Science.gov

Sample records for acoustic time scale

  1. Nonlinear acoustic time reversal imaging using the scaling subtraction method

    NASA Astrophysics Data System (ADS)

    Scalerandi, M.; Gliozzi, A. S.; Bruno, C. L. E.; Van Den Abeele, K.

    2008-11-01

    Lab experiments have shown that the imaging of nonlinear scatterers using time reversal acoustics can be a very promising tool for early stage damage detection. The potential applications are however limited by the need for an extremely accurate acquisition system. In order to let nonlinear features emerge from the background noise it is necessary to enhance the signal-to-noise ratio as much as possible. A comprehensive analysis to determine the nonlinear components in a recorded time signal, an alternative to those usually adopted (e.g. fast Fourier), is proposed here. The method is based on the nonlinear physical properties of the solution of the wave equation and takes advantage of the deficient system response scalability with the excitation amplitude. In this contribution, we outline the adopted procedure and apply it to a nonlinear time reversal imaging simulation to highlight the advantages with respect to traditional imaging based on a fast Fourier analysis of the recorded signals.

  2. Acoustic Emission Monitoring of the Syracuse Athena Temple: Scale Invariance in the Timing of Ruptures

    SciTech Connect

    Niccolini, G.; Carpinteri, A.; Lacidogna, G.; Manuello, A.

    2011-03-11

    We perform a comparative statistical analysis between the acoustic-emission time series from the ancient Greek Athena temple in Syracuse and the sequence of nearby earthquakes. We find an apparent association between acoustic-emission bursts and the earthquake occurrence. The waiting-time distributions for acoustic-emission and earthquake time series are described by a unique scaling law indicating self-similarity over a wide range of magnitude scales. This evidence suggests a correlation between the aging process of the temple and the local seismic activity.

  3. The Short Time Scale Events of Acoustic Droplet Vaporization

    NASA Astrophysics Data System (ADS)

    Li, David S.; Kripfgans, Oliver D.; Fowlkes, J. Brian; Bull, Joseph L.

    2012-11-01

    The conversion of a liquid microdroplets to gas bubbles initiated by an acoustic pulse, known as acoustic droplet vaporization (ADV), has been proposed as a method to selectively generate gas emboli for therapeutic purposes (gas embolotherapy), specifically for vascularized tumors. In this study we focused on the first 10 microseconds of the ADV process, namely the gas nucleation site formation and bubble evolution. BSA encapsulated dodecafluoropentane (CAS: 678-26-2) microdroplets were isolated at the bottom of a degassed water bath held at 37°C. Microdroplets, diameters ranging from 5-65 microns, were vaporized using a single pulse (4-16 cycles) from a 7.5 MHz focused single element transducer ranging from 2-5 MPa peak negative pressure and images of the vaporization process were recorded using an ultra-high speed camera (SIM802, Specialised Imaging Ltd). It was observed that typically two gas nuclei were formed in series with one another on axis with ultrasound pulse. However, relative positioning of the nucleation sites within the droplet depended on droplet diameter. Additionally, depending on acoustic parameters the bubble could deform into a toroidal shape. Such dynamics could suggest acoustic parameters that may result in tissue damage. This work is supported by NIH grant R01EB006476.

  4. Full-Field Imaging of Acoustic Motion at Nanosecond Time and Micron Length Scales

    SciTech Connect

    Telschow, Kenneth Louis; Deason, Vance Albert; Cottle, David Lynn; Larson III, John D.

    2002-10-01

    A full-field view laser ultrasonic imaging method has been developed that measures acoustic motion at a surface without scanning. Images are recorded at normal video frame rates by employing dynamic holography using photorefractive interferometric detection. By extending the approach to ultra high frequencies, an acoustic microscope has been developed capable of operation on the nanosecond time and micron length scales. Both acoustic amplitude and phase are recorded allowing full calibration and determination of phases to within a single arbitrary constant. Results are presented of measurements at frequencies at 800-900 MHz illustrating a multitude of normal mode behavior in electrically driven thin film acoustic resonators. Coupled with microwave electrical impedance measurements, this imaging mode provides an exceptionally fast method for evaluation of electric to acoustic coupling and performance of these devices. Images of 256x240 pixels are recorded at 18Hz rates synchronized to obtain both in-phase and quadrature detection of the acoustic motion. Simple averaging provides sensitivity to the subnanometer level calibrated over the image using interferometry. Identification of specific acoustic modes and their relationship to electrical impedance characteristics show the advantages and overall high speed of the technique.

  5. Computational Fluid Dynamics Study on the Effects of RATO Timing on the Scale Model Acoustic Test

    NASA Technical Reports Server (NTRS)

    Nielsen, Tanner; Williams, B.; West, Jeff

    2015-01-01

    The Scale Model Acoustic Test (SMAT) is a 5% scale test of the Space Launch System (SLS), which is currently being designed at Marshall Space Flight Center (MSFC). The purpose of this test is to characterize and understand a variety of acoustic phenomena that occur during the early portions of lift off, one being the overpressure environment that develops shortly after booster ignition. The SLS lift off configuration consists of four RS-25 liquid thrusters on the core stage, with two solid boosters connected to each side. Past experience with scale model testing at MSFC (in ER42), has shown that there is a delay in the ignition of the Rocket Assisted Take Off (RATO) motor, which is used as the 5% scale analog of the solid boosters, after the signal to ignite is given. This delay can range from 0 to 16.5ms. While this small of a delay maybe insignificant in the case of the full scale SLS, it can significantly alter the data obtained during the SMAT due to the much smaller geometry. The speed of sound of the air and combustion gas constituents is not scaled, and therefore the SMAT pressure waves propagate at approximately the same speed as occurs during full scale. However, the SMAT geometry is much smaller allowing the pressure waves to move down the exhaust duct, through the trench, and impact the vehicle model much faster than occurs at full scale. To better understand the effect of the RATO timing simultaneity on the SMAT IOP test data, a computational fluid dynamics (CFD) analysis was performed using the Loci/CHEM CFD software program. Five different timing offsets, based on RATO ignition delay statistics, were simulated. A variety of results and comparisons will be given, assessing the overall effect of RATO timing simultaneity on the SMAT overpressure environment.

  6. Ares I Scale Model Acoustic Test Lift-Off Acoustics

    NASA Technical Reports Server (NTRS)

    Counter, Douglas D.; Houston, Janie D.

    2011-01-01

    The lift-off acoustic (LOA) environment is an important design factor for any launch vehicle. For the Ares I vehicle, the LOA environments were derived by scaling flight data from other launch vehicles. The Ares I LOA predicted environments are compared to the Ares I Scale Model Acoustic Test (ASMAT) preliminary results.

  7. Acoustic mode coupling induced by shallow water nonlinear internal waves: sensitivity to environmental conditions and space-time scales of internal waves.

    PubMed

    Colosi, John A

    2008-09-01

    While many results have been intuited from numerical simulation studies, the precise connections between shallow-water acoustic variability and the space-time scales of nonlinear internal waves (NLIWs) as well as the background environmental conditions have not been clearly established analytically. Two-dimensional coupled mode propagation through NLIWs is examined using a perturbation series solution in which each order n is associated with nth-order multiple scattering. Importantly, the perturbation solution gives resonance conditions that pick out specific NLIW scales that cause coupling, and seabed attenuation is demonstrated to broaden these resonances, fundamentally changing the coupling behavior at low frequency. Sound-speed inhomogeneities caused by internal solitary waves (ISWs) are primarily considered and the dependence of mode coupling on ISW amplitude, range width, depth structure, location relative to the source, and packet characteristics are delineated as a function of acoustic frequency. In addition, it is seen that significant energy transfer to modes with initially low or zero energy involves at least a second order scattering process. Under moderate scattering conditions, comparisons of first order, single scattering theoretical predictions to direct numerical simulation demonstrate the accuracy of the approach for acoustic frequencies upto 400 Hz and for single as well as multiple ISW wave packets.

  8. Acoustic Source Localization via Time Difference of Arrival Estimation for Distributed Sensor Networks Using Tera-Scale Optical Core Devices

    DOE PAGES

    Imam, Neena; Barhen, Jacob

    2009-01-01

    For real-time acoustic source localization applications, one of the primary challenges is the considerable growth in computational complexity associated with the emergence of ever larger, active or passive, distributed sensor networks. These sensors rely heavily on battery-operated system components to achieve highly functional automation in signal and information processing. In order to keep communication requirements minimal, it is desirable to perform as much processing on the receiver platforms as possible. However, the complexity of the calculations needed to achieve accurate source localization increases dramatically with the size of sensor arrays, resulting in substantial growth of computational requirements that cannot bemore » readily met with standard hardware. One option to meet this challenge builds upon the emergence of digital optical-core devices. The objective of this work was to explore the implementation of key building block algorithms used in underwater source localization on the optical-core digital processing platform recently introduced by Lenslet Inc. This demonstration of considerably faster signal processing capability should be of substantial significance to the design and innovation of future generations of distributed sensor networks.« less

  9. Scaling and dimensional analysis of acoustic streaming jets

    SciTech Connect

    Moudjed, B.; Botton, V.; Henry, D.; Ben Hadid, H.

    2014-09-15

    This paper focuses on acoustic streaming free jets. This is to say that progressive acoustic waves are used to generate a steady flow far from any wall. The derivation of the governing equations under the form of a nonlinear hydrodynamics problem coupled with an acoustic propagation problem is made on the basis of a time scale discrimination approach. This approach is preferred to the usually invoked amplitude perturbations expansion since it is consistent with experimental observations of acoustic streaming flows featuring hydrodynamic nonlinearities and turbulence. Experimental results obtained with a plane transducer in water are also presented together with a review of the former experimental investigations using similar configurations. A comparison of the shape of the acoustic field with the shape of the velocity field shows that diffraction is a key ingredient in the problem though it is rarely accounted for in the literature. A scaling analysis is made and leads to two scaling laws for the typical velocity level in acoustic streaming free jets; these are both observed in our setup and in former studies by other teams. We also perform a dimensional analysis of this problem: a set of seven dimensionless groups is required to describe a typical acoustic experiment. We find that a full similarity is usually not possible between two acoustic streaming experiments featuring different fluids. We then choose to relax the similarity with respect to sound attenuation and to focus on the case of a scaled water experiment representing an acoustic streaming application in liquid metals, in particular, in liquid silicon and in liquid sodium. We show that small acoustic powers can yield relatively high Reynolds numbers and velocity levels; this could be a virtue for heat and mass transfer applications, but a drawback for ultrasonic velocimetry.

  10. Acoustic Treatment Design Scaling Methods. Phase 2

    NASA Technical Reports Server (NTRS)

    Clark, L. (Technical Monitor); Parrott, T. (Technical Monitor); Jones, M. (Technical Monitor); Kraft, R. E.; Yu, J.; Kwan, H. W.; Beer, B.; Seybert, A. F.; Tathavadekar, P.

    2003-01-01

    The ability to design, build and test miniaturized acoustic treatment panels on scale model fan rigs representative of full scale engines provides not only cost-savings, but also an opportunity to optimize the treatment by allowing multiple tests. To use scale model treatment as a design tool, the impedance of the sub-scale liner must be known with confidence. This study was aimed at developing impedance measurement methods for high frequencies. A normal incidence impedance tube method that extends the upper frequency range to 25,000 Hz. without grazing flow effects was evaluated. The free field method was investigated as a potential high frequency technique. The potential of the two-microphone in-situ impedance measurement method was evaluated in the presence of grazing flow. Difficulties in achieving the high frequency goals were encountered in all methods. Results of developing a time-domain finite difference resonator impedance model indicated that a re-interpretation of the empirical fluid mechanical models used in the frequency domain model for nonlinear resistance and mass reactance may be required. A scale model treatment design that could be tested on the Universal Propulsion Simulator vehicle was proposed.

  11. Acoustically enhanced remediation, Phase 2: Technology scaling

    SciTech Connect

    Iovenitti, J.L.; Hill, D.G.; Rynne, T.M.; Spadaro, J.F.; Hutchinson, W.; Illangasakere, T.

    1996-12-31

    Weiss Associates is conducting the following three phase program investigating the in-situ application of acoustically enhanced remediation (AER) of contaminated unconsolidated soil and ground water under both saturated and unsaturated conditions: Phase I-- laboratory scale parametric investigation; Phase II--technology Scaling; and Phase III--large scale field tests. AER addresses the need for NAPL (either lighter or denser than water: LNAPL or DNAPL, respectively) in high and low permeability sediments, and the remediation of other types of subsurface contaminants (e.g., metals, radionuclides) in low permeability soils. This program has been placed in the U.S. Department of Energy`s (DOE`s) DNAPL product. Phase I indicated that AER could be used to effectively remediate NAPL in high permeability soil, and that removal of NAPL from low permeability soil could be increased since the water flux through these soils was significantly increased. Phase II, Technology Scaling, the subject of this paper, focused on (1) evaluating the characteristics of an AER field deployment system, (2) developing DNAPL flow and transport performance data under acoustic excitation, (3) predicting the effect of acoustic remediation in three-dimensional unconsolidated hydrogeologic conditions, (4) conducting an engineering analysis of acoustical sources, and (5) identifying candidate field site(s) for large-scale field testing of the technology.

  12. Acoustic Studies of the Large Scale Ocean Circulation

    NASA Technical Reports Server (NTRS)

    Menemenlis, Dimitris

    1999-01-01

    Detailed knowledge of ocean circulation and its transport properties is prerequisite to an understanding of the earth's climate and of important biological and chemical cycles. Results from two recent experiments, THETIS-2 in the Western Mediterranean and ATOC in the North Pacific, illustrate the use of ocean acoustic tomography for studies of the large scale circulation. The attraction of acoustic tomography is its ability to sample and average the large-scale oceanic thermal structure, synoptically, along several sections, and at regular intervals. In both studies, the acoustic data are compared to, and then combined with, general circulation models, meteorological analyses, satellite altimetry, and direct measurements from ships. Both studies provide complete regional descriptions of the time-evolving, three-dimensional, large scale circulation, albeit with large uncertainties. The studies raise serious issues about existing ocean observing capability and provide guidelines for future efforts.

  13. Acoustic tweezers via sub–time-of-flight regime surface acoustic waves

    PubMed Central

    Collins, David J.; Devendran, Citsabehsan; Ma, Zhichao; Ng, Jia Wei; Neild, Adrian; Ai, Ye

    2016-01-01

    Micrometer-scale acoustic waves are highly useful for refined optomechanical and acoustofluidic manipulation, where these fields are spatially localized along the transducer aperture but not along the acoustic propagation direction. In the case of acoustic tweezers, such a conventional acoustic standing wave results in particle and cell patterning across the entire width of a microfluidic channel, preventing selective trapping. We demonstrate the use of nanosecond-scale pulsed surface acoustic waves (SAWs) with a pulse period that is less than the time of flight between opposing transducers to generate localized time-averaged patterning regions while using conventional electrode structures. These nodal positions can be readily and arbitrarily positioned in two dimensions and within the patterning region itself through the imposition of pulse delays, frequency modulation, and phase shifts. This straightforward concept adds new spatial dimensions to which acoustic fields can be localized in SAW applications in a manner analogous to optical tweezers, including spatially selective acoustic tweezers and optical waveguides. PMID:27453940

  14. Real-time virtual room acoustic simulation

    NASA Astrophysics Data System (ADS)

    Carneal, James P.; Johnson, Jan; Johnson, Troge; Johnson, Marty

    2003-10-01

    A realistic virtual room acoustic simulation has been implemented on a PC-based computer in near real-time. Room acoustics are calculated by the image source method using realistic absorption coefficients for a variety of realistic surfaces and programmed in MATLAB. The resulting impulse response filters are then applied in near real-time using fast convolution DSP techniques using data being read from a CD-ROM. The system was implemented in a virtual acoustic room facility. Optimizations have been performed to retain the realistic virtual room effect while minimizing computations through limited psycho-acoustic testing. In general, realistic anechoic to reverberant virtual rooms have been re-created with six 8192 coefficient filters. To provide realistic simulations, special care must be taken to accurately reproduce the low frequency acoustics. Since the virtual room acoustic facility was not totally anechoic (as are most anechoic chambers), inverse filters were applied to compensate for over-amplified acoustics at frequencies below 350 Hz.

  15. Verification of Ares I Liftoff Acoustic Environments via the Ares I Scale Model Acoustic Test

    NASA Technical Reports Server (NTRS)

    Counter, Douglas; Houston, Janice

    2012-01-01

    The Ares I Scale Model Acoustic Test (ASMAT) program was implemented to verify the predicted Ares I liftoff acoustic environments and to determine the acoustic reduction gained by using an above deck water sound suppression system. The test article included a 5% scale Ares I vehicle model and Mobile Launcher with tower. Acoustic and pressure data were measured by over 200 instruments. The ASMAT results are compared to Ares I-X flight data.

  16. Occupational Cohort Time Scales

    PubMed Central

    Roth, H. Daniel

    2015-01-01

    Purpose: This study explores how highly correlated time variables (occupational cohort time scales) contribute to confounding and ambiguity of interpretation. Methods: Occupational cohort time scales were identified and organized through simple equations of three time scales (relational triads) and the connections between these triads (time scale web). The behavior of the time scales was examined when constraints were imposed on variable ranges and interrelationships. Results: Constraints on a time scale in a triad create high correlations between the other two time scales. These correlations combine with the connections between relational triads to produce association paths. High correlation between time scales leads to ambiguity of interpretation. Conclusions: Understanding the properties of occupational cohort time scales, their relational triads, and the time scale web is helpful in understanding the origins of otherwise obscure confounding bias and ambiguity of interpretation. PMID:25647318

  17. SLS Scale Model Acoustic Test Liftoff Results and Comparisons

    NASA Technical Reports Server (NTRS)

    Houston, Janice; Counter, Douglas; Giacomoni, Clothilde

    2015-01-01

    The liftoff phase induces acoustic loading over a broad frequency range for a launch vehicle. These external acoustic environments are then used in the prediction of internal vibration responses of the vehicle and components which result in the qualification levels. Thus, predicting these liftoff acoustic (LOA) environments is critical to the design requirements of any launch vehicle. If there is a significant amount of uncertainty in the predictions or if acoustic mitigation options must be implemented, a subscale acoustic test is a feasible design phase test option to verify the LOA environments. The NASA Space Launch System (SLS) program initiated the Scale Model Acoustic Test (SMAT) to verify the predicted SLS LOA environments.

  18. Chromospheric extents predicted by time-dependent acoustic wave models

    NASA Technical Reports Server (NTRS)

    Cuntz, Manfred

    1990-01-01

    Theoretical models for chromospheric structures of late-type giant stars are computed, including the time-dependent propagation of acoustic waves. Models with short-period monochromatic shock waves as well as a spectrum of acoustic waves are discussed, and the method is applied to the stars Arcturus, Aldebaran, and Betelgeuse. Chromospheric extent, defined as the monotonic decrease with height of the time-averaged electron densities, are found to be 1.12, 1.13, and 1.22 stellar radii for the three stars, respectively; this corresponds to a time-averaged electron density of 10 to the 7th/cu cm. Predictions of the extended chromospheric obtained using a simple scaling law agree well with those obtained by the time-dependent wave models; thus, the chromospheres of all stars for which the scaling law is valid consist of the same number of pressure scale heights.

  19. Time and timing in the acoustic recognition system of crickets

    PubMed Central

    Hennig, R. Matthias; Heller, Klaus-Gerhard; Clemens, Jan

    2014-01-01

    The songs of many insects exhibit precise timing as the result of repetitive and stereotyped subunits on several time scales. As these signals encode the identity of a species, time and timing are important for the recognition system that analyzes these signals. Crickets are a prominent example as their songs are built from sound pulses that are broadcast in a long trill or as a chirped song. This pattern appears to be analyzed on two timescales, short and long. Recent evidence suggests that song recognition in crickets relies on two computations with respect to time; a short linear-nonlinear (LN) model that operates as a filter for pulse rate and a longer integration time window for monitoring song energy over time. Therefore, there is a twofold role for timing. A filter for pulse rate shows differentiating properties for which the specific timing of excitation and inhibition is important. For an integrator, however, the duration of the time window is more important than the precise timing of events. Here, we first review evidence for the role of LN-models and integration time windows for song recognition in crickets. We then parameterize the filter part by Gabor functions and explore the effects of duration, frequency, phase, and offset as these will correspond to differently timed patterns of excitation and inhibition. These filter properties were compared with known preference functions of crickets and katydids. In a comparative approach, the power for song discrimination by LN-models was tested with the songs of over 100 cricket species. It is demonstrated how the acoustic signals of crickets occupy a simple 2-dimensional space for song recognition that arises from timing, described by a Gabor function, and time, the integration window. Finally, we discuss the evolution of recognition systems in insects based on simple sensory computations. PMID:25161622

  20. Acoustic asymmetric transmission based on time-dependent dynamical scattering

    PubMed Central

    Wang, Qing; Yang, Yang; Ni, Xu; Xu, Ye-Long; Sun, Xiao-Chen; Chen, Ze-Guo; Feng, Liang; Liu, Xiao-ping; Lu, Ming-Hui; Chen, Yan-Feng

    2015-01-01

    An acoustic asymmetric transmission device exhibiting unidirectional transmission property for acoustic waves is extremely desirable in many practical scenarios. Such a unique property may be realized in various configurations utilizing acoustic Zeeman effects in moving media as well as frequency-conversion in passive nonlinear acoustic systems and in active acoustic systems. Here we demonstrate a new acoustic frequency conversion process in a time-varying system, consisting of a rotating blade and the surrounding air. The scattered acoustic waves from this time-varying system experience frequency shifts, which are linearly dependent on the blade’s rotating frequency. Such scattering mechanism can be well described theoretically by an acoustic linear time-varying perturbation theory. Combining such time-varying scattering effects with highly efficient acoustic filtering, we successfully develop a tunable acoustic unidirectional device with 20 dB power transmission contrast ratio between two counter propagation directions at audible frequencies. PMID:26038886

  1. Acoustic Treatment Design Scaling Methods. Volume 4; Numerical Simulation of the Nonlinear Acoustic Impedance of a Perforated Plate Single-Degree-of-Freedom Resonator Using a Time-Domain Finite Difference Method

    NASA Technical Reports Server (NTRS)

    Kraft, R. E.

    1999-01-01

    Single-degree-of-freedom resonators consisting of honeycomb cells covered by perforated facesheets are widely used as acoustic noise suppression liners in aircraft engine ducts. The acoustic resistance and mass reactance of such liners are known to vary with the intensity of the sound incident upon the panel. Since the pressure drop across a perforated liner facesheet increases quadratically with the flow velocity through the facesheet, this is known as the nonlinear resistance effect. In the past, two different empirical frequency domain models have been used to predict the Sound Pressure Level effect of the incident wave on the perforated liner impedance, one that uses the incident particle velocity in isolated narrowbands, and one that models the particle velocity as the overall velocity. In the absence of grazing flow, neither frequency domain model is entirely accurate in predicting the nonlinear effect that is measured for typical perforated sheets. The time domain model is developed in an attempt to understand and improve the model for the effect of spectral shape and amplitude of multi-frequency incident sound pressure on the liner impedance. A computer code for the time-domain finite difference model is developed and predictions using the models are compared to current frequency-domain models.

  2. Ensemble Pulsar Time Scale

    NASA Astrophysics Data System (ADS)

    Yin, D. S.; Gao, Y. P.; Zhao, S. H.

    2016-05-01

    Millisecond pulsars can generate another type of time scale that is totally independent of the atomic time scale, because the physical mechanisms of the pulsar time scale and the atomic time scale are quite different from each other. Usually the pulsar timing observational data are not evenly sampled, and the internals between data points range from several hours to more than half a month. What's more, these data sets are sparse. And all these make it difficult to generate an ensemble pulsar time scale. Hence, a new algorithm to calculate the ensemble pulsar time scale is proposed. Firstly, we use cubic spline interpolation to densify the data set, and make the intervals between data points even. Then, we employ the Vondrak filter to smooth the data set, and get rid of high-frequency noise, finally adopt the weighted average method to generate the ensemble pulsar time scale. The pulsar timing residuals represent clock difference between the pulsar time and atomic time, and the high precision pulsar timing data mean the clock difference measurement between the pulsar time and atomic time with a high signal to noise ratio, which is fundamental to generate pulsar time. We use the latest released NANOGRAV (North American Nanohertz Observatory for Gravitational Waves) 9-year data set to generate the ensemble pulsar time scale. This data set is from the newest NANOGRAV data release, which includes 9-year observational data of 37 millisecond pulsars using the 100-meter Green Bank telescope and 305-meter Arecibo telescope. We find that the algorithm used in this paper can lower the influence caused by noises in timing residuals, and improve long-term stability of pulsar time. Results show that the long-term (> 1 yr) frequency stability of the pulsar time is better than 3.4×10-15.

  3. Acoustic thermometry time series in the North Pacific

    NASA Astrophysics Data System (ADS)

    Dushaw, B. D.; Howe, B. M.; Mercer, J. A.; Worcester; Npal Group*, P. F.

    2002-12-01

    Acoustic measurements of large-scale, depth-averaged temperatures are continuing in the North Pacific as a follow on to the Acoustic Thermometry of Ocean Climate (ATOC) project. An acoustic source is located just north of Kauai. It transmits to six receivers to the east at 1-4-Mm ranges and one receiver to the northwest at about 4-Mm range. The transmission schedule is six times per day at four-day intervals. The time series were obtained from 1998 through 1999 and, after a two-year interruption because of permitting issues, began again in January 2002 to continue for at least another five years. The intense mesoscale thermal variability around Hawaii is evident in all time series; this variability is much greater than that observed near the California coast. The paths to the east, particularly those paths to the California coast, show cooling this year relative to the earlier data. The path to the northwest shows a modest warming. The acoustic rays sample depths below the mixed layer near Hawaii and to the surface as they near the California coast or extend north of the sub-arctic front. The temperatures measured acoustically are compared with those inferred from TOPEX altimetry, ARGO float data, and with ECCO (Estimating the Circulation and Climate of the Ocean) model output. This on-going data collection effort, to be augmented over the next years with a more complete observing array, can be used for, e.g., separating whole-basin climate change from low-mode spatial variability such as the Pacific Decadal Oscillation (PDO). [*NPAL (North Pacific Acoustic Laboratory) Group: J. A. Colosi, B. D. Cornuelle, B. D. Dushaw, M. A. Dzieciuch, B. M. Howe, J. A. Mercer, R. C. Spindel, and P. F. Worcester. Work supported by the Office of Naval Research.

  4. Ocean acoustic tomography - Travel time biases

    NASA Technical Reports Server (NTRS)

    Spiesberger, J. L.

    1985-01-01

    The travel times of acoustic rays traced through a climatological sound-speed profile are compared with travel times computed through the same profile containing an eddy field. The accuracy of linearizing the relations between the travel time difference and the sound-speed deviation at long ranges is assessed using calculations made for two different eddy fields measured in the eastern Atlantic. Significant nonlinearities are found in some cases, and the relationships of the values of these nonlinearities to the range between source and receiver, to the anomaly size associated with the eddies, and to the positions of the eddies are studied. An analytical model of the nonlinearities is discussed.

  5. Acoustic Source Localization via Time Difference of Arrival Estimation for Distributed Sensor Networks using Tera-scale Optical-Core Devices

    SciTech Connect

    Imam, Neena; Barhen, Jacob

    2009-01-01

    For real-time acoustic source localization applications, one of the primary challenges is the considerable growth in computational complexity associated with the emergence of ever larger, active or passive, distributed sensor networks. These sensors rely heavily on battery-operated system components to achieve highly functional automation in signal and information processing. In order to keep communication requirements minimal, it is desirable to perform as much processing on the receiver platforms as possible. However, the complexity of the calculations needed to achieve accurate source localization increases dramatically with the size of sensor arrays, resulting in substantial growth of computational requirements that cannot be readily met with standard hardware. One option to meet this challenge builds upon the emergence of digital optical-core devices. The objective of this work was to explore the implementation of key building block algorithms used in underwater source localization on the optical-core digital processing platform recently introduced by Lenslet Inc. This demonstration of considerably faster signal processing capability should be of substantial significance to the design and innovation of future generations of distributed sensor networks.

  6. Perception of acoustic scale and size in musical instrument sounds

    PubMed Central

    van Dinther, Ralph; Patterson, Roy D.

    2010-01-01

    There is size information in natural sounds. For example, as humans grow in height, their vocal tracts increase in length, producing a predictable decrease in the formant frequencies of speech sounds. Recent studies have shown that listeners can make fine discriminations about which of two speakers has the longer vocal tract, supporting the view that the auditory system discriminates changes on the acoustic-scale dimension. Listeners can also recognize vowels scaled well beyond the range of vocal tracts normally experienced, indicating that perception is robust to changes in acoustic scale. This paper reports two perceptual experiments designed to extend research on acoustic scale and size perception to the domain of musical sounds: The first study shows that listeners can discriminate the scale of musical instrument sounds reliably, although not quite as well as for voices. The second experiment shows that listeners can recognize the family of an instrument sound which has been modified in pitch and scale beyond the range of normal experience. We conclude that processing of acoustic scale in music perception is very similar to processing of acoustic scale in speech perception. PMID:17069313

  7. Frequency effects on the scale and behavior of acoustic streaming.

    PubMed

    Dentry, Michael B; Yeo, Leslie Y; Friend, James R

    2014-01-01

    Acoustic streaming underpins an exciting range of fluid manipulation phenomena of rapidly growing significance in microfluidics, where the streaming often assumes the form of a steady, laminar jet emanating from the device surface, driven by the attenuation of acoustic energy within the beam of sound propagating through the liquid. The frequencies used to drive such phenomena are often chosen ad hoc to accommodate fabrication and material issues. In this work, we seek a better understanding of the effects of sound frequency and power on acoustic streaming. We present and, using surface acoustic waves, experimentally verify a laminar jet model that is based on the turbulent jet model of Lighthill, which is appropriate for acoustic streaming seen at micro- to nanoscales, between 20 and 936 MHz and over a broad range of input power. Our model eliminates the critically problematic acoustic source singularity present in Lighthill's model, replacing it with a finite emission area and enabling determination of the streaming velocity close to the source. At high acoustic power P (and hence high jet Reynolds numbers ReJ associated with fast streaming), the laminar jet model predicts a one-half power dependence (U∼P1/2∼ ReJ) similar to the turbulent jet model. However, the laminar model may also be applied to jets produced at low powers-and hence low jet Reynolds numbers ReJ-where a linear relationship between the beam power and streaming velocity exists: U∼P∼ReJ2. The ability of the laminar jet model to predict the acoustic streaming behavior across a broad range of frequencies and power provides a useful tool in the analysis of microfluidics devices, explaining peculiar observations made by several researchers in the literature. In particular, by elucidating the effects of frequency on the scale of acoustically driven flows, we show that the choice of frequency is a vitally important consideration in the design of small-scale devices employing acoustic streaming

  8. Time Reversal Acoustic in a flowing medium

    NASA Astrophysics Data System (ADS)

    Luong, Trung Dung; Arora, Manish; Hies, Thomas; Ohl, Claus-Dieter; Claus-Dieter Ohl grou Team; DHI Water; Environment (S) Pte. Ltd. Collaboration

    2013-11-01

    We explore the effect of flow on time reversal acoustics (TRA). Traditionally, TRA has been studied in static conditions, while a motion of the medium is expected to degrade the spatio-temporal focussing of the sound pulse. Here, we study the effect of the flow with a TRA system at 1MHz. A controlled flow is added between the emitter and receiver. Additional, a metallic plate is utilized to increases the numerical aperture of the emitting transducer. The impulse response of the non-flowing system, is recorded and time reversed. Then, the response of the hydrophone is recorded in presence and absence of the flow. It is found that the time reversed signal focuses on at the hydrophone in both the cases. In the absence of flow, the focus signal is observed to be shifted in the time domain. Furthermore, there is a drop in the peak-to-peak value of the focus signal in the presence of flow. For a flow rate of 3 cm/s (Re ~ 1000), a distinct shift in the time domain and a reduction of the peak is obtained. The results will be discussed and compared with numerical simulation of TRA under flow conditions.

  9. Verification of Ares I Liftoff Acoustic Environments via the Ares I Scale Model Acoustic Test

    NASA Technical Reports Server (NTRS)

    Counter, Douglas D.; Houston, Janice D.

    2012-01-01

    Launch environments, such as Liftoff Acoustic (LOA) and Ignition Overpressure (IOP), are important design factors for any vehicle and are dependent upon the design of both the vehicle and the ground systems. The NASA Constellation Program had several risks to the development of the Ares I vehicle linked to LOA which are used in the development of the vibro-acoustic environments. The risks included cost, schedule and technical impacts for component qualification due to high predicted vibro-acoustic environments. One solution is to mitigate the environment at the component level. However, where the environment is too severe to mitigate at the component level, reduction of the launch environments is required. The Ares I Scale Model Acoustic Test (ASMAT) program was implemented to verify the predicted Ares I launch environments and to determine the acoustic reduction for the LOA environment with an above deck water sound suppression system. The test article included a 5% scale Ares I vehicle model, tower and Mobile Launcher. Acoustic and pressure data were measured by approximately 200 instruments. The ASMAT results are compared to the Ares I LOA predictions and water suppression effectiveness results are presented.

  10. Verification of Ares I Liftoff Acoustic Environments via the Ares Scale Model Acoustic Test

    NASA Technical Reports Server (NTRS)

    Counter, Douglas D.; Houston, Janice D.

    2012-01-01

    Launch environments, such as Liftoff Acoustic (LOA) and Ignition Overpressure (IOP), are important design factors for any vehicle and are dependent upon the design of both the vehicle and the ground systems. The NASA Constellation Program had several risks to the development of the Ares I vehicle linked to LOA which are used in the development of the vibro-acoustic environments. The risks included cost, schedule and technical impacts for component qualification due to high predicted vibro-acoustic environments. One solution is to mitigate the environment at the component level. However, where the environment is too severe to mitigate at the component level, reduction of the launch environments is required. The Ares I Scale Model Acoustic Test (ASMAT) program was implemented to verify the predicted Ares I launch environments and to determine the acoustic reduction for the LOA environment with an above deck water sound suppression system. The test article included a 5% scale Ares I vehicle model, tower and Mobile Launcher. Acoustic and pressure data were measured by approximately 200 instruments. The ASMAT results are compared to the Ares I LOA predictions and water suppression effectiveness results are presented.

  11. Streaming Velocities and the Baryon Acoustic Oscillation Scale.

    PubMed

    Blazek, Jonathan A; McEwen, Joseph E; Hirata, Christopher M

    2016-03-25

    At the epoch of decoupling, cosmic baryons had supersonic velocities relative to the dark matter that were coherent on large scales. These velocities subsequently slow the growth of small-scale structure and, via feedback processes, can influence the formation of larger galaxies. We examine the effect of streaming velocities on the galaxy correlation function, including all leading-order contributions for the first time. We find that the impact on the baryon acoustic oscillation (BAO) peak is dramatically enhanced (by a factor of ∼5) over the results of previous investigations, with the primary new effect due to advection: if a galaxy retains memory of the primordial streaming velocity, it does so at its Lagrangian, rather than Eulerian, position. Since correlations in the streaming velocity change rapidly at the BAO scale, this advection term can cause a significant shift in the observed BAO position. If streaming velocities impact tracer density at the 1% level, compared to the linear bias, the recovered BAO scale is shifted by approximately 0.5%. This new effect, which is required to preserve Galilean invariance, greatly increases the importance of including streaming velocities in the analysis of upcoming BAO measurements and opens a new window to the astrophysics of galaxy formation. PMID:27058069

  12. Streaming Velocities and the Baryon Acoustic Oscillation Scale.

    PubMed

    Blazek, Jonathan A; McEwen, Joseph E; Hirata, Christopher M

    2016-03-25

    At the epoch of decoupling, cosmic baryons had supersonic velocities relative to the dark matter that were coherent on large scales. These velocities subsequently slow the growth of small-scale structure and, via feedback processes, can influence the formation of larger galaxies. We examine the effect of streaming velocities on the galaxy correlation function, including all leading-order contributions for the first time. We find that the impact on the baryon acoustic oscillation (BAO) peak is dramatically enhanced (by a factor of ∼5) over the results of previous investigations, with the primary new effect due to advection: if a galaxy retains memory of the primordial streaming velocity, it does so at its Lagrangian, rather than Eulerian, position. Since correlations in the streaming velocity change rapidly at the BAO scale, this advection term can cause a significant shift in the observed BAO position. If streaming velocities impact tracer density at the 1% level, compared to the linear bias, the recovered BAO scale is shifted by approximately 0.5%. This new effect, which is required to preserve Galilean invariance, greatly increases the importance of including streaming velocities in the analysis of upcoming BAO measurements and opens a new window to the astrophysics of galaxy formation.

  13. An optoacoustic point source for acoustic scale model measurements.

    PubMed

    Bolaños, Javier Gómez; Pulkki, Ville; Karppinen, Pasi; Hæggström, Edward

    2013-04-01

    A massless acoustic source is proposed for scale model work. This source is generated by focusing a pulsed laser beam to rapidly heat the air at the focal point. This produces an expanding small plasma ball which generates a sonic impulse that may be used as an acoustic point source. Repeatability, frequency response, and directivity of the source were measured to show that it can serve as a massless point source. The impulse response of a rectangular space was determined using this type of source. A good match was found between the predicted and the measured impulse responses of the space.

  14. Scaling of membrane-type locally resonant acoustic metamaterial arrays.

    PubMed

    Naify, Christina J; Chang, Chia-Ming; McKnight, Geoffrey; Nutt, Steven R

    2012-10-01

    Metamaterials have emerged as promising solutions for manipulation of sound waves in a variety of applications. Locally resonant acoustic materials (LRAM) decrease sound transmission by 500% over acoustic mass law predictions at peak transmission loss (TL) frequencies with minimal added mass, making them appealing for weight-critical applications such as aerospace structures. In this study, potential issues associated with scale-up of the structure are addressed. TL of single-celled and multi-celled LRAM was measured using an impedance tube setup with systematic variation in geometric parameters to understand the effects of each parameter on acoustic response. Finite element analysis was performed to predict TL as a function of frequency for structures with varying complexity, including stacked structures and multi-celled arrays. Dynamic response of the array structures under discrete frequency excitation was investigated using laser vibrometry to verify negative dynamic mass behavior. PMID:23039544

  15. Overview of the Ares I Scale Model Acoustic Test Program

    NASA Technical Reports Server (NTRS)

    Counter, Douglas D.; Houston, Janice D.

    2011-01-01

    Launch environments, such as lift-off acoustic (LOA) and ignition overpressure (IOP), are important design factors for any vehicle and are dependent upon the design of both the vehicle and the ground systems. LOA environments are used directly in the development of vehicle vibro-acoustic environments and IOP is used in the loads assessment. The NASA Constellation Program had several risks to the development of the Ares I vehicle linked to LOA. The risks included cost, schedule and technical impacts for component qualification due to high predicted vibro-acoustic environments. One solution is to mitigate the environment at the component level. However, where the environment is too severe for component survivability, reduction of the environment itself is required. The Ares I Scale Model Acoustic Test (ASMAT) program was implemented to verify the Ares I LOA and IOP environments for the vehicle and ground systems including the Mobile Launcher (ML) and tower. An additional objective was to determine the acoustic reduction for the LOA environment with an above deck water sound suppression system. ASMAT was a development test performed at the Marshall Space Flight Center (MSFC) East Test Area (ETA) Test Stand 116 (TS 116). The ASMAT program is described in this presentation.

  16. Acoustic resonance in MEMS scale cylindrical tubes with side branches

    NASA Astrophysics Data System (ADS)

    Schill, John F.; Holthoff, Ellen L.; Pellegrino, Paul M.; Marcus, Logan S.

