Acoustically Induced Vibration of Structures: Reverberant Vs. Direct Acoustic Testing
NASA Technical Reports Server (NTRS)
Kolaini, Ali R.; O'Connell, Michael R.; Tsoi, Wan B.
2009-01-01
Large reverberant chambers have been used for several decades in the aerospace industry to test larger structures such as solar arrays and reflectors to qualify and to detect faults in the design and fabrication of spacecraft and satellites. In the past decade some companies have begun using direct near field acoustic testing, employing speakers, for qualifying larger structures. A limited test data set obtained from recent acoustic tests of the same hardware exposed to both direct and reverberant acoustic field testing has indicated some differences in the resulting structural responses. In reverberant acoustic testing, higher vibration responses were observed at lower frequencies when compared with the direct acoustic testing. In the case of direct near field acoustic testing higher vibration responses appeared to occur at higher frequencies as well. In reverberant chamber testing and direct acoustic testing, standing acoustic modes of the reverberant chamber or the speakers and spacecraft parallel surfaces can strongly couple with the fundamental structural modes of the test hardware. In this paper data from recent acoustic testing of flight hardware, that yielded evidence of acoustic standing wave coupling with structural responses, are discussed in some detail. Convincing evidence of the acoustic standing wave/structural coupling phenomenon will be discussed, citing observations from acoustic testing of a simple aluminum plate. The implications of such acoustic coupling to testing of sensitive flight hardware will be discussed. The results discussed in this paper reveal issues with over or under testing of flight hardware that could pose unanticipated structural and flight qualification issues. Therefore, it is of paramount importance to understand the structural modal coupling with standing acoustic waves that has been observed in both methods of acoustic testing. This study will assist the community to choose an appropriate testing method and test setup in the planning stages.
NASA Technical Reports Server (NTRS)
Hozman, Aron D.; Hughes, William O.
2014-01-01
The exposure of a customer's aerospace test-article to a simulated acoustic launch environment is typically performed in a reverberant acoustic test chamber. The acoustic pre-test runs that will ensure that the sound pressure levels of this environment can indeed be met by a test facility are normally performed without a test-article dynamic simulator of representative acoustic absorption and size. If an acoustic test facility's available acoustic power capability becomes maximized with the test-article installed during the actual test then the customer's environment requirement may become compromised. In order to understand the risk of not achieving the customer's in-tolerance spectrum requirement with the test-article installed, an acoustic power margin evaluation as a function of frequency may be performed by the test facility. The method for this evaluation of acoustic power will be discussed in this paper. This method was recently applied at the NASA Glenn Research Center Plum Brook Station's Reverberant Acoustic Test Facility for the SpaceX Falcon 9 Payload Fairing acoustic test program.
NASA Technical Reports Server (NTRS)
Hozman, Aron D.; Hughes, William O.
2014-01-01
The exposure of a customers aerospace test-article to a simulated acoustic launch environment is typically performed in a reverberant acoustic test chamber. The acoustic pre-test runs that will ensure that the sound pressure levels of this environment can indeed be met by a test facility are normally performed without a test-article dynamic simulator of representative acoustic absorption and size. If an acoustic test facilitys available acoustic power capability becomes maximized with the test-article installed during the actual test then the customers environment requirement may become compromised. In order to understand the risk of not achieving the customers in-tolerance spectrum requirement with the test-article installed, an acoustic power margin evaluation as a function of frequency may be performed by the test facility. The method for this evaluation of acoustic power will be discussed in this paper. This method was recently applied at the NASA Glenn Research Center Plum Brook Stations Reverberant Acoustic Test Facility for the SpaceX Falcon 9 Payload Fairing acoustic test program.
In situ testing of a satellite or other object prior to development
NASA Technical Reports Server (NTRS)
Eagen, James H. (Inventor); Vujcich, Michael (Inventor); Scharton, Terry D. (Inventor)
2002-01-01
A method and system for testing a test object, such as a satellite, is disclosed. High energy acoustic testing is performed on the object by assembling an acoustical system about the test object rather than transporting the test object to a specially configured acoustic chamber. The acoustic system of the present invention preferably provides and directs acoustic energy directly to the surfaces of the test object rather than providing the test object in a high energy acoustic environment where a substantial amount of the acoustic energy is randomly directed within a chamber having the test object. Additionally, the present invention further provides for mechanical vibration tests concurrently or serially with acoustic testing, wherein the object is not required to be transported.
NASA Technical Reports Server (NTRS)
Hozman, Aron D.; Hughes, William O.; McNelis, Mark E.; McNelis, Anne M.
2011-01-01
The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) is leading the design and build of the new world-class vibroacoustic test capabilities at the NASA GRC's Plum Brook Station in Sandusky, Ohio, USA. Benham Companies, LLC is currently constructing modal, base-shake sine and reverberant acoustic test facilities to support the future testing needs of NASA's space exploration program. The large Reverberant Acoustic Test Facility (RATF) will be approximately 101,000 cu ft in volume and capable of achieving an empty chamber acoustic overall sound pressure level (OASPL) of 163 dB. This combination of size and acoustic power is unprecedented amongst the world's known active reverberant acoustic test facilities. The key to achieving the expected acoustic test spectra for a range of many NASA space flight environments in the RATF is the knowledge gained from a series of ground acoustic tests. Data was obtained from several NASA-sponsored test programs, including testing performed at the National Research Council of Canada's acoustic test facility in Ottawa, Ontario, Canada, and at the Redstone Technical Test Center acoustic test facility in Huntsville, Alabama, USA. The majority of these tests were performed to characterize the acoustic performance of the modulators (noise generators) and representative horns that would be required to meet the desired spectra, as well as to evaluate possible supplemental gas jet noise sources. The knowledge obtained in each of these test programs enabled the design of the RATF sound generation system to confidently advance to its final acoustic design and subsequent on-going construction.
NASA Technical Reports Server (NTRS)
Hughes, William O.; McNelis, Mark E.; Hozman, Aron D.; McNelis, Anne M.
2011-01-01
The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) is leading the design and build of the new world-class vibroacoustic test capabilities at the NASA GRC s Plum Brook Station in Sandusky, Ohio. Benham Companies, LLC is currently constructing modal, base-shake sine and reverberant acoustic test facilities to support the future testing needs of NASA s space exploration program. The large Reverberant Acoustic Test Facility (RATF) will be approximately 101,000 ft3 in volume and capable of achieving an empty chamber acoustic overall sound pressure level (OASPL) of 163 dB. This combination of size and acoustic power is unprecedented amongst the world s known active reverberant acoustic test facilities. The key to achieving the expected acoustic test spectra for a range of many NASA space flight environments in the RATF is the knowledge gained from a series of ground acoustic tests. Data was obtained from several NASA-sponsored test programs, including testing performed at the National Research Council of Canada s acoustic test facility in Ottawa, Ontario, Canada, and at the Redstone Technical Test Center acoustic test facility in Huntsville, Alabama. The majority of these tests were performed to characterize the acoustic performance of the modulators (noise generators) and representative horns that would be required to meet the desired spectra, as well as to evaluate possible supplemental gas jet noise sources. The knowledge obtained in each of these test programs enabled the design of the RATF sound generation system to confidently advance to its final acoustic design and subsequent on-going construction.
NASA Technical Reports Server (NTRS)
Hughes, William O.; McNelis, Mark E.; Hozman, Aron D.; McNelis, Anne M.
2011-01-01
The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) is leading the design and build of the new world-class vibroacoustic test capabilities at the NASA GRC's Plum Brook Station in Sandusky, Ohio, USA. Benham Companies, LLC is currently constructing modal, base-shake sine and reverberant acoustic test facilities to support the future testing needs of NASA s space exploration program. The large Reverberant Acoustic Test Facility (RATF) will be approximately 101,000 ft3 in volume and capable of achieving an empty chamber acoustic overall sound pressure level (OASPL) of 163 dB. This combination of size and acoustic power is unprecedented amongst the world s known active reverberant acoustic test facilities. The key to achieving the expected acoustic test spectra for a range of many NASA space flight environments in the RATF is the knowledge gained from a series of ground acoustic tests. Data was obtained from several NASA-sponsored test programs, including testing performed at the National Research Council of Canada s acoustic test facility in Ottawa, Ontario, Canada, and at the Redstone Technical Test Center acoustic test facility in Huntsville, Alabama, USA. The majority of these tests were performed to characterize the acoustic performance of the modulators (noise generators) and representative horns that would be required to meet the desired spectra, as well as to evaluate possible supplemental gas jet noise sources. The knowledge obtained in each of these test programs enabled the design of the RATF sound generation system to confidently advance to its final acoustic design and subsequent on-going construction.
Subscale Acoustic Testing: Comparison of ALAT and ASMAT
NASA Technical Reports Server (NTRS)
Houston, Janice D.; Counter, Douglas
2014-01-01
The liftoff phase induces acoustic loading over a broad frequency range for a launch vehicle. These external acoustic environments are then used in the prediction of internal vibration responses of the vehicle and components which result in the qualification levels. Thus, predicting these liftoff acoustic environments is critical to the design requirements of any launch vehicle. If there is a significant amount of uncertainty in the predictions or if acoustic mitigation options must be implemented, a subscale acoustic test is a feasible pre-launch test option. This paper compares the acoustic measurements of two different subscale tests: the 2% Ares Liftoff Acoustic Test conducted at Stennis Space Center and the 5% Ares I Scale Model Acoustic Test conducted at Marshall Space Flight Center.
NASA Technical Reports Server (NTRS)
Hughes, William O.; McNelis, Anne M.; McNelis, Mark E.
2014-01-01
The external acoustic liftoff levels predicted for NASA's future heavy lift launch vehicles are expected to be significantly higher than the environment created by today's commercial launch vehicles. This creates a need to develop an improved acoustic attenuation system for future NASA payload fairings. NASA Glenn Research Center initiated an acoustic test series to characterize the acoustic performance of melamine foam, with and without various acoustic enhancements. This testing was denoted as NEMFAT, which stands for NESC Enhanced Melamine Foam Acoustic Test, and is the subject of this paper. Both absorption and transmission loss testing of numerous foam configurations were performed at the Riverbank Acoustical Laboratory in July 2013. The NEMFAT test data provides an initial acoustic characterization and database of melamine foam for NASA. Because of its acoustic performance and lighter mass relative to fiberglass blankets, melamine foam is being strongly considered for use in the acoustic attenuation systems of NASA's future launch vehicles.
NASA Technical Reports Server (NTRS)
Hughes, William O.; McNelis, Mark E.; Hozman, Aron D.; McNelis, Anne M.
2010-01-01
The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) is leading the design and build of the new world-class vibroacoustic test capabilities at the NASA GRC s Plum Brook Station in Sandusky, Ohio, U.S.A. Benham Companies, LLC is currently constructing modal, base-shake sine and reverberant acoustic test facilities to support the future testing needs of NASA s space exploration program. The large Reverberant Acoustic Test Facility (RATF) will be approximately 101,000 ft3 in volume and capable of achieving an empty chamber acoustic overall sound pressure level (OASPL) of 163 dB. This combination of size and acoustic power is unprecedented amongst the world s known active reverberant acoustic test facilities. The key to achieving the expected acoustic test spectra for a range of many NASA space flight environments in the RATF is the knowledge gained from a series of ground acoustic tests. Data was obtained from several NASA-sponsored test programs, including testing performed at the National Research Council of Canada s acoustic test facility in Ottawa, Ontario, Canada, and at the Redstone Technical Test Center acoustic test facility in Huntsville, Alabama, U.S.A. The majority of these tests were performed to characterize the acoustic performance of the modulators (noise generators) and representative horns that would be required to meet the desired spectra, as well as to evaluate possible supplemental gas jet noise sources. The knowledge obtained in each of these test programs enabled the design of the RATF sound generation system to confidently advance to its final acoustic design and subsequent ongoing construction.
NASA Technical Reports Server (NTRS)
Hughes, William O.; McNelis, Mark E.; McNelis, Anne M.
2011-01-01
The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) is leading the design and build of the new world-class vibroacoustic test capabilities at the NASA GRC?s Plum Brook Station in Sandusky, Ohio, USA. Benham Companies, LLC is currently constructing modal, base-shake sine and reverberant acoustic test facilities to support the future testing needs of NASA?s space exploration program. T he large Reverberant Acoustic Test Facility (RATF) will be approximately 101,000 ft3 in volume and capable of achieving an empty chamber acoustic overall sound pressure level (OASPL) of 163 dB. This combination of size and acoustic power is unprecedented amongst the world?s known active reverberant acoustic test facilities. The key to achieving the expected acoustic test spectra for a range of many NASA space flight environments in the RATF is the knowledge gained from a series of ground acoustic tests. Data was obtained from several NASA-sponsored test programs, including testing performed at the National Research Council of Canada?s acoustic test facility in Ottawa, Ontario, Canada, and at the Redstone Technical Test Center acoustic test facility in Huntsville, Alabama, USA. The majority of these tests were performed to characterize the acoustic performance of the modulators (noise generators) and representative horns that would be required to meet the desired spectra, as well as to evaluate possible supplemental gas jet noise sources. The knowledge obtained in each of these test programs enabled the design of the RATF sound generation system to confidently advance to its final acoustic de-sign and subsequent on-going construction.
NASA Technical Reports Server (NTRS)
Kolaini, Ali R.; Doty, Benjamin; Chang, Zensheu
2012-01-01
Loudspeakers have been used for acoustic qualification of spacecraft, reflectors, solar panels, and other acoustically responsive structures for more than a decade. Limited measurements from some of the recent speaker tests used to qualify flight hardware have indicated significant spatial variation of the acoustic field within the test volume. Also structural responses have been reported to differ when similar tests were performed using reverberant chambers. To address the impact of non-uniform acoustic field on structural responses, a series of acoustic tests were performed using a flat panel and a 3-ft cylinder exposed to the field controlled by speakers and repeated in a reverberant chamber. The speaker testing was performed using multi-input-single-output (MISO) and multi-input-multi-output (MIMO) control schemes with and without the test articles. In this paper the spatial variation of the acoustic field due to acoustic standing waves and their impacts on the structural responses in RAT and DFAT (both using MISO and MIMO controls for DFAT) are discussed in some detail.
NASA Technical Reports Server (NTRS)
Oberg, C. L.
1974-01-01
The combustion stability characteristics of engines applicable to the Space Shuttle Orbit Maneuvering System and the adequacy of acoustic cavities as a means of assuring stability in these engines were investigated. The study comprised full-scale stability rating tests, bench-scale acoustic model tests and analysis. Two series of stability rating tests were made. Acoustic model tests were made to determine the resonance characteristics and effects of acoustic cavities. Analytical studies were done to aid design of the cavity configurations to be tested and, also, to aid evaluation of the effectiveness of acoustic cavities from available test results.
Direct-field acoustic testing of a flight system : logistics, challenges, and results.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stasiunas, Eric Carl; Gurule, David Joseph; Babuska, Vit
2010-10-01
Before a spacecraft can be considered for launch, it must first survive environmental testing that simulates the launch environment. Typically, these simulations include vibration testing performed using an electro-dynamic shaker. For some spacecraft however, acoustic excitation may provide a more severe loading environment than base shaker excitation. Because this was the case for a Sandia Flight System, it was necessary to perform an acoustic test prior to launch in order to verify survival due to an acoustic environment. Typically, acoustic tests are performed in acoustic chambers, but because of scheduling, transportation, and cleanliness concerns, this was not possible. Instead, themore » test was performed as a direct field acoustic test (DFAT). This type of test consists of surrounding a test article with a wall of speakers and controlling the acoustic input using control microphones placed around the test item, with a closed-loop control system. Obtaining the desired acoustic input environment - proto-flight random noise input with an overall sound pressure level (OASPL) of 146.7 dB-with this technique presented a challenge due to several factors. An acoustic profile with this high OASPL had not knowingly been obtained using the DFAT technique prior to this test. In addition, the test was performed in a high-bay, where floor space and existing equipment constrained the speaker circle diameter. And finally, the Flight System had to be tested without contamination of the unit, which required a contamination bag enclosure of the test unit. This paper describes in detail the logistics, challenges, and results encountered while performing a high-OASPL, direct-field acoustic test on a contamination-sensitive Flight System in a high-bay environment.« less
NASA Technical Reports Server (NTRS)
Houston, Janice; Counter, D.; Giacomoni, D.
2015-01-01
The liftoff phase induces acoustic loading over a broad frequency range for a launch vehicle. These external acoustic environments are then used in the prediction of internal vibration responses of the vehicle and components which result in the qualification levels. Thus, predicting these liftoff acoustic (LOA) environments is critical to the design requirements of any launch vehicle. If there is a significant amount of uncertainty in the predictions or if acoustic mitigation options must be implemented, a subscale acoustic test is a feasible pre-launch test option to verify the LOA environments. The NASA Space Launch System (SLS) program initiated the Scale Model Acoustic Test (SMAT) to verify the predicted SLS LOA environments and to determine the acoustic reduction with an above deck water sound suppression system. The SMAT was conducted at Marshall Space Flight Center and the test article included a 5% scale SLS vehicle model, tower and Mobile Launcher. Acoustic and pressure data were measured by approximately 250 instruments. The SMAT liftoff acoustic results are presented, findings are discussed and a comparison is shown to the Ares I Scale Model Acoustic Test (ASMAT) results.
Ares I Scale Model Acoustic Tests Instrumentation for Acoustic and Pressure Measurements
NASA Technical Reports Server (NTRS)
Vargas, Magda B.; Counter, Douglas D.
2011-01-01
The Ares I Scale Model Acoustic Test (ASMAT) was a development test performed at the Marshall Space Flight Center (MSFC) East Test Area (ETA) Test Stand 116. The test article included a 5% scale Ares I vehicle model and tower mounted on the Mobile Launcher. Acoustic and pressure data were measured by approximately 200 instruments located throughout the test article. There were four primary ASMAT instrument suites: ignition overpressure (IOP), lift-off acoustics (LOA), ground acoustics (GA), and spatial correlation (SC). Each instrumentation suite incorporated different sensor models which were selected based upon measurement requirements. These requirements included the type of measurement, exposure to the environment, instrumentation check-outs and data acquisition. The sensors were attached to the test article using different mounts and brackets dependent upon the location of the sensor. This presentation addresses the observed effect of the sensors and mounts on the acoustic and pressure measurements.
21 CFR 874.1060 - Acoustic chamber for audiometric testing.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Acoustic chamber for audiometric testing. 874.1060... (CONTINUED) MEDICAL DEVICES EAR, NOSE, AND THROAT DEVICES Diagnostic Devices § 874.1060 Acoustic chamber for audiometric testing. (a) Identification. An acoustic chamber for audiometric testing is a room that is...
NASA Technical Reports Server (NTRS)
McNelis, Mark E.; Hughes, William O.; Larko, Jeffrey M.; Bittinger, Samantha A.; Le-Plenier, Cyprien; Fogt, Vincent A.; Ngan, Ivan; Thirkettle, Anthony C.; Skinner, Mitch; Larkin, Paul
2017-01-01
The NASA Orion Multi-Purpose Crew Vehicle (MPCV), comprised of the Service Module, the Crew Module, and the Launch Abort System, is the next generation human spacecraft designed and built for deep space exploration. Orion will launch on NASAs new heavy-lift rocket, the Space Launch System. The European Space Agency (ESA) is responsible for providing the propulsion sub-assembly of the Service Module to NASA, called the European Service Module (ESM). The ESM is being designed and built by Airbus Safran Launchers for ESA. Traditionally, NASA has utilized reverberant acoustic testing for qualification of spaceflight hardware. The ESM Structural Test Article (E-STA) was tested at the NASA Plum Brook Stations (PBS) Reverberant Acoustic Test Facility in April-May 2016. However, Orion is evaluating an alternative acoustic test method, using direct field acoustic excitation, for the MPCVs Service Module and Crew Module. Lockheed Martin is responsible for the Orion proof-of-concept direct field acoustic test program. The E-STA was exposed to direct field acoustic testing at NASA PBS in February 2017. This paper compares the dynamic response of the E-STA structure and its components to both the reverberant and direct field acoustic test excitations. Advantages and disadvantages of direct field acoustic test excitation method are discussed.
Ares I Scale Model Acoustic Test Above Deck Water Sound Suppression Results
NASA Technical Reports Server (NTRS)
Counter, Douglas D.; Houston, Janice D.
2011-01-01
The Ares I Scale Model Acoustic Test (ASMAT) program test matrix was designed to determine the acoustic reduction for the Liftoff acoustics (LOA) environment with an above deck water sound suppression system. The scale model test can be used to quantify the effectiveness of the water suppression system as well as optimize the systems necessary for the LOA noise reduction. Several water flow rates were tested to determine which rate provides the greatest acoustic reductions. Preliminary results are presented.
Overview of the Acoustic Testing of the European Service Module Structural Test Article (E-STA)
NASA Technical Reports Server (NTRS)
Hughes, William; Fogt, Vince; Le Plenier, Cyprien; Duval, Francois; Durand, Jean-Francois; Staab, Lucas D.; Hozman, Aron; Mcnelis, Anne; Bittinger, Samantha; Thirkettle, Anthony;
2017-01-01
The European Space Agency (ESA) and their prime contractor Airbus Defense Space (ADS) are developing the European Service Module (ESM) for integration and utilization with other modules of NASAs Orion Multi-Purpose Crew Vehicle. As part of this development, ESA, ADS, NASA and the Lockheed Martin Company performed a series of reverberant acoustic tests in April-May 2016 on the ESM Structural Test Article (E-STA), the mechanical mock-up of the ESM designated for mechanical tests. Testing the E-STA under acoustic qualification loads verifies whether it can successfully withstand the medium and high frequency mechanical environment occurring during the vehicles lift-off and atmospheric phases of flight. The testing occurred at the Reverberant Acoustic Test Facility (RATF) at the NASA Glenn Research Centers Plum Brook Station site in Sandusky, OH, USA. This highly successful acoustic test campaign excited the E-STA to acoustic test levels as high as 149.4 dB Overall Sound Pressure Level. This acoustic testing met all the ESA and ADSs test objectives, including establishingverifying the random vibration qualification test levels for numerous hardware components of the ESM, and qualifying the ESMs Solar Array Wing electrical power system. This paper will address the test objectives, the test articles configuration, the test instrumentation and excitation levels, the RATF site and capabilities, the series of acoustic tests performed, and the technical issues faced and overcome to result in a successful acoustic test campaign for the ESM. A discussion of several test results is also included.
Overview of the Acoustic Testing of the European Service Module Structural Test Article (E-STA)
NASA Technical Reports Server (NTRS)
Hughes, William; Le Plenier, Cyprien; Duval, Francois; Staab, Lucas; Hozman, Aron; Thirkettle, Anthony; Fogt, Vincent; Durand, Jean-Francois; McNelis, Anne; Bittinger, Samantha;
2017-01-01
The European Space Agency (ESA) and their prime contractor Airbus Defense Space (ADS) are developing the European Service Module (ESM) for integration and utilization with other modules of NASAs Orion Multi-Purpose Crew Vehicle. As part of this development, ESA, ADS, NASA and the Lockheed Martin Company performed a series of reverberant acoustic tests in April-May 2016 on the ESM Structural Test Article (E-STA), the mechanical mock-up of the ESM designated for mechanical tests. Testing the E-STA under acoustic qualification loads verifies whether it can successfully withstand the medium and high frequency mechanical environment occurring during the vehicles lift-off and atmospheric phases of flight. The testing occurred at the Reverberant Acoustic Test Facility (RATF) at the NASA Glenn Research Centers Plum Brook Station site in Sandusky, OH, USA. This highly successful acoustic test campaign excited the E-STA to acoustic test levels as high as 149.4 dB Overall Sound Pressure Level. This acoustic testing met all the ESA and ADSs test objectives, including establishing/verifying the random vibration qualification test levels for numerous hardware components of the ESM, and qualifying the ESMs Solar Array Wing electrical power system. This paper will address the test objectives, the test articles configuration, the test instrumentation and excitation levels, the RATF site and capabilities, the series of acoustic tests performed, and the technical issues faced and overcome to result in a successful acoustic test campaign for the ESM. A discussion of several test results is also included.
NASA Technical Reports Server (NTRS)
Wood, Jessica J.; Foster, Lee W.
2013-01-01
A Multilayer Insulation (MLI) and Broad Area Cooling (BAC) shield thermal control system shows promise for long-duration storage of cryogenic propellant. The NASA Cryogenic Propellant Storage and Transfer (CPST) project is investigating the thermal and structural performance of this tank-applied integrated system. The MLI/BAC Shield Acoustic and Thermal Test was performed to evaluate the MLI/BAC shield's structural performance by subjecting it to worst-case launch acoustic loads. Identical thermal tests using Liquid Nitrogen (LN2) were performed before and after the acoustic test. The data from these tests was compared to determine if any degradation occurred in the thermal performance of the system as a result of exposure to the acoustic loads. The thermal test series consisted of two primary components: a passive boil-off test to evaluate the MLI performance and an active cooling test to evaluate the integrated MLI/BAC shield system with chilled vapor circulating through the BAC shield tubes. The acoustic test used loads closely matching the worst-case envelope of all launch vehicles currently under consideration for CPST. Acoustic test results yielded reasonable responses for the given load. The thermal test matrix was completed prior to the acoustic test and successfully repeated after the acoustic test. Data was compared and yielded near identical results, indicating that the MLI/BAC shield configuration tested in this series is an option for structurally implementing this thermal control system concept.
Simulation of Acoustics for Ares I Scale Model Acoustic Tests
NASA Technical Reports Server (NTRS)
Putnam, Gabriel; Strutzenberg, Louise L.
2011-01-01
The Ares I Scale Model Acoustics Test (ASMAT) is a series of live-fire tests of scaled rocket motors meant to simulate the conditions of the Ares I launch configuration. These tests have provided a well documented set of high fidelity acoustic measurements useful for validation including data taken over a range of test conditions and containing phenomena like Ignition Over-Pressure and water suppression of acoustics. To take advantage of this data, a digital representation of the ASMAT test setup has been constructed and test firings of the motor have been simulated using the Loci/CHEM computational fluid dynamics software. Results from ASMAT simulations with the rocket in both held down and elevated configurations, as well as with and without water suppression have been compared to acoustic data collected from similar live-fire tests. Results of acoustic comparisons have shown good correlation with the amplitude and temporal shape of pressure features and reasonable spectral accuracy up to approximately 1000 Hz. Major plume and acoustic features have been well captured including the plume shock structure, the igniter pulse transient, and the ignition overpressure.
Investigation of Acoustic Fields for the Cassini Spacecraft: Reverberant Versus Launch Environments
NASA Technical Reports Server (NTRS)
Hughes, William O.; McNelis, Anne M.; Himelblau, Harry
2000-01-01
The characterization and understanding of the acoustic field within a launch vehicle's payload fairing (PLF) is critical to the qualification of a spacecraft and ultimately to the success of its mission. Acoustic measurements taken recently for the Cassini mission have allowed unique opportunities to advance the aerospace industry's knowledge in this field. Prior to its launch, the expected liftoff acoustic environment of the spacecraft was investigated in a full-scale acoustic test of a Titan IV PLF and Cassini simulator in a reverberant test chamber. A major goal of this acoustic ground test was to quantify and verify the noise reduction performance of special barrier blankets that were designed especially to reduce the Cassirii acoustic environment. This paper will describe both the ground test and flight measurements, and compare the Cassini acoustic environment measured during launch with that measured earlier in the ground test. Special emphasis will be given to the noise reduction performance of the barrier blankets and to the acoustic coherence measured within the PLF.
SLS Scale Model Acoustic Test Liftoff Results and Comparisons
NASA Technical Reports Server (NTRS)
Houston, Janice; Counter, Douglas; Giacomoni, Clothilde
2015-01-01
The liftoff phase induces acoustic loading over a broad frequency range for a launch vehicle. These external acoustic environments are then used in the prediction of internal vibration responses of the vehicle and components which result in the qualification levels. Thus, predicting these liftoff acoustic (LOA) environments is critical to the design requirements of any launch vehicle. If there is a significant amount of uncertainty in the predictions or if acoustic mitigation options must be implemented, a subscale acoustic test is a feasible design phase test option to verify the LOA environments. The NASA Space Launch System (SLS) program initiated the Scale Model Acoustic Test (SMAT) to verify the predicted SLS LOA environments.
NASA Astrophysics Data System (ADS)
Akers, James C.; Passe, Paul J.; Cooper, Beth A.
2005-09-01
The Acoustical Testing Laboratory (ATL) at the NASA John H. Glenn Research Center (GRC) in Cleveland, OH, provides acoustic emission testing and noise control engineering services for a variety of specialized customers, particularly developers of equipment and science experiments manifested for NASA's manned space missions. The ATL's primary customer has been the Fluids and Combustion Facility (FCF), a multirack microgravity research facility being developed at GRC for the USA Laboratory Module of the International Space Station (ISS). Since opening in September 2000, ATL has conducted acoustic emission testing of components, subassemblies, and partially populated FCF engineering model racks. The culmination of this effort has been the acoustic emission verification tests on the FCF Combustion Integrated Rack (CIR) and Fluids Integrated Rack (FIR), employing a procedure that incorporates ISO 11201 (``Acoustics-Noise emitted by machinery and equipment-Measurement of emission sound pressure levels at a work station and at other specified positions-Engineering method in an essentially free field over a reflecting plane''). This paper will provide an overview of the test methodology, software, and hardware developed to perform the acoustic emission verification tests on the CIR and FIR flight racks and lessons learned from these tests.
Acoustic Performance of Drive Rig Mufflers for Model Scale Engine Testing
NASA Technical Reports Server (NTRS)
Stephens, David, B.
2013-01-01
Aircraft engine component testing at the NASA Glenn Research Center (GRC) includes acoustic testing of scale model fans and propellers in the 9- by15-Foot Low Speed Wind Tunnel (LSWT). This testing utilizes air driven turbines to deliver power to the article being studied. These air turbines exhaust directly downstream of the model in the wind tunnel test section and have been found to produce significant unwanted noise that reduces the quality of the acoustic measurements of the engine model being tested. This report describes an acoustic test of a muffler designed to mitigate the extraneous turbine noise. The muffler was found to provide acoustic attenuation of at least 8 dB between 700 Hz and 20 kHz which significantly improves the quality of acoustic measurements in the facility.
Verification of Ares I Liftoff Acoustic Environments via the Ares I Scale Model Acoustic Test
NASA Technical Reports Server (NTRS)
Counter, Douglas; Houston, Janice
2012-01-01
The Ares I Scale Model Acoustic Test (ASMAT) program was implemented to verify the predicted Ares I liftoff acoustic environments and to determine the acoustic reduction gained by using an above deck water sound suppression system. The test article included a 5% scale Ares I vehicle model and Mobile Launcher with tower. Acoustic and pressure data were measured by over 200 instruments. The ASMAT results are compared to Ares I-X flight data.
VEGA Launch Vehicle Vibro-Acoustic Approach for Multi Payload Configuration Qualification
NASA Astrophysics Data System (ADS)
Bartoccini, D.; Di Trapani, C.; Fotino, D.; Bonnet, M.
2014-06-01
Acoustic loads are one of the principal source of structural vibration and internal noise during a launch vehicle flight but do not generally present a critical design condition for the main load-carrying structure. However, acoustic loads may be critical to the proper functioning of vehicle components and their supporting structures, which are otherwise lightly loaded. Concerning the VEGA program, in order to demonstrate VEGA Launch Vehicle (LV) on-ground qualification, prior to flight, to the acoustic load, the following tests have been performed: small-scale acoustic test intended for the determination of the acoustic loading of the LV and its nature and full-scale acoustic chamber test to determine the vibro-acoustic response of the structures as well as of the acoustic cavities.
NASA Engineering and Safety Center (NESC) Enhanced Melamine (ML) Foam Acoustic Test (NEMFAT)
NASA Technical Reports Server (NTRS)
McNelis, Anne M.; Hughes, William O.; McNelis, Mark E.
2014-01-01
The NASA Engineering and Safety Center (NESC) funded a proposal to achieve initial basic acoustic characterization of ML (melamine) foam, which could serve as a starting point for a future, more comprehensive acoustic test program for ML foam. A project plan was developed and implemented to obtain acoustic test data for both normal and enhanced ML foam. This project became known as the NESC Enhanced Melamine Foam Acoustic Test (NEMFAT). This document contains the outcome of the NEMFAT project.
NASA Technical Reports Server (NTRS)
Hughes, William O.; McNelis, Anne M.
2014-01-01
A spacecraft at launch is subjected to a harsh acoustic and vibration environment resulting from the passage of acoustic energy, created during the liftoff of a launch vehicle, through the vehicle's payload fairing. In order to ensure the mission success of the spacecraft it is often necessary to reduce the resulting internal acoustic sound pressure levels through the usage of acoustic attenuation systems. Melamine foam, lining the interior walls of the payload fairing, is often utilized as the main component of such a system. In order to better understand the acoustic properties of melamine foam, with the goal of developing improved acoustic attenuation systems, NASA has recently performed panel level testing on numerous configurations of melamine foam acoustic treatments at the Riverbank Acoustical Laboratory. Parameters assessed included the foam's thickness and density, as well as the effects of a top outer cover sheet material and mass barriers embedded within the foam. This testing followed the ASTM C423 standard for absorption and the ASTM E90 standard for transmission loss. The acoustic test data obtained and subsequent conclusions are the subjects of this paper.
Safety and clinical performance of acoustic reflex tests.
Hunter, L L; Ries, D T; Schlauch, R S; Levine, S C; Ward, W D
1999-12-01
Safety and effectiveness of acoustic reflex tests are important issues because these tests are widely applied to screen for retrocochlear pathology. Previous studies have reported moderately high sensitivity and specificity for detection of acoustic neuroma. However, there have been reports of possible iatrogenic hearing loss resulting from acoustic reflex threshold (ART) and decay (ARD) tests. This study assessed safety and clinical performance of ART tests for detection of acoustic neuroma. We report a case in which ARD testing resulted in a significant bilateral permanent threshold shift. This case was the impetus for us to investigate the clinical utility of ART and ARD tests. We analyzed sensitivity and specificity of ART, as well as asymmetry in pure-tone thresholds (PTT) for detection of acoustic neuroma in 56 tumor and 108 non-tumor ears. Sensitivity and specificity were higher for PTT asymmetry than for ART. Ipsilateral ART at 1000 Hz had poor sensitivity and specificity for detection of acoustic neuroma, and involves some potential risk to residual hearing for presentation levels higher than 115 dB SPL. Approximately half of the acoustic neuroma group had ipsilateral ARTs that would require administration of ARD tests at levels exceeding 115 dB SPL. Therefore, we conclude that PTT asymmetry is a more effective test for detection of acoustic neuroma, and involves no risk to residual hearing. Future studies of contralateral reflex threshold and ARD in combination with PTT asymmetry are recommended.
Ares I Scale Model Acoustic Test Liftoff Acoustic Results and Comparisons
NASA Technical Reports Server (NTRS)
Counter, Doug; Houston, Janice
2011-01-01
Conclusions: Ares I-X flight data validated the ASMAT LOA results. Ares I Liftoff acoustic environments were verified with scale model test results. Results showed that data book environments were under-conservative for Frustum (Zone 5). Recommendations: Data book environments can be updated with scale model test and flight data. Subscale acoustic model testing useful for future vehicle environment assessments.
NASA Technical Reports Server (NTRS)
Verrilli, Michael J.; Lee, Kuan
2008-01-01
The acoustic liner system designed for use in the High Speed Civil Transport (HSCT) was tested in a thermal-acoustic environment. Five ceramic matrix composite (CMC) acoustic tile configurations, five bulk acoustic absorbers, and one thermal protection system design were tested. The CMC acoustic tiles were subjected to two 2 3/4 hr ambient temperature acoustic exposures to measure their dynamic response. One exposure was conducted on the tiles alone and the second exposure included the tiles and the T-foam bulk absorber. The measured tile RMS strains were small. With or without the T-foam absorber, the dynamic strains were below strain levels that would cause damage during fatigue loading. After the ambient exposure, a 75-hr durability test of the entire acoustic liner system was conducted using a thermal-acoustic cycle that approximated the anticipated service cycle. Acoustic loads up to 139 dB/Hz and temperatures up to 1670 F (910 C) were employed during this 60 cycle test. During the durability test, the CMC tiles were exposed to temperatures up to 1780 F and a transient through thickness gradient up to 490 F. The TPS peak temperatures on the hot side of the panels ranged from 750 to 1000 F during the 60 cycles. The through thickness delta T ranged from 450 to 650 F, varying with TPS location and cycle number. No damage, such as cracks or chipping, was observed in the CMC tiles after completion of the testing. However, on tile warped during the durability test and was replaced after 43 or 60 cycles. No externally observed damage was found in this tile. No failure of the CMC fasteners occurred, but damage was observed. Cracks and missing material occurred, only in the fastener head region. No indication of damage was observed in the T-foam acoustic absorbers. The SiC foam acoustic absorber experienced damage after about 43 cycles. Cracking in the TPS occurred around the attachment holes and under a vent. In spite of the development of damage, the TPS maintained its insulative capability throughout the durability test. The durability test results demonstrate damage-tolerant CMC tile, CMC fastener, TPS, and T-foam absorber designs for the combined thermal and acoustic engine nozzle environment.
NASA Technical Reports Server (NTRS)
Hozman, Aron D.; Hughes, William O.
2014-01-01
It is important to realize that some test-articles may have significant sound absorption that may challenge the acoustic power capabilities of a test facility. Therefore, to mitigate this risk of not being able to meet the customers target spectrum, it is prudent to demonstrate early-on an increased acoustic power capability which compensates for this test-article absorption. This paper describes a concise method to reduce this risk when testing aerospace test-articles which have significant absorption. This method was successfully applied during the SpaceX Falcon 9 Payload Fairing acoustic test program at the NASA Glenn Research Center Plum Brook Stations RATF.
Issues Related to Large Flight Hardware Acoustic Qualification Testing
NASA Technical Reports Server (NTRS)
Kolaini, Ali R.; Perry, Douglas C.; Kern, Dennis L.
2011-01-01
The characteristics of acoustical testing volumes generated by reverberant chambers or a circle of loudspeakers with and without large flight hardware within the testing volume are significantly different. The parameters attributing to these differences are normally not accounted for through analysis or acoustic tests prior to the qualification testing without the test hardware present. In most cases the control microphones are kept at least 2-ft away from hardware surfaces, chamber walls, and speaker surfaces to minimize the impact of the hardware in controlling the sound field. However, the acoustic absorption and radiation of sound by hardware surfaces may significantly alter the sound pressure field controlled within the chamber/speaker volume to a given specification. These parameters often result in an acoustic field that may provide under/over testing scenarios for flight hardware. In this paper the acoustic absorption by hardware surfaces will be discussed in some detail. A simple model is provided to account for some of the observations made from Mars Science Laboratory spacecraft that recently underwent acoustic qualification tests in a reverberant chamber.
Acoustic Noise Prediction of the Amine Swingbed ISS ExPRESS Rack Payload
NASA Technical Reports Server (NTRS)
Welsh, David; Smith, Holly; Wang, Shuo
2010-01-01
Acoustics plays a vital role in maintaining the health, safety, and comfort of crew members aboard the International Space Station (ISS). In order to maintain this livable and workable environment, acoustic requirements have been established to ensure that ISS hardware and payload developers account for the acoustic emissions of their equipment and develop acoustic mitigations as necessary. These requirements are verified by an acoustic emissions test of the integrated hardware. The Amine Swingbed ExPRESS (Expedite the PRocessing of ExperimentS to Space) rack payload creates a unique challenge to the developers in that the payload hardware is transported to the ISS in phases, making an acoustic emissions test on the integrated flight hardware impossible. In addition, the payload incorporates a high back pressure fan and a diaphragm vacuum pump, which are recognized as significant and complex noise sources. In order to accurately predict the acoustic emissions of the integrated payload, the individual acoustic noise sources and paths are first characterized. These characterizations are conducted though a series of acoustic emissions tests on the individual payload components. Secondly, the individual acoustic noise sources and paths are incorporated into a virtual model of the integrated hardware. The virtual model is constructed with the use of hybrid method utilizing the Finite Element Acoustic (FEA) and Statistical Energy Analysis (SEA) techniques, which predict the overall acoustic emissions. Finally, the acoustic model is validated though an acoustic characterization test performed on an acoustically similar mock-up of the flight unit. The results of the validated acoustic model are then used to assess the acoustic emissions of the flight unit and define further acoustic mitigation efforts.
NASA Technical Reports Server (NTRS)
Bozak, Richard F.
2017-01-01
In February 2017, aerodynamic and acoustic testing was completed on a scale-model high bypass ratio turbofan rotor, R4, in an internal flow component test facility. The objective of testing was to determine the aerodynamic and acoustic impact of fan casing treatments designed to reduce noise. The baseline configuration consisted of the R4 rotor with a hardwall fan case. Data are presented for a baseline acoustic run with fan exit instrumentation removed to give a clean acoustic configuration.
Acoustic Emission Test for Aircraft Halon 1301 Fire Extinguisher Bottles
DOT National Transportation Integrated Search
1998-04-01
An acoustic emission test for aircraft Halon 1301 bottles has been developed, a prototype acoustic emission test system constructed, and over 200 used bottles tested at the repair facilities of the two manufacturers of these bottles. The system monit...
In-flight acoustic testing techniques using the YO-3A Acoustic Research Aircraft
NASA Technical Reports Server (NTRS)
Cross, J. L.; Watts, M. E.
1984-01-01
This report discusses the flight testing techniques and equipment employed during air-to-air acoustic testing of helicopters at Ames Research Center. The in flight measurement technique used enables acoustic data to be obtained without the limitations of anechoic chambers or the multitude of variables encountered in ground based flyover testing. The air-to-air testing is made possible by the NASA YO-3A Acoustic Research Aircraft. This "Quiet Aircraft' is an acoustically instrumented version of a quiet observation aircraft manufactured for the military. To date, tests with the following aircraft have been conducted: YO-3A background noise; Hughes 500D; Hughes AH-64; Bell AH-1S; Bell AH-1G. Several system upgrades are being designed and implemented to improve the quality of data. This report will discuss not only the equipment involved and aircraft tested, but also the techniques used in these tests. In particular, formation flying position locations, and the test matrices will be discussed. Examples of data taken will also be presented.
In-flight acoustic testing techniques using the YO-3A acoustic research aircraft
NASA Technical Reports Server (NTRS)
Cross, J. L.; Watts, M. E.
1983-01-01
This report discusses the flight testing techniques and equipment employed during air-to-air acoustic testing of helicopters at Ames Research Center. The in-flight measurement technique used enables acoustic data to be obtained without the limitations of anechoic chambers or the multitude of variables encountered in ground based flyover testing. The air-to-air testing is made possible by the NASA YO-3A Acoustic Research Aircraft. This 'Quiet Aircraft' is an acoustically instrumented version of a quiet observation aircraft manufactured for the military. To date, tests with the following aircraft have been conducted: YO-3A background noise; Hughes 500D; Hughes AH-64; Bell AH-1S; Bell AH-1G. Several system upgrades are being designed and implemented to improve the quality of data. This report will discuss not only the equipment involved and aircraft tested, but also the techniques used in these tests. In particular, formation flying, position locations, and the test matrices will be discussed. Examples of data taken will also be presented.
High-temperature acoustic test facilities and methods
NASA Astrophysics Data System (ADS)
Pearson, Jerome
1994-09-01
The Wright Laboratory is the Air Force center for air vehicles, responsible for developing advanced technology and incorporating it into new flight vehicles and for continuous technological improvement of operational air vehicles. Part of that responsibility is the problem of acoustic fatigue. With the advent of jet aircraft in the 1950's, acoustic fatigue of aircraft structure became a significant problem. In the 1960's the Wright Laboratory constructed the first large acoustic fatigue test facilities in the United States, and the laboratory has been a dominant factor in high-intensity acoustic testing since that time. This paper discusses some of the intense environments encountered by new and planned Air Force flight vehicles, and describes three new acoustic test facilities of the Wright Laboratory designed for testing structures in these dynamic environments. These new test facilities represent the state of the art in high-temperature, high-intensity acoustic testing and random fatigue testing. They will allow the laboratory scientists and engineers to test the new structures and materials required to withstand the severe environments of captive-carry missiles, augmented lift wings and flaps, exhaust structures of stealth aircraft, and hypersonic vehicle structures well into the twenty-first century.
Report on the Joint Eglin Acoustic Week III
NASA Technical Reports Server (NTRS)
Watts, Michael E.; Conner, David A.; Smith, Charles E.
2008-01-01
A series of three flight tests have been conducted at Eglin Air Force Base located in the Florida panhandle. The first was the Acoustics Week flight test conducted in September 2003. The second was the NASA Heavy Lift Rotorcraft Acoustic Flight Test conducted in October-November 2005. The most recent was the Eglin Acoustic Week III test conducted in August-September 2007. This series of tests have acquired acoustic data for a number of rotary and fixed wing aircraft that are used to generate noise semi-spheres used in predicting the acoustic footprint for prescribed flight operations. This extensive database can be used to determine the impact of flight operations on communities around a terminal area. Another valuable use of the semi-spheres is determining the long-range propagation of noise for civilian and military purposes. This paper will describe the third in this series of tests.
NASA Technical Reports Server (NTRS)
McNelis, Mark E.; Staab, Lucas D.; Akers, James C.; Hughes, William O.; Chang, Li C.; Hozman, Aron D.; Henry, Michael W.
2012-01-01
The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) has led the design and build of the new world-class vibroacoustic test capabilities at the NASA GRC's Plum Brook Station in Sandusky, Ohio, USA from 2007 to 2011. SAIC-Benham has completed construction of a new reverberant acoustic test facility to support the future testing needs of NASA's space exploration program and commercial customers. The large Reverberant Acoustic Test Facility (RATF) is approximately 101,000 cubic feet in volume and was designed to operate at a maximum empty chamber acoustic overall sound pressure level (OASPL) of 163 dB. This combination of size and acoustic power is unprecedented amongst the world s known active reverberant acoustic test facilities. Initial checkout acoustic testing was performed on March 2011 by SAIC-Benham at test levels up to 161 dB OASPL. During testing, several branches of the gaseous nitrogen (GN2) piping system, which supply the fluid to the noise generating acoustic modulators, failed at their T-junctions connecting the 12 in. supply line to their respective 4 in. branch lines. The problem was initially detected when the oxygen sensors in the horn room indicated a lower than expected oxygen level from which was inferred GN2 leaks in the piping system. In subsequent follow up inspections, cracks were identified in the failed T-junction connections through non-destructive evaluation testing. Through structural dynamic modeling of the piping system, the root cause of the T-junction connection failures was determined. The structural dynamic assessment identified several possible corrective design improvements to the horn room piping system. The effectiveness of the chosen design repairs were subsequently evaluated in September 2011 during acoustic verification testing to 161 dB OASPL.
NASA Technical Reports Server (NTRS)
McNelis, Mark E.; Staab, Lucas D.; Akers, James C.; Hughes, WIlliam O.; Chang, Li, C.; Hozman, Aron D.; Henry, Michael W.
2012-01-01
The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) has led the design and build of the new world-class vibroacoustic test capabilities at the NASA GRC's Plum Brook Station in Sandusky, Ohio, USA from 2007-2011. SAIC-Benham has completed construction of a new reverberant acoustic test facility to support the future testing needs of NASA's space exploration program and commercial customers. The large Reverberant Acoustic Test Facility (RATF) is approximately 101,000 cu ft in volume and was designed to operate at a maximum empty chamber acoustic overall sound pressure level (OASPL) of 163 dB. This combination of size and acoustic power is unprecedented amongst the world's known active reverberant acoustic test facilities. Initial checkout acoustic testing was performed on March 2011 by SAIC-Benham at test levels up to 161 dB OASPL. During testing, several branches of the gaseous nitrogen (GN2) piping system, which supply the fluid to the noise generating acoustic modulators, failed at their "t-junctions" connecting the 12 inch supply line to their respective 4 inch branch lines. The problem was initially detected when the oxygen sensors in the horn room indicated a lower than expected oxygen level from which was inferred GN2 leaks in the piping system. In subsequent follow up inspections, cracks were identified in the failed "t-junction" connections through non-destructive evaluation testing . Through structural dynamic modeling of the piping system, the root cause of the "t-junction" connection failures was determined. The structural dynamic assessment identified several possible corrective design improvements to the horn room piping system. The effectiveness of the chosen design repairs were subsequently evaluated in September 2011 during acoustic verification testing to 161 dB OASPL.
Acoustic emission evaluation of reinforced concrete bridge beam with graphite composite laminate
NASA Astrophysics Data System (ADS)
Johnson, Dan E.; Shen, H. Warren; Finlayson, Richard D.
2001-07-01
A test was recently conducted on August 1, 2000 at the FHwA Non-Destructive Evaluation Validation Center, sponsored by The New York State DOT, to evaluate a graphite composite laminate as an effective form of retrofit for reinforced concrete bridge beam. One portion of this testing utilized Acoustic Emission Monitoring for Evaluation of the beam under test. Loading was applied to this beam using a two-point loading scheme at FHwA's facility. This load was applied in several incremental loadings until the failure of the graphite composite laminate took place. Each loading culminated by either visual crack location or large audible emissions from the beam. Between tests external cracks were located visually and highlighted and the graphite epoxy was checked for delamination. Acoustic Emission data was collected to locate cracking areas of the structure during the loading cycles. To collect this Acoustic Emission data, FHwA and NYSDOT utilized a Local Area Monitor, an Acoustic Emission instrument developed in a cooperative effort between FHwA and Physical Acoustics Corporation. Eight Acoustic Emission sensors were attached to the structure, with four on each side, in a symmetrical fashion. As testing progressed and culminated with beam failure, Acoustic Emission data was gathered and correlated against time and test load. This paper will discuss the analysis of this test data.
Improved Acoustic Blanket Developed and Tested
NASA Technical Reports Server (NTRS)
1996-01-01
Acoustic blankets are used in the payload fairing of expendable launch vehicles to reduce the fairing's interior acoustics and the subsequent vibration response of the spacecraft. The Cassini spacecraft, to be launched on a Titan IV in October 1997, requires acoustic levels lower than those provided by the standard Titan IV blankets. Therefore, new acoustic blankets were recently developed and tested to reach NASA's goal of reducing the Titan IV acoustic environment to the allowable levels for the Cassini spacecraft.
Fluids and Combustion Facility Acoustic Emissions Controlled by Aggressive Low-Noise Design Process
NASA Technical Reports Server (NTRS)
Cooper, Beth A.; Young, Judith A.
2004-01-01
The Fluids and Combustion Facility (FCF) is a dual-rack microgravity research facility that is being developed by Northrop Grumman Information Technology (NGIT) for the International Space Station (ISS) at the NASA Glenn Research Center. As an on-orbit test bed, FCF will host a succession of experiments in fluid and combustion physics. The Fluids Integrated Rack (FIR) and the Combustion Integrated Rack (CIR) must meet ISS acoustic emission requirements (ref. 1), which support speech communication and hearing-loss-prevention goals for ISS crew. To meet these requirements, the NGIT acoustics team implemented an aggressive low-noise design effort that incorporated frequent acoustic emission testing for all internal noise sources, larger-scale systems, and fully integrated racks (ref. 2). Glenn's Acoustical Testing Laboratory (ref. 3) provided acoustical testing services (see the following photograph) as well as specialized acoustical engineering support as part of the low-noise design process (ref. 4).
New Acoustic Arena Qualified at NASA Glenn's Aero-Acoustic Propulsion Laboratory
NASA Technical Reports Server (NTRS)
Wnuk, Stephen P.
2004-01-01
A new acoustic arena has been qualified in the Aero-Acoustic Propulsion Laboratory (AAPL) at the NASA Glenn Research Center. This arena is outfitted specifically for conducting fan noise research with the Advanced Noise Control Fan (ANCF) test rig. It features moveable walls with large acoustic wedges (2 by 2 by 1 ft) that create an acoustic environment usable at frequencies as low as 250 Hz. The arena currently uses two dedicated microphone arrays to acquire fan inlet and exhaust far-field acoustic data. It was used successfully in fiscal year 2003 to complete three ANCF tests. It also allowed Glenn to improve the operational efficiency of the four test rigs at AAPL and provided greater flexibility to schedule testing. There were a number of technical challenges to overcome in bringing the new arena to fruition. The foremost challenge was conflicting acoustic requirements of four different rigs. It was simply impossible to construct a static arena anywhere in the facility without intolerably compromising the acoustic test environment of at least one of the test rigs. This problem was overcome by making the wall sections of the new arena movable. Thus, the arena can be reconfigured to meet the operational requirements of any particular rig under test. Other design challenges that were encountered and overcome included structural loads of the large wedges, personnel access requirements, equipment maintenance requirements, and typical time and budget constraints. The new acoustic arena improves operations at the AAPL facility in several significant ways. First, it improves productivity by allowing multiple rigs to operate simultaneously. Second, it improves research data quality by providing a unique test area within the facility that is optimal for conducting fan noise research. Lastly, it reduces labor and equipment costs by eliminating the periodic need to transport the ANCF into and out of the primary AAPL acoustic arena. The investment to design, fabricate, and install the new compact arena in fiscal year 2002 has paid dividends in fiscal year 2003 and will for many years to come. It has provided a dedicated, high-quality acoustic arena to support low-speed fan testing for ANCF while minimizing scheduling impacts and improving operational productivity in the AAPL facility.
Joint Eglin Acoustic Week III Data Report
NASA Technical Reports Server (NTRS)
Watts, Michael E.; Conner, David A.; Smith, Charles D.
2010-01-01
A series of three flight tests have been conducted at an Eglin Air Force Base remote test range located in the Florida panhandle. The first was the "Acoustics Week" flight test conducted in September 2003. The second was the NASA Heavy Lift Rotorcraft Acoustic Flight Test conducted in October-November 2005. The most recent was the Eglin Acoustic Week III test conducted in August-September 2007. This series of tests acquired acoustic data for a number of rotary and fixed wing aircraft and are used to generate noise semi-spheres used in predicting the acoustic footprint for prescribed flight operations. This extensive database can be used to determine the impact of flight operations on communities around a terminal area as well as for prediction code validations. Another valuable use of the semi-spheres is determining the long-range propagation of noise for civilian and military purposes. This paper describes the third test in this series. Data described in this report were acquired during testing of the MD-902 and Mi-8M aircraft. In addition, data acquired during a set of atmospheric propagation tests is also described.
YO-3A acoustics research aircraft systems manual
NASA Technical Reports Server (NTRS)
Cross, J. L.
1984-01-01
The flight testing techniques, equipment, and procedures employed during air-to-air acoustic testing of helicopters using the NASA YO-3A Acoustic Research Aircraft are discussed. The research aircraft instrumentation system is described as well as hardware installation on the test aircraft and techniques used during the tests. Emphasis is placed on formation flying, position locations, test matrices, and test procedures.
Magneto acoustic emission apparatus for testing materials for embrittlement
NASA Technical Reports Server (NTRS)
Allison, Sidney G. (Inventor); Min, Namkung (Inventor); Yost, William T. (Inventor); Cantrell, John H. (Inventor)
1990-01-01
A method and apparatus for testing steel components for temper embrittlement uses magneto-acoustic emission to nondestructively evaluate the component. Acoustic emission signals occur more frequently at higher levels in embrittled components. A pair of electromagnets are used to create magnetic induction in the test component. Magneto-acoustic emission signals may be generated by applying an ac current to the electromagnets. The acoustic emission signals are analyzed to provide a comparison between a component known to be unembrittled and a test component. Magnetic remanence is determined by applying a dc current to the electromagnets, then turning the magnets off and observing the residual magnetic induction.
Dragan, S P; Soldatov, S K; Bogomolov, A V; Drozdov, S V; Poliakov, N M
2013-01-01
Purpose of the investigation was to validate testing acoustic effectiveness of a personnel vest-like protector (PP) from extra-aural exposure to aviation noise. Levels of aviation noise for PP testing were determined through calculation. Vest effectiveness in protecting from acoustic vibration generated by high-intensity aviation noise was evaluated both in laboratory and field tests. For comparison analysis, PP was also tested with a dummy exposed on a special tester, i.e. acoustic interferometer.
NASA Technical Reports Server (NTRS)
Larkin, Paul; Goldstein, Bob
2008-01-01
This paper presents an update to the methods and procedures used in Direct Field Acoustic Testing (DFAT). The paper will discuss some of the recent techniques and developments that are currently being used and the future publication of a reference standard. Acoustic testing using commercial sound system components is becoming a popular and cost effective way of generating a required acoustic test environment both in and out of a reverberant chamber. This paper will present the DFAT test method, the usual setup and procedure and the development and use of a closed-loop, narrow-band control system. Narrow-band control of the acoustic PSD allows all standard techniques and procedures currently used in random control to be applied to acoustics and some examples are given. The paper will conclude with a summary of the development of a standard practice guideline that is hoped to be available in the first quarter of next year.
