distinguish between disks and mealworms similar enough in size that the bat's performance requires the ability to perceive the acoustic equivalent of target shape. Previously observed small differences in the spectrum of echoes from mealworms and disks appear insufficient to distinguish these targets at the performance levels achieved by bats. We measured the acoustic properties of the targets by broadcasting ultrasonic impulses at mealworms, spheres, and disks and recording their echoes, displaying the results in terms of impulse echo waveforms and the frequency response of targets derived from the target transfer function. The echoes from disks and mealworms at various orientations convey the range-axis profile of the target (number and spacing of reflecting points or glints distributed at different ranges) in terms of the impulse structure of their waveforms and in terms of the locations and spacing of notches or nulls in their spectra. For targets that bats can discriminate and that reflect echoes which do not clearly differ in overall amplitude, the targets appear distinguishable from the acoustic representation of their range profile, which is a feature of targets that bats can perceive with great acuity.

  10. New schools design: Acoustics as main target

    NASA Astrophysics Data System (ADS)

    Maffei, Luigi; Lembo, Paola

    2005-04-01

    The effects of poor intelligibility and high background noise levels on the cognitive development of school children and on the dissatisfaction of teachers has been largely investigated. National standards have been implemented and attempts to harmonize these standards in international guidelines are ongoing. All these activities have led to the awareness that design of new schools must be centered on the achievement of a good acoustic environment. At this point a strong research effort to study and implement best solutions must be conducted, in collaboration, by architects, acousticians, pedagogues, psychologists, builders and acoustic materials producers. Recently an international competition for the planning of new primary schools in Rome, Italy has been announced. The aim of the competition is to study new architectural and running features of primary schools to obtain, among other parameters such as lighting, low cost energy solutions and air quality, the control of reverberation time, sound insulation and mechanical equipments noise. In these school buildings, as innovative requirement, children must be also able to elaborate interpretative hypothesis of physical phenomena such as sound emission and perception and be aware of their influence on these phenomena. Different possible solutions are presented.

  11. Acoustic target detection and classification using neural networks

    NASA Technical Reports Server (NTRS)

    Robertson, James A.; Conlon, Mark

    1993-01-01

    A neural network approach to the classification of acoustic emissions of ground vehicles and helicopters is demonstrated. Data collected during the Joint Acoustic Propagation Experiment conducted in July of l991 at White Sands Missile Range, New Mexico was used to train a classifier to distinguish between the spectrums of a UH-1, M60, M1 and M114. An output node was also included that would recognize background (i.e. no target) data. Analysis revealed specific hidden nodes responding to the features input into the classifier. Initial results using the neural network were encouraging with high correct identification rates accompanied by high levels of confidence.

  12. Method for distinguishing multiple targets using time-reversal acoustics

    DOEpatents

    Berryman, James G.

    2004-06-29

    A method for distinguishing multiple targets using time-reversal acoustics. Time-reversal acoustics uses an iterative process to determine the optimum signal for locating a strongly reflecting target in a cluttered environment. An acoustic array sends a signal into a medium, and then receives the returned/reflected signal. This returned/reflected signal is then time-reversed and sent back into the medium again, and again, until the signal being sent and received is no longer changing. At that point, the array has isolated the largest eigenvalue/eigenvector combination and has effectively determined the location of a single target in the medium (the one that is most strongly reflecting). After the largest eigenvalue/eigenvector combination has been determined, to determine the location of other targets, instead of sending back the same signals, the method sends back these time reversed signals, but half of them will also be reversed in sign. There are various possibilities for choosing which half to do sign reversal. The most obvious choice is to reverse every other one in a linear array, or as in a checkerboard pattern in 2D. Then, a new send/receive, send-time reversed/receive iteration can proceed. Often, the first iteration in this sequence will be close to the desired signal from a second target. In some cases, orthogonalization procedures must be implemented to assure the returned signals are in fact orthogonal to the first eigenvector found.

  13. Acoustic methods to monitor sliver linear density and yarn strength

    DOEpatents

    Sheen, Shuh-Haw; Chien, Hual-Te; Raptis, Apostolos C.

    1997-01-01

    Methods and apparatus are provided for monitoring sliver and yarn characteristics. Transverse waves are generated relative to the sliver or yarn. At least one acoustic sensor is in contact with the sliver or yarn for detecting waves coupled to the sliver or yarn and for generating a signal. The generated signal is processed to identify the predefined characteristics including sliver or yarn linear density. The transverse waves can be generated with a high-powered acoustic transmitter spaced relative to the sliver or yarn with large amplitude pulses having a central frequency in a range between 20 KHz and 40 KHz applied to the transmitter. The transverse waves can be generated by mechanically agitating the sliver or yarn with a tapping member.

  14. Target detection and identification using synthetic aperture acoustics

    NASA Astrophysics Data System (ADS)

    Knox, Mary; Tantum, Stacy; Collins, Leslie

    2014-05-01

    Recent research has shown that synthetic aperture acoustic (SAA) imaging may be useful for object identification. The goal of this work is to use SAA information to detect and identify four types of objects: jagged rocks, river rocks, small concave capped cylinders, and large concave capped cylinders. More specifically, we examine the use of frequency domain features extracted from the SAA images. We utilize Support Vector Machines (SVMs) for target detection, where an SVM is trained on target and non-target (background) examples for each target type. Assuming perfect target detection, we then compare multivariate Gaussian models for target identification. Experimental results show that SAA-based frequency domain features are able to detect and identify the four types of objects.

  15. Delineation of excessive strength soils through acoustic to seismic techniques

    NASA Astrophysics Data System (ADS)

    Howard, Wheeler B.

    Soils overlying a naturally occurring hardpans, such as a fragipan, normally experience decreased crop yield and increased erosion rates. The motivation for this work stems from the desire to map the fragipan horizon in order to judiciously distribute agricultural resources. Currently, the fragipan horizon is mapped via core samples, auger holes, cone penetrometer measurements, and trench studies. The focus of this study is the application of a/s coupling techniques, which are less invasive, potentially more expedient, and inherently sensitive to changes in mechanical properties, to determine the depth to the fragipan. Previous investigations correlated various attributes of the acoustic to seismic (a/s) signature to physical quantities of the soil. These results showed promise for characterizing the near surface distribution of the soil's mechanical properties. This work further refines the a/s coupling technique to determine the depth to the soil-fragipan interface and the mechanical properties of the soil-fragipan system. The a/s coupling signature was measured at two field sites along with seismic refraction, cone penetrometer, trench, and core sample surveys. The ground truth served as a guide for the inversion of the a/s coupling field data. A multi-layered Thompson-Haskell viscoelastic forward model was employed to model the a,/s signature of the soil. Simulations with the forward model indicated that the a/s signature behaved as a quarter wavelength resonance prior to the onset of critical angles.Significant shins in the amplitude and frequency of the a/s signature occurred as critical angles were traversed. Inversion of svnthetic data via a hybrid algorithm was successful for both one and two layers over a half-space when the shear velocity was constrained. The measured a/s and modeled a/s signatures did not agree whether using the ground truth in modeling the als signature or comparing to the results from the a/s inversion. This may be because the a/s is

  16. Neural Network Prediction of Aluminum-Lithium Weld Strengths from Acoustic Emission Amplitude Data

    NASA Technical Reports Server (NTRS)

    Hill, Eric v. K.; Israel, Peggy L.; Knotts, Gregory L.

    1993-01-01

    Acoustic Emission (AE) flaw growth activity was monitored in aluminum-lithium weld specimens from the onset tensile loading to failure. Data on actual ultimate strengths together with AE data from the beginning of loading up to 25 percent of the expected ultimate strength were used to train a backpropagation neural network to predict ultimate strengths. Architecturally, the fully interconnected network consisted of an input layer for the AE amplitude data, a hidden layer to accommodate failure mechanism mapping, and an output layer for ultimate strength prediction. The trained network was the applied to the prediction of ultimate strengths in the remaining six specimens. The worst case prediction error was found to be +2.6 percent.

  17. Tracking a convoy of multiple targets using acoustic sensor data

    NASA Astrophysics Data System (ADS)

    Damarla, T. R.

    2003-08-01

    In this paper we present an algorithm to track a convoy of several targets in a scene using acoustic sensor array data. The tracking algorithm is based on template of the direction of arrival (DOA) angles for the leading target. Often the first target is the closest target to the sensor array and hence the loudest with good signal to noise ratio. Several steps were used to generate a template of the DOA angle for the leading target, namely, (a) the angle at the present instant should be close to the angle at the previous instant and (b) the angle at the present instant should be within error bounds of the predicted value based on the previous values. Once the template of the DOA angles of the leading target is developed, it is used to predict the DOA angle tracks of the remaining targets. In order to generate the tracks for the remaining targets, a track is established if the angles correspond to the initial track values of the first target. Second the time delay between the first track and the remaining tracks are estimated at the highest correlation points between the first track and the remaining tracks. As the vehicles move at different speeds the tracks either compress or expand depending on whether a target is moving fast or slow compared to the first target. The expansion and compression ratios are estimated and used to estimate the predicted DOA angle values of the remaining targets. Based on these predicted DOA angles of the remaining targets the DOA angles obtained from the MVDR or Incoherent MUSIC will be appropriately assigned to proper tracks. Several other rules were developed to avoid mixing the tracks. The algorithm is tested on data collected at Aberdeen Proving Ground with a convoy of 3, 4 and 5 vehicles. Some of the vehicles are tracked and some are wheeled vehicles. The tracking algorithm results are found to be good. The results will be presented at the conference and in the paper.

  18. The influence of the target strength model on computed perforation

    NASA Astrophysics Data System (ADS)

    Reaugh, J. E.

    1993-06-01

    The authors used an axisymmetric, two-dimensional Eulerian computer simulation program to simulate the penetration of a tungsten rod, with length to diameter ratio L/D = 10, into a thick steel target and the same rod into finite steel plates of thicknesses between 0.9 and 1.3 L. They compare the perforation limit with the semi-infinite penetration depth at the same velocity (the excess thickness) when the model for target strength is constant yield stress and when the model incorporates work hardening and thermal softening. The authors also compare their computed results with available experimental results, which show an excess thickness of about 1 rod diameter.

  19. The influence of the target strength model on computed perforation

    NASA Astrophysics Data System (ADS)

    Reaugh, John E.

    1994-07-01

    We used an axi-symmetric, two-dimensional Eulerian computer simulation program to simulate the penetration of tungsten rod with length to diameter ratio L/D=10 into a thick steel target, and the same rod into finite steel plates of thicknesses between 0.9 and 1.3 L. We compare the perforation limit with the semi-infinite penetrtaion depth at the same velocity (the excess thickness) when the model for target strength is constant yield stress, and when the model incorporates work hardening and thermal softening. We also compare our computed results with available experimental results, which show an excess of about 1 rod diameter.

  20. Can acoustic emission detect the initiation of fatigue cracks: Application to high-strength light alloys used in aeronautics

    NASA Technical Reports Server (NTRS)

    Bathias, C.; Brinet, B.; Sertour, G.

    1978-01-01

    Acoustic emission was used for the detection of fatigue cracking in a number of high-strength light alloys used in aeronautical structures. Among the features studied were: the influence of emission frequency, the effect of surface oxidation, and the influence of grains. It was concluded that acoustic emission is an effective nondestructive technique for evaluating the initiation of fatigue cracking in such materials.

  1. Visual and Acoustic Confusability of Target Letters and the Word Superiority Effect.

    ERIC Educational Resources Information Center

    Chastain, Garvin; And Others

    The hypothesis that word context reduces visual rather than acoustic confusion between possible targets was tested in a series of experiments. All involved tachistoscopic presentation of letter strings followed by a pattern mask. Data from eight college students showed that target letters that are confusable only visually and acoustically ("b" and…

  2. Echo-acoustic flow dynamically modifies the cortical map of target range in bats.

    PubMed

    Bartenstein, Sophia K; Gerstenberg, Nadine; Vanderelst, Dieter; Peremans, Herbert; Firzlaff, Uwe

    2014-01-01

    Echolocating bats use the delay between their sonar emissions and the reflected echoes to measure target range, a crucial parameter for avoiding collisions or capturing prey. In many bat species, target range is represented as an orderly organized map of echo delay in the auditory cortex. Here we show that the map of target range in bats is dynamically modified by the continuously changing flow of acoustic information perceived during flight ('echo-acoustic flow'). Combining dynamic acoustic stimulation in virtual space with extracellular recordings, we found that neurons in the auditory cortex of the bat Phyllostomus discolor encode echo-acoustic flow information on the geometric relation between targets and the bat's flight trajectory, rather than echo delay per se. Specifically, the cortical representation of close-range targets is enlarged when the lateral passing distance of the target decreases. This flow-dependent enlargement of target representation may trigger adaptive behaviours such as vocal control or flight manoeuvres. PMID:25131175

  3. Echo-acoustic flow dynamically modifies the cortical map of target range in bats.

    PubMed

    Bartenstein, Sophia K; Gerstenberg, Nadine; Vanderelst, Dieter; Peremans, Herbert; Firzlaff, Uwe

    2014-01-01

    Echolocating bats use the delay between their sonar emissions and the reflected echoes to measure target range, a crucial parameter for avoiding collisions or capturing prey. In many bat species, target range is represented as an orderly organized map of echo delay in the auditory cortex. Here we show that the map of target range in bats is dynamically modified by the continuously changing flow of acoustic information perceived during flight ('echo-acoustic flow'). Combining dynamic acoustic stimulation in virtual space with extracellular recordings, we found that neurons in the auditory cortex of the bat Phyllostomus discolor encode echo-acoustic flow information on the geometric relation between targets and the bat's flight trajectory, rather than echo delay per se. Specifically, the cortical representation of close-range targets is enlarged when the lateral passing distance of the target decreases. This flow-dependent enlargement of target representation may trigger adaptive behaviours such as vocal control or flight manoeuvres.

  4. Gray whale target strength measurements and the analysis of the backscattered response.

    PubMed

    Lucifredi, Irena; Stein, Peter J

    2007-03-01

    One of the current Integrated Marine Mammal Monitoring and Protection System (IMPAS) directions is concentrated on the design and development of the active sonar modality representing just one component of the global system. The active sonar was designed, built, and tested during the Marine Mammal Active Sonar Test (MAST 04), producing whale detections and whale tracks. The experiment was conducted in January 2004 off the coast of California. One of the objectives of the current work is to distinguish whale backscattered responses from the ones generated by the environmental clutter in a waveguide. Furthermore, the work aims to identify and analyze the target signature features that are necessary for enhanced active sonar detection and classification of marine mammals. Over the years there have been very few documented attempts to capture and analyze the backscattering response of whales using an active sonar system. Nevertheless, whales, mostly owing to their size, their motion, and the aspect dependence of their backscattered field, possess desirable properties that help distinguish their scattered response from clutter and other environment related false alarms. As an initial step, data collected during the MAST 04 experiment are presented, and gray whale target strength measurements are obtained. Results are compared to the previously published whale target strengths. Additionally, an investigation is conducted in an effort to provide whale feature identification points suitable for automated detection and classification, as means of relating gray whale active acoustic signatures to their inherent characteristics and their motion.

  5. The influence of the target strength model on computed perforation

    SciTech Connect

    Reaugh, J.E.

    1993-06-01

    The authors used an axi-symmetric, two-dimensional Eulerian computer simulation program to simulate the penetration of a tungsten rod with length to diameter ratio L/D = 10 into a thick steel target, and the same rod into finite steel plates of thicknesses between 0.9 and 1.3 L. They compare the perforation limit with the semi-infinite penetration depth at the same velocity (the excess thickness) when the model for target strength is constant yield stress, and when the model incorporates work hardening and thermal softening. The authors also compare their computed results with available experimental results, which show an excess thickness of about 1 rod diameter.

  6. Ex situ echo sounder target strengths of ice krill Euphausia crystallorophias

    NASA Astrophysics Data System (ADS)

    La, Hyoung Sul; Lee, Hyungbeen; Kang, Donhyug; Lee, SangHoon; Shin, Hyoung Chul

    2015-05-01

    Ice krill is the keystone species in the neritic ecosystem in the Southern Ocean, where it replaces the more oceanic Antarctic krill. It is essential to understand the variation of target strength (TS in dB re 1 m2) with the different body size to accurately estimate ice krill stocks. However, there is comparatively little knowledge of the acoustic backscatter of ice krill. The TS of individual, formalin-preserved, tethered ice krill was measured in a freshwater test tank at 38, 120, and 200 kHz with a calibrated split-beam echo sounder system. Mean TS was obtained from 21 individual ice krill with a broad range of body lengths ( L: 13-36 mm). The length ( L, mm) to wet weight ( W; mg) relationship for ice krill was W=0.001218×103 × L 3.53 ( R 2 =0.96). The mean TS-to-length relationship were TS38 kHz =-177.4+57log10 ( L), ( R 2 = 0.86); TS120 kHz = -129.9+31.56log10 ( L), ( R 2 =0.87); and TS200 kHz =-117.6+24.66log10 ( L), ( R 2 =0.84). Empirical estimates of the relationship between the TS and body length of ice krill were established at 38, 120, and 200 kHz and compared with predictions obtained from both the linear regression model of Greene et al. (1991) and the Stochastic Distorted Wave Born Approximation (SDWBA) model. This result might be applied to improve acoustic detection and density estimation of ice krill in the Southern Ocean. Further comparative studies are needed with in situ target strength including various body lengths of ice krill.

  7. Sexual dimorphism in body shape of Antarctic krill ( Euphausia superba) and its influence on target strength

    NASA Astrophysics Data System (ADS)

    Amakasu, Kazuo; Ono, Atsushi; Moteki, Masato; Ishimaru, Takashi

    2011-08-01

    Sexual dimorphism in the body shape of Antarctic krill ( Euphausia superba) was investigated and its influence on target strength (TS) was clarified using a theoretical scattering model. The TS which is used to convert acoustic backscatter to krill density was also presented. Body shape data were obtained from 456 specimens (54 juveniles, 200 males, and 202 females) collected off Adélie Land using a Rectangular Midwater Trawl. The sexual dimorphism manifested as a swollen cephalothorax in female krill with body lengths exceeding 40 mm. The TS of female krill was higher than those of male krill at low frequencies, even when body lengths were the same. This is because of the Rayleigh scattering region and the transition region to the geometric scattering region. The influence of the sexual dimorphism on the TS was small at frequencies exceeding 70 kHz, which are close to the geometric scattering region. The regression curve derived from the predicted TS of 456 specimens was in reasonable agreement with the measured TS in other previous studies, and the regression curve could be applied to the acoustic surveys of Antarctic krill.

  8. Targeted Acoustic Data Processing for Ocean Ecological Studies

    NASA Astrophysics Data System (ADS)

    Sidorovskaia, N.; Li, K.; Tiemann, C.; Ackleh, A. S.; Tang, T.; Ioup, G. E.; Ioup, J. W.

    2015-12-01

    The Gulf of Mexico is home to many species of deep diving marine mammals. In recent years several ecological studies have collected large volumes of Passive Acoustic Monitoring (PAM) data to investigate the effects of anthropogenic activities on protected and endangered marine mammal species. To utilize these data to their fullest potential for abundance estimates and habitat preference studies, automated detection and classification algorithms are needed to extract species acoustic encounters from a continuous stream of data. The species which phonate in overlapping frequency bands represent a particular challenge. This paper analyzes the performance of a newly developed automated detector for the classification of beaked whale clicks in the Northern Gulf of Mexico. Current used beaked whale classification algorithms rely heavily on experienced human operator involvement in manually associating potential events with a particular species of beaked whales. Our detection algorithm is two-stage: the detector is triggered when the species-representative phonation band energy exceeds the baseline detection threshold. Then multiple event attributes (temporal click duration, central frequency, frequency band, frequency sweep rate, Choi-Williams distribution shape indices) are measured. An attribute vector is then used to discriminate among different species of beaked whales present in the Gulf of Mexico and Risso's dolphins which were recognized to mask the detections of beaked whales in the case of widely used energy-band detectors. The detector is applied to the PAM data collected by the Littoral Acoustic Demonstration Center to estimate abundance trends of beaked whales in the vicinity of the 2010 oil spill before and after the disaster. This algorithm will allow automated processing with minimal operator involvement for new and archival PAM data. [The research is supported by a BP/GOMRI 2015-2017 consortium grant.

  9. A novel algorithm for buried target detection evaluated on a collection of seismo-acoustic data

    NASA Astrophysics Data System (ADS)

    Malof, Jordan M.; Knox, Mary; Torrione, Peter A.; Collins, Leslie M.; Morton, Kenneth D.

    2014-06-01

    A recently validated technique for buried target detection relies on applying an acoustic stimulus signal to a patch of earth and then measuring its seismic (vibrational) response using a laser Doppler vibrometer (LDV). Target detection in this modality often relies on estimating the acoustic-to-seismic coupling ratio (A/S ratio) of the ground, which is altered by the presence of a buried target. For this study, LDV measurements were collected over patches of earth under varying environmental conditions using a known stimulus. These observations are then used to estimate the performance of several methods to discriminate between target and non-target patches. The first part of the study compares the performance of human observers against a set of established seismo-acoustic features from the literature. The simple features are based on previous studies where statistics on the Fourier transform of the acoustic-to-seismic transfer function estimate are measured. The human observers generally offered much better detection performance than any established feature. One weakness of the Fourier features is their inability to utilize local spatiotemporal target cues. To address these weaknesses, a novel automatic detection algorithm is proposed which uses a multi-scale blob detector to identify suspicious regions in time and space. These suspicious spatiotemporal locations are then clustered and assigned a decision statistic based on the confidence and number of cluster members. This method is shown to improve performance over the established Fourier statistics, resulting in performance much closer to the human observers.

  10. Diel vertical migration of zooplankton at the S1 biogeochemical mooring revealed from acoustic backscattering strength

    NASA Astrophysics Data System (ADS)

    Inoue, Ryuichiro; Kitamura, Minoru; Fujiki, Tetsuichi

    2016-02-01

    We examined the diel vertical migration of zooplankton by using the backscatter strength obtained from moored acoustic Doppler current profilers at mooring site S1 in the North Pacific subtropical gyre. There was seasonal variability in the vertical distribution and migration of the high-backscatter layers in that they became deeper than the euphotic zone (<100 m) in winter and were confined above this depth in other seasons. Seasonal changes in daylight hours also affected the timing of the diel migration. We found that lunar cycles affected vertical distributions of zooplankton near the surface by changing the light intensity. Physical events, such as mixed-layer deepening and restratification and the passage of a mesoscale eddy, also affected zooplankton behavior possibly by changing food environment in the euphotic zone. Since the comparison with net samples indicated that the backscatter likely represents the bulk biomass, the accuracy of biomass estimates based on net samples could be influenced by the high temporal variability of zooplankton distributions.

  11. Numerical Simulation of Target Range Estimation Using Ambient Noise Imaging with Acoustic Lens

    NASA Astrophysics Data System (ADS)

    Mori, Kazuyoshi; Ogasawara, Hanako; Nakamura, Toshiaki; Tsuchiya, Takenobu; Endoh, Nobuyuki

    2010-07-01

    In ambient noise imaging (ANI), each pixel of a target image is mapped by either monochrome or pseudo color to represent its acoustic intensity in each direction. This intensity is obtained by measuring the target object's reflecting or scattering wave, with ocean background noise serving as the sound source. In the case of using an acoustic lens, the ANI system creates a C-mode-like image, where receivers are arranged on a focal plane and each pixel's color corresponds to the intensity of each receiver output. There is no consideration for estimating a target range by this method, because it is impossible to measure the traveling time between a transducer and a target by a method like an active imaging sonar. In this study, we tried to estimate a target range using the ANI system with an acoustic lens. Here, we conducted a numerical simulation of sound propagation based on the principle of the time reversal mirror. First, instead of actual ocean measurements in the forward propagation, we calculated the scattering wave from a rigid target object in an acoustic noise field generated by a large number of point sources using the two-dimensional (2D) finite difference time domain (FDTD) method. The time series of the scattering wave converged by the lens was then recorded on each receiver. The sound pressure distribution assuming that the time-reversed wave of the scattering wave was reradiated from each receiver position was also calculated using the 2D FDTD method in the backward propagation. It was possible to estimate a target range using the ANI system with an acoustic lens, because the maximum position of the reradiated sound pressure field was close to the target position.

  12. Numerical Simulation of Target Range Estimation Using Ambient Noise Imaging with Acoustic Lens

    NASA Astrophysics Data System (ADS)

    Kazuyoshi Mori,; Hanako Ogasawara,; Toshiaki Nakamura,; Takenobu Tsuchiya,; Nobuyuki Endoh,

    2010-07-01

    In ambient noise imaging (ANI), each pixel of a target image is mapped by either monochrome or pseudo color to represent its acoustic intensity in each direction. This intensity is obtained by measuring the target object’s reflecting or scattering wave, with ocean background noise serving as the sound source. In the case of using an acoustic lens, the ANI system creates a C-mode-like image, where receivers are arranged on a focal plane and each pixel’s color corresponds to the intensity of each receiver output. There is no consideration for estimating a target range by this method, because it is impossible to measure the traveling time between a transducer and a target by a method like an active imaging sonar. In this study, we tried to estimate a target range using the ANI system with an acoustic lens. Here, we conducted a numerical simulation of sound propagation based on the principle of the time reversal mirror. First, instead of actual ocean measurements in the forward propagation, we calculated the scattering wave from a rigid target object in an acoustic noise field generated by a large number of point sources using the two-dimensional (2D) finite difference time domain (FDTD) method. The time series of the scattering wave converged by the lens was then recorded on each receiver. The sound pressure distribution assuming that the time-reversed wave of the scattering wave was reradiated from each receiver position was also calculated using the 2D FDTD method in the backward propagation. It was possible to estimate a target range using the ANI system with an acoustic lens, because the maximum position of the reradiated sound pressure field was close to the target position.

  13. Modeling and simulation of torpedo acoustic homing trajectory with multiple targets

    NASA Astrophysics Data System (ADS)

    Gu, Hao; Kang, Feng-Ju; Nie, Wei-Dong

    2006-06-01

    The characteristics of a torpedo's acoustic homing trajectory with multiple targets were studied. The differential equations of torpedo motion were presented based on hydrodynamics. The Fourth order Runge-Kutta method was used to solve these equations. Derived from sonar equations and Snell’s law, a simple virtual underwater acoustic environment was established for simulating the torpedo homing process. The Newton iteration method was used to calculate homing range and ray tracing was approximated by piecewise line, which takes into consideration distortions cause by temperature, pressure, and salinity in a given sea area. The influence of some acoustic warfare equipment disturb the torpedo homing process in certain circumstances, including decoys and jammers, was alsotaken into account in simulations. Relative target identification logic and homing control laws were presented. Equal consideration during research was given to the requirements of real-timeactivity as well as accuracy. Finally, a practical torpedo homing trajectory simulation program was developed and applied to certain projects.

  14. Opti-acoustic stereo imaging: on system calibration and 3-D target reconstruction.

    PubMed

    Negahdaripour, Shahriar; Sekkati, Hicham; Pirsiavash, Hamed

    2009-06-01

    Utilization of an acoustic camera for range measurements is a key advantage for 3-D shape recovery of underwater targets by opti-acoustic stereo imaging, where the associated epipolar geometry of optical and acoustic image correspondences can be described in terms of conic sections. In this paper, we propose methods for system calibration and 3-D scene reconstruction by maximum likelihood estimation from noisy image measurements. The recursive 3-D reconstruction method utilized as initial condition a closed-form solution that integrates the advantages of two other closed-form solutions, referred to as the range and azimuth solutions. Synthetic data tests are given to provide insight into the merits of the new target imaging and 3-D reconstruction paradigm, while experiments with real data confirm the findings based on computer simulations, and demonstrate the merits of this novel 3-D reconstruction paradigm.

  15. Opti-acoustic stereo imaging: on system calibration and 3-D target reconstruction.

    PubMed

    Negahdaripour, Shahriar; Sekkati, Hicham; Pirsiavash, Hamed

    2009-06-01

    Utilization of an acoustic camera for range measurements is a key advantage for 3-D shape recovery of underwater targets by opti-acoustic stereo imaging, where the associated epipolar geometry of optical and acoustic image correspondences can be described in terms of conic sections. In this paper, we propose methods for system calibration and 3-D scene reconstruction by maximum likelihood estimation from noisy image measurements. The recursive 3-D reconstruction method utilized as initial condition a closed-form solution that integrates the advantages of two other closed-form solutions, referred to as the range and azimuth solutions. Synthetic data tests are given to provide insight into the merits of the new target imaging and 3-D reconstruction paradigm, while experiments with real data confirm the findings based on computer simulations, and demonstrate the merits of this novel 3-D reconstruction paradigm. PMID:19380272

  16. Determining the Best Sensing Coverage for 2-Dimensional Acoustic Target Tracking

    PubMed Central

    Pashazadeh, Saeid; Sharifi, Mohsen

    2009-01-01

    Distributed acoustic target tracking is an important application area of wireless sensor networks. In this paper we use algebraic geometry to formally model 2-dimensional acoustic target tracking and then prove its best degree of required sensing coverage. We present the necessary conditions for three sensing coverage to accurately compute the spatio-temporal information of a target object. Simulations show that 3-coverage accurately locates a target object only in 53% of cases. Using 4-coverage, we present two different methods that yield correct answers in almost all cases and have time and memory usage complexity of Θ(1). Analytic 4-coverage tracking is our first proposed method that solves a simultaneous equation system using the sensing information of four sensor nodes. Redundant answer fusion is our second proposed method that solves at least two sets of simultaneous equations of target tracking using the sensing information of two different sets of three sensor nodes, and fusing the results using a new customized formal majority voter. We prove that 4-coverage guarantees accurate 2-dimensional acoustic target tracking under ideal conditions. PMID:22412319

  17. Binding Dynamics of Targeted Microbubbles in Response to Modulated Acoustic Radiation Force

    PubMed Central

    Wang, Shiying; Hossack, John A; Klibanov, Alexander L; Mauldin, F William

    2014-01-01

    Detection of molecular targeted microbubbles plays a foundational role in ultrasound-based molecular imaging and targeted gene or drug delivery. In this paper, an empirical model describing the binding dynamics of targeted microbubbles in response to modulated acoustic radiation forces in large vessels is presented and experimentally verified using tissue-mimicking flow phantoms. Higher flow velocity and microbubble concentration led to faster detaching rates for specifically bound microbubbles (p < 0.001). Higher time-averaged acoustic radiation force intensity led to faster attaching rates and a higher saturation level of specifically bound microbubbles (p < 0.05). The level of residual microbubble signal in targeted experiments after cessation of radiation forces was the only response parameter that was reliably different between targeted and control experiments (p < 0.05). A related parameter, the ratio of residual-to-saturated microbubble signal (Rresid), is proposed as a measurement that is independent of absolute acoustic signal magnitude and therefore able to reliably detect targeted adhesion independently of control measurements (p < 0.01). These findings suggest the possibility of enhanced detection of specifically bound microbubbles in real-time, using relatively short imaging protocols (approximately 3 min), without waiting for free microbubble clearance. PMID:24374866

  18. Determining the best sensing coverage for 2-dimensional acoustic target tracking.

    PubMed

    Pashazadeh, Saeid; Sharifi, Mohsen

    2009-01-01

    Distributed acoustic target tracking is an important application area of wireless sensor networks. In this paper we use algebraic geometry to formally model 2-dimensional acoustic target tracking and then prove its best degree of required sensing coverage. We present the necessary conditions for three sensing coverage to accurately compute the spatio-temporal information of a target object. Simulations show that 3-coverage accurately locates a target object only in 53% of cases. Using 4-coverage, we present two different methods that yield correct answers in almost all cases and have time and memory usage complexity of Θ(1). Analytic 4-coverage tracking is our first proposed method that solves a simultaneous equation system using the sensing information of four sensor nodes. Redundant answer fusion is our second proposed method that solves at least two sets of simultaneous equations of target tracking using the sensing information of two different sets of three sensor nodes, and fusing the results using a new customized formal majority voter. We prove that 4-coverage guarantees accurate 2-dimensional acoustic target tracking under ideal conditions.

  19. Remote Sensing of Marine Life and Submerged Target Motions with Ocean Waveguide Acoustics

    NASA Astrophysics Data System (ADS)

    Gong, Zheng

    Many species of fish that inhabit the continental shelf waters can cause significant acoustic scattering at low- to mid-frequencies due to the large impedance contrast between their air-filled swimbladders and the surrounding water. In this thesis, we investigate the acoustic resonance scattering response from distributed fish groups both experimentally and theoretically including the effects of multiple scattering, attenuation, and dispersion in a random range-dependent ocean waveguide using an instantaneous wide-area imaging system. In navy sonar operations, the biological organisms can cause high false alarm rates or missed target detections since the biological scattering can be confused with or camouflage the returns from other discrete and distributed objects, such as underwater vehicles and geologic features. From an ecological perspective, the ability to instantaneously survey fish populations distributed over wide areas is important for fisheries management. The low-frequency target strength of shoaling Atlantic herring ( Clupea harengus) in the Gulf of Maine during their Autumn 2006 spawning season is estimated from experimental data acquired simultaneously at multiple frequencies in the 300 to 1200 Hz range using (1) a low-frequency ocean acoustic waveguide remote sensing (OAWRS) system, (2) areal population density calibration with several conventional fish finding sonar (CFFS) systems, and (3) low-frequency transmission loss measurements. The OAWRS system's instantaneous imaging diameter of 100 km and regular updating enabled unaliased monitoring of fish populations over ecosystem scales including shoals of Atlantic herring containing as many as 200 million individuals, as estimated based on single scattering assumption and confirmed by concurrent trawl and CFFS sampling. The mean scattering cross-section of an individual shoaling herring is found to consistently exhibit a strong, roughly 20 dB/octave roll-off with decreasing frequency over all days of

  20. Estimation of low-altitude moving target trajectory using single acoustic array.

    PubMed

    Tong, Jianfei; Xie, Wei; Hu, Yu-Hen; Bao, Ming; Li, Xiaodong; He, Wei

    2016-04-01

    An acoustic-signature based method of estimating the flight trajectory of low-altitude flying aircraft that only requires a stationary microphone array is proposed. This method leverages the Doppler shifts of engine sound to estimate the closest point of approach distance, time, and speed. It also leverages the acoustic phase shift over the microphone array to estimate the direction of arrival of the target. Combining these parameters, this algorithm provides a total least square estimate of the target trajectory under the assumption of constant target height, direction, and speed. Analytical bounds of potential performance degradation due to noise are derived and the estimation error caused by signal propagation delay is analyzed, and both are verified with extensive simulation. The proposed algorithm is also validated by processing the data collected in field experiments. PMID:27106332

  1. Classification of underwater targets from autonomous underwater vehicle sampled bistatic acoustic scattered fields.

    PubMed

    Fischell, Erin M; Schmidt, Henrik

    2015-12-01

    One of the long term goals of autonomous underwater vehicle (AUV) minehunting is to have multiple inexpensive AUVs in a harbor autonomously classify hazards. Existing acoustic methods for target classification using AUV-based sensing, such as sidescan and synthetic aperture sonar, require an expensive payload on each outfitted vehicle and post-processing and/or image interpretation. A vehicle payload and machine learning classification methodology using bistatic angle dependence of target scattering amplitudes between a fixed acoustic source and target has been developed for onboard, fully autonomous classification with lower cost-per-vehicle. To achieve the high-quality, densely sampled three-dimensional (3D) bistatic scattering data required by this research, vehicle sampling behaviors and an acoustic payload for precision timed data acquisition with a 16 element nose array were demonstrated. 3D bistatic scattered field data were collected by an AUV around spherical and cylindrical targets insonified by a 7-9 kHz fixed source. The collected data were compared to simulated scattering models. Classification and confidence estimation were shown for the sphere versus cylinder case on the resulting real and simulated bistatic amplitude data. The final models were used for classification of simulated targets in real time in the LAMSS MOOS-IvP simulation package [M. Benjamin, H. Schmidt, P. Newman, and J. Leonard, J. Field Rob. 27, 834-875 (2010)].

  2. Classification of underwater targets from autonomous underwater vehicle sampled bistatic acoustic scattered fields.

    PubMed

    Fischell, Erin M; Schmidt, Henrik

    2015-12-01

    One of the long term goals of autonomous underwater vehicle (AUV) minehunting is to have multiple inexpensive AUVs in a harbor autonomously classify hazards. Existing acoustic methods for target classification using AUV-based sensing, such as sidescan and synthetic aperture sonar, require an expensive payload on each outfitted vehicle and post-processing and/or image interpretation. A vehicle payload and machine learning classification methodology using bistatic angle dependence of target scattering amplitudes between a fixed acoustic source and target has been developed for onboard, fully autonomous classification with lower cost-per-vehicle. To achieve the high-quality, densely sampled three-dimensional (3D) bistatic scattering data required by this research, vehicle sampling behaviors and an acoustic payload for precision timed data acquisition with a 16 element nose array were demonstrated. 3D bistatic scattered field data were collected by an AUV around spherical and cylindrical targets insonified by a 7-9 kHz fixed source. The collected data were compared to simulated scattering models. Classification and confidence estimation were shown for the sphere versus cylinder case on the resulting real and simulated bistatic amplitude data. The final models were used for classification of simulated targets in real time in the LAMSS MOOS-IvP simulation package [M. Benjamin, H. Schmidt, P. Newman, and J. Leonard, J. Field Rob. 27, 834-875 (2010)]. PMID:26723332

  3. Target Strength of Southern Resident Killer Whales (Orcinus orca): Measurement and Modeling

    SciTech Connect

    Xu, Jinshan; Deng, Zhiqun; Carlson, Thomas J.; Moore, Brian

    2012-04-04

    A major criterion for tidal power licensing in Washington’s Puget Sound is the management of the risk of injury to killer whales due to collision with moving turbine blades. An active monitoring system is being proposed for killer whale detection, tracking, and alerting that links to and triggers temporary turbine shutdown when there is risk of collision. Target strength (TS) modeling of the killer whale is critical to the design and application of any active monitoring system. A 1996 study performed a high-resolution measurement of acoustic reflectivity as a function of frequency of a female bottlenose dolphin (2.2 m length) at broadside aspect and TS as a function of incident angle at 67 kHz frequency. Assuming that killer whales share similar morphology structure with the bottlenose dolphin, we extrapolated the TS of an adult killer whale 7.5 m in length at 67 kHz frequency with -8 dB at broadside aspect and -28 dB at tail side. The backscattering data from three Southern Resident killer whales were analyzed to obtain the TS measurement. These data were collected at Lime Kiln State Park using a split-beam system deployed from a boat. The TS of the killer whale at higher frequency (200 kHz) was estimated based on a three-layer model for plane wave reflection from the lung of the whale. The TS data of killer whales were in good agreement with our model. In this paper, we also discuss and explain possible causes for measurement estimation error.

  4. Acoustics

    NASA Technical Reports Server (NTRS)

    Goodman, Jerry R.; Grosveld, Ferdinand

    2007-01-01

    The acoustics environment in space operations is important to maintain at manageable levels so that the crewperson can remain safe, functional, effective, and reasonably comfortable. High acoustic levels can produce temporary or permanent hearing loss, or cause other physiological symptoms such as auditory pain, headaches, discomfort, strain in the vocal cords, or fatigue. Noise is defined as undesirable sound. Excessive noise may result in psychological effects such as irritability, inability to concentrate, decrease in productivity, annoyance, errors in judgment, and distraction. A noisy environment can also result in the inability to sleep, or sleep well. Elevated noise levels can affect the ability to communicate, understand what is being said, hear what is going on in the environment, degrade crew performance and operations, and create habitability concerns. Superfluous noise emissions can also create the inability to hear alarms or other important auditory cues such as an equipment malfunctioning. Recent space flight experience, evaluations of the requirements in crew habitable areas, and lessons learned (Goodman 2003; Allen and Goodman 2003; Pilkinton 2003; Grosveld et al. 2003) show the importance of maintaining an acceptable acoustics environment. This is best accomplished by having a high-quality set of limits/requirements early in the program, the "designing in" of acoustics in the development of hardware and systems, and by monitoring, testing and verifying the levels to ensure that they are acceptable.

  5. Extraction of Target Scatterings from Received Transients on Target Detection Trial of Ambient Noise Imaging with Acoustic Lens

    NASA Astrophysics Data System (ADS)

    Mori, Kazuyoshi; Ogasawara, Hanako; Nakamura, Toshiaki; Tsuchiya, Takenobu; Endoh, Nobuyuki

    2012-07-01

    We have already designed and fabricated an aspherical lens with an aperture diameter of 1.0 m to develop a prototype system for ambient noise imaging (ANI). It has also been verified that this acoustic lens realizes a directional resolution, which is a beam width of 1° at the center frequency of 120 kHz over the field of view from -7 to +7°. In this study, a sea trial of silent target detection using the prototype ANI system was conducted under only natural ocean ambient noise at Uchiura Bay, in November of 2010. There were many transients in the received sound. These transients were classified roughly into directly received noises and target scatterings. We proposed a classification method to extract transients of only target scatterings. By analyzing transients extracted as target scatterings, it was verified that the power spectrum density levels of the on-target directions were greater than those of the off-target directions in the higher frequency band over 60 kHz. These results showed that the targets are successfully detected under natural ocean ambient noise, mainly generated by snapping shrimps.

  6. Action Enhances Acoustic Cues for 3-D Target Localization by Echolocating Bats

    PubMed Central

    Wohlgemuth, Melville J.

    2016-01-01

    Under natural conditions, animals encounter a barrage of sensory information from which they must select and interpret biologically relevant signals. Active sensing can facilitate this process by engaging motor systems in the sampling of sensory information. The echolocating bat serves as an excellent model to investigate the coupling between action and sensing because it adaptively controls both the acoustic signals used to probe the environment and movements to receive echoes at the auditory periphery. We report here that the echolocating bat controls the features of its sonar vocalizations in tandem with the positioning of the outer ears to maximize acoustic cues for target detection and localization. The bat’s adaptive control of sonar vocalizations and ear positioning occurs on a millisecond timescale to capture spatial information from arriving echoes, as well as on a longer timescale to track target movement. Our results demonstrate that purposeful control over sonar sound production and reception can serve to improve acoustic cues for localization tasks. This finding also highlights the general importance of movement to sensory processing across animal species. Finally, our discoveries point to important parallels between spatial perception by echolocation and vision. PMID:27608186

  7. Action Enhances Acoustic Cues for 3-D Target Localization by Echolocating Bats.

    PubMed

    Wohlgemuth, Melville J; Kothari, Ninad B; Moss, Cynthia F

    2016-09-01

    Under natural conditions, animals encounter a barrage of sensory information from which they must select and interpret biologically relevant signals. Active sensing can facilitate this process by engaging motor systems in the sampling of sensory information. The echolocating bat serves as an excellent model to investigate the coupling between action and sensing because it adaptively controls both the acoustic signals used to probe the environment and movements to receive echoes at the auditory periphery. We report here that the echolocating bat controls the features of its sonar vocalizations in tandem with the positioning of the outer ears to maximize acoustic cues for target detection and localization. The bat's adaptive control of sonar vocalizations and ear positioning occurs on a millisecond timescale to capture spatial information from arriving echoes, as well as on a longer timescale to track target movement. Our results demonstrate that purposeful control over sonar sound production and reception can serve to improve acoustic cues for localization tasks. This finding also highlights the general importance of movement to sensory processing across animal species. Finally, our discoveries point to important parallels between spatial perception by echolocation and vision.

  8. Action Enhances Acoustic Cues for 3-D Target Localization by Echolocating Bats.

    PubMed

    Wohlgemuth, Melville J; Kothari, Ninad B; Moss, Cynthia F

    2016-09-01

    Under natural conditions, animals encounter a barrage of sensory information from which they must select and interpret biologically relevant signals. Active sensing can facilitate this process by engaging motor systems in the sampling of sensory information. The echolocating bat serves as an excellent model to investigate the coupling between action and sensing because it adaptively controls both the acoustic signals used to probe the environment and movements to receive echoes at the auditory periphery. We report here that the echolocating bat controls the features of its sonar vocalizations in tandem with the positioning of the outer ears to maximize acoustic cues for target detection and localization. The bat's adaptive control of sonar vocalizations and ear positioning occurs on a millisecond timescale to capture spatial information from arriving echoes, as well as on a longer timescale to track target movement. Our results demonstrate that purposeful control over sonar sound production and reception can serve to improve acoustic cues for localization tasks. This finding also highlights the general importance of movement to sensory processing across animal species. Finally, our discoveries point to important parallels between spatial perception by echolocation and vision. PMID:27608186

  9. Use of an acoustic wave device to detect target analytes during chromatographic separations

    SciTech Connect

    Tom-Moy, M.; Doherty, T.P.; Baer, R.L.

    1995-12-01

    Hewlett-Packard Laboratories has developed a proprietary acoustic wave device which permits the detection of specific analyte in a flowing system. By coupling specific chemistry to the surface of the device, the mass loading of the target analyte is detected as a shift in phase is measured in real time. In process monitoring, the analyte of interest is isolated by passing the sample through a series of chromatographic columns. Conventional HPLC systems monitor the protein peaks using UV-VIS. The peaks are collected and biochemical assays are performed to determine the specific peak of interest. We have configured our acoustic sensors to make specific chemical measurements without the use of labeled reagents or enzymes to generate a real time signal of specific analyte as it elutes from the column. The output signal can be integrated over time to yield a concentration. Such a detector has the potential to increase productivity in process chromatography in biopharmaceutical applications.

  10. Synthetic aperture acoustic imaging of canonical targets with a 2-15 kHz linear FM chirp

    NASA Astrophysics Data System (ADS)

    Vignola, Joseph F.; Judge, John A.; Good, Chelsea E.; Bishop, Steven S.; Gugino, Peter M.; Soumekh, Mehrdad

    2011-06-01

    Synthetic aperture image reconstruction applied to outdoor acoustic recordings is presented. Acoustic imaging is an alternate method having several military relevant advantages such as being immune to RF jamming, superior spatial resolution, capable of standoff side and forward-looking scanning, and relatively low cost, weight and size when compared to 0.5 - 3 GHz ground penetrating radar technologies. Synthetic aperture acoustic imaging is similar to synthetic aperture radar, but more akin to synthetic aperture sonar technologies owing to the nature of longitudinal or compressive wave propagation in the surrounding acoustic medium. The system's transceiver is a quasi mono-static microphone and audio speaker pair mounted on a rail 5meters in length. Received data sampling rate is 80 kHz with a 2- 15 kHz Linear Frequency Modulated (LFM) chirp, with a pulse repetition frequency (PRF) of 10 Hz and an inter-pulse period (IPP) of 50 milliseconds. Targets are positioned within the acoustic scene at slant range of two to ten meters on grass, dirt or gravel surfaces, and with and without intervening metallic chain link fencing. Acoustic image reconstruction results in means for literal interpretation and quantifiable analyses. A rudimentary technique characterizes acoustic scatter at the ground surfaces. Targets within the acoustic scene are first digitally spotlighted and further processed, providing frequency and aspect angle dependent signature information.

  11. Site-targeted acoustic contrast agent detects molecular expression of tissue factor after balloon angioplasty

    NASA Astrophysics Data System (ADS)

    Hall, Christopher S.; Abendschein, Dana R.; Scherrer, David E.; Scott, Michael J.; Marsh, Jon N.; Wickline, Samuel A.; Lanza, Gregory M.

    2000-04-01

    Complex molecular signaling heralds the early stages of pathologies such as angiogenesis, inflammation, and cellular responses to mechanically damaged coronary arteries after balloon angioplasty. In previous studies, we have demonstrated acoustic enhancement of blood clot morphology with the use of a nongaseous, ligand-targeted acoustic nanoparticle emulsion delivered to areas of thrombosis both in vitro and in vivo. In this paper, we characterize the early expression of tissue factor which contributes to subsequent arterial restenosis. Tissue factor is a 42kd glycoprotein responsible for blood coagulation but also plays a well-described role in cancer metastasis, angiogenesis, and vascular restenosis. This study was designed to determine whether the targeted contrast agent could localize tissue factor expressed within the wall of balloon-injured arteries. Both carotid arteries of five pigs (20 kg) were injured using an 8 X 20 mm angioplasty balloon. The carotids were treated in situ with a perfluorocarbon nanoparticle emulsion covalently complexed to either specific anti-tissue factor polyclonal F(ab) fragments (treatment) or non-specific IgG F(ab) fragments (control). Intravascular ultrasound (30 MHz) images of the arteries were obtained before and after exposure to the emulsions. Tissue- factor targeted ultrasonic contrast agent acoustically enhanced the subintima and media at the site of balloon- induced injury compared with control contrast arteries (p less than 0.05). Immunohistochemical staining confirmed the presence of increased tissue factor at the sites of acoustic enhancement. Binding of the targeted agents was demonstrated in vitro by scanning electron microscope images of cultured smooth muscle cells that constitutively express tissue factor. This study demonstrates the concept of molecular imaging and localization of carotid arteries' tissue factor in vivo using a new, nanoparticulate emulsion. Enhancement of the visualization of the molecular

  12. Multiple target tracking and classification improvement using data fusion at node level using acoustic signals

    NASA Astrophysics Data System (ADS)

    Damarla, T. R.; Whipps, Gene

    2005-05-01

    Target tracking and classification using passive acoustic signals is difficult at best as the signals are contaminated by wind noise, multi-path effects, road conditions, and are generally not deterministic. In addition, microphone characteristics, such as sensitivity, vary with the weather conditions. The problem is further compounded if there are multiple targets, especially if some are measured with higher signal-to-noise ratios (SNRs) than the others and they share spectral information. At the U. S. Army Research Laboratory we have conducted several field experiments with a convoy of two, three, four and five vehicles traveling on different road surfaces, namely gravel, asphalt, and dirt roads. The largest convoy is comprised of two tracked vehicles and three wheeled vehicles. Two of the wheeled vehicles are heavy trucks and one is a light vehicle. We used a super-resolution direction-of-arrival estimator, specifically the minimum variance distortionless response, to compute the bearings of the targets. In order to classify the targets, we modeled the acoustic signals emanated from the targets as a set of coupled harmonics, which are related to the engine-firing rate, and subsequently used a multivariate Gaussian classifier. Independent of the classifier, we find tracking of wheeled vehicles to be intermittent as the signals from vehicles with high SNR dominate the much quieter wheeled vehicles. We used several fusion techniques to combine tracking and classification results to improve final tracking and classification estimates. We will present the improvements (or losses) made in tracking and classification of all targets. Although improvements in the estimates for tracked vehicles are not noteworthy, significant improvements are seen in the case of wheeled vehicles. We will present the fusion algorithm used.

  13. Empirical source strength correlations for rans-based acoustic analogy methods

    NASA Astrophysics Data System (ADS)

    Kube-McDowell, Matthew Tyndall

    JeNo is a jet noise prediction code based on an acoustic analogy method developed by Mani, Gliebe, Balsa, and Khavaran. Using the flow predictions from a standard Reynolds-averaged Navier-Stokes computational fluid dynamics solver, JeNo predicts the overall sound pressure level and angular spectra for high-speed hot jets over a range of observer angles, with a processing time suitable for rapid design purposes. JeNo models the noise from hot jets as a combination of two types of noise sources; quadrupole sources dependent on velocity fluctuations, which represent the major noise of turbulent mixing, and dipole sources dependent on enthalpy fluctuations, which represent the effects of thermal variation. These two sources are modeled by JeNo as propagating independently into the far-field, with no cross-correlation at the observer location. However, high-fidelity computational fluid dynamics solutions demonstrate that this assumption is false. In this thesis, the theory, assumptions, and limitations of the JeNo code are briefly discussed, and a modification to the acoustic analogy method is proposed in which the cross-correlation of the two primary noise sources is allowed to vary with the speed of the jet and the observer location. As a proof-of-concept implementation, an empirical correlation correction function is derived from comparisons between JeNo's noise predictions and a set of experimental measurements taken for the Air Force Aero-Propulsion Laboratory. The empirical correlation correction is then applied to JeNo's predictions of a separate data set of hot jets tested at NASA's Glenn Research Center. Metrics are derived to measure the qualitative and quantitative performance of JeNo's acoustic predictions, and the empirical correction is shown to provide a quantitative improvement in the noise prediction at low observer angles with no freestream flow, and a qualitative improvement in the presence of freestream flow. However, the results also demonstrate

  14. Motor development in individuals with congenital adrenal hyperplasia: Strength, targeting, and fine motor skill

    PubMed Central

    Collaer, Marcia L.; Brook, Charles; Conway, Gerard S.; Hindmarsh, Peter C.; Hines, Melissa

    2009-01-01

    Summary This study investigated early androgen influence on the development of human motor and visuomotor characteristics. Participants, ages 12 to 45 years, were individuals with congenital adrenal hyperplasia (CAH), a disorder causing increased adrenal androgen production before birth (40 females, 29 males) and their unaffected relatives (29 females, 30 males). We investigated grip strength and visuomotor targeting tasks on which males generally outperform females, and fine motor pegboard tasks on which females generally outperform males. Physical characteristics (height and weight) were measured to explore whether body parameters could explain differences in motor skills. Females with CAH were stronger and showed better targeting than unaffected females and showed reduced fine visuomotor skill on one pegboard measure, with no difference on the other. Males with CAH were weaker than unaffected males in grip strength but did not differ on the targeting or pegboard measures. Correction for body size could not explain the findings for females, but suggests that the reduced strength of males with CAH may relate to their smaller stature. Further, the targeting advantage in females with CAH persisted following adjustment for their greater strength. Results in females support the hypothesis that androgen may masculinize, or promote, certain motor characteristics at which males excel, and contribute to defeminization of certain fine motor characteristics at which females excel. Thus, these data suggest that organizational effects of androgens on behavior during prenatal life may extend to motor characteristics and may contribute to general sex differences in motor-related behaviors; however, alternative explanations based on activational influences of androgen or altered experiential factors cannot be excluded without further study. KEYWORDS: congenital adrenal hyperplasia (CAH), androgen, sex, motor, strength, targeting PMID:18938041

  15. Depth classification of underwater targets based on complex acoustic intensity of normal modes

    NASA Astrophysics Data System (ADS)

    Yang, Guang; Yin, Jingwei; Yu, Yun; Shi, Zhenhua

    2016-04-01

    In order to solve the problem of depth classification of the underwater target in a very low frequency acoustic field, the active component of cross spectra of particle pressure and horizontal velocity (ACCSPPHV) is adopted to distinguish the surface vessel and the underwater target. According to the effective depth of a Pekeris waveguide, the placing depth forecasting equations of passive vertical double vector hydrophones are proposed. Numerical examples show that when the sum of depths of two hydrophones is the effective depth, the sign distribution of ACCSPPHV has nothing to do with horizontal distance; in addition, the sum of the first critical surface and the second critical surface is equal to the effective depth. By setting the first critical surface less than the difference between the effective water depth and the actual water depth, that is, the second critical surface is greater than the actual depth, the three positive and negative regions of the whole ocean volume are equivalent to two positive and negative regions and therefore the depth classification of the underwater target is obtained. Besides, when the 20 m water depth is taken as the first critical surface in the simulation of underwater targets (40 Hz, 50 Hz, and 60 Hz respectively), the effectiveness of the algorithm and the correctness of relevant conclusions are verified, and the analysis of the corresponding forecasting performance is conducted.

  16. Estimation of the acoustic range of bat echolocation for extended targets.

    PubMed

    Stilz, Wolfram-Peter; Schnitzler, Hans-Ulrich

    2012-09-01

    Extended natural structures of the bat environment such as trees, meadows, and water surfaces were ensonified in distances from 1 to 20 m and the echoes recorded using a mobile ultrasonic sonar system. By compensating the atmospheric attenuation, the attenuation of the reflected echo caused by diffraction, energy absorption of the target, and two-way-geometric spreading was calculated for each distance. For each target type the attenuation of the compensated echo sound pressure level was fitted over distance using a linear function which yields simple laws of reflection loss and geometric spreading. By adding to this function again variable atmospheric attenuation, the overall attenuation of a signal reflected from these targets can be estimated for various conditions. Given the dynamic range of a sonar system, the acoustic maximum detection distance can thus be estimated. The results show that the maximum range is dominantly limited by atmospheric attenuation. Energy loss in the reflecting surface is more variable than geometric spreading loss and accounts for most of the differences between the ensonified targets. Depending on atmospheric conditions, echolocation frequency, and the dynamic range of the sonar system, the maximum range for extended backgrounds such as a forest edge can be as short as 2.4 m.

  17. Nonlinear acoustic landmine detection: comparison of off-target soil background and on-target soil-mine nonlinear effects

    NASA Astrophysics Data System (ADS)

    Korman, Murray S.; Sabatier, James M.; Pauls, Kathleen E.; Genis, Sean A.

    2006-05-01

    When airborne sound at two primary tones, f I, f II (closely spaced near a resonance) excites the soil surface over a buried landmine, soil wave motion interacts with the landmine generating a scattered surface profile which can be measured over the "target." Profiles at the primaries f I, f II, and nonlinearly generated combination frequencies f I-(f II-f I) and f II+(f II-f I) , 2f I-(f II-f I), f I+f II and 2f II+(f II-f I) (among others) have been measured for a VS 2.2 plastic, inert, anti-tank landmine, buried at 3.6 cm in sifted loess soil and in a gravel road bed. [M.S. Korman and J.M. Sabatier, J. Acoust. Soc. Am. 116, 3354-3369 (2004)]. It is observed that the "on target" to "off target" contrast ratio for the sum frequency component can be ~20 dB higher than for either primary. The vibration interaction between the top-plate interface of a buried plastic landmine and the soil above it appears to exhibit many characteristics of the mesoscopic/nanoscale nonlinear effects that are observed in geomaterials like sandstone. Near resonance, the bending (softening) of a family of increasing amplitude tuning curves, involving the vibration over the landmine, exhibits a linear relationship between the peak particle velocity and corresponding frequency. Tuning curve experiments are performed both on and off the mine in an effort to understand the nonlinearities in each case.

  18. Cavitation damage prediction for spallation target vessels by assessment of acoustic vibration

    SciTech Connect

    Futakawa, Masatoshi; Kogawa, Hiroyuki; Hasegawa, Shoichi; Ikeda, Dr. Yujiro; Riemer, Bernie; Wendel, Mark W; Haines, John R; Bauer, Guenter; Naoe, Dr. Takashi; Okita, Dr. Kohei; Fujiwara, Dr. Akiko; Matsumoto, Dr. Yoichiro; Tanaka, Dr. Nobuatsu

    2008-01-01

    Liquid-mercury target systems for MW-class spallation neutron sources are being developed around the world. Proton beams are used to induce the spallation reaction. At the moment the proton beam hits the target, pressure waves are generated in the mercury because of the abrupt heat deposition. The pressure waves interact with the target vessel leading to negative pressure that may cause cavitation along the vessel wall. In order to estimate the cavitation erosion, i.e. the pitting damage formed by the collapse of cavitation bubbles, off-beam tests were performed by using an electric magnetic impact testing machine (MIMTM), which can impose equivalent pressure pulses in mercury. The damage potential was defined based on the relationship between the pitting damage and the time-integrated acoustic vibration induced by impact due to the bubble collapses. Additionally, the damage potential was measured in on-beam tests carried out by using the proton beam at WNR (Weapons Neutron Research) facility in Los Alamos Neutron Science Center (LANSCE). In this paper, the concept of the damage potential, the relationship between the pitting damage formation and the damage potential both in off-beam and on-beam tests is shown.