    2014-05-01

    Photoacoustic spectroscopy (PAS) is a useful monitoring technique that is well suited for trace gas detection. This method routinely exhibits detection limits at the parts-per-million (ppm) or parts-per-billion (ppb) level for gaseous samples. PAS also possesses favorable detection characteristics when the system dimensions are scaled to a microelectromechanical system (MEMS) design. One of the central issues related to sensor miniaturization is optimization of the photoacoustic cell geometry, especially in relationship to high acoustical amplification and reduced system noise. Previous work relied on a multiphysics approach to analyze the resonance structures of the MEMS scale photo acoustic cell. This technique was unable to provide an accurate model of the acoustic structure. In this paper we describe a method that relies on techniques developed from musical instrument theory and electronic transmission line matrix methods to describe cylindrical acoustic resonant cells with side branches of various configurations. Experimental results are presented that demonstrate the ease and accuracy of this method. All experimental results were within 2% of those predicted by this theory.

  17. Absence of localized acoustic waves in a scale-free correlated random system.

    PubMed

    Costa, A E B; de Moura, F A B F

    2011-02-16

    We numerically study the propagation of acoustic waves in a one-dimensional medium with a scale-free long-range correlated elasticity distribution. The random elasticity distribution is assumed to have a power spectrum S(k) ∼ 1/k(α). By using a transfer-matrix method we solve the discrete version of the scalar wave equation and compute the localization length. In addition, we apply a second-order finite-difference method for both the time and spatial variables and study the nature of the waves that propagate in the chain. Our numerical data indicate the presence of extended acoustic waves for a high degree of correlations. In contrast with local correlations, we numerically demonstrate that scale-free correlations promote a stable phase of free acoustic waves in the thermodynamic limit. PMID:21406919

  18. Phase Time and Envelope Time in Time-Distance Analysis and Acoustic Imaging

    NASA Technical Reports Server (NTRS)

    Chou, Dean-Yi; Duvall, Thomas L.; Sun, Ming-Tsung; Chang, Hsiang-Kuang; Jimenez, Antonio; Rabello-Soares, Maria Cristina; Ai, Guoxiang; Wang, Gwo-Ping; Goode Philip; Marquette, William; Ehgamberdiev, Shuhrat; Landenkov, Oleg

    1999-01-01

    Time-distance analysis and acoustic imaging are two related techniques to probe the local properties of solar interior. In this study, we discuss the relation of phase time and envelope time between the two techniques. The location of the envelope peak of the cross correlation function in time-distance analysis is identified as the travel time of the wave packet formed by modes with the same w/l. The phase time of the cross correlation function provides information of the phase change accumulated along the wave path, including the phase change at the boundaries of the mode cavity. The acoustic signals constructed with the technique of acoustic imaging contain both phase and intensity information. The phase of constructed signals can be studied by computing the cross correlation function between time series constructed with ingoing and outgoing waves. In this study, we use the data taken with the Taiwan Oscillation Network (TON) instrument and the Michelson Doppler Imager (MDI) instrument. The analysis is carried out for the quiet Sun. We use the relation of envelope time versus distance measured in time-distance analyses to construct the acoustic signals in acoustic imaging analyses. The phase time of the cross correlation function of constructed ingoing and outgoing time series is twice the difference between the phase time and envelope time in time-distance analyses as predicted. The envelope peak of the cross correlation function between constructed ingoing and outgoing time series is located at zero time as predicted for results of one-bounce at 3 mHz for all four data sets and two-bounce at 3 mHz for two TON data sets. But it is different from zero for other cases. The cause of the deviation of the envelope peak from zero is not known.

  19. Ares I Scale Model Acoustic Test Overpressure Results

    NASA Technical Reports Server (NTRS)

    Casiano, M. J.; Alvord, D. A.; McDaniels, D. M.

    2011-01-01

    A summary of the overpressure environment from the 5% Ares I Scale Model Acoustic Test (ASMAT) and the implications to the full-scale Ares I are presented in this Technical Memorandum. These include the scaled environment that would be used for assessing the full-scale Ares I configuration, observations, and team recommendations. The ignition transient is first characterized and described, the overpressure suppression system configuration is then examined, and the final environment characteristics are detailed. The recommendation for Ares I is to keep the space shuttle heritage ignition overpressure (IOP) suppression system (below-deck IOP water in the launch mount and mobile launcher and also the crest water on the main flame deflector) and the water bags.

  20. Ares I Scale Model Acoustic Test Above Deck Water Sound Suppression Results

    NASA Technical Reports Server (NTRS)

    Counter, Douglas D.; Houston, Janice D.

    2011-01-01

    The Ares I Scale Model Acoustic Test (ASMAT) program test matrix was designed to determine the acoustic reduction for the Liftoff acoustics (LOA) environment with an above deck water sound suppression system. The scale model test can be used to quantify the effectiveness of the water suppression system as well as optimize the systems necessary for the LOA noise reduction. Several water flow rates were tested to determine which rate provides the greatest acoustic reductions. Preliminary results are presented.

  1. Experimental studies of applications of time-reversal acoustics to noncoherent underwater communications

    NASA Astrophysics Data System (ADS)

    Heinemann, M.; Larraza, A.; Smith, K. B.

    2003-06-01

    The most difficult problem in shallow underwater acoustic communications is considered to be the time-varying multipath propagation because it impacts negatively on data rates. At high data rates the intersymbol interference requires adaptive algorithms on the receiver side that lead to computationally intensive and complex signal processing. A novel technique called time-reversal acoustics (TRA) can environmentally adapt the acoustic propagation effects of a complex medium in order to focus energy at a particular target range and depth. Using TRA, the multipath structure is reduced because all the propagation paths add coherently at the intended target location. This property of time-reversal acoustics suggests a potential application in the field of noncoherent acoustic communications. This work presents results of a tank scale experiment using an algorithm for rapid transmission of binary data in a complex underwater environment with the TRA approach. A simple 15-symbol code provides an example of the simplicity and feasibility of the approach. Covert coding due to the inherent scrambling induced by the environment at points other than the intended receiver is also investigated. The experiments described suggest a high potential in data rate for the time-reversal approach in underwater acoustic communications while keeping the computational complexity low.

  2. Accuracy of cosmological parameters using the baryon acoustic scale

    SciTech Connect

    Thepsuriya, Kiattisak; Lewis, Antony E-mail: antony@cosmologist.info

    2015-01-01

    Percent-level measurements of the comoving baryon acoustic scale standard ruler can be used to break degeneracies in parameter constraints from the CMB alone. The sound horizon at the epoch of baryon drag is often used as a proxy for the scale of the peak in the matter density correlation function, and can conveniently be calculated quickly for different cosmological models. However, the measurements are not directly constraining this scale, but rather a measurement of the full correlation function, which depends on the detailed evolution through decoupling. We assess the level of reliability of parameter constraints based on a simple approximation of the acoustic scale compared to a more direct determination from the full numerical two-point correlation function. Using a five-parameter fitting technique similar to recent BAO data analyses, we find that for standard ΛCDM models and extensions with massive neutrinos and additional relativistic degrees of freedom, the approximation is at better than 0.15% for most parameter combinations varying over reasonable ranges.

  3. Real Time Monitoring of Containerless Microreactions in Acoustically Levitated Droplets via Ambient Ionization Mass Spectrometry.

    PubMed

    Crawford, Elizabeth A; Esen, Cemal; Volmer, Dietrich A

    2016-09-01

    Direct in-droplet (in stillo) microreaction monitoring using acoustically levitated micro droplets has been achieved by combining acoustic (ultrasonic) levitation for the first time with real time ambient tandem mass spectrometry (MS/MS). The acoustic levitation and inherent mixing of microliter volumes of reactants (3 μL droplets), yielding total reaction volumes of 6 μL, supported monitoring the acid-catalyzed degradation reaction of erythromycin A. This reaction was chosen to demonstrate the proof-of-principle of directly monitoring in stillo microreactions via hyphenated acoustic levitation and ambient ionization mass spectrometry. The microreactions took place completely in stillo over 30, 60, and 120 s within the containerless stable central pressure node of an acoustic levitator, thus readily promoting reaction miniaturization. For the evaluation of the miniaturized in stillo reactions, the degradation reactions were also carried out in vials (in vitro) with a total reaction volume of 400 μL. The reacted in vitro mixtures (6 μL total) were similarly introduced into the acoustic levitator prior to ambient ionization MS/MS analysis. The in stillo miniaturized reactions provided immediate real-time snap-shots of the degradation process for more accurate reaction monitoring and used a fraction of the reactants, while the larger scale in vitro reactions only yielded general reaction information. PMID:27505037

  4. Geologic time scale bookmark

    USGS Publications Warehouse

    ,

    2012-01-01

    This bookmark, designed for use with U.S. Geological Survey activities at the 2nd USA Science and Engineering Festival (April 26–29, 2012), is adapted from the more detailed Fact Sheet 2010–3059 "Divisions of Geologic Time." The information that it presents is widely sought by educators and students.

  5. Flow structure, performance and scaling of acoustic jets

    NASA Astrophysics Data System (ADS)

    Muller, Michael Oliver

    Acoustic jets are studied, with an emphasis on their flow structure, performance, and scaling. The ultimate goal is the development of a micromachined acoustic jet for propulsion of a micromachined airborne platform, as well as integrated cooling and pumping applications. Scaling suggests an increase in performance with decreasing size, motivating the use of micro-technology. Experimental studies are conducted at three different orders of magnitude in size, each closely following analytic expectations. The jet creates a periodic vortical structure, the details of which are a function of amplitude. At small actuation amplitude, but still well above the linear acoustic regime, the flow structure consists of individual vortex rings, propagating away from the nozzle, formed during the outstroke of the acoustic cavity. At large amplitude, a trail of vorticity forms between the periodic vortex rings. Approximately corresponding to these two flow regions are two performance regimes. At low amplitude, the jet thrust increases with the fourth power of the amplitude; and at large amplitude, the thrust equals the momentum flux ejected during the output stroke, and increases as the square of the amplitude. Resonance of the cavity, at Reynolds numbers greater than approximately 10, enhances the jet performance beyond the incompressible behavior. Gains of an order of magnitude in the jet velocity occur at Reynolds numbers of approximately 100, and the data suggest further gains with increasing Reynolds number. The smallest geometries tested are micromachined acoustic jets, manufactured using MEMS technology. The throat dimensions are 50 by 200 mum, and the overall device size is approximately 1 mm 2, with eight throats per device. Several jets are manufactured in an array, to suit any given application. The performance is very dependent on frequency, with a sharp peak at the system resonance, occurring at approximately 70 kHz (inaudible). The mean jet velocity of these devices

  6. Theoretical study of time-dependent, ultrasound-induced acoustic streaming in microchannels.

    PubMed

    Muller, Peter Barkholt; Bruus, Henrik

    2015-12-01

    Based on first- and second-order perturbation theory, we present a numerical study of the temporal buildup and decay of unsteady acoustic fields and acoustic streaming flows actuated by vibrating walls in the transverse cross-sectional plane of a long straight microchannel under adiabatic conditions and assuming temperature-independent material parameters. The unsteady streaming flow is obtained by averaging the time-dependent velocity field over one oscillation period, and as time increases, it is shown to converge towards the well-known steady time-averaged solution calculated in the frequency domain. Scaling analysis reveals that the acoustic resonance builds up much faster than the acoustic streaming, implying that the radiation force may dominate over the drag force from streaming even for small particles. However, our numerical time-dependent analysis indicates that pulsed actuation does not reduce streaming significantly due to its slow decay. Our analysis also shows that for an acoustic resonance with a quality factor Q, the amplitude of the oscillating second-order velocity component is Q times larger than the usual second-order steady time-averaged velocity component. Consequently, the well-known criterion v(1)≪c(s) for the validity of the perturbation expansion is replaced by the more restrictive criterion v(1)≪c(s)/Q. Our numerical model is available as supplemental material in the form of comsol model files and matlab scripts. PMID:26764815

  7. Theoretical study of time-dependent, ultrasound-induced acoustic streaming in microchannels

    NASA Astrophysics Data System (ADS)

    Muller, Peter Barkholt; Bruus, Henrik

    2015-12-01

    Based on first- and second-order perturbation theory, we present a numerical study of the temporal buildup and decay of unsteady acoustic fields and acoustic streaming flows actuated by vibrating walls in the transverse cross-sectional plane of a long straight microchannel under adiabatic conditions and assuming temperature-independent material parameters. The unsteady streaming flow is obtained by averaging the time-dependent velocity field over one oscillation period, and as time increases, it is shown to converge towards the well-known steady time-averaged solution calculated in the frequency domain. Scaling analysis reveals that the acoustic resonance builds up much faster than the acoustic streaming, implying that the radiation force may dominate over the drag force from streaming even for small particles. However, our numerical time-dependent analysis indicates that pulsed actuation does not reduce streaming significantly due to its slow decay. Our analysis also shows that for an acoustic resonance with a quality factor Q , the amplitude of the oscillating second-order velocity component is Q times larger than the usual second-order steady time-averaged velocity component. Consequently, the well-known criterion v1≪cs for the validity of the perturbation expansion is replaced by the more restrictive criterion v1≪cs/Q . Our numerical model is available as supplemental material in the form of comsol model files and matlab scripts.

  8. Theoretical study of time-dependent, ultrasound-induced acoustic streaming in microchannels.

    PubMed

    Muller, Peter Barkholt; Bruus, Henrik

    2015-12-01

    Based on first- and second-order perturbation theory, we present a numerical study of the temporal buildup and decay of unsteady acoustic fields and acoustic streaming flows actuated by vibrating walls in the transverse cross-sectional plane of a long straight microchannel under adiabatic conditions and assuming temperature-independent material parameters. The unsteady streaming flow is obtained by averaging the time-dependent velocity field over one oscillation period, and as time increases, it is shown to converge towards the well-known steady time-averaged solution calculated in the frequency domain. Scaling analysis reveals that the acoustic resonance builds up much faster than the acoustic streaming, implying that the radiation force may dominate over the drag force from streaming even for small particles. However, our numerical time-dependent analysis indicates that pulsed actuation does not reduce streaming significantly due to its slow decay. Our analysis also shows that for an acoustic resonance with a quality factor Q, the amplitude of the oscillating second-order velocity component is Q times larger than the usual second-order steady time-averaged velocity component. Consequently, the well-known criterion v(1)≪c(s) for the validity of the perturbation expansion is replaced by the more restrictive criterion v(1)≪c(s)/Q. Our numerical model is available as supplemental material in the form of comsol model files and matlab scripts.

  9. Integrated measurements of acoustical and optical thin layers II: Horizontal length scales

    NASA Astrophysics Data System (ADS)

    Moline, Mark A.; Benoit-Bird, Kelly J.; Robbins, Ian C.; Schroth-Miller, Maddie; Waluk, Chad M.; Zelenke, Brian

    2010-01-01

    The degree of layered organization of planktonic organisms in coastal systems impacts trophic interactions, the vertical availability of nutrients, and many biological rate processes. While there is reasonable characterization of the vertical structure of these phenomena, the extent and horizontal length scale of variation has rarely been addressed. Here we extend the examination of the vertical scale in the first paper of the series to the horizontal scale with combined shipboard acoustic measurements and bio-optic measurements taken on an autonomous underwater vehicle. Measurements were made in Monterey Bay, CA from 2002 to 2008 for the bio-optical parameters and during 2006 for acoustic scattering measurements. The combined data set was used to evaluate the horizontal decorrelation length scales of the bio-optical and acoustic scattering layers themselves. Because biological layers are often decoupled from the physical structure of the water column, assessment of the variance within identified layers was appropriate. This differs from other studies in that physical parameters were not used as a basis for the layer definition. There was a significant diel pattern to the decorrelation length scale for acoustic layers with the more abundant nighttime layers showing less horizontal variability despite their smaller horizontal extent. A significant decrease in the decorrelation length scale was found in bio-optical parameters over six years of study, coinciding with a documented shift in the plankton community. Results highlight the importance of considering plankton behavior and time of day with respect to scale when studying layers, and the challenges of sampling these phenomena.

  10. Acoustic telemetry reveals large-scale migration patterns of walleye in Lake Huron

    USGS Publications Warehouse

    Hayden, Todd A.; Holbrook, Christopher; Fielder, David G.; Vandergoot, Christopher S.; Bergstedt, Roger A.; Dettmers, John M.; Krueger, Charles C.; Cooke, Steven J.

    2014-01-01

    Fish migration in large freshwater lacustrine systems such as the Laurentian Great Lakes is not well understood. The walleye (Sander vitreus) is an economically and ecologically important native fish species throughout the Great Lakes. In Lake Huron walleye has recently undergone a population expansion as a result of recovery of the primary stock, stemming from changing food web dynamics. During 2011 and 2012, we used acoustic telemetry to document the timing and spatial scale of walleye migration in Lake Huron and Saginaw Bay. Spawning walleye (n = 199) collected from a tributary of Saginaw Bay were implanted with acoustic tags and their migrations were documented using acoustic receivers (n = 140) deployed throughout U.S. nearshore waters of Lake Huron. Three migration pathways were described using multistate mark-recapture models. Models were evaluated using the Akaike Information Criterion. Fish sex did not influence migratory behavior but did affect migration rate and walleye were detected on all acoustic receiver lines. Most (95%) tagged fish migrated downstream from the riverine tagging and release location to Saginaw Bay, and 37% of these fish emigrated from Saginaw Bay into Lake Huron. Remarkably, 8% of walleye that emigrated from Saginaw Bay were detected at the acoustic receiver line located farthest from the release location more than 350 km away. Most (64%) walleye returned to the Saginaw River in 2012, presumably for spawning. Our findings reveal that fish from this stock use virtually the entirety of U.S. nearshore waters of Lake Huron.

  11. Acoustic Telemetry Reveals Large-Scale Migration Patterns of Walleye in Lake Huron

    PubMed Central

    Hayden, Todd A.; Holbrook, Christopher M.; Fielder, David G.; Vandergoot, Christopher S.; Bergstedt, Roger A.; Dettmers, John M.; Krueger, Charles C.; Cooke, Steven J.

    2014-01-01

    Fish migration in large freshwater lacustrine systems such as the Laurentian Great Lakes is not well understood. The walleye (Sander vitreus) is an economically and ecologically important native fish species throughout the Great Lakes. In Lake Huron walleye has recently undergone a population expansion as a result of recovery of the primary stock, stemming from changing food web dynamics. During 2011 and 2012, we used acoustic telemetry to document the timing and spatial scale of walleye migration in Lake Huron and Saginaw Bay. Spawning walleye (n = 199) collected from a tributary of Saginaw Bay were implanted with acoustic tags and their migrations were documented using acoustic receivers (n = 140) deployed throughout U.S. nearshore waters of Lake Huron. Three migration pathways were described using multistate mark-recapture models. Models were evaluated using the Akaike Information Criterion. Fish sex did not influence migratory behavior but did affect migration rate and walleye were detected on all acoustic receiver lines. Most (95%) tagged fish migrated downstream from the riverine tagging and release location to Saginaw Bay, and 37% of these fish emigrated from Saginaw Bay into Lake Huron. Remarkably, 8% of walleye that emigrated from Saginaw Bay were detected at the acoustic receiver line located farthest from the release location more than 350 km away. Most (64%) walleye returned to the Saginaw River in 2012, presumably for spawning. Our findings reveal that fish from this stock use virtually the entirety of U.S. nearshore waters of Lake Huron. PMID:25506913

  12. An invisible acoustic sensor based on parity-time symmetry.

    PubMed

    Fleury, Romain; Sounas, Dimitrios; Alù, Andrea

    2015-01-01

    Sensing an incoming signal is typically associated with absorbing a portion of its energy, inherently perturbing the measurement and creating reflections and shadows. Here, in contrast, we demonstrate a non-invasive, shadow-free, invisible sensor for airborne sound waves at audible frequencies, which fully absorbs the impinging signal, without at the same time perturbing its own measurement or creating a shadow. This unique sensing device is based on the unusual scattering properties of a parity-time (PT) symmetric metamaterial device formed by a pair of electro-acoustic resonators loaded with suitably tailored non-Foster electrical circuits, constituting the acoustic equivalent of a coherent perfect absorber coupled to a coherent laser. Beyond the specific application to non-invasive sensing, our work broadly demonstrates the unique relevance of PT-symmetric metamaterials for acoustics, loss compensation and extraordinary wave manipulation. PMID:25562746

  13. Linear and Nonlinear Time Reverse Acoustics in Geomaterials

    NASA Astrophysics Data System (ADS)

    Sutin, A.; Johnson, P. A.; Tencate, J.

    2004-12-01

    Linear and Nonlinear Time Reverse Acoustics in Geomaterials P. A. Johnson, A.Sutin and J. TenCate Time Reversal Acoustics (TRA) is one of the most interesting topics to have emerged in modern acoustics in the last 40 years. Much of the seminal research in this area has been carried out by the group at the Laboratoire Ondes et Acoustique at the University of Paris 7, who have demonstrated the ability and robustness of TRA (using Time Reversal Mirrors) to provide spatial control and focusing of an ultrasonic beam (e.g. Fink, 1999). The ability to obtain highly focused signals with TRA has numerous applications, including lithotripsy, ultrasonic brain surgery, nondestructive evaluation and underwater acoustic communication. Notably, the study of time reversal in solids and in the earth is still relatively new. The problem is fundamentally different from the purely acoustic one due to the excitation and propagation of both compressional (bulk) and shear waves as well as the scattering and potentially high dissipation of the medium. We conducted series of TRA experiments in different solids using direct-coupled transducers on solids in tandem with a large bandwidth laser vibrometer detector. A typical time reversal experiment was carried out using the following steps (Sutin et al. 2004a). Laboratory experiments were conducted in different geomaterials of different shapes and sizes, including Carrera marble, granite and Berea sandstone. We observed that, in spite of potentially huge numbers of wave conversions (e.g., compressional to shear, shear to compressional, compressional/shear to surface waves, etc.) for each reflection at each free surface, time reversal still provides significant spatial and temporal focusing in these different geophysical materials. The typical size of the focal area is approximately equivalent to the shear wavelength and the focal area, but becomes larger with increasing wave attenuation (Sutin et al. 2004a; Delsanto et al., 2003)). The TR

  14. Acoustically trapped colloidal crystals that are reconfigurable in real time

    PubMed Central

    Caleap, Mihai; Drinkwater, Bruce W.

    2014-01-01

    Photonic and phononic crystals are metamaterials with repeating unit cells that result in internal resonances leading to a range of wave guiding and filtering properties and are opening up new applications such as hyperlenses and superabsorbers. Here we show the first, to our knowledge, 3D colloidal phononic crystal that is reconfigurable in real time and demonstrate its ability to rapidly alter its frequency filtering characteristics. Our reconfigurable material is assembled from microspheres in aqueous solution, trapped with acoustic radiation forces. The acoustic radiation force is governed by an energy landscape, determined by an applied high-amplitude acoustic standing wave field, in which particles move swiftly to energy minima. This creates a colloidal crystal of several milliliters in volume with spheres arranged in an orthorhombic lattice in which the acoustic wavelength is used to control the lattice spacing. Transmission acoustic spectroscopy shows that the new colloidal crystal behaves as a phononic metamaterial and exhibits clear band-pass and band-stop frequencies which are adjusted in real time. PMID:24706925

  15. Nonlinear effects of dark energy clustering beyond the acoustic scales

    SciTech Connect

    Anselmi, Stefano; Sefusatti, Emiliano E-mail: dlopez_n@ictp.it

    2014-07-01

    We extend the resummation method of Anselmi and Pietroni (2012) to compute the total density power spectrum in models of quintessence characterized by a vanishing speed of sound. For standard ΛCDM cosmologies, this resummation scheme allows predictions with an accuracy at the few percent level beyond the range of scales where acoustic oscillations are present, therefore comparable to other, common numerical tools. In addition, our theoretical approach indicates an approximate but valuable and simple relation between the power spectra for standard quintessence models and models where scalar field perturbations appear at all scales. This, in turn, provides an educated guess for the prediction of nonlinear growth in models with generic speed of sound, particularly valuable since no numerical results are yet available.

  16. Shaping and timing gradient pulses to reduce MRI acoustic noise.

    PubMed

    Segbers, Marcel; Rizzo Sierra, Carlos V; Duifhuis, Hendrikus; Hoogduin, Johannes M

    2010-08-01

    A method to reduce the acoustic noise generated by gradient systems in MRI has been recently proposed; such a method is based on the linear response theory. Since the physical cause of MRI acoustic noise is the time derivative of the gradient current, a common trapezoid current shape produces an acoustic gradient coil response mainly during the rising and falling edge. In the falling edge, the coil acoustic response presents a 180 degrees phase difference compared to the rising edge. Therefore, by varying the width of the trapezoid and keeping the ramps constant, it is possible to suppress one selected frequency and its higher harmonics. This value is matched to one of the prominent resonance frequencies of the gradient coil system. The idea of cancelling a single frequency is extended to a second frequency, using two successive trapezoid-shaped pulses presented at a selected interval. Overall sound pressure level reduction of 6 and 10 dB is found for the two trapezoid shapes and a single pulse shape, respectively. The acoustically optimized pulse shape proposed is additionally tested in a simulated echo planar imaging readout train, obtaining a sound pressure level reduction of 12 dB for the best case.

  17. Time-Reversal Acoustics and Maximum-Entropy Imaging

    SciTech Connect

    Berryman, J G

    2001-08-22

    Target location is a common problem in acoustical imaging using either passive or active data inversion. Time-reversal methods in acoustics have the important characteristic that they provide a means of determining the eigenfunctions and eigenvalues of the scattering operator for either of these problems. Each eigenfunction may often be approximately associated with an individual scatterer. The resulting decoupling of the scattered field from a collection of targets is a very useful aid to localizing the targets, and suggests a number of imaging and localization algorithms. Two of these are linear subspace methods and maximum-entropy imaging.

  18. Acoustic measurements of a full-scale coaxial helicopter

    NASA Technical Reports Server (NTRS)

    Mosher, M.; Peterson, R. L.

    1983-01-01

    Acoustic data were obtained during a full-scale test of the XH-59A Advancing Blade Concept (ABC) Technology Demonstrator in the NASA Ames 40- by 80-Foot Wind Tunnel. The XH-59A is a research helicopter with two coaxial rotors and hingeless blades. Performance, vibration, noise at various forward speeds, rotor lift coefficients, and rotor shaft angles of attack were investigated. In general, the noise level is shown to increase with rotor lift coefficient except under certain operating conditions where it is increased by significant impulsive blade/vortex interactions. The impulsivity appears to depend upon how the lift is distributed between the two rotors. The noise levels measured are shown to be slightly higher than on a modern conventional rotor tested in the same facility.

  19. Multi-carrier Communications over Time-varying Acoustic Channels

    NASA Astrophysics Data System (ADS)

    Aval, Yashar M.

    Acoustic communication is an enabling technology for many autonomous undersea systems, such as those used for ocean monitoring, offshore oil and gas industry, aquaculture, or port security. There are three main challenges in achieving reliable high-rate underwater communication: the bandwidth of acoustic channels is extremely limited, the propagation delays are long, and the Doppler distortions are more pronounced than those found in wireless radio channels. In this dissertation we focus on assessing the fundamental limitations of acoustic communication, and designing efficient signal processing methods that cam overcome these limitations. We address the fundamental question of acoustic channel capacity (achievable rate) for single-input-multi-output (SIMO) acoustic channels using a per-path Rician fading model, and focusing on two scenarios: narrowband channels where the channel statistics can be approximated as frequency- independent, and wideband channels where the nominal path loss is frequency-dependent. In each scenario, we compare several candidate power allocation techniques, and show that assigning uniform power across all frequencies for the first scenario, and assigning uniform power across a selected frequency-band for the second scenario, are the best practical choices in most cases, because the long propagation delay renders the feedback information outdated for power allocation based on the estimated channel response. We quantify our results using the channel information extracted form the 2010 Mobile Acoustic Communications Experiment (MACE'10). Next, we focus on achieving reliable high-rate communication over underwater acoustic channels. Specifically, we investigate orthogonal frequency division multiplexing (OFDM) as the state-of-the-art technique for dealing with frequency-selective multipath channels, and propose a class of methods that compensate for the time-variation of the underwater acoustic channel. These methods are based on multiple

  20. Acoustic resonance in tube bundles -- Comparison of full scale and laboratory test results

    SciTech Connect

    Eisinger, F.L.

    1995-12-01

    Full scale operational data from steam generator tube bundles exposed to hot gases in crossflow are compared with small scale laboratory test results with cold air. Vibration thresholds based on input energy, acoustic particle velocity and effective damping are evaluated and compared. It is shown that these parameters play an important role in the development, or suppression of acoustic resonance.

  1. Space Launch System Scale Model Acoustic Test Ignition Overpressure Testing

    NASA Technical Reports Server (NTRS)

    Nance, Donald; Liever, Peter; Nielsen, Tanner

    2015-01-01

    The overpressure phenomenon is a transient fluid dynamic event occurring during rocket propulsion system ignition. This phenomenon results from fluid compression of the accelerating plume gas, subsequent rarefaction, and subsequent propagation from the exhaust trench and duct holes. The high-amplitude unsteady fluid-dynamic perturbations can adversely affect the vehicle and surrounding structure. Commonly known as ignition overpressure (IOP), this is an important design-to environment for the Space Launch System (SLS) that NASA is currently developing. Subscale testing is useful in validating and verifying the IOP environment. This was one of the objectives of the Scale Model Acoustic Test, conducted at Marshall Space Flight Center. The test data quantifies the effectiveness of the SLS IOP suppression system and improves the analytical models used to predict the SLS IOP environments. The reduction and analysis of the data gathered during the SMAT IOP test series requires identification and characterization of multiple dynamic events and scaling of the event waveforms to provide the most accurate comparisons to determine the effectiveness of the IOP suppression systems. The identification and characterization of the overpressure events, the waveform scaling, the computation of the IOP suppression system knockdown factors, and preliminary comparisons to the analytical models are discussed.

  2. Space Launch System Scale Model Acoustic Test Ignition Overpressure Testing

    NASA Technical Reports Server (NTRS)

    Nance, Donald K.; Liever, Peter A.

    2015-01-01

    The overpressure phenomenon is a transient fluid dynamic event occurring during rocket propulsion system ignition. This phenomenon results from fluid compression of the accelerating plume gas, subsequent rarefaction, and subsequent propagation from the exhaust trench and duct holes. The high-amplitude unsteady fluid-dynamic perturbations can adversely affect the vehicle and surrounding structure. Commonly known as ignition overpressure (IOP), this is an important design-to environment for the Space Launch System (SLS) that NASA is currently developing. Subscale testing is useful in validating and verifying the IOP environment. This was one of the objectives of the Scale Model Acoustic Test (SMAT), conducted at Marshall Space Flight Center (MSFC). The test data quantifies the effectiveness of the SLS IOP suppression system and improves the analytical models used to predict the SLS IOP environments. The reduction and analysis of the data gathered during the SMAT IOP test series requires identification and characterization of multiple dynamic events and scaling of the event waveforms to provide the most accurate comparisons to determine the effectiveness of the IOP suppression systems. The identification and characterization of the overpressure events, the waveform scaling, the computation of the IOP suppression system knockdown factors, and preliminary comparisons to the analytical models are discussed.

  3. Acoustic streaming jets: A scaling and dimensional analysis

    SciTech Connect

    Botton, V. Henry, D.; Millet, S.; Ben-Hadid, H.; Garandet, J. P.

    2015-10-28

    We present our work on acoustic streaming free jets driven by ultrasonic beams in liquids. These jets are steady flows generated far from walls by progressive acoustic waves. As can be seen on figure 1, our set-up, denominated AStrID for Acoustic Streaming Investigation Device, is made of a water tank in which a 29 mm plane source emits continuous ultrasonic waves at typically 2 MHz. Our approach combines an experimental characterization of both the acoustic pressure field (hydrophone) and the obtained acoustic streaming velocity field (PIV visualization) on one hand, with CFD using an incompressible Navier-Stokes solver on the other hand.

  4. Method for distinguishing multiple targets using time-reversal acoustics

    DOEpatents

    Berryman, James G.

    2004-06-29

    A method for distinguishing multiple targets using time-reversal acoustics. Time-reversal acoustics uses an iterative process to determine the optimum signal for locating a strongly reflecting target in a cluttered environment. An acoustic array sends a signal into a medium, and then receives the returned/reflected signal. This returned/reflected signal is then time-reversed and sent back into the medium again, and again, until the signal being sent and received is no longer changing. At that point, the array has isolated the largest eigenvalue/eigenvector combination and has effectively determined the location of a single target in the medium (the one that is most strongly reflecting). After the largest eigenvalue/eigenvector combination has been determined, to determine the location of other targets, instead of sending back the same signals, the method sends back these time reversed signals, but half of them will also be reversed in sign. There are various possibilities for choosing which half to do sign reversal. The most obvious choice is to reverse every other one in a linear array, or as in a checkerboard pattern in 2D. Then, a new send/receive, send-time reversed/receive iteration can proceed. Often, the first iteration in this sequence will be close to the desired signal from a second target. In some cases, orthogonalization procedures must be implemented to assure the returned signals are in fact orthogonal to the first eigenvector found.

  5. Acoustic FMRI noise: linear time-invariant system model.

    PubMed

    Rizzo Sierra, Carlos V; Versluis, Maarten J; Hoogduin, Johannes M; Duifhuis, Hendrikus Diek

    2008-09-01

    Functional magnetic resonance imaging (fMRI) enables sites of brain activation to be localized in human subjects. For auditory system studies, however, the acoustic noise generated by the scanner tends to interfere with the assessments of this activation. Understanding and modeling fMRI acoustic noise is a useful step to its reduction. To study acoustic noise, the MR scanner is modeled as a linear electroacoustical system generating sound pressure signals proportional to the time derivative of the input gradient currents. The transfer function of one MR scanner is determined for two different input specifications: 1) by using the gradient waveform calculated by the scanner software and 2) by using a recording of the gradient current. Up to 4 kHz, the first method is shown as reliable as the second one, and its use is encouraged when direct measurements of gradient currents are not possible. Additionally, the linear order and average damping properties of the gradient coil system are determined by impulse response analysis. Since fMRI is often based on echo planar imaging (EPI) sequences, a useful validation of the transfer function prediction ability can be obtained by calculating the acoustic output for the EPI sequence. We found a predicted sound pressure level (SPL) for the EPI sequence of 104 dB SPL compared to a measured value of 102 dB SPL. As yet, the predicted EPI pressure waveform shows similarity as well as some differences with the directly measured EPI pressure waveform.

  6. Time Reversal Acoustic Communication Using Filtered Multitone Modulation.

    PubMed

    Sun, Lin; Chen, Baowei; Li, Haisen; Zhou, Tian; Li, Ruo

    2015-01-01

    The multipath spread in underwater acoustic channels is severe and, therefore, when the symbol rate of the time reversal (TR) acoustic communication using single-carrier (SC) modulation is high, the large intersymbol interference (ISI) span caused by multipath reduces the performance of the TR process and needs to be removed using the long adaptive equalizer as the post-processor. In this paper, a TR acoustic communication method using filtered multitone (FMT) modulation is proposed in order to reduce the residual ISI in the processed signal using TR. In the proposed method, FMT modulation is exploited to modulate information symbols onto separate subcarriers with high spectral containment and TR technique, as well as adaptive equalization is adopted at the receiver to suppress ISI and noise. The performance of the proposed method is assessed through simulation and real data from a trial in an experimental pool. The proposed method was compared with the TR acoustic communication using SC modulation with the same spectral efficiency. Results demonstrate that the proposed method can improve the performance of the TR process and reduce the computational complexity of adaptive equalization for post-process.

  7. Time Reversal Acoustic Communication Using Filtered Multitone Modulation

    PubMed Central

    Sun, Lin; Chen, Baowei; Li, Haisen; Zhou, Tian; Li, Ruo

    2015-01-01

    The multipath spread in underwater acoustic channels is severe and, therefore, when the symbol rate of the time reversal (TR) acoustic communication using single-carrier (SC) modulation is high, the large intersymbol interference (ISI) span caused by multipath reduces the performance of the TR process and needs to be removed using the long adaptive equalizer as the post-processor. In this paper, a TR acoustic communication method using filtered multitone (FMT) modulation is proposed in order to reduce the residual ISI in the processed signal using TR. In the proposed method, FMT modulation is exploited to modulate information symbols onto separate subcarriers with high spectral containment and TR technique, as well as adaptive equalization is adopted at the receiver to suppress ISI and noise. The performance of the proposed method is assessed through simulation and real data from a trial in an experimental pool. The proposed method was compared with the TR acoustic communication using SC modulation with the same spectral efficiency. Results demonstrate that the proposed method can improve the performance of the TR process and reduce the computational complexity of adaptive equalization for post-process. PMID:26393586

  8. Time scales of Magmatic Processes

    NASA Astrophysics Data System (ADS)

    Hawkesworth, C. J.

    2002-05-01

    Knowledge of the rates of natural processes is critical to the development of physically realistic models. For magmatic processes, rates are increasingly well determined from short lived isotopes, and from diffusion modified element profiles, on time scales that vary from 10s of 1000s of years to a few years. Our understanding of the melting processes beneath MOR have been revolutionised by the application of U-series isotopes, because they include isotopes with half lives similar to the time scales of melt generation and extraction. For island arcs there is much discussion of how to incorporate suggestions that Ra and Ba are transferred from the slab in a few 1000 years, and yet significantly more time is required to generate the excess Pa isotopes. Once in the crust, crystallisation and differentiation may be driven by cooling, degassing and decompression, and these should be characterised by different time scales. Crystals preserve rich high-resolution records of changing magma compositions, but the time scales of those changes are difficult to establish. Isotope studies have shown that more evolved rock types tend to contain more old crystals that may be 10s of 1000s of years old at the time of eruption. Whether these are xenocrysts, or evidence for long term crystallisation histories remains controversial. Moreover, diffusion modified element profiles, and crystal size distributions, suggest that crystals are often less than a 100 years old. An alternative approach is to consider U-series isotope ratios in the magma, and how these may change with degree of magma evolution. These suggest that differentiation time scales may be up to 200 ky for magmas at the base of the crust, but for magmas that crystallise at shallower levels the time scales are much shorter. In some cases these are in weeks and months, and crystallisation is likely to be due to decompression and degassing. One consequence of the short crystallisation times, is that there may be insufficient

  9. Cylindrical acoustical holography applied to full-scale jet noise.

    PubMed

    Wall, Alan T; Gee, Kent L; Neilsen, Tracianne B; Krueger, David W; James, Michael M

    2014-09-01

    Near-field acoustical holography methods are used to predict sound radiation from an engine installed on a high-performance military fighter aircraft. Cylindrical holography techniques are an efficient approach to measure the large and complex sound fields produced by full-scale jets. It is shown that a ground-based, one-dimensional array of microphones can be used in conjunction with a cylindrical wave function field representation to provide a holographic reconstruction of the radiated sound field at low frequencies. In the current work, partial field decomposition methods and numerical extrapolation of data beyond the boundaries of the hologram aperture are required prior to holographic projection. Predicted jet noise source distributions and directionality are shown for four frequencies between 63 and 250 Hz. It is shown that the source distribution narrows and moves upstream, and that radiation directionality shifts toward the forward direction, with increasing frequency. A double-lobe feature of full-scale jet radiation is also demonstrated. PMID:25190387

  10. Radiation force produced by time reversal acoustic focusing system

    NASA Astrophysics Data System (ADS)

    Sarvazyan, Armen; Sutin, Alexander

    2003-10-01

    An ultrasonic induced radiation force is an efficient tool for remote probing of internal anatomical structures and evaluating tissue viscoelastic properties, which are closely related to tissue functional state and abnormalities. Time Reversal Acoustic Focusing System (TRA FS) can provide efficient ultrasound focusing in highly inhomogeneous media. Furthermore, numerous reflections from boundaries, which distort focusing in conventional ultrasound focusing systems and are viewed as a significant technical hurdle, lead to an improvement of the focusing ability of the TRA system. In this work the TRA FS field structure and radiation force in a transcranial phantom were investigated. A simple TRA FS comprising a plane piezoceramic transducer attached to an external resonator such as an aluminum block was acoustically coupled to the tested transcranial phantom. A custom-designed compact electronic unit for TRA FS provided receiving, digitizing, storing, time reversing and transmitting of acoustic signals in a wide frequency range from 0.01 to 10 MHz. The radiation force produced by ultrasonic pulses was investigated as a function of the transmitted ultrasound temporal parameters. The simplest TRA FS provided focusing of 500 kHz ultrasound pulses and the generation of a radiation force with an efficacy hardly achievable using conventional sophisticated phased array transmitters. [Work supported by NIH.