Ares I Scale Model Acoustic Test Instrumentation for Acoustic and Pressure Measurements
NASA Technical Reports Server (NTRS)
Vargas, Magda B.; Counter, Douglas
2011-01-01
Ares I Scale Model Acoustic Test (ASMAT) is a 5% scale model test of the Ares I vehicle, launch pad and support structures conducted at MSFC to verify acoustic and ignition environments and evaluate water suppression systems Test design considerations 5% measurements must be scaled to full scale requiring high frequency measurements Users had different frequencies of interest Acoustics: 200 - 2,000 Hz full scale equals 4,000 - 40,000 Hz model scale Ignition Transient: 0 - 100 Hz full scale equals 0 - 2,000 Hz model scale Environment exposure Weather exposure: heat, humidity, thunderstorms, rain, cold and snow Test environments: Plume impingement heat and pressure, and water deluge impingement Several types of sensors were used to measure the environments Different instrument mounts were used according to the location and exposure to the environment This presentation addresses the observed effects of the selected sensors and mount design on the acoustic and pressure measurements
Tiltrotor Acoustic Flight Test: Terminal Area Operations
NASA Technical Reports Server (NTRS)
SantaMaria, O. L.; Wellman, J. B.; Conner, D. A.; Rutledge, C. K.
1991-01-01
This paper provides a comprehensive description of an acoustic flight test of the XV- 15 Tiltrotor Aircraft with Advanced Technology Blades (ATB) conducted in August and September 1991 at Crows Landing, California. The purpose of this cooperative research effort of the NASA Langley and Ames Research Centers was to obtain a preliminary, high quality database of far-field acoustics for terminal area operations of the XV-15 at a takeoff gross weight of approximately 14,000 lbs for various glide slopes, airspeeds, rotor tip speeds, and nacelle tilt angles. The test also was used to assess the suitability of the Crows Landing complex for full scale far-field acoustic testing. This was the first acoustic flight test of the XV-15 aircraft equipped with ATB involving approach and level flyover operations. The test involved coordination of numerous personnel, facilities and equipment. Considerable effort was made to minimize potential extraneous noise sources unique to the region during the test. Acoustic data from the level flyovers were analyzed, then compared with data from a previous test of the XV-15 equipped with Standard Metal Blades
Biomechanical monitoring of healing bone based on acoustic emission technology.
Hirasawa, Yasusuke; Takai, Shinro; Kim, Wook-Cheol; Takenaka, Nobuyuki; Yoshino, Nobuyuki; Watanabe, Yoshinobu
2002-09-01
Acoustic emission testing is a well-established method for assessment of the mechanical integrity of general construction projects. The purpose of the current study was to investigate the usefulness of acoustic emission technology in monitoring the yield strength of healing callus during external fixation. Thirty-five patients with 39 long bones treated with external fixation were evaluated for fracture healing by monitoring load for the initiation of acoustic emission signal (yield strength) under axial loading. The major criteria for functional bone union based on acoustic emission testing were (1) no acoustic emission signal on full weightbearing, and (2) a higher estimated strength than body weight. The yield strength monitored by acoustic emission testing increased with the time of healing. The external fixator could be removed safely and successfully in 97% of the patients. Thus, the acoustic emission method has good potential as a reliable method for monitoring the mechanical status of healing bone.
Evaluation of acoustic testing techniques for spacecraft systems
NASA Technical Reports Server (NTRS)
Cockburn, J. A.
1971-01-01
External acoustic environments, structural responses, noise reductions, and the internal acoustic environments have been predicted for a typical shroud/spacecraft system during lift-off and various critical stages of flight. Spacecraft responses caused by energy transmission from the shroud via mechanical and acoustic paths have been compared and the importance of the mechanical path has been evaluated. Theoretical predictions have been compared extensively with available laboratory and in-flight measurements. Equivalent laboratory acoustic fields for simulation of shroud response during the various phases of flight have been derived and compared in detail. Techniques for varying the time-space correlations of laboratory acoustic fields have been examined, together with methods for varying the time and spatial distribution of acoustic amplitudes. Possible acoustic testing configurations for shroud/spacecraft systems have been suggested and trade-off considerations have been reviewed. The problem of simulating the acoustic environments versus simulating the structural responses has been considered and techniques for testing without the shroud installed have been discussed.
Validation and Simulation of ARES I Scale Model Acoustic Test -1- Pathfinder Development
NASA Technical Reports Server (NTRS)
Putnam, G. C.
2011-01-01
The Ares I Scale Model Acoustics Test (ASMAT) is a series of live-fire tests of scaled rocket motors meant to simulate the conditions of the Ares I launch configuration. These tests have provided a well documented set of high fidelity measurements useful for validation including data taken over a range of test conditions and containing phenomena like Ignition Over-Pressure and water suppression of acoustics. To take advantage of this data, a digital representation of the ASMAT test setup has been constructed and test firings of the motor have been simulated using the Loci/CHEM computational fluid dynamics software. Within this first of a series of papers, results from ASMAT simulations with the rocket in a held down configuration and without water suppression have then been compared to acoustic data collected from similar live-fire tests to assess the accuracy of the simulations. Detailed evaluations of the mesh features, mesh length scales relative to acoustic signals, Courant-Friedrichs-Lewy numbers, and spatial residual sources have been performed to support this assessment. Results of acoustic comparisons have shown good correlation with the amplitude and temporal shape of pressure features and reasonable spectral accuracy up to approximately 1000 Hz. Major plume and acoustic features have been well captured including the plume shock structure, the igniter pulse transient, and the ignition overpressure. Finally, acoustic propagation patterns illustrated a previously unconsidered issue of tower placement inline with the high intensity overpressure propagation path.
Ares I Scale Model Acoustic Test Lift-Off Acoustics
NASA Technical Reports Server (NTRS)
Counter, Douglas D.; Houston, Janie D.
2011-01-01
The lift-off acoustic (LOA) environment is an important design factor for any launch vehicle. For the Ares I vehicle, the LOA environments were derived by scaling flight data from other launch vehicles. The Ares I LOA predicted environments are compared to the Ares I Scale Model Acoustic Test (ASMAT) preliminary results.
NASA Astrophysics Data System (ADS)
Viola, S.; Ardid, M.; Bertin, V.; Enzenhöfer, A.; Keller, P.; Lahmann, R.; Larosa, G.; Llorens, C. D.; NEMO Collaboration; SMO Collaboration
2013-10-01
Within the activities of the NEMO project, the installation of a 8-floors tower (NEMO-Phase II) at a depth of 3500 m is foreseen in 2012. The tower will be installed about 80 km off-shore Capo Passero, in Sicily. On board the NEMO tower, an array of 18 acoustic sensors will be installed, permitting acoustic detection of biological sources, studies for acoustic neutrino detection and primarily acoustic positioning of the underwater structures. For the latter purpose, the sensors register acoustic signals emitted by five acoustic beacons anchored on the sea-floor. The data acquisition system of the acoustic sensors is fully integrated with the detector data transport system and is based on an “all data to shore” philosophy. Signals coming from hydrophones are continuously sampled underwater at 192 kHz/24 bit and transmitted to shore through an electro-optical cable for real-time analysis. A novel technology for underwater GPS time-stamping of data has been implemented and tested. The operation of the acoustic array will permit long-term test of sensors and electronics technologies that are proposed for the acoustic positioning system of KM3NeT.
Duct wall impedance control as an advanced concept for acoustic impression
NASA Technical Reports Server (NTRS)
Dean, P. D.; Tester, B. J.
1975-01-01
Models and tests on an acoustic duct liner system which has the property of controlled-variable acoustic impedance are described. This is achieved by a novel concept which uses the effect of steady air flow through a multi-layer, locally reacting, resonant-cavity absorber. The scope of this work was limited to a 'proof of concept.' The test of the concept was implemented by means of a small-scale, square-section flow duct facility designed specifically for acoustic measurements, with one side of the duct acoustically lined. The test liners were designed with the aid of previously established duct acoustic theory and a semi-empirical impedance model of the liner system. Over the limited range tested, the liner behaved primarily as predicted, exhibiting significant changes in resistance and reactance, thus providing the necessary concept validation.
NASA Technical Reports Server (NTRS)
Soderman, Paul T.; Olson, Larry (Technical Monitor)
1995-01-01
The NFAC 40- by 80- Foot Wind Tunnel at Ames is being refurbished with a new, deep acoustic lining in the test section which will make the facility nearly anechoic over a large frequency range. The modification history, key elements, and schedule will be discussed. Design features and expected performance gains will be described. Background noise reductions will be summarized. Improvements in aeroacoustic research techniques have been developed and used recently at NFAC on several wind tunnel tests of High Speed Research models. Research on quiet inflow microphones and struts will be described. The Acoustic Survey Apparatus in the 40x80 will be illustrated. A special intensity probe was tested for source localization. Multi-channel, high speed digital data acquisition is now used for acoustics. And most important, phased microphone arrays have been developed and tested which have proven to be very powerful for source identification and increased signal-to-noise ratio. Use of these tools for the HEAT model will be illustrated. In addition, an acoustically absorbent symmetry plane was built to satisfy the HEAT semispan aerodynamic and acoustic requirements. Acoustic performance of that symmetry plane will be shown.
NASA Astrophysics Data System (ADS)
Qiu, Feng; Dai, Guang; Zhang, Ying
According to the acoustic emission information and the appearance inspection information of tank bottom online testing, the external factors associated with tank bottom corrosion status are confirmed. Applying artificial neural network intelligent evaluation method, three tank bottom corrosion status evaluation models based on appearance inspection information, acoustic emission information, and online testing information are established. Comparing with the result of acoustic emission online testing through the evaluation of test sample, the accuracy of the evaluation model based on online testing information is 94 %. The evaluation model can evaluate tank bottom corrosion accurately and realize acoustic emission online testing intelligent evaluation of tank bottom.
NASA Technical Reports Server (NTRS)
Stakolich, E. G.
1978-01-01
An air ejector was designed and built to remove the boundary-layer air from the inlet a turbofan engine during an acoustic ground test program. This report describes; (1) how the ejector was sized; (2) how the ejector performed; and (3) the performance of a scale model ejector built and tested to verify the design. With proper acoustic insulation, the ejector was effective in reducing boundary layer thickness in the inlet of the turbofan engine while obtaining the desired acoustic test conditions.
Test of acoustic tone source and propulsion performance of C8A Buffalo suppressor nozzle
NASA Technical Reports Server (NTRS)
Marrs, C. C.; Harkonen, D. L.; Okeefe, J. V.
1974-01-01
Results are presented for a static acoustic and propulsion performance ground test conducted at the Boeing hot nozzle facility on the C8A Buffalo noise suppressor nozzle. Various methods to remove a nozzle-associated 2000-Hz tone are evaluated. Results of testing this rectangular-array lobed nozzle for propulsion performance and acoustic directivity are reported. Recommendations for future nozzle modifications and further testing are included. Appendix A contains the test plan. Appendix B presents the test log. Appendix C contains plots of the one-third octave sound pressure levels recorded during the test. Appendix D describes the acoustic data recording and reduction systems. The performance data is tabulated in Appendix E.
NASA Technical Reports Server (NTRS)
Nelson, D. P.; Morris, P. M.
1980-01-01
The component detail design drawings of the one sixth scale model of the variable cycle engine testbed demonstrator exhaust syatem tested are presented. Also provided are the basic acoustic and aerodynamic data acquired during the experimental model tests. The model drawings, an index to the acoustic data, an index to the aerodynamic data, tabulated and graphical acoustic data, and the tabulated aerodynamic data and graphs are discussed.
Cassini/Titan-4 Acoustic Blanket Development and Testing
NASA Technical Reports Server (NTRS)
Hughes, William O.; McNelis, Anne M.
1996-01-01
NASA Lewis Research Center recently led a multi-organizational effort to develop and test verify new acoustic blankets. These blankets support NASA's goal in reducing the Titan-4 payload fairing internal acoustic environment to allowable levels for the Cassini spacecraft. To accomplish this goal a two phase acoustic test program was utilized. Phase One consisted of testing numerous blanket designs in a flat panel configuration. Phase Two consisted of testing the most promising designs out of Phase One in a full scale cylindrical payload fairing. This paper will summarize this highly successful test program by providing the rationale and results for each test phase, the impacts of this testing on the Cassini mission, as well as providing some general information on blanket designs.
Acoustic emission testing on an F/A-18 E/F titanium bulkhead
NASA Astrophysics Data System (ADS)
Martin, Christopher A.; Van Way, Craig B.; Lockyer, Allen J.; Kudva, Jayanth N.; Ziola, Steve M.
1995-04-01
An important opportunity recently transpired at Northrop Grumman Corporation to instrument an F/A - 18 E/F titanium bulkhead with broad band acoustic emission sensors during a scheduled structural fatigue test. The overall intention of this effort was to investigate the potential for detecting crack propagation using acoustic transmission signals for a large structural component. Key areas of experimentation and experience included (1) acoustic noise characterization, (2) separation of crack signals from extraneous noise, (3) source location accuracy, and (4) methods of acoustic transducer attachment. Fatigue cracking was observed and monitored by strategically placed acoustic emission sensors. The outcome of the testing indicated that accurate source location still remains enigmatic for non-specialist engineering personnel especially at this level of structural complexity. However, contrary to preconceived expectations, crack events could be readily separated from extraneous noise. A further dividend from the investigation materialized in the form of close correspondence between frequency domain waveforms of the bulkhead test specimen tested and earlier work with thick plates.
Considerations for acoustic emission monitoring of spherical Kevlar/epoxy composite pressure vessels
NASA Technical Reports Server (NTRS)
Hamstad, M. A.; Patterson, R. G.
1977-01-01
We are continuing to research the applications of acoustic emission testing for predicting burst pressure of filament-wound Kevlar 49/epoxy pressure vessels. This study has focused on three specific areas. The first area involves development of an experimental technique and the proper instrumentation to measure the energy given off by the acoustic emission transducer per acoustic emission burst. The second area concerns the design of a test fixture in which to mount the composite vessel so that the acoustic emission transducers are held against the outer surface of the composite. Included in this study area is the calibration of the entire test setup including couplant, transducer, electronics, and the instrument measuring the energy per burst. In the third and final area of this study, we consider the number, location, and sensitivity of the acoustic emission transducers used for proof testing composite pressure vessels.
Acoustic guide for noise-transmission testing of aircraft
NASA Technical Reports Server (NTRS)
Vaicaitis, Rimas (Inventor)
1987-01-01
Selective testing of aircraft or other vehicular components without requiring disassembly of the vehicle or components was accomplished by using a portable guide apparatus. The device consists of a broadband noise source, a guide to direct the acoustic energy, soft sealing insulation to seal the guide to the noise source and to the vehicle component, and noise measurement microphones, both outside the vehicle at the acoustic guide output and inside the vehicle to receive attenuated sound. By directing acoustic energy only to selected components of a vehicle via the acoustic guide, it is possible to test a specific component, such as a door or window, without picking up extraneous noise which may be transmitted to the vehicle interior through other components or structure. This effect is achieved because no acoustic energy strikes the vehicle exterior except at the selected component. Also, since the test component remains attached to the vehicle, component dynamics with vehicle frame are not altered.
Acoustic energy exchange through flow turning
NASA Astrophysics Data System (ADS)
Baum, Joseph D.
1987-01-01
A numerical investigation of the mechanisms of acoustic energy exchange between the mean and acoustic flow fields in resonance chambers, such as rocket engines, is reported. A noniterative linearized block implicit scheme was used to solve the time-dependent compressible Navier-Stokes equations. Two test cases were investigated: acoustic wave propagation in a tube with a coexisting sheared mean flow (the refraction test) and acoustic wave propagation in a tube where the mean sheared flow was injected into the tube through its lateral boundary (the flow turning study). For flow turning, significant excitation of mean flow energy was observed at two locations: at the edge of the acoustic boundary layer and within a zone adjacent to the acoustic boundary layer extending up to 0.1 radii away from the wall. A weaker streaming effect was observed for the refraction study, and only at the edge of the acoustic boundary layer. The total dissipation for the flow turning test was twice the dissipation for refraction.
NASA Technical Reports Server (NTRS)
On, F. J.
1975-01-01
Test methods were evaluated to ascertain whether a spacecraft, properly tested within its shroud, could be vibroacoustic tested without the shroud, with adjustments made in the acoustic input spectra to simulate the acoustic response of the missing shroud. The evaluation was based on vibroacoustic test results obtained from a baseline model composed (1) of a spacecraft with adapter, lower support structure, and shroud; (2) of the spacecraft, adapter, and lower structure, but without the shroud; and (3) of the spacecraft and adapter only. Emphasis was placed on the magnitude of the acoustic input changes required to substitute for the shroud and the difficulty of making such input changes, and the degree of missimulation which can result from the performance of a particular, less-than optimum test. Conclusions are drawn on the advantages and disadvantages derived from the use of input spectra adjustment methods and lower support structure simulations. Test guidelines were also developed for planning and performing a launch acoustic-environmental test.
NASA Technical Reports Server (NTRS)
Maasha, Rumaasha; Towner, Robert L.
2012-01-01
High-fidelity Finite Element Models (FEMs) were developed to support a recent test program at Marshall Space Flight Center (MSFC). The FEMs correspond to test articles used for a series of acoustic tests. Modal survey tests were used to validate the FEMs for five acoustic tests (a bare panel and four different mass-loaded panel configurations). An additional modal survey test was performed on the empty test fixture (orthogrid panel mounting fixture, between the reverb and anechoic chambers). Modal survey tests were used to test-validate the dynamic characteristics of FEMs used for acoustic test excitation. Modal survey testing and subsequent model correlation has validated the natural frequencies and mode shapes of the FEMs. The modal survey test results provide a basis for the analysis models used for acoustic loading response test and analysis comparisons
NASA Technical Reports Server (NTRS)
Liever, Peter A.; West, Jeffrey S.
2016-01-01
A hybrid Computational Fluid Dynamics and Computational Aero-Acoustics (CFD/CAA) modeling framework has been developed for launch vehicle liftoff acoustic environment predictions. The framework couples the existing highly-scalable NASA production CFD code, Loci/CHEM, with a high-order accurate discontinuous Galerkin solver developed in the same production framework, Loci/THRUST, to accurately resolve and propagate acoustic physics across the entire launch environment. Time-accurate, Hybrid RANS/LES CFD modeling is applied for predicting the acoustic generation physics at the plume source, and a high-order accurate unstructured discontinuous Galerkin (DG) method is employed to propagate acoustic waves away from the source across large distances using high-order accurate schemes. The DG solver is capable of solving 2nd, 3rd, and 4th order Euler solutions for non-linear, conservative acoustic field propagation. Initial application testing and validation has been carried out against high resolution acoustic data from the Ares Scale Model Acoustic Test (ASMAT) series to evaluate the capabilities and production readiness of the CFD/CAA system to resolve the observed spectrum of acoustic frequency content. This paper presents results from this validation and outlines efforts to mature and improve the computational simulation framework.
NASA Technical Reports Server (NTRS)
Boxwell, D. A.; Schmitz, F. H.; Splettstoesser, W. R.; Schultz, K. J.; Lewy, S.; Caplot, M.
1986-01-01
Two aeroacoustic facilities--the CEPRA 19 in France and the DNW in the Netherlands--are compared. The two facilities have unique acoustic characteristics that make them appropriate for acoustic testing of model-scale helicopter rotors. An identical pressure-instrumented model-scale rotor was tested in each facility and acoustic test results are compared with full-scale-rotor test results. Blade surface pressures measured in both tunnels were used to correlated nominal rotor operating conditions in each tunnel, and also used to assess the steadiness of the rotor in each tunnel's flow. In-the-flow rotor acoustic signatures at moderate forward speeds (35-50 m/sec) are presented for each facility and discussed in relation to the differences in tunnel geometries and aeroacoustic characteristics. Both reports are presented in appendices to this paper. ;.);
A study of the acoustic-optic effect in nematics
NASA Astrophysics Data System (ADS)
Hayes, C. F.
1980-12-01
The program of this contract has been to study the acousto-optic effect which occurs in nematic liquid crystals when excited by acoustic waves. Both theory and practical application are presented. Hydrodynamic equations were solved which govern the streaming and obtained a solution for the magnitude of the fluid speed and flow pattern for a small disc shaped liquid crystal. A sample, doped with grains, was used to test the solution experimentally. A series of cells was constructed and tested which, in fact, showed that an acoustic wavefront pattern can be visualized with this technique. During the second year of the contract we developed and tested a mathematical model which prescribes how a cell should be constructed in terms of: the densities of the cell walls, liquid crystal, and surrounding fluids; the thickness of the cell walls and liquid crystal layer; the acoustic speeds in cell wall (shear and longitudinal), liquid crystal, and surrounding fluids; acoustic frequency; and the incident acoustic bean angle. Cells were also constructed and tested in which an electric field could be applied simultaneously with the acoustic wave in such a way that the sensitivity of the cell to the acoustic field could be adjusted.
Effect of classroom acoustics on the speech intelligibility of students.
Rabelo, Alessandra Terra Vasconcelos; Santos, Juliana Nunes; Oliveira, Rafaella Cristina; Magalhães, Max de Castro
2014-01-01
To analyze the acoustic parameters of classrooms and the relationship among equivalent sound pressure level (Leq), reverberation time (T₃₀), the Speech Transmission Index (STI), and the performance of students in speech intelligibility testing. A cross-sectional descriptive study, which analyzed the acoustic performance of 18 classrooms in 9 public schools in Belo Horizonte, Minas Gerais, Brazil, was conducted. The following acoustic parameters were measured: Leq, T₃₀, and the STI. In the schools evaluated, a speech intelligibility test was performed on 273 students, 45.4% of whom were boys, with an average age of 9.4 years. The results of the speech intelligibility test were compared to the values of the acoustic parameters with the help of Student's t-test. The Leq, T₃₀, and STI tests were conducted in empty and furnished classrooms. Children showed better results in speech intelligibility tests conducted in classrooms with less noise, a lower T₃₀, and greater STI values. The majority of classrooms did not meet the recommended regulatory standards for good acoustic performance. Acoustic parameters have a direct effect on the speech intelligibility of students. Noise contributes to a decrease in their understanding of information presented orally, which can lead to negative consequences in their education and their social integration as future professionals.
Nondestructive material characterization
Deason, Vance A.; Johnson, John A.; Telschow, Kenneth L.
1991-01-01
A method and apparatus for nondestructive material characterization, such as identification of material flaws or defects, material thickness or uniformity and material properties such as acoustic velocity. The apparatus comprises a pulsed laser used to excite a piezoelectric (PZ) transducer, which sends acoustic waves through an acoustic coupling medium to the test material. The acoustic wave is absorbed and thereafter reflected by the test material, whereupon it impinges on the PZ transducer. The PZ transducer converts the acoustic wave to electrical impulses, which are conveyed to a monitor.
NASA Technical Reports Server (NTRS)
Roskam, J.
1983-01-01
The transmission loss characteristics of panels using the acoustic intensity technique is presented. The theoretical formulation, installation of hardware, modifications to the test facility, and development of computer programs and test procedures are described. A listing of all the programs is also provided. The initial test results indicate that the acoustic intensity technique is easily adapted to measure transmission loss characteristics of panels. Use of this method will give average transmission loss values. The fixtures developed to position the microphones along the grid points are very useful in plotting the intensity maps of vibrating panels.
Aerodynamic and acoustic test of a United Technologies model scale rotor at DNW
NASA Technical Reports Server (NTRS)
Yu, Yung H.; Liu, Sandy R.; Jordan, Dave E.; Landgrebe, Anton J.; Lorber, Peter F.; Pollack, Michael J.; Martin, Ruth M.
1990-01-01
The UTC model scale rotors, the DNW wind tunnel, the AFDD rotary wing test stand, the UTRC and AFDD aerodynamic and acoustic data acquisition systems, and the scope of test matrices are discussed and an introduction to the test results is provided. It is pointed out that a comprehensive aero/acoustic database of several configurations of the UTC scaled model rotor has been created. The data is expected to improve understanding of rotor aerodynamics, acoustics, and dynamics, and lead to enhanced analytical methodology and design capabilities for the next generation of rotorcraft.
NASA LeRC's Acoustic Fill Effect Test Program and Results
NASA Technical Reports Server (NTRS)
Hughes, William O.; Mcnelis, Mark E.; Manning, Jerome E.
1994-01-01
NASA Lewis Research Center, in conjunction with General Dynamics Space Systems Division, has performed a test program to investigate the acoustic fill effect for an unblanketed payload fairing for a variety of payload simulators. This paper will discuss this test program and fill factor test data, and make comparisons with theoretical predictions. This paper will also address the NASA acoustic fill effect standard which was verified from the test data analysis.
NASA Technical Reports Server (NTRS)
Janardan, B. A.; Brausch, J. F.; Price, A. O.
1984-01-01
Acoustic and diagnostic data that were obtained to determine the influence of selected geometric and aerodynamic flow variables of coannular nozzles with thermal acoustic shields are summarized in this comprehensive data report. A total of 136 static and simulated flight acoustic test points were conducted with 9 scale-model nozzles The tested nozzles included baseline (unshielded), 180 deg shielded, and 360 deg shielded dual flow coannular plug configurations. The baseline configurations include a high radius ratio unsuppressed coannular plug nozzle and a coanuular plug nozzle and a coannular plug nozzle with a 20-chute outer stream suppressor. The tests were conducted at nozzle temperatures and pressure typical of operating conditions of variable cycle engine.
Evaluation of the NASA Ames no. 1 7 by 10 foot wind tunnel as an acoustic test facility
NASA Technical Reports Server (NTRS)
Wilby, J. F.; Scharton, T. D.
1975-01-01
Measurements were made in the no. 1 7'x10' wind tunnel at NASA Ames Research Center, with the objectives of defining the acoustic characteristics and recommending minimum cost treatments so that the tunnel can be converted into an acoustic research facility. The results indicate that the noise levels in the test section are due to (a) noise generation in the test section, associated with the presence of solid bodies such as the pitot tube, and (b) propagation of acoustic energy from the fan. A criterion for noise levels in the test section is recommended, based on low-noise microphone support systems. Noise control methods required to meet the criterion include removal of hardware items for the test section and diffuser, improved design of microphone supports, and installation of acoustic treatment in the settling chamber and diffuser.
Method and apparatus for using magneto-acoustic remanence to determine embrittlement
NASA Technical Reports Server (NTRS)
Allison, Sidney G. (Inventor); Namkung, Min (Inventor); Yost, William T. (Inventor); Cantrell, John H. (Inventor)
1992-01-01
A method and apparatus for testing steel components for temperature embrittlement uses magneto-acoustic emission to nondestructively evaluate the component are presented. Acoustic emission signals occur more frequently at higher levels in embrittled components. A pair of electromagnets are used to create magnetic induction in the test component. Magneto-acoustic emission signals may be generated by applying an AC current to the electromagnets. The acoustic emission signals are analyzed to provide a comparison between a component known to be unembrittled and a test component. Magnetic remanence is determined by applying a DC current to the electromagnets and then by turning the magnets off and observing the residual magnetic induction.
Acoustic Measurements for Small Solid Rocket Motors
NASA Technical Reports Server (NTRS)
Vargas, Magda B.; Kenny, R. Jeremy
2010-01-01
Models have been developed to predict large solid rocket motor acoustic loads based on the scaling of small solid rocket motors. MSFC has measured several small solid rocket motors in horizontal and launch configurations to anchor these models. Solid Rocket Test Motor (SRTM) has ballistics similar to the Reusable Solid Rocket Motor (RSRM) therefore a good choice for acoustic scaling. Acoustic measurements were collected during the test firing of the Insulation Configuration Extended Length (ICXL) 7,6, and 8 (in firing order) in order to compare to RSRM horizontal firing data. The scope of this presentation includes: Acoustic test procedures and instrumentation implemented during the three SRTM firings and Data analysis method and general trends observed in the data.
NASA Technical Reports Server (NTRS)
Allgood, Daniel C.; Graham, Jason S.; McVay, Greg P.; Langford, Lester L.
2008-01-01
A unique assessment of acoustic similarity scaling laws and acoustic analogy methodologies in predicting the far-field acoustic signature from a sub-scale altitude rocket test facility at the NASA Stennis Space Center was performed. A directional, point-source similarity analysis was implemented for predicting the acoustic far-field. In this approach, experimental acoustic data obtained from "similar" rocket engine tests were appropriately scaled using key geometric and dynamic parameters. The accuracy of this engineering-level method is discussed by comparing the predictions with acoustic far-field measurements obtained. In addition, a CFD solver was coupled with a Lilley's acoustic analogy formulation to determine the improvement of using a physics-based methodology over an experimental correlation approach. In the current work, steady-state Reynolds-averaged Navier-Stokes calculations were used to model the internal flow of the rocket engine and altitude diffuser. These internal flow simulations provided the necessary realistic input conditions for external plume simulations. The CFD plume simulations were then used to provide the spatial turbulent noise source distributions in the acoustic analogy calculations. Preliminary findings of these studies will be discussed.
NASA Technical Reports Server (NTRS)
Liever, Peter A.; West, Jeffrey S.; Harris, Robert E.
2016-01-01
A hybrid Computational Fluid Dynamics and Computational Aero-Acoustics (CFD/CAA) modeling framework has been developed for launch vehicle liftoff acoustic environment predictions. The framework couples the existing highly-scalable NASA production CFD code, Loci/CHEM, with a high-order accurate Discontinuous Galerkin solver developed in the same production framework, Loci/THRUST, to accurately resolve and propagate acoustic physics across the entire launch environment. Time-accurate, Hybrid RANS/LES CFD modeling is applied for predicting the acoustic generation physics at the plume source, and a high-order accurate unstructured mesh Discontinuous Galerkin (DG) method is employed to propagate acoustic waves away from the source across large distances using high-order accurate schemes. The DG solver is capable of solving 2nd, 3rd, and 4th order Euler solutions for non-linear, conservative acoustic field propagation. Initial application testing and validation has been carried out against high resolution acoustic data from the Ares Scale Model Acoustic Test (ASMAT) series to evaluate the capabilities and production readiness of the CFD/CAA system to resolve the observed spectrum of acoustic frequency content. This paper presents results from this validation and outlines efforts to mature and improve the computational simulation framework.
NASA Technical Reports Server (NTRS)
Strutzenberg, Louise L.; Putman, Gabriel C.
2011-01-01
The Ares I Scale Model Acoustics Test (ASMAT) is a series of live-fire tests of scaled rocket motors meant to simulate the conditions of the Ares I launch configuration. These tests have provided a well documented set of high fidelity measurements useful for validation including data taken over a range of test conditions and containing phenomena like Ignition Over-Pressure and water suppression of acoustics. Expanding from initial simulations of the ASMAT setup in a held down configuration, simulations have been performed using the Loci/CHEM computational fluid dynamics software for ASMAT tests of the vehicle at 5 ft. elevation (100 ft. real vehicle elevation) with worst case drift in the direction of the launch tower. These tests have been performed without water suppression and have compared the acoustic emissions for launch structures with and without launch mounts. In addition, simulation results have also been compared to acoustic and imagery data collected from similar live-fire tests to assess the accuracy of the simulations. Simulations have shown a marked change in the pattern of emissions after removal of the launch mount with a reduction in the overall acoustic environment experienced by the vehicle and the formation of highly directed acoustic waves moving across the platform deck. Comparisons of simulation results to live-fire test data showed good amplitude and temporal correlation and imagery comparisons over the visible and infrared wavelengths showed qualitative capture of all plume and pressure wave evolution features.
Frequency-Based Spatial Correlation Assessments of the Ares I Subscale Acoustic Model Test Firings
NASA Technical Reports Server (NTRS)
Kenny, R. Jeremy; Houston, J.
2012-01-01
The Marshall Space Flight Center has performed a series of test firings to simulate and understand the acoustic environments generated for the Ares I liftoff profiles. Part of the instrumentation package had special sensor groups to assess the acoustic field spatial correlation features for the various test configurations. The spatial correlation characteristics were evaluated for all of the test firings, inclusive of understanding the diffuse to propagating wave amplitude ratios, the acoustic wave decays, and the incident angle of propagating waves across the sensor groups. These parameters were evaluated across the measured frequency spectra and the associated uncertainties for each parameter were estimated.
Railroad retarder noise reduction : study of acoustical barrier configurations
DOT National Transportation Integrated Search
1979-05-01
Field measurements of noise were made near a railroad retarder system without barriers and with acoustical barriers of various configurations. The configurations tested included acoustically reflective and acoustically absorptive barriers with height...
Flight Acoustic Testing and For the Rotorcraft Noise Data Acquisition Model (RNM)
NASA Technical Reports Server (NTRS)
Burley, Casey L.; Smith, Charles D.; Conner, David A.
2006-01-01
Two acoustic flight tests have been conducted on a remote test range at Eglin Air Force Base in the panhandle of Florida. The first was the "Acoustics Week" flight test conducted in September 2003. The second was the NASA Heavy Lift Rotorcraft Acoustics Flight Test conducted in October-November 2005. Benchmark acoustic databases were obtained for a number of rotorcraft and limited fixed wing vehicles for a variety of flight conditions. The databases are important for validation of acoustic prediction programs such as the Rotorcraft Noise Model (RNM), as well as for the development of low noise flight procedures and for environmental impact assessments. An overview of RNM capabilities and a detailed description of the RNM/ART (Acoustic Repropagation Technique) process are presented. The RNM/ART process is demonstrated using measured acoustic data for the MD600N. The RNM predictions for a level flyover speed sweep show the highest SEL noise levels on the flight track centerline occurred at the slowest vehicle speeds. At these slower speeds, broadband noise content is elevated compared to noise levels obtained at the higher speeds. A descent angle sweep shows that, in general, ground noise levels increased with increasing descent rates. Vehicle orientation in addition to vehicle position was found to significantly affect the RNM/ART creation of source noise semi-spheres for vehicles with highly directional noise characteristics and only mildly affect those with weak acoustic directionality. Based on these findings, modifications are proposed for RNM/ART to more accurately define vehicle and rotor orientation.
Flight Acoustic Testing and Data Acquisition For the Rotor Noise Model (RNM)
NASA Technical Reports Server (NTRS)
Conner, David A.; Burley, Casey L.; Smith, Charles D.
2006-01-01
Two acoustic flight tests have been conducted on a remote test range at Eglin Air Force Base in the panhandle of Florida. The first was the Acoustics Week flight test conducted in September 2003. The second was the NASA Heavy Lift Rotorcraft Acoustics Flight Test conducted in October-November 2005. Benchmark acoustic databases were obtained for a number of rotorcraft and limited fixed wing vehicles for a variety of flight conditions. The databases are important for validation of acoustic prediction programs such as the Rotorcraft Noise Model (RNM), as well as for the development of low noise flight procedures and for environmental impact assessments. An overview of RNM capabilities and a detailed description of the RNM/ART (Acoustic Repropagation Technique) process are presented. The RNM/ART process is demonstrated using measured acoustic data for the MD600N. The RNM predictions for a level flyover speed sweep show the highest SEL noise levels on the flight track centerline occurred at the slowest vehicle speeds. At these slower speeds, broadband noise content is elevated compared to noise levels obtained at the higher speeds. A descent angle sweep shows that, in general, ground noise levels increased with increasing descent rates. Vehicle orientation in addition to vehicle position was found to significantly affect the RNM/ART creation of source noise semi-spheres for vehicles with highly directional noise characteristics and only mildly affect those with weak acoustic directionality. Based on these findings, modifications are proposed for RNM/ART to more accurately define vehicle and rotor orientation.
NASA Technical Reports Server (NTRS)
Akers, James C.; Cooper, Beth A.
2004-01-01
NASA Glenn Research Center's Acoustical Testing Laboratory (ATL) provides a comprehensive array of acoustical testing services, including sound pressure level, sound intensity level, and sound-power-level testing per International Standards Organization (ISO)1 3744. Since its establishment in September 2000, the ATL has provided acoustic emission testing and noise control services for a variety of customers, particularly microgravity space flight hardware that must meet International Space Station acoustic emission requirements. The ATL consists of a 23- by 27- by 20-ft (height) convertible hemi/anechoic test chamber and a separate sound-attenuating test support enclosure. The ATL employs a personal-computer-based data acquisition system that provides up to 26 channels of simultaneous data acquisition with real-time analysis (ref. 4). Specialized diagnostic tools, including a scanning sound-intensity system, allow the ATL's technical staff to support its clients' aggressive low-noise design efforts to meet the space station's acoustic emission requirement. From its inception, the ATL has pursued the goal of developing a comprehensive ISO 17025-compliant quality program that would incorporate Glenn's existing ISO 9000 quality system policies as well as ATL-specific technical policies and procedures. In March 2003, the ATL quality program was awarded accreditation by the National Voluntary Laboratory Accreditation Program (NVLAP) for sound-power-level testing in accordance with ISO 3744. The NVLAP program is administered by the National Institutes of Standards and Technology (NIST) of the U.S. Department of Commerce and provides third-party accreditation for testing and calibration laboratories. There are currently 24 NVLAP-accredited acoustical testing laboratories in the United States. NVLAP accreditation covering one or more specific testing procedures conducted in accordance with established test standards is awarded upon successful completion of an intensive onsite assessment that includes proficiency testing and documentation review. The ATL NVLAP accreditation currently applies specifically to its ISO 3744 soundpower- level determination procedure (see the photograph) and supporting ISO 17025 quality system, although all ATL operations are conducted in accordance with its quality system. The ATL staff is currently developing additional procedures to adapt this quality system to the testing of space flight hardware in accordance with International Space Station acoustic emission requirements.<
The Nozzle Acoustic Test Rig: an Acoustic and Aerodynamic Free-jet Facility
NASA Technical Reports Server (NTRS)
Castner, Raymond S.
1994-01-01
The nozzle acoustic test rig (NATR) was built at NASA Lewis Research Center to support the High Speed Research Program. The facility is capable of measuring the acoustic and aerodynamic performance of aircraft engine nozzle concepts. Trade-off studies are conducted to compare performance and noise during simulated low-speed flight and takeoff. Located inside an acoustically treated dome with a 62-ft radius, the NATR is a free-jet that has a 53-in. diameter and is driven by an air ejector. This ejector is operated with 125 lb/s of compressed air, at 125 psig, to achieve 375 lb/s at Mach 0.3. Acoustic and aerodynamic data are collected from test nozzles mounted in the free-jet flow. The dome serves to protect the surrounding community from high noise levels generated by the nozzles, and to provide an anechoic environment for acoustic measurements. Information presented in this report summarizes free-jet performance, fluid support systems, and data acquisition capabilities of the NATR.
Acoustic evaluation of wood quality in standing trees. Part I, Acoustic wave behavior
Xiping Wang; Robert J. Ross; Peter Carter
2007-01-01
Acoustic wave velocities in standing trees or live softwood species were measured by the time-of-flight (TOF) method. Tree velocities were compared with acoustic velocities measured in corresponding butt logs through a resonance acoustic method. The experimental data showed a skewed relationship between tree and log acoustic measurements. For most trees tested,...
NASA Technical Reports Server (NTRS)
Janardan, B. A.; Hoff, G. E.; Barter, J. W.; Brausch, J. F.; Gliebe, P. R.; Coffin, R. S.; Martens, S.; Delaney, B. R.; Dalton, W. N.; Mengle, V. G.
2000-01-01
This presentation discusses: Project Objectives, Approach and Goal; Baseline Nozzles and Test Cycle Definition; Repeatability and Baseline Nozzle Results; Noise Reduction Concepts; Noise Reduction Tests Configurations of BPR=5 Internal Plug Nozzle adn Acoustic Results; Noise Reduction Test Configurations of BPR=5 External Plug Nozzle and Acoustic Results; and Noise Reduction Tests Configurations of BPR=8 External Plug Nozzle and Acoustic Results.
NASA Technical Reports Server (NTRS)
Yamamoto, K.; Janardan, B. A.; Brausch, J. F.; Hoerst, D. J.; Price, A. O.
1984-01-01
Parameters which contribute to supersonic jet shock noise were investigated for the purpose of determining means to reduce such noise generation to acceptable levels. Six dual-stream test nozzles with varying flow passage and plug closure designs were evaluated under simulated flight conditions in an anechoic chamber. All nozzles had combined convergent-divergent or convergent flow passages. Acoustic behavior as a function of nozzle flow passage geometry was measured. The acoustic data consist primarily of 1/3 octave band sound pressure levels and overall sound pressure levels. Detailed schematics and geometric characteristics of the six scale model nozzle configurations and acoustic test point definitions are presented. Tabulation of aerodynamic test conditions and a computer listing of the measured acoustic data are displayed.
W-8 Acoustic Casing Treatment Test Overview
NASA Technical Reports Server (NTRS)
Bozak, Rick; Podboy, Gary; Dougherty, Robert
2017-01-01
During February 2017, aerodynamic and acoustic testing was performed on a scale-model high bypass ratio turbofan rotor, R4, in an internal flow component test facility. An overview of the testing completed is presented.
Study of acoustic emission during mechanical tests of large flight weight tank structure
NASA Technical Reports Server (NTRS)
Nakamura, Y.; Mccauley, B. O.; Veach, C. L.
1972-01-01
A polyphenylane oxide insulated, flight weight, subscale, aluminum tank was monitored for acoustic emissions during a proof test and during 100 cycles of environmental test simulating space flights. The use of a combination of frequency filtering and appropriate spatial filtering to reduce background noise was found to be sufficient to detect acoustic emission signals of relatively small intensity expected from subcritical crack growth in the structure. Several emission source locations were identified, including the one where a flaw was detected by post-test X-ray inspections. For most source locations, however, post-test inspections did not detect flaws; this was partially attributed to the higher sensitivity of the acoustic emission technique than any other currently available NDT method for detecting flaws.
VCE early acoustic test results of General Electric's high-radius ratio coannular plug nozzle
NASA Technical Reports Server (NTRS)
Knott, P. R.; Brausch, J. F.; Bhutiani, P. K.; Majjigi, R. K.; Doyle, V. L.
1980-01-01
Results of variable cycle engine (VCE) early acoustic engine and model scale tests are presented. A summary of an extensive series of far field acoustic, advanced acoustic, and exhaust plume velocity measurements with a laser velocimeter of inverted velocity and temperature profile, high radius ratio coannular plug nozzles on a YJ101 VCE static engine test vehicle are reviewed. Select model scale simulated flight acoustic measurements for an unsuppressed and a mechanical suppressed coannular plug nozzle are also discussed. The engine acoustic nozzle tests verify previous model scale noise reduction measurements. The engine measurements show 4 to 6 PNdB aft quadrant jet noise reduction and up to 7 PNdB forward quadrant shock noise reduction relative to a fully mixed conical nozzle at the same specific thrust and mixed pressure ratio. The influences of outer nozzle radius ratio, inner stream velocity ratio, and area ratio are discussed. Also, laser velocimeter measurements of mean velocity and turbulent velocity of the YJ101 engine are illustrated. Select model scale static and simulated flight acoustic measurements are shown which corroborate that coannular suppression is maintained in forward speed.
Dispersion and Input Control Capability in European Large Size Reverberant Acoustic Chambers
NASA Astrophysics Data System (ADS)
Yarza, A.; Lopez, J.; Ozores, E.
2012-07-01
The acoustic test in reverberant chamber is one of the load cases to be proved during the environmental test campaign that demonstrates the capability of a space- unit to survive the launch phase. The crucial requirement for the large size structures is often the survival of the acoustic vibration test, and can be defined as the design driver load case in many circumstances. In addition, the commercial market demands lighter structures as an objective to reduce costs. For an efficient optimisation of the product it is very important to have powerful structural analysis tools in order to obtain knowledge of the structural needs and to refine existing methods for the prediction of structural loads experienced during acoustic testing. In the same line, as part of the contributors involved in the test it is important to acquire knowledge of the characteristics of the reverberant chamber itself and the behaviour of the fluid. With this purpose, EADS CASA Espacio (ECE) has used the measured data of the parameters of the fluid extracted from test of the deployable reflectors validated in the past five years, with the final objective to improve and optimise the capability to face up the acoustic test. In this paper experimental data extracted from acoustic tests performed to space-units are presented. Information related to two European large size acoustic chambers are used. The pressure field inside the acoustic chamber has been post-processed with the objective to study the behaviour of the fluid during the test. The diffuseness of the pressure field and the control capability of the acoustic profile are parameters to be considered as contributors for the design of the structures. The homogeneity of the microphones’ measurements is taken into account to describe the dispersion of the pressure inside the reverberant chamber along the frequency domain. Upon of that, the capability of the facilities to control the input profile is analysed from a statistical point of view. The final conclusions allow defining the minimum tolerances to be considered based on the limits imposed by the chamber.
Analysis of Nonlinear Insertion Loss of Hearing Protection Devices using an Acoustic Test Fixture
2015-09-01
USAARL Report No. 2016-05 Analysis of Nonlinear Insertion Loss of Hearing Protection Devices using an Acoustic Test Fixture By Robert Williams1...through circuitry. Talk through circuits use electro- acoustic transducers to pass ambient sounds through the protector. When the circuitry detects...the SPL of the acoustic insult. If the protective capacity is variable, it should be accounted for in the selection of appropriate HPDs. REAT
NASA Technical Reports Server (NTRS)
Gazella, Matthew R.; Takakura, Tamuto; Sutliff, Daniel L.; Bozak, Richard F.; Tester, Brian J.
2017-01-01
Over the last 15 years, over-the-rotor acoustic treatments have been evaluated by NASA with varying success. Recently, NASA has been developing the next generation of over-the-rotor acoustic treatments for fan noise reduction. The NASA Glenn Research Centers Advanced Noise Control Fan was used as a Low Technology Readiness Level test bed. A rapid prototyped in-duct array consisting of 50 microphones was employed, and used to correlate the in-duct analysis to the far-field acoustic levels and to validate an existing beam-former method. The goal of this testing was to improve the Technology Readiness Level of various over-the-rotor acoustic treatments by advancing the understanding of the physical mechanisms and projecting the far-field acoustic benefit.
Acoustic fatigue and sound transmission characteristics of a ram composite panel design
NASA Technical Reports Server (NTRS)
Cockburn, J. A.; Chang, K. Y.; Kao, G. C.
1972-01-01
An experimental study to determine the acoustic fatigue characteristics of a flat multi-layered structural panel is described. The test panel represented a proposed design for the outer skin of a research application module to be housed within the space shuttle orbiter vehicle. The test specimen was mounted in one wall of the Wyle 100,000 cu ft reverberation room and exposed to a broadband acoustic environment having an overall level of 145 db. The test panel was exposed to nine separate applications of the acoustic environment, each application consisting of 250 seconds duration. Upon completion of the ninth test run, the specimen was exposed to a simulated micrometeoroid impact near the panel center. One additional test run of 250 seconds duration was then performed to complete the overall simulation of 50 flight missions. The experimental results show that no significant fatigue damage occurred until the test specimen was exposed to a simulated micrometeoroid impact. The intermediate foam layer forming the core of the test specimen suffered considerable damage due to this impact, causing a marked variation in the dynamic characteristics of the overall test panel. During the final application of the acoustic environment, the strain and acceleration response spectra showed considerable variation from those spectra obtained prior to impact of the panel. Fatigue damage from acoustic loading however, was limited to partial de-bonding around the edges of the composite panel.
Closed-Loop Control for Sonic Fatigue Testing Systems
NASA Technical Reports Server (NTRS)
Rizzi, Stephen A.; Bossaert, Guido
2001-01-01
This article documents recent improvements to the acoustic control system of the Thermal Acoustic Fatigue Apparatus (TAFA), a progressive wave tube test facility at the NASA Langley Research Center, Hampton, VA. A brief summary of past acoustic performance is first given to serve as a basis of comparison with the new performance data using a multiple-input, closed-loop, narrow-band controller. Performance data in the form of test section acoustic power spectral densities and coherence are presented for a variety of input spectra including uniform, band-limited random and an expendable launch vehicle payload bay environment.
Rashid, Mustafa S; Pullin, Rhys
2014-01-01
Acoustic emission technology has been developed and extensively used as a non-destructive method of testing within engineering. In recent years, acoustic emission has gained popularity within the field of Orthopaedic research in a variety of situations. It is an attractive method in the detection of flaws within structures due its high sensitivity and non-destructive nature. The aim of this article is firstly to critically review the research conducted using acoustic emission testing in a variety of Orthopaedic-related situations and to present the technique to the wider Orthopaedic community. A summary of the principles and practical aspects of using acoustic emission testing are outlined. Acoustic emission has been validated as a method of early detection of aseptic loosening in femoral components in total hip arthroplasty in several well-conducted in vitro studies [1-3]. Other studies have used acoustic emission to detect microdamage in bone and to assess the biomechanical properties of bone and allografts [9]. Researchers have also validated the use of acoustic emission to detect and monitor fracture healing [4]. Several studies have applied acoustic emission to spinal surgery and specifically to assess the biomechanical environment in titanium mesh cages used in spinal surgery [10, 11]. Despite its growing popularity within Orthopaedic research, acoustic emission remains are relatively unfamiliar technique to the majority of Orthopaedic surgeons.
Effect of Coversheet Materials on the Acoustic Performance of Melamine Foam
NASA Technical Reports Server (NTRS)
McNelis, Anne M.; Hughes, William O.
2015-01-01
Melamine foam is a highly absorptive material that is often used inside the payload fairing walls of a launch vehicle. This foam reduces the acoustic excitation environment that the spacecraft experiences during launch. Often, the melamine foam is enclosed by thin coversheet materials for contamination protection, thermal protection, and electrostatic discharge control. Previous limited acoustic testing by NASA Glenn Research Center has shown that the presence of a coversheet material on the melamine foam can have a significant impact on the absorption coefficient and the transmission loss. As a result of this preliminary finding a more extensive acoustic test program using several different coversheet materials on melamine foam was performed. Those test results are summarized in this paper. Additionally, a method is provided to use the acoustic absorption and transmission loss data obtained from panel level testing to predict their combined effect for the noise reduction of a launch vehicle payload fairing.
Restoration of spatial hearing in adult cochlear implant users with single-sided deafness.
Litovsky, Ruth Y; Moua, Keng; Godar, Shelly; Kan, Alan; Misurelli, Sara M; Lee, Daniel J
2018-04-14
In recent years, cochlear implants (CIs) have been provided in growing numbers to people with not only bilateral deafness but also to people with unilateral hearing loss, at times in order to alleviate tinnitus. This study presents audiological data from 15 adult participants (ages 48 ± 12 years) with single sided deafness. Results are presented from 9/15 adults, who received a CI (SSD-CI) in the deaf ear and were tested in Acoustic or Acoustic + CI hearing modes, and 6/15 adults who are planning to receive a CI, and were tested in the unilateral condition only. Testing included (1) audiometric measures of threshold, (2) speech understanding for CNC words and AzBIO sentences, (3) tinnitus handicap inventory, (4) sound localization with stationary sound sources, and (5) perceived auditory motion. Results showed that when listening to sentences in quiet, performance was excellent in the Acoustic and Acoustic + CI conditions. In noise, performance was similar between Acoustic and Acoustic + CI conditions in 4/6 participants tested, and slightly worse in the Acoustic + CI in 2/6 participants. In some cases, the CI provided reduced tinnitus handicap scores. When testing sound localization ability, the Acoustic + CI condition resulted in improved sound localization RMS error of 29.2° (SD: ±6.7°) compared to 56.6° (SD: ±16.5°) in the Acoustic-only condition. Preliminary results suggest that the perception of motion direction, whereby subjects are required to process and compare directional cues across multiple locations, is impaired when compared with that of normal hearing subjects. Copyright © 2018 Elsevier B.V. All rights reserved.
Hover and forward flight acoustics and performance of a small-scale helicopter rotor system
NASA Technical Reports Server (NTRS)
Kitaplioglu, C.; Shinoda, P.
1985-01-01
A 2.1-m diam., 1/6-scale model helicopter main rotor was tested in hover in the test section of the NASA Ames 40- by 80- Foot Wind Tunnel. Subsequently, it was tested in forward flight in the Ames 7- by 10-Foot Wind Tunnel. The primary objective of the tests was to obtain performance and noise data on a small-scale rotor at various thrust coefficients, tip Mach numbers, and, in the later case, various advance ratios, for comparisons with similar existing data on full-scale helicopter rotors. This comparison yielded a preliminary evaluation of the scaling of helicopter rotor performance and acoustic radiation in hover and in forward flight. Correlation between model-scale and full-scale performance and acoustics was quite good in hover. In forward flight, however, there were significant differences in both performance and acoustic characteristics. A secondary objective was to contribute to a data base that will permit the estimation of facility effects on acoustic testing.
NASA Technical Reports Server (NTRS)
Cumming, Stephen B.; Smith, Mark S.; Cliatt, Larry J.; Frederick, Michael A.
2014-01-01
As part of the Stratospheric Observatory for Infrared Astronomy program, a 747SP airplane was modified to carry a 2.5-m telescope in the aft section of the fuselage. The resulting airborne observatory allows for observations above 99 percent of the water vapor in the atmosphere. The open cavity created by the modifications had the potential to significantly affect the airplane in the areas of aerodynamics and acoustics. Several series of flight tests were conducted to clear the operating envelope of the airplane for astronomical observations, planned to be performed between the altitudes of 35,000 ft and 45,000 ft. The flight tests were successfully completed. Cavity acoustics were below design limits, and the overall acoustic characteristics of the cavity were better than expected. The modification did have some effects on the stability and control of the airplane, but these effects were not significant. Airplane air data systems were not affected by the modifications. This paper describes the methods used to examine the aerodynamics and acoustic data from the flight tests and provides a discussion of the flight-test results in the areas of cavity acoustics, stability and control, and air data.
NASA Technical Reports Server (NTRS)
Cumming, Stephen B.; Cliatt, Larry James; Frederick, Michael A.; Smith, Mark S.
2013-01-01
As part of the Stratospheric Observatory for Infrared Astronomy (SOFIA) program, a 747SP airplane was modified to carry a 2.5 meter telescope in the aft section of the fuselage. The resulting airborne observatory allows for observations above 99 percent of the water vapor in the atmosphere. The open cavity created by the modifications had the potential to significantly affect the airplane in the areas of aerodynamics and acoustics. Several series of flight tests were conducted to clear the airplanes operating envelope for astronomical observations, planned to be performed between the altitudes of 39,000 feet and 45,000 feet. The flight tests were successfully completed. Cavity acoustics were below design limits, and the overall acoustic characteristics of the cavity were better than expected. The modification did have some effects on the stability and control of the airplane, but these effects were not significant. Airplane air data systems were not affected by the modifications. This paper describes the methods used to examine the aerodynamics and acoustic data from the flight tests and provides a discussion of the flight test results in the areas of cavity acoustics, stability and control, and air data.
Noise measurement flight test: Data-analyses Aerospatiale SA-365N Dauphin 2 helicopter
NASA Astrophysics Data System (ADS)
Newman, J. S.; Rickely, E. J.; Daboin, S. A.; Beattie, K. R.
1984-04-01
This report documents the results of a Federal Aviation Administration (FAA) noise measurement flight test program with the Dauphin twin-jet helicopter. The report contains documentary sections describing the acoustical characteristics of the subject helicopter and provides analyses and discussions addressing topics ranging from acoustical propagation to environmental impact of helicopter noise. This report is the second in a series of seven documenting the FAA helicopter noise measurement program conducted at Dulles International Airport during the summer of 1983. The Dauphin test program involved the acquisition of detailed acoustical, position and meteorological data. This test program was designed to address a series of objectives including: (1) acquisition of acoustical data for use in assessing heliport environment impact, (2) documentation of directivity characteristics for static operation of helicopters, (3) establishment of ground-to-ground and air-to-ground acoustical propagation relationships for helicopters, (4) determination of noise event duration influences on energy dose acoustical metrics, (5) examination of the differences between noise measured by a surface mounted microphone and a microphone mounted at a height of four feet (1.2 meters), and (6) documentation of noise levels acquired using international helicopter noise certification test procedures.
Overview of the Ares I Scale Model Acoustic Test Program
NASA Technical Reports Server (NTRS)
Counter, Douglas D.; Houston, Janice D.
2011-01-01
Launch environments, such as lift-off acoustic (LOA) and ignition overpressure (IOP), are important design factors for any vehicle and are dependent upon the design of both the vehicle and the ground systems. LOA environments are used directly in the development of vehicle vibro-acoustic environments and IOP is used in the loads assessment. The NASA Constellation Program had several risks to the development of the Ares I vehicle linked to LOA. The risks included cost, schedule and technical impacts for component qualification due to high predicted vibro-acoustic environments. One solution is to mitigate the environment at the component level. However, where the environment is too severe for component survivability, reduction of the environment itself is required. The Ares I Scale Model Acoustic Test (ASMAT) program was implemented to verify the Ares I LOA and IOP environments for the vehicle and ground systems including the Mobile Launcher (ML) and tower. An additional objective was to determine the acoustic reduction for the LOA environment with an above deck water sound suppression system. ASMAT was a development test performed at the Marshall Space Flight Center (MSFC) East Test Area (ETA) Test Stand 116 (TS 116). The ASMAT program is described in this presentation.
Garrette, Rachel; Jones, Alisha L; Wilson, Martha W
2018-05-15
The purpose of this study is to investigate whether acoustic reflex threshold testing before administration of distortion product otoacoustic emissions can affect the results of the distortion product otoacoustic emissions testing using an automated protocol. Fifteen young adults with normal hearing ranging in age from 19 to 25 years participated in the study. All participants had clear external ear canals and normal Jerger Type A tympanograms and had passed a hearing screening. Testing was performed using the Interacoustics Titan acoustic reflex threshold and distortion product otoacoustic emissions protocol. Participants underwent baseline distortion product otoacoustic emissions. A paired-samples t test was conducted for both the right and left ears to assess within-group differences between baseline distortion product otoacoustic emissions and repeated distortion product otoacoustic emissions measures. No significant differences were found in distortion product otoacoustic emission measures following administration of acoustic reflexes. The use of a protocol when using an automated system that includes both acoustic reflexes and distortion product otoacoustic emissions is important. Overall, presentation of acoustic reflexes prior to measuring distortion product otoacoustic emission did not affect distortion product otoacoustic emission results; therefore, test sequence can be modified as needed.