  19. Metal/dendrimer nanocomposites for enhanced optical breakdown: acoustic characterization and initial targeted cell uptake study

    NASA Astrophysics Data System (ADS)

    Tse, Christine; Lesniak, Wojciech; Balogh, Lajos P.; Ye, Jing Yong; O'Donnell, Matthew

    2007-02-01

    Metal/dendrimer nanocomposites (DNCs) uniquely combine the properties of metallic clusters and the biofriendly polymer host in a nanosized hybrid particle. DNCs can biochemically target tissues and locally reduce femtosecond optical breakdown thresholds, making highly precise and selective photodisruption possible. In this study, we have used high-frequency acoustic monitoring of bubble production dynamics to investigate how DNC properties, solution concentration, and optical parameters affect threshold reduction, actual waiting time, and mechanical characteristics of breakdown. Breakdown is defined here as bubble production with an onset of less than 20 seconds after laser exposure. DNC properties varied include metal content (silver, gold) and terminal group (amino-NH II, glycidol-OH, and carboxyl- COOH) which determine pH values. Results indicate that DNC metal content markedly influences solution threshold reduction, while DNC terminal group (and thus net surface charge) and solution concentration influence the details of breakdown at these reduced threshold fluences. {Ag(0)} DNCs reduce breakdown threshold fluence 1-2 orders of magnitude more than {Au(0)} DNCs. Furthermore, concentrated DNC solutions and DNCs carrying a net negative charge (carboxyl terminal groups) increase bubble production up to four times and shorten waiting time for breakdown from seconds to milliseconds. Increasing laser fluence for a given DNC solution concentration also shortens breakdown waiting time. Lastly, utilizing the fluorescence properties of silver nanocomposites, we use confocal microscopy to examine KB cell uptake of folate targeted silver DNCs. Cells incubated with folate targeted silver DNCs exhibit a measurable increase of intracellular fluorescence compared to control cells (no DNC incubation). However, while we observe a threshold reduction in KB cells incubated with 500nM folate-targeted DNC solution, there is no threshold reduction in cells incubated with 50nM folate-targeted

  20. Impact experiments on highly porous targets: Cavity morphology and disruption thresholds in the strength regime

    NASA Astrophysics Data System (ADS)

    Okamoto, Takaya; Nakamura, Akiko M.; Hasegawa, Sunao

    2015-03-01

    Small bodies were probably very porous during the formation of the solar system. To understand the evolution of such bodies, impact experiments on sintered glass-bead targets with porosities of 80%, 87%, and 94% were performed at velocities of 1.8-7.2 km s-1 using various projectiles with densities ranging from 1.1 g cm-3 to 4.5 g cm-3. Here we report on the resulting cavity morphologies formed by these impacts, with particular attention paid to the depth from the cavity's entrance hole to its maximum diameter, the entrance-hole diameter, and the maximum diameter. We obtained empirical relations of the entrance-hole diameter and the maximum diameter using non-dimensional parameters for crater scaling. We also report on the targets' disruption thresholds, Q*. Each Q* value is on the order of kilojoules per kilogram, which is higher than the equivalent values for pure ice targets and basalt targets determined from high-velocity impact experiments. Non-dimensional disruption thresholds, ρtQ* / Y, where ρt and Y are the targets' bulk densities and compressive strengths, respectively, are calculated for various targets including those used in this study; they are shown to be within approximately one order of magnitude for a given porosity, although the impact velocities and target sizes range from 1 m s-1 to 7.2 km s-1 and from 2 cm to 14 cm, respectively. The previous proposed strength parameter for the catastrophic disruption threshold, Πs *, is also calculated. It is shown to be roughly constant, irrespective of porosity if we assume that the scaling parameter μ decreases linearly with increasing porosity.

  1. The miR-183/Taok1 Target Pair Is Implicated in Cochlear Responses to Acoustic Trauma

    PubMed Central

    Patel, Minal; Cai, Qunfeng; Ding, Dalian; Salvi, Richard; Hu, Zihua; Hu, Bo Hua

    2013-01-01

    Acoustic trauma, one of the leading causes of sensorineural hearing loss, induces sensory hair cell damage in the cochlea. Identifying the molecular mechanisms involved in regulating sensory hair cell death is critical towards developing effective treatments for preventing hair cell damage. Recently, microRNAs (miRNAs) have been shown to participate in the regulatory mechanisms of inner ear development and homeostasis. However, their involvement in cochlear sensory cell degeneration following acoustic trauma is unknown. Here, we profiled the expression pattern of miRNAs in the cochlear sensory epithelium, defined miRNA responses to acoustic overstimulation, and explored potential mRNA targets of miRNAs that may be responsible for the stress responses of the cochlea. Expression analysis of miRNAs in the cochlear sensory epithelium revealed constitutive expression of 176 miRNAs, many of which have not been previously reported in cochlear tissue. Exposure to intense noise caused significant threshold shift and apoptotic activity in the cochleae. Gene expression analysis of noise-traumatized cochleae revealed time-dependent transcriptional changes in the expression of miRNAs. Target prediction analysis revealed potential target genes of the significantly downregulated miRNAs, many of which had cell death- and apoptosis-related functions. Verification of the predicted targets revealed a significant upregulation of Taok1, a target of miRNA-183. Moreover, inhibition of miR-183 with morpholino antisense oligos in cochlear organotypic cultures revealed a negative correlation between the expression levels of miR-183 and Taok1, suggesting the presence of a miR-183/Taok1 target pair. Together, miRNA profiling as well as the target analysis and validation suggest the involvement of miRNAs in the regulation of the degenerative process of the cochlea following acoustic overstimulation. The miR-183/Taok1 target pair is likely to play a role in this regulatory process. PMID

  2. Rapamycin nanoparticles target defective autophagy in muscular dystrophy to enhance both strength and cardiac function

    PubMed Central

    Bibee, Kristin P.; Cheng, Ya-Jian; Ching, James K.; Marsh, Jon N.; Li, Allison J.; Keeling, Richard M.; Connolly, Anne M.; Golumbek, Paul T.; Myerson, Jacob W.; Hu, Grace; Chen, Junjie; Shannon, William D.; Lanza, Gregory M.; Weihl, Conrad C.; Wickline, Samuel A.

    2014-01-01

    Duchenne muscular dystrophy in boys progresses rapidly to severe impairment of muscle function and death in the second or third decade of life. Current supportive therapy with corticosteroids results in a modest increase in strength as a consequence of a general reduction in inflammation, albeit with potential untoward long-term side effects and ultimate failure of the agent to maintain strength. Here, we demonstrate that alternative approaches that rescue defective autophagy in mdx mice, a model of Duchenne muscular dystrophy, with the use of rapamycin-loaded nanoparticles induce a reproducible increase in both skeletal muscle strength and cardiac contractile performance that is not achievable with conventional oral rapamycin, even in pharmacological doses. This increase in physical performance occurs in both young and adult mice, and, surprisingly, even in aged wild-type mice, which sets the stage for consideration of systemic therapies to facilitate improved cell function by autophagic disposal of toxic byproducts of cell death and regeneration.—Bibee, K. P., Cheng, Y.-J., Ching, J. K., Marsh, J. N., Li, A. J., Keeling, R. M., Connolly, A. M., Golumbek, P. T., Myerson, J. W., Hu, G., Chen, J., Shannon, W. D., Lanza, G. M., Weihl, C. C., Wickline, S. A. Rapamycin nanoparticles target defective autophagy in muscular dystrophy to enhance both strength and cardiac function. PMID:24500923

  3. Acoustical standards in engineering acoustics

    NASA Astrophysics Data System (ADS)

    Burkhard, Mahlon D.

    2001-05-01

    The Engineering Acoustics Technical Committee is concerned with the evolution and improvement of acoustical techniques and apparatus, and with the promotion of new applications of acoustics. As cited in the Membership Directory and Handbook (2002), the interest areas include transducers and arrays; underwater acoustic systems; acoustical instrumentation and monitoring; applied sonics, promotion of useful effects, information gathering and transmission; audio engineering; acoustic holography and acoustic imaging; acoustic signal processing (equipment and techniques); and ultrasound and infrasound. Evident connections between engineering and standards are needs for calibration, consistent terminology, uniform presentation of data, reference levels, or design targets for product development. Thus for the acoustical engineer standards are both a tool for practices, for communication, and for comparison of his efforts with those of others. Development of many standards depends on knowledge of the way products are put together for the market place and acoustical engineers provide important input to the development of standards. Acoustical engineers and members of the Engineering Acoustics arm of the Society both benefit from and contribute to the Acoustical Standards of the Acoustical Society.

  4. Invariance of evoked-potential echo-responses to target strength and distance in an echolocating false killer whale

    NASA Astrophysics Data System (ADS)

    Supin, Alexander Ya.; Nachtigall, Paul E.; Au, Whitlow W. L.; Breese, Marlee

    2005-06-01

    Brain auditory evoked potentials (AEPs) were recorded in a false killer whale Pseudorca crassidens trained to accept suction-cup EEG electrodes and to detect targets by echolocation. AEP collection was triggered by echolocation pulses transmitted by the animal. The target strength varied from -22 to -40 dB the distance varied from 1.5 to 6 m. All the records contained two AEP sets: the first one of a constant latency (transmission-related AEP) and a second one with a delay proportional to the distance (echo-related AEP). The amplitude of echo-related AEPs was almost independent of both target strength and distance, though combined variation of these two parameters resulted in echo intensity variation within a range of 42 dB. The amplitude of transmission-related AEPs was independent of distance but dependent on target strength: the less the target strength, the higher the amplitude. Recording of transmitted pulses has not shown their intensity dependence on target strength. It is supposed that the constancy of echo-related AEP results from variation of hearing sensitivity depending on the target strength and release of echo-related responses from masking by transmitted pulses depending on the distance. .

  5. Calibration of a broadband acoustic transducer with a standard spherical target in the near field.

    PubMed

    Chu, Dezhang; Eastland, Grant C

    2015-04-01

    This paper investigates the applicability of calibrating a broadband acoustic system in the near field. The calibration was performed on a single transducer with a mono-static configuration using a single standard target, a 25-mm tungsten carbide sphere in the nearfield of both the transducer and the sphere. A theoretical model was developed to quantify the nearfield effect. Numerical simulations revealed that the frequency responses at different distances varied significantly, the null positions were essentially invariant-a unique characteristic for determination of the compressional and shear wave speeds in the calibration sphere. The calibration curves obtained in the near field could be applied to farfield once the nearfield effects were accounted for. Since the transducer was located in the near field, the signal-to-noise ratio was high, resulting in a much wider useable bandwidth than the nominal bandwidth. The resultant calibration uncertainty, i.e., root-mean-square uncertainty over the entire usable frequency band was 1.05 dB and reduces to 0.33 dB when the regions corresponding to nulls were excluded. The methods reported here could potentially be applied to the calibration of multibeam and broadband echosounder/sonar systems since it is difficult to meet the farfield condition for outermost beams when shipboard calibrations are needed.

  6. Remote ballistic emplacement of an electro-optical and acoustic target detection and localization system

    NASA Astrophysics Data System (ADS)

    West, Aaron; Mellini, Mark

    2015-05-01

    Near real time situational awareness in uncontrolled non line of sight (NLOS) and beyond line of sight (BLOS) environments is critical in the asymmetric battlefield of future conflicts. The ability to detect and accurately locate hostile forces in difficult terrain or urban environments can dramatically increase the survivability and effectiveness of dismounted soldiers, especially when they are limited to the resources available only to the small unit. The Sensor Mortar Network (SMortarNet) is a 60mm Intelligence, Surveillance, and Reconnaissance (ISR) mortar designed to give the Squad near real time situational awareness in uncontrolled NLOS environments. SMortarNet is designed to track targets both acoustically and electro optically and can fuse tracks between, the acoustic, EO, and magnetic modalities on board. The system is linked to other mortar nodes and the user via a masterless frequency hopping spread spectrum ad-hoc mesh radio network. This paper will discuss SMortarNet in the context of a squad level dismounted soldier, its technical capabilities, and its benefit to the small unit Warfighter. The challenges with ballistic remote emplacement of sensitive components and the on board signal processing capabilities of the system will also be covered. The paper will also address how the sensor network can be integrated with existing soldier infrastructure, such as the NettWarrior platform, for rapid transition to soldier systems. Networks of low power sensors can have many forms, but the more practical networks for warfighters are ad hoc radio-based systems that can be rapidly deployed and can leverage a range of assets available at a given time. The low power long life networks typically have limited bandwidth and may have unreliable communication depending on the network health, which makes autonomous sensors a critical component of the network. SMortarNet reduces data to key information features at the sensor itself. The smart sensing approach enables

  7. Measuring the target strength spectra of fish using dolphin-like short broadband sonar signals.

    PubMed

    Imaizumi, Tomohito; Furusawa, Masahiko; Akamatsu, Tomonari; Nishimori, Yasushi

    2008-12-01

    Dolphins identify their prey using broadband sonar signals. The broadband spectrum of the target strength (TS) of fish is believed to be a key factor in target discrimination. In this study, the TS spectrum was measured using sonar signals generated by two different dolphin species: finless porpoise and bottlenose dolphin. First, the broadband form functions of a tungsten carbide sphere and a copper sphere were measured in a water tank, and a close agreement between measurements and theoretical values was confirmed. Second, the TS spectra of anesthetized fish from three species were measured in a water tank. Although the results showed characteristics similar to previous measurements, they varied among species, individuals, and tilt angles. Third, the TS spectra of live fish suspended and tethered by nylon monofilament lines were measured at sea. The dolphin-like sonar signals were effective in obtaining the broadband TS spectra of the fish. Cross-correlation processing of the echo from a tungsten carbide sphere showed a further advantage of using the dolphin-like sonar signals: the signal-to-noise ratio increased by more than 10 dB. The variation of TS spectra with fish behavior provides useful information for target identification.

  8. LyP-1 ultrasonic microbubbles targeting to cancer cell as tumor bio-acoustics markers or drug carriers: targeting efficiency evaluation in, microfluidic channels.

    PubMed

    Li, Xiang; Jin, Qiaofeng; Chen, Tan; Zhang, Baoyue; Zheng, Rongqin; Wang, Zhanhui; Zheng, Hairong

    2009-01-01

    Using ultrasonic contrast microbubbles as acoustic biomarkers and drug carrier vehicles by conjugating tumor specific antibody to microbubbles has shown great potential in ultrasonic tumor molecular imaging or drug-delivery and therapy. Microbubble probe targeting efficiency is one of the major challenges. In this study, we developed a novel method to evaluate the targeting capability and efficiency of microbubbles to cells, and more specifically, microbubbles binding LyP-1 (a cyclic nonapeptide acid peptide) target to cancer cell within a microfluidic system. The micro cell sieves within the microfludic channels could trap the tumor cells and enhance the microbubble's interaction with the cell. Assisted with the controllable fluid shear stress, the microbubble's targeting to the cell and the corresponding affinity efficiency could be quantitatively evaluated under a florescent microscope. The system provides a useful low-cost high efficient in vitro platform for studying microbubble-cell interaction for ultrasonic tumor molecular imaging or drug-delivery and therapy.

  9. Discovering your inner bat: echo-acoustic target ranging in humans.

    PubMed

    Schörnich, Sven; Nagy, Andreas; Wiegrebe, Lutz

    2012-10-01

    Echolocation is typically associated with bats and toothed whales. To date, only few studies have investigated echolocation in humans. Moreover, these experiments were conducted with real objects in real rooms; a configuration in which features of both vocal emissions and perceptual cues are difficult to analyse and control. We investigated human sonar target-ranging in virtual echo-acoustic space, using a short-latency, real-time convolution engine. Subjects produced tongue clicks, which were picked up by a headset microphone, digitally delayed, convolved with individual head-related transfer functions and played back through earphones, thus simulating a reflecting surface at a specific range in front of the subject. In an adaptive 2-AFC paradigm, we measured the perceptual sensitivity to changes of the range for reference ranges of 1.7, 3.4 or 6.8 m. In a follow-up experiment, a second simulated surface at a lateral position and a fixed range was added, expected to act either as an interfering masker or a useful reference. The psychophysical data show that the subjects were well capable to discriminate differences in the range of a frontal reflector. The range-discrimination thresholds were typically below 1 m and, for a reference range of 1.7 m, they were typically below 0.5 m. Performance improved when a second reflector was introduced at a lateral angle of 45°. A detailed analysis of the tongue clicks showed that the subjects typically produced short, broadband palatal clicks with durations between 3 and 15 ms, and sound levels between 60 and 108 dB. Typically, the tongue clicks had relatively high peak frequencies around 6 to 8 kHz. Through the combination of highly controlled psychophysical experiments in virtual space and a detailed analysis of both the subjects' performance and their emitted tongue clicks, the current experiments provide insights into both vocal motor and sensory processes recruited by humans that aim to explore their environment by

  10. A Geometric Modelling Approach to Determining the Best Sensing Coverage for 3-Dimensional Acoustic Target Tracking in Wireless Sensor Networks

    PubMed Central

    Pashazadeh, Saeid; Sharifi, Mohsen

    2009-01-01

    Existing 3-dimensional acoustic target tracking methods that use wired/wireless networked sensor nodes to track targets based on four sensing coverage do not always compute the feasible spatio-temporal information of target objects. To investigate this discrepancy in a formal setting, we propose a geometric model of the target tracking problem alongside its equivalent geometric dual model that is easier to solve. We then study and prove some properties of dual model by exploiting its relationship with algebra. Based on these properties, we propose a four coverage axis line method based on four sensing coverage and prove that four sensing coverage always yields two dual correct answers; usually one of them is infeasible. By showing that the feasible answer can be only sometimes identified by using a simple time test method such as the one proposed by ourselves, we prove that four sensing coverage fails to always yield the feasible spatio-temporal information of a target object. We further prove that five sensing coverage always gives the feasible position of a target object under certain conditions that are discussed in this paper. We propose three extensions to four coverage axis line method, namely, five coverage extent point method, five coverage extended axis lines method, and five coverage redundant axis lines method. Computation and time complexities of all four proposed methods are equal in the worst cases as well as on average being equal to Θ(1) each. Proposed methods and proved facts about capabilities of sensing coverage degree in this paper can be used in all other methods of acoustic target tracking like Bayesian filtering methods. PMID:22423198

  11. Targeted ablation of IKK2 improves skeletal muscle strength, maintains mass, and promotes regeneration

    PubMed Central

    Mourkioti, Foteini; Kratsios, Paschalis; Luedde, Tom; Song, Yao-Hua; Delafontaine, Patrick; Adami, Raffaella; Parente, Valeria; Bottinelli, Roberto; Pasparakis, Manolis; Rosenthal, Nadia

    2006-01-01

    NF-κB is a major pleiotropic transcription factor modulating immune, inflammatory, cell survival, and proliferative responses, yet the relevance of NF-κB signaling in muscle physiology and disease is less well documented. Here we show that muscle-restricted NF-κB inhibition in mice, through targeted deletion of the activating kinase inhibitor of NF-κB kinase 2 (IKK2), shifted muscle fiber distribution and improved muscle force. In response to denervation, IKK2 depletion protected against atrophy, maintaining fiber type, size, and strength, increasing protein synthesis, and decreasing protein degradation. IKK2-depleted mice with a muscle-specific transgene expressing a local Igf-1 isoform (mIgf-1) showed enhanced protection against muscle atrophy. In response to muscle damage, IKK2 depletion facilitated skeletal muscle regeneration through enhanced satellite cell activation and reduced fibrosis. Our results establish IKK2/NF-κB signaling as an important modulator of muscle homeostasis and suggest a combined role for IKK inhibitors and growth factors in the therapy of muscle diseases. PMID:17080195

  12. Experimental Study of High-Range-Resolution Medical Acoustic Imaging for Multiple Target Detection by Frequency Domain Interferometry

    NASA Astrophysics Data System (ADS)

    Kimura, Tomoki; Taki, Hirofumi; Sakamoto, Takuya; Sato, Toru

    2009-07-01

    We employed frequency domain interferometry (FDI) for use as a medical acoustic imager to detect multiple targets with high range resolution. The phase of each frequency component of an echo varies with the frequency, and target intervals can be estimated from the phase variance. This processing technique is generally used in radar imaging. When the interference within a range gate is coherent, the cross correlation between the desired signal and the coherent interference signal is nonzero. The Capon method works under the guiding principle that output power minimization cancels the desired signal with a coherent interference signal. Therefore, we utilize frequency averaging to suppress the correlation of the coherent interference. The results of computational simulations using a pseudoecho signal show that the Capon method with adaptive frequency averaging (AFA) provides a higher range resolution than a conventional method. These techniques were experimentally investigated and we confirmed the effectiveness of the proposed method of processing by FDI.

  13. Acoustic indicators for targeted detection of stored product and urban insect pests by inexpensive infrared, acoustic, and vibrational detection of movement.

    PubMed

    Mankin, R W; Hodges, R D; Nagle, H T; Schal, C; Pereira, R M; Koehler, P G

    2010-10-01

    Crawling and scraping activity of three stored-product pests, Sitophilus oryzae (L.) (Coleoptera: Curculionidae), Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae), and Stegobium paniceum (L.) (Coleoptera: Anobiidae), and two urban pests, Blattella germanica (L.) (Blattodea: Blattellidae) and Cimex lectularius L. (Hemiptera: Cimicidae), were monitored individually by infrared sensors, microphones, and a piezoelectric sensor in a small arena to evaluate effects of insect locomotory behavior and size on the ability of an inexpensively constructed instrument to detect insects and distinguish among different species. Adults of all species could be detected when crawling or scraping. The smallest insects in the study, first-fourth-instar C. lectularius nymphs, could not be detected easily when crawling, but could be detected when scraping. Sound and vibration sensors detected brief, 3-10-ms impulses from all tested species, often grouped in distinctive trains (bursts), typical of impulses in previous acoustic detection experiments. To consider the potential for targeting or focusing detection on particular species of interest, indicators were developed to assess the likelihood of detection of C. lectularius. Statistically significant differences were found between C. lectularius and other species in distributions of three measured variables: infrared signal durations, sound impulse-burst durations, and sound pressure levels (energy) of impulses that best matched an averaged spectrum (profile) of scraping behavior. Thus, there is potential that signals collected by an inexpensive, polymodal-sensor instrument could be used in automated trapping systems to detect a targeted species, 0.1 mg or larger, in environments where servicing of traps is difficult or when timeliness of trapping information is important.

  14. Using sound of target impact for acoustic reconstructions of shooting events.

    PubMed

    Courtney, Michael W; Courtney, Amy C

    2012-04-01

    The sound of a bullet hitting a target is sometimes discernable in an audio recording of a shooting event and can be used to determine the distance from shooter to target. This paper provides an example where the microphone is adjacent to the shooter and presents the simple mathematics needed in cases where the microphone is adjacent to the target. Spectrograms of the sound of bullet impact on a human-sized animal are also presented. PMID:22422783

  15. Acoustic characterization in whole blood and plasma of site-targeted nanoparticle ultrasound contrast agent for molecular imaging.

    PubMed

    Hughes, Michael S; Marsh, Jon N; Hall, Christopher S; Fuhrhop, Ralph W; Lacy, Elizabeth K; Lanza, Gregory M; Wickline, Samuel A

    2005-02-01

    The ability to enhance specific molecular markers of pathology with ultrasound has been previously demonstrated by our group employing a nanoparticle contrast agent [Lanza et al., Invest. Radiol. 35, 227-234 (2000); Ultrasound Med. Biol. 23, 863-870 (1997)]. One of the advantages of this agent is very low echogenicity in the blood pool that allows increased contrast between the blood pool and the bound, site-targeted agent. We measured acoustic backscatter and attenuation coefficient as a function of the contrast agent concentration, ambient pressure, peak acoustic pressure, and as an effect of duty cycle and wave form shape. Measurements were performed while the nanoparticles were suspended in either whole porcine blood or plasma. The nanoparticles were only detectable when insonified within plasma devoid of red blood cells and were shown to exhibit backscatter levels more than 30 dB below the backscatter from whole blood. Attenuation of nanoparticles in whole porcine blood was not measurably different from that of whole blood alone over a range of concentrations up to eight times the maximum in vivo dose. The resulting data provide upper bounds on blood pool attenuation coefficient and backscatter and will be needed to more precisely define levels of molecular contrast enhancement that may be obtained in vivo.

  16. Acoustic Suppression Systems and Related Methods

    NASA Technical Reports Server (NTRS)

    Kolaini, Ali R. (Inventor); Kern, Dennis L. (Inventor)

    2013-01-01

    An acoustic suppression system for absorbing and/or scattering acoustic energy comprising a plurality of acoustic targets in a containment is described, the acoustic targets configured to have resonance frequencies allowing the targets to be excited by incoming acoustic waves, the resonance frequencies being adjustable to suppress acoustic energy in a set frequency range. Methods for fabricating and implementing the acoustic suppression system are also provided.

  17. Target- and Mechanism-Based Therapeutics for Neurodegenerative Diseases: Strength in Numbers

    PubMed Central

    Trippier, Paul C.; Labby, Kristin Jansen; Hawker, Dustin D.; Mataka, Jan J.; Silverman, Richard B.

    2013-01-01

    The development of new therapeutics for the treatment of neurodegenerative pathophysiologies currently stands at a crossroads. This presents an opportunity to transition future drug discovery efforts to target disease modification, an area in which much still remains unknown. In this Perspective we examine recent progress in the areas of neurodegenerative drug discovery, focusing on some of the most common targets and mechanisms; N-methyl-d-aspartic acid (NMDA) receptors, voltage gated calcium channels (VGCCs), neuronal nitric oxide synthase (nNOS), oxidative stress from reactive oxygen species, and protein aggregation. These represent the key players identified in neurodegeneration and are part of a complex, intertwined signaling cascade. The synergistic delivery of two or more compounds directed against these targets, along with the design of small molecules with multiple modes of action should be explored in pursuit of more effective clinical treatments for neurodegenerative diseases. PMID:23458846

  18. Effects of Type and Strength of Force Feedback on Movement Time in a Target Selection Task

    NASA Technical Reports Server (NTRS)

    Rorie, Robert Conrad; Vu, Kim-Phuong L.; Marayong, Panadda; Robles, Jose; Strybel, Thomas Z.; Battiste, Vernol

    2013-01-01

    Future cockpits will likely include new onboard technologies, such as cockpit displays of traffic information, to help support future flight deck roles and responsibilities. These new technologies may benefit from multimodal feedback to aid pilot information processing. The current study investigated the effects of multiple levels of force feedback on operator performance in an aviation task. Participants were presented with two different types of force feedback (gravitational and spring force feedback) for a discrete targeting task, with multiple levels of gain examined for each force feedback type. Approach time and time in target were recorded. Results suggested that the two highest levels of gravitational force significantly reduced approach times relative to the lowest level of gravitational force. Spring force level only affected time in target. Implications of these findings for the design of future cockpit displays will be discussed.

  19. Dolphin's echolocation signals in a complicated acoustic environment

    NASA Astrophysics Data System (ADS)

    Ivanov, M. P.

    2004-07-01

    Echolocation abilities of a dolphin ( Tursiops truncatus ponticus) were investigated in laboratory conditions. The experiment was carried out in an open cage using an acoustic control over the behavior of the animal detecting underwater objects in a complicated acoustic environment. Targets of different strength were used as test objects. The dolphin was found to be able to detect objects at distances exceeding 650 m. For the target location, the dolphin used both single-pulse and multipulse echolocation modes. Time characteristics of echolocation pulses and time sequences of pulses as functions of the distance to the target were obtained.

  20. Photo-acoustic imaging of blue nanoparticle targeted brain tumor for intra-operative glioma delineation

    NASA Astrophysics Data System (ADS)

    Ray, Aniruddha; Wang, Xueding; Koo Lee, Yong-Eun; Hah, HoeJin; Kim, Gwangseong; Chen, Thomas; Orrienger, Daniel; Sagher, Oren; Kopelman, Raoul

    2011-07-01

    Distinguishing the tumor from the background neo-plastic tissue is challenging for cancer surgery such as surgical resection of glioma. Attempts have been made to use visible or fluorescent markers to delineate the tumors during surgery. However, the systemic injection of the dyes requires high dose, resulting in negative side effects. A novel method to delineate rat brain tumors intra-operatively, as well as post-operatively, using a highly sensitive photoacoustic imaging technique enhanced by tumor targeting blue nanoparticle as contrast agent is demonstrated. The nanoparticles are made of polyacrylamide (PAA) matrix with covalently linked Coomassie-Blue dye. They contain 7.0% dye and the average size is 80nm. Their surface was conjugated with F3 peptide for active tumor targeting. These nanoparticles are nontoxic, chemically inert and have long plasma circulation lifetime, making them suitable as nanodevices for imaging using photoacoustics. Experiments on phantoms and rat brains tumors ex-vivo demonstrate the high sensitivity of photoacoustic imaging in delineating the tumor, containing contrast agent at concentrations too low to be visualized by eye. The control tumors without nanoparticles did not show any enhanced signal. This study shows that photoacoustic imaging facilitated with the nanoparticle contrast agent could contribute to future surgical procedures for glioma.

  1. Strength Restoration of Cracked Sandstone and Coal under a Uniaxial Compression Test and Correlated Damage Source Location Based on Acoustic Emissions

    PubMed Central

    Feng, Xiaowei; Zhang, Nong; Zheng, Xigui; Pan, Dongjiang

    2015-01-01

    Underground rock masses have shown a general trend of natural balance over billions of years of ground movement. Nonetheless, man-made underground constructions disturb this balance and cause rock stability failure. Fractured rock masses are frequently encountered in underground constructions, and this study aims to restore the strength of rock masses that have experienced considerable fracturing under uniaxial compression. Coal and sandstone from a deep-buried coal mine were chosen as experimental subjects; they were crushed by uniaxial compression and then carefully restored by a chemical adhesive called MEYCO 364 with an innovative self-made device. Finally, the restored specimens were crushed once again by uniaxial compression. Axial stress, axial strain, circumferential strain, and volumetric strain data for the entire process were fully captured and are discussed here. An acoustic emission (AE) testing system was adopted to cooperate with the uniaxial compression system to provide better definitions for crack closure thresholds, crack initiation thresholds, crack damage thresholds, and three-dimensional damage source locations in intact and restored specimens. Several remarkable findings were obtained. The restoration effects of coal are considerably better than those of sandstone because the strength recovery coefficient of the former is 1.20, whereas that of the latter is 0.33, which indicates that MEYCO 364 is particularly valid for fractured rocks whose initial intact peak stress is less than that of MEYCO 364. Secondary cracked traces of restored sandstone almost follow the cracked traces of the initial intact sandstone, and the final failure is mainly caused by decoupling between the adhesive and the rock mass. However, cracked traces of restored coal only partially follow the traces of intact coal, with the final failure of the restored coal being caused by both bonding interface decoupling and self-breakage in coal. Three-dimensional damage source

  2. Strength Restoration of Cracked Sandstone and Coal under a Uniaxial Compression Test and Correlated Damage Source Location Based on Acoustic Emissions.

    PubMed

    Feng, Xiaowei; Zhang, Nong; Zheng, Xigui; Pan, Dongjiang

    2015-01-01

    Underground rock masses have shown a general trend of natural balance over billions of years of ground movement. Nonetheless, man-made underground constructions disturb this balance and cause rock stability failure. Fractured rock masses are frequently encountered in underground constructions, and this study aims to restore the strength of rock masses that have experienced considerable fracturing under uniaxial compression. Coal and sandstone from a deep-buried coal mine were chosen as experimental subjects; they were crushed by uniaxial compression and then carefully restored by a chemical adhesive called MEYCO 364 with an innovative self-made device. Finally, the restored specimens were crushed once again by uniaxial compression. Axial stress, axial strain, circumferential strain, and volumetric strain data for the entire process were fully captured and are discussed here. An acoustic emission (AE) testing system was adopted to cooperate with the uniaxial compression system to provide better definitions for crack closure thresholds, crack initiation thresholds, crack damage thresholds, and three-dimensional damage source locations in intact and restored specimens. Several remarkable findings were obtained. The restoration effects of coal are considerably better than those of sandstone because the strength recovery coefficient of the former is 1.20, whereas that of the latter is 0.33, which indicates that MEYCO 364 is particularly valid for fractured rocks whose initial intact peak stress is less than that of MEYCO 364. Secondary cracked traces of restored sandstone almost follow the cracked traces of the initial intact sandstone, and the final failure is mainly caused by decoupling between the adhesive and the rock mass. However, cracked traces of restored coal only partially follow the traces of intact coal, with the final failure of the restored coal being caused by both bonding interface decoupling and self-breakage in coal. Three-dimensional damage source

  3. Strength Restoration of Cracked Sandstone and Coal under a Uniaxial Compression Test and Correlated Damage Source Location Based on Acoustic Emissions.

    PubMed

    Feng, Xiaowei; Zhang, Nong; Zheng, Xigui; Pan, Dongjiang

    2015-01-01

    Underground rock masses have shown a general trend of natural balance over billions of years of ground movement. Nonetheless, man-made underground constructions disturb this balance and cause rock stability failure. Fractured rock masses are frequently encountered in underground constructions, and this study aims to restore the strength of rock masses that have experienced considerable fracturing under uniaxial compression. Coal and sandstone from a deep-buried coal mine were chosen as experimental subjects; they were crushed by uniaxial compression and then carefully restored by a chemical adhesive called MEYCO 364 with an innovative self-made device. Finally, the restored specimens were crushed once again by uniaxial compression. Axial stress, axial strain, circumferential strain, and volumetric strain data for the entire process were fully captured and are discussed here. An acoustic emission (AE) testing system was adopted to cooperate with the uniaxial compression system to provide better definitions for crack closure thresholds, crack initiation thresholds, crack damage thresholds, and three-dimensional damage source locations in intact and restored specimens. Several remarkable findings were obtained. The restoration effects of coal are considerably better than those of sandstone because the strength recovery coefficient of the former is 1.20, whereas that of the latter is 0.33, which indicates that MEYCO 364 is particularly valid for fractured rocks whose initial intact peak stress is less than that of MEYCO 364. Secondary cracked traces of restored sandstone almost follow the cracked traces of the initial intact sandstone, and the final failure is mainly caused by decoupling between the adhesive and the rock mass. However, cracked traces of restored coal only partially follow the traces of intact coal, with the final failure of the restored coal being caused by both bonding interface decoupling and self-breakage in coal. Three-dimensional damage source

  4. Target spectrum matrix definition for multiple-input- multiple-output control strategies applied on direct-field- acoustic-excitation tests

    NASA Astrophysics Data System (ADS)

    Alvarez Blanco, M.; Janssens, K.; Bianciardi, F.

    2016-09-01

    During the last two decades there have been several improvements on environmental acoustic qualification testing for launch and space vehicles. Direct field excitation (DFAX) tests using Multiple-Input-Multiple-Output (MIMO) control strategies seems to become the most cost-efficient way for component and subsystem acoustic testing. However there are still some concerns about the uniformity and diffusivity of the acoustic field produced by direct field testing. Lately, much of the documented progresses aimed to solve the non-uniformity of the field by altering the sound pressure level requirement, limiting responses and adding or modifying control microphones positions. However, the first two solutions imply modifying the qualification criteria, which could lead to under-testing, potentially risking the mission. Furthermore, adding or moving control microphones prematurely changes the system configuration, even if it is an optimal geometric layout in terms of wave interference patterns control. This research investigates the target definition as an initial condition for the acoustic MIMO control. Through experiments it is shown that for a given system configuration the performance of a DFAX test strongly depends on the target definition procedure. As output of this research a set of descriptors are presented describing a phenomenon defined as “Energy- sink”.

  5. The evolution of fault strength, permeability, and acoustic properties in experimental studies from fault initiation through the seismic cycle

    NASA Astrophysics Data System (ADS)

    Kaproth-Gerecht, Bryan

    Within Earth's crust, fault zones accommodate significant deformation and strain resulting from plate tectonics and other processes. Due to the hazards associated with fault slip, much work has been done to understand the factors controlling deformation style within these zones, which can range from quiescent aseismic slip to devastating earthquakes, such as the 2011 Mw9 Tohoku Oki earthquake. In particular, our understanding of processes like slow earthquakes and healing within fault zones remains unclear. Additionally, as fault zones develop they become highly differentiated from their parent material, as fault materials mix, break, rotate, and develop into fabrics. These changes, which vary with fault composition, chemistry, stress, and strain, can cause significant strength changes and permeability decrease. In particular, fault permeability can dictate regional fluid flow and may allow faults to act as petroleum traps and seals. Despite the importance of such faults, our understanding of their permeability evolution, especially in marinesediment basins, is relatively poor. In this dissertation, I investigated the evolution of fault zones as they initiate and proceed through the seismic cycle. In particular, I studied the origins of slow earthquake slip, the mechanisms controlling deformation band formation, and the evolution of fault fabric and permeability with fault zone development. This work was predominantly conducted on laboratory fault zones in a biaxial forcing apparatus under conditions appropriate for fault development in Earth's upper crust. In chapter 1, I present the first laboratory observations of repetitive, slow stick-slip in fault zone materials (serpentine) and mechanical evidence for their origin. In particular, we document a transition from unstable to stable frictional behavior above a threshold velocity of ~10 microm/s. Additionally, these events are accompanied by precursory elastic wave speed reduction (2--21%) that begins up to 60

  6. Coulomb excitation of a {sup 242}Am isomeric target : E2, E3 strengths, rotational alignment, and collective enhancement.

    SciTech Connect

    Hayes, A. B.; Cline, D.; Moody, K. J.; Ragnarsson, I.; Wu, C. Y.; Becker, J. A.; Carpenter, M. P.; Carroll, J. J.; Gohlke, D.; Greene, J. P.; Hecht, A. A.; Janssens, R. V. F.; Karamian, S. A.; Lauritsen, T.; Lister, C. J.; Macri, R. A.; Propri, R.; Seweryniak, D.; Wang, X.; Wheeler, R.; Zhu, S.

    2010-10-29

    A 98% pure {sup 242m}Am (K=5{sup -}, t{sub 1/2} = 141 years) isomeric target was Coulomb excited with a 170.5-MeV {sup 40}Ar beam. The selectivity of Coulomb excitation, coupled with the sensitivity of Gammasphere plus CHICO, was sufficient to identify 46 new states up to spin 18 {h_bar} in at least four rotational bands; 11 of these new states lie in the isomer band, 13 in a previously unknown yrast K{sup {pi}} = 6{sup -} rotational band, and 13 in a band tentatively identified as the predicted yrast K{sup {pi}} = 5{sup +} band. The rotational bands based on the K{sup {pi}} = 5{sup -} isomer and the 6{sup -} bandhead were populated by Coulomb excitation with unexpectedly equal cross sections. The {gamma}-ray yields are reproduced by Coulomb excitation calculations using a two-particle plus rotor model (PRM), implying nearly complete {Delta}K = 1 mixing of the two almost-degenerate rotational bands, but recovering the Alaga rule for the unperturbed states. The degeneracy of the 5{sup -} and 6{sup -} bands allows for precise determination of the mixing interaction strength V, which approaches the strong-mixing limit; this agrees with the 50% attenuation of the Coriolis matrix element assumed in the model calculations. The fractional admixture of the I{sub K}{sup {pi}} = 6{sub 6{sup -}} state in the nominal 6{sub 5{sup -}} isomer band state is measured within the PRM as 45.6{sub -1.1}{sup +0.3}%. The E2 and M1 strengths coupling the 5{sup -} and 6{sup -} bands are enhanced significantly by the mixing, while E1 and E2 couplings to other low-K bands are not measurably enhanced. The yields of the 5{sup +} band are reproduced by an E3 strength of {approx}15 W.u., competitive with the interband E2 strength. Alignments of the identified two-particle Nilsson states in {sup 242}Am are compared with the single-particle alignments in {sup 241}Am.

  7. An improved DS acoustic-seismic modality fusion algorithm based on a new cascaded fuzzy classifier for ground-moving targets classification in wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Pan, Qiang; Wei, Jianming; Cao, Hongbing; Li, Na; Liu, Haitao

    2007-04-01

    A new cascaded fuzzy classifier (CFC) is proposed to implement ground-moving targets classification tasks locally at sensor nodes in wireless sensor networks (WSN). The CFC is composed of three and two binary fuzzy classifiers (BFC) respectively in seismic and acoustic signal channel in order to classify person, Light-wheeled (LW) Vehicle, and Heavywheeled (HW) Vehicle in presence of environmental background noise. Base on the CFC, a new basic belief assignment (bba) function is defined for each component BFC to give out a piece of evidence instead of a hard decision label. An evidence generator is used to synthesize available evidences from BFCs into channel evidences and channel evidences are further temporal-fused. Finally, acoustic-seismic modality fusion using Dempster-Shafer method is performed. Our implementation gives significantly better performance than the implementation with majority-voting fusion method through leave-one-out experiments.

  8. Photoacoustic imaging with an acoustic lens detects prostate cancer cells labeled with PSMA-targeting near-infrared dye-conjugates

    NASA Astrophysics Data System (ADS)

    Dogra, Vikram; Chinni, Bhargava; Singh, Shalini; Schmitthenner, Hans; Rao, Navalgund; Krolewski, John J.; Nastiuk, Kent L.

    2016-06-01

    There is an urgent need for sensitive and specific tools to accurately image early stage, organ-confined human prostate cancers to facilitate active surveillance and reduce unnecessary treatment. Recently, we developed an acoustic lens that enhances the sensitivity of photoacoustic imaging. Here, we report the use of this device in conjunction with two molecular imaging agents that specifically target the prostate-specific membrane antigen (PSMA) expressed on the tumor cell surface of most prostate cancers. We demonstrate successful imaging of phantoms containing cancer cells labeled with either of two different PSMA-targeting agents, the ribonucleic acid aptamer A10-3.2 and a urea-based peptidomimetic inhibitor, each linked to the near-infrared dye IRDye800CW. By specifically targeting cells with these agents linked to a dye chosen for optimal signal, we are able to discriminate prostate cancer cells that express PSMA.

  9. Characterization of intense ion beam energy density and beam induced pressure on the target with acoustic diagnostics

    SciTech Connect

    Pushkarev, A. I.; Isakova, Yu. I.; Khailov, I. P.; Yu, Xiao

    2013-08-15

    We have developed the acoustic diagnostics based on a piezoelectric transducer for characterization of high-intensity pulsed ion beams. The diagnostics was tested using the TEMP-4M accelerator (150 ns, 250–300 kV). The beam is composed of C{sup +} ions (85%) and protons, the beam energy density is 0.5–5 J/cm{sup 2} (depending on diode geometry). A calibration dependence of the signal from a piezoelectric transducer on the ion beam energy density is obtained using thermal imaging diagnostics. It is shown that the acoustic diagnostics allows for measurement of the beam energy density in the range of 0.1–2 J/cm{sup 2}. The dependence of the beam generated pressure on the input energy density is also determined and compared with the data from literature. The developed acoustic diagnostics do not require sophisticated equipment and can be used for operational control of pulsed ion beam parameters with a repetition rate of 10{sup 3} pulses/s.

  10. Characterization of intense ion beam energy density and beam induced pressure on the target with acoustic diagnostics.

    PubMed

    Pushkarev, A I; Isakova, Yu I; Yu, Xiao; Khailov, I P

    2013-08-01

    We have developed the acoustic diagnostics based on a piezoelectric transducer for characterization of high-intensity pulsed ion beams. The diagnostics was tested using the TEMP-4M accelerator (150 ns, 250-300 kV). The beam is composed of C(+) ions (85%) and protons, the beam energy density is 0.5-5 J∕cm(2) (depending on diode geometry). A calibration dependence of the signal from a piezoelectric transducer on the ion beam energy density is obtained using thermal imaging diagnostics. It is shown that the acoustic diagnostics allows for measurement of the beam energy density in the range of 0.1-2 J∕cm(2). The dependence of the beam generated pressure on the input energy density is also determined and compared with the data from literature. The developed acoustic diagnostics do not require sophisticated equipment and can be used for operational control of pulsed ion beam parameters with a repetition rate of 10(3) pulses∕s.

  11. SU-E-T-318: The Effect of Patient Positioning Errors On Target Coverage and Cochlear Dose in Stereotactic Radiosurgery Treatment of Acoustic Neuromas

    SciTech Connect

    Dellamonica, D.; Luo, G.; Ding, G.

    2014-06-01

    Purpose: Setup errors on the order of millimeters may cause under-dosing of targets and significant changes in dose to critical structures especially when planning with tight margins in stereotactic radiosurgery. This study evaluates the effects of these types of patient positioning uncertainties on planning target volume (PTV) coverage and cochlear dose for stereotactic treatments of acoustic neuromas. Methods: Twelve acoustic neuroma patient treatment plans were retrospectively evaluated in Brainlab iPlan RT Dose 4.1.3. All treatment beams were shaped by HDMLC from a Varian TX machine. Seven patients had planning margins of 2mm, five had 1–1.5mm. Six treatment plans were created for each patient simulating a 1mm setup error in six possible directions: anterior-posterior, lateral, and superiorinferior. The arcs and HDMLC shapes were kept the same for each plan. Change in PTV coverage and mean dose to the cochlea was evaluated for each plan. Results: The average change in PTV coverage for the 72 simulated plans was −1.7% (range: −5 to +1.1%). The largest average change in coverage was observed for shifts in the patient's superior direction (−2.9%). The change in mean cochlear dose was highly dependent upon the direction of the shift. Shifts in the anterior and superior direction resulted in an average increase in dose of 13.5 and 3.8%, respectively, while shifts in the posterior and inferior direction resulted in an average decrease in dose of 17.9 and 10.2%. The average change in dose to the cochlea was 13.9% (range: 1.4 to 48.6%). No difference was observed based on the size of the planning margin. Conclusion: This study indicates that if the positioning uncertainty is kept within 1mm the setup errors may not result in significant under-dosing of the acoustic neuroma target volumes. However, the change in mean cochlear dose is highly dependent upon the direction of the shift.

  12. Targeted exercise against osteoporosis: A systematic review and meta-analysis for optimising bone strength throughout life

    PubMed Central

    2010-01-01

    Background Exercise is widely recommended to reduce osteoporosis, falls and related fragility fractures, but its effect on whole bone strength has remained inconclusive. The primary purpose of this systematic review and meta-analysis was to evaluate the effects of long-term supervised exercise (≥6 months) on estimates of lower-extremity bone strength from childhood to older age. Methods We searched four databases (PubMed, Sport Discus, Physical Education Index, and Embase) up to October 2009 and included 10 randomised controlled trials (RCTs) that assessed the effects of exercise training on whole bone strength. We analysed the results by age groups (childhood, adolescence, and young and older adulthood) and compared the changes to habitually active or sedentary controls. To calculate standardized mean differences (SMD; effect size), we used the follow-up values of bone strength measures adjusted for baseline bone values. An inverse variance-weighted random-effects model was used to pool the results across studies. Results Our quality analysis revealed that exercise regimens were heterogeneous; some trials were short in duration and small in sample size, and the weekly training doses varied considerably between trials. We found a small and significant exercise effect among pre- and early pubertal boys [SMD, effect size, 0.17 (95% CI, 0.02-0.32)], but not among pubertal girls [-0.01 (-0.18 to 0.17)], adolescent boys [0.10 (-0.75 to 0.95)], adolescent girls [0.21 (-0.53 to 0.97)], premenopausal women [0.00 (-0.43 to 0.44)] or postmenopausal women [0.00 (-0.15 to 0.15)]. Evidence based on per-protocol analyses of individual trials in children and adolescents indicated that programmes incorporating regular weight-bearing exercise can result in 1% to8% improvements in bone strength at the loaded skeletal sites. In premenopausal women with high exercise compliance, improvements ranging from 0.5% to 2.5% have been reported. Conclusions The findings from our meta

  13. Broadband acoustic scattering measurements of underwater unexploded ordnance (UXO).

    PubMed

    Bucaro, J A; Houston, B H; Saniga, M; Dragonette, L R; Yoder, T; Dey, S; Kraus, L; Carin, L

    2008-02-01

    In order to evaluate the potential for detection and identification of underwater unexploded ordnance (UXO) by exploiting their structural acoustic response, we carried out broadband monostatic scattering measurements over a full 360 degrees on UXO's (two mortar rounds, an artillery shell, and a rocket warhead) and false targets (a cinder block and a large rock). The measurement band, 1-140 kHz, includes a low frequency structural acoustics region in which the wavelengths are comparable to or larger than the target characteristic dimensions. In general, there are aspects that provide relatively high target strength levels ( approximately -10 to -15 dB), and from our experience the targets should be detectable in this structural acoustics band in most acoustic environments. The rigid body scattering was also calculated for one UXO in order to highlight the measured scattering features involving elastic responses. The broadband scattering data should be able to support feature-based separation of UXO versus false targets and identification of various classes of UXO as well.

  14. Convergence of temporal and spectral information into acoustic images of complex sonar targets perceived by the echolocating bat, Eptesicus fuscus.

    PubMed

    Simmons, J A; Moss, C F; Ferragamo, M

    1990-02-01

    1. FM echolocating bats (Eptesicus fuscus) were trained to discriminate between a two-component complex target and a one-component simple target simulated by electronically-returned echoes in a series of experiments that explore the composition of the image of the two-component target. In Experiment I, echoes for each target were presented sequentially, and the bats had to compare a stored image of one target with that of the other. The bats made errors when the range of the simple target corresponded to the range of either glint in the complex target, indicating that some trace of the parts of one image interfered with perception of the other image. In Experiment II, echoes were presented simultaneously as well as sequentially, permitting direct masking of echoes from one target to the other. Changes in echo amplitude produced shifts in apparent range whose pattern depended upon the mode of echo presentation. 2. Eptesicus perceives images of complex sonar targets that explicitly represent the location and spacing of discrete glints located at different ranges. The bat perceives the target's structure in terms of its range profile along a psychological range axis using a combination of echo delay and echo spectral representations that together resemble a spectrogram of the FM echoes. The image itself is expressed entirely along a range scale that is defined with reference to echo delay. Spectral information contributes to the image by providing estimates of the range separation of glints, but it is transformed into these estimates. 3. Perceived absolute range is encoded by the timing of neural discharges and is vulnerable to shifts caused by neural amplitude-latency trading, which was estimated at 13 to 18 microseconds per dB from N1 and N4 auditory evoked potentials in Eptesicus. Spectral cues representing the separation of glints within the target are transformed into estimates of delay separations before being incorporated into the image. However, because they

  15. Echo-acoustic flow affects flight in bats.

    PubMed

    Kugler, Kathrin; Greiter, Wolfgang; Luksch, Harald; Firzlaff, Uwe; Wiegrebe, Lutz

    2016-06-15

    Flying animals need to react fast to rapid changes in their environment. Visually guided animals use optic flow, generated by their movement through structured environments. Nocturnal bats cannot make use of optic flow, but rely mostly on echolocation. Here, we show that bats exploit echo-acoustic flow to negotiate flight through narrow passages. Specifically, bats' flight between lateral structures is significantly affected by the echo-acoustic salience of those structures, independent of their physical distance. This is true even though echolocation, unlike vision, provides explicit distance cues. Moreover, the bats reduced the echolocation sound levels in stronger flow, probably to compensate for the increased summary target strength of the lateral reflectors. However, bats did not reduce flight velocity under stronger echo-acoustic flow. Our results demonstrate that sensory flow is a ubiquitous principle for flight guidance, independent of the fundamentally different peripheral representation of flow across the senses of vision and echolocation.

  16. Echo-acoustic flow affects flight in bats.

    PubMed

    Kugler, Kathrin; Greiter, Wolfgang; Luksch, Harald; Firzlaff, Uwe; Wiegrebe, Lutz

    2016-06-15

    Flying animals need to react fast to rapid changes in their environment. Visually guided animals use optic flow, generated by their movement through structured environments. Nocturnal bats cannot make use of optic flow, but rely mostly on echolocation. Here, we show that bats exploit echo-acoustic flow to negotiate flight through narrow passages. Specifically, bats' flight between lateral structures is significantly affected by the echo-acoustic salience of those structures, independent of their physical distance. This is true even though echolocation, unlike vision, provides explicit distance cues. Moreover, the bats reduced the echolocation sound levels in stronger flow, probably to compensate for the increased summary target strength of the lateral reflectors. However, bats did not reduce flight velocity under stronger echo-acoustic flow. Our results demonstrate that sensory flow is a ubiquitous principle for flight guidance, independent of the fundamentally different peripheral representation of flow across the senses of vision and echolocation. PMID:27045094

  17. Acoustic Neuroma

    MedlinePlus

    An acoustic neuroma is a benign tumor that develops on the nerve that connects the ear to the brain. The tumor ... press against the brain, becoming life-threatening. Acoustic neuroma can be difficult to diagnose, because the symptoms ...

  18. Targeted energy transfers and passive acoustic wave redirection in a two-dimensional granular network under periodic excitation

    SciTech Connect

    Zhang, Yijing Moore, Keegan J.; Vakakis, Alexander F.; McFarland, D. Michael

    2015-12-21

    We study passive pulse redirection and nonlinear targeted energy transfer in a granular network composed of two semi-infinite, ordered homogeneous granular chains mounted on linear elastic foundations and coupled by weak linear stiffnesses. Periodic excitation in the form of repetitive half-sine pulses is applied to one of the chains, designated as the “excited chain,” whereas the other chain is initially at rest and is regarded as the “absorbing chain.” We show that passive pulse redirection and targeted energy transfer from the excited to the absorbing chain can be achieved by macro-scale realization of the spatial analog of the Landau-Zener quantum tunneling effect. This is realized by finite stratification of the elastic foundation of the excited chain and depends on the system parameters (e.g., the percentage of stratification) and on the parameters of the periodic excitation. Utilizing empirical mode decomposition and numerical Hilbert transforms, we detect the existence of two distinct nonlinear phenomena in the periodically forced network; namely, (i) energy localization in the absorbing chain due to sustained 1:1 resonance capture leading to irreversible pulse redirection from the excited chain, and (ii) continuous energy exchanges in the form of nonlinear beats between the two chains in the absence of resonance capture. Our results extend previous findings of transient passive energy redirection in impulsively excited granular networks and demonstrate that steady state passive pulse redirection in these networks can be robustly achieved under periodic excitation.

  19. Acoustic Seal

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M. (Inventor)

    2006-01-01

    The invention relates to a sealing device having an acoustic resonator. The acoustic resonator is adapted to create acoustic waveforms to generate a sealing pressure barrier blocking fluid flow from a high pressure area to a lower pressure area. The sealing device permits noncontacting sealing operation. The sealing device may include a resonant-macrosonic-synthesis (RMS) resonator.

  20. Acoustic seal

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M. (Inventor)

    2006-01-01

    The invention relates to a sealing device having an acoustic resonator. The acoustic resonator is adapted to create acoustic waveforms to generate a sealing pressure barrier blocking fluid flow from a high pressure area to a lower pressure area. The sealing device permits noncontacting sealing operation. The sealing device may include a resonant-macrosonic-synthesis (RMS) resonator.

  1. Acoustic Levitation Containerless Processing

    NASA Technical Reports Server (NTRS)

    Whymark, R. R.; Rey, C. A.

    1985-01-01

    This research program consists of the development of acoustic containerless processing systems with applications in the areas of research in material sciences, as well as the production of new materials, solid forms with novel and unusual microstructures, fusion target spheres, and improved optical fibers. Efforts have been focused on the containerless processing at high temperatures for producing new kinds of glasses. Also, some development has occurred in the areas of containerlessly supporting liquids at room temperature, with applications in studies of fluid dynamics, potential undercooling of liquids, etc. The high temperature area holds the greatest promise for producing new kinds of glasses and ceramics, new alloys, and possibly unusual structural shapes, such as very uniform hollow glass shells for fusion target applications. High temperature acoustic levitation required for containerless processing has been demonstrated in low-g environments as well as in ground-based experiments. Future activities include continued development of the signals axis acoustic levitator.

  2. Differential association of microRNAs with polysomes reflects distinct strengths of interactions with their mRNA targets.

    PubMed

    Molotski, Natali; Soen, Yoav

    2012-09-01

    While microRNAs have been shown to copurify with polysomes, their relative fraction in the translation pool (polysome occupancy) has not yet been measured. Here, we introduce a high-throughput method for quantifying polysome occupancies of hundreds of microRNAs and use it to investigate factors affecting these occupancies. Analysis in human embryonic stem cells (hESCs) and foreskin fibroblasts (hFFs) revealed microRNA-specific preferences for low, medium, or high polysome occupancy. Bioinformatics and functional analysis based on overexpression of endogenous and chimeric microRNAs showed that the polysome occupancy of microRNAs is specified by its mature sequence and depends on the choice of seed. Nuclease treatment further suggested that the differential occupancy of the microRNAs reflects interactions with their mRNA targets. Indeed, analysis of microNRA•mRNA duplexes showed that pairs involving high occupancy microRNAs exhibit significantly higher binding energy compared to pairs with low occupancy microRNAs. Since mRNAs reside primarily in polysomes, strong interactions lead to high association of microRNAs with polysomes and vice versa for weak interactions. Comparison between hESCs and hFFs data revealed that hESCs tend to express lower occupancy microRNAs, suggesting that cell type-dependent translational features may be affected by expression of a particular set of microRNAs.

  3. Topological Acoustics

    NASA Astrophysics Data System (ADS)

    Yang, Zhaoju; Gao, Fei; Shi, Xihang; Lin, Xiao; Gao, Zhen; Chong, Yidong; Zhang, Baile

    2015-03-01

    The manipulation of acoustic wave propagation in fluids has numerous applications, including some in everyday life. Acoustic technologies frequently develop in tandem with optics, using shared concepts such as waveguiding and metamedia. It is thus noteworthy that an entirely novel class of electromagnetic waves, known as "topological edge states," has recently been demonstrated. These are inspired by the electronic edge states occurring in topological insulators, and possess a striking and technologically promising property: the ability to travel in a single direction along a surface without backscattering, regardless of the existence of defects or disorder. Here, we develop an analogous theory of topological fluid acoustics, and propose a scheme for realizing topological edge states in an acoustic structure containing circulating fluids. The phenomenon of disorder-free one-way sound propagation, which does not occur in ordinary acoustic devices, may have novel applications for acoustic isolators, modulators, and transducers.

  4. Topological acoustics.

    PubMed

    Yang, Zhaoju; Gao, Fei; Shi, Xihang; Lin, Xiao; Gao, Zhen; Chong, Yidong; Zhang, Baile

    2015-03-20

    The manipulation of acoustic wave propagation in fluids has numerous applications, including some in everyday life. Acoustic technologies frequently develop in tandem with optics, using shared concepts such as waveguiding and metamedia. It is thus noteworthy that an entirely novel class of electromagnetic waves, known as "topological edge states," has recently been demonstrated. These are inspired by the electronic edge states occurring in topological insulators, and possess a striking and technologically promising property: the ability to travel in a single direction along a surface without backscattering, regardless of the existence of defects or disorder. Here, we develop an analogous theory of topological fluid acoustics, and propose a scheme for realizing topological edge states in an acoustic structure containing circulating fluids. The phenomenon of disorder-free one-way sound propagation, which does not occur in ordinary acoustic devices, may have novel applications for acoustic isolators, modulators, and transducers.

  5. Musical Acoustics

    NASA Astrophysics Data System (ADS)

    Gough, Colin

    This chapter provides an introduction to the physical and psycho-acoustic principles underlying the production and perception of the sounds of musical instruments. The first section introduces generic aspects of musical acoustics and the perception of musical sounds, followed by separate sections on string, wind and percussion instruments.

  6. Acoustic metafluids.

    PubMed

    Norris, Andrew N

    2009-02-01

    Acoustic metafluids are defined as the class of fluids that allow one domain of fluid to acoustically mimic another, as exemplified by acoustic cloaks. It is shown that the most general class of acoustic metafluids are materials with anisotropic inertia and the elastic properties of what are known as pentamode materials. The derivation uses the notion of finite deformation to define the transformation of one region to another. The main result is found by considering energy density in the original and transformed regions. Properties of acoustic metafluids are discussed, and general conditions are found which ensure that the mapped fluid has isotropic inertia, which potentially opens up the possibility of achieving broadband cloaking. PMID:19206861

  7. Data analysis results of the second sea trial of ambient noise imaging with acoustic lens in 2014: Two-dimensional target images affected by direction of field of view and spatial noise distribution

    NASA Astrophysics Data System (ADS)

    Mori, Kazuyoshi; Ogasawara, Hanako; Tsuchiya, Takenobu; Endoh, Nobuyuki

    2016-07-01

    An aspherical lens with an aperture diameter of 1.0 m has been designed and fabricated to develop a prototype system for ambient noise imaging (ANI). A sea trial of silent target detection using the prototype ANI system was conducted under only natural ocean ambient noise at Uchiura Bay in November 2010. It was verified that targets are successfully detected under natural ocean ambient noise, mainly generated by snapping shrimps. Recently, we have built a second prototype ANI system using an acoustic lens with a two-dimensional (2D) receiver array with 127 elements corresponding to a field of view (FOV) spanning 15° horizontally by 9° vertically. In this study, we investigated the effects of the direction of the FOV and the spatial noise distribution on the 2D target image obtained by ANI. Here, the noise sources in front of the target are called “front light”, and those at the rear of the target are called “back light”. The second sea trial was conducted to image targets arranged in the FOV and measure the positions of noise sources at Uchiura Bay in November 10–14, 2014. For front light, the pixel values in the on-target directions were greater than those in other directions owing to the dominant target scatterings. Reversely, for back light, the pixel values in the on-target directions were lower than those in other directions owing to the dominant direct noises such as “silhouette”.

  8. Data analysis results of the second sea trial of ambient noise imaging with acoustic lens in 2014: Two-dimensional target images affected by direction of field of view and spatial noise distribution

    NASA Astrophysics Data System (ADS)

    Mori, Kazuyoshi; Ogasawara, Hanako; Tsuchiya, Takenobu; Endoh, Nobuyuki

    2016-07-01

    An aspherical lens with an aperture diameter of 1.0 m has been designed and fabricated to develop a prototype system for ambient noise imaging (ANI). A sea trial of silent target detection using the prototype ANI system was conducted under only natural ocean ambient noise at Uchiura Bay in November 2010. It was verified that targets are successfully detected under natural ocean ambient noise, mainly generated by snapping shrimps. Recently, we have built a second prototype ANI system using an acoustic lens with a two-dimensional (2D) receiver array with 127 elements corresponding to a field of view (FOV) spanning 15° horizontally by 9° vertically. In this study, we investigated the effects of the direction of the FOV and the spatial noise distribution on the 2D target image obtained by ANI. Here, the noise sources in front of the target are called “front light”, and those at the rear of the target are called “back light”. The second sea trial was conducted to image targets arranged in the FOV and measure the positions of noise sources at Uchiura Bay in November 10-14, 2014. For front light, the pixel values in the on-target directions were greater than those in other directions owing to the dominant target scatterings. Reversely, for back light, the pixel values in the on-target directions were lower than those in other directions owing to the dominant direct noises such as “silhouette”.