  11. Accessing the exceptional points of parity-time symmetric acoustics.

    PubMed

    Shi, Chengzhi; Dubois, Marc; Chen, Yun; Cheng, Lei; Ramezani, Hamidreza; Wang, Yuan; Zhang, Xiang

    2016-01-01

    Parity-time (PT) symmetric systems experience phase transition between PT exact and broken phases at exceptional point. These PT phase transitions contribute significantly to the design of single mode lasers, coherent perfect absorbers, isolators, and diodes. However, such exceptional points are extremely difficult to access in practice because of the dispersive behaviour of most loss and gain materials required in PT symmetric systems. Here we introduce a method to systematically tame these exceptional points and control PT phases. Our experimental demonstration hinges on an active acoustic element that realizes a complex-valued potential and simultaneously controls the multiple interference in the structure. The manipulation of exceptional points offers new routes to broaden applications for PT symmetric physics in acoustics, optics, microwaves and electronics, which are essential for sensing, communication and imaging. PMID:27025443

  12. Accessing the exceptional points of parity-time symmetric acoustics.

    PubMed

    Shi, Chengzhi; Dubois, Marc; Chen, Yun; Cheng, Lei; Ramezani, Hamidreza; Wang, Yuan; Zhang, Xiang

    2016-01-01

    Parity-time (PT) symmetric systems experience phase transition between PT exact and broken phases at exceptional point. These PT phase transitions contribute significantly to the design of single mode lasers, coherent perfect absorbers, isolators, and diodes. However, such exceptional points are extremely difficult to access in practice because of the dispersive behaviour of most loss and gain materials required in PT symmetric systems. Here we introduce a method to systematically tame these exceptional points and control PT phases. Our experimental demonstration hinges on an active acoustic element that realizes a complex-valued potential and simultaneously controls the multiple interference in the structure. The manipulation of exceptional points offers new routes to broaden applications for PT symmetric physics in acoustics, optics, microwaves and electronics, which are essential for sensing, communication and imaging.

  13. Accessing the exceptional points of parity-time symmetric acoustics

    PubMed Central

    Shi, Chengzhi; Dubois, Marc; Chen, Yun; Cheng, Lei; Ramezani, Hamidreza; Wang, Yuan; Zhang, Xiang

    2016-01-01

    Parity-time (PT) symmetric systems experience phase transition between PT exact and broken phases at exceptional point. These PT phase transitions contribute significantly to the design of single mode lasers, coherent perfect absorbers, isolators, and diodes. However, such exceptional points are extremely difficult to access in practice because of the dispersive behaviour of most loss and gain materials required in PT symmetric systems. Here we introduce a method to systematically tame these exceptional points and control PT phases. Our experimental demonstration hinges on an active acoustic element that realizes a complex-valued potential and simultaneously controls the multiple interference in the structure. The manipulation of exceptional points offers new routes to broaden applications for PT symmetric physics in acoustics, optics, microwaves and electronics, which are essential for sensing, communication and imaging. PMID:27025443

  14. Accessing the exceptional points of parity-time symmetric acoustics

    NASA Astrophysics Data System (ADS)

    Shi, Chengzhi; Dubois, Marc; Chen, Yun; Cheng, Lei; Ramezani, Hamidreza; Wang, Yuan; Zhang, Xiang

    2016-03-01

    Parity-time (PT) symmetric systems experience phase transition between PT exact and broken phases at exceptional point. These PT phase transitions contribute significantly to the design of single mode lasers, coherent perfect absorbers, isolators, and diodes. However, such exceptional points are extremely difficult to access in practice because of the dispersive behaviour of most loss and gain materials required in PT symmetric systems. Here we introduce a method to systematically tame these exceptional points and control PT phases. Our experimental demonstration hinges on an active acoustic element that realizes a complex-valued potential and simultaneously controls the multiple interference in the structure. The manipulation of exceptional points offers new routes to broaden applications for PT symmetric physics in acoustics, optics, microwaves and electronics, which are essential for sensing, communication and imaging.

  15. Time-instant sampling based encoding of time-varying acoustic spectrum

    NASA Astrophysics Data System (ADS)

    Sharma, Neeraj Kumar

    2015-12-01

    The inner ear has been shown to characterize an acoustic stimuli by transducing fluid motion in the inner ear to mechanical bending of stereocilia on the inner hair cells (IHCs). The excitation motion/energy transferred to an IHC is dependent on the frequency spectrum of the acoustic stimuli, and the spatial location of the IHC along the length of the basilar membrane (BM). Subsequently, the afferent auditory nerve fiber (ANF) bundle samples the encoded waveform in the IHCs by synapsing with them. In this work we focus on sampling of information by afferent ANFs from the IHCs, and show computationally that sampling at specific time instants is sufficient for decoding of time-varying acoustic spectrum embedded in the acoustic stimuli. The approach is based on sampling the signal at its zero-crossings and higher-order derivative zero-crossings. We show results of the approach on time-varying acoustic spectrum estimation from cricket call signal recording. The framework gives a time-domain and non-spatial processing perspective to auditory signal processing. The approach works on the full band signal, and is devoid of modeling any bandpass filtering mimicking the BM action. Instead, we motivate the approach from the perspective of event-triggered sampling by afferent ANFs on the stimuli encoded in the IHCs. Though the approach gives acoustic spectrum estimation but it is shallow on its complete understanding for plausible bio-mechanical replication with current mammalian auditory mechanics insights.

  16. Time-sliced perturbation theory II: baryon acoustic oscillations and infrared resummation

    NASA Astrophysics Data System (ADS)

    Blas, Diego; Garny, Mathias; Ivanov, Mikhail M.; Sibiryakov, Sergey

    2016-07-01

    We use time-sliced perturbation theory (TSPT) to give an accurate description of the infrared non-linear effects affecting the baryonic acoustic oscillations (BAO) present in the distribution of matter at very large scales. In TSPT this can be done via a systematic resummation that has a simple diagrammatic representation and does not involve uncontrollable approximations. We discuss the power counting rules and derive explicit expressions for the resummed matter power spectrum up to next-to leading order and the bispectrum at the leading order. The two-point correlation function agrees well with N-body data at BAO scales. The systematic approach also allows to reliably assess the shift of the baryon acoustic peak due to non-linear effects.

  17. Acoustic modal analysis of a full-scale annular combustor

    NASA Technical Reports Server (NTRS)

    Karchmer, A. M.

    1982-01-01

    An acoustic modal decomposition of the measured pressure field in a full scale annular combustor installed in a ducted test rig is described. The modal analysis, utilizing a least squares optimization routine, is facilitated by the assumption of randomly occurring pressure disturbances which generate equal amplitude clockwise and counter-clockwise pressure waves, and the assumption of statistical independence between modes. These assumptions are fully justified by the measured cross spectral phases between the various measurement points. The resultant modal decomposition indicates that higher order modes compose the dominant portion of the combustor pressure spectrum in the range of frequencies of interest in core noise studies. A second major finding is that, over the frequency range of interest, each individual mode which is present exists in virtual isolation over significant portions of the spectrum. Finally, a comparison between the present results and a limited amount of data obtained in an operating turbofan engine with the same combustor is made. The comparison is sufficiently favorable to warrant the conclusion that the structure of the combustor pressure field is preserved between the component facility and the engine.

  18. Characterization of the Scale Model Acoustic Test Overpressure Environment using Computational Fluid Dynamics

    NASA Technical Reports Server (NTRS)

    Nielsen, Tanner; West, Jeff

    2015-01-01

    The Scale Model Acoustic Test (SMAT) is a 5% scale test of the Space Launch System (SLS), which is currently being designed at Marshall Space Flight Center (MSFC). The purpose of this test is to characterize and understand a variety of acoustic phenomena that occur during the early portions of lift off, one being the overpressure environment that develops shortly after booster ignition. The pressure waves that propagate from the mobile launcher (ML) exhaust hole are defined as the ignition overpressure (IOP), while the portion of the pressure waves that exit the duct or trench are the duct overpressure (DOP). Distinguishing the IOP and DOP in scale model test data has been difficult in past experiences and in early SMAT results, due to the effects of scaling the geometry. The speed of sound of the air and combustion gas constituents is not scaled, and therefore the SMAT pressure waves propagate at approximately the same speed as occurs in full scale. However, the SMAT geometry is twenty times smaller, allowing the pressure waves to move down the exhaust hole, through the trench and duct, and impact the vehicle model much faster than occurs at full scale. The DOP waves impact portions of the vehicle at the same time as the IOP waves, making it difficult to distinguish the different waves and fully understand the data. To better understand the SMAT data, a computational fluid dynamics (CFD) analysis was performed with a fictitious geometry that isolates the IOP and DOP. The upper and lower portions of the domain were segregated to accomplish the isolation in such a way that the flow physics were not significantly altered. The Loci/CHEM CFD software program was used to perform this analysis.

  19. Symmetry analysis for nonlinear time reversal methods applied to nonlinear acoustic imaging

    NASA Astrophysics Data System (ADS)

    Dos Santos, Serge; Chaline, Jennifer

    2015-10-01

    Using symmetry invariance, nonlinear Time Reversal (TR) and reciprocity properties, the classical NEWS methods are supplemented and improved by new excitations having the intrinsic property of enlarging frequency analysis bandwidth and time domain scales, with now both medical acoustics and electromagnetic applications. The analysis of invariant quantities is a well-known tool which is often used in nonlinear acoustics in order to simplify complex equations. Based on a fundamental physical principle known as symmetry analysis, this approach consists in finding judicious variables, intrinsically scale dependant, and able to describe all stages of behaviour on the same theoretical foundation. Based on previously published results within the nonlinear acoustic areas, some practical implementation will be proposed as a new way to define TR-NEWS based methods applied to NDT and medical bubble based non-destructive imaging. This paper tends to show how symmetry analysis can help us to define new methodologies and new experimental set-up involving modern signal processing tools. Some example of practical realizations will be proposed in the context of biomedical non-destructive imaging using Ultrasound Contrast Agents (ACUs) where symmetry and invariance properties allow us to define a microscopic scale-invariant experimental set-up describing intrinsic symmetries of the microscopic complex system.

  20. Application of time reversal acoustics focusing for nonlinear imaging ms

    NASA Astrophysics Data System (ADS)

    Sarvazyan, Armen; Sutin, Alexander

    2001-05-01

    Time reversal acoustic (TRA) focusing of ultrasound appears to be an effective tool for nonlinear imaging in industrial and medical applications because of its ability to efficiently concentrate ultrasonic energy (close to diffraction limit) in heterogeneous media. In this study, we used two TRA systems to focus ultrasonic beams with different frequencies in coinciding focal points, thus causing the generation of ultrasonic waves with combination frequencies. Measurements of the intensity of these combination frequency waves provide information on the nonlinear parameter of medium in the focal region. Synchronized stirring of two TRA focused beams enables obtaining 3-D acoustic nonlinearity images of the object. Each of the TRA systems employed an aluminum resonator with piezotransducers glued to its facet. One of the free facets of each resonator was submerged into a water tank and served as a virtual phased array capable of ultrasound focusing and beam steering. To mimic a medium with spatially varying acoustical nonlinearity a simplest model such as a microbubble column in water was used. Microbubbles were generated by electrolysis of water using a needle electrode. An order of magnitude increase of the sum frequency component was observed when the ultrasound beams were focused in the area with bubbles.

  1. On the effects of small-scale variability on acoustic propagation in Fram Strait: The tomography forward problem.

    PubMed

    Dushaw, Brian D; Sagen, Hanne; Beszczynska-Möller, Agnieszka

    2016-08-01

    Acoustic tomography systems have been deployed in Fram Strait over the past decade to complement existing observing systems there. The observed acoustic arrival patterns are unusual, however, consisting of a single, broad arrival pulse, with no discernible repeating patterns or individual ray arrivals. The nature of these arrivals is caused by vigorous acoustic scattering from the small-scale processes that dominate ocean variability in Fram Strait. Simple models for internal wave and mesoscale variability were constructed and tailored to match the variability observed by moored thermisters in Fram Strait. The internal wave contribution to variability is weak. Acoustic propagation through a simulated ocean consisting of a climatological sound speed plus mesoscale and internal wave scintillations obtains arrival patterns that match the characteristics of those observed, i.e., pulse width and travel time variation. The scintillations cause a proliferation of acoustic ray paths, however, reminiscent of "ray chaos." This understanding of the acoustic forward problem is prerequisite to designing an inverse scheme for estimating temperature from the observed travel times. PMID:27586755

  2. Computation of instantaneous and time-averaged active acoustic intensity field around rotating source

    NASA Astrophysics Data System (ADS)

    Mao, Yijun; Xu, Chen; Qi, Datong

    2015-02-01

    A vector aeroacoustics method is developed to analyze the acoustic energy flow path from the rotating source. In this method, the instantaneous and time-averaged active acoustic intensity vectors are evaluated from the time-domain and frequency-domain acoustic pressure and acoustic velocity formulations, respectively. With the above method, the acoustic intensity vectors and the acoustic energy streamlines are visualized to investigate the propagation feature of the noise radiated from the monopole and dipole point sources and the rotor in subsonic rotation. The result reveals that a portion of the acoustic energy spirals many circles before moving towards the far field, and another portion of the acoustic energy firstly flows inward along the radial direction and then propagates along the axial direction. Further, an acoustic black hole exists in the plane of source rotation, from which the acoustic energy cannot escape once the acoustic energy flows into it. Moreover, by visualizing the acoustic intensity field around the rotating sources, the acoustic-absorption performance of the acoustic liner built in the casing and centerbody is discussed.

  3. Effects of Horizontal Magnetic Fields on Acoustic Travel Times

    NASA Astrophysics Data System (ADS)

    Jain, Rekha

    2007-02-01

    Local helioseismology techniques seek to probe the subsurface magnetic fields and flows by observing waves that emerge at the solar surface after passing through these inhomogeneities. Active regions on the surface of the Sun are distinguished by their strong magnetic fields, and techniques such as time-distance helioseismology can provide a useful diagnostic for probing these structures. Above the active regions, the fields fan out to create a horizontal magnetic canopy. We investigate the effect of a uniform horizontal magnetic field on the travel time of acoustic waves by considering vertical velocity in a simple plane-parallel adiabatically stratified polytrope. It is shown that such fields can lower the upper turning point of p-modes and hence influence their travel time. It is found that acoustic waves reflected from magnetically active regions have travel times up to a minute less than for waves similarly reflected in quiet regions. It is also found that sound speeds are increased below the active regions. These findings are consistent with time-distance measurements.

  4. Time scales in cognitive neuroscience

    PubMed Central

    Papo, David

    2013-01-01

    Cognitive neuroscience boils down to describing the ways in which cognitive function results from brain activity. In turn, brain activity shows complex fluctuations, with structure at many spatio-temporal scales. Exactly how cognitive function inherits the physical dimensions of neural activity, though, is highly non-trivial, and so are generally the corresponding dimensions of cognitive phenomena. As for any physical phenomenon, when studying cognitive function, the first conceptual step should be that of establishing its dimensions. Here, we provide a systematic presentation of the temporal aspects of task-related brain activity, from the smallest scale of the brain imaging technique's resolution, to the observation time of a given experiment, through the characteristic time scales of the process under study. We first review some standard assumptions on the temporal scales of cognitive function. In spite of their general use, these assumptions hold true to a high degree of approximation for many cognitive (viz. fast perceptual) processes, but have their limitations for other ones (e.g., thinking or reasoning). We define in a rigorous way the temporal quantifiers of cognition at all scales, and illustrate how they qualitatively vary as a function of the properties of the cognitive process under study. We propose that each phenomenon should be approached with its own set of theoretical, methodological and analytical tools. In particular, we show that when treating cognitive processes such as thinking or reasoning, complex properties of ongoing brain activity, which can be drastically simplified when considering fast (e.g., perceptual) processes, start playing a major role, and not only characterize the temporal properties of task-related brain activity, but also determine the conditions for proper observation of the phenomena. Finally, some implications on the design of experiments, data analyses, and the choice of recording parameters are discussed. PMID:23626578

  5. Development of an Acoustic Signal Analysis Tool “Auto-F” Based on the Temperament Scale

    NASA Astrophysics Data System (ADS)

    Modegi, Toshio

    The MIDI interface is originally designed for electronic musical instruments but we consider this music-note based coding concept can be extended for general acoustic signal description. We proposed applying the MIDI technology to coding of bio-medical auscultation sound signals such as heart sounds for retrieving medical records and performing telemedicine. Then we have tried to extend our encoding targets including vocal sounds, natural sounds and electronic bio-signals such as ECG, using Generalized Harmonic Analysis method. Currently, we are trying to separate vocal sounds included in popular songs and encode both vocal sounds and background instrumental sounds into separate MIDI channels. And also, we are trying to extract articulation parameters such as MIDI pitch-bend parameters in order to reproduce natural acoustic sounds using a GM-standard MIDI tone generator. In this paper, we present an overall algorithm of our developed acoustic signal analysis tool, based on those research works, which can analyze given time-based signals on the musical temperament scale. The prominent feature of this tool is producing high-precision MIDI codes, which reproduce the similar signals as the given source signal using a GM-standard MIDI tone generator, and also providing analyzed texts in the XML format.

  6. Time delay and Doppler estimation for wideband acoustic signals in multipath environments.

    PubMed

    Jiang, Xue; Zeng, Wen-Jun; Li, Xi-Lin

    2011-08-01

    Estimation of the parameters of a multipath underwater acoustic channel is of great interest for a variety of applications. This paper proposes a high-resolution method for jointly estimating the multipath time delays, Doppler scales, and attenuation amplitudes of a time-varying acoustical channel. The proposed method formulates the estimation of channel parameters into a sparse representation problem. With the [script-l](1)-norm as the measure of sparsity, the proposed method makes use of the basis pursuit (BP) criterion to find the sparse solution. The ill-conditioning can be effectively reduced by the [script-l](1)-norm regularization. Unlike many existing methods that are only applicable to narrowband signals, the proposed method can handle both narrowband and wideband signals. Simulation results are provided to verify the performance and effectiveness of the proposed algorithm, indicating that it has a super-resolution in both delay and Doppler domain, and it is robust to noise.

  7. Multidimensional scaling between acoustic and electric stimuli in cochlear implant users with contralateral hearing

    PubMed Central

    Vermeire, Katrien; Landsberger, David M.; Schleich, Peter; Van de Heyning, Paul H.

    2013-01-01

    This study investigated the perceptual relationship between acoustic and electric stimuli presented to CI users with functional contralateral hearing. Fourteen subjects with unilateral profound deafness implanted with a MED-EL CI scaled the perceptual differences between pure tones presented to the acoustic hearing ear and electric biphasic pulse trains presented to the implanted ear. The differences were analyzed with a multidimensional scaling (MDS) analysis. Additionally, speech performance in noise was tested using sentence material presented in different spatial configurations while patients listened with both their acoustic hearing and implanted ears. Results of alternating least squares scaling (ALSCAL) analysis consistently demonstrate that a change in place of stimulation is in the same perceptual dimension as a change in acoustic frequency. However, the relative perceptual differences between the acoustic and the electric stimuli varied greatly across subjects. A degree of perceptual separation between acoustic and electric stimulation (quantified by relative dimensional weightings from an INDSCAL analysis) was hypothesized that would indicate a change in perceptual quality, but also be predictive of performance with combined acoustic and electric hearing. Perceptual separation between acoustic and electric stimuli was observed for some subjects. However, no relationship between the degree of perceptual separation and performance was found. PMID:24055624

  8. Locating Acoustic Events Based on Large-Scale Sensor Networks

    PubMed Central

    Kim, Yungeun; Ahn, Junho; Cha, Hojung

    2009-01-01

    Research on acoustic source localization is actively being conducted to enhance accuracy and coverage. However, the performance is inherently limited due to the use of expensive sensor nodes and inefficient communication methods. This paper proposes an acoustic source localization algorithm for a large area that uses low-cost sensor nodes. The proposed mechanism efficiently handles multiple acoustic sources by removing false-positive errors that arise from the different propagation ranges of radio and sound. Extensive outdoor experiments with real hardware validated that the proposed mechanism could localize four acoustic sources within a 3 m error in a 60 m by 60 m area, where conventional systems could hardly achieve similar performance. PMID:22303155

  9. Drive Rig Mufflers for Model Scale Engine Acoustic Testing

    NASA Technical Reports Server (NTRS)

    Stephens, David

    2010-01-01

    Testing of air breathing propulsion systems in the 9x15 foot wind tunnel at NASA Glenn Research Center depends on compressed air turbines for power. The drive rig turbines exhaust directly to the wind tunnel test section, and have been found to produce significant unwanted noise that reduces the quality of the acoustic measurements of the model being tested. In order to mitigate this acoustic contamination, a muffler can be attached downstream of the drive rig turbine. The modern engine designs currently being tested produce much less noise than traditional engines, and consequently a lower noise floor is required of the facility. An acoustic test of a muffler designed to mitigate this extraneous noise is presented, and a noise reduction of 8 dB between 700 Hz and 20 kHz was documented, significantly improving the quality of acoustic measurements in the facility.

  10. Shelf-Scale Mapping of Fish Distribution Using Active and Passive Acoustics

    NASA Astrophysics Data System (ADS)

    Wall, Carrie C.

    Fish sound production has been associated with courtship and spawning behavior. Acoustic recordings of fish sounds can be used to identify distribution and behavior. Passive acoustic monitoring (PAM) can record large amounts of acoustic data in a specific area for days to years. These data can be collected in remote locations under potentially unsafe seas throughout a 24-hour period providing datasets unattainable using observer-based methods. However, the instruments must withstand the caustic ocean environment and be retrieved to obtain the recorded data. This can prove difficult due to the risk of PAMs being lost, stolen or damaged, especially in highly active areas. In addition, point-source sound recordings are only one aspect of fish biogeography. Passive acoustic platforms that produce low self-generated noise, have high retrieval rates, and are equipped with a suite of environmental sensors are needed to relate patterns in fish sound production to concurrently collected oceanographic conditions on large, synoptic scales. The association of sound with reproduction further invokes the need for such non-invasive, near-real time datasets that can be used to enhance current management methods limited by survey bias, inaccurate fisher reports, and extensive delays between fisheries data collection and population assessment. Red grouper (Epinephelus morio) exhibit the distinctive behavior of digging holes and producing a unique sound during courtship. These behaviors can be used to identify red grouper distribution and potential spawning habitat over large spatial scales. The goal of this research was to provide a greater understanding of the temporal and spatial distribution of red grouper sound production and holes on the central West Florida Shelf (WFS) using active sonar and passive acoustic recorders. The technology demonstrated here establishes the necessary methods to map shelf-scale fish sound production. The results of this work could aid resource

  11. Acoustic thermometric reconstruction of a time-varying temperature profile

    NASA Astrophysics Data System (ADS)

    Anosov, A. A.; Kazanskii, A. S.; Mansfel'd, A. D.; Sharakshane, A. S.

    2016-03-01

    The time-varying temperature profiles were reconstructed in an experiment using a thermal acoustic radiation receiving array containing 14 sensors. The temperature was recovered by performing similar experiments using plasticine, as well as in vivo with a human hand. Plasticine preliminarily heated up to 36.5°C and a human hand were placed into water for 50 s at a temperature of 20°C. The core temperature of the plasticine was independently measured using thermocouples. The spatial resolution of the reconstruction in the lateral direction was determined by the distance between neighboring sensors and was equal to10 mm; the averaging time was 10 s. The error in reconstructing the core temperature determined in the experiment with plasticine was 0.5 K. The core temperature of the hand changed with time (in 50 s it decreased from 35 to 34°C) and space (the mean square deviation was 1.5 K). The experiment with the hand revealed that multichannel detection of thermal acoustic radiation using a compact 45 × 36 mm array to reconstruct the temperature profile could be performed during medical procedures.

  12. Laser Acoustic Microstructure Analysis at the Micron and Nanometer Length Scale

    SciTech Connect

    Telschow, Kenneth Louis; Hurley, David Howard

    2002-05-01

    Laser acoustic approaches to investigating the interaction of elastic waves with microstructure in materials is presented that probe both the micron and nanometer length scales. At the micron length scale, a full-field imaging approach is described that provides quantitative measurement of amplitude and phase of the out-of-plane acoustical motion at GHz frequencies. Specific lateral acoustic modes can be identified in addition to the primary thickness mode with spatial resolution sufficient to image wavelengths as small as 4.5 microns.

  13. A time domain sampling method for inverse acoustic scattering problems

    NASA Astrophysics Data System (ADS)

    Guo, Yukun; Hömberg, Dietmar; Hu, Guanghui; Li, Jingzhi; Liu, Hongyu

    2016-06-01

    This work concerns the inverse scattering problems of imaging unknown/inaccessible scatterers by transient acoustic near-field measurements. Based on the analysis of the migration method, we propose efficient and effective sampling schemes for imaging small and extended scatterers from knowledge of time-dependent scattered data due to incident impulsive point sources. Though the inverse scattering problems are known to be nonlinear and ill-posed, the proposed imaging algorithms are totally "direct" involving only integral calculations on the measurement surface. Theoretical justifications are presented and numerical experiments are conducted to demonstrate the effectiveness and robustness of our methods. In particular, the proposed static imaging functionals enhance the performance of the total focusing method (TFM) and the dynamic imaging functionals show analogous behavior to the time reversal inversion but without solving time-dependent wave equations.

  14. Application of Time Reversed Acoustics for Seismic Source Characterization

    NASA Astrophysics Data System (ADS)

    Lu, R.; Toksöz, M.

    2005-05-01

    Traditionally an earthquake is located and the source mechanism is determined by using P and S phases. This uses only a limited portion of the information contained in a seismogram. A large part of the information carried by the waveform is not used. In this study we investigate the applicability of the Time Reversed Acoustics (TRA) technique, and thus the whole waveform of the recorded signal, for earthquake locations and source characterization. The basic concept involved in TRA is the fundamental symmetry of time reversal invariance. Injecting the recorded signal, with time running backwards, can focus the wave field to the source. TRA has emerged as an important technique in acoustics with applications to medicine, underwater sound, and many other disciplines. Numerical simulations show that the TRA technique can successfully locate a seismic source inside a layered earth model and can also recover the source time function. Finite difference modeling results show that TRA can determine the fault dip, rupture direction, and rupture length. The method is especially advantageous when data are available only from a sparse station network. Full seismograms contain source information from both waves radiated along the source-station ray path and from waves that radiated in all other directions but scattered toward the receivers. Application of the TRA technique to seismic source characterization requires the Green's function, which can be obtained in two ways. If the earth structure is known then the Green's function can be calculated numerically. To improve the efficiency, the method of constructing a medium response library is developed. This improves computation time significantly. The second approach uses small events (e.g., aftershocks) as an empirical Green's function. The performance of the TRA technique is demonstrated with data from real earthquakes.

  15. Validation and Simulation of ARES I Scale Model Acoustic Test -1- Pathfinder Development

    NASA Technical Reports Server (NTRS)

    Putnam, G. C.

    2011-01-01

    The Ares I Scale Model Acoustics Test (ASMAT) is a series of live-fire tests of scaled rocket motors meant to simulate the conditions of the Ares I launch configuration. These tests have provided a well documented set of high fidelity measurements useful for validation including data taken over a range of test conditions and containing phenomena like Ignition Over-Pressure and water suppression of acoustics. To take advantage of this data, a digital representation of the ASMAT test setup has been constructed and test firings of the motor have been simulated using the Loci/CHEM computational fluid dynamics software. Within this first of a series of papers, results from ASMAT simulations with the rocket in a held down configuration and without water suppression have then been compared to acoustic data collected from similar live-fire tests to assess the accuracy of the simulations. Detailed evaluations of the mesh features, mesh length scales relative to acoustic signals, Courant-Friedrichs-Lewy numbers, and spatial residual sources have been performed to support this assessment. Results of acoustic comparisons have shown good correlation with the amplitude and temporal shape of pressure features and reasonable spectral accuracy up to approximately 1000 Hz. Major plume and acoustic features have been well captured including the plume shock structure, the igniter pulse transient, and the ignition overpressure. Finally, acoustic propagation patterns illustrated a previously unconsidered issue of tower placement inline with the high intensity overpressure propagation path.

  16. Advantages of time reversal acoustic focusing system in biomedical applications

    NASA Astrophysics Data System (ADS)

    Sutin, Alexander; Sarvazyan, Armen

    2005-09-01

    The development and biomedical applications of time reversal acoustics (TRA) systems for focusing and manipulating ultrasound beams are reviewed. The TRA focusing system (TRA FS) is capable to deliver ultrasound energy to the chosen region in highly inhomogeneous medium (including soft tissues and bones) with focusing efficacy hardly achievable using conventional phased array transmitters. TRA FS is able to focus and stir ultrasound beams in a 3-D volume using just a few piezoceramic transducers glued to the facets an aluminum block. Another advantage of TRA FS is its ability to produce pulses with arbitrary waveforms in a wide frequency band. A custom-designed compact multichannel TRA system operating in a wide frequency range from 0.01 to 10 MHz has been developed. Measurements of TRA field structure were conducted in a large variety of inhomogeneous tissue phantoms and ex vivo bones and soft tissues. Principles of TRA focusing optimization based on acoustical properties of the resonator material, parameters of the sonicated medium, and the coupling of the TRA resonator with the medium were developed and applied in the tested TRA systems. [Work was supported by NIH.

  17. Time-Accurate Simulations and Acoustic Analysis of Slat Free-Shear-Layer. Part 2

    NASA Technical Reports Server (NTRS)

    Khorrami, Mehdi R.; Singer, Bart A.; Lockard, David P.

    2002-01-01

    Unsteady computational simulations of a multi-element, high-lift configuration are performed. Emphasis is placed on accurate spatiotemporal resolution of the free shear layer in the slat-cove region. The excessive dissipative effects of the turbulence model, so prevalent in previous simulations, are circumvented by switching off the turbulence-production term in the slat cove region. The justifications and physical arguments for taking such a step are explained in detail. The removal of this excess damping allows the shear layer to amplify large-scale structures, to achieve a proper non-linear saturation state, and to permit vortex merging. The large-scale disturbances are self-excited, and unlike our prior fully turbulent simulations, no external forcing of the shear layer is required. To obtain the farfield acoustics, the Ffowcs Williams and Hawkings equation is evaluated numerically using the simulated time-accurate flow data. The present comparison between the computed and measured farfield acoustic spectra shows much better agreement for the amplitude and frequency content than past calculations. The effect of the angle-of-attack on the slat's flow features radiated acoustic field are also simulated presented.

  18. Fluid displacement fronts in porous media: pore scale interfacial jumps, pressure bursts and acoustic emissions

    NASA Astrophysics Data System (ADS)

    Moebius, Franziska; Or, Dani

    2014-05-01

    The macroscopically smooth and regular motion of fluid fronts in porous media is composed of numerous rapid pore-scale interfacial jumps and pressure bursts that involve intense interfacial energy release in the form of acoustic emissions. The characteristics of these pore scale events affect residual phase entrapment and transport properties behind the front. We present experimental studies using acoustic emission technique (AE), rapid imaging, and liquid pressure measurements to characterize these processes during drainage and imbibition in simple porous media. Imbibition and drainage produce different AE signatures (AE amplitudes obey a power law). For rapid drainage, AE signals persist long after cessation of front motion reflecting fluid redistribution and interfacial relaxation. Imaging revealed that the velocity of interfacial jumps often exceeds front velocity by more than 50 fold and is highly inertial component (Re>1000). Pore invasion volumes reduced deduced from pressure fluctuations waiting times (for constant withdrawal rates) show remarkable agreement with geometrically-deduced pore volumes. Discrepancies between invaded volumes and geometrical pores increase with increasing capillary numbers due to constraints on evacuation opportunity times and simultaneous invasion events. A mechanistic model for interfacial motions in a pore-throat network was developed to investigate interfacial dynamics focusing on the role of inertia. Results suggest that while pore scale dynamics were sensitive to variations in pore geometry and boundary conditions, inertia exerted only a minor effect on phase entrapment. The study on pore scale invasion events paints a complex picture of rapid and inertial motions and provides new insights on mechanisms at displacement fronts that are essential for improved macroscopic description of multiphase flows in porous media.

  19. Acoustic Performance of Drive Rig Mufflers for Model Scale Engine Testing

    NASA Technical Reports Server (NTRS)

    Stephens, David, B.

    2013-01-01

    Aircraft engine component testing at the NASA Glenn Research Center (GRC) includes acoustic testing of scale model fans and propellers in the 9- by15-Foot Low Speed Wind Tunnel (LSWT). This testing utilizes air driven turbines to deliver power to the article being studied. These air turbines exhaust directly downstream of the model in the wind tunnel test section and have been found to produce significant unwanted noise that reduces the quality of the acoustic measurements of the engine model being tested. This report describes an acoustic test of a muffler designed to mitigate the extraneous turbine noise. The muffler was found to provide acoustic attenuation of at least 8 dB between 700 Hz and 20 kHz which significantly improves the quality of acoustic measurements in the facility.

  20. Acoustic Treatment Design Scaling Methods. Volume 3; Test Plans, Hardware, Results, and Evaluation

    NASA Technical Reports Server (NTRS)

    Yu, J.; Kwan, H. W.; Echternach, D. K.; Kraft, R. E.; Syed, A. A.

    1999-01-01

    The ability to design, build, and test miniaturized acoustic treatment panels on scale-model fan rigs representative of the full-scale engine provides not only a cost-savings, but an opportunity to optimize the treatment by allowing tests of different designs. To be able to use scale model treatment as a full-scale design tool, it is necessary that the designer be able to reliably translate the scale model design and performance to an equivalent full-scale design. The primary objective of the study presented in this volume of the final report was to conduct laboratory tests to evaluate liner acoustic properties and validate advanced treatment impedance models. These laboratory tests include DC flow resistance measurements, normal incidence impedance measurements, DC flow and impedance measurements in the presence of grazing flow, and in-duct liner attenuation as well as modal measurements. Test panels were fabricated at three different scale factors (i.e., full-scale, half-scale, and one-fifth scale) to support laboratory acoustic testing. The panel configurations include single-degree-of-freedom (SDOF) perforated sandwich panels, SDOF linear (wire mesh) liners, and double-degree-of-freedom (DDOF) linear acoustic panels.

  1. Taming the Exceptional Points of Parity-Time Symmetric Acoustics

    NASA Astrophysics Data System (ADS)

    Dubois, Marc; Shi, Chengzhi; Chen, Yun; Cheng, Lei; Ramezani, Hamidreza; Wang, Yuan; Zhang, Xiang

    Parity-time (PT) symmetric concept and development lead to a wide range of applications including coherent perfect absorbers, single mode lasers, unidirectional cloaking and sensing, and optical isolators. These new applications and devices emerge from the existence of a phase transition in PT symmetric complex-valued potential obtained by balancing gain and loss materials. However, the systematic extension of such devices is adjourned by the key challenge in the management of the complex scattering process within the structure in order to engineer PT phase and exceptional points. Here, based on active acoustic elements, we experimentally demonstrate the simultaneous control of complex-valued potentials and multiple interference inside the structure at any given frequency. This method broadens the scope of applications for PT symmetric devices in many fields including optics, microwaves, electronics, which are crucial for sensing, imaging, cloaking, lasing, absorbing, etc.

  2. Acoustic Survey of a 3/8-Scale Automotive Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Booth, Earl R., Jr.; Romberg, Gary; Hansen, Larry; Lutz, Ron

    1996-01-01

    An acoustic survey that consists of insertion loss and flow noise measurements was conducted at key locations around the circuit of a 3/8-scale automotive acoustic wind tunnel. Descriptions of the test, the instrumentation, and the wind tunnel facility are included in the current report, along with data obtained in the test in the form of 1/3-octave-band insertion loss and narrowband flow noise spectral data.

  3. A Study of Acoustic Reflections in Full-Scale Rotor Low Frequency Noise Measurements Acquired in Wind Tunnels

    NASA Technical Reports Server (NTRS)

    Barbely, Natasha L.; Sim, Ben W.; Kitaplioglu, Cahit; Goulding, Pat, II

    2010-01-01

    Difficulties in obtaining full-scale rotor low frequency noise measurements in wind tunnels are addressed via residual sound reflections due to non-ideal anechoic wall treatments. Examples illustrated with the Boeing-SMART rotor test in the National Full-Scale Aerodynamics Complex (NFAC) 40- by 80-Foot Wind Tunnel facility demonstrated that these reflections introduced distortions in the measured acoustic time histories that are not representative of free-field rotor noise radiation. A simplified reflection analysis, based on the method of images, is used to examine the sound measurement quality in such "less-than-anechoic" environment. Predictions of reflection-adjusted acoustic time histories are qualitatively shown to account for some of the spurious fluctuations observed in wind tunnel noise measurements

  4. Dynamic acoustics for the STAR-100. [computer algorithms for time dependent sound waves in jet

    NASA Technical Reports Server (NTRS)

    Bayliss, A.; Turkel, E.

    1979-01-01

    An algorithm is described to compute time dependent acoustic waves in a jet. The method differs from previous methods in that no harmonic time dependence is assumed, thus permitting the study of nonharmonic acoustical behavior. Large grids are required to resolve the acoustic waves. Since the problem is nonstiff, explicit high order schemes can be used. These have been adapted to the STAR-100 with great efficiencies and permitted the efficient solution of problems which would not be feasible on a scalar machine.

  5. Statistical Modeling of Large-Scale Signal Path Loss in Underwater Acoustic Networks

    PubMed Central

    Llor, Jesús; Malumbres, Manuel Perez

    2013-01-01

    In an underwater acoustic channel, the propagation conditions are known to vary in time, causing the deviation of the received signal strength from the nominal value predicted by a deterministic propagation model. To facilitate a large-scale system design in such conditions (e.g., power allocation), we have developed a statistical propagation model in which the transmission loss is treated as a random variable. By applying repetitive computation to the acoustic field, using ray tracing for a set of varying environmental conditions (surface height, wave activity, small node displacements around nominal locations, etc.), an ensemble of transmission losses is compiled and later used to infer the statistical model parameters. A reasonable agreement is found with log-normal distribution, whose mean obeys a log-distance increases, and whose variance appears to be constant for a certain range of inter-node distances in a given deployment location. The statistical model is deemed useful for higher-level system planning, where simulation is needed to assess the performance of candidate network protocols under various resource allocation policies, i.e., to determine the transmit power and bandwidth allocation necessary to achieve a desired level of performance (connectivity, throughput, reliability, etc.). PMID:23396190

  6. Imaging of Acoustically Coupled Oscillations Due to Flow Past a Shallow Cavity: Effect of Cavity Length Scale

    SciTech Connect

    P. Oshkai; M. Geveci; D. Rockwell; M. Pollack

    2002-12-12

    Flow-acoustic interactions due to fully turbulent inflow past a shallow axisymmetric cavity mounted in a pipe are investigated using a technique of high-image-density particle image velocimetry in conjunction with unsteady pressure measurements. This imaging leads to patterns of velocity, vorticity, streamline topology, and hydrodynamic contributions to the acoustic power integral. Global instantaneous images, as well as time-averaged images, are evaluated to provide insight into the flow physics during tone generation. Emphasis is on the manner in which the streamwise length scale of the cavity alters the major features of the flow structure. These image-based approaches allow identification of regions of the unsteady shear layer that contribute to the instantaneous hydrodynamic component of the acoustic power, which is necessary to maintain a flow tone. In addition, combined image analysis and pressure measurements allow categorization of the instantaneous flow patterns that are associated with types of time traces and spectra of the fluctuating pressure. In contrast to consideration based solely on pressure spectra, it is demonstrated that locked-on tones may actually exhibit intermittent, non-phase-locked images, apparently due to low damping of the acoustic resonator. Locked-on flow tones (without modulation or intermittency), locked-on flow tones with modulation, and non-locked-on oscillations with short-term, highly coherent fluctuations are defined and represented by selected cases. Depending on which of,these regimes occur, the time-averaged Q (quality)-factor and the dimensionless peak pressure are substantially altered.

  7. Control of Thermo-Acoustics Instabilities: The Multi-Scale Extended Kalman Approach

    NASA Technical Reports Server (NTRS)

    Le, Dzu K.; DeLaat, John C.; Chang, Clarence T.