Background Studies for Acoustic Neutrino Detection at the South Pole
NASA Technical Reports Server (NTRS)
Abbasi, R.; Abdou, Y.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Andeen, K.; Auffenberg, J.; Bai, X.; Baker, M.; Barwick, S. W.;
2011-01-01
The detection of acoustic signals from ultra-high energy neutrino interactions is a promising method to measure the flux of cosmogenic neutrinos expected on Earth. The energy threshold for this process depends strongly on the absolute noise level in the target material. The South Pole Acoustic Test Setup (SPATS), deployed in the upper part of four boreholes of the IceCube Neutrino Observatory, has monitored the noise in Antarctic ice at the geographic South Pole for more than two years down to 500m depth. The noise is very stable and Gaussian distributed. Lacking an in-situ calibration up to now, laboratory measurements have been used to estimate the absolute noise level in the 10 to 50 kHz frequency range to be smaller than 20mPa. Using a threshold trigger, sensors of the South Pole Acoustic Test Setup registered acoustic events in the IceCube detector volume and its vicinity. Acoustic signals from refreezing IceCube holes and from anthropogenic sources have been used to test the localization of acoustic events. An upper limit on the neutrino flux at energies E > 10(exp 11) GeV is derived from acoustic data taken over eight months.
Background studies for acoustic neutrino detection at the South Pole
NASA Astrophysics Data System (ADS)
Abbasi, R.; Abdou, Y.; Abu-Zayyad, T.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Andeen, K.; Auffenberg, J.; Bai, X.; Baker, M.; Barwick, S. W.; Bay, R.; Bazo Alba, J. L.; Beattie, K.; Beatty, J. J.; Bechet, S.; Becker, J. K.; Becker, K.-H.; Benabderrahmane, M. L.; Benzvi, S.; Berdermann, J.; Berghaus, P.; Berley, D.; Bernardini, E.; Bertrand, D.; Besson, D. Z.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Bose, D.; Böser, S.; Botner, O.; Braun, J.; Brown, A. M.; Buitink, S.; Carson, M.; Chirkin, D.; Christy, B.; Clem, J.; Clevermann, F.; Cohen, S.; Colnard, C.; Cowen, D. F.; D'Agostino, M. V.; Danninger, M.; Daughhetee, J.; Davis, J. C.; de Clercq, C.; Demirörs, L.; Denger, T.; Depaepe, O.; Descamps, F.; Desiati, P.; de Vries-Uiterweerd, G.; Deyoung, T.; Díaz-Vélez, J. C.; Dierckxsens, M.; Dreyer, J.; Dumm, J. P.; Ehrlich, R.; Eisch, J.; Ellsworth, R. W.; Engdegård, O.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Fedynitch, A.; Feusels, T.; Filimonov, K.; Finley, C.; Fischer-Wasels, T.; Foerster, M. M.; Fox, B. D.; Franckowiak, A.; Franke, R.; Gaisser, T. K.; Gallagher, J.; Geisler, M.; Gerhardt, L.; Gladstone, L.; Glüsenkamp, T.; Goldschmidt, A.; Goodman, J. A.; Grant, D.; Griesel, T.; Groß, A.; Grullon, S.; Gurtner, M.; Ha, C.; Hallgren, A.; Halzen, F.; Han, K.; Hanson, K.; Heinen, D.; Helbing, K.; Herquet, P.; Hickford, S.; Hill, G. C.; Hoffman, K. D.; Homeier, A.; Hoshina, K.; Hubert, D.; Huelsnitz, W.; Hülß, J.-P.; Hulth, P. O.; Hultqvist, K.; Hussain, S.; Ishihara, A.; Jacobsen, J.; Japaridze, G. S.; Johansson, H.; Joseph, J. M.; Kampert, K.-H.; Kappes, A.; Karg, T.; Karle, A.; Kelley, J. L.; Kenny, P.; Kiryluk, J.; Kislat, F.; Klein, S. R.; Köhne, J.-H.; Kohnen, G.; Kolanoski, H.; Köpke, L.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Kowarik, T.; Krasberg, M.; Krings, T.; Kroll, G.; Kuehn, K.; Kuwabara, T.; Labare, M.; Lafebre, S.; Laihem, K.; Landsman, H.; Larson, M. J.; Lauer, R.; Lünemann, J.; Madsen, J.; Majumdar, P.; Marotta, A.; Maruyama, R.; Mase, K.; Matis, H. S.; Meagher, K.; Merck, M.; Mészáros, P.; Meures, T.; Middell, E.; Milke, N.; Miller, J.; Montaruli, T.; Morse, R.; Movit, S. M.; Nahnhauer, R.; Nam, J. W.; Naumann, U.; Nießen, P.; Nygren, D. R.; Odrowski, S.; Olivas, A.; Olivo, M.; O'Murchadha, A.; Ono, M.; Panknin, S.; Paul, L.; Pérez de Los Heros, C.; Petrovic, J.; Piegsa, A.; Pieloth, D.; Porrata, R.; Posselt, J.; Price, P. B.; Prikockis, M.; Przybylski, G. T.; Rawlins, K.; Redl, P.; Resconi, E.; Rhode, W.; Ribordy, M.; Rizzo, A.; Rodrigues, J. P.; Roth, P.; Rothmaier, F.; Rott, C.; Ruhe, T.; Rutledge, D.; Ruzybayev, B.; Ryckbosch, D.; Sander, H.-G.; Santander, M.; Sarkar, S.; Schatto, K.; Schmidt, T.; Schönwald, A.; Schukraft, A.; Schultes, A.; Schulz, O.; Schunck, M.; Seckel, D.; Semburg, B.; Seo, S. H.; Sestayo, Y.; Seunarine, S.; Silvestri, A.; Slipak, A.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Stephens, G.; Stezelberger, T.; Stokstad, R. G.; Stössl, A.; Stoyanov, S.; Strahler, E. A.; Straszheim, T.; Stür, M.; Sullivan, G. W.; Swillens, Q.; Taavola, H.; Taboada, I.; Tamburro, A.; Tepe, A.; Ter-Antonyan, S.; Tilav, S.; Toale, P. A.; Toscano, S.; Tosi, D.; Turčan, D.; van Eijndhoven, N.; Vandenbroucke, J.; van Overloop, A.; van Santen, J.; Vehring, M.; Voge, M.; Walck, C.; Waldenmaier, T.; Wallraff, M.; Walter, M.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whitehorn, N.; Wiebe, K.; Wiebusch, C. H.; Williams, D. R.; Wischnewski, R.; Wissing, H.; Wolf, M.; Woschnagg, K.; Xu, C.; Xu, X. W.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zarzhitsk, P.
2012-01-01
The detection of acoustic signals from ultra-high energy neutrino interactions is a promising method to measure the flux of cosmogenic neutrinos expected on Earth. The energy threshold for this process depends strongly on the absolute noise level in the target material. The South Pole Acoustic Test Setup (SPATS), deployed in the upper part of four boreholes of the IceCube Neutrino Observatory, has monitored the noise in Antarctic ice at the geographic South Pole for more than two years down to 500 m depth. The noise is very stable and Gaussian distributed. Lacking an in situ calibration up to now, laboratory measurements have been used to estimate the absolute noise level in the 10-50 kHz frequency range to be smaller than 20 mPa. Using a threshold trigger, sensors of the South Pole Acoustic Test Setup registered acoustic events in the IceCube detector volume and its vicinity. Acoustic signals from refreezing IceCube holes and from anthropogenic sources have been used to test the localization of acoustic events. An upper limit on the neutrino flux at energies Eν > 1011 GeV is derived from acoustic data taken over eight months.
Verification of Ares I Liftoff Acoustic Environments via the Ares I Scale Model Acoustic Test
NASA Technical Reports Server (NTRS)
Counter, Douglas D.; Houston, Janice D.
2012-01-01
Launch environments, such as Liftoff Acoustic (LOA) and Ignition Overpressure (IOP), are important design factors for any vehicle and are dependent upon the design of both the vehicle and the ground systems. The NASA Constellation Program had several risks to the development of the Ares I vehicle linked to LOA which are used in the development of the vibro-acoustic environments. The risks included cost, schedule and technical impacts for component qualification due to high predicted vibro-acoustic environments. One solution is to mitigate the environment at the component level. However, where the environment is too severe to mitigate at the component level, reduction of the launch environments is required. The Ares I Scale Model Acoustic Test (ASMAT) program was implemented to verify the predicted Ares I launch environments and to determine the acoustic reduction for the LOA environment with an above deck water sound suppression system. The test article included a 5% scale Ares I vehicle model, tower and Mobile Launcher. Acoustic and pressure data were measured by approximately 200 instruments. The ASMAT results are compared to the Ares I LOA predictions and water suppression effectiveness results are presented.
Verification of Ares I Liftoff Acoustic Environments via the Ares Scale Model Acoustic Test
NASA Technical Reports Server (NTRS)
Counter, Douglas D.; Houston, Janice D.
2012-01-01
Launch environments, such as Liftoff Acoustic (LOA) and Ignition Overpressure (IOP), are important design factors for any vehicle and are dependent upon the design of both the vehicle and the ground systems. The NASA Constellation Program had several risks to the development of the Ares I vehicle linked to LOA which are used in the development of the vibro-acoustic environments. The risks included cost, schedule and technical impacts for component qualification due to high predicted vibro-acoustic environments. One solution is to mitigate the environment at the component level. However, where the environment is too severe to mitigate at the component level, reduction of the launch environments is required. The Ares I Scale Model Acoustic Test (ASMAT) program was implemented to verify the predicted Ares I launch environments and to determine the acoustic reduction for the LOA environment with an above deck water sound suppression system. The test article included a 5% scale Ares I vehicle model, tower and Mobile Launcher. Acoustic and pressure data were measured by approximately 200 instruments. The ASMAT results are compared to the Ares I LOA predictions and water suppression effectiveness results are presented.
A Brief Historical Survey of Rocket Testing Induced Acoustic Environments at NASA SSC
NASA Technical Reports Server (NTRS)
Allgood, Daniel C.
2012-01-01
A survey was conducted of all the various rocket test programs that have been performed since the establishment of NASA Stennis Space Center. The relevant information from each of these programs were compiled and used to quantify the theoretical noise source levels using the NASA approved methodology for computing "acoustic loads generated by a propulsion system" (NASA SP ]8072). This methodology, which is outlined in Reference 1, has been verified as a reliable means of determining the noise source characteristics of rocket engines. This information is being provided to establish reference environments for new government/business residents to ascertain whether or not their activities will generate acoustic environments that are more "encroaching" in the NASA Fee Area. In this report, the designation of sound power level refers to the acoustic power of the rocket engine at the engine itself. This is in contrast to the sound pressure level associated with the propagation of the acoustic energy in the surrounding air. The first part of the survey documents the "at source" sound power levels and their dominant frequency bands for the range of engines tested at Stennis. The second part of the survey discusses how the acoustic energy levels will propagate non ]uniformly from the test stands. To demonstrate this, representative acoustic sound pressure mappings in the NASA Stennis Fee Area were computed for typical engine tests on the B ]1 and E ]1 test stands.
NASA Technical Reports Server (NTRS)
Joynes, D.; Balut, J. P.
1974-01-01
The results are presented of static, fatigue and thermal testing of titanium honeycomb acoustic panels representing the acoustic tailpipe for the Pratt and Whitney Aircraft JT8D Refan engine which is being studied for use on the Boeing 727-200 airplane. Test specimens represented the engine and tailpipe flange joints, the rail to which the thrust reverser is attached and shear specimens of the tailpipe honeycomb. Specimens were made in four different batches with variations in configuration, materials and processes in each. Static strength of all test specimens exceeded the design ultimate load requirements. Fatigue test results confirmed that aluminum brazed titanium, as used in the Refan tailpipe design, meets the fatigue durability objectives. Quality of welding was found to be critical to life, with substandard welding failing prematurely, whereas welding within the process specification exceeded the panel skin life. Initial fatigue testing used short grip length bolts which failed prematurely. These were replaced with longer bolts and subsequent testing demonstrated the required life. Thermal tests indicate that perforated skin acoustic honeycomb has approximately twice the heat transfer of solid skin honeycomb.
A closed-loop automatic control system for high-intensity acoustic test systems.
NASA Technical Reports Server (NTRS)
Slusser, R. A.
1973-01-01
Sound at sound pressure levels in the range from 130 to 160 dB is used in the investigation. Random noise is passed through a series of parallel filters, generally 1/3-octave wide. A basic automatic system is investigated because of preadjustment inaccuracies and high costs found in a study of a typical manually controlled acoustic testing system. The unit described has been successfully used in automatic acoustic tests in connection with the spacecraft tests for the Mariner 1971 program.
NASA Technical Reports Server (NTRS)
Grosveld, Ferdinand W.; Rizzi, Stephen A.; Rice, Chad E.
2004-01-01
This document represents a compilation of three informal reports from reverberant acoustic tests performed on X-37 hot structure control surfaces in the NASA Langley Research Center Structural Acoustics Loads and Transmission (SALT) facility. The first test was performed on a carbon-silicone carbide flaperon subcomponent on February 24, 2004. The second test was performed on a carbon-carbon ruddervator subcomponent on May 27, 2004. The third test was performed on a carbon-carbon flaperon subcomponent on June 30, 2004.
NASA Technical Reports Server (NTRS)
Kozlowski, H.; Packman, A. B.
1978-01-01
Data from the acoustic tests of the convergent reference nozzle and the 0.75 area ratio coannular nozzle are presented in tables. Data processing routines used to scale the acoustic data and to correct the data for atmospheric attenuation are included.
Acoustic Emission of Deformation Twinning in Magnesium.
Mo, Chengyang; Wisner, Brian; Cabal, Mike; Hazeli, Kavan; Ramesh, K T; El Kadiri, Haitham; Al-Samman, Talal; Molodov, Konstantin D; Molodov, Dmitri A; Kontsos, Antonios
2016-08-06
The Acoustic Emission of deformation twinning in Magnesium is investigated in this article. Single crystal testing with combined full field deformation measurements, as well as polycrystalline testing inside the scanning electron microscope with simultaneous monitoring of texture evolution and twin nucleation were compared to testing at the laboratory scale with respect to recordings of Acoustic Emission activity. Single crystal testing revealed the formation of layered twin boundaries in areas of strain localization which was accompanied by distinct changes in the acoustic data. Testing inside the microscope directly showed twin nucleation, proliferation and growth as well as associated crystallographic reorientations. A post processing approach of the Acoustic Emission activity revealed the existence of a class of signals that appears in a strain range in which twinning is profuse, as validated by the in situ and ex situ microscopy observations. Features extracted from such activity were cross-correlated both with the available mechanical and microscopy data, as well as with the Acoustic Emission activity recorded at the laboratory scale for similarly prepared specimens. The overall approach demonstrates that the method of Acoustic Emission could provide real time volumetric information related to the activation of deformation twinning in Magnesium alloys, in spite of the complexity of the propagation phenomena, the possible activation of several deformation modes and the challenges posed by the sensing approach itself when applied in this type of materials evaluation approach.
Acoustic Emission of Deformation Twinning in Magnesium
Mo, Chengyang; Wisner, Brian; Cabal, Mike; Hazeli, Kavan; Ramesh, K. T.; El Kadiri, Haitham; Al-Samman, Talal; Molodov, Konstantin D.; Molodov, Dmitri A.; Kontsos, Antonios
2016-01-01
The Acoustic Emission of deformation twinning in Magnesium is investigated in this article. Single crystal testing with combined full field deformation measurements, as well as polycrystalline testing inside the scanning electron microscope with simultaneous monitoring of texture evolution and twin nucleation were compared to testing at the laboratory scale with respect to recordings of Acoustic Emission activity. Single crystal testing revealed the formation of layered twin boundaries in areas of strain localization which was accompanied by distinct changes in the acoustic data. Testing inside the microscope directly showed twin nucleation, proliferation and growth as well as associated crystallographic reorientations. A post processing approach of the Acoustic Emission activity revealed the existence of a class of signals that appears in a strain range in which twinning is profuse, as validated by the in situ and ex situ microscopy observations. Features extracted from such activity were cross-correlated both with the available mechanical and microscopy data, as well as with the Acoustic Emission activity recorded at the laboratory scale for similarly prepared specimens. The overall approach demonstrates that the method of Acoustic Emission could provide real time volumetric information related to the activation of deformation twinning in Magnesium alloys, in spite of the complexity of the propagation phenomena, the possible activation of several deformation modes and the challenges posed by the sensing approach itself when applied in this type of materials evaluation approach. PMID:28773786
Acoustical characteristics of the NASA Langley full scale wind tunnel test section
NASA Technical Reports Server (NTRS)
Abrahamson, A. L.; Kasper, P. K.; Pappa, R. S.
1975-01-01
The full-scale wind tunnel at NASA-Langley Research Center was designed for low-speed aerodynamic testing of aircraft. Sound absorbing treatment has been added to the ceiling and walls of the tunnel test section to create a more anechoic condition for taking acoustical measurements during aerodynamic tests. The results of an experimental investigation of the present acoustical characteristics of the tunnel test section are presented. The experimental program included measurements of ambient nosie levels existing during various tunnel operating conditions, investigation of the sound field produced by an omnidirectional source, and determination of sound field decay rates for impulsive noise excitation. A comparison of the current results with previous measurements shows that the added sound treatment has improved the acoustical condition of the tunnel test section. An analysis of the data indicate that sound reflections from the tunnel ground-board platform could create difficulties in the interpretation of actual test results.
9x15 Low Speed Wind Tunnel Acoustic Improvements
NASA Technical Reports Server (NTRS)
Stark, David; Stephens, David
2016-01-01
The 9- by 15-Foot Low Speed Wind Tunnel (9x15 LSWT) at NASA Glenn Research Center was built in 1969 in the return leg of the 8- by 6-Foot Supersonic Wind Tunnel (8x6 SWT). The 8x6 SWT was completed in 1949 and acoustically treated to mitigate community noise issues in 1950. This treatment included the addition of a large muffler downstream of the 8x6 SWT test section and diffuser. The 9x15 LSWT was designed for performance testing of VSTOL aircraft models, but with the addition of the current acoustic treatment in 1986 the tunnel has been used principally for acoustic and performance testing of aircraft propulsions systems. The present document describes an anticipated acoustic upgrade to be completed in 2017.
9- by 15-Foot Low Speed Wind Tunnel Acoustic Improvements Expanded Overview
NASA Technical Reports Server (NTRS)
Stephens, David
2016-01-01
The 9- by 15-Foot Low Speed Wind Tunnel (9x15 LSWT) at NASA Glenn Research Center was built in 1969 in the return leg of the 8- by 6-Foot Supersonic Wind Tunnel (8x6 SWT). The 8x6 SWT was completed in 1949 and acoustically treated to mitigate community noise issues in 1950. This treatment included the addition of a large muffler downstream of the 8x6 SWT test section and diffuser. The 9x15 LSWT was designed for performance testing of V/STOL aircraft models, but with the addition of the current acoustic treatment in 1986 the tunnel been used principally for acoustic and performance testing of aircraft propulsion systems. The present document describes an anticipated acoustic upgrade to be completed in 2017.
Testing Installed Propulsion for Shielded Exhaust Configurations
NASA Technical Reports Server (NTRS)
Bridges, James E.; Podboy, Gary G.; Brown, Clifford A.
2016-01-01
Jet-surface interaction (JSI) can be a significant factor in the exhaust noise of installed propulsion systems. Tests to further the understanding and prediction of the acoustic impacts of JSI have been described. While there were many objectives for the test, the overall objective was to prepare for a future test validating the design of a low-noise, lowboom supersonic commercial airliner. In this paper we explore design requirements for a partial aircraft model to be used in subscale acoustic testing, especially focusing on the amount of aircraft body that must be included to produce the acoustic environment between propulsion exhaust system and observer. We document the dual-stream jets, both nozzle and flow conditions, which were tested to extend JSI acoustic modeling from simple singlestream jets to realistic dual-stream exhaust nozzles. Sample observations are provided of changes to far-field sound as surface geometry and flow conditions were varied. Initial measurements are presented for integrating the propulsion on the airframe for a supersonic airliner with simulated airframe geometries and nozzles. Acoustic impacts of installation were modest, resulting in variations of less than 3 EPNdB in most configurations.
Acoustic cavity technology for high performance injectors
NASA Technical Reports Server (NTRS)
1976-01-01
The feasibility of damping more than one mode of rocket engine combustion instability by means of differently tuned acoustic cavities sharing a common entrance was shown. Analytical procedures and acoustic modeling techniques for predicting the stability behavior of acoustic cavity designs in hot firings were developed. Full scale testing of various common entrance, dual cavity configurations, and subscale testing for the purpose of obtaining motion pictures of the cavity entrance region, to aid in determining the mechanism of cavity damping were the two major aspects of the program.
Comparison of NASA and contractor results from aeroacoustic tests of QCSEE OTW engine
NASA Technical Reports Server (NTRS)
Bloomer, H. E.; Loeffler, I. J.; Kreim, W. J.; Coats, J. W.
1981-01-01
The aerodynamics and acoustics of the over-the-wing (OTW) Quiet, Clean, Short Haul Experimental Engine (QCSEE) were tested. A boilerplate (nonflight weight), high-throat Mach number, acoustically treated inlet and a D-shaped OTW exhaust nozzle with variable position side doors were used. Some acoustic directivity results for the type "D" nozzle and acoustic effects of variations in the nozzle side door positions are included. It was found that the results are in agreement with those previously obtained.
Acoustically based fetal heart rate monitor
NASA Technical Reports Server (NTRS)
Baker, Donald A.; Zuckerwar, Allan J.
1991-01-01
The acoustically based fetal heart rate monitor permits an expectant mother to perform the fetal Non-Stress Test in her home. The potential market would include the one million U.S. pregnancies per year requiring this type of prenatal surveillance. The monitor uses polyvinylidene fluoride (PVF2) piezoelectric polymer film for the acoustic sensors, which are mounted in a seven-element array on a cummerbund. Evaluation of the sensor ouput signals utilizes a digital signal processor, which performs a linear prediction routine in real time. Clinical tests reveal that the acoustically based monitor provides Non-Stress Test records which are comparable to those obtained with a commercial ultrasonic transducer.
Wake Shield Facility Modal Survey Test in Vibration Acoustic Test Facility
1991-10-09
Astronaut Ronald M. Sega stands beside the University of Houston's Wake Shield Facility before it undergoes a Modal Survey Test in the Vibration and Acoustic Test Facility Building 49, prior to being flown on space shuttle mission STS-60.
Acoustic Treatment Design Scaling Methods. Volume 3; Test Plans, Hardware, Results, and Evaluation
NASA Technical Reports Server (NTRS)
Yu, J.; Kwan, H. W.; Echternach, D. K.; Kraft, R. E.; Syed, A. A.
1999-01-01
The ability to design, build, and test miniaturized acoustic treatment panels on scale-model fan rigs representative of the full-scale engine provides not only a cost-savings, but an opportunity to optimize the treatment by allowing tests of different designs. To be able to use scale model treatment as a full-scale design tool, it is necessary that the designer be able to reliably translate the scale model design and performance to an equivalent full-scale design. The primary objective of the study presented in this volume of the final report was to conduct laboratory tests to evaluate liner acoustic properties and validate advanced treatment impedance models. These laboratory tests include DC flow resistance measurements, normal incidence impedance measurements, DC flow and impedance measurements in the presence of grazing flow, and in-duct liner attenuation as well as modal measurements. Test panels were fabricated at three different scale factors (i.e., full-scale, half-scale, and one-fifth scale) to support laboratory acoustic testing. The panel configurations include single-degree-of-freedom (SDOF) perforated sandwich panels, SDOF linear (wire mesh) liners, and double-degree-of-freedom (DDOF) linear acoustic panels.
Guided acoustic wave inspection system
Chinn, Diane J.
2004-10-05
A system for inspecting a conduit for undesirable characteristics. A transducer system induces guided acoustic waves onto said conduit. The transducer system detects the undesirable characteristics of the conduit by receiving guided acoustic waves that contain information about the undesirable characteristics. The conduit has at least two sides and the transducer system utilizes flexural modes of propagation to provide inspection using access from only the one side of the conduit. Cracking is detected with pulse-echo testing using one transducer to both send and receive the guided acoustic waves. Thinning is detected in through-transmission testing where one transducer sends and another transducer receives the guided acoustic waves.
Acoustic emission analysis as a non-destructive test procedure for fiber compound structures
NASA Technical Reports Server (NTRS)
Block, J.
1983-01-01
The concept of acoustic emission analysis is explained in scientific terms. The detection of acoustic events, their localization, damage discrimination, and event summation curves are discussed. A block diagram of the concept of damage-free testing of fiber-reinforced synthetic materials is depicted. Prospects for application of the concept are assessed.
The effects of noise on the cognitive performance of physicians in a hospital emergency department
NASA Astrophysics Data System (ADS)
Dodds, Peter
In this research, the acoustic environment of a contemporary urban hospital emergency department has been characterized. Perceptive and cognitive tests relating to the acoustic environment were conducted on both medical professionals and lay people and a methodology for developing augmentable acoustic simulations from field recordings was developed. While research of healthcare environments remains a popular area of investigation for the acoustics community, a lack of communication between medical and acoustics researchers as well as a lack of sophistication in the methods implemented to evaluate hospital environments and their occupants has led to stagnation. This research attempted to replicate traditional methods for the evaluation of hospital acoustic environments including impulse response based room acoustics measurements as well as psychoacoustic evaluations. This thesis also demonstrates some of the issues associated with conducting such research and provides an outline and implementation for alternative advanced methods of re- search. Advancements include the use of the n-Back test to evaluate the effects of the acoustic environment on cognitive function as well as the outline of a new methodology for implementing realistic immersive simulations for cognitive and perceptual testing using field recordings and signal processing techniques. Additionally, this research utilizes feedback from working emergency medicine physicians to determine the subjective degree of distraction subjects felt in response to a simulated acoustic environment. Results of the room acoustics measurements and all experiments will be presented and analyzed and possible directions for future research will be presented.
Acoustic Source Bearing Estimation (ASBE) computer program development
NASA Technical Reports Server (NTRS)
Wiese, Michael R.
1987-01-01
A new bearing estimation algorithm (Acoustic Source Analysis Technique - ASAT) and an acoustic analysis computer program (Acoustic Source Bearing Estimation - ASBE) are described, which were developed by Computer Sciences Corporation for NASA Langley Research Center. The ASBE program is used by the Acoustics Division/Applied Acoustics Branch and the Instrument Research Division/Electro-Mechanical Instrumentation Branch to analyze acoustic data and estimate the azimuths from which the source signals radiated. Included are the input and output from a benchmark test case.
Acoustic emission non-destructive testing of structures using source location techniques.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beattie, Alan G.
2013-09-01
The technology of acoustic emission (AE) testing has been advanced and used at Sandia for the past 40 years. AE has been used on structures including pressure vessels, fire bottles, wind turbines, gas wells, nuclear weapons, and solar collectors. This monograph begins with background topics in acoustics and instrumentation and then focuses on current acoustic emission technology. It covers the overall design and system setups for a test, with a wind turbine blade as the object. Test analysis is discussed with an emphasis on source location. Three test examples are presented, two on experimental wind turbine blades and one onmore » aircraft fire extinguisher bottles. Finally, the code for a FORTRAN source location program is given as an example of a working analysis program. Throughout the document, the stress is on actual testing of real structures, not on laboratory experiments.« less
NASA Astrophysics Data System (ADS)
Issiaka Traore, Oumar; Cristini, Paul; Favretto-Cristini, Nathalie; Pantera, Laurent; Viguier-Pla, Sylvie
2018-01-01
In a context of nuclear safety experiment monitoring with the non destructive testing method of acoustic emission, we study the impact of the test device on the interpretation of the recorded physical signals by using spectral finite element modeling. The numerical results are validated by comparison with real acoustic emission data obtained from previous experiments. The results show that several parameters can have significant impacts on acoustic wave propagation and then on the interpretation of the physical signals. The potential position of the source mechanism, the positions of the receivers and the nature of the coolant fluid have to be taken into account in the definition a pre-processing strategy of the real acoustic emission signals. In order to show the relevance of such an approach, we use the results to propose an optimization of the positions of the acoustic emission sensors in order to reduce the estimation bias of the time-delay and then improve the localization of the source mechanisms.
F-16XL and F-18 High Speed Acoustic Flight Test Databases
NASA Technical Reports Server (NTRS)
Kelly, J. J.; Wilson, M. R.; Rawls, J., Jr.; Norum, T. D.; Golub, R. A.
1999-01-01
This report presents the recorded acoustic data and the computed narrow-band and 1/3-octave band spectra produced by F-18 and F-16XL aircraft in subsonic flight over an acoustic array. Both broadband-shock noise and turbulent mixing noise are observed in the spectra. Radar and c-band tracking systems provided the aircraft position which enabled directivity and smear angles from the aircraft to each microphone to be computed. These angles are based on source emission time and thus give some idea about the directivity of the radiated sound field due to jet noise. A follow-on static test was also conducted where acoustic and engine data were obtained. The acoustic data described in the report has application to community noise analysis, noise source characterization and validation of prediction models. A detailed description of the signal processing procedures is provided. Follow-on static tests of each aircraft were also conducted for which engine data and far-field acoustic data are presented.
Cabin Noise Studies for the Orion Spacecraft Crew Module
NASA Technical Reports Server (NTRS)
Dandaroy, Indranil; Chu, S. Reynold; Larson, Lauren; Allen, Christopher S.
2010-01-01
Controlling cabin acoustic noise levels in the Crew Module (CM) of the Orion spacecraft is critical for adequate speech intelligibility, to avoid fatigue and to prevent any possibility of temporary and permanent hearing loss. A vibroacoustic model of the Orion CM cabin has been developed using Statistical Energy Analysis (SEA) to assess compliance with acoustic Constellation Human Systems Integration Requirements (HSIR) for the on-orbit mission phase. Cabin noise in the Orion CM needs to be analyzed at the vehicle-level to assess the cumulative acoustic effect of various Orion systems at the crewmember's ear. The SEA model includes all major structural and acoustic subsystems inside the CM including the Environmental Control and Life Support System (ECLSS), which is the primary noise contributor in the cabin during the on-orbit phase. The ECLSS noise sources used to excite the vehicle acoustic model were derived using a combination of established empirical predictions and fan development acoustic testing. Baseline noise predictions were compared against acoustic HSIR requirements. Key noise offenders and paths were identified and ranked using noise transfer path analysis. Parametric studies were conducted with various acoustic treatment packages in the cabin to reduce the noise levels and define vehicle-level mass impacts. An acoustic test mockup of the CM cabin has also been developed and noise treatment optimization tests were conducted to validate the results of the analyses.
... any cause. Common causes of hearing loss include: Acoustic trauma Chronic ear infections Diseases of the inner ... hearing. The following conditions may affect test results: Acoustic neuroma Acoustic trauma Age-related hearing loss Alport ...
Joint Eglin Acoustics Week 2013 Data Report
NASA Technical Reports Server (NTRS)
Conner, David A.; Stephenson, James H.; Sim, Ben W.; Watts, Michael E.; Greenwood, Eric; Smith, Charles D.
2017-01-01
Far-field acoustic measurements were obtained for the AH-64D, HH-60M and CV-22B at the Eglin AFB, Test Area C-72, in July/August 2013. The primary purpose for this flight test was to obtain a benchmark database of detailed acoustic source noise characteristics for the aircraft operating at typical mission gross weights over a range of typical mission operating conditions. Data were acquired for a range of steady-state level and descending flight conditions, hover, and a variety of unsteady maneuver conditions. Between 30 and 37 microphones were deployed during these tests. Vehicle position and state data, as well as weather data were acquired simultaneously with the acoustic data. This paper describes the test aircraft, onboard instrumentation, ground instrumentation, and the data acquired. Data from this test are available upon request and review.
Study of acoustic emission during mechanical tests of large flight weight tank structure
NASA Technical Reports Server (NTRS)
Mccauley, B. O.; Nakamura, Y.; Veach, C. L.
1973-01-01
A PPO-insulated, flight-weight, subscale, aluminum tank was monitored for acoustic emissions during a proof test and during 100 cycles of environmental test simulating space flights. The use of a combination of frequency filtering and appropriate spatial filtering to reduce background noise was found to be sufficient to detect acoustic emission signals of relatively small intensity expected from subcritical crack growth in the structure. Several emission source locations were identified, including the one where a flaw was detected by post-test x-ray inspections. For most source locations, however, post-test inspections did not detect flaws; this was partially attributed to the higher sensitivity of the acoustic emission technique than any other currently available NDT method for detecting flaws. For these non-verifiable emission sources, a problem still remains in correctly interpreting observed emission signals.
Preserved Acoustic Hearing in Cochlear Implantation Improves Speech Perception
Sheffield, Sterling W.; Jahn, Kelly; Gifford, René H.
2015-01-01
Background With improved surgical techniques and electrode design, an increasing number of cochlear implant (CI) recipients have preserved acoustic hearing in the implanted ear, thereby resulting in bilateral acoustic hearing. There are currently no guidelines, however, for clinicians with respect to audio-metric criteria and the recommendation of amplification in the implanted ear. The acoustic bandwidth necessary to obtain speech perception benefit from acoustic hearing in the implanted ear is unknown. Additionally, it is important to determine if, and in which listening environments, acoustic hearing in both ears provides more benefit than hearing in just one ear, even with limited residual hearing. Purpose The purposes of this study were to (1) determine whether acoustic hearing in an ear with a CI provides as much speech perception benefit as an equivalent bandwidth of acoustic hearing in the non-implanted ear, and (2) determine whether acoustic hearing in both ears provides more benefit than hearing in just one ear. Research Design A repeated-measures, within-participant design was used to compare performance across listening conditions. Study Sample Seven adults with CIs and bilateral residual acoustic hearing (hearing preservation) were recruited for the study. Data Collection and Analysis Consonant-nucleus-consonant word recognition was tested in four conditions: CI alone, CI + acoustic hearing in the nonimplanted ear, CI + acoustic hearing in the implanted ear, and CI + bilateral acoustic hearing. A series of low-pass filters were used to examine the effects of acoustic bandwidth through an insert earphone with amplification. Benefit was defined as the difference among conditions. The benefit of bilateral acoustic hearing was tested in both diffuse and single-source background noise. Results were analyzed using repeated-measures analysis of variance. Results Similar benefit was obtained for equivalent acoustic frequency bandwidth in either ear. Acoustic hearing in the nonimplanted ear provided more benefit than the implanted ear only in the wideband condition, most likely because of better audiometric thresholds (>500 Hz) in the nonimplanted ear. Bilateral acoustic hearing provided more benefit than unilateral hearing in either ear alone, but only in diffuse background noise. Conclusions Results support use of amplification in the implanted ear if residual hearing is present. The benefit of bilateral acoustic hearing (hearing preservation) should not be tested in quiet or with spatially coincident speech and noise, but rather in spatially separated speech and noise (e.g., diffuse background noise). PMID:25690775
NASA Technical Reports Server (NTRS)
Kazin, S. B.
1973-01-01
Acoustic tests were conducted on a high tip speed (1550 ft/sec, 472.44 m/sec) single stage fan with varying amounts of wall acoustic treatment and with circumferential slots over the rotor blade tips. The slots were also tested with acoustic treatment placed behind the slots. The wall treatment results show that the inlet treatment is more effective at high fan speeds and aft duct treatment is more effective at low fan speeds. Maximum PNL's on a 200-foot (60.96 m) sideline show the untreated slots to have increased the rear radiated noise at approach. However, when the treatment was added to the slots inlet radiated noise was decreased, resulting in little change relative to the solid casing on an EPNL basis.
Nonlinear acoustics experimental characterization of microstructure evolution in Inconel 617
NASA Astrophysics Data System (ADS)
Yao, Xiaochu; Liu, Yang; Lissenden, Cliff J.
2014-02-01
Inconel 617 is a candidate material for the intermediate heat exchanger in a very high temperature reactor for the next generation nuclear power plant. This application will require the material to withstand fatigue-ratcheting interaction at temperatures up to 950°C. Therefore nondestructive evaluation and structural health monitoring are important capabilities. Acoustic nonlinearity (which is quantified in terms of a material parameter, the acoustic nonlinearity parameter, β) has been proven to be sensitive to microstructural changes in material. This research develops a robust experimental procedure to track the evolution of damage precursors in laboratory tested Inconel 617 specimens using ultrasonic bulk waves. The results from the acoustic non-linear tests are compared with stereoscope surface damage results. Therefore, the relationship between acoustic nonlinearity and microstructural evaluation can be clearly demonstrated for the specimens tested.
NASA Astrophysics Data System (ADS)
Woodward, Richard P.; Loeffler, Irvin J.
1993-04-01
Flight tests to define the far-field tone source at cruise conditions were completed on the full-scale SR-7L advanced turboprop that was installed on the left wing of a Gulfstream 2 aircraft. This program, designated Propfan Test Assessment (PTA), involved aeroacoustic testing of the propeller over a range of test conditions. These measurements defined source levels for input into long-distance propagation models to predict en route noise. In-flight data were taken for seven test cases. Near-field acoustic data were taken on the Gulfstream fuselage and on a microphone boom that was mounted on the Gulfstream wing outboard of the propeller. Far-field acoustic data were taken by an acoustically instrumented Learjet that flew in formation with the Gulfstream. These flight tests were flown from El Paso, Texas, and from the NASA Lewis Research Center. A comprehensive listing of the aeroacoustic results from these flight tests which may be used for future analysis are presented.
NASA Technical Reports Server (NTRS)
Woodward, Richard P.; Loeffler, Irvin J.
1993-01-01
Flight tests to define the far-field tone source at cruise conditions were completed on the full-scale SR-7L advanced turboprop that was installed on the left wing of a Gulfstream 2 aircraft. This program, designated Propfan Test Assessment (PTA), involved aeroacoustic testing of the propeller over a range of test conditions. These measurements defined source levels for input into long-distance propagation models to predict en route noise. In-flight data were taken for seven test cases. Near-field acoustic data were taken on the Gulfstream fuselage and on a microphone boom that was mounted on the Gulfstream wing outboard of the propeller. Far-field acoustic data were taken by an acoustically instrumented Learjet that flew in formation with the Gulfstream. These flight tests were flown from El Paso, Texas, and from the NASA Lewis Research Center. A comprehensive listing of the aeroacoustic results from these flight tests which may be used for future analysis are presented.
Tabulation of data from the tip aerodynamics and acoustics test
NASA Technical Reports Server (NTRS)
Cross, Jeffrey L.; Tu, Wilson
1990-01-01
In a continuing effort to understand helicopter rotor tip aerodynamics and acoustics, researchers at Ames Research Center conducted a flight test. The test was performed using the NASA White Cobra and a set of highly instrumented blades. Tabular and graphic summaries of two data subsets from the Tip Aerodynamics and Acoustics Test are given. The data presented are for airloads, blade structural loads, blade vibrations, with summary tables of the aircraft states for each test point. The tabular data consist of the first 15 harmonics only, whereas the plots contain the entire measured frequency content.
NASA Technical Reports Server (NTRS)
Soderman, Paul T.; Jaeger, Stephen M.; Hayes, Julie A.; Allen, Christopher S.
2002-01-01
A recessed, 42-inch deep acoustic lining has been designed and installed in the 40- by 80- Foot Wind Tunnel (40x80) test section to greatly improve the acoustic quality of the facility. This report describes the test section acoustic performance as determined by a detailed static calibration-all data were acquired without wind. Global measurements of sound decay from steady noise sources showed that the facility is suitable for acoustic studies of jet noise or similar randomly generated sound. The wall sound absorption, size of the facility, and averaging effects of wide band random noise all tend to minimize interference effects from wall reflections. The decay of white noise with distance was close to free field above 250 Hz. However, tonal sound data from propellers and fans, for example, will have an error band to be described that is caused by the sensitivity of tones to even weak interference. That error band could be minimized by use of directional instruments such as phased microphone arrays. Above 10 kHz, air absorption began to dominate the sound field in the large test section, reflections became weaker, and the test section tended toward an anechoic environment as frequency increased.
Capabilities of the thermal acoustic fatigue apparatus
NASA Technical Reports Server (NTRS)
Clevenson, S. A.; Daniels, E. F.
1992-01-01
The Thermal Acoustic Fatigue Apparatus (TAFA) is a facility for applying intense noise and heat to small test panels. Modifications to TAFA have increased the heating capability to 44 BTU/(ft.-sec.), making it possible to heat test panels to 2000 F and concurrently apply 168 dB of noise. Results of acoustic and thermal surveys are shown. Two test items, a 0.09 in. steel panel and an insulated panel, were used in the thermal survey.
NASA Astrophysics Data System (ADS)
Xia, J.; Y Wang, F.; Luo, H.; Hu, Y. M.; Xiong, S. D.
2017-12-01
In this paper, a MEMS-based extrinsic Farby-Perot Interferometric (EFPI) acoustic pressure acoustic sensor is presented. The diaphragm structure is used as the second reflected surface, and the sensitive surface to acoustic pressure. A wavelength-switched phase demodulation system for EFPI sensors is used for acoustic signal recovery. The modified phase demodulation system has been demonstrated to recover the signal to a stable intensity fluctuation level of ±0.5 dB at the test frequency of 2000 Hz. In the test depth of 50cm, the sensor has a resonant frequency of 3.7 kHz, a flat frequency range of 10-800Hz, and a corresponding acoustic pressure sensitivity of -159 dB re. 1/μPa.
QCSEE Over-the-Wing Engine Acoustic Data
NASA Technical Reports Server (NTRS)
Bloomer, H. E.; Loeffler, I. J.
1982-01-01
The over the wing (OTW) Quiet, Clean, Short Haul Experimental Engine (QCSEE) was tested at the NASA Lewis Engine Noise Test Facility. A boilerplate (nonflight weight), high throat Mach number, acoustically treated inlet and a D shaped OTW exhaust nozzle with variable position side doors were used in the tests along with wing and flap segments to simulate an installation on a short haul transport aircraft. All of the acoustic test data from 10 configurations are documented in tabular form. Some selected narrowband and 1/3 octave band plots of sound pressure level are presented.
Acoustic analysis of warp potential of green ponderosa pine lumber
Xiping Wang; William T. Simpson
2005-01-01
This study evaluated the potential of acoustic analysis as presorting criteria to identify warp-prone boards before kiln drying. Dimension lumber, 38 by 89 mm (nominal 2 by 4 in.) and 2.44 m (8 ft) long, sawn from open-grown small-diameter ponderosa pine trees, was acoustically tested lengthwise at green condition. Three acoustic properties (acoustic speed, rate of...
Maneuver Acoustic Flight Test of the Bell 430 Helicopter
NASA Technical Reports Server (NTRS)
Watts, Michael E.; Snider, Royce; Greenwood, Eric; Baden, Joel
2012-01-01
A cooperative flight test by NASA, Bell Helicopter and the U.S. Army to characterize the steady state acoustics and measure the maneuver noise of a Bell Helicopter 430 aircraft was accomplished. The test occurred during June/July, 2011 at Eglin Air Force Base, Florida. This test gathered a total of 410 data points over 10 test days and compiled an extensive data base of dynamic maneuver measurements. Three microphone configurations with up to 31 microphones in each configuration were used to acquire acoustic data. Aircraft data included DGPS, aircraft state and rotor state information. This paper provides an overview of the test.
NASA Astrophysics Data System (ADS)
Cho, Young; Kumar, Akhil; Xu, Song; Zou, Jun
2017-03-01
Recent studies have shown that micromachined silicon acoustic delay lines can provide a promising solution to achieve real-time photoacoustic tomography without the need for complex transducer arrays and data acquisition electronics. However, as its length increases to provide longer delay time, the delay line becomes more vulnerable to structural instability due to reduced mechanical stiffness. In addition, the small cross-section area of the delay line results in a large acoustic acceptance angle and therefore poor directivity. To address these two issues, this paper reports the design, fabrication, and testing of a new silicon acoustic delay line enhanced with 3D printed polymer micro linker structures. First, mechanical deformation of the silicon acoustic delay line (with and without linker structures) under gravity was simulated by using finite element method. Second, the acoustic crosstalk and acoustic attenuation caused by the polymer micro linker structures were evaluated with both numerical simulation and ultrasound transmission testing. The result shows that the use of the polymer micro linker structures significantly improves the structural stability of the silicon acoustic delay lines without creating additional acoustic attenuation and crosstalk. In addition, a new tapered design for the input terminal of the delay line was also investigate to improve its acoustic directivity by reducing the acoustic acceptance angle. These two improvements are expected to provide an effective solution to eliminate current limitations on the achievable acoustic delay time and out-of-plane imaging resolution of micromachined silicon acoustic delay line arrays.
NASA Astrophysics Data System (ADS)
Hendricks, Lorin; Spencer Guthrie, W.; Mazzeo, Brian
2018-04-01
An automated acoustic impact-echo testing device with seven channels has been developed for faster surveying of bridge decks. Due to potential variations in bridge deck overlay thickness, varying conditions between testing passes, and occasional imprecise equipment calibrations, a method that can account for variations in deck properties and testing conditions was necessary to correctly interpret the acoustic data. A new methodology involving statistical analyses was therefore developed. After acoustic impact-echo data are collected and analyzed, the results are normalized by the median for each channel, a Gaussian distribution is fit to the histogram of the data, and the Kullback-Leibler divergence test or Otsu's method is then used to determine the optimum threshold for differentiating between intact and delaminated concrete. The new methodology was successfully applied to individual channels of previously unusable acoustic impact-echo data obtained from a three-lane interstate bridge deck surfaced with a polymer overlay, and the resulting delamination map compared very favorably with the results of a manual deck sounding survey.
NASA Technical Reports Server (NTRS)
Elliott, David M.
2012-01-01
A counter-rotating open rotor scale model was tested in the NASA Glenn Research Center 9- by 15-Foot Low-Speed Wind Tunnel (LSWT). This model used a historical baseline blade set with which modern blade designs will be compared against on an acoustic and aerodynamic performance basis. Different blade pitch angles simulating approach and takeoff conditions were tested, along with angle-of-attack configurations. A configuration was also tested in order to determine the acoustic effects of a pylon. The shaft speed was varied for each configuration in order to get data over a range of operability. The freestream Mach number was also varied for some configurations. Sideline acoustic data were taken for each of these test configurations.
NASA Technical Reports Server (NTRS)
Hamstad, M. A.
1978-01-01
Two hundred and fifty Aramid fiber/epoxy pressure vessels were filament-wound over spherical aluminum mandrels under controlled conditions typical for advanced filament-winding. A random set of 30 vessels was proof-tested to 74% of the expected burst pressure; acoustic emission data were obtained during the proof test. A specially designed fixture was used to permit in situ calibration of the acoustic emission system for each vessel by the fracture of a 4-mm length of pencil lead (0.3 mm in diameter) which was in contact with the vessel. Acoustic emission signatures obtained during testing showed larger than expected variabilities in the mechanical damage done during the proof tests. To date, identification of the cause of these variabilities has not been determined.
Kim, Min-Beom; Ban, Jae Ho
2012-12-01
To evaluate the test-retest reliability and convenience of simultaneous binaural acoustic-evoked ocular vestibular evoked myogenic potentials (oVEMP). Thirteen healthy subjects with no history of ear diseases participated in this study. All subjects underwent oVEMP test with both separated monaural acoustic stimulation and simultaneous binaural acoustic stimulation. For evaluating test-retest reliability, three repetitive sessions were performed in each ear for calculating the intraclass correlation coefficient (ICC) for both monaural and binaural tests. We analyzed data from the biphasic n1-p1 complex, such as latency of peak, inter-peak amplitude, and asymmetric ratio of amplitude in both ears. Finally, we checked the total time required to complete each test for evaluating test convenience. No significant difference was observed in amplitude and asymmetric ratio in comparison between monaural and binaural oVEMP. However, latency was slightly delayed in binaural oVEMP. In test-retest reliability analysis, binaural oVEMP showed excellent ICC values ranging from 0.68 to 0.98 in latency, asymmetric ratio, and inter-peak amplitude. Additionally, the test time was shorter in binaural than monaural oVEMP. oVEMP elicited from binaural acoustic stimulation yields similar satisfactory results as monaural stimulation. Further, excellent test-retest reliability and shorter test time were achieved in binaural than in monaural oVEMP.
Assessment of Microphone Phased Array for Measuring Launch Vehicle Lift-off Acoustics
NASA Technical Reports Server (NTRS)
Garcia, Roberto
2012-01-01
The specific purpose of the present work was to demonstrate the suitability of a microphone phased array for launch acoustics applications via participation in selected firings of the Ares I Scale Model Acoustics Test. The Ares I Scale Model Acoustics Test is a part of the discontinued Constellation Program Ares I Project, but the basic understanding gained from this test is expected to help development of the Space Launch System vehicles. Correct identification of sources not only improves the predictive ability, but provides guidance for a quieter design of the launch pad and optimization of the water suppression system. This document contains the results of the NASA Engineering and Safety Center assessment.
Maneuver Acoustic Flight Test of the Bell 430 Helicopter Data Report
NASA Technical Reports Server (NTRS)
Watts, Michael E.; Greenwood, Eric; Smith, Charles D.; Snider, Royce; Conner, David A.
2014-01-01
A cooperative ight test by NASA, Bell Helicopter and the U.S. Army to characterize the steady state acoustics and measure the maneuver noise of a Bell Helicopter 430 aircraft was accomplished. The test occurred during June/July 2011 at Eglin Air Force Base, Florida. This test gathered a total of 410 test points over 10 test days and compiled an extensive database of dynamic maneuver measurements. Three microphone arrays with up to 31 microphon. es in each were used to acquire acoustic data. Aircraft data included Differential Global Positioning System, aircraft state and rotor state information. This paper provides an overview of the test and documents the data acquired.
Acoustic Measurements of a Large Civil Transport Main Landing Gear Model
NASA Technical Reports Server (NTRS)
Ravetta, Patricio A.; Khorrami, Mehdi R.; Burdisso, Ricardo A.; Wisda, David M.
2016-01-01
Microphone phased array acoustic measurements of a 26 percent-scale, Boeing 777-200 main landing gear model with and without noise reduction fairings installed were obtained in the anechoic configuration of the Virginia Tech Stability Tunnel. Data were acquired at Mach numbers of 0.12, 0.15, and 0.17 with the latter speed used as the nominal test condition. The fully and partially dressed gear with the truck angle set at 13 degrees toe-up landing configuration were the two most extensively tested configurations, serving as the baselines for comparison purposes. Acoustic measurements were also acquired for the same two baseline configurations with the truck angle set at 0 degrees. In addition, a previously tested noise reducing, toboggan-shaped fairing was re-evaluated extensively to address some of the lingering questions regarding the extent of acoustic benefit achievable with this device. The integrated spectra generated from the acoustic source maps reconfirm, in general terms, the previously reported noise reduction performance of the toboggan fairing as installed on an isolated gear. With the recent improvements to the Virginia Tech tunnel acoustic quality and microphone array capabilities, the present measurements provide an additional, higher quality database to the acoustic information available for this gear model.
Niebudek-Bogusz, Ewa; Sliwińska-Kowalska, Mariola
2006-01-01
An assessment of the vocal system, as a part of the medical certification of occupational diseases, should be objective and reliable. Therefore, interest in the method of acoustic voice analysis enabling objective assessment of voice parameters is still growing. The aim of the present study was to evaluate the applicability of acoustic analysis with vocal loading test to the diagnostics of occupational voice disorders. The results of acoustic voice analysis were compared using IRIS software for phoniatrics, before and after a 30-min vocal loading test in 35 female teachers with diagnosed occupational voice disorders (group I) and in 31 female teachers with functional dysphonia (group II). In group I, vocal effort produced significant abnormalities in voice acoustic parameters, compared to group II. These included significantly increased mean fundamental frequency (Fo) value (by 11 Hz) and worsened jitter, shimmer and NHR parameters. Also, the percentage of subjects showing abnormalities in voice acoustic analysis was higher in this group. Conducting voice acoustic analysis before and after the vocal loading test makes it possible to objectively confirm irreversible voice impairments in persons with work-related pathologies of the larynx, which is essential for medical certification of occupational voice diseases.
NASA Technical Reports Server (NTRS)
Harrington, Douglas (Technical Monitor); Schweiger, P.; Stern, A.; Gamble, E.; Barber, T.; Chiappetta, L.; LaBarre, R.; Salikuddin, M.; Shin, H.; Majjigi, R.
2005-01-01
Hot flow aero-acoustic tests were conducted with Pratt & Whitney's High-Speed Civil Transport (HSCT) Mixer-Ejector Exhaust Nozzles by General Electric Aircraft Engines (GEAE) in the GEAE Anechoic Freejet Noise Facility (Cell 41) located in Evendale, Ohio. The tests evaluated the impact of various geometric and design parameters on the noise generated by a two-dimensional (2-D) shrouded, 8-lobed, mixer-ejector exhaust nozzle. The shrouded mixer-ejector provides noise suppression by mixing relatively low energy ambient air with the hot, high-speed primary exhaust jet. Additional attenuation was obtained by lining the shroud internal walls with acoustic panels, which absorb acoustic energy generated during the mixing process. Two mixer designs were investigated, the high mixing "vortical" and aligned flow "axial", along with variations in the shroud internal mixing area ratios and shroud length. The shrouds were tested as hardwall or lined with acoustic panels packed with a bulk absorber. A total of 21 model configurations at 1:11.47 scale were tested. The models were tested over a range of primary nozzle pressure ratios and primary exhaust temperatures representative of typical HSCT aero thermodynamic cycles. Static as well as flight simulated data were acquired during testing. A round convergent unshrouded nozzle was tested to provide an acoustic baseline for comparison to the test configurations. Comparisons were made to previous test results obtained with this hardware at NASA Glenn's 9- by 15-foot low-speed wind tunnel (LSWT). Laser velocimetry was used to investigate external as well as ejector internal velocity profiles for comparison to computational predictions. Ejector interior wall static pressure data were also obtained. A significant reduction in exhaust system noise was demonstrated with the 2-D shrouded nozzle designs.
The Dornier 328 Acoustic Test Cell (ATC) for interior noise tests and selected test results
NASA Technical Reports Server (NTRS)
Hackstein, H. Josef; Borchers, Ingo U.; Renger, Klaus; Vogt, Konrad
1992-01-01
To perform acoustic studies for achieving low noise levels for the Dornier 328, an acoustic test cell (ATC) of the Dornier 328 has been built. The ATC consists of a fuselage section, a realistic fuselage suspension system, and three exterior noise simulation rings. A complex digital 60 channel computer/amplifier noise generation system as well as multichannel digital data acquisition and evaluation system have been used. The noise control tests started with vibration measurements for supporting acoustic data interpretation. In addition, experiments have been carried out on dynamic vibration absorbers, the most important passive noise reduction measure for low frequency propeller noise. The design and arrangement of the current ATC are presented. Furthermore, exterior noise simulation as well as data acquisition are explained. The most promising results show noise reduction due to synchrophasing and dynamic vibration absorbers.
The experimental determination of atmospheric absorption from aircraft acoustic flight tests
NASA Technical Reports Server (NTRS)
Miller, R. L.; Oncley, P. B.
1971-01-01
A method for determining atmospheric absorption coefficients from acoustic flight test data is presented. Measurements from five series of acoustic flight tests were included in the study. The number of individual flights totaled 24: six Boeing 707 flights performed in May 1969 in connection with the turbofan nacelle modification program, eight flights from Boeing tests conducted during the same period, and 10 flights of the Boeing 747 airplane. The effects of errors in acoustic, meteorological, and aircraft performance and position measurements are discussed. Tabular data of the estimated sample variance of the data for each test are given for source directivity angles from 75 deg to 120 deg and each 1/3-octave frequency band. Graphic comparisons are made of absorption coefficients derived from ARP 866, using atmospheric profile data, with absorption coefficients determined by the experimental method described in the report.
Removing Background Noise with Phased Array Signal Processing
NASA Technical Reports Server (NTRS)
Podboy, Gary; Stephens, David
2015-01-01
Preliminary results are presented from a test conducted to determine how well microphone phased array processing software could pull an acoustic signal out of background noise. The array consisted of 24 microphones in an aerodynamic fairing designed to be mounted in-flow. The processing was conducted using Functional Beam forming software developed by Optinav combined with cross spectral matrix subtraction. The test was conducted in the free-jet of the Nozzle Acoustic Test Rig at NASA GRC. The background noise was produced by the interaction of the free-jet flow with the solid surfaces in the flow. The acoustic signals were produced by acoustic drivers. The results show that the phased array processing was able to pull the acoustic signal out of the background noise provided the signal was no more than 20 dB below the background noise level measured using a conventional single microphone equipped with an aerodynamic forebody.
Improvements To Progressive Wave Tube Performance Through Closed-Loop Control
NASA Technical Reports Server (NTRS)
Rizzi, Stephen A.