  9. Acoustic trauma

    MedlinePlus

    Acoustic trauma is a common cause of sensory hearing loss . Damage to the hearing mechanisms within the inner ... Symptoms include: Partial hearing loss that most often involves ... The hearing loss may slowly get worse. Noises, ringing in ...

  10. Acoustic Neuroma

    MedlinePlus

    ... slow growing tumor which arise primarily from the vestibular portion of the VIII cranial nerve and lie ... you have a "brain tumor" called acoustic neuroma (vestibular schwannoma). You think you are the only one ...

  11. Underwater Acoustics.

    ERIC Educational Resources Information Center

    Creasey, D. J.

    1981-01-01

    Summarizes the history of underwater acoustics and describes related research studies and teaching activities at the University of Birmingham (England). Also includes research studies on transducer design and mathematical techniques. (SK)

  12. Room Acoustics

    NASA Astrophysics Data System (ADS)

    Kuttruff, Heinrich; Mommertz, Eckard

    The traditional task of room acoustics is to create or formulate conditions which ensure the best possible propagation of sound in a room from a sound source to a listener. Thus, objects of room acoustics are in particular assembly halls of all kinds, such as auditoria and lecture halls, conference rooms, theaters, concert halls or churches. Already at this point, it has to be pointed out that these conditions essentially depend on the question if speech or music should be transmitted; in the first case, the criterion for transmission quality is good speech intelligibility, in the other case, however, the success of room-acoustical efforts depends on other factors that cannot be quantified that easily, not least it also depends on the hearing habits of the listeners. In any case, absolutely "good acoustics" of a room do not exist.

  13. Recent developments in the use of acoustic sensors and signal processing tools to target early infestations of Red Palm Weevil in agricultural environments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Much of the damage caused by red palm weevil larvae to date palms, ornamental palms, and palm offshoots could be mitigated by early detection and treatment of infestations. Acoustic technology has potential to enable early detection, but the short, high-frequency sound impulses produced by red palm ...

  14. Recent developments in the use of acoustic sensors and signal processing tools to target early infestations of red palm weevil (Coleopter: Curculionidae) in agricultural environments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Much of the damage caused by red palm weevil larvae to date palms, ornamental palms, and palm offshoots could be mitigated by early detection and treatment of infestations. Acoustic technology has potential to enable early detection, but the short, high-frequency sound impulses produced by red palm ...

  15. Acoustic tractor beam.

    PubMed

    Démoré, Christine E M; Dahl, Patrick M; Yang, Zhengyi; Glynne-Jones, Peter; Melzer, Andreas; Cochran, Sandy; MacDonald, Michael P; Spalding, Gabriel C

    2014-05-01

    Negative radiation forces act opposite to the direction of propagation, or net momentum, of a beam but have previously been challenging to definitively demonstrate. We report an experimental acoustic tractor beam generated by an ultrasonic array operating on macroscopic targets (>1 cm) to demonstrate the negative radiation forces and to map out regimes over which they dominate, which we compare to simulations. The result and the geometrically simple configuration show that the effect is due to nonconservative forces, produced by redirection of a momentum flux from the angled sides of a target and not by conservative forces from a potential energy gradient. Use of a simple acoustic setup provides an easily understood illustration of the negative radiation pressure concept for tractor beams and demonstrates continuous attraction towards the source, against a net momentum flux in the system. PMID:24836252

  16. Acoustic Tractor Beam

    NASA Astrophysics Data System (ADS)

    Démoré, Christine E. M.; Dahl, Patrick M.; Yang, Zhengyi; Glynne-Jones, Peter; Melzer, Andreas; Cochran, Sandy; MacDonald, Michael P.; Spalding, Gabriel C.

    2014-05-01

    Negative radiation forces act opposite to the direction of propagation, or net momentum, of a beam but have previously been challenging to definitively demonstrate. We report an experimental acoustic tractor beam generated by an ultrasonic array operating on macroscopic targets (>1 cm) to demonstrate the negative radiation forces and to map out regimes over which they dominate, which we compare to simulations. The result and the geometrically simple configuration show that the effect is due to nonconservative forces, produced by redirection of a momentum flux from the angled sides of a target and not by conservative forces from a potential energy gradient. Use of a simple acoustic setup provides an easily understood illustration of the negative radiation pressure concept for tractor beams and demonstrates continuous attraction towards the source, against a net momentum flux in the system.

  17. Acoustics Discipline Overview

    NASA Technical Reports Server (NTRS)

    Envia, Edmane; Thomas, Russell

    2007-01-01

    As part of the Fundamental Aeronautics Program Annual Review, a summary of the progress made in 2007 in acoustics research under the Subsonic Fixed Wing project is given. The presentation describes highlights from in-house and external activities including partnerships and NRA-funded research with industry and academia. Brief progress reports from all acoustics Phase 1 NRAs are also included as are outlines of the planned activities for 2008 and all Phase 2 NRAs. N+1 and N+2 technology paths outlined for Subsonic Fixed Wing noise targets. NRA Round 1 progressing with focus on prediction method advancement. NRA Round 2 initiating work focused on N+2 technology, prediction methods, and validation. Excellent partnerships in progress supporting N+1 technology targets and providing key data sets.

  18. Acoustic biosensors

    PubMed Central

    Fogel, Ronen; Seshia, Ashwin A.

    2016-01-01

    Resonant and acoustic wave devices have been researched for several decades for application in the gravimetric sensing of a variety of biological and chemical analytes. These devices operate by coupling the measurand (e.g. analyte adsorption) as a modulation in the physical properties of the acoustic wave (e.g. resonant frequency, acoustic velocity, dissipation) that can then be correlated with the amount of adsorbed analyte. These devices can also be miniaturized with advantages in terms of cost, size and scalability, as well as potential additional features including integration with microfluidics and electronics, scaled sensitivities associated with smaller dimensions and higher operational frequencies, the ability to multiplex detection across arrays of hundreds of devices embedded in a single chip, increased throughput and the ability to interrogate a wider range of modes including within the same device. Additionally, device fabrication is often compatible with semiconductor volume batch manufacturing techniques enabling cost scalability and a high degree of precision and reproducibility in the manufacturing process. Integration with microfluidics handling also enables suitable sample pre-processing/separation/purification/amplification steps that could improve selectivity and the overall signal-to-noise ratio. Three device types are reviewed here: (i) bulk acoustic wave sensors, (ii) surface acoustic wave sensors, and (iii) micro/nano-electromechanical system (MEMS/NEMS) sensors. PMID:27365040

  19. Acoustic biosensors.

    PubMed

    Fogel, Ronen; Limson, Janice; Seshia, Ashwin A

    2016-06-30

    Resonant and acoustic wave devices have been researched for several decades for application in the gravimetric sensing of a variety of biological and chemical analytes. These devices operate by coupling the measurand (e.g. analyte adsorption) as a modulation in the physical properties of the acoustic wave (e.g. resonant frequency, acoustic velocity, dissipation) that can then be correlated with the amount of adsorbed analyte. These devices can also be miniaturized with advantages in terms of cost, size and scalability, as well as potential additional features including integration with microfluidics and electronics, scaled sensitivities associated with smaller dimensions and higher operational frequencies, the ability to multiplex detection across arrays of hundreds of devices embedded in a single chip, increased throughput and the ability to interrogate a wider range of modes including within the same device. Additionally, device fabrication is often compatible with semiconductor volume batch manufacturing techniques enabling cost scalability and a high degree of precision and reproducibility in the manufacturing process. Integration with microfluidics handling also enables suitable sample pre-processing/separation/purification/amplification steps that could improve selectivity and the overall signal-to-noise ratio. Three device types are reviewed here: (i) bulk acoustic wave sensors, (ii) surface acoustic wave sensors, and (iii) micro/nano-electromechanical system (MEMS/NEMS) sensors. PMID:27365040

  20. Standoff photo acoustic spectroscopy

    SciTech Connect

    Van Neste, Charles W; Senesac, Larry R; Thundat, Thomas George

    2008-01-01

    Here, we demonstrate a variation of photoacoustic spectroscopy that can be used for obtaining spectroscopic information of surface adsorbed chemicals in a standoff fashion. Pulsed light scattered from a target excites an acoustic resonator and the variation of the resonance amplitude as a function of illumination wavelength yields a representation of the absorption spectrum of the target. We report sensitive and selective detection of surface adsorbed compounds such as tributyl phosphate and residues of explosives such as trinitrotoluene at standoff distances ranging from 0.5-20 m, with a detection limit on the order of 100 ng/cm{sup 2}.

  1. Acoustic scattering from mud volcanoes and carbonate mounds.

    PubMed

    Holland, Charles W; Weber, Thomas C; Etiope, Giuseppe

    2006-12-01

    Submarine mud volcanoes occur in many parts of the world's oceans and form an aperture for gas and fluidized mud emission from within the earth's crust. Their characteristics are of considerable interest to the geology, geophysics, geochemistry, and underwater acoustics communities. For the latter, mud volcanoes are of interest in part because they pose a potential source of clutter for active sonar. Close-range (single-interaction) scattering measurements from a mud volcano in the Straits of Sicily show scattering 10-15 dB above the background. Three hypotheses were examined concerning the scattering mechanism: (1) gas entrained in sediment at/near mud volcano, (2) gas bubbles and/or particulates (emitted) in the water column, (3) the carbonate bio-construction covering the mud volcano edifice. The experimental evidence, including visual, acoustic, and nonacoustic sensors, rules out the second hypothesis (at least during the observation time) and suggests that, for this particular mud volcano the dominant mechanism is associated with carbonate chimneys on the mud volcano. In terms of scattering levels, target strengths of 4-14 dB were observed from 800 to 3600 Hz for a monostatic geometry with grazing angles of 3-5 degrees. Similar target strengths were measured for vertically bistatic paths with incident and scattered grazing angles of 3-5 degrees and 33-50 degrees, respectively. PMID:17225386

  2. Acoustic scattering from mud volcanoes and carbonate mounds.

    PubMed

    Holland, Charles W; Weber, Thomas C; Etiope, Giuseppe

    2006-12-01

    Submarine mud volcanoes occur in many parts of the world's oceans and form an aperture for gas and fluidized mud emission from within the earth's crust. Their characteristics are of considerable interest to the geology, geophysics, geochemistry, and underwater acoustics communities. For the latter, mud volcanoes are of interest in part because they pose a potential source of clutter for active sonar. Close-range (single-interaction) scattering measurements from a mud volcano in the Straits of Sicily show scattering 10-15 dB above the background. Three hypotheses were examined concerning the scattering mechanism: (1) gas entrained in sediment at/near mud volcano, (2) gas bubbles and/or particulates (emitted) in the water column, (3) the carbonate bio-construction covering the mud volcano edifice. The experimental evidence, including visual, acoustic, and nonacoustic sensors, rules out the second hypothesis (at least during the observation time) and suggests that, for this particular mud volcano the dominant mechanism is associated with carbonate chimneys on the mud volcano. In terms of scattering levels, target strengths of 4-14 dB were observed from 800 to 3600 Hz for a monostatic geometry with grazing angles of 3-5 degrees. Similar target strengths were measured for vertically bistatic paths with incident and scattered grazing angles of 3-5 degrees and 33-50 degrees, respectively.

  3. Acoustic velocity meter systems

    USGS Publications Warehouse

    Laenen, Antonius

    1985-01-01

    Acoustic velocity meter (AVM) systems operate on the principles that the point-to-point upstream traveltime of an acoustic pulse is longer than the downstream traveltime and that this difference in traveltime can be accurately measured by electronic devices. An AVM system is capable of recording water velocity (and discharge) under a wide range of conditions, but some constraints apply: 1. Accuracy is reduced and performance is degraded if the acoustic path is not a continuous straight line. The path can be bent by reflection if it is too close to a stream boundary or by refraction if it passes through density gradients resulting from variations in either water temperature or salinity. For paths of less than 100 m, a temperature gradient of 0.1' per meter causes signal bending less than 0.6 meter at midchannel, and satisfactory velocity results can be obtained. Reflection from stream boundaries can cause signal cancellation if boundaries are too close to signal path. 2. Signal strength is attenuated by particles or bubbles that absorb, spread, or scatter sound. The concentration of particles or bubbles that can be tolerated is a function of the path length and frequency of the acoustic signal. 3. Changes in streamline orientation can affect system accuracy if the variability is random. 4. Errors relating to signal resolution are much larger for a single threshold detection scheme than for multiple threshold schemes. This report provides methods for computing the effect of various conditions on the accuracy of a record obtained from an AVM. The equipment must be adapted to the site. Field reconnaissance and preinstallation analysis to detect possible problems are critical for proper installation and operation of an AVM system.

  4. Acoustic transducer for acoustic microscopy

    DOEpatents

    Khuri-Yakub, B.T.; Chou, C.H.

    1990-03-20

    A shear acoustic transducer-lens system is described in which a shear polarized piezoelectric material excites shear polarized waves at one end of a buffer rod having a lens at the other end which excites longitudinal waves in a coupling medium by mode conversion at selected locations on the lens. 9 figs.

  5. Acoustic transducer for acoustic microscopy

    DOEpatents

    Khuri-Yakub, Butrus T.; Chou, Ching H.

    1990-01-01

    A shear acoustic transducer-lens system in which a shear polarized piezoelectric material excites shear polarized waves at one end of a buffer rod having a lens at the other end which excites longitudinal waves in a coupling medium by mode conversion at selected locations on the lens.

  6. ACOUSTIC LINERS FOR TURBOFAN ENGINES

    NASA Technical Reports Server (NTRS)

    Minner, G. L.

    1994-01-01

    This program was developed to design acoustic liners for turbofan engines. This program combines results from theoretical models of wave alternation in acoustically treated passages with experimental data from full-scale fan noise suppressors. By including experimentally obtained information, the program accounts for real effects such as wall boundary layers, duct terminations, and sound modal structure. The program has its greatest use in generating a number of design specifications to be used for evaluation of trade-offs. The program combines theoretical and empirical data in designing annular acoustic liners. First an estimate of the noise output of the fan is made based on basic fan aerodynamic design variables. Then, using a target noise spectrum after alternation and the estimated fan noise spectrum, a design spectrum is calculated as their difference. Next, the design spectrum is combined with knowledge of acoustic liner performance and the liner design variables to specify the acoustic design. Details of the liner design are calculated by combining the required acoustic impedance with a mathematical model relating acoustic impedance to the physical structure of the liner. Input to the noise prediction part of the program consists of basic fan operating parameters, distance that the target spectrum is to be measured and the target spectrum. The liner design portion of the program requires the required alternation spectrum, desired values of length to height and several option selection parameters. Output from the noise prediction portion is a noise spectrum consisting of discrete tones and broadband noise. This may be used as input to the liner design portion of the program. The liner design portion of the program produces backing depths, open area ratios, and face plate thicknesses. This program is written in FORTRAN V and has been implemented in batch mode on a UNIVAC 1100 series computer with a central memory requirement of 12K (decimal) of 36 bit words.

  7. Effects of subsampling of passive acoustic recordings on acoustic metrics.

    PubMed

    Thomisch, Karolin; Boebel, Olaf; Zitterbart, Daniel P; Samaran, Flore; Van Parijs, Sofie; Van Opzeeland, Ilse

    2015-07-01

    Passive acoustic monitoring is an important tool in marine mammal studies. However, logistics and finances frequently constrain the number and servicing schedules of acoustic recorders, requiring a trade-off between deployment periods and sampling continuity, i.e., the implementation of a subsampling scheme. Optimizing such schemes to each project's specific research questions is desirable. This study investigates the impact of subsampling on the accuracy of two common metrics, acoustic presence and call rate, for different vocalization patterns (regimes) of baleen whales: (1) variable vocal activity, (2) vocalizations organized in song bouts, and (3) vocal activity with diel patterns. To this end, above metrics are compared for continuous and subsampled data subject to different sampling strategies, covering duty cycles between 50% and 2%. The results show that a reduction of the duty cycle impacts negatively on the accuracy of both acoustic presence and call rate estimates. For a given duty cycle, frequent short listening periods improve accuracy of daily acoustic presence estimates over few long listening periods. Overall, subsampling effects are most pronounced for low and/or temporally clustered vocal activity. These findings illustrate the importance of informed decisions when applying subsampling strategies to passive acoustic recordings or analyses for a given target species.

  8. Effects of subsampling of passive acoustic recordings on acoustic metrics.

    PubMed

    Thomisch, Karolin; Boebel, Olaf; Zitterbart, Daniel P; Samaran, Flore; Van Parijs, Sofie; Van Opzeeland, Ilse

    2015-07-01

    Passive acoustic monitoring is an important tool in marine mammal studies. However, logistics and finances frequently constrain the number and servicing schedules of acoustic recorders, requiring a trade-off between deployment periods and sampling continuity, i.e., the implementation of a subsampling scheme. Optimizing such schemes to each project's specific research questions is desirable. This study investigates the impact of subsampling on the accuracy of two common metrics, acoustic presence and call rate, for different vocalization patterns (regimes) of baleen whales: (1) variable vocal activity, (2) vocalizations organized in song bouts, and (3) vocal activity with diel patterns. To this end, above metrics are compared for continuous and subsampled data subject to different sampling strategies, covering duty cycles between 50% and 2%. The results show that a reduction of the duty cycle impacts negatively on the accuracy of both acoustic presence and call rate estimates. For a given duty cycle, frequent short listening periods improve accuracy of daily acoustic presence estimates over few long listening periods. Overall, subsampling effects are most pronounced for low and/or temporally clustered vocal activity. These findings illustrate the importance of informed decisions when applying subsampling strategies to passive acoustic recordings or analyses for a given target species. PMID:26233026

  9. Medical Acoustics

    NASA Astrophysics Data System (ADS)

    Beach, Kirk W.; Dunmire, Barbrina

    Medical acoustics can be subdivided into diagnostics and therapy. Diagnostics are further separated into auditory and ultrasonic methods, and both employ low amplitudes. Therapy (excluding medical advice) uses ultrasound for heating, cooking, permeablizing, activating and fracturing tissues and structures within the body, usually at much higher amplitudes than in diagnostics. Because ultrasound is a wave, linear wave physics are generally applicable, but recently nonlinear effects have become more important, even in low-intensity diagnostic applications.

  10. Selective targeting of protein, water, and mineral in dentin using UV and IR pulse lasers: the effect on the bond strength to composite restorative materials

    NASA Astrophysics Data System (ADS)

    Sheth, Karishma K.; Staninec, Michal; Sarma, Anupama V.; Fried, Daniel

    2004-05-01

    Previous studies have shown that during the laser irradiation of dentin and bone, thermal damage can be minimized by using a highly absorbed laser wavelength, laser pulses shorter than the thermal relaxation time of the deposited laser energy at that wavelength, and the addition of a layer of water to the tissue surface before ablation. The objective of this study was to investigate the influence of laser pulse duration and wavelength with and without the added water layer on the bond strength of composite to laser prepared dentin surfaces. The specific hypothesis that was tested was that thermal damage to the collagen matrix in dentin compromises the bond strength to composite restorative materials. Three laser systems were employed that were tuned to water, collagen and mineral absorption with pulse durations less than the thermal relaxation time of the deposited energy. The surfaces of human dentin were irradiated by laser irradiation from free-running and Q-switched Er:YSGG lasers (2.79-μm), pulsed CO2 lasers operating at 9.6-μm and a Q-switched Nd:YAG laser operating at 355-nm. A motion control system and a pressurized spray system incorporating a microprocessor controlled pulsed nozzle for water delivery, were used to ensure uniform treatment of the entire surface. Shear bond testing was used to evaluate the adhesive strength in order to access the suitability of laser treated surfaces for bonding. All the laser groups had significantly lower bond strengths than the positive acid etch control group. The highest bond strengths were for the short (<5-μs) Er:YSGG and CO2 groups with water. Laser groups without water had significantly reduced bond strengths.

  11. Method and apparatus for acoustic imaging of objects in water

    DOEpatents

    Deason, Vance A.; Telschow, Kenneth L.

    2005-01-25

    A method, system and underwater camera for acoustic imaging of objects in water or other liquids includes an acoustic source for generating an acoustic wavefront for reflecting from a target object as a reflected wavefront. The reflected acoustic wavefront deforms a screen on an acoustic side and correspondingly deforms the opposing optical side of the screen. An optical processing system is optically coupled to the optical side of the screen and converts the deformations on the optical side of the screen into an optical intensity image of the target object.

  12. Hitting the target: fragment screening with acoustic in situ co-crystallization of proteins plus fragment libraries on pin-mounted data-collection micromeshes

    SciTech Connect

    Yin, Xingyu; Scalia, Alexander; Leroy, Ludmila; Cuttitta, Christina M.; Polizzo, Gina M.; Ericson, Daniel L.; Roessler, Christian G.; Campos, Olven; Ma, Millie Y.; Agarwal, Rakhi; Jackimowicz, Rick; Allaire, Marc; Orville, Allen M.; Sweet, Robert M.; Soares, Alexei S.

    2014-05-01

    A method is presented for screening fragment libraries using acoustic droplet ejection to co-crystallize proteins and chemicals directly on micromeshes with as little as 2.5 nl of each component. This method was used to identify previously unreported fragments that bind to lysozyme, thermolysin, and trypsin. Acoustic droplet ejection (ADE) is a powerful technology that supports crystallographic applications such as growing, improving and manipulating protein crystals. A fragment-screening strategy is described that uses ADE to co-crystallize proteins with fragment libraries directly on MiTeGen MicroMeshes. Co-crystallization trials can be prepared rapidly and economically. The high speed of specimen preparation and the low consumption of fragment and protein allow the use of individual rather than pooled fragments. The Echo 550 liquid-handling instrument (Labcyte Inc., Sunnyvale, California, USA) generates droplets with accurate trajectories, which allows multiple co-crystallization experiments to be discretely positioned on a single data-collection micromesh. This accuracy also allows all components to be transferred through small apertures. Consequently, the crystallization tray is in equilibrium with the reservoir before, during and after the transfer of protein, precipitant and fragment to the micromesh on which crystallization will occur. This strict control of the specimen environment means that the crystallography experiments remain identical as the working volumes are decreased from the few microlitres level to the few nanolitres level. Using this system, lysozyme, thermolysin, trypsin and stachydrine demethylase crystals were co-crystallized with a small 33-compound mini-library to search for fragment hits. This technology pushes towards a much faster, more automated and more flexible strategy for structure-based drug discovery using as little as 2.5 nl of each major component.

  13. Acoustic image representation of a point target in the bat Eptesicus fuscus: evidence for sensitivity to echo phase in bat sonar.

    PubMed

    Moss, C F; Simmons, J A

    1993-03-01

    Echolocating bats, Eptesicus fuscus, were trained in two distinct behavioral tasks to investigate the images they perceive of a sonar point target. In the first task, bats were trained in a two-alternative forced-choice procedure to detect electronically simulated target echoes at a range of approximately 57 cm. Half of the trials in the detection task contained echoes from a stationary target (simulated by a fixed echo delay) and half contained echoes from a jittering target (simulated by an echo delay alternating between two time values over successive sonar emissions). In the second task, bats were trained in a two-alternative forced-choice procedure to discriminate between electronically simulated stationary and jittering targets, centered about a range of 57 cm. Both target detection and target jitter discrimination performance were assessed as a function of jitter magnitude, with jitter values ranging from 0-60 microseconds (corresponding to a change in distance of 0 to 10.3 mm). In both detection and discrimination tasks, the bat's performance changed cyclically with the magnitude of echo jitter. Specifically, when the phase of the playback echoes was unchanged, performance levels were poorest at 0 and 30 microseconds, and when the phase of the echoes alternated by 180 deg from one to the next, performance levels were poorest at 15 and 40-50 microseconds. The results suggest that Eptesicus is sensitive to the phase reversal of echoes and thus have implications for assessing receiver models of echolocation. PMID:8473609

  14. Acoustic image representation of a point target in the bat Eptesicus fuscus: evidence for sensitivity to echo phase in bat sonar.

    PubMed

    Moss, C F; Simmons, J A

    1993-03-01

    Echolocating bats, Eptesicus fuscus, were trained in two distinct behavioral tasks to investigate the images they perceive of a sonar point target. In the first task, bats were trained in a two-alternative forced-choice procedure to detect electronically simulated target echoes at a range of approximately 57 cm. Half of the trials in the detection task contained echoes from a stationary target (simulated by a fixed echo delay) and half contained echoes from a jittering target (simulated by an echo delay alternating between two time values over successive sonar emissions). In the second task, bats were trained in a two-alternative forced-choice procedure to discriminate between electronically simulated stationary and jittering targets, centered about a range of 57 cm. Both target detection and target jitter discrimination performance were assessed as a function of jitter magnitude, with jitter values ranging from 0-60 microseconds (corresponding to a change in distance of 0 to 10.3 mm). In both detection and discrimination tasks, the bat's performance changed cyclically with the magnitude of echo jitter. Specifically, when the phase of the playback echoes was unchanged, performance levels were poorest at 0 and 30 microseconds, and when the phase of the echoes alternated by 180 deg from one to the next, performance levels were poorest at 15 and 40-50 microseconds. The results suggest that Eptesicus is sensitive to the phase reversal of echoes and thus have implications for assessing receiver models of echolocation.

  15. Combined acoustic and optical trapping

    PubMed Central

    Thalhammer, G.; Steiger, R.; Meinschad, M.; Hill, M.; Bernet, S.; Ritsch-Marte, M.

    2011-01-01

    Combining several methods for contact free micro-manipulation of small particles such as cells or micro-organisms provides the advantages of each method in a single setup. Optical tweezers, which employ focused laser beams, offer very precise and selective handling of single particles. On the other hand, acoustic trapping with wavelengths of about 1 mm allows the simultaneous trapping of many, comparatively large particles. With conventional approaches it is difficult to fully employ the strengths of each method due to the different experimental requirements. Here we present the combined optical and acoustic trapping of motile micro-organisms in a microfluidic environment, utilizing optical macro-tweezers, which offer a large field of view and working distance of several millimeters and therefore match the typical range of acoustic trapping. We characterize the acoustic trapping forces with the help of optically trapped particles and present several applications of the combined optical and acoustic trapping, such as manipulation of large (75 μm) particles and active particle sorting. PMID:22025990

  16. Quenching of acoustic bandgaps by flow noise

    NASA Astrophysics Data System (ADS)

    Elnady, T.; Elsabbagh, A.; Akl, W.; Mohamady, O.; Garcia-Chocano, V. M.; Torrent, D.; Cervera, F.; Sánchez-Dehesa, J.

    2009-03-01

    We report an experimental study of acoustic effects produced by wind impinging on noise barriers based on two-dimensional sonic crystals with square symmetry. We found that the attenuation strength of sonic-crystal bandgaps decreases for increasing values of flow speed. A quenching of the acoustic bandgap appears at a certain speed value that depends of the barrier filling ratio. For increasing values of flow speed, the data indicate that the barrier becomes a sound source because of its interaction with the wind. We conclude that flow noise should be taken into account in designing acoustic barriers based on sonic crystals.

  17. Strength Testing.

    ERIC Educational Resources Information Center

    Londeree, Ben R.

    1981-01-01

    Postural deviations resulting from strength and flexibility imbalances include swayback, scoliosis, and rounded shoulders. Screening tests are one method for identifying strength problems. Tests for the evaluation of postural problems are described, and exercises are presented for the strengthening of muscles. (JN)

  18. Acoustic Tooth Cleaner

    NASA Technical Reports Server (NTRS)

    Heyman, J. S.

    1984-01-01

    Acoustically-energized water jet aids in plaque breakdown. Acoustic Wand includes acoustic transducer 1/4 wave plate, and tapered cone. Together elements energize solution of water containing mild abrasive injected into mouth to help prevent calculous buildup.

  19. Oscillator strengths and collision strengths for S III

    NASA Technical Reports Server (NTRS)

    Ho, Y. K.; Henry, R. J. W.

    1984-01-01

    The present calculation, in a close-coupled approximation for the energy range up to 1,000,000 K, yields collision strengths for the electron impact excitation of S III from the ground 3p2 3P state to the excited states 3s3p3 3D0, 3P0, 3S0, 3d 3D0, 3P0, and 4s 3P0. Also obtained are those transitions' oscillator strengths, and strengths for others involving 3p2 1D and 1S. Configuration-interaction target wave functions yielding oscillator strengths that are accurate to 20 percent are used in collision strength calculations.

  20. Hitting the target: fragment screening with acoustic in situ co-crystallization of proteins plus fragment libraries on pin-mounted data-collection micromeshes.

    PubMed

    Yin, Xingyu; Scalia, Alexander; Leroy, Ludmila; Cuttitta, Christina M; Polizzo, Gina M; Ericson, Daniel L; Roessler, Christian G; Campos, Olven; Ma, Millie Y; Agarwal, Rakhi; Jackimowicz, Rick; Allaire, Marc; Orville, Allen M; Sweet, Robert M; Soares, Alexei S

    2014-05-01

    Acoustic droplet ejection (ADE) is a powerful technology that supports crystallographic applications such as growing, improving and manipulating protein crystals. A fragment-screening strategy is described that uses ADE to co-crystallize proteins with fragment libraries directly on MiTeGen MicroMeshes. Co-crystallization trials can be prepared rapidly and economically. The high speed of specimen preparation and the low consumption of fragment and protein allow the use of individual rather than pooled fragments. The Echo 550 liquid-handling instrument (Labcyte Inc., Sunnyvale, California, USA) generates droplets with accurate trajectories, which allows multiple co-crystallization experiments to be discretely positioned on a single data-collection micromesh. This accuracy also allows all components to be transferred through small apertures. Consequently, the crystallization tray is in equilibrium with the reservoir before, during and after the transfer of protein, precipitant and fragment to the micromesh on which crystallization will occur. This strict control of the specimen environment means that the crystallography experiments remain identical as the working volumes are decreased from the few microlitres level to the few nanolitres level. Using this system, lysozyme, thermolysin, trypsin and stachydrine demethylase crystals were co-crystallized with a small 33-compound mini-library to search for fragment hits. This technology pushes towards a much faster, more automated and more flexible strategy for structure-based drug discovery using as little as 2.5 nl of each major component.

  1. Hitting the target: fragment screening with acoustic in situ co-crystallization of proteins plus fragment libraries on pin-mounted data-collection micromeshes

    PubMed Central

    Yin, Xingyu; Scalia, Alexander; Leroy, Ludmila; Cuttitta, Christina M.; Polizzo, Gina M.; Ericson, Daniel L.; Roessler, Christian G.; Campos, Olven; Ma, Millie Y.; Agarwal, Rakhi; Jackimowicz, Rick; Allaire, Marc; Orville, Allen M.; Sweet, Robert M.; Soares, Alexei S.

    2014-01-01

    Acoustic droplet ejection (ADE) is a powerful technology that supports crystallographic applications such as growing, improving and manipulating protein crystals. A fragment-screening strategy is described that uses ADE to co-crystallize proteins with fragment libraries directly on MiTeGen MicroMeshes. Co-crystallization trials can be prepared rapidly and economically. The high speed of specimen preparation and the low consumption of fragment and protein allow the use of individual rather than pooled fragments. The Echo 550 liquid-handling instrument (Labcyte Inc., Sunnyvale, California, USA) generates droplets with accurate trajectories, which allows multiple co-crystallization experiments to be discretely positioned on a single data-collection micromesh. This accuracy also allows all components to be transferred through small apertures. Consequently, the crystallization tray is in equilibrium with the reservoir before, during and after the transfer of protein, precipitant and fragment to the micromesh on which crystallization will occur. This strict control of the specimen environment means that the crystallography experiments remain identical as the working volumes are decreased from the few microlitres level to the few nanolitres level. Using this system, lysozyme, thermolysin, trypsin and stachydrine demethylase crystals were co-crystallized with a small 33-compound mini-library to search for fragment hits. This technology pushes towards a much faster, more automated and more flexible strategy for structure-based drug discovery using as little as 2.5 nl of each major component. PMID:24816088

  2. Acoustic optic hybrid (AOH) sensor

    PubMed

    Matthews; Arrieta

    2000-09-01

    The ability of laser vibrometers to receive and process acoustic echoes from the water surface above a submerged target is established and evaluated. Sonar echoes from a submerged target are collected from the water surface by a laser vibrometer. Feasibility of this approach to sensing underwater sound is demonstrated. If the acoustic excitation at an otherwise undisturbed water surface is 195 to 168 dB re: 1 microPa, signal-to-noise ratio (SNR), at the vibrometer output, is shown to range from about 46 to 6 dB. Capillary waves and gravity waves at the water surface are expected and shown to have some destructive effect on the process of echo retrieval. A series of experiments to quantify the surface wave effects is described. The wave experiment results are reported. A successful attempt to acquire echoes from a submerged target over a grid of points for further processing into a three-dimensional image is made and described. The data acquisition and beamforming techniques constitute a three-dimensional, acoustic optic, synthetic aperture sonar (SAS). Beamformed images are included. For an aircraft towing acoustic sensors through the water with a mechanical link, this technique holds the promise of increased safety and improved fuel efficiency. PMID:11008811

  3. Acoustic optic hybrid (AOH) sensor

    PubMed

    Matthews; Arrieta

    2000-09-01

    The ability of laser vibrometers to receive and process acoustic echoes from the water surface above a submerged target is established and evaluated. Sonar echoes from a submerged target are collected from the water surface by a laser vibrometer. Feasibility of this approach to sensing underwater sound is demonstrated. If the acoustic excitation at an otherwise undisturbed water surface is 195 to 168 dB re: 1 microPa, signal-to-noise ratio (SNR), at the vibrometer output, is shown to range from about 46 to 6 dB. Capillary waves and gravity waves at the water surface are expected and shown to have some destructive effect on the process of echo retrieval. A series of experiments to quantify the surface wave effects is described. The wave experiment results are reported. A successful attempt to acquire echoes from a submerged target over a grid of points for further processing into a three-dimensional image is made and described. The data acquisition and beamforming techniques constitute a three-dimensional, acoustic optic, synthetic aperture sonar (SAS). Beamformed images are included. For an aircraft towing acoustic sensors through the water with a mechanical link, this technique holds the promise of increased safety and improved fuel efficiency.

  4. Acoustic transducer

    DOEpatents

    Drumheller, D.S.

    1997-12-30

    An acoustic transducer is described comprising a one-piece hollow mandrel into the outer surface of which is formed a recess with sides perpendicular to the central axis of the mandrel and separated by a first distance and with a bottom parallel to the central axis and within which recess are a plurality of washer-shaped discs of a piezoelectric material and at least one disc of a temperature-compensating material with the discs being captured between the sides of the recess in a pre-stressed interference fit, typically at 2,000 psi of compressive stress. The transducer also includes a power supply and means to connect to a measurement device. The transducer is intended to be used for telemetry between a measurement device located downhole in an oil or gas well and the surface. The transducer is of an construction that is stronger with fewer joints that could leak fluids into the recess holding the piezoelectric elements than is found in previous acoustic transducers. 4 figs.

  5. Acoustic transducer

    DOEpatents

    Drumheller, Douglas S.

    1997-01-01

    An acoustic transducer comprising a one-piece hollow mandrel into the outer surface of which is formed a recess with sides perpendicular to the central axis of the mandrel and separated by a first distance and with a bottom parallel to the central axis and within which recess are a plurality of washer-shaped discs of a piezoelectric material and at least one disc of a temperature-compensating material with the discs being captured between the sides of the recess in a pre-stressed interference fit, typically at 2000 psi of compressive stress. The transducer also includes a power supply and means to connect to a measurement device. The transducer is intended to be used for telemetry between a measurement device located downhole in an oil or gas well and the surface. The transducer is of an construction that is stronger with fewer joints that could leak fluids into the recess holding the piezoelectric elements than is found in previous acoustic transducers.

  6. Methods for reconstructing acoustic quantities based on acoustic pressure measurements.

    PubMed

    Wu, Sean F

    2008-11-01

    This paper presents an overview of the acoustic imaging methods developed over the past three decades that enable one to reconstruct all acoustic quantities based on the acoustic pressure measurements taken around a target source at close distances. One such method that has received the most attention is known as near-field acoustical holography (NAH). The original NAH relies on Fourier transforms that are suitable for a surface containing a level of constant coordinate in a source-free region. Other methods are developed to reconstruct the acoustic quantities in three-dimensional space and on an arbitrary three-dimensional source surface. Note that there is a fine difference between Fourier transform based NAH and other methods that is largely overlooked. The former can offer a wave number spectrum, thus enabling visualization of various structural waves of different wavelengths that travel on the surface of a structure; the latter cannot provide such information, which is critical to acquire an in-depth understanding of the interrelationships between structural vibrations and sound radiation. All these methods are discussed in this paper, their advantages and limitations are compared, and the need for further development to analyze the root causes of noise and vibration problems is discussed.

  7. Holographic acoustic elements for manipulation of levitated objects

    NASA Astrophysics Data System (ADS)

    Marzo, Asier; Seah, Sue Ann; Drinkwater, Bruce W.; Sahoo, Deepak Ranjan; Long, Benjamin; Subramanian, Sriram

    2015-10-01

    Sound can levitate objects of different sizes and materials through air, water and tissue. This allows us to manipulate cells, liquids, compounds or living things without touching or contaminating them. However, acoustic levitation has required the targets to be enclosed with acoustic elements or had limited manoeuvrability. Here we optimize the phases used to drive an ultrasonic phased array and show that acoustic levitation can be employed to translate, rotate and manipulate particles using even a single-sided emitter. Furthermore, we introduce the holographic acoustic elements framework that permits the rapid generation of traps and provides a bridge between optical and acoustical trapping. Acoustic structures shaped as tweezers, twisters or bottles emerge as the optimum mechanisms for tractor beams or containerless transportation. Single-beam levitation could manipulate particles inside our body for applications in targeted drug delivery or acoustically controlled micro-machines that do not interfere with magnetic resonance imaging.

  8. Holographic acoustic elements for manipulation of levitated objects.

    PubMed

    Marzo, Asier; Seah, Sue Ann; Drinkwater, Bruce W; Sahoo, Deepak Ranjan; Long, Benjamin; Subramanian, Sriram

    2015-10-27

    Sound can levitate objects of different sizes and materials through air, water and tissue. This allows us to manipulate cells, liquids, compounds or living things without touching or contaminating them. However, acoustic levitation has required the targets to be enclosed with acoustic elements or had limited manoeuvrability. Here we optimize the phases used to drive an ultrasonic phased array and show that acoustic levitation can be employed to translate, rotate and manipulate particles using even a single-sided emitter. Furthermore, we introduce the holographic acoustic elements framework that permits the rapid generation of traps and provides a bridge between optical and acoustical trapping. Acoustic structures shaped as tweezers, twisters or bottles emerge as the optimum mechanisms for tractor beams or containerless transportation. Single-beam levitation could manipulate particles inside our body for applications in targeted drug delivery or acoustically controlled micro-machines that do not interfere with magnetic resonance imaging.

  9. Holographic acoustic elements for manipulation of levitated objects.

    PubMed

    Marzo, Asier; Seah, Sue Ann; Drinkwater, Bruce W; Sahoo, Deepak Ranjan; Long, Benjamin; Subramanian, Sriram

    2015-01-01

    Sound can levitate objects of different sizes and materials through air, water and tissue. This allows us to manipulate cells, liquids, compounds or living things without touching or contaminating them. However, acoustic levitation has required the targets to be enclosed with acoustic elements or had limited manoeuvrability. Here we optimize the phases used to drive an ultrasonic phased array and show that acoustic levitation can be employed to translate, rotate and manipulate particles using even a single-sided emitter. Furthermore, we introduce the holographic acoustic elements framework that permits the rapid generation of traps and provides a bridge between optical and acoustical trapping. Acoustic structures shaped as tweezers, twisters or bottles emerge as the optimum mechanisms for tractor beams or containerless transportation. Single-beam levitation could manipulate particles inside our body for applications in targeted drug delivery or acoustically controlled micro-machines that do not interfere with magnetic resonance imaging. PMID:26505138

  10. Holographic acoustic elements for manipulation of levitated objects

    PubMed Central

    Marzo, Asier; Seah, Sue Ann; Drinkwater, Bruce W.; Sahoo, Deepak Ranjan; Long, Benjamin; Subramanian, Sriram

    2015-01-01

    Sound can levitate objects of different sizes and materials through air, water and tissue. This allows us to manipulate cells, liquids, compounds or living things without touching or contaminating them. However, acoustic levitation has required the targets to be enclosed with acoustic elements or had limited manoeuvrability. Here we optimize the phases used to drive an ultrasonic phased array and show that acoustic levitation can be employed to translate, rotate and manipulate particles using even a single-sided emitter. Furthermore, we introduce the holographic acoustic elements framework that permits the rapid generation of traps and provides a bridge between optical and acoustical trapping. Acoustic structures shaped as tweezers, twisters or bottles emerge as the optimum mechanisms for tractor beams or containerless transportation. Single-beam levitation could manipulate particles inside our body for applications in targeted drug delivery or acoustically controlled micro-machines that do not interfere with magnetic resonance imaging. PMID:26505138

  11. Acoustic emission descriptors

    NASA Astrophysics Data System (ADS)

    Witos, Franciszek; Malecki, Ignacy

    The authors present selected problems associated with acoustic emission interpreted as a physical phenomenon and as a measurement technique. The authors examine point sources of acoustic emission in isotropic, homogeneous linearly elastic media of different shapes. In the case of an unbounded medium the authors give the analytical form of the stress field and the wave shift field of the acoustic emission. In the case of a medium which is unbounded plate the authors give a form for the equations which is suitable for numerical calculation of the changes over time of selected acoustic emission values. For acoustic emission as a measurement technique, the authors represent the output signal as the resultant of a mechanical input value which describes the source, the transient function of the medium, and the transient function of specific components of the measurement loop. As an effect of this notation, the authors introduce the distinction between an acoustic measurement signal and an acoustic measurement impulse. The authors define the basic parameters of an arbitrary impulse. The authors extensively discuss the signal functions of acoustic emission impulses and acoustic emission signals defined in this article as acoustic emission descriptors (or signal functions of acoustic emission impulses) and advanced acoustic emission descriptors (which are either descriptors associated with acoustic emission applications or the signal functions of acoustic emission signals). The article also contains the results of experimental research on three different problems in which acoustic emission descriptors associated with acoustic emission pulses, acoustic emission applications, and acoustic emission signals are used. These problems are respectively: a problem of the amplitude-load characteristics of acoustic emission pulses in carbon samples subjected to compound uniaxial compression, the use of acoustic emission to predict the durability characteristics of conveyor belts, and

  12. Acoustic transducer

    DOEpatents

    Drumheller, Douglas S.

    2000-01-01

    An active acoustic transducer tool for use down-hole applications. The tool includes a single cylindrical mandrel including a shoulder defining the boundary of a narrowed portion over which is placed a sandwich-style piezoelectric tranducer assembly. The piezoelectric transducer assembly is prestressed by being placed in a thermal interference fit between the shoulder of the mandrel and the base of an anvil which is likewise positioned over the narrower portion of the mandrel. In the preferred embodiment, assembly of the tool is accomplished using a hydraulic jack to stretch the mandrel prior to emplacement of the cylindrical sandwich-style piezoelectric transducer assembly and anvil. After those elements are positioned and secured, the stretched mandrel is allowed to return substantially to its original (pre-stretch) dimensions with the result that the piezoelectric transducer elements are compressed between the anvil and the shoulder of the mandrel.

  13. Acoustic cryocooler

    DOEpatents

    Swift, Gregory W.; Martin, Richard A.; Radenbaugh, Ray

    1990-01-01

    An acoustic cryocooler with no moving parts is formed from a thermoacoustic driver (TAD) driving a pulse tube refrigerator (PTR) through a standing wave tube. Thermoacoustic elements in the TAD are spaced apart a distance effective to accommodate the increased thermal penetration length arising from the relatively low TAD operating frequency in the range of 15-60 Hz. At these low operating frequencies, a long tube is required to support the standing wave. The tube may be coiled to reduce the overall length of the cryocooler. One or two PTR's are located on the standing wave tube adjacent antinodes in the standing wave to be driven by the standing wave pressure oscillations. It is predicted that a heat input of 1000 W at 1000 K will maintian a cooling load of 5 W at 80 K.

  14. Acoustic telemetry.

    SciTech Connect

    Drumheller, Douglas Schaeffer; Kuszmaul, Scott S.

    2003-08-01

    Broadcasting messages through the earth is a daunting task. Indeed, broadcasting a normal telephone conversion through the earth by wireless means is impossible with todays technology. Most of us don't care, but some do. Industries that drill into the earth need wireless communication to broadcast navigation parameters. This allows them to steer their drill bits. They also need information about the natural formation that they are drilling. Measurements of parameters such as pressure, temperature, and gamma radiation levels can tell them if they have found a valuable resource such as a geothermal reservoir or a stratum bearing natural gas. Wireless communication methods are available to the drilling industry. Information is broadcast via either pressure waves in the drilling fluid or electromagnetic waves in the earth and well tubing. Data transmission can only travel one way at rates around a few baud. Given that normal Internet telephone modems operate near 20,000 baud, these data rates are truly very slow. Moreover, communication is often interrupted or permanently blocked by drilling conditions or natural formation properties. Here we describe a tool that communicates with stress waves traveling through the steel drill pipe and production tubing in the well. It's based on an old idea called Acoustic Telemetry. But what we present here is more than an idea. This tool exists, it's drilled several wells, and it works. Currently, it's the first and only acoustic telemetry tool that can withstand the drilling environment. It broadcasts one way over a limited range at much faster rates than existing methods, but we also know how build a system that can communicate both up and down wells of indefinite length.

  15. Measuring fish abundance in a weir trap using an acoustical-optical platform.

    PubMed

    Miksis-Olds, Jennifer L; Stokesbury, Kevin D E

    2007-10-01

    Data recorded by a bottom mounted survey platform deployed within the opening of a fishing weir were used to calculate species specific abundance estimates for comparison to the weir catch. Abundance estimates were calculated from the combination of sonar and video information recorded by the Acoustical-Optical Platform (AOP). Echo counting was used to detect individual moving targets in the sonar images with the application of a background removal technique utilizing a moving average filter. Video images provided species identification of acoustic targets. Video images and differences in target strength distributions reflected a change in dominant species from each deployment which was confirmed with the weir catch. The algorithm used to calculate AOP abundance estimates was most accurate in predicting abundance for species comprising at least 13% of the overall catch by weight. Close agreement between the species specific AOP estimates and absolute abundances of each species suggests that the combination of acoustic and video data is a powerful combination for accurately identifying fish species and predicting abundance.

  16. Strength nutrition.

    PubMed

    Volek, Jeff S

    2003-08-01

    Muscle strength is determined by muscle size and factors related to neural recruitment. Resistance training is a potent stimulus for increasing muscle size and strength. These increases are, to a large extent, influenced and mediated by changes in hormones that regulate important events during the recovery process following exercise. Provision of nutrients in the appropriate amounts and at the appropriate times is necessary to optimize the recovery process. This review discusses the results of research that has examined the potential for nutrition and dietary supplements to impact the acute response to resistance exercise and chronic adaptations to resistance training. To date, the most promising strategies to augment gains in muscle size and strength appear to be consumption of protein-carbohydrate calories before and after resistance exercise, and creatine supplementation.

  17. Acoustic levitation in the presence of gravity

    NASA Technical Reports Server (NTRS)

    Collas, P.; Barmatz, M.; Shipley, C.

    1989-01-01

    The method of Gor'kov (1961) has been applied to derive general expressions for the total potential and force on a small spherical object in a resonant chamber in the presence of both acoustic and gravitational force fields. The levitation position is also determined in rectangular resonators for the simultaneous excitation of up to three acoustic modes, and the results are applied to the triple-axis acoustic levitator. The analysis is applied to rectangular, spherical, and cylindrical single-mode levitators that are arbitrarily oriented relative to the gravitational force field. Criteria are determined for isotropic force fields in rectangular and cylindrical resonators. It is demonstrated that an object will be situated within a volume of possible levitation positions at a point determined by the relative strength of the acoustic and gravitational fields and the orientation of the chamber relative to gravity.

  18. Application of scanning acoustic microscopy to advanced structural ceramics

    NASA Technical Reports Server (NTRS)

    Vary, Alex; Klima, Stanley J.

    1987-01-01

    A review is presentod of research investigations of several acoustic microscopy techniques for application to structural ceramics for advanced heat engines. Results obtained with scanning acoustic microscopy (SAM), scanning laser acoustic microscopy (SLAM), scanning electron acoustic microscopy (SEAM), and photoacoustic microscopy (PAM) are compared. The techniques were evaluated on research samples of green and sintered monolithic silicon nitrides and silicon carbides in the form of modulus-of-rupture bars containing deliberately introduced flaws. Strengths and limitations of the techniques are described with emphasis on statistics of detectability of flaws that constitute potential fracture origins.

  19. Acoustic Measurement of Potato Cannon Velocity

    ERIC Educational Resources Information Center

    Courtney, Michael; Courtney, Amy

    2007-01-01

    Potato cannon velocity can be measured with a digitized microphone signal. A microphone is attached to the potato cannon muzzle, and a potato is fired at an aluminum target about 10 m away. Flight time can be determined from the acoustic waveform by subtracting the time in the barrel and time for sound to return from the target. The potato…

  20. Acoustic hemostasis

    NASA Astrophysics Data System (ADS)

    Crum, Lawrence; Beach, Kirk; Carter, Stephen; Chandler, Wayne; Curra, Francesco; Kaczkowski, Peter; Keilman, George; Khokhlova, Vera; Martin, Roy; Mourad, Pierre; Vaezy, Shahram

    2000-07-01

    In cases of severe injury, physicians speak of a "golden hour"—a brief grace period in which quickly applied, proper therapy can save the life of the patient. Much of this mortality results from exsanguination, i.e., bleeding to death—often from internal hemorrhage. The inability of a paramedic to treat breaches in the vascular system deep within the body or to stem the loss of blood from internal organs is a major reason for the high level of mortality associated with blunt trauma. We have undertaken an extensive research program to treat the problem of internal bleeding. Our approach is as follows: (a) We use scanning ultrasound to identify internal bleeding and hemorrhage, (b) we use ultrasound imaging to locate specific breaches in the vascular system, both from damaged vessels and gross damage to the capillary bed, and (c) we use High Intensity Focused Ultrasound (HIFU) to treat the damaged region and to induce hemostasis. We present a general review of this research with some emphasis on the role of nonlinear acoustics.

  1. Method and Apparatus to Access Optimum Strength During Processing of Precipitation Strengthened Alloys

    NASA Technical Reports Server (NTRS)

    Cantrell, John H. (Inventor); Yost, William T. (Inventor)

    2001-01-01

    A method and apparatus are provided which enable the nondestructive testing of strength of a heat treated alloy. An alloy is insonified with an ultrasonic signal. The resulting convoluted signal is detected and the acoustic nonlinearity parameter is determined. The acoustic nonlinearity parameter shows a peak corresponding to a peak in material strength.

  2. Classifying Particles By Acoustic Levitation

    NASA Technical Reports Server (NTRS)

    Barmatz, Martin B.; Stoneburner, James D.

    1983-01-01

    Separation technique well suited to material processing. Apparatus with rectangular-cross-section chamber used to measure equilibrium positions of low-density spheres in gravitational field. Vertical acoustic forces generated by two opposing compression drivers exciting fundamental plane-wave mode at 1.2 kHz. Additional horizontal drivers centered samples along vertical axis. Applications in fusion-target separation, biological separation, and manufacturing processes in liquid or gas media.

  3. Acoustic source for generating an acoustic beam

    DOEpatents

    Vu, Cung Khac; Sinha, Dipen N.; Pantea, Cristian

    2016-05-31

    An acoustic source for generating an acoustic beam includes a housing; a plurality of spaced apart piezo-electric layers disposed within the housing; and a non-linear medium filling between the plurality of layers. Each of the plurality of piezoelectric layers is configured to generate an acoustic wave. The non-linear medium and the plurality of piezo-electric material layers have a matching impedance so as to enhance a transmission of the acoustic wave generated by each of plurality of layers through the remaining plurality of layers.

  4. Canonical Acoustics and Its Application to Surface Acoustic Wave on Acoustic Metamaterials

    NASA Astrophysics Data System (ADS)

    Shen, Jian Qi

    2016-08-01

    In a conventional formalism of acoustics, acoustic pressure p and velocity field u are used for characterizing acoustic waves propagating inside elastic/acoustic materials. We shall treat some fundamental problems relevant to acoustic wave propagation alternatively by using canonical acoustics (a more concise and compact formalism of acoustic dynamics), in which an acoustic scalar potential and an acoustic vector potential (Φ ,V), instead of the conventional acoustic field quantities such as acoustic pressure and velocity field (p,u) for characterizing acoustic waves, have been defined as the fundamental variables. The canonical formalism of the acoustic energy-momentum tensor is derived in terms of the acoustic potentials. Both the acoustic Hamiltonian density and the acoustic Lagrangian density have been defined, and based on this formulation, the acoustic wave quantization in a fluid is also developed. Such a formalism of acoustic potentials is employed to the problem of negative-mass-density assisted surface acoustic wave that is a highly localized surface bound state (an eigenstate of the acoustic wave equations). Since such a surface acoustic wave can be strongly confined to an interface between an acoustic metamaterial (e.g., fluid-solid composite structures with a negative dynamical mass density) and an ordinary material (with a positive mass density), it will give rise to an effect of acoustic field enhancement on the acoustic interface, and would have potential applications in acoustic device design for acoustic wave control.

  5. What Is an Acoustic Neuroma

    MedlinePlus

    ... Acoustic Neuroma An acoustic neuroma, also called a vestibular schwannoma, is a rare benign tumor of the ... Acoustic Neuroma? An acoustic neuroma, known as a vestibular schwannoma, is a benign (non-cancerous) growth that ...

  6. Waveform inversion of acoustic waves for explosion yield estimation

    NASA Astrophysics Data System (ADS)

    Kim, K.; Rodgers, A.

    2016-07-01

    We present a new waveform inversion technique to estimate the energy of near-surface explosions using atmospheric acoustic waves. Conventional methods often employ air blast models based on a homogeneous atmosphere, where the acoustic wave propagation effects (e.g., refraction and diffraction) are not taken into account, and therefore, their accuracy decreases with increasing source-receiver distance. In this study, three-dimensional acoustic simulations are performed with a finite difference method in realistic atmospheres and topography, and the modeled acoustic Green's functions are incorporated into the waveform inversion for the acoustic source time functions. The strength of the acoustic source is related to explosion yield based on a standard air blast model. The technique was applied to local explosions (<10 km) and provided reasonable yield estimates (<˜30% error) in the presence of realistic topography and atmospheric structure. The presented method can be extended to explosions recorded at far distance provided proper meteorological specifications.

  7. Cloaking of an acoustic sensor using scattering cancellation

    NASA Astrophysics Data System (ADS)

    Guild, Matthew D.; Alù, Andrea; Haberman, Michael R.

    2014-07-01

    In this Letter, a bilaminate acoustic cloak designed using scattering cancellation methods is applied to the case of an acoustic sensor consisting of a hollow piezoelectric shell with mechanical absorption. The bilaminate cloak provides 20-50 dB reduction in scattering strength relative to the uncloaked configuration over the typical range of operation for an acoustic sensor, retains its ability to sensing acoustic pressure signals, and remains within the physical bounds of a passive absorber. Further, the cloak is shown to increase the range of frequencies over which there is nearly perfect phase fidelity between the acoustic signal and the voltage generated by the sensor. The feasibility of achieving the necessary fluid layer properties is demonstrated using sonic crystals with the use of readily available acoustic materials.

  8. The Distribution of Subjective Memory Strength: List Strength and Response Bias

    ERIC Educational Resources Information Center

    Criss, Amy H.

    2009-01-01

    Models of recognition memory assume that memory decisions are based partially on the subjective strength of the test item. Models agree that the subjective strength of targets increases with additional time for encoding however the origin of the subjective strength of foils remains disputed. Under the fixed strength assumption the distribution of…

  9. Symptoms of Acoustic Neuroma

    MedlinePlus

    ... Watch and Wait Radiation Microsurgery Acoustic Neuroma Decision Tree Questions for Your Physician Questions to Ask Yourself ... Watch and Wait Radiation Microsurgery Acoustic Neuroma Decision Tree Questions for Your Physician Questions to Ask Yourself ...

  10. Acoustic Neuroma Educational Video

    MedlinePlus

    ... Watch and Wait Radiation Microsurgery Acoustic Neuroma Decision Tree Questions for Your Physician Questions to Ask Yourself ... Watch and Wait Radiation Microsurgery Acoustic Neuroma Decision Tree Questions for Your Physician Questions to Ask Yourself ...

  11. Molecular Engineering of Acoustic Protein Nanostructures.

    PubMed

    Lakshmanan, Anupama; Farhadi, Arash; Nety, Suchita P; Lee-Gosselin, Audrey; Bourdeau, Raymond W; Maresca, David; Shapiro, Mikhail G

    2016-08-23

    Ultrasound is among the most widely used biomedical imaging modalities, but has limited ability to image specific molecular targets due to the lack of suitable nanoscale contrast agents. Gas vesicles-genetically encoded protein nanostructures isolated from buoyant photosynthetic microbes-have recently been identified as nanoscale reporters for ultrasound. Their unique physical properties give gas vesicles significant advantages over conventional microbubble contrast agents, including nanoscale dimensions and inherent physical stability. Furthermore, as a genetically encoded material, gas vesicles present the possibility that the nanoscale mechanical, acoustic, and targeting properties of an imaging agent can be engineered at the level of its constituent proteins. Here, we demonstrate that genetic engineering of gas vesicles results in nanostructures with new mechanical, acoustic, surface, and functional properties to enable harmonic, multiplexed, and multimodal ultrasound imaging as well as cell-specific molecular targeting. These results establish a biomolecular platform for the engineering of acoustic nanomaterials. PMID:27351374

  12. Acoustic emission frequency discrimination

    NASA Technical Reports Server (NTRS)

    Sugg, Frank E. (Inventor); Graham, Lloyd J. (Inventor)

    1988-01-01

    In acoustic emission nondestructive testing, broadband frequency noise is distinguished from narrow banded acoustic emission signals, since the latter are valid events indicative of structural flaws in the material being examined. This is accomplished by separating out those signals which contain frequency components both within and beyond (either above or below) the range of valid acoustic emission events. Application to acoustic emission monitoring during nondestructive bond verification and proof loading of undensified tiles on the Space Shuttle Orbiter is considered.

  13. High-acoustic-impedance tantalum oxide layers for insulating acoustic reflectors.

    PubMed

    Capilla, Jose; Olivares, Jimena; Clement, Marta; Sangrador, Jesús; Iborra, Enrique; Devos, Arnaud

    2012-03-01

    This work describes the assessment of the acoustic properties of sputtered tantalum oxide films intended for use as high-impedance films of acoustic reflectors for solidly mounted resonators operating in the gigahertz frequency range. The films are grown by sputtering a metallic tantalum target under different oxygen and argon gas mixtures, total pressures, pulsed dc powers, and substrate biases. The structural properties of the films are assessed through infrared absorption spectroscopy and X-ray diffraction measurements. Their acoustic impedance is assessed by deriving the mass density from X-ray reflectometry measurements and the acoustic velocity from picosecond acoustic spectroscopy and the analysis of the frequency response of the test resonators. PMID:22481769

  14. Tutorial on architectural acoustics

    NASA Astrophysics Data System (ADS)

    Shaw, Neil; Talaske, Rick; Bistafa, Sylvio

    2002-11-01

    This tutorial is intended to provide an overview of current knowledge and practice in architectural acoustics. Topics covered will include basic concepts and history, acoustics of small rooms (small rooms for speech such as classrooms and meeting rooms, music studios, small critical listening spaces such as home theatres) and the acoustics of large rooms (larger assembly halls, auditoria, and performance halls).

  15. Measuring Acoustic-Radiation Stresses in Materials

    NASA Technical Reports Server (NTRS)

    Cantrell, John H.; Yost, W. T.

    1986-01-01

    System measures nonlinearity parameters of materials. Uses static strain generated by acoustic wave propagating in material. Since static strain is effectively "dc" component of waveform distortion, problems associated with phase-cancellation artifacts disappear. Further, sign of nonlinearity parameter obtained by simple inspection of measured signal polarity. These features make this system very amenable to use in field. System expected to become standard for acoustic-radiation-stress measurements for solids and liquids and for characterization of material properties related to strength and residual or applied stresses. Also expected to become standard for transducer calibration.