    2003-01-01

    "Multi-Scale Extended Kalman" (MSEK) is a novel model-based control approach recently found to be effective for suppressing combustion instabilities in gas turbines. A control law formulated in this approach for fuel modulation demonstrated steady suppression of a high-frequency combustion instability (less than 500Hz) in a liquid-fuel combustion test rig under engine-realistic conditions. To make-up for severe transport-delays on control effect, the MSEK controller combines a wavelet -like Multi-Scale analysis and an Extended Kalman Observer to predict the thermo-acoustic states of combustion pressure perturbations. The commanded fuel modulation is composed of a damper action based on the predicted states, and a tones suppression action based on the Multi-Scale estimation of thermal excitations and other transient disturbances. The controller performs automatic adjustments of the gain and phase of these actions to minimize the Time-Scale Averaged Variances of the pressures inside the combustion zone and upstream of the injector. The successful demonstration of Active Combustion Control with this MSEK controller completed an important NASA milestone for the current research in advanced combustion technologies.

  8. Advances in time-scale algorithms

    NASA Technical Reports Server (NTRS)

    Stein, S. R.

    1993-01-01

    The term clock is usually used to refer to a device that counts a nearly periodic signal. A group of clocks, called an ensemble, is often used for time keeping in mission critical applications that cannot tolerate loss of time due to the failure of a single clock. The time generated by the ensemble of clocks is called a time scale. The question arises how to combine the times of the individual clocks to form the time scale. One might naively be tempted to suggest the expedient of averaging the times of the individual clocks, but a simple thought experiment demonstrates the inadequacy of this approach. Suppose a time scale is composed of two noiseless clocks having equal and opposite frequencies. The mean time scale has zero frequency. However if either clock fails, the time-scale frequency immediately changes to the frequency of the remaining clock. This performance is generally unacceptable and simple mean time scales are not used. First, previous time-scale developments are reviewed and then some new methods that result in enhanced performance are presented. The historical perspective is based upon several time scales: the AT1 and TA time scales of the National Institute of Standards and Technology (NIST), the A.1(MEAN) time scale of the US Naval observatory (USNO), the TAI time scale of the Bureau International des Poids et Measures (BIPM), and the KAS-1 time scale of the Naval Research laboratory (NRL). The new method was incorporated in the KAS-2 time scale recently developed by Timing Solutions Corporation. The goal is to present time-scale concepts in a nonmathematical form with as few equations as possible. Many other papers and texts discuss the details of the optimal estimation techniques that may be used to implement these concepts.

  9. Comparison study of time reversal OFDM acoustic communication with vector and scalar sensors

    NASA Astrophysics Data System (ADS)

    Wang, Zhongkang; Zhang, Hongtao; Xie, Zhe

    2012-11-01

    To compare the performance of time reversal orthogonal frequency division multiplexing (OFDM) acoustic communication on vector and scalar sensors, the vector and scalar acoustic fields were modeled. Time reversal OFDM acoustic communication was then simulated for each sensor type. These results are compared with data from the CAPEx'09 experiment. The abilityof particle velocity channels to achieve reliable acoustic communication, as predicted by the model, is confirmed with the experiment data. Experimental results show that vector receivers can reduce the required array size, in comparisonto hydrophone arrays, whileproviding comparable communication performance.

  10. Real-time vehicle noise cancellation techniques for gunshot acoustics

    NASA Astrophysics Data System (ADS)

    Ramos, Antonio L. L.; Holm, Sverre; Gudvangen, Sigmund; Otterlei, Ragnvald

    2012-06-01

    Acoustical sniper positioning systems rely on the detection and direction-of-arrival (DOA) estimation of the shockwave and the muzzle blast in order to provide an estimate of a potential snipers location. Field tests have shown that detecting and estimating the DOA of the muzzle blast is a rather difficult task in the presence of background noise sources, e.g., vehicle noise, especially in long range detection and absorbing terrains. In our previous work presented in the 2011 edition of this conference we highlight the importance of improving the SNR of the gunshot signals prior to the detection and recognition stages, aiming at lowering the false alarm and miss-detection rates and, thereby, increasing the reliability of the system. This paper reports on real-time noise cancellation techniques, like Spectral Subtraction and Adaptive Filtering, applied to gunshot signals. Our model assumes the background noise as being short-time stationary and uncorrelated to the impulsive gunshot signals. In practice, relatively long periods without signal occur and can be used to estimate the noise spectrum and its first and second order statistics as required in the spectral subtraction and adaptive filtering techniques, respectively. The results presented in this work are supported with extensive simulations based on real data.

  11. Perception of acoustically presented time series with varied intervals.

    PubMed

    Wackermann, Jiří; Pacer, Jakob; Wittmann, Marc

    2014-03-01

    Data from three experiments on serial perception of temporal intervals in the supra-second domain are reported. Sequences of short acoustic signals ("pips") separated by periods of silence were presented to the observers. Two types of time series, geometric or alternating, were used, where the modulus 1+δ of the inter-pip series and the base duration Tb (range from 1.1 to 6s) were varied as independent parameters. The observers had to judge whether the series were accelerating, decelerating, or uniform (3 paradigm), or to distinguish regular from irregular sequences (2 paradigm). "Intervals of subjective uniformity" (isus) were obtained by fitting Gaussian psychometric functions to individual subjects' responses. Progression towards longer base durations (Tb=4.4 or 6s) shifts the isus towards negative δs, i.e., accelerating series. This finding is compatible with the phenomenon of "subjective shortening" of past temporal intervals, which is naturally accounted for by the lossy integration model of internal time representation. The opposite effect observed for short durations (Tb=1.1 or 1.5s) remains unexplained by the lossy integration model, and presents a challenge for further research.

  12. Acoustics

    NASA Technical Reports Server (NTRS)

    Goodman, Jerry R.; Grosveld, Ferdinand

    2007-01-01

    The acoustics environment in space operations is important to maintain at manageable levels so that the crewperson can remain safe, functional, effective, and reasonably comfortable. High acoustic levels can produce temporary or permanent hearing loss, or cause other physiological symptoms such as auditory pain, headaches, discomfort, strain in the vocal cords, or fatigue. Noise is defined as undesirable sound. Excessive noise may result in psychological effects such as irritability, inability to concentrate, decrease in productivity, annoyance, errors in judgment, and distraction. A noisy environment can also result in the inability to sleep, or sleep well. Elevated noise levels can affect the ability to communicate, understand what is being said, hear what is going on in the environment, degrade crew performance and operations, and create habitability concerns. Superfluous noise emissions can also create the inability to hear alarms or other important auditory cues such as an equipment malfunctioning. Recent space flight experience, evaluations of the requirements in crew habitable areas, and lessons learned (Goodman 2003; Allen and Goodman 2003; Pilkinton 2003; Grosveld et al. 2003) show the importance of maintaining an acceptable acoustics environment. This is best accomplished by having a high-quality set of limits/requirements early in the program, the "designing in" of acoustics in the development of hardware and systems, and by monitoring, testing and verifying the levels to ensure that they are acceptable.

  13. Hover and forward flight acoustics and performance of a small-scale helicopter rotor system

    NASA Technical Reports Server (NTRS)

    Kitaplioglu, C.; Shinoda, P.

    1985-01-01

    A 2.1-m diam., 1/6-scale model helicopter main rotor was tested in hover in the test section of the NASA Ames 40- by 80- Foot Wind Tunnel. Subsequently, it was tested in forward flight in the Ames 7- by 10-Foot Wind Tunnel. The primary objective of the tests was to obtain performance and noise data on a small-scale rotor at various thrust coefficients, tip Mach numbers, and, in the later case, various advance ratios, for comparisons with similar existing data on full-scale helicopter rotors. This comparison yielded a preliminary evaluation of the scaling of helicopter rotor performance and acoustic radiation in hover and in forward flight. Correlation between model-scale and full-scale performance and acoustics was quite good in hover. In forward flight, however, there were significant differences in both performance and acoustic characteristics. A secondary objective was to contribute to a data base that will permit the estimation of facility effects on acoustic testing.

  14. Staggered-grid finite-difference acoustic modeling with the Time-Domain Atmospheric Acoustic Propagation Suite (TDAAPS).

    SciTech Connect

    Aldridge, David Franklin; Collier, Sandra L.; Marlin, David H.; Ostashev, Vladimir E.; Symons, Neill Phillip; Wilson, D. Keith

    2005-05-01

    This document is intended to serve as a users guide for the time-domain atmospheric acoustic propagation suite (TDAAPS) program developed as part of the Department of Defense High-Performance Modernization Office (HPCMP) Common High-Performance Computing Scalable Software Initiative (CHSSI). TDAAPS performs staggered-grid finite-difference modeling of the acoustic velocity-pressure system with the incorporation of spatially inhomogeneous winds. Wherever practical the control structure of the codes are written in C++ using an object oriented design. Sections of code where a large number of calculations are required are written in C or F77 in order to enable better compiler optimization of these sections. The TDAAPS program conforms to a UNIX style calling interface. Most of the actions of the codes are controlled by adding flags to the invoking command line. This document presents a large number of examples and provides new users with the necessary background to perform acoustic modeling with TDAAPS.

  15. Acoustically coupled gas bubbles in fluids: time-domain phenomena.

    PubMed

    Feuillade, C

    2001-06-01

    In previous work [C. Feuillade, J. Acoust. Soc. Am. 98, 1178-1190 (1995)] a coupled oscillator formalism was introduced for describing collective resonances, scattering, and superresonances, of multiple gas bubbles in a fluid. Subsequently, time-domain investigations of the impulse response of coupled systems have disclosed the exact conditions which determine whether the ensemble scattering behavior should be described using: either (a), a multiple scattering; or (b), a self-consistent methodology. The determining factor is the Q of the individual scatterers, and their typical spatial separations in the medium. For highly damped or sparse systems, e.g., scattering from loose schools of swimbladder fish, or from a gassy seabed containing entrained bubbles, the multiple scatter counting approach should be applicable. For more strongly coupled systems, e.g., a dense cloud of resonating bubbles in the water column, energy exchange may be due primarily to radiative cycling rather than scattering, in which case a self-consistent approach is indicated. The result has implications for both volume and bottom scattering applications.

  16. Broadband time reversed acoustic focusing and steering system

    NASA Astrophysics Data System (ADS)

    Sutin, Alexander; Sarvazyan, Armen; Montaldo, Gabriel; Palacio, Delphine; Bercoff, Jeremy; Tanter, Mickael; Fink, Mathias

    2001-05-01

    We present results of experimental testing and theoretical modeling of a time reversal acoustic (TRA) focusing system based on a multifaceted aluminum resonator with 15 piezoceramic transducers glued to the resonator facets. One of the facets of the resonator, a pentagon with characteristic dimension of about 30 mm, was submerged into a water tank and served as a virtual phased array which provided ultrasound focusing and beam steering in a wide frequency band (0.7-3 MHz). Ultrasonic pulses with different carrier frequencies and various complex waveforms were focused; the focal length was varied in the range of 10-55 mm and the focused beam was steered in a range of angles of +/-60 deg. The amplitude of the signal in the focal region reached 40 MPa. A theoretical model was based on an assumption that the radiating part of the resonator works as a phase conjugation screen for a spherical wave radiated from the focal point. Theoretical dependencies of the field structure on the position of the focus point and ultrasound frequency are in a good agreement with experimental results. TRA based focusing of ultrasound has numerous applications in medical diagnostics, surgery and therapy. [Work supported by NIH grant.

  17. Coded acoustic wave sensors and system using time diversity

    NASA Technical Reports Server (NTRS)

    Solie, Leland P. (Inventor); Hines, Jacqueline H. (Inventor)

    2012-01-01

    An apparatus and method for distinguishing between sensors that are to be wirelessly detected is provided. An interrogator device uses different, distinct time delays in the sensing signals when interrogating the sensors. The sensors are provided with different distinct pedestal delays. Sensors that have the same pedestal delay as the delay selected by the interrogator are detected by the interrogator whereas other sensors with different pedestal delays are not sensed. Multiple sensors with a given pedestal delay are provided with different codes so as to be distinguished from one another by the interrogator. The interrogator uses a signal that is transmitted to the sensor and returned by the sensor for combination and integration with the reference signal that has been processed by a function. The sensor may be a surface acoustic wave device having a differential impulse response with a power spectral density consisting of lobes. The power spectral density of the differential response is used to determine the value of the sensed parameter or parameters.

  18. Stability of Rasch Scales over Time

    ERIC Educational Resources Information Center

    Taylor, Catherine S.; Lee, Yoonsun

    2010-01-01

    Item response theory (IRT) methods are generally used to create score scales for large-scale tests. Research has shown that IRT scales are stable across groups and over time. Most studies have focused on items that are dichotomously scored. Now Rasch and other IRT models are used to create scales for tests that include polytomously scored items.…

  19. Use of large-scale acoustic monitoring to assess anthropogenic pressures on Orthoptera communities.

    PubMed

    Penone, Caterina; Le Viol, Isabelle; Pellissier, Vincent; Julien, Jean-François; Bas, Yves; Kerbiriou, Christian

    2013-10-01

    Biodiversity monitoring at large spatial and temporal scales is greatly needed in the context of global changes. Although insects are a species-rich group and are important for ecosystem functioning, they have been largely neglected in conservation studies and policies, mainly due to technical and methodological constraints. Sound detection, a nondestructive method, is easily applied within a citizen-science framework and could be an interesting solution for insect monitoring. However, it has not yet been tested at a large scale. We assessed the value of a citizen-science program in which Orthoptera species (Tettigoniidae) were monitored acoustically along roads. We used Bayesian model-averaging analyses to test whether we could detect widely known patterns of anthropogenic effects on insects, such as the negative effects of urbanization or intensive agriculture on Orthoptera populations and communities. We also examined site-abundance correlations between years and estimated the biases in species detection to evaluate and improve the protocol. Urbanization and intensive agricultural landscapes negatively affected Orthoptera species richness, diversity, and abundance. This finding is consistent with results of previous studies of Orthoptera, vertebrates, carabids, and butterflies. The average mass of communities decreased as urbanization increased. The dispersal ability of communities increased as the percentage of agricultural land and, to a lesser extent, urban area increased. Despite changes in abundances over time, we found significant correlations between yearly abundances. We identified biases linked to the protocol (e.g., car speed or temperature) that can be accounted for ease in analyses. We argue that acoustic monitoring of Orthoptera along roads offers several advantages for assessing Orthoptera biodiversity at large spatial and temporal extents, particularly in a citizen science framework.

  20. Use of large-scale acoustic monitoring to assess anthropogenic pressures on Orthoptera communities.

    PubMed

    Penone, Caterina; Le Viol, Isabelle; Pellissier, Vincent; Julien, Jean-François; Bas, Yves; Kerbiriou, Christian

    2013-10-01

    Biodiversity monitoring at large spatial and temporal scales is greatly needed in the context of global changes. Although insects are a species-rich group and are important for ecosystem functioning, they have been largely neglected in conservation studies and policies, mainly due to technical and methodological constraints. Sound detection, a nondestructive method, is easily applied within a citizen-science framework and could be an interesting solution for insect monitoring. However, it has not yet been tested at a large scale. We assessed the value of a citizen-science program in which Orthoptera species (Tettigoniidae) were monitored acoustically along roads. We used Bayesian model-averaging analyses to test whether we could detect widely known patterns of anthropogenic effects on insects, such as the negative effects of urbanization or intensive agriculture on Orthoptera populations and communities. We also examined site-abundance correlations between years and estimated the biases in species detection to evaluate and improve the protocol. Urbanization and intensive agricultural landscapes negatively affected Orthoptera species richness, diversity, and abundance. This finding is consistent with results of previous studies of Orthoptera, vertebrates, carabids, and butterflies. The average mass of communities decreased as urbanization increased. The dispersal ability of communities increased as the percentage of agricultural land and, to a lesser extent, urban area increased. Despite changes in abundances over time, we found significant correlations between yearly abundances. We identified biases linked to the protocol (e.g., car speed or temperature) that can be accounted for ease in analyses. We argue that acoustic monitoring of Orthoptera along roads offers several advantages for assessing Orthoptera biodiversity at large spatial and temporal extents, particularly in a citizen science framework. PMID:23692213

  1. Acoustic analysis of musical intervals in modern Byzantine Chant scales.

    PubMed

    Delviniotis, Dimitrios; Kouroupetroglou, Georgios; Theodoridis, Sergios

    2008-10-01

    The goal of this work is to investigate experimentally the music intervals in modern Byzantine Chant performance and to compare the obtained results with the equal temperament scales introduced by the Patriarchal Music Committee (PMC). Current measurements resulted from pressure and electroglottographic recordings of 13 famous chanters singing scales of all the music genera. The scales' microintervals were derived after pitch detection based on autocorrelation, cepstrum, and harmonic product spectrum analysis. The microintervallic differences between the experimental values and the PMC's ones were statistically analyzed indicating large deviation of the mean values and the standard deviations. Significant interaction effects were identified among some genera and between ascending and descending scale directions.

  2. Extending acoustic data measured with small-scale supersonic model jets to practical aircraft exhaust jets

    NASA Astrophysics Data System (ADS)

    Kuo, Ching-Wen

    2010-06-01

    Modern military aircraft jet engines are designed with variable geometry nozzles to provide optimum thrust in different operating conditions within the flight envelope. However, the acoustic measurements for such nozzles are scarce, due to the cost involved in making full-scale measurements and the lack of details about the exact geometry of these nozzles. Thus the present effort at The Pennsylvania State University and the NASA Glenn Research Center, in partnership with GE Aviation, is aiming to study and characterize the acoustic field produced by supersonic jets issuing from converging-diverging military style nozzles. An equally important objective is to develop a scaling methodology for using data obtained from small- and moderate-scale experiments which exhibits the independence of the jet sizes to the measured noise levels. The experimental results presented in this thesis have shown reasonable agreement between small-scale and moderate-scale jet acoustic data, as well as between heated jets and heat-simulated ones. As the scaling methodology is validated, it will be extended to using acoustic data measured with small-scale supersonic model jets to the prediction of the most important components of full-scale engine noise. When comparing the measured acoustic spectra with a microphone array set at different radial locations, the characteristics of the jet noise source distribution may induce subtle inaccuracies, depending on the conditions of jet operation. A close look is taken at the details of the noise generation region in order to better understand the mismatch between spectra measured at various acoustic field radial locations. A processing methodology was developed to correct the effect of the noise source distribution and efficiently compare near-field and far-field spectra with unprecedented accuracy. This technique then demonstrates that the measured noise levels in the physically restricted space of an anechoic chamber can be appropriately

  3. Sources and Radiation Patterns of Volcano-Acoustic Signals Investigated with Field-Scale Chemical Explosions

    NASA Astrophysics Data System (ADS)

    Bowman, D. C.; Lees, J. M.; Taddeucci, J.; Graettinger, A. H.; Sonder, I.; Valentine, G.

    2014-12-01

    We investigate the processes that give rise to complex acoustic signals during volcanic blasts by monitoring buried chemical explosions with infrasound and audio range microphones, strong motion sensors, and high speed imagery. Acoustic waveforms vary with scaled depth of burial (SDOB, units in meters per cube root of joules), ranging from high amplitude, impulsive, gas expansion dominated signals at low SDOB to low amplitude, longer duration, ground motion dominated signals at high SDOB. Typically, the sudden upward acceleration of the substrate above the blast produces the first acoustic arrival, followed by a second pulse due to the eruption of pressurized gas at the surface. Occasionally, a third overpressure occurs when displaced material decelerates upon impact with the ground. The transition between ground motion dominated and gas release dominated acoustics ranges between 0.0038-0.0018 SDOB, respectively. For example, one explosion registering an SDOB=0.0031 produced two overpressure pulses of approximately equal amplitude, one due to ground motion, the other to gas release. Recorded volcano infrasound has also identified distinct ground motion and gas release components during explosions at Sakurajima, Santiaguito, and Karymsky volcanoes. Our results indicate that infrasound records may provide a proxy for the depth and energy of these explosions. Furthermore, while magma fragmentation models indicate the possibility of several explosions during a single vulcanian eruption (Alidibirov, Bull Volc., 1994), our results suggest that a single explosion can also produce complex acoustic signals. Thus acoustic records alone cannot be used to distinguish between single explosions and multiple closely-spaced blasts at volcanoes. Results from a series of lateral blasts during the 2014 field experiment further indicates whether vent geometry can produce directional acoustic radiation patterns like those observed at Tungarahua volcano (Kim et al., GJI, 2012). Beside

  4. Thermal lens measurements in liquids on a submicrosecond time scale

    SciTech Connect

    Isak, S. J.; Komorowski, S. J.; Merrow, C. N.; Poston, P. E.; Eyring, E. M.

    1989-03-01

    The use of the thermal lens method is shown to be quite suitable for kinetic studies of quenching on a submicrosecond time scale. The lower limit of time resolution that can be achieved is determined by the acoustic transit time, /tau//sub /ital a//, in the medium. A thermal lens signal with a 100-ns time constant due to the quenched triplet state of benzophenone is readily measured. The thermal lens method is superior to the photoacoustic (PA) method in the breadth of the accessible time range, and in the significantly fewer measurements required to obtain accurate data, including no requirement for a reference sample; it is also less sensitive to geometrical and laser power requirements than is the PA method.

  5. Dispersive Alfven waves and Ion-acoustic Turbulence: M-I coupling at the Smallest Scales

    NASA Astrophysics Data System (ADS)

    Semeter, J. L.; Zettergren, M. D.; Diaz, M.; Stromme, A.; Nicolls, M. J.; Heinselman, C. J.

    2010-12-01

    Auroral displays exhibit coherence across multiple scales, beginning with the global auroral oval and extending down to packets of discrete arcs of <100-m width related to dispersive Alfven waves. The latter have been found to be magnetically conjugate to regions of non-thermal backscatter from the ionospheric F-region recorded by incoherent scatter radar (ISR). The phenomenological relationship between auroral morphology and ISR spectral distortions has been well established, at least in a static sense, but the theory connecting these disparate observational domains is incomplete. It is argued that considerable insight into magnetosphere-ionosphere (M-I) coupling is obtained by understanding auroral physics at these elemental scales. The purpose of this paper is twofold: (1) to provide observational evidence that not all arc-related ISR distortions fit neatly into a single category (e.g., the “Naturally Enhanced Ion-Acoustic Line” or NEIAL), and (2) to provide a critical review of candidate theoretical models to simultaneously account for the time-dependent optical and radar measurements. Evidentiary support focuses on observations of a substorm onset on 23 March 2007 (11:20 UT) by a narrow-field video-rate camera and the electronically steerable Poker Flat ISR (PFISR). Examples of ISR spectra as a function of altitude. 1: thermal backscatter, 2 and 3: enhanced backscatter conjugate to discrete aurora.

  6. Review of time scales. [Universal Time-Ephemeris Time-International Atomic Time

    NASA Technical Reports Server (NTRS)

    Guinot, B.

    1974-01-01

    The basic time scales are presented: International Atomic Time, Universal Time, and Universal Time (Coordinated). These scales must be maintained in order to satisfy specific requirements. It is shown how they are obtained and made available at a very high level of precision.

  7. Acoustic Treatment Design Scaling Methods. Volume 1; Overview, Results, and Recommendations

    NASA Technical Reports Server (NTRS)

    Kraft, R. E.; Yu, J.

    1999-01-01

    Scale model fan rigs that simulate new generation ultra-high-bypass engines at about 1/5-scale are achieving increased importance as development vehicles for the design of low-noise aircraft engines. Testing at small scale allows the tests to be performed in existing anechoic wind tunnels, which provides an accurate simulation of the important effects of aircraft forward motion on the noise generation. The ability to design, build, and test miniaturized acoustic treatment panels on scale model fan rigs representative of the fullscale engine provides not only a cost-savings, but an opportunity to optimize the treatment by allowing tests of different designs. The primary objective of this study was to develop methods that will allow scale model fan rigs to be successfully used as acoustic treatment design tools. The study focuses on finding methods to extend the upper limit of the frequency range of impedance prediction models and acoustic impedance measurement methods for subscale treatment liner designs, and confirm the predictions by correlation with measured data. This phase of the program had as a goal doubling the upper limit of impedance measurement from 6 kHz to 12 kHz. The program utilizes combined analytical and experimental methods to achieve the objectives.

  8. Reconstructed imaging of acoustic cloak using time-lapse reversal method

    NASA Astrophysics Data System (ADS)

    Zhou, Chen; Cheng, Ying; Xu, Jian-yi; Li, Bo; Liu, Xiao-jun

    2014-08-01

    We proposed and investigated a solution to the inverse acoustic cloak problem, an anti-stealth technology to make cloaks visible, using the time-lapse reversal (TLR) method. The TLR method reconstructs the image of an unknown acoustic cloak by utilizing scattered acoustic waves. Compared to previous anti-stealth methods, the TLR method can determine not only the existence of a cloak but also its exact geometric information like definite shape, size, and position. Here, we present the process for TLR reconstruction based on time reversal invariance. This technology may have potential applications in detecting various types of cloaks with different geometric parameters.

  9. Time scale in quasifission reactions

    SciTech Connect

    Back, B.B.; Paul, P.; Nestler, J.

    1995-08-01

    The quasifission process arises from the hindrance of the complete fusion process when heavy-ion beams are used. The strong dissipation in the system tends to prevent fusion and lead the system towards reseparation into two final products of similar mass reminiscent of a fission process. This dissipation slows down the mass transfer and shape transformation and allows for the emission of high energy {gamma}-rays during the process, albeit with a low probability. Giant Dipole {gamma} rays emitted during this time have a characteristic spectral shape and may thus be discerned in the presence of a background of {gamma} rays emitted from the final fission-like fragments. Since the rate of GDR {gamma} emission is very well established, the strength of this component may therefore be used to measure the timescale of the quasifission process. In this experiment we studied the reaction between 368-MeV {sup 58}Ni and a {sup 165}Ho target, where deep inelastic scattering and quasifission processes are dominant. Coincidences between fission fragments (detected in four position-sensitive avalanche detectors) and high energy {gamma} rays (measured in a 10{close_quotes} x 10{close_quotes} actively shielded NaI detector) were registered. Beams were provided by the Stony Brook Superconducting Linac. The {gamma}-ray spectrum associated with deep inelastic scattering events is well reproduced by statistical cooling of projectile and target-like fragments with close to equal initial excitation energy sharing. The y spectrum associated with quasifission events is well described by statistical emission from the fission fragments alone, with only weak evidence for GDR emission from the mono-nucleus. A 1{sigma} limit of t{sub ss} < 11 x 10{sup -21} s is obtained for the mono-nucleus lifetime, which is consistent with the lifetime obtained from quasifission fragment angular distributions. A manuscript was accepted for publication.

  10. Multiple time scale methods in tokamak magnetohydrodynamics

    SciTech Connect

    Jardin, S.C.

    1984-01-01

    Several methods are discussed for integrating the magnetohydrodynamic (MHD) equations in tokamak systems on other than the fastest time scale. The dynamical grid method for simulating ideal MHD instabilities utilizes a natural nonorthogonal time-dependent coordinate transformation based on the magnetic field lines. The coordinate transformation is chosen to be free of the fast time scale motion itself, and to yield a relatively simple scalar equation for the total pressure, P = p + B/sup 2//2..mu../sub 0/, which can be integrated implicitly to average over the fast time scale oscillations. Two methods are described for the resistive time scale. The zero-mass method uses a reduced set of two-fluid transport equations obtained by expanding in the inverse magnetic Reynolds number, and in the small ratio of perpendicular to parallel mobilities and thermal conductivities. The momentum equation becomes a constraint equation that forces the pressure and magnetic fields and currents to remain in force balance equilibrium as they evolve. The large mass method artificially scales up the ion mass and viscosity, thereby reducing the severe time scale disparity between wavelike and diffusionlike phenomena, but not changing the resistive time scale behavior. Other methods addressing the intermediate time scales are discussed.

  11. Kalman plus weights: a time scale algorithm

    NASA Technical Reports Server (NTRS)

    Greenhall, C. A.

    2001-01-01

    KPW is a time scale algorithm that combines Kalman filtering with the basic time scale equation (BTSE). A single Kalman filter that estimates all clocks simultaneously is used to generate the BTSE frequency estimates, while the BTSE weights are inversely proportional to the white FM variances of the clocks. Results from simulated clock ensembles are compared to previous simulation results from other algorithms.

  12. The effect of time-variant acoustical properties on orchestral instrument timbres

    NASA Astrophysics Data System (ADS)

    Hajda, John Michael

    1999-06-01

    The goal of this study was to investigate the timbre of orchestral instrument tones. Kendall (1986) showed that time-variant features are important to instrument categorization. But the relative salience of specific time-variant features to each other and to other acoustical parameters is not known. As part of a convergence strategy, a battery of experiments was conducted to assess the importance of global amplitude envelope, spectral frequencies, and spectral amplitudes. An omnibus identification experiment investigated the salience of global envelope partitions (attack, steady state, and decay). Valid partitioning models should identify important boundary conditions in the evolution of a signal; therefore, these models should be based on signal characteristics. With the use of such a model for sustained continuant tones, the steady-state segment was more salient than the attack. These findings contradicted previous research, which used questionable operational definitions for signal partitioning. For the next set of experiments, instrument tones were analyzed by phase vocoder, and stimuli were created by additive synthesis. Edits and combinations of edits controlled global amplitude envelope, spectral frequencies, and relative spectral amplitudes. Perceptual measurements were made with distance estimation, Verbal Attribute Magnitude Estimation, and similarity scaling. Results indicated that the primary acoustical attribute was the long-time-average spectral centroid. Spectral centroid is a measure of the center of energy distribution for spectral frequency components. Instruments with high values of spectral centroid (bowed strings) sound nasal while instruments with low spectral centroid (flute, clarinet) sound not nasal. The secondary acoustical attribute was spectral amplitude time variance. Predictably, time variance correlated highly with subject ratings of vibrato. The control of relative spectral amplitudes was more salient than the control of global

  13. Real-time observation of coherent acoustic phonons generated by an acoustically mismatched optoacoustic transducer using x-ray diffraction

    SciTech Connect

    Persson, A. I. H.; Andreasson, B. P.; Enquist, H.; Jurgilaitis, A.; Larsson, J.

    2015-11-14

    The spectrum of laser-generated acoustic phonons in indium antimonide coated with a thin nickel film has been studied using time-resolved x-ray diffraction. Strain pulses that can be considered to be built up from coherent phonons were generated in the nickel film by absorption of short laser pulses. Acoustic reflections at the Ni–InSb interface leads to interference that strongly modifies the resulting phonon spectrum. The study was performed with high momentum transfer resolution together with high time resolution. This was achieved by using a third-generation synchrotron radiation source that provided a high-brightness beam and an ultrafast x-ray streak camera to obtain a temporal resolution of 10 ps. We also carried out simulations, using commercial finite element software packages and on-line dynamic diffraction tools. Using these tools, it is possible to calculate the time-resolved x-ray reflectivity from these complicated strain shapes. The acoustic pulses have a peak strain amplitude close to 1%, and we investigated the possibility to use this device as an x-ray switch. At a bright source optimized for hard x-ray generation, the low reflectivity may be an acceptable trade-off to obtain a pulse duration that is more than an order of magnitude shorter.

  14. Time evolution of ion-acoustic double layers in an unmagnetized plasma

    SciTech Connect

    Bharuthram, R.; Momoniat, E.; Mahomed, F.; Singh, S. V.; Islam, M. K.

    2008-08-15

    Ion-acoustic double layers are examined in an unmagnetized, three-component plasma consisting of cold ions and two temperature electrons. Both of the electrons are considered to be Boltzmann distributed and the ions follow the usual fluid dynamical equations. Using the method of characteristics, a time-dependent solution for ion-acoustic double layers is obtained. Results of the findings may have important consequences for the real time satellite observations in the space environment.

  15. Imaging of Acoustically Coupled Oscillations Due to Flow Past a Shallow Cavity: Effect of Cavity Length Scale

    SciTech Connect

    P Oshkai; M Geveci; D Rockwell; M Pollack

    2004-05-24

    Flow-acoustic interactions due to fully turbulent inflow past a shallow axisymmetric cavity mounted in a pipe, which give rise to flow tones, are investigated using a technique of high-image-density particle image velocimetry in conjunction with unsteady pressure measurements. This imaging leads to patterns of velocity, vorticity, streamline topology, and hydrodynamic contributions to the acoustic power integral. Global instantaneous images, as well as time-averaged images, are evaluated to provide insight into the flow physics during tone generation. Emphasis is on the manner in which the streamwise length scale of the cavity alters the major features of the flow structure. These image-based approaches allow identification of regions of the unsteady shear layer that contribute to the instantaneous hydrodynamic component of the acoustic power, which is necessary to maintain a flow tone. In addition, combined image analysis and pressure measurements allow categorization of the instantaneous flow patterns that are associated with types of time traces and spectra of the fluctuating pressure. In contrast to consideration based solely on pressure spectra, it is demonstrated that locked-on tones may actually exhibit intermittent, non-phase-locked images, apparently due to low damping of the acoustic resonator. Locked-on flow tones (without modulation or intermittency), locked-on flow tones with modulation, and non-locked-on oscillations with short-term, highly coherent fluctuations are defined and represented by selected cases. Depending on which of these regimes occur, the time-averaged Q (quality)-factor and the dimensionless peak pressure are substantially altered.

  16. Time-dependent corona models - Scaling laws

    NASA Technical Reports Server (NTRS)

    Korevaar, P.; Martens, P. C. H.

    1989-01-01

    Scaling laws are derived for the one-dimensional time-dependent Euler equations that describe the evolution of a spherically symmetric stellar atmosphere. With these scaling laws the results of the time-dependent calculations by Korevaar (1989) obtained for one star are applicable over the whole Hertzsprung-Russell diagram and even to elliptic galaxies. The scaling is exact for stars with the same M/R-ratio and a good approximation for stars with a different M/R-ratio. The global relaxation oscillation found by Korevaar (1989) is scaled to main sequence stars, a solar coronal hole, cool giants and elliptic galaxies.

  17. Assessment at full scale of exhaust nozzle to wing size on STOL-OTW acoustic characteristics

    NASA Technical Reports Server (NTRS)

    Vonglahn, U.; Grosbeck, D.

    1979-01-01

    On the basis of static aero/acoustic data obtained at model scale, the effect of exhaust nozzle size on flyover noise is evaluated at full scale for different STOL-OTW nozzle configurations. Three types of nozzles are evaluated: a circular/deflector nozzle mounted above the wing; a slot/deflector nozzle mounted on the wing; and a slot nozzle mounted on the wing. The nozzle exhaust plane location, measured from the wing leading edge, was varied from 10 to 46 percent of the wing chord (flaps retracted). Flap angles of 20 deg (takeoff) and 60 deg (approach) are included in the study. Initially, perceived noise levels (PNL) are calculated as a function flyover distance at 152m altitude. From these plots, static EPNL values (defined as flyover relative noise levels), are obtained as functions of nozzle size for equal aerodynamic performance (lift and thrust). The acoustic benefits attributable to nozzle size relative to a given wing chord size are assessed.

  18. Time-Reversal Acoustic Focusing with Liquid Resonator for Medical Applications

    NASA Astrophysics Data System (ADS)

    Sinelnikov, Yegor D.; Sutin, Alexandre Y.; Sarvazyan, Armen P.

    2007-05-01

    Time Reversal Acoustic (TRA) focusing system based on the use of liquid filled resonators with single or few transducers is demonstrated to effectively converge acoustic energy in space and time. Because the wavelength in liquid is typically smaller than in solids, liquid based TRA focusing resonators can have smaller dimensions than solid resonators. The efficiency of liquid-based TRA focusing resonators to transmit acoustic power to soft tissues is improved by impedance matching of the acoustic transducer assembly to the surrounding liquid. Experiments were conducted to understand the properties of TRA focusing with the liquid-filled resonators and possible application of the TRA systems for biomedical applications. The factors defining the efficiency of liquid based TRA focusing resonators were explored. In media with high attenuation, the binary mode of ultrasound delivery yielded noticeably narrower focusing of ultrasound than conventional analog focusing.

  19. Modeling scale-dependent bias on the baryonic acoustic scale with the statistics of peaks of Gaussian random fields

    NASA Astrophysics Data System (ADS)

    Desjacques, Vincent; Crocce, Martin; Scoccimarro, Roman; Sheth, Ravi K.

    2010-11-01

    Models of galaxy and halo clustering commonly assume that the tracers can be treated as a continuous field locally biased with respect to the underlying mass distribution. In the peak model pioneered by Bardeen et al. [Astrophys. J. 304, 15 (1986)ASJOAB0004-637X10.1086/164143], one considers instead density maxima of the initial, Gaussian mass density field as an approximation to the formation site of virialized objects. In this paper, the peak model is extended in two ways to improve its predictive accuracy. First, we derive the two-point correlation function of initial density peaks up to second order and demonstrate that a peak-background split approach can be applied to obtain the k-independent and k-dependent peak bias factors at all orders. Second, we explore the gravitational evolution of the peak correlation function within the Zel’dovich approximation. We show that the local (Lagrangian) bias approach emerges as a special case of the peak model, in which all bias parameters are scale independent and there is no statistical velocity bias. We apply our formulas to study how the Lagrangian peak biasing, the diffusion due to large scale flows, and the mode coupling due to nonlocal interactions affect the scale dependence of bias from small separations up to the baryon acoustic oscillation (BAO) scale. For 2σ density peaks collapsing at z=0.3, our model predicts a ˜5% residual scale-dependent bias around the acoustic scale that arises mostly from first order Lagrangian peak biasing (as opposed to second order gravity mode coupling). We also search for a scale dependence of bias in the large scale autocorrelation of massive halos extracted from a very large N-body simulation provided by the MICE Collaboration. For halos with mass M≳1014M⊙/h, our measurements demonstrate a scale-dependent bias across the BAO feature which is very well reproduced by a prediction based on the peak model.

  20. Acoustics Reflections of Full-Scale Rotor Noise Measurements in NFAC 40- by 80-Foot Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Barbely, Natasha Lydia; Kitaplioglu, Cahit; Sim, Ben W.

    2012-01-01

    The objective of current research is to identify the extent of acoustic time history distortions due to wind tunnel wall reflections. Acoustic measurements from the recent full-scale Boeing-SMART rotor test (Fig. 2) will be used to illustrate the quality of noise measurement in the NFAC 40- by 80-Foot Wind Tunnel test section. Results will be compared to PSU-WOPWOP predictions obtained with and without adjustments due to sound reflections off wind tunnel walls. Present research assumes a rectangular enclosure as shown in Fig. 3a. The Method of Mirror Images7 is used to account for reflection sources and their acoustic paths by introducing mirror images of the rotor (i.e. acoustic source), at each and every wall surface, to enforce a no-flow boundary condition at the position of the physical walls (Fig. 3b). While conventional approach evaluates the "combined" noise from both the source and image rotor at a single microphone position, an alternative approach is used to simplify implementation of PSU-WOPWOP for this reflection analysis. Here, an "equivalent" microphone position is defined with respect to the source rotor for each mirror image that effectively renders the reflection analysis to be a one rotor, multiple microphones problem. This alternative approach has the advantage of allowing each individual "equivalent" microphone, representing the reflection pulse from the associated wall surface, to be adjusted by the panel absorption coefficient illustrated in Fig. 1a. Note that the presence of parallel wall surfaces requires an infinite number of mirror images (Fig. 3c) to satisfy the no-flow boundary conditions. In the present analysis, up to four mirror images (per wall surface) are accounted to achieve convergence in the predicted time histories

  1. Characteristic Time Scales of Characteristic Magmatic Processes and Systems

    NASA Astrophysics Data System (ADS)

    Marsh, B. D.