2000-01-01
This report documents recent improvements to the acoustic and thermal control systems of the Thermal Acoustic Fatigue Apparatus (TAFA), a progressive wave tube test facility at the NASA Langley Research Center, Hampton, Virginia. A brief summary of past acoustic performance is given first to serve as a basis for comparison with the new performance data using a multiple-input, closed-loop, narrow-band controller. Performance data in the form of test section acoustic power spectral densities and coherence are presented in three of six facility configurations for a variety of input spectra. Tested spectra include uniform, two cases of pink noise, three cases of narrow-band random, a simulated launch payload bay environment for an expendable launch vehicle, and a simulated external acoustic load for the aft section of a reusable launch vehicle. In addition, a new closed-loop temperature controller and thermocouple data acquisition system are described.
Acoustic test and analyses of three advanced turboprop models
NASA Technical Reports Server (NTRS)
Brooks, B. M.; Metzger, F. B.
1980-01-01
Results of acoustic tests of three 62.2 cm (24.5 inch) diameter models of the prop-fan (a small diameter, highly loaded. Multi-bladed variable pitch advanced turboprop) are presented. Results show that there is little difference in the noise produced by unswept and slightly swept designs. However, the model designed for noise reduction produces substantially less noise at test conditions simulating 0.8 Mach number cruise speed or at conditions simulating takeoff and landing. In the near field at cruise conditions the acoustically designed. In the far field at takeoff and landing conditions the acoustically designed model is 5 db quieter than unswept or slightly swept designs. Correlation between noise measurement and theoretical predictions as well as comparisons between measured and predicted acoustic pressure pulses generated by the prop-fan blades are discussed. The general characteristics of the pulses are predicted. Shadowgraph measurements were obtained which showed the location of bow and trailing waves.
Mechanical systems readiness assessment and performance monitoring study
NASA Technical Reports Server (NTRS)
1972-01-01
The problem of mechanical devices which lack the real-time readiness assessment and performance monitoring capability required for future space missions is studied. The results of a test program to establish the feasibility of implementing structure borne acoustics, a nondestructive test technique, are described. The program included the monitoring of operational acoustic signatures of five separate mechanical components, each possessing distinct sound characteristics. Acoustic signatures were established for normal operation of each component. Critical failure modes were then inserted into the test components, and faulted acoustic signatures obtained. Predominant features of the sound signature were related back to operational events occurring within the components both for normal and failure mode operations. All of these steps can be automated. The structure borne acoustics technique lends itself to reducing checkout time, simplifying maintenance procedures, and reducing manual involvement in the checkout, operation, maintenance, and fault diagnosis of mechanical systems.
NASA Astrophysics Data System (ADS)
Cho, Y.; Kumar, A.; Xu, S.; Zou, J.
2016-10-01
Recent studies have shown that micromachined silicon acoustic delay lines can provide a promising solution to achieve real-time photoacoustic tomography without the need for complex transducer arrays and data acquisition electronics. To achieve deeper imaging depth and wider field of view, a longer delay time and therefore delay length are required. However, as the length of the delay line increases, it becomes more vulnerable to structural instability due to reduced mechanical stiffness. In this paper, we report the design, fabrication, and testing of a new silicon acoustic delay line enhanced with 3D printed polymer micro linker structures. First, mechanical deformation of the silicon acoustic delay line (with and without linker structures) under gravity was simulated by using finite element method. Second, the acoustic crosstalk and acoustic attenuation caused by the polymer micro linker structures were evaluated with both numerical simulation and ultrasound transmission testing. The result shows that the use of the polymer micro linker structures significantly improves the structural stability of the silicon acoustic delay lines without creating additional acoustic attenuation and crosstalk. In addition, the improvement of the acoustic acceptance angle of the silicon acoustic delay lines was also investigated to better suppress the reception of unwanted ultrasound signals outside of the imaging plane. These two improvements are expected to provide an effective solution to eliminate current limitations on the achievable acoustic delay time and out-of-plane imaging resolution of micromachined silicon acoustic delay line arrays.
Acoustic detection of railcar roller bearing defects. Phase I, Laboratory test.
DOT National Transportation Integrated Search
2003-06-01
A series of tests were performed at the Bearing Test Facility at the Transportation Technology Center, Inc. (TTCI) in Pueblo, Colorado, to gather acoustic and acceleration emissions for a number of roller bearing defect types designated by the rail i...
Improved Calibration Of Acoustic Plethysmographic Sensors
NASA Technical Reports Server (NTRS)
Zuckerwar, Allan J.; Davis, David C.
1993-01-01
Improved method of calibration of acoustic plethysmographic sensors involves acoustic-impedance test conditions like those encountered in use. Clamped aluminum tube holds source of sound (hydrophone) inside balloon. Test and reference sensors attached to outside of balloon. Sensors used to measure blood flow, blood pressure, heart rate, breathing sounds, and other vital signs from surfaces of human bodies. Attached to torsos or limbs by straps or adhesives.
... and other professionals. One type of screening, called acoustic immitance testing or tympanometry , measures the response to ... any other child. 15 Appendix A: Glossar y ACOUSTIC IMMITANCE TESTING – Also known as tympanometry; a type ...
Effect of acoustic resonance phenomenon on fluid flow with light dust
NASA Astrophysics Data System (ADS)
Hamakawa, Hiromitsu; Arshad, Azim B. M.; Ohta, Mitsuo
2011-10-01
In the present paper, the attention is focused on the characteristics of lightweight materials collection in the duct using acoustic resonance phenomena. The acoustic resonance was excited by using a controlled speaker at the middle of a test duct. We measured the sound pressure level, frequency response characteristics, acoustic damping ratio, mode shape, and lightweight materials response to acoustic resonance excited by a speaker. As a result, the acoustic damping ratio decreased as the mode number of acoustic resonance increased. The tissue strips and the lightweight materials were collected at the node of acoustic pressure when the acoustic resonance was excited. It was made clear that it is possible to control lightweight materials using acoustic resonance excited by a speaker.
Closed-Loop Acoustic Control of Reverberant Room for Satellite Environmental Testing
NASA Astrophysics Data System (ADS)
Janssens, Karl; Bianciardi, Fabio; Sabbatini, Danilo; Debille, Jan; Carrella, Alex
2012-07-01
The full satellite acoustic test is an important milestone in a satellite launch survivability verification campaign. This test is required to verify the satellite’s mechanical design against the high-level acoustic loads induced by the launch vehicle during the atmospheric flight. During the test, the satellite is subjected to a broadband diffuse acoustic field, reproducing the pressure levels observed during launch. The excitation is in most cases provided by a combination of horns for the low frequencies and noise generators for the higher frequencies. Acoustic control tests are commonly performed in reverberant rooms, controlling the sound pressure levels in third octave bands over the specified target spectrum. This paper discusses an automatic feedback control system for acoustic control of large reverberation rooms for satellite environmental testing. The acoustic control system consists of parallel third octave PI (Proportional Integral) feedback controllers that take the reverberation characteristics of the room into consideration. The drive output of the control system is shaped at every control step based on the comparison of the average third octave noise spectrum, measured from a number of microphones in the test room, with the target spectrum. Cross-over filters split the output drive into band- limited signals to feed each of the horns. The control system is realized in several steps. In the first phase, a dynamic process model is developed, including the non-linear characteristics of the horns and the reverberant properties of the room. The model is identified from dynamic experiments using system identification techniques. In the next phase, an adequate control strategy is designed which is capable of reaching the target spectrum in the required time period without overshoots. This control strategy is obtained from model-in-the-loop (MIL) simulations, evaluating the performance of various potential strategies. Finally, the proposed strategy is implemented in real-time and its control performance tested and validated.
Study and development of acoustic treatment for jet engine tailpipes
NASA Technical Reports Server (NTRS)
Nelson, M. D.; Linscheid, L. L.; Dinwiddie, B. A., III; Hall, O. J., Jr.
1971-01-01
A study and development program was accomplished to attenuate turbine noise generated in the JT3D turbofan engine. Analytical studies were used to design an acoustic liner for the tailpipe. Engine ground tests defined the tailpipe environmental factors and laboratory tests were used to support the analytical studies. Furnace-brazed, stainless steel, perforated sheet acoustic liners were designed, fabricated, installed, and ground tested in the tailpipe of a JT3D engine. Test results showed the turbine tones were suppressed below the level of the jet exhaust for most far field polar angles.
Tuned Chamber Core Panel Acoustic Test Results
NASA Technical Reports Server (NTRS)
Schiller, Noah H.; Allen, Albert R.
2016-01-01
This report documents acoustic testing of tuned chamber core panels, which can be used to supplement the low-frequency performance of conventional acoustic treatment. The tuned chamber core concept incorporates low-frequency noise control directly within the primary structure and is applicable to sandwich constructions with a directional core, including corrugated-, truss-, and fluted-core designs. These types of sandwich structures have long, hollow channels (or chambers) in the core. By adding small holes through one of the facesheets, the hollow chambers can be utilized as an array of low-frequency acoustic resonators. These resonators can then be used to attenuate low-frequency noise (below 400 Hz) inside a vehicle compartment without increasing the weight or size of the structure. The results of this test program demonstrate that the tuned chamber core concept is effective when used in isolation or combined with acoustic foam treatments. Specifically, an array of acoustic resonators integrated within the core of the panels was shown to improve both the low-frequency absorption and transmission loss of the structure in targeted one-third octave bands.
Acoustic-Modal Testing of the Ares I Launch Abort System Attitude Control Motor Valve
NASA Technical Reports Server (NTRS)
Davis, R. Benjamin; Fischbach, Sean R.
2010-01-01
The Attitude Control Motor (ACM) is being developed for use in the Launch Abort System (LAS) of NASA's Ares I launch vehicle. The ACM consists of a small solid rocket motor and eight actuated pintle valves that directionally allocate.thrust_- 1t.has-been- predicted-that significant unsteady. pressure.fluctuations.will.exist. inside the-valves during operation. The dominant frequencies of these oscillations correspond to the lowest several acoustic natural frequencies of the individual valves. An acoustic finite element model of the fluid volume inside the valve has been critical to the prediction of these frequencies and their associated mode shapes. This work describes an effort to experimentally validate the acoustic finite model of the valve with an acoustic modal test. The modal test involved instrumenting a flight-like valve with six microphones and then exciting the enclosed air with a loudspeaker. The loudspeaker was configured to deliver broadband noise at relatively high sound pressure levels. The aquired microphone signals were post-processed and compared to results generated from the acoustic finite element model. Initial comparisons between the test data and the model results revealed that additional model refinement was necessary. Specifically, the model was updated to implement a complex impedance boundary condition at the entrance to the valve supply tube. This boundary condition models the frequency-dependent impedance that an acoustic wave will encounter as it reaches the end of the supply tube. Upon invoking this boundary condition, significantly improved agreement between the test data and the model was realized.
Using acoustic analysis to presort warp-prone ponderosa pine 2 by 4s before kiln-drying
Xiping Wang; William T. Simpson
2006-01-01
This study evaluated the potential of acoustic analysis as presorting criteria to identify warp-prone boards before kiln-drying. Dimension lumber, 38 by 89 mm (nominal 2 by 4 in.) and 2.44 m (8 it) long, sawn from open-grown small-diameter ponderosa pine trees, was acoustically tested lengthwise at green condition. Three acoustic properties (acoustic speed, rate of...
Numerical Estimation of Sound Transmission Loss in Launch Vehicle Payload Fairing
NASA Astrophysics Data System (ADS)
Chandana, Pawan Kumar; Tiwari, Shashi Bhushan; Vukkadala, Kishore Nath
2017-08-01
Coupled acoustic-structural analysis of a typical launch vehicle composite payload faring is carried out, and results are validated with experimental data. Depending on the frequency range of interest, prediction of vibro-acoustic behavior of a structure is usually done using the finite element method, boundary element method or through statistical energy analysis. The present study focuses on low frequency dynamic behavior of a composite payload fairing structure using both coupled and uncoupled vibro-acoustic finite element models up to 710 Hz. A vibro-acoustic model, characterizing the interaction between the fairing structure, air cavity, and satellite, is developed. The external sound pressure levels specified for the payload fairing's acoustic test are considered as external loads for the analysis. Analysis methodology is validated by comparing the interior noise levels with those obtained from full scale Acoustic tests conducted in a reverberation chamber. The present approach has application in the design and optimization of acoustic control mechanisms at lower frequencies.
The acoustics of a small-scale helicopter rotor in hover
NASA Technical Reports Server (NTRS)
Kitaplioglu, Cahit
1989-01-01
A 2.1 m diameter, 1/6-scale model helicopter main rotor was tested in hover in the test section of the NASA Ames 40- by 80-foot wind tunnel. Performance and noise data on a small-scale rotor at various thrust coefficients and tip Mach numbers were obtained for comparison with existing data on similar full-scale helicopter rotors. These data form part of a data base to permit the estimation of scaling effects on various rotor noise mechanisms. Another objective was to contribute to a data base that will permit the estimation of facility effects on acoustic testing. Acoustic 1/3-octave-band spectra are presented, together with variations of overall acoustic levels with rotor performance, microphone distance, and directivity angle.
NASA Technical Reports Server (NTRS)
Brooks, B. M.; Mackall, K. G.
1984-01-01
The recent test program, in which the SR-2 and SR-3 Prop-Fan models were acoustically tested in flight, is described and the results of analysis of noise data acquired are discussed. The trends of noise levels with flight operating parameters are shown. The acoustic benefits of the SR-3 design with swept blades relative to the SR-2 design with straight blades are shown. Noise data measured on the surface of a small-diameter microphone boom mounted above the fuselage and on the surface of the airplane fuselage are compared to show the effects of acoustic propagation through a boundary layer. Noise level estimates made using a theoretically based prediction methodology are compared with measurements.
An evaluation of proposed acoustic treatments for the NASA LaRC 4 x 7 meter wind tunnel
NASA Technical Reports Server (NTRS)
Abrahamson, A. L.
1985-01-01
The NASA LaRC 4 x 7 Meter Wind Tunnel is an existing facility specially designed for powered low speed (V/STOL) testing of large scale fixed wing and rotorcraft models. The enhancement of the facility for scale model acoustic testing is examined. The results are critically reviewed and comparisons are drawn with a similar wind tunnel (the DNW Facility in the Netherlands). Discrepancies observed in the comparison stimulated a theoretical investigation using the acoustic finite element ADAM System, of the ways in which noise propagating around the tunnel circuit radiates into the open test section. The reasons for the discrepancies noted above are clarified and assists in the selection of acoustic treatment options for the facility.
NASA Technical Reports Server (NTRS)
Cooper, Beth A.
2001-01-01
The NASA John H. Glenn Research Center at Lewis Field has designed and constructed an Acoustical Testing Laboratory to support the low-noise design of microgravity space flight hardware. This new laboratory will provide acoustic emissions testing and noise control services for a variety of customers, particularly for microgravity space flight hardware that must meet International Space Station limits on noise emissions. These limits have been imposed by the space station to support hearing conservation, speech communication, and safety goals as well as to prevent noise-induced vibrations that could impact microgravity research data. The Acoustical Testing Laboratory consists of a 23 by 27 by 20 ft (height) convertible hemi/anechoic chamber and separate sound-attenuating test support enclosure. Absorptive 34-in. fiberglass wedges in the test chamber provide an anechoic environment down to 100 Hz. A spring-isolated floor system affords vibration isolation above 3 Hz. These criteria, along with very low design background levels, will enable the acquisition of accurate and repeatable acoustical measurements on test articles, up to a full space station rack in size, that produce very little noise. Removable floor wedges will allow the test chamber to operate in either a hemi/anechoic or anechoic configuration, depending on the size of the test article and the specific test being conducted. The test support enclosure functions as a control room during normal operations but, alternatively, may be used as a noise-control enclosure for test articles that require the operation of noise-generating test support equipment.
Acoustic emission strand burning technique for motor burning rate prediction
NASA Technical Reports Server (NTRS)
Christensen, W. N.
1978-01-01
An acoustic emission (AE) method is being used to measure the burning rate of solid propellant strands. This method has a precision of 0.5% and excellent burning rate correlation with both subscale and large rocket motors. The AE procedure burns the sample under water and measures the burning rate from the acoustic output. The acoustic signal provides a continuous readout during testing, which allows complete data analysis rather than the start-stop clockwires used by the conventional method. The AE method helps eliminate such problems as inhibiting the sample, pressure increase and temperature rise, during testing.
The effect of the wind tunnel wall boundary layer on the acoustic testing of propellers
NASA Technical Reports Server (NTRS)
Eversman, Walter
1989-01-01
An approximation based on the representation of the boundary layer by lamina of uniform flow with suitable interlayer boundary conditions is shown to be accurate, efficient, and compatible with finite element formulations. The approximation has been implemented using existing codes to produce a model for assessing the suitability of the acoustic environment in a wind tunnel for the acoustic testing of propellers. It is found that, with suitable acoustic treatment and with measurements made near the propeller and well removed from the walls, the free field directivity and level can be reproduced with good fidelity.
David G. Briggs; Gonzalo Thienel; Eric C. Turnblom; Eini Lowell; Dennis Dykstra; Robert J. Ross; Xiping Wang; Peter Carter
2008-01-01
Acoustic velocity was measured with a time-of-flight method on approximately 50 trees in each of five plots from four test sites of a Douglas-fir (Pseudostuga menziesii (Mirb.) Franco) thinning trial. The test sites reflect two age classes, 33 to 35 and 48 to 50 years, with 50-year site index ranging from 35 to 50 m. The acoustic velocity...
Acoustic Survey of a 3/8-Scale Automotive Wind Tunnel
NASA Technical Reports Server (NTRS)
Booth, Earl R., Jr.; Romberg, Gary; Hansen, Larry; Lutz, Ron
1996-01-01
An acoustic survey that consists of insertion loss and flow noise measurements was conducted at key locations around the circuit of a 3/8-scale automotive acoustic wind tunnel. Descriptions of the test, the instrumentation, and the wind tunnel facility are included in the current report, along with data obtained in the test in the form of 1/3-octave-band insertion loss and narrowband flow noise spectral data.
NASA Technical Reports Server (NTRS)
Haynes, Jared; Kenny, R. Jeremy
2010-01-01
Recently, members of the Marshall Space Flight Center (MSFC) Fluid Dynamics Branch and Wyle Labs measured far-field acoustic data during a series of three Reusable Solid Rocket Motor (RSRM) horizontal static tests conducted in Promontory, Utah. The test motors included the Technical Evaluation Motor 13 (TEM-13), Flight Verification Motor 2 (FVM-2), and the Flight Simulation Motor 15 (FSM-15). Similar far-field data were collected during horizontal static tests of sub-scale solid rocket motors at MSFC. Far-field acoustical measurements were taken at multiple angles within a circular array centered about the nozzle exit plane, each positioned at a radial distance of 80 nozzle-exit-diameters from the nozzle. This type of measurement configuration is useful for calculating rocket noise characteristics such as those outlined in the NASA SP-8072 "Acoustic Loads Generated by the Propulsion System." Acoustical scaling comparisons are made between the test motors, with particular interest in the Overall Sound Power, Acoustic Efficiency, Non-dimensional Relative Sound Power Spectrum, and Directivity. Since most empirical data in the NASA SP-8072 methodology is derived from small rockets, this investigation provides an opportunity to check the data collapse between a sub-scale and full-scale rocket motor.
50 CFR 218.170 - Specified activity and specified geographical area and effective dates.
Code of Federal Regulations, 2011 CFR
2011-10-01
... site QUTR site Test Vehicle Propulsion Thermal propulsion systemsElectric/Chemical propulsion systems..., classification and localization 05 4520 1510 Non-Navy testing 5 5 5 Acoustic & non-acoustic sensors (magnetic...
Free-jet acoustic investigation of high-radius-ratio coannular plug nozzles
NASA Technical Reports Server (NTRS)
Knott, P. R.; Janardan, B. A.; Majjigi, R. K.; Bhutiani, P. K.; Vogt, P. G.
1984-01-01
The experimental and analytical results of a scale model simulated flight acoustic exploratory investigation of high radius ratio coannular plug nozzles with inverted velocity and temperature profiles are summarized. Six coannular plug nozzle configurations and a baseline convergent conical nozzle were tested for simulated flight acoustic evaluation. The nozzles were tested over a range of test conditions that are typical of a Variable Cycle Engine for application to advanced high speed aircraft. It was found that in simulate flight, the high radius ratio coannular plug nozzles maintain their jet noise and shock noise reduction features previously observed in static testing. The presence of nozzle bypass struts will not significantly affect the acousticn noise reduction features of a General Electric type nozzle design. A unique coannular plug nozzle flight acoustic spectral prediction method was identified and found to predict the measured results quite well. Special laser velocimeter and acoustic measurements were performed which have given new insights into the jet and shock noise reduction mechanisms of coannular plug nozzles with regard to identifying further benificial research efforts.
A Small Acoustic Goniometer for General Purpose Research
Pook, Michael L.; Loo, Sin Ming
2016-01-01
Understanding acoustic events and monitoring their occurrence is a useful aspect of many research projects. In particular, acoustic goniometry allows researchers to determine the source of an event based solely on the sound it produces. The vast majority of acoustic goniometry research projects used custom hardware targeted to the specific application under test. Unfortunately, due to the wide range of sensing applications, a flexible general purpose hardware/firmware system does not exist for this purpose. This article focuses on the development of such a system which encourages the continued exploration of general purpose hardware/firmware and lowers barriers to research in projects requiring the use of acoustic goniometry. Simulations have been employed to verify system feasibility, and a complete hardware implementation of the acoustic goniometer has been designed and field tested. The results are reported, and suggested areas for improvement and further exploration are discussed. PMID:27136563
Vibro-Acoustics Modal Testing at NASA Langley Research Center
NASA Technical Reports Server (NTRS)
Pappa, Richard S.; Pritchard, Jocelyn I.; Buehrle, Ralph D.
1999-01-01
This paper summarizes on-going modal testing activities at the NASA Langley Research Center for two aircraft fuselage structures: a generic "aluminum testbed cylinder" (ATC) and a Beechcraft Starship fuselage (BSF). Subsequent acoustic tests will measure the interior noise field created by exterior mechanical and acoustic sources. These test results will provide validation databases for interior noise prediction codes on realistic aircraft fuselage structures. The ATC is a 12-ft-long, all-aluminum, scale model assembly. The BSF is a 40-ft-long, all-composite, complete aircraft fuselage. To date, two of seven test configurations of the ATC and all three test configurations of the BSF have been completed. The paper briefly describes the various test configurations, testing procedure, and typical results for frequencies up to 250 Hz.
Acoustic properties and durability of liner materials at non-standard atmospheric conditions
NASA Technical Reports Server (NTRS)
Ahuja, K. K.; Gaeta, R. J., Jr.; Hsu, J. S.
1994-01-01
This report documents the results of an experimental study on how acoustic properties of certain absorbing liner materials are affected by nonstandard atmospheric conditions. This study was motivated by the need to assess risks associated with incorporating acoustic testing capability in wind tunnels with semicryogenic high Reynolds number aerodynamic and/or low pressure capabilities. The study consisted of three phases: 1) measurement of acoustic properties of selected liner materials at subatmospheric pressure conditions, 2) periodic cold soak and high pressure exposure of liner materials for 250 cycles, and 3) determination of the effect of periodic cold soak on the acoustic properties of the liner materials at subatmospheric conditions and the effect on mechanical resiliency. The selected liner materials were Pyrell foam, Fiberglass, and Kevlar. A vacuum facility was used to create the subatmospheric environment in which an impedance tube was placed to measure acoustic properties of the test materials. An automated cryogenic cooling system was used to simulate periodic cold soak and high pressure exposure. It was found that lower ambient pressure reduced the absorption effectiveness of the liner materials to varying degrees. Also no significant change in the acoustic properties occurred after the periodic cold soak. Furthermore, mechanical resiliency tests indicated no noticeable change.
Controllable Solid Propulsion Combustion and Acoustic Knowledge Base Improvements
NASA Technical Reports Server (NTRS)
McCauley, Rachel; Fischbach, Sean; Fredrick, Robert
2012-01-01
Controllable solid propulsion systems have distinctive combustion and acoustic environments that require enhanced testing and analysis techniques to progress this new technology from development to production. In a hot gas valve actuating system, the movement of the pintle through the hot gas exhibits complex acoustic disturbances and flow characteristics that can amplify induced pressure loads that can damage or detonate the rocket motor. The geometry of a controllable solid propulsion gas chamber can set up unique unsteady flow which can feed acoustic oscillations patterns that require characterization. Research in this area aids in the understanding of how best to design, test, and analyze future controllable solid rocket motors using the lessons learned from past government programs as well as university research and testing. This survey paper will give the reader a better understanding of the potentially amplifying affects propagated by a controllable solid rocket motor system and the knowledge of the tools current available to address these acoustic disturbances in a preliminary design. Finally the paper will supply lessons learned from past experiences which will allow the reader to come away with understanding of what steps need to be taken when developing a controllable solid rocket propulsion system. The focus of this survey will be on testing and analysis work published by solid rocket programs and from combustion and acoustic books, conference papers, journal articles, and additionally from subject matter experts dealing currently with controllable solid rocket acoustic analysis.
Research Based on the Acoustic Emission of Wind Power Tower Drum Dynamic Monitoring Technology
NASA Astrophysics Data System (ADS)
Zhang, Penglin; Sang, Yuan; Xu, Yaxing; Zhao, Zhiqiang
Wind power tower drum is one of the key components of the wind power equipment. Whether the wind tower drum performs safety directly affects the efficiency, life, and performance of wind power equipment. Wind power tower drum in the process of manufacture, installation, and operation may lead to injury, and the wind load and gravity load and long-term factors such as poor working environment under the action of crack initiation or distortion, which eventually result in the instability or crack of the wind power tower drum and cause huge economic losses. Thus detecting the wind power tower drum crack damage and instability is especially important. In this chapter, acoustic emission is used to monitor the whole process of wind power tower drum material Q345E steel tensile test at first, and processing and analysis tensile failure signal of the material. And then based on the acoustic emission testing technology to the dynamic monitoring of wind power tower drum, the overall detection and evaluation of the existence of active defects in the whole structure, and the acoustic emission signals collected for processing and analysis, we could preliminarily master the wind tower drum mechanism of acoustic emission source. The acoustic emission is a kind of online, efficient, and economic method, which has very broad prospects for work. The editorial committee of nondestructive testing qualification and certification of personnel teaching material of science and technology industry of national defense, "Acoustic emission testing" (China Machine Press, 2005.1).
Recent Improvements to the Acoustical Testing Laboratory at the NASA Glenn Research Center
NASA Technical Reports Server (NTRS)
Podboy, Devin M.; Mirecki, Julius H.; Walker, Bruce E.; Sutliff, Daniel L.
2014-01-01
The Acoustical Testing Laboratory (ATL) consists of a 27- by 23- by 20-ft (height) convertible hemi/anechoic chamber and separate sound-attenuating test support enclosure. Absorptive fiberglass wedges in the test chamber provide an anechoic environment down to 100 Hz. A spring-isolated floor system affords vibration isolation above 3 Hz. These specifications, along with very low design background levels, enable the acquisition of accurate and repeatable acoustical measurements on test articles that produce very low sound pressures. Removable floor wedges allow the test chamber to operate in either a hemi-anechoic or anechoic configuration, depending on the size of the test article and the specific test being conducted. The test support enclosure functions as a control room during normal operations. Recently improvements were accomplished in support of continued usage of the ATL by NASA programs including an analysis of the ultra-sonic characteristics. A 3-D traverse system inside the chamber was utilized for acquiring acoustic data for these tests. The traverse system drives a linear array of 13, 1/4 in.-microphones spaced 3 in. apart (36 in. span). An updated data acquisition system was also incorporated into the facility.
Recent Improvements to the Acoustical Testing Laboratory at the NASA Glenn Research Center
NASA Technical Reports Server (NTRS)
Podboy, Devin M.; Mirecki, Julius H.; Walker, Bruce E.; Sutliff, Daniel L.
2014-01-01
The Acoustical Testing Laboratory (ATL) consists of a 27 by 23 by 20 ft (height) convertible hemi/anechoic chamber and separate sound-attenuating test support enclosure. Absorptive fiberglass wedges in the test chamber provide an anechoic environment down to 100 Hz. A spring-isolated floor system affords vibration isolation above 3 Hz. These specifications, along with very low design background levels, enable the acquisition of accurate and repeatable acoustical measurements on test articles that produce very low sound pressures. Removable floor wedges allow the test chamber to operate in either a hemi-anechoic or anechoic configuration, depending on the size of the test article and the specific test being conducted. The test support enclosure functions as a control room during normal operations. Recently improvements were accomplished in support of continued usage of the ATL by NASA programs including an analysis of the ultra-sonic characteristics. A 3 dimensional traverse system inside the chamber was utilized for acquiring acoustic data for these tests. The traverse system drives a linear array of 13, 1/4"-microphones spaced 3" apart (36" span). An updated data acquisition system was also incorporated into the facility.
Integrated Model for the Acoustics of Sediments
2013-09-30
1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Integrated Model for the Acoustics of Sediments...physics, and (3) the development and testing of sediment acoustic models through a series of at-sea experiments. APPROACH The approach may be...assess its impact on acoustic propagation and reverberation models . Practically, all underwater sediments are porous and water-permeable, therefore
NASA Technical Reports Server (NTRS)
Kozlowski, H.; Packman, A. B.
1978-01-01
Acoustic data from tests of the 0.75 area ratio coannular nozzle with ejector and the 1.2 area ratio coannular are presented in tables. Aerodynamic data acquired for the four test configurations are included.
14 CFR Appendix F to Part 23 - Test Procedure
Code of Federal Regulations, 2012 CFR
2012-01-01
... flame propagation characteristics of thermal/acoustic insulation when exposed to both a radiant heat... test. Radiant heat source means an electric or air propane panel. Thermal/acoustic insulation means a... insulation and in small parts, materials must be tested either as a section cut from a fabricated part as...
Voyager: Vibration Acoustics and Pyro Shock Testing
2017-07-05
An engineer works on vibration acoustics and pyro shock testing for one of NASA's Voyager spacecraft on November 18, 1976. Several of the spacecraft's science instruments are visible at left. https://photojournal.jpl.nasa.gov/catalog/PIA21733
Acoustic flight testing of advanced design propellers on a JetStar aircraft
NASA Technical Reports Server (NTRS)
Lasagna, P.; Mackall, K.
1981-01-01
Advanced turboprop-powered aircraft have the potential to reduce fuel consumption by 15 to 30 percent as compared with an equivalent technology turbofan-powered aircraft. An important obstacle to the use of advanced design propellers is the cabin noise generated at Mach numbers up to .8 and at altitudes up to 35,000 feet. As part of the NASA Aircraft Energy Efficiency Program, the near-field acoustic characteristics on a series of advanced design propellers are investigated. Currently, Dryden Flight Research Center is flight testing a series of propellers on a JetStar airplane. The propellers used in the flight test were previously tested in wind tunnels at the Lewis Research Center. Data are presented showing the narrow band spectra, acoustic wave form, and acoustic contours on the fuselage surface. Additional flights with the SR-3 propeller and other advanced propellers are planned in the future.
Field-Deployable Acoustic Digital Systems for Noise Measurement
NASA Technical Reports Server (NTRS)
Shams, Qamar A.; Wright, Kenneth D.; Lunsford, Charles B.; Smith, Charlie D.
2000-01-01
Langley Research Center (LaRC) has for years been a leader in field acoustic array measurement technique. Two field-deployable digital measurement systems have been developed to support acoustic research programs at LaRC. For several years, LaRC has used the Digital Acoustic Measurement System (DAMS) for measuring the acoustic noise levels from rotorcraft and tiltrotor aircraft. Recently, a second system called Remote Acquisition and Storage System (RASS) was developed and deployed for the first time in the field along with DAMS system for the Community Noise Flight Test using the NASA LaRC-757 aircraft during April, 2000. The test was performed at Airborne Airport in Wilmington, OH to validate predicted noise reduction benefits from alternative operational procedures. The test matrix was composed of various combinations of altitude, cutback power, and aircraft weight. The DAMS digitizes the acoustic inputs at the microphone site and can be located up to 2000 feet from the van which houses the acquisition, storage and analysis equipment. Digitized data from up to 10 microphones is recorded on a Jaz disk and is analyzed post-test by microcomputer system. The RASS digitizes and stores acoustic inputs at the microphone site that can be located up to three miles from the base station and can compose a 3 mile by 3 mile array of microphones. 16-bit digitized data from the microphones is stored on removable Jaz disk and is transferred through a high speed array to a very large high speed permanent storage device. Up to 30 microphones can be utilized in the array. System control and monitoring is accomplished via Radio Frequency (RF) link. This paper will present a detailed description of both systems, along with acoustic data analysis from both systems.
Digital Controller For Acoustic Levitation
NASA Technical Reports Server (NTRS)
Tarver, D. Kent
1989-01-01
Acoustic driver digitally controls sound fields along three axes. Allows computerized acoustic levitation and manipulation of small objects for such purposes as containerless processing and nuclear-fusion power experiments. Also used for controlling motion of vibration-testing tables in three dimensions.
Vibration and acoustic testing of TOPEX/Poseidon satellite
NASA Technical Reports Server (NTRS)
Boatman, Dave; Scharton, Terry; Hershfeld, Donald; Larkin, Paul
1992-01-01
The satellite was subjected to a 1.5G swept sine vibration test and a 146 dB overall level acoustic test, in accordance with Ariane launch vehicle requirements, at the NASA Goddard Space Flight Center. Extensive pretest analysis of the sine test was conducted to plan the input notching and to justify vibration testing the satellite only in the longitudinal axis. A unique measurement system was utilized to determine the six components of interface force between the shaker and the satellite in the sine vibration test. The satellite was heavily instrumented in both the sine vibration and acoustic test in order to insure that the launch loads were enveloped with appropriate margin and that satellite responses did not exceed the compatibilities of the structure and equipment. The test specification, objectives, instrumentation, and test results are described herein.
A digital control system for high level acoustic noise generation
NASA Technical Reports Server (NTRS)
Lee, John P.; Bosco, Jerry H.
1986-01-01
As part of the modernization of the Acoustic Test Facility at Lockheed Missiles and Space Company, Sunnyvale, a digital acoustic control system was designed and built. The requirements imposed by Lockheed on the control system and the degree to which those requirements were met are discussed. Acceptance test results as well as some of the features of the digital control system not found in traditional manual control systems are discussed.
Noise Levels and Data Analyses for Small Prop-Driven Aircraft
1983-08-01
assumption is that the acoustical emission characteristics of the test aircraft remain constant over the 3000 feet between sites. 7.1 Intensity metric...assumed that acoustical emission characteristics of the aircraft are nominally the same as the aircraft passes over the two measurement locations. As...associated with the emission of AIM. Table 12-2 lists the aircraft tested, number of samples, and the mean and standard deviation of the acoustical angle. The
Rotating rake design for unique measurement of fan-generated spinning acoustic modes
NASA Technical Reports Server (NTRS)
Konno, Kevin E.; Hausmann, Clifford R.
1993-01-01
In light of the current emphasis on noise reduction in subsonic aircraft design, NASA has been actively studying the source of and propagation of noise generated by subsonic fan engines. NASA/LeRC has developed and tested a unique method of accurately measuring these spinning acoustic modes generated by an experimental fan. This mode measuring method is based on the use of a rotating microphone rake. Testing was conducted in the 9 x 15 Low-speed Wind Tunnel. The rotating rake was tested with the Advanced Ducted Propeller (ADP) model. This memorandum discusses the design and performance of the motor/drive system for the fan-synchronized rotating acoustic rake. This novel motor/drive design approach is now being adapted for additional acoustic mode studies in new test rigs as baseline data for the future design of active noise control for subsonic fan engines. Included in this memorandum are the research requirements, motor/drive specifications, test performance results, and a description of the controls and software involved.
In-flight acoustic results from an advanced-design propeller at Mach numbers to 0.8
NASA Technical Reports Server (NTRS)
Mackall, K. G.; Lasagna, P. L.; Walsh, K.; Dittmar, J. H.
1982-01-01
Acoustic data for the advanced-design SR-3 propeller at Mach numbers to 0.8 and helical tip Mach numbers to 1.14 are presented. Several advanced-design propellers, previously tested in wind tunnels at the Lewis Research Center, are being tested in flight at the Dryden Flight Research Facility. The flight-test propellers are mounted on a pylon on the top of the fuselage of a JetStar airplane. Instrumentation provides near-field acoustic data for the SR-3. Acoustic data for the SR-3 propeller at Mach numbers up to 0.8, for propeller helical tip Mach numbers up to 1.14, and comparison of wind tunnel to flight data are included. Flowfield profiles measured in the area adjacent to the propeller are also included.
Study and application of acoustic emission testing in fault diagnosis of low-speed heavy-duty gears.
Gao, Lixin; Zai, Fenlou; Su, Shanbin; Wang, Huaqing; Chen, Peng; Liu, Limei
2011-01-01
Most present studies on the acoustic emission signals of rotating machinery are experiment-oriented, while few of them involve on-spot applications. In this study, a method of redundant second generation wavelet transform based on the principle of interpolated subdivision was developed. With this method, subdivision was not needed during the decomposition. The lengths of approximation signals and detail signals were the same as those of original ones, so the data volume was twice that of original signals; besides, the data redundancy characteristic also guaranteed the excellent analysis effect of the method. The analysis of the acoustic emission data from the faults of on-spot low-speed heavy-duty gears validated the redundant second generation wavelet transform in the processing and denoising of acoustic emission signals. Furthermore, the analysis illustrated that the acoustic emission testing could be used in the fault diagnosis of on-spot low-speed heavy-duty gears and could be a significant supplement to vibration testing diagnosis.
Development of a Heterogeneous sUAS High-Accuracy Positional Flight Data Acquisition System
NASA Technical Reports Server (NTRS)
McSwain, Robert G.; Grosveld, Ferdinand W.
2016-01-01
Recently, a heterogeneous FDAS, consisting of a diverse range of instruments was developed to support acoustic flight research programs at NASA Langley Research Center. In addition to a conventional GPS to measure latitude, longitude and altitude, the FDAS also utilizes a small, light-weight, low-cost DGPS system to obtain centimeter accuracy to measure the distance traveled by sound from a sUAS vehicle to a microphone on the ground. Acoustic flight testing using the FDAS installed on several different sUAS platforms has been conducted in support of the NASA CAS DELIVER and ERA ITD projects (Reference 1). The first FDAS prototype was assembled and implemented in the acoustic/flight measurement system in December 2014 to support DELIVER acoustic flight tests. Evaluation of the system performance and results from the data analyses were used to further test, develop and enhance the FDAS over a six-month period to support acoustic flight research for the ERA.
Study and Application of Acoustic Emission Testing in Fault Diagnosis of Low-Speed Heavy-Duty Gears
Gao, Lixin; Zai, Fenlou; Su, Shanbin; Wang, Huaqing; Chen, Peng; Liu, Limei
2011-01-01
Most present studies on the acoustic emission signals of rotating machinery are experiment-oriented, while few of them involve on-spot applications. In this study, a method of redundant second generation wavelet transform based on the principle of interpolated subdivision was developed. With this method, subdivision was not needed during the decomposition. The lengths of approximation signals and detail signals were the same as those of original ones, so the data volume was twice that of original signals; besides, the data redundancy characteristic also guaranteed the excellent analysis effect of the method. The analysis of the acoustic emission data from the faults of on-spot low-speed heavy-duty gears validated the redundant second generation wavelet transform in the processing and denoising of acoustic emission signals. Furthermore, the analysis illustrated that the acoustic emission testing could be used in the fault diagnosis of on-spot low-speed heavy-duty gears and could be a significant supplement to vibration testing diagnosis. PMID:22346592
Acoustic emission monitoring of CFRP cables for cable-stayed bridges
NASA Astrophysics Data System (ADS)
Rizzo, Piervincenzo; Lanza di Scalea, Francesco
2001-08-01
The advantages of fiber-reinforced polymer (FRP) composite include excellent corrosion resistance, high specific strength and stiffness, as well as outstanding fatigue behavior. The University of California San Diego's I- 5/Gilman Advanced Technology Bridge Project will help demonstrating the use of such materials in civil infrastructures. This paper presents an acoustic emission (AE) study performed during laboratory proof tests of carbon fiber-reinforced polymer stay-cables of possible use in the I-5/Gilman bridge. Three types of cables, both braided and single strand, were tested to failure at lengths ranging from 5500 mm to 5870 mm. AE allowed to monitor damage initiation and progression in the test pieces more accurately than the conventional load versus displacement curve. All of the cables exhibited acoustic activities revealing some degree of damage well before reaching final collapse, which is expected in FRP's. It was also shown that such cables are excellent acoustic waveguides exhibiting very low acoustic attenuation, which makes them an ideal application for an AE-based health monitoring approach.
NASA Technical Reports Server (NTRS)
Salikuddin, M.; Burrin, R. H.; Ahuja, K. K.; Bartel, H. W.
1986-01-01
Two impulsive sound sources, one using multiple acoustic drivers and the other using a spark discharge were developed to study the acoustic reflection characteristics of hard-walled wind tunnels, and the results of laboratory tests are presented. The analysis indicates that though the intensity of the pulse generated by the spark source was higher than that obtained from the acoustic source, the number of averages needed for a particular test may require an unacceptibly long tunnel-run time due to the low spark generation repeat rate because of capacitor charging time. The additional hardware problems associated with the longevity of electrodes and electrode holders in sustaining the impact of repetitive spark discharges, show the multidriver acoustic source to be more suitable for this application.
Acoustic emission frequency discrimination
NASA Technical Reports Server (NTRS)
Sugg, Frank E. (Inventor); Graham, Lloyd J. (Inventor)
1988-01-01
In acoustic emission nondestructive testing, broadband frequency noise is distinguished from narrow banded acoustic emission signals, since the latter are valid events indicative of structural flaws in the material being examined. This is accomplished by separating out those signals which contain frequency components both within and beyond (either above or below) the range of valid acoustic emission events. Application to acoustic emission monitoring during nondestructive bond verification and proof loading of undensified tiles on the Space Shuttle Orbiter is considered.
Acoustic Reflex Testing in Neonatal Hearing Screening and Subsequent Audiological Evaluation.
Jacob-Corteletti, Lilian Cássia Bórnia; Araújo, Eliene Silva; Duarte, Josilene Luciene; Zucki, Fernanda; Alvarenga, Kátia de Freitas
2018-06-18
The aims of the study were to examine the acoustic reflex screening and threshold in healthy neonates and those at risk of hearing loss and to determine the effect of birth weight and gestational age on acoustic stapedial reflex (ASR). We assessed 18 healthy neonates (Group I) and 16 with at least 1 risk factor for hearing loss (Group II); all of them passed the transient evoked otoacoustic emission test that assessed neonatal hearing. The test battery included an acoustic reflex screening with activators of 0.5, 1, 2, and 4 kHz and broadband noise and an acoustic reflex threshold test with all of them, except for the broadband noise activator. In the evaluated neonates, the main risk factors were the gestational age at birth and a low birth weight; hence, these were further analyzed. The lower the gestational age at birth and birth weight, the less likely that an acoustic reflex would be elicited by pure-tone activators. This effect was significant at the frequencies of 0.5, 1, and 2 kHz for gestational age at birth and at the frequencies of 1 and 2 kHz for birth weight. When the broadband noise stimulus was used, a response was elicited in all neonates in both groups. When the pure-tone stimulus was used, the Group II showed the highest acoustic reflex thresholds and the highest percentage of cases with an absent ASR. The ASR threshold varied from 50 to 100 dB HL in both groups. Group II presented higher mean ASR thresholds than Group I, this difference being significant at frequencies of 1, 2, and 4 kHz. Birth weight and gestational age at birth were related to the elicitation of the acoustic reflex. Neonates with these risk factors for hearing impairment were less likely to exhibit the acoustic reflex and had higher thresholds.
NASA Technical Reports Server (NTRS)
Knott, P. R.; Janardan, B. A.; Majjigi, R. K.; Shutiani, P. K.; Vogt, P. G.
1981-01-01
Six coannular plug nozzle configurations having inverted velocity and temperature profiles, and a baseline convergent conical nozzle were tested for simulated flight acoustic evaluation in General Electric's Anechoic Free-Jet Acoustic Facility. The nozzles were tested over a range of test conditions that are typical of a Variable Cycle Engine for application to advanced high speed aircraft. The outer stream radius ratio for most of the configurations was 0.853, and the inner-stream-outer-stream area ratio was tested in the range of 0.54. Other variables investigated were the influence of bypass struts, a simple noncontoured convergent-divergent outer stream nozzle for forward quadrant shock noise control, and the effects of varying outer stream radius and inner-stream-to-outer-stream velocity ratios on the flight noise signatures of the nozzles. It was found that in simulated flight, the high-radius-ratio coannular plug nozzles maintain their jet noise and shock noise reduction features previously observed in static testing. The presence of nozzle bypass structs will not significantly effect the acoustic noise reduction features of a General Electric-type nozzle design. A unique coannular plug nozzle flight acoustic spectral prediction method was identified and found to predict the measured results quite well. Special laser velocimeter and acoustic measurements were performed which have given new insight into the jet and shock noise reduction mechanisms of coannular plug nozzles with regard to identifying further beneficial research efforts.
NASA Astrophysics Data System (ADS)
Sokolova, Inna
2015-04-01
Availability of the acoustic wave on the record of microbarograph is one of discriminate signs of atmospheric (surface layer of atmosphere) and contact explosions. Nowadays there is large number of air wave records from chemical explosions recorded by the IMS infrasound stations installed during recent decade. But there is small number of air wave records from nuclear explosions as air and contact nuclear explosions had been conducted since 1945 to 1962, before the Limited Test Ban Treaty was signed in 1963 (the treaty banning nuclear weapon tests in the atmosphere, in outer space and under water) by the Great Britain, USSR and USA. That time there was small number of installed microbarographs. First infrasound stations in the USSR appeared in 1954, and by the moment of the USSR collapse the network consisted of 25 infrasound stations, 3 of which were located on Kazakhstan territory - in Kurchatov (East Kazakhstan), in Borovoye Observatory (North Kazakhstan) and Talgar Observatory (Northern Tien Shan). The microbarograph of Talgar Observatory was installed in 1962 and recorded large number of air nuclear explosions conducted at Semipalatinsk Test Site and Novaya Zemlya Test Site. The epicentral distance to the STS was ~700 km, and to Novaya Zemlya Test Site ~3500 km. The historical analog records of the microbarograph were analyzed on the availability of the acoustic wave. The selected records were digitized, the database of acoustic signals from nuclear explosions was created. In addition, acoustic signals from atmospheric nuclear explosions conducted at the USSR Test Sites were recorded by analogue broadband seismic stations at wide range of epicentral distances, 300-3600 km. These signals coincide well by its form and spectral content with records of microbarographs and can be used for monitoring tasks and discrimination in places where infrasound observations are absent. Nuclear explosions which records contained acoustic wave were from 0.03 to 30 kt yield for the STS, and from 8.3 to 25 Mt yield for Novaya Zemlya Test Site region. The peculiarities of the wave pattern and spectral content of the acoustic wave records, and relation regularities of acoustic wave amplitude and periods with explosion yield and distance were investigated. The created database can be applied in different monitoring tasks, such as infrasound stations calibration, discrimination of nuclear explosions, precision of nuclear explosions parameters, determination of the explosion yield etc.
Analysis of Particle Image Velocimetry (PIV) Data for Acoustic Velocity Measurements
NASA Technical Reports Server (NTRS)
Blackshire, James L.
1997-01-01
Acoustic velocity measurements were taken using Particle Image Velocimetry (PIV) in a Normal Incidence Tube configuration at various frequency, phase, and amplitude levels. This report presents the results of the PIV analysis and data reduction portions of the test and details the processing that was done. Estimates of lower measurement sensitivity levels were determined based on PIV image quality, correlation, and noise level parameters used in the test. Comparison of measurements with linear acoustic theory are presented. The onset of nonlinear, harmonic frequency acoustic levels were also studied for various decibel and frequency levels ranging from 90 to 132 dB and 500 to 3000 Hz, respectively.
NASA Technical Reports Server (NTRS)
Bilwakesh, K. R.; Clemons, A.; Stimpert, D. L.
1979-01-01
Results from acoustic tests on a 50.8 cm (20 inch) QCSEE Under-the-Wing (UTW) engine, variable pitch fan and inlet simulator are tabulated. Tests were run in both forward and reverse thrust mdoes with a bellmouth inlet, five accelerating inlets (one hardwall and four treated), and four low Mach number inlets (one hardwall and three treated). The 1/3 octave-band acoustic data are presented for the model size on the measured 5.2 m (17.0 ft) arc and also data scaled to full QCSEE size 71:20 on a 152.4 m (500 ft) sideline.
Automated acoustic intensity measurements and the effect of gear tooth profile on noise
NASA Technical Reports Server (NTRS)
Atherton, William J.; Pintz, Adam; Lewicki, David G.
1987-01-01
Acoustic intensity measurements were made at NASA Lewis Research Center on a spur gear test apparatus. The measurements were obtained with the Robotic Acoustic Intensity Measurement System developed by Cleveland State University. This system provided dense spatial positioning, and was calibrated against a high quality acoustic intensity system. The measured gear noise compared gearsets having two different tooth profiles. The tests evaluated the sound field of the different gears for two speeds and three loads. The experimental results showed that gear tooth profile had a major effect on measured noise. Load and speed were found to have an effect on noise also.
Acoustic temperature measurement in a rocket noise field.
Giraud, Jarom H; Gee, Kent L; Ellsworth, John E
2010-05-01
A 1 μm diameter platinum wire resistance thermometer has been used to measure temperature fluctuations generated during a static GEM-60 rocket motor test. Exact and small-signal relationships between acoustic pressure and acoustic temperature are derived in order to compare the temperature probe output with that of a 3.18 mm diameter condenser microphone. After preliminary plane wave tests yielded good agreement between the transducers within the temperature probe's ∼2 kHz bandwidth, comparison between the temperature probe and microphone data during the motor firing show that the ±∼3 K acoustic temperature fluctuations are a significant contributor to the total temperature variations.
NASA Technical Reports Server (NTRS)
Horne, Michael R.; Madaras, Eric I.
2010-01-01
Failure tests of CCM SM/ALAS (Composite Crew Module Service Module / Alternate Launch Abort System) composite panels were conducted during July 10, 2008 and July 24, 2008 at Langley Research Center. This is a report of the analysis of the Acoustic Emission (AE) data collected during those tests.
FJ44 Turbofan Engine Test at NASA Glenn Research Center's Aero-Acoustic Propulsion Laboratory
NASA Technical Reports Server (NTRS)
Lauer, Joel T.; McAllister, Joseph; Loew, Raymond A.; Sutliff, Daniel L.; Harley, Thomas C.
2009-01-01
A Williams International FJ44-3A 3000-lb thrust class turbofan engine was tested in the NASA Glenn Research Center s Aero-Acoustic Propulsion Laboratory. This report presents the test set-up and documents the test conditions. Farfield directivity, in-duct unsteady pressures, duct mode data, and phased-array data were taken and are reported separately.
Rye Canyon X-ray noise test: One-third octave-band data
NASA Technical Reports Server (NTRS)
Willshire, W. L., Jr.
1983-01-01
Acoustic data were obtained for the 25 ft. diameter X-wing rotor model during performance testing of the rotor system in hover. Data collected at the outdoor whirl tower test facility with a twelve microphone array were taken for approximately 150 test conditions comprised of various combinations of RPM, blade pressure ratio (BPR), and blade angle of attack (collective). The three test parameters had four values of RPM from 404 to 497, twelve values of BPR from 1.0 to 2.1, and six values of collective from 0.0 deg to 8.5 deg. Fifteen to twenty seconds of acoustic data were reduced to obtain an average 1/3 octave band spectrum for each microphone for each test condition. The complete, as measured, 1/3 octave band results for all the acoustic data are listed. Another part of the X-wing noise test was the acoustic calibration of the Rye Canyon whirl tower bowl. Corrections were computed which, when applied to as measured data, yield estimates of the free field X-wing noise. The free field estimates provide a more realistic measure of the rotor system noise levels. Trend analysis of the three test parameters on noise level were performed.
NASA Technical Reports Server (NTRS)
Eberhart, C. J.; Snellgrove, L. M.; Zoladz, T. F.
2015-01-01
High intensity acoustic edgetones located upstream of the RS-25 Low Pressure Fuel Turbo Pump (LPFTP) were previously observed during Space Launch System (STS) airflow testing of a model Main Propulsion System (MPS) liquid hydrogen (LH2) feedline mated to a modified LPFTP. MPS hardware has been adapted to mitigate the problematic edgetones as part of the Space Launch System (SLS) program. A follow-on airflow test campaign has subjected the adapted hardware to tests mimicking STS-era airflow conditions, and this manuscript describes acoustic environment identification and characterization born from the latest test results. Fluid dynamics responsible for driving discrete excitations were well reproduced using legacy hardware. The modified design was found insensitive to high intensity edgetone-like discretes over the bandwidth of interest to SLS MPS unsteady environments. Rather, the natural acoustics of the test article were observed to respond in a narrowband-random/mixed discrete manner to broadband noise thought generated by the flow field. The intensity of these responses were several orders of magnitude reduced from those driven by edgetones.
Testing Installed Propulsion For Shielded Exhaust Configurations
NASA Technical Reports Server (NTRS)
Bridges, James; Podboy, Gary G.; Brown, Clifford A.
2016-01-01
Jet-surface interaction (JSI) can be a significant factor in the exhaust noise of installed propulsion. Tests to further understanding and prediction of the acoustic impacts of JSI have been described. While there were many objectives for the NASA JSI1044 test, the overall objective was to prepare for a 2016 test validating the design of a low-noise, low-boom supersonic commercial airliner. In this paper we explore design requirements for a partial aircraft model to be used in subscale acoustic testing, especially focusing on the amount of shielding surface that must be provided to simulate the acoustic environment between propulsion exhaust system and observer. We document the dual-stream jets, both nozzle and flow conditions, which were tested to extend JSI acoustic modeling from simple single-stream jets to realistic dual-stream exhaust nozzles. Examples of observations found as surface geometry and flow conditions were varied were provided. And we have presented initial measurements of the installation impacts of integrating the propulsion on the airframe for a supersonic airliner with realistic airframe geometries and nozzles.
50 CFR 218.170 - Specified activity and specified geographical area and effective dates.
Code of Federal Regulations, 2012 CFR
2012-10-01
..., and UUV engine noise): Acoustic energy from engines usually from 50 Hz to 10 kHz at SLs less than 170..., classification and localization 05 4520 1510 Non-Navy testing 5 5 5 Acoustic & non-acoustic sensors (magnetic...
50 CFR 218.170 - Specified activity and specified geographical area and effective dates.
Code of Federal Regulations, 2014 CFR
2014-10-01
..., and UUV engine noise): Acoustic energy from engines usually from 50 Hz to 10 kHz at SLs less than 170..., classification and localization 05 4520 1510 Non-Navy testing 5 5 5 Acoustic & non-acoustic sensors (magnetic...
50 CFR 218.170 - Specified activity and specified geographical area and effective dates.
Code of Federal Regulations, 2013 CFR
2013-10-01
..., and UUV engine noise): Acoustic energy from engines usually from 50 Hz to 10 kHz at SLs less than 170..., classification and localization 05 4520 1510 Non-Navy testing 5 5 5 Acoustic & non-acoustic sensors (magnetic...
Aero-acoustic tests of duct-burning turbofan exhaust nozzles
NASA Technical Reports Server (NTRS)
Kozlowski, H.; Packman, A. B.
1976-01-01
The acoustic and aerodynamic characteristics of several exhaust systems suitable for duct burning turbofan engines are evaluated. Scale models representing unsuppressed coannular exhaust systems are examined statically under varying exhaust conditions. Ejectors with both hardwall and acoustically treated inserts are investigated.
NASA Technical Reports Server (NTRS)
Soderman, Paul T.; Olsen, Larry E.
1990-01-01
An engineering feasibility study was made of aeroacoustic inserts designed for large-scale acoustic research on aircraft models in the 80 by 120 foot Wind Tunnel at NASA Ames Research Center. The advantages and disadvantages of likely designs were analyzed. Results indicate that the required maximum airspeed leads to the design of a particular insert. Using goals of 200, 150, and 100 knots airspeed, the analysis indicated a 30 x 60 ft open-jet test section, a 40 x 80 ft open jet test section, and a 70 x 100 ft closed test section with enhanced wall lining, respectively. The open-jet inserts would be composed of a nozzle, collector, diffuser, and acoutic wedges incorporated in the existing 80 x 120 test section. The closed test section would be composed of approximately 5 ft acoustic wedges covered by a porous plate attached to the test section walls of the existing 80 x 120. All designs would require a double row of acoustic vanes between the test section and fan drive to attenuate fan noise and, in the case of the open-jet designs, to control flow separation at the diffuser downstream end. The inserts would allow virtually anechoic acoustic studies of large helicopter models, jets, and V/STOL aircraft models in simulated flight. Model scale studies would be necessary to optimize the aerodynamic and acoustic performance of any of the designs. In all designs studied, the existing structure would have to be reinforced. Successful development of acoustically transparent walls, though not strictly necessary to the project, would lead to a porous-wall test section that could be substituted for any of the open-jet designs, and thereby eliminate many aerodynamic and acoustic problems characteristic of open-jet shear layers. The larger size of the facility would make installation and removal of the insert components difficult. Consequently, scheduling of the existing 80 x 120 aerodynamic test section and scheduling of the open-jet test section would likely be made on an annual or longer basis. The enhanced wall-lining insert would likely be permanent. Although the modifications are technically feasible, the economic practicality of the project was not evaluated.