  16. Measurement of acoustical characteristics of mosques in Saudi Arabia.

    PubMed

    Abdou, Adel A

    2003-03-01

    The study of mosque acoustics, with regard to acoustical characteristics, sound quality for speech intelligibility, and other applicable acoustic criteria, has been largely neglected. In this study a background as to why mosques are designed as they are and how mosque design is influenced by worship considerations is given. In the study the acoustical characteristics of typically constructed contemporary mosques in Saudi Arabia have been investigated, employing a well-known impulse response. Extensive field measurements were taken in 21 representative mosques of different sizes and architectural features in order to characterize their acoustical quality and to identify the impact of air conditioning, ceiling fans, and sound reinforcement systems on their acoustics. Objective room-acoustic indicators such as reverberation time (RT) and clarity (C50) were measured. Background noise (BN) was assessed with and without the operation of air conditioning and fans. The speech transmission index (STI) was also evaluated with and without the operation of existing sound reinforcement systems. The existence of acoustical deficiencies was confirmed and quantified. The study, in addition to describing mosque acoustics, compares design goals to results obtained in practice and suggests acoustical target values for mosque design. The results show that acoustical quality in the investigated mosques deviates from optimum conditions when unoccupied, but is much better in the occupied condition.

  17. Directional Electrostatic Accretion Process Employing Acoustic Droplet Formation

    NASA Technical Reports Server (NTRS)

    Oeftering, Richard (Inventor)

    1998-01-01

    The present invention is directed to an apparatus for manufacturing a free standing solid metal part. In the present invention, metal droplets are ejected in a nozzleless fashion from a free surface pool of molten metal by applying focused acoustic radiation pressure. The acoustic radiation pressure is produced by high intensity acoustic tone bursts emitted from an acoustic source positioned at the bottom of the pool which directs the acoustic energy at the pool surface. The metal droplets are electrostatically charged so their trajectory can be controlled by electric fields that guide the droplets to predetermined points on a target. The droplets impinge upon the target and solidify with the target material. The accretion of the electrostatically directed solidified droplets forms the free standing metal part.

  18. Near resonance acoustic scattering from organized schools of juvenile Atlantic bluefin tuna (Thunnus thynnus).

    PubMed

    Weber, Thomas C; Lutcavage, Molly E; Schroth-Miller, Madeline L

    2013-06-01

    Schools of Atlantic bluefin tuna (Thunnus thynnus) can exhibit highly organized spatial structure within the school. This structure was quantified for dome shaped schools using both aerial imagery collected from a commercial spotter plane and 400 kHz multibeam echo sounder data collected on a fishing vessel in 2009 in Cape Cod Bay, MA. Observations from one school, containing an estimated 263 fish within an approximately ellipsoidal volume of 1900 m(3), were used to seed an acoustic model that estimated the school target strength at frequencies between 10 and 2000 Hz. The fish's swimbladder resonance was estimated to occur at approximately 50 Hz. The acoustic model examined single and multiple scattering solutions and also a completely incoherent summation of scattering responses from the fish. Three levels of structure within the school were examined, starting with fish locations that were constrained by the school boundaries but placed according to a Poisson process, then incorporating a constraint on the distance to the nearest neighbor, and finally adding a constraint on the bearing to the nearest neighbor. Results suggest that both multiple scattering and spatial organization within the school should be considered when estimating the target strength of schools similar to the ones considered here. PMID:23742334

  19. ACOUSTICAL STANDARDS NEWS.

    PubMed

    Stremmel, Neil; Struck, Christopher J

    2016-07-01

    American National Standards (ANSI Standards) developed by Accredited Standards Committees S1, S2, S3, S3/SC 1, and S12 in the areas of acoustics, mechanical vibration and shock, bioacoustics, animal bioacoustics, and noise, respectively, are published by the Acoustical Society of America (ASA). In addition to these standards, ASA publishes a catalog of Acoustical American National Standards. To receive a copy of the latest Standards catalog, please contact Neil Stremmel.Comments are welcomed on all material in Acoustical Standards News.This Acoustical Standards News section in JASA, as well as the National Catalog of Acoustical Standards and other information on the Standards Program of the Acoustical Society of America, are available via the ASA home page: http://acousticalsociety.org. PMID:27475185

  20. Image-guided acoustic therapy.

    PubMed

    Vaezy, S; Andrew, M; Kaczkowski, P; Crum, L

    2001-01-01

    The potential role of therapeutic ultrasound in medicine is promising. Currently, medical devices are being developed that utilize high-intensity focused ultrasound as a noninvasive method to treat tumors and to stop bleeding (hemostasis). The primary advantage of ultrasound that lends the technique so readily to use in noninvasive therapy is its ability to penetrate deep into the body and deliver to a specific site thermal or mechanical energy with submillimeter accuracy. Realizing the full potential of acoustic therapy, however, requires precise targeting and monitoring. Fortunately, several imaging modalities can be utilized for this purpose, thus leading to the concept of image-guided acoustic therapy. This article presents a review of high-intensity focused ultrasound therapy, including its mechanisms of action, the imaging modalities used for guidance and monitoring, some current applications, and the requirements and technology associated with this exciting and promising field.

  1. Acoustic Microcannons: Toward Advanced Microballistics.

    PubMed

    Soto, Fernando; Martin, Aida; Ibsen, Stuart; Vaidyanathan, Mukanth; Garcia-Gradilla, Victor; Levin, Yair; Escarpa, Alberto; Esener, Sadik C; Wang, Joseph

    2016-01-26

    Acoustically triggered microcannons, capable of loading and firing nanobullets (Nbs), are presented as powerful microballistic tools. Hollow conically shaped microcannon structures have been synthesized electrochemically and fully loaded with nanobullets made of silica or fluorescent microspheres, and perfluorocarbon emulsions, embedded in a gel matrix stabilizer. Application of a focused ultrasound pulse leads to the spontaneous vaporization of the perfluorocarbon emulsions within the microcannon and results in the rapid ejection of the nanobullets. Such Nbs "firing" at remarkably high speeds (on the magnitude of meters per second) has been modeled theoretically and demonstrated experimentally. Arrays of microcannons anchored in a template membrane were used to demonstrate the efficient Nbs loading and the high penetration capabilities of the ejected Nbs in a tissue phantom gel. This acoustic-microcannon approach could be translated into advanced microscale ballistic tools, capable of efficient loading and firing of multiple cargoes, and offer improved accessibility to target locations and enhanced tissue penetration properties. PMID:26691444

  2. Acoustic Rotational Manipulation Using Orbital Angular Momentum Transfer

    NASA Astrophysics Data System (ADS)

    Anhäuser, Andreas; Wunenburger, Régis; Brasselet, Etienne

    2012-07-01

    We report on the first quantitative test of acoustic orbital angular momentum transfer to a sound absorbing object immersed in a viscous liquid. This is done by realizing an original experiment that is to spin a millimeter-size target disk using an ultrasonic vortex beam. We demonstrate the balance between the acoustic radiation torque calculated from the Brillouin stress tensor and the viscous torque evaluated from the steady state spinning frequency. Moreover, we unveil a rotational acoustic streaming phenomenon that results from the acoustic angular momentum transfer to the host fluid. We show that it lowers the viscous torque, thereby restoring the torque balance.

  3. Optically selective, acoustically resonant gas detecting transducer

    NASA Technical Reports Server (NTRS)

    Dimeff, J. (Inventor)

    1977-01-01

    A gas analyzer is disclosed which responds to the resonant absorption or emission spectrum of a specific gas by producing an acoustic resonance in a chamber containing a sample of that gas, and which measures the amount of that emission or absorption by measuring the strength of that acoustic resonance, e.g., the maximum periodic pressure, velocity or density achieved. In the preferred embodiment, a light beam is modulated periodically at the acoustical resonance frequency of a closed chamber which contains an optically dense sample of the gas of interest. Periodic heating of the absorbing gas by the light beam causes a cyclic expansion, movement, and pressure within the gas. An amplitude is reached where the increased losses were the cyclic radiation energy received. A transducing system is inclined for converting the pressure variations of the resonant gas into electronic readout signals.

  4. Hybrid CFD/CAA Modeling for Liftoff Acoustic Predictions

    NASA Technical Reports Server (NTRS)

    Strutzenberg, Louise L.; Liever, Peter A.

    2011-01-01

    This paper presents development efforts at the NASA Marshall Space flight Center to establish a hybrid Computational Fluid Dynamics and Computational Aero-Acoustics (CFD/CAA) simulation system for launch vehicle liftoff acoustics environment analysis. Acoustic prediction engineering tools based on empirical jet acoustic strength and directivity models or scaled historical measurements are of limited value in efforts to proactively design and optimize launch vehicles and launch facility configurations for liftoff acoustics. CFD based modeling approaches are now able to capture the important details of vehicle specific plume flow environment, identifY the noise generation sources, and allow assessment of the influence of launch pad geometric details and sound mitigation measures such as water injection. However, CFD methodologies are numerically too dissipative to accurately capture the propagation of the acoustic waves in the large CFD models. The hybrid CFD/CAA approach combines the high-fidelity CFD analysis capable of identifYing the acoustic sources with a fast and efficient Boundary Element Method (BEM) that accurately propagates the acoustic field from the source locations. The BEM approach was chosen for its ability to properly account for reflections and scattering of acoustic waves from launch pad structures. The paper will present an overview of the technology components of the CFD/CAA framework and discuss plans for demonstration and validation against test data.

  5. Computational simulation of acoustic fatigue for hot composite structures

    NASA Technical Reports Server (NTRS)

    Singhal, Surendra N.; Murthy, Pappu L. N.; Chamis, Christos C.; Nagpal, Vinod K.; Sutjahjo, Edhi

    1991-01-01

    Predictive methods/computer codes for the computational simulation of acoustic fatigue resistance of hot composite structures subjected to acoustic excitation emanating from an adjacent vibrating component are discussed. Select codes developed over the past two decades at the NASA Lewis Research Center are used. The codes include computation of acoustic noise generated from a vibrating component, degradation in material properties of a composite laminate at use temperature, dynamic response of acoustically excited hot multilayered composite structure, degradation in the first ply strength of the excited structure due to acoustic loading, and acoustic fatigue resistance of the excited structure, including the propulsion environment. Effects of the laminate lay-up and environment on the acoustic fatigue life are evaluated. The results show that, by keeping the angled plies on the outer surface of the laminate, a substantial increase in the acoustic fatigue life is obtained. The effect of environment (temperature and moisture) is to relieve the residual stresses leading to an increase in the acoustic fatigue life of the excited panel.

  6. AST Launch Vehicle Acoustics

    NASA Technical Reports Server (NTRS)

    Houston, Janice; Counter, D.; Giacomoni, D.

    2015-01-01

    The liftoff phase induces acoustic loading over a broad frequency range for a launch vehicle. These external acoustic environments are then used in the prediction of internal vibration responses of the vehicle and components which result in the qualification levels. Thus, predicting these liftoff acoustic (LOA) environments is critical to the design requirements of any launch vehicle. If there is a significant amount of uncertainty in the predictions or if acoustic mitigation options must be implemented, a subscale acoustic test is a feasible pre-launch test option to verify the LOA environments. The NASA Space Launch System (SLS) program initiated the Scale Model Acoustic Test (SMAT) to verify the predicted SLS LOA environments and to determine the acoustic reduction with an above deck water sound suppression system. The SMAT was conducted at Marshall Space Flight Center and the test article included a 5% scale SLS vehicle model, tower and Mobile Launcher. Acoustic and pressure data were measured by approximately 250 instruments. The SMAT liftoff acoustic results are presented, findings are discussed and a comparison is shown to the Ares I Scale Model Acoustic Test (ASMAT) results.

  7. Acoustic Translation of an Acoustically Levitated Sample

    NASA Technical Reports Server (NTRS)

    Barmatz, M. B.; Allen, J. L.

    1986-01-01

    Acoustic-levitation apparatus uses only one acoustic mode to move sample from one region of chamber to another. Sample heated and cooled quickly by translation between hot and cold regions of levitation chamber. Levitated sample is raised into furnace region by raising plunger. Frequency of sound produced by transducers adjusted by feedback system to maintain (102) resonant mode, which levitates sample midway between transducers and plunger regardless of plunger position.

  8. Development of hydroacoustical techniques for the monitoring and classification of benthic habitats in Puck Bay: Modeling of acoustic waves scattering by seagrass

    NASA Astrophysics Data System (ADS)

    Raczkowska, A.; Gorska, N.

    2012-12-01

    Puck Bay is an area of high species biodiversity belonging to the Coastal Landscape Park of Baltic Sea Protected Areas (BSPA) and is also included in the list of the World Wide Fund for Nature (WWF) and covered by the protection program "Natura 2000". The underwater meadows of the Puck Bay are important for Europe's natural habitats due to their role in enhancing the productivity of marine ecosystems and providing shelter and optimal feeding conditions for many marine organisms. One of the dominant species comprising the underwater meadows of the Southern Baltic Sea is the seagrass Zostera marina. The spatial extent of underwater seagrass meadows is altered by pollution and eutrophication; therefore, to properly manage the area one must monitor its ecological state. Remote acoustic methods are useful tools for the monitoring of benthic habitats in many marine areas because they are non-invasive and allow researchers to obtain data from a large area in a short period of time. Currently there is a need to apply these methods in the Baltic Sea. Here we present an analysis of the mechanism of scattering of acoustic waves on seagrass in the Southern Baltic Sea based on the numerical modeling of acoustic wave scattering by the biological tissues of plants. The study was conducted by adapting a model developed on the basis of DWBA (Distorted Wave Born Approximation) developed by Stanton and Chu (2005) for fluid-like objects, including the characteristics of the Southern Baltic seagrass. Input data for the model, including the morphometry of seagrass leaves, their angle of inclination and the density plant cover, was obtained through the analysis of biological materials collected in the Puck Bay in the framework of a research project financed by the Polish Government (Development of hydroacoustic methods for studies of underwater meadows of Puck Bay, 6P04E 051 20). On the basis of the developed model, we have analyzed the dependence of the target strength of a single

  9. A Shock-Refracted Acoustic Wave Model for Screech Amplitude in Supersonic Jets

    NASA Technical Reports Server (NTRS)

    Kandula, Max

    2007-01-01

    A physical model is proposed for the estimation of the screech amplitude in underexpanded supersonic jets. The model is based on the hypothesis that the interaction of a plane acoustic wave with stationary shock waves provides amplification of the transmitted acoustic wave upon traversing the shock. Powell's discrete source model for screech incorporating a stationary array of acoustic monopoles is extended to accommodate variable source strength. The proposed model reveals that the acoustic sources are of increasing strength with downstream distance. It is shown that the screech amplitude increases with the fully expanded jet Mach number. Comparisons of predicted screech amplitude with available test data show satisfactory agreement. The effect of variable source strength on the directivity of the fundamental (first harmonic, lowest frequency mode) and the second harmonic (overtone) is found to be unimportant with regard to the principal lobe (main or major lobe) of considerable relative strength, and is appreciable only in the secondary or minor lobes (of relatively weaker strength).

  10. A Shock-Refracted Acoustic Wave Model for the Prediction of Screech Amplitude in Supersonic Jets

    NASA Technical Reports Server (NTRS)

    Kandula, Max

    2007-01-01

    A physical model is proposed for the estimation of the screech amplitude in underexpanded supersonic jets. The model is based on the hypothesis that the interaction of a plane acoustic wave with stationary shock waves provides amplification of the transmitted acoustic wave upon traversing the shock. Powell's discrete source model for screech incorporating a stationary array of acoustic monopoles is extended to accommodate variable source strength. The proposed model reveals that the acoustic sources are of increasing strength with downstream distance. It is shown that the screech amplitude increases with the fuiiy expanded jet Mach number. Comparisons of predicted screech amplitude with available test data show satisfactory agreement. The effect of variable source strength on directivity of the fundamental (first harmonic, lowest frequency mode) and the second harmonic (overtone) is found to be unimportant with regard to the principal lobe (main or major lobe) of considerable relative strength, and is appreciable only in the secondary or minor lobes (of relatively weaker strength

  11. Virtual sensors for active noise control in acoustic-structural coupled enclosures using structural sensing: part II--Optimization of structural sensor placement.

    PubMed

    Halim, Dunant; Cheng, Li; Su, Zhongqing

    2011-04-01

    The work proposed an optimization approach for structural sensor placement to improve the performance of vibro-acoustic virtual sensor for active noise control applications. The vibro-acoustic virtual sensor was designed to estimate the interior sound pressure of an acoustic-structural coupled enclosure using structural sensors. A spectral-spatial performance metric was proposed, which was used to quantify the averaged structural sensor output energy of a vibro-acoustic system excited by a spatially varying point source. It was shown that (i) the overall virtual sensing error energy was contributed additively by the modal virtual sensing error and the measurement noise energy; (ii) each of the modal virtual sensing error system was contributed by both the modal observability levels for the structural sensing and the target acoustic virtual sensing; and further (iii) the strength of each modal observability level was influenced by the modal coupling and resonance frequencies of the associated uncoupled structural/cavity modes. An optimal design of structural sensor placement was proposed to achieve sufficiently high modal observability levels for certain important panel- and cavity-controlled modes. Numerical analysis on a panel-cavity system demonstrated the importance of structural sensor placement on virtual sensing and active noise control performance, particularly for cavity-controlled modes.

  12. Can you hear me now? Range-testing a submerged passive acoustic receiver array in a Caribbean coral reef habitat.

    PubMed

    Selby, Thomas H; Hart, Kristen M; Fujisaki, Ikuko; Smith, Brian J; Pollock, Clayton J; Hillis-Starr, Zandy; Lundgren, Ian; Oli, Madan K

    2016-07-01

    Submerged passive acoustic technology allows researchers to investigate spatial and temporal movement patterns of many marine and freshwater species. The technology uses receivers to detect and record acoustic transmissions emitted from tags attached to an individual. Acoustic signal strength naturally attenuates over distance, but numerous environmental variables also affect the probability a tag is detected. Knowledge of receiver range is crucial for designing acoustic arrays and analyzing telemetry data. Here, we present a method for testing a relatively large-scale receiver array in a dynamic Caribbean coastal environment intended for long-term monitoring of multiple species. The U.S. Geological Survey and several academic institutions in collaboration with resource management at Buck Island Reef National Monument (BIRNM), off the coast of St. Croix, recently deployed a 52 passive acoustic receiver array. We targeted 19 array-representative receivers for range-testing by submersing fixed delay interval range-testing tags at various distance intervals in each cardinal direction from a receiver for a minimum of an hour. Using a generalized linear mixed model (GLMM), we estimated the probability of detection across the array and assessed the effect of water depth, habitat, wind, temperature, and time of day on the probability of detection. The predicted probability of detection across the entire array at 100 m distance from a receiver was 58.2% (95% CI: 44.0-73.0%) and dropped to 26.0% (95% CI: 11.4-39.3%) 200 m from a receiver indicating a somewhat constrained effective detection range. Detection probability varied across habitat classes with the greatest effective detection range occurring in homogenous sand substrate and the smallest in high rugosity reef. Predicted probability of detection across BIRNM highlights potential gaps in coverage using the current array as well as limitations of passive acoustic technology within a complex coral reef environment

  13. Can you hear me now? Range-testing a submerged passive acoustic receiver array in a Caribbean coral reef habitat

    USGS Publications Warehouse

    Selby, Thomas H.; Hart, Kristen M.; Fujisaki, Ikuko; Smith, Brian J.; Pollock, Clayton J; Hillis-Star, Zandy M; Lundgren, Ian; Oli, Madan K.

    2016-01-01

    Submerged passive acoustic technology allows researchers to investigate spatial and temporal movement patterns of many marine and freshwater species. The technology uses receivers to detect and record acoustic transmissions emitted from tags attached to an individual. Acoustic signal strength naturally attenuates over distance, but numerous environmental variables also affect the probability a tag is detected. Knowledge of receiver range is crucial for designing acoustic arrays and analyzing telemetry data. Here, we present a method for testing a relatively large-scale receiver array in a dynamic Caribbean coastal environment intended for long-term monitoring of multiple species. The U.S. Geological Survey and several academic institutions in collaboration with resource management at Buck Island Reef National Monument (BIRNM), off the coast of St. Croix, recently deployed a 52 passive acoustic receiver array. We targeted 19 array-representative receivers for range-testing by submersing fixed delay interval range-testing tags at various distance intervals in each cardinal direction from a receiver for a minimum of an hour. Using a generalized linear mixed model (GLMM), we estimated the probability of detection across the array and assessed the effect of water depth, habitat, wind, temperature, and time of day on the probability of detection. The predicted probability of detection across the entire array at 100 m distance from a receiver was 58.2% (95% CI: 44.0–73.0%) and dropped to 26.0% (95% CI: 11.4–39.3%) 200 m from a receiver indicating a somewhat constrained effective detection range. Detection probability varied across habitat classes with the greatest effective detection range occurring in homogenous sand substrate and the smallest in high rugosity reef. Predicted probability of detection across BIRNM highlights potential gaps in coverage using the current array as well as limitations of passive acoustic technology within a complex coral reef

  14. Liquid Helium Acoustic Microscope.

    NASA Astrophysics Data System (ADS)

    Steer, Andrew Paul

    Available from UMI in association with The British Library. In an acoustic microscope, images are generated by monitoring the intensity of the ultrasonic reflection, or echo, from the surface of a sample. In order to achieve this a pulse of acoustic energy is produced by the excitation of a thin film transducer. The pulse thus generated propagates through a crystal and is incident upon the acoustic lens surface, which is the boundary between the crystal and an acoustic coupling liquid. The acoustic lens is a converging element, and brings the ultrasonic beam to a focus within the liquid. A sample, placed at the focus, can act as a reflector, and the returned pulse then contains information regarding the acoustic reflectivity of this specimen. Acoustic pulses are repeatedly launched and detected while the acoustic lens is scanned over the surface of the sample. In this manner an acoustic image is constructed. Acoustic losses in room temperature liquid coupling media represent a considerable source of difficulty in the recovery of acoustic echo signals. At the frequencies of operation required in a microscope which is capable of high resolution, the ultrasonic attenuation is not only large but increases with the square of frequency. In superfluid liquid helium at temperatures below 0.1 K, however, the ultrasonic attenuation becomes negligible. Furthermore, the low sound velocity in liquid helium results in an increase in resolution, since the acoustic wavelength is proportional to velocity. A liquid helium acoustic microscope has been designed and constructed. Details of the various possible detection methods are given, and comparisons are made between them. Measurements of the performance of the system that was adopted are reported. The development of a cooled preamplifier is also described. The variation of reflected signal with object distance has been measured and compared with theoretical predictions. This variation is important in the analysis of acoustic

  15. Buoyancy characteristics of the bloater (Coregonus hoyi) in relation to patterns of vertical migration and acoustic backscattering

    USGS Publications Warehouse

    Fleischer, Guy W.; TeWinkel, Leslie M.

    1998-01-01

    Acoustic studies in Lake Michigan found that bloaters (Coregonus hoyi) were less reflective per size than the other major pelagic species. This difference in in situ acoustic backscattering could indicate that the deep-water bloaters have compressed swimbladders for much of their vertical range with related implications on buoyancy. To test this hypothesis, the buoyancy characteristics of bloaters were determined with fish placed in a cage that was lowered to bottom and monitored with an underwater camera. We found bloaters were positively buoyant near surface, neutrally buoyant at intermediate strata, and negatively buoyant near bottom. This pattern was consistent for the range of depths bloaters occur. The depth of neutral buoyancy (near the 50-n strata) corresponds with the maximum extent of vertical migration for bloaters observed in acoustic surveys. Fish below this depth would be negatively buoyant which supports our contention that bloaters deeper in the water column have compressed swimbladders. Understanding the buoyancy characteristics of pelagic fishes will help to predict the effects of vertical migration on target strength measurement and confirms the use of acoustics as a tool to identify and quantify the ecological phenomenon of vertical migration.

  16. The effect of microstructural variation on the mechanical and acoustic properties of silicon carbide

    NASA Astrophysics Data System (ADS)

    Slusark, Douglas Michael

    Silicon carbide ceramic materials have many beneficial properties which have led to their adoption in various industrial uses, including its application as an armor material. This is due to the high hardness and stiffness of these materials, as well as a low relative density. The homogeneity of the final properties depends upon the processing history of the material. Factors which affect this include the need for high temperatures and sintering additives to achieve densification, as well as the presence of additive agglomerates and pressing artifacts within the green compact. This dissertation seeks to determine the effect which microstructural variability has on the acoustic and mechanical properties of sintered silicon carbide materials. Sample sets examined included commercially produced, pressurelessly sintered tiles, as well as additional, targeted tiles which were specifically produced for evaluation in this study. Production of these targeted samples was carried out such that particular aspects of the microstructure were emphasized. These included tiles which were fired with an excess of boron sintering aid as well as tiles which had been pressed to a reduced green body density and then fired. The sample evaluation procedure which was developed incorporated non destructive evaluation methods, mechanical testing, and both fractographic and image analysis of fractured and polished sections. Non destructive evaluation of the tiles was carried out by Archimedes density and ultrasound scanning at 20 MHz to determine the acoustic attenuation coefficient. Selected samples were chosen for machining into ASTM B-type bend bars on which 4-pt flexure testing was performed. Strength limiting features were designated for each sample set. The correlation between acoustic attenuation coefficient and quasi-static strength was examined both qualitatively and quantitatively. This was done by comparing the primary fracture location of flexure bars to features within the

  17. Nonlinear Acoustics in Fluids

    NASA Astrophysics Data System (ADS)

    Lauterborn, Werner; Kurz, Thomas; Akhatov, Iskander

    At high sound intensities or long propagation distances at in fluids sufficiently low damping acoustic phenomena become nonlinear. This chapter focuses on nonlinear acoustic wave properties in gases and liquids. The origin of nonlinearity, equations of state, simple nonlinear waves, nonlinear acoustic wave equations, shock-wave formation, and interaction of waves are presented and discussed. Tables are given for the nonlinearity parameter B/A for water and a range of organic liquids, liquid metals and gases. Acoustic cavitation with its nonlinear bubble oscillations, pattern formation and sonoluminescence (light from sound) are modern examples of nonlinear acoustics. The language of nonlinear dynamics needed for understanding chaotic dynamics and acoustic chaotic systems is introduced.

  18. Acoustic penetration of the seabed, with particular application to the detection of non-metallic buried cables

    NASA Astrophysics Data System (ADS)

    Evans, Ruthven Clive Philip

    Damaged submarine fibre optic telecommunication cables are located by the use of remotely operated underwater vehicles. These are fitted with sensors which have the capability to detect the metal shielding in the cable cores. However, it is anticipated that the next generation of cables will have a much reduced metal content, their strength being derived from synthetic materials such as aramid fibres. This will make them practically invisible to present day detection systems. To this end, research has been conducted into the remote detection of a range of buried objects having a `low acoustic contrast' using, primarily, acoustic techniques, with particular emphasis being given to the detection of buried cables. This involved the design of a system to reliably detect a small diameter (cm scale), cylindrical target buried to a depth of up to 1 metre below the seabed from a height of 1 metre above the seabed at a sea depth of 1000 m. A purpose-built, laboratory-scale, automated sensing system comprising a bistatic arrangement of adjustable, focused transducers was constructed. This was used successfully in the high resolution imaging of a range of buried objects, proving an acoustic detection system to be a feasible solution. The experimental investigation focused on the areas of waveform optimisation, optimal filtering and clutter reduction, with the signal processing system being optimised to achieve maximum separation of the target signal from the background. The lack of an experimentally verified model to describe the transmission of acoustic waves into the seabed was a complicating factor. Therefore, the propagation of compressional waves into and within a sandy sediment was investigated. This study was of particular academic interest in light of recent work in which anomalous acoustic penetration of the seabed, where the grazing angle in the water column was sub-critical, has been observed. An experimental investigation showed that scattering from surface

  19. Blowing Polymer Bubbles in an Acoustic Levitator

    NASA Technical Reports Server (NTRS)

    Lee, M. C.

    1985-01-01

    In new manufacturing process, small gas-filled polymer shells made by injecting gas directly into acoustically levitated prepolymer drops. New process allows sufficient time for precise control of shell geometry. Applications foreseen in fabrication of deuterium/tritium-filled fusion targets and in pharmaceutical coatings. New process also useful in glass blowing and blow molding.

  20. Acoustic Levitator Maintains Resonance

    NASA Technical Reports Server (NTRS)

    Barmatz, M. B.; Gaspar, M. S.

    1986-01-01

    Transducer loading characteristics allow resonance tracked at high temperature. Acoustic-levitation chamber length automatically adjusted to maintain resonance at constant acoustic frequency as temperature changes. Developed for containerless processing of materials at high temperatures, system does not rely on microphones as resonance sensors, since microphones are difficult to fabricate for use at temperatures above 500 degrees C. Instead, system uses acoustic transducer itself as sensor.

  1. Acoustic Source Localization in Aircraft Interiors Using Microphone Array Technologies

    NASA Technical Reports Server (NTRS)

    Sklanka, Bernard J.; Tuss, Joel R.; Buehrle, Ralph D.; Klos, Jacob; Williams, Earl G.; Valdivia, Nicolas

    2006-01-01

    Using three microphone array configurations at two aircraft body stations on a Boeing 777-300ER flight test, the acoustic radiation characteristics of the sidewall and outboard floor system are investigated by experimental measurement. Analysis of the experimental data is performed using sound intensity calculations for closely spaced microphones, PATCH Inverse Boundary Element Nearfield Acoustic Holography, and Spherical Nearfield Acoustic Holography. Each method is compared assessing strengths and weaknesses, evaluating source identification capability for both broadband and narrowband sources, evaluating sources during transient and steady-state conditions, and quantifying field reconstruction continuity using multiple array positions.

  2. Distribution, abundance and acoustic properties of Antarctic silverfish ( Pleuragramma antarcticum) in the Ross Sea

    NASA Astrophysics Data System (ADS)

    O'Driscoll, Richard L.; Macaulay, Gavin J.; Gauthier, Stéphane; Pinkerton, Matt; Hanchet, Stuart

    2011-03-01

    Antarctic silverfish ( Pleuragramma antarcticum) is a key link between plankton and the community of top predators in the shelf waters of the Ross Sea. In spite of their abundance and important role in Antarctic food chains, very little is known of many ecological and biological aspects of this species. A combined trawl and acoustic survey of silverfish was carried out on the western Ross Sea shelf during the New Zealand International Polar Year Census of Antarctic Marine Life research voyage on R.V. Tangaroa in February-March 2008. Multi-frequency acoustic data (12, 38, 70, and 120 kHz) allowed discrimination of silverfish marks from those of krill and other associated species. Mark identification was achieved using targeted midwater trawls. Additional midwater and demersal trawls were carried out at randomly selected locations over the shelf as part of the core biodiversity survey. Silverfish were widely distributed over the Ross Sea shelf. Adult silverfish tended to form layers at 100-400 m depth and were sometimes present close to the bottom, where they were frequently caught in demersal trawls shallower than 500 m. A weak layer at about 80 m depth was associated with juvenile silverfish of 50-80 mm standard length. Acoustic backscatter strength from both silverfish and krill marks increased with increasing frequency (i.e., was highest at 120 kHz), which is characteristic of species without an air-filled swimbladder. Acoustic target strengths (TS) for silverfish at 12, 18, 38, 70, and 120 kHz were estimated from anatomically detailed scattering models based on computed tomography (CT) scans of frozen specimens. The relationship between TS and fish length at 38 kHz was sensitive to estimates of density and sound speed contrast within the fish, especially for small specimens (less than 110 mm SL). Our best estimate of the acoustic biomass of silverfish in the study area was 592 000 t (95% confidence interval 326 000-866 000 t). However, the biomass of juvenile

  3. Acoustic dispersive prism

    PubMed Central

    Esfahlani, Hussein; Karkar, Sami; Lissek, Herve; Mosig, Juan R.

    2016-01-01

    The optical dispersive prism is a well-studied element, which allows separating white light into its constituent spectral colors, and stands in nature as water droplets. In analogy to this definition, the acoustic dispersive prism should be an acoustic device with capability of splitting a broadband acoustic wave into its constituent Fourier components. However, due to the acoustical nature of materials as well as the design and fabrication difficulties, there is neither any natural acoustic counterpart of the optical prism, nor any artificial design reported so far exhibiting an equivalent acoustic behaviour. Here, based on exotic properties of the acoustic transmission-line metamaterials and exploiting unique physical behaviour of acoustic leaky-wave radiation, we report the first acoustic dispersive prism, effective within the audible frequency range 800 Hz–1300 Hz. The dispersive nature, and consequently the frequency-dependent refractive index of the metamaterial are exploited to split the sound waves towards different and frequency-dependent directions. Meanwhile, the leaky-wave nature of the structure facilitates the sound wave radiation into the ambient medium. PMID:26739504

  4. Localized acoustic surface modes

    NASA Astrophysics Data System (ADS)

    Farhat, Mohamed; Chen, Pai-Yen; Bağcı, Hakan

    2016-04-01

    We introduce the concept of localized acoustic surface modes. We demonstrate that they are induced on a two-dimensional cylindrical rigid surface with subwavelength corrugations under excitation by an incident acoustic plane wave. Our results show that the corrugated rigid surface is acoustically equivalent to a cylindrical scatterer with uniform mass density that can be represented using a Drude-like model. This, indeed, suggests that plasmonic-like acoustic materials can be engineered with potential applications in various areas including sensing, imaging, and cloaking.

  5. Low frequency acoustic microscope

    DOEpatents

    Khuri-Yakub, Butrus T.

    1986-11-04

    A scanning acoustic microscope is disclosed for the detection and location of near surface flaws, inclusions or voids in a solid sample material. A focused beam of acoustic energy is directed at the sample with its focal plane at the subsurface flaw, inclusion or void location. The sample is scanned with the beam. Detected acoustic energy specularly reflected and mode converted at the surface of the sample and acoustic energy reflected by subsurface flaws, inclusions or voids at the focal plane are used for generating an interference signal which is processed and forms a signal indicative of the subsurface flaws, inclusions or voids.

  6. Comparisons among ten models of acoustic backscattering used in aquatic ecosystem research.

    PubMed

    Jech, J Michael; Horne, John K; Chu, Dezhang; Demer, David A; Francis, David T I; Gorska, Natalia; Jones, Benjamin; Lavery, Andone C; Stanton, Timothy K; Macaulay, Gavin J; Reeder, D Benjamin; Sawada, Kouichi

    2015-12-01

    Analytical and numerical scattering models with accompanying digital representations are used increasingly to predict acoustic backscatter by fish and zooplankton in research and ecosystem monitoring applications. Ten such models were applied to targets with simple geometric shapes and parameterized (e.g., size and material properties) to represent biological organisms such as zooplankton and fish, and their predictions of acoustic backscatter were compared to those from exact or approximate analytical models, i.e., benchmarks. These comparisons were made for a sphere, spherical shell, prolate spheroid, and finite cylinder, each with homogeneous composition. For each shape, four target boundary conditions were considered: rigid-fixed, pressure-release, gas-filled, and weakly scattering. Target strength (dB re 1 m(2)) was calculated as a function of insonifying frequency (f = 12 to 400 kHz) and angle of incidence (θ = 0° to 90°). In general, the numerical models (i.e., boundary- and finite-element) matched the benchmarks over the full range of simulation parameters. While inherent errors associated with the approximate analytical models were illustrated, so were the advantages as they are computationally efficient and in certain cases, outperformed the numerical models under conditions where the numerical models did not converge.

  7. Fish population dynamics revealed by instantaneous continental-shelf scale acoustic imaging

    NASA Astrophysics Data System (ADS)

    Ratilal, Purnima; Symonds, Deanelle; Makris, Nicholas C.; Nero, Redwood

    2005-04-01

    Video images of fish population densities over vast areas of the New Jersey continental shelf have been produced from acoustic data collected on a long range bistatic sonar system during the Acoustic Clutter 2003 experiment. Areal fish population densities were obtained after correcting the acoustic data for two-way transmission loss modeled using the range-dependent parabolic equation, spatially varying beampattern of the array, source level and mean target strength per fish. The wide-area fish density images reveal the temporal evolution of fish school distributions, their migration, as well as shoal formation and fragmentation at 50 s interval. Time series of the fish population within various density thresholds were made over the period of a day in an area containing millions of fish that at some instances formed a massive shoal extending over 12 km. The analysis shows that fish population in the area can be decomposed into a stable ambient population from lower-fish-density regions and a time-varying population composed from higher-density regions. Estimates of the differential speed between population centers of various shoals show that the average speed is on the order of a slow-moving surface vessel or submarine.

  8. Acoustic Levitation With Less Equipment

    NASA Technical Reports Server (NTRS)

    Barmatz, M. B.; Jacobi, N.

    1983-01-01

    Certain chamber shapes require fewer than three acoustic drivers. Levitation at center of spherical chamber attained using only one acoustic driver. Exitation of lowest spherical mode produces asymmetric acoustic potential well.

  9. Oscillator strengths and collision strengths for S v

    NASA Technical Reports Server (NTRS)

    Van Wyngaarden, W. L.; Henry, R. J. W.

    1981-01-01

    Observations of the optical extreme-ultraviolet spectrum of the Jupiter planetary system during the Voyager space mission revealed bright emission lines of some sulfur ions. The spectra of the torus at the orbit of Io are likely to contain S V lines. The described investigation provides oscillator strengths and collision strengths for the first four UV lines. The collision strengths from the ground state to four other excited states are also obtained. Use is made of a two-state calculation which is checked for convergence for some transitions by employing a three-state or a four-state approximation. Target wave functions for S V are calculated so that the oscillator strengths calculated in dipole length and dipole velocity approximations agree within 5%.

  10. Acoustics Critical Readiness Review

    NASA Technical Reports Server (NTRS)

    Ballard, Kenny

    2010-01-01

    This presentation reviews the status of the acoustic equipment from the medical operations perspective. Included is information about the acoustic dosimeters, sound level meter, and headphones that are planned for use while on orbit. Finally there is information about on-orbit hearing assessments.

  11. Introduction to acoustic emission

    NASA Technical Reports Server (NTRS)

    Possa, G.

    1983-01-01

    Typical acoustic emission signal characteristics are described and techniques which localize the signal source by processing the acoustic delay data from multiple sensors are discussed. The instrumentation, which includes sensors, amplifiers, pulse counters, a minicomputer and output devices is examined. Applications are reviewed.

  12. Virtual acoustics displays

    NASA Technical Reports Server (NTRS)

    Wenzel, Elizabeth M.; Fisher, Scott S.; Stone, Philip K.; Foster, Scott H.

    1991-01-01

    The real time acoustic display capabilities are described which were developed for the Virtual Environment Workstation (VIEW) Project at NASA-Ames. The acoustic display is capable of generating localized acoustic cues in real time over headphones. An auditory symbology, a related collection of representational auditory 'objects' or 'icons', can be designed using ACE (Auditory Cue Editor), which links both discrete and continuously varying acoustic parameters with information or events in the display. During a given display scenario, the symbology can be dynamically coordinated in real time with 3-D visual objects, speech, and gestural displays. The types of displays feasible with the system range from simple warnings and alarms to the acoustic representation of multidimensional data or events.

  13. Acoustic ground impedance meter

    NASA Technical Reports Server (NTRS)

    Zuckerwar, A. J. (Inventor)

    1984-01-01

    A method and apparatus are presented for measuring the acoustic impedance of a surface in which the surface is used to enclose one end of the chamber of a Helmholz resonator. Acoustic waves are generated in the neck of the resonator by a piston driven by a variable speed motor through a cam assembly. The acoustic waves are measured in the chamber and the frequency of the generated acoustic waves is measured by an optical device. These measurements are used to compute the compliance and conductance of the chamber and surface combined. The same procedure is followed with a calibration plate having infinite acoustic impedance enclosing the chamber of the resonator to compute the compliance and conductance of the chamber alone. Then by subtracting, the compliance and conductance for the surface is obtained.

  14. Ocean acoustic hurricane classification.

    PubMed

    Wilson, Joshua D; Makris, Nicholas C

    2006-01-01

    Theoretical and empirical evidence are combined to show that underwater acoustic sensing techniques may be valuable for measuring the wind speed and determining the destructive power of a hurricane. This is done by first developing a model for the acoustic intensity and mutual intensity in an ocean waveguide due to a hurricane and then determining the relationship between local wind speed and underwater acoustic intensity. From this it is shown that it should be feasible to accurately measure the local wind speed and classify the destructive power of a hurricane if its eye wall passes directly over a single underwater acoustic sensor. The potential advantages and disadvantages of the proposed acoustic method are weighed against those of currently employed techniques. PMID:16454274

  15. Ocean acoustic hurricane classification.

    PubMed

    Wilson, Joshua D; Makris, Nicholas C

    2006-01-01

    Theoretical and empirical evidence are combined to show that underwater acoustic sensing techniques may be valuable for measuring the wind speed and determining the destructive power of a hurricane. This is done by first developing a model for the acoustic intensity and mutual intensity in an ocean waveguide due to a hurricane and then determining the relationship between local wind speed and underwater acoustic intensity. From this it is shown that it should be feasible to accurately measure the local wind speed and classify the destructive power of a hurricane if its eye wall passes directly over a single underwater acoustic sensor. The potential advantages and disadvantages of the proposed acoustic method are weighed against those of currently employed techniques.

  16. Cochlear bionic acoustic metamaterials

    NASA Astrophysics Data System (ADS)

    Ma, Fuyin; Wu, Jiu Hui; Huang, Meng; Fu, Gang; Bai, Changan

    2014-11-01

    A design of bionic acoustic metamaterial and acoustic functional devices was proposed by employing the mammalian cochlear as a prototype. First, combined with the experimental data in previous literatures, it is pointed out that the cochlear hair cells and stereocilia cluster are a kind of natural biological acoustic metamaterials with the negative stiffness characteristics. Then, to design the acoustic functional devices conveniently in engineering application, a simplified parametric helical structure was proposed to replace actual irregular cochlea for bionic design, and based on the computational results of such a bionic parametric helical structure, it is suggested that the overall cochlear is a local resonant system with the negative dynamic effective mass characteristics. There are many potential applications in the bandboard energy recovery device, cochlear implant, and acoustic black hole.

  17. Acoustic Remote Sensing

    NASA Astrophysics Data System (ADS)

    Dowling, David R.; Sabra, Karim G.

    2015-01-01

    Acoustic waves carry information about their source and collect information about their environment as they propagate. This article reviews how these information-carrying and -collecting features of acoustic waves that travel through fluids can be exploited for remote sensing. In nearly all cases, modern acoustic remote sensing involves array-recorded sounds and array signal processing to recover multidimensional results. The application realm for acoustic remote sensing spans an impressive range of signal frequencies (10-2 to 107 Hz) and distances (10-2 to 107 m) and involves biomedical ultrasound imaging, nondestructive evaluation, oil and gas exploration, military systems, and Nuclear Test Ban Treaty monitoring. In the past two decades, approaches have been developed to robustly localize remote sources; remove noise and multipath distortion from recorded signals; and determine the acoustic characteristics of the environment through which the sound waves have traveled, even when the recorded sounds originate from uncooperative sources or are merely ambient noise.

  18. Acoustic suspension system

    NASA Technical Reports Server (NTRS)

    Lee, M. C.; Wang, T. G. (Inventor)

    1983-01-01

    An acoustic levitation system is described, with single acoustic source and a small reflector to stably levitate a small object while the object is processed as by coating or heating it. The system includes a concave acoustic source which has locations on opposite sides of its axis that vibrate towards and away from a focal point to generate a converging acoustic field. A small reflector is located near the focal point, and preferably slightly beyond it, to create an intense acoustic field that stably supports a small object near the reflector. The reflector is located about one-half wavelength from the focal point and is concavely curved to a radius of curvature (L) of about one-half the wavelength, to stably support an object one-quarter wavelength (N) from the reflector.

  19. Acoustic integrated extinction

    PubMed Central

    Norris, Andrew N.

    2015-01-01

    The integrated extinction (IE) is defined as the integral of the scattering cross section as a function of wavelength. Sohl et al. (2007 J. Acoust. Soc. Am. 122, 3206–3210. (doi:10.1121/1.2801546)) derived an IE expression for acoustic scattering that is causal, i.e. the scattered wavefront in the forward direction arrives later than the incident plane wave in the background medium. The IE formula was based on electromagnetic results, for which scattering is causal by default. Here, we derive a formula for the acoustic IE that is valid for causal and non-causal scattering. The general result is expressed as an integral of the time-dependent forward scattering function. The IE reduces to a finite integral for scatterers with zero long-wavelength monopole and dipole amplitudes. Implications for acoustic cloaking are discussed and a new metric is proposed for broadband acoustic transparency. PMID:27547100

  20. Feature based passive acoustic detection of underwater threats

    NASA Astrophysics Data System (ADS)

    Stolkin, Rustam; Sutin, Alexander; Radhakrishnan, Sreeram; Bruno, Michael; Fullerton, Brian; Ekimov, Alexander; Raftery, Michael

    2006-05-01

    Stevens Institute of Technology is performing research aimed at determining the acoustical parameters that are necessary for detecting and classifying underwater threats. This paper specifically addresses the problems of passive acoustic detection of small targets in noisy urban river and harbor environments. We describe experiments to determine the acoustic signatures of these threats and the background acoustic noise. Based on these measurements, we present an algorithm for robustly discriminating threat presence from severe acoustic background noise. Measurements of the target's acoustic radiation signal were conducted in the Hudson River. The acoustic noise in the Hudson River was also recorded for various environmental conditions. A useful discriminating feature can be extracted from the acoustic signal of the threat, calculated by detecting packets of multi-spectral high frequency sound which occur repetitively at low frequency intervals. We use experimental data to show how the feature varies with range between the sensor and the detected underwater threat. We also estimate the effective detection range by evaluating this feature for hydrophone signals, recorded in the river both with and without threat presence.

  1. Acoustic analysis of trill sounds.

    PubMed

    Dhananjaya, N; Yegnanarayana, B; Bhaskararao, Peri

    2012-04-01

    In this paper, the acoustic-phonetic characteristics of steady apical trills--trill sounds produced by the periodic vibration of the apex of the tongue--are studied. Signal processing methods, namely, zero-frequency filtering and zero-time liftering of speech signals, are used to analyze the excitation source and the resonance characteristics of the vocal tract system, respectively. Although it is natural to expect the effect of trilling on the resonances of the vocal tract system, it is interesting to note that trilling influences the glottal source of excitation as well. The excitation characteristics derived using zero-frequency filtering of speech signals are glottal epochs, strength of impulses at the glottal epochs, and instantaneous fundamental frequency of the glottal vibration. Analysis based on zero-time liftering of speech signals is used to study the dynamic resonance characteristics of vocal tract system during the production of trill sounds. Qualitative analysis of trill sounds in different vowel contexts, and the acoustic cues that may help spotting trills in continuous speech are discussed. PMID:22501086

  2. Articulatory-to-Acoustic Relations in Response to Speaking Rate and Loudness Manipulations

    ERIC Educational Resources Information Center

    Mefferd, Antje S.; Green, Jordan R.

    2010-01-01

    Purpose: In this investigation, the authors determined the strength of association between tongue kinematic and speech acoustics changes in response to speaking rate and loudness manipulations. Performance changes in the kinematic and acoustic domains were measured using two aspects of speech production presumably affecting speech clarity:…

  3. Application of Strength Diagnosis.

    ERIC Educational Resources Information Center

    Newton, Robert U.; Dugan, Eric

    2002-01-01

    Discusses the various strength qualities (maximum strength, high- and low-load speed strength, reactive strength, rate of force development, and skill performance), noting why a training program design based on strength diagnosis can lead to greater efficacy and better performance gains for the athlete. Examples of tests used to assess strength…

  4. River Bed Sediment Classification Using Acoustic Doppler Profiler

    NASA Astrophysics Data System (ADS)

    Shields, F. D.

    2008-12-01

    Restoration or rehabilitation of degraded stream and river habitats requires definition of a target condition and preferably post-implementation monitoring to gage progress toward the target. Stream habitat has been characterized by computing statistics based on measurements of water depth and velocity at each point of a horizontal grid. In many cases stream bed type and cover, both qualitatively assessed, were included as additional grid variables. Resultant statistics describing the central tendency, variability and spatial distribution of these three or four variables and their combinations have been used to explain key differences between more- and less-degraded streams and to infer biotic responses. Usually the required data are collected by wading observers, but application to larger rivers is problematic. Collection of water depth and velocity information may be automated across a wide range of stream sizes using an acoustic Doppler profiler (aDp). Herein we suggest that aDp data may also be used to infer bed hardness and thus type by extracting the return signal strength from the bottom track signal and using this information to compute the echo intensity at the bed. A method for computing echo intensity, along with key assumptions is presented. Echo intensity is computed for a range of river environments and related to the size and related characteristics of bed material. Habitat maps for river reaches depicting water depth, velocity and bed type developed from aDp data sets are presented.

  5. Imaging and detection of mines from acoustic measurements

    NASA Astrophysics Data System (ADS)

    Witten, Alan J.; DiMarzio, Charles A.; Li, Wen; McKnight, Stephen W.

    1999-08-01

    A laboratory-scale acoustic experiment is described where a buried target, a hockey puck cut in half, is shallowly buried in a sand box. To avoid the need for source and receiver coupling to the host sand, an acoustic wave is generated in the subsurface by a pulsed laser suspended above the air-sand interface. Similarly, an airborne microphone is suspended above this interface and moved in unison with the laser. After some pre-processing of the data, reflections for the target, although weak, could clearly be identified. While the existence and location of the target can be determined by inspection of the data, its unique shape can not. Since target discrimination is important in mine detection, a 3D imaging algorithm was applied to the acquired acoustic data. This algorithm yielded a reconstructed image where the shape of the target was resolved.

  6. Micro Bubble Trapping By Acoustic Energy

    NASA Astrophysics Data System (ADS)

    Yoshiki, Yamakoshi

    2005-03-01

    Micro bubble trapping by acoustic energy is a promising technology for a future drug or gene delivery system, because the method can control the bubble dynamics using an applied ultrasonic wave. In this paper, acoustic radiation forces which are applied to the micro bubbles are reviewed as well as their applications for micro bubble manipulation. One of the problems in micro bubble trapping by acoustic energy is that the force applied to the micro bubbles is insufficient for some bubbles. This is severe problem when the bubble has a relatively hard shell. In order to increase the trapping force on the micro bubbles, a novel method is proposed. This method uses seed bubbles in order to manipulate target bubbles.

  7. Acoustic sniper localization system

    NASA Astrophysics Data System (ADS)

    Prado, Gervasio; Dhaliwal, Hardave; Martel, Philip O.

    1997-02-01

    Technologies for sniper localization have received increased attention in recent months as American forces have been deployed to various trouble spots around the world. Among the technologies considered for this task acoustics is a natural choice for various reasons. The acoustic signatures of gunshots are loud and distinctive, making them easy to detect even in high noise background environments. Acoustics provides a passive sensing technology with excellent range and non line of sight capabilities. Last but not least, an acoustic sniper location system can be built at a low cost with off the shelf components. Despite its many advantages, the performance of acoustic sensors can degrade under adverse propagation conditions. Localization accuracy, although good, is usually not accurate enough to pinpoint a sniper's location in some scenarios (for example which widow in a building or behind which tree in a grove). For these more demanding missions, the acoustic sensor can be used in conjunction with an infra red imaging system that detects the muzzle blast of the gun. The acoustic system can be used to cue the pointing system of the IR camera in the direction of the shot's source.

  8. Acoustic cooling engine

    DOEpatents

    Hofler, Thomas J.; Wheatley, John C.; Swift, Gregory W.; Migliori, Albert

    1988-01-01

    An acoustic cooling engine with improved thermal performance and reduced internal losses comprises a compressible fluid contained in a resonant pressure vessel. The fluid has a substantial thermal expansion coefficient and is capable of supporting an acoustic standing wave. A thermodynamic element has first and second ends and is located in the resonant pressure vessel in thermal communication with the fluid. The thermal response of the thermodynamic element to the acoustic standing wave pumps heat from the second end to the first end. The thermodynamic element permits substantial flow of the fluid through the thermodynamic element. An acoustic driver cyclically drives the fluid with an acoustic standing wave. The driver is at a location of maximum acoustic impedance in the resonant pressure vessel and proximate the first end of the thermodynamic element. A hot heat exchanger is adjacent to and in thermal communication with the first end of the thermodynamic element. The hot heat exchanger conducts heat from the first end to portions of the resonant pressure vessel proximate the hot heat exchanger. The hot heat exchanger permits substantial flow of the fluid through the hot heat exchanger. The resonant pressure vessel can include a housing less than one quarter wavelength in length coupled to a reservoir. The housing can include a reduced diameter portion communicating with the reservoir. The frequency of the acoustic driver can be continuously controlled so as to maintain resonance.

  9. Acoustic mapping velocimetry

    NASA Astrophysics Data System (ADS)

    Muste, M.; Baranya, S.; Tsubaki, R.; Kim, D.; Ho, H.; Tsai, H.; Law, D.

    2016-05-01

    Knowledge of sediment dynamics in rivers is of great importance for various practical purposes. Despite its high relevance in riverine environment processes, the monitoring of sediment rates remains a major and challenging task for both suspended and bed load estimation. While the measurement of suspended load is currently an active area of testing with nonintrusive technologies (optical and acoustic), bed load measurement does not mark a similar progress. This paper describes an innovative combination of measurement techniques and analysis protocols that establishes the proof-of-concept for a promising technique, labeled herein Acoustic Mapping Velocimetry (AMV). The technique estimates bed load rates in rivers developing bed forms using a nonintrusive measurements approach. The raw information for AMV is collected with acoustic multibeam technology that in turn provides maps of the bathymetry over longitudinal swaths. As long as the acoustic maps can be acquired relatively quickly and the repetition rate for the mapping is commensurate with the movement of the bed forms, successive acoustic maps capture the progression of the bed form movement. Two-dimensional velocity maps associated with the bed form migration are obtained by implementing algorithms typically used in particle image velocimetry to acoustic maps converted in gray-level images. Furthermore, use of the obtained acoustic and velocity maps in conjunction with analytical formulations (e.g., Exner equation) enables estimation of multidirectional bed load rates over the whole imaged area. This paper presents a validation study of the AMV technique using a set of laboratory experiments.

  10. Tuned Chamber Core Panel Acoustic Test Results

    NASA Technical Reports Server (NTRS)

    Schiller, Noah H.; Allen, Albert R.

    2016-01-01

    This report documents acoustic testing of tuned chamber core panels, which can be used to supplement the low-frequency performance of conventional acoustic treatment. The tuned chamber core concept incorporates low-frequency noise control directly within the primary structure and is applicable to sandwich constructions with a directional core, including corrugated-, truss-, and fluted-core designs. These types of sandwich structures have long, hollow channels (or chambers) in the core. By adding small holes through one of the facesheets, the hollow chambers can be utilized as an array of low-frequency acoustic resonators. These resonators can then be used to attenuate low-frequency noise (below 400 Hz) inside a vehicle compartment without increasing the weight or size of the structure. The results of this test program demonstrate that the tuned chamber core concept is effective when used in isolation or combined with acoustic foam treatments. Specifically, an array of acoustic resonators integrated within the core of the panels was shown to improve both the low-frequency absorption and transmission loss of the structure in targeted one-third octave bands.

  11. Laser and acoustic lens for lithotripsy

    DOEpatents

    Visuri, Steven R.; Makarewicz, Anthony J.; London, Richard A.; Benett, William J.; Krulevitch, Peter; Da Silva, Luiz B.

    2002-01-01

    An acoustic focusing device whose acoustic waves are generated by laser radiation through an optical fiber. The acoustic energy is capable of efficient destruction of renal and biliary calculi and deliverable to the site of the calculi via an endoscopic procedure. The device includes a transducer tip attached to the distal end of an optical fiber through which laser energy is directed. The transducer tip encapsulates an exogenous absorbing dye. Under proper irradiation conditions (high absorbed energy density, short pulse duration) a stress wave is produced via thermoelastic expansion of the absorber for the destruction of the calculi. The transducer tip can be configured into an acoustic lens such that the transmitted acoustic wave is shaped or focused. Also, compressive stress waves can be reflected off a high density/low density interface to invert the compressive wave into a tensile stress wave, and tensile stresses may be more effective in some instances in disrupting material as most materials are weaker in tension than compression. Estimations indicate that stress amplitudes provided by this device can be magnified more than 100 times, greatly improving the efficiency of optical energy for targeted material destruction.

  12. Calibration of acoustic transients.

    PubMed

    Burkard, Robert

    2006-05-26

    This article reviews the appropriate stimulus parameters (click duration, toneburst envelope) that should be used when eliciting auditory brainstem responses from mice. Equipment specifications required to calibrate these acoustic transients are discussed. Several methods of calibrating the level of acoustic transients are presented, including the measurement of peak equivalent sound pressure level (peSPL) and peak sound pressure level (pSPL). It is hoped that those who collect auditory brainstem response thresholds in mice will begin to use standardized methods of acoustic calibration, so that hearing thresholds across mouse strains obtained in different laboratories can more readily be compared.

  13. Acoustical heat pumping engine

    DOEpatents

    Wheatley, John C.; Swift, Gregory W.; Migliori, Albert

    1983-08-16

    The disclosure is directed to an acoustical heat pumping engine without moving seals. A tubular housing holds a compressible fluid capable of supporting an acoustical standing wave. An acoustical driver is disposed at one end of the housing and the other end is capped. A second thermodynamic medium is disposed in the housing near to but spaced from the capped end. Heat is pumped along the second thermodynamic medium toward the capped end as a consequence both of the pressure oscillation due to the driver and imperfect thermal contact between the fluid and the second thermodynamic medium.

  14. PRSEUS Acoustic Panel Fabrication

    NASA Technical Reports Server (NTRS)

    Nicolette, Velicki; Yovanof, Nicolette P.; Baraja, Jaime; Mathur, Gopal; Thrash, Patrick; Pickell, Robert

    2011-01-01

    This report describes the development of a novel structural concept, Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS), that addresses the demanding fuselage loading requirements for the Hybrid Wing or Blended Wing Body (BWB) airplane configuration with regards to acoustic response. A PRSEUS panel was designed and fabricated and provided to NASA-LaRC for acoustic response testing in the Structural Acoustics Loads and Transmission (SALT) facility). Preliminary assessments of the sound transmission characteristics of a PRSEUS panel subjected to a representative Hybrid Wing Body (HWB) operating environment were completed for the NASA Environmentally Responsible Aviation (ERA) Program.

  15. Acoustic rotation control

    NASA Technical Reports Server (NTRS)

    Elleman, D. D.; Croonquist, A. P.; Wang, T. G. (Inventor)

    1983-01-01

    A system is described for acoustically controlled rotation of a levitated object, which avoids deformation of a levitated liquid object. Acoustic waves of the same wavelength are directed along perpendicular directions across the object, and with the relative phases of the acoustic waves repeatedly switched so that one wave alternately leads and lags the other by 90 deg. The amount of torque for rotating the object, and the direction of rotation, are controlled by controlling the proportion of time one wave leads the other and selecting which wave leads the other most of the time.

  16. Acoustical heat pumping engine

    DOEpatents

    Wheatley, J.C.; Swift, G.W.; Migliori, A.

    1983-08-16

    The disclosure is directed to an acoustical heat pumping engine without moving seals. A tubular housing holds a compressible fluid capable of supporting an acoustical standing wave. An acoustical driver is disposed at one end of the housing and the other end is capped. A second thermodynamic medium is disposed in the housing near to but spaced from the capped end. Heat is pumped along the second thermodynamic medium toward the capped end as a consequence both of the pressure oscillation due to the driver and imperfect thermal contact between the fluid and the second thermodynamic medium. 2 figs.

  17. Acoustic well cleaner

    DOEpatents

    Maki, Jr., Voldi E.; Sharma, Mukul M.

    1997-01-21

    A method and apparatus are disclosed for cleaning the wellbore and the near wellbore region. A sonde is provided which is adapted to be lowered into a borehole and which includes a plurality of acoustic transducers arranged around the sonde. Electrical power provided by a cable is converted to acoustic energy. The high intensity acoustic energy directed to the borehole wall and into the near wellbore region, redissolves or resuspends the material which is reducing the permeability of the formation and/or restricting flow in the wellbore.

  18. Underwater acoustic omnidirectional absorber

    NASA Astrophysics Data System (ADS)

    Naify, Christina J.; Martin, Theodore P.; Layman, Christopher N.; Nicholas, Michael; Thangawng, Abel L.; Calvo, David C.; Orris, Gregory J.

    2014-02-01

    Gradient index media, which are designed by varying local element properties in given geometry, have been utilized to manipulate acoustic waves for a variety of devices. This study presents a cylindrical, two-dimensional acoustic "black hole" design that functions as an omnidirectional absorber for underwater applications. The design features a metamaterial shell that focuses acoustic energy into the shell's core. Multiple scattering theory was used to design layers of rubber cylinders with varying filling fractions to produce a linearly graded sound speed profile through the structure. Measured pressure intensity agreed with predicted results over a range of frequencies within the homogenization limit.