    2004-05-01

    times comes from the observed durations and rates of volcanism. There can be little doubt that the temporal styles of volcanism are the same as those of magmatism in general. Volcano repose times, periodicity, eruptive fluxes, acoustic emission structures, lava volumes, longevity, etc. must also be characteristic of pluton-dominated systems. We must therefore give up some classical concepts (e.g., instantaneous injection of crystal-free magma as an initial condition) for any plutonic/chambered system and move towards an integrated concept of magmatism. Among the host of process-related time scales, probably the three most fundamental of any magmatic system are (1) the time scale associated with crystal nucleation (J) and growth (G) (tx}=C{1(G3 J)-{1}/4; Zieg & Marsh, J. Pet. 02') along with the associated scales for mean crystal size (L) and population (N), (2) the time scale associated with conductive cooling controlled by a local length scale (d) (tc}=C{2 d2/K; K is thermal diffusivity), and (3) the time scale associated with intra-crystal diffusion (td}=C{3 L2/D; D is chemical diffusivity). It is the subtle, clever, and insightful application of time scales, dovetailed with realistic system geometry and attention paid to the analogous time scales of volcanism, that promises to reveal the true dynamic integration of magmatic systems.

  2. Finite-difference, time-domain analysis of a folded acoustic transmission line.

    PubMed

    Jackson, Charles M

    2005-03-01

    Recently designed, modern versions of renais sance woodwind instruments such as the recorder and serpent use square cross sections and a folded acoustic transmission line. Conventional microwave techniques would expect that this bend would cause unwanted reflections and impedance discontinuities. This paper analyses the folded acoustic transmission line using finite-difference, time-domain techniques and shows that the discontinuity can be compensated with by the use of a manufacturable method. PMID:15857045

  3. Nonlinear response - A time domain approach. [with applications to acoustic fatigue, spacecraft and composite materials

    NASA Technical Reports Server (NTRS)

    Vaicaitis, R.

    1986-01-01

    The present paper reviews the basic concepts of nonlinear response of panels to surface flow and acoustic pressures, simulation of random processes, time domain solutions and the Monte Carlo Method. Applications of this procedure to the orbit-on-demand space vehicles, acoustic fatigue and composite materials are discussed. Numerical examples are included for a variety of nonlinear problems to illustrate the applicability of this method.

  4. Acoustic and Aero-Mixing Experimental Results for Fluid Shield Scale Model Nozzles

    NASA Technical Reports Server (NTRS)

    Salikuddin, M.; Mengle, V. G.; Shin, H. W.; Majjigi, R. K.

    2005-01-01

    The principle objectives of this investigation are to evaluate the acoustic and aerodynamic characteristics of fluid shield nozzle concept and to assess Far 36, Stage 3 potential for fluid shield nozzle with Flade Cycle. Acoustic data for nine scale model nozzle configurations are obtained. The effects of simulated flight and geometric and aerothermodynamic flow variables on the acoustic behavior of the fluid shield are determined. The acoustic tests are aimed at studying the effect of: (1) shield thickness, (2) wrap angle, (3) mass flow and velocity ratios between shield and core streams at constant cycle specific thrust (i.e., mixed velocity), (4) porous plug, and (5) subsonic shield. Shadowgraphs of six nozzle configurations are obtained to understand the plume flowfield features. Static pressure data on suppressor chutes in the core stream (shielded and unshielded) sides and on plug surface are acquired to determine the impact of fluid shield on base drag of the 36-chute suppressor nozzle and the thrust augmentation due to the plug, respectively.

  5. Time Scale Calculus - a new perspectives for synthetic seismogram calculations

    NASA Astrophysics Data System (ADS)

    Waskiewicz, Kamil; Debski, Wojciech

    2013-04-01

    Synthetic, numerically generated seismograms are one of the key factors of any interpretation of recorded seismic data. At the early stage of development, calculation of full seismic waveforms was impossible due to a limited computational resource so we were forced to used only some selected characteristics of seismic waves relatively easy for numerical calculations like first arrival times, maximum amplitude, approximate source spectra, to name a few. Continues development of computational resources as well as progress in numerical techniques has opened possibilities of generation the full, 3-component seismograms incorporating many physically important elements like wave attenuation, anisotropy or randomness of the media. Although achieved results are impressive we still need new numerical methods to tackle existing problems with the synthetic seismogram generation. In this contribution we present a novel approach to discretization of the wave equation which brings together continues and discrete numerical analysis of the seismic waves. The foundations of this new technique, called Time Scale Calculus, have been formulated by Hilger in late eighties and is very dynamically developing. The Time scale calculus, due to its universality seems to have a great potential when practical applications are considered. Thus we have decided to bring the Time Scale calculus concept closer to geophysical, or more precisely to seismological applications. This presentation is intend as a basic introduction to the time scales calculus considered from seismological point of view. We shortly present and discuss the possibility of using the Time Scales (TS) technique for solving the simplest acoustic 2D wave equation keeping in mind its particular applications for mining induced seismicity.

  6. Mouse Activity across Time Scales: Fractal Scenarios

    PubMed Central

    Lima, G. Z. dos Santos; Lobão-Soares, B.; do Nascimento, G. C.; França, Arthur S. C.; Muratori, L.; Ribeiro, S.; Corso, G.

    2014-01-01

    In this work we devise a classification of mouse activity patterns based on accelerometer data using Detrended Fluctuation Analysis. We use two characteristic mouse behavioural states as benchmarks in this study: waking in free activity and slow-wave sleep (SWS). In both situations we find roughly the same pattern: for short time intervals we observe high correlation in activity - a typical 1/f complex pattern - while for large time intervals there is anti-correlation. High correlation of short intervals ( to : waking state and to : SWS) is related to highly coordinated muscle activity. In the waking state we associate high correlation both to muscle activity and to mouse stereotyped movements (grooming, waking, etc.). On the other side, the observed anti-correlation over large time scales ( to : waking state and to : SWS) during SWS appears related to a feedback autonomic response. The transition from correlated regime at short scales to an anti-correlated regime at large scales during SWS is given by the respiratory cycle interval, while during the waking state this transition occurs at the time scale corresponding to the duration of the stereotyped mouse movements. Furthermore, we find that the waking state is characterized by longer time scales than SWS and by a softer transition from correlation to anti-correlation. Moreover, this soft transition in the waking state encompass a behavioural time scale window that gives rise to a multifractal pattern. We believe that the observed multifractality in mouse activity is formed by the integration of several stereotyped movements each one with a characteristic time correlation. Finally, we compare scaling properties of body acceleration fluctuation time series during sleep and wake periods for healthy mice. Interestingly, differences between sleep and wake in the scaling exponents are comparable to previous works regarding human heartbeat. Complementarily, the nature of these sleep-wake dynamics could lead to a better

  7. Detection of nonlinear picosecond acoustic pulses by time-resolved Brillouin scattering

    SciTech Connect

    Gusev, Vitalyi E.

    2014-08-14

    In time-resolved Brillouin scattering (also called picosecond ultrasonic interferometry), the time evolution of the spatial Fourier component of an optically excited acoustic strain distribution is monitored. The wave number is determined by the momentum conservation in photon-phonon interaction. For linear acoustic waves propagating in a homogeneous medium, the detected time-domain signal of the optical probe transient reflectivity shows a sinusoidal oscillation at a constant frequency known as the Brillouin frequency. This oscillation is a result of heterodyning the constant reflection from the sample surface with the Brillouin-scattered field. Here, we present an analytical theory for the nonlinear reshaping of a propagating, finite amplitude picosecond acoustic pulse, which results in a time-dependence of the observed frequency. In particular, we examine the conditions under which this information can be used to study the time-evolution of the weak-shock front speed. Depending on the initial strain pulse parameters and the time interval of its nonlinear transformation, our theory predicts the detected frequency to either be monotonically decreasing or oscillating in time. We support these theoretical predictions by comparison with available experimental data. In general, we find that picosecond ultrasonic interferometry of nonlinear acoustic pulses provides access to the nonlinear acoustic properties of a medium spanning most of the GHz frequency range.

  8. Quantifying the Effect of Compression Hearing Aid Release Time on Speech Acoustics and Intelligibility

    ERIC Educational Resources Information Center

    Jenstad, Lorienne M.; Souza, Pamela E.

    2005-01-01

    Compression hearing aids have the inherent, and often adjustable, feature of release time from compression. Research to date does not provide a consensus on how to choose or set release time. The current study had 2 purposes: (a) a comprehensive evaluation of the acoustic effects of release time for a single-channel compression system in quiet and…

  9. Delayed Alumina Scale Spallation on Rene'n5+y: Moisture Effects and Acoustic Emission

    NASA Technical Reports Server (NTRS)

    Smialek, James L.; Morscher, Gregory N.

    2001-01-01

    The single crystal superalloy Rene'N5 (with or without Y-doping and hydrogen annealing) was cyclically oxidized at 1150 C for 1000 hours. After considerable scale growth (>= 500 hours), even the adherent alumina scales formed on Y-doped samples exhibited delayed interfacial spallation during subsequent water immersion tests, performed up to one year after oxidation. Spallation was characterized by weight loss, the amount of spalled area, and acoustic emission response. Hydrogen annealing (prior to oxidation) reduced spallation both before and after immersion, but without measurably reducing the bulk sulfur content of the Y-doped alloys. The duration and frequency of sequential, co-located acoustic emission events implied an interfacial crack growth rate at least 10(exp -3) m/s, but possibly higher than 10(exp 2) m/s. This is much greater than classic moisture-assisted slow crack growth rates in bulk alumina (10(exp -6) to 10(exp -3) m/s), which may still have occurred undetected by acoustic emission. An alternative failure sequence is proposed: an incubation process for preferential moisture ingress leads to a local decrease in interfacial toughness, thus allowing fast fracture driven by stored strain energy.

  10. Transient nearfield acoustic holography based on an interpolated time-domain equivalent source method.

    PubMed

    Zhang, Xiao-Zheng; Bi, Chuan-Xing; Zhang, Yong-Bin; Xu, Liang

    2011-09-01

    Transient nearfield acoustic holography based on an interpolated time-domain equivalent source method (ESM) is proposed to reconstruct transient acoustic fields directly in the time domain. Since the equivalent source strengths solved by the traditional time-domain ESM formulation cannot be used to reconstruct the pressure on the source surface directly, an interpolation function is introduced to develop an interpolated time-domain ESM formulation which permits one to deduce an iterative reconstruction process. As the reconstruction process is ill-conditioned and especially there exists a cumulative effect of errors, the Tikhonov regularization is used to stabilize the process. Numerical examples of reconstructing transient acoustic fields from a baffled planar piston, an impulsively accelerating sphere and a cube box, respectively, demonstrate that the proposed method not only can effectively reconstruct transient acoustic fields in the time domain, but also can visualize acoustic fields in the space domain. And, in the first numerical example, the cumulative effect of errors and the validity of using the Tikhonov regularization to suppress the errors are described.

  11. Multi-scale morphology analysis of acoustic emission signal and quantitative diagnosis for bearing fault

    NASA Astrophysics Data System (ADS)

    Wang, Wen-Jing; Cui, Ling-Li; Chen, Dao-Yun

    2016-04-01

    Monitoring of potential bearing faults in operation is of critical importance to safe operation of high speed trains. One of the major challenges is how to differentiate relevant signals to operational conditions of bearings from noises emitted from the surrounding environment. In this work, we report a procedure for analyzing acoustic emission signals collected from rolling bearings for diagnosis of bearing health conditions by examining their morphological pattern spectrum (MPS) through a multi-scale morphology analysis procedure. The results show that acoustic emission signals resulted from a given type of bearing faults share rather similar MPS curves. Further examinations in terms of sample entropy and Lempel-Ziv complexity of MPS curves suggest that these two parameters can be utilized to determine damage modes.

  12. An eighth-scale speech source for subjective assessments in acoustic models

    NASA Astrophysics Data System (ADS)

    Orlowski, R. J.

    1981-08-01

    The design of a source is described which is suitable for making speech recordings in eighth-scale acoustic models of auditoria. An attempt was made to match the directionality of the source with the directionality of the human voice using data reported in the literature. A narrow aperture was required for the design which was provided by mounting an inverted conical horn over the diaphragm of a high frequency loudspeaker. Resonance problems were encountered with the use of a horn and a description is given of the electronic techniques adopted to minimize the effect of these resonances. Subjective and objective assessments on the completed speech source have proved satisfactory. It has been used in a modelling exercise concerned with the acoustic design of a theatre with a thrust-type stage.

  13. Pseudo-time-reversal symmetry and topological edge states in two-dimensional acoustic crystals

    PubMed Central

    Mei, Jun; Chen, Zeguo; Wu, Ying

    2016-01-01

    We propose a simple two-dimensional acoustic crystal to realize topologically protected edge states for acoustic waves. The acoustic crystal is composed of a triangular array of core-shell cylinders embedded in a water host. By utilizing the point group symmetry of two doubly degenerate eigenstates at the Γ point, we can construct pseudo-time-reversal symmetry as well as pseudo-spin states in this classical system. We develop an effective Hamiltonian for the associated dispersion bands around the Brillouin zone center, and find the inherent link between the band inversion and the topological phase transition. With numerical simulations, we unambiguously demonstrate the unidirectional propagation of acoustic edge states along the interface between a topologically nontrivial acoustic crystal and a trivial one, and the robustness of the edge states against defects with sharp bends. Our work provides a new design paradigm for manipulating and transporting acoustic waves in a topologically protected manner. Technological applications and devices based on our design are expected in various frequency ranges of interest, spanning from infrasound to ultrasound. PMID:27587311

  14. Pseudo-time-reversal symmetry and topological edge states in two-dimensional acoustic crystals.

    PubMed

    Mei, Jun; Chen, Zeguo; Wu, Ying

    2016-01-01

    We propose a simple two-dimensional acoustic crystal to realize topologically protected edge states for acoustic waves. The acoustic crystal is composed of a triangular array of core-shell cylinders embedded in a water host. By utilizing the point group symmetry of two doubly degenerate eigenstates at the Γ point, we can construct pseudo-time-reversal symmetry as well as pseudo-spin states in this classical system. We develop an effective Hamiltonian for the associated dispersion bands around the Brillouin zone center, and find the inherent link between the band inversion and the topological phase transition. With numerical simulations, we unambiguously demonstrate the unidirectional propagation of acoustic edge states along the interface between a topologically nontrivial acoustic crystal and a trivial one, and the robustness of the edge states against defects with sharp bends. Our work provides a new design paradigm for manipulating and transporting acoustic waves in a topologically protected manner. Technological applications and devices based on our design are expected in various frequency ranges of interest, spanning from infrasound to ultrasound. PMID:27587311

  15. Pseudo-time-reversal symmetry and topological edge states in two-dimensional acoustic crystals

    NASA Astrophysics Data System (ADS)

    Mei, Jun; Chen, Zeguo; Wu, Ying

    2016-09-01

    We propose a simple two-dimensional acoustic crystal to realize topologically protected edge states for acoustic waves. The acoustic crystal is composed of a triangular array of core-shell cylinders embedded in a water host. By utilizing the point group symmetry of two doubly degenerate eigenstates at the Γ point, we can construct pseudo-time-reversal symmetry as well as pseudo-spin states in this classical system. We develop an effective Hamiltonian for the associated dispersion bands around the Brillouin zone center, and find the inherent link between the band inversion and the topological phase transition. With numerical simulations, we unambiguously demonstrate the unidirectional propagation of acoustic edge states along the interface between a topologically nontrivial acoustic crystal and a trivial one, and the robustness of the edge states against defects with sharp bends. Our work provides a new design paradigm for manipulating and transporting acoustic waves in a topologically protected manner. Technological applications and devices based on our design are expected in various frequency ranges of interest, spanning from infrasound to ultrasound.

  16. Shallow-water acoustic tomography from angle measurements instead of travel-time measurements.

    PubMed

    Aulanier, Florian; Nicolas, Barbara; Mars, Jérôme I; Roux, Philippe; Brossier, Romain

    2013-10-01

    For shallow-water waveguides and mid-frequency broadband acoustic signals, ocean acoustic tomography (OAT) is based on the multi-path aspect of wave propagation. Using arrays in emission and reception and advanced array processing, every acoustic arrival can be isolated and matched to an eigenray that is defined not only by its travel time but also by its launch and reception angles. Classically, OAT uses travel-time variations to retrieve sound-speed perturbations; this assumes very accurate source-to-receiver clock synchronization. This letter uses numerical simulations to demonstrate that launch-and-reception-angle tomography gives similar results to travel-time tomography without the same requirement for high-precision synchronization.

  17. Time-reversal acoustics and ultrasound-assisted convection-enhanced drug delivery to the brain.

    PubMed

    Olbricht, William; Sistla, Manjari; Ghandi, Gaurav; Lewis, George; Sarvazyan, Armen

    2013-08-01

    Time-reversal acoustics is an effective way of focusing ultrasound deep inside heterogeneous media such as biological tissues. Convection-enhanced delivery is a method of delivering drugs into the brain by infusing them directly into the brain interstitium. These two technologies are combined in a focusing system that uses a "smart needle" to simultaneously infuse fluid into the brain and provide the necessary feedback for focusing ultrasound using time-reversal acoustics. The effects of time-reversal acoustics-focused ultrasound on the spatial distribution of infused low- and high-molecular weight tracer molecules are examined in live, anesthetized rats. Results show that exposing the rat brain to focused ultrasound significantly increases the penetration of infused compounds into the brain. The addition of stabilized microbubbles enhances the effect of ultrasound exposure.

  18. Time-reversal acoustics and ultrasound-assisted convection-enhanced drug delivery to the brain.

    PubMed

    Olbricht, William; Sistla, Manjari; Ghandi, Gaurav; Lewis, George; Sarvazyan, Armen

    2013-08-01

    Time-reversal acoustics is an effective way of focusing ultrasound deep inside heterogeneous media such as biological tissues. Convection-enhanced delivery is a method of delivering drugs into the brain by infusing them directly into the brain interstitium. These two technologies are combined in a focusing system that uses a "smart needle" to simultaneously infuse fluid into the brain and provide the necessary feedback for focusing ultrasound using time-reversal acoustics. The effects of time-reversal acoustics-focused ultrasound on the spatial distribution of infused low- and high-molecular weight tracer molecules are examined in live, anesthetized rats. Results show that exposing the rat brain to focused ultrasound significantly increases the penetration of infused compounds into the brain. The addition of stabilized microbubbles enhances the effect of ultrasound exposure. PMID:23927197

  19. Mouse activity across time scales: fractal scenarios.

    PubMed

    Lima, G Z dos Santos; Lobão-Soares, B; do Nascimento, G C; França, Arthur S C; Muratori, L; Ribeiro, S; Corso, G

    2014-01-01

    In this work we devise a classification of mouse activity patterns based on accelerometer data using Detrended Fluctuation Analysis. We use two characteristic mouse behavioural states as benchmarks in this study: waking in free activity and slowwave sleep (SWS). In both situations we find roughly the same pattern: for short time intervals we observe high correlation in activity--a typical 1/f complex pattern--while for large time intervals there is anti-correlation. High correlation of short intervals (0.01 s to 2 s: waking state and 0.01 s to 0.1 s: SWS) is related to highly coordinated muscle activity. In the waking state we associate high correlation both to muscle activity and to mouse stereotyped movements (grooming, waking, etc.). On the other side, the observed anti-correlation over large time scales (30 s to 300 s: waking state and 0.3 s to 5 s: SWS) during SWS appears related to a feedback autonomic response. The transition from correlated regime at short scales to an anti-correlated regime at large scales during SWS is given by the respiratory cycle interval, while during the waking state this transition occurs at the time scale corresponding to the duration of the stereotyped mouse movements. Furthermore, we find that the waking state is characterized by longer time scales than SWS and by a softer transition from correlation to anticorrelation. Moreover, this soft transition in the waking state encompass a behavioural time scale window that gives rise to a multifractal pattern. We believe that the observed multifractality in mouse activity is formed by the integration of several stereotyped movements each one with a characteristic time correlation. Finally, we compare scaling properties of body acceleration fluctuation time series during sleep and wake periods for healthy mice. Interestingly, differences between sleep and wake in the scaling exponents are comparable to previous works regarding human heartbeat. Complementarily, the nature of these sleep

  20. Global scale precipitation from monthly to centennial scales: empirical space-time scaling analysis, anthropogenic effects

    NASA Astrophysics Data System (ADS)

    de Lima, Isabel; Lovejoy, Shaun

    2016-04-01

    The characterization of precipitation scaling regimes represents a key contribution to the improved understanding of space-time precipitation variability, which is the focus here. We conduct space-time scaling analyses of spectra and Haar fluctuations in precipitation, using three global scale precipitation products (one instrument based, one reanalysis based, one satellite and gauge based), from monthly to centennial scales and planetary down to several hundred kilometers in spatial scale. Results show the presence - similarly to other atmospheric fields - of an intermediate "macroweather" regime between the familiar weather and climate regimes: we characterize systematically the macroweather precipitation temporal and spatial, and joint space-time statistics and variability, and the outer scale limit of temporal scaling. These regimes qualitatively and quantitatively alternate in the way fluctuations vary with scale. In the macroweather regime, the fluctuations diminish with time scale (this is important for seasonal, annual, and decadal forecasts) while anthropogenic effects increase with time scale. Our approach determines the time scale at which the anthropogenic signal can be detected above the natural variability noise: the critical scale is about 20 - 40 yrs (depending on the product, on the spatial scale). This explains for example why studies that use data covering only a few decades do not easily give evidence of anthropogenic changes in precipitation, as a consequence of warming: the period is too short. Overall, while showing that precipitation can be modeled with space-time scaling processes, our results clarify the different precipitation scaling regimes and further allow us to quantify the agreement (and lack of agreement) of the precipitation products as a function of space and time scales. Moreover, this work contributes to clarify a basic problem in hydro-climatology, which is to measure precipitation trends at decadal and longer scales and to

  1. Changes in Wisconsin English over 110 Years: A Real-Time Acoustic Account

    ERIC Educational Resources Information Center

    Delahanty, Jennifer

    2011-01-01

    The growing set of studies on American regional dialects have to date focused heavily on vowels while few examine consonant features and none provide acoustic analysis of both vowel and consonant features. This dissertation uses real-time data on both vowels and consonants to show how Wisconsin English has changed over time. Together, the…

  2. Travel-time tomography in shallow water: experimental demonstration at an ultrasonic scale.

    PubMed

    Roux, Philippe; Iturbe, Ion; Nicolas, Barbara; Virieux, Jean; Mars, Jérôme I

    2011-09-01

    Acoustic tomography in a shallow ultrasonic waveguide is demonstrated at the laboratory scale between two source-receiver arrays. At a 1/1,000 scale, the waveguide represents a 1.1-km-long, 52-m-deep ocean acoustic channel in the kilohertz frequency range. Two coplanar arrays record the transfer matrix in the time domain of the waveguide between each pair of source-receiver transducers. A time-domain, double-beamforming algorithm is simultaneously performed on the source and receiver arrays that projects the multi-reflected acoustic echoes into an equivalent set of eigenrays, which are characterized by their travel times and their launch and arrival angles. Travel-time differences are measured for each eigenray every 0.1 s when a thermal plume is generated at a given location in the waveguide. Travel-time tomography inversion is then performed using two forward models based either on ray theory or on the diffraction-based sensitivity kernel. The spatially resolved range and depth inversion data confirm the feasibility of acoustic tomography in shallow water. Comparisons are made between inversion results at 1 and 3 MHz with the inversion procedure using ray theory or the finite-frequency approach. The influence of surface fluctuations at the air-water interface is shown and discussed in the framework of shallow-water ocean tomography.

  3. Comparison of the acoustic characteristics of large-scale models of several propulsive-lift concepts

    NASA Technical Reports Server (NTRS)

    Falarski, M. D.; Aiken, T. N.; Aoyagi, K.; Koenig, D. G.

    1974-01-01

    Wind-tunnel acoustic investigations were performed to determine the acoustic characteristics and the effect of forward speed on the over-the-wing externally blown jet flap (OTW), the under-the-wing externally blown jet flap (UTW), the internally blown jet flap (IBF), and the augmentor wing (AW). The data presented represent the basic noise generated by the powered-lift system without acoustic treatment, assuming all other noise sources, such as the turbofan compressor noise, have been suppressed. Under these conditions, when scaled to a 100,000-lb aircraft, the OTW concept exhibited the lowest perceived noise levels, because of dominant low-frequency noise and wing shielding of the high-frequency noise. The AW was the loudest configuration, because of dominant high-frequency noise created by the high jet velocities and small nozzle dimensions. All four configurations emitted noise 10 to 15 PNdB higher than the noise goal of 95 PNdB at 500 ft.

  4. The hippocampus, time, and memory across scales.

    PubMed

    Howard, Marc W; Eichenbaum, Howard

    2013-11-01

    A wealth of experimental studies with animals have offered insights about how neural networks within the hippocampus support the temporal organization of memories. These studies have revealed the existence of "time cells" that encode moments in time, much as the well-known "place cells" map locations in space. Another line of work inspired by human behavioral studies suggests that episodic memories are mediated by a state of temporal context that changes gradually over long time scales, up to at least a few thousand seconds. In this view, the "mental time travel" hypothesized to support the experience of episodic memory corresponds to a "jump back in time" in which a previous state of temporal context is recovered. We suggest that these 2 sets of findings could be different facets of a representation of temporal history that maintains a record at the last few thousand seconds of experience. The ability to represent long time scales comes at the cost of discarding precise information about when a stimulus was experienced--this uncertainty becomes greater for events further in the past. We review recent computational work that describes a mechanism that could construct such a scale-invariant representation. Taken as a whole, this suggests the hippocampus plays its role in multiple aspects of cognition by representing events embedded in a general spatiotemporal context. The representation of internal time can be useful across nonhippocampal memory systems.

  5. Distributed acoustic mapping based on interferometry of phase optical time-domain reflectometry

    NASA Astrophysics Data System (ADS)

    Wang, Chang; Wang, Chen; Shang, Ying; Liu, Xiaohui; Peng, Gangding

    2015-07-01

    We demonstrate the design and characterization of a distributed optical fiber sensing system based on Michelson interferometer of the phase sensitive optical time domain reflectometer (φ-OTDR) for acoustic measurement. Phase, amplitude, frequency response and location information can be directly obtained at the same time by using the passive 3×3 coupler demodulation. In order to simulate sound profiles of seismic or hydroacoustic imaging, experiments on detection of multiple piezoelectric transducers (PZT) are carried out. The result shows that our system can well demodulate different acoustic sources with different intensities.

  6. Isocurvature modes and Baryon Acoustic Oscillations II: gains from combining CMB and Large Scale Structure

    SciTech Connect

    Carbone, Carmelita; Mangilli, Anna; Verde, Licia E-mail: anna.mangilli@icc.ub.edu

    2011-09-01

    We consider cosmological parameters estimation in the presence of a non-zero isocurvature contribution in the primordial perturbations. A previous analysis showed that even a tiny amount of isocurvature perturbation, if not accounted for, could affect standard rulers calibration from Cosmic Microwave Background observations such as those provided by the Planck mission, affect Baryon Acoustic Oscillations interpretation, and introduce biases in the recovered dark energy properties that are larger than forecasted statistical errors from future surveys. Extending on this work, here we adopt a general fiducial cosmology which includes a varying dark energy equation of state parameter and curvature. Beside Baryon Acoustic Oscillations measurements, we include the information from the shape of the galaxy power spectrum and consider a joint analysis of a Planck-like Cosmic Microwave Background probe and a future, space-based, Large Scale Structure probe not too dissimilar from recently proposed surveys. We find that this allows one to break the degeneracies that affect the Cosmic Microwave Background and Baryon Acoustic Oscillations combination. As a result, most of the cosmological parameter systematic biases arising from an incorrect assumption on the isocurvature fraction parameter f{sub iso}, become negligible with respect to the statistical errors. We find that the Cosmic Microwave Background and Large Scale Structure combination gives a statistical error σ(f{sub iso}) ∼ 0.008, even when curvature and a varying dark energy equation of state are included, which is smaller that the error obtained from Cosmic Microwave Background alone when flatness and cosmological constant are assumed. These results confirm the synergy and complementarity between Cosmic Microwave Background and Large Scale Structure, and the great potential of future and planned galaxy surveys.

  7. Inertial-acoustic oscillations of black hole accretion discs with large-scale poloidal magnetic fields

    NASA Astrophysics Data System (ADS)

    Yu, Cong; Lai, Dong

    2015-07-01

    We study the effect of large-scale magnetic fields on the non-axisymmetric inertial-acoustic modes (also called p modes) trapped in the innermost regions of accretion discs around black holes (BHs). These global modes could provide an explanation for the high-frequency quasi-periodic oscillations (HFQPOs) observed in BH X-ray binaries. There may be observational evidence for the presence of such large-scale magnetic fields in the discs since episodic jets are observed in the same spectral state when HFQPOs are detected. We find that a large-scale poloidal magnetic field can enhance the corotational instability and increase the growth rate of the purely hydrodynamic overstable p modes. In addition, we show that the frequencies of these overstable p modes could be further reduced by such magnetic fields, making them agree better with observations.

  8. The penetration of acoustic cavitation bubbles into micrometer-scale cavities.

    PubMed

    Vaidya, Haresh Anant; Ertunç, Özgür; Lichtenegger, Thomas; Delgado, Antonio; Skupin, Andreas

    2016-04-01

    The penetration of acoustically induced cavitation bubbles in micrometer-scale cavities is investigated experimentally by means of high-speed photography and acoustic measurements. Micrometer-scale cavities of different dimensions (width=40 μm, 80 μm, 10 mm and depth=50 μm) are designed to replicate the cross section of microvias in a PCB. The aim here is to present a method for enhancing mass transfer due to the penetration of bubbles in such narrow geometries under the action of ultrasound. The micrometer-scale cavities are placed in a test-cell filled with water and subjected to an ultrasound excitation at 75 kHz. A cavitation bubble cluster is generated at the mouth of the cavity which acts as a continuous source of bubbles that penetrate into the cavity. The radial oscillation characteristics and translation of these bubbles are investigated in detail here. It is observed that the bubbles arrange themselves into streamer-like structures inside the cavity. Parameters such as bubble population and size distribution and their correlation with the phase of the incident ultrasound radiation are investigated in detail here. This provides a valuable insight into the dynamics of bubbles in narrow confined spaces. Mass transfer investigations show that fresh liquid can be continuously introduced in the cavities under the action of ultrasound. Our findings may have important consequences in optimizing the filling processes for microvias with high aspect ratios. PMID:26763751

  9. The penetration of acoustic cavitation bubbles into micrometer-scale cavities.

    PubMed

    Vaidya, Haresh Anant; Ertunç, Özgür; Lichtenegger, Thomas; Delgado, Antonio; Skupin, Andreas

    2016-04-01

    The penetration of acoustically induced cavitation bubbles in micrometer-scale cavities is investigated experimentally by means of high-speed photography and acoustic measurements. Micrometer-scale cavities of different dimensions (width=40 μm, 80 μm, 10 mm and depth=50 μm) are designed to replicate the cross section of microvias in a PCB. The aim here is to present a method for enhancing mass transfer due to the penetration of bubbles in such narrow geometries under the action of ultrasound. The micrometer-scale cavities are placed in a test-cell filled with water and subjected to an ultrasound excitation at 75 kHz. A cavitation bubble cluster is generated at the mouth of the cavity which acts as a continuous source of bubbles that penetrate into the cavity. The radial oscillation characteristics and translation of these bubbles are investigated in detail here. It is observed that the bubbles arrange themselves into streamer-like structures inside the cavity. Parameters such as bubble population and size distribution and their correlation with the phase of the incident ultrasound radiation are investigated in detail here. This provides a valuable insight into the dynamics of bubbles in narrow confined spaces. Mass transfer investigations show that fresh liquid can be continuously introduced in the cavities under the action of ultrasound. Our findings may have important consequences in optimizing the filling processes for microvias with high aspect ratios.

  10. A case-study comparison of computer modeling and scale modeling in acoustics consulting

    NASA Astrophysics Data System (ADS)

    Calamia, Paul T.

    2002-05-01

    As an alternate or compliment to computer models, acoustics consultants often make use of scale models to evaluate the efficacy of architectural designs. The intention of this paper is to compare the two modeling approaches, using one or more case studies, to explore the pros and cons of each. Topics of comparison will include cost, geometric representations, effective bandwidths, propagation phenomena (e.g., diffraction), simulation of material properties, and auralization. Where possible, measured data from existing spaces will be presented to provide a reference for the modeled data.

  11. Multiple time scales is well named.

    PubMed

    Gibbon, J

    1999-03-01

    Staddon and Higa's article is a critique of scalar expectancy theory, and a proposed alternative, multiple time scales. The critique is generally flawed, both factually and logically. The alternative is bewildering in its flexibility, opaque in its quantitative description, and never addressed to real data.

  12. Structure of Student Time Management Scale (STMS)

    ERIC Educational Resources Information Center

    Balamurugan, M.

    2013-01-01

    With the aim of constructing a Student Time Management Scale (STMS), the initial version was administered and data were collected from 523 standard eleventh students. (Mean age = 15.64). The data obtained were subjected to Reliability and Factor analysis using PASW Statistical software version 18. From 42 items 14 were dropped, resulting in the…

  13. An acoustic travel time method for continuous velocity monitoring in shallow tidal streams

    NASA Astrophysics Data System (ADS)

    Razaz, Mahdi; Kawanisi, Kiyosi; Nistor, Ioan; Sharifi, Soroosh

    2013-08-01

    Long-term variations of streamflow in a tidal channel were measured using a Fluvial Acoustic Tomography (FAT) system through one transmission path. FAT is an innovative acoustic technology that utilizes the time-of-travel method to determine velocity between two points from multiple ray paths that traverse the entire cross-section of stream. Due to high spatial variability of flow distribution stationary ADCP measurements were not likely to yield true section-averaged flow velocity and moving-boat ADCP method was therefore used to provide reference data. As such, two short-term moving boat ADCP campaigns were carried out by the authors. In the first campaign, a couple of acoustic stations were added to the FAT system in order to resolve flow angularity in addition to the mean velocity. Comparing the FAT results with corresponding ADCP section-averaged flow direction and velocity indicated remarkable consistency. Second campaign was designed to capture the influence of salt wedge intrusion on the sound propagation pattern. It was found that FAT velocity measurements bias high if acoustic stations lay inside the cooler freshwater layer. Ray-tracing hindcasts suggest that installing acoustic stations inside the salt wedge may significantly improve function of output of the system. Comparing salinities evaluated from long-term FAT travel time records with nodal salinity measurements provided by conductivity-temperature sensors reveals the potential ability of FAT in measuring salt flux.

  14. Real-time GMAW quality classification using an artificial neural network with airborne acoustic signals as inputs

    SciTech Connect

    Matteson, A.; Morris, R.; Tate, R.

    1993-12-31

    The acoustic signal produced by the gas metal arc welding (GMAW) arc contains information about the behavior of the arc column, the molten pool and droplet transfer. It is possible to detect some defect producing conditions from the acoustic signal from the GMAW arc. An intelligent sensor, called the Weld Acoustic Monitor (WAM) has been developed to take advantage of this acoustic information in order to provide real-time quality assessment information for process control. The WAM makes use of an Artificial Neural Network (ANN) to classify the characteristic arc acoustic signals of acceptable and unacceptable welds. The ANN used in the Weld Acoustic Monitor developed its own set of rules for this classification problem by learning a data base of known GMAW acoustic signals.

  15. Fish population dynamics revealed by instantaneous continental-shelf scale acoustic imaging

    NASA Astrophysics Data System (ADS)

    Ratilal, Purnima; Symonds, Deanelle; Makris, Nicholas C.; Nero, Redwood

    2005-04-01

    Video images of fish population densities over vast areas of the New Jersey continental shelf have been produced from acoustic data collected on a long range bistatic sonar system during the Acoustic Clutter 2003 experiment. Areal fish population densities were obtained after correcting the acoustic data for two-way transmission loss modeled using the range-dependent parabolic equation, spatially varying beampattern of the array, source level and mean target strength per fish. The wide-area fish density images reveal the temporal evolution of fish school distributions, their migration, as well as shoal formation and fragmentation at 50 s interval. Time series of the fish population within various density thresholds were made over the period of a day in an area containing millions of fish that at some instances formed a massive shoal extending over 12 km. The analysis shows that fish population in the area can be decomposed into a stable ambient population from lower-fish-density regions and a time-varying population composed from higher-density regions. Estimates of the differential speed between population centers of various shoals show that the average speed is on the order of a slow-moving surface vessel or submarine.

  16. HIGH-PRECISION PREDICTIONS FOR THE ACOUSTIC SCALE IN THE NONLINEAR REGIME

    SciTech Connect

    Seo, Hee-Jong; Eckel, Jonathan; Eisenstein, Daniel J.; Mehta, Kushal; Metchnik, Marc; Padmanabhan, Nikhil; Pinto, Phillip; Takahashi, Ryuichi; White, Martin; Xu, Xiaoying

    2010-09-10

    We measure shifts of the acoustic scale due to nonlinear growth and redshift distortions to a high precision using a very large volume of high-force-resolution simulations. We compare results from various sets of simulations that differ in their force, volume, and mass resolution. We find a consistency within 1.5-sigma for shift values from different simulations and derive shift alpha(z) -1 = (0.300\\pm 0.015)% [D(z)/D(0)]^{2} using our fiducial set. We find a strong correlation with a non-unity slope between shifts in real space and in redshift space and a weak correlation between the initial redshift and low redshift. Density-field reconstruction not only removes the mean shifts and reduces errors on the mean, but also tightens the correlations: after reconstruction, we recover a slope of near unity for the correlation between the real and redshift space and restore a strong correlation between the low and the initial redshifts. We derive propagators and mode-coupling terms from our N-body simulations and compared with Zeldovich approximation and the shifts measured from the chi^2 fitting, respectively. We interpret the propagator and the mode-coupling term of a nonlinear density field in the context of an average and a dispersion of its complex Fourier coefficients relative to those of the linear density field; from these two terms, we derive a signal-to-noise ratio of the acoustic peak measurement. We attempt to improve our reconstruction method by implementing 2LPT and iterative operations: we obtain little improvement. The Fisher matrix estimates of uncertainty in the acoustic scale is tested using 5000 (Gpc/h)^3 of cosmological PM simulations from Takahashi et al. (2009). (abridged)

  17. Examination of time-reversal acoustics in shallow water and applications to noncoherent underwater communications

    NASA Astrophysics Data System (ADS)

    Smith, Kevin B.; Abrantes, Antonio A. M.; Larraza, Andres

    2003-06-01

    The shallow water acoustic communication channel is characterized by strong signal degradation caused by multipath propagation and high spatial and temporal variability of the channel conditions. At the receiver, multipath propagation causes intersymbol interference and is considered the most important of the channel distortions. This paper examines the application of time-reversal acoustic (TRA) arrays, i.e., phase-conjugated arrays (PCAs), that generate a spatio-temporal focus of acoustic energy at the receiver location, eliminating distortions introduced by channel propagation. This technique is self-adaptive and automatically compensates for environmental effects and array imperfections without the need to explicitly characterize the environment. An attempt is made to characterize the influences of a PCA design on its focusing properties with particular attention given to applications in noncoherent underwater acoustic communication systems. Due to the PCA spatial diversity focusing properties, PC arrays may have an important role in an acoustic local area network. Each array is able to simultaneously transmit different messages that will focus only at the destination receiver node.

  18. Time dependent inflow-outflow boundary conditions for 2D acoustic systems

    NASA Technical Reports Server (NTRS)

    Watson, Willie R.; Myers, Michael K.

    1989-01-01

    An analysis of the number and form of the required inflow-outflow boundary conditions for the full two-dimensional time-dependent nonlinear acoustic system in subsonic mean flow is performed. The explicit predictor-corrector method of MacCormack (1969) is used. The methodology is tested on both uniform and sheared mean flows with plane and nonplanar sources. Results show that the acoustic system requires three physical boundary conditions on the inflow and one on the outflow boundary. The most natural choice for the inflow boundary conditions is judged to be a specification of the vorticity, the normal acoustic impedance, and a pressure gradient-density gradient relationship normal to the boundary. Specification of the acoustic pressure at the outflow boundary along with these inflow boundary conditions is found to give consistent reliable results. A set of boundary conditions developed earlier, which were intended to be nonreflecting is tested using the current method and is shown to yield unstable results for nonplanar acoustic waves.

  19. Acoustic sensor for real-time control for the inductive heating process

    DOEpatents

    Kelley, John Bruce; Lu, Wei-Yang; Zutavern, Fred J.