2017-06-16
Acoustic Impacts on Marine Mammals and Sea Turtles: Methods and Analytical Approach for Phase III Training and Testing Sarah A. Blackstock Joseph O...December 2017 4. TITLE AND SUBTITLE Quantifying Acoustic Impacts on Marine Mammals and Sea Turtles: Methods and Analytical Approach for Phase III...Navy’s Phase III Study Areas as described in each Environmental Impact Statement/ Overseas Environmental Impact Statement and describes the methods
2006-06-01
IEC Web Site - http://www.iec.org/ National Instruments Web Site - http://www.ni.com/ ASA ( Acoustical Society of America) - http://asa.aip.org/ Flow...1994 (R2004), Acoustical Terminology. ANSI S1.10-1966 (R2001), USA Standard Method for Calibration of Microphones. ANSI S1.15-1997, USA Standard...R2001), American National Standard Specification for Acoustical Calibrators. ANSI S1.9-1996 (R2001), American National Standard Instruments for
Evaluation of Fire Test Methods for Aircraft Thermal Acoustical Insulation
DOT National Transportation Integrated Search
1997-09-01
This report presents the results of laboratory round robin flammability testing performed on thermal acoustical insulation blankets and the films used as insulation coverings. This work was requested by the aircraft industry as a result of actual inc...
Simplified three microphone acoustic test method
USDA-ARS?s Scientific Manuscript database
Accepted acoustic testing standards are available; however, they require specialized hardware and software that are typically out of reach economically to the occasional practitioner. What is needed is a simple and inexpensive screening method that could provide a quick comparison for rapid identifi...
Development of a MEMS device for acoustic emission testing
NASA Astrophysics Data System (ADS)
Ozevin, Didem; Pessiki, Stephen P.; Jain, Akash; Greve, David W.; Oppenheim, Irving J.
2003-08-01
Acoustic emission testing is an important technology for evaluating structural materials, and especially for detecting damage in structural members. Significant new capabilities may be gained by developing MEMS transducers for acoustic emission testing, including permanent bonding or embedment for superior coupling, greater density of transducer placement, and a bundle of transducers on each device tuned to different frequencies. Additional advantages include capabilities for maintenance of signal histories and coordination between multiple transducers. We designed a MEMS device for acoustic emission testing that features two different mechanical types, a hexagonal plate design and a spring-mass design, with multiple detectors of each type at ten different frequencies in the range of 100 kHz to 1 MHz. The devices were fabricated in the multi-user polysilicon surface micromachining (MUMPs) process and we have conducted electrical characterization experiments and initial experiments on acoustic emission detection. We first report on C(V) measurements and perform a comparison between predicted (design) and measured response. We next report on admittance measurements conducted at pressures varying from vacuum to atmospheric, identifying the resonant frequencies and again providing a comparison with predicted performance. We then describe initial calibration experiments that compare the performance of the detectors to other acoustic emission transducers, and we discuss the overall performance of the device as a sensor suite, as contrasted to the single-channel performance of most commercial transducers.
Prediction of Acoustic Loads Generated by Propulsion Systems
NASA Technical Reports Server (NTRS)
Perez, Linamaria; Allgood, Daniel C.
2011-01-01
NASA Stennis Space Center is one of the nation's premier facilities for conducting large-scale rocket engine testing. As liquid rocket engines vary in size, so do the acoustic loads that they produce. When these acoustic loads reach very high levels they may cause damages both to humans and to actual structures surrounding the testing area. To prevent these damages, prediction tools are used to estimate the spectral content and levels of the acoustics being generated by the rocket engine plumes and model their propagation through the surrounding atmosphere. Prior to the current work, two different acoustic prediction tools were being implemented at Stennis Space Center, each having their own advantages and disadvantages depending on the application. Therefore, a new prediction tool was created, using NASA SP-8072 handbook as a guide, which would replicate the same prediction methods as the previous codes, but eliminate any of the drawbacks the individual codes had. Aside from replicating the previous modeling capability in a single framework, additional modeling functions were added thereby expanding the current modeling capability. To verify that the new code could reproduce the same predictions as the previous codes, two verification test cases were defined. These verification test cases also served as validation cases as the predicted results were compared to actual test data.
Design and Integration of a Rotor Alone Nacelle for Acoustic Fan Testing
NASA Technical Reports Server (NTRS)
Shook, Tony D.; Hughes, Christoper E.; Thompson, William K.; Tavernelli, Paul F.; Cunningham, Cameron C.; Shah, Ashwin
2001-01-01
A brief summary of the design, integration and testing of a rotor alone nacelle (RAN) in NASA Glenn's 9'x 15' Low Speed Wind Tunnel (LSWT) is presented. The purpose of the RAN system was to provide an "acoustically clean" flow path within the nacelle to isolate that portion of the total engine system acoustic signature attributed to fan noise. The RAN design accomplished this by removing the stators that provided internal support to the nacelle. In its place, two external struts mounted to a two-axis positioning table located behind the tunnel wall provided the support. Nacelle-mounted lasers and a closed-loop control system provided the input to the table to maintain nacelle to fan concentricity as thermal and thrust loads displaced the strut-mounted fan. This unique design required extensive analysis and verification testing to ensure the safety of the fan model, propulsion simulator drive rig, and facility, along with experimental consistency of acoustic data obtained while using the RAN system. Initial testing was used to optimize the positioning system and resulted in concentricity errors of +/- 0.0031 in. in the horizontal direction and +0.0035/-0.0013 in, in the vertical direction. As a result of successful testing, the RAN system will be transitioned into other acoustic research programs at NASA Glenn Research Center.
Nondestructive acoustic electric field probe apparatus and method
Migliori, Albert
1982-01-01
The disclosure relates to a nondestructive acoustic electric field probe and its method of use. A source of acoustic pulses of arbitrary but selected shape is placed in an oil bath along with material to be tested across which a voltage is disposed and means for receiving acoustic pulses after they have passed through the material. The received pulses are compared with voltage changes across the material occurring while acoustic pulses pass through it and analysis is made thereof to determine preselected characteristics of the material.
Static noise tests on augmentor wing jet STOL research aircraft (C8A Buffalo)
NASA Technical Reports Server (NTRS)
Marrs, C. C.; Harkonen, D. L.; Okeefe, J. V.
1974-01-01
Results are presented for full scale ground static acoustic tests of over-area conical nozzles and a lobe nozzle installed on the Augmentor Wing Jet STOL Research Aircraft, a modified C8A Buffalo. The noise levels and spectrums of the test nozzles are compared against those of the standard conical nozzle now in use on the aircraft. Acoustic evaluations at 152 m (500 ft), 304 m (1000 ft), and 1216 m (4000 ft) are made at various engine power settings with the emphasis on approach and takeoff power. Appendix A contains the test log and propulsion calculations. Appendix B gives the original test plan, which was closely adhered to during the test. Appendix C describes the acoustic data recording and reduction systems, with calibration details.
2018-05-20
The SpaceX Crew Dragon spacecraft is in the anechoic chamber for electromagnetic interference testing on May 20, 2018, at NASA's Kennedy Space Center in Florida. The Crew Dragon will be shipped to the agency's Plum Brook Station test facility at Glenn Research City in Cleveland, Ohio, for testing in the Reverberant Acoustic Test Facility, the world's most powerful acoustic test chamber. Crew Dragon is being prepared for its first uncrewed test flight, targeted for August 2018.
Measurement and testing of the acoustic properties of materials: a review
NASA Astrophysics Data System (ADS)
Zeqiri, Bajram; Scholl, Werner; Robinson, Stephen P.
2010-04-01
A review is presented of methods of measurement for a range of key acoustic properties of materials, spanning three application areas: airborne sound, underwater acoustics and ultrasound. The acoustic properties considered, primarily transmission loss (damping) and echo-reduction, are specifically important to the end application of any material. The state-of-the-art in measurement and likely future challenges are described in detail.
Could Acoustic Emission Testing Show a Pipe Failure in Advance?
NASA Astrophysics Data System (ADS)
Soares, S. D.; Teixeira, J. C. G.
2004-02-01
During the last 20 years PETROBRAS has been attempting to use Acoustic Emission (AE) as an inspection tool. In this period the AE concept has changed from a revolutionary method to a way of finding areas to make a complete inspection. PETROBRAS has a lot of pressure vessels inspected by AE and with other NDTs techniques to establish their relationship. In other hand, PETROBRAS R&D Center has conducted destructive hydrostatic tests in pipelines samples with artificial defects made by milling. Those tests were monitored by acoustic emission and manual ultrasonic until the complete failure of pipe sample. This article shows the results obtained and a brief proposal of analysis criteria for this environment of test.
NASA Technical Reports Server (NTRS)
Herkes, William
2000-01-01
Acoustic and propulsion performance testing of a model-scale Axisymmetric Coannular Ejector nozzle was conducted in the Boeing Low-speed Aeroacoustic Facility. This nozzle is a plug nozzle with an ejector design to provide aspiration of about 20% of the engine flow. A variety of mixing enhancers were designed to promote mixing of the engine and the aspirated flows. These included delta tabs, tone-injection rods, and wheeler ramps. This report addresses the acoustic aspects of the testing. The spectral characteristics of the various configurations of the nozzle are examined on a model-scale basis. This includes indentifying particular noise sources contributing to the spectra and the data are projected to full-scale flyover conditions to evaluate the effectiveness of the nozzle, and of the various mixing enhancers, on reducing the Effective Perceived Noise Levels.
NASA Technical Reports Server (NTRS)
Atencio, A., Jr.; Mckie, J.
1982-01-01
A cooperative program between the Royal Aircraft Establishment (RAE), England, and the NASA Ames Research Center was initiated to compare acoustic measurements made in the RAE 24-foot wind tunnel and in the Ames 40- by 80-foot wind tunnel. The acoustic measurements were made in both facilities using the same 102 mm conical nozzle supplied by the RAE. The nozzle was tested by each organization using its respective jet test rig. The mounting hardware and nozzle exit conditions were matched as closely as possible. The data from each wind tunnel were independently analyzed by the respective organization. The results from these tests show good agreement. In both facilities, interference with acoustic measurement is evident at angles in the forward quadrant.
Investigation of a Bio-Inspired Liner Concept
NASA Technical Reports Server (NTRS)
Koch, L. Danielle
2017-01-01
Four samples of natural reeds, Phragmites australis, were tested in the NASA Langley and Glenn Normal Incidence Impedance Tubes in order to experimentally determine the acoustic absorption coefficients as a function of frequency from 400 to 3000 Hz. Six samples that mimicked the geometry of the assemblies of natural reeds were also designed and additively manufactured from ASA thermoplastic and tested. Results indicate that structures can be manufactured of synthetic materials that mimic the geometry and the low frequency acoustic absorption of natural reeds. This accomplishment demonstrates that a new class of structures can now be considered for a wide range of industrial products that need thin, lightweight, broadband acoustic absorption effective at frequencies below 1000 Hz. Aircraft engine acoustic liners and aircraft cabin acoustic liners, in particular, are two aviation applications that might benefit from further development of this concept.
Dynamic loads on twin jet exhaust nozzles due to shock noise
NASA Technical Reports Server (NTRS)
Norum, T. D.; Shearin, J. G.
1986-01-01
Acoustic near field data were collected with model single and twin jet nozzles to determine if closely spaced nozzles produce higher acoustic loading than do single nozzles. The tests were spurred by structural failure of the B-1 exhaust nozzle external flaps and similar damage on the F-15. The test was performed using two 5/8 in. ID pipes machined and placed side-by-side to mimic B-1 nozzles. A microphone mounted on the internozzle fairing measured acoustic levels near the nozzle exit plane. The nozzles oscillated significantly more than did a single nozzle over a wide range of nozzle pressure ratios. Acoustic levels in the dual jets exceeded single jet noise by as much as 20 dB, making acoustic resonance a definite candidate for structural damage in the twin jet configuration.
Time dependent inflow-outflow boundary conditions for 2D acoustic systems
NASA Technical Reports Server (NTRS)
Watson, Willie R.; Myers, Michael K.
1989-01-01
An analysis of the number and form of the required inflow-outflow boundary conditions for the full two-dimensional time-dependent nonlinear acoustic system in subsonic mean flow is performed. The explicit predictor-corrector method of MacCormack (1969) is used. The methodology is tested on both uniform and sheared mean flows with plane and nonplanar sources. Results show that the acoustic system requires three physical boundary conditions on the inflow and one on the outflow boundary. The most natural choice for the inflow boundary conditions is judged to be a specification of the vorticity, the normal acoustic impedance, and a pressure gradient-density gradient relationship normal to the boundary. Specification of the acoustic pressure at the outflow boundary along with these inflow boundary conditions is found to give consistent reliable results. A set of boundary conditions developed earlier, which were intended to be nonreflecting is tested using the current method and is shown to yield unstable results for nonplanar acoustic waves.
High-acoustic-impedance tantalum oxide layers for insulating acoustic reflectors.
Capilla, Jose; Olivares, Jimena; Clement, Marta; Sangrador, Jesús; Iborra, Enrique; Devos, Arnaud
2012-03-01
This work describes the assessment of the acoustic properties of sputtered tantalum oxide films intended for use as high-impedance films of acoustic reflectors for solidly mounted resonators operating in the gigahertz frequency range. The films are grown by sputtering a metallic tantalum target under different oxygen and argon gas mixtures, total pressures, pulsed dc powers, and substrate biases. The structural properties of the films are assessed through infrared absorption spectroscopy and X-ray diffraction measurements. Their acoustic impedance is assessed by deriving the mass density from X-ray reflectometry measurements and the acoustic velocity from picosecond acoustic spectroscopy and the analysis of the frequency response of the test resonators.
Benefits of Swept and Leaned Stators for Fan Noise Reduction
NASA Technical Reports Server (NTRS)
Woodward, Richard P.; Elliott, David M.; Hughes, Christopher E.; Berton, Jeffrey J.
1998-01-01
An advanced high bypass ratio fan model was tested in the NASA Lewis Research Center 9 x 15-Foot Low Speed Wind Tunnel. The primary focus of this test was to quantify the acoustic benefits and aerodynamic performance of sweep and lean in stator vane design. Three stator sets were used for this test series. A conventional radial stator was tested at two rotor-stator axial spacings. Additional stator sets incorporating sweep + lean, and sweep only were also tested. The hub axial location for the swept + lean, and sweep only stators corresponded to the location of the radial stator at the upstream rotor-stator spacing, while the tip axial location of these modified stators corresponded to the radial stator axial position at the downstream position. The acoustic results show significant reductions in both rotor-stator interaction noise and broadband noise beyond what could be achieved through increased axial spacing of the conventional, radial stator. Theoretical application of these results to acoustically quantify a fictitious 2-engine aircraft and flight path suggested that about 3 Effective Perceived Noise (EPN) dB could be achieved through incorporation of these modified stators. This reduction would represent a significant portion of the 6 EPNdB noise goal of the current NASA Advanced Subsonic Technology (AST) initiative relative to that of 1992 technology levels. A secondary result of this fan test was to demonstrate the ability of an acoustic barrier wall to block aft-radiated fan noise in the wind tunnel, thus revealing the acoustic structure of the residual inlet-radiated noise. This technology should prove valuable toward better understanding inlet liner design, or wherever it is desirable to eliminate aft-radiated noise from the fan acoustic signature.
NASA Astrophysics Data System (ADS)
Bashkov, O. V.; Protsenko, A. E.; Bryanskii, A. A.; Romashko, R. V.
2017-09-01
The strength properties of glass-fiber-reinforced plastics produced by vacuum and vacuum autoclave molding techniques are studied. Based on acoustic emission data, a method of diagnostic and prediction of the bearing capacity of polymer composite materials by using data from three-point bending tests is developed. The method is based on evaluating changes in the exponent of a power function relating the total acoustic emission to the test stress.
XV-15 Low-Noise Terminal Area Operations Testing
NASA Technical Reports Server (NTRS)
Edwards, B. D.
1998-01-01
Test procedures related to XV-15 noise tests conducted by NASA-Langley and Bell Helicopter Textron, Inc. are discussed. The tests. which took place during October and November 1995, near Waxahachie, Texas, documented the noise signature of the XV-15 tilt-rotor aircraft at a wide variety of flight conditions. The stated objectives were to: -provide a comprehensive acoustic database for NASA and U.S. Industry -validate noise prediction methodologies, and -develop and demonstrate low-noise flight profiles. The test consisted of two distinct phases. Phase 1 provided an acoustic database for validating analytical noise prediction techniques; Phase 2 directly measured noise contour information at a broad range of operating profiles, with emphasis on minimizing 'approach' noise. This report is limited to a documentation of the test procedures, flight conditions, microphone locations, meteorological conditions, and test personnel used in the test. The acoustic results are not included.
NASA Technical Reports Server (NTRS)
1984-01-01
The vibration, acoustics, and shock design and test criteria for components and subassemblies on the space shuttle solid rocket booster (SRB), lightweight tank (LWT), and main engines (SSME) are presented. Specifications for transportation, handling, and acceptance testing are also provided.
NASA Technical Reports Server (NTRS)
Henderson, Brenda S.; Doty, Mike
2012-01-01
Acoustic and flow-field experiments were conducted on exhaust concepts for the next generation supersonic, commercial aircraft. The concepts were developed by Lockheed Martin (LM), Rolls-Royce Liberty Works (RRLW), and General Electric Global Research (GEGR) as part of an N+2 (next generation forward) aircraft system study initiated by the Supersonics Project in NASA s Fundamental Aeronautics Program. The experiments were conducted in the Aero-Acoustic Propulsion Laboratory at the NASA Glenn Research Center. The exhaust concepts presented here utilized lobed-mixers and ejectors. A powered third-stream was implemented to improve ejector acoustic performance. One concept was found to produce stagnant flow within the ejector and the other produced discrete-frequency tones (due to flow separations within the model) that degraded the acoustic performance of the exhaust concept. NASA's Environmentally Responsible Aviation (ERA) Project has been investigating a Hybrid Wing Body (HWB) aircraft as a possible configuration for meeting N+2 system level goals for noise, emissions, and fuel burn. A recently completed NRA led by Boeing Research and Technology resulted in a full-scale aircraft design and wind tunnel model. This model will be tested acoustically in NASA Langley's 14-by 22-Foot Subsonic Tunnel and will include dual jet engine simulators and broadband engine noise simulators as part of the test campaign. The objectives of the test are to characterize the system level noise, quantify the effects of shielding, and generate a valuable database for prediction method development. Further details of the test and various component preparations are described.
Development of acoustic emission evaluation method for repaired prestressed concrete bridge girders.
DOT National Transportation Integrated Search
2011-06-01
Acoustic emission (AE) monitoring has proven to be a useful nondestructive testing tool in ordinary reinforced concrete beams. Over the past decade, however, the technique has also been used to test other concrete structures. It has been seen that ac...
NASA Technical Reports Server (NTRS)
Holzman, Jon K.; Webb, Lannie D.; Burcham, Frank W., Jr.
1996-01-01
The exhaust flow properties (mass flow, pressure, temperature, velocity, and Mach number) of the F110-GE-129 engine in an F-16XL airplane were determined from a series of flight tests flown at NASA Dryden Flight Research Center, Edwards, California. These tests were performed in conjunction with NASA Langley Research Center, Hampton, Virginia (LARC) as part of a study to investigate the acoustic characteristics of jet engines operating at high nozzle pressure conditions. The range of interest for both objectives was from Mach 0.3 to Mach 0.9. NASA Dryden flew the airplane and acquired and analyzed the engine data to determine the exhaust characteristics. NASA Langley collected the flyover acoustic measurements and correlated these results with their current predictive codes. This paper describes the airplane, tests, and methods used to determine the exhaust flow properties and presents the exhaust flow properties. No acoustics results are presented.
Initial Evaluation of Acoustic Emission SHM of PRSEUS Multi-bay Box Tests
NASA Technical Reports Server (NTRS)
Horne, Michael R.; Madaras, Eric I.
2016-01-01
A series of tests of the Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) HWB Multi-Bay Test Article were conducted during the second quarter of 2015 at NASA Langley Research Center (LaRC) in the Combined Loads Test facility (COLTS). This report documents the Acoustic Emission (AE) data collected during those tests along with an initial analysis of the data. A more detailed analysis will be presented in future publications.
Theoretical Properties of Acoustical Speckle Interferometry.
1980-09-01
an obvious one , since it was first performed in the acoustical holography. An acoustical speckle interferometry study has been demonstrated to be a...experiments in which pulses were used to study the propagation of the circumferential waves on aluminum cylinders immersed in water. In 1969, Bunney...destructive Testing SB. ABTRACT aCdo as revers. NW ass a" Id by block numb") Acoustical speckle interferometry is based locally on the elastodynamic response
Integrated Model for the Acoustics of Sediments
2014-09-30
1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Integrated Model for the Acoustics of Sediments Nicholas...physics, and (3) the development and testing of sediment acoustic models through a series of at-sea experiments. APPROACH The approach may be...00-2014 4. TITLE AND SUBTITLE Integrated Model for the Acoustics of Sediments 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6
Measurement and Characterization of Helicopter Noise at Different Altitudes
NASA Technical Reports Server (NTRS)
Watts, Michael E.; Greenwood, Eric; Stephenson, James
2016-01-01
This paper presents an overview of a flight test campaign performed at different test sites whose altitudes ranged from 0 to 7000 feet above mean sea level (AMSL) between September 2014 and February 2015. The purposes of this campaign were to: investigate the effects of altitude variation on noise generation, investigate the effects of gross weight variation on noise generation, establish the statistical variability in acoustic flight testing of helicopters, and characterize the effects of transient maneuvers on radiated noise for a medium-lift utility helicopter. In addition to describing the test campaign, results of the acoustic effects of altitude variation for the AS350 SD1 and EH-60L aircraft are presented. Large changes in acoustic amplitudes were observed in response to changes in ambient conditions when the helicopter was flown at constant indicated airspeed and gross weight at the three test sites. However, acoustic amplitudes were found to scale with ambient pressure when flight conditions were defined in terms of the non-dimensional parameters, such as the weight coefficient and effective hover tip Mach number.
Single crystal metal wedges for surface acoustic wave propagation
Fisher, E.S.
1980-05-09
An ultrasonic testing device has been developed to evaluate flaws and inhomogeneities in the near-surface region of a test material. A metal single crystal wedge is used to generate high frequency Rayleigh surface waves in the test material surface by conversion of a slow velocity, bulk acoustic mode in the wedge into a Rayleigh wave at the metal-wedge test material interface. Particular classes of metals have been found to provide the bulk acoustic modes necessary for production of a surface wave with extremely high frequency and angular collimation. The high frequency allows flaws and inhomogeneities to be examined with greater resolution. The high degree of angular collimation for the outgoing ultrasonic beam permits precision angular location of flaws and inhomogeneities in the test material surface.
Single crystal metal wedges for surface acoustic wave propagation
Fisher, Edward S.
1982-01-01
An ultrasonic testing device has been developed to evaluate flaws and inhomogeneities in the near-surface region of a test material. A metal single crystal wedge is used to generate high frequency Rayleigh surface waves in the test material surface by conversion of a slow velocity, bulk acoustic mode in the wedge into a Rayleigh wave at the metal-wedge test material interface. Particular classes of metals have been found to provide the bulk acoustic modes necessary for production of a surface wave with extremely high frequency and angular collimation. The high frequency allows flaws and inhomogeneities to be examined with greater resolution. The high degree of angular collimation for the outgoing ultrasonic beam permits precision angular location of flaws and inhomogeneities in the test material surface.
Infrared Imagery of Solid Rocket Exhaust Plumes
NASA Technical Reports Server (NTRS)
Moran, Robert P.; Houston, Janice D.
2011-01-01
The Ares I Scale Model Acoustic Test program consisted of a series of 18 solid rocket motor static firings, simulating the liftoff conditions of the Ares I five-segment Reusable Solid Rocket Motor Vehicle. Primary test objectives included acquiring acoustic and pressure data which will be used to validate analytical models for the prediction of Ares 1 liftoff acoustics and ignition overpressure environments. The test article consisted of a 5% scale Ares I vehicle and launch tower mounted on the Mobile Launch Pad. The testing also incorporated several Water Sound Suppression Systems. Infrared imagery was employed during the solid rocket testing to support the validation or improvement of analytical models, and identify corollaries between rocket plume size or shape and the accompanying measured level of noise suppression obtained by water sound suppression systems.
NASA Technical Reports Server (NTRS)
Shaw, T. L.; Corliss, J. M.; Gundo, D. P.; Mulenburg, G. M.; Breit, G. A.; Griffith, J. B.
1994-01-01
The high cost and long times required to develop research packages for space flight can often be offset by using ground test techniques. This paper describes a space shuttle launch and reentry simulating using the NASA Ames Research Center's 20G centrifuge facility. The combined G-forces and acoustic environment during shuttle launch and landing were simulated to evaluate the effect on a payload of laboratory rates. The launch G force and acoustic profiles are matched to actual shuttle launch data to produce the required G-forces and acoustic spectrum in the centrifuge test cab where the rats were caged on a free-swinging platform. For reentry, only G force is simulated as the aero-acoustic noise is insignificant compared to that during launch. The shuttle G-force profiles of launch and landing are achieved by programming the centrifuge drive computer to continuously adjust centrifuge rotational speed to obtain the correct launch and landing G forces. The shuttle launch acoustic environment is simulated using a high-power, low-frequency audio system. Accelerometer data from STS-56 and microphone data from STS-1 through STS-5 are used as baselines for the simulations. This paper provides a description of the test setup and the results of the simulation with recommendations for follow-on simulations.
NF2; Bilateral acoustic neurofibromatosis; Bilateral vestibular schwannomas; Central neurofibromatosis ... NF2 include: Brain and spinal tumors Hearing-related (acoustic) tumors Skin tumors Tests include: Physical examination Medical ...
Towards identifying the dynamics of sliding by acoustic emission and vibration
NASA Astrophysics Data System (ADS)
Korchuganov, M. A.; Filippov, A. V.; Tarasov, S. Yu.; Podgornyh, O. A.; Shamarin, N. N.; Filippova, E. O.
2016-11-01
The results of experiments with high load and sliding speed sliding conditions on tribologically mated pairs such as steel 1045/steel 1045 (test 1), steel 1045/basalt (test 2) and Hadfield steel/basalt (test 3) have been carried out in order to identify their response in terms of the acoustic emission and vibration signals. The steel to rock and rock to steel transfer has been revealed by examining the worn surfaces of both steel and rock samples with the use of laser scanning microscopy. The AE signal characteristics have been determined for the tribological pairs studied. The dynamics of sliding has been evaluated by measuring the vibration accelerations. Relationship between wear mode and either acoustic emission signal or vibration signal has been established. The minimal vibration oscillations amplitude and acoustic emission signal energy have been found out in sliding Hadfield steel/basalt pair.
Experimental quiet engine program
NASA Technical Reports Server (NTRS)
Cornell, W. G.
1975-01-01
Full-scale low-tip-speed fans, a full-scale high-tip-speed fan, scale model versions of fans, and two full-scale high-bypass-ratio turbofan engines, were designed, fabricated, tested, and evaluated. Turbine noise suppression was investigated. Preliminary design studies of flight propulsion system concepts were used in application studies to determine acoustic-economic tradeoffs. Salient results are as follows: tradeoff evaluation of fan tip speed and blade loading; systematic data on source noise characteristics and suppression effectiveness; documentation of high- and low-fan-speed aerodynamic and acoustic technology; aerodynamic and acoustic evaluation of acoustic treatment configurations, casing tip bleed, serrated and variable pitch rotor blades, leaned outlet guide vanes, slotted tip casings, rotor blade shape modifications, and inlet noise suppression; systematic evaluation of aerodynamic and acoustic effects; flyover noise projections of engine test data; turbine noise suppression technology development; and tradeoff evaluation of preliminary design high-fan-speed and low-fan-speed flight engines.
Fuselage shell and cavity response measurements on a DC-9 test section
NASA Technical Reports Server (NTRS)
Simpson, M. A.; Mathur, G. P.; Cannon, M. R.; Tran, B. N.; Burge, P. L.
1991-01-01
A series of fuselage shell and cavity response measurements conducted on a DC-9 aircraft test section are described. The objectives of these measurements were to define the shell and cavity model characteristics of the fuselage, understand the structural-acoustic coupling characteristics of the fuselage, and measure the response of the fuselage to different types of acoustic and vibration excitation. The fuselage was excited with several combinations of acoustic and mechanical sources using interior and exterior loudspeakers and shakers, and the response to these inputs was measured with arrays of microphones and accelerometers. The data were analyzed to generate spatial plots of the shell acceleration and cabin acoustic pressure field, and corresponding acceleration and pressure wavenumber maps. Analysis and interpretation of the spatial plots and wavenumber maps provided the required information on modal characteristics, structural-acoustic coupling, and fuselage response.
Simplified through-transmission test method for determination of a material's acoustic properties
USDA-ARS?s Scientific Manuscript database
Accepted acoustic testing standards are available; however, they require specialized hardware and software that are typically out of reach economically to the occasional practitioner. What is needed is a simple and inexpensive screening method that can provide a quick comparison for rapid identifica...
NASA Technical Reports Server (NTRS)
Loeffler, I. J.; Samanich, N. E.; Bloomer, H. E.
1980-01-01
Powered-lift acoustic tests of a quiet clean short-haul experimental engine (QCSEE) under-the-wing (UTW) engine are described. Engine and wing configurations are outlined, along with instrumentation and test facilities. The results of these tests are reported. In addition, the UTW engine powered-lift performance is compared with that of the previously tested QCSEE over-the-wing (OTW) engine.
NASA Astrophysics Data System (ADS)
Tinianov, Brandon D.; Nakagawa, Masami; Muñoz, David R.
2006-02-01
This article describes a novel technique for the measurement of the thermal conductivity of low-density (12-18kg/m3) fiberglass insulation and other related fibrous insulation materials using a noninvasive acoustic apparatus. The experimental method is an extension of earlier acoustic methods based upon the evaluation of the propagation constant from the acoustic pressure transfer function across the test material. To accomplish this, an analytical model is employed that describes the behavior of sound waves at the outlet of a baffled waveguide. The model accounts for the behavior of the mixed impedance interface introduced by the test material. Current results show that the technique is stable for a broad range of absorber thicknesses and densities. Experimental results obtained in the laboratory show excellent correlation between the thermal conductivity and both the real and imaginary components of the propagation constant. Correlation of calculated propagation constant magnitude versus measured thermal conductivity gave an R2 of 0.94 for the bulk density range (12-18kg/m3) typical for manufactured fiberglass batt materials. As an improvement to earlier acoustic techniques, measurement is now possible in noisy manufacturing environments with a moving test material. Given the promise of such highly correlated measurements in a robust method, the acoustic technique is well suited to continuously measure the thermal conductivity of the material during its production, replacing current expensive off-line methods. Test cycle time is reduced from hours to seconds.
Murphy, William J.; Fackler, Cameron J.; Berger, Elliott H.; Shaw, Peter B.; Stergar, Mike
2015-01-01
Impulse peak insertion loss (IPIL) was studied with two acoustic test fixtures and four hearing protector conditions at the E-A-RCAL Laboratory. IPIL is the difference between the maximum estimated pressure for the open-ear condition and the maximum pressure measured when a hearing protector is placed on an acoustic test fixture (ATF). Two models of an ATF manufactured by the French-German Research Institute of Saint-Louis (ISL) were evaluated with high-level acoustic impulses created by an acoustic shock tube at levels of 134 decibels (dB), 150 dB, and 168 dB. The fixtures were identical except that the E-A-RCAL ISL fixture had ear canals that were 3 mm longer than the National Institute for Occupational Safety and Health (NIOSH) ISL fixture. Four hearing protection conditions were tested: Combat Arms earplug with the valve open, ETYPlugs® earplug, TacticalPro headset, and a dual-protector ETYPlugs earplug with TacticalPro earmuff. The IPILs measured for the E-A-RCAL fixture were 1.4 dB greater than the National Institute for Occupational Safety and Health (NIOSH) ISL ATF. For the E-A-RCAL ISL ATF, the left ear IPIL was 2.0 dB greater than the right ear IPIL. For the NIOSH ATF, the right ear IPIL was 0.3 dB greater than the left ear IPIL. PMID:26356380
Acoustical evaluation of the NASA Lewis 9 by 15 foot low speed wind tunnel
NASA Technical Reports Server (NTRS)
Dahl, Milo D.; Woodward, Richard P.
1992-01-01
The test section of the NASA Lewis 9- by 15-Foot Low Speed Wind Tunnel was acoustically treated to allow the measurement of acoustic sources located within the tunnel test section under simulated free field conditions. The treatment was designed for high sound absorption at frequencies above 250 Hz and to withstand tunnel airflow velocities up to 0.2 Mach. Evaluation tests with no tunnel airflow were conducted in the test section to assess the performance of the installed treatment. This performance would not be significantly affected by low speed airflow. Time delay spectrometry tests showed that interference ripples in the incident signal resulting from reflections occurring within the test section average from 1.7 dB to 3.2 dB wide over a 500 to 5150 Hz frequency range. Late reflections, from upstream and downstream of the test section, were found to be insignificant at the microphone measuring points. For acoustic sources with low directivity characteristics, decay with distance measurements in the test section showed that incident free field behavior can be measured on average with an accuracy of +/- 1.5 dB or better at source frequencies from 400 Hz to 10 kHz. The free field variations are typically much smaller with an omnidirectional source.
XV-15 Tiltrotor Aircraft: 1999 Acoustic Testing - Test Report
NASA Technical Reports Server (NTRS)
Edwards, Bryan D.; Conner, David A.
2003-01-01
An XV-15 acoustic test is discussed, and measured results are presented. The test was conducted by NASA Langley and Bell Helicopter Textron, Inc., during October 1999, at the BHTI test site near Waxahachie, Texas. As part of the NASA-sponsored Short Haul Civil Tiltrotor noise reduction initiative, this was the third in a series of three major XV-15 acoustic tests. Their purpose was to document the acoustic signature of the XV-15 tiltrotor aircraft for a variety of flight conditions and to minimize the noise signature during approach. Tradeoffs between flight procedures and the measured noise are presented to illustrate the noise abatement flight procedures. The test objectives were to support operation of future tiltrotors by further developing and demonstrating low-noise flight profiles, while maintaining acceptable handling and ride qualities, and refine approach profiles, selected from previous (1995 & 1997) tiltrotor testing, to incorporate Instrument Flight Rules (IFR), handling qualities constraints, operations and tradeoffs with sound. Primary emphasis was given to the approach flight conditions where blade-vortex interaction (BVI) noise dominates, because this condition influences community noise impact more than any other. An understanding of this part of the noise generating process could guide the development of low noise flight operations and increase the tiltrotor's acceptance in the community.
NASA Technical Reports Server (NTRS)
Cooper, Beth A.
1993-01-01
A large hemi-anechoic (absorptive walls and acoustically hard floor) noise control enclosure has been erected around a complex of test stands at the NASA Lewis Research Center in Cleveland, Ohio. This new state-of-the-art Aeroacoustic Propulsion Laboratory (APL) provides an all-weather, semisecure test environment while limiting noise to acceptable levels in surrounding residential neighborhoods. The 39.6 m (130 ft) diameter geodesic dome structure houses the new Nozzle Aeroacoustic Test Rig (NATR), an ejector-powered M = 0.3 free jet facility for acoustic testing of supersonic aircraft exhaust nozzles and turbomachinery. A multi-axis, force-measuring Powered Lift Facility (PLF) stand for testing of Short Takeoff Vertical Landing (STOVL) vehicles is also located within the dome. The design of the Aeroacoustic Propulsion Laboratory efficiently accomodates the research functions of two separate test rigs, one of which (NATR) requires a specialized environment for taking acoustic measurements. Absorptive fiberglass wedge treatment on the interior surface of the dome provides a hemi-anechoic interior environment for obtaining the accurate acoustic measurements required to meet research program goals. The APL is the first known geodesic dome structure to incorporate transmission-loss properties as well as interior absorption into a free-standing, community-compatible, hemi-anechoic test facility.
A hybrid approach for nonlinear computational aeroacoustics predictions
NASA Astrophysics Data System (ADS)
Sassanis, Vasileios; Sescu, Adrian; Collins, Eric M.; Harris, Robert E.; Luke, Edward A.
2017-01-01
In many aeroacoustics applications involving nonlinear waves and obstructions in the far-field, approaches based on the classical acoustic analogy theory or the linearised Euler equations are unable to fully characterise the acoustic field. Therefore, computational aeroacoustics hybrid methods that incorporate nonlinear wave propagation have to be constructed. In this study, a hybrid approach coupling Navier-Stokes equations in the acoustic source region with nonlinear Euler equations in the acoustic propagation region is introduced and tested. The full Navier-Stokes equations are solved in the source region to identify the acoustic sources. The flow variables of interest are then transferred from the source region to the acoustic propagation region, where the full nonlinear Euler equations with source terms are solved. The transition between the two regions is made through a buffer zone where the flow variables are penalised via a source term added to the Euler equations. Tests were conducted on simple acoustic and vorticity disturbances, two-dimensional jets (Mach 0.9 and 2), and a three-dimensional jet (Mach 1.5), impinging on a wall. The method is proven to be effective and accurate in predicting sound pressure levels associated with the propagation of linear and nonlinear waves in the near- and far-field regions.
NASA Technical Reports Server (NTRS)
Majjigi, R. K.; Brausch, J. F.; Janardan, B. A.; Balsa, T. F.; Knott, P. R.; Pickup, N.
1984-01-01
A technology base for the thermal acoustic shield concept as a noise suppression device for single stream exhaust nozzles was developed. Acoustic data for 314 test points for 9 scale model nozzle configurations were obtained. Five of these configurations employed an unsuppressed annular plug core jet and the remaining four nozzles employed a 32 chute suppressor core nozzle. Influence of simulated flight and selected geometric and aerodynamic flow variables on the acoustic behavior of the thermal acoustic shield was determined. Laser velocimeter and aerodynamic measurements were employed to yield valuable diagnostic information regarding the flow field characteristics of these nozzles. An existing theoretical aeroacoustic prediction method was modified to predict the acoustic characteristics of partial thermal acoustic shields.
Detecting Structural Failures Via Acoustic Impulse Responses
NASA Technical Reports Server (NTRS)
Bayard, David S.; Joshi, Sanjay S.
1995-01-01
Advanced method of acoustic pulse reflectivity testing developed for use in determining sizes and locations of failures within structures. Used to detect breaks in electrical transmission lines, detect faults in optical fibers, and determine mechanical properties of materials. In method, structure vibrationally excited with acoustic pulse (a "ping") at one location and acoustic response measured at same or different location. Measured acoustic response digitized, then processed by finite-impulse-response (FIR) filtering algorithm unique to method and based on acoustic-wave-propagation and -reflection properties of structure. Offers several advantages: does not require training, does not require prior knowledge of mathematical model of acoustic response of structure, enables detection and localization of multiple failures, and yields data on extent of damage at each location.
Andersen, Henrik Terkel; Schrøder, Stine Attrup; Bonding, Per
2006-09-01
To evaluate the subjective hearing handicap in patients with unilateral deafness after acoustic neuroma surgery and the effect of the Bone-anchored Hearing Aid (BAHA) on test band. Fifty-nine consecutive patients with unilateral deafness after translabyrintine removal of an acoustic neuroma, treated in Denmark in 2001 and 2002, were included. The patients were asked to complete a questionnaire, which addressed the subjective handicap of unilateral deafness; 90% responded. These patients were invited to test the BAHA on test band, and the subjective and objective effects were recorded. Eighty percent of the patients thought that they had a subjective hearing handicap of some significance. However, only 50% accepted the invitation to test the BAHA. The overall subjective effect was positive, and a significant improvement in speech discrimination in noise with the BAHA was demonstrated. After the test, however, only about 50%, that is, 25% of all patients wished implantation for BAHA treatment. This study shows that unilateral deafness after acoustic neuroma surgery is thought as a handicap in most of the patients and confirms that treatment with the BAHA has positive subjective effects and improves speech discrimination in noise. However, only 25% of the patients wished implantation for BAHA treatment. The implications of these findings are discussed. Data from centers that perform simultaneous acoustic neuroma surgery and implantation for BAHA are necessary for firm conclusions.
Acoustic Analysis and Design of the E-STA MSA Simulator
NASA Technical Reports Server (NTRS)
Bittinger, Samantha A.
2016-01-01
The Orion European Service Module Structural Test Article (E-STA) Acoustic Test was completed in May 2016 to verify that the European Service Module (ESM) can withstand qualification acoustic environments. The test article required an aft closeout to simulate the Multi-Purpose Crew Vehicle (MPCV) Stage Adapter (MSA) cavity, however, the flight MSA design was too cost-prohibitive to build. NASA Glenn Research Center (GRC) had 6 months to design an MSA Simulator that could recreate the qualification prediction MSA cavity sound pressure level to within a reasonable tolerance. This paper summarizes the design and analysis process to arrive at a design for the MSA Simulator, and then compares its performance to the final prediction models created prior to test.
NASA Astrophysics Data System (ADS)
Azmi, Asrul Izam; Raju, Raju; Peng, Gang-Ding
2012-02-01
This paper reports an application of phase shifted fiber Bragg grating (PS-FBG) intensity-type acoustic sensor in a continuous and in-situ failure testing of an E-glass/vinylester top hat stiffener (THS). The narrow transmission channel of the PS-FBG is highly sensitive to small perturbation, hence suitable to be used in an effective acoustic emission (AE) assessment technique. The progressive failure of THS was tested under transverse loading to experimentally simulate the actual loading in practice. Our experimental tests have demonstrated, in good agreement with the commercial piezoelectric sensors, that the important failures information of the THS was successfully recorded by the simple intensity-type PS-FBG sensor.
NASA Technical Reports Server (NTRS)
Dahl, Milo D.; Woodward, Richard P.
1990-01-01
The test section of the NASA Lewis 9- by 15-Foot Low-Speed Wind Tunnel was acoustically treated to allow the measurement of sound under simulated free-field conditions. The treatment was designed for high sound absorption at frequencies above 250 Hz and for withstanding the environmental conditions in the test section. In order to achieve the design requirements, a fibrous, bulk-absorber material was packed into removable panel sections. Each section was divided into two equal-depth layers packed with material to different bulk densities. The lower density was next to the facing of the treatment. The facing consisted of a perforated plate and screening material layered together. Sample tests for normal-incidence acoustic absorption were also conducted in an impedance tube to provide data to aid in the treatment design. Tests with no airflow, involving the measurement of the absorptive properties of the treatment installed in the 9- by 15-foot wind tunnel test section, combined the use of time-delay spectrometry with a previously established free-field measurement method. This new application of time-delay spectrometry enabled these free-field measurements to be made in nonanechoic conditions. The results showed that the installed acoustic treatment had absorption coefficients greater than 0.95 over the frequency range 250 Hz to 4 kHz. The measurements in the wind tunnel were in good agreement with both the analytical prediction and the impedance tube test data.
NASA Technical Reports Server (NTRS)
1979-01-01
The performance test results of the final under-the-wing engine configuration are presented. One hundred and six hours of engine operation were completed, including mechanical and performance checkout, baseline acoustic testing with a bellmouth inlet, reverse thrust testing, acoustic technology tests, and limited controls testing. The engine includes a variable pitch fan having advanced composite fan blades and using a ball-spline pitch actuation system.
Detection of impulsive sources from an aerostat-based acoustic array data collection system
NASA Astrophysics Data System (ADS)
Prather, Wayne E.; Clark, Robert C.; Strickland, Joshua; Frazier, Wm. Garth; Singleton, Jere
2009-05-01
An aerostat based acoustic array data collection system was deployed at the NATO TG-53 "Acoustic Detection of Weapon Firing" Joint Field Experiment conducted in Bourges, France during the final two weeks of June 2008. A variety of impulsive sources including mortar, artillery, gunfire, RPG, and explosive devices were fired during the test. Results from the aerostat acoustic array will be presented against the entire range of sources.
Turbofan aft duct suppressor study. Contractor's data report of mode probe signal data
NASA Technical Reports Server (NTRS)
Fiske, G. H.; Motsinger, R. E.; Syed, A. A.; Joshi, M. C.; Kraft, R. E.
1983-01-01
Acoustic modal distributions were measured in a fan test model having an annular exhaust duct for comparison with theoretically predicted acoustic suppression values. This report contains the amplitude and phase data of the acoustic signals sensed by the transducers of the two mode probes employed in the measurement. Each mode probe consisted of an array of 12 transducers sensing the acoustic field at three axial positions and four radial positions.
Shuttle payload vibroacoustic test plan evaluation
NASA Technical Reports Server (NTRS)
Stahle, C. V.; Gongloff, H. R.; Young, J. P.; Keegan, W. B.
1977-01-01
Statistical decision theory is used to evaluate seven alternate vibro-acoustic test plans for Space Shuttle payloads; test plans include component, subassembly and payload testing and combinations of component and assembly testing. The optimum test levels and the expected cost are determined for each test plan. By including all of the direct cost associated with each test plan and the probabilistic costs due to ground test and flight failures, the test plans which minimize project cost are determined. The lowest cost approach eliminates component testing and maintains flight vibration reliability by performing subassembly tests at a relatively high acoustic level.
The Shock and Vibration Bulletin. Part 3. Skylab, Vibration Testing and Analysis
1973-06-01
Zft- ,Instrument Unit - (Acoustic Test Only) -orward Compartment Crew Ouarters Meteoroid Shield IntertageTACS Spheres (Acoustic Tesi - Radiator...weighs more than the lower floor. You Mru ertes: You hadn’t flown this struc- might feel that since the analysis approach wasconfirmed on the upper floor
Noise can affect acoustic communication and subsequent spawning success in fish.
de Jong, Karen; Amorim, M Clara P; Fonseca, Paulo J; Fox, Clive J; Heubel, Katja U
2018-06-01
There are substantial concerns that increasing levels of anthropogenic noise in the oceans may impact aquatic animals. Noise can affect animals physically, physiologically and behaviourally, but one of the most obvious effects is interference with acoustic communication. Acoustic communication often plays a crucial role in reproductive interactions and over 800 species of fish have been found to communicate acoustically. There is very little data on whether noise affects reproduction in aquatic animals, and none in relation to acoustic communication. In this study we tested the effect of continuous noise on courtship behaviour in two closely-related marine fishes: the two-spotted goby (Gobiusculus flavescens) and the painted goby (Pomatoschistus pictus) in aquarium experiments. Both species use visual and acoustic signals during courtship. In the two-spotted goby we used a repeated-measures design testing the same individuals in the noise and the control treatment, in alternating order. For the painted goby we allowed females to spawn, precluding a repeated-measures design, but permitting a test of the effect of noise on female spawning decisions. Males of both species reduced acoustic courtship, but only painted gobies also showed less visual courtship in the noise treatment compared to the control. Female painted gobies were less likely to spawn in the noise treatment. Thus, our results provide experimental evidence for negative effects of noise on acoustic communication and spawning success. Spawning is a crucial component of reproduction. Therefore, even though laboratory results should not be extrapolated directly to field populations, our results suggest that reproductive success may be sensitive to noise pollution, potentially reducing fitness. Copyright © 2017 Elsevier Ltd. All rights reserved.
Fracture process zone in granite
Zang, A.; Wagner, F.C.; Stanchits, S.; Janssen, C.; Dresen, G.
2000-01-01
In uniaxial compression tests performed on Aue granite cores (diameter 50 mm, length 100 mm), a steel loading plate was used to induce the formation of a discrete shear fracture. A zone of distributed microcracks surrounds the tip of the propagating fracture. This process zone is imaged by locating acoustic emission events using 12 piezoceramic sensors attached to the samples. Propagation velocity of the process zone is varied by using the rate of acoustic emissions to control the applied axial force. The resulting velocities range from 2 mm/s in displacement-controlled tests to 2 ??m/s in tests controlled by acoustic emission rate. Wave velocities and amplitudes are monitored during fault formation. P waves transmitted through the approaching process zone show a drop in amplitude of 26 dB, and ultrasonic velocities are reduced by 10%. The width of the process zone is ???9 times the grain diameter inferred from acoustic data but is only 2 times the grain size from optical crack inspection. The process zone of fast propagating fractures is wider than for slow ones. The density of microcracks and acoustic emissions increases approaching the main fracture. Shear displacement scales linearly with fracture length. Fault plane solutions from acoustic events show similar orientation of nodal planes on both sides of the shear fracture. The ratio of the process zone width to the fault length in Aue granite ranges from 0.01 to 0.1 inferred from crack data and acoustic emissions, respectively. The fracture surface energy is estimated from microstructure analysis to be ???2 J. A lower bound estimate for the energy dissipated by acoustic events is 0.1 J. Copyright 2000 by the American Geophysical Union.
Traversing Microphone Track Installed in NASA Lewis' Aero-Acoustic Propulsion Laboratory Dome
NASA Technical Reports Server (NTRS)
Bauman, Steven W.; Perusek, Gail P.
1999-01-01
The Aero-Acoustic Propulsion Laboratory is an acoustically treated, 65-ft-tall dome located at the NASA Lewis Research Center. Inside this laboratory is the Nozzle Acoustic Test Rig (NATR), which is used in support of Advanced Subsonics Technology (AST) and High Speed Research (HSR) to test engine exhaust nozzles for thrust and acoustic performance under simulated takeoff conditions. Acoustic measurements had been gathered by a far-field array of microphones located along the dome wall and 10-ft above the floor. Recently, it became desirable to collect acoustic data for engine certifications (as specified by the Federal Aviation Administration (FAA)) that would simulate the noise of an aircraft taking off as heard from an offset ground location. Since nozzles for the High-Speed Civil Transport have straight sides that cause their noise signature to vary radially, an additional plane of acoustic measurement was required. Desired was an arched array of 24 microphones, equally spaced from the nozzle and each other, in a 25 off-vertical plane. The various research requirements made this a challenging task. The microphones needed to be aimed at the nozzle accurately and held firmly in place during testing, but it was also essential that they be easily and routinely lowered to the floor for calibration and servicing. Once serviced, the microphones would have to be returned to their previous location near the ceiling. In addition, there could be no structure could between the microphones and the nozzle, and any structure near the microphones would have to be designed to minimize noise reflections. After many concepts were considered, a single arched truss structure was selected that would be permanently affixed to the dome ceiling and to one end of the dome floor.
A screening approach for classroom acoustics using web-based listening tests and subjective ratings.
Persson Waye, Kerstin; Magnusson, Lennart; Fredriksson, Sofie; Croy, Ilona
2015-01-01
Perception of speech is crucial in school where speech is the main mode of communication. The aim of the study was to evaluate whether a web based approach including listening tests and questionnaires could be used as a screening tool for poor classroom acoustics. The prime focus was the relation between pupils' comprehension of speech, the classroom acoustics and their description of the acoustic qualities of the classroom. In total, 1106 pupils aged 13-19, from 59 classes and 38 schools in Sweden participated in a listening study using Hagerman's sentences administered via Internet. Four listening conditions were applied: high and low background noise level and positions close and far away from the loudspeaker. The pupils described the acoustic quality of the classroom and teachers provided information on the physical features of the classroom using questionnaires. In 69% of the classes, at least three pupils described the sound environment as adverse and in 88% of the classes one or more pupil reported often having difficulties concentrating due to noise. The pupils' comprehension of speech was strongly influenced by the background noise level (p<0.001) and distance to the loudspeakers (p<0.001). Of the physical classroom features, presence of suspended acoustic panels (p<0.05) and length of the classroom (p<0.01) predicted speech comprehension. Of the pupils' descriptions of acoustic qualities, clattery significantly (p<0.05) predicted speech comprehension. Clattery was furthermore associated to difficulties understanding each other, while the description noisy was associated to concentration difficulties. The majority of classrooms do not seem to have an optimal sound environment. The pupil's descriptions of acoustic qualities and listening tests can be one way of predicting sound conditions in the classroom.
Challenges in Rotorcraft Acoustic Flight Prediction and Validation
NASA Technical Reports Server (NTRS)
Boyd, D. Douglas, Jr.
2003-01-01
Challenges associated with rotorcraft acoustic flight prediction and validation are examined. First, an outline of a state-of-the-art rotorcraft aeroacoustic prediction methodology is presented. Components including rotorcraft aeromechanics, high resolution reconstruction, and rotorcraft acoustic prediction arc discussed. Next, to illustrate challenges and issues involved, a case study is presented in which an analysis of flight data from a specific XV-15 tiltrotor acoustic flight test is discussed in detail. Issues related to validation of methodologies using flight test data are discussed. Primary flight parameters such as velocity, altitude, and attitude are discussed and compared for repeated flight conditions. Other measured steady state flight conditions are examined for consistency and steadiness. A representative example prediction is presented and suggestions are made for future research.
9x15 Low Speed Wind Tunnel Improvements Update
NASA Technical Reports Server (NTRS)
Stephens, David
2017-01-01
The 9- by 15-Foot Low Speed Wind Tunnel (9x15 LSWT) at NASA Glenn Research Center was built in 1969 in the return leg of the 8- by 6-Foot Supersonic Wind Tunnel (8x6 SWT). The 9x15 LSWT was designed for performance testing of VSTOL aircraft models, but with the addition of the current acoustic treatment in 1986 the tunnel been used principally for acoustic and performance testing of aircraft propulsion systems. The present document describes an anticipated acoustic upgrade to be completed in 2018.
NASA Technical Reports Server (NTRS)
Clemons, A.; Hehmann, H.; Radecki, K.
1973-01-01
Acoustic treatment was developed for jet engine turbine noise suppression. Acoustic impedance and duct transmission loss measurements were made for various suppression systems. An environmental compatibility study on several material types having suppression characteristics is presented. Two sets of engine hardware were designed and are described along with engine test results which include probe, farfield, near field, and acoustic directional array data. Comparisons of the expected and the measured suppression levels are given as well as a discussion of test results and design techniques.
Teaching Acoustic Properties of Materials in Secondary School: Testing Sound Insulators
ERIC Educational Resources Information Center
Hernandez, M. I.; Couso, D.; Pinto, R.
2011-01-01
Teaching the acoustic properties of materials is a good way to teach physics concepts, extending them into the technological arena related to materials science. This article describes an innovative approach for teaching sound and acoustics in combination with sound insulating materials in secondary school (15-16-year-old students). Concerning the…
Differential Distraction Effects in Short-Term and Long-Term Retention of Pictures and Words
ERIC Educational Resources Information Center
Pellegrino, James W.; And Others
1976-01-01
Comparisons between recall levels following simple acoustic or visual tasks and the simultaneous visual-plus-acoustic task are not based upon equivalent amounts of interference within each modality. This research attempts to test more precisely the relationship between visual and acoustic interference by using a sequential rather than a…
NASA Technical Reports Server (NTRS)
Van Zante, Dale E.; Rizzi, Stephen A.
2016-01-01
The ERA project executed a comprehensive test program for Open Rotor aerodynamic and acoustic performance. System studies used the data to estimate the fuel burn savings and acoustic margin for an aircraft system with open rotor propulsion. The acoustic measurements were used to produce an auralization that compares the legacy blades to the current generation of open rotor designs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harding, Samuel F.; Sellar, Brian; Richmond, Marshall C.
An array of single-beam acoustic Doppler profilers has been developed for the high resolution measurement of three-dimensional tidal flow velocities and subsequently tested in an energetic tidal site. This configuration has been developed to increase spatial resolution of velocity measurements in comparison to conventional acoustic Doppler profilers (ADPs) which characteristically use divergent acoustic beams emanating from a single instrument. This is achieved using geometrically convergent acoustic beams creating a sample volume at the focal point of 0.03 m3. Away from the focal point, the array is also able to simultaneously reconstruct three-dimensional velocity components in a profile throughout the watermore » column, and is referred to herein as a convergent-beam acoustic Doppler profiler (C-ADP). Mid-depth profiling is achieved through integration of the sensor platform with the operational commercial-scale Alstom 1MW DeepGen-IV Tidal Turbine deployed at the European Marine Energy Center, Orkney Isles, UK. This proof-of-concept paper outlines the C-ADP system configuration and comparison to measurements provided by co-installed reference instrumentation.« less
Effect of inlet disturbances on fan inlet noise during a static test
NASA Technical Reports Server (NTRS)
Bekofske, K. L.; Sheer, R. E., Jr.; Wang, J. C. F.
1977-01-01
Measurements of fan rotor inlet noise taken during static test situations are at variance with aircraft engine flight data. In particular, static tests generally yield a significantly higher tone at blade passage frequency than that measured during flight. To explain this discrepancy, the extent of the influence of inlet ground vortices and large-scale inlet turbulence on the forward-radiated fan noise measured at a static test facility was investigated. While such inlet disturbances were generated intentionally in an anechoic test chamber, far-field acoustic measurements and inlet flow-field hot-film mappings of a fan rotor were obtained. Experimental results indicate that the acoustic effect of such disturbances appears to be less severe for supersonic than for subsonic tip speeds. Further, a reverse flow that occurs on the exterior cowl in static test facilities appears to be an additional prime candidate for creating inlet disturbances and causing variance between flight and static acoustic data.
Ultrasonic nondestructive testing of composite materials using disturbed coincidence conditions
NASA Astrophysics Data System (ADS)
Bause, F.; Olfert, S.; Schröder, A.; Rautenberg, J.; Henning, B.; Moritzer, E.