  19. A Small Acoustic Goniometer for General Purpose Research.

    PubMed

    Pook, Michael L; Loo, Sin Ming

    2016-01-01

    Understanding acoustic events and monitoring their occurrence is a useful aspect of many research projects. In particular, acoustic goniometry allows researchers to determine the source of an event based solely on the sound it produces. The vast majority of acoustic goniometry research projects used custom hardware targeted to the specific application under test. Unfortunately, due to the wide range of sensing applications, a flexible general purpose hardware/firmware system does not exist for this purpose. This article focuses on the development of such a system which encourages the continued exploration of general purpose hardware/firmware and lowers barriers to research in projects requiring the use of acoustic goniometry. Simulations have been employed to verify system feasibility, and a complete hardware implementation of the acoustic goniometer has been designed and field tested. The results are reported, and suggested areas for improvement and further exploration are discussed. PMID:27136563

  20. A Small Acoustic Goniometer for General Purpose Research

    PubMed Central

    Pook, Michael L.; Loo, Sin Ming

    2016-01-01

    Understanding acoustic events and monitoring their occurrence is a useful aspect of many research projects. In particular, acoustic goniometry allows researchers to determine the source of an event based solely on the sound it produces. The vast majority of acoustic goniometry research projects used custom hardware targeted to the specific application under test. Unfortunately, due to the wide range of sensing applications, a flexible general purpose hardware/firmware system does not exist for this purpose. This article focuses on the development of such a system which encourages the continued exploration of general purpose hardware/firmware and lowers barriers to research in projects requiring the use of acoustic goniometry. Simulations have been employed to verify system feasibility, and a complete hardware implementation of the acoustic goniometer has been designed and field tested. The results are reported, and suggested areas for improvement and further exploration are discussed. PMID:27136563

  1. Thirty years of underwater acoustic signal processing in China

    NASA Astrophysics Data System (ADS)

    Li, Qihu

    2012-11-01

    Advances in technology and theory in 30 years of underwater acoustic signal processing and its applications in China are presented in this paper. The topics include research work in the field of underwater acoustic signal modeling, acoustic field matching, ocean waveguide and internal wave, the extraction and processing technique for acoustic vector signal information, the space/time correlation characteristics of low frequency acoustic channels, the invariant features of underwater target radiated noise, the transmission technology of underwater voice/image data and its anti-interference technique. Some frontier technologies in sonar design are also discussed, including large aperture towed line array sonar, high resolution synthetic aperture sonar, deep sea siren and deep sea manned subsea vehicle, diver detection sonar and demonstration projector of national ocean monitoring system in China, etc.

  2. Hybrid acoustically layered foam (HALF) foam for improved low-frequency acoustic mitigation for launch fairings

    NASA Astrophysics Data System (ADS)

    Williams, Andrew D.; Domme, Daniel J.; Ardelean, Emil V.; Henderson, B. Kyle

    2007-04-01

    Launch vehicles produce high levels of acoustic energy and vibration loads that can severely damage satellites during launch. Because of these high loads, the satellite structure is much more robust than it needs to be for on-orbit operations. Traditionally, acoustic foam is used for acoustic mitigation; however, it is ineffective at frequencies below 500 Hz. For this reason we investigated three different modified acoustic foam concepts consisting of a thin metal foil, a semi-rigid spacer, and a melamine foam substrate to improve the low frequency acoustic performance of the melamine foam. The goal of the Hybrid Acoustically Layered Foil (HALF) Foam concept was to excite bending waves within the plane of the foil to cause inter-particle interactions thus increasing the transmission loss of the foam. To determine the performance of the system, a transmission loss tube was constructed, and the normal incidence transmission loss for each sample was measured. The tests confirm the excitation of bending waves at the target frequency of 500 Hz and a significant increase, on the order of 8 dB, in the transmission loss.

  3. Acoustic backscattering by deepwater fish measured in situ from a manned submersible

    NASA Astrophysics Data System (ADS)

    Benoit-Bird, Kelly J.; Au, Whitlow W. L.; Kelley, Christopher D.; Taylor, Christopher

    2003-02-01

    An outstanding problem in fisheries acoustics is the depth dependence of scattering characteristics of swimbladder-bearing fish, and the effects of pressure on the target strength of physoclistous fish remain unresolved. In situ echoes from deepwater snappers were obtained with a sonar transducer mounted on a manned submersible next to a low-light video camera, permitting simultaneous echo recording and identification of species, fish size and orientation. The sonar system, consisting of a transducer, single board computer, hard disk, and analog-to-digital converter, used a 80 μs, broadband signal (bandwidth 35 kHz, center frequency 120 kHz). The observed relationship between fish length and in situ target strength shows no difference from the relationship measured at the surface. No differences in the species-specific temporal echo characteristics were observed between surface and in situ measures. This indicates that the size and shape of the snappers' swimbladders are maintained both at the surface and at depths of up to 250 m. Information obtained through controlled backscatter measurements of tethered, anesthetized fish at the surface can be applied to free-swimming fish at depth. This is the first published account of the use of a manned submersible to measure in situ scattering from identified, individual animals with known orientations. The distinct advantage of this technique compared with other in situ techniques is the ability to observe the target fish, obtaining accurate species, size, and orientation information.

  4. A synthetic aperture acoustic prototype system

    NASA Astrophysics Data System (ADS)

    Luke, Robert H.; Bishop, Steven S.; Chan, Aaron M.; Gugino, Peter M.; Donzelli, Thomas P.; Soumekh, Mehrdad

    2015-05-01

    A novel quasi-monostatic system operating in a side-scan synthetic aperture acoustic (SAA) imaging mode is presented. This research project's objectives are to explore the military utility of outdoor continuous sound imaging of roadside foliage and target detection. The acoustic imaging method has several military relevant advantages such as being immune to RF jamming, superior spatial resolution as compared to 0.8-2.4 GHz ground penetrating radar (GPR), capable of standoff side and forward-looking scanning, and relatively low cost, weight and size when compared to GPR technologies. The prototype system's broadband 2-17 kHz LFM chirp transceiver is mounted on a manned all-terrain vehicle. Targets are positioned within the acoustic main beam at slant ranges of two to seven meters and on surfaces such as dirt, grass, gravel and weathered asphalt and with an intervening metallic chain link fence. Acoustic image reconstructions and signature plots result in means for literal interpretation and quantifiable analyses.

  5. Compact acoustic refrigerator

    SciTech Connect

    Bennett, G.A.

    1991-12-31

    This invention is comprised of a compact acoustic refrigeration system that actively cools components, e.g., electrical circuits, in a borehole environment. An acoustic engine includes first thermodynamic elements for generating a standing acoustic wave in a selected medium. An acoustic refrigerator includes second thermodynamic elements located in the standing wave for generating a relatively cold temperature at a first end of the second thermodynamic elements and a relatively hot temperature at a second end of the second thermodynamic elements. A resonator volume cooperates with the first and second thermodynamic elements to support the standing wave. To accommodate the high heat fluxes required for heat transfer to/from the first and second thermodynamic elements, first heat pipes transfer heat from the heat load to the second thermodynamic elements and second heat pipes transfer heat from first and second thermodynamic elements to the borehole environment.

  6. Acoustics lecturing in Mexico

    NASA Astrophysics Data System (ADS)

    Beristain, Sergio

    2002-11-01

    Some thirty years ago acoustics lecturing started in Mexico at the National Polytechnic Institute in Mexico City, as part of the Bachelor of Science degree in Communications and Electronics Engineering curricula, including the widest program on this field in the whole country. This program has been producing acoustics specialists ever since. Nowadays many universities and superior education institutions around the country are teaching students at the B.Sc. level and postgraduate level many topics related to acoustics, such as Architectural Acoustics, Seismology, Mechanical Vibrations, Noise Control, Audio, Audiology, Music, etc. Also many institutions have started research programs in related fields, with participation of medical doctors, psychologists, musicians, engineers, etc. Details will be given on particular topics and development.

  7. Compact acoustic refrigerator

    DOEpatents

    Bennett, G.A.

    1992-11-24

    A compact acoustic refrigeration system actively cools components, e.g., electrical circuits, in a borehole environment. An acoustic engine includes first thermodynamic elements for generating a standing acoustic wave in a selected medium. An acoustic refrigerator includes second thermodynamic elements located in the standing wave for generating a relatively cold temperature at a first end of the second thermodynamic elements and a relatively hot temperature at a second end of the second thermodynamic elements. A resonator volume cooperates with the first and second thermodynamic elements to support the standing wave. To accommodate the high heat fluxes required for heat transfer to/from the first and second thermodynamic elements, first heat pipes transfer heat from the heat load to the second thermodynamic elements and second heat pipes transfer heat from first and second thermodynamic elements to the borehole environment. 18 figs.

  8. Acoustic imaging system

    DOEpatents

    Smith, Richard W.

    1979-01-01

    An acoustic imaging system for displaying an object viewed by a moving array of transducers as the array is pivoted about a fixed point within a given plane. A plurality of transducers are fixedly positioned and equally spaced within a laterally extending array and operatively directed to transmit and receive acoustic signals along substantially parallel transmission paths. The transducers are sequentially activated along the array to transmit and receive acoustic signals according to a preestablished sequence. Means are provided for generating output voltages for each reception of an acoustic signal, corresponding to the coordinate position of the object viewed as the array is pivoted. Receptions from each of the transducers are presented on the same display at coordinates corresponding to the actual position of the object viewed to form a plane view of the object scanned.

  9. Acoustic Neuroma Association

    MedlinePlus

    ... Platinum Sponsors More from this sponsor... Platinum Sponsor Gold Sponsor University of Colorado Acoustic Neuroma Program Rocky Mountain Gamma Knife Center Gold Sponsor NYU Langone Medical Center Departments of Neurosurgery ...

  10. Acoustic-Levitation Chamber

    NASA Technical Reports Server (NTRS)

    Barmatz, M. B.; Granett, D.; Lee, M. C.

    1984-01-01

    Uncontaminated environments for highly-pure material processing provided within completely sealed levitation chamber that suspends particles by acoustic excitation. Technique ideally suited for material processing in low gravity environment of space.

  11. Multimode Acoustic Research

    NASA Technical Reports Server (NTRS)

    Barmatz, M.

    1985-01-01

    There is a need for high temperature containerless processing facilities that can efficiently position and manipulate molten samples in the reduced gravity environment of space. The goal of the research is to develop sophisticated high temperature manipulation capabilities such as selection of arbitrary axes rotation and rapid sample cooling. This program will investigate new classes of acoustic levitation in rectangular, cylindrical and spherical geometries. The program tasks include calculating theoretical expressions of the acoustic forces in these geometries for the excitation of up to three acoustic modes (multimodes). These calculations are used to: (1) determine those acoustic modes that produce stable levitation, (2) isolate the levitation and rotation capabilities to produce more than one axis of rotation, and (3) develop methods to translate samples down long tube cylindrical chambers. Experimental levitators will then be constructed to verify the stable levitation and rotation predictions of the models.

  12. Compact acoustic refrigerator

    DOEpatents

    Bennett, Gloria A.

    1992-01-01

    A compact acoustic refrigeration system actively cools components, e.g., electrical circuits (22), in a borehole environment. An acoustic engine (12, 14) includes first thermodynamic elements (12) for generating a standing acoustic wave in a selected medium. An acoustic refrigerator (16, 26, 28) includes second thermodynamic elements (16) located in the standing wave for generating a relatively cold temperature at a first end of the second thermodynamic elements (16) and a relatively hot temperature at a second end of the second thermodynamic elements (16). A resonator volume (18) cooperates with the first and second thermodynamic elements (12, 16) to support the standing wave. To accommodate the high heat fluxes required for heat transfer to/from the first and second thermodynamic elements (12, 16), first heat pipes (24, 26) transfer heat from the heat load (22) to the second thermodynamic elements (16) and second heat pipes (28, 32) transfer heat from first and second thermodynamic elements (12, 16) to the borehole environment.

  13. Numerical Techniques in Acoustics

    NASA Technical Reports Server (NTRS)

    Baumeister, K. J. (Compiler)

    1985-01-01

    This is the compilation of abstracts of the Numerical Techniques in Acoustics Forum held at the ASME's Winter Annual Meeting. This forum was for informal presentation and information exchange of ongoing acoustic work in finite elements, finite difference, boundary elements and other numerical approaches. As part of this forum, it was intended to allow the participants time to raise questions on unresolved problems and to generate discussions on possible approaches and methods of solution.

  14. Wavefront modulation and subwavelength diffractive acoustics with an acoustic metasurface

    NASA Astrophysics Data System (ADS)

    Xie, Yangbo; Wang, Wenqi; Chen, Huanyang; Konneker, Adam; Popa, Bogdan-Ioan; Cummer, Steven A.

    2014-11-01

    Metasurfaces are a family of novel wavefront-shaping devices with planar profile and subwavelength thickness. Acoustic metasurfaces with ultralow profile yet extraordinary wave manipulating properties would be highly desirable for improving the performance of many acoustic wave-based applications. However, designing acoustic metasurfaces with similar functionality to their electromagnetic counterparts remains challenging with traditional metamaterial design approaches. Here we present a design and realization of an acoustic metasurface based on tapered labyrinthine metamaterials. The demonstrated metasurface can not only steer an acoustic beam as expected from the generalized Snell’s law, but also exhibits various unique properties such as conversion from propagating wave to surface mode, extraordinary beam-steering and apparent negative refraction through higher-order diffraction. Such designer acoustic metasurfaces provide a new design methodology for acoustic signal modulation devices and may be useful for applications such as acoustic imaging, beam steering, ultrasound lens design and acoustic surface wave-based applications.

  15. Wavefront modulation and subwavelength diffractive acoustics with an acoustic metasurface.

    PubMed

    Xie, Yangbo; Wang, Wenqi; Chen, Huanyang; Konneker, Adam; Popa, Bogdan-Ioan; Cummer, Steven A

    2014-11-24

    Metasurfaces are a family of novel wavefront-shaping devices with planar profile and subwavelength thickness. Acoustic metasurfaces with ultralow profile yet extraordinary wave manipulating properties would be highly desirable for improving the performance of many acoustic wave-based applications. However, designing acoustic metasurfaces with similar functionality to their electromagnetic counterparts remains challenging with traditional metamaterial design approaches. Here we present a design and realization of an acoustic metasurface based on tapered labyrinthine metamaterials. The demonstrated metasurface can not only steer an acoustic beam as expected from the generalized Snell's law, but also exhibits various unique properties such as conversion from propagating wave to surface mode, extraordinary beam-steering and apparent negative refraction through higher-order diffraction. Such designer acoustic metasurfaces provide a new design methodology for acoustic signal modulation devices and may be useful for applications such as acoustic imaging, beam steering, ultrasound lens design and acoustic surface wave-based applications.

  16. Effects of using inclined parametric echosounding on sub-bottom acoustic imaging and advances in buried object detection

    NASA Astrophysics Data System (ADS)

    Schneider von Deimling, Jens; Held, Philipp; Feldens, Peter; Wilken, Dennis

    2016-04-01

    This study reports an adaptation of a parametric echosounder system using 15 kHz as secondary frequency to investigate the angular response of sub-bottom backscatter strength of layered mud, providing a new method for enhanced acoustic detection of buried targets. Adaptions to achieve both vertical (0°) and non-vertical inclination (1-15°, 30°, 45° and 60°) comprise mechanical tilting of the acoustic transducer and electronic beam steering. Data were acquired at 18 m water depth at a study site characterized by a flat, muddy seafloor where a 0.1 m diameter power cable lies 1-2 m below the seafloor. Surveying the cable with vertical incidence revealed that the buried cable can hardly be discriminated against the backscatter strength of the layered mud. However, the backscatter strength of layered mud decreases strongly at >3±0.5° incidence and the layered mud echo pattern vanishes beyond 5°. As a consequence, the backscatter pattern of the buried cable is very pronounced in acoustic images gathered at 15°, 30°, 45° and 60° incidence. The size of the cable echo pattern increases linearly with incidence. These effects are attributed to reflection loss from layered mud at larger incidence and to the scattering of the 0.1 m diameter buried cable. Data analyses support the visual impression of superior detection of the cable with an up to 2.6-fold increase of the signal-to-noise ratio at 40° incidence compared to the vertical incidence case.

  17. Perception and Acoustic Correlates of the Taiwanese Tone Sandhi Group

    ERIC Educational Resources Information Center

    Kuo, Chen-Hsiu

    2013-01-01

    This dissertation investigates how the Taiwanese Tone Sandhi Groups are perceived, and the acoustic/phonetics correlates of listeners' judgments. A series of perception experiments have been conducted to scrutinize the following topics--Taiwanese tone neutralization, Tone Sandhi Group (TSG) as a prosodic domain, perceived boundary strength in…

  18. Acoustic detection of pneumothorax

    NASA Astrophysics Data System (ADS)

    Mansy, Hansen A.; Royston, Thomas J.; Balk, Robert A.; Sandler, Richard H.

    2003-04-01

    This study aims at investigating the feasibility of using low-frequency (<2000 Hz) acoustic methods for medical diagnosis. Several candidate methods of pneumothorax detection were tested in dogs. In the first approach, broadband acoustic signals were introduced into the trachea during end-expiration and transmitted waves were measured at the chest surface. Pneumothorax was found to consistently decrease pulmonary acoustic transmission in the 200-1200-Hz frequency band, while less change was observed at lower frequencies (p<0.0001). The ratio of acoustic energy between low (<220 Hz) and mid (550-770 Hz) frequency bands was significantly different in the control (healthy) and pneumothorax states (p<0.0001). The second approach measured breath sounds in the absence of an external acoustic input. Pneumothorax was found to be associated with a preferential reduction of sound amplitude in the 200- to 700-Hz range, and a decrease of sound amplitude variation (in the 300 to 600-Hz band) during the respiration cycle (p<0.01 for each). Finally, chest percussion was implemented. Pneumothorax changed the frequency and decay rate of percussive sounds. These results imply that certain medical conditions may be reliably detected using appropriate acoustic measurements and analysis. [Work supported by NIH/NHLBI #R44HL61108.

  19. Ocean acoustic reverberation tomography.

    PubMed

    Dunn, Robert A

    2015-12-01

    Seismic wide-angle imaging using ship-towed acoustic sources and networks of ocean bottom seismographs is a common technique for exploring earth structure beneath the oceans. In these studies, the recorded data are dominated by acoustic waves propagating as reverberations in the water column. For surveys with a small receiver spacing (e.g., <10 km), the acoustic wave field densely samples properties of the water column over the width of the receiver array. A method, referred to as ocean acoustic reverberation tomography, is developed that uses the travel times of direct and reflected waves to image ocean acoustic structure. Reverberation tomography offers an alternative approach for determining the structure of the oceans and advancing the understanding of ocean heat content and mixing processes. The technique has the potential for revealing small-scale ocean thermal structure over the entire vertical height of the water column and along long survey profiles or across three-dimensional volumes of the ocean. For realistic experimental geometries and data noise levels, the method can produce images of ocean sound speed on a smaller scale than traditional acoustic tomography. PMID:26723303

  20. Ocean acoustic reverberation tomography.

    PubMed

    Dunn, Robert A

    2015-12-01

    Seismic wide-angle imaging using ship-towed acoustic sources and networks of ocean bottom seismographs is a common technique for exploring earth structure beneath the oceans. In these studies, the recorded data are dominated by acoustic waves propagating as reverberations in the water column. For surveys with a small receiver spacing (e.g., <10 km), the acoustic wave field densely samples properties of the water column over the width of the receiver array. A method, referred to as ocean acoustic reverberation tomography, is developed that uses the travel times of direct and reflected waves to image ocean acoustic structure. Reverberation tomography offers an alternative approach for determining the structure of the oceans and advancing the understanding of ocean heat content and mixing processes. The technique has the potential for revealing small-scale ocean thermal structure over the entire vertical height of the water column and along long survey profiles or across three-dimensional volumes of the ocean. For realistic experimental geometries and data noise levels, the method can produce images of ocean sound speed on a smaller scale than traditional acoustic tomography.

  1. A compact acoustic recorder

    NASA Astrophysics Data System (ADS)

    Stein, Ronald

    1989-09-01

    The design and operation of a portable compact acoustic recorder is discussed. Designed to be used in arctic conditions for applications that require portable equipment, the device is configured to fit into a lightweight briefcase. It will operate for eight hours at -40 F with heat provided by a hot water bottle. It has proven to be an effective scientific tool in the measurement of underwater acoustic signals in arctic experiments. It has also been used successfully in warmer climates, e.g., in recording acoustic signals from small boats with no ac power. The acoustic recorder's cost is moderate since it is based on a Sony Walkman Professional (WM-D6C) tape recorder playback unit. A speaker and battery assembly and a hydrophone interface electronic assembly complete the system electronics. The interface assembly supplies a number of functions, including a calibration tone generator, an audio amplifier, and a hydrophone interface. Calibrated acoustic recordings can be made by comparing the calibration tone amplitude with the acoustic signal amplitude. The distortion of the recording is minimized by using a high quality, consumer tape recorder.

  2. Acoustic communication by ants

    NASA Astrophysics Data System (ADS)

    Hickling, Robert

    2002-05-01

    Many ant species communicate acoustically by stridulating, i.e., running a scraper over a washboard-like set of ridges. Ants appear to be insensitive to airborne sound. Consequently, myrmecologists have concluded that the stridulatory signals are transmitted through the substrate. This has tended to diminish the importance of acoustic communication, and it is currently believed that ant communication is based almost exclusively on pheromones, with acoustic communication assigned an almost nonexistent role. However, it can be shown that acoustic communication between ants is effective only if the medium is air and not the substrate. How, then, is it possible for ants to appear deaf to airborne sound and yet communicate through the air? An explanation is provided in a paper [R. Hickling and R. L. Brown, ``Analysis of acoustic communication by ants,'' J. Acoust. Soc. Am. 108, 1920-1929 (2000)]. Ants are small relative to the wavelengths they generate. Hence, they create a near field, which is characterized by a major increase in sound velocity (particle velocity of sound) in the vicinity of the source. Hair sensilla on the ants' antennae respond to sound velocity. Thus, ants are able to detect near-field sound from other ants and to exclude extraneous airborne sound.

  3. Time-Reversal Acoustics and Maximum-Entropy Imaging

    SciTech Connect

    Berryman, J G

    2001-08-22

    Target location is a common problem in acoustical imaging using either passive or active data inversion. Time-reversal methods in acoustics have the important characteristic that they provide a means of determining the eigenfunctions and eigenvalues of the scattering operator for either of these problems. Each eigenfunction may often be approximately associated with an individual scatterer. The resulting decoupling of the scattered field from a collection of targets is a very useful aid to localizing the targets, and suggests a number of imaging and localization algorithms. Two of these are linear subspace methods and maximum-entropy imaging.

  4. Acoustic barriers obtained from industrial wastes.

    PubMed

    Garcia-Valles, M; Avila, G; Martinez, S; Terradas, R; Nogués, J M

    2008-07-01

    Acoustic pollution is an environmental problem that is becoming increasingly more important in our society. Likewise, the accumulation of generated waste and the need for waste management are also becoming more and more pressing. In this study we describe a new material--called PROUSO--obtained from industrial wastes. PROUSO has a variety of commercial and engineering, as well as building, applications. The main raw materials used for this environmentally friendly material come from slag from the aluminium recycling process, dust from the marble industry, foundry sands, and recycled expanded polystyrene from recycled packaging. Some natural materials, such as plastic clays, are also used. To obtain PROUSO we used a conventional ceramic process, forming new mineral phases and incorporating polluted elements into the structure. Its physical properties make PROUSO an excellent acoustic and thermal insulation material. It absorbs 95% of the sound in the frequency band of the 500 Hz. Its compressive strength makes it ideal for use in ceramic wall building.

  5. Targeted disruption of BMP signaling through type IA receptor (BMPR1A) in osteocyte suppresses SOST and RANKL, leading to dramatic increase in bone mass, bone mineral density and mechanical strength.

    PubMed

    Kamiya, Nobuhiro; Shuxian, Lin; Yamaguchi, Ryosuke; Phipps, Matthew; Aruwajoye, Olumide; Adapala, Naga Suresh; Yuan, Hui; Kim, Harry K W; Feng, Jian Q

    2016-10-01

    Recent studies suggest a critical role of osteocytes in controlling skeletal development and bone remodeling although the molecular mechanism is largely unknown. This study investigated BMP signaling in osteocytes by disrupting Bmpr1a under the Dmp1-promoter. The conditional knockout (cKO) mice displayed a striking osteosclerotic phenotype with increased trabecular bone volume, thickness, number, and mineral density as assessed by X-ray and micro-CT. The bone histomorphometry, H&E, and TRAP staining revealed a dramatic increase in trabecular and cortical bone masses but a sharp reduction in osteoclast number. Moreover, there was an increase in BrdU positive osteocytes (2-5-fold) and osteoid volume (~4-fold) but a decrease in the bone formation rate (~85%) in the cKO bones, indicating a defective mineralization. The SEM analysis revealed poorly formed osteocytes: a sharp increase in cell numbers, a great reduction in cell dendrites, and a remarkable change in the cell distribution pattern. Molecular studies demonstrated a significant decrease in the Sost mRNA levels in bone (>95%), and the SOST protein levels in serum (~85%) and bone matrices. There was a significant increase in the β-catenin (>3-fold) mRNA levels as well as its target genes Tcf1 (>6-fold) and Tcf3 (~2-fold) in the cKO bones. We also showed a significant decrease in the RANKL levels of serum proteins (~65%) and bone mRNA (~57%), and a significant increase in the Opg mRNA levels (>20-fold) together with a significant reduction in the Rankl/Opg ratio (>95%), which are responsible for a sharp reduction in the cKO osteoclasts. The values of mechanical strength were higher in cKO femora (i.e. max force, displacement, and work failure). These results suggest that loss of BMP signaling specifically in osteocytes dramatically increases bone mass presumably through simultaneous inhibition of RANKL and SOST, leading to osteoclast inhibition and Wnt activation together. Finally, a working hypothesis is

  6. Acoustic Radiation Force on a Finite-Sized Particle due to an Acoustic Field in a Viscous Compressible Fluid

    NASA Astrophysics Data System (ADS)

    Annamalai, Subramanian; Parmar, Manoj; Balachandar, S.

    2013-11-01

    Particles when subjected to acoustic waves experience a time-averaged second-order force known as the acoustic radiation force, which is of prime importance in the fields of microfluidics and acoustic levitation. Here, the acoustic radiation force on a rigid spherical particle in a viscous compressible medium due to progressive and standing waves is considered. The relevant length scales include: particle radius (a), acoustic wavelength (λ) and viscous penetration depth (δ). While a / λ and a / δ are arbitrary, δ << λ . A farfield derivation approach has been used in determining the radiated force. Expressing the flow-field as a sum of the incident and scattered fields, an analytical expression for the force is obtained as a summation over infinite series (monopole, dipole and higher sources). These results indicate that the contributions from monopole, dipole and their cross-interaction are sufficient to describe the acoustic radiation force. Subsequently, the monopole and dipole strengths are represented in terms of the particle surface and volume averages of the incoming velocity. This generalization allows one to evaluate the radiation force for an incoming wave of any functional form. However acoustic streaming effects are neglected.

  7. Directional electrostatic accretion process employing acoustic droplet formation

    NASA Technical Reports Server (NTRS)

    Oeftering, Richard C. (Inventor)

    1996-01-01

    The present invention is directed to an apparatus for manufacturing a free standing solid metal part. In the present invention metal droplets are produced from a free surface pool of molten metal is when an acoustic wave impacts an acoustic lens that is contiguous with the free standing pool of molten metal. The metal droplets are then charged and deflected toward a target. The build up of the metal droplets combine to form the free standing solid metal part.

  8. ADRPM-VII applied to the long-range acoustic detection problem

    NASA Technical Reports Server (NTRS)

    Shalis, Edward; Koenig, Gerald

    1990-01-01

    An acoustic detection range prediction model (ADRPM-VII) has been written for IBM PC/AT machines running on the MS-DOS operating system. The software allows the user to predict detection distances of ground combat vehicles and their associated targets when they are involved in quasi-military settings. The program can also calculate individual attenuation losses due to spherical spreading, atmospheric absorption, ground reflection and atmospheric refraction due to temperature and wind gradients while varying parameters effecting the source-receiver problem. The purpose here is to examine the strengths and limitations of ADRPM-VII by modeling the losses due to atmospheric refraction and ground absorption, commonly known as excess attenuation, when applied to the long range detection problem for distances greater than 3 kilometers.

  9. Measuring acoustic habitats

    PubMed Central

    Merchant, Nathan D; Fristrup, Kurt M; Johnson, Mark P; Tyack, Peter L; Witt, Matthew J; Blondel, Philippe; Parks, Susan E

    2015-01-01

    1. Many organisms depend on sound for communication, predator/prey detection and navigation. The acoustic environment can therefore play an important role in ecosystem dynamics and evolution. A growing number of studies are documenting acoustic habitats and their influences on animal development, behaviour, physiology and spatial ecology, which has led to increasing demand for passive acoustic monitoring (PAM) expertise in the life sciences. However, as yet, there has been no synthesis of data processing methods for acoustic habitat monitoring, which presents an unnecessary obstacle to would-be PAM analysts. 2. Here, we review the signal processing techniques needed to produce calibrated measurements of terrestrial and aquatic acoustic habitats. We include a supplemental tutorial and template computer codes in matlab and r, which give detailed guidance on how to produce calibrated spectrograms and statistical analyses of sound levels. Key metrics and terminology for the characterisation of biotic, abiotic and anthropogenic sound are covered, and their application to relevant monitoring scenarios is illustrated through example data sets. To inform study design and hardware selection, we also include an up-to-date overview of terrestrial and aquatic PAM instruments. 3. Monitoring of acoustic habitats at large spatiotemporal scales is becoming possible through recent advances in PAM technology. This will enhance our understanding of the role of sound in the spatial ecology of acoustically sensitive species and inform spatial planning to mitigate the rising influence of anthropogenic noise in these ecosystems. As we demonstrate in this work, progress in these areas will depend upon the application of consistent and appropriate PAM methodologies. PMID:25954500

  10. Robust Acoustic Transducers for Bubble Chambers

    NASA Astrophysics Data System (ADS)

    Wells, Jonathan

    2015-04-01

    The PICO collaboration utilizes bubble chambers filled with various superheated liquids as targets for dark matter. Acoustic sensors have proved able to distinguish nuclear recoils from radioactive background on an event-by-event basis. We have recently produced a more robust transducer which should be able to operate for years, rather than months, in the challenging environment of a heated high pressure hydraulic fluid outside these chambers. Indiana University South Bend.

  11. Acoustic scattering from a solid aluminum cylinder in contact with a sand sediment: measurements, modeling, and interpretation.

    PubMed

    Williams, Kevin L; Kargl, Steven G; Thorsos, Eric I; Burnett, David S; Lopes, Joseph L; Zampolli, Mario; Marston, Philip L

    2010-06-01

    Understanding acoustic scattering from objects placed on the interface between two media requires incorporation of scattering off the interface. Here, this class of problems is studied in the particular context of a 61 cm long, 30.5 cm diameter solid aluminum cylinder placed on a flattened sand interface. Experimental results are presented for the monostatic scattering from this cylinder for azimuthal scattering angles from 0 degrees to 90 degrees and frequencies from 1 to 30 kHz. In addition, synthetic aperture sonar (SAS) processing is carried out. Next, details seen within these experimental results are explained using insight derived from physical acoustics. Subsequently, target strength results are compared to finite-element (FE) calculations. The simplest calculation assumes that the source and receiver are at infinity and uses the FE result for the cylinder in free space along with image cylinders for approximating the target/interface interaction. Then the effect of finite geometries and inclusion of a more complete Green's function for the target/interface interaction is examined. These first two calculations use the axial symmetry of the cylinder in carrying out the analysis. Finally, the results from a three dimensional FE analysis are presented and compared to both the experiment and the axially symmetric calculations.

  12. Pitch strength of normal and dysphonic voices

    PubMed Central

    Shrivastav, Rahul; Eddins, David A.; Anand, Supraja

    2012-01-01

    Two sounds with the same pitch may vary from each other based on saliency of their pitch sensation. This perceptual attribute is called “pitch strength.” The study of voice pitch strength may be important in quantifying of normal and pathological qualities. The present study investigated how pitch strength varies across normal and dysphonic voices. A set of voices (vowel /a/) selected from the Kay Elemetrics Disordered Voice Database served as the stimuli. These stimuli demonstrated a wide range of voice quality. Ten listeners judged the pitch strength of these stimuli in an anchored magnitude estimation task. On a given trial, listeners heard three different stimuli. The first stimulus represented very low pitch strength (wide-band noise), the second stimulus consisted of the target voice and the third stimulus represented very high pitch strength (pure tone). Listeners estimated pitch strength of the target voice by positioning a continuous slider labeled with values between 0 and 1, reflecting the two anchor stimuli. Results revealed that listeners can judge pitch strength reliably in dysphonic voices. Moderate to high correlations with perceptual judgments of voice quality suggest that pitch strength may contribute to voice quality judgments. PMID:22423721

  13. Acoustic Imaging in Helioseismology

    NASA Astrophysics Data System (ADS)

    Chou, Dean-Yi; Chang, Hsiang-Kuang; Sun, Ming-Tsung; LaBonte, Barry; Chen, Huei-Ru; Yeh, Sheng-Jen; Team, The TON

    1999-04-01

    The time-variant acoustic signal at a point in the solar interior can be constructed from observations at the surface, based on the knowledge of how acoustic waves travel in the Sun: the time-distance relation of the p-modes. The basic principle and properties of this imaging technique are discussed in detail. The helioseismic data used in this study were taken with the Taiwan Oscillation Network (TON). The time series of observed acoustic signals on the solar surface is treated as a phased array. The time-distance relation provides the phase information among the phased array elements. The signal at any location at any time can be reconstructed by summing the observed signal at array elements in phase and with a proper normalization. The time series of the constructed acoustic signal contains information on frequency, phase, and intensity. We use the constructed intensity to obtain three-dimensional acoustic absorption images. The features in the absorption images correlate with the magnetic field in the active region. The vertical extension of absorption features in the active region is smaller in images constructed with shorter wavelengths. This indicates that the vertical resolution of the three-dimensional images depends on the range of modes used in constructing the signal. The actual depths of the absorption features in the active region may be smaller than those shown in the three-dimensional images.

  14. [Acoustic characteristics of classrooms].

    PubMed

    Koszarny, Zbigniew; Chyla, Andrzej

    2003-01-01

    Quality and usefulness of school rooms for transmission of verbal information depends on the two basic parameters: form and quantity of the reverberation time, and profitable line measurements of school rooms from the acoustic point of view. An analysis of the above-mentioned parameters in 48 class rooms and two gymnasiums in schools, which were built in different periods, shows that the most important problem is connected with too long reverberation time and inappropriate acoustic proportions. In schools built in the 1970s, the length of reverberation time is mostly within a low frequency band, while in schools built contemporarily, the maximum length of disappearance time takes place in a quite wide band of 250-2000 Hz. This exceeds optimal values for that kind of rooms at least twice, and five times in the newly built school. A long reverberation time is connected with a low acoustic absorption of school rooms. Moreover, school rooms are characterised by inappropriate acoustic proportions. The classrooms, in their relation to the height, are too long and too wide. It is connected with deterioration of the transmission of verbal information. The data show that this transmission is unequal. Automatically, it leads to a speech disturbance and difficulties with understanding. There is the need for adaptation of school rooms through increase of an acoustic absorption.

  15. Acoustic emission monitoring system

    DOEpatents

    Romrell, Delwin M.

    1977-07-05

    Methods and apparatus for identifying the source location of acoustic emissions generated within an acoustically conductive medium. A plurality of acoustic receivers are communicably coupled to the surface of the medium at a corresponding number of spaced locations. The differences in the reception time of the respective sensors in response to a given acoustic event are measured among various sensor combinations prescribed by the monitoring mode employed. Acoustic reception response encountered subsequent to the reception by a predetermined number of the prescribed sensor combinations are inhibited from being communicated to the processing circuitry, while the time measurements obtained from the prescribed sensor combinations are translated into a position measurement representative of the location on the surface most proximate the source of the emission. The apparatus is programmable to function in six separate and five distinct operating modes employing either two, three or four sensory locations. In its preferred arrangement the apparatus of this invention will re-initiate a monitoring interval if the predetermined number of sensors do not respond to a particular emission within a given time period.

  16. ACOUSTICS IN ARCHITECTURAL DESIGN, AN ANNOTATED BIBLIOGRAPHY ON ARCHITECTURAL ACOUSTICS.

    ERIC Educational Resources Information Center

    DOELLE, LESLIE L.

    THE PURPOSE OF THIS ANNOTATED BIBLIOGRAPHY ON ARCHITECTURAL ACOUSTICS WAS--(1) TO COMPILE A CLASSIFIED BIBLIOGRAPHY, INCLUDING MOST OF THOSE PUBLICATIONS ON ARCHITECTURAL ACOUSTICS, PUBLISHED IN ENGLISH, FRENCH, AND GERMAN WHICH CAN SUPPLY A USEFUL AND UP-TO-DATE SOURCE OF INFORMATION FOR THOSE ENCOUNTERING ANY ARCHITECTURAL-ACOUSTIC DESIGN…

  17. Surface Acoustic Wave Microfluidics

    NASA Astrophysics Data System (ADS)

    Yeo, Leslie Y.; Friend, James R.

    2014-01-01

    Fluid manipulations at the microscale and beyond are powerfully enabled through the use of 10-1,000-MHz acoustic waves. A superior alternative in many cases to other microfluidic actuation techniques, such high-frequency acoustics is almost universally produced by surface acoustic wave devices that employ electromechanical transduction in wafer-scale or thin-film piezoelectric media to generate the kinetic energy needed to transport and manipulate fluids placed in adjacent microfluidic structures. These waves are responsible for a diverse range of complex fluid transport phenomena - from interfacial fluid vibration and drop and confined fluid transport to jetting and atomization - underlying a flourishing research literature spanning fundamental fluid physics to chip-scale engineering applications. We highlight some of this literature to provide the reader with a historical basis, routes for more detailed study, and an impression of the field's future directions.

  18. Acoustic particle separation

    NASA Technical Reports Server (NTRS)

    Barmatz, M. B.; Stoneburner, J. D.; Jacobi, N.; Wang, T. (Inventor)

    1985-01-01

    A method is described which uses acoustic energy to separate particles of different sizes, densities, or the like. The method includes applying acoustic energy resonant to a chamber containing a liquid of gaseous medium to set up a standing wave pattern that includes a force potential well wherein particles within the well are urged towards the center, or position of minimum force potential. A group of particles to be separated is placed in the chamber, while a non-acoustic force such as gravity is applied, so that the particles separate with the larger or denser particles moving away from the center of the well to a position near its edge and progressively smaller lighter particles moving progressively closer to the center of the well. Particles are removed from different positions within the well, so that particles are separated according to the positions they occupy in the well.

  19. Acoustic energy shaping

    NASA Technical Reports Server (NTRS)

    Wang, T. G.; Elleman, D. D. (Inventor)

    1977-01-01

    A suspended mass is shaped by melting all or a selected portion of the mass and applying acoustic energy in varying amounts to different portions of the mass. In one technique for forming an optical waveguide slug, a mass of oval section is suspended and only a portion along the middle of the cross-section is heated to a largely fluid consistency. Acoustic energy is applied to opposite edges of the oval mass to press the unheated opposite edge portions together so as to form bulges at the middle of the mass. In another technique for forming a ribbon of silicon for constructing solar cells, a cylindrical thread of silicon is drawn from a molten mass of silicon, and acoustic energy is applied to opposite sides of the molten thread to flatten it into a ribbon.

  20. Passive broadband acoustic thermometry

    NASA Astrophysics Data System (ADS)

    Anosov, A. A.; Belyaev, R. V.; Klin'shov, V. V.; Mansfel'd, A. D.; Subochev, P. V.

    2016-04-01

    The 1D internal (core) temperature profiles for the model object (plasticine) and the human hand are reconstructed using the passive acoustothermometric broadband probing data. Thermal acoustic radiation is detected by a broadband (0.8-3.5 MHz) acoustic radiometer. The temperature distribution is reconstructed using a priori information corresponding to the experimental conditions. The temperature distribution for the heated model object is assumed to be monotonic. For the hand, we assume that the temperature distribution satisfies the heat-conduction equation taking into account the blood flow. The average error of reconstruction determined for plasticine from the results of independent temperature measurements is 0.6 K for a measuring time of 25 s. The reconstructed value of the core temperature of the hand (36°C) generally corresponds to physiological data. The obtained results make it possible to use passive broadband acoustic probing for measuring the core temperatures in medical procedures associated with heating of human organism tissues.

  1. Latticed pentamode acoustic cloak.

    PubMed

    Chen, Yi; Liu, Xiaoning; Hu, Gengkai

    2015-01-01

    We report in this work a practical design of pentamode acoustic cloak with microstructure. The proposed cloak is assembled by pentamode lattice made of a single-phase solid material. The function of rerouting acoustic wave round an obstacle has been demonstrated numerically. It is also revealed that shear related resonance due to weak shear resistance in practical pentamode lattices punctures broadband feature predicted based on ideal pentamode cloak. As a consequence, the latticed pentamode cloak can only conceal the obstacle in segmented frequency ranges. We have also shown that the shear resonance can be largely reduced by introducing material damping, and an improved broadband performance can be achieved. These works pave the way for experimental demonstration of pentamode acoustic cloak. PMID:26503821

  2. Latticed pentamode acoustic cloak

    PubMed Central

    Chen, Yi; Liu, Xiaoning; Hu, Gengkai

    2015-01-01

    We report in this work a practical design of pentamode acoustic cloak with microstructure. The proposed cloak is assembled by pentamode lattice made of a single-phase solid material. The function of rerouting acoustic wave round an obstacle has been demonstrated numerically. It is also revealed that shear related resonance due to weak shear resistance in practical pentamode lattices punctures broadband feature predicted based on ideal pentamode cloak. As a consequence, the latticed pentamode cloak can only conceal the obstacle in segmented frequency ranges. We have also shown that the shear resonance can be largely reduced by introducing material damping, and an improved broadband performance can be achieved. These works pave the way for experimental demonstration of pentamode acoustic cloak. PMID:26503821

  3. Estimating animal population density using passive acoustics.

    PubMed

    Marques, Tiago A; Thomas, Len; Martin, Stephen W; Mellinger, David K; Ward, Jessica A; Moretti, David J; Harris, Danielle; Tyack, Peter L

    2013-05-01

    , amphibians, and insects, especially in situations where inferences are required over long periods of time. There is considerable work ahead, with several potentially fruitful research areas, including the development of (i) hardware and software for data acquisition, (ii) efficient, calibrated, automated detection and classification systems, and (iii) statistical approaches optimized for this application. Further, survey design will need to be developed, and research is needed on the acoustic behaviour of target species. Fundamental research on vocalization rates and group sizes, and the relation between these and other factors such as season or behaviour state, is critical. Evaluation of the methods under known density scenarios will be important for empirically validating the approaches presented here. PMID:23190144

  4. Estimating animal population density using passive acoustics.

    PubMed

    Marques, Tiago A; Thomas, Len; Martin, Stephen W; Mellinger, David K; Ward, Jessica A; Moretti, David J; Harris, Danielle; Tyack, Peter L

    2013-05-01

    , amphibians, and insects, especially in situations where inferences are required over long periods of time. There is considerable work ahead, with several potentially fruitful research areas, including the development of (i) hardware and software for data acquisition, (ii) efficient, calibrated, automated detection and classification systems, and (iii) statistical approaches optimized for this application. Further, survey design will need to be developed, and research is needed on the acoustic behaviour of target species. Fundamental research on vocalization rates and group sizes, and the relation between these and other factors such as season or behaviour state, is critical. Evaluation of the methods under known density scenarios will be important for empirically validating the approaches presented here.

  5. Estimating animal population density using passive acoustics

    PubMed Central

    Marques, Tiago A; Thomas, Len; Martin, Stephen W; Mellinger, David K; Ward, Jessica A; Moretti, David J; Harris, Danielle; Tyack, Peter L

    2013-01-01

    , amphibians, and insects, especially in situations where inferences are required over long periods of time. There is considerable work ahead, with several potentially fruitful research areas, including the development of (i) hardware and software for data acquisition, (ii) efficient, calibrated, automated detection and classification systems, and (iii) statistical approaches optimized for this application. Further, survey design will need to be developed, and research is needed on the acoustic behaviour of target species. Fundamental research on vocalization rates and group sizes, and the relation between these and other factors such as season or behaviour state, is critical. Evaluation of the methods under known density scenarios will be important for empirically validating the approaches presented here. PMID:23190144

  6. A New Wave of Acoustics.

    ERIC Educational Resources Information Center

    Beyer, Robert

    1981-01-01

    Surveys 50 years of acoustical studies by discussing selected topics including the ear, nonlinear representations, underwater sound, acoustical diagnostics, absorption, electrolytes, phonons, magnetic interaction, and superfluidity and the five sounds. (JN)

  7. Acoustic detection of ice crystals in Antarctic waters

    NASA Astrophysics Data System (ADS)

    Penrose, John D.; Conde, M.; Pauly, T. J.

    1994-06-01

    During the voyage of the RSV Aurora Australis to the region of Prydz Bay, Antarctica in January-March 1991, ice crystals were encountered at depths from the surface to 125-m in the western area of the bay. On two occasions, crystals were retrieved by netting, and echo sounder records have been used to infer additional regions of occurrence. Acoustic target strength estimates made on the ice crystal assemblies encountered show significant spatial variation, which may relate to crystal size and/or aggregation. Data from a suite of conductivity-temperature-depth casts have been used to map regions of the study area where in situ water temperatures fell below the computed freezing point. Such regions correlate well with those selected on the basis of echogram type and imply that ice crystals occurred at depth over large areas of the bay during the cruise period. The ice crystal distribution described is consistent with that expected from a plume of supercooled water emerging from under the Amery Ice Shelf and forming part of the general circulation of the bay. The magnitude of the supercooled water plume is greater than those reported previously in the Prydz Bay region. If misinterpreted as biota on echo sounder records, ice crystals could significantly bias biomass estimates based on echo integration in this and potentially other areas.

  8. Zebra mussel control using acoustic energy

    SciTech Connect

    Tiller, G.W.; Gaucher, T.A.; Menezes, J.K.; Dolat, S.W. )

    1992-01-01

    A practical and economical device or method that reduces zebra mussel colonization without detrimental side effects is highly desirable. An ideal method is one that could be installed near, on, or in existing raw water intakes and conduits. It must have a known effect that is limited to a defined area, should have maximum effects on a targeted species, and preferably have a low life cycle cost than the current alternative methods of control and maintenance. Underwater sound could be such a desirable solution, if found to be an effective control measure for zebra mussels. Although sound most often applies specifically to acoustic energy that is audible to humans, 20 Hertz (Hz) to 20 kiloHertz (kHz), in this report we will use the terms sound and acoustic to include acoustic energy between 100 Hz and 100 MegaHertz (MHz). This research on zebra mussel biofouling is designed to effect the early developmental stages in the life cycle of Dreissena polymorpha (Pallas). Vulnerable stages in the development of D. polymorpha that might yield to site-specific acoustic deterrence measures include the free-swimming larval veliger stage, the postveliger pre-attachment demersal stage, and the immediate post-attachment stage. The proposed applications include surface treatment to prevent, reduce or eliminate colonization on underwater structures, and the stream treatment to reduce or eliminate (destroy) mussel larvae entrained in a moving volume of water.

  9. Acoustic bubble removal method

    NASA Technical Reports Server (NTRS)

    Trinh, E. H.; Elleman, D. D.; Wang, T. G. (Inventor)

    1983-01-01

    A method is described for removing bubbles from a liquid bath such as a bath of molten glass to be used for optical elements. Larger bubbles are first removed by applying acoustic energy resonant to a bath dimension to drive the larger bubbles toward a pressure well where the bubbles can coalesce and then be more easily removed. Thereafter, submillimeter bubbles are removed by applying acoustic energy of frequencies resonant to the small bubbles to oscillate them and thereby stir liquid immediately about the bubbles to facilitate their breakup and absorption into the liquid.

  10. Acoustic emission intrusion detector

    DOEpatents

    Carver, Donald W.; Whittaker, Jerry W.

    1980-01-01

    An intrusion detector is provided for detecting a forcible entry into a secured structure while minimizing false alarms. The detector uses a piezoelectric crystal transducer to sense acoustic emissions. The transducer output is amplified by a selectable gain amplifier to control the sensitivity. The rectified output of the amplifier is applied to a Schmitt trigger circuit having a preselected threshold level to provide amplitude discrimination. Timing circuitry is provided which is activated by successive pulses from the Schmitt trigger which lie within a selected time frame for frequency discrimination. Detected signals having proper amplitude and frequency trigger an alarm within the first complete cycle time of a detected acoustical disturbance signal.

  11. Electromechanical acoustic liner

    NASA Technical Reports Server (NTRS)

    Sheplak, Mark (Inventor); Cattafesta, III, Louis N. (Inventor); Nishida, Toshikazu (Inventor); Horowitz, Stephen Brian (Inventor)

    2007-01-01

    A multi-resonator-based system responsive to acoustic waves includes at least two resonators, each including a bottom plate, side walls secured to the bottom plate, and a top plate disposed on top of the side walls. The top plate includes an orifice so that a portion of an incident acoustical wave compresses gas in the resonators. The bottom plate or the side walls include at least one compliant portion. A reciprocal electromechanical transducer coupled to the compliant portion of each of the resonators forms a first and second transducer/compliant composite. An electrical network is disposed between the reciprocal electromechanical transducer of the first and second resonator.

  12. Acoustic tooth cleaner

    NASA Technical Reports Server (NTRS)

    Heyman, J. S. (Inventor)

    1982-01-01

    An acoustic oral hygiene unit is described that uses acoustic energy to oscillate mild abrasive particles in a water suspension which is then directed in a low pressure stream onto the teeth. The oscillating abrasives scrub the teeth clean removing food particles, plaque, calculous, and other foreign material from tooth surfaces, interproximal areas, and tooth-gingiva interface more effectively than any previous technique. The relatively low power output and the basic design makes the invention safe and convenient for everyday use in the home without special training. This invention replaces all former means of home dental prophylaxis, and requires no augmentation to fulfill all requirements for daily oral hygienic care.

  13. Densitometry By Acoustic Levitation

    NASA Technical Reports Server (NTRS)

    Trinh, Eugene H.

    1989-01-01

    "Static" and "dynamic" methods developed for measuring mass density of acoustically levitated solid particle or liquid drop. "Static" method, unknown density of sample found by comparison with another sample of known density. "Dynamic" method practiced with or without gravitational field. Advantages over conventional density-measuring techniques: sample does not have to make contact with container or other solid surface, size and shape of samples do not affect measurement significantly, sound field does not have to be know in detail, and sample can be smaller than microliter. Detailed knowledge of acoustic field not necessary.

  14. Acoustically Induced Vibration of Structures: Reverberant Vs. Direct Acoustic Testing

    NASA Technical Reports Server (NTRS)

    Kolaini, Ali R.; O'Connell, Michael R.; Tsoi, Wan B.

    2009-01-01

    Large reverberant chambers have been used for several decades in the aerospace industry to test larger structures such as solar arrays and reflectors to qualify and to detect faults in the design and fabrication of spacecraft and satellites. In the past decade some companies have begun using direct near field acoustic testing, employing speakers, for qualifying larger structures. A limited test data set obtained from recent acoustic tests of the same hardware exposed to both direct and reverberant acoustic field testing has indicated some differences in the resulting structural responses. In reverberant acoustic testing, higher vibration responses were observed at lower frequencies when compared with the direct acoustic testing. In the case of direct near field acoustic testing higher vibration responses appeared to occur at higher frequencies as well. In reverberant chamber testing and direct acoustic testing, standing acoustic modes of the reverberant chamber or the speakers and spacecraft parallel surfaces can strongly couple with the fundamental structural modes of the test hardware. In this paper data from recent acoustic testing of flight hardware, that yielded evidence of acoustic standing wave coupling with structural responses, are discussed in some detail. Convincing evidence of the acoustic standing wave/structural coupling phenomenon will be discussed, citing observations from acoustic testing of a simple aluminum plate. The implications of such acoustic coupling to testing of sensitive flight hardware will be discussed. The results discussed in this paper reveal issues with over or under testing of flight hardware that could pose unanticipated structural and flight qualification issues. Therefore, it is of paramount importance to understand the structural modal coupling with standing acoustic waves that has been observed in both methods of acoustic testing. This study will assist the community to choose an appropriate testing method and test setup in

  15. Flexibility and Muscular Strength.

    ERIC Educational Resources Information Center

    Liemohn, Wendell

    1988-01-01

    This definition of flexibility and muscular strength also explores their roles in overall physical fitness and focuses on how increased flexibility and muscular strength can help decrease or eliminate lower back pain. (CB)

  16. The magnetic component of geodesic acoustic modes in tokamak plasmas with a radial equilibrium electric field

    NASA Astrophysics Data System (ADS)

    Zhou, Deng

    2016-10-01

    The dispersion relation of geodesic acoustic modes with a magnetic perturbation in the tokamak plasma with an equilibrium radial electric field was derived. The dispersion relation was analyzed for very low field strength. The mode frequency decreases with increasing field strength, which is different from the electrostatic geodesic acoustic mode. There exists an m = 1 magnetic component that is very low when the radial electric field is absent. The ratio between the m = 1 and m = 2 magnetic components increases with strength of the radial electric field for low Mach numbers.

  17. Post Treatment of Acoustic Neuroma

    MedlinePlus

    Home What is an AN What is an Acoustic Neuroma? Identifying an AN Symptoms Acoustic Neuroma Keywords Educational Video Pre-Treatment Treatment Options Summary Treatment Options Watch and Wait Radiation Microsurgery Acoustic Neuroma Decision Tree Questions for Your Physician Questions ...

  18. Variable-Position Acoustic Levitation

    NASA Technical Reports Server (NTRS)

    Barmatz, M. B.; Stoneburner, J. D.; Jacobi, N.; Wang, T. G.

    1983-01-01

    Method of acoustic levitation supports objects at positions other than acoustic nodes. Acoustic force is varied so it balances gravitational (or other) force, thereby maintaining object at any position within equilibrium range. Levitation method applicable to containerless processing. Such objects as table-tennis balls, hollow plastic spheres, and balsa-wood spheres levitated in laboratory by new method.

  19. Fundamentals of Acoustics. Psychoacoustics and Hearing. Acoustical Measurements

    NASA Technical Reports Server (NTRS)

    Begault, Durand R.; Ahumada, Al (Technical Monitor)

    1997-01-01

    These are 3 chapters that will appear in a book titled "Building Acoustical Design", edited by Charles Salter. They are designed to introduce the reader to fundamental concepts of acoustics, particularly as they relate to the built environment. "Fundamentals of Acoustics" reviews basic concepts of sound waveform frequency, pressure, and phase. "Psychoacoustics and Hearing" discusses the human interpretation sound pressure as loudness, particularly as a function of frequency. "Acoustic Measurements" gives a simple overview of the time and frequency weightings for sound pressure measurements that are used in acoustical work.

  20. Acoustic subwavelength imaging of subsurface objects with acoustic resonant metalens

    SciTech Connect

    Cheng, Ying; Liu, XiaoJun; Zhou, Chen; Wei, Qi; Wu, DaJian

    2013-11-25

    Early research into acoustic metamaterials has shown the possibility of achieving subwavelength near-field acoustic imaging. However, a major restriction of acoustic metamaterials is that the imaging objects must be placed in close vicinity of the devices. Here, we present an approach for acoustic imaging of subsurface objects far below the diffraction limit. An acoustic metalens made of holey-structured metamaterials is used to magnify evanescent waves, which can rebuild an image at the central plane. Without changing the physical structure of the metalens, our proposed approach can image objects located at certain distances from the input surface, which provides subsurface signatures of the objects with subwavelength spatial resolution.

  1. Chromospheric Heating by Acoustic Waves Compared to Radiative Cooling

    NASA Astrophysics Data System (ADS)

    Sobotka, M.; Heinzel, P.; Švanda, M.; Jurčák, J.; del Moro, D.; Berrilli, F.

    2016-07-01

    Acoustic and magnetoacoustic waves are among the possible candidate mechanisms that heat the upper layers of the solar atmosphere. A weak chromospheric plage near the large solar pore NOAA 11005 was observed on 2008 October 15, in the Fe i 617.3 nm and Ca ii 853.2 nm lines of the Interferometric Bidimemsional Spectrometer attached to the Dunn Solar Telescope. In analyzing the Ca ii observations (with spatial and temporal resolutions of 0.″4 and 52 s) the energy deposited by acoustic waves is compared to that released by radiative losses. The deposited acoustic flux is estimated from the power spectra of Doppler oscillations measured in the Ca ii line core. The radiative losses are calculated using a grid of seven one-dimensional hydrostatic semi-empirical model atmospheres. The comparison shows that the spatial correlation of the maps of radiative losses and acoustic flux is 72%. In a quiet chromosphere, the contribution of acoustic energy flux to radiative losses is small, only about 15%. In active areas with a photospheric magnetic-field strength between 300 and 1300 G and an inclination of 20°-60°, the contribution increases from 23% (chromospheric network) to 54% (a plage). However, these values have to be considered as lower limits and it might be possible that the acoustic energy flux is the main contributor to the heating of bright chromospheric network and plages.

  2. Waveform inversion of acoustic waves for explosion yield estimation

    DOE PAGES

    Kim, K.; Rodgers, A. J.

    2016-07-08

    We present a new waveform inversion technique to estimate the energy of near-surface explosions using atmospheric acoustic waves. Conventional methods often employ air blast models based on a homogeneous atmosphere, where the acoustic wave propagation effects (e.g., refraction and diffraction) are not taken into account, and therefore, their accuracy decreases with increasing source-receiver distance. In this study, three-dimensional acoustic simulations are performed with a finite difference method in realistic atmospheres and topography, and the modeled acoustic Green's functions are incorporated into the waveform inversion for the acoustic source time functions. The strength of the acoustic source is related to explosionmore » yield based on a standard air blast model. The technique was applied to local explosions (<10 km) and provided reasonable yield estimates (<~30% error) in the presence of realistic topography and atmospheric structure. In conclusion, the presented method can be extended to explosions recorded at far distance provided proper meteorological specifications.« less

  3. What Is a Strength?

    ERIC Educational Resources Information Center

    Wolin, Sybil

    2003-01-01

    As the strength-based perspective gains recognition, it is important to describe what constitutes strengths and to develop a specific vocabulary to name them. This article draws on resilience research to help identify specific competencies and areas of strengths in youth. (Contains 1 table.)

  4. Strength Training for Girls.

    ERIC Educational Resources Information Center

    Connaughton, Daniel; Connaughton, Angela; Poor, Linda

    2001-01-01

    Strength training can be fun, safe, and appropriate for young girls and women and is an important component of any fitness program when combined with appropriate cardiovascular and flexibility activities. Concerns and misconceptions regarding girls' strength training are discussed, presenting general principles of strength training for children…

  5. The role of acoustofluidics in targeted drug delivery

    PubMed Central

    Bose, Nilanjana; Zhang, Xunli; Maiti, Tapas K.; Chakraborty, Suman

    2015-01-01

    With the fast development of acoustic systems in clinical and therapeutic applications, acoustically driven microbubbles have gained a prominent role as powerful tools to carry, transfer, direct, and target drug molecules in cells, tissues, and tumors in the expanding fields of targeted drug delivery and gene therapy. The aim of the present study is to establish a biocompatible acoustic microfluidic system and to demonstrate the generation of an acoustic field and its effects on microbubbles and biological cells in the microfluidic system. The acoustic field creates non-linear oscillations of the microbubble-clusters, which results in generation of shear stress on cells in such microsystems. This effectively helps in delivering extracellular probes in living cells by sonoporation. The sonoporation is investigated under the combined effects of acoustic stress and hydrodynamic stress during targeted drug and gene delivery. PMID:26339329

  6. Numerical analysis of ultrasound propagation and reflection intensity for biological acoustic impedance microscope.

    PubMed

    Gunawan, Agus Indra; Hozumi, Naohiro; Yoshida, Sachiko; Saijo, Yoshifumi; Kobayashi, Kazuto; Yamamoto, Seiji

    2015-08-01

    This paper proposes a new method for microscopic acoustic imaging that utilizes the cross sectional acoustic impedance of biological soft tissues. In the system, a focused acoustic beam with a wide band frequency of 30-100 MHz is transmitted across a plastic substrate on the rear side of which a soft tissue object is placed. By scanning the focal point along the surface, a 2-D reflection intensity profile is obtained. In the paper, interpretation of the signal intensity into a characteristic acoustic impedance is discussed. Because the acoustic beam is strongly focused, interpretation assuming vertical incidence may lead to significant error. To determine an accurate calibration curve, a numerical sound field analysis was performed. In these calculations, the reflection intensity from a target with an assumed acoustic impedance was compared with that from water, which was used as a reference material. The calibration curve was determined by changing the assumed acoustic impedance of the target material. The calibration curve was verified experimentally using saline solution, of which the acoustic impedance was known, as the target material. Finally, the cerebellar tissue of a rat was observed to create an acoustic impedance micro profile. In the paper, details of the numerical analysis and verification of the observation results will be described.