    2003-09-30

    Disclosed is a system and method for providing closed-loop control of the heating of a workpiece by an induction heating machine, including generating an acoustic wave in the workpiece with a pulsed laser; optically measuring displacements of the surface of the workpiece in response to the acoustic wave; calculating a sub-surface material property by analyzing the measured surface displacements; creating an error signal by comparing an attribute of the calculated sub-surface material properties with a desired attribute; and reducing the error signal below an acceptable limit by adjusting, in real-time, as often as necessary, the operation of the inductive heating machine.

  20. Apparatus for real-time acoustic imaging of Rayleigh-Benard convection.

    PubMed

    Kuehn, Kerry; Polfer, Jonathan; Furno, Joanna; Finke, Nathan

    2007-11-01

    We have designed and built an apparatus for real-time acoustic imaging of convective flow patterns in optically opaque fluids. This apparatus takes advantage of recent advances in two-dimensional ultrasound transducer array technology; it employs a modified version of a commercially available ultrasound camera, similar to those employed in nondestructive testing of solids. Images of convection patterns are generated by observing the lateral variation of the temperature dependent speed of sound via refraction of acoustic plane waves passing vertically through the fluid layer. The apparatus has been validated by observing convection rolls in both silicone oil and ferrofluid. PMID:18052477

  1. Accuracy metrics for judging time scale algorithms

    NASA Technical Reports Server (NTRS)

    Douglas, R. J.; Boulanger, J.-S.; Jacques, C.

    1994-01-01

    Time scales have been constructed in different ways to meet the many demands placed upon them for time accuracy, frequency accuracy, long-term stability, and robustness. Usually, no single time scale is optimum for all purposes. In the context of the impending availability of high-accuracy intermittently-operated cesium fountains, we reconsider the question of evaluating the accuracy of time scales which use an algorithm to span interruptions of the primary standard. We consider a broad class of calibration algorithms that can be evaluated and compared quantitatively for their accuracy in the presence of frequency drift and a full noise model (a mixture of white PM, flicker PM, white FM, flicker FM, and random walk FM noise). We present the analytic techniques for computing the standard uncertainty for the full noise model and this class of calibration algorithms. The simplest algorithm is evaluated to find the average-frequency uncertainty arising from the noise of the cesium fountain's local oscillator and from the noise of a hydrogen maser transfer-standard. This algorithm and known noise sources are shown to permit interlaboratory frequency transfer with a standard uncertainty of less than 10(exp -15) for periods of 30-100 days.

  2. Short time-scale variability of chromospheric Ca II in late-type stars

    NASA Technical Reports Server (NTRS)

    Baliunas, S. L.; Vaughan, A. H.; Hartmann, L.; Liller, W.; Dupree, A. K.

    1981-01-01

    The short time-scale variability of singly ionized calcium chromospheric emission has been investigated in a few late-type stars. Emission-line variations with time scales of a few minutes to hours are seen in Alpha Tau (K5 III), Lambda And (G8 III-IV), and Epsilon Eri (K2 V). The existence of substantial chromospheric flux changes (10 to the 30th to 10 to the 32nd ergs) over short periods of time suggests that the calcium emission arises from a few small, coherent regions. Frequencies present in the data are discussed in the context of acoustic wave predictions and estimated acoustic cutoff frequencies for giants and dwarfs.

  3. Xylem cavitation resistance can be estimated based on time-dependent rate of acoustic emissions.

    PubMed

    Nolf, Markus; Beikircher, Barbara; Rosner, Sabine; Nolf, Anton; Mayr, Stefan

    2015-10-01

    Acoustic emission (AE) analysis allows nondestructive monitoring of embolism formation in plant xylem, but signal interpretation and agreement of acoustically measured hydraulic vulnerability with reference hydraulic techniques remain under debate. We compared the hydraulic vulnerability of 16 species and three crop tree cultivars using hydraulic flow measurements and acoustic emission monitoring, proposing the use of time-dependent AE rates as a novel parameter for AE analysis. There was a linear correlation between the water potential (Ψ) at 50% loss of hydraulic conductivity (P50 ) and the Ψ at maximum AE activity (Pmaxrate ), where species with lower P50 also had lower Pmaxrate (P < 0.001, R(2)  = 0.76). Using AE rates instead of cumulative counts for AE analysis allows more efficient estimation of P50 , while excluding problematic AE at late stages of dehydration.

  4. Computer Evaluation Of Real-Time X-Ray And Acoustic Images

    NASA Astrophysics Data System (ADS)

    Jacoby, M. H.; Loe, R. S.; Dondes, P. A.

    1983-03-01

    The weakest link in the inspection process is the subjective interpretation of data by inspectors. To overcome this troublesome fact computer based analysis systems have been developed. In the field of nondestructive evaluation (NDE) there is a large class of inspections that can benefit from computer analysis. X-ray images (both film and fluoroscopic) and acoustic images lend themselves to automatic analysis as do the one-dimensional signals associated with ultrasonic, eddy current and acoustic emission testing. Computer analysis can enhance and evaluate subtle details. Flaws can be located and measured, and accept-ance decisions made by computer in a consistent and objective manner. This paper describes the interactive, computer-based analysis of real-time x-ray images and acoustic images of graphite/epoxy adhesively bonded structures.

  5. Reaction time to changes in the tempo of acoustic pulse trains.

    NASA Technical Reports Server (NTRS)

    Smith, R. P.; Warm, J. S.; Westendorf, D. H.

    1973-01-01

    Investigation of the ability of human observers to detect accelerations and decelerations in the rate of presentation of pulsed stimuli, i.e., changes in the tempo of acoustic pulse trains. Response times to accelerations in tempo were faster than to decelerations. Overall speed of response was inversely related to the pulse repetition rate.

  6. Underwater acoustic communication using orthogonal signal division multiplexing scheme with time diversity

    NASA Astrophysics Data System (ADS)

    Ebihara, Tadashi; Ogasawara, Hanako; Mizutani, Koichi

    2016-03-01

    In this paper, an underwater acoustic (UWA) communication scheme for mobile platforms is proposed. The proposed scheme is based on the orthogonal signal division multiplexing (OSDM) scheme, which offers highly reliable UWA communication. However, OSDM is not suitable for mobile platforms as it is — it requires a receiver array and a large calculation cost for equalization. To establish a reliable link with small communication platforms, we design OSDM that can perform reliable communication without the need for an array and can reduce receiver complexity using the time-diversity technique (TD), and evaluate its performance in experiments. The experimental results suggest that OSDM-TD can simultaneously achieve power-efficient communications and receiver complexity reduction, and can realize small-scale communication platforms. In detail, OSDM-TD achieved almost the same communication quality as conventional OSDM, in exchange for an effective data rate. Moreover, the power efficiency of OSDM-TD was almost the same as that of conventional OSDM with two receiver array elements, although the calculation cost of OSDM-TD was far below that of conventional OSDM. As a result, it was found that OSDM-TD is suitable for UWA communication for mobile nodes whose capacity and computational resources are severely limited.

  7. Time fractional effect on ion acoustic shock waves in ion-pair plasma

    NASA Astrophysics Data System (ADS)

    Abdelwahed, H. G.; El-Shewy, E. K.; Mahmoud, A. A.

    2016-06-01

    The nonlinear properties of ion acoustic shock waves are studied. The Burgers equation is derived and converted into the time fractional Burgers equation by Agrawal's method. Using the Adomian decomposition method, shock wave solutions of the time fractional Burgers equation are constructed. The effect of the time fractional parameter on the shock wave properties in ion-pair plasma is investigated. The results obtained may be important in investigating the broadband electrostatic shock noise in D- and F-regions of Earth's ionosphere.

  8. A comment on the use of flushing time, residence time, and age as transport time scales

    USGS Publications Warehouse

    Monsen, N.E.; Cloern, J.E.; Lucas, L.V.; Monismith, Stephen G.

    2002-01-01

    Applications of transport time scales are pervasive in biological, hydrologic, and geochemical studies yet these times scales are not consistently defined and applied with rigor in the literature. We compare three transport time scales (flushing time, age, and residence time) commonly used to measure the retention of water or scalar quantities transported with water. We identify the underlying assumptions associated with each time scale, describe procedures for computing these time scales in idealized cases, and identify pitfalls when real-world systems deviate from these idealizations. We then apply the time scale definitions to a shallow 378 ha tidal lake to illustrate how deviations between real water bodies and the idealized examples can result from: (1) non-steady flow; (2) spatial variability in bathymetry, circulation, and transport time scales; and (3) tides that introduce complexities not accounted for in the idealized cases. These examples illustrate that no single transport time scale is valid for all time periods, locations, and constituents, and no one time scale describes all transport processes. We encourage aquatic scientists to rigorously define the transport time scale when it is applied, identify the underlying assumptions in the application of that concept, and ask if those assumptions are valid in the application of that approach for computing transport time scales in real systems.

  9. Hemispheric Asymmetries in Substorm Recovery Time Scales

    NASA Technical Reports Server (NTRS)

    Fillingim, M. O.; Chua, D H.; Germany, G. A.; Spann, James F.

    2009-01-01

    Previous statistical observations have shown that the recovery time scales of substorms occurring in the winter and near equinox (when the nighttime auroral zone was in darkness) are roughly twice as long as the recovery time scales for substorms occurring in the summer (when the nighttime auroral region was sunlit). This suggests that auroral substorms in the northern and southern hemispheres develop asymmetrically during solstice conditions with substorms lasting longer in the winter (dark) hemisphere than in the summer (sunlit) hemisphere. Additionally, this implies that more energy is deposited by electron precipitation in the winter hemisphere than in the summer one during substorms. This result, coupled with previous observations that have shown that auroral activity is more common when the ionosphere is in darkness and is suppressed when the ionosphere is in daylight, strongly suggests that the ionospheric conductivity plays an important role governing how magnetospheric energy is transferred to the ionosphere during substorms. Therefore, the ionosphere itself may dictate how much energy it will accept from the magnetosphere during substorms rather than this being an externally imposed quantity. Here, we extend our earlier work by statistically analyzing the recovery time scales for a large number of substorms observed in the conjugate hemispheres simultaneously by two orbiting global auroral imagers: Polar UVI and IMAGE FUV. Our current results are consistent with previous observations. The recovery time scales are observed to be longer in the winter (dark) hemisphere while the auroral activity has a shorter duration in the summer (sunlit) hemisphere. This leads to an asymmetric energy input from the magnetosphere to the ionosphere with more energy being deposited in the winter hemisphere than in the summer hemisphere.

  10. Current relaxation time scales in toroidal plasmas

    SciTech Connect

    Mikkelsen, D.R.

    1987-02-01

    An approximate normal mode analysis of plasma current diffusion in tokamaks is presented. The work is based on numerical solutions of the current diffusion equation in cylindrical geometry. Eigenvalues and eigenfunctions are shown for a broad range of plasma conductivity profile shapes. Three classes of solutions are considered which correspond to three types of tokamak operation. Convenient approximations to the three lowest eigenvalues in each class are presented and simple formulae for the current relaxation time scales are given.

  11. Scaling of light and dark time intervals.

    PubMed

    Marinova, J

    1978-01-01

    Scaling of light and dark time intervals of 0.1 to 1.1 s is performed by the mehtod of magnitude estimation with respect to a given standard. The standards differ in duration and type (light and dark). The light intervals are subjectively estimated as longer than the dark ones. The relation between the mean interval estimations and their magnitude is linear for both light and dark intervals.

  12. Comparison between psycho-acoustics and physio-acoustic measurement to determine optimum reverberation time of pentatonic angklung music concert hall

    NASA Astrophysics Data System (ADS)

    Sudarsono, Anugrah S.; Merthayasa, I. G. N.; Suprijanto

    2015-09-01

    This research tried to compare psycho-acoustics and Physio-acoustic measurement to find the optimum reverberation time of soundfield from angklung music. Psycho-acoustic measurement was conducted using a paired comparison method and Physio-acoustic measurement was conducted with EEG Measurement on T3, T4, FP1, and FP2 measurement points. EEG measurement was conducted with 5 persons. Pentatonic angklung music was used as a stimulus with reverberation time variation. The variation was between 0.8 s - 1.6 s with 0.2 s step. EEG signal was analysed using a Power Spectral Density method on Alpha Wave, High Alpha Wave, and Theta Wave. Psycho-acoustic measurement on 50 persons showed that reverberation time preference of pentatonic angklung music was 1.2 second. The result was similar to Theta Wave measurement on FP2 measurement point. High Alpha wave on T4 measurement gave different results, but had similar patterns with psycho-acoustic measurement

  13. Time scales of the stick–slip dynamics of the peeling of an adhesive tape

    PubMed Central

    Mishra, Nachiketa; Parida, Nigam Chandra; Raha, Soumyendu

    2015-01-01

    The stick–slip dynamics of the peeling of an adhesive tape is characterized by bifurcations that have been experimentally well studied. In this work, we investigate the time scale in which the the stick–slips happen leading to the bifurcations. This is fundamental to understanding the triboluminescence and acoustic emissions associated with the bifurcations. We establish a relationship between the time scale of the bifurcations and the inherent mathematical structure of the peeling dynamics by studying a characteristic time quantity associated with the dynamics. PMID:25663802

  14. Liquidity crises on different time scales.

    PubMed

    Corradi, Francesco; Zaccaria, Andrea; Pietronero, Luciano

    2015-12-01

    We present an empirical analysis of the microstructure of financial markets and, in particular, of the static and dynamic properties of liquidity. We find that on relatively large time scales (15 min) large price fluctuations are connected to the failure of the subtle mechanism of compensation between the flows of market and limit orders: in other words, the missed revelation of the latent order book breaks the dynamical equilibrium between the flows, triggering the large price jumps. On smaller time scales (30 s), instead, the static depletion of the limit order book is an indicator of an intrinsic fragility of the system, which is related to a strongly nonlinear enhancement of the response. In order to quantify this phenomenon we introduce a measure of the liquidity imbalance present in the book and we show that it is correlated to both the sign and the magnitude of the next price movement. These findings provide a quantitative definition of the effective liquidity, which proves to be strongly dependent on the considered time scales.

  15. Liquidity crises on different time scales

    NASA Astrophysics Data System (ADS)

    Corradi, Francesco; Zaccaria, Andrea; Pietronero, Luciano

    2015-12-01

    We present an empirical analysis of the microstructure of financial markets and, in particular, of the static and dynamic properties of liquidity. We find that on relatively large time scales (15 min) large price fluctuations are connected to the failure of the subtle mechanism of compensation between the flows of market and limit orders: in other words, the missed revelation of the latent order book breaks the dynamical equilibrium between the flows, triggering the large price jumps. On smaller time scales (30 s), instead, the static depletion of the limit order book is an indicator of an intrinsic fragility of the system, which is related to a strongly nonlinear enhancement of the response. In order to quantify this phenomenon we introduce a measure of the liquidity imbalance present in the book and we show that it is correlated to both the sign and the magnitude of the next price movement. These findings provide a quantitative definition of the effective liquidity, which proves to be strongly dependent on the considered time scales.

  16. Basic Research on Time-Reversal Waves in Deep Ocean for Long Acoustic Communication

    NASA Astrophysics Data System (ADS)

    Shimura, Takuya; Watanabe, Yoshitaka; Ochi, Hiroshi

    2005-06-01

    We have studied the focusing property of time-reversal waves and its application to acoustic communication in shallow water. In this study, this focusing property in the deep ocean and its application to long horizontal acoustic communication are discussed. The results are as follows. Even if a time-reversal array (TRA) does not expand from the sea surface to the seabed, time-reversal signals converge, and the focusing property is not significantly affected by the depths of the focus and TRA. Then, it is revealed that by using time reversal, it is possible to enssure communication channel over a long range, through the simulation. In phase modulation, time reversal can demodulate almost only by itself, while in amplitude and phase modulation, an adaptive filter to compensates further.

  17. Acoustic Emission Patterns and the Transition to Ductility in Sub-Micron Scale Laboratory Earthquakes

    NASA Astrophysics Data System (ADS)

    Ghaffari, H.; Xia, K.; Young, R.

    2013-12-01

    We report observation of a transition from the brittle to ductile regime in precursor events from different rock materials (Granite, Sandstone, Basalt, and Gypsum) and Polymers (PMMA, PTFE and CR-39). Acoustic emission patterns associated with sub-micron scale laboratory earthquakes are mapped into network parameter spaces (functional damage networks). The sub-classes hold nearly constant timescales, indicating dependency of the sub-phases on the mechanism governing the previous evolutionary phase, i.e., deformation and failure of asperities. Based on our findings, we propose that the signature of the non-linear elastic zone around a crack tip is mapped into the details of the evolutionary phases, supporting the formation of a strongly weak zone in the vicinity of crack tips. Moreover, we recognize sub-micron to micron ruptures with signatures of 'stiffening' in the deformation phase of acoustic-waveforms. We propose that the latter rupture fronts carry critical rupture extensions, including possible dislocations faster than the shear wave speed. Using 'template super-shear waveforms' and their network characteristics, we show that the acoustic emission signals are possible super-shear or intersonic events. Ref. [1] Ghaffari, H. O., and R. P. Young. "Acoustic-Friction Networks and the Evolution of Precursor Rupture Fronts in Laboratory Earthquakes." Nature Scientific reports 3 (2013). [2] Xia, Kaiwen, Ares J. Rosakis, and Hiroo Kanamori. "Laboratory earthquakes: The sub-Rayleigh-to-supershear rupture transition." Science 303.5665 (2004): 1859-1861. [3] Mello, M., et al. "Identifying the unique ground motion signatures of supershear earthquakes: Theory and experiments." Tectonophysics 493.3 (2010): 297-326. [4] Gumbsch, Peter, and Huajian Gao. "Dislocations faster than the speed of sound." Science 283.5404 (1999): 965-968. [5] Livne, Ariel, et al. "The near-tip fields of fast cracks." Science 327.5971 (2010): 1359-1363. [6] Rycroft, Chris H., and Eran Bouchbinder

  18. Integrated measurements of acoustical and optical thin layers I: Vertical scales of association

    NASA Astrophysics Data System (ADS)

    Benoit-Bird, Kelly J.; Moline, Mark A.; Waluk, Chad M.; Robbins, Ian C.

    2010-01-01

    This study combined measurements from multiple platforms with acoustic instruments on moorings and on a ship and optics on a profiler and an autonomous underwater vehicle (AUV) to examine the relationships between fluorescent, bioluminescent, and acoustically scattering layers in Monterey Bay during nighttime hours in July and August of 2006 and May of 2008. We identified thin bioluminescent layers that were strongly correlated with acoustic scattering at the same depth but were part of vertically broad acoustic features, suggesting layers of unique composition inside larger biomass features. These compositional thin layers nested inside larger biomass features may be a common ecosystem component and are likely to have significant ecological impacts but are extremely difficult to identify as most approaches capable of the vertical scales of measurement necessary for the identification of sub-meter scale patterns assess bulk properties rather than specific layer composition. Measurements of multiple types of thin layers showed that the depth offset between thin phytoplankton and zooplankton layers was highly variable with some layers found at the same depth but others found up to 16 m apart. The vertical offset between phytoplankton and zooplankton thin layers was strongly predicted by the fraction of the water column fluorescence contained within a thin phytoplankton layer. Thin zooplankton layers were only vertically associated with thin phytoplankton layers when the phytoplankton in a layer accounted for more than about 18-20% of the water column chlorophyll. Trophic interactions were likely occurring between phytoplankton and zooplankton thin layers but phytoplankton thin layers were exploited by zooplankton only when they represented a large fraction of the available phytoplankton, suggesting zooplankton have some knowledge of the available food over the entire water column. The horizontal extent of phytoplankton layers, discussed in the second paper in this

  19. Periodic Time-Domain Nonlocal Nonreflecting Boundary Conditions for Duct Acoustics

    NASA Technical Reports Server (NTRS)

    Watson, Willie R.; Zorumski, William E.

    1996-01-01

    Periodic time-domain boundary conditions are formulated for direct numerical simulation of acoustic waves in ducts without flow. Well-developed frequency-domain boundary conditions are transformed into the time domain. The formulation is presented here in one space dimension and time; however, this formulation has an advantage in that its extension to variable-area, higher dimensional, and acoustically treated ducts is rigorous and straightforward. The boundary condition simulates a nonreflecting wave field in an infinite uniform duct and is implemented by impulse-response operators that are applied at the boundary of the computational domain. These operators are generated by convolution integrals of the corresponding frequency-domain operators. The acoustic solution is obtained by advancing the Euler equations to a periodic state with the MacCormack scheme. The MacCormack scheme utilizes the boundary condition to limit the computational space and preserve the radiation boundary condition. The success of the boundary condition is attributed to the fact that it is nonreflecting to periodic acoustic waves. In addition, transient waves can pass rapidly out of the solution domain. The boundary condition is tested for a pure tone and a multitone source in a linear setting. The effects of various initial conditions are assessed. Computational solutions with the boundary condition are consistent with the known solutions for nonreflecting wave fields in an infinite uniform duct.

  20. Ray travel times at long ranges in acoustic waveguides.

    PubMed

    Virovlyansky, A L

    2003-05-01

    The Hamiltonian formalism in terms of the action-angle variables is applied to study ray travel times in a waveguide with a smooth sound speed profile perturbed by a weak range-dependent inhomogeneity. A simple approximate formula relating the differences in ray travel times to range variations of action variables is derived. This relation is applied to study range variations of the timefront (representing ray arrivals in the time-depth plane). Widening and bias of timefront segments in the presence of perturbations are considered. Qualitative and quantitative explanations are given to surprising stability of early portions of timefronts observed in both numerical simulations and field experiments. This phenomenon is interpreted from the viewpoint of Fermat's principle. By ray tracing in a realistic deep water environment with an internal-wave-induced perturbation it has been demonstrated that our approach can be used at ranges up to, at least, 3000 km. PMID:12765372

  1. Multidimensional scaling of musical time estimations.

    PubMed

    Cocenas-Silva, Raquel; Bueno, José Lino Oliveira; Molin, Paul; Bigand, Emmanuel

    2011-06-01

    The aim of this study was to identify the psycho-musical factors that govern time evaluation in Western music from baroque, classic, romantic, and modern repertoires. The excerpts were previously found to represent variability in musical properties and to induce four main categories of emotions. 48 participants (musicians and nonmusicians) freely listened to 16 musical excerpts (lasting 20 sec. each) and grouped those that seemed to have the same duration. Then, participants associated each group of excerpts to one of a set of sine wave tones varying in duration from 16 to 24 sec. Multidimensional scaling analysis generated a two-dimensional solution for these time judgments. Musical excerpts with high arousal produced an overestimation of time, and affective valence had little influence on time perception. The duration was also overestimated when tempo and loudness were higher, and to a lesser extent, timbre density. In contrast, musical tension had little influence. PMID:21853763

  2. Various time-scales of relaxation

    NASA Astrophysics Data System (ADS)

    Ali-Akbari, M.; Charmchi, F.; Ebrahim, H.; Shahkarami, L.

    2016-08-01

    Via gauge-gravity duality, relaxation of far-from-equilibrium initial states in a strongly coupled gauge theory has been investigated. In the system we consider in this paper there are two ways where the state under study can deviate from its equilibrium: anisotropic pressure and time-dependent expectation value of a scalar operator with Δ =3 . In the gravity theory, this system corresponds to Einstein's general relativity with a nontrivial metric, including the anisotropy function, coupled to a massive scalar matter field. We study the effect of different initial configurations for the scalar field and anisotropy function on physical processes such as thermalization, i.e., time evolution of an event horizon; equilibration of the expectation value of a scalar operator; and isotropization. We also discuss time ordering of these time-scales.

  3. Acoustic imaging with time reversal methods: From medicine to NDT

    NASA Astrophysics Data System (ADS)

    Fink, Mathias

    2015-03-01

    This talk will present an overview of the research conducted on ultrasonic time-reversal methods applied to biomedical imaging and to non-destructive testing. We will first describe iterative time-reversal techniques that allow both focusing ultrasonic waves on reflectors in tissues (kidney stones, micro-calcifications, contrast agents) or on flaws in solid materials. We will also show that time-reversal focusing does not need the presence of bright reflectors but it can be achieved only from the speckle noise generated by random distributions of non-resolved scatterers. We will describe the applications of this concept to correct distortions and aberrations in ultrasonic imaging and in NDT. In the second part of the talk we will describe the concept of time-reversal processors to get ultrafast ultrasonic images with typical frame rates of order of 10.000 F/s. It is the field of ultrafast ultrasonic imaging that has plenty medical applications and can be of great interest in NDT. We will describe some applications in the biomedical domain: Quantitative Elasticity imaging of tissues by following shear wave propagation to improve cancer detection and Ultrafast Doppler imaging that allows ultrasonic functional imaging.

  4. Short-time scale behavior modeling within long-time scale fuel cycle evaluations

    SciTech Connect

    Johnson, M.; Tsvetkov, P.; Lucas, S.

    2012-07-01

    Typically, short-time and long-time scales in nuclear energy system behavior are accounted for with entirely separate models. However, long-term changes in system characteristics do affect short-term transients through material variations. This paper presents an approach to consistently account for short-time scales within a nuclear system lifespan. The reported findings and developments are of significant importance for small modular reactors and other nuclear energy systems operating in autonomous modes. It is necessary to simulate the short time-scale kinetic behavior of the reactor as well as the long time-scale dynamics that occur with fuel burnup. The former is modeled using the point kinetics equations, while the latter is modeled by the Bateman equations. (authors)

  5. Wireless acoustic modules for real-time data fusion using asynchronous sniper localization algorithms

    NASA Astrophysics Data System (ADS)

    Hengy, S.; De Mezzo, S.; Duffner, P.; Naz, P.

    2012-11-01

    The presence of snipers in modern conflicts leads to high insecurity for the soldiers. In order to improve the soldier's protection against this threat, the French German Research Institute of Saint-Louis (ISL) has been conducting studies in the domain of acoustic localization of shots. Mobile antennas mounted on the soldier's helmet were initially used for real-time detection, classification and localization of sniper shots. It showed good performances in land scenarios, but also in urban scenarios if the array was in the shot corridor, meaning that the microphones first detect the direct wave and then the reflections of the Mach and muzzle waves (15% distance estimation error compared to the actual shooter array distance). Fusing data sent by multiple sensor nodes distributed on the field showed some of the limitations of the technologies that have been implemented in ISL's demonstrators. Among others, the determination of the arrays' orientation was not accurate enough, thereby degrading the performance of data fusion. Some new solutions have been developed in the past year in order to obtain better performance for data fusion. Asynchronous localization algorithms have been developed and post-processed on data measured in both free-field and urban environments with acoustic modules on the line of sight of the shooter. These results are presented in the first part of the paper. The impact of GPS position estimation error is also discussed in the article in order to evaluate the possible use of those algorithms for real-time processing using mobile acoustic nodes. In the frame of ISL's transverse project IMOTEP (IMprovement Of optical and acoustical TEchnologies for the Protection), some demonstrators are developed that will allow real-time asynchronous localization of sniper shots. An embedded detection and classification algorithm is implemented on wireless acoustic modules that send the relevant information to a central PC. Data fusion is then processed and the

  6. Timing and classifying brief acoustic stimuli by songbirds and humans.

    PubMed

    Weisman, R; Brownlie, L; Olthof, A; Njegovan, M; Sturdy, C; Mewhort, D

    1999-04-01

    The durations of animals' brief vocalizations provide conspecifics with important recognition cues. In the present experiments, zebra finches and humans (trained musicians) were rewarded for responding after S+ (standard) auditory signals from 56 to 663 ms and not for responding after shorter or longer S- (comparison) durations from 10 to 3684 ms. With either a single standard (Experiment 1) or multiple standards (Experiment 2), both zebra finches and humans timed brief signals to about the same level of accuracy. The results were in qualitative agreement with predictions from scalar timing theory and its connectionist implementation in both experiments. The connectionist model provides a good quantitative account of temporal gradients with a single standard (Experiment 1) but not with multiple standards (Experiment 2). PMID:10331915

  7. A machine for neural computation of acoustical patterns with application to real time speech recognition

    NASA Astrophysics Data System (ADS)

    Mueller, P.; Lazzaro, J.

    1986-08-01

    400 analog electronic neurons have been assembled and connected for the analysis and recognition of acoustical patterns, including speech. Input to the net comes from a set of 18 band pass filters (Qmax 300 dB/octave; 180 to 6000 Hz, log scale). The net is organized into two parts, the first performs in real time the decomposition of the input patterns into their primitives of energy, space (frequency) and time relations. The other part decodes the set of primitives. 216 neurons are dedicated to pattern decomposition. The output of the individual filters is rectified and fed to two sets of 18 neurons in an opponent center-surround organization of synaptic connections (``on center'' and (``off center''). These units compute maxima and minima of energy at different frequencies. The next two sets of neutrons compute the temporal boundaries (``on'') and ``off'') and the following two the movement of the energy maxima (formants) up or down the frequency axis. There are in addition ``hyperacuity'' units which expand the frequency resolution to 36, other units tuned to a particular range of duration of the ``on center'' units and others tuned exclusively to very low energy sounds. In order to recognize speech sounds at the phoneme or diphone level, the set of primitives belonging to the phoneme is decoded such that only one neuron or a non-overlapping group of neurons fire when the sound pattern is present at the input. For display and translation into phonetic symbols the output from these neurons is fed into an EPROM decoder and computer which displays in real time a phonetic representation of the speech input.

  8. An Acoustical Comparison of Sub-Scale and Full-Scale Far-Field Measurements for the Reusable Solid Rocket Motor

    NASA Technical Reports Server (NTRS)

    Haynes, Jared; Kenny, R. Jeremy

    2010-01-01

    Recently, members of the Marshall Space Flight Center (MSFC) Fluid Dynamics Branch and Wyle Labs measured far-field acoustic data during a series of three Reusable Solid Rocket Motor (RSRM) horizontal static tests conducted in Promontory, Utah. The test motors included the Technical Evaluation Motor 13 (TEM-13), Flight Verification Motor 2 (FVM-2), and the Flight Simulation Motor 15 (FSM-15). Similar far-field data were collected during horizontal static tests of sub-scale solid rocket motors at MSFC. Far-field acoustical measurements were taken at multiple angles within a circular array centered about the nozzle exit plane, each positioned at a radial distance of 80 nozzle-exit-diameters from the nozzle. This type of measurement configuration is useful for calculating rocket noise characteristics such as those outlined in the NASA SP-8072 "Acoustic Loads Generated by the Propulsion System." Acoustical scaling comparisons are made between the test motors, with particular interest in the Overall Sound Power, Acoustic Efficiency, Non-dimensional Relative Sound Power Spectrum, and Directivity. Since most empirical data in the NASA SP-8072 methodology is derived from small rockets, this investigation provides an opportunity to check the data collapse between a sub-scale and full-scale rocket motor.

  9. South Atlantic Spreading Velocities and Time Scales

    NASA Astrophysics Data System (ADS)

    Clark, S. R.; Smethurst, M. A.; Bianchi, M. C.

    2013-12-01

    Plate reconstructions based on hierarchical spherical rotations have been around for many years. For the breakup of Pangea and Gondwana, these reconstructions are based on two major sources: magnetic isochrons and geological evidence for the onset of rifting and the tightness of the fit between continents. These reconstructions imply spreading velocities and it is the changes in velocities that can be used to probe questions of the forces moving plates around. In order to calculate the velocities correctly though, the importance of the choice of geologic time scale is often ignored. In this talk, we focus on the South Atlantic and calculate the spreading velocity errors implied by the choice of time scale for three major epochs: the Cenozoic and Late Mesozoic, the Cretaceous Quiet Zone and the Late Cretaceous to the Early Jurassic. In addition, we report the spreading velocities implied through these phases by various available magnetic isochron-derived reconstructions and the geological fits for South America and Africa used by large scale global reconstruction as well as in recent papers. Finally, we will highlight the implications for the choice of the mantle reference frame on African plate velocities.

  10. Gradual time reversal in thermo- and photo-acoustic tomography within a resonant cavity

    NASA Astrophysics Data System (ADS)

    Holman, B.; Kunyansky, L.

    2015-03-01

    Thermo- and photo-acoustic tomography require reconstructing initial acoustic pressure in a body from time series of pressure measured on a surface surrounding the body. For the classical case of free space wave propagation, various reconstruction techniques are well known. However, some novel measurement schemes place the object of interest between reflecting walls that form a de facto resonant cavity. In this case, known methods (including the popular time reversal algorithm) cannot be used. The inverse problem involving reflecting walls can be solved by the gradual time reversal method we propose here. It consists in solving back in time on the interval [0,T] the initial/boundary value problem for the wave equation, with the Dirichlet boundary data multiplied by a smooth cutoff function. If T is sufficiently large one obtains a good approximation to the initial pressure; in the limit of large T such an approximation converges (under certain conditions) to the exact solution.

  11. [Research on Time-frequency Characteristics of Magneto-acoustic Signal of Different Thickness Medium Based on Wave Summing Method].

    PubMed

    Zhang, Shunqi; Yin, Tao; Ma, Ren; Liu, Zhipeng

    2015-08-01

    Functional imaging method of biological electrical characteristics based on magneto-acoustic effect gives valuable information of tissue in early tumor diagnosis, therein time and frequency characteristics analysis of magneto-acoustic signal is important in image reconstruction. This paper proposes wave summing method based on Green function solution for acoustic source of magneto-acoustic effect. Simulations and analysis under quasi 1D transmission condition are carried out to time and frequency characteristics of magneto-acoustic signal of models with different thickness. Simulation results of magneto-acoustic signal were verified through experiments. Results of the simulation with different thickness showed that time-frequency characteristics of magneto-acoustic signal reflected thickness of sample. Thin sample, which is less than one wavelength of pulse, and thick sample, which is larger than one wavelength, showed different summed waveform and frequency characteristics, due to difference of summing thickness. Experimental results verified theoretical analysis and simulation results. This research has laid a foundation for acoustic source and conductivity reconstruction to the medium with different thickness in magneto-acoustic imaging.

  12. Deciphering Time Scale Hierarchy in Reaction Networks.

    PubMed

    Nagahata, Yutaka; Maeda, Satoshi; Teramoto, Hiroshi; Horiyama, Takashi; Taketsugu, Tetsuya; Komatsuzaki, Tamiki

    2016-03-01

    Markovian dynamics on complex reaction networks are one of the most intriguing subjects in a wide range of research fields including chemical reactions, biological physics, and ecology. To represent the global kinetics from one node (corresponding to a basin on an energy landscape) to another requires information on multiple pathways that directly or indirectly connect these two nodes through the entire network. In this paper we present a scheme to extract a hierarchical set of global transition states (TSs) over a discrete-time Markov chain derived from first-order rate equations. The TSs can naturally take into account the multiple pathways connecting any pair of nodes. We also propose a new type of disconnectivity graph (DG) to capture the hierarchical organization of different time scales of reactions that can capture changes in the network due to changes in the time scale of observation. The crux is the introduction of the minimum conductance cut (MCC) in graph clustering, corresponding to the dividing surface across the network having the "smallest" transition probability between two disjoint subnetworks (superbasins on the energy landscape) in the network. We present a new combinatorial search algorithm for finding this MCC. We apply our method to a reaction network of Claisen rearrangement of allyl vinyl ether that consists of 23 nodes and 66 links (saddles on the energy landscape) connecting them. We compare the kinetic properties of our DG to those of the transition matrix of the rate equations and show that our graph can properly reveal the hierarchical organization of time scales in a network. PMID:26641663

  13. Scaling laws from geomagnetic time series

    USGS Publications Warehouse

    Voros, Z.; Kovacs, P.; Juhasz, A.; Kormendi, A.; Green, A.W.

    1998-01-01

    The notion of extended self-similarity (ESS) is applied here for the X - component time series of geomagnetic field fluctuations. Plotting nth order structure functions against the fourth order structure function we show that low-frequency geomagnetic fluctuations up to the order n = 10 follow the same scaling laws as MHD fluctuations in solar wind, however, for higher frequencies (f > l/5[h]) a clear departure from the expected universality is observed for n > 6. ESS does not allow to make an unambiguous statement about the non triviality of scaling laws in "geomagnetic" turbulence. However, we suggest to use higher order moments as promising diagnostic tools for mapping the contributions of various remote magnetospheric sources to local observatory data. Copyright 1998 by the American Geophysical Union.

  14. Measurement of the space-time correlation function of thermal acoustic radiation

    NASA Astrophysics Data System (ADS)

    Passechnik, V. I.; Anosov, A. A.; Barabanenkov, Yu. N.; Sel'Sky, A. G.

    2003-09-01

    The space-time correlation function of thermal acoustic radiation pressure is measured for a stationary heated source (a narrow plasticine plate). The correlation dependence is obtained by the multiplication of two signals shifted in time with respect to each other and measured by two receivers. The dependence exhibits an oscillating behavior and changes sign when the source is displaced by half the spatial period of the correlation function.

  15. The Abysmal State of Abyssal Time Series: An Acoustic Challenge

    NASA Astrophysics Data System (ADS)

    Munk, W. H.; Worcester, P. F.; Dushaw, B. D.; Howe, B. M.; Spindel, R. C.

    2001-12-01

    The 20th century rise in global sea level by 18 cm has not been explained. The rise has been continuous and linear since the previous century. It cannot be predominantly the result of thermal expansion. Global ocean warming (as recently compiled by Levitus and his collaborators) started too late, is too non-linear and too weak to account for the recorded rise. It is not impossible that the global warming has been underestimated for lack of adequate observations in the southern hemisphere, and at abyssal depths. Time series of abyssal temperatures are badly lacking. Tomographic methods have the required precision, vertical resolution and horizontal integration to accomplish this task. A more likely explanation is to attribute most of the sea level rise to melting of polar ice sheets. There are two difficulties: the required melting is considerably larger than has generally been estimated, and there are serious restrictions imposed by astronomic measurements of the Earth?s rotation.

  16. Subjective scaling of spatial room acoustic parameters influenced by visual environmental cues

    PubMed Central

    Valente, Daniel L.; Braasch, Jonas

    2010-01-01

    Although there have been numerous studies investigating subjective spatial impression in rooms, only a few of those studies have addressed the influence of visual cues on the judgment of auditory measures. In the psychophysical study presented here, video footage of five solo music∕speech performers was shown for four different listening positions within a general-purpose space. The videos were presented in addition to the acoustic signals, which were auralized using binaural room impulse responses (BRIR) that were recorded in the same general-purpose space. The participants were asked to adjust the direct-to-reverberant energy ratio (D∕R ratio) of the BRIR according to their expectation considering the visual cues. They were also directed to rate the apparent source width (ASW) and listener envelopment (LEV) for each condition. Visual cues generated by changing the sound-source position in the multi-purpose space, as well as the makeup of the sound stimuli affected the judgment of spatial impression. Participants also scaled the direct-to-reverberant energy ratio with greater direct sound energy than was measured in the acoustical environment. PMID:20968367

  17. Chronic stroke and aging: the impact of acoustic stimulus intensity on fractionated reaction time.

    PubMed

    Coombes, Stephen A; Janelle, Christopher M; Cauraugh, James H

    2009-03-13

    In control samples, intense acoustic "go" stimuli accelerate the central and peripheral motor processes that compose simple reaction time movements. The goal of the current study was to determine whether movements that are initiated to intense acoustic cues facilitate simple reaction times in (1) adults with chronic stroke as compared to age matched controls and (2) in older as compared to younger adults. EMG and force data were collected from three groups (stroke, older adults, and younger adults) during a ballistic wrist and finger extension task. Movements were made to the onset of 80 dB and 107 dB acoustic cues and simple reaction times were fractionated into premotor and motor components. The present findings offer two important contributions to the literature. First, increases in stimulus intensity led to faster motor times in the impaired limb of stroke subjects. Second, increased stimulus intensity led to faster premotor reaction times across all groups, although an age rather than a stroke-specific motor deficit was evidenced, with the younger control group displaying significantly faster premotor times. Findings are integrated with previous evidence concerning post stroke corticospinal tract integrity and are interpreted via mechanisms which address stroke and age-related changes in motoneurons and activity in motor units.

  18. Acoustic Treatment Design Scaling Methods. Volume 2; Advanced Treatment Impedance Models for High Frequency Ranges

    NASA Technical Reports Server (NTRS)

    Kraft, R. E.; Yu, J.; Kwan, H. W.