2012-05-01
In this contribution we present a new method detecting changes in the composite material's acoustic behavior by analyzing disturbed coincidence conditions on plate-like test samples. The coincidence condition for an undamaged GFRP test sample has been experimentally identified using Schlieren measurements. Disturbances of this condition follow from a disturbed acoustic behavior of the test sample which is an indicator for local damages in the region inspected. An experimental probe has been realized consisting of two piezoceramic elements adhered to the nonparallel sides of an isosceles trapezoidal body made of silicone. The base angles of the trapezoidal body have been chosen such that the incident wave meets pre-measured condition of coincidence. The receiving element receives the geometric reflection of the acoustic wave scattered at the test sample's surface which corresponds to the non-coupled part of the incident wave as send by the sending element. Analyzing the transfer function or impulse response of the electro-acoustic system (transmitter, scattering at test sample, receiver), it is possible to detect local disturbances with respect to Cramer's coincidence rule. Thus, it is possible to realize a very simple probe for local ultrasonic nondestructive testing of composite materials (as well as non-composite material) which can be integrated in a small practical device and is good for small size inspection areas.
Assessment of corrosion fatigue damage by acoustic emission and periodic proof tests
NASA Astrophysics Data System (ADS)
Mehdizadeh, P.
1976-03-01
The development of a better nondestructive inspection method for detecting corrosion fatigue damage based on acoustic emission (AE) and periodic proof testing (PPT) is studied for corrosion fatigue tests in salt water solution under tension-tension loading. It is shown that PPT combined with AE monitoring can be a sensitive method for assessing the progress of corrosion fatigue damage as the continuous AE monitoring method. The AE-PPT technique is shown to be dependent on the geometry and size of the crack relative to the test specimen. A qualitative method based on plateauing of acoustic emission counts during proof tests due to changes in the fracture mode is used to predict the remaining fatigue life up to 70% of the actual values. PPT is shown to have no adverse effect on fatigue performance in salt water.
Acoustic velocity measurements in materials using a regenerative method
Laine, Edwin F.
1986-01-01
Acoustic energy is propagated through earth material between an electro-acoustic generator and a receiver which converts the received acoustic energy into electrical signals. A closed loop is formed by a variable gain amplifier system connected between the receiver and the generator. The gain of the amplifier system is increased until sustained oscillations are produced in the closed loop. The frequency of the oscillations is measured as an indication of the acoustic propagation velocity through the earth material. The amplifier gain is measured as an indication of the acoustic attenuation through the earth materials. The method is also applicable to the non-destructive testing of structural materials, such as steel, aluminum and concrete.
Location of acoustic emission sources generated by air flow
Kosel; Grabec; Muzic
2000-03-01
The location of continuous acoustic emission sources is a difficult problem of non-destructive testing. This article describes one-dimensional location of continuous acoustic emission sources by using an intelligent locator. The intelligent locator solves a location problem based on learning from examples. To verify whether continuous acoustic emission caused by leakage air flow can be located accurately by the intelligent locator, an experiment on a thin aluminum band was performed. Results show that it is possible to determine an accurate location by using a combination of a cross-correlation function with an appropriate bandpass filter. By using this combination, discrete and continuous acoustic emission sources can be located by using discrete acoustic emission sources for locator learning.
Acoustic-velocity measurements in materials using a regenerative method
Laine, E.F.
1982-09-30
Acoustic energy is propatated through earth material between an electro-acoustic generator and a receiver which converts the received acoustic energy into electrical signals. A closed loop is formed by a variable gain amplifier system connected between the receiver and the generator. The gain of the amplifier system is increased until sustained oscillations are produced in the closed loop. The frequency of the oscillations is measured as an indication of the acoustic propagation velocity through the earth material. The amplifier gain is measured as an indication of the acoustic attenuation through the earth materials. The method is also applicable to the non-destructive testing of structural materials, such as steel, aluminum and concrete.
NASA Technical Reports Server (NTRS)
1981-01-01
A device for testing composites for strength characteristics has been developed by Acoustic Emission Technology Corporation. Called the Model 206AU, the system is lightweight and portable. It is comprised of three sections. The "pulser" section injects ultrasonic waves into the material under test. A receiver picks up the simulated stress waves as they pass through the material and relays the signals to the acoustic emission section, where they are electronically analyzed.
Acoustic analysis of the composition of human blood serum
NASA Astrophysics Data System (ADS)
Gurbatov, S. N.; Demin, I. Yu.; Klemina, A. V.; Klemin, V. A.
2009-10-01
New acoustic methods of determining total protein, protein fractions, and lipid components of the human blood serum are presented. Acoustic methods are based on high-precision measurements of velocity and temperature dependences and frequency and temperature dependences of ultrasound absorption. Acoustic characteristics of the blood serum were measured using the method of a fixed length interferometer in acoustic cells ˜80 mcl in volume in the temperature range from 15 to 40°C and the 4-9 MHz frequency range with the acoustic analyzer developed by BIOM company. An error in measuring ultrasound velocity in the blood serum was 3 × 10-5; that of absorption, 2 × 10-2. The developed acoustic methods were clinically tested and recommended for application at clinical diagnostic laboratories with RF treatment-and-prophylactics establishments.
System level mechanical testing of the Clementine spacecraft
NASA Technical Reports Server (NTRS)
Haughton, James; Hauser, Joseph; Raynor, William; Lynn, Peter
1994-01-01
This paper discusses the system level structural testing that was performed to qualify the Clementine Spacecraft for flight. These tests included spin balance, combined acoustic and axial random vibration, lateral random vibration, quasi-static loads, pyrotechnic shock, modal survey and on-orbit jitter simulation. Some innovative aspects of this effort were: the simultaneously combined acoustic and random vibration test; the mass loaded interface modal survey test; and the techniques used to assess how operating on board mechanisms and thrusters affect sensor vision.
Acoustic results from tests of a 36-inch (0.914 m) diameter statorless lift fan
NASA Technical Reports Server (NTRS)
Stimpert, D. L.
1973-01-01
A statorless, turbotip lift fan was tested statically outdoors to determine its acoustic characteristics. Spectral and directivity results are presented with comparison to data from the same family of lift fan designs having stator vanes. Modifications to the fan were tested to evaluate circular inlet guide vanes and exhaust treatment. A comparison was made of results obtained at General Electric Edwards Flight Test Center and NASA Ames Research Center with regards to test data and differences in site characteristics.
Tracking and Characterization of Aircraft Wakes Using Acoustic and Lidar Measurements
NASA Technical Reports Server (NTRS)
Booth, Earl R., Jr.; Humphreys, William M., Jr.
2005-01-01
Data from the 2003 Denver International Airport Wake Acoustics Test are further examined to discern spectral content of aircraft wake signatures, and to compare three dimensional wake tracking from acoustic data to wake tracking data obtained through use of continuous wave and pulsed lidar. Wake tracking data derived from acoustic array data agree well with both continuous wave and pulsed lidar in the horizontal plane, but less well with pulsed lidar in the vertical direction. Results from this study show that the spectral distribution of acoustic energy in a wake signature varies greatly with aircraft type.
Nondestructive online testing method for friction stir welding using acoustic emission
NASA Astrophysics Data System (ADS)
Levikhina, Anastasiya
2017-12-01
The paper reviews the possibility of applying the method of acoustic emission for online monitoring of the friction stir welding process. It is shown that acoustic emission allows the detection of weld defects and their location in real time. The energy of an acoustic signal and the median frequency are suggested to be used as informative parameters. The method of calculating the median frequency with the use of a short time Fourier transform is applied for the identification of correlations between the defective weld structure and properties of the acoustic emission signals received during welding.
The acoustic vector sensor: a versatile battlefield acoustics sensor
NASA Astrophysics Data System (ADS)
de Bree, Hans-Elias; Wind, Jelmer W.
2011-06-01
The invention of the Microflown sensor has made it possible to measure acoustic particle velocity directly. An acoustic vector sensor (AVS) measures the particle velocity in three directions (the source direction) and the pressure. The sensor is a uniquely versatile battlefield sensor because its size is a few millimeters and it is sensitive to sound from 10Hz to 10kHz. This article shows field tests results of acoustic vector sensors, measuring rifles, heavy artillery, fixed wing aircraft and helicopters. Experimental data shows that the sensor is suitable as a ground sensor, mounted on a vehicle and on a UAV.
... movements. Any disease or injury that damages the acoustic nerve can cause vertigo. This may include: Blood ... conditions under which the test may be performed: Acoustic neuroma Benign positional vertigo Labyrinthitis Meniere disease
Characterization Test Report for the Mnemonics-UCS Wireless Surface Acoustic Wave Sensor System
NASA Technical Reports Server (NTRS)
Duncan, Joshua J.; Youngquist, Robert C.
2013-01-01
The scope of this testing includes the Surface Acoustic Wave Sensor System delivered to KSC: two interrogator (transceiver) systems, four temperature sensors, with wooden mounting blocks, two antennas, two power supplies, network cables, and analysis software. Also included are a number of additional temperature sensors and newly-developed hydrogen sensors
Design, fabrication and testing of a 5-Hz acoustic exciter system
NASA Technical Reports Server (NTRS)
Lundy, D. H.; Robinson, G. D.
1973-01-01
A 5-Hz acoustic excitation system was designed, fabricated and checked out for use in the modulation of a stagnant gas volume contained in an absorption cell. A detailed system description of the test equipment, both mechanical and electronic, and an operating procedure are included. Conclusions are also presented.
Aural Acoustic Stapedius-Muscle Reflex Threshold Procedures to Test Human Infants and Adults.
Keefe, Douglas H; Feeney, M Patrick; Hunter, Lisa L; Fitzpatrick, Denis F
2017-02-01
Power-based procedures are described to measure acoustic stapedius-muscle reflex threshold and supra-threshold responses in human adult and infant ears at frequencies from 0.2 to 8 kHz. The stimulus set included five clicks in which four pulsed activators were placed between each pair of clicks, with each stimulus set separated from the next by 0.79 s to allow for reflex decay. Each click response was used to detect the presence of reflex effects across frequency that were elicited by a pulsed broadband-noise or tonal activator in the ipsilateral or contralateral test ear. Acoustic reflex shifts were quantified in terms of the difference in absorbed sound power between the initial baseline click and the later four clicks in each set. Acoustic reflex shifts were measured over a 40-dB range of pulsed activators, and the acoustic reflex threshold was objectively calculated using a maximum 10 likelihood procedure. To illustrate the principles underlying these new reflex tests, reflex shifts in absorbed sound power and absorbance are presented for data acquired in an adult ear with normal hearing and in two infant ears in the initial and follow-up newborn hearing screening exams, one with normal hearing and the other with a conductive hearing loss. The use of absorbed sound power was helpful in classifying an acoustic reflex shift as present or absent. The resulting reflex tests are in use in a large study of wideband clinical diagnosis and monitoring of middle-ear and cochlear function in infant and adult ears.
NASA Technical Reports Server (NTRS)
Cole, T. W.; Rathburn, E. A.
1974-01-01
A static acoustic and propulsion test of a small radius Jacobs-Hurkamp and a large radius Flex Flap combined with four upper surface blowing (USB) nozzles was performed. Nozzle force and flow data, flap trailing edge total pressure survey data, and acoustic data were obtained. Jacobs-Hurkamp flap surface pressure data, flow visualization photographs, and spoiler acoustic data from the limited mid-year tests are reported. A pressure ratio range of 1.2 to 1.5 was investigated for the USB nozzles and for the auxiliary blowing slots. The acoustic data were scaled to a four-engine STOL airplane of roughly 110,000 kilograms or 50,000 pounds gross weight, corresponding to a model scale of approximately 0.2 for the nozzles without deflector. The model nozzle scale is actually reduced to about .17 with deflector although all results in this report assume 0.2 scale factor. Trailing edge pressure surveys indicated that poor flow attachment was obtained even at large flow impingement angles unless a nozzle deflector plate was used. Good attachment was obtained with the aspect ratio four nozzle with deflector, confirming the small scale wind tunnel tests.
NASA Technical Reports Server (NTRS)
Atvars, J.; Paynter, G. C.; Walker, D. Q.; Wintermeyer, C. F.
1974-01-01
An experimental program comprising model nozzle and full-scale engine tests was undertaken to acquire parametric data for acoustically lined ejectors applied to primary jet noise suppression. Ejector lining design technology and acoustical scaling of lined ejector configurations were the major objectives. Ground static tests were run with a J-75 turbojet engine fitted with a 37-tube, area ratio 3.3 suppressor nozzle and two lengths of ejector shroud (L/D = 1 and 2). Seven ejector lining configurations were tested over the engine pressure ratio range of 1.40 to 2.40 with corresponding jet velocities between 305 and 610 M/sec. One-fourth scale model nozzles were tested over a pressure ratio range of 1.40 to 4.0 with jet total temperatures between ambient and 1088 K. Scaling of multielement nozzle ejector configurations was also studied using a single element of the nozzle array with identical ejector lengths and lining materials. Acoustic far field and near field data together with nozzle thrust performance and jet aerodynamic flow profiles are presented.
NASA Astrophysics Data System (ADS)
Mullen, Kaitlyn Allen
North Atlantic right whales (Eubalaena glacialis ) are among the world's most endangered cetaceans. Although protected from commercial whaling since 1949, North Atlantic right whales exhibit little to no population growth. Ship strike mortality is the leading known cause of North Atlantic right whale mortality. North Atlantic right whales exhibit developed auditory systems, and vocalize in the frequency range that dominates ship acoustic signatures. With no behavioral audiogram published, current literature assumes these whales should be able to acoustically detect signals in the same frequencies they vocalize. Recorded ship acoustic signatures occur at intensities that are similar or higher to those recorded by vocalizing North Atlantic right whales. If North Atlantic right whales are capable of acoustically detecting oncoming ship, why are they susceptible to ship strike mortality? This thesis models potential acoustic impediments to North Atlantic right whale detection of oncoming ships, and concludes the presence of modeled and observed bow null effect acoustic shadow zones, located directly ahead of oncoming ships, are likely to impair the ability of North Atlantic right whales to detect and/or localize oncoming shipping traffic. This lack of detection and/or localization likely leads to a lack of ship strike avoidance, and thus contributes to the observed high rates of North Atlantic right whale ship strike mortality. I propose that North Atlantic right whale ship strike mortality reduction is possible via reducing and/or eliminating the presence of bow null effect acoustic shadow zones. This thesis develops and tests one method for bow null effect acoustic shadow zone reduction on five ships. Finally, I review current United States policy towards North Atlantic right whale ship strike mortality in an effort to determine if the bow null effect acoustic shadow zone reduction method developed is a viable method for reducing North Atlantic right whale ship strike mortality within United States waters. I recommend that future work include additional prototype modifications and testing, application for a marine mammal scientific take authorization permit to test the modified prototype on multiple mysticete species, and continued interfacing of the prototype with evolving United States North Atlantic right whale ship strike reduction policies.
Acoustic constituents of prosodic typology
NASA Astrophysics Data System (ADS)
Komatsu, Masahiko
Different languages sound different, and considerable part of it derives from the typological difference of prosody. Although such difference is often referred to as lexical accent types (stress accent, pitch accent, and tone; e.g. English, Japanese, and Chinese respectively) and rhythm types (stress-, syllable-, and mora-timed rhythms; e.g. English, Spanish, and Japanese respectively), it is unclear whether these types are determined in terms of acoustic properties, The thesis intends to provide a potential basis for the description of prosody in terms of acoustics. It argues for the hypothesis that the source component of the source-filter model (acoustic features) approximately corresponds to prosody (linguistic features) through several experimental-phonetic studies. The study consists of four parts. (1) Preliminary experiment: Perceptual language identification tests were performed using English and Japanese speech samples whose frequency spectral information (i.e. non-source component) is heavily reduced. The results indicated that humans can discriminate languages with such signals. (2) Discussion on the linguistic information that the source component contains: This part constitutes the foundation of the argument of the thesis. Perception tests of consonants with the source signal indicated that the source component carries the information on broad categories of phonemes that contributes to the creation of rhythm. (3) Acoustic analysis: The speech samples of Chinese, English, Japanese, and Spanish, differing in prosodic types, were analyzed. These languages showed difference in acoustic characteristics of the source component. (4) Perceptual experiment: A language identification test for the above four languages was performed using the source signal with its acoustic features parameterized. It revealed that humans can discriminate prosodic types solely with the source features and that the discrimination is easier as acoustic information increases. The series of studies showed the correspondence of the source component to prosodic features. In linguistics, prosodic types have not been discussed purely in terms of acoustics; they are usually related to the function of prosody or phonological units such as phonemes. The present thesis focuses on acoustics and makes a contribution to establishing the crosslinguistic description system of prosody.
The Use of Structural-Acoustic Techniques to Assess Potential Structural Damage From Sonic Booms
NASA Technical Reports Server (NTRS)
Garrelick, Joel; Martini, Kyle
1996-01-01
The potential impact of supersonic operations includes structural damage from the sonic boom overpressure. This paper describes a study of how structural-acoustic modeling and testing techniques may be used to assess the potential for such damage in the absence of actual flyovers. Procedures are described whereby transfer functions relating structural response to sonic boom signature may be obtained with a stationary acoustic source and appropriate data processing. Further, by invoking structural-acoustic reciprocity, these transfer functions may also be acquired by measuring the radiated sound from the structure under a mechanical drive. The approach is based on the fundamental assumption of linearity, both with regard to the (acoustic) propagation of the boom in the vicinity of the structure and to the structure's response. Practical issues revolve around acoustic far field and source directivity requirements. The technique was implemented on a specially fabricated test structure at Edwards AFB, CA with the support of Wyle Laboratories, Inc. Blank shots from a cannon served as our acoustic source and taps from an instrumented hammer generated the mechanical drive. Simulated response functions were constructed. Results of comparisons with corresponding measurements recorded during dedicated supersonic flyovers with F-15 aircraft are presented for a number of sensor placements.
Acoustics Research of Propulsion Systems
NASA Technical Reports Server (NTRS)
Gao, Ximing; Houston, Janice
2014-01-01
The liftoff phase induces high acoustic loading over a broad frequency range for a launch vehicle. These external acoustic environments are used in the prediction of the internal vibration responses of the vehicle and components. Present liftoff vehicle acoustic environment prediction methods utilize stationary data from previously conducted hold-down tests to generate 1/3 octave band Sound Pressure Level (SPL) spectra. In an effort to update the accuracy and quality of liftoff acoustic loading predictions, non-stationary flight data from the Ares I-X were processed in PC-Signal in two flight phases: simulated hold-down and liftoff. In conjunction, the Prediction of Acoustic Vehicle Environments (PAVE) program was developed in MATLAB to allow for efficient predictions of sound pressure levels (SPLs) as a function of station number along the vehicle using semi-empirical methods. This consisted of generating the Dimensionless Spectrum Function (DSF) and Dimensionless Source Location (DSL) curves from the Ares I-X flight data. These are then used in the MATLAB program to generate the 1/3 octave band SPL spectra. Concluding results show major differences in SPLs between the hold-down test data and the processed Ares I-X flight data making the Ares I-X flight data more practical for future vehicle acoustic environment predictions.
Design and first tests of an acoustic positioning and detection system for KM3NeT
NASA Astrophysics Data System (ADS)
Simeone, F.; Ameli, F.; Ardid, M.; Bertin, V.; Bonori, M.; Bou-Cabo, M.; Calì, C.; D'Amico, A.; Giovanetti, G.; Imbesi, M.; Keller, P.; Larosa, G.; Llorens, C. D.; Masullo, R.; Randazzo, N.; Riccobene, G.; Speziale, F.; Viola, S.; KM3NeT Consortium
2012-01-01
In a deep-sea neutrino telescope it is mandatory to locate the position of the optical sensors with a precision of about 10 cm. To achieve this requirement, an innovative Acoustic Positioning System (APS) has been designed in the frame work of the KM3NeT neutrino telescope. The system will also be able to provide an acoustic guide during the deployment of the telescope’s components and seafloor infrastructures (junction boxes, cables, etc.). A prototype of the system based on the successful acoustic systems of ANTARES and NEMO is being developed. It will consist of an array of hydrophones and a network of acoustic transceivers forming the Long Baseline. All sensors are connected to the telescope data acquisition system and are in phase and synchronised with the telescope master clock. Data from the acoustic sensors, continuously sampled at 192 kHz, will be sent to shore where signal recognition and analysis will be carried out. The design and first tests of the system elements will be presented. This new APS is expected to have better precision compared to the systems used in ANTARES and NEMO, and can also be used as a real-time monitor of acoustic sources and environmental noise in deep sea.
Tip aerodynamics and acoustics test: A report and data survey
NASA Technical Reports Server (NTRS)
Cross, Jeffrey L.; Watts, Michael E.
1988-01-01
In a continuing effort to understand helicopter rotor tip aerodynamics and acoustics, a flight test was conducted by NASA Ames Research Center. The test was performed using the NASA White Cobra and a set of highly instrumented blades. All aspects of the flight test instrumentation and test procedures are explained. Additionally, complete data sets for selected test points are presented and analyzed. Because of the high volume of data acquired, only selected data points are presented. However, access to the entire data set is available to the researcher on request.
Thermal/acoustical aircraft insulation material
NASA Technical Reports Server (NTRS)
Struzik, E. A.; Kunz, R.; Lin, R.
1975-01-01
Attempts made to improve the acoustical properties of low density Fiberfrax foam, an aircraft insulation material, are reported. Characterizations were also made of the physical and thermal properties. Two methods, optimization of fiber blend composition and modification of the foam fabrication process, were examined as possible means of improving foam acoustics. Flame impingement tests were also made; results show performance was satisfactory.
2016-08-05
the analysis of data collected during the VHF acoustics test con- ducted in a wave tank at the Scripps Institution of Oceanography in October 2015...Institution of Oceanography , the co-PI on these exper- iments, undertook the design and fabrication of a new mounting mechanism to eliminate this mounting
ERIC Educational Resources Information Center
Metz, Dale Evan; And Others
1992-01-01
A preliminary scheme for estimating the speech intelligibility of hearing-impaired speakers from acoustic parameters, using a computerized artificial neural network to process mathematically the acoustic input variables, is outlined. Tests with 60 hearing-impaired speakers found the scheme to be highly accurate in identifying speakers separated by…
Effect of temperature on Acoustic Evaluation of standing trees and logs: Part 2: Field Investigation
Shan Gao; Xiping Wang; Lihai Wang; R. Bruce Allison
2013-01-01
The objectives of this study were to investigate the effect of seasonal temperature changes on acoustic velocity measured on standing trees and green logs and to develop models for compensating temperature differences because acoustic measurements are performed in different climates and seasons. Field testing was conducted on 20 red pine (Pinus resinosa...
Acoustic impact testing and waveform analysis for damage detection in glued laminated timber
Feng Xu; Xiping Wang; Marko Teder; Yunfei Liu
2017-01-01
Delamination and decay are common structural defects in old glued laminated timber (glulam) buildings, which, if left undetected, could cause severe structural damage. This paper presents a new damage detection method for glulam inspection based on moment analysis and wavelet transform (WT) of impact acoustic signals. Acoustic signals were collected from a glulam arch...
NASA Technical Reports Server (NTRS)
Wolitz, K.; Brockmann, W.; Fischer, T.
1979-01-01
Acoustic emission analysis as a quasi-nondestructive test method makes it possible to differentiate clearly, in judging the total behavior of fiber-reinforced plastic composites, between critical failure modes (in the case of unidirectional composites fiber fractures) and non-critical failure modes (delamination processes or matrix fractures). A particular advantage is that, for varying pressure demands on the composites, the emitted acoustic pulses can be analyzed with regard to their amplitude distribution. In addition, definite indications as to how the damages occurred can be obtained from the time curves of the emitted acoustic pulses as well as from the particular frequency spectrum. Distinct analogies can be drawn between the various analytical methods with respect to whether the failure modes can be classified as critical or non-critical.
OSO 8 observational limits to the acoustic coronal heating mechanism
NASA Technical Reports Server (NTRS)
Bruner, E. C., Jr.
1981-01-01
An improved analysis of time-resolved line profiles of the C IV resonance line at 1548 A has been used to test the acoustic wave hypothesis of solar coronal heating. It is shown that the observed motions and brightness fluctuations are consistent with the existence of acoustic waves. Specific account is taken of the effect of photon statistics on the observed velocities, and a test is devised to determine whether the motions represent propagating or evanescent waves. It is found that on the average about as much energy is carried upward as downward such that the net acoustic flux density is statistically consistent with zero. The statistical uncertainty in this null result is three orders of magnitue lower than the flux level needed to heat the corona.
NASA Technical Reports Server (NTRS)
Mixson, J. S.; Oneal, R. L.; Grosveld, F. W.
1984-01-01
A flight and laboratory study of sidewall acoustic treatment for cabin noise control is described. In flight, cabin noise levels were measured at six locations with three treatment configurations. Noise levels from narrow-band analysis are reduced to one-third octave format and used to calculate insertion loss, IL, defined as the reduction of interior noise associated with the addition of a treatment. Laboratory tests used a specially constructed structural panel modeled after the propeller plane section of the aircraft sidewall, and acoustic treatments representing those used in flight. Lab measured transmission loss and absorption values were combined using classical acoustic procedures to obtain a prediction of IL. Comparison with IL values measured in flight for the boundary layer component of the noise indicated general agreement.
2017-06-09
in water temperature have an effect on the behavioral ecology of hawksbill turtles, with an increase in nocturnal dive duration with decreasing water...important element of the Navy’s comprehensive environmental planning is the acoustic effects analysis executed with the Navy Acoustic Effects Model...comprehensive environmental planning is the acoustic effects analysis executed with the Navy Acoustic Effects Model (NAEMO) software. NAEMO was
Evaluation of Acoustic Emission NDE of Kevlar Composite Over Wrapped Pressure Vessels
NASA Technical Reports Server (NTRS)
Horne, Michael R.; Madaras, Eric I.
2008-01-01
Pressurization and failure tests of small Kevlar/epoxy COPV bottles were conducted during 2006 and 2007 by Texas Research Institute Austin, Inc., at TRI facilities. This is a report of the analysis of the Acoustic Emission (AE) data collected during those tests. Results of some of the tests indicate a possibility that AE can be used to track the stress-rupture degradation of COPV vessels.
Test and analysis of indoor environment of dormitories of universities in autumn
NASA Astrophysics Data System (ADS)
Chen, Shijia
2017-03-01
In this paper, the indoor thermal and humid environment, luminous environment and acoustic environment of college dormitories in Baoding are tested and conducted a questionnaire survey. From the test, the subjective feelings and the objective evaluation parameters of the students in the dormitory were obtained. At last, the differences of thermal comfort, luminous environment and acoustic environment caused by students' different living habits and adaptability were analyzed.
ARES I-X: The First Test Flight of a New Era
NASA Technical Reports Server (NTRS)
Smith, R. Marshall; Davis, Stephan R.; Bryant, Richard Barry; Cook, Steve
2010-01-01
On October 28th, 2009, the National Aeronautics and Space Administration (NASA) launched the Ares I-X Flight Test Vehicle (FTV) from pad 39B, providing the first set of flight test data for NASA's Ares I vehicle design team. This test was critical in providing insight into areas were significant design challenges existed. This paper discusses the objectives of the mission and how they were satisfied. It discusses the overall results of the flight test and look at the data retrieved from the flight. Ares I-X was highly instrumented with over 700 channels of Developmental Flight Instrumentation (DFI). Significant insight was gained in the areas of thrust oscillation, vibro-acoustics, predicting jet interactions and slag ejection from solid rocket systems with submerged nozzles. The paper outlines results from the Guidance Navigation & Control (GN&C), Thermal, Vibro-acoustic, Structures, Aero, Aero-Acoustic and Trajectory teams.
Acoustical modeling study of the open test section of the NASA Langley V/STOL wind tunnel
NASA Technical Reports Server (NTRS)
Ver, I. L.; Andersen, D. W.; Bliss, D. B.
1975-01-01
An acoustic model study was carried out to identify effective sound absorbing treatment of strategically located surfaces in an open wind tunnel test section. Also an aerodynamic study done concurrently, sought to find measures to control low frequency jet pulsations which occur when the tunnel is operated in its open test section configuration. The acoustical modeling study indicated that lining of the raised ceiling and the test section floor immediately below it, results in a substantial improvement. The aerodynamic model study indicated that: (1) the low frequency jet pulsations are most likely caused or maintained by coupling of aerodynamic and aeroacoustic phenomena in the closed tunnel circuit, (2) replacing the hard collector cowl with a geometrically identical but porous fiber metal surface of 100 mks rayls flow resistance does not result in any noticable reduction of the test section noise caused by the impingement of the turbulent flow on the cowl.
QCSEE UTW engine powered-lift acoustic performance
NASA Technical Reports Server (NTRS)
Loeffler, I. J.; Samanich, N. E.; Bloomer, H. E.
1980-01-01
Powered-lift acoustic test of the Quiet Clean Short Haul Experimental Engine (QCSEE) under the wing (UTW) engine are reported. Propulsion systems for two powered-lift concepts were designed, fabricated, and tested. In addition to low noise features, the designs included composite structures, gear-driven fans, digital control, and a variable pitch fan (UTW). The UTW engine was tested in a static ground test facility with wing and flap segments to simulate installation on a short haul transport aircraft of the future. Powered-lift acoustic performance of the UTW engine is compared with that of the previously tested and reported QCSEE over-the-wing (OTW) engine. Both engines were slightly above the noise goal but were significantly below current FAA and modern wide-body jet transport levels. The UTW system in the powered-lift mode was penalized by reflected engine noise from the wing and flap system, while the OTW system was benefitted by a wing noise shielding effect.
Helicopter rotor trailing edge noise. [noise prediction
NASA Technical Reports Server (NTRS)
Schlinker, R. H.; Amier, R. K.
1981-01-01
A two dimensional section of a helicopter main rotor blade was tested in an acoustic wind tunnel at close to full-scale Reynolds numbers to obtain boundary layer data and acoustic data for use in developing an acoustic scaling law and testing a first principles trailing edge noise theory. Results were extended to the rotating frame coordinate system to develop a helicopter rotor trailing edge noise prediction. Comparisons of the calculated noise levels with helicopter flyover spectra demonstrate that trailing edge noise contributes significantly to the total helicopter noise spectrum at high frequencies. This noise mechanism is expected to control the minimum rotor noise. In the case of noise radiation from a local blade segment, the acoustic directivity pattern is predicted by the first principles trailing edge noise theory. Acoustic spectra are predicted by a scaling law which includes Mach number, boundary layer thickness and observer position. Spectrum shape and sound pressure level are also predicted by the first principles theory but the analysis does not predict the Strouhal value identifying the spectrum peak.
Vibroacoustic Response of the NASA ACTS Spacecraft Antenna to Launch Acoustic Excitation
NASA Technical Reports Server (NTRS)
Larko, Jeffrey M.; Cotoni, Vincent
2008-01-01
The Advanced Communications Technology Satellite was an experimental NASA satellite launched from the Space Shuttle Discovery. As part of the ground test program, the satellite s large, parabolic reflector antennas were exposed to a reverberant acoustic loading to simulate the launch acoustics in the Shuttle payload bay. This paper describes the modelling and analysis of the dynamic response of these large, composite spacecraft antenna structure subjected to a diffuse acoustic field excitation. Due to the broad frequency range of the excitation, different models were created to make predictions in the various frequency regimes of interest: a statistical energy analysis (SEA) model to capture the high frequency response and a hybrid finite element-statistical energy (hybrid FE-SEA) model for the low to mid-frequency responses. The strengths and limitations of each of the analytical techniques are discussed. The predictions are then compared to the measured acoustic test data and to a boundary element (BEM) model to evaluate the performance of the hybrid techniques.
Acoustics Research of Propulsion Systems
NASA Technical Reports Server (NTRS)
Gao, Ximing; Houston, Janice D.
2014-01-01
The liftoff phase induces some of the highest acoustic loading over a broad frequency for a launch vehicle. These external acoustic environments are used in the prediction of the internal vibration responses of the vehicle and components. Thus, predicting these liftoff acoustic environments is critical to the design requirements of any launch vehicle but there are challenges. Present liftoff vehicle acoustic environment prediction methods utilize stationary data from previously conducted hold-down tests; i.e. static firings conducted in the 1960's, to generate 1/3 octave band Sound Pressure Level (SPL) spectra. These data sets are used to predict the liftoff acoustic environments for launch vehicles. To facilitate the accuracy and quality of acoustic loading, predictions at liftoff for future launch vehicles such as the Space Launch System (SLS), non-stationary flight data from the Ares I-X were processed in PC-Signal in two forms which included a simulated hold-down phase and the entire launch phase. In conjunction, the Prediction of Acoustic Vehicle Environments (PAVE) program was developed in MATLAB to allow for efficient predictions of sound pressure levels (SPLs) as a function of station number along the vehicle using semiempirical methods. This consisted, initially, of generating the Dimensionless Spectrum Function (DSF) and Dimensionless Source Location (DSL) curves from the Ares I-X flight data. These are then used in the MATLAB program to generate the 1/3 octave band SPL spectra. Concluding results show major differences in SPLs between the hold-down test data and the processed Ares IX flight data making the Ares I-X flight data more practical for future vehicle acoustic environment predictions.
Abramov, Vladimir O; Abramova, Anna V; Bayazitov, Vadim M; Mullakaev, Marat S; Marnosov, Alexandr V; Ildiyakov, Alexandr V
2017-03-01
Reduction of oil viscosity is of great importance for the petroleum industry since it contributes a lot to the facilitation of pipeline transportation of oil. This study analyzes the capability of acoustic waves to decrease the viscosity of oil during its commercial production. Three types of equipment were tested: an ultrasonic emitter that is located directly in the well and affects oil during its production and two types of acoustic machines to be located at the wellhead and perform acoustic treatment after oil extraction: a setup for ultrasonic hydrodynamic treatment and a flow-through ultrasonic reactor. In our case, the two acoustic machines were rebuilt and tested in the laboratory. The viscosity of oil was measured before and after both types of acoustic treatment; and 2, 24 and 48h after ultrasonic treatment and 1 and 4h after hydrodynamic treatment in order to estimate the constancy of viscosity reduction. The viscosity reduction achieved by acoustic waves was compared to the viscosity reduction achieved by acoustic waves jointly with solvents. It was shown, that regardless of the form of powerful acoustic impact, a long lasting decrease in viscosity can be obtained only if sonochemical treatment is used. Using sonochemical treatment based on ultrasonic hydrodynamic treatment a viscosity reduction by 72,46% was achieved. However, the reduction in viscosity by 16%, which was demonstrated using the ultrasonic downhole tool in the well without addition of chemicals, is high enough to facilitate the production of viscous hydrocarbons. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Fischer, J.; Doolan, C.
2017-12-01
A method to improve the quality of acoustic beamforming in reverberant environments is proposed in this paper. The processing is based on a filtering of the cross-correlation matrix of the microphone signals obtained using a microphone array. The main advantage of the proposed method is that it does not require information about the geometry of the reverberant environment and thus it can be applied to any configuration. The method is applied to the particular example of aeroacoustic testing in a hard-walled low-speed wind tunnel; however, the technique can be used in any reverberant environment. Two test cases demonstrate the technique. The first uses a speaker placed in the hard-walled working section with no wind tunnel flow. In the second test case, an airfoil is placed in a flow and acoustic beamforming maps are obtained. The acoustic maps have been improved, as the reflections observed in the conventional maps have been removed after application of the proposed method.
Joint Acoustic Propagation Experiment (JAPE)
NASA Technical Reports Server (NTRS)
Carnes, Benny L.; Olsen, Robert O.; Kennedy, Bruce W.
1993-01-01
The Joint Acoustic Propagation Experiment (JAPE), performed under the auspices of NATO and the Acoustics Working Group, was conducted at White Sands Missile Range, New Mexico, USA, during the period 11-28 Jul. 1991. JAPE consisted of 220 trials using various acoustic sources including speakers, propane cannon, various types of military vehicles, helicopters, a 155mm howitzer, and static high explosives. Of primary importance to the performance of these tests was the intensive characterization of the atmosphere before and during the trials. Because of the wide range of interests on the part of the participants, JAPE was organized in such a manner to provide a broad cross section of test configurations. These included short and long range propagation from fixed and moving vehicles, terrain masking, and vehicle detection. A number of independent trials were also performed by individual participating agencies using the assets available during JAPE. These tests, while not documented in this report, provided substantial and important data to those groups. Perhaps the most significant feature of JAPE is the establishment of a permanent data base which can be used by not only the participants but by others interested in acoustics. A follow-on test was performed by NASA LaRC during the period 19-29 Aug. 1991 at the same location. These trials consisted of 59 overflights of supersonic aircraft in order to establish the relationship between atmospheric turbulence and the received sonic boom energy at the surface.
High temperature acoustic and hybrid microwave/acoustic levitators for materials processing
NASA Technical Reports Server (NTRS)
Barmatz, Martin
1990-01-01
The physical acoustics group at the Jet Propulsion Laboratory developed a single mode acoustic levitator technique for advanced containerless materials processing. The technique was successfully demonstrated in ground based studies to temperatures of about 1000 C in a uniform temperature furnace environment and to temperatures of about 1500 C using laser beams to locally heat the sample. Researchers are evaluating microwaves as a more efficient means than lasers for locally heating a positioned sample. Recent tests of a prototype single mode hybrid microwave/acoustic levitator successfully demonstrated the feasibility of using microwave power as a heating source. The potential advantages of combining acoustic positioning forces and microwave heating for containerless processing investigations are presented in outline form.
Lokki, Tapio; Pätynen, Jukka; Kuusinen, Antti; Tervo, Sakari
2016-07-01
Some studies of concert hall acoustics consider the acoustics in a hall as a single entity. Here, it is shown that the acoustics vary between different seats, and the choice of music also influences the perceived acoustics. The presented study compared the acoustics of six unoccupied concert halls with extensive listening tests, applying two different music excerpts on three different seats. Twenty eight assessors rated the halls according to the subjective preference of the assesors and individual attributes with a paired comparison method. Results show that assessors can be classified into two preference groups, which prioritize different perceptual factors. In addition, the individual attributes elicited by assessors were clustered into three latent classes.
NASA Technical Reports Server (NTRS)
1981-01-01
The Space Shuttle LWT is divided into zones and subzones. Zones are designated primarily to assist in determining the applicable specifications. A subzone (general Specification) is available for use when the location of the component is known but component design and weight are not well defined. When the location, weight, and mounting configuration of the component are known, specifications for appropriate subzone weight ranges are available. Along with the specifications are vibration, acoustic, shock, transportation, handling, and acceptance test requirements and procedures. A method of selecting applicable vibration, acoustic, and shock specifications is presented.
Fiber Fabry-Perot sensors for detection of partial discharges in power transformers.
Yu, Bing; Kim, Dae Woong; Deng, Jiangdong; Xiao, Hai; Wang, Anbo
2003-06-01
A diaphragm-based interferometric fiberoptic sensor that uses a low-coherence light source was designed and tested for on-line detection of the acoustic waves generated by partial discharges inside high-voltage power transformers. The sensor uses a fused-silica diaphragm and a single-mode optical fiber encapsulated in a fused-silica glass tube to form an extrinsic Fabry-Perot interferometer, which is interrogated by low-coherence light. Test results indicate that these fiber optic acoustic sensors are capable of faithfully detecting acoustic signals propagating inside transformer oil with high sensitivity and wide bandwidth.
Results of acoustic testing of the JT8D-109 refan engines
NASA Technical Reports Server (NTRS)
Burdsall, E. A.; Brochu, F. P.; Scaramella, V. M.
1975-01-01
A JT8D engine was modified to reduce jet noise levels by 6-8 PNdB at takeoff power without increasing fan generated noise levels. Designated the JT8D-109, the modified engines featured a larger single stage fan, and acoustic treatment in the fan discharge ducts. Noise levels were measured on an outdoor test facility for eight engine/acoustic treatment configurations. Compared to the baseline JT8D, the fully treated JT8D-109 showed reductions of 6 PNdB at takeoff, and 11 PNdB at a typical approach power setting.
Acoustic tests of a 15.2 centimeter-diameter potential flow convergent nozzle
NASA Technical Reports Server (NTRS)
Karchmer, A. M.; Dorsch, R. G.; Friedman, R.
1974-01-01
An experimental investigation of the jet noise radiated to the far field from a 15.2-cm-diam potential flow convergent nozzle has been conducted. Tests were made with unheated airflow over a range of subsonic nozzle exhaust velocities from 62 to 310m/sec. Mean and turbulent velocity measurements in the flow field of the nozzle exhaust indicated no apparent flow anomalies. Acoustic measurements yielded data uncontaminated by internal and/or background noise to velocities as low as 152m/sec. Finally, no significantly different acoustic characteristics between the potential flow nozzle and simple convergent nozzles were found.
49 CFR 229.129 - Locomotive horn.
Code of Federal Regulations, 2010 CFR
2010-10-01
... Electrotechnical Commission (IEC) Standard 61672-1 (2002-05) for a Class 2 instrument. (2) An acoustic calibrator... with the acoustic calibrator immediately before and after compliance tests. Any change in the before...
Evaluation of Acoustic Emission SHM of PRSEUS Composite Pressure Cube Tests
NASA Technical Reports Server (NTRS)
Horne, Michael R.; Madaras, Eric I.
2013-01-01
A series of tests of the Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS) pressure cube were conducted during third quarter 2011 at NASA Langley Research Center (LaRC) in the Combined Loads Test facility (COLTS). This is a report of the analysis of the Acoustic Emission (AE) data collected during those tests. The AE signals of the later tests are consistent with the final failure progression through two of the pressure cube panels. Calibration tests and damage precursor AE indications, from preliminary checkout pressurizations, indicated areas of concern that eventually failed. Hence those tests have potential for vehicle health monitoring.
A Review of Large Solid Rocket Motor Free Field Acoustics, Part I
NASA Technical Reports Server (NTRS)
Pilkey, Debbie; Kenny, Robert Jeremy
2011-01-01
At the ATK facility in Utah, large full scale solid rocket motors are tested. The largest is a five segment version of the Reusable Solid Rocket Motor, which is for use on future launch vehicles. Since 2006, Acoustic measurements have been taken on large solid rocket motors at ATK. Both the four segment RSRM and the five segment RSRMV have been instrumented. Measurements are used to update acoustic prediction models and to correlate against vibration responses of the motor. Presentation focuses on two major sections: Part I) Unique challenges associated with measuring rocket acoustics Part II) Acoustic measurements summary over past five years
Two behavioral tests, locomotor activity and the acoustic startle response (ASR), were utilized to test for dose-addition of cismethrin, a Type I, or deltamethrin, a Type II pyrethroid, with compounds active to the gamma-aminobutryic acid (GABA) receptor complex (picrotoxin, musc...
MTR, TRA603. CONTROL ROOM DETAILS. ACOUSTIC PLASTER CEILING, USHAPED CONSOLE, ...
MTR, TRA-603. CONTROL ROOM DETAILS. ACOUSTIC PLASTER CEILING, U-SHAPED CONSOLE, INSTRUMENT PANELS, GLASS DOOR, ASPHALT TILE FLOOR AND COLORS. BLAW-KNOX 3150-803-11, 10/1950. INL INDEX NO. 531-0603-00-098-100570, REV. 3. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
Evaluation of acoustic tomography for tree decay detection
Shanquing Liang; Xiping Wang; Janice Wiedenbeck; Zhiyong Cai; Feng Fu
2008-01-01
In this study, the acoustic tomography technique was used to detect internal decay in high value black cherry (Prunus seratina) trees. Two-dimensional images of the cross sections of the tree samples were constructed using PiCUS Q70 software. The trees were felled following the field test, and a disc from each testing elevation was subsequently cut...
Acoustic waves in shock tunnels and expansion tubes
NASA Technical Reports Server (NTRS)
Paull, A.; Stalker, R. J.
1992-01-01
It is shown that disturbances in shock and expansion tubes can be modelled as lateral acoustic waves. The ratio of sound speed across the driver-test gas interface is shown to govern the quantity of noise in the test gas. Frequency 'focusing' which is fundamental to centered unsteady expansions is discussed and displayed in centerline pitot pressure measurements.
Preliminary Study on Acoustic Detection of Faults Experienced by a High-Bypass Turbofan Engine
NASA Technical Reports Server (NTRS)
Boyle, Devin K.
2014-01-01
The vehicle integrated propulsion research (VIPR) effort conducted by NASA and several partners provided an unparalleled opportunity to test a relatively low TRL concept regarding the use of far field acoustics to identify faults occurring in a high bypass turbofan engine. Though VIPR Phase II ground based aircraft installed engine testing wherein a multitude of research sensors and methods were evaluated, an array of acoustic microphones was used to determine the viability of such an array to detect failures occurring in a commercially representative high bypass turbofan engine. The failures introduced during VIPR testing included commanding the engine's low pressure compressor (LPC) exit and high pressure compressor (HPC) 14th stage bleed values abruptly to their failsafe positions during steady state
Quantifying Errors in Jet Noise Research Due to Microphone Support Reflection
NASA Technical Reports Server (NTRS)
Nallasamy, Nambi; Bridges, James
2002-01-01
The reflection coefficient of a microphone support structure used insist noise testing is documented through tests performed in the anechoic AeroAcoustic Propulsion Laboratory. The tests involve the acquisition of acoustic data from a microphone mounted in the support structure while noise is generated from a known broadband source. The ratio of reflected signal amplitude to the original signal amplitude is determined by performing an auto-correlation function on the data. The documentation of the reflection coefficients is one component of the validation of jet noise data acquired using the given microphone support structure. Finally. two forms of acoustic material were applied to the microphone support structure to determine their effectiveness in reducing reflections which give rise to bias errors in the microphone measurements.
NASA Technical Reports Server (NTRS)
Motil, Susan M.; Ludwiczak, Damian R.; Carek, Gerald A.; Sorge, Richard N.; Free, James M.; Cikanek, Harry A., III
2011-01-01
NASA s human space exploration plans developed under the Exploration System Architecture Studies in 2005 included a Crew Exploration Vehicle launched on an Ares I launch vehicle. The mass of the Crew Exploration Vehicle and trajectory of the Ares I coupled with the need to be able to abort across a large percentage of the trajectory generated unprecedented testing requirements. A future lunar lander added to projected test requirements. In 2006, the basic test plan for Orion was developed. It included several types of environment tests typical of spacecraft development programs. These included thermal-vacuum, electromagnetic interference, mechanical vibration, and acoustic tests. Because of the size of the vehicle and unprecedented acoustics, NASA conducted an extensive assessment of options for testing, and as result, chose to augment the Space Power Facility at NASA Plum Brook Station, of the John H. Glenn Research Center to provide the needed test capabilities. The augmentation included designing and building the World s highest mass capable vibration table, the highest power large acoustic chamber, and adaptation of the existing World s largest thermal vacuum chamber as a reverberant electromagnetic interference test chamber. These augmentations were accomplished from 2007 through early 2011. Acceptance testing began in Spring 2011 and will be completed in the Fall of 2011. This paper provides an overview of the capabilities, design, construction and acceptance of this extraordinary facility.
Aerodynamic/acoustic performance of YJ101/double bypass VCE with coannular plug nozzle
NASA Technical Reports Server (NTRS)
Vdoviak, J. W.; Knott, P. R.; Ebacker, J. J.
1981-01-01
Results of a forward Variable Area Bypass Injector test and a Coannular Nozzle test performed on a YJ101 Double Bypass Variable Cycle Engine are reported. These components are intended for use on a Variable Cycle Engine. The forward Variable Area Bypass Injector test demonstrated the mode shifting capability between single and double bypass operation with less than predicted aerodynamic losses in the bypass duct. The acoustic nozzle test demonstrated that coannular noise suppression was between 4 and 6 PNdB in the aft quadrant. The YJ101 VCE equipped with the forward VABI and the coannular exhaust nozzle performed as predicted with exhaust system aerodynamic losses lower than predicted both in single and double bypass modes. Extensive acoustic data were collected including far field, near field, sound separation/ internal probe measurements as Laser Velocimeter traverses.
Annoyance judgements of aircraft with and without acoustically treated nacelles
NASA Technical Reports Server (NTRS)
Borsky, P. N.; Leonard, S.
1973-01-01
A series of subjective response laboratory tests were conducted to determine the effectiveness of reducing aircraft noise by treating the aircraft engine nacelles with acoustically absorbent material. A total of 108 subjects participated in the magnitude estimation tests. The subjects were selected from persons who had previously been interviewed and classified according to selected psychological characteristics. The subjects lived in three general areas located at three specified distances from New York's Kennedy Airport. The aircraft signals used in the tests consisted of tape recordings of the landing approach noise of a B-727 aircraft under normal operating conditions. These recordings were electronically altered to simulate an aircraft with acoustically treated nacelles to achieve noise reductions of approximately 6 EPNdB and 12 EPNdB. The results from these tests indicate that significant reductions in annoyance resulted from the synthesized nacelle treatments.
High frequency noise measurements during CNEN/NIRA steam generator testing at Les Renardieres
NASA Astrophysics Data System (ADS)
Clapis, A.; Scandolo, D.; Regis, V.; Rappini, R.
The most significant results of the acoustic measurements carried out on the PGV-1 sodium-steam generator during the test of the 50 MW prototype on the CGVS loop facility are described. The prototype test was done in the isothermal condition, i.e., without steam production and in the power condition. During the first phase tests were made with low pressure hydrogen injection in sodium. The main purpose of the acoustic measurements, limited to the 100 to 1000 kHz frequency range, was to evaluate the noise characteristics (level and power spectrum) in all working states of the plant. A small leak of gas found in the isothermal condition enabled the sensitivity of the acoustic leak detection technique to be evaluated qualitatively. The results in form of spectral analysis charts are included.
Recent Enhancements to the NASA Langley Structural Acoustics Loads and Transmission (SALT) Facility
NASA Technical Reports Server (NTRS)
Rizzi, Stephen A.; Cabell, Randolph H.; Allen, Albert R.
2013-01-01
The Structural Acoustics Loads and Transmission (SALT) facility at the NASA Langley Research Center is comprised of an anechoic room and a reverberant room, and may act as a transmission loss suite when test articles are mounted in a window connecting the two rooms. In the latter configuration, the reverberant room acts as the noise source side and the anechoic room as the receiver side. The noise generation system used for qualification testing in the reverberant room was previously shown to achieve a maximum overall sound pressure level of 141 dB. This is considered to be marginally adequate for generating sound pressure levels typically required for launch vehicle payload qualification testing. Recent enhancements to the noise generation system increased the maximum overall sound pressure level to 154 dB, through the use of two airstream modulators coupled to 35 Hz and 160 Hz horns. This paper documents the acoustic performance of the enhanced noise generation system for a variety of relevant test spectra. Additionally, it demonstrates the capability of the SALT facility to conduct transmission loss and absorption testing in accordance with ASTM and ISO standards, respectively. A few examples of test capabilities are shown and include transmission loss testing of simple unstiffened and built up structures and measurement of the diffuse field absorption coefficient of a fibrous acoustic blanket.
Selby, Thomas H.; Hart, Kristen M.; Fujisaki, Ikuko; Smith, Brian J.; Pollock, Clayton J; Hillis-Star, Zandy M; Lundgren, Ian; Oli, Madan K.
2016-01-01
Submerged passive acoustic technology allows researchers to investigate spatial and temporal movement patterns of many marine and freshwater species. The technology uses receivers to detect and record acoustic transmissions emitted from tags attached to an individual. Acoustic signal strength naturally attenuates over distance, but numerous environmental variables also affect the probability a tag is detected. Knowledge of receiver range is crucial for designing acoustic arrays and analyzing telemetry data. Here, we present a method for testing a relatively large-scale receiver array in a dynamic Caribbean coastal environment intended for long-term monitoring of multiple species. The U.S. Geological Survey and several academic institutions in collaboration with resource management at Buck Island Reef National Monument (BIRNM), off the coast of St. Croix, recently deployed a 52 passive acoustic receiver array. We targeted 19 array-representative receivers for range-testing by submersing fixed delay interval range-testing tags at various distance intervals in each cardinal direction from a receiver for a minimum of an hour. Using a generalized linear mixed model (GLMM), we estimated the probability of detection across the array and assessed the effect of water depth, habitat, wind, temperature, and time of day on the probability of detection. The predicted probability of detection across the entire array at 100 m distance from a receiver was 58.2% (95% CI: 44.0–73.0%) and dropped to 26.0% (95% CI: 11.4–39.3%) 200 m from a receiver indicating a somewhat constrained effective detection range. Detection probability varied across habitat classes with the greatest effective detection range occurring in homogenous sand substrate and the smallest in high rugosity reef. Predicted probability of detection across BIRNM highlights potential gaps in coverage using the current array as well as limitations of passive acoustic technology within a complex coral reef environment.
Concert halls with strong and lateral sound increase the emotional impact of orchestra music.
Pätynen, Jukka; Lokki, Tapio
2016-03-01
An audience's auditory experience during a thrilling and emotive live symphony concert is an intertwined combination of the music and the acoustic response of the concert hall. Music in itself is known to elicit emotional pleasure, and at best, listening to music may evoke concrete psychophysiological responses. Certain concert halls have gained a reputation for superior acoustics, but despite the continuous research by a multitude of objective and subjective studies on room acoustics, the fundamental reason for the appreciation of some concert halls remains elusive. This study demonstrates that room acoustic effects contribute to the overall emotional experience of a musical performance. In two listening tests, the subjects listen to identical orchestra performances rendered in the acoustics of several concert halls. The emotional excitation during listening is measured in the first experiment, and in the second test, the subjects assess the experienced subjective impact by paired comparisons. The results showed that the sound of some traditional rectangular halls provides greater psychophysiological responses and subjective impact. These findings provide a quintessential explanation for these halls' success and reveal the overall significance of room acoustics for emotional experience in music performance.
NASA Technical Reports Server (NTRS)
VanZante, Dale E.
2010-01-01
Testing of low noise, counter-rotating open rotor propulsion concepts has been ongoing at Glenn Research Center in collaboration with General Electric Company. The presentation is an overview of the testing that has been completed to date and previews the upcoming test entries. The NASA Environmentally Responsible Aviation Project Diagnostics entry is the most recent to finish. That test entry included acoustic phased array, pressure sensitive paint, particle image velocimetry, pylon installed measurements and acoustic shielding measurements. A preview of the data to be acquired in the 8x6 high-speed wind tunnel is also included.
PRSA hydrogen tank thermal acoustic oscillation study
NASA Technical Reports Server (NTRS)
Riemer, D. H.
1979-01-01
The power reactant storage assembly (PRSA) hydrogen tank test data were reviewed. Two hundred and nineteen data points illustrating the effect of flow rate, temperature ratio and configuration were identified. The test data were reduced to produce the thermal acoustic oscillation parameters. Frequency and amplitude were determined for model correlation. A comparison of PRSA hydrogen tank test data with the analytical models indicated satisfactory agreement for the supply and poor agreement for the full line.
Field tests of acoustic telemetry for a portable coastal observatory
Martini, M.; Butman, B.; Ware, J.; Frye, D.
2006-01-01
Long-term field tests of a low-cost acoustic telemetry system were carried out at two sites in Massachusetts Bay. At each site, an acoustic Doppler current profiler mounted on a bottom tripod was fitted with an acoustic modem to transmit data to a surface buoy; electronics mounted on the buoy relayed these data to shore via radio modem. The mooring at one site (24 m water depth) was custom-designed for the telemetry application, with a custom designed small buoy, a flexible electro-mechanical buoy to mooring joint using a molded chain connection to the buoy, quick-release electro-mechanical couplings, and dual hydrophones suspended 7 m above the bottom. The surface buoy at the second site (33 m water depth) was a U.S. Coast Guard (USCG) channel buoy fitted with telemetry electronics and clamps to hold the hydrophones. The telemetry was tested in several configurations for a period of about four years. The custom-designed buoy and mooring provided nearly error-free data transmission through the acoustic link under a variety of oceanographic conditions for 261 days at the 24 m site. The electro mechanical joint, cables and couplings required minimal servicing and were very reliable, lasting 862 days deployed before needing repairs. The acoustic communication results from the USCG buoy were poor, apparently due to the hard cobble bottom, noise from the all-steel buoy, and failure of the hydrophone assembly. Access to the USCG buoy at sea required ideal weather. ??2006 IEEE.
Accuracy of acoustic velocity metering systems for measurement of low velocity in open channels
Laenen, Antonius; Curtis, R. E.
1989-01-01
Acoustic velocity meter (AVM) accuracy depends on equipment limitations, the accuracy of acoustic-path length and angle determination, and the stability of the mean velocity to acoustic-path velocity relation. Equipment limitations depend on path length and angle, transducer frequency, timing oscillator frequency, and signal-detection scheme. Typically, the velocity error from this source is about +or-1 to +or-10 mms/sec. Error in acoustic-path angle or length will result in a proportional measurement bias. Typically, an angle error of one degree will result in a velocity error of 2%, and a path-length error of one meter in 100 meter will result in an error of 1%. Ray bending (signal refraction) depends on path length and density gradients present in the stream. Any deviation from a straight acoustic path between transducer will change the unique relation between path velocity and mean velocity. These deviations will then introduce error in the mean velocity computation. Typically, for a 200-meter path length, the resultant error is less than one percent, but for a 1,000 meter path length, the error can be greater than 10%. Recent laboratory and field tests have substantiated assumptions of equipment limitations. Tow-tank tests of an AVM system with a 4.69-meter path length yielded an average standard deviation error of 9.3 mms/sec, and the field tests of an AVM system with a 20.5-meter path length yielded an average standard deviation error of a 4 mms/sec. (USGS)
On the Use of Experimental Methods to Improve Confidence in Educed Impedance
NASA Technical Reports Server (NTRS)
Jones, Michael G.; Watson, Willie R.