  7. Analysis of passive acoustic ranging of helicopters from the joint acoustic propagation experiment

    NASA Technical Reports Server (NTRS)

    Carnes, Benny L.; Morgan, John C.

    1993-01-01

    For more than twenty years, personnel of the U.S.A.E. Waterways Experiment Station (WES) have been performing research dealing with the application of sensors for detection of military targets. The WES research has included the use of seismic, acoustic, magnetic, and other sensors to detect, track, and classify military ground targets. Most of the WES research has been oriented toward the employment of such sensors in a passive mode. Techniques for passive detection are of particular interest in the Army because of the advantages over active detection. Passive detection methods are not susceptible to interception, detection, jamming, or location of the source by the threat. A decided advantage for using acoustic and seismic sensors for detection in tactical situations is the non-line-of-sight capability; i.e., detection of low flying helicopters at long distances without visual contact. This study was conducted to analyze the passive acoustic ranging (PAR) concept using a more extensive data set from the Joint Acoustic Propagation Experiment (JAPE).

  8. Acoustic mirror effect increases prey detection distance in trawling bats

    NASA Astrophysics Data System (ADS)

    Siemers, Björn M.; Baur, Eric; Schnitzler, Hans-Ulrich

    2005-06-01

    Many different and phylogenetically distant species of bats forage for insects above water bodies and take insects from and close to the surface; the so-called ‘trawling behaviour’. Detection of surface-based prey by echolocation is facilitated by acoustically smooth backgrounds such as water surfaces that reflect sound impinging at an acute angle away from the bat and thereby render a prey object acoustically conspicuous. Previous measurements had shown that the echo amplitude of a target on a smooth surface is higher than that of the same target in mid-air, due to an acoustic mirror effect. In behavioural experiments with three pond bats (Myotis dasycneme), we tested the hypothesis that the maximum distances at which bats can detect prey are larger for prey on smooth surfaces than for the same prey in an airborne situation. We determined the moment of prey detection from a change in echolocation behaviour and measured the detection distance in 3D space from IR-video recordings using stereo-photogrammetry. The bats showed the predicted increase in detection distance for prey on smooth surfaces. The acoustic mirror effect therefore increases search efficiency and contributes to the acoustic advantages encountered by echolocating bats when foraging at low heights above smooth water surfaces. These acoustic advantages may have favoured the repeated evolution of trawling behaviour.

  9. Integrally rigidized acoustic interior spacecraft panel

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A sandwich panel concept is described which utilizes a monolithic I-beam design as the core. The core and skins are integrally bonded with thermosetting resin into a homogeneous structure. In addition to possessing a high strength to weight ratio, the panel resists combustion, delamination, aging due to fatigue, localized stresses, and exhibits good acoustic properties. Since the panel concept has definite potential as a high flame retardant and low smoke emission panel with excellent structural integrity, aerospace materials were used to optimize the construction for highly demanding space shuttle applications. The specific materials of construction were chosen for low flammability and off-gassing properties as well as for strength, light weight, and sound dampening.

  10. Acoustics in Schools.

    ERIC Educational Resources Information Center

    Singer, Miriam J.

    This paper explores the issues associated with poor acoustics within schools. Additionally, it suggests remedies for existing buildings and those under renovation, as well as concerns for new construction. The paper discusses the effects of unwanted noise on students in terms of physiological, motivational, and cognitive influences. Issues are…

  11. Improved acoustic levitation apparatus

    NASA Technical Reports Server (NTRS)

    Berge, L. H.; Johnson, J. L.; Oran, W. A.; Reiss, D. A.

    1980-01-01

    Concave driver and reflector enhance and shape levitation forces in acoustic resonance system. Single-mode standing-wave pattern is focused by ring element situated between driver and reflector. Concave surfaces increase levitating forces up to factor of 6 as opposed to conventional flat surfaces, making it possible to suspend heavier objects.

  12. Intelligent Engine Systems: Acoustics

    NASA Technical Reports Server (NTRS)

    Wojno, John; Martens, Steve; Simpson, Benjamin

    2008-01-01

    An extensive study of new fan exhaust nozzle technologies was performed. Three new uniform chevron nozzles were designed, based on extensive CFD analysis. Two new azimuthally varying variants were defined. All five were tested, along with two existing nozzles, on a representative model-scale, medium BPR exhaust nozzle. Substantial acoustic benefits were obtained from the uniform chevron nozzle designs, the best benefit being provided by an existing design. However, one of the azimuthally varying nozzle designs exhibited even better performance than any of the uniform chevron nozzles. In addition to the fan chevron nozzles, a new technology was demonstrated, using devices that enhance mixing when applied to an exhaust nozzle. The acoustic benefits from these devices applied to medium BPR nozzles were similar, and in some cases superior to, those obtained from conventional uniform chevron nozzles. However, none of the low noise technologies provided equivalent acoustic benefits on a model-scale high BPR exhaust nozzle, similar to current large commercial applications. New technologies must be identified to improve the acoustics of state-of-the-art high BPR jet engines.

  13. Acoustic leak detection system

    SciTech Connect

    Peacock, M.J.

    1993-08-03

    An acoustic leak detection system is described for determining the location of leaks in storage tanks, comprising: (a) sensor means for detecting a leak signal; (b) data acquisition means for digitizing and storing leak signals meeting preset criterion; and (c) analysis means for analyzing the digitized signals and computing the location of the source of the leak signals.

  14. Micro acoustic spectrum analyzer

    DOEpatents

    Schubert, W. Kent; Butler, Michael A.; Adkins, Douglas R.; Anderson, Larry F.

    2004-11-23

    A micro acoustic spectrum analyzer for determining the frequency components of a fluctuating sound signal comprises a microphone to pick up the fluctuating sound signal and produce an alternating current electrical signal; at least one microfabricated resonator, each resonator having a different resonant frequency, that vibrate in response to the alternating current electrical signal; and at least one detector to detect the vibration of the microfabricated resonators. The micro acoustic spectrum analyzer can further comprise a mixer to mix a reference signal with the alternating current electrical signal from the microphone to shift the frequency spectrum to a frequency range that is a better matched to the resonant frequencies of the microfabricated resonators. The micro acoustic spectrum analyzer can be designed specifically for portability, size, cost, accuracy, speed, power requirements, and use in a harsh environment. The micro acoustic spectrum analyzer is particularly suited for applications where size, accessibility, and power requirements are limited, such as the monitoring of industrial equipment and processes, detection of security intrusions, or evaluation of military threats.

  15. Teaching acoustics online

    NASA Astrophysics Data System (ADS)

    Morrison, Andrew; Rossing, Thomas D.

    2003-10-01

    We teach an introductory course in musical acoustics using a Blackboard. Students in this course can access audio and video materials as well as printed materials on our course website. All homework is submitted online, as are tests and examinations. The students also have the opportunity to use synchronous and asynchronous chat rooms to discuss the course with each other or with the instructors.

  16. Acoustic markers of syllabic stress in Spanish excellent oesophageal speakers.

    PubMed

    Cuenca, María Heliodora; Barrio, Marina M; Anaya, Pablo; Establier, Carmelo

    2012-01-01

    The purpose of this investigation is to explore the use by Spanish excellent oesophageal speakers of acoustic cues to mark syllabic stress. The speech material has consisted of five pairs of disyllabic words which only differed in stress position. Total 44 oesophageal and 9 laryngeal speakers were recorded and a computerised designed ad hoc perceptual test was run in order to assess the accurate realisation of stress. The items produced by eight excellent oesophageal speakers with highest accuracy levels in the perception experiment were analysed acoustically with Praat, to be compared with the laryngeal control group. Measures of duration, fundamental frequency, spectral balance and overall intensity were taken for each target vowel and syllable. Results revealed that Spanish excellent oesophageal speakers were able to retain appropriate acoustic relations between stressed and unstressed syllables. Although spectral balance revealed as a strong cue for syllabic stress in the two voicing modes, a different hierarchy of acoustic cues in each voicing mode was found.

  17. Acoustics- Version 1.0

    2012-09-13

    This package contains modules that model acoustic sensors and acoustic sources (hearable) in Umbra. It is typically used to represent hearing in characters within Umbra. Typically, the acoustic sensors detect acoustic sources at a given point; however, it also contains the capability to detect bullet cracks by detecting the sound along the bullet path that is closest to the sensor. A memory module, acoustic memory, represents remembered sounds within a given character. Over time, themore » sounds are removed, as a character forgets what it has heard.« less

  18. Acoustics- Version 1.0

    SciTech Connect

    2012-09-13

    This package contains modules that model acoustic sensors and acoustic sources (hearable) in Umbra. It is typically used to represent hearing in characters within Umbra. Typically, the acoustic sensors detect acoustic sources at a given point; however, it also contains the capability to detect bullet cracks by detecting the sound along the bullet path that is closest to the sensor. A memory module, acoustic memory, represents remembered sounds within a given character. Over time, the sounds are removed, as a character forgets what it has heard.

  19. Comparison of the TACOM acoustic-detection-range prediction model and the UK Dstl acoustic prediction propagation model

    NASA Astrophysics Data System (ADS)

    Nunney, Victoria; Mantey, Robert; Crile, James

    2002-08-01

    Acoustic signatures are being exploited more and more by new technology in the battlefield as a way of detecting and identifying potential targets. An understanding of the way in which the acoustic signature of a land platform propagates through the atmosphere enables one to target suppression techniques to those acoustic sources on the vehicle that will provide the greatest military benefit in terms of reducing the detection range of the platform. Dstl Chertsey (UK) and TACOM (US) have developed acoustic propagation models which can predict the far-field sound pressure levels (SPLs) and associated detection ranges of land platforms under a variety of meteorological conditions over different terrain types. The Acoustic Prediction Propagation Model (APPM), UK) and Acoustic Detection Range Prediction Model (ADRPM, US) have previously been compared and have been found to produce similar results for simple scenarios. With recent developments in both models, this comparison has been carried out again, looking at the introduction of Fast-Field Programs (FFP) to both models and, in more detail, the differences between the results at certain frequencies. This paper represents the results found from this comparison study, showing the differences, similarities and potential of these models for the future.

  20. Strength Modeling Report

    NASA Technical Reports Server (NTRS)

    Badler, N. I.; Lee, P.; Wong, S.

    1985-01-01

    Strength modeling is a complex and multi-dimensional issue. There are numerous parameters to the problem of characterizing human strength, most notably: (1) position and orientation of body joints; (2) isometric versus dynamic strength; (3) effector force versus joint torque; (4) instantaneous versus steady force; (5) active force versus reactive force; (6) presence or absence of gravity; (7) body somatotype and composition; (8) body (segment) masses; (9) muscle group envolvement; (10) muscle size; (11) fatigue; and (12) practice (training) or familiarity. In surveying the available literature on strength measurement and modeling an attempt was made to examine as many of these parameters as possible. The conclusions reached at this point toward the feasibility of implementing computationally reasonable human strength models. The assessment of accuracy of any model against a specific individual, however, will probably not be possible on any realistic scale. Taken statistically, strength modeling may be an effective tool for general questions of task feasibility and strength requirements.

  1. Holograms for acoustics.

    PubMed

    Melde, Kai; Mark, Andrew G; Qiu, Tian; Fischer, Peer

    2016-01-01

    Holographic techniques are fundamental to applications such as volumetric displays, high-density data storage and optical tweezers that require spatial control of intricate optical or acoustic fields within a three-dimensional volume. The basis of holography is spatial storage of the phase and/or amplitude profile of the desired wavefront in a manner that allows that wavefront to be reconstructed by interference when the hologram is illuminated with a suitable coherent source. Modern computer-generated holography skips the process of recording a hologram from a physical scene, and instead calculates the required phase profile before rendering it for reconstruction. In ultrasound applications, the phase profile is typically generated by discrete and independently driven ultrasound sources; however, these can only be used in small numbers, which limits the complexity or degrees of freedom that can be attained in the wavefront. Here we introduce monolithic acoustic holograms, which can reconstruct diffraction-limited acoustic pressure fields and thus arbitrary ultrasound beams. We use rapid fabrication to craft the holograms and achieve reconstruction degrees of freedom two orders of magnitude higher than commercial phased array sources. The technique is inexpensive, appropriate for both transmission and reflection elements, and scales well to higher information content, larger aperture size and higher power. The complex three-dimensional pressure and phase distributions produced by these acoustic holograms allow us to demonstrate new approaches to controlled ultrasonic manipulation of solids in water, and of liquids and solids in air. We expect that acoustic holograms will enable new capabilities in beam-steering and the contactless transfer of power, improve medical imaging, and drive new applications of ultrasound. PMID:27652563

  2. Holograms for acoustics

    NASA Astrophysics Data System (ADS)

    Melde, Kai; Mark, Andrew G.; Qiu, Tian; Fischer, Peer

    2016-09-01

    Holographic techniques are fundamental to applications such as volumetric displays, high-density data storage and optical tweezers that require spatial control of intricate optical or acoustic fields within a three-dimensional volume. The basis of holography is spatial storage of the phase and/or amplitude profile of the desired wavefront in a manner that allows that wavefront to be reconstructed by interference when the hologram is illuminated with a suitable coherent source. Modern computer-generated holography skips the process of recording a hologram from a physical scene, and instead calculates the required phase profile before rendering it for reconstruction. In ultrasound applications, the phase profile is typically generated by discrete and independently driven ultrasound sources; however, these can only be used in small numbers, which limits the complexity or degrees of freedom that can be attained in the wavefront. Here we introduce monolithic acoustic holograms, which can reconstruct diffraction-limited acoustic pressure fields and thus arbitrary ultrasound beams. We use rapid fabrication to craft the holograms and achieve reconstruction degrees of freedom two orders of magnitude higher than commercial phased array sources. The technique is inexpensive, appropriate for both transmission and reflection elements, and scales well to higher information content, larger aperture size and higher power. The complex three-dimensional pressure and phase distributions produced by these acoustic holograms allow us to demonstrate new approaches to controlled ultrasonic manipulation of solids in water, and of liquids and solids in air. We expect that acoustic holograms will enable new capabilities in beam-steering and the contactless transfer of power, improve medical imaging, and drive new applications of ultrasound.

  3. Modeling of the fisheries acoustics problem

    NASA Astrophysics Data System (ADS)

    Adams, Barbara Leigh

    This dissertation presents a mathematical model of the overall fisheries acoustics problem posed by enumeration of fish populations using sonar. Emphasis is placed on three key components: a new geometric model for the target strength (TS) of Pacific salmon, a fish distribution for sockeye salmon, and generation of artificial sonar data. Results of the TS and fish distribution models show TS varies on height and breadth of fish as much as on fish length and TS from the air-filled swimbladder is the major contributor as reported by Foote [1985]. A fish roll factor within 45° leads to TS variations within 7 dB for normal incidence, side aspect and 2 dB for dorsal aspect. Also second order effects of ray propagation through fish flesh on TS from the swimbladder provide TS results up to 20 dB lower at high aspect angles. The geometric model predicts TS values that match extremely well with TS data collected on Pacific salmon and other species in river and ocean environments. By varying fish size and swimbladder parameters and considering the effect of fish flesh, the model covers the range of TS values that occur in the field, thus identifying and quantifying the uncertainty in the experimental data. The overall approach in this work is to construct a direct model providing artificial sonar data, then use an inverse model (echo integration algorithm) with that data or with experimental data to compare results. The echo integration results are not reliable at any fish rate for a fixed river cross-section. Estimated fish counts of 0--7 are obtained from 100 simulations for a known fish distribution of 3 fish (0.1 fish/sec). Similarly, at 0.5 fish/sec with 15 known fish, estimates of 0--30 were obtained; at 1 fish/sec with 30 known fish, estimates of 0--50; and at 5 fish/sec with 150 known fish, estimates of 0--100 fish. Fish counts ranged from 0--19 for 3 known fish when ping rate changed from 1--10 pings/sec and when pulse width varied from 0.1--1.0 ms.

  4. Acoustic monitoring of gas emissions from the seafloor. Part II: a case study from the Sea of Marmara

    NASA Astrophysics Data System (ADS)

    Bayrakci, Gaye; Scalabrin, Carla; Dupré, Stéphanie; Leblond, Isabelle; Tary, Jean-Baptiste; Lanteri, Nadine; Augustin, Jean-Marie; Berger, Laurent; Cros, Estelle; Ogor, André; Tsabaris, Christos; Lescanne, Marc; Géli, Louis

    2014-09-01

    A rotating, acoustic gas bubble detector, BOB (Bubble OBservatory) module was deployed during two surveys, conducted in 2009 and 2011 respectively, to study the temporal variations of gas emissions from the Marmara seafloor, along the North Anatolian Fault zone. The echosounder mounted on the instrument insonifies an angular sector of 7° during a given duration (of about 1 h). Then it rotates to the next, near-by angular sector and so forth. When the full angular domain is insonified, the "pan and tilt system" rotates back to its initial position, in order to start a new cycle (of about 1 day). The acoustic data reveal that gas emission is not a steady process, with observed temporal variations ranging between a few minutes and 24 h (from one cycle to the other). Echo-integration and inversion performed on the acoustic data as described in the companion paper of Leblond et al. (Mar Geophys Res, 2014), also indicate important variations in, respectively, the target strength and the volumetric flow rates of individual sources. However, the observed temporal variations may not be related to the properties of the gas source only, but reflect possible variations in sea-bottom currents, which could deviate the bubble train towards the neighboring sector. During the 2011 survey, a 4-component ocean bottom seismometer (OBS) was co-located at the seafloor, 59 m away from the BOB module. The acoustic data from our rotating, monitoring system support, but do not provide undisputable evidence to confirm, the hypothesis formulated by Tary et al. (2012), that the short-duration, non-seismic micro-events recorded by the OBS are likely produced by gas-related processes within the near seabed sediments. Hence, the use of a multibeam echosounder, or of several split beam echosounders should be preferred to rotating systems, for future experiments.

  5. Nonlinear Acoustical Assessment of Precipitate Nucleation

    NASA Technical Reports Server (NTRS)

    Cantrell, John H.; Yost, William T.

    2004-01-01

    The purpose of the present work is to show that measurements of the acoustic nonlinearity parameter in heat treatable alloys as a function of heat treatment time can provide quantitative information about the kinetics of precipitate nucleation and growth in such alloys. Generally, information on the kinetics of phase transformations is obtained from time-sequenced electron microscopical examination and differential scanning microcalorimetry. The present nonlinear acoustical assessment of precipitation kinetics is based on the development of a multiparameter analytical model of the effects on the nonlinearity parameter of precipitate nucleation and growth in the alloy system. A nonlinear curve fit of the model equation to the experimental data is then used to extract the kinetic parameters related to the nucleation and growth of the targeted precipitate. The analytical model and curve fit is applied to the assessment of S' precipitation in aluminum alloy 2024 during artificial aging from the T4 to the T6 temper.

  6. Standing wave pressure fields generated in an acoustic levitation chamber

    NASA Astrophysics Data System (ADS)

    Hancock, Andrew; Allen, John S.; Kruse, Dustin E.; Dayton, Paul A.; Kargel, Christian M.; Insana, Michael F.

    2001-05-01

    We are developing an acoustic levitation chamber for measuring adhesion force strengths among biological cells. Our research has four phases. Phase I, presented here, is concerned with the design and construction of a chamber for trapping cell-sized microbubbles with known properties in acoustic standing waves, and examines the theory that describes the standing wave field. A cylindrical chamber has been developed to generate a stable acoustic standing wave field. The pressure field was mapped using a 0.4-mm needle hydrophone, and experiments were performed using 100 micron diameter unencapsulated air bubbles, 9 micron diameter isobutane-filled microbubbles, and 3 micron diameter decafluorobutane (C4F10)-filled microbubbles, confirming that the net radiation force from the standing wave pressure field tends to band the microbubbles at pressure antinodes, in accordance with theory.

  7. Auditory target detection in reverberation

    NASA Astrophysics Data System (ADS)

    Zurek, Patrick M.; Freyman, Richard L.; Balakrishnan, Uma

    2004-04-01

    Measurements and theoretical predictions of auditory target detection in simulated reverberant conditions are reported. The target signals were pulsed 13-octave bands of noise and the masker signal was a continuous wideband noise. Target and masker signals were passed through a software simulation of a reverberant room with a rigid sphere modeling a listener's head. The location of the target was fixed while the location of the masker was varied in the simulated room. Degree of reverberation was controlled by varying the uniform acoustic absorption of the simulated room's surfaces. The resulting target and masker signals were presented to the listeners over headphones in monaural-left, monaural-right, or binaural listening modes. Changes in detection performance in the monaural listening modes were largely predictable from the changes in target-to-masker ratio in the target band, but with a few dB of extra masking in reverberation. Binaural detection performance was generally well predicted by applying Durlach's [in Foundations of Modern Auditory Theory (Academic, New York, 1972)] equalization-cancellation theory to the direct-plus-reverberant ear signals. Predictions in all cases were based on a statistical description of room acoustics and on acoustic diffraction by a sphere. The success of these detection models in the present well-controlled reverberant conditions suggests that they can be used to incorporate listening mode and source location as factors in speech-intelligibility predictions.

  8. Education in acoustics in Argentina

    NASA Astrophysics Data System (ADS)

    Miyara, Federico

    2002-11-01

    Over the last decades, education in acoustics (EA) in Argentina has experienced ups and downs due to economic and political issues interfering with long term projects. Unlike other countries, like Chile, where EA has reached maturity in spite of the acoustical industry having shown little development, Argentina has several well-established manufacturers of acoustic materials and equipment but no specific career with a major in acoustics. At the university level, acoustics is taught as a complementary--often elective--course for careers such as architecture, communication engineering, or music. In spite of this there are several research centers with programs covering environmental and community noise, effects of noise on man, acoustic signal processing, musical acoustics and acoustic emission, and several national and international meetings are held each year in which results are communicated and discussed. Several books on a variety of topics such as sound system, architectural acoustics, and noise control have been published as well. Another chapter in EA is technical and vocational education, ranging between secondary and postsecondary levels, with technical training on sound system operation or design. Over the last years there have been several attempts to implement master degrees in acoustics or audio engineering, with little or no success.

  9. Alumina fiber strength improvement

    NASA Technical Reports Server (NTRS)

    Pepper, R. T.; Nelson, D. C.

    1982-01-01

    The effective fiber strength of alumina fibers in an aluminum composite was increased to 173,000 psi. A high temperature heat treatment, combined with a glassy carbon surface coating, was used to prevent degradation and improve fiber tensile strength. Attempts to achieve chemical strengthening of the alumina fiber by chromium oxide and boron oxide coatings proved unsuccessful. A major problem encountered on the program was the low and inconsistent strength of the Dupont Fiber FP used for the investigation.

  10. Manipulate acoustic waves by impedance matched acoustic metasurfaces

    NASA Astrophysics Data System (ADS)

    Wu, Ying; Mei, Jun; Aljahdali, Rasha

    We design a type of acoustic metasurface, which is composed of carefully designed slits in a rigid thin plate. The effective refractive indices of different slits are different but the impedances are kept the same as that of the host medium. Numerical simulations show that such a metasurface can redirect or reflect a normally incident wave at different frequencies, even though it is impedance matched to the host medium. We show that the underlying mechanisms can be understood by using the generalized Snell's law, and a unified analytic model based on mode-coupling theory. We demonstrate some simple realization of such acoustic metasurface with real materials. The principle is also extended to the design of planar acoustic lens which can focus acoustic waves. Manipulate acoustic waves by impedance matched acoustic metasurfaces.

  11. Acoustic energy harvesting based on a planar acoustic metamaterial

    NASA Astrophysics Data System (ADS)

    Qi, Shuibao; Oudich, Mourad; Li, Yong; Assouar, Badreddine

    2016-06-01

    We theoretically report on an innovative and practical acoustic energy harvester based on a defected acoustic metamaterial (AMM) with piezoelectric material. The idea is to create suitable resonant defects in an AMM to confine the strain energy originating from an acoustic incidence. This scavenged energy is converted into electrical energy by attaching a structured piezoelectric material into the defect area of the AMM. We show an acoustic energy harvester based on a meta-structure capable of producing electrical power from an acoustic pressure. Numerical simulations are provided to analyze and elucidate the principles and the performances of the proposed system. A maximum output voltage of 1.3 V and a power density of 0.54 μW/cm3 are obtained at a frequency of 2257.5 Hz. The proposed concept should have broad applications on energy harvesting as well as on low-frequency sound isolation, since this system acts as both acoustic insulator and energy harvester.

  12. Structural Acoustics and Vibrations

    NASA Astrophysics Data System (ADS)

    Chaigne, Antoine

    This structural chapter is devoted to vibrations of structures and to their coupling with the acoustic field. Depending on the context, the radiated sound can be judged as desirable, as is mostly the case for musical instruments, or undesirable, like noise generated by machinery. In architectural acoustics, one main goal is to limit the transmission of sound through walls. In the automobile industry, the engineers have to control the noise generated inside and outside the passenger compartment. This can be achieved by means of passive or active damping. In general, there is a strong need for quieter products and better sound quality generated by the structures in our daily environment.

  13. Radiosurgery of acoustic neurinomas

    SciTech Connect

    Flickinger, J.C.; Lunsford, L.D.; Coffey, R.J.; Linskey, M.E.; Bissonette, D.J.; Maitz, A.H.; Kondziolka, D. )

    1991-01-15

    Eighty-five patients with acoustic neurinomas underwent stereotactic radiosurgery with the gamma unit at the University of Pittsburgh (Pittsburgh, PA) during its first 30 months of operation. Neuroimaging studies performed in 40 patients with more than 1 year follow-up showed that tumors were smaller in 22 (55%), unchanged in 17 (43%), and larger in one (2%). The 2-year actuarial rates for preservation of useful hearing and any hearing were 46% and 62%, respectively. Previously undetected neuropathies of the trigeminal (n = 12) and facial nerves (n = 14) occurred 1 week to 1 year after radiosurgery (median, 7 and 6 months, respectively), and improved at median intervals of 13 and 8 months, respectively, after onset. Hearing loss was significantly associated with increasing average tumor diameter (P = 0.04). No deterioration of any cranial nerve function has yet developed in seven patients with average tumor diameters less than 10 mm. Radiosurgery is an important treatment alternative for selected acoustic neurinoma patients.

  14. A Martian acoustic anemometer.

    PubMed

    Banfield, Don; Schindel, David W; Tarr, Steve; Dissly, Richard W

    2016-08-01

    An acoustic anemometer for use on Mars has been developed. To understand the processes that control the interaction between surface and atmosphere on Mars, not only the mean winds, but also the turbulent boundary layer, the fluxes of momentum, heat and molecular constituents between surface and atmosphere must be measured. Terrestrially this is done with acoustic anemometers, but the low density atmosphere on Mars makes it challenging to adapt such an instrument for use on Mars. This has been achieved using capacitive transducers and pulse compression, and was successfully demonstrated on a stratospheric balloon (simulating the Martian environment) and in a dedicated Mars Wind Tunnel facility. This instrument achieves a measurement accuracy of ∼5 cm/s with an update rate of >20 Hz under Martian conditions. PMID:27586767

  15. Acoustic methodology review

    NASA Technical Reports Server (NTRS)

    Schlegel, R. G.

    1982-01-01

    It is important for industry and NASA to assess the status of acoustic design technology for predicting and controlling helicopter external noise in order for a meaningful research program to be formulated which will address this problem. The prediction methodologies available to the designer and the acoustic engineer are three-fold. First is what has been described as a first principle analysis. This analysis approach attempts to remove any empiricism from the analysis process and deals with a theoretical mechanism approach to predicting the noise. The second approach attempts to combine first principle methodology (when available) with empirical data to formulate source predictors which can be combined to predict vehicle levels. The third is an empirical analysis, which attempts to generalize measured trends into a vehicle noise prediction method. This paper will briefly address each.

  16. Structures and Acoustics Division

    NASA Technical Reports Server (NTRS)

    Acquaviva, Cynthia S.

    1999-01-01

    The Structures and Acoustics Division of NASA Glenn Research Center is an international leader in rotating structures, mechanical components, fatigue and fracture, and structural aeroacoustics. Included are disciplines related to life prediction and reliability, nondestructive evaluation, and mechanical drive systems. Reported are a synopsis of the work and accomplishments reported by the Division during the 1996 calendar year. A bibliography containing 42 citations is provided.

  17. Structures and Acoustics Division

    NASA Technical Reports Server (NTRS)

    Acquaviva, Cynthia S.

    2001-01-01

    The Structures and Acoustics Division of the NASA Glenn Research Center is an international leader in rotating structures, mechanical components, fatigue and fracture, and structural aeroacoustics. Included in this report are disciplines related to life prediction and reliability, nondestructive evaluation, and mechanical drive systems. Reported is a synopsis of the work and accomplishments completed by the Division during the 1997, 1998, and 1999 calendar years. A bibliography containing 93 citations is provided.

  18. Acoustic paramagnetic logging tool

    DOEpatents

    Vail, III, William B.

    1988-01-01

    New methods and apparatus are disclosed which allow measurement of the presence of oil and water in geological formations using a new physical effect called the Acoustic Paramagnetic Logging Effect (APLE). The presence of petroleum in formation causes a slight increase in the earth's magnetic field in the vicinity of the reservoir. This is the phenomena of paramagnetism. Application of an acoustic source to a geological formation at the Larmor frequency of the nucleons present causes the paramagnetism of the formation to disappear. This results in a decrease in the earth3 s magnetic field in the vicinity of the oil bearing formation. Repetitively frequency sweeping the acoustic source through the Larmor frequency of the nucleons present (approx. 2 kHz) causes an amplitude modulation of the earth's magnetic field which is a consequence of the APLE. The amplitude modulation of the earth's magnetic field is measured with an induction coil gradiometer and provides a direct measure of the amount of oil and water in the excitation zone of the formation . The phase of the signal is used to infer the longitudinal relaxation times of the fluids present, which results in the ability in general to separate oil and water and to measure the viscosity of the oil present. Such measurements may be preformed in open boreholes and in cased well bores.

  19. Fast wideband acoustical holography.

    PubMed

    Hald, Jørgen

    2016-04-01

    Patch near-field acoustical holography methods like statistically optimized near-field acoustical holography and equivalent source method are limited to relatively low frequencies, where the average array-element spacing is less than half of the acoustic wavelength, while beamforming provides useful resolution only at medium-to-high frequencies. With adequate array design, both methods can be used with the same array. But for holography to provide good low-frequency resolution, a small measurement distance is needed, whereas beamforming requires a larger distance to limit sidelobe issues. The wideband holography method of the present paper was developed to overcome that practical conflict. Only a single measurement is needed at a relatively short distance and a single result is obtained covering the full frequency range. The method uses the principles of compressed sensing: A sparse sound field representation is assumed with a chosen set of basis functions, a measurement is taken with an irregular array, and the inverse problem is solved with a method that enforces sparsity in the coefficient vector. Instead of using regularization based on the 1-norm of the coefficient vector, an iterative solution procedure is used that promotes sparsity. The iterative method is shown to provide very similar results in most cases and to be computationally much more efficient. PMID:27106299

  20. Virtual acoustic prototyping

    NASA Astrophysics Data System (ADS)

    Johnson, Marty

    2003-10-01

    In this paper the re-creation of 3-D sound fields so the full psycho-acoustic impact of sound sources can be assessed before the manufacture of a product or environment is examined. Using head related transfer functions (HRTFs) coupled with a head tracked set of headphones the sound field at the left and right ears of a listener can be re-created for a set of sound sources. However, the HRTFs require that sources have a defined location and this is not the typical output from numerical codes which describe the sound field as a set of distributed modes. In this paper a method of creating a set of equivalent sources is described such that the standard set of HRTFs can be applied in real time. A structural-acoustic model of a cylinder driving an enclosed acoustic field will be used as an example. It will be shown that equivalent sources can be used to recreate all of the reverberation of the enclosed space. An efficient singular value decomposition technique allows the large number of sources required to be simulated in real time. An introduction to the requirements necessary for 3-D virtual prototyping using high frequency Statistical Energy Analysis models will be presented. [Work supported by AuSim and NASA.

  1. Acoustics, computers and measurements

    NASA Astrophysics Data System (ADS)

    Truchard, James J.

    2003-10-01

    The human ear has created a high standard for the requirements of acoustical measurements. The transient nature of most acoustical signals has limited the success of traditional volt meters. Professor Hixson's pioneering work in electroacoustical measurements at ARL and The University of Texas helped set the stage for modern computer-based measurements. The tremendous performance of modern PCs and extensive libraries of signal processing functions in virtual instrumentation application software has revolutionized the way acoustical measurements are made. Today's analog to digital converters have up to 24 bits of resolution with a dynamic range of over 120 dB and a single PC processor can process 112 channels of FFTs at 4 kHz in real time. Wavelet technology further extends the capabilities for analyzing transients. The tools available for measurements in speech, electroacoustics, noise, and vibration represent some of the most advanced measurement tools available. During the last 50 years, Professor Hixson has helped drive this revolution from simple oscilloscope measurements to the modern high performance computer-based measurements.

  2. Nonlinear acoustics in biomedical ultrasound

    NASA Astrophysics Data System (ADS)

    Cleveland, Robin O.

    2015-10-01

    Ultrasound is widely used to image inside the body; it is also used therapeutically to treat certain medical conditions. In both imaging and therapy applications the amplitudes employed in biomedical ultrasound are often high enough that nonlinear acoustic effects are present in the propagation: the effects have the potential to be advantageous in some scenarios but a hindrance in others. In the case of ultrasound imaging the nonlinearity produces higher harmonics that result in images of greater quality. However, nonlinear effects interfere with the imaging of ultrasound contrast agents (typically micron sized bubbles with a strong nonlinear response of their own) and nonlinear effects also result in complications when derating of pressure measurements in water to in situ values in tissue. High intensity focused ultrasound (HIFU) is emerging as a non-invasive therapeutic modality which can result in thermal ablation of tissue. For thermal ablation, the extra effective attenuation resulting from nonlinear effects can result in enhanced heating of tissue if shock formation occurs in the target region for ablation - a highly desirable effect. However, if nonlinearity is too strong it can also result in undesired near-field heating and reduced ablation in the target region. The disruption of tissue (histotripsy) and fragmentation of kidney stones (lithotripsy) exploits shock waves to produce mechanically based effects, with minimal heating present. In these scenarios it is necessary for the waves to be of sufficient amplitude that a shock exists when the waveform reaches the target region. This talk will discuss how underlying nonlinear phenomenon act in all the diagnostic and therapeutic applications described above.

  3. Acoustic Force Density Acting on Inhomogeneous Fluids in Acoustic Fields.

    PubMed

    Karlsen, Jonas T; Augustsson, Per; Bruus, Henrik

    2016-09-01

    We present a theory for the acoustic force density acting on inhomogeneous fluids in acoustic fields on time scales that are slow compared to the acoustic oscillation period. The acoustic force density depends on gradients in the density and compressibility of the fluid. For microfluidic systems, the theory predicts a relocation of the inhomogeneities into stable field-dependent configurations, which are qualitatively different from the horizontally layered configurations due to gravity. Experimental validation is obtained by confocal imaging of aqueous solutions in a glass-silicon microchip. PMID:27661695

  4. Acoustic Force Density Acting on Inhomogeneous Fluids in Acoustic Fields.

    PubMed

    Karlsen, Jonas T; Augustsson, Per; Bruus, Henrik

    2016-09-01

    We present a theory for the acoustic force density acting on inhomogeneous fluids in acoustic fields on time scales that are slow compared to the acoustic oscillation period. The acoustic force density depends on gradients in the density and compressibility of the fluid. For microfluidic systems, the theory predicts a relocation of the inhomogeneities into stable field-dependent configurations, which are qualitatively different from the horizontally layered configurations due to gravity. Experimental validation is obtained by confocal imaging of aqueous solutions in a glass-silicon microchip.

  5. Strength Training and Your Child

    MedlinePlus

    ... Story" 5 Things to Know About Zika & Pregnancy Strength Training and Your Child KidsHealth > For Parents > Strength Training ... help prevent injuries and speed up recovery. About Strength Training Strength training is the practice of using free ...

  6. Wireless Acoustic Measurement System

    NASA Technical Reports Server (NTRS)

    Anderson, Paul D.; Dorland, Wade D.; Jolly, Ronald L.

    2007-01-01

    A prototype wireless acoustic measurement system (WAMS) is one of two main subsystems of the Acoustic Prediction/ Measurement Tool, which comprises software, acoustic instrumentation, and electronic hardware combined to afford integrated capabilities for predicting and measuring noise emitted by rocket and jet engines. The other main subsystem is described in the article on page 8. The WAMS includes analog acoustic measurement instrumentation and analog and digital electronic circuitry combined with computer wireless local-area networking to enable (1) measurement of sound-pressure levels at multiple locations in the sound field of an engine under test and (2) recording and processing of the measurement data. At each field location, the measurements are taken by a portable unit, denoted a field station. There are ten field stations, each of which can take two channels of measurements. Each field station is equipped with two instrumentation microphones, a micro- ATX computer, a wireless network adapter, an environmental enclosure, a directional radio antenna, and a battery power supply. The environmental enclosure shields the computer from weather and from extreme acoustically induced vibrations. The power supply is based on a marine-service lead-acid storage battery that has enough capacity to support operation for as long as 10 hours. A desktop computer serves as a control server for the WAMS. The server is connected to a wireless router for communication with the field stations via a wireless local-area network that complies with wireless-network standard 802.11b of the Institute of Electrical and Electronics Engineers. The router and the wireless network adapters are controlled by use of Linux-compatible driver software. The server runs custom Linux software for synchronizing the recording of measurement data in the field stations. The software includes a module that provides an intuitive graphical user interface through which an operator at the control server

  7. Wireless Acoustic Measurement System

    NASA Technical Reports Server (NTRS)

    Anderson, Paul D.; Dorland, Wade D.

    2005-01-01

    A prototype wireless acoustic measurement system (WAMS) is one of two main subsystems of the Acoustic Prediction/Measurement Tool, which comprises software, acoustic instrumentation, and electronic hardware combined to afford integrated capabilities for predicting and measuring noise emitted by rocket and jet engines. The other main subsystem is described in "Predicting Rocket or Jet Noise in Real Time" (SSC-00215-1), which appears elsewhere in this issue of NASA Tech Briefs. The WAMS includes analog acoustic measurement instrumentation and analog and digital electronic circuitry combined with computer wireless local-area networking to enable (1) measurement of sound-pressure levels at multiple locations in the sound field of an engine under test and (2) recording and processing of the measurement data. At each field location, the measurements are taken by a portable unit, denoted a field station. There are ten field stations, each of which can take two channels of measurements. Each field station is equipped with two instrumentation microphones, a micro-ATX computer, a wireless network adapter, an environmental enclosure, a directional radio antenna, and a battery power supply. The environmental enclosure shields the computer from weather and from extreme acoustically induced vibrations. The power supply is based on a marine-service lead-acid storage battery that has enough capacity to support operation for as long as 10 hours. A desktop computer serves as a control server for the WAMS. The server is connected to a wireless router for communication with the field stations via a wireless local-area network that complies with wireless-network standard 802.11b of the Institute of Electrical and Electronics Engineers. The router and the wireless network adapters are controlled by use of Linux-compatible driver software. The server runs custom Linux software for synchronizing the recording of measurement data in the field stations. The software includes a module that

  8. Sampling environmental acoustic recordings to determine bird species richness.

    PubMed

    Wimmer, Jason; Towsey, Michael; Roe, Paul; Williamson, Ian

    2013-09-01

    Acoustic sensors can be used to estimate species richness for vocal species such as birds. They can continuously and passively record large volumes of data over extended periods. These data must subsequently be analyzed to detect the presence of vocal species. Automated analysis of acoustic data for large numbers of species is complex and can be subject to high levels of false positive and false negative results. Manual analysis by experienced surveyors can produce accurate results; however the time and effort required to process even small volumes of data can make manual analysis prohibitive. This study examined the use of sampling methods to reduce the cost of analyzing large volumes of acoustic sensor data, while retaining high levels of species detection accuracy. Utilizing five days of manually analyzed acoustic sensor data from four sites, we examined a range of sampling frequencies and methods including random, stratified, and biologically informed. We found that randomly selecting 120 one-minute samples from the three hours immediately following dawn over five days of recordings, detected the highest number of species. On average, this method detected 62% of total species from 120 one-minute samples, compared to 34% of total species detected from traditional area search methods. Our results demonstrate that targeted sampling methods can provide an effective means for analyzing large volumes of acoustic sensor data efficiently and accurately. Development of automated and semi-automated techniques is required to assist in analyzing large volumes of acoustic sensor data.

  9. Spacecraft Internal Acoustic Environment Modeling

    NASA Technical Reports Server (NTRS)

    Chu, S. Reynold; Allen, Chris

    2009-01-01

    The objective of the project is to develop an acoustic modeling capability, based on commercial off-the-shelf software, to be used as a tool for oversight of the future manned Constellation vehicles. The use of such a model will help ensure compliance with acoustic requirements. Also, this project includes modeling validation and development feedback via building physical mockups and conducting acoustic measurements to compare with the predictions.

  10. Building on Our Strengths.

    ERIC Educational Resources Information Center

    Hill, Robert

    1978-01-01

    Comments on the feeling that the American family is disintegrating, and that many criticisms traditionally made about Black families are now made about White families. Suggests that people need to stress family strengths. As an example, five major strengths of Black families are described: flexibility, work and achievement ethics, religiosity, and…

  11. Strengths of Remarried Families.

    ERIC Educational Resources Information Center

    Knaub, Patricia Kain; And Others

    1984-01-01

    Focuses on remarried families' (N=80) perceptions of family strengths, marital satisfaction, and adjustment to the remarried situation. Results indicated that although most would like to make some changes, scores on the measurements used were high. A supportive environment was the most important predictor of family strength and success. (JAC)

  12. Photo-acoustic analysis of dental materials and tissue

    NASA Astrophysics Data System (ADS)

    Jeleva, Pavlina Jetchkova

    2005-11-01

    The goal of the presented study is the investigation of the feasibility of using optically generated acoustic waves for analysis of dental material below laser-ablation threshold. The temperature rise of dental material and tissue has been modeled analytically and numerically, and measured experimentally. Following interactions with nano- and femto-second laser radiation the temperature rises at a rate of typically 1°C per J/cm 2, along with the generation of an acoustical wave. The results from the models agree with the experiment. The acoustic measurements show differences in the acoustic signal strength and the frequency spectrum when the canal in the porcelain phantom is empty or filled with intralipid solution. The photo-acoustic technique is found to be suitable for detection of liquids under a layer of dental porcelain material, consequently it can be the basis for building an imaging tool for dental diagnostic applications. By generating sound waves in the pulp, one would be able to evaluate it's state and the overall health of the tooth. This is of vital importance for diagnosing initial-stage inflammation.

  13. Acoustic analysis in Mudejar-Gothic churches: experimental results.

    PubMed

    Galindo, Miguel; Zamarreño, Teófilo; Girón, Sara

    2005-05-01

    This paper describes the preliminary results of research work in acoustics, conducted in a set of 12 Mudejar-Gothic churches in the city of Seville in the south of Spain. Despite common architectural style, the churches feature individual characteristics and have volumes ranging from 3947 to 10 708 m3. Acoustic parameters were measured in unoccupied churches according to the ISO-3382 standard. An extensive experimental study was carried out using impulse response analysis through a maximum length sequence measurement system in each church. It covered aspects such as reverberation (reverberation times, early decay times), distribution of sound levels (sound strength); early to late sound energy parameters derived from the impulse responses (center time, clarity for speech, clarity, definition, lateral energy fraction), and speech intelligibility (rapid speech transmission index), which all take both spectral and spatial distribution into account. Background noise was also measured to obtain the NR indices. The study describes the acoustic field inside each temple and establishes a discussion for each one of the acoustic descriptors mentioned by using the theoretical models available and the principles of architectural acoustics. Analysis of the quality of the spaces for music and speech is carried out according to the most widespread criteria for auditoria. PMID:15957758

  14. Acoustic analysis in Mudejar-Gothic churches: experimental results.

    PubMed

    Galindo, Miguel; Zamarreño, Teófilo; Girón, Sara

    2005-05-01

    This paper describes the preliminary results of research work in acoustics, conducted in a set of 12 Mudejar-Gothic churches in the city of Seville in the south of Spain. Despite common architectural style, the churches feature individual characteristics and have volumes ranging from 3947 to 10 708 m3. Acoustic parameters were measured in unoccupied churches according to the ISO-3382 standard. An extensive experimental study was carried out using impulse response analysis through a maximum length sequence measurement system in each church. It covered aspects such as reverberation (reverberation times, early decay times), distribution of sound levels (sound strength); early to late sound energy parameters derived from the impulse responses (center time, clarity for speech, clarity, definition, lateral energy fraction), and speech intelligibility (rapid speech transmission index), which all take both spectral and spatial distribution into account. Background noise was also measured to obtain the NR indices. The study describes the acoustic field inside each temple and establishes a discussion for each one of the acoustic descriptors mentioned by using the theoretical models available and the principles of architectural acoustics. Analysis of the quality of the spaces for music and speech is carried out according to the most widespread criteria for auditoria.

  15. Acoustic analysis in Mudejar-Gothic churches: Experimental results

    NASA Astrophysics Data System (ADS)

    Galindo, Miguel; Zamarreño, Teófilo; Girón, Sara

    2005-05-01

    This paper describes the preliminary results of research work in acoustics, conducted in a set of 12 Mudejar-Gothic churches in the city of Seville in the south of Spain. Despite common architectural style, the churches feature individual characteristics and have volumes ranging from 3947 to 10 708 m3. Acoustic parameters were measured in unoccupied churches according to the ISO-3382 standard. An extensive experimental study was carried out using impulse response analysis through a maximum length sequence measurement system in each church. It covered aspects such as reverberation (reverberation times, early decay times), distribution of sound levels (sound strength); early to late sound energy parameters derived from the impulse responses (center time, clarity for speech, clarity, definition, lateral energy fraction), and speech intelligibility (rapid speech transmission index), which all take both spectral and spatial distribution into account. Background noise was also measured to obtain the NR indices. The study describes the acoustic field inside each temple and establishes a discussion for each one of the acoustic descriptors mentioned by using the theoretical models available and the principles of architectural acoustics. Analysis of the quality of the spaces for music and speech is carried out according to the most widespread criteria for auditoria. .

  16. Guided acoustic wave inspection system

    DOEpatents

    Chinn, Diane J.

    2004-10-05

    A system for inspecting a conduit for undesirable characteristics. A transducer system induces guided acoustic waves onto said conduit. The transducer system detects the undesirable characteristics of the conduit by receiving guided acoustic waves that contain information about the undesirable characteristics. The conduit has at least two sides and the transducer system utilizes flexural modes of propagation to provide inspection using access from only the one side of the conduit. Cracking is detected with pulse-echo testing using one transducer to both send and receive the guided acoustic waves. Thinning is detected in through-transmission testing where one transducer sends and another transducer receives the guided acoustic waves.

  17. Transition section for acoustic waveguides

    DOEpatents

    Karplus, H.H.B.

    1975-10-28

    A means of facilitating the transmission of acoustic waves with minimal reflection between two regions having different specific acoustic impedances is described comprising a region exhibiting a constant product of cross-sectional area and specific acoustic impedance at each cross-sectional plane along the axis of the transition region. A variety of structures that exhibit this feature is disclosed, the preferred embodiment comprising a nested structure of doubly reentrant cones. This structure is useful for monitoring the operation of nuclear reactors in which random acoustic signals are generated in the course of operation.

  18. Truck acoustic data analyzer system

    DOEpatents

    Haynes, Howard D.; Akerman, Alfred; Ayers, Curtis W.

    2006-07-04

    A passive vehicle acoustic data analyzer system having at least one microphone disposed in the acoustic field of a moving vehicle and a computer in electronic communication the microphone(s). The computer detects and measures the frequency shift in the acoustic signature emitted by the vehicle as it approaches and passes the microphone(s). The acoustic signature of a truck driving by a microphone can provide enough information to estimate the truck speed in miles-per-hour (mph), engine speed in rotations-per-minute (RPM), turbocharger speed in RPM, and vehicle weight.

  19. Probing Cell Deformability via Acoustically Actuated Bubbles.

    PubMed

    Xie, Yuliang; Nama, Nitesh; Li, Peng; Mao, Zhangming; Huang, Po-Hsun; Zhao, Chenglong; Costanzo, Francesco; Huang, Tony Jun

    2016-02-17

    An acoustically actuated, bubble-based technique is developed to investigate the deformability of cells suspended in microfluidic devices. A microsized bubble is generated by an optothermal effect near the targeted cells, which are suspended in a microfluidic chamber. Subsequently, acoustic actuation is employed to create localized acoustic streaming. In turn, the streaming flow results in hydrodynamic forces that deform the cells in situ. The deformability of the cells is indicative of their mechanical properties. The method in this study measures mechanical biomarkers from multiple cells in a single experiment, and it can be conveniently integrated with other bioanalysis and drug-screening platforms. Using this technique, the mean deformability of tens of HeLa, HEK, and HUVEC cells is measured to distinguish their mechanical properties. HeLa cells are deformed upon treatment with Cytochalasin. The technique also reveals the deformability of each subpopulation in a mixed, heterogeneous cell sample by the use of both fluorescent markers and mechanical biomarkers. The technique in this study, apart from being relevant to cell biology, will also enable biophysical cellular diagnosis. PMID:26715211

  20. Probing Cell Deformability via Acoustically Actuated Bubbles.

    PubMed

    Xie, Yuliang; Nama, Nitesh; Li, Peng; Mao, Zhangming; Huang, Po-Hsun; Zhao, Chenglong; Costanzo, Francesco; Huang, Tony Jun

    2016-02-17

    An acoustically actuated, bubble-based technique is developed to investigate the deformability of cells suspended in microfluidic devices. A microsized bubble is generated by an optothermal effect near the targeted cells, which are suspended in a microfluidic chamber. Subsequently, acoustic actuation is employed to create localized acoustic streaming. In turn, the streaming flow results in hydrodynamic forces that deform the cells in situ. The deformability of the cells is indicative of their mechanical properties. The method in this study measures mechanical biomarkers from multiple cells in a single experiment, and it can be conveniently integrated with other bioanalysis and drug-screening platforms. Using this technique, the mean deformability of tens of HeLa, HEK, and HUVEC cells is measured to distinguish their mechanical properties. HeLa cells are deformed upon treatment with Cytochalasin. The technique also reveals the deformability of each subpopulation in a mixed, heterogeneous cell sample by the use of both fluorescent markers and mechanical biomarkers. The technique in this study, apart from being relevant to cell biology, will also enable biophysical cellular diagnosis.

  1. Repeat Stereotactic Radiosurgery for Acoustic Neuromas

    SciTech Connect

    Kano, Hideyuki; Kondziolka, Douglas; Niranjan, Ajay M.Ch.; Flannery, Thomas J.; Flickinger, John C.; Lunsford, L. Dade

    2010-02-01

    Purpose: To evaluate the outcome of repeat stereotactic radiosurgery (SRS) for acoustic neuromas, we assessed tumor control, clinical outcomes, and the risk of adverse radiation effects in patients whose tumors progressed after initial management. Methods and Materials: During a 21-year experience at our center, 1,352 patients underwent SRS as management for their acoustic neuromas. We retrospectively identified 6 patients who underwent SRS twice for the same tumor. The median patient age was 47 years (range, 35-71 years). All patients had imaging evidence of tumor progression despite initial SRS. One patient also had incomplete surgical resection after initial SRS. All patients were deaf at the time of the second SRS. The median radiosurgery target volume at the time of the initial SRS was 0.5 cc and was 2.1 cc at the time of the second SRS. The median margin dose at the time of the initial SRS was 13 Gy and was 11 Gy at the time of the second SRS. The median interval between initial SRS and repeat SRS was 63 months (range, 25-169 months). Results: At a median follow-up of 29 months after the second SRS (range, 13-71 months), tumor control or regression was achieved in all 6 patients. No patient developed symptomatic adverse radiation effects or new neurological symptoms after the second SRS. Conclusions: With this limited experience, we found that repeat SRS for a persistently enlarging acoustic neuroma can be performed safely and effectively.

  2. Advancing Microarray Assembly with Acoustic Dispensing Technology

    PubMed Central

    Wong, E. Y.; Diamond, S. L.

    2011-01-01

    In the assembly of microarrays and microarray-based chemical assays and enzymatic bioassays, most approaches use pins for contact spotting. Acoustic dispensing is a technology capable of nanoliter transfers by using acoustic energy to eject liquid sample from an open source well. Although typically used for well plate transfers, when applied to microarraying it avoids drawbacks of undesired physical contact with sample, difficulty in assembling multicomponent reactions on a chip by readdressing, a rigid mode of printing that lacks patterning capabilities, and time-consuming wash steps. We demonstrated the utility of acoustic dispensing by delivering human cathepsin L in a drop-on-drop fashion into individual 50-nanoliter, pre-spotted reaction volumes to activate enzyme reactions at targeted positions on a microarray. We generated variable-sized spots ranging from 200 to 750 μm (and higher), and handled the transfer of fluorescent bead suspensions with increasing source well concentrations of 0.1 to 10 ×108 beads/mL in a linear fashion. There are no tips that can clog and liquid dispensing CVs are generally below 5%. This platform expands the toolbox for generating analytical arrays and meets needs associated with spatially-addressed assembly of multicomponent microarrays on the nanoliter scale. PMID:19035650

  3. Powered-Lift Aerodynamics and Acoustics. [conferences

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Powered lift technology is reviewed. Topics covered include: (1) high lift aerodynamics; (2) high speed and cruise aerodynamics; (3) acoustics; (4) propulsion aerodynamics and acoustics; (5) aerodynamic and acoustic loads; and (6) full-scale and flight research.

  4. Ares I Scale Model Acoustic Test Lift-Off Acoustics

    NASA Technical Reports Server (NTRS)

    Counter, Douglas D.; Houston, Janie D.

    2011-01-01

    The lift-off acoustic (LOA) environment is an important design factor for any launch vehicle. For the Ares I vehicle, the LOA environments were derived by scaling flight data from other launch vehicles. The Ares I LOA predicted environments are compared to the Ares I Scale Model Acoustic Test (ASMAT) preliminary results.

  5. The effect of ultrasonics on the strength properties of carbon steel processed by cold plastic deformation

    NASA Technical Reports Server (NTRS)

    Atanasiu, N.; Dragan, O.; Atanasiu, Z.

    1974-01-01

    A study was made of the influence of ultrasounds on the mechanical properties of OLT 35 carbon steel tubes cold-drawn on a plug ultrasonically activated by longitudinal waves. Experimental results indicate that: 1. The reduction in the values of the flow limit and tensile strength is proportional to the increase in acoustic energy introduced into the material subjected to deformation. 2. The diminution in influence of ultrasounds on tensile strength and flow rate that is due to an increased degree of deformation is explained by a reduction in specific density of the acoustic energy at the focus of deformation. 3. The relations calculated on the basis of the variation in the flow limit and tensile strength as a function of acoustic energy intensity was verified experimentally.

  6. Acoustic separation of circulating tumor cells.

    PubMed

    Li, Peng; Mao, Zhangming; Peng, Zhangli; Zhou, Lanlan; Chen, Yuchao; Huang, Po-Hsun; Truica, Cristina I; Drabick, Joseph J; El-Deiry, Wafik S; Dao, Ming; Suresh, Subra; Huang, Tony Jun

    2015-04-21

    Circulating tumor cells (CTCs) are important targets for cancer biology studies. To further elucidate the role of CTCs in cancer metastasis and prognosis, effective methods for isolating extremely rare tumor cells from peripheral blood must be developed. Acoustic-based methods, which are known to preserve the integrity, functionality, and viability of biological cells using label-free and contact-free sorting, have thus far not been successfully developed to isolate rare CTCs using clinical samples from cancer patients owing to technical constraints, insufficient throughput, and lack of long-term device stability. In this work, we demonstrate the development of an acoustic-based microfluidic device that is capable of high-throughput separation of CTCs from peripheral blood samples obtained from cancer patients. Our method uses tilted-angle standing surface acoustic waves. Parametric numerical simulations were performed to design optimum device geometry, tilt angle, and cell throughput that is more than 20 times higher than previously possible for such devices. We first validated the capability of this device by successfully separating low concentrations (∼100 cells/mL) of a variety of cancer cells from cell culture lines from WBCs with a recovery rate better than 83%. We then demonstrated the isolation of CTCs in blood samples obtained from patients with breast cancer. Our acoustic-based separation method thus offers the potential to serve as an invaluable supplemental tool in cancer research, diagnostics, drug efficacy assessment, and therapeutics owing to its excellent biocompatibility, simple design, and label-free automated operation while offering the capability to isolate rare CTCs in a viable state.

  7. Acoustic separation of circulating tumor cells

    PubMed Central

    Li, Peng; Mao, Zhangming; Peng, Zhangli; Zhou, Lanlan; Chen, Yuchao; Huang, Po-Hsun; Truica, Cristina I.; Drabick, Joseph J.; El-Deiry, Wafik S.; Dao, Ming; Suresh, Subra; Huang, Tony Jun

    2015-01-01

    Circulating tumor cells (CTCs) are important targets for cancer biology studies. To further elucidate the role of CTCs in cancer metastasis and prognosis, effective methods for isolating extremely rare tumor cells from peripheral blood must be developed. Acoustic-based methods, which are known to preserve the integrity, functionality, and viability of biological cells using label-free and contact-free sorting, have thus far not been successfully developed to isolate rare CTCs using clinical samples from cancer patients owing to technical constraints, insufficient throughput, and lack of long-term device stability. In this work, we demonstrate the development of an acoustic-based microfluidic device that is capable of high-throughput separation of CTCs from peripheral blood samples obtained from cancer patients. Our method uses tilted-angle standing surface acoustic waves. Parametric numerical simulations were performed to design optimum device geometry, tilt angle, and cell throughput that is more than 20 times higher than previously possible for such devices. We first validated the capability of this device by successfully separating low concentrations (∼100 cells/mL) of a variety of cancer cells from cell culture lines from WBCs with a recovery rate better than 83%. We then demonstrated the isolation of CTCs in blood samples obtained from patients with breast cancer. Our acoustic-based separation method thus offers the potential to serve as an invaluable supplemental tool in cancer research, diagnostics, drug efficacy assessment, and therapeutics owing to its excellent biocompatibility, simple design, and label-free automated operation while offering the capability to isolate rare CTCs in a viable state. PMID:25848039

  8. Acoustic separation of circulating tumor cells.

    PubMed

    Li, Peng; Mao, Zhangming; Peng, Zhangli; Zhou, Lanlan; Chen, Yuchao; Huang, Po-Hsun; Truica, Cristina I; Drabick, Joseph J; El-Deiry, Wafik S; Dao, Ming; Suresh, Subra; Huang, Tony Jun

    2015-04-21

    Circulating tumor cells (CTCs) are important targets for cancer biology studies. To further elucidate the role of CTCs in cancer metastasis and prognosis, effective methods for isolating extremely rare tumor cells from peripheral blood must be developed. Acoustic-based methods, which are known to preserve the integrity, functionality, and viability of biological cells using label-free and contact-free sorting, have thus far not been successfully developed to isolate rare CTCs using clinical samples from cancer patients owing to technical constraints, insufficient throughput, and lack of long-term device stability. In this work, we demonstrate the development of an acoustic-based microfluidic device that is capable of high-throughput separation of CTCs from peripheral blood samples obtained from cancer patients. Our method uses tilted-angle standing surface acoustic waves. Parametric numerical simulations were performed to design optimum device geometry, tilt angle, and cell throughput that is more than 20 times higher than previously possible for such devices. We first validated the capability of this device by successfully separating low concentrations (∼100 cells/mL) of a variety of cancer cells from cell culture lines from WBCs with a recovery rate better than 83%. We then demonstrated the isolation of CTCs in blood samples obtained from patients with breast cancer. Our acoustic-based separation method thus offers the potential to serve as an invaluable supplemental tool in cancer research, diagnostics, drug efficacy assessment, and therapeutics owing to its excellent biocompatibility, simple design, and label-free automated operation while offering the capability to isolate rare CTCs in a viable state. PMID:25848039

  9. Acoustic hemostasis device for automated treatment of bleeding in limbs

    NASA Astrophysics Data System (ADS)

    Sekins, K. Michael; Zeng, Xiaozheng; Barnes, Stephen; Hopple, Jerry; Kook, John; Moreau-Gobard, Romain; Hsu, Stephen; Ahiekpor-Dravi, Alexis; Lee, Chi-Yin; Ramachandran, Suresh; Maleke, Caroline; Eaton, John; Wong, Keith; Keneman, Scott

    2012-10-01

    A research prototype automated image-guided acoustic hemostasis system for treatment of deep bleeding was developed and tested in limb phantoms. The system incorporated a flexible, conformal acoustic applicator cuff. Electronically steered and focused therapeutic arrays (Tx) populated the cuff to enable dosing from multiple Tx's simultaneously. Similarly, multiple imaging arrays (Ix) were deployed on the cuff to enable 3D compounded images for targeting and treatment monitoring. To affect a lightweight cuff, highly integrated Tx electrical circuitry was implemented, fabric and lightweight structural materials were used, and components were minimized. Novel cuff and Ix and Tx mechanical registration approaches were used to insure targeting accuracy. Two-step automation was implemented: 1) targeting (3D image volume acquisition and stitching, Power and Pulsed Wave Doppler automated bleeder detection, identification of bone, followed by closed-loop iterative Tx beam targeting), and 2) automated dosing (auto-selection of arrays and Tx dosing parameters, power initiation and then monitoring by acoustic thermometry for power shut-off). In final testing the device automatically detected 65% of all bleeders (with various bleeder flow rates). Accurate targeting was achieved in HIFU phantoms with end-dose (30 sec) temperature rise reaching the desired 33-58°C. Automated closed-loop targeting and treatment was demonstrated in separate phantoms.