    1999-01-01

    The primary purpose of this study is to develop improved models for the acoustic impedance of treatment panels at high frequencies, for application to subscale treatment designs. Effects that cause significant deviation of the impedance from simple geometric scaling are examined in detail, an improved high-frequency impedance model is developed, and the improved model is correlated with high-frequency impedance measurements. Only single-degree-of-freedom honeycomb sandwich resonator panels with either perforated sheet or "linear" wiremesh faceplates are considered. The objective is to understand those effects that cause the simple single-degree-of- freedom resonator panels to deviate at the higher-scaled frequency from the impedance that would be obtained at the corresponding full-scale frequency. This will allow the subscale panel to be designed to achieve a specified impedance spectrum over at least a limited range of frequencies. An advanced impedance prediction model has been developed that accounts for some of the known effects at high frequency that have previously been ignored as a small source of error for full-scale frequency ranges.

  19. Acoustic Source Localization via Distributed Sensor Networks using Tera-scale Optical-Core Devices

    SciTech Connect

    Imam, Neena; Barhen, Jacob; Wardlaw, Michael

    2008-01-01

    For real-time acoustic source localization applications, one of the primary challenges is the considerable growth in computational complexity associated with the emergence of ever larger, active or passive, distributed sensor networks. The complexity of the calculations needed to achieve accurate source localization increases dramatically with the size of sensor arrays, resulting in substantial growth of computational requirements that cannot be met with standard hardware. One option to meet this challenge builds upon the emergence of digital optical-core devices. The objective of this work was to explore the implementation of key building block algorithms used in underwater source localization on an optical-core digital processing platform recently introduced by Lenslet Inc. They investigate key concepts of threat-detection algorithms such as Time Difference Of Arrival (TDOA) estimation via sensor data correlation in the time domain with the purpose of implementation on the optical-core processor. they illustrate their results with the aid of numerical simulation and actual optical hardware runs. The major accomplishments of this research, in terms of computational speedup and numerical accurcy achieved via the deployment of optical processing technology, should be of substantial interest to the acoustic signal processing community.

  20. Non-intrusive, high-resolution, real-time, two-dimensional imaging of multiphase materials using acoustic array sensors

    NASA Astrophysics Data System (ADS)

    Cassiède, M.; Shaw, J. M.

    2015-04-01

    Two parallel multi-element ultrasonic acoustic arrays combined with sets of focal laws for acoustic signal generation and a classical tomographic inversion algorithm are used to generate real-time two-dimensional micro seismic acoustic images of multiphase materials. Proof of concept and calibration measurements were performed for single phase and two phase liquids, uniform polyvinyl chloride (PVC) plates, and aluminum cylinders imbedded in PVC plates. Measurement artefacts, arising from the limited range of viewing angles, and the compromise between data acquisition rate and image quality are discussed. The angle range of scanning and the image resolution were varied, and the effects on the quality of the reproduction of the speed of sound profiles of model solids and liquids with known geometries and compositions were analysed in detail. The best image quality results were obtained for a scanning angle range of [-35°, 35°] at a step size of 2.5° post processed to generate images on a 40 μm square grid. The data acquisition time for high quality images with a 30 mm × 40 mm view field is 10 min. Representation of two-phase solids with large differences in speed of sound between phases and where one phase is dispersed in the form of macroscopic objects (greater than 1 mm in diameter) proved to be the most difficult to image accurately. Liquid-liquid and liquid-vapor phase boundaries, in micro porous solids by contrast, were more readily defined. Displacement of air by water and water by heptane in natural porous limestone provides illustrative kinetic examples. Measurement results with these realistic cases demonstrate the feasibility of the technique to monitor in real time and on the micrometer length scale local composition and flow of organic liquids in inorganic porous media, one of many envisioned engineering applications. Improvement of data acquisition rate is an area for future collaborative study.

  1. Non-intrusive, high-resolution, real-time, two-dimensional imaging of multiphase materials using acoustic array sensors.

    PubMed

    Cassiède, M; Shaw, J M

    2015-04-01

    Two parallel multi-element ultrasonic acoustic arrays combined with sets of focal laws for acoustic signal generation and a classical tomographic inversion algorithm are used to generate real-time two-dimensional micro seismic acoustic images of multiphase materials. Proof of concept and calibration measurements were performed for single phase and two phase liquids, uniform polyvinyl chloride (PVC) plates, and aluminum cylinders imbedded in PVC plates. Measurement artefacts, arising from the limited range of viewing angles, and the compromise between data acquisition rate and image quality are discussed. The angle range of scanning and the image resolution were varied, and the effects on the quality of the reproduction of the speed of sound profiles of model solids and liquids with known geometries and compositions were analysed in detail. The best image quality results were obtained for a scanning angle range of [-35°, 35°] at a step size of 2.5° post processed to generate images on a 40 μm square grid. The data acquisition time for high quality images with a 30 mm × 40 mm view field is 10 min. Representation of two-phase solids with large differences in speed of sound between phases and where one phase is dispersed in the form of macroscopic objects (greater than 1 mm in diameter) proved to be the most difficult to image accurately. Liquid-liquid and liquid-vapor phase boundaries, in micro porous solids by contrast, were more readily defined. Displacement of air by water and water by heptane in natural porous limestone provides illustrative kinetic examples. Measurement results with these realistic cases demonstrate the feasibility of the technique to monitor in real time and on the micrometer length scale local composition and flow of organic liquids in inorganic porous media, one of many envisioned engineering applications. Improvement of data acquisition rate is an area for future collaborative study. PMID:25933884

  2. Non-intrusive, high-resolution, real-time, two-dimensional imaging of multiphase materials using acoustic array sensors

    SciTech Connect

    Cassiède, M.; Shaw, J. M.

    2015-04-15

    Two parallel multi-element ultrasonic acoustic arrays combined with sets of focal laws for acoustic signal generation and a classical tomographic inversion algorithm are used to generate real-time two-dimensional micro seismic acoustic images of multiphase materials. Proof of concept and calibration measurements were performed for single phase and two phase liquids, uniform polyvinyl chloride (PVC) plates, and aluminum cylinders imbedded in PVC plates. Measurement artefacts, arising from the limited range of viewing angles, and the compromise between data acquisition rate and image quality are discussed. The angle range of scanning and the image resolution were varied, and the effects on the quality of the reproduction of the speed of sound profiles of model solids and liquids with known geometries and compositions were analysed in detail. The best image quality results were obtained for a scanning angle range of [−35°, 35°] at a step size of 2.5° post processed to generate images on a 40 μm square grid. The data acquisition time for high quality images with a 30 mm × 40 mm view field is 10 min. Representation of two-phase solids with large differences in speed of sound between phases and where one phase is dispersed in the form of macroscopic objects (greater than 1 mm in diameter) proved to be the most difficult to image accurately. Liquid-liquid and liquid-vapor phase boundaries, in micro porous solids by contrast, were more readily defined. Displacement of air by water and water by heptane in natural porous limestone provides illustrative kinetic examples. Measurement results with these realistic cases demonstrate the feasibility of the technique to monitor in real time and on the micrometer length scale local composition and flow of organic liquids in inorganic porous media, one of many envisioned engineering applications. Improvement of data acquisition rate is an area for future collaborative study.

  3. Bound states in one-dimensional acoustic parity-time-symmetric lattices for perfect sensing

    NASA Astrophysics Data System (ADS)

    Zhao, Degang; Shen, Yaxi; Zhang, Yu; Zhu, Xuefeng; Yi, Lin

    2016-08-01

    In this letter, we study the propagation of acoustic waves through a one-dimensional multilayer structure composed of a thin defect layer sandwiched by two phononic crystals. Two kinds of defect states will generate in band gaps and both of them cause unitary transmission. However, they have very unlike field distributions due to the different contrasted acoustic impedances between the defect layer and its neighboring layers. Spectral positions of transmission peaks can be exactly determined by the resonant phase condition. In a non-dissipative system, these resonant states correspond to single crossing point of two eigenvalues of scattering matrix. When gain and loss are introduced to judiciously construct an acoustic parity-time-symmetric lattice, the crossing point will split into a pair of exceptional points (EPs). Interestingly, the EPs correspond to unidirectional zero reflection that is very sensitive to the thickness of defect layer. Taking advantage of this virtue, a very sensitive acoustic sensor can be designed, which has potentially applications in ultrasonic inspection, noise detection, ultrasonic medicine, etc.

  4. Small scale model static acoustic investigation of hybrid high lift systems combining upper surface blowing with the internally blown flap

    NASA Technical Reports Server (NTRS)

    Cole, T. W.; Rathburn, E. A.

    1974-01-01

    A static acoustic and propulsion test of a small radius Jacobs-Hurkamp and a large radius Flex Flap combined with four upper surface blowing (USB) nozzles was performed. Nozzle force and flow data, flap trailing edge total pressure survey data, and acoustic data were obtained. Jacobs-Hurkamp flap surface pressure data, flow visualization photographs, and spoiler acoustic data from the limited mid-year tests are reported. A pressure ratio range of 1.2 to 1.5 was investigated for the USB nozzles and for the auxiliary blowing slots. The acoustic data were scaled to a four-engine STOL airplane of roughly 110,000 kilograms or 50,000 pounds gross weight, corresponding to a model scale of approximately 0.2 for the nozzles without deflector. The model nozzle scale is actually reduced to about .17 with deflector although all results in this report assume 0.2 scale factor. Trailing edge pressure surveys indicated that poor flow attachment was obtained even at large flow impingement angles unless a nozzle deflector plate was used. Good attachment was obtained with the aspect ratio four nozzle with deflector, confirming the small scale wind tunnel tests.

  5. Toward an objective Phanerozoic time scale

    NASA Astrophysics Data System (ADS)

    Carr, Paul F.; Jones, Brian G.; Quinn, Barry G.; Wright, Anthony J.

    1984-05-01

    Previous age estimations of period, series, and stage boundaries for the Phanerozoic have usually relied on a subjective approach, in which visual inspection was used to determine each time interval. This subjectivity can be eliminated partially by fitting a piecewise linear regression model of radiometric age on a variable calculated from the biostratigraphic data, enabling the computation of estimates of, and confidence limits for, various boundaries of interest. This method is illustrated by calculating the duration of each Phanerozoic system and thus the quantitative age of all the system boundaries. The method can be extended to investigate any part of the Phanerozoic time scale in more detail, provided sufficient biostratigraphically well-controlled isotopic age data are available, as for example, for the Cenozoic and the Eocene. *Present address: University of Queensland, St. Lucia, Queensland, Australia 4067

  6. Identification of Damaged Wheat Kernels and Cracked-Shell Hazelnuts with Impact Acoustics Time-Frequency Patterns

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A new adaptive time-frequency (t-f) analysis and classification procedure is applied to impact acoustic signals for detecting hazelnuts with cracked shells and three types of damaged wheat kernels. Kernels were dropped onto a steel plate, and the resulting impact acoustic signals were recorded with ...

  7. Parametric instabilities in picosecond time scales

    SciTech Connect

    Baldis, H.A.; Rozmus, W.; Labaune, C.; Mounaix, Ph.; Pesme, D.; Baton, S.; Tikhonchuk, V.T.

    1993-03-01

    The coupling of intense laser light with plasmas is a rich field of plasma physics, with many applications. Among these are inertial confinement fusion (ICF), x-ray lasers, particle acceleration, and x-ray sources. Parametric instabilities have been studied for many years because of their importance to ICF; with laser pulses with duration of approximately a nanosecond, and laser intensities in the range 10{sup 14}--10{sup 15}W/cm{sup 2} these instabilities are of crucial concern because of a number of detrimental effects. Although the laser pulse duration of interest for these studies are relatively long, it has been evident in the past years that to reach an understanding of these instabilities requires their characterization and analysis in picosecond time scales. At the laser intensities of interest, the growth rate for stimulated Brillouin scattering (SBS) is of the order of picoseconds, and of an order of magnitude shorter for stimulated Raman scattering (SRS). In this paper the authors discuss SBS and SRS in the context of their evolution in picosecond time scales. They describe the fundamental concepts associated with their growth and saturation, and recent work on the nonlinear treatment required for the modeling of these instabilities at high laser intensities.

  8. ACOUSTIC SCALE FROM THE ANGULAR POWER SPECTRA OF SDSS-III DR8 PHOTOMETRIC LUMINOUS GALAXIES

    SciTech Connect

    Seo, Hee-Jong; Ho, Shirley; White, Martin; Reid, Beth; Schlegel, David J.; Cuesta, Antonio J.; Padmanabhan, Nikhil; Ross, Ashley J.; Percival, Will J.; Nichol, Robert C.; Saito, Shun; De Putter, Roland; Eisenstein, Daniel J.; Xu Xiaoying; Skibba, Ramin; Schneider, Donald P.; Verde, Licia; Bizyaev, Dmitry; Brewington, Howard; Brinkmann, J.; and others

    2012-12-10

    We measure the acoustic scale from the angular power spectra of the Sloan Digital Sky Survey III (SDSS-III) Data Release 8 imaging catalog that includes 872, 921 galaxies over {approx}10,000 deg{sup 2} between 0.45 < z < 0.65. The extensive spectroscopic training set of the Baryon Oscillation Spectroscopic Survey luminous galaxies allows precise estimates of the true redshift distributions of galaxies in our imaging catalog. Utilizing the redshift distribution information, we build templates and fit to the power spectra of the data, which are measured in our companion paper, to derive the location of Baryon acoustic oscillations (BAOs) while marginalizing over many free parameters to exclude nearly all of the non-BAO signal. We derive the ratio of the angular diameter distance to the sound horizon scale D{sub A} (z)/r{sub s} = 9.212{sup +0.416}{sub -{sub 0.404}} at z = 0.54, and therefore D{sub A} (z) = 1411 {+-} 65 Mpc at z = 0.54; the result is fairly independent of assumptions on the underlying cosmology. Our measurement of angular diameter distance D{sub A} (z) is 1.4{sigma} higher than what is expected for the concordance {Lambda}CDM, in accordance to the trend of other spectroscopic BAO measurements for z {approx}> 0.35. We report constraints on cosmological parameters from our measurement in combination with the WMAP7 data and the previous spectroscopic BAO measurements of SDSS and WiggleZ. We refer to our companion papers (Ho et al.; de Putter et al.) for investigations on information of the full power spectrum.

  9. Acoustic Force Density Acting on Inhomogeneous Fluids in Acoustic Fields.

    PubMed

    Karlsen, Jonas T; Augustsson, Per; Bruus, Henrik

    2016-09-01

    We present a theory for the acoustic force density acting on inhomogeneous fluids in acoustic fields on time scales that are slow compared to the acoustic oscillation period. The acoustic force density depends on gradients in the density and compressibility of the fluid. For microfluidic systems, the theory predicts a relocation of the inhomogeneities into stable field-dependent configurations, which are qualitatively different from the horizontally layered configurations due to gravity. Experimental validation is obtained by confocal imaging of aqueous solutions in a glass-silicon microchip. PMID:27661695

  10. Acoustic Force Density Acting on Inhomogeneous Fluids in Acoustic Fields.

    PubMed

    Karlsen, Jonas T; Augustsson, Per; Bruus, Henrik

    2016-09-01

    We present a theory for the acoustic force density acting on inhomogeneous fluids in acoustic fields on time scales that are slow compared to the acoustic oscillation period. The acoustic force density depends on gradients in the density and compressibility of the fluid. For microfluidic systems, the theory predicts a relocation of the inhomogeneities into stable field-dependent configurations, which are qualitatively different from the horizontally layered configurations due to gravity. Experimental validation is obtained by confocal imaging of aqueous solutions in a glass-silicon microchip.

  11. Near-real-time acoustic monitoring of beaked whales and other cetaceans using a Seaglider™.

    PubMed

    Klinck, Holger; Mellinger, David K; Klinck, Karolin; Bogue, Neil M; Luby, James C; Jump, William A; Shilling, Geoffrey B; Litchendorf, Trina; Wood, Angela S; Schorr, Gregory S; Baird, Robin W

    2012-01-01

    In most areas, estimating the presence and distribution of cryptic marine mammal species, such as beaked whales, is extremely difficult using traditional observational techniques such as ship-based visual line transect surveys. Because acoustic methods permit detection of animals underwater, at night, and in poor weather conditions, passive acoustic observation has been used increasingly often over the last decade to study marine mammal distribution, abundance, and movements, as well as for mitigation of potentially harmful anthropogenic effects. However, there is demand for new, cost-effective tools that allow scientists to monitor areas of interest autonomously with high temporal and spatial resolution in near-real time. Here we describe an autonomous underwater vehicle--a glider--equipped with an acoustic sensor and onboard data processing capabilities to passively scan an area for marine mammals in near-real time. The glider was tested extensively off the west coast of the Island of Hawai'i, USA. The instrument covered approximately 390 km during three weeks at sea and collected a total of 194 h of acoustic data. Detections of beaked whales were successfully reported to shore in near-real time. Manual analysis of the recorded data revealed a high number of vocalizations of delphinids and sperm whales. Furthermore, the glider collected vocalizations of unknown origin very similar to those made by known species of beaked whales. The instrument developed here can be used to cost-effectively screen areas of interest for marine mammals for several months at a time. The near-real-time detection and reporting capabilities of the glider can help to protect marine mammals during potentially harmful anthropogenic activities such as seismic exploration for sub-sea fossil fuels or naval sonar exercises. Furthermore, the glider is capable of under-ice operation, allowing investigation of otherwise inaccessible polar environments that are critical habitats for many

  12. Near-real-time acoustic monitoring of beaked whales and other cetaceans using a Seaglider™.

    PubMed

    Klinck, Holger; Mellinger, David K; Klinck, Karolin; Bogue, Neil M; Luby, James C; Jump, William A; Shilling, Geoffrey B; Litchendorf, Trina; Wood, Angela S; Schorr, Gregory S; Baird, Robin W

    2012-01-01

    In most areas, estimating the presence and distribution of cryptic marine mammal species, such as beaked whales, is extremely difficult using traditional observational techniques such as ship-based visual line transect surveys. Because acoustic methods permit detection of animals underwater, at night, and in poor weather conditions, passive acoustic observation has been used increasingly often over the last decade to study marine mammal distribution, abundance, and movements, as well as for mitigation of potentially harmful anthropogenic effects. However, there is demand for new, cost-effective tools that allow scientists to monitor areas of interest autonomously with high temporal and spatial resolution in near-real time. Here we describe an autonomous underwater vehicle--a glider--equipped with an acoustic sensor and onboard data processing capabilities to passively scan an area for marine mammals in near-real time. The glider was tested extensively off the west coast of the Island of Hawai'i, USA. The instrument covered approximately 390 km during three weeks at sea and collected a total of 194 h of acoustic data. Detections of beaked whales were successfully reported to shore in near-real time. Manual analysis of the recorded data revealed a high number of vocalizations of delphinids and sperm whales. Furthermore, the glider collected vocalizations of unknown origin very similar to those made by known species of beaked whales. The instrument developed here can be used to cost-effectively screen areas of interest for marine mammals for several months at a time. The near-real-time detection and reporting capabilities of the glider can help to protect marine mammals during potentially harmful anthropogenic activities such as seismic exploration for sub-sea fossil fuels or naval sonar exercises. Furthermore, the glider is capable of under-ice operation, allowing investigation of otherwise inaccessible polar environments that are critical habitats for many

  13. Near-Real-Time Acoustic Monitoring of Beaked Whales and Other Cetaceans Using a Seaglider™

    PubMed Central

    Klinck, Holger; Mellinger, David K.; Klinck, Karolin; Bogue, Neil M.; Luby, James C.; Jump, William A.; Shilling, Geoffrey B.; Litchendorf, Trina; Wood, Angela S.; Schorr, Gregory S.; Baird, Robin W.

    2012-01-01

    In most areas, estimating the presence and distribution of cryptic marine mammal species, such as beaked whales, is extremely difficult using traditional observational techniques such as ship-based visual line transect surveys. Because acoustic methods permit detection of animals underwater, at night, and in poor weather conditions, passive acoustic observation has been used increasingly often over the last decade to study marine mammal distribution, abundance, and movements, as well as for mitigation of potentially harmful anthropogenic effects. However, there is demand for new, cost-effective tools that allow scientists to monitor areas of interest autonomously with high temporal and spatial resolution in near-real time. Here we describe an autonomous underwater vehicle – a glider – equipped with an acoustic sensor and onboard data processing capabilities to passively scan an area for marine mammals in near-real time. The glider was tested extensively off the west coast of the Island of Hawai'i, USA. The instrument covered approximately 390 km during three weeks at sea and collected a total of 194 h of acoustic data. Detections of beaked whales were successfully reported to shore in near-real time. Manual analysis of the recorded data revealed a high number of vocalizations of delphinids and sperm whales. Furthermore, the glider collected vocalizations of unknown origin very similar to those made by known species of beaked whales. The instrument developed here can be used to cost-effectively screen areas of interest for marine mammals for several months at a time. The near-real-time detection and reporting capabilities of the glider can help to protect marine mammals during potentially harmful anthropogenic activities such as seismic exploration for sub-sea fossil fuels or naval sonar exercises. Furthermore, the glider is capable of under-ice operation, allowing investigation of otherwise inaccessible polar environments that are critical habitats for many

  14. Control of inertial acoustic cavitation in pulsed sonication using a real-time feedback loop system.

    PubMed

    Desjouy, Cyril; Poizat, Adrien; Gilles, Bruno; Inserra, Claude; Bera, Jean-Christophe

    2013-08-01

    Owing to the complex behavior of ultrasound-induced bubble clouds (nucleation, linear and nonlinear oscillations, collapse), acoustic cavitation remains a hardly controllable phenomenon, leading to poorly reproducible ultrasound-based therapies. A better control of the various aspects of cavitation phenomena for in vivo applications is a key requirement to improve emerging ultrasound therapies. Previous publications have reported on systems performing regulation of acoustic cavitation in continuous sonication when applied in vitro, but the main challenge today is to achieve real-time control of cavitation activity in pulsed sonication when used in vivo. The present work aims at developing a system to control acoustic cavitation in a pulsed wave condition using a real-time feedback loop. The experimental setup consists of a water bath in which is submerged a focused transducer (pulsed waves, frequency 550 kHz) used for sonication and a hydrophone used to listen to inertial cavitation. The designed regulation process allows the cavitation activity to be controlled through a 300 μs feedback loop. Without regulation, cavitation exhibits numerous bursts of intense activity and large variations of inertial cavitation level over time. In a regulated regime, the control of inertial cavitation activity within a pulse leads to consistent cavitation levels over time with an enhancement of the reproducibility.

  15. Performance of an underwater acoustic volume array using time-reversal focusing.

    PubMed

    Root, Joseph A; Rogers, Peter H

    2002-11-01

    Time reversal permits acoustic focusing and beam forming in inhomogeneous and/or high-scattering environments. A volumetric array geometry can suppress back lobes and can fit a large, powerful array of elements into small spaces, like the free-water spaces on submarines. This research investigates applying the time-reversal method to an underwater acoustic volume array. The experiments evaluate the focusing performance of a 27-element volume array when different scattering structures are present within the volume of the array. The array is arranged in a 3x3x3 cubic matrix configuration with 18.75-cm vertical and horizontal element spacing. The system utilizes second-derivative Gaussian pulses to focus on a point 30 cm from the array. Results include a comparison between time-reversal focusing and standard focusing, an evaluation of the volume array's ability to suppress back lobes, and an analysis of how different scattering environments affect focal region size. Potential underwater applications for a volume array using time reversal include acoustic imaging, naval mine hunting, sonar, and underwater communications.

  16. A particle filtering approach for spatial arrival time tracking in ocean acoustics.

    PubMed

    Jain, Rashi; Michalopoulou, Zoi-Heleni

    2011-06-01

    The focus of this work is on arrival time and amplitude estimation from acoustic signals recorded at spatially separated hydrophones in the ocean. A particle filtering approach is developed that treats arrival times as "targets" and tracks their "location" across receivers, also modeling arrival time gradient. The method is evaluated via Monte Carlo simulations and is compared to a maximum likelihood estimator, which does not relate arrivals at neighboring receivers. The comparison demonstrates a significant advantage in using the particle filter. It is also shown that posterior probability density functions of times and amplitudes become readily available with particle filtering. PMID:21682358

  17. A particle filtering approach for spatial arrival time tracking in ocean acoustics.

    PubMed

    Jain, Rashi; Michalopoulou, Zoi-Heleni

    2011-06-01

    The focus of this work is on arrival time and amplitude estimation from acoustic signals recorded at spatially separated hydrophones in the ocean. A particle filtering approach is developed that treats arrival times as "targets" and tracks their "location" across receivers, also modeling arrival time gradient. The method is evaluated via Monte Carlo simulations and is compared to a maximum likelihood estimator, which does not relate arrivals at neighboring receivers. The comparison demonstrates a significant advantage in using the particle filter. It is also shown that posterior probability density functions of times and amplitudes become readily available with particle filtering.

  18. Gust Acoustics Computation with a Space-Time CE/SE Parallel 3D Solver

    NASA Technical Reports Server (NTRS)

    Wang, X. Y.; Himansu, A.; Chang, S. C.; Jorgenson, P. C. E.; Reddy, D. R. (Technical Monitor)

    2002-01-01

    The benchmark Problem 2 in Category 3 of the Third Computational Aero-Acoustics (CAA) Workshop is solved using the space-time conservation element and solution element (CE/SE) method. This problem concerns the unsteady response of an isolated finite-span swept flat-plate airfoil bounded by two parallel walls to an incident gust. The acoustic field generated by the interaction of the gust with the flat-plate airfoil is computed by solving the 3D (three-dimensional) Euler equations in the time domain using a parallel version of a 3D CE/SE solver. The effect of the gust orientation on the far-field directivity is studied. Numerical solutions are presented and compared with analytical solutions, showing a reasonable agreement.

  19. Combined spatial diversity and time equalization for broadband multiple channel underwater acoustic communications

    NASA Astrophysics Data System (ADS)

    Skoro Kaskarovska, Violeta

    High data rate acoustic communications become feasible with the use of communication systems that operate at high frequency. The high frequency acoustic transmission in shallow water endures severe distortion as a result of the extensive intersymbol interference and Doppler shift, caused by the time variable multipath nature of the channel. In this research a Single Input Multiple Output (SIMO) acoustic communication system is developed to improve the reliability of the high data rate communications at short range in the shallow water acoustic channel. The proposed SIMO communication system operates at very high frequency and combines spatial diversity and decision feedback equalizer in a multilevel adaptive configuration. The first configuration performs selective combining on the equalized signals from multiple receivers and generates quality feedback parameter for the next level of combining. The second configuration implements a form of turbo equalization to evaluate the individual receivers using the feedback parameters as decision symbols. The improved signals from individual receivers are used in the next iteration of selective combining. Multiple iterations are used to achieve optimal estimate of the received signal. The multilevel adaptive configuration is evaluated on experimental and simulated data using SIMO system with three, four and five receivers. The simulation channel model developed for this research is based on experimental channel and Rician fading channel model. The performance of the channel is evaluated in terms of Bit Error Rate (BER) and Signal-to-Noise-and-Interference Ratio (SNIR). Using experimental data with non-zero BER, multilevel adaptive spatial diversity can achieve BER of 0 % and SNIR gain of 3 dB. The simulation results show that the average BER and SNIR after multilevel combining improve dramatically compared to the single receiver, even in case of extremely high BER of individual received signals. The results demonstrate the

  20. LISA simulations of time-reversed acoustic and elastic wave experiments

    NASA Astrophysics Data System (ADS)

    Delsanto, P. P.; Johnson, P. A.; Scalerandi, M.; Ten Cate, J. A.

    2002-12-01

    Several experiments in the last decade have demonstrated the enormous potential of time-reversed acoustic (TRA) and elastic (TRE) waves for applications in many fields, such as medicine, materials characterization and oceanography. In the present contribution, we demonstrate the applicability of the local interaction simulation approach (LISA) to simulate, by means of virtual experiments, both TRA and TRE and to reproduce the relevant features of both techniques.

  1. Source implementation to eliminate low-frequency artifacts in finite difference time domain room acoustic simulation.

    PubMed

    Jeong, Hyok; Lam, Yiu Wai

    2012-01-01

    The finite difference time domain (FDTD) method is a numerical technique that is straight forward to implement for the simulation of acoustic propagation. For room acoustics applications, the implementation of efficient source excitation and frequency dependent boundary conditions on arbitrary geometry can be seen as two of the most significant problems. This paper deals with the source implementation problem. Among existing source implementation methods, the hard source implementation is the simplest and computationally most efficient. Unfortunately, it generates a large low-frequency modulation in the measured time response. This paper presents a detailed investigation into these side effects. Surprisingly, some of these side effects are found to exist even if a transparent source implementation is used. By combing a time limited approach with a class of more natural source pulse function, this paper develops a source implementation method in FDTD that is as simple and computationally as efficient as a hard source implementation and yet capable of producing results that are virtually the same as a true transparent source. It is believed that the source implementation method developed in this paper will provide an improvement to the practical usability of the FDTD method for room acoustic simulation. PMID:22280589

  2. EDITORIAL: Special issue on time scale algorithms

    NASA Astrophysics Data System (ADS)

    Matsakis, Demetrios; Tavella, Patrizia

    2008-12-01

    This special issue of Metrologia presents selected papers from the Fifth International Time Scale Algorithm Symposium (VITSAS), including some of the tutorials presented on the first day. The symposium was attended by 76 persons, from every continent except Antarctica, by students as well as senior scientists, and hosted by the Real Instituto y Observatorio de la Armada (ROA) in San Fernando, Spain, whose staff further enhanced their nation's high reputation for hospitality. Although a timescale can be simply defined as a weighted average of clocks, whose purpose is to measure time better than any individual clock, timescale theory has long been and continues to be a vibrant field of research that has both followed and helped to create advances in the art of timekeeping. There is no perfect timescale algorithm, because every one embodies a compromise involving user needs. Some users wish to generate a constant frequency, perhaps not necessarily one that is well-defined with respect to the definition of a second. Other users might want a clock which is as close to UTC or a particular reference clock as possible, or perhaps wish to minimize the maximum variation from that standard. In contrast to the steered timescales that would be required by those users, other users may need free-running timescales, which are independent of external information. While no algorithm can meet all these needs, every algorithm can benefit from some form of tuning. The optimal tuning, and even the optimal algorithm, can depend on the noise characteristics of the frequency standards, or of their comparison systems, the most precise and accurate of which are currently Two Way Satellite Time and Frequency Transfer (TWSTFT) and GPS carrier phase time transfer. The interest in time scale algorithms and its associated statistical methodology began around 40 years ago when the Allan variance appeared and when the metrological institutions started realizing ensemble atomic time using more than

  3. EDITORIAL: Special issue on time scale algorithms

    NASA Astrophysics Data System (ADS)

    Matsakis, Demetrios; Tavella, Patrizia

    2008-12-01

    This special issue of Metrologia presents selected papers from the Fifth International Time Scale Algorithm Symposium (VITSAS), including some of the tutorials presented on the first day. The symposium was attended by 76 persons, from every continent except Antarctica, by students as well as senior scientists, and hosted by the Real Instituto y Observatorio de la Armada (ROA) in San Fernando, Spain, whose staff further enhanced their nation's high reputation for hospitality. Although a timescale can be simply defined as a weighted average of clocks, whose purpose is to measure time better than any individual clock, timescale theory has long been and continues to be a vibrant field of research that has both followed and helped to create advances in the art of timekeeping. There is no perfect timescale algorithm, because every one embodies a compromise involving user needs. Some users wish to generate a constant frequency, perhaps not necessarily one that is well-defined with respect to the definition of a second. Other users might want a clock which is as close to UTC or a particular reference clock as possible, or perhaps wish to minimize the maximum variation from that standard. In contrast to the steered timescales that would be required by those users, other users may need free-running timescales, which are independent of external information. While no algorithm can meet all these needs, every algorithm can benefit from some form of tuning. The optimal tuning, and even the optimal algorithm, can depend on the noise characteristics of the frequency standards, or of their comparison systems, the most precise and accurate of which are currently Two Way Satellite Time and Frequency Transfer (TWSTFT) and GPS carrier phase time transfer. The interest in time scale algorithms and its associated statistical methodology began around 40 years ago when the Allan variance appeared and when the metrological institutions started realizing ensemble atomic time using more than

  4. Consistent scaling of persistence time in metapopulations.

    PubMed

    Yaari, Gur; Ben-Zion, Yossi; Shnerb, Nadav M; Vasseur, David A

    2012-05-01

    Recent theory and experimental work in metapopulations and metacommunities demonstrates that long-term persistence is maximized when the rate at which individuals disperse among patches within the system is intermediate; if too low, local extinctions are more frequent than recolonizations, increasing the chance of regional-scale extinctions, and if too high, dynamics exhibit region-wide synchrony, and local extinctions occur in near unison across the region. Although common, little is known about how the size and topology of the metapopulation (metacommunity) affect this bell-shaped relationship between dispersal rate and regional persistence time. Using a suite of mathematical models, we examined the effects of dispersal, patch number, and topology on the regional persistence time when local populations are subject to demographic stochasticity. We found that the form of the relationship between regional persistence time and the number of patches is consistent across all models studied; however, the form of the relationship is distinctly different among low, intermediate, and high dispersal rates. Under low and intermediate dispersal rates, regional persistence times increase logarithmically and exponentially (respectively) with increasing numbers of patches, whereas under high dispersal, the form of the relationship depends on local dynamics. Furthermore, we demonstrate that the forms of these relationships, which give rise to the bell-shaped relationship between dispersal rate and persistence time, are a product of recolonization and the region-wide synchronization (or lack thereof) of population dynamics. Identifying such metapopulation attributes that impact extinction risk is of utmost importance for managing and conserving the earth's evermore fragmented populations.

  5. Time-frequency-aspect analysis and visualization of acoustic scattering from elastic shells submerged in water

    NASA Astrophysics Data System (ADS)

    Yoder, Timothy J.

    2000-05-01

    The solutions for acoustic scattering from objects in separable geometries along with the associated fluid- structure interactions are well established. Closed-form solutions to these problems have either interpretations such as resonance scattering theory, or some limiting situations that provide insight into the physical processes that occur. In contrast, most acoustical scattering problems do not have closed-form solutions. Numerical solutions, like finite and boundary element methods, allow researchers to obtain solutions from scattering problems with more complicated geometries; unfortunately, these methods of solution are limited in that they lack the kind of interpretation that provides insight into the physical processes that occur. It is only through the systematic analysis of the large volume of data produced by numerical solutions that this insight is gained. One way to gain this insight is to analyze the monostatic dependence of echoes in the time-frequency domain. However, traditional three-dimensional graphical analysis of time-frequency signals that vary as a function of a third parameter (the monostatic dependence) does not display all of the signals' information content because two marginals, of this distribution (the time and frequency representations) contain information that is lost in the visual representation of the time-frequency domain. This information is lost because the uncertainty principal prevents simultaneous display of the time and frequency information via a time-frequency transform, and because humans do not possess the innate ability to perform the transforms that extract the information. The problem of how to systematically analyze monostatic scattering data in the time-frequency domain and how to visually display all of the data's information content is overcome by introducing a time-frequency-parameter graphical analysis technique. This technique is applied to farfield acoustic scattering from finite, elastic, cylindrical

  6. Time Horizon and Social Scale in Communication

    NASA Astrophysics Data System (ADS)

    Krantz, D. H.

    2010-12-01

    In 2009 our center (CRED) published a first version of The Psychology of Climate Change Communication. In it, we attempted to summarize facts and concepts from psychological research that could help guide communication. While this work focused on climate change, most of the ideas are at least partly applicable for communication about a variety of natural hazards. Of the many examples in this guide, I mention three. Single-action bias is the human tendency to stop considering further actions that might be needed to deal with a given hazard, once a single action has been taken. Another example is the importance of group affiliation in motivating voluntary contributions to joint action. A third concerns the finding that group participation enhances understanding of probabilistic concepts and promotes action in the face of uncertainty. One current research direction, which goes beyond those included in the above publication, focuses on how time horizons arise in the thinking of individuals and groups, and how these time horizons might influence hazard preparedness. On the one hand, individuals sometimes appear impatient, organizations look for immediate results, and officials fail to look beyond the next election cycle. Yet under some laboratory conditions and in some subcultures, a longer time horizon is adopted. We are interested in how time horizon is influenced by group identity and by the very architecture of planning and decision making. Institutional changes, involving long-term contractual relationships among communities, developers, insurers, and governments, could greatly increase resilience in the face of natural hazards. Communication about hazards, in the context of such long-term contractual relationships might look very different from communication that is first initiated by immediate threat. Another new direction concerns the social scale of institutions and of communication about hazards. Traditionally, insurance contracts share risk among a large

  7. Tunneling times of acoustic phonon packets through a distributed Bragg reflector

    PubMed Central

    2014-01-01

    The longwave phenomenological model is used to make simple and precise calculations of various physical quantities such as the vibrational energy density, the vibrational energy, the relative mechanical displacement, and the one-dimensional stress tensor of a porous silicon distributed Bragg reflector. From general principles such as invariance under time reversal, invariance under space reflection, and conservation of energy density flux, the equivalence of the tunneling times for both transmission and reflection is demonstrated. Here, we study the tunneling times of acoustic phonon packets through a distributed Bragg reflector in porous silicon multilayer structures, and we report the possibility that a phenomenon called Hartman effect appears in these structures. PMID:25237288

  8. Predictions of narrow-band acoustic time reversal in the shallow ocean

    NASA Astrophysics Data System (ADS)

    Dungan, Michael Robert

    2000-10-01

    A time-reversing array (TRA) can retrofocus acoustic energy, in both time and space, to the original sound- source location without any environmental information. This unique capability may be degraded in time-dependent, lossy, or noisy acoustic environments. A broad computational and analytical investigation into narrow- band acoustic time reversal in the shallow ocean has been undertaken. This includes investigating (1)variability in the water column due to dynamic linear internal waves, (2)roughness in the ocean bottom, and (3)limiting orientations of TRAs. TRA retrofocusing performance predictions are primarily determined via monochromatic propagation simulations using the wide-angle parabolic equation code RAM (Collins 1993, 1994, and 1998). Results for the influence of source-array range, source depth, channel depth, acoustic frequency, bottom absorption, bottom roughness, internal wave strength, roundtrip time delay, and array orientation and spacing are presented. For a fixed channel geometry, higher frequencies, deeper sources, and lower bottom absorption improve TRA performance and allow retrofocusing at longer ranges. After several minutes in a dynamic shallow-water channel containing a random superposition of linear internal waves, there is significant TRA retrofocus amplitude decay, and the decay rate increases with increasing internal wave activity and acoustic frequency. Randomness in the environment, either from bottom roughness or random linear internal waves, reduces the predicted azimuthal angular width of the vertical-TRA retrofocus to as little as a fraction of a degree (compared to 360° for uniform environments) for source-array ranges from 2.5 to 20 km at frequencies from 250 Hz to 2 kHz. In a sound channel with bottom roughness, the azimuthal size of the retrofocus is predicted to be proportional to the roughness correlation length divided by the wavenumber, source-array range, and roughness RMS-height all raised to the three-halves power

  9. Differential Influence of Frequency, Timing, and Intensity Cues in a Complex Acoustic Categorization Task

    PubMed Central

    Nagel, Katherine I.; McLendon, Helen M.