2011-01-01
Results from impedance eduction methods developed by NASA Langley Research Center are used throughout the acoustic liner community. In spite of recent enhancements, occasional anomalies persist with these methods, generally at frequencies where the liner produces minimal attenuation. This investigation demonstrates an experimental approach to educe impedance with increased confidence over a desired frequency range, by combining results from successive tests with different cavity depths. A series of tests is conducted with three wire-mesh facesheets, for which the results should be weakly dependent on source sound pressure level and mean grazing flow speed. First, a raylometer is used to measure the DC flow resistance of each facesheet. These facesheets are then mounted onto a frame and a normal incidence tube is used to determine their respective acoustic impedance spectra. A comparison of the acoustic resistance component with the DC flow resistance for each facesheet is used to validate the measurement process. Next, each facesheet is successively mounted onto three frames with different cavity depths, and a grazing flow impedance tube is used to educe their respective acoustic impedance spectra with and without mean flow. The no-flow results are compared with those measured in the normal incidence tube to validate the impedance eduction method. Since the anti-resonance frequency varies with cavity depth, each sample provides robust results over a different frequency range. Hence, a combination of results can be used to determine the facesheet acoustic resistance. When combined with the acoustic reactance, observed to be weakly dependent on the source sound pressure level and grazing flow Mach number, the acoustic impedance can be educed with increased confidence. Representative results of these tests are discussed, and the complete database is available in electronic format upon request.
Comparison of Two Acoustic Waveguide Methods for Determining Liner Impedance
NASA Technical Reports Server (NTRS)
Jones, Michael G.; Watson, Willie R.; Tracy, Maureen B.; Parrott, Tony L.
2001-01-01
Acoustic measurements taken in a flow impedance tube are used to assess the relative accuracy of two waveguide methods for impedance eduction in the presence of grazing flow. The aeroacoustic environment is assumed to contain forward and backward-traveling acoustic waves, consisting of multiple modes, and uniform mean flow. Both methods require a measurement of the complex acoustic pressure profile over the length of the test liner. The Single Mode Method assumes that the sound pressure level and phase decay-rates of a single progressive mode can be extracted from this measured complex acoustic pressure profile. No a priori assumptions are made in the Finite Element. Method regarding the modal or reflection content in the measured acoustic pressure profile. The integrity of each method is initially demonstrated by how well their no-flow impedances match those acquired in a normal incidence impedance tube. These tests were conducted using ceramic tubular and conventional perforate liners. Ceramic tubular liners were included because of their impedance insensitivity to mean flow effects. Conversely, the conventional perforate liner was included because its impedance is known to be sensitive to mean flow velocity effects. Excellent comparisons between impedance values educed with the two waveguide methods in the absence of mean flow and the corresponding values educed with the normal incident impedance tube were observed. The two methods are then compared for mean flow Mach numbers up to 0.5, and are shown to give consistent results for both types of test liners. The quality of the results indicates that the Single Mode Method should be used when the measured acoustic pressure profile is clearly dominated by a single progressive mode, and the Finite Element Method should be used for all other cases.
Some far-field acoustics characteristics of the XV-15 tilt-rotor aircraft
NASA Technical Reports Server (NTRS)
Golub, Robert A.; Conner, David A.; Becker, Lawrence E.; Rutledge, C. Kendall; Smith, Rita A.
1990-01-01
Far-field acoustics tests have been conducted on an instrumented XV-15 tilt-rotor aircraft. The purpose of these acoustic measurements was to create an encompassing, high confidence (90 percent), and accurate (-1.4/ +1/8 dB theoretical confidence interval) far-field acoustics data base to validate ROTONET and other current rotorcraft noise prediction computer codes. This paper describes the flight techniques used, with emphasis on the care taken to obtain high-quality far-field acoustic data. The quality and extensiveness of the data base collected are shown by presentation of ground acoustic contours for level flyovers for the airplane flight mode and for several forward velocities and nacelle tilts for the transition mode and helicopter flight mode. Acoustic pressure time-histories and fully analyzed ensemble averaged far-field data results (spectra) are shown for each of the ground contour cases.
Model helicopter rotor high-speed impulsive noise: Measured acoustics and blade pressures
NASA Technical Reports Server (NTRS)
Boxwell, D. A.; Schmitz, F. H.; Splettstoesser, W. R.; Schultz, K. J.
1983-01-01
A 1/17-scale research model of the AH-1 series helicopter main rotor was tested. Model-rotor acoustic and simultaneous blade pressure data were recorded at high speeds where full-scale helicopter high-speed impulsive noise levels are known to be dominant. Model-rotor measurements of the peak acoustic pressure levels, waveform shapes, and directively patterns are directly compared with full-scale investigations, using an equivalent in-flight technique. Model acoustic data are shown to scale remarkably well in shape and in amplitude with full-scale results. Model rotor-blade pressures are presented for rotor operating conditions both with and without shock-like discontinuities in the radiated acoustic waveform. Acoustically, both model and full-scale measurements support current evidence that above certain high subsonic advancing-tip Mach numbers, local shock waves that exist on the rotor blades ""delocalize'' and radiate to the acoustic far-field.
NASA Technical Reports Server (NTRS)
Zalameda, Joseph N.; Horne, Michael R.; Madaras, Eric I.; Burke, Eric R.
2016-01-01
Passive thermography and acoustic emission data were obtained for improved real time damage detection during fatigue loading. A strong positive correlation was demonstrated between acoustic energy event location and thermal heating, especially if the structure under load was nearing ultimate failure. An image processing routine was developed to map the acoustic emission data onto the thermal imagery. This required removing optical barrel distortion and angular rotation from the thermal data. The acoustic emission data were then mapped onto thermal data, revealing the cluster of acoustic emission event locations around the thermal signatures of interest. By combining both techniques, progression of damage growth is confirmed and areas of failure are identified. This technology provides improved real time inspections of advanced composite structures during fatigue testing.Keywords: Thermal nondestructive evaluation, fatigue damage detection, aerospace composite inspection, acoustic emission, passive thermography
Piezoceramic Actuator Placement for Acoustic Control of Panels
NASA Technical Reports Server (NTRS)
Bevan, Jeffrey S.; Turner, Travis L. (Technical Monitor)
2001-01-01
Optimum placement of multiple traditional piezoceramic actuators is determined for active structural acoustic control of flat panels. The structural acoustic response is determined using acoustic radiation filters and structural surface vibration characteristics. Linear Quadratic Regulator (LQR) control is utilized to determine the optimum state feedback gain for active structural acoustic control. The optimum actuator location is determined by minimizing the structural acoustic radiated noise using a modified genetic algorithm. Experimental tests are conducted and compared to analytical results. Anisotropic piezoceramic actuators exhibits enhanced performance when compared to traditional isotropic piezoceramic actuators. As a result of the inherent isotropy, these advanced actuators develop strain along the principal material axis. The orientation of anisotropic actuators is investigated on the effect of structural vibration and acoustic control of curved and flat panels. A fully coupled shallow shell finite element formulation is developed to include anisotropic piezoceramic actuators for shell structures.
Piezoceramic Actuator Placement for Acoustic Control of Panels
NASA Technical Reports Server (NTRS)
Bevan, Jeffrey S.
2000-01-01
Optimum placement of multiple traditional piezoceramic actuators is determined for active structural acoustic control of flat panels. The structural acoustic response is determined using acoustic radiation filters and structural surface vibration characteristics. Linear Quadratic Regulator (LQR) control is utilized to determine the optimum state feedback gain for active structural acoustic control. The optimum actuator location is determined by minimizing the structural acoustic radiated noise using a modified genetic algorithm. Experimental tests are conducted and compared to analytical results. Anisotropic piezoceramic actuators exhibit enhanced performance when compared to traditional isotropic piezoceramic actuators. As a result of the inherent isotropy, these advanced actuators develop strain along the principal material axis. The orientation of anisotropic actuators is investigated on the effect of structural vibration and acoustic control of curved and flat panels. A fully coupled shallow shell finite element formulation is developed to include anisotropic piezoceramic actuators for shell structures.
Alfarsi, Anas; Dillon, Amy; McSweeney, Seán; Krüse, Jacob; Griffin, Brendan; Devine, Ken; Sherry, Patricia; Henken, Stephan; Fitzpatrick, Stephen; Fitzpatrick, Dara
2018-06-10
There are no rapid dissolution based tests for determining coating thickness, integrity and drug concentration in controlled release pellets either during production or post-production. The manufacture of pellets requires several coating steps depending on the formulation. The sub-coating and enteric coating steps typically take up to six hours each followed by additional drying steps. Post production regulatory dissolution testing also takes up to six hours to determine if the batch can be released for commercial sale. The thickness of the enteric coating is a key factor that determines the release rate of the drug in the gastro-intestinal tract. Also, the amount of drug per unit mass decreases with increasing thickness of the enteric coating. In this study, the coating process is tracked from start to finish on an hourly basis by taking samples of pellets during production and testing those using BARDS (Broadband Acoustic Resonance Dissolution Spectroscopy). BARDS offers a rapid approach to characterising enteric coatings with measurements based on reproducible changes in the compressibility of a solvent due to the evolution of air during dissolution. This is monitored acoustically via associated changes in the frequency of induced acoustic resonances. A steady state acoustic lag time is associated with the disintegration of the enteric coatings in basic solution. This lag time is pH dependent and is indicative of the rate at which the coating layer dissolves. BARDS represents a possible future surrogate test for conventional USP dissolution testing as its data correlates directly with the thickness of the enteric coating, its integrity and also with the drug loading as validated by HPLC. Copyright © 2018 Elsevier B.V. All rights reserved.
Method and apparatus for in-process sensing of manufacturing quality
Hartman, Daniel A [Santa Fe, NM; Dave, Vivek R [Los Alamos, NM; Cola, Mark J [Santa Fe, NM; Carpenter, Robert W [Los Alamos, NM
2005-02-22
A method for determining the quality of an examined weld joint comprising the steps of providing acoustical data from the examined weld joint, and performing a neural network operation on the acoustical data determine the quality of the examined weld joint produced by a friction weld process. The neural network may be trained by the steps of providing acoustical data and observable data from at least one test weld joint, and training the neural network based on the acoustical data and observable data to form a trained neural network so that the trained neural network is capable of determining the quality of a examined weld joint based on acoustical data from the examined weld joint. In addition, an apparatus having a housing, acoustical sensors mounted therein, and means for mounting the housing on a friction weld device so that the acoustical sensors do not contact the weld joint. The apparatus may sample the acoustical data necessary for the neural network to determine the quality of a weld joint.
First images of thunder: Acoustic imaging of triggered lightning
NASA Astrophysics Data System (ADS)
Dayeh, M. A.; Evans, N. D.; Fuselier, S. A.; Trevino, J.; Ramaekers, J.; Dwyer, J. R.; Lucia, R.; Rassoul, H. K.; Kotovsky, D. A.; Jordan, D. M.; Uman, M. A.
2015-07-01
An acoustic camera comprising a linear microphone array is used to image the thunder signature of triggered lightning. Measurements were taken at the International Center for Lightning Research and Testing in Camp Blanding, FL, during the summer of 2014. The array was positioned in an end-fire orientation thus enabling the peak acoustic reception pattern to be steered vertically with a frequency-dependent spatial resolution. On 14 July 2014, a lightning event with nine return strokes was successfully triggered. We present the first acoustic images of individual return strokes at high frequencies (>1 kHz) and compare the acoustically inferred profile with optical images. We find (i) a strong correlation between the return stroke peak current and the radiated acoustic pressure and (ii) an acoustic signature from an M component current pulse with an unusual fast rise time. These results show that acoustic imaging enables clear identification and quantification of thunder sources as a function of lightning channel altitude.
Method and Apparatus for In-Process Sensing of Manufacturing Quality
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hartman, D.A.; Dave, V.R.; Cola, M.J.
2005-02-22
A method for determining the quality of an examined weld joint comprising the steps of providing acoustical data from the examined weld joint, and performing a neural network operation on the acoustical data determine the quality of the examined weld joint produced by a friction weld process. The neural network may be trained by the steps of providing acoustical data and observable data from at least one test weld joint, and training the neural network based on the acoustical data and observable data to form a trained neural network so that the trained neural network is capable of determining themore » quality of a examined weld joint based on acoustical data from the examined weld joint. In addition, an apparatus having a housing, acoustical sensors mounted therein, and means for mounting the housing on a friction weld device so that the acoustical sensors do not contact the weld joint. The apparatus may sample the acoustical data necessary for the neural network to determine the quality of a weld joint.« less
Estimating surface acoustic impedance with the inverse method.
Piechowicz, Janusz
2011-01-01
Sound field parameters are predicted with numerical methods in sound control systems, in acoustic designs of building and in sound field simulations. Those methods define the acoustic properties of surfaces, such as sound absorption coefficients or acoustic impedance, to determine boundary conditions. Several in situ measurement techniques were developed; one of them uses 2 microphones to measure direct and reflected sound over a planar test surface. Another approach is used in the inverse boundary elements method, in which estimating acoustic impedance of a surface is expressed as an inverse boundary problem. The boundary values can be found from multipoint sound pressure measurements in the interior of a room. This method can be applied to arbitrarily-shaped surfaces. This investigation is part of a research programme on using inverse methods in industrial room acoustics.
Structural-acoustic coupling in aircraft fuselage structures
NASA Technical Reports Server (NTRS)
Mathur, Gopal P.; Simpson, Myles A.
1992-01-01
Results of analytical and experimental investigations of structural-acoustic coupling phenomenon in an aircraft fuselage are described. The structural and acoustic cavity modes of DC-9 fuselage were determined using a finite element approach to vibration analysis. Predicted structural and acoustic dispersion curves were used to determine possible occurrences of structural-acoustic coupling for the fuselage. An aft section of DC-9 aircraft fuselage, housed in an anechoic chamber, was used for experimental investigations. The test fuselage was excited by a shaker and vibration response and interior sound field were measured using accelerometer and microphone arrays. The wavenumber-frequency structural and cavity response maps were generated from the measured data. Analysis and interpretation of the spatial plots and wavenumber maps provided the required information on modal characteristics, fuselage response and structural-acoustic coupling.
Active chiral control of GHz acoustic whispering-gallery modes
NASA Astrophysics Data System (ADS)
Mezil, Sylvain; Fujita, Kentaro; Otsuka, Paul H.; Tomoda, Motonobu; Clark, Matt; Wright, Oliver B.; Matsuda, Osamu
2017-10-01
We selectively generate chiral surface-acoustic whispering-gallery modes in the gigahertz range on a microscopic disk by means of an ultrafast time-domain technique incorporating a spatial light modulator. Active chiral control is achieved by making use of an optical pump spatial profile in the form of a semicircular arc, positioned on the sample to break the symmetry of clockwise- and counterclockwise-propagating modes. Spatiotemporal Fourier transforms of the interferometrically monitored two-dimensional acoustic fields measured to micron resolution allow individual chiral modes and their azimuthal mode order, both positive and negative, to be distinguished. In particular, for modes with 15-fold rotational symmetry, we demonstrate ultrafast chiral control of surface acoustic waves in a micro-acoustic system with picosecond temporal resolution. Applications include nondestructive testing and surface acoustic wave devices.
NASA Technical Reports Server (NTRS)
Strutzenberg, Louise L.; Putman, Gabriel C.
2011-01-01
The Ares I Scale Model Acoustics Test (ASMAT) is a series of live-fire tests of scaled rocket motors meant to simulate the conditions of the Ares I launch configuration. These tests have provided a well documented set of high fidelity measurements useful for validation including data taken over a range of test conditions and containing phenomena like Ignition Over-Pressure and water suppression of acoustics. Building on dry simulations of the ASMAT tests with the vehicle at 5 ft. elevation (100 ft. real vehicle elevation), wet simulations of the ASMAT test setup have been performed using the Loci/CHEM computational fluid dynamics software to explore the effect of rainbird water suppression inclusion on the launch platform deck. Two-phase water simulation has been performed using an energy and mass coupled lagrangian particle system module where liquid phase emissions are segregated into clouds of virtual particles and gas phase mass transfer is accomplished through simple Weber number controlled breakup and boiling models. Comparisons have been performed to the dry 5 ft. elevation cases, using configurations with and without launch mounts. These cases have been used to explore the interaction between rainbird spray patterns and launch mount geometry and evaluate the acoustic sound pressure level knockdown achieved through above-deck rainbird deluge inclusion. This comparison has been anchored with validation from live-fire test data which showed a reduction in rainbird effectiveness with the presence of a launch mount.
Results From a Parametric Acoustic Liner Experiment Using P and W GEN1 HSR Mixer/Ejector Model
NASA Technical Reports Server (NTRS)
Boyd, Kathleen C.; Wolter, John D.
2004-01-01
This report documents the results of an acoustic liner test performed using a Gen 1 HSR mixer/ejector model installed on the Jet Exit Rig in the Nozzle Acoustic Test Rig in the Aeroacoustic Propulsion Laboratory or NASA Glenn Research Center. Acoustic liner effectiveness and single-component thrust performance results are discussed. Results from 26 different types of single-degree-of-freedom and bulk material liners are compared with each other and against a hardwall baseline. Design parameters involving all aspects of the facesheet, the backing cavity, and the type of bulk material were varied in order to study the effects of these design features on the acoustic impedance, acoustic effectiveness and on nozzle thrust performance. Overall, the bulk absorber liners are more effective at reducing the jet noise than the single-degree-of-freedom liners. Many of the design parameters had little effect on acoustic effectiveness, such as facesheeet hole diameter and honeycomb cell size. A relatively large variation in the impedance of the bulk absorber in a bulk liner is required to have a significant impact on the noise reduction. The thrust results exhibit a number of consistent trends, supporting the validity of this new addition to the facility. In general, the thrust results indicate that thrust performance benefits from increased facesheet thickness and decreased facesheet porosity.
Chemical analysis of acoustically levitated drops by Raman spectroscopy.
Tuckermann, Rudolf; Puskar, Ljiljana; Zavabeti, Mahta; Sekine, Ryo; McNaughton, Don
2009-07-01
An experimental apparatus combining Raman spectroscopy with acoustic levitation, Raman acoustic levitation spectroscopy (RALS), is investigated in the field of physical and chemical analytics. Whereas acoustic levitation enables the contactless handling of microsized samples, Raman spectroscopy offers the advantage of a noninvasive method without complex sample preparation. After carrying out some systematic tests to probe the sensitivity of the technique to drop size, shape, and position, RALS has been successfully applied in monitoring sample dilution and preconcentration, evaporation, crystallization, an acid-base reaction, and analytes in a surface-enhanced Raman spectroscopy colloidal suspension.
PRSEUS Acoustic Panel Fabrication
NASA Technical Reports Server (NTRS)
Nicolette, Velicki; Yovanof, Nicolette P.; Baraja, Jaime; Mathur, Gopal; Thrash, Patrick; Pickell, Robert
2011-01-01
This report describes the development of a novel structural concept, Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS), that addresses the demanding fuselage loading requirements for the Hybrid Wing or Blended Wing Body (BWB) airplane configuration with regards to acoustic response. A PRSEUS panel was designed and fabricated and provided to NASA-LaRC for acoustic response testing in the Structural Acoustics Loads and Transmission (SALT) facility). Preliminary assessments of the sound transmission characteristics of a PRSEUS panel subjected to a representative Hybrid Wing Body (HWB) operating environment were completed for the NASA Environmentally Responsible Aviation (ERA) Program.
Measured acoustic characteristics of ducted supersonic jets at different model scales
NASA Technical Reports Server (NTRS)
Jones, R. R., III; Ahuja, K. K.; Tam, Christopher K. W.; Abdelwahab, M.
1993-01-01
A large-scale (about a 25x enlargement) model of the Georgia Tech Research Institute (GTRI) hardware was installed and tested in the Propulsion Systems Laboratory of the NASA Lewis Research Center. Acoustic measurements made in these two facilities are compared and the similarity in acoustic behavior over the scale range under consideration is highlighted. The study provide the acoustic data over a relatively large-scale range which may be used to demonstrate the validity of scaling methods employed in the investigation of this phenomena.
Design and analysis of a hemi-anechoic chamber at Michigan Technological University
NASA Astrophysics Data System (ADS)
Dreyer, Jason; Jangale, Ashish; Rao, Mohan D.
2005-09-01
A four-wheel chassis roll dynamometer test facility was installed on the campus of Michigan Technological University (MTU). The chassis dynamometer was enclosed in a soundproof hem-anechoic room in order to conduct noise radiation measurements on test vehicles. All surfaces of the room, except the floor and control room window, were acoustically treated with donated tetrahedral acoustic cones and panels. The acoustic absorption properties of these materials were characterized through reverberation chamber and impedance tube testing, and the effects of air gaps, cone orientation, and cone mounting materials were qualitatively evaluated. The design of the wall, ceiling, and door treatments of the chamber was based on the sound absorption properties of these materials, in addition to spatial constraints and cost considerations. The treated chamber acoustics were predicted based on the amount of acoustic material that could be applied to given chamber dimensions and would still preserve the functionality of the room. These predictions were validated through evaluation of the actual room treatment based on average reverberation time at 100-Hz third-octave band, free sound field characteristic 6-dB reduction in sound pressure level (SPL) per doubling in distance from source, noise reduction at the chamber boundaries, and background SPL Noise Criteria (NC) Rating.
Enzinger, Ewald; Morrison, Geoffrey Stewart
2017-08-01
In a 2012 case in New South Wales, Australia, the identity of a speaker on several audio recordings was in question. Forensic voice comparison testimony was presented based on an auditory-acoustic-phonetic-spectrographic analysis. No empirical demonstration of the validity and reliability of the analytical methodology was presented. Unlike the admissibility standards in some other jurisdictions (e.g., US Federal Rule of Evidence 702 and the Daubert criteria, or England & Wales Criminal Practice Directions 19A), Australia's Unified Evidence Acts do not require demonstration of the validity and reliability of analytical methods and their implementation before testimony based upon them is presented in court. The present paper reports on empirical tests of the performance of an acoustic-phonetic-statistical forensic voice comparison system which exploited the same features as were the focus of the auditory-acoustic-phonetic-spectrographic analysis in the case, i.e., second-formant (F2) trajectories in /o/ tokens and mean fundamental frequency (f0). The tests were conducted under conditions similar to those in the case. The performance of the acoustic-phonetic-statistical system was very poor compared to that of an automatic system. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Byrne, K. P.; Marshall, S. E.
1983-01-01
A procedure for experimentally determining, in terms of the particle motions, the shapes of the low order acoustic modes in enclosures is described. The procedure is based on finding differentiable functions which approximate the shape functions of the low order acoustic modes when these modes are defined in terms of the acoustic pressure. The differentiable approximating functions are formed from polynomials which are fitted by a least squares procedure to experimentally determined values which define the shapes of the low order acoustic modes in terms of the acoustic pressure. These experimentally determined values are found by a conventional technique in which the transfer functions, which relate the acoustic pressures at an array of points in the enclosure to the volume velocity of a fixed point source, are measured. The gradient of the function which approximates the shape of a particular mode in terms of the acoustic pressure is evaluated to give the mode shape in terms of the particle motion. The procedure was tested by using it to experimentally determine the shapes of the low order acoustic modes in a small rectangular enclosure.
DARPA counter-sniper program: Phase 1 Acoustic Systems Demonstration results
NASA Astrophysics Data System (ADS)
Carapezza, Edward M.; Law, David B.; Csanadi, Christina J.
1997-02-01
During October 1995 through May 1996, the Defense Advanced Research Projects Agency sponsored the development of prototype systems that exploit acoustic muzzle blast and ballistic shock wave signatures to accurately predict the location of gunfire events and associated shooter locations using either single or multiple volumetric arrays. The output of these acoustic systems is an estimate of the shooter location and a classification estimate of the caliber of the shooter's weapon. A portable display and control unit provides both graphical and alphanumeric shooter location related information integrated on a two- dimensional digital map of the defended area. The final Phase I Acoustic Systems Demonstration field tests were completed in May. These these tests were held at USMC Base Camp Pendleton Military Operations Urban Training (MOUT) facility. These tests were structured to provide challenging gunfire related scenarios with significant reverberation and multi-path conditions. Special shot geometries and false alarms were included in these tests to probe potential system vulnerabilities and to determine the performance and robustness of the systems. Five prototypes developed by U.S. companies and one Israeli developed prototype were tested. This analysis quantifies the spatial resolution estimation capability (azimuth, elevation and range) of these prototypes and describes their ability to accurately classify the type of bullet fired in a challenging urban- like setting.
Propellant injection strategy for suppressing acoustic combustion instability
NASA Astrophysics Data System (ADS)
Diao, Qina
Shear-coaxial injector elements are often used in liquid-propellant-rocket thrust chambers, where combustion instabilities remain a significant problem. A conventional solution to the combustion instability problem relies on passive control techniques that use empirically-developed hardware such as acoustic baffles and tuned cavities. In addition to adding weight and decreasing engine performance, these devices are designed using trial-and-error methods, which do not provide the capability to predict the overall system stability characteristics in advance. In this thesis, two novel control strategies that are based on propellant fluid dynamics were investigated for mitigating acoustic instability involving shear-coaxial injector elements. The new control strategies would use a set of controlled injectors allowing local adjustment of propellant flow patterns for each operating condition, particularly when instability could become a problem. One strategy relies on reducing the oxidizer-fuel density gradient by blending heavier methane with the main fuel, hydrogen. Another strategy utilizes modifying the equivalence ratio to affect the acoustic impedance through mixing and reaction rate changes. The potential effectiveness of these strategies was assessed by conducting unit-physics experiments. Two different model combustors, one simulating a single-element injector test and the other a double-element injector test, were designed and tested for flame-acoustic interaction. For these experiments, the Reynolds number of the central oxygen jet was kept between 4700 and 5500 making the injector flames sufficiently turbulent. A compression driver, mounted on one side of the combustor wall, provided controlled acoustic excitation to the injector flames, simulating the initial phase of flame-acoustic interaction. Acoustic excitation was applied either as band-limited white noise forcing between 100 Hz and 5000 Hz or as single-frequency, fixed-amplitude forcing at 1150 Hz which represented a frequency least amplified by any resonance. Effects of each control strategy on flame-acoustic interaction were assessed in terms of modifying the acoustic resonance characteristics subject to white-noise excitation and changes in flame brush thickness under single-frequency excitation. In the methane blending experiments, the methane mole fraction was varied between 0% and 63%. Under white noise excitation, up to 16% shift in a resonant frequency was observed but the acoustic pressure spectra remained qualitatively similar. For the fixed frequency forcing, the spatial extent of flame-acoustic interaction was substantially reduced. In the other experiments, the equivalence ratio of the control injector was varied between zero and infinity, causing up to 40% shift in a resonant frequency as well as changes in the acoustic pressure spectrum. These results open up the possibility of employing flow-based control to prevent combustion instabilities in liquid-fueled rockets.
NASA Technical Reports Server (NTRS)
On, F. J.
1983-01-01
A comparative evaluation of the Space Transportation System (STS)-3 flight and acoustic test random vibration response of the Office of Space Science-1 (OSS-1) payload is presented. The results provide insight into the characteristics of vibroacoustic response of pallet payload components in the payload bay during STS flights.
Summary of Research 2000: Department of Oceanography
2001-12-01
Castro, R., A. S. Mascarenhas, R. Durazo and C. Collins, "Variaci6n estacional de la temperatura y salinidad en la entrada del Golfo de California...AREAS: Sensors , Battlespace Environments KEYWORDS: Littoral, Acoustics, Nowcast, Shelfbreak Fronts NAVAL POSTGRADUATE SCHOOL OAO TEST-BAN TREATY...Organization. DoD KEY TECHNOLOGY AREAS: Sensors KEYWORDS: Nuclear Test-Ban Treaty Monitoring OCEAN ACOUSTIC FEDERATION: CALIFORNIA CURRENT MONITORING
Xiping Wang; R. Bruce Allison
2008-01-01
Arborists are often challenged to identify internal structural defects hidden from view within tree trunks. This article reports the results of a study using a trunk inspection protocol combining visual observation, single-path stress wave testing, acoustic tomography, and resistance microdrilling to detect internal defects. Two century-old red oak (Quercus rubra)...
Acoustics Characteristics of Voice and Vocal Care in Acting and Other Students
ERIC Educational Resources Information Center
Varosanec-Skaric, Gordana
2008-01-01
Based on voice-history data, a X[superscript 2] test was used to investigate the difference between students of acting (n = 45) and other students (n = 45). A t-test was used to calculate the differences in acoustic parameters between the two groups. It was expected that students of acting spent significantly more time practicing voice exercises,…
Hybrid Wing Body Aircraft Acoustic Test Preparations and Facility Upgrades
NASA Technical Reports Server (NTRS)
Heath, Stephanie L.; Brooks, Thomas F.; Hutcheson, Florence V.; Doty, Michael J.; Haskin, Henry H.; Spalt, Taylor B.; Bahr, Christopher J.; Burley, Casey L.; Bartram, Scott M.; Humphreys, William M.;
2013-01-01
NASA is investigating the potential of acoustic shielding as a means to reduce the noise footprint at airport communities. A subsonic transport aircraft and Langley's 14- by 22-foot Subsonic Wind Tunnel were chosen to test the proposed "low noise" technology. The present experiment studies the basic components of propulsion-airframe shielding in a representative flow regime. To this end, a 5.8-percent scale hybrid wing body model was built with dual state-of-the-art engine noise simulators. The results will provide benchmark shielding data and key hybrid wing body aircraft noise data. The test matrix for the experiment contains both aerodynamic and acoustic test configurations, broadband turbomachinery and hot jet engine noise simulators, and various airframe configurations which include landing gear, cruise and drooped wing leading edges, trailing edge elevons and vertical tail options. To aid in this study, two major facility upgrades have occurred. First, a propane delivery system has been installed to provide the acoustic characteristics with realistic temperature conditions for a hot gas engine; and second, a traversing microphone array and side towers have been added to gain full spectral and directivity noise characteristics.
Acoustic Treatment Design Scaling Methods. Volume 1; Overview, Results, and Recommendations
NASA Technical Reports Server (NTRS)
Kraft, R. E.; Yu, J.
1999-01-01
Scale model fan rigs that simulate new generation ultra-high-bypass engines at about 1/5-scale are achieving increased importance as development vehicles for the design of low-noise aircraft engines. Testing at small scale allows the tests to be performed in existing anechoic wind tunnels, which provides an accurate simulation of the important effects of aircraft forward motion on the noise generation. The ability to design, build, and test miniaturized acoustic treatment panels on scale model fan rigs representative of the fullscale engine provides not only a cost-savings, but an opportunity to optimize the treatment by allowing tests of different designs. The primary objective of this study was to develop methods that will allow scale model fan rigs to be successfully used as acoustic treatment design tools. The study focuses on finding methods to extend the upper limit of the frequency range of impedance prediction models and acoustic impedance measurement methods for subscale treatment liner designs, and confirm the predictions by correlation with measured data. This phase of the program had as a goal doubling the upper limit of impedance measurement from 6 kHz to 12 kHz. The program utilizes combined analytical and experimental methods to achieve the objectives.
Internal Acoustics of the ISS and Other Spacecraft
NASA Technical Reports Server (NTRS)
Allen, Christopher S.
2017-01-01
It is important to control the acoustic environment inside spacecraft and space habitats to protect for astronaut communications, alarm audibility, and habitability, and to reduce astronauts' risk for sleep disturbance, and hear-ing loss. But this is not an easy task, given the various design trade-offs, and it has been difficult, historically, to achieve. Over time it has been found that successful control of spacecraft acoustic levels is achieved by levying firm requirements at the system-level, using a systems engineering approach for design and development, and then validating these requirements with acoustic testing. In the systems engineering method, the system-level requirements must be flowed down to sub-systems and component noise sources, using acoustic analysis and acoustic modelling to develop allocated requirements for the sub-systems and components. Noise controls must also be developed, tested, and implemented so the sub-systems and components can achieve their allocated limits. It is also important to have management support for acoustics efforts to maintain their priority against the various trade-offs, including mass, volume, power, cost, and schedule. In this extended abstract and companion presentation, the requirements, approach, and results for controlling acoustic levels in most US spacecraft since Apollo will be briefly discussed. The approach for controlling acoustic levels in the future US space vehicle, Orion Multipurpose Crew Vehicle (MPCV), will also be briefly discussed. These discussions will be limited to the control of continuous noise inside the space vehicles. Other types of noise, such as launch, landing, and abort noise, intermittent noise, Extra-Vehicular Activity (EVA) noise, emergency operations/off-nominal noise, noise exposure, and impulse noise are important, but will not be discussed because of time limitations.
Acoustic tests of augmentor wing model
NASA Technical Reports Server (NTRS)
Goodykoontz, J. H.
1977-01-01
Acoustic and aerodynamic data were obtained for a full-scale section of an augmentor wing. Features of the design included a single-row, multielement nozzle array and acoustically tuned panels placed on the interior surfaces of the augmentor. When the data were extrapolated to a 91,000-kilogram aircraft, the calculated sideline perceived noise levels were approximately the same for either the takeoff or approach condition.
Applications of acoustics in the measurement of coal slab thickness
NASA Technical Reports Server (NTRS)
Hadden, W. J., Jr.; Mills, J. M.; Pierce, A. D.
1980-01-01
The determination of the possibility of employing acoustic waves at ultrasonic frequencies for measurements of thicknesses of slabs of coal backed by shale is investigated. Fundamental information concerning the acoustical properties of coal, and the relationship between these properties and the structural and compositional parameters used to characterize coal samples was also sought. The testing device, which utilizes two matched transducers, is described.
Algorithms for highway-speed acoustic impact-echo evaluation of concrete bridge decks
NASA Astrophysics Data System (ADS)
Mazzeo, Brian A.; Guthrie, W. Spencer
2018-04-01
A new acoustic impact-echo testing device has been developed for detecting and mapping delaminations in concrete bridge decks at highway speeds. The apparatus produces nearly continuous acoustic excitation of concrete bridge decks through rolling mats of chains that are placed around six wheels mounted to a hinged trailer. The wheels approximately span the width of a traffic lane, and the ability to remotely lower and raise the apparatus using a winch system allows continuous data collection without stationary traffic control or exposure of personnel to traffic. Microphones near the wheels are used to record the acoustic response of the bridge deck during testing. In conjunction with the development of this new apparatus, advances in the algorithms required for data analysis were needed. This paper describes the general framework of the algorithms developed for converting differential global positioning system data and multi-channel audio data into maps that can be used in support of engineering decisions about bridge deck maintenance, rehabilitation, and replacement (MR&R). Acquisition of position and audio data is coordinated on a laptop computer through a custom graphical user interface. All of the streams of data are synchronized with the universal computer time so that audio data can be associated with interpolated position information through data post-processing. The audio segments are individually processed according to particular detection algorithms that can adapt to variations in microphone sensitivity or particular chain excitations. Features that are greater than a predetermined threshold, which is held constant throughout the analysis, are then subjected to further analysis and included in a map that shows the results of the testing. Maps of data collected on a bridge deck using the new acoustic impact-echo testing device at different speeds ranging from approximately 10 km/h to 55 km/h indicate that the collected data are reasonably repeatable. Use of the new acoustic impact-echo testing device is expected to enable more informed decisions about MR&R of concrete bridge decks.
Vibration and Acoustic Testing for Mars Micromission Spacecraft
NASA Technical Reports Server (NTRS)
Kern, Dennis L.; Scharton, Terry D.
1999-01-01
The objective of the Mars Micromission program being managed by the Jet Propulsion Laboratory (JPL) for NASA is to develop a common spacecraft that can carry telecommunications equipment and a variety of science payloads for exploration of Mars. The spacecraft will be capable of carrying robot landers and rovers, cameras, probes, balloons, gliders or aircraft, and telecommunications equipment to Mars at much lower cost than recent NASA Mars missions. The lightweight spacecraft (about 220 Kg mass) will be launched in a cooperative venture with CNES as a TWIN auxiliary payload on the Ariane 5 launch vehicle. Two or more Mars Micromission launches are planned for each Mars launch opportunity, which occur every 26 months. The Mars launch window for the first mission is November 1, 2002 through April 2003, which is planned to be a Mars airplane technology demonstration mission to coincide with the 100 year anniversary of the Kittyhawk flight. Several subsequent launches will create a telecommunications network orbiting Mars, which will provide for continuous communication with lenders and rovers on the Martian surface. Dedicated science payload flights to Mars are slated to start in 2005. This new cheaper and faster approach to Mars exploration calls for innovative approaches to the qualification of the Mars Micromission spacecraft for the Ariane 5 launch vibration and acoustic environments. JPL has in recent years implemented new approaches to spacecraft testing that may be effectively applied to the Mars Micromission. These include 1) force limited vibration testing, 2) combined loads, vibration and modal testing, and 3) direct acoustic testing. JPL has performed nearly 200 force limited vibration tests in the past 9 years; several of the tests were on spacecraft and large instruments, including the Cassini and Deep Space One spacecraft. Force limiting, which measures and limits the spacecraft base reaction force using triaxial force gages sandwiched between the spacecraft and the test fixture, alleviates the severe overtest at spacecraft resonances inherent in rigid fixture vibration tests. It has the distinct advantage over response limiting that the method is not dependent on the accuracy of a detailed dynamic model of the spacecraft. Combined loads, vibration, and modal testing were recently performed on the QuikSCAT spacecraft. The combined tests were performed in a single test setup per axis on a vibration shaker, reducing test time by a factor of two or three. Force gages were employed to measure the true c.g. acceleration of the spacecraft for structural loads verification using a sine burst test, to automatically notch random vibration test input accelerations at spacecraft resonances based on predetermined force limits, and to directly measure modal masses in a base drive modal test. In addition to these combined tests on the shaker, the QuikSCAT spacecraft was subjected to a direct field acoustic test by surrounding the spacecraft, still on the vibration shaker, with rock concert type acoustic speakers. Since the spacecraft contractor does not have a reverberant field acoustic test facility, performing a direct field acoustic test -saved the program nearly two weeks schedule time that would have been required for packing / unpacking and shipping of the spacecraft. This paper discusses the rationale behind and advantages of the above test approaches and provides examples of their actual implementation and comparisons to flight data. The applicability of the test approaches to Mars Micromission spacecraft qualification is discussed.
Development of a thermal acoustical aircraft insulation material
NASA Technical Reports Server (NTRS)
Lin, R. Y.; Struzik, E. A.
1974-01-01
A process was developed for fabricating a light weight foam suitable for thermal and acoustical insulation in aircraft. The procedures and apparatus are discussed, and the foam specimens are characterized by numerous tests and measurements.
DISCOVER-AQ Acoustics : Measurement and Data Report.
DOT National Transportation Integrated Search
2015-09-01
The following report documents the acoustic measurements that supplemented the September 2013 NASA DISCOVER-AQ flight tests in Houston, Texas and the corresponding data set developed from those measurements. These data include aircraft performance an...
77 FR 2605 - Petition for Waiver of Compliance
Federal Register 2010, 2011, 2012, 2013, 2014
2012-01-18
...), CSX requested permission to test cab-mounted horns at 15 feet due to the effects of the acoustic... provided documentation of a study that clear1y demonstrated the effects of acoustic shadows and ground...
Effects and modeling of phonetic and acoustic confusions in accented speech.
Fung, Pascale; Liu, Yi
2005-11-01
Accented speech recognition is more challenging than standard speech recognition due to the effects of phonetic and acoustic confusions. Phonetic confusion in accented speech occurs when an expected phone is pronounced as a different one, which leads to erroneous recognition. Acoustic confusion occurs when the pronounced phone is found to lie acoustically between two baseform models and can be equally recognized as either one. We propose that it is necessary to analyze and model these confusions separately in order to improve accented speech recognition without degrading standard speech recognition. Since low phonetic confusion units in accented speech do not give rise to automatic speech recognition errors, we focus on analyzing and reducing phonetic and acoustic confusability under high phonetic confusion conditions. We propose using likelihood ratio test to measure phonetic confusion, and asymmetric acoustic distance to measure acoustic confusion. Only accent-specific phonetic units with low acoustic confusion are used in an augmented pronunciation dictionary, while phonetic units with high acoustic confusion are reconstructed using decision tree merging. Experimental results show that our approach is effective and superior to methods modeling phonetic confusion or acoustic confusion alone in accented speech, with a significant 5.7% absolute WER reduction, without degrading standard speech recognition.
Sensitivity analyses of acoustic impedance inversion with full-waveform inversion
NASA Astrophysics Data System (ADS)
Yao, Gang; da Silva, Nuno V.; Wu, Di
2018-04-01
Acoustic impedance estimation has a significant importance to seismic exploration. In this paper, we use full-waveform inversion to recover the impedance from seismic data, and analyze the sensitivity of the acoustic impedance with respect to the source-receiver offset of seismic data and to the initial velocity model. We parameterize the acoustic wave equation with velocity and impedance, and demonstrate three key aspects of acoustic impedance inversion. First, short-offset data are most suitable for acoustic impedance inversion. Second, acoustic impedance inversion is more compatible with the data generated by density contrasts than velocity contrasts. Finally, acoustic impedance inversion requires the starting velocity model to be very accurate for achieving a high-quality inversion. Based upon these observations, we propose a workflow for acoustic impedance inversion as: (1) building a background velocity model with travel-time tomography or reflection waveform inversion; (2) recovering the intermediate wavelength components of the velocity model with full-waveform inversion constrained by Gardner’s relation; (3) inverting the high-resolution acoustic impedance model with short-offset data through full-waveform inversion. We verify this workflow by the synthetic tests based on the Marmousi model.
NASA Astrophysics Data System (ADS)
Sorokin, A. G.; Lobycheva, I. Yu.
2011-08-01
This paper presents data on the recording of infrasound from distant nuclear explosions set off in former soviet test site Semipalatinsk and recorded by infrasonic station Irkutsk-Badary of the Institute of Solar-Terrestrial Physics SB RAS in the Tunkinsky region in the Buryat Republic. We assess the state of the atmospheric acoustic channel (AAC) along the propagation path. Results of the AAC modeling are compared with experimental data.
Payload bay atmospheric vent airflow testing at the Vibration and Acoustic Test Facility
NASA Technical Reports Server (NTRS)
Johnston, James D., Jr.
1988-01-01
Several concerns related to venting the Space Shuttle Orbiter payload bay during launch led to laboratory experiments with a flight-type vent box installed in the wall of a subsonic wind tunnel. This report describes the test setups and procedures used to acquire data for characterization of airflow through the vent box and acoustic tones radiated from the vent-box cavity. A flexible boundary-layer spoiler which reduced the vent-tone amplitude is described.
Acoustic method of damage sensing in composite materials
NASA Technical Reports Server (NTRS)
Workman, Gary L.; Walker, James; Lansing, Matthew
1994-01-01
The use of acoustic emission and acousto-ultrasonics to characterize impact damage in composite structures is being performed on both graphite epoxy and kevlar bottles. Further development of the acoustic emission methodology to include neural net analysis and/or other multivariate techniques will enhance the capability of the technique to identify failure mechanisms during fracture. The acousto-ultrasonics technique will be investigated to determine its ability to predict regions prone to failure prior to the burst tests. The combination of the two methods will allow for simple nondestructive tests to be capable of predicting the performance of a composite structure prior to being placed in service and during service.
Design, construction, and evaluation of a 1:8 scale model binaural manikin.
Robinson, Philip; Xiang, Ning
2013-03-01
Many experiments in architectural acoustics require presenting listeners with simulations of different rooms to compare. Acoustic scale modeling is a feasible means to create accurate simulations of many rooms at reasonable cost. A critical component in a scale model room simulation is a receiver that properly emulates a human receiver. For this purpose, a scale model artificial head has been constructed and tested. This paper presents the design and construction methods used, proper equalization procedures, and measurements of its response. A headphone listening experiment examining sound externalization with various reflection conditions is presented that demonstrates its use for psycho-acoustic testing.
NASA Technical Reports Server (NTRS)
Theobald, M. A.
1978-01-01
The single source location used for helicopter model studies was utilized in a study to determine the distances and directions upstream of the model accurate at which measurements of the direct acoustic field could be obtained. The method used was to measure the decrease of sound pressure levels with distance from a noise source and thereby determine the Hall radius as a function of frequency and direction. Test arrangements and procedures are described. Graphs show the normalized sound pressure level versus distance curves for the glass fiber floor treatment and for the foam floor treatment.
Data Summary Report for the Open Rotor Propulsion Rig Equipped With F31/A31 Rotor Blades
NASA Technical Reports Server (NTRS)
Stephens, David
2014-01-01
An extensive wind tunnel test campaign was undertaken to quantify the performance and acoustics of a counter-rotating open rotor system. The present document summarizes the portion of this test performed with the so-called Historical Baseline rotor blades, designated F31A31. It includes performance and acoustic data acquired at Mach numbers from take-off to cruise. It also includes the effect of propulsor angle of attack as well as an upstream pylon. This report is accompanied by an electronic data set including relevant acoustic and performance measurements for all of the F31A31 data.
Data Summary Report for the Open Rotor Propulsion Rig Equipped with F31/A31 Rotor Blades
NASA Technical Reports Server (NTRS)
Stephens, David B.
2014-01-01
An extensive wind tunnel test campaign was undertaken to quantify the performance and acoustics of a counter-rotating open rotor system. The present document summarizes the portion of this test performed with the so-called "Historical Baseline" rotor blades, designated F31/A31. It includes performance and acoustic data acquired at Mach numbers from take-off to cruise. It also includes the effect of propulsor angle of attack as well as an upstream pylon. This report is accompanied by an electronic data set including relevant acoustic and performance measurements for all of the F31/A31 data.
Acoustic Guided Wave Testing of Pipes of Small Diameters
NASA Astrophysics Data System (ADS)
Muravev, V. V.; Muraveva, O. V.; Strizhak, V. A.; Myshkin, Y. V.
2017-10-01
Acoustic path is analyzed and main parameters of guided wave testing are substanti- ated applied to pipes of small diameters. The method is implemented using longitudinal L(0,1) and torsional T(0,1) waves based on electromagnetic-acoustic (EMA) transducers. The method of multiple reflections (MMR) combines echo-through, amplitude-shadow and time-shadow methods. Due to the effect of coherent amplification of echo-pulses from defects the sensitivity to the defects of small sizes at the signal analysis on the far reflections is increased. An oppor- tunity of detection of both local defects (dents, corrosion damages, rolling features, pitting, cracks) and defects extended along the pipe is shown.
NASA/ARMY/BELL XV-15 Tiltrotor Low-Noise Terminal Area Operations Flight Research Program
NASA Technical Reports Server (NTRS)
Edwards, Bryan D.; Conner, David A.; Decker, William A.; Marcolini, Michael A.; Klein, Peter D.
2001-01-01
To evaluate the noise reduction potential for tiltrotor aircraft, a series of three XV- 15 acoustic flight tests were conducted over a five-year period by a NASA/Army/Bell Helicopter team. Lower hemispherical noise characteristics for a wide range of steady-state terminal area type operating conditions were measured during the Phase I test and indicated that the takeoff and level flight conditions were not significant contributors to the total noise of tiltrotor operations. Phase I results were also used to design low-noise approach profiles that were tested later during the Phase 2 and Phase 3 tests. These latter phases used large area microphone arrays to directly measure ground noise footprints. Approach profiles emphasized noise reduction while maintaining handling qualities sufficient for tiltrotor commercial passenger ride comfort and flight safety under Instrument Flight Rules (IFR) conditions. This paper will discuss the weather, aircraft, tracking, guidance, and acoustic instrumentation systems, as well as the approach profile design philosophy, and the overall test program philosophy. Acoustic results are presented to document the variation in tiltrotor noise due to changes in operating condition, indicating the potential for significant noise reduction using the unique tiltrotor capability of nacelle tilt. Recommendations are made for a final XV-15 test to define the acoustic benefits of the automated approach capability which has recently been added to this testbed aircraft.
Wideband acoustic reflex test in a test battery to predict middle-ear dysfunction
Keefe, Douglas H.; Fitzpatrick, Denis; Liu, Yi-Wen; Sanford, Chris A.; Gorga, Michael P.
2013-01-01
A wideband (WB) aural acoustical test battery of middle-ear status, including acoustic-reflex thresholds (ARTs) and acoustic-transfer functions (ATFs, i.e., absorbance and admittance) was hypothesized to be more accurate than 1-kHz tympanometry in classifying ears that pass or refer on a newborn hearing screening (NHS) protocol based on otoacoustic emissions. Assessment of middle-ear status may improve NHS programs by identifying conductive dysfunction and cases in which auditory neuropathy exists. Ipsilateral ARTs were assessed with a stimulus including four broadband-noise or tonal activator pulses alternating with five clicks presented before, between and after the pulses. The reflex shift was defined as the difference between final and initial click responses. ARTs were measured using maximum likelihood both at low frequencies (0.8–2.8 kHz) and high (2.8–8 kHz). The median low-frequency ART was elevated by 24 dB in NHS refers compared to passes. An optimal combination of ATF and ART tests performed better than either test alone in predicting NHS outcomes, and WB tests performed better than 1-kHz tympanometry. Medial olivocochlear efferent shifts in cochlear function may influence ARs, but their presence would also be consistent with normal conductive function. Baseline clinical and WB ARTs were also compared in ipsilateral and contralateral measurements in adults. PMID:19772907
NASA Astrophysics Data System (ADS)
Boyd, Donald M.
1989-10-01
Development of a Pulsed Electromagnetic Acoustic Transducer (EMAT) through transmission system for acoustic measurements on steel billets up to 1300 C was completed. Laboratory measurements of acoustic velocity were made, and used to determine the average internal temperature of hot stainless and carbon steel billets. Following the success of the laboratory system development, the laboratory EMAT system was subsequently tested successfully at the Baltimore Specialty Steel Co. on a horizontal continuous caster. Details of the sensor system development and the steel plant demonstration results are presented. Future directions for the high temperature pulsed EMAT internal temperature concept are discussed for potential material processing applications.
Mechanical suppression: Modern technology applied to an old art. [MK 12 motors
NASA Technical Reports Server (NTRS)
Crockford, W. H.; Durney, T. E.; Scott, D. E.; Condon, J. A.
1980-01-01
Various suppressor configurations were analyzed and evaluated in an effort to reduce combustion instability and improved ballistic reproducibility of the MK 12 motor. A static firing test series of eight field return boosters featured two baseline motor firings with the existing suppressor in each motor, followed by two tests each of two different prototype suppressor designs. Results were analyzed and used to generate the design for the final two firings. Acoustic pressure pulsers were utilized to measure the damping effectiveness of the final design. The reduction in motor vibration and acoustic pressure levels between the baseline tests and the final two improved lightweight tests was significant. The average acceleration level of the motors equipped with flightweight rods was reduced to only 5% of the level in the unmodified motors; the average acoustic pressure level was reduced to 20%; maximum values were reduced to 6% for acceleration and 23% for pressure.
Modeling and dynamic environment analysis technology for spacecraft
NASA Astrophysics Data System (ADS)
Fang, Ren; Zhaohong, Qin; Zhong, Zhang; Zhenhao, Liu; Kai, Yuan; Long, Wei
Spacecraft sustains complex and severe vibrations and acoustic environments during flight. Predicting the resulting structures, including numerical predictions of fluctuating pressure, updating models and random vibration and acoustic analysis, plays an important role during the design, manufacture and ground testing of spacecraft. In this paper, Monotony Integrative Large Eddy Simulation (MILES) is introduced to predict the fluctuating pressure of the fairing. The exact flow structures of the fairing wall surface under different Mach numbers are obtained, then a spacecraft model is constructed using the finite element method (FEM). According to the modal test data, the model is updated by the penalty method. On this basis, the random vibration and acoustic responses of the fairing and satellite are analyzed by different methods. The simulated results agree well with the experimental ones, which shows the validity of the modeling and dynamic environment analysis technology. This information can better support test planning, defining test conditions and designing optimal structures.
Development of a piezopolymer pressure sensor for a portable fetal heart rate monitor
NASA Technical Reports Server (NTRS)
Zuckerwar, A. J.; Pretlow, R. A.; Stoughton, J. W.; Baker, D. A.
1993-01-01
A piezopolymer pressure sensor has been developed for service in a portable fetal heart rate monitor, which will permit an expectant mother to perform the fetal nonstress test, a standard predelivery test, in her home. Several sensors are mounted in an array on a belt worn by the mother. The sensor design conforms to the distinctive features of the fetal heart tone, namely, the acoustic signature, frequency spectrum, signal amplitude, and localization. The components of a sensor serve to fulfill five functions: signal detection, acceleration cancellation, acoustical isolation, electrical shielding, and electrical isolation of the mother. A theoretical analysis of the sensor response yields a numerical value for the sensor sensitivity, which is compared to experiment in an in vitro sensor calibration. Finally, an in vivo test on patients within the last six weeks of term reveals that nonstress test recordings from the acoustic monitor compare well with those obtained from conventional ultrasound.
Acoustic testing of high temperature panels
NASA Technical Reports Server (NTRS)
Leatherwood, Jack D.; Clevenson, Sherman A.; Powell, Clemans A.; Daniels, Edward F.
1990-01-01
Results are presented of a series of thermal-acoustic tests conducted on the NASA Langley Research Center Thermal-Acoustic Test Apparatus to (1) investigate techniques for obtaining strain measurements on metallic and carbon-carbon materials at elevated temperature; (2) document the dynamic strain response characteristics of several superalloy honeycomb thermal protection system panels at elevated temperatures of up to 1200 F; and (3) determine the strain response and sonic fatigue behavior of four carbon-carbon panels at both ambient and elevated temperatures. A second study tested four carbon-carbon panels to document panel dynamic response characteristics at ambient and elevated temperature, determine time to failure and faliure modes, and collect continuous strain data up to panel failure. Strain data are presented from both types of panels, and problems encountered in obtaining reliable strain data on the carbon-carbon panels are described. The failure modes of the carbon-carbon panels are examined.
Engine-induced structural-borne noise in a general aviation aircraft
NASA Technical Reports Server (NTRS)
Unruh, J. F.; Scheidt, D. C.; Pomerening, D. J.
1979-01-01
Structural borne interior noise in a single engine general aviation aircraft was studied to determine the importance of engine induced structural borne noise and to determine the necessary modeling requirements for the prediction of structural borne interior noise. Engine attached/detached ground test data show that engine induced structural borne noise is a primary interior noise source for the single engine test aircraft, cabin noise is highly influenced by responses at the propeller tone, and cabin acoustic resonances can influence overall noise levels. Results from structural and acoustic finite element coupled models of the test aircraft show that wall flexibility has a strong influence on fundamental cabin acoustic resonances, the lightweight fuselage structure has a high modal density, and finite element analysis procedures are appropriate for the prediction of structural borne noise.
Worcester, Peter F; Dzieciuch, Matthew A; Mercer, James A; Andrew, Rex K; Dushaw, Brian D; Baggeroer, Arthur B; Heaney, Kevin D; D'Spain, Gerald L; Colosi, John A; Stephen, Ralph A; Kemp, John N; Howe, Bruce M; Van Uffelen, Lora J; Wage, Kathleen E
2013-10-01
A series of experiments conducted in the Philippine Sea during 2009-2011 investigated deep-water acoustic propagation and ambient noise in this oceanographically and geologically complex region: (i) the 2009 North Pacific Acoustic Laboratory (NPAL) Pilot Study/Engineering Test, (ii) the 2010-2011 NPAL Philippine Sea Experiment, and (iii) the Ocean Bottom Seismometer Augmentation of the 2010-2011 NPAL Philippine Sea Experiment. The experimental goals included (a) understanding the impacts of fronts, eddies, and internal tides on acoustic propagation, (b) determining whether acoustic methods, together with other measurements and ocean modeling, can yield estimates of the time-evolving ocean state useful for making improved acoustic predictions, (c) improving our understanding of the physics of scattering by internal waves and spice, (d) characterizing the depth dependence and temporal variability of ambient noise, and (e) understanding the relationship between the acoustic field in the water column and the seismic field in the seafloor. In these experiments, moored and ship-suspended low-frequency acoustic sources transmitted to a newly developed distributed vertical line array receiver capable of spanning the water column in the deep ocean. The acoustic transmissions and ambient noise were also recorded by a towed hydrophone array, by acoustic Seagliders, and by ocean bottom seismometers.
NASA Astrophysics Data System (ADS)
Wagner, Alexander; Schülein, Erich; Petervari, René; Hannemann, Klaus; Ali, Syed R. C.; Cerminara, Adriano; Sandham, Neil D.
2018-05-01
Combined free-stream disturbance measurements and receptivity studies in hypersonic wind tunnels were conducted by means of a slender wedge probe and direct numerical simulation. The study comprises comparative tunnel noise measurements at Mach 3, 6 and 7.4 in two Ludwieg tube facilities and a shock tunnel. Surface pressure fluctuations were measured over a wide range of frequencies and test conditions including harsh test environments not accessible to measurement techniques such as pitot probes and hot-wire anemometry. Quantitative results of the tunnel noise are provided in frequency ranges relevant for hypersonic boundary layer transition. In combination with the experimental studies, direct numerical simulations of the leading-edge receptivity to fast and slow acoustic waves were performed for the slender wedge probe at conditions corresponding to the experimental free-stream conditions. The receptivity to fast acoustic waves was found to be characterized by an early amplification of the induced fast mode. For slow acoustic waves an initial decay was found close to the leading edge. At all Mach numbers, and for all considered frequencies, the leading-edge receptivity to fast acoustic waves was found to be higher than the receptivity to slow acoustic waves. Further, the effect of inclination angles of the acoustic wave with respect to the flow direction was investigated. The combined numerical and experimental approach in the present study confirmed the previous suggestion that the slow acoustic wave is the dominant acoustic mode in noisy hypersonic wind tunnels.