  10. Acoustic Mechanical Feedthroughs

    NASA Technical Reports Server (NTRS)

    Sherrit, Stewart; Walkemeyer, Phillip; Bao, Xiaoqi; Bar-Cohen, Yoseph; Badescu, Mircea

    2013-01-01

    Electromagnetic motors can have problems when operating in extreme environments. In addition, if one needs to do mechanical work outside a structure, electrical feedthroughs are required to transport the electric power to drive the motor. In this paper, we present designs for driving rotary and linear motors by pumping stress waves across a structure or barrier. We accomplish this by designing a piezoelectric actuator on one side of the structure and a resonance structure that is matched to the piezoelectric resonance of the actuator on the other side. Typically, piezoelectric motors can be designed with high torques and lower speeds without the need for gears. One can also use other actuation materials such as electrostrictive, or magnetostrictive materials in a benign environment and transmit the power in acoustic form as a stress wave and actuate mechanisms that are external to the benign environment. This technology removes the need to perforate a structure and allows work to be done directly on the other side of a structure without the use of electrical feedthroughs, which can weaken the structure, pipe, or vessel. Acoustic energy is pumped as a stress wave at a set frequency or range of frequencies to produce rotary or linear motion in a structure. This method of transferring useful mechanical work across solid barriers by pumping acoustic energy through a resonant structure features the ability to transfer work (rotary or linear motion) across pressure or thermal barriers, or in a sterile environment, without generating contaminants. Reflectors in the wall of barriers can be designed to enhance the efficiency of the energy/power transmission. The method features the ability to produce a bi-directional driving mechanism using higher-mode resonances. There are a variety of applications where the presence of a motor is complicated by thermal or chemical environments that would be hostile to the motor components and reduce life and, in some instances, not be

  11. Frequency steerable acoustic transducers

    NASA Astrophysics Data System (ADS)

    Senesi, Matteo

    Structural health monitoring (SHM) is an active research area devoted to the assessment of the structural integrity of critical components of aerospace, civil and mechanical systems. Guided wave methods have been proposed for SHM of plate-like structures using permanently attached piezoelectric transducers, which generate and sense waves to evaluate the presence of damage. Effective interrogation of structural health is often facilitated by sensors and actuators with the ability to perform electronic, i.e. phased array, scanning. The objective of this research is to design an innovative directional piezoelectric transducer to be employed for the localization of broadband acoustic events, or for the generation of Lamb waves for active interrogation of structural health. The proposed Frequency Steerable Acoustic Transducers (FSATs) are characterized by a spatial arrangement of active material which leads to directional characteristics varying with frequency. Thus FSATs can be employed both for directional sensing and generation of guided waves without relying on phasing and control of a large number of channels. The analytical expression of the shape of the FSATs is obtained through a theoretical formulation for continuously distributed active material as part of a shaped piezoelectric device. The FSAT configurations analyzed in this work are a quadrilateral array and a geometry which corresponds to a spiral in the wavenumber domain. The quadrilateral array is experimentally validated, confirming the concept of frequency-dependent directionality. Its limited directivity is improved by the Wavenumber Spiral FSAT (WS-FSAT), which, instead, is characterized by a continuous frequency dependent directionality. Preliminary validations of the WS-FSAT, using a laser doppler vibrometer, are followed by the implementation of the WS-FSAT as a properly shaped piezo transducer. The prototype is first used for localization of acoustic broadband sources. Signal processing

  12. The acoustics of snoring.

    PubMed

    Pevernagie, Dirk; Aarts, Ronald M; De Meyer, Micheline

    2010-04-01

    Snoring is a prevalent disorder affecting 20-40% of the general population. The mechanism of snoring is vibration of anatomical structures in the pharyngeal airway. Flutter of the soft palate accounts for the harsh aspect of the snoring sound. Natural or drug-induced sleep is required for its appearance. Snoring is subject to many influences such as body position, sleep stage, route of breathing and the presence or absence of sleep-disordered breathing. Its presentation may be variable within or between nights. While snoring is generally perceived as a social nuisance, rating of its noisiness is subjective and, therefore, inconsistent. Objective assessment of snoring is important to evaluate the effect of treatment interventions. Moreover, snoring carries information relating to the site and degree of obstruction of the upper airway. If evidence for monolevel snoring at the site of the soft palate is provided, the patient may benefit from palatal surgery. These considerations have inspired researchers to scrutinize the acoustic characteristics of snoring events. Similarly to speech, snoring is produced in the vocal tract. Because of this analogy, existing techniques for speech analysis have been applied to evaluate snoring sounds. It appears that the pitch of the snoring sound is in the low-frequency range (<500 Hz) and corresponds to a fundamental frequency with associated harmonics. The pitch of snoring is determined by vibration of the soft palate, while nonpalatal snoring is more 'noise-like', and has scattered energy content in the higher spectral sub-bands (>500 Hz). To evaluate acoustic properties of snoring, sleep nasendoscopy is often performed. Recent evidence suggests that the acoustic quality of snoring is markedly different in drug-induced sleep as compared with natural sleep. Most often, palatal surgery alters sound characteristics of snoring, but is no cure for this disorder. It is uncertain whether the perceived improvement after palatal surgery, as

  13. Dynamic acoustic tractor beams

    NASA Astrophysics Data System (ADS)

    Mitri, F. G.

    2015-03-01

    Pulling a sphere and vibrating it around an equilibrium position by amplitude-modulation in the near-field of a single finite circular piston transducer is theoretically demonstrated. Conditions are found where a fluid hexane sphere (with arbitrary radius) chosen as an example, centered on the axis of progressive propagating waves and submerged in non-viscous water, experiences an attractive (steady) force pulling it towards the transducer, as well as an oscillatory force forcing it to vibrate back-and-forth. Numerical predictions for the dynamic force illustrate the theory and suggest an innovative method in designing dynamic acoustical tractor beams.

  14. Coffee roasting acoustics.

    PubMed

    Wilson, Preston S

    2014-06-01

    Cracking sounds emitted by coffee beans during the roasting process were recorded and analyzed to investigate the potential of using the sounds as the basis for an automated roast monitoring technique. Three parameters were found that could be exploited. Near the end of the roasting process, sounds known as "first crack" exhibit a higher acoustic amplitude than sounds emitted later, known as "second crack." First crack emits more low frequency energy than second crack. Finally, the rate of cracks appearing in the second crack chorus is higher than the rate in the first crack chorus.

  15. Numerical predictions in acoustics

    NASA Technical Reports Server (NTRS)

    Hardin, Jay C.

    1992-01-01

    Computational Aeroacoustics (CAA) involves the calculation of the sound produced by a flow as well as the underlying flowfield itself from first principles. This paper describes the numerical challenges of CAA and recent research efforts to overcome these challenges. In addition, it includes the benefits of CAA in removing restrictions of linearity, single frequency, constant parameters, low Mach numbers, etc. found in standard acoustic analyses as well as means for evaluating the validity of these numerical approaches. Finally, numerous applications of CAA to both classical as well as modern problems of concern to the aerospace industry are presented.

  16. Wind turbine acoustics

    NASA Technical Reports Server (NTRS)

    Hubbard, Harvey H.; Shepherd, Kevin P.

    1990-01-01

    Available information on the physical characteristics of the noise generated by wind turbines is summarized, with example sound pressure time histories, narrow- and broadband frequency spectra, and noise radiation patterns. Reviewed are noise measurement standards, analysis technology, and a method of characterizing wind turbine noise. Prediction methods are given for both low-frequency rotational harmonics and broadband noise components. Also included are atmospheric propagation data showing the effects of distance and refraction by wind shear. Human perception thresholds, based on laboratory and field tests, are given. Building vibration analysis methods are summarized. The bibliography of this report lists technical publications on all aspects of wind turbine acoustics.

  17. Quantum positron acoustic waves

    SciTech Connect

    Metref, Hassina; Tribeche, Mouloud

    2014-12-15

    Nonlinear quantum positron-acoustic (QPA) waves are investigated for the first time, within the theoretical framework of the quantum hydrodynamic model. In the small but finite amplitude limit, both deformed Korteweg-de Vries and generalized Korteweg-de Vries equations governing, respectively, the dynamics of QPA solitary waves and double-layers are derived. Moreover, a full finite amplitude analysis is undertaken, and a numerical integration of the obtained highly nonlinear equations is carried out. The results complement our previously published results on this problem.

  18. Dynamic acoustic tractor beams

    SciTech Connect

    Mitri, F. G.

    2015-03-07

    Pulling a sphere and vibrating it around an equilibrium position by amplitude-modulation in the near-field of a single finite circular piston transducer is theoretically demonstrated. Conditions are found where a fluid hexane sphere (with arbitrary radius) chosen as an example, centered on the axis of progressive propagating waves and submerged in non-viscous water, experiences an attractive (steady) force pulling it towards the transducer, as well as an oscillatory force forcing it to vibrate back-and-forth. Numerical predictions for the dynamic force illustrate the theory and suggest an innovative method in designing dynamic acoustical tractor beams.

  19. Numerical predictions in acoustics

    NASA Astrophysics Data System (ADS)

    Hardin, Jay C.

    Computational Aeroacoustics (CAA) involves the calculation of the sound produced by a flow as well as the underlying flowfield itself from first principles. This paper describes the numerical challenges of CAA and recent research efforts to overcome these challenges. In addition, it includes the benefits of CAA in removing restrictions of linearity, single frequency, constant parameters, low Mach numbers, etc. found in standard acoustic analyses as well as means for evaluating the validity of these numerical approaches. Finally, numerous applications of CAA to both classical as well as modern problems of concern to the aerospace industry are presented.

  20. Surface acoustic wave/silicon monolithic sensor/processor

    NASA Technical Reports Server (NTRS)

    Kowel, S. T.; Kornreich, P. G.; Nouhi, A.; Kilmer, R.; Fathimulla, M. A.; Mehter, E.

    1983-01-01

    A new technique for sputter deposition of piezoelectric zinc oxide (ZnO) is described. An argon-ion milling system was converted to sputter zinc oxide films in an oxygen atmosphere using a pure zinc oxide target. Piezoelectric films were grown on silicon dioxide and silicon dioxide overlayed with gold. The sputtered films were evaluated using surface acoustic wave measurements, X-ray diffraction, scanning electron microscopy, Auger electron spectroscopy, and resistivity measurements. The effect of the sputtering conditions on the film quality and the result of post-deposition annealing are discussed. The application of these films to the generation of surface acoustic waves is also discussed.

  1. Acoustical Environment for Academic Buildings.

    ERIC Educational Resources Information Center

    Lortie, L.J.

    Discussion of the parameters governing noise control and room acoustics are followed by a demonstration on how to achieve a good acoustical environment. Topics emphasized include--(1) design and control objectives, (2) noise sources and propagation, (3) reverberation parameters, (4) noise control factors and parameters, and (5) sound systems. Also…

  2. Improving Acoustics in American Schools.

    ERIC Educational Resources Information Center

    Nelson, Peggy B.

    2000-01-01

    This introductory article to a clinical forum describes the following seven articles that discuss the problem of noisy classrooms and resulting reduction in learning, basic principles of noise and reverberation measurements in classrooms, solutions to the problem of poor classroom acoustics, and the development of a classroom acoustics standard.…

  3. Piano acoustics-A review

    NASA Astrophysics Data System (ADS)

    Askenfelt, Anders

    2003-10-01

    The design of the piano as we know it today dates back to the second half of the 19th century. The history of studies of the acoustics of the piano begins during the same period. In this talk, known facts and unanswered questions about the acoustics of the piano are reviewed.

  4. Digital Controller For Acoustic Levitation

    NASA Technical Reports Server (NTRS)

    Tarver, D. Kent

    1989-01-01

    Acoustic driver digitally controls sound fields along three axes. Allows computerized acoustic levitation and manipulation of small objects for such purposes as containerless processing and nuclear-fusion power experiments. Also used for controlling motion of vibration-testing tables in three dimensions.

  5. The electron geodesic acoustic mode

    SciTech Connect

    Chakrabarti, N.; Kaw, P. K.

    2012-09-15

    In this report, a novel new mode, named the electron geodesic acoustic mode, is presented. This mode can occur in toroidal plasmas like the conventional geodesic acoustic mode (GAM). The frequency of this new mode is much larger than that of the conventional GAM by a factor equal to the square root of the ion to electron mass ratio.

  6. Acoustic Emissions Reveal Combustion Conditions

    NASA Technical Reports Server (NTRS)

    Ramohalli, D. N. R.; Seshan, P. K.

    1983-01-01

    Turbulent-flame acoustic emissions change with air/fuel ratio variations. Acoustic emissions sensed and processed to detect inefficient operation; control system responds by adjusting fuel/air mixture for greater efficiency. Useful for diagnosis of combustion processes and fuel/air control.

  7. Acoustic Levitation With One Driver

    NASA Technical Reports Server (NTRS)

    Wang, T. G.; Rudnick, I.; Elleman, D. D.; Stoneburner, J. D.

    1985-01-01

    Report discusses acoustic levitation in rectangular chamber using one driver mounted at corner. Placement of driver at corner enables it to couple effectively to acoustic modes along all three axes. Use of single driver reduces cost, complexity and weight of levitation system below those of three driver system.

  8. Acoustic Levitation With One Transducer

    NASA Technical Reports Server (NTRS)

    Barmatz, Martin B.

    1987-01-01

    Higher resonator modes enables simplification of equipment. Experimental acoustic levitator for high-temperature containerless processing has round cylindrical levitation chamber and only one acoustic transducer. Stable levitation of solid particle or liquid drop achieved by exciting sound in chamber to higher-order resonant mode that makes potential well for levitated particle or drop at some point within chamber.

  9. Acoustic Similarity and Dichotic Listening.

    ERIC Educational Resources Information Center

    Benson, Peter

    1978-01-01

    An experiment tests conjectures that right ear advantage (REA) has an auditory origin in competition or interference between acoustically similar stimuli and that feature-sharing effect (FSE) has its origin in assignment of features of phonetically similar stimuli. No effect on the REA for acoustic similarity, and a clear effect of acoustic…

  10. Electronic dummy for acoustical testing

    NASA Technical Reports Server (NTRS)

    Bauer, B. B.; Di Mattia, A. L.; Rosencheck, A. J.; Stern, M.; Torick, E. L.

    1967-01-01

    Electronic Dummy /ED/ used for acoustical testing represents the average male torso from the Xiphoid process upward and includes an acoustic replica of the human head. This head simulates natural flesh, and has an artificial voice and artificial ears that measure sound pressures at the eardrum or the entrance to the ear canal.

  11. Sound Advice on Classroom Acoustics.

    ERIC Educational Resources Information Center

    Sturgeon, Julie

    2003-01-01

    Discusses the importance of acoustic standards in classroom design, presenting an interview with the Acoustical Society of America's (ASA's) standards manager which focuses on reasons for the new ASA standards, the standards document (which was written for K-12 classroom but applies to college classrooms), the need to avoid echo and be able to…

  12. Crew Strength Training

    NASA Video Gallery

    Train to develop your upper and lower body strength in your muscles and bones by performing body-weight squats and push-ups.The Train Like an Astronaut project uses the excitement of exploration to...

  13. Developing Strengths in Families

    ERIC Educational Resources Information Center

    Bowman, Ted

    1976-01-01

    There are few descriptions of growth experiences for total families. This paper describes one such model. It expresses the conviction that families need opportunities to come together with other families to identify strengths, sharpen communication skills, and establish goals. (Author)

  14. Acoustic emission linear pulse holography

    DOEpatents

    Collins, H.D.; Busse, L.J.; Lemon, D.K.

    1983-10-25

    This device relates to the concept of and means for performing Acoustic Emission Linear Pulse Holography, which combines the advantages of linear holographic imaging and Acoustic Emission into a single non-destructive inspection system. This unique system produces a chronological, linear holographic image of a flaw by utilizing the acoustic energy emitted during crack growth. The innovation is the concept of utilizing the crack-generated acoustic emission energy to generate a chronological series of images of a growing crack by applying linear, pulse holographic processing to the acoustic emission data. The process is implemented by placing on a structure an array of piezoelectric sensors (typically 16 or 32 of them) near the defect location. A reference sensor is placed between the defect and the array.

  15. Acoustic Absorption in Porous Materials

    NASA Technical Reports Server (NTRS)

    Kuczmarski, Maria A.; Johnston, James C.

    2011-01-01

    An understanding of both the areas of materials science and acoustics is necessary to successfully develop materials for acoustic absorption applications. This paper presents the basic knowledge and approaches for determining the acoustic performance of porous materials in a manner that will help materials researchers new to this area gain the understanding and skills necessary to make meaningful contributions to this field of study. Beginning with the basics and making as few assumptions as possible, this paper reviews relevant topics in the acoustic performance of porous materials, which are often used to make acoustic bulk absorbers, moving from the physics of sound wave interactions with porous materials to measurement techniques for flow resistivity, characteristic impedance, and wavenumber.

  16. Acoustic controlled rotation and orientation

    NASA Technical Reports Server (NTRS)

    Barmatz, Martin B. (Inventor); Allen, James L. (Inventor)

    1989-01-01

    Acoustic energy is applied to a pair of locations spaced about a chamber, to control rotation of an object levitated in the chamber. Two acoustic transducers applying energy of a single acoustic mode, one at each location, can (one or both) serve to levitate the object in three dimensions as well as control its rotation. Slow rotation is achieved by initially establishing a large phase difference and/or pressure ratio of the acoustic waves, which is sufficient to turn the object by more than 45 deg, which is immediately followed by reducing the phase difference and/or pressure ratio to maintain slow rotation. A small phase difference and/or pressure ratio enables control of the angular orientation of the object without rotating it. The sphericity of an object can be measured by its response to the acoustic energy.

  17. Epipolar geometry of opti-acoustic stereo imaging.

    PubMed

    Negahdaripour, Shahriar

    2007-10-01

    Optical and acoustic cameras are suitable imaging systems to inspect underwater structures, both in regular maintenance and security operations. Despite high resolution, optical systems have limited visibility range when deployed in turbid waters. In contrast, the new generation of high-frequency (MHz) acoustic cameras can provide images with enhanced target details in highly turbid waters, though their range is reduced by one to two orders of magnitude compared to traditional low-/midfrequency (10s-100s KHz) sonar systems. It is conceivable that an effective inspection strategy is the deployment of both optical and acoustic cameras on a submersible platform, to enable target imaging in a range of turbidity conditions. Under this scenario and where visibility allows, registration of the images from both cameras arranged in binocular stereo configuration provides valuable scene information that cannot be readily recovered from each sensor alone. We explore and derive the constraint equations for the epipolar geometry and stereo triangulation in utilizing these two sensing modalities with different projection models. Theoretical results supported by computer simulations show that an opti-acoustic stereo imaging system outperforms a traditional binocular vision with optical cameras, particularly for increasing target distance and (or) turbidity.

  18. MEMS Based Acoustic Array

    NASA Technical Reports Server (NTRS)

    Sheplak, Mark (Inventor); Nishida, Toshikaza (Inventor); Humphreys, William M. (Inventor); Arnold, David P. (Inventor)

    2006-01-01

    Embodiments of the present invention described and shown in the specification aid drawings include a combination responsive to an acoustic wave that can be utilized as a dynamic pressure sensor. In one embodiment of the present invention, the combination has a substrate having a first surface and an opposite second surface, a microphone positioned on the first surface of the substrate and having an input and a first output and a second output, wherein the input receives a biased voltage, and the microphone generates an output signal responsive to the acoustic wave between the first output and the second output. The combination further has an amplifier positioned on the first surface of the substrate and having a first input and a second input and an output, wherein the first input of the amplifier is electrically coupled to the first output of the microphone and the second input of the amplifier is electrically coupled to the second output of the microphone for receiving the output sinual from the microphone. The amplifier is spaced from the microphone with a separation smaller than 0.5 mm.

  19. Opto-acoustic thrombolysis

    DOEpatents

    Celliers, Peter; Da Silva, Luiz; Glinsky, Michael; London, Richard; Maitland, Duncan; Matthews, Dennis; Fitch, Pat

    2000-01-01

    This invention is a catheter-based device for generating an ultrasound excitation in biological tissue. Pulsed laser light is guided through an optical fiber to provide the energy for producing the acoustic vibrations. The optical energy is deposited in a water-based absorbing fluid, e.g. saline, thrombolytic agent, blood or thrombus, and generates an acoustic impulse in the fluid through thermoelastic and/or thermodynamic mechanisms. By pulsing the laser at a repetition rate (which may vary from 10 Hz to 100 kHz) an ultrasonic radiation field can be established locally in the medium. This method of producing ultrasonic vibrations can be used in vivo for the treatment of stroke-related conditions in humans, particularly for dissolving thrombus or treating vasospasm. The catheter can also incorporate thrombolytic drug treatments as an adjunct therapy and it can be operated in conjunction with ultrasonic detection equipment for imaging and feedback control and with optical sensors for characterization of thrombus type and consistency.

  20. Apple Strength Issues

    SciTech Connect

    Syn, C

    2009-12-22

    Strength of the apple parts has been noticed to decrease, especially those installed by the new induction heating system since the LEP campaign started. Fig. 1 shows the ultimate tensile strength (UTS), yield strength (YS), and elongation of the installed or installation-simulated apples on various systems. One can clearly see the mean values of UTS and YS of the post-LEP parts decreased by about 8 ksi and 6 ksi respectively from those of the pre-LEP parts. The slight increase in elongation seen in Fig.1 can be understood from the weak inverse relationship between the strength and elongation in metals. Fig.2 shows the weak correlation between the YS and elongation of the parts listed in Fig. 1. Strength data listed in Figure 1 were re-plotted as histograms in Figs. 3 and 4. Figs. 3a and 4a show histograms of all UTS and YS data. Figs. 3b and 4b shows histograms of pre-LEP data and Figs. 3c and 4c of post-LEP data. Data on statistical scatter of tensile strengths have been rarely published by material suppliers. Instead, only the minimum 'guaranteed' strength data are typically presented. An example of strength distribution of aluminum 7075-T6 sheet material, listed in Fig. 5, show that its scatter width of both UTS and YS for a single sheet can be about 6 ksi and for multi-lot scatter can be as large as 11 ksi even though the sheets have been produced through well-controlled manufacturing process. By approximating the histograms shown in Figs. 3 and 4 by a Gaussian or similar type of distribution curves, one can plausibly see the strength reductions in the later or more recent apples. The pre-LEP data in Figs. 3b and 4b show wider scatter than the post-LEP data in Figs. 3c and 4c and seem to follow the binomial distribution of strength indicating that the apples might have been made from two different lots of material, either from two different vendors or from two different melts of perhaps slightly different chemical composition by a single vendor. The post

  1. Acoustic barriers obtained from industrial wastes.

    PubMed

    Garcia-Valles, M; Avila, G; Martinez, S; Terradas, R; Nogués, J M

    2008-07-01

    Acoustic pollution is an environmental problem that is becoming increasingly more important in our society. Likewise, the accumulation of generated waste and the need for waste management are also becoming more and more pressing. In this study we describe a new material--called PROUSO--obtained from industrial wastes. PROUSO has a variety of commercial and engineering, as well as building, applications. The main raw materials used for this environmentally friendly material come from slag from the aluminium recycling process, dust from the marble industry, foundry sands, and recycled expanded polystyrene from recycled packaging. Some natural materials, such as plastic clays, are also used. To obtain PROUSO we used a conventional ceramic process, forming new mineral phases and incorporating polluted elements into the structure. Its physical properties make PROUSO an excellent acoustic and thermal insulation material. It absorbs 95% of the sound in the frequency band of the 500 Hz. Its compressive strength makes it ideal for use in ceramic wall building. PMID:18514765

  2. Equine acoustics: Anatomy of a whinny

    NASA Astrophysics Data System (ADS)

    Browning, David G.; Scheifele, Peter M.

    2005-09-01

    Of the roughly nine different vocalizations of a horse, the whinny appears to be the most interesting. A whinny is a horse's primary means of long range vocal communication; the bandwidth and variability offer the possibility of expression, at least at a primitive level. Acoustic analysis of a whinny shows three distinct domains: the initial frequency ramp-up running from 1 to 2 kilohertz in roughly 1 second, matched by a similar response in the second and third harmonics; secondly, this is followed by a nasal tremolo of a longer duration with generally a slight downslope in frequency (this is perhaps the stage most associated with the human perception of a whinny); and, lastly, a guttural tremolo, essentially the same sound as a nicker. In the samples analyzed, each domain seems to vary independently both in strength and duration. Attempts to link an aspect of a whinny with a particular behavior is still in a formative stage, complicated by the fact that a horse's behavior is usually based primarily on visual rather than acoustic inputs.

  3. Acoustical phenomenon in ancient Totonac's monument

    NASA Astrophysics Data System (ADS)

    Sánchez-Dehesa, José; Ha˚Kansson, Andreas; Cervera, Francisco; Meseguer, Francisco; Manzanares-Martínez, Betsabé; Ramos-Mendieta, Felipe

    2001-05-01

    The circle of gladiators is a monument built by Totonac Indians in the ceremonial site of Cempoala, which is located near Veracruz (Mexico). The city is believed to date to around 1200 A.D. The monument is a round structure with crenellated wall tops, and it has a diameter of 13.4 m. Though the deterioration of this monument is noticeable, it presents a singular acoustical phenomenon whose strength had to be probably extraordinary on the date of its construction. In brief, along any diameter in the circle, one can find two focal points such that if one person speaks on one focus, another person located on the other hears the sound reinforced. In other words, this circular place acoustically behaves as if it were elliptical. Here, we report the experimental characterization of the phenomenon and present a theoretical explanation. Also, the intentionality of the Totonacs is speculated since these people are associated with the Mayan culture, which is known by its realizations of environments with astonishing sonic properties. [Work supported by CEAL-UAM of Spain.

  4. An Evaluation of the Additional Acoustic Power Needed to Overcome the Effects of a Test-Articles Absorption During Reverberant Chamber Acoustic Testing of Spaceflight Hardware

    NASA Technical Reports Server (NTRS)

    Hozman, Aron D.; Hughes, William O.

    2014-01-01

    It is important to realize that some test-articles may have significant sound absorption that may challenge the acoustic power capabilities of a test facility. Therefore, to mitigate this risk of not being able to meet the customers target spectrum, it is prudent to demonstrate early-on an increased acoustic power capability which compensates for this test-article absorption. This paper describes a concise method to reduce this risk when testing aerospace test-articles which have significant absorption. This method was successfully applied during the SpaceX Falcon 9 Payload Fairing acoustic test program at the NASA Glenn Research Center Plum Brook Stations RATF.

  5. Identifying Potential Noise Sources within Acoustic Signals

    NASA Astrophysics Data System (ADS)

    Holcomb, Victoria; Lewalle, Jacques

    2013-11-01

    We test a new algorithm for its ability to detect sources of noise within random background. The goal of these tests is to better understand how to identify sources within acoustic signals while simultaneously determining the strengths and weaknesses of the algorithm in question. Unlike previously published algorithms, the antenna method does not pinpoint events by looking for the most energetic portions of a signal. The algorithm searches for the ideal lag combinations between three signals by taking excerpts of possible events. The excerpt with the lowest calculated minimum distance between possible events is how the algorithm identifies sources. At the minimum distance, the events are close in time and frequency. This method can be compared to the cross correlation and denoising methods to better understand its effectiveness. This work is supported in part by Spectral Energies LLC, under an SBIR grant from AFRL, as well as the Syracuse University MAE department.

  6. Covert contrast in velar fronting: An acoustic and ultrasound study

    PubMed Central

    Byun, Tara McAllister; Buchwald, Adam; Mizoguchi, Ai

    2016-01-01

    There is growing evidence that speech sound acquisition is a gradual process, with instrumental measures frequently revealing covert contrast in errors perceived to involve phonemic substitution. Ultrasound imaging has the potential to expand our understanding of covert contrast by showing whether a child uses different tongue shapes while producing sounds that are perceived as neutralized. This study used an ultrasound measure (Dorsum Excursion Index) and acoustic measures (VOT and spectral moments of the burst) to investigate overt and covert contrast between velar and alveolar stops in child speech. Participants were two children who produced a perceptually overt velar-alveolar contrast and two children who neutralized the contrast via velar fronting. Both acoustic and ultrasound measures revealed significant differences between perceptually distinct velar and alveolar targets. One child with velar fronting demonstrated covert contrast in one acoustic and one ultrasound measure; the other showed no evidence of contrast. Clinical implications are discussed. PMID:26325303

  7. Multimaterial Acoustic Fibers

    NASA Astrophysics Data System (ADS)

    Chocat, Noemie

    The emergence of multimaterial fibers that combine a multiplicity of solid materials with disparate electrical, optical, and mechanical properties into a single fiber presents new opportunities for extending fiber applications well beyond optical transmission. Fiber reflectors, thermal detectors, photodetectors, chemical sensors, surface-emitting fiber lasers, fiber diodes, and other functional fiber devices have been demonstrated with this approach. Yet, throughout this development and indeed the development of fibers in general, a key premise has remained unchanged : that fibers are essentially static devices incapable of controllably changing their properties at high frequencies. Unique opportunities would arise if a rapid, electrically-driven mechanism for changing fiber properties existed. A wide spectrum of hitherto passive fiber devices could at once become active with applications spanning electronics, mechanics, acoustics, and optics, with the benefits of large surface-area, structural robustness, and mechanical flexibility. This thesis addresses the challenges and opportunities associated with the realization of electromechanical transduction in fibers through the integration of internal piezoelectric and electrostrictive domains. The fundamental challenges related to the fabrication of piezoelectric devices in fiber form are analyzed from a materials perspective, and candidate materials and geometries are selected that are compatible with the thermal drawing process. The first realization of a thermally drawn piezoelectric fiber device is reported and its piezoelectric response is established over a wide range of frequencies. The acoustic properties of piezoelectric fiber devices are characterized and related to their mechanical and geometric properties. Collective effects in multi-fiber constructs are discussed and demonstrated by the realization of a linear phased array of piezoelectric fibers capable of acoustic beam steering. High strain actuation

  8. Acoustic Network Localization and Interpretation of Infrasonic Pulses from Lightning

    NASA Astrophysics Data System (ADS)

    Arechiga, R. O.; Johnson, J. B.; Badillo, E.; Michnovicz, J. C.; Thomas, R. J.; Edens, H. E.; Rison, W.

    2011-12-01

    We improve on the localization accuracy of thunder sources and identify infrasonic pulses that are correlated across a network of acoustic arrays. We attribute these pulses to electrostatic charge relaxation (collapse of the electric field) and attempt to model their spatial extent and acoustic source strength. Toward this objective we have developed a single audio range (20-15,000 Hz) acoustic array and a 4-station network of broadband (0.01-500 Hz) microphone arrays with aperture of ~45 m. The network has an aperture of 1700 m and was installed during the summers of 2009-2011 in the Magdalena mountains of New Mexico, an area that is subject to frequent lightning activity. We are exploring a new technique based on inverse theory that integrates information from the audio range and the network of broadband acoustic arrays to locate thunder sources more accurately than can be achieved with a single array. We evaluate the performance of the technique by comparing the location of thunder sources with RF sources located by the lightning mapping array (LMA) of Langmuir Laboratory at New Mexico Tech. We will show results of this technique for lightning flashes that occurred in the vicinity of our network of acoustic arrays and over the LMA. We will use acoustic network detection of infrasonic pulses together with LMA data and electric field measurements to estimate the spatial distribution of the charge (within the cloud) that is used to produce a lightning flash, and will try to quantify volumetric charges (charge magnitude) within clouds.

  9. Fracture of fiber-reinforced composites analyzed via acoustic emission.

    PubMed

    Ereifej, Nadia S; Oweis, Yara G; Altarawneh, Sandra K

    2015-01-01

    This study investigated the fracture resistance of composite resins using a three-point bending test and acoustic emission (AE) analysis. Three groups of specimens (n=15) were prepared: non-reinforced BelleGlass HP composite (NRC), unidirectional (UFRC) and multidirectional (MFRC) fiber-reinforced groups which respectively incorporated unidirectional Stick and multidirectional StickNet fibers. Specimens were loaded to failure in a universal testing machine while an AE system was used to detect audible signals. Initial fracture strengths and AE amplitudes were significantly lower than those at final fracture in all groups (p<0.05). Initial fracture strength of UFRC (170.0 MPa) was significantly higher than MFRC (124.6 MPa) and NRC (87.9 MPa). Final fracture strength of UFRC (198.1 MPa) was also significantly higher than MFRC (151.0 MPa) and NRC (109.2 MPa). Initial and final fracture strengths were significantly correlated (r=0.971). It was concluded that fiber reinforcement improved the fracture resistance of composite resin materials and the monitoring of acoustic signals revealed significant information regarding the fracture process. PMID:25904176

  10. Fracture of fiber-reinforced composites analyzed via acoustic emission.

    PubMed

    Ereifej, Nadia S; Oweis, Yara G; Altarawneh, Sandra K

    2015-01-01

    This study investigated the fracture resistance of composite resins using a three-point bending test and acoustic emission (AE) analysis. Three groups of specimens (n=15) were prepared: non-reinforced BelleGlass HP composite (NRC), unidirectional (UFRC) and multidirectional (MFRC) fiber-reinforced groups which respectively incorporated unidirectional Stick and multidirectional StickNet fibers. Specimens were loaded to failure in a universal testing machine while an AE system was used to detect audible signals. Initial fracture strengths and AE amplitudes were significantly lower than those at final fracture in all groups (p<0.05). Initial fracture strength of UFRC (170.0 MPa) was significantly higher than MFRC (124.6 MPa) and NRC (87.9 MPa). Final fracture strength of UFRC (198.1 MPa) was also significantly higher than MFRC (151.0 MPa) and NRC (109.2 MPa). Initial and final fracture strengths were significantly correlated (r=0.971). It was concluded that fiber reinforcement improved the fracture resistance of composite resin materials and the monitoring of acoustic signals revealed significant information regarding the fracture process.

  11. Controlling sound with acoustic metamaterials

    NASA Astrophysics Data System (ADS)

    Cummer, Steven A.; Christensen, Johan; Alù, Andrea

    2016-03-01

    Acoustic metamaterials can manipulate and control sound waves in ways that are not possible in conventional materials. Metamaterials with zero, or even negative, refractive index for sound offer new possibilities for acoustic imaging and for the control of sound at subwavelength scales. The combination of transformation acoustics theory and highly anisotropic acoustic metamaterials enables precise control over the deformation of sound fields, which can be used, for example, to hide or cloak objects from incident acoustic energy. Active acoustic metamaterials use external control to create effective material properties that are not possible with passive structures and have led to the development of dynamically reconfigurable, loss-compensating and parity-time-symmetric materials for sound manipulation. Challenges remain, including the development of efficient techniques for fabricating large-scale metamaterial structures and converting laboratory experiments into useful devices. In this Review, we outline the designs and properties of materials with unusual acoustic parameters (for example, negative refractive index), discuss examples of extreme manipulation of sound and, finally, provide an overview of future directions in the field.

  12. PORTABLE ACOUSTIC MONITORING PACKAGE (PAMP)

    SciTech Connect

    John L. Loth; Gary J. Morris; George M. Palmer; Richard Guiler; Patrick Browning

    2004-07-20

    The Portable Acoustic Monitoring Package (PAMP) has been designed to record and monitor the acoustic signal in natural gas transmission lines. In particular the three acoustic signals associated with a line leak. The system is portable ({approx}30 lbs) and is designed for line pressures up to 1000 psi. It has become apparent that cataloging of the various background acoustic signals in natural gas transmission line is very important if a system to identify leak signals is to be developed. The low-pressure (0-200 psig) laboratory test phase has been completed and a number of field trials have been conducted. Before the cataloging phase could begin, a few problems identified in field trials identified had to be corrected such as: (1) Decreased microphone sensitivity at line pressures above 250 psig. (2) The inability to deal with large data sets collected when cataloging the variety of signals in a transmission line. (3) The lack of an available online acoustic calibration system. These problems have been solved and the WVU PAMP is now fully functional over the entire pressure range found in the Natural Gas transmission lines in this region. Field portability and reliability have been greatly improved. Data collection and storage have also improved to the point were the full acoustic spectrum of acoustic signals can be accurately cataloged, recorded and described.

  13. Turbofan Acoustic Propagation and Radiation

    NASA Technical Reports Server (NTRS)

    Eversman, Walter

    2000-01-01

    This document describes progress in the development of finite element codes for the prediction of near and far field acoustic radiation from the inlet and aft fan ducts of turbofan engines. The report consists of nine papers which have appeared in archival journals and conference proceedings, or are presently in review for publication. Topics included are: 1. Aft Fan Duct Acoustic Radiation; 2. Mapped Infinite Wave Envelope Elements for Acoustic Radiation in a Uniformly Moving Medium; 3. A Reflection Free Boundary Condition for Propagation in Uniform Flow Using Mapped Infinite Wave Envelope Elements; 4. A Numerical Comparison Between Multiple-Scales and FEM Solution for Sound Propagation in Lined Flow Ducts; 5. Acoustic Propagation at High Frequencies in Ducts; 6. The Boundary Condition at an Impedance Wall in a Nonuniform Duct with Potential Flow; 7. A Reverse Flow Theorem and Acoustic Reciprocity in Compressible Potential Flows; 8. Reciprocity and Acoustics Power in One Dimensional Compressible Potential Flows; and 9. Numerical Experiments on Acoustic Reciprocity in Compressible Potential Flows.

  14. Acoustic sensors using microstructures tunable with energy other than acoustic energy

    DOEpatents

    Datskos, Panagiotis G.

    2003-11-25

    A sensor for detecting acoustic energy includes a microstructure tuned to a predetermined acoustic frequency and a device for detecting movement of the microstructure. A display device is operatively linked to the movement detecting device. When acoustic energy strikes the acoustic sensor, acoustic energy having a predetermined frequency moves the microstructure, where the movement is detected by the movement detecting device.

  15. Acoustic sensors using microstructures tunable with energy other than acoustic energy

    DOEpatents

    Datskos, Panagiotis G.

    2005-06-07

    A sensor for detecting acoustic energy includes a microstructure tuned to a predetermined acoustic frequency and a device for detecting movement of the microstructure. A display device is operatively linked to the movement detecting device. When acoustic energy strikes the acoustic sensor, acoustic energy having a predetermined frequency moves the microstructure, where the movement is detected by the movement detecting device.

  16. Acoustic fault injection tool (AFIT)

    NASA Astrophysics Data System (ADS)

    Schoess, Jeffrey N.

    1999-05-01

    On September 18, 1997, Honeywell Technology Center (HTC) successfully completed a three-week flight test of its rotor acoustic monitoring system (RAMS) at Patuxent River Flight Test Center. This flight test was the culmination of an ambitious 38-month proof-of-concept effort directed at demonstrating the feasibility of detecting crack propagation in helicopter rotor components. The program was funded as part of the U.S. Navy's Air Vehicle Diagnostic Systems (AVDS) program. Reductions in Navy maintenance budgets and available personnel have dictated the need to transition from time-based to 'condition-based' maintenance. Achieving this will require new enabling diagnostic technologies. The application of acoustic emission for the early detection of helicopter rotor head dynamic component faults has proven the feasibility of the technology. The flight-test results demonstrated that stress-wave acoustic emission technology can detect signals equivalent to small fatigue cracks in rotor head components and can do so across the rotating articulated rotor head joints and in the presence of other background acoustic noise generated during flight operation. During the RAMS flight test, 12 test flights were flown from which 25 Gbyte of digital acoustic data and about 15 hours of analog flight data recorder (FDR) data were collected from the eight on-rotor acoustic sensors. The focus of this paper is to describe the CH-46 flight-test configuration and present design details about a new innovative machinery diagnostic technology called acoustic fault injection. This technology involves the injection of acoustic sound into machinery to assess health and characterize operational status. The paper will also address the development of the Acoustic Fault Injection Tool (AFIT), which was successfully demonstrated during the CH-46 flight tests.

  17. Acoustic cavitation movies

    NASA Astrophysics Data System (ADS)

    Crum, Lawrence A.

    2003-04-01

    Acoustic cavitation is a phenomenon that occurs on microsecond time scales and micron length scales, yet, it has many macroscopic manifestations. Accordingly, it is often difficult, at least for the author, to form realistic physical descriptions of the specific mechanisms through which it expresses itself in our macroscopic world. For example, there are still many who believe that cavitation erosion is due to the shock wave that is emitted by bubble implosion, rather than the liquid jet created on asymmetric collapse...and they may be right. Over the years, the author has accumulated a number of movies and high-speed photographs of cavitation activity, which he uses to form his own visual references. In the time allotted, he will show a number of these movies and photographs and discuss their relevance to existing technological problems. A limited number of CDs containing the presented materials will be available to interested individuals. [Work supported in part by the NIH, USAMRMC, and the ONR.

  18. Wind turbine acoustic standards

    NASA Technical Reports Server (NTRS)

    Stephens, D. G.; Shepherd, K. P.; Grosveld, F.

    1981-01-01

    A program is being conducted to develop noise standards for wind turbines which minimize annoyance and which can be used to design specifications. The approach consists of presenting wind turbine noise stimuli to test subjects in a laboratory listening chamber. The responses of the subjects are recorded for a range of stimuli which encompass the designs, operating conditions, and ambient noise levels of current and future installations. Results to date have established the threshold of detectability for a range of impulsive stimuli of the type associated with blade/tower wake interactions. The status of the ongoing psychoacoustic tests, the subjective data, and the approach to the development of acoustic criteria/standards are described.

  19. Electromagnetic acoustic transducer

    DOEpatents

    Alers, George A.; Burns, Jr., Leigh R.; MacLauchlan, Daniel T.

    1988-01-01

    A noncontact ultrasonic transducer for studying the acoustic properties of a metal workpiece includes a generally planar magnetizing coil positioned above the surface of the workpiece, and a generally planar eddy current coil between the magnetizing coil and the workpiece. When a large current is passed through the magnetizing coil, a large magnetic field is applied to the near-surface regions of the workpiece. The eddy current coil can then be operated as a transmitter by passing an alternating current therethrough to excite ultrasonic waves in the surface of the workpiece, or operated as a passive receiver to sense ultrasonic waves in the surface by measuring the output signal. The geometries of the two coils can be varied widely to be effective for different types of ultrasonic waves. The coils are preferably packaged in a housing which does not interfere with their operation, but protects them from a variety of adverse environmental conditions.

  20. DETECTING BARYON ACOUSTIC OSCILLATIONS

    SciTech Connect

    Labatie, A.; Starck, J. L.

    2012-02-20

    Baryon acoustic oscillations (BAOs) are a feature imprinted in the galaxy distribution by acoustic waves traveling in the plasma of the early universe. Their detection at the expected scale in large-scale structures strongly supports current cosmological models with a nearly linear evolution from redshift z Almost-Equal-To 1000 and the existence of dark energy. In addition, BAOs provide a standard ruler for studying cosmic expansion. In this paper, we focus on methods for BAO detection using the correlation function measurement {xi}-hat. For each method, we want to understand the tested hypothesis (the hypothesis H{sub 0} to be rejected) and the underlying assumptions. We first present wavelet methods which are mildly model-dependent and mostly sensitive to the BAO feature. Then we turn to fully model-dependent methods. We present the method used most often based on the {chi}{sup 2} statistic, but we find that it has limitations. In general the assumptions of the {chi}{sup 2} method are not verified, and it only gives a rough estimate of the significance. The estimate can become very wrong when considering more realistic hypotheses, where the covariance matrix of {xi}-hat depends on cosmological parameters. Instead, we propose to use the {Delta}l method based on two modifications: we modify the procedure for computing the significance and make it rigorous, and we modify the statistic to obtain better results in the case of varying covariance matrix. We verify with simulations that correct significances are different from the ones obtained using the classical {chi}{sup 2} procedure. We also test a simple example of varying covariance matrix. In this case we find that our modified statistic outperforms the classical {chi}{sup 2} statistic when both significances are correctly computed. Finally, we find that taking into account variations of the covariance matrix can change both BAO detection levels and cosmological parameter constraints.

  1. Weapons bay acoustic environment

    NASA Astrophysics Data System (ADS)

    Shaw, L. L.; Shimovetz, R. M.

    1994-09-01

    An aircraft weapons bay exposed to freestream flow experiences an intense aeroacoustic environment in and around the bay. Experience has taught that the intensity of this environment can be severe enough to result in damage to a store, its internal equipment, or the structure of the weapons bay itself. To ensure that stores and sensitive internal equipment can withstand this hazardous environment and successfully complete the mission, they must be qualified to the most severe sound pressure levels anticipated for the mission. If the qualification test levels are too high, the store and its internal equipment will be over designed, resulting in unnecessary costs and possible performance penalties. If the qualification levels are below those experienced in flight, the store or its internal equipment may catastrophically fail during performance of the mission. Thus, it is desirable that the expected levels in weapons bays be accurately predicted. A large number of research efforts have been directed toward understanding flow-induced cavity oscillations. However, the phenomena are still not adequately understood to allow one to predict the fluctuating pressure levels for various configurations and flow conditions. This is especially true at supersonic flow speeds, where only a small amount of data are available. This paper will give a background of flow induced cavity oscillations and discuss predictions, control and suppression, and the future of weapons bay acoustic environments. A large number of research efforts have been directed toward understanding flow-induced cavity oscillations. However, the phenomena are still not adequately understood to allow one to predict the fluctuating pressure levels for various configurations and flow conditions. This is especially true at supersonic flow speeds, where only a small amount of data are available. This paper will give a background of flow induced cavity oscillations and discuss predictions, control and suppression, and

  2. Recent Langley helicopter acoustics contributions

    NASA Technical Reports Server (NTRS)

    Morgan, Homer G.; Pao, S. P.; Powell, C. A.

    1988-01-01

    The helicopter acoustics program at NASA Langley has included technology for elements of noise control ranging from sources of noise to receivers of noise. The scope of Langley contributions for about the last decade is discussed. Specifically, the resolution of two certification noise quantification issues by subjective acoustics research, the development status of the helicopter system noise prediction program ROTONET are reviewed and the highlights from research on blade rotational, broadband, and blade vortex interaction noise sources are presented. Finally, research contributions on helicopter cabin (or interior) noise control are presented. A bibliography of publications from the Langley helicopter acoustics program for the past 10 years is included.

  3. An asymptotic model in acoustics: acoustic drift equations.

    PubMed

    Vladimirov, Vladimir A; Ilin, Konstantin

    2013-11-01

    A rigorous asymptotic procedure with the Mach number as a small parameter is used to derive the equations of mean flows which coexist and are affected by the background acoustic waves in the limit of very high Reynolds number.

  4. High strength alloys

    DOEpatents

    Maziasz, Phillip James [Oak Ridge, TN; Shingledecker, John Paul [Knoxville, TN; Santella, Michael Leonard [Knoxville, TN; Schneibel, Joachim Hugo [Knoxville, TN; Sikka, Vinod Kumar [Oak Ridge, TN; Vinegar, Harold J [Bellaire, TX; John, Randy Carl [Houston, TX; Kim, Dong Sub [Sugar Land, TX

    2010-08-31

    High strength metal alloys are described herein. At least one composition of a metal alloy includes chromium, nickel, copper, manganese, silicon, niobium, tungsten and iron. System, methods, and heaters that include the high strength metal alloys are described herein. At least one heater system may include a canister at least partially made from material containing at least one of the metal alloys. At least one system for heating a subterranean formation may include a tubular that is at least partially made from a material containing at least one of the metal alloys.

  5. High strength alloys

    DOEpatents

    Maziasz, Phillip James; Shingledecker, John Paul; Santella, Michael Leonard; Schneibel, Joachim Hugo; Sikka, Vinod Kumar; Vinegar, Harold J.; John, Randy Carl; Kim, Dong Sub

    2012-06-05

    High strength metal alloys are described herein. At least one composition of a metal alloy includes chromium, nickel, copper, manganese, silicon, niobium, tungsten and iron. System, methods, and heaters that include the high strength metal alloys are described herein. At least one heater system may include a canister at least partially made from material containing at least one of the metal alloys. At least one system for heating a subterranean formation may include a tublar that is at least partially made from a material containing at least one of the metal alloys.

  6. Spin resonance strength calculations

    SciTech Connect

    Courant,E.D.

    2008-10-06

    In calculating the strengths of depolarizing resonances it may be convenient to reformulate the equations of spin motion in a coordinate system based on the actual trajectory of the particle, as introduced by Kondratenko, rather than the conventional one based on a reference orbit. It is shown that resonance strengths calculated by the conventional and the revised formalisms are identical. Resonances induced by radiofrequency dipoles or solenoids are also treated; with rf dipoles it is essential to consider not only the direct effect of the dipole but also the contribution from oscillations induced by it.

  7. Probing Acoustic Nonlinearity by Mixing Surface Acoustic Waves

    SciTech Connect

    Hurley, David Howard; Telschow, Kenneth Louis

    2000-07-01

    Measurement methods aimed at determining material properties through nonlinear wave propagation are sensitive to artifacts caused by background nonlinearities inherent in the ultrasonic generation and detection methods. The focus of this paper is to describe our investigation of nonlinear mixing of surface acoustic waves (SAWs) as a means to decrease sensitivity to background nonlinearity and increase spatial sensitivity to acoustic nonlinearity induced by material microstructure.

  8. Acoustic source separation for the detection of coronary artery sounds.

    PubMed

    Cooper, Daniel B; Roan, Michael J; Vlachos, Pavlos P

    2011-12-01

    Coronary artery disease (CAD) is the leading cause of death in the United States, being responsible for more than 20% of all deaths in the country. This is in large part due to the difficulty of diagnostic screening for CAD. Phonoangiography seeks to detect CAD via the acoustic signature associated with turbulent flow near an abnormally constricted, or stenosed, region. However, the usefulness of the technique is severely hindered by the low strength of the CAD signal compared to the background noise within the chest. In this work, acoustic finite element analysis (FEA) was performed on physiologically accurate chest geometries to demonstrate the feasibility of an original acoustic source separation methodology for isolating coronary sounds. This approach is based upon pseudoinversion of mixing matrices determined through a combination of experiment and computation. This allows calculation of the sound emitted by the coronary arteries based upon measurements of the acoustic velocity on the chest surface. This work demonstrates the feasibility of such a technique computationally and examines the vulnerability of the proposed approach to measurement errors. PMID:22225070

  9. Relating acoustics and human outcome measures in hospitals

    NASA Astrophysics Data System (ADS)

    Hsu, Timothy Yuan-Ting

    Hospital noise has been an area of concern for medical professionals and researchers for the last century. Researchers have attempted to characterize the soundscape of hospital wards and have made some preliminary links between noise and human outcomes. In the past, most of the research has used traditional acoustic metrics. These traditional metrics, such as average sound level, are readily measured using sound level meters and have been the primary results reported in previous studies. However, it has been shown that these traditional metrics may be insufficient in fully characterizing the wards. The two studies presented here use traditional metrics and nontraditional metrics to define the soundscape of hospital wards. The uncovered links, between both sound level metrics and psychoacoustic metrics and patient physiological measurements, are discussed. Correlations and risk ratios demonstrate the presence and the strength of these relationships. These results demonstrate the relationships between hospital acoustics and patient physiological arousal. Additionally, the effects of adding absorption in a hospital ward are presented. Sound level, sound power, reverberation time and other acoustic metrics are directly affected. The speech intelligibility in these wards is evaluated in order to highlight the temporal nature of speech intelligibility. With both studies combined, both traditional and nontraditional acoustic measures are shown to have statistically significant relationships to both patient and staff outcomes.

  10. Hybrid optical and acoustic force based sorting

    NASA Astrophysics Data System (ADS)

    O'Mahoney, Paul; Brodie, Graham W.; Wang, Han; Demore, Christine E. M.; Cochran, Sandy; Spalding, Gabriel C.; MacDonald, Michael P.

    2014-09-01

    We report the combined use of optical sorting and acoustic levitation to give particle sorting. Differing sizes of microparticles are sorted optically both with and without the aid of acoustic levitation, and the results compared to show that the use of acoustic trapping can increase sorting efficiency. The use of a transparent ultrasonic transducer is also shown to streamline the integration of optics and acoustics. We also demonstrate the balance of optical radiation pressure and acoustic levitation to achieve vertical sorting.

  11. The effective acoustic environment of helicopter crewmen

    NASA Technical Reports Server (NTRS)

    Camp, R. T., Jr.; Mozo, B. T.

    1978-01-01

    Methods of measuring the composite acoustic environment of helicopters in order to quantify the effective acoustic environment of the crewmen and to assess the real acoustic hazards of the personnel are examined. It is indicated that the attenuation characteristics of the helmets and hearing protectors and the variables of the physiology of the human ear be accounted for in determining the effective acoustic environment of Army helicopter crewmen as well as the acoustic hazards of voice communications systems noise.

  12. PC and PVC Acoustics Demonstrations.

    ERIC Educational Resources Information Center

    Luzader, Stephen

    1990-01-01

    Described are four musical instruments constructed from polyvinyl chloride (PVC) pipe. The use of computerized synthesizers to play scales and chords is discussed. Suggestions for other illustrations of acoustics are included. (CW)

  13. Acoustics: Motion controlled by sound

    NASA Astrophysics Data System (ADS)

    Neild, Adrian

    2016-09-01

    A simple technique has been developed that produces holograms made of sound waves. These acoustic landscapes are used to manipulate microscale objects, and offer great potential in medical imaging and selective heating. See Letter p.518

  14. Acoustic Characterization of Mesoscale Objects

    SciTech Connect

    Chinn, D; Huber, R; Chambers, D; Cole, G; Balogun, O; Spicer, J; Murray, T

    2007-03-13

    This report describes the science and engineering performed to provide state-of-the-art acoustic capabilities for nondestructively characterizing mesoscale (millimeter-sized) objects--allowing micrometer resolution over the objects entire volume. Materials and structures used in mesoscale objects necessitate the use of (1) GHz acoustic frequencies and (2) non-contacting laser generation and detection of acoustic waves. This effort demonstrated that acoustic methods at gigahertz frequencies have the necessary penetration depth and spatial resolution to effectively detect density discontinuities, gaps, and delaminations. A prototype laser-based ultrasonic system was designed and built. The system uses a micro-chip laser for excitation of broadband ultrasonic waves with frequency components reaching 1.0 GHz, and a path-stabilized Michelson interferometer for detection. The proof-of-concept for mesoscale characterization is demonstrated by imaging a micro-fabricated etched pattern in a 70 {micro}m thick silicon wafer.

  15. Notch strength of composites

    NASA Technical Reports Server (NTRS)

    Whitney, J. M.

    1983-01-01

    The notch strength of composites is discussed. The point stress and average stress criteria relate the notched strength of a laminate to the average strength of a relatively long tensile coupon. Tests of notched specimens in which microstrain gages have been placed at or near the edges of the holes have measured strains much larger that those measured in an unnotched tensile coupon. Orthotropic stress concentration analyses of failed notched laminates have also indicated that failure occurred at strains much larger than those experienced on tensile coupons with normal gage lengths. This suggests that the high strains at the edge of a hole can be related to the very short length of fiber subjected to these strains. Lockheed has attempted to correlate a series of tests of several laminates with holes ranging from 0.19 to 0.50 in. Although the average stress criterion correlated well with test results for hole sizes equal to or greater than 0.50 in., it over-estimated the laminate strength in the range of hole sizes from 0.19 to 0.38 in. It thus appears that a theory is needed that is based on the mechanics of failure and is more generally applicable to the range of hole sizes and the varieties of laminates found in aircraft construction.

  16. High strength composites evaluation

    SciTech Connect

    Marten, S.M.

    1992-02-01

    A high-strength, thick-section, graphite/epoxy composite was identified. The purpose of this development effort was to evaluate candidate materials and provide LANL with engineering properties. Eight candidate materials (Samples 1000, 1100, 1200, 1300, 1400, 1500, 1600, and 1700) were chosen for evaluation. The Sample 1700 thermoplastic material was the strongest overall.

  17. Gender Differences in Strength.

    ERIC Educational Resources Information Center

    Heyward, Vivian H.; And Others

    1986-01-01

    This investigation examined gender differences of 103 physically active men and women in upper and lower body strength as a function of lean body weight and the distribution of muscle and subcutaneous fat in the upper and lower limbs. Results are discussed. (Author/MT)

  18. Study Acoustic Emissions from Composites

    NASA Technical Reports Server (NTRS)

    Walker, James; Workman,Gary

    1998-01-01

    The purpose of this work will be to develop techniques for monitoring the acoustic emissions from carbon epoxy composite structures at cryogenic temperatures. Performance of transducers at temperatures ranging from ambient to cryogenic and the characteristics of acoustic emission from composite structures will be studied and documented. This entire effort is directed towards characterization of structures used in NASA propulsion programs such as the X-33.

  19. Acoustic Rectification in Dispersive Media

    NASA Technical Reports Server (NTRS)

    Cantrell, John H.

    2008-01-01

    It is shown that the shapes of acoustic radiation-induced static strain and displacement pulses (rectified acoustic pulses) are defined locally by the energy density of the generating waveform. Dispersive properties are introduced analytically by assuming that the rectified pulses are functionally dependent on a phase factor that includes both dispersive and nonlinear terms. The dispersion causes an evolutionary change in the shape of the energy density profile that leads to the generation of solitons experimentally observed in fused silica.

  20. Acoustics Research of Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Gao, Ximing; Houston, Janice D.

    2014-01-01

    The liftoff phase induces some of the highest acoustic loading over a broad frequency for a launch vehicle. These external acoustic environments are used in the prediction of the internal vibration responses of the vehicle and components. Thus, predicting these liftoff acoustic environments is critical to the design requirements of any launch vehicle but there are challenges. Present liftoff vehicle acoustic environment prediction methods utilize stationary data from previously conducted hold-down tests; i.e. static firings conducted in the 1960's, to generate 1/3 octave band Sound Pressure Level (SPL) spectra. These data sets are used to predict the liftoff acoustic environments for launch vehicles. To facilitate the accuracy and quality of acoustic loading, predictions at liftoff for future launch vehicles such as the Space Launch System (SLS), non-stationary flight data from the Ares I-X were processed in PC-Signal in two forms which included a simulated hold-down phase and the entire launch phase. In conjunction, the Prediction of Acoustic Vehicle Environments (PAVE) program was developed in MATLAB to allow for efficient predictions of sound pressure levels (SPLs) as a function of station number along the vehicle using semiempirical methods. This consisted, initially, of generating the Dimensionless Spectrum Function (DSF) and Dimensionless Source Location (DSL) curves from the Ares I-X flight data. These are then used in the MATLAB program to generate the 1/3 octave band SPL spectra. Concluding results show major differences in SPLs between the hold-down test data and the processed Ares IX flight data making the Ares I-X flight data more practical for future vehicle acoustic environment predictions.

  1. Acoustic techniques in nuclear safeguards

    SciTech Connect

    Olinger, C.T.; Sinha, D.N.

    1995-07-01

    Acoustic techniques can be employed to address many questions relevant to current nuclear technology needs. These include establishing and monitoring intrinsic tags and seals, locating holdup in areas where conventional radiation-based measurements have limited capability, process monitoring, monitoring containers for corrosion or changes in pressure, and facility design verification. These acoustics applications are in their infancy with respect to safeguards and nuclear material management, but proof-of-principle has been demonstrated in many of the areas listed.

  2. Simplified Rotation In Acoustic Levitation

    NASA Technical Reports Server (NTRS)

    Barmatz, M. B.; Gaspar, M. S.; Trinh, E. H.

    1989-01-01

    New technique based on old discovery used to control orientation of object levitated acoustically in axisymmetric chamber. Method does not require expensive equipment like additional acoustic drivers of precisely adjustable amplitude, phase, and frequency. Reflecting object acts as second source of sound. If reflecting object large enough, close enough to levitated object, or focuses reflected sound sufficiently, Rayleigh torque exerted on levitated object by reflected sound controls orientation of object.

  3. Stable And Oscillating Acoustic Levitation

    NASA Technical Reports Server (NTRS)

    Barmatz, Martin B.; Garrett, Steven L.

    1988-01-01

    Sample stability or instability determined by levitating frequency. Degree of oscillation of acoustically levitated object along axis of levitation chamber controlled by varying frequency of acoustic driver for axis above or below frequency of corresponding chamber resonance. Stabilization/oscillation technique applied in normal Earth gravity, or in absence of gravity to bring object quickly to rest at nominal levitation position or make object oscillate in desired range about that position.

  4. ACOUSTIC RECTIFICATION IN DISPERSIVE MEDIA

    SciTech Connect

    Cantrell, John H.

    2009-03-03

    It is shown that the shapes of acoustic radiation-induced static strain and displacement pulses (rectified acoustic pulses) are defined locally by the energy density of the generating waveform. Dispersive properties are introduced analytically by assuming that the rectified pulses are functionally dependent on a phase factor that includes both dispersive and nonlinear terms. The dispersion causes an evolutionary change in the shape of the energy density profile that leads to the generation of solitons experimentally observed in fused silica.

  5. Acoustically-driven microfluidic systems

    SciTech Connect

    Wang, A W; Benett, W J; Tarte, L R

    2000-06-23

    We have demonstrated a non-contact method of concentrating and mixing particles in a plastic microfluidic chamber employing acoustic radiation pressure. A flaw cell package has also been designed that integrates liquid sample interconnects, electrical contacts and a removable sample chamber. Experiments were performed on 1, 3, 6, and 10 {micro}m polystyrene beads. Increased antibody binding to a solid-phase substrate was observed in the presence of acoustic mixing due to improve mass transport.

  6. Articulatory-to-Acoustic Relations in Talkers with Dysarthria: A First Analysis

    ERIC Educational Resources Information Center

    Mefferd, Antje

    2015-01-01

    Purpose: The primary purpose of this study was to determine the strength of interspeaker and intraspeaker articulatory-to-acoustic relations of vowel contrast produced by talkers with dysarthria and controls. Methods: Six talkers with amyotrophic lateral sclerosis (ALS), six talkers with Parkinson's disease (PD), and 12 controls repeated a…

  7. Arctic acoustics ultrasonic modeling studies

    NASA Astrophysics Data System (ADS)

    Chamuel, Jacques R.

    1990-03-01

    A unique collection of laboratory ultrasonic modeling results are presented revealing and characterizing hidden pulsed seismoacoustic wave phenomena from 3-D range dependent liquid/solid boundaries. The research succeeded in isolating and identifying low frequency (10 to 500 Hz) transmission loss mechanisms and provided physical insight into Arctic acoustic problems generally beyond the state-of-the-art of theoretical and numerical analysis. The ultrasonic modeling studies dealt with controversial issues and existing discrepancies on seismo-acoustic waves at water/ice interface, sea ice thickness determination, low frequency transmission loss, and bottom leaky Rayleigh waves. The areas investigated include leaky Rayleigh waves at water/ice interface, leaky flexural waves in floating ice plates, effects of dry/wet cracks in sea ice on plate waves and near grazing acoustic waves, edge waves in floating plates, low frequency backscatter from ice keel width resonances, conversion of underwater acoustic waves into plate waves by keels, nondispersive flexural wave along apex of small angle solid wedge, Scholte and leaky Rayleigh waves along apex of immersed 90 ice wedge, backscatter from trailing edge of floes, floating plate resonances associated with near-grazing underwater acoustic waves, acoustic coupling between adjacent floes, and multiple bottom leaky Rayleigh wave components in water layer over solid bottom.

  8. Opto-acoustic cell permeation

    SciTech Connect

    Visuri, S R; Heredia, N

    2000-03-09

    Optically generated acoustic waves have been used to temporarily permeate biological cells. This technique may be useful for enhancing transfection of DNA into cells or enhancing the absorption of locally delivered drugs. A diode-pumped frequency-doubled Nd:YAG laser operating at kHz repetition rates was used to produce a series of acoustic pulses. An acoustic wave was formed via thermoelastic expansion by depositing laser radiation into an absorbing dye. Generated pressures were measured with a PVDF hydrophone. The acoustic waves were transmitted to cultured and plated cells. The cell media contained a selection of normally- impermeable fluorescent-labeled dextran dyes. Following treatment with the opto-acoustic technique, cellular incorporation of dyes, up to 40,000 Molecular Weight, was noted. Control cells that did not receive opto-acoustic treatment had unremarkable dye incorporation. Uptake of dye was quantified via fluorescent microscopic analysis. Trypan Blue membrane exclusion assays and fluorescent labeling assays confirmed the vitality of cells following treatment. This method of enhanced drug delivery has the potential to dramatically reduce required drug dosages and associated side effects and enable revolutionary therapies.

  9. Acoustics Research of Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Gao, Ximing; Houston, Janice

    2014-01-01

    The liftoff phase induces high acoustic loading over a broad frequency range for a launch vehicle. These external acoustic environments are used in the prediction of the internal vibration responses of the vehicle and components. Present liftoff vehicle acoustic environment prediction methods utilize stationary data from previously conducted hold-down tests to generate 1/3 octave band Sound Pressure Level (SPL) spectra. In an effort to update the accuracy and quality of liftoff acoustic loading predictions, non-stationary flight data from the Ares I-X were processed in PC-Signal in two flight phases: simulated hold-down and liftoff. In conjunction, the Prediction of Acoustic Vehicle Environments (PAVE) program was developed in MATLAB to allow for efficient predictions of sound pressure levels (SPLs) as a function of station number along the vehicle using semi-empirical methods. This consisted of generating the Dimensionless Spectrum Function (DSF) and Dimensionless Source Location (DSL) curves from the Ares I-X flight data. These are then used in the MATLAB program to generate the 1/3 octave band SPL spectra. Concluding results show major differences in SPLs between the hold-down test data and the processed Ares I-X flight data making the Ares I-X flight data more practical for future vehicle acoustic environment predictions.

  10. Acoustical evaluation of preschool classrooms

    NASA Astrophysics Data System (ADS)

    Yang, Wonyoung; Hodgson, Murray

    2003-10-01

    An investigation was made of the acoustical environments in the Berwick Preschool, Vancouver, in response to complaints by the teachers. Reverberation times (RT), background noise levels (BNL), and in-class sound levels (Leq) were measured for acoustical evaluation in the classrooms. With respect to the measured RT and BNL, none of the classrooms in the preschool were acceptable according to the criteria relevant to this study. A questionnaire was administered to the teachers to assess their subjective responses to the acoustical and nonacoustical environments of the classrooms. Teachers agreed that the nonacoustical environments in the classrooms were fair, but that the acoustical environments had problems. Eight different classroom configurations were simulated to improve the acoustical environments, using the CATT room acoustical simulation program. When the surface absorption was increased, both the RT and speech levels decreased. RASTI was dependent on the volumes of the classrooms when the background noise levels were high; however, it depended on the total absorption of the classrooms when the background noise levels were low. Ceiling heights are critical as well. It is recommended that decreasing the volume of the classrooms is effective. Sound absorptive materials should be added to the walls or ceiling.

  11. Laser-generated acoustic wave studies on tattoo pigment

    NASA Astrophysics Data System (ADS)

    Paterson, Lorna M.; Dickinson, Mark R.; King, Terence A.

    1996-01-01

    A Q-switched alexandrite laser (180 ns at 755 nm) was used to irradiate samples of agar embedded with red, black and green tattoo dyes. The acoustic waves generated in the samples were detected using a PVDF membrane hydrophone and compared to theoretical expectations. The laser pulses were found to generate acoustic waves in the black and green samples but not in the red pigment. Pressures of up to 1.4 MPa were produced with irradiances of up to 96 MWcm-2 which is comparable to the irradiances used to clear pigment embedded in skin. The pressure gradient generated across pigment particles was approximately 1.09 X 1010 Pam-1 giving a pressure difference of 1.09 +/- 0.17 MPa over a particle with mean diameter 100 micrometers . This is not sufficient to permanently damage skin which has a tensile strength of 7.4 MPa.

  12. Multifrequency acoustics as a probe of mesoscopic blood coagulation dynamics

    NASA Astrophysics Data System (ADS)

    Ganesan, Adarsh; Rajendran, Gokulnath; Ercole, Ari; Seshia, Ashwin

    2016-08-01

    Coagulation is a complex enzymatic polymerisation cascade. Disordered coagulation is common in medicine and may be life-threatening yet clinical assays are typically bulky and/or provide an incomplete picture of clot mechanical evolution. We present the adaptation of an in-plane acoustic wave device: quartz crystal microbalance with dissipation at multiple harmonics to determine the time-evolution of mesoscale mechanical properties of clot formation in vitro. This approach is sensitive to changes in surface and bulk clot structure in various models of induced coagulopathy. Furthermore, we are able to show that clot formation at surfaces has different kinetics and mechanical strength to that in the bulk, which may have implications for the design of bioprosthetic materials. The "Multifrequency acoustics" approach thus enables unique capability to portray biological processes concerning blood coagulation.

  13. Fundamental Potential for Acoustic Microscopy Evaluation of Dental Tissues

    NASA Astrophysics Data System (ADS)

    Denisova, L. A.; Maev, R. Gr.; Rusanov, F. S.; Maeva, A. R.; Denisov, A. F.; Gavrilov, D. Yu.; Bakulin, E. Yu.; Severin, F. M.

    Comprehensive analysis of the present-day acoustic microscopy experimental approaches from the standpoint of their potential application in dental research and diagnostics has been performed. Whole extracted human teeth and specially prepared dental tissue samples have been investigated. The results of the study demonstrate that there are several experimental techniques that can be used for precise quantitative evaluation of the tissues local mechanical properties in flat-parallel teeth slices, for the pathomorphological investigation of the tissues strength spatial distribution in flat cuts. In the whole tooth, the acoustic microscopy techniques allow us to precisely measure the enamel and dentine layers thickness, the distance between the external surface and pulp, to reveal hidden caries and restoration disbonding. These opportunities form a real ground for the further design of the special acousto-microscopical methods and new equipment for the clinical diagnostics

  14. Crystalline structure and symmetry dependence of acoustic nonlinearity parameters

    NASA Technical Reports Server (NTRS)

    Cantrell, John H.

    1994-01-01

    A quantitative measure of elastic wave nonlinearity in crystals is provided by the acoustic nonlinearity parameters. The nonlinearity parameters are defined for arbitrary propagation modes for solids of arbitrary crystalline symmetry and are determined along the pure mode propagation directions for 33 crystals of cubic symmetry from data reported in the literature. The magnitudes of the nonlinearity parameters are found to exhibit a strong dependence on the crystalline structure and symmetries associated with the modal direction in the solid. Calculations based on the Born-Mayer potential for crystals having a dominant repulsive contribution to the elastic constants from the interatomic pair potential suggest that the origin of the structure dependence is associated with the shape rather than the strength of the potential. Considerations based on variations in crystal symmetry during loading along pure mode propagation directions of face-centered-cubic solids provide a qualitative explanation for the dependence of the acoustic nonlinearity parameters on modal direction.

  15. Laser-Generated Thermoelastic Acoustic Sources in Anisotropic Materials

    SciTech Connect

    David H. Hurley

    2004-05-01

    An analytical model appropriate for thermoelastic generation of acoustic waves in anisotropic materials is presented for both plane and line sources. The interaction of acoustic waves produced by subsurface sources with the bounding surface is accounted for using a method of images. For the plane source case, analytical solutions are found that form an appropriate basis for an angular spectrum of plane waves. For the line source case and for specific crystal symmetries and source orientations, it is shown in the limit of strong optical absorption, a buried line source is equivalent to applying a shear stress dipole at the bounding surface. However, contrary to the isotropic case, the character and strength of the equivalent surface stress is a function of propagation direction.

  16. Oscillations of a deformed liquid drop in an acoustic field

    NASA Astrophysics Data System (ADS)

    Shi, Tao; Apfel, Robert E.

    1995-07-01

    The oscillations of an axially symmetric liquid drop in an acoustic standing wave field in air have been studied using the boundary integral method. The interaction between the drop oscillation and sound field has been included in this analysis. Our computations focus on the frequency shift of small-amplitude oscillations of an acoustically deformed drop typical of a drop levitated in air. In the presence or absence of gravity, the trend and the magnitude of the frequency shift have been given in terms of drop size, drop deformation, and the strength of the sound field. Our calculations are compared with experiments performed on the United States Microgravity Laboratory (USML-1) and with ground-based measurements, and are found to be in good agreement within the accuracy of the experimental data.

  17. The Acoustic and Perceptual Correlates of Emphasis in Urban Jordanian Arabic

    ERIC Educational Resources Information Center

    Al-Masri, Mohammad

    2009-01-01

    Acoustic and perceptual correlates of emphasis, a secondary articulation in the posterior vocal tract, in Urban Jordanian Arabic were studied. CVC monosyllables and CV.CVC bisyllables with emphatic and plain target consonants in word-initial, word-medial and word-final positions were examined. Spectral measurements on the target vowels at vowel…

  18. Contour mode resonators with acoustic reflectors

    DOEpatents

    Olsson, Roy H.; Fleming, James G.; Tuck, Melanie R.

    2008-06-10

    A microelectromechanical (MEM) resonator is disclosed which has a linear or ring-shaped acoustic resonator suspended above a substrate by an acoustic reflector. The acoustic resonator can be formed with a piezoelectric material (e.g. aluminum nitride, zinc oxide or PZT), or using an electrostatically-actuated material. The acoustic reflector (also termed an acoustic mirror) uses alternating sections of a relatively low acoustic impedance Z.sub.L material and a relatively high acoustic impedance Z.sub.H material to isolate the acoustic resonator from the substrate. The MEM resonator, which can be formed on a silicon substrate with conventional CMOS circuitry, has applications for forming oscillators, rf filters, and acoustic sensors.

  19. Surface acoustic wave microfluidics

    PubMed Central

    Ding, Xiaoyun; Li, Peng; Lin, Sz-Chin Steven; Stratton, Zackary S.; Nama, Nitesh; Guo, Feng; Slotcavage, Daniel; Mao, Xiaole; Shi, Jinjie; Costanzo, Francesco; Huang, Tony Jun

    2014-01-01

    The recent introduction of surface acoustic wave (SAW) technology onto lab-on-a-chip platforms has opened a new frontier in microfluidics. The advantages provided by such SAW microfluidics are numerous: simple fabrication, high biocompatibility, fast fluid actuation, versatility, compact and inexpensive devices and accessories, contact-free particle manipulation, and compatibility with other microfluidic components. We believe that these advantages enable SAW microfluidics to play a significant role in a variety of applications in biology, chemistry, engineering, and medicine. In this review article, we discuss the theory underpinning SAWs and their interactions with particles and the contacting fluids in which they are suspended. We then review the SAW-enabled microfluidic devices demonstrated to date, starting with devices that accomplish fluid mixing and transport through the use of travelling SAW; we follow that by reviewing the more recent innovations achieved with standing SAW that enable such actions as particle/cell focusing, sorting, and patterning. Finally, we look forward and appraise where the discipline of SAW microfluidics could go next. PMID:23900527

  20. An acoustic glucose sensor.

    PubMed

    Hu, Ruifen; Stevenson, Adrian C; Lowe, Christopher R

    2012-05-15

    In vivo glucose monitoring is required for tighter glycaemic control. This report describes a new approach to construct a miniature implantable device based on a magnetic acoustic resonance sensor (MARS). A ≈ 600-800 nm thick glucose-responsive poly(acrylamide-co-3-acrylamidophenylboronic acid) (poly(acrylamide-co-3-APB)) film was polymerised on the quartz disc (12 mm in diameter and 0.25 mm thick) of the MARS. The swelling/shrinking of the polymer film induced by the glucose binding to the phenylboronate caused changes in the resonance amplitude of the quartz disc in the MARS. A linear relationship between the response of the MARS and the glucose concentration in the range ≈ 0-15 mM was observed, with the optimum response of the MARS sensor being obtained when the polymer films contained ≈ 20 mol% 3-APB. The MARS glucose sensor also functioned under flow conditions (9 μl/min) with a response almost identical to the sensor under static or non-flow conditions. The results suggest that the MARS could offer a promising strategy for developing a small subcutaneously implanted continuous glucose monitor.

  1. Acoustic Signal Processing

    NASA Astrophysics Data System (ADS)

    Hartmann, William M.; Candy, James V.

    Signal processing refers to the acquisition, storage, display, and generation of signals - also to the extraction of information from signals and the re-encoding of information. As such, signal processing in some form is an essential element in the practice of all aspects of acoustics. Signal processing algorithms enable acousticians to separate signals from noise, to perform automatic speech recognition, or to compress information for more efficient storage or transmission. Signal processing concepts are the building blocks used to construct models of speech and hearing. Now, in the 21st century, all signal processing is effectively digital signal processing. Widespread access to high-speed processing, massive memory, and inexpensive software make signal processing procedures of enormous sophistication and power available to anyone who wants to use them. Because advanced signal processing is now accessible to everybody, there is a need for primers that introduce basic mathematical concepts that underlie the digital algorithms. The present handbook chapter is intended to serve such a purpose.

  2. Software for Acoustic Rendering

    NASA Technical Reports Server (NTRS)

    Miller, Joel D.

    2003-01-01

    SLAB is a software system that can be run on a personal computer to simulate an acoustic environment in real time. SLAB was developed to enable computational experimentation in which one can exert low-level control over a variety of signal-processing parameters, related to spatialization, for conducting psychoacoustic studies. Among the parameters that can be manipulated are the number and position of reflections, the fidelity (that is, the number of taps in finite-impulse-response filters), the system latency, and the update rate of the filters. Another goal in the development of SLAB was to provide an inexpensive means of dynamic synthesis of virtual audio over headphones, without need for special-purpose signal-processing hardware. SLAB has a modular, object-oriented design that affords the flexibility and extensibility needed to accommodate a variety of computational experiments and signal-flow structures. SLAB s spatial renderer has a fixed signal-flow architecture corresponding to a set of parallel signal paths from each source to a listener. This fixed architecture can be regarded as a compromise that optimizes efficiency at the expense of complete flexibility. Such a compromise is necessary, given the design goal of enabling computational psychoacoustic experimentation on inexpensive personal computers.

  3. Ion acoustic traveling waves

    NASA Astrophysics Data System (ADS)

    Webb, G. M.; Burrows, R. H.; Ao, X.; Zank, G. P.; Zank

    2014-04-01

    Models for traveling waves in multi-fluid plasmas give essential insight into fully nonlinear wave structures in plasmas, not readily available from either numerical simulations or from weakly nonlinear wave theories. We illustrate these ideas using one of the simplest models of an electron-proton multi-fluid plasma for the case where there is no magnetic field or a constant normal magnetic field present. We show that the traveling waves can be reduced to a single first-order differential equation governing the dynamics. We also show that the equations admit a multi-symplectic Hamiltonian formulation in which both the space and time variables can act as the evolution variable. An integral equation useful for calculating adiabatic, electrostatic solitary wave signatures for multi-fluid plasmas with arbitrary mass ratios is presented. The integral equation arises naturally from a fluid dynamics approach for a two fluid plasma, with a given mass ratio of the two species (e.g. the plasma could be an electron-proton or an electron-positron plasma). Besides its intrinsic interest, the integral equation solution provides a useful analytical test for numerical codes that include a proton-electron mass ratio as a fundamental constant, such as for particle in cell (PIC) codes. The integral equation is used to delineate the physical characteristics of ion acoustic traveling waves consisting of hot electron and cold proton fluids.

  4. Acoustic ground impedance meter

    NASA Technical Reports Server (NTRS)

    Zuckerwar, A. J.

    1981-01-01

    A compact, portable instrument was developed to measure the acoustic impedance of the ground, or other surfaces, by direct pressure-volume velocity measurement. A Helmholz resonator, constructed of heavy-walled stainless steel but open at the bottom, is positioned over the surface having the unknown impedance. The sound source, a cam-driven piston of known stroke and thus known volume velocity, is located in the neck of the resonator. The cam speed is a variable up to a maximum 3600 rpm. The sound pressure at the test surface is measured by means of a microphone flush-mounted in the wall of the chamber. An optical monitor of the piston displacement permits measurement of the phase angle between the volume velocity and the sound pressure, from which the real and imaginary parts of the impedance can be evaluated. Measurements using a 5-lobed cam can be made up to 300 Hz. Detailed design criteria and results on a soil sample are presented.

  5. Covert underwater acoustic communications.

    PubMed

    Ling, Jun; He, Hao; Li, Jian; Roberts, William; Stoica, Petre

    2010-11-01

    Low probability of detection (LPD) communications are conducted at a low received signal-to-noise ratio (SNR) to deter eavesdroppers to sense the presence of the transmitted signal. Successful detection at intended receiver heavily relies on the processing gain achieved by employing the direct-sequence spread-spectrum (DSSS) technique. For scenarios that lack a sufficiently low SNR to maintain LPD, another metric, referred to as low probability of interception (LPI), is of interest to protect the privacy of the transmitted information. If covert communications take place in underwater acoustic (UWA) environments, then additional challenges are present. The time-varying nature of the UWA channel prevents the employment of a long spreading waveform. Furthermore, UWA environments are frequency-selective channels with long memory, which imposes challenges to the design of the spreading waveform. In this paper, a covert UWA communication system that adopts the DSSS technique and a coherent RAKE receiver is investigated. Emphasis is placed on the design of a spreading waveform that not only accounts for the transceiver structure and frequency-selective nature of the UWA channel, but also possesses a superior LPI. The proposed techniques are evaluated using both simulated and SPACE'08 in-water experimental data.

  6. Passive Acoustic Vessel Localization

    NASA Astrophysics Data System (ADS)

    Suwal, Pasang Sherpa

    This thesis investigates the development of a low-cost passive acoustic system for localizing moving vessels to monitor areas where human activities such as fishing, snorkeling and poaching are restricted. The system uses several off-the-shelf sensors with unsynchronized clocks where the Time Difference of Arrival (TDOA) or time delay is extracted by cross-correlation of the signal between paired sensors. The cross-correlation function uses phase correlation or Phase Transform (PHAT) which whitens the cross-spectrum in order to de-emphasize dominant frequency components. Using the locations of pairs of sensors as foci, hyperbolic equations can be defined using the time delay between them. With three or more sensors, multiple hyperbolic functions can be calculated which intersect at a unique point: the boat's location. It is also found that increasing separation distances between sensors decreased the correlation between the signals. However larger separation distances have better localization capability than with small distances. Experimental results from the Columbia and Willamette Rivers are presented to demonstrate performance.

  7. Surface acoustic wave microfluidics.

    PubMed

    Ding, Xiaoyun; Li, Peng; Lin, Sz-Chin Steven; Stratton, Zackary S; Nama, Nitesh; Guo, Feng; Slotcavage, Daniel; Mao, Xiaole; Shi, Jinjie; Costanzo, Francesco; Huang, Tony Jun

    2013-09-21

    The recent introduction of surface acoustic wave (SAW) technology onto lab-on-a-chip platforms has opened a new frontier in microfluidics. The advantages provided by such SAW microfluidics are numerous: simple fabrication, high biocompatibility, fast fluid actuation, versatility, compact and inexpensive devices and accessories, contact-free particle manipulation, and compatibility with other microfluidic components. We believe that these advantages enable SAW microfluidics to play a significant role in a variety of applications in biology, chemistry, engineering and medicine. In this review article, we discuss the theory underpinning SAWs and their interactions with particles and the contacting fluids in which they are suspended. We then review the SAW-enabled microfluidic devices demonstrated to date, starting with devices that accomplish fluid mixing and transport through the use of travelling SAW; we follow that by reviewing the more recent innovations achieved with standing SAW that enable such actions as particle/cell focusing, sorting and patterning. Finally, we look forward and appraise where the discipline of SAW microfluidics could go next.

  8. Acoustics of the Intonarumori

    NASA Astrophysics Data System (ADS)

    Serafin, Stefania

    2005-04-01

    The Intonarumori were a family of musical instruments invented by the Italian futurist composer and painter Luigi Russolo. Each Intonarumori was made of a wooden parallelepiped sound box, inside which a wheel of different sizes and materials was setting into vibration a catgut or metal string. The pitch of the string was varied by using a lever, while the speed of the wheel was controlled by the performer using a crank. At one end of the string there was a drumhead that transmitted vibrations to the speaker. Unfortunately, all the original Intonarumori were destroyed after a fire during World War II. Since then, researchers have tried to understand the sound production mechanism of such instruments, especially by consulting the patents compiled by Russolo or by reading his book ``The art of noise.'' In this paper we describe the acoustics of the Intonarumori. Based on such description, we propose physical models that simulate such instruments. The intonarumori's string is modeled using a one dimensional waveguide, which is excited either by an impact or a friction model. The body of the instrument is modeled using a 3-D rectangular mesh, while the horn is considered as an omnidirectional radiator.

  9. Aquatic Acoustic Metrics Interface

    SciTech Connect

    2012-12-18

    Fishes and marine mammals may suffer a range of potential effects from exposure to intense underwater sound generated by anthropogenic activities such as pile driving, shipping, sonars, and underwater blasting. Several underwater sound recording (USR) devices have been built to acquire samples of the underwater sound generated by anthropogenic activities. Software becomes indispensable for processing and analyzing the audio files recorded by these USRs. The new Aquatic Acoustic Metrics Interface Utility Software (AAMI) is specifically designed for analysis of underwater sound recordings to provide data in metrics that facilitate evaluation of the potential impacts of the sound on aquatic animals. In addition to the basic functions, such as loading and editing audio files recorded by USRs and batch processing of sound files, the software utilizes recording system calibration data to compute important parameters in physical units. The software also facilitates comparison of the noise sound sample metrics with biological measures such as audiograms of the sensitivity of aquatic animals to the sound, integrating various components into a single analytical frame.

  10. Aquatic Acoustic Metrics Interface

    2012-12-18

    Fishes and marine mammals may suffer a range of potential effects from exposure to intense underwater sound generated by anthropogenic activities such as pile driving, shipping, sonars, and underwater blasting. Several underwater sound recording (USR) devices have been built to acquire samples of the underwater sound generated by anthropogenic activities. Software becomes indispensable for processing and analyzing the audio files recorded by these USRs. The new Aquatic Acoustic Metrics Interface Utility Software (AAMI) is specificallymore » designed for analysis of underwater sound recordings to provide data in metrics that facilitate evaluation of the potential impacts of the sound on aquatic animals. In addition to the basic functions, such as loading and editing audio files recorded by USRs and batch processing of sound files, the software utilizes recording system calibration data to compute important parameters in physical units. The software also facilitates comparison of the noise sound sample metrics with biological measures such as audiograms of the sensitivity of aquatic animals to the sound, integrating various components into a single analytical frame.« less

  11. [Unconscious Acoustical Stimuli Effects on Event-related Potentials in Humans].

    PubMed

    Kopeikina, E A; Choroshich, V V; Aleksandrov, A Y; Ivanova, V Y

    2015-01-01

    Unconscious perception essentially affects human behavior. The main results in this area obtained in experiments with visual stimuli. However, the acoustical stimuli play not less important role in behavior. The main idea of this paper is the electroencephalographic investigation of unconscious acoustical stimulation effects on electro-physiological activity of the brain. For this purpose, the event-related potentials were acquired under unconscious stimulus priming paradigm. The one syllable, three letter length, Russian words and pseudo-words with single letter substitution were used as primes and targets. As a result, we find out that repetition and alternative priming similarly affects the event-related potential's component with 200 ms latency after target application in frontal parietal and temporal areas. Under alternative priming the direction of potential amplitude modification nearby 400 ms was altered for word and semi-word targets. Alternative priming reliably increase ERP's amplitude in 400 ms locality with pseudo-word targets and decrease it under word targets. Taking into account, that all participants were unable to distinguish the applied prime stimuli, we can assume that the event-related potential changes evoked by unconscious perception of acoustical stimuli. The ERP amplitude dynamics revealed in current investigation demonstrate the opportunity of subliminal acoustical stimuli to modulate the electrical activity evoked by verbal acoustical stimulation. PMID:26237945

  12. Corium crust strength measurements.

    SciTech Connect

    Lomperski, S.; Nuclear Engineering Division

    2009-11-01

    Corium strength is of interest in the context of a severe reactor accident in which molten core material melts through the reactor vessel and collects on the containment basemat. Some accident management strategies involve pouring water over the melt to solidify it and halt corium/concrete interactions. The effectiveness of this method could be influenced by the strength of the corium crust at the interface between the melt and coolant. A strong, coherent crust anchored to the containment walls could allow the yet-molten corium to fall away from the crust as it erodes the basemat, thereby thermally decoupling the melt from the coolant and sharply reducing the cooling rate. This paper presents a diverse collection of measurements of the mechanical strength of corium. The data is based on load tests of corium samples in three different contexts: (1) small blocks cut from the debris of the large-scale MACE experiments, (2) 30 cm-diameter, 75 kg ingots produced by SSWICS quench tests, and (3) high temperature crusts loaded during large-scale corium/concrete interaction (CCI) tests. In every case the corium consisted of varying proportions of UO{sub 2}, ZrO{sub 2}, and the constituents of concrete to represent a LWR melt at different stages of a molten core/concrete interaction. The collection of data was used to assess the strength and stability of an anchored, plant-scale crust. The results indicate that such a crust is likely to be too weak to support itself above the melt. It is therefore improbable that an anchored crust configuration could persist and the melt become thermally decoupled from the water layer to restrict cooling and prolong an attack of the reactor cavity concrete.

  13. Strength calculations on airplanes

    NASA Technical Reports Server (NTRS)

    Baumann, A

    1925-01-01

    Every strength calculation, including those on airplanes, must be preceded by a determination of the forces to be taken into account. In the following discussion, it will be assumed that the magnitudes of these forces are known and that it is only a question of how, on the basis of these known forces, to meet the prescribed conditions on the one hand and the practical requirements on the other.

  14. Noise control for a ChamberCore cylindrical structure using long T-shaped acoustic resonators

    NASA Astrophysics Data System (ADS)

    Li, Deyu; Vipperman, Jeffrey S.

    2003-10-01

    The Air Force Research Laboratory, Space Vehicles Directorate has developed a new advanced composite launch vehicle fairing (referred to as ``ChamberCore''). The ChamberCore is sandwich-type structure fabricated from multi-layered composite face sheets separated by channels that form passive acoustic chambers. These acoustic chambers have a potential to create an acoustic resonator network that can be used to attenuate noise inside the closed ChamberCore cylindrical structure. In this study, first, the feasibility of using cylindrical Helmholtz resonators to control noise in a mock-scale ChamberCore composite cylinder is investigated. The targeted frequencies for noise control are the first four acoustic cavity resonances of the ChamberCore cylinder. The optimal position of the Helmholtz resonators for controlling each targeted cavity mode is discussed, and the effects of resonator spacing on noise attenuation are also experimentally evaluated. Next, six long T-shaped acoustic resonators are designed and constructed within the acoustic chambers of the structure and investigated. Several tests are conducted to evaluate the noise control ability of the resonators in the ChamberCore cylinder. Reductions ranging from 3.2 to 6.0 dB were observed in the overall mean-square noise reduction spectrum at the targeted inner cavity resonance frequencies. [Work supported by AFRL/DV.

  15. Concurrent strength and endurance training: from molecules to man.

    PubMed

    Nader, Gustavo A

    2006-11-01

    Strength and endurance training produce widely diversified adaptations, with little overlap between them. Strength training typically results in increases in muscle mass and muscle strength. In contrast, endurance training induces increases in maximal oxygen uptake and metabolic adaptations that lead to an increased exercise capacity. In many sports, a combination of strength and endurance training is required to improve performance, but in some situations when strength and endurance training are performed simultaneously, a potential interference in strength development takes place, making such a combination seemingly incompatible. The phenomenon of concurrent training, or simultaneously training for strength and endurance, was first described in the scientific literature in 1980 by Robert C. Hickson, and although work that followed provided evidence for and against it, the interference effect seems to hold true in specific situations. At the molecular level, there seems to be an explanation for the interference of strength development during concurrent training; it is now clear that different forms of exercise induce antagonistic intracellular signaling mechanisms that, in turn, could have a negative impact on the muscle's adaptive response to this particular form of training. That is, activation of AMPK by endurance exercise may inhibit signaling to the protein-synthesis machinery by inhibiting the activity of mTOR and its downstream targets. The purpose of this review is to briefly describe the problem of concurrent strength and endurance training and to examine new data highlighting potential molecular mechanisms that may help explain the inhibition of strength development when strength and endurance training are performed simultaneously.

  16. PORTABLE ACOUSTIC MONITORING PACKAGE (PAMP)

    SciTech Connect

    John l. Loth; Gary J. Morris; George M. Palmer; Richard Guiler; Deepak Mehra

    2003-07-01

    The 1st generation acoustic monitoring package was designed to detect and analyze weak acoustic signals inside natural gas transmission lines. Besides a microphone it housed a three-inch diameter aerodynamic acoustic signal amplifier to maximize sensitivity to leak induced {Delta}p type signals. The theory and test results of this aerodynamic signal amplifier was described in the master's degree thesis of our Research Assistant Deepak Mehra who is about to graduate. To house such a large three-inch diameter sensor required the use of a steel 300-psi rated 4 inch weld neck flange, which itself weighed already 29 pounds. The completed 1st generation Acoustic Monitoring Package weighed almost 100 pounds. This was too cumbersome to mount in the field, on an access port at a pipeline shut-off valve. Therefore a 2nd generation and truly Portable Acoustic Monitor was built. It incorporated a fully self-contained {Delta}p type signal sensor, rated for line pressures up to 1000 psi with a base weight of only 6 pounds. This is the Rosemont Inc. Model 3051CD-Range 0, software driven sensor, which is believed to have industries best total performance. Its most sensitive unit was purchased with a {Delta}p range from 0 to 3 inch water. This resulted in the herein described 2nd generation: Portable Acoustic Monitoring Package (PAMP) for pipelines up to 1000 psi. Its 32-pound total weight includes an 18-volt battery. Together with a 3 pound laptop with its 4-channel data acquisition card, completes the equipment needed for field acoustic monitoring of natural gas transmission pipelines.

  17. Acoustic communication in plant-animal interactions.

    PubMed

    Schöner, Michael G; Simon, Ralph; Schöner, Caroline R

    2016-08-01

    Acoustic communication is widespread and well-studied in animals but has been neglected in other organisms such as plants. However, there is growing evidence for acoustic communication in plant-animal interactions. While knowledge about active acoustic signalling in plants (i.e. active sound production) is still in its infancy, research on passive acoustic signalling (i.e. reflection of animal sounds) revealed that bat-dependent plants have adapted to the bats' echolocation systems by providing acoustic reflectors to attract their animal partners. Understanding the proximate mechanisms and ultimate causes of acoustic communication will shed light on an underestimated dimension of information transfer between plants and animals. PMID:27423052

  18. Reflective echo tomographic imaging using acoustic beams

    DOEpatents

    Kisner, Roger; Santos-Villalobos, Hector J

    2014-11-25

    An inspection system includes a plurality of acoustic beamformers, where each of the plurality of acoustic beamformers including a plurality of acoustic transmitter elements. The system also includes at least one controller configured for causing each of the plurality of acoustic beamformers to generate an acoustic beam directed to a point in a volume of interest during a first time. Based on a reflected wave intensity detected at a plurality of acoustic receiver elements, an image of the volume of interest can be generated.

  19. Acoustic communication in plant-animal interactions.

    PubMed

    Schöner, Michael G; Simon, Ralph; Schöner, Caroline R

    2016-08-01

    Acoustic communication is widespread and well-studied in animals but has been neglected in other organisms such as plants. However, there is growing evidence for acoustic communication in plant-animal interactions. While knowledge about active acoustic signalling in plants (i.e. active sound production) is still in its infancy, research on passive acoustic signalling (i.e. reflection of animal sounds) revealed that bat-dependent plants have adapted to the bats' echolocation systems by providing acoustic reflectors to attract their animal partners. Understanding the proximate mechanisms and ultimate causes of acoustic communication will shed light on an underestimated dimension of information transfer between plants and animals.

  20. An experimental investigation of an acoustically excited laminar premixed flame

    SciTech Connect

    Kartheekeyan, S.; Chakravarthy, S.R.

    2006-08-15

    A two-dimensional laminar premixed flame is stabilized over a burner in a confined duct and is subjected to external acoustic forcing from the downstream end. The equivalence ratio of the flame is 0.7. The flame is stabilized in the central slot of a three-slotted burner. The strength of the shear layer of the cold reactive mixture through the central slot is controlled by the flow rate of cold nitrogen gas through the side slots. The frequency range of acoustic excitation is 400-1200 Hz, and the amplitude levels are such that the acoustic velocity is less than the mean flow velocity of the reactants. Time-averaged chemiluminescence images of the perturbed flame front display time-mean changes as compared to the unperturbed flame shape at certain excitation frequencies. Prominent changes to the flame front are in the form of stretching or shrinkage, asymmetric development of its shape, increased/preferential lift-off of one or both of the stabilization points of the flame, and nearly random three-dimensional fluctuations over large time scales under some conditions. The oscillations of the shear layer and the response of the confined jet of the hot products to the acoustic forcing, such as asymmetric flow development and jet spreading, are found to be responsible for the observed mean changes in the flame shape. A distinct low-frequency component ({approx}60-90 Hz) relative to the excitation frequency is observed in the fluctuations of the chemiluminescent intensity in the flame under most conditions. It is observed that fluctuations in the flame area predominantly contribute to the origin of the low-frequency component. This is primarily due to the rollup of vortices and the generation of enthalpy waves at the burner lip. Both of these processes are excited at the externally imposed acoustic time scale, but convect/propagate downstream at the flow time scale, which is much larger. (author)

  1. Underwater sand acoustics: A perspective derived from the sediment acoustics experiment (SAX99)

    NASA Astrophysics Data System (ADS)

    Williams, Kevin L.; Thorsos, Eric I.; Jackson, Darrell R.; Tang, Dajun; Kargl, Steve G.

    2003-04-01

    The sediment acoustics experiment (SAX99) included investigations of the following three questions. What are the dominant mechanisms responsible for backscattering from sand sediment? What are the dominant mechanisms responsible for subcritical penetration into sand? What are the appropriate constitutive equations for sand? In this paper a summary is presented of APL-UW SAX99 experiments and data/model comparisons relevant to each question. Perspectives are also given on some of the issues that remain or arose during SAX99 and the associated analyses. In general, these issues are tied to the frequency dependencies seen in the data but not fully captured by present models. For backscattering the issue is that as the frequency increases the measured backscattering strength does not follow predictions based on surface roughness scattering models. In the case of penetration it is a frequency cutoff effect seen in SAX99 buried array data but seemingly violated in the detection of buried objects near the SAX99 site. Regarding the constitutive equations, it is the frequency dependence of the attenuation above 50 kHz. Recent experiments will be described that have been motivated by these issues. Finally, research proposed as part of a follow-on sediment acoustics experiment (SAX04) will be outlined. [Work supported by ONR.

  2. Perception of acoustic transients

    NASA Astrophysics Data System (ADS)

    Howard, J. H., Jr.

    1984-01-01

    The research investigates the role of knowledge based or top-down processing in the perception of nonlinguistic, transient signals. The experiments address issues in transient pattern classification, target observation, attentional focusing, auditory induction, and computer based performance aids. The theoretical significance and naval relevance of the research is considered.

  3. Mars Acoustic Anemometer

    NASA Astrophysics Data System (ADS)

    Banfield, D. J.

    2012-12-01

    We have developed a very high performance anemometer (wind gauge) for use at Mars. This instrument has great scientific as well as strategic reasons to be included on all future missions to the surface of Mars. We will discuss why we set out to develop this instrument, as well as why the previous wind sensors for Mars are insufficient to meet the scientific and strategic needs at Mars. We will also discuss how the instrument works, and how it differs from terrestrial counterparts. Additionally, we will discuss the current status of the instrument. Measuring winds at Mars is important to better understand the atmospheric circulation at Mars, as well as exchange between the surface and atmosphere. The main conduit of transport of water, and hence its current stability at any particular location on Mars is controlled by these atmospheric motions and the exchange between surface and atmosphere. Mars' large-scale winds are moderately well understood from orbital observations, but the interaction with the surface can only be addressed adequately in situ. Previous anemometers have been 2-D (with the exception of REMS on MSL) and slow response (typically <1Hz), and relatively low sensitivity/accuracy (>1 m/s). Our instrument is capable of fully 3-D measurements, with fast response (>20 Hz) and great sensitivity/accuracy (~3 cm/s). This significant step forward in performance is important for the surface-atmosphere exchanges of heat, momentum and volatiles. In particular, our instrument could directly measure the heat and momentum fluxes between surface and atmosphere using eddy-flux techniques proven terrestrially. When combined with a fast response volatile analysis instrument (e.g., a TLS) we can also measure eddy fluxes of volatile transport. Such a study would be nearly impossible to carry out with preceding anemometers sent to Mars with insufficient response time and sensitivity to adequately sample the turbulent eddies. Additionally, our instrument, using acoustics

  4. Dynamics of aerial target pursuit

    NASA Astrophysics Data System (ADS)

    Pal, S.

    2015-12-01

    During pursuit and predation, aerial species engage in multitasking behavior that involve simultaneous target detection, tracking, decision-making, approach and capture. The mobility of the pursuer and the target in a three dimensional environment during predation makes the capture task highly complex. Many researchers have studied and analyzed prey capture dynamics in different aerial species such as insects and bats. This article focuses on reviewing the capture strategies adopted by these species while relying on different sensory variables (vision and acoustics) for navigation. In conclusion, the neural basis of these capture strategies and some applications of these strategies in bio-inspired navigation and control of engineered systems are discussed.

  5. Acoustic constituents of prosodic typology

    NASA Astrophysics Data System (ADS)

    Komatsu, Masahiko

    Different languages sound different, and considerable part of it derives from the typological difference of prosody. Although such difference is often referred to as lexical accent types (stress accent, pitch accent, and tone; e.g. English, Japanese, and Chinese respectively) and rhythm types (stress-, syllable-, and mora-timed rhythms; e.g. English, Spanish, and Japanese respectively), it is unclear whether these types are determined in terms of acoustic properties, The thesis intends to provide a potential basis for the description of prosody in terms of acoustics. It argues for the hypothesis that the source component of the source-filter model (acoustic features) approximately corresponds to prosody (linguistic features) through several experimental-phonetic studies. The study consists of four parts. (1) Preliminary experiment: Perceptual language identification tests were performed using English and Japanese speech samples whose frequency spectral information (i.e. non-source component) is heavily reduced. The results indicated that humans can discriminate languages with such signals. (2) Discussion on the linguistic information that the source component contains: This part constitutes the foundation of the argument of the thesis. Perception tests of consonants with the source signal indicated that the source component carries the information on broad categories of phonemes that contributes to the creation of rhythm. (3) Acoustic analysis: The speech samples of Chinese, English, Japanese, and Spanish, differing in prosodic types, were analyzed. These languages showed difference in acoustic characteristics of the source component. (4) Perceptual experiment: A language identification test for the above four languages was performed using the source signal with its acoustic features parameterized. It revealed that humans can discriminate prosodic types solely with the source features and that the discrimination is easier as acoustic information increases. The

  6. Sonification of acoustic emission data

    NASA Astrophysics Data System (ADS)

    Raith, Manuel; Große, Christian

    2014-05-01

    While loading different specimens, acoustic emissions appear due to micro crack formation or friction of already existing crack edges. These acoustic emissions can be recorded using suitable ultrasonic transducers and transient recorders. The analysis of acoustic emissions can be used to investigate the mechanical behavior of different specimens under load. Our working group has undertaken several experiments, monitored with acoustic emission techniques. Different materials such as natural stone, concrete, wood, steel, carbon composites and bone were investigated. Also the experimental setup has been varied. Fire-spalling experiments on ultrahigh performance concrete and pullout experiments on bonded anchors have been carried out. Furthermore uniaxial compression tests on natural stone and animal bone had been conducted. The analysis tools include not only the counting of events but the analysis of full waveforms. Powerful localization algorithms and automatic onset picking techniques (based on Akaikes Information Criterion) were established to handle the huge amount of data. Up to several thousand events were recorded during experiments of a few minutes. More sophisticated techniques like moment tensor inversion have been established on this relatively small scale as well. Problems are related to the amount of data but also to signal-to-noise quality, boundary conditions (reflections) sensor characteristics and unknown and changing Greens functions of the media. Some of the acoustic emissions recorded during these experiments had been transferred into audio range. The transformation into the audio range was done using Matlab. It is the aim of the sonification to establish a tool that is on one hand able to help controlling the experiment in-situ and probably adjust the load parameters according to the number and intensity of the acoustic emissions. On the other hand sonification can help to improve the understanding of acoustic emission techniques for training

  7. Virtual acoustic displays

    NASA Technical Reports Server (NTRS)

    Wenzel, Elizabeth M.

    1991-01-01

    A 3D auditory display can potentially enhance information transfer by combining directional and iconic information in a quite naturalistic representation of dynamic objects in the interface. Another aspect of auditory spatial clues is that, in conjunction with other modalities, it can act as a potentiator of information in the display. For example, visual and auditory cues together can reinforce the information content of the display and provide a greater sense of presence or realism in a manner not readily achievable by either modality alone. This phenomenon will be particularly useful in telepresence applications, such as advanced teleconferencing environments, shared electronic workspaces, and monitoring telerobotic activities in remote or hazardous situations. Thus, the combination of direct spatial cues with good principles of iconic design could provide an extremely powerful and information-rich display which is also quite easy to use. An alternative approach, recently developed at ARC, generates externalized, 3D sound cues over headphones in realtime using digital signal processing. Here, the synthesis technique involves the digital generation of stimuli using Head-Related Transfer Functions (HRTF's) measured in the two ear-canals of individual subjects. Other similar approaches include an analog system developed by Loomis, et. al., (1990) and digital systems which make use of transforms derived from normative mannikins and simulations of room acoustics. Such an interface also requires the careful psychophysical evaluation of listener's ability to accurately localize the virtual or synthetic sound sources. From an applied standpoint, measurement of each potential listener's HRTF's may not be possible in practice. For experienced listeners, localization performance was only slightly degraded compared to a subject's inherent ability. Alternatively, even inexperienced listeners may be able to adapt to a particular set of HRTF's as long as they provide adequate

  8. Acoustic positioning and orientation prediction

    NASA Astrophysics Data System (ADS)

    Barmatz, Martin B.; Aveni, Glenn; Putterman, Seth; Rudnick, Joseph

    1990-10-01

    A method is described for use with an acoustic positioner, which enables a determination of the equilibrium position and orientation which an object assumes in a zero gravity environment, as well as restoring forces and torques of an object in an acoustic standing wave field. An acoustic standing wave field is established in the chamber, and the object is held at several different positions near the expected equilibrium position. While the object is held at each position, the center resonant frequency of the chamber is determined, by noting which frequency results in the greatest pressure of the acoustic field. The object position which results in the lowest center resonant frequency is the equilibrium position. The orientation of a nonspherical object is similarly determined, by holding the object in a plurality of different orientations at its equilibrium position, and noting the center resonant frequency for each orientation. The orientation which results in the lowest center resonant frequency is the equilibrium orientation. Where the acoustic frequency is constant, but the chamber length is variable, the equilibrium position or orientation is that which results in the greatest chamber length at the center resonant frequency.

  9. Acoustic positioning and orientation prediction

    NASA Technical Reports Server (NTRS)

    Barmatz, Martin B. (Inventor); Aveni, Glenn (Inventor); Putterman, Seth (Inventor); Rudnick, Joseph (Inventor)

    1990-01-01

    A method is described for use with an acoustic positioner, which enables a determination of the equilibrium position and orientation which an object assumes in a zero gravity environment, as well as restoring forces and torques of an object in an acoustic standing wave field. An acoustic standing wave field is established in the chamber, and the object is held at several different positions near the expected equilibrium position. While the object is held at each position, the center resonant frequency of the chamber is determined, by noting which frequency results in the greatest pressure of the acoustic field. The object position which results in the lowest center resonant frequency is the equilibrium position. The orientation of a nonspherical object is similarly determined, by holding the object in a plurality of different orientations at its equilibrium position, and noting the center resonant frequency for each orientation. The orientation which results in the lowest center resonant frequency is the equilibrium orientation. Where the acoustic frequency is constant, but the chamber length is variable, the equilibrium position or orientation is that which results in the greatest chamber length at the center resonant frequency.

  10. My 65 years in acoustics

    NASA Astrophysics Data System (ADS)

    Beranek, Leo L.

    2001-05-01

    My entry into acoustics began as research assistant to Professor F. V. Hunt at Harvard University. I received my doctorate in 1940 and directed the Electro-Acoustic Laboratory at Harvard from October 1940 until September 1945. In 1947, I became a tenured associate professor at MIT, and, with Richard H. Bolt, formed the consulting firm Bolt and Beranek, that later included Robert B. Newman, becoming BBN. My most significant contributions before 1970 were design of wedge-lined anechoic chambers, systemization of noise reduction in ventilation systems, design of the world's largest muffler for the testing of supersonic jet engines at NASA's Lewis Laboratory in Cleveland, speech interference level, NC noise criterion curves, heading New York Port Authority's noise study that resulted in mufflers on jet aircraft, and steep aircraft climb procedures, and publishing books titled, Acoustical Measurements, Acoustics, Noise Reduction, Noise and Vibration Control, and Music, Acoustics and Architecture. As President of BBN, I supervised the formation of the group that built and operated the ARPANET (1969), which, when split in two (using TCP/IP protocol) became the INTERNET (1984). Since then, I have written two books on Concert Halls and Opera Houses and have consulted on four concert halls and an opera house.

  11. Mass spectrometry of acoustically levitated droplets.

    PubMed

    Westphall, Michael S; Jorabchi, Kaveh; Smith, Lloyd M

    2008-08-01

    Containerless sample handling techniques such as acoustic levitation offer potential advantages for mass spectrometry, by eliminating surfaces where undesired adsorption/desorption processes can occur. In addition, they provide a unique opportunity to study fundamental aspects of the ionization process as well as phenomena occurring at the air-droplet interface. Realizing these advantages is contingent, however, upon being able to effectively interface levitated droplets with a mass spectrometer, a challenging task that is addressed in this report. We have employed a newly developed charge and matrix-assisted laser desorption/ionization (CALDI) technique to obtain mass spectra from a 5-microL acoustically levitated droplet containing peptides and an ionic matrix. A four-ring electrostatic lens is used in conjunction with a corona needle to produce bursts of corona ions and to direct those ions toward the droplet, resulting in droplet charging. Analyte ions are produced from the droplet by a 337-nm laser pulse and detected by an atmospheric sampling mass spectrometer. The ion generation and extraction cycle is repeated at 20 Hz, the maximum operating frequency of the laser employed. It is shown in delayed ion extraction experiments that both positive and negative ions are produced, behavior similar to that observed for atmospheric pressure matrix-assisted laser absorption/ionization. No ion signal is observed in the absence of droplet charging. It is likely, although not yet proven, that the role of the droplet charging is to increase the strength of the electric field at the surface of the droplet, reducing charge recombination after ion desorption. PMID:18582090

  12. Mass Spectrometry of Acoustically Levitated Droplets

    PubMed Central

    Westphall, Michael S.; Jorabchi, Kaveh; Smith, Lloyd M.

    2008-01-01

    Containerless sample handling techniques such as acoustic levitation offer potential advantages for mass spectrometry, by eliminating surfaces where undesired adsorption/desorption processes can occur. In addition, they provide a unique opportunity to study fundamental aspects of the ionization process as well as phenomena occurring at the air–droplet interface. Realizing these advantages is contingent, however, upon being able to effectively interface levitated droplets with a mass spectrometer, a challenging task that is addressed in this report. We have employed a newly developed charge and matrix-assisted laser desorption/ionization (CALDI) technique to obtain mass spectra from a 5-μL acoustically levitated droplet containing peptides and an ionic matrix. A four-ring electrostatic lens is used in conjunction with a corona needle to produce bursts of corona ions and to direct those ions toward the droplet, resulting in droplet charging. Analyte ions are produced from the droplet by a 337-nm laser pulse and detected by an atmospheric sampling mass spectrometer. The ion generation and extraction cycle is repeated at 20 Hz, the maximum operating frequency of the laser employed. It is shown in delayed ion extraction experiments that both positive and negative ions are produced, behavior similar to that observed for atmospheric pressure matrix-assisted laser absorption/ionization. No ion signal is observed in the absence of droplet charging. It is likely, although not yet proven, that the role of the droplet charging is to increase the strength of the electric field at the surface of the droplet, reducing chargere combination after ion desorption. PMID:18582090

  13. Targets and targeting.

    PubMed

    Will, E

    2001-08-01

    Using the vocabulary of ballistics in medicine for emphasis can result in misleading exaggeration and semantic confusion. The dual meaning of target as either aiming point (aim at) or outcome (aim to achieve) creates a muddle in the efforts to comply with quality assurance initiatives. Disentangling the two meanings allows new approaches to the clinical technology required in a modern health care environment. An example can be shown in new strategies for the management of renal anemia with iron and erythropoietin. The potential to shape outcome distributions through validated, preemptive intervention thresholds offers the predictable results required by patients and payers. Using the management of patient cohorts as a platform for outcomes creates no necessary conflict with individualized clinical care. Future guideline statements should include the likely characteristics of compliant outcome populations, as a prompt to clinical goals and as an indication of the necessary cost and effort of compliance with treatment standards. Overemphasis in language is no substitute for considered clinical methodology.

  14. Acoustic radiation from lined, unflanged ducts: Acoustic source distribution program

    NASA Technical Reports Server (NTRS)

    Beckemeyer, R. J.; Sawdy, D. T.

    1971-01-01

    An acoustic radiation analysis was developed to predict the far-field characteristics of fan noise radiated from an acoustically lined unflanged duct. This analysis is comprised of three modular digital computer programs which together provide a capability of accounting for the impedance mismatch at the duct exit plane. Admissible duct configurations include circular or annular, with or without an extended centerbody. This variation in duct configurations provides a capability of modeling inlet and fan duct noise radiation. The computer programs are described in detail.

  15. Experimental investigation of cryogenic flame dynamics under transverse acoustic modulations

    NASA Astrophysics Data System (ADS)

    Méry, Yoann; Hakim, Layal; Scouflaire, Philippe; Vingert, Lucien; Ducruix, Sébastien; Candel, Sébastien

    2013-01-01

    The present investigation is focused on high-frequency combustion instabilities coupled by transverse acoustic modes. This phenomenon has been observed during the development of many liquid rocket engines and other high performance devices. Such instabilities induce an unsteady heat release which leads in many cases to a rapid intensification of heat fluxes to the thrust chamber walls, causing fatal damage and a spectacular destruction of the propulsion system. One central objective of this effort is to observe and understand the physical processes leading the coupling between acoustics and combustion, and resulting in the growth of such instabilities. Experiments carried out on the Mascotte testbed at ONERA serve to identify the main processes involved and bring forth mechanisms taking place when an engine becomes unstable. Hot fire experiments are carried out in a model scale combustor reproducing many of the conditions prevailing in unstable rocket engines. Subcritical and transcritical cryogenic jets are injected in a multiple injector combustion chamber (MIC). This system is fed with LOx and methane through five injection units. The flames formed in this configuration are modulated by an acoustic wave with an amplitude of several bars. This is obtained with a new Very Large Amplitude Modulator (VHAM) capable of generating acoustic mode amplitudes representative of those found in actual engine undergoing HF instabilities. It is shown first that the strength of the acoustic field and the frequency range of oscillation (1 kHz-3.5 kHz) are consistent with rocket instability observations. Conditions where a feedback of the flame on the acoustic field occurs are obtained. High speed diagnostics indicates that the velocity field dramatically enhances the atomization process. The liquid core length is strongly reduced. At moderate amplitudes, the liquid jets are flattened in the spanwise direction and heat release takes place in two sheets neighboring the dense core

  16. Nonlinear acoustic behavior at a caustic - An approximate analytical solution

    NASA Technical Reports Server (NTRS)

    Gill, P. M.; Seebass, A. R.

    1975-01-01

    The present paper discusses an approximate analytical solution to the nonlinear behavior of a discontinuous acoustic signal near a caustic. The Seebass transformation (1970) is refined to provide results which satisfy the governing equation to any prescribed accuracy, except across the shock wave produced by reflection of the simple wave at the caustic. The solution is approximate in the sense that the basic equation is satisfied wherever the solution is continuous but can satisfy only one of the two jump conditions at the reflected shock. The results give essential geometric features of the exact solution and provide a quantitative estimate of the strength of the so-called superboom.

  17. The effects of strength training on finger strength and hand dexterity in healthy elderly individuals

    PubMed Central

    Olafsdottir, Halla B.; Zatsiorsky, Vladimir M.; Latash, Mark L.

    2008-01-01

    We investigated the effect of 6 wk of strength training on maximal pressing (MVC) force, indexes of finger individuation (enslaving), and performance in accurate force production tests and in functional hand tests in healthy, physically fit, elderly individuals. Twelve participants (average age 76 yr) exercised with both hands. One of the hands exercised by pressing with the proximal phalanges (targeting mainly intrinsic hand muscles), whereas the other hand exercised by pressing with the finger tips (targeting mainly extrinsic hand muscles). Training led to higher MVC forces, higher enslaving indexes, and improved performance on the pegboard grooved test. Changes in an index of multi-finger force stabilizing synergy showed a significant correlation with changes in the index of force variability in the accurate force production test. Strong transfer effects were seen to the site that did not perform strength training exercise within each hand. Effects of exercise at the proximal site were somewhat stronger compared with those of exercise at the finger tips, although the differences did not reach significance level. Control tests showed that repetitive testing by itself did not significantly change the maximal finger force and enslaving. The results suggest that strength training is an effective way to improve finger strength. It can also lead to changes in finger interaction and in performance of accurate force production tasks. Adaptations at a neural level are likely to mediate the observed effects. Overall, the data suggest that strength training can also improve the hand function of less healthy elderly subjects. PMID:18687981

  18. Acoustic metamaterials for sound mitigation

    NASA Astrophysics Data System (ADS)

    Assouar, Badreddine; Oudich, Mourad; Zhou, Xiaoming

    2016-05-01

    We provide theoretical and numerical analyses of the behavior of a plate-type acoustic metamaterial considered in an air-borne sound environment in view of sound mitigation application. Two configurations of plate are studied, a spring-mass one and a pillar system-based one. The acoustic performances of the considered systems are investigated with different approaches and show that a high sound transmission loss (STL) up to 82 dB is reached with a metamaterial plate with a thickness of 0.5 mm. The physical understanding of the acoustic behavior of the metamaterial partition is discussed based on both air-borne and structure-borne approaches. Confrontation between the STL, the band structure, the displacement fields and the effective mass density of the plate metamaterial is made to have a complete physical understanding of the different mechanisms involved. xml:lang="fr"

  19. Acoustic Localization with Infrasonic Signals

    NASA Astrophysics Data System (ADS)

    Threatt, Arnesha; Elbing, Brian

    2015-11-01

    Numerous geophysical and anthropogenic events emit infrasonic frequencies (<20 Hz), including volcanoes, hurricanes, wind turbines and tornadoes. These sounds, which cannot be heard by the human ear, can be detected from large distances (in excess of 100 miles) due to low frequency acoustic signals having a very low decay rate in the atmosphere. Thus infrasound could be used for long-range, passive monitoring and detection of these events. An array of microphones separated by known distances can be used to locate a given source, which is known as acoustic localization. However, acoustic localization with infrasound is particularly challenging due to contamination from other signals, sensitivity to wind noise and producing a trusted source for system development. The objective of the current work is to create an infrasonic source using a propane torch wand or a subwoofer and locate the source using multiple infrasonic microphones. This presentation will present preliminary results from various microphone configurations used to locate the source.

  20. Classroom acoustics: Three pilot studies

    NASA Astrophysics Data System (ADS)

    Smaldino, Joseph J.

    2005-04-01

    This paper summarizes three related pilot projects designed to focus on the possible effects of classroom acoustics on fine auditory discrimination as it relates to language acquisition, especially English as a second language. The first study investigated the influence of improving the signal-to-noise ratio on the differentiation of English phonemes. The results showed better differentiation with better signal-to-noise ratio. The second studied speech perception in noise by young adults for whom English was a second language. The outcome indicated that the second language learners required a better signal-to-noise ratio to perform equally to the native language participants. The last study surveyed the acoustic conditions of preschool and day care classrooms, wherein first and second language learning occurs. The survey suggested an unfavorable acoustic environment for language learning.