    2010-01-01

    Songbirds, which, like humans, learn complex vocalizations, provide an excellent model for the study of acoustic pattern recognition. Here we examined the role of three basic acoustic parameters in an ethologically relevant categorization task. Female zebra finches were first trained to classify songs as belonging to one of two males and then asked whether they could generalize this knowledge to songs systematically altered with respect to frequency, timing, or intensity. Birds' performance on song categorization fell off rapidly when songs were altered in frequency or intensity, but they generalized well to songs that were changed in duration by >25%. Birds were not deaf to timing changes, however; they detected these tempo alterations when asked to discriminate between the same song played back at two different speeds. In addition, when birds were retrained with songs at many intensities, they could correctly categorize songs over a wide range of volumes. Thus although they can detect all these cues, birds attend less to tempo than to frequency or intensity cues during song categorization. These results are unexpected for several reasons: zebra finches normally encounter a wide range of song volumes but most failed to generalize across volumes in this task; males produce only slight variations in tempo, but females generalized widely over changes in song duration; and all three acoustic parameters are critical for auditory neurons. Thus behavioral data place surprising constraints on the relationship between previous experience, behavioral task, neural responses, and perception. We discuss implications for models of auditory pattern recognition. PMID:20610781

  10. Generation of ultrasound radiation force with the use of time reversal acoustics principles

    NASA Astrophysics Data System (ADS)

    Sarvazyan, Armen; Sutin, Alexander

    2005-09-01

    There are numerous medical applications of ultrasound radiation force (RF) which could be made more effective using the time reversal acoustics (TRA) principles. This paper gives an overview of research into physical and technical bases of RF generation in heterogeneous biological media using TRA focusing systems. A custom-designed compact multichannel TRA system for receiving, digitizing, storing, time reversing, and transmitting acoustic signals in a wide frequency range from 0.01 to 10 MHz has been developed and extensively tested in model systems and ex vivo tissues and bones. Shear strain and shear waves remotely induced in soft tissues and bones by radiation force were detected using various acoustical and optical means. Experimental studies fully confirmed the feasibility of TRA generation of RF and demonstrated several advantages over conventional means of remotely inducing shear stress in biological media. These advantages include a possibility to create highly localized (close to diffraction limit) shear stress in heterogeneous media stir focused ultrasound beam in 3-D volume using very simple hardware. [Work supported by NIH grant.

  11. Finite Difference Time Domain Analysis of Underwater Acoustic Lens System for Ambient Noise Imaging

    NASA Astrophysics Data System (ADS)

    Mori, Kazuyoshi; Miyazaki, Ayano; Ogasawara, Hanako; Yokoyama, Tomoki; Nakamura, Toshiaki

    2006-05-01

    Much attention has been paid to the new idea of detecting objects using ocean ambient noise. This concept is called ambient noise imaging (ANI). In this study, sound fields focused by an acoustic lens system constructed with a single biconcave lens were analyzed using the finite difference time domain (FDTD) method for realizing an ANI system. The size of the lens aperture that would have sufficient resolution—for example, the beam width is 1° at 60 kHz—was roughly determined by comparing the image points and -3 dB areas of sound pressure fields generated by lenses with various apertures. Then, in another FDTD analysis, we successfully used a lens with a determined aperture to detect rigid target objects in an acoustic noise field generated by a large number of point sources.

  12. Nonlinear Elastic Wave NDE II. Nonlinear Wave Modulation Spectroscopy and Nonlinear Time Reversed Acoustics

    NASA Astrophysics Data System (ADS)

    Sutin, A. M.; Johnson, P. A.

    2005-04-01

    This paper presents the second part of the review of Nonlinear Elastic Wave Spectroscopy (NEWS) in NDE, and describe two different methods of nonlinear NDE that provide not only damage detection but location as well. Nonlinear Wave Modulation Spectroscopy is based on the application of an ultrasonic probe signal modulated by a low frequency vibration. Damage location can be obtained by application of Impulse Modulation Techniques that exploit the modulation of a short pulse reflected from a damage feature (e.g. crack) by low frequency vibration. Nonlinear Time Reversed Acoustic methods provide the means to focus acoustic energy to any point in a solid. In combination, we are applying the focusing properties of TRA and the nonlinear properties of cracks to locate them.

  13. Acoustical Klein-Gordon equation: a time-independent perturbation analysis.

    PubMed

    Forbes, Barbara J; Pike, E Roy

    2004-07-30

    The perturbation analysis of an ideal acoustical duct was first made by Rayleigh in 1878 and the result has since stood in the literature. However, the analysis is based on the assumption of potential and kinetic energy densities that remain constant as a change in cross section occurs, whereas, in fact, they may fluctuate significantly in comparison to the slowly varying "wave function," Psi(x,t), of the acoustical Klein-Gordon equation. The square of the time-independent eigenfunction, psi(2)(x), is directly proportional to the potential energy per unit length of fluid, and it is shown that it is precisely the perturbation in potential energy that defines correctly the eigenvalue shifts.

  14. Time-averaged acoustic forces acting on a rigid sphere within a wide range of radii in an axisymmetric levitator

    NASA Astrophysics Data System (ADS)

    Foresti, Daniele; Nabavi, Majid; Poulikakos, Dimos

    2012-05-01

    Acoustic levitation is a physical phenomenon that arises when the acoustic radiation pressure is strong enough to overcome gravitational force. It is a nonlinear phenomenon which can be predicted only if higher order terms are included in the acoustic field calculation. The study of acoustic levitation is usually conducted by solving the linear acoustic equation and bridging the gap with an analytical solution. Only recently, the scientific community has shown interest in the full solution of the Navier-Stokes' equation with the aim of deeply investigating the acoustic radiation pressure. We present herein a numerical model based on Finite Volume Method (FVM) and Dynamic Mesh (DM) for the calculation of the acoustic radiation pressure acting on a rigid sphere inside an axisymmetric levitator which is the most widely used and investigated type of levitators. In this work, we focus on the third resonance mode. The use of DM is new in the field of acoustic levitation, allowing a more realistic simulation of the phenomenon, since no standing wave has to be necessarily imposed as boundary condition. The radiating plate is modeled as a rigid cylinder moving sinusoidally along the central axis. The time-averaged acoustic force exerting on the sphere is calculated for different radii Rs of the sphere (0.025 to 0.5 wavelengths). It is shown that the acoustic force increases proportional to Rs3 for small radii, then decreases when the standing wave condition is violated and finally rises again in the travelling wave radiation pressure configuration. The numerical model is validated for the inviscid case with a Finite Element Method model of the linear acoustic model based on King's approximation.

  15. First cosmological constraints on dark energy from the radial baryon acoustic scale.

    PubMed

    Gaztañaga, Enrique; Miquel, Ramon; Sánchez, Eusebio

    2009-08-28

    We present cosmological constraints arising from the first measurement of the radial (line-of-sight) baryon acoustic oscillations (BAO) scale in the large scale structure traced by the galaxy distribution. Here we use these radial BAO measurements at z = 0.24 and z = 0.43 to derive new constraints on dark energy and its equation of state for a flat universe, without any other assumptions on the cosmological model: w = -1.14 + or - 0.39 (assumed constant), Omega(m) = 0.24(-0.05);(+0.06). If we drop the assumption of flatness and include previous cosmic microwave background and supernova data, we find w = -0.974 + or - 0.058, Omega(m) = 0.271 + or - 0.015, and Omega(k) = -0.002 + or - 0.006, in good agreement with a flat cold dark matter cosmology with a cosmological constant. To our knowledge, these are the most stringent constraints on these parameters to date under our stated assumptions.

  16. Non-destructive evaluation of laboratory scale hydraulic fracturing using acoustic emission

    NASA Astrophysics Data System (ADS)

    Hampton, Jesse Clay

    The primary objective of this research is to develop techniques to characterize hydraulic fractures and fracturing processes using acoustic emission monitoring based on laboratory scale hydraulic fracturing experiments. Individual microcrack AE source characterization is performed to understand the failure mechanisms associated with small failures along pre-existing discontinuities and grain boundaries. Individual microcrack analysis methods include moment tensor inversion techniques to elucidate the mode of failure, crack slip and crack normal direction vectors, and relative volumetric deformation of an individual microcrack. Differentiation between individual microcrack analysis and AE cloud based techniques is studied in efforts to refine discrete fracture network (DFN) creation and regional damage quantification of densely fractured media. Regional damage estimations from combinations of individual microcrack analyses and AE cloud density plotting are used to investigate the usefulness of weighting cloud based AE analysis techniques with microcrack source data. Two granite types were used in several sample configurations including multi-block systems. Laboratory hydraulic fracturing was performed with sample sizes ranging from 15 x 15 x 25 cm3 to 30 x 30 x 25 cm 3 in both unconfined and true-triaxially confined stress states using different types of materials. Hydraulic fracture testing in rock block systems containing a large natural fracture was investigated in terms of AE response throughout fracture interactions. Investigations of differing scale analyses showed the usefulness of individual microcrack characterization as well as DFN and cloud based techniques. Individual microcrack characterization weighting cloud based techniques correlated well with post-test damage evaluations.

  17. A passive acoustic device for real-time monitoring of the efficacy of shockwave lithotripsy treatment.

    PubMed

    Leighton, T G; Fedele, F; Coleman, A J; McCarthy, C; Ryves, S; Hurrell, A M; De Stefano, A; White, P R

    2008-10-01

    Extracorporeal shockwave lithotripsy (ESWL) is the preferred modality for the treatment of renal and ureteric stone disease. Currently X-ray or ultrasound B-scan imaging are used to locate the stone and to check that it remains targeted at the focus of the lithotripter during treatment. Neither imaging modality is particularly effective in allowing the efficacy of treatment to be judged during the treatment session. A new device is described that, when placed on the patient's skin, can passively monitor the acoustic signals that propagate through the body after each lithotripter shock, and which can provide useful information on the effectiveness of targeting. These acoustic time histories are analyzed in real time to extract the two main characteristic peak amplitudes (m(1) and m(2)) and the time between these peaks (t(c)). A set of rules based on the acoustic parameters was developed during a clinical study in which a complete set of acoustic and clinical data was obtained for 30 of the 118 subjects recruited. The rules, which complied with earlier computational fluid dynamics (CFD) modeling and in vitro tests, allow each shock to be classified as "effective" or "ineffective." These clinically-derived rules were then applied in a second clinical study in which complete datasets were obtained for 49 of the 85 subjects recruited. This second clinical study demonstrated almost perfect agreement (kappa = 0.94) between the number of successful treatments, defined as >50% fragmentation as determined by X-ray at the follow-up appointment, and a device-derived global treatment score, TS(0), a figure derived from the total number of effective shocks in any treatment. The acoustic system is shown to provide a test of the success of the treatment that has a sensitivity of 91.7% and a specificity of 100%. In addition to the predictive capability, the device provides valuable real-time feedback to the lithotripter operator by indicating the effectiveness of each shock, plus

  18. Imaging Acoustic Phonon Dynamics on the Nanometer-Femtosecond Spatiotemporal Length-Scale with Ultrafast Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Plemmons, Dayne; Flannigan, David

    Coherent collective lattice oscillations known as phonons dictate a broad range of physical observables in condensed matter and act as primary energy carriers across a wide range of material systems. Despite this omnipresence, analysis of phonon dynamics on their ultrashort native spatiotemporal length scale - that is, the combined nanometer (nm), spatial and femtosecond (fs), temporal length-scales - has largely remained experimentally inaccessible. Here, we employ ultrafast electron microscopy (UEM) to directly image discrete acoustic phonons in real-space with combined nm-fs resolution. By directly probing electron scattering in the image plane (as opposed to the diffraction plane), we retain phase information critical for following the evolution, propagation, scattering, and decay of phonons in relation to morphological features of the specimen (i.e. interfaces, grain boundaries, voids, ripples, etc.). We extract a variety of morphologically-specific quantitative information from the UEM videos including phonon frequencies, phase velocities, and decays times. We expect these direct manifestations of local elastic properties in the vicinity of material defects and interfaces will aide in the understanding and application of phonon-mediated phenomena in nanostructures. Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN, 55455, USA.

  19. Outcrop-scale acoustic facies analysis and latest Quaternary development of Hueneme and Dume submarine fans, offshore California

    USGS Publications Warehouse

    Piper, D.J.W.; Hiscott, R.N.; Normark, W.R.

    1999-01-01

    The uppermost Quaternary deposits of the Hueneme and Dume submarine fans in the Santa Monica Basin have been investigated using a closed-spaced grid of boomer seismic-reflection profiles, which give vertical resolution of a few tens of centimetres with acoustic penetration to 50 m. Acoustic facies integrated with geometry define six architectural elements, some with discrete subelements that are of a scale that can be recognized in outcrops of ancient turbidite systems. In the Santa Monica Basin, the relationship of these elements to fan morphology, stratigraphy and sediment source is precisely known. The width of upper Hueneme fan valley has been reduced from 5 km since the last glacial maximum to 1 km at present by construction of laterally confined sandy levees within the main valley. The middle fan comprises three main subelements: thick sand deposits at the termination of the fan valley, low-gradient sandy lobes typically 5 km long and < 10 m thick, and scoured lobes formed of alternating sand and mud beds with many erosional depressions. The site of thickest lobe sediment accumulation shifts through time, with each sand bed deposited in a previous bathymetric low (i.e. compensation cycles). The lower fan and basin plain consists of sheet-like alternations of sand and mud with shallow channels and lenses. Variations in the rate of late Quaternary sea level rise initiated changes in sediment facies distribution. At lowstand, and during the approximately 11 ka stillstand in sea level, the Hueneme Fan was fed largely by hyperpycnal flow from the Santa Clara River delta, depositing high sediment waves on the right hand levee and thick sandy lobes on the middle fan. At highstand of sea level, most turbidity currents were generated by failure of silty prodelta muds. In contrast, the smaller Dume Fan was apparently always fed from littoral drift of sand through a single-canyon point source.

  20. A comparison of time domain boundary conditions for acoustic waves in wave guides

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Propst, G.; Silcox, R. J.

    1991-01-01

    Researchers consider several types of boundary conditions in the context of time domain models for acoustic waves. Experiments with four different duct terminations (hard wall, free radiation, foam, and wedge) were carried out in a wave duct from which reflection coefficients over a wide frequency range were measured. These reflection coefficients were used to estimate parameters in the time domain boundary conditions. A comparison of the relative merits of the models in describing the data is presented. Boundary conditions which yield a good fit of the model to the experimental data were found for all duct terminations except the wedge.

  1. Direct observation of low frequency confined acoustic phonons in silver nanoparticles: Terahertz time domain spectroscopy.

    PubMed

    Kumar, Sunil; Kamaraju, N; Karthikeyan, B; Tondusson, M; Freysz, E; Sood, A K

    2010-07-01

    Terahertz time domain spectroscopy has been used to study low frequency confined acoustic phonons of silver nanoparticles embedded in poly(vinyl alcohol) matrix in the spectral range of 0.1-2.5 THz. The real and imaginary parts of the dielectric function show two bands at 0.60 and 2.12 THz attributed to the spheroidal and toroidal modes of silver nanoparticles, thus demonstrating the usefulness of terahertz time domain spectroscopy as a complementary technique to Raman spectroscopy in characterizing the nanoparticles.

  2. Time reverse modeling of acoustic emissions in a reinforced concrete beam.

    PubMed

    Kocur, Georg Karl; Saenger, Erik H; Grosse, Christian U; Vogel, Thomas

    2016-02-01

    The time reverse modeling (TRM) is applied for signal-based acoustic emission (AE) analysis of reinforced concrete (RC) specimens. TRM uses signals obtained from physical experiments as input. The signals are re-emitted numerically into a structure in a time-reversed manner, where the wavefronts interfere and appear as dominant concentrations of energy at the origin of the AE. The experimental and numerical results presented for selected AE signals confirm that TRM is capable of localizing AE activity in RC caused by concrete cracking. The accuracy of the TRM results is corroborated by three-dimensional crack distributions obtained from X-ray computed tomography images.

  3. Time reverse modeling of acoustic emissions in a reinforced concrete beam.

    PubMed

    Kocur, Georg Karl; Saenger, Erik H; Grosse, Christian U; Vogel, Thomas

    2016-02-01

    The time reverse modeling (TRM) is applied for signal-based acoustic emission (AE) analysis of reinforced concrete (RC) specimens. TRM uses signals obtained from physical experiments as input. The signals are re-emitted numerically into a structure in a time-reversed manner, where the wavefronts interfere and appear as dominant concentrations of energy at the origin of the AE. The experimental and numerical results presented for selected AE signals confirm that TRM is capable of localizing AE activity in RC caused by concrete cracking. The accuracy of the TRM results is corroborated by three-dimensional crack distributions obtained from X-ray computed tomography images. PMID:26518525

  4. Magma acoustics and time-varying melt properties at Arenal Volcano, Costa Rica

    NASA Astrophysics Data System (ADS)

    Garcés, Milton A.; Hagerty, Michael T.; Schwartz, Susan Y.

    The similarity of acoustic and seismic spectra recorded during Strombolian activity of Arenal Volcano provides conclusive evidence that pressure waves are generated and propagated within the magma-gas mixture inside volcanic conduits. These pressure waves are sensitive to the flow velocity and to small changes in the gas content of the magma-gas mixture, and thus can provide useful indicators of the time-varying properties of the unsteady flow regime and the chemical composition of the melt. The dominant features of the observed explosion and tremor signals are attributed to the source excitation functions and the acoustic resonance of a magma-gas mixture inside the volcanic conduit. We postulate that explosions are triggered in the shallow parts of the magma conduit, where a drastic pressure drop with depth creates a region where violent degassing can occur. Tremor may be sustained by unsteady flow fluctuations at depth. Equilibrium degassing of the melt creates a stable, stratified magma column where the void fraction increases with decreasing depth. Disruption of this equilibrium stratification is thought to be responsible for observed variations in the seismic efficiency of explosions and enhanced acoustic transmission from the interior of the conduit to the atmosphere.

  5. Finite Difference Time Marching in the Frequency Domain: A Parabolic Formulation for Aircraft Acoustic Nacelle Design

    NASA Technical Reports Server (NTRS)

    Baumeister, Kenneth J.; Kreider, Kevin L.

    1996-01-01

    An explicit finite difference iteration scheme is developed to study harmonic sound propagation in aircraft engine nacelles. To reduce storage requirements for large 3D problems, the time dependent potential form of the acoustic wave equation is used. To insure that the finite difference scheme is both explicit and stable, time is introduced into the Fourier transformed (steady-state) acoustic potential field as a parameter. Under a suitable transformation, the time dependent governing equation in frequency space is simplified to yield a parabolic partial differential equation, which is then marched through time to attain the steady-state solution. The input to the system is the amplitude of an incident harmonic sound source entering a quiescent duct at the input boundary, with standard impedance boundary conditions on the duct walls and duct exit. The introduction of the time parameter eliminates the large matrix storage requirements normally associated with frequency domain solutions, and time marching attains the steady-state quickly enough to make the method favorable when compared to frequency domain methods. For validation, this transient-frequency domain method is applied to sound propagation in a 2D hard wall duct with plug flow.

  6. Technology for Real-Time Acoustic Communications and Navigation Under Arctic Sea Ice

    NASA Astrophysics Data System (ADS)

    Freitag, L. E.; Ball, K.; Singh, S.; Koski, P.; Partan, J.; Morozov, A.

    2013-12-01

    The use of gliders, floats and powered autonomous underwater vehicles beneath Arctic ice is challenging because surfacing for GPS fixes is risky and also subject to potentially long delays when the ice cover is very dense. For synoptic studies that involve sensors both on the ice and beneath the ice, it is not possible to use fixed transponders on the sea floor, and instead, acoustic sources that are ice-tethered are the best option. However, ice drifts and every transmission is from a different location, and thus the position of the acoustic source must be broadcast as well. We have developed and are preparing to demonstrate a real-time ice-tethered acoustic positioning system that operates at ranges to approximately 100 km using signals at 900 Hz. The system incorporates digital acoustic communication for sending source location and control information, which may be used to re-task the autonomous systems. While the current version is one-way because the mobile platforms are small, larger AUVs (0.3 m dia. or greater) are capable of carrying low-frequency sources and can utilize the system for bidirectional communication. Progress to-date includes a test north of Alaska in 2010 at ranges to 75 km, and in 2011, in the Fram Strait to ranges of 90 km. In both cases data rates at the maximum ranges were low, several bits per second, though at shorter ranges (30-50 km) data rates of 10-40 bps were possible. However, these low data rates are sufficient to transmit 8-12 bytes of location information plus commands to specific units. Next steps in the development and validation of the system include September 2013, again in the Fram Strait, followed by deployment north of Alaska for the ONR Marginal Ice Zone 2014 field campaign.

  7. Investigation of an acoustical holography system for real-time imaging

    NASA Astrophysics Data System (ADS)

    Fecht, Barbara A.; Andre, Michael P.; Garlick, George F.; Shelby, Ronald L.; Shelby, Jerod O.; Lehman, Constance D.

    1998-07-01

    A new prototype imaging system based on ultrasound transmission through the object of interest -- acoustical holography -- was developed which incorporates significant improvements in acoustical and optical design. This system is being evaluated for potential clinical application in the musculoskeletal system, interventional radiology, pediatrics, monitoring of tumor ablation, vascular imaging and breast imaging. System limiting resolution was estimated using a line-pair target with decreasing line thickness and equal separation. For a swept frequency beam from 2.6 - 3.0 MHz, the minimum resolution was 0.5 lp/mm. Apatite crystals were suspended in castor oil to approximate breast microcalcifications. Crystals from 0.425 - 1.18 mm in diameter were well resolved in the acoustic zoom mode. Needle visibility was examined with both a 14-gauge biopsy needle and a 0.6 mm needle. The needle tip was clearly visible throughout the dynamic imaging sequence as it was slowly inserted into a RMI tissue-equivalent breast biopsy phantom. A selection of human images was acquired in several volunteers: a 25 year-old female volunteer with normal breast tissue, a lateral view of the elbow joint showing muscle fascia and tendon insertions, and the superficial vessels in the forearm. Real-time video images of these studies will be presented. In all of these studies, conventional sonography was used for comparison. These preliminary investigations with the new prototype acoustical holography system showed favorable results in comparison to state-of-the-art pulse-echo ultrasound and demonstrate it to be suitable for further clinical study. The new patient interfaces will facilitate orthopedic soft tissue evaluation, study of superficial vascular structures and potentially breast imaging.

  8. Time Scales, Bedforms and Bedload Transport

    NASA Astrophysics Data System (ADS)

    Dhont, B.

    2015-12-01

    Bedload transport rates in mountain streams may exhibit wide fluctuations even under constant flow conditions. A better understanding of bedload pulses is key to predict natural hazards induced by torrential activity and sediment issues in mountainous areas. Several processes such as bedforms migration, grain sorting and random particles' trajectories are evoked as the driving agents of pulse formation and development. Quantifying the effects of these processes is a difficult task. This work aims to investigate the interactions between bedload transport and bedform dynamics in steep gravel-bed rivers. Experiments are carried out in a 17-m long 60-cm wide flume inclined at an angle of 2.7%. The bed is initially flat and made of homogenous natural gravel with a mean diameter of 6 mm. We imposed 200 identical hydrographs (of 1 hr duration) at the flume inlet (the bed surface was not flattened out during these cycling floods). The input hydrograph and the input sediment discharge are nearly triangular. Bed topography is measured after each flood using ultrasound sensors while the bedload transport rate is steadily monitored at the outlet using accelerometers (accelerometers fixed on metallic plates record the impacts of the grains flowing out of the flume). For the sake of comparison, a similar experiment consisting of 19 floods of 10 hours is carried out under constant supply conditions. We show that accelerometers are a cost effective technique to obtain high-frequency bedload discharge data. Spectral analysis of the bedload timeseries is used to highlight the different time scales corresponding to different bedload transport processes. We show that long timeseries are necessary to capture the different processes that drive bedload transport, including the resilience time after a perturbation of the bed. The alternate bars that develop and migrate along the flume are found to significantly influence bedload transport rate fluctuations.

  9. Where the ocean influences the impulse response and its effect on synchronous changes of acoustic travel time.

    PubMed

    Spiesberger, John L

    2011-12-01

    In 1983, sounds at 133 Hz, 0.06 s resolution were transmitted in the Pacific for five days at 2 min intervals over 3709 km between bottom-mounted instruments maintained with atomic clocks. In 1989, a technique was developed to measure changes in acoustic travel time with an accuracy of 135 microseconds at 2 min intervals for selected windows of travel time within the impulse response. The data have short-lived 1 to 10 ms oscillations of travel time with periods less than a few days. Excluding tidal effects, different windows exhibited significant synchronized changes in travel time for periods shorter than 10 h. In the 1980s, this phenomenon was not understood because internal waves have correlation lengths of a few kilometers which are smaller than the way sound was thought to sample the ocean along well-separated and distinct rays corresponding to different windows. The paradox's resolution comes from modern theories that replace the ray-picture with finite wavelength representations that predict sound can be influenced in the upper ocean over horizontal scales such as 20 km or more. Thus, different windows are influenced by the same short-scale fluctuations of sound speed. This conclusion is supported by the data and numerical simulations of the impulse response.

  10. An optimal modification of a Kalman filter for time scales

    NASA Technical Reports Server (NTRS)

    Greenhall, C. A.

    2003-01-01

    The Kalman filter in question, which was implemented in the time scale algorithm TA(NIST), produces time scales with poor short-term stability. A simple modification of the error covariance matrix allows the filter to produce time scales with good stability at all averaging times, as verified by simulations of clock ensembles.

  11. A real-time method for autonomous passive acoustic detection-classification of humpback whales.

    PubMed

    Abbot, Ted A; Premus, Vincent E; Abbot, Philip A

    2010-05-01

    This paper describes a method for real-time, autonomous, joint detection-classification of humpback whale vocalizations. The approach adapts the spectrogram correlation method used by Mellinger and Clark [J. Acoust. Soc. Am. 107, 3518-3529 (2000)] for bowhead whale endnote detection to the humpback whale problem. The objective is the implementation of a system to determine the presence or absence of humpback whales with passive acoustic methods and to perform this classification with low false alarm rate in real time. Multiple correlation kernels are used due to the diversity of humpback song. The approach also takes advantage of the fact that humpbacks tend to vocalize repeatedly for extended periods of time, and identification is declared only when multiple song units are detected within a fixed time interval. Humpback whale vocalizations from Alaska, Hawaii, and Stellwagen Bank were used to train the algorithm. It was then tested on independent data obtained off Kaena Point, Hawaii in February and March of 2009. Results show that the algorithm successfully classified humpback whales autonomously in real time, with a measured probability of correct classification in excess of 74% and a measured probability of false alarm below 1%.

  12. Multi-stage pulse tube cryocooler with acoustic impedance constructed to reduce transient cool down time and thermal loss

    NASA Technical Reports Server (NTRS)

    Gedeon, David R. (Inventor); Wilson, Kyle B. (Inventor)

    2008-01-01

    The cool down time for a multi-stage, pulse tube cryocooler is reduced by configuring at least a portion of the acoustic impedance of a selected stage, higher than the first stage, so that it surrounds the cold head of the selected stage. The surrounding acoustic impedance of the selected stage is mounted in thermally conductive connection to the warm region of the selected stage for cooling the acoustic impedance and is fabricated of a high thermal diffusivity, low thermal radiation emissivity material, preferably aluminum.

  13. Internal Acoustics Measurements of a Full Scale Advanced Ducted Propulsor Demonstrator

    NASA Technical Reports Server (NTRS)

    Santa Maria, O. L.; Soderman, P. T.; Horne, W. C.; Jones, M. G.; Bock, L. A.

    1995-01-01

    Acoustics measurements of a Pratt & Whitney full-scale ADP (Advanced Ducted Propulsor), an ultrahigh by-pass ratio engine, were conducted in the NASA Ames 40- by 80-Foot Wind Tunnel. This paper presents data from measurements taken from sensors on a fan exit guide vane in the ADP. Data from two sensors, one at mid-span and the other at the tip of the fan exit guide vane, are presented. At the blade passage frequency (BPF), the levels observed at the various engine and wind speeds were higher at the mid-span sensor than the tip sensor. The coherence between these internal sensors and external microphones were calculated and plotted as a function of angle (angles ranged from 5 degrees to 160 degrees) relative to the ADP longitudinal axis. At the highest engine and wind speeds, the coherence between the tip sensor and the external microphones was observed to decrease at higher multiples of the BPF. These results suggest that the rotor-stator interaction tones are stronger in the mid-span region than at the tip.

  14. Acoustic and aerodynamic testing of a scale model variable pitch fan

    NASA Technical Reports Server (NTRS)

    Jutras, R. R.; Kazin, S. B.

    1974-01-01

    A fully reversible pitch scale model fan with variable pitch rotor blades was tested to determine its aerodynamic and acoustic characteristics. The single-stage fan has a design tip speed of 1160 ft/sec (353.568 m/sec) at a bypass pressure ratio of 1.5. Three operating lines were investigated. Test results show that the blade pitch for minimum noise also resulted in the highest efficiency for all three operating lines at all thrust levels. The minimum perceived noise on a 200-ft (60.96 m) sideline was obtained with the nominal nozzle. At 44% of takeoff thrust, the PNL reduction between blade pitch and minimum noise blade pitch is 1.8 PNdB for the nominal nozzle and decreases with increasing thrust. The small nozzle (6% undersized) has the highest efficiency at all part thrust conditions for the minimum noise blade pitch setting; although, the noise is about 1.0 PNdB higher for the small nozzle at the minimum noise blade pitch position.

  15. Scaling of plane-wave functions in statistically optimized near-field acoustic holography.

    PubMed

    Hald, Jørgen

    2014-11-01

    Statistically Optimized Near-field Acoustic Holography (SONAH) is a Patch Holography method, meaning that it can be applied in cases where the measurement area covers only part of the source surface. The method performs projections directly in the spatial domain, avoiding the use of spatial discrete Fourier transforms and the associated errors. First, an inverse problem is solved using regularization. For each calculation point a multiplication must then be performed with two transfer vectors--one to get the sound pressure and the other to get the particle velocity. Considering SONAH based on sound pressure measurements, existing derivations consider only pressure reconstruction when setting up the inverse problem, so the evanescent wave amplification associated with the calculation of particle velocity is not taken into account in the regularized solution of the inverse problem. The present paper introduces a scaling of the applied plane wave functions that takes the amplification into account, and it is shown that the previously published virtual source-plane retraction has almost the same effect. The effectiveness of the different solutions is verified through a set of simulated measurements. PMID:25373969

  16. Teaching about time by understanding Geologic Time Scales: The Geological Society of America Geologic Time Scale and its history

    NASA Astrophysics Data System (ADS)

    Geissman, J. W.; Walker, J. D.

    2012-12-01

    Geologic time scales, of one form or another, are used in most undergraduate geosciences courses, even including introductory physical geology or equivalent. However, satisfactory discussions of how geologic time scales originated, and how they have evolved to modern versions, are far too often conveniently or inconveniently left out of classroom discussions. Yet it is these kinds of discussions that have the potential of solidifying student appreciation of deep time and rates of geologic processes. We use the history and development of the Geological Society of America Geologic Time Scale, which reflects major developments in the fields of stratigraphy, geochronology, magnetic polarity stratigraphy, astrochronology, and chemostratigraphy, as a focus of how specific details of time scales can be used to teach about time. Advances in all of these fields have allowed many parts of the time scale to be calibrated to precisions approaching less than 0.05 %. Notable time intervals for which collaborative, multifaceted efforts have led to dramatic improvements in our understanding of the character and temporal resolution of key evolutionary events, in both marine and terrestrial environments, include the Triassic-Jurassic, Permo-Triassic, and Neoproterozoic-Phanerozoic boundaries (or transitions). Many of the details, but certainly not all, can be incorporated in discussions of how we know about geologic time in the classroom. For example, we presently understand that both the end-Permian ecological crisis and the biostratigraphic Permian-Triassic boundary, as calibrated by conodonts, lie within a ca. 700 ka long normal polarity chron. The reverse to normal polarity transition at the beginning of this chron is ca. 100 ka earlier than the ecological crisis and thus slightly older than the current estimate, based on high precision U-Pb zircon age determinations, of ca. 252.4 Ma for the Permian-Triassic boundary. This polarity transition occurred during the early part of

  17. Real-time analysis system for gas turbine ground test acoustic measurements.

    PubMed

    Johnston, Robert T

    2003-10-01

    This paper provides an overview of a data system upgrade to the Pratt and Whitney facility designed for making acoustic measurements on aircraft gas turbine engines. A data system upgrade was undertaken because the return-on-investment was determined to be extremely high. That is, the savings on the first test series recovered the cost of the hardware. The commercial system selected for this application utilizes 48 input channels, which allows either 1/3 octave and/or narrow-band analyses to be preformed real-time. A high-speed disk drive allows raw data from all 48 channels to be stored simultaneously while the analyses are being preformed. Results of tests to ensure compliance of the new system with regulations and with existing systems are presented. Test times were reduced from 5 h to 1 h of engine run time per engine configuration by the introduction of this new system. Conservative cost reduction estimates for future acoustic testing are 75% on items related to engine run time and 50% on items related to the overall length of the test.

  18. Wideband Multichannel Time-Reversal Processing for Acoustic Communications in a Tunnel-like Structure

    SciTech Connect

    Candy, J V; Chambers, D H; Robbins, C L; Guidry, B L; Poggio, A J; Dowla, F; Hertzog, C A

    2006-01-12

    The development of multichannel time-reversal (T/R) processing techniques continues to progress rapidly especially when the need to communicate in a highly reverberative environment becomes critical. The underlying T/R concept is based on time-reversing the Green's function characterizing the uncertain communications channel investigating the deleterious dispersion and multipath effects. In this paper, attention is focused on two major objectives: (1) wideband communications leading to a time reference modulation technique; and (2) multichannel acoustic communications in a tunnel (or cave or pipe) with many obstructions, multipath returns, severe background noise, disturbances, long propagation paths ({approx}180) with disruptions (bends). For this extremely hostile environment, it is shown that multichannel T/R receivers can easily be extended to the wideband designs while demonstrating their performance in both the ''canonical'' stairwell of our previous work as well as a tunnel-like structure. Acoustic information signals are transmitted with an 8-element host or base station array to two client receivers with a significant loss in signal levels due to the propagation environment. In this paper, the results of the new wideband T/R processor and modulation scheme are discussed to demonstrate the overall performance for both high (24-bit) and low (1-bit) bit level analog-to-digital (A/D) converter designs. These results are validated by performing proof-of-principle acoustic communications experiments in air. It is shown that the resulting T/R receivers are capable of extracting the transmitted coded sequence from noisy microphone array measurements with zero-bit error.

  19. A Study of Mexican Free-Tailed Bat Chirp Syllables: Bayesian Functional Mixed Models for Nonstationary Acoustic Time Series

    PubMed Central

    MARTINEZ, Josue G.; BOHN, Kirsten M.; CARROLL, Raymond J.

    2013-01-01

    We describe a new approach to analyze chirp syllables of free-tailed bats from two regions of Texas in which they are predominant: Austin and College Station. Our goal is to characterize any systematic regional differences in the mating chirps and assess whether individual bats have signature chirps. The data are analyzed by modeling spectrograms of the chirps as responses in a Bayesian functional mixed model. Given the variable chirp lengths, we compute the spectrograms on a relative time scale interpretable as the relative chirp position, using a variable window overlap based on chirp length. We use 2D wavelet transforms to capture correlation within the spectrogram in our modeling and obtain adaptive regularization of the estimates and inference for the regions-specific spectrograms. Our model includes random effect spectrograms at the bat level to account for correlation among chirps from the same bat, and to assess relative variability in chirp spectrograms within and between bats. The modeling of spectrograms using functional mixed models is a general approach for the analysis of replicated nonstationary time series, such as our acoustical signals, to relate aspects of the signals to various predictors, while accounting for between-signal structure. This can be done on raw spectrograms when all signals are of the same length, and can be done using spectrograms defined on a relative time scale for signals of variable length in settings where the idea of defining correspondence across signals based on relative position is sensible. PMID:23997376

  20. A Study of Mexican Free-Tailed Bat Chirp Syllables: Bayesian Functional Mixed Models for Nonstationary Acoustic Time Series.

    PubMed

    Martinez, Josue G; Bohn, Kirsten M; Carroll, Raymond J; Morris, Jeffrey S

    2013-06-01

    We describe a new approach to analyze chirp syllables of free-tailed bats from two regions of Texas in which they are predominant: Austin and College Station. Our goal is to characterize any systematic regional differences in the mating chirps and assess whether individual bats have signature chirps. The data are analyzed by modeling spectrograms of the chirps as responses in a Bayesian functional mixed model. Given the variable chirp lengths, we compute the spectrograms on a relative time scale interpretable as the relative chirp position, using a variable window overlap based on chirp length. We use 2D wavelet transforms to capture correlation within the spectrogram in our modeling and obtain adaptive regularization of the estimates and inference for the regions-specific spectrograms. Our model includes random effect spectrograms at the bat level to account for correlation among chirps from the same bat, and to assess relative variability in chirp spectrograms within and between bats. The modeling of spectrograms using functional mixed models is a general approach for the analysis of replicated nonstationary time series, such as our acoustical signals, to relate aspects of the signals to various predictors, while accounting for between-signal structure. This can be done on raw spectrograms when all signals are of the same length, and can be done using spectrograms defined on a relative time scale for signals of variable length in settings where the idea of defining correspondence across signals based on relative position is sensible. PMID:23997376

  1. Detection of crossover time scales in multifractal detrended fluctuation analysis

    NASA Astrophysics Data System (ADS)

    Ge, Erjia; Leung, Yee

    2013-04-01

    Fractal is employed in this paper as a scale-based method for the identification of the scaling behavior of time series. Many spatial and temporal processes exhibiting complex multi(mono)-scaling behaviors are fractals. One of the important concepts in fractals is crossover time scale(s) that separates distinct regimes having different fractal scaling behaviors. A common method is multifractal detrended fluctuation analysis (MF-DFA). The detection of crossover time scale(s) is, however, relatively subjective since it has been made without rigorous statistical procedures and has generally been determined by eye balling or subjective observation. Crossover time scales such determined may be spurious and problematic. It may not reflect the genuine underlying scaling behavior of a time series. The purpose of this paper is to propose a statistical procedure to model complex fractal scaling behaviors and reliably identify the crossover time scales under MF-DFA. The scaling-identification regression model, grounded on a solid statistical foundation, is first proposed to describe multi-scaling behaviors of fractals. Through the regression analysis and statistical inference, we can (1) identify the crossover time scales that cannot be detected by eye-balling observation, (2) determine the number and locations of the genuine crossover time scales, (3) give confidence intervals for the crossover time scales, and (4) establish the statistically significant regression model depicting the underlying scaling behavior of a time series. To substantive our argument, the regression model is applied to analyze the multi-scaling behaviors of avian-influenza outbreaks, water consumption, daily mean temperature, and rainfall of Hong Kong. Through the proposed model, we can have a deeper understanding of fractals in general and a statistical approach to identify multi-scaling behavior under MF-DFA in particular.

  2. Performance assessment and calibration of a profiling lab-scale acoustic Doppler velocimeter for application over mixed sand-gravel beds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Acoustic Doppler velocimetry has made high-resolution turbulence measurements in sediment-laden flows possible. Recent developments have resulted in a commercially available lab-scale acoustic Doppler profiling device, a Nortek Vectrino II, that allows for three-dimensional velocity data to be colle...

  3. Acoustic Performance of a Real-Time Three-Dimensional Sound-Reproduction System

    NASA Technical Reports Server (NTRS)

    Faller, Kenneth J., II; Rizzi, Stephen A.; Aumann, Aric R.

    2013-01-01

    The Exterior Effects Room (EER) is a 39-seat auditorium at the NASA Langley Research Center and was built to support psychoacoustic studies of aircraft community noise. The EER has a real-time simulation environment which includes a three-dimensional sound-reproduction system. This system requires real-time application of equalization filters to compensate for spectral coloration of the sound reproduction due to installation and room effects. This paper describes the efforts taken to develop the equalization filters for use in the real-time sound-reproduction system and the subsequent analysis of the system s acoustic performance. The acoustic performance of the compensated and uncompensated sound-reproduction system is assessed for its crossover performance, its performance under stationary and dynamic conditions, the maximum spatialized sound pressure level it can produce from a single virtual source, and for the spatial uniformity of a generated sound field. Additionally, application examples are given to illustrate the compensated sound-reproduction system performance using recorded aircraft flyovers

  4. Time scales in Galveston Bay: An unsteady estuary

    NASA Astrophysics Data System (ADS)

    Rayson, Matthew D.; Gross, Edward S.; Hetland, Robert D.; Fringer, Oliver B.

    2016-04-01

    Estuarine time scales including the turnover, particle e-folding time, the age (calculated with a passive tracer), and residence time (calculated with Lagrangian particles) were computed using a three-dimensional hydrodynamic model of Galveston Bay, a low-flow, partially stratified estuary. Time scales were computed during a time period when river flow varied by several orders of magnitude and all time scales therefore exhibited significant temporal variability because of the unsteadiness of the system. The spatial distributions