Structural tests using a MEMS acoustic emission sensor
NASA Astrophysics Data System (ADS)
Oppenheim, Irving J.; Greve, David W.; Ozevin, Didem; Hay, D. Robert; Hay, Thomas R.; Pessiki, Stephen P.; Tyson, Nathan L.
2006-03-01
In a collaborative project at Lehigh and Carnegie Mellon, a MEMS acoustic emission sensor was designed and fabricated as a suite of six resonant-type capacitive transducers in the frequency range between 100 and 500 kHz. Characterization studies showed good comparisons between predicted and experimental electro-mechanical behavior. Acoustic emission events, simulated experimentally in steel ball impact and in pencil lead break tests, were detected and source localization was demonstrated. In this paper we describe the application of the MEMS device in structural testing, both in laboratory and in field applications. We discuss our findings regarding housing and mounting (acoustic coupling) of the MEMS device with its supporting electronics, and we then report the results of structural testing. In all tests, the MEMS transducers were used in parallel with commercial acoustic emission sensors, which thereby serve as a benchmark and permit a direct observation of MEMS device functionality. All tests involved steel structures, with particular interest in propagation of existing cracks or flaws. A series of four laboratory tests were performed on beam specimens fabricated from two segments (Grade 50 steel) with a full penetration weld (E70T-4 electrode material) at midspan. That weld region was notched, an initial fatigue crack was induced, and the specimens were then instrumented with one commercial transducer and with one MEMS device; data was recorded from five individual transducers on the MEMS device. Under a four-point bending test, the beam displayed both inelastic behavior and crack propagation, including load drops associated with crack instability. The MEMS transducers detected all instability events as well as many or most of the acoustic emissions occurring during plasticity and stable crack growth. The MEMS transducers were less sensitive than the commercial transducer, and did not detect as many events, but the normalized cumulative burst count obtained from the MEMS transducers paralleled the count obtained from the commercial transducer. Waveform analysis of signals from the MEMS transducers provided additional information concerning arrivals of P-waves and S-waves. Similarly, the analysis provided additional confirmation that the acoustic emissions emanated from the damage zone near the crack tip, and were not spurious signals or artifacts. Subsequent tests were conducted in a field application where the MEMS transducers were redundant to a group of commercial transducers. The application example is a connection plate in truss bridge construction under passage of heavy traffic loads. The MEMS transducers were found to be functional, but were less sensitive in their present form than existing commercial transducers. We conclude that the transducers are usable in their current configuration and we outline applications for which they are presently suited, and then we discuss alternate MEMS structures that would provide greater sensitivity.
NASA Technical Reports Server (NTRS)
Roskam, J.; Muirhead, V. U.; Smith, H. W.; Henderson, T. D.
1977-01-01
The design, construction, and costs of a test facility for determining the sound transmission loss characteristics of various panels and panel treatments are described. The pressurization system and electronic equipment used in experimental testing are discussed as well as the reliability of the facility and the data gathered. Tests results are compared to pertinent acoustical theories for panel behavior and minor anomalies in the data are examined. A method for predicting panel behavior in the stiffness region is also presented.
In-flight acoustic test results for the SR-2 and SR-3 advanced-design propellers
NASA Technical Reports Server (NTRS)
Lasagna, P. L.; Mackall, K. G.; Cohn, R. B.
1983-01-01
Several advanced-design propellers, previously tested in the wind tunnel at the Lewis Research Center, have been tested in flight at the Dryden Flight Research Facility. The flight-test propellers were mounted on a pylon on the top of the fuselage of a JetStar airplane. Acoustic data for the advanced-design SR-2 and SR-3 propellers at Mach numbers to 0.8 and helical-tip Mach numbers to 1.15 are presented; maximum blade-passage frequency sound-pressure levels are also compared.
NASA Technical Reports Server (NTRS)
Sree, Dave
2015-01-01
Near-field acoustic power level analysis of F31A31 open rotor model has been performed to determine its noise characteristics at simulated cruise flight conditions. The non-proprietary parts of the test data obtained from experiments in the 8x6 supersonic wind tunnel were provided by NASA-Glenn Research Center. The tone and broadband components of total noise have been separated from raw test data by using a new data analysis tool. Results in terms of sound pressure levels, acoustic power levels, and their variations with rotor speed, freestream Mach number, and input shaft power, with different blade-pitch setting angles at simulated cruise flight conditions, are presented and discussed. Empirical equations relating models acoustic power level and input shaft power have been developed. The near-field acoustic efficiency of the model at simulated cruise conditions is also determined. It is hoped that the results presented in this work will serve as a database for comparison and improvement of other open rotor blade designs and also for validating open rotor noise prediction codes.
... differences in temperature to diagnose damage to the acoustic nerve. This is the nerve that is involved ... This test stimulates your acoustic nerve by delivering cold or warm water or air into your ear canal. When cold water or air enters your ...
Installation and Test of Doppler Acoustic Sensor
DOT National Transportation Integrated Search
1977-12-01
This report presents details of the installation of a Doppler acoustic vortex sensing system at JFK Runway 31R, the hardware and software improvements made since installation, vortex diagnostic and tracking data and analysis, and conclusions and reco...
Enhancement of acoustical performance of hollow tube sound absorber
NASA Astrophysics Data System (ADS)
Putra, Azma; Khair, Fazlin Abd; Nor, Mohd Jailani Mohd
2016-03-01
This paper presents acoustical performance of hollow structures utilizing the recycled lollipop sticks as acoustic absorbers. The hollow cross section of the structures is arranged facing the sound incidence. The effects of different length of the sticks and air gap on the acoustical performance are studied. The absorption coefficient was measured using impedance tube method. Here it is found that improvement on the sound absorption performance is achieved by introducing natural kapok fiber inserted into the void between the hollow structures. Results reveal that by inserting the kapok fibers, both the absorption bandwidth and the absorption coefficient increase. For test sample backed by a rigid surface, best performance of sound absorption is obtained for fibers inserted at the front and back sides of the absorber. And for the case of test sample with air gap, this is achieved for fibers introduced only at the back side of the absorber.
Modeling of acoustic emission signal propagation in waveguides.
Zelenyak, Andreea-Manuela; Hamstad, Marvin A; Sause, Markus G R
2015-05-21
Acoustic emission (AE) testing is a widely used nondestructive testing (NDT) method to investigate material failure. When environmental conditions are harmful for the operation of the sensors, waveguides are typically mounted in between the inspected structure and the sensor. Such waveguides can be built from different materials or have different designs in accordance with the experimental needs. All these variations can cause changes in the acoustic emission signals in terms of modal conversion, additional attenuation or shift in frequency content. A finite element method (FEM) was used to model acoustic emission signal propagation in an aluminum plate with an attached waveguide and was validated against experimental data. The geometry of the waveguide is systematically changed by varying the radius and height to investigate the influence on the detected signals. Different waveguide materials were implemented and change of material properties as function of temperature were taken into account. Development of the option of modeling different waveguide options replaces the time consuming and expensive trial and error alternative of experiments. Thus, the aim of this research has important implications for those who use waveguides for AE testing.
Concurrent Ultrasonic Tomography and Acoustic Emission in Solid Materials
NASA Astrophysics Data System (ADS)
Chow, Thomas M.
A series of experiments were performed to detect stress induced changes in the elastic properties of various solid materials. A technique was developed where these changes were monitored concurrently by two methods, ultrasonic tomography and acoustic emission monitoring. This thesis discusses some experiments in which acoustic emission (AE) and ultrasonic tomography were performed on various samples of solid materials including rocks, concrete, metals, and fibre reinforced composites. Three separate techniques were used to induce stress in these samples. Disk shaped samples were subject to stress via diametral loading using an indirect tensile test geometry. Cylindrical samples of rocks and concrete were subject to hydraulic fracture tests, and rectangular samples of fibre reinforced composite were subject to direct tensile loading. The majority of the samples were elastically anisotropic. Full waveform acoustic emission and tomographic data were collected while these samples were under load to give information concerning changes in the structure of the material as it was undergoing stress change and/or failure. Analysis of this data indicates that AE and tomographic techniques mutually compliment each other to give a view of the stress induced elastic changes in the tested samples.
Design and Development of a Deep Acoustic Lining for the 40-by 80-Foot Wind Tunnel Test Section
NASA Technical Reports Server (NTRS)
Soderman, Paul T.; Schmitz, Fredric H.; Allen, Christopher S.; Jaeger, Stephen M.; Sacco, Joe N.; Mosher, Marianne; Hayes, Julie A.
2002-01-01
The work described in this report has made effective use of design teams to build a state-of-the-art anechoic wind-tunnel facility. Many potential design solutions were evaluated using engineering analysis, and computational tools. Design alternatives were then evaluated using specially developed testing techniques, Large-scale coupon testing was then performed to develop confidence that the preferred design would meet the acoustic, aerodynamic, and structural objectives of the project. Finally, designs were frozen and the final product was installed in the wind tunnel. The result of this technically ambitious project has been the creation of a unique acoustic wind tunnel. Its large test section (39 ft x 79 ft x SO ft), potentially near-anechoic environment, and medium subsonic speed capability (M = 0.45) will support a full range of aeroacoustic testing-from rotorcraft and other vertical takeoff and landing aircraft to the take-off/landing configurations of both subsonic and supersonic transports.
Acoustic characteristics of 1/20-scale model helicopter rotors
NASA Technical Reports Server (NTRS)
Shenoy, Rajarama K.; Kohlhepp, Fred W.; Leighton, Kenneth P.
1986-01-01
A wind tunnel test to study the effects of geometric scale on acoustics and to investigate the applicability of very small scale models for the study of acoustic characteristics of helicopter rotors was conducted in the United Technologies Research Center Acoustic Research Tunnel. The results show that the Reynolds number effects significantly alter the Blade-Vortex-Interaction (BVI) Noise characteristics by enhancing the lower frequency content and suppressing the higher frequency content. In the time domain this is observed as an inverted thickness noise impulse rather than the typical positive-negative impulse of BVI noise. At higher advance ratio conditions, in the absence of BVI, the 1/20 scale model acoustic trends with Mach number follow those of larger scale models. However, the 1/20 scale model acoustic trends appear to indicate stall at higher thrust and advance ratio conditions.
Acoustic measurements of F-16 aircraft operating in hush house, NSN 4920-02-070-2721
NASA Astrophysics Data System (ADS)
Miller, V. R.; Plzak, G. A.; Chinn, J. M.
1981-09-01
The purpose of this test program was to measure the acoustic environment in the hush house facility located at Kelly Air Force Base, Texas, during operation of the F-16 aircraft to ensure that aircraft structural acoustic design limits were not exceeded. The acoustic measurements showed that no sonic fatigue problems are anticipated with the F-16 aircraft aft fuselage structure during operation in the hush house. The measured acoustic levels were less than those measured in an F-16 aircraft water cooled hush house at Hill AFB, but were increased over that measured during ground run up. It was recommended that the acoustic loads measured in this program should be specified in the structural design criteria for aircraft which will be subjected to hush house operation or defining requirements for associated equipment.
Acoustic change detection algorithm using an FM radio
NASA Astrophysics Data System (ADS)
Goldman, Geoffrey H.; Wolfe, Owen
2012-06-01
The U.S. Army is interested in developing low-cost, low-power, non-line-of-sight sensors for monitoring human activity. One modality that is often overlooked is active acoustics using sources of opportunity such as speech or music. Active acoustics can be used to detect human activity by generating acoustic images of an area at different times, then testing for changes among the imagery. A change detection algorithm was developed to detect physical changes in a building, such as a door changing positions or a large box being moved using acoustics sources of opportunity. The algorithm is based on cross correlating the acoustic signal measured from two microphones. The performance of the algorithm was shown using data generated with a hand-held FM radio as a sound source and two microphones. The algorithm could detect a door being opened in a hallway.
Implementation and Testing of the JANUS Standard with SSC Pacific’s Software-Defined Acoustic Modem
2017-10-01
Communications Outpost (FDECO) Innovative Naval Prototype (INP) Program by the Advanced Photonic Technologies Branch (Code 55360), Space and Naval Warfare...underwater acoustic communication operations with NATO and non-NATO military and civilian maritime assets. iv ACRONYMS SPAWAR Space and Naval Warfare...the center frequency [1]. The ease of implementation and proven robustness in harsh underwater acoustic communication channels paved the way for
NASA Technical Reports Server (NTRS)
Dhawan, R.; Gunther, M. F.; Claus, R. O.
1991-01-01
Quantitative measurements of the in-plane particle displacement components of ultrasonic surface acoustic wave fields using extrinsic Fizeau fiber interferometric (EFFI) sensors are reported. Wave propagation in materials and the fiber sensor elements are briefly discussed. Calibrated experimental results obtained for simulated acoustic emission events on homogeneous metal test specimens are reported and compared to previous results obtained using piezoelectric transducers.
Acoustic emission from composite materials. [nondestructive tests
NASA Technical Reports Server (NTRS)
Visconti, I. C.; Teti, R.
1979-01-01
The two basic areas where the acoustic emission (AE) technique can be applied are materials research and the evaluation of structural reliability. This experimental method leads to a better understanding of fracture mechanisms and is an NDT technique particularly well suited for the study of propagating cracks. Experiments are described in which acoustic emissions were unambiguously correlated with microstructural fracture mechanisms. The advantages and limitations of the AE technique are noted.
Sound Waves Levitate Substrates
NASA Technical Reports Server (NTRS)
Lee, M. C.; Wang, T. G.
1982-01-01
System recently tested uses acoustic waves to levitate liquid drops, millimeter-sized glass microballoons, and other objects for coating by vapor deposition or capillary attraction. Cylindrical contactless coating/handling facility employs a cylindrical acoustic focusing radiator and a tapered reflector to generate a specially-shaped standing wave pattern. Article to be processed is captured by the acoustic force field under the reflector and moves as reflector is moved to different work stations.
An Acoustic Analysis of the Vowel Space in Young and Old Cochlear-Implant Speakers
ERIC Educational Resources Information Center
Neumeyer, Veronika; Harrington, Jonathan; Draxler, Christoph
2010-01-01
The main purpose of this study was to compare acoustically the vowel spaces of two groups of cochlear implantees (CI) with two age-matched normal hearing groups. Five young test persons (15-25 years) and five older test persons (55-70 years) with CI and two control groups of the same age with normal hearing were recorded. The speech material…
Combustion Studies of Acoustically Suspended Liquid Droplets.
1988-03-01
34, 2 1 02 J Acoustic Levitation .’ ABSTRACT (Continue on reverse if necessary and identify by block number) piezoelectrically driven ultrasonic resonator...was developed and tested in this study. The device was used to levitate liquid fuel droplets for evaporation measurements and ignition :tudies. The... levitation technique may hold some promise for onducting non-combustion related droplet measurements, for example evaporation tests, but wIthout further
2003-08-18
KENNEDY SPACE CENTER, FLA. - Research team members work with acoustic cable during underwater acoustic research being conducted in the Launch Complex 39 turn basin. Several government agencies, including NASA, NOAA, the Navy, the Coast Guard, and the Florida Fish and Wildlife Commission are involved in the testing. The research involves demonstrations of passive and active sensor technologies, with applications in fields ranging from marine biological research to homeland security. The work is also serving as a pilot project to assess the cooperation between the agencies involved. Equipment under development includes a passive acoustic monitor developed by NASA’s Jet Propulsion Laboratory, and mobile robotic sensors from the Navy’s Mobile Diving and Salvage Unit.
Resonant-type MEMS transducers excited by two acoustic emission simulation techniques
NASA Astrophysics Data System (ADS)
Ozevin, Didem; Greve, David W.; Oppenheim, Irving J.; Pessiki, Stephen
2004-07-01
Acoustic emission testing is a passive nondestructive testing technique used to identify the onset and characteristics of damage through the detection and analysis of transient stress waves. Successful detection and implementation of acoustic emission requires good coupling, high transducer sensitivity and ability to discriminate noise from real signals. We report here detection of simulated acoustic emission signals using a MEMS chip fabricated in the multi-user polysilicon surface micromachining (MUMPs) process. The chip includes 18 different transducers with 10 different resonant frequencies in the range of 100 kHz to 1 MHz. It was excited by two different source simulation techniques; pencil lead break and impact loading. The former simulation was accomplished by breaking 0.5 mm lead on the ceramic package. Four transducer outputs were collected simultaneously using a multi-channel oscilloscope. The impact loading was repeated for five different diameter ball bearings. Traditional acoustic emission waveform analysis methods were applied to both data sets to illustrate the identification of different source mechanisms. In addition, a sliding window Fourier transform was performed to differentiate frequencies in time-frequency-amplitude domain. The arrival and energy contents of each resonant frequency were investigated in time-magnitude plots. The advantages of the simultaneous excitation of resonant transducers on one chip are discussed and compared with broadband acoustic emission transducers.
The Effects of Size and Type of Vocal Fold Polyp on Some Acoustic Voice Parameters.
Akbari, Elaheh; Seifpanahi, Sadegh; Ghorbani, Ali; Izadi, Farzad; Torabinezhad, Farhad
2018-03-01
Vocal abuse and misuse would result in vocal fold polyp. Certain features define the extent of vocal folds polyp effects on voice acoustic parameters. The present study aimed to define the effects of polyp size on acoustic voice parameters, and compare these parameters in hemorrhagic and non-hemorrhagic polyps. In the present retrospective study, 28 individuals with hemorrhagic or non-hemorrhagic polyps of the true vocal folds were recruited to investigate acoustic voice parameters of vowel/ æ/ computed by the Praat software. The data were analyzed using the SPSS software, version 17.0. According to the type and size of polyps, mean acoustic differences and correlations were analyzed by the statistical t test and Pearson correlation test, respectively; with significance level below 0.05. The results indicated that jitter and the harmonics-to-noise ratio had a significant positive and negative correlation with the polyp size (P=0.01), respectively. In addition, both mentioned parameters were significantly different between the two types of the investigated polyps. Both the type and size of polyps have effects on acoustic voice characteristics. In the present study, a novel method to measure polyp size was introduced. Further confirmation of this method as a tool to compare polyp sizes requires additional investigations.
The Effects of Size and Type of Vocal Fold Polyp on Some Acoustic Voice Parameters
Akbari, Elaheh; Seifpanahi, Sadegh; Ghorbani, Ali; Izadi, Farzad; Torabinezhad, Farhad
2018-01-01
Background Vocal abuse and misuse would result in vocal fold polyp. Certain features define the extent of vocal folds polyp effects on voice acoustic parameters. The present study aimed to define the effects of polyp size on acoustic voice parameters, and compare these parameters in hemorrhagic and non-hemorrhagic polyps. Methods In the present retrospective study, 28 individuals with hemorrhagic or non-hemorrhagic polyps of the true vocal folds were recruited to investigate acoustic voice parameters of vowel/ æ/ computed by the Praat software. The data were analyzed using the SPSS software, version 17.0. According to the type and size of polyps, mean acoustic differences and correlations were analyzed by the statistical t test and Pearson correlation test, respectively; with significance level below 0.05. Results The results indicated that jitter and the harmonics-to-noise ratio had a significant positive and negative correlation with the polyp size (P=0.01), respectively. In addition, both mentioned parameters were significantly different between the two types of the investigated polyps. Conclusion Both the type and size of polyps have effects on acoustic voice characteristics. In the present study, a novel method to measure polyp size was introduced. Further confirmation of this method as a tool to compare polyp sizes requires additional investigations. PMID:29749984
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlson, Thomas J.; Deng, Zhiqun; Myers, Joshua R.
2011-09-30
The Marine Animal Alert System (MAAS) in development by the Pacific Northwest National Laboratory is focused on providing elements of compliance monitoring to support deployment of marine hydrokinetic energy devices. An initial focus is prototype tidal turbines to be deployed in Puget Sound in Washington State. The MAAS will help manage the risk of injury or mortality to marine animals from blade strike or contact with tidal turbines. In particular, development has focused on detection, classification, and localization of listed Southern Resident killer whales within 200 m of prototype turbines using both active and passive acoustic approaches. At the closemore » of FY 2011, a passive acoustic system consisting of a pair of four-element star arrays and parallel processing of eight channels of acoustic receptions has been designed and built. Field tests of the prototype system are scheduled for the fourth quarter of calendar year 2011. Field deployment and testing of the passive acoustic prototype is scheduled for the first quarter of FY 2012. The design of an active acoustic system that could be built using commercially available off-the-shelf components from active acoustic system vendors is also in the final stages of design and specification.« less
Test results of a resonant integrated microbeam sensor (RIMS) for acoustic emission monitoring
NASA Astrophysics Data System (ADS)
Schoess, Jeffrey N.; Zook, J. David
1998-07-01
An acoustic emission (AE) sensor has been developed by Honeywell Technology Center for avionics, industrial control, and military applications. The AE sensor design is based on an integrated silicon microstructure, a resonant microbeam with micron-level feature size, and frequency sensitivity up to 500 kHz. The AE sensor has been demonstrated successfully in the laboratory test environment to sense and characterize a simulated AE even for structural fatigue crack monitoring applications. The technical design approach and laboratory test results are presented.
Feasibility of making sound power measurements in the NASA Langley V/STOL tunnel test section
NASA Technical Reports Server (NTRS)
Brooks, T. F.; Scheiman, J.; Silcox, R. J.
1976-01-01
Based on exploratory acoustic measurements in Langley's V/STOL wind tunnel, recommendations are made on the methodology for making sound power measurements of aircraft components in the closed tunnel test section. During airflow, tunnel self-noise and microphone flow-induced noise place restrictions on the amplitude and spectrum of the sound source to be measured. Models of aircraft components with high sound level sources, such as thrust engines and powered lift systems, seem likely candidates for acoustic testing.
Acoustic results of the Boeing model 360 whirl tower test
NASA Astrophysics Data System (ADS)
Watts, Michael E.; Jordan, David
1990-09-01
An evaluation is presented for whirl tower test results of the Model 360 helicopter's advanced, high-performance four-bladed composite rotor system intended to facilitate over-200-knot flight. During these performance measurements, acoustic data were acquired by seven microphones. A comparison of whirl-tower tests with theory indicate that theoretical prediction accuracies vary with both microphone position and the inclusion of ground reflection. Prediction errors varied from 0 to 40 percent of the measured signal-to-peak amplitude.
How the environment shapes animal signals: a test of the acoustic adaptation hypothesis in frogs.
Goutte, S; Dubois, A; Howard, S D; Márquez, R; Rowley, J J L; Dehling, J M; Grandcolas, P; Xiong, R C; Legendre, F
2018-01-01
Long-distance acoustic signals are widely used in animal communication systems and, in many cases, are essential for reproduction. The acoustic adaptation hypothesis (AAH) implies that acoustic signals should be selected for further transmission and better content integrity under the acoustic constraints of the habitat in which they are produced. In this study, we test predictions derived from the AAH in frogs. Specifically, we focus on the difference between torrent frogs and frogs calling in less noisy habitats. Torrents produce sounds that can mask frog vocalizations and constitute a major acoustic constraint on call evolution. We combine data collected in the field, material from scientific collections and the literature for a total of 79 primarily Asian species, of the families Ranidae, Rhacophoridae, Dicroglossidae and Microhylidae. Using phylogenetic comparative methods and including morphological and environmental potential confounding factors, we investigate putatively adaptive call features in torrent frogs. We use broad habitat categories as well as fine-scale habitat measurements and test their correlation with six call characteristics. We find mixed support for the AAH. Spectral features of torrent frog calls are different from those of frogs calling in other habitats and are related to ambient noise levels, as predicted by the AAH. However, temporal call features do not seem to be shaped by the frogs' calling habitats. Our results underline both the complexity of call evolution and the need to consider multiple factors when investigating this issue. © 2017 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2017 European Society For Evolutionary Biology.
Sekelj, Alen; Đanić, Davorin
2017-09-01
Lyme borreliosis is a vector-borne infectious disease characterized by three disease stages. In the areas endemic for borreliosis, every acute facial palsy indicates serologic testing and implies specific approach to the disease. Th e aim of the study was to identify and confirm the value of acoustic refl ex and House-Brackman (HB) grading scale as prognostic indicators of facial palsy in neuroborreliosis. Th e study included 176 patients with acute facial palsy divided into three groups based on serologic testing: borreliosis, Bell's palsy, and facial palsy caused by herpes simplex virus type 1 (HSV-1). Study patients underwent baseline audiometry with tympanometry and acoustic reflex, whereas current state of facial palsy was assessed by the HB scale. Subsequently, the same tests were obtained on three occasions, i.e. in week 3, 6 and 12 of presentation. Th e patients diagnosed with borreliosis, Bell's palsy and HSV-1 differed according to the time to acoustic refl ex recovery, which took longest time in patients with borreliosis. Th ese patients had the highest percentage of suprastapedial lesions at all time points and recovery was achieved later as compared with the other two diagnoses. Th e mean score on the HB scale declined with time, also at a slower rate in borreliosis patients. Th e prognosis of acoustic refl ex and facial palsy recovery according to HB scale was not associated with the length of elapsed time. The results obtained in the present study strongly confirmed the role of acoustic reflex and HB grading scale as prognostic indicators of facial palsy in neuroborreliosis.
NASA Astrophysics Data System (ADS)
Todorov, George; Kamberov, Konstantin; Kralov, Ivan; Ignatov, Ignat
2017-12-01
In this study the virtual prototyping is used for evaluation the influence of the contact roughness upon the acoustic behaviour evaluation of railway monobloc wheel. The proposed procedure covers requirements of the European Standard EN 13979-1 "Wheels and bogies - Monobloc wheels". The main advantage of the acoustic assessment based on the virtual engineering technics - absence of the expensive and time consuming physical tests, is sown. The real industrial-project example is presented and comparison of the numerical and experimental results is used for acoustic behaviour assessment and approval of railway monobloc wheel design.
Simultaneous Detection of Static and Dynamic Signals by a Flexible Sensor Based on 3D Graphene.
Xu, Rongqing; Wang, Di; Zhang, Hongchao; Xie, Na; Lu, Shan; Qu, Ke
2017-05-08
A flexible acoustic pressure sensor was developed based on the change in electrical resistance of three-dimensional (3D) graphene change under the acoustic waves action. The sensor was constructed by 3D graphene foam (GF) wrapped in flexible polydimethylsiloxane (PDMS). Tuning forks and human physiological tests indicated that the acoustic pressure sensor can sensitively detect the deformation and the acoustic pressure in real time. The results are of significance to the development of graphene-based applications in the field of health monitoring, in vitro diagnostics, advanced therapies, and transient pressure detection.
Acoustic Source Localization in Aircraft Interiors Using Microphone Array Technologies
NASA Technical Reports Server (NTRS)
Sklanka, Bernard J.; Tuss, Joel R.; Buehrle, Ralph D.; Klos, Jacob; Williams, Earl G.; Valdivia, Nicolas
2006-01-01
Using three microphone array configurations at two aircraft body stations on a Boeing 777-300ER flight test, the acoustic radiation characteristics of the sidewall and outboard floor system are investigated by experimental measurement. Analysis of the experimental data is performed using sound intensity calculations for closely spaced microphones, PATCH Inverse Boundary Element Nearfield Acoustic Holography, and Spherical Nearfield Acoustic Holography. Each method is compared assessing strengths and weaknesses, evaluating source identification capability for both broadband and narrowband sources, evaluating sources during transient and steady-state conditions, and quantifying field reconstruction continuity using multiple array positions.
Remote Sensing Wind and Wind Shear System.
Contents: Remote sensing of wind shear and the theory and development of acoustic doppler; Wind studies; A comparison of methods for the remote detection of winds in the airport environment; Acoustic doppler system development; System calibration; Airport operational tests.
Acoustic levitation for high temperature containerless processing in space
NASA Technical Reports Server (NTRS)
Rey, C. A.; Sisler, R.; Merkley, D. R.; Danley, T. J.
1990-01-01
New facilities for high-temperature containerless processing in space are described, including the acoustic levitation furnace (ALF), the high-temperature acoustic levitator (HAL), and the high-pressure acoustic levitator (HPAL). In the current ALF development, the maximum temperature capabilities of the levitation furnaces are 1750 C, and in the HAL development with a cold wall furnace they will exceed 2000-2500 C. The HPAL demonstrated feasibility of precursor space flight experiments on the ground in a 1 g pressurized-gas environment. Testing of lower density materials up to 1300 C has also been accomplished. It is suggested that advances in acoustic levitation techniques will result in the production of new materials such as ceramics, alloys, and optical and electronic materials.
Horoshenkov, Kirill V; Khan, Amir; Bécot, François-Xavier; Jaouen, Luc; Sgard, Franck; Renault, Amélie; Amirouche, Nesrine; Pompoli, Francesco; Prodi, Nicola; Bonfiglio, Paolo; Pispola, Giulio; Asdrubali, Francesco; Hübelt, Jörn; Atalla, Noureddine; Amédin, Celse K; Lauriks, Walter; Boeckx, Laurens
2007-07-01
This paper reports the results of reproducibility experiments on the interlaboratory characterization of the acoustical properties of three types of consolidated porous media: granulated porous rubber, reticulated foam, and fiberglass. The measurements are conducted in several independent laboratories in Europe and North America. The studied acoustical characteristics are the surface complex acoustic impedance at normal incidence and plane wave absorption coefficient which are determined using the standard impedance tube method. The paper provides detailed procedures related to sample preparation and installation and it discusses the dispersion in the acoustical material property observed between individual material samples and laboratories. The importance of the boundary conditions, homogeneity of the porous material structure, and stability of the adopted signal processing method are highlighted.
Comparison of PAM Systems for Acoustic Monitoring and Further Risk Mitigation Application.
Ludwig, Stefan; Kreimeyer, Roman; Knoll, Michaela
2016-01-01
We present results of the SIRENA 2011 research cruises conducted by the NATO Undersea Research Centre (NURC) and joined by the Research Department for Underwater Acoustics and Geophysics (FWG), Bundeswehr Technical Centre (WTD 71) and the Universities of Kiel and Pavia. The cruises were carried out in the Ligurian Sea. The main aim of the FWG was to test and evaluate the newly developed towed hydrophone array as a passive acoustic monitoring (PAM) tool for risk mitigation applications. The system was compared with the PAM equipment used by the other participating institutions. Recorded sounds were used to improve an automatic acoustic classifier for marine mammals, and validated acoustic detections by observers were compared with the results of the classifier.
NASA Astrophysics Data System (ADS)
Popkov, Artem
2016-01-01
The article contains information about acoustic emission signals analysing using autocorrelation function. Operation factors were analysed, such as shape of signal, the origins time and carrier frequency. The purpose of work is estimating the validity of correlations methods analysing signals. Acoustic emission signal consist of different types of waves, which propagate on different trajectories in object of control. Acoustic emission signal is amplitude-, phase- and frequency-modeling signal. It was described by carrier frequency at a given point of time. Period of signal make up 12.5 microseconds and carrier frequency make up 80 kHz for analysing signal. Usage autocorrelation function like indicator the origin time of acoustic emission signal raises validity localization of emitters.
On the generation of double layers from ion- and electron-acoustic instabilities
NASA Astrophysics Data System (ADS)
Fu, Xiangrong; Cowee, Misa M.; Gary, S. Peter; Winske, Dan
2016-03-01
A plasma double layer (DL) is a nonlinear electrostatic structure that carries a uni-polar electric field parallel to the background magnetic field due to local charge separation. Past studies showed that DLs observed in space plasmas are mostly associated with the ion acoustic instability. Recent Van Allen Probes observations of parallel electric field structures traveling much faster than the ion acoustic speed have motivated a computational study to test the hypothesis that a new type of DLs—electron acoustic DLs—generated from the electron acoustic instability are responsible for these electric fields. Nonlinear particle-in-cell simulations yield negative results, i.e., the hypothetical electron acoustic DLs cannot be formed in a way similar to ion acoustic DLs. Linear theory analysis and the simulations show that the frequencies of electron acoustic waves are too high for ions to respond and maintain charge separation required by DLs. However, our results do show that local density perturbations in a two-electron-component plasma can result in unipolar-like electric field structures that propagate at the electron thermal speed, suggesting another potential explanation for the observations.
Bertucci, Frédéric; Parmentier, Eric; Lecellier, Gaël; Hawkins, Anthony D.; Lecchini, David
2016-01-01
Different marine habitats are characterised by different soundscapes. How or which differences may be representative of the habitat characteristics and/or community structure remains however to be explored. A growing project in passive acoustics is to find a way to use soundscapes to have information on the habitat and on its changes. In this study we have successfully tested the potential of two acoustic indices, i.e. the average sound pressure level and the acoustic complexity index based on the frequency spectrum. Inside and outside marine protected areas of Moorea Island (French Polynesia), sound pressure level was positively correlated with the characteristics of the substratum and acoustic complexity was positively correlated with fish diversity. It clearly shows soundscape can be used to evaluate the acoustic features of marine protected areas, which presented a significantly higher ambient sound pressure level and were more acoustically complex than non-protected areas. This study further emphasizes the importance of acoustics as a tool in the monitoring of marine environments and in the elaboration and management of future conservation plans. PMID:27629650
Bertucci, Frédéric; Parmentier, Eric; Lecellier, Gaël; Hawkins, Anthony D; Lecchini, David
2016-09-15
Different marine habitats are characterised by different soundscapes. How or which differences may be representative of the habitat characteristics and/or community structure remains however to be explored. A growing project in passive acoustics is to find a way to use soundscapes to have information on the habitat and on its changes. In this study we have successfully tested the potential of two acoustic indices, i.e. the average sound pressure level and the acoustic complexity index based on the frequency spectrum. Inside and outside marine protected areas of Moorea Island (French Polynesia), sound pressure level was positively correlated with the characteristics of the substratum and acoustic complexity was positively correlated with fish diversity. It clearly shows soundscape can be used to evaluate the acoustic features of marine protected areas, which presented a significantly higher ambient sound pressure level and were more acoustically complex than non-protected areas. This study further emphasizes the importance of acoustics as a tool in the monitoring of marine environments and in the elaboration and management of future conservation plans.
Acoustic Transmitters for Underwater Neutrino Telescopes
Ardid, Miguel; Martínez-Mora, Juan A.; Bou-Cabo, Manuel; Larosa, Giuseppina; Adrián-Martínez, Silvia; Llorens, Carlos D.
2012-01-01
In this paper acoustic transmitters that were developed for use in underwater neutrino telescopes are presented. Firstly, an acoustic transceiver has been developed as part of the acoustic positioning system of neutrino telescopes. These infrastructures are not completely rigid and require a positioning system in order to monitor the position of the optical sensors which move due to sea currents. To guarantee a reliable and versatile system, the transceiver has the requirements of reduced cost, low power consumption, high pressure withstanding (up to 500 bars), high intensity for emission, low intrinsic noise, arbitrary signals for emission and the capacity of acquiring and processing received signals. Secondly, a compact acoustic transmitter array has been developed for the calibration of acoustic neutrino detection systems. The array is able to mimic the signature of ultra-high-energy neutrino interaction in emission directivity and signal shape. The technique of parametric acoustic sources has been used to achieve the proposed aim. The developed compact array has practical features such as easy manageability and operation. The prototype designs and the results of different tests are described. The techniques applied for these two acoustic systems are so powerful and versatile that may be of interest in other marine applications using acoustic transmitters. PMID:22666022
Anomalous acoustic dispersion in architected microlattice metamaterials
NASA Astrophysics Data System (ADS)
KröDel, Sebastian; Palermo, Antonio; Daraio, Chiara
The ability to control dispersion in acoustic metamaterials is crucial to realize acoustic filtering and rectification devices as well as perfect imaging using negative refractive index materials. Architected microlattice metamaterials immersed in fluid constitute a versatile platform for achieving such control. We investigate architected microlattice materials able to exploit locally resonant modes of their fundamental building blocks that couple with propagating acoustic waves. Using analytical, numerical and experimental methods we find that such lattice materials show a hybrid dispersion behavior governed by Biot's theory for long wavelengths and multiple scattering theory when wave frequency is close to the resonances of the building block. We identify the relevant geometric parameters to alter and control the group and phase velocities in this class of acoustic metamaterials. Furthermore, we fabricate small-scale acoustic metamaterial samples using high precision SLA additive manufacturing and test the resulting materials experimentally using a customized ultrasonic setup. This work paves the way for new acoustic devices based on microlattice metamaterials.
Vortex Shedding Inside a Baffled Air Duct
NASA Technical Reports Server (NTRS)
Davis, Philip; Kenny, R. Jeremy
2010-01-01
Common in the operation of both segmented and un-segmented large solid rocket motors is the occurrence of vortex shedding within the motor chamber. A portion of the energy within a shed vortex is converted to acoustic energy, potentially driving the longitudinal acoustic modes of the motor in a quasi-discrete fashion. This vortex shedding-acoustic mode excitation event occurs for every Reusable Solid Rocket Motor (RSRM) operation, giving rise to subsequent axial thrust oscillations. In order to better understand this vortex shedding/acoustic mode excitation phenomena, unsteady CFD simulations were run for both a test geometry and the full scale RSRM geometry. This paper covers the results from the subscale geometry runs, which were based on work focusing on the RSRM hydrodynamics. Unsteady CFD simulation parameters, including boundary conditions and post-processing returns, are reviewed. The results were further post-processed to identify active acoustic modes and vortex shedding characteristics. Probable locations for acoustic energy generation, and subsequent acoustic mode excitation, are discussed.
NASA Technical Reports Server (NTRS)
Martin, R. M.; Splettstoesser, W. R.; Elliott, J. W.; Schultz, K.-J.
1988-01-01
Acoustic data are presented from a 40 percent scale model of the four-bladed BO-105 helicopter main rotor, tested in a large aerodynamic wind tunnel. Rotor blade-vortex interaction (BVI) noise data in the low-speed flight range were acquired using a traversing in-flow microphone array. Acoustic results presented are used to assess the acoustic far field of BVI noise, to map the directivity and temporal characteristics of BVI impulsive noise, and to show the existence of retreating-side BVI signals. The characterics of the acoustic radiation patterns, which can often be strongly focused, are found to be very dependent on rotor operating condition. The acoustic signals exhibit multiple blade-vortex interactions per blade with broad impulsive content at lower speeds, while at higher speeds, they exhibit fewer interactions per blade, with much sharper, higher amplitude acoustic signals. Moderate-amplitude BVI acoustic signals measured under the aft retreating quadrant of the rotor are shown to originate from the retreating side of the rotor.
On-chip manipulation of single microparticles, cells, and organisms using surface acoustic waves.
Ding, Xiaoyun; Lin, Sz-Chin Steven; Kiraly, Brian; Yue, Hongjun; Li, Sixing; Chiang, I-Kao; Shi, Jinjie; Benkovic, Stephen J; Huang, Tony Jun
2012-07-10
Techniques that can dexterously manipulate single particles, cells, and organisms are invaluable for many applications in biology, chemistry, engineering, and physics. Here, we demonstrate standing surface acoustic wave based "acoustic tweezers" that can trap and manipulate single microparticles, cells, and entire organisms (i.e., Caenorhabditis elegans) in a single-layer microfluidic chip. Our acoustic tweezers utilize the wide resonance band of chirped interdigital transducers to achieve real-time control of a standing surface acoustic wave field, which enables flexible manipulation of most known microparticles. The power density required by our acoustic device is significantly lower than its optical counterparts (10,000,000 times less than optical tweezers and 100 times less than optoelectronic tweezers), which renders the technique more biocompatible and amenable to miniaturization. Cell-viability tests were conducted to verify the tweezers' compatibility with biological objects. With its advantages in biocompatibility, miniaturization, and versatility, the acoustic tweezers presented here will become a powerful tool for many disciplines of science and engineering.
Determining Transmission Loss from Measured External and Internal Acoustic Environments
NASA Technical Reports Server (NTRS)
Scogin, Tyler; Smith, A. M.
2012-01-01
An estimate of the internal acoustic environment in each internal cavity of a launch vehicle is needed to ensure survivability of Space Launch System (SLS) avionics. Currently, this is achieved by using the noise reduction database of heritage flight vehicles such as the Space Shuttle and Saturn V for liftoff and ascent flight conditions. Marshall Space Flight Center (MSFC) is conducting a series of transmission loss tests to verify and augment this method. For this test setup, an aluminum orthogrid curved panel representing 1/8th of the circumference of a section of the SLS main structure was mounted in between a reverberation chamber and an anechoic chamber. Transmission loss was measured across the panel using microphones. Data measured during this test will be used to estimate the internal acoustic environments for several of the SLS launch vehicle internal spaces.
Acoustic measurements on aerofoils moving in a circle at high speed
NASA Technical Reports Server (NTRS)
Wright, S. E.; Crosby, W.; Lee, D. L.
1982-01-01
Features of the test apparatus, research objectives and sample test results at the Stanford University rotor aerodynamics and noise facility are described. A steel frame equipped to receive lead shot for damping vibrations supports the drive shaft for rotor blade elements. Sleeve bearings are employed to assure quietness, and a variable speed ac motor produces the rotations. The test stand can be configured for horizontal or vertical orientation of the drive shaft. The entire assembly is housed in an acoustically sealed room. Rotation conditions for hover and large angles of attack can be studied, together with rotational and blade element noises. Research is possible on broad band, discrete frequency, and high speed noise, with measurements taken 3 m from the center of the rotor. Acoustic signatures from Mach 0.3-0.93 trials with a NACA 0012 airfoil are provided.
Hybrid CFD/CAA Modeling for Liftoff Acoustic Predictions
NASA Technical Reports Server (NTRS)
Strutzenberg, Louise L.; Liever, Peter A.
2011-01-01
This paper presents development efforts at the NASA Marshall Space flight Center to establish a hybrid Computational Fluid Dynamics and Computational Aero-Acoustics (CFD/CAA) simulation system for launch vehicle liftoff acoustics environment analysis. Acoustic prediction engineering tools based on empirical jet acoustic strength and directivity models or scaled historical measurements are of limited value in efforts to proactively design and optimize launch vehicles and launch facility configurations for liftoff acoustics. CFD based modeling approaches are now able to capture the important details of vehicle specific plume flow environment, identifY the noise generation sources, and allow assessment of the influence of launch pad geometric details and sound mitigation measures such as water injection. However, CFD methodologies are numerically too dissipative to accurately capture the propagation of the acoustic waves in the large CFD models. The hybrid CFD/CAA approach combines the high-fidelity CFD analysis capable of identifYing the acoustic sources with a fast and efficient Boundary Element Method (BEM) that accurately propagates the acoustic field from the source locations. The BEM approach was chosen for its ability to properly account for reflections and scattering of acoustic waves from launch pad structures. The paper will present an overview of the technology components of the CFD/CAA framework and discuss plans for demonstration and validation against test data.
GRC-11-02-17-WindTunnel-9x15-001
2017-11-02
The Aerosciences Evaluation and Test Capabilities (AETC) Portfolio implemented the Capability Challenge to “Reduce Background Noise Levels for Engine Efficiency Measurements at the NASA Glenn 9x15 Low Speed Wind Tunnel”. The 9x15 Low Speed Wind Tunnel Acoustic Improvements animation documents the acoustic modifications being made to the 9x15 leg of the wind tunnel to reduce background noise levels. A brief history of the 9x15, research testing performed in the wind tunnel, the need to reduce background noise, and the five state of the art acoustic design modifications are documented in the animation. The expected noise reduction is presented audibly and the resulting benefit to NASA is also defined.
Joint Acoustic Propagation Experiment (JAPE-91) Workshop
NASA Technical Reports Server (NTRS)
Willshire, William L., Jr. (Compiler); Chestnutt, David (Compiler)
1993-01-01
The Joint Acoustic Propagation Experiment (JAPE), was conducted at the White Sands Missile Range, New Mexico, USA, during the period 11-28 Jul. 1991. JAPE consisted of various short and long range propagation experiments using various acoustic sources including speakers, propane cannons, helicopters, a 155 mm howitzer, and static high explosives. Of primary importance to the performance of theses tests was the extensive characterization of the atmosphere during these tests. This atmospheric characterization included turbulence measurements. A workshop to disseminate the results of JAPE-91 was held in Hampton, VA, on 28 Apr. 1993. This report is a compilation of the presentations made at the workshop along with a list of attendees and the agenda.
Characteristics of an anechoic chamber for fan noise testing
NASA Technical Reports Server (NTRS)
Wuzyniak, J. A.; Shaw, L. M.; Essary, J. D.
1977-01-01
Acoustical and mechanical design features of NASA Lewis Research Center's engine fan noise facility are described. Acoustic evaluation of the chamber, which is lined with an array of stepped wedges, is described. Results from the evaluation in terms of cut-off frequency and non-anechoic areas near the walls are detailed. Fan models are electrically driven to 20,600 RPM in either the inlet mode or exhaust mode to facilitate study of both fore and aft fan noise. Inlet noise characteristics of the first fan tested are discussed and compared to full-scale levels. Turbulence properties of the inlet flow and acoustic results are compared with and without a turbulence reducing screen over the fan inlet.
NASA Technical Reports Server (NTRS)
Hughes, William O.; McNelis, Anne M.; Chris Nottoli; Eric Wolfram
2015-01-01
The absorption coefficient for material specimens are needed to quantify the expected acoustic performance of that material in its actual usage and environment. The ASTM C423-09a standard, "Standard Test Method for Sound Absorption and Sound Absorption Coefficients by the Reverberant Room Method" is often used to measure the absorption coefficient of material test specimens. This method has its basics in the Sabine formula. Although widely used, the interpretation of these measurements are a topic of interest. For example, in certain cases the measured Sabine absorption coefficients are greater than 1.0 for highly absorptive materials. This is often attributed to the diffraction edge effect phenomenon. An investigative test program to measure the absorption properties of highly absorbent melamine foam has been performed at the Riverbank Acoustical Laboratories. This paper will present and discuss the test results relating to the effect of the test materials' surface area, thickness and edge sealing conditions. A follow-on paper is envisioned that will present and discuss the results relating to the spacing between multiple piece specimens, and the mounting condition of the test specimen.
Real-time analysis system for gas turbine ground test acoustic measurements.
Johnston, Robert T
2003-10-01
This paper provides an overview of a data system upgrade to the Pratt and Whitney facility designed for making acoustic measurements on aircraft gas turbine engines. A data system upgrade was undertaken because the return-on-investment was determined to be extremely high. That is, the savings on the first test series recovered the cost of the hardware. The commercial system selected for this application utilizes 48 input channels, which allows either 1/3 octave and/or narrow-band analyses to be preformed real-time. A high-speed disk drive allows raw data from all 48 channels to be stored simultaneously while the analyses are being preformed. Results of tests to ensure compliance of the new system with regulations and with existing systems are presented. Test times were reduced from 5 h to 1 h of engine run time per engine configuration by the introduction of this new system. Conservative cost reduction estimates for future acoustic testing are 75% on items related to engine run time and 50% on items related to the overall length of the test.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weavers, P; Shu, Y; Tao, S
Purpose: A high-performance head-only magnetic resonance imaging gradient system with an acquisition volume of 26 cm employing an asymmetric design for the transverse coils has been developed. It is able to reach a magnitude of 85 mT/m at a slew rate of 700 T/m/s, but operated at 80 mT/m and 500 T/m/s for this test. A challenge resulting from this asymmetric design is that the gradient nonlinearly exhibits both odd- and even-ordered terms, and as the full imaging field of view is often used, the nonlinearity is pronounced. The purpose of this work is to show the system can producemore » clinically useful images after an on-site gradient nonlinearity calibration and correction, and show that acoustic noise levels fall within non-significant risk (NSR) limits for standard clinical pulse sequences. Methods: The head-only gradient system was inserted into a standard 3T wide-bore scanner without acoustic damping. The ACR phantom was scanned in an 8-channel receive-only head coil and the standard American College of Radiology (ACR) MRI quality control (QC) test was performed. Acoustic noise levels were measured for several standard pulse sequences. Results: Images acquired with the head-only gradient system passed all ACR MR image quality tests; Both even and odd-order gradient distortion correction terms were required for the asymmetric gradients to pass. Acoustic noise measurements were within FDA NSR guidelines of 99 dBA (with assumed 20 dBA hearing protection) A-weighted and 140 dB for peak for all but one sequence. Note the gradient system was installed without any shroud or acoustic batting. We expect final system integration to greatly reduce noise experienced by the patient. Conclusion: A high-performance head-only asymmetric gradient system operating at 80 mT/m and 500 T/m/s conforms to FDA acoustic noise limits in all but one case, and passes all the ACR MR image quality control tests. This work was supported in part by the NIH grant 5R01EB010065.« less
Acoustic Performance of an Advanced Model Turbofan in Three Aeroacoustic Test Facilities
NASA Technical Reports Server (NTRS)
Woodward, Richard P.; Hughes, Christopher E.
2012-01-01
A model advanced turbofan was acoustically tested in the NASA Glenn 9- by 15-Foot-Low-Speed Wind Tunnel (LSWT), and in two other aeroacoustic facilities. The Universal Propulsion Simulator (UPS) fan was designed and manufactured by the General Electric Aircraft Engines (GEAE) Company, and featured active core, as well as bypass, flow paths. The reference test configurations were with the metal, M4, rotor with hardwall and treated bypass flow ducts. The UPS fan was tested within an airflow at a Mach number of 0.20 (limited flow data were also acquired at a Mach number of 0.25) which is representative of aircraft takeoff and approach conditions. Comparisons were made between data acquired within the airflow (9x15 LSWT and German-Dutch Wind Tunnel (DNW)) and outside of a free jet (Boeing Low Speed Aero acoustic Facility (LSAF) and DNW). Sideline data were acquired on an 89-in. (nominal 4 fan diameters) sideline using the same microphone assembly and holder in the 9x15 LSWT and DNW facilities. These data showed good agreement for similar UPS operating conditions and configurations. Distortion of fan spectra tonal content through a free jet shear layer was documented, suggesting that in-flow acoustic measurements are required for comprehensive fan noise diagnostics. However, there was good agreement for overall sound power level (PWL) fan noise measurements made both within and outside of the test facility airflow.
Acoustic emission testing of composite vessels under sustained loading
NASA Technical Reports Server (NTRS)
Lark, R. F.; Moorhead, P. E.
1978-01-01
Acoustic emission (AE) tests have been conducted on small-diameter Kevlar 49/epoxy pressure vessels subjected to long-term sustained load-to-failure tests. Single-cycle burst tests were used as a basis for determining the test pressure in the sustained-loading tests. AE data from two vessel locations were compared. The data suggest that AE from vessel wall-mounted transducers is quite different for identical vessels subjected to the same pressure loading. AE from boss-mounted transducers yielded relatively consistent values. These values were not a function of time for vessel failure. The development of an AE test procedure for predicting the residual service life or integrity of composite vessels is discussed.
An Investigation of Acoustic Cavitation Produced by Pulsed Ultrasound
1987-12-01
S~ PVDF Hydrophone Sensitivity Calibration Curves C. DESCRIPTION OF TEST AND CALIBRATION TECHNIQUE We chose the reciprocity technique for calibration...NAVAL POSTGRADUATE SCHOOLN a n Monterey, Calif ornia ITHESIS AN INVESTIGATION OF ACOUSTIC CAVITATION PRODUCED BY PULSED ULTRASOUND by Robert L. Bruce...INVESTIGATION OF ACOUSTIC CAVITATION PRODUCED B~Y PULSED ULTRASOUND !2 PERSONAL AUTHOR(S) .RR~r. g~rtL_ 1DLJN, Rober- ., Jr. 13a TYPE OF REPORT )3b TIME
High intensity acoustic tests of a thermally stressed aluminum plate in TAFA
NASA Technical Reports Server (NTRS)
Ng, Chung Fai; Clevenson, Sherman A.
1989-01-01
An investigation was conducted in the Thermal Acoustic Fatigue Apparatus at the Langley Research Center to study the acoustically excited random motion of an aluminum plate which is buckled due to thermal stresses. The thermal buckling displacements were measured and compared with theory. The general trends of the changes in resonances frequencies and random responses of the plate agree with previous theoretical prediction and experimental results for a mechanically buckled plate.
Wave Propagation and Inversion in Shallow Water and Poro-elastic Sediment
1997-09-30
water and high freq. acoustics LONG-TERM GOALS To create codes accurately model wave propagation and scattering in shallow water, and to quantify...is undergoing testing for the acoustic stratified Green’s function. We have adapted code generated by J. Schuster in Geophysics for the FDTD model ...inversions and modelling , and have repercussions in environmental imaging [5], acoustic imaging [1,4,5,6,7] and early breast cancer diagnosis
NASA Technical Reports Server (NTRS)
Kuntz, H. L.; Gatineau, R. J.; Prydz, R. A.; Balena, F. J.
1991-01-01
The use of Helmholtz resonators to increase the sidewall transmission loss (TL) in aircraft cabin sidewalls is evaluated. Development, construction, and test of an aircraft cabin acoustic enclosure, built in support of the Propfan Test Assessment (PTA) program, is described. Laboratory and flight test results are discussed. Resonators (448) were located between the enclosure trim panels and the fuselage shell. In addition, 152 resonators were placed between the enclosure and aircraft floors. The 600 resonators were each tuned to a propfan fundamental blade passage frequency (235 Hz). After flight testing on the PTA aircraft, noise reduction (NR) tests were performed with the enclosure in the Kelly Johnson Research and Development Center Acoustics Laboratory. Broadband and tonal excitations were used in the laboratory. Tonal excitation simulated the propfan flight test excitation. The resonators increase the NR of the cabin walls around the resonance frequency of the resonator array. Increases in NR of up to 11 dB were measured. The effects of flanking, sidewall absorption, cabin absorption, resonator loading of trim panels, and panel vibrations are presented. Resonator and sidewall panel design and test are discussed.
DOT National Transportation Integrated Search
1996-01-01
This report presents the results of a study to (1) assess the applicability of electromagnetic-acoustic transducers for nondestructive evaluation of stresses in bridge structures and (2) evaluate the new ultrasonic instruments as an effective techniq...
Acoustic Environment Simulation Study; Acoustic Intrusion Sensor Performance.
1983-01-01
PREPARED BY: LOREN ENOCHSON TIME SERIES ASSOCIATES 920 WEST 33RD AVENUE SPOKANE, WA 99203 PREPARED FOR : NAVAL...interface and 16 lines are provided which can be tested for on or off. This is probably the most reasonable approach and the least expensive. The ...straightforward. Possible uses for the link would seem to be restricted to downloading of test setups from the VAX to the PDP-1. Also final results
Piezoelectric PVF2 Polymer Films and Devices.
1981-11-01
techniques and methods have been increasingly applied in the field of nondestructive testing and evaluation ( NDE ) of mate- rials and structures, and...numerous types of acoustic testing devices have been developed. The importance of acoustics in NDE efforts is expected to increase in the future. Thus...already found commercial applications outside the field of ultra- sonic transducers and NDE . Among the strong piezoelectrics, it has a unique set of
Acoustic Emission Monitoring of the DC-XA Composite Liquid Hydrogen Tank During Structural Testing
NASA Technical Reports Server (NTRS)
Wilkerson, C.
1996-01-01
The results of acoustic emission (AE) monitoring of the DC-XA composite liquid hydrogen tank are presented in this report. The tank was subjected to pressurization, tensile, and compressive loads at ambient temperatures and also while full of liquid nitrogen. The tank was also pressurized with liquid hydrogen. AE was used to monitor the tank for signs of structural defects developing during the test.
NASA Astrophysics Data System (ADS)
Bobrov, A. L.
2017-08-01
This paper presents issues of identification of various AE sources in order to increase the information value of AE method. This task is especially relevant for complex objects, when factors that affect an acoustic path on an object of testing significantly affect parameters of signals recorded by sensor. Correlation criteria, sensitive to type of AE source in metal objects is determined in the article.
Far-field noise and internal modes from a ducted propeller at simulated aircraft takeoff conditions
NASA Astrophysics Data System (ADS)
Woodward, Richard P.; Bock, Lawrence A.; Heidelberg, Laurence J.; Hall, David G.
1992-01-01
The ducted propeller offers structural and acoustic benefits typical of conventional turbofan engines while retaining much of the aeroacoustic benefits of the unducted propeller. A model Advanced Ducted Propeller (ADP) was tested in the NASA Lewis Low-Speed Anechoic Wind Tunnel at a simulated takeoff velocity of Mach 0.2. The ADP model was designed and manufactured by the Pratt and Whitney Division of United Technologies. The 16-blade rotor ADP was tested with 22- and 40-vane stators to achieve cut-on and cut-off criterion with respect to propagation of the fundamental rotor-stator interaction tone. Additional test parameters included three inlet lengths, three nozzle sizes, two spinner configurations, and two rotor rub strip configurations. The model was tested over a range of rotor blade setting angles and propeller axis angles-of-attack. Acoustic data were taken with a sideline translating microphone probe and with a unique inlet microphone probe which identified inlet rotating acoustic modes. The beneficial acoustic effects of cut-off were clearly demonstrated. A 5 dB fundamental tone reduction was associated with the long inlet and 40-vane sector, which may relate to inlet propeller axis angle-of-attack at rotor speeds of at least 96 percent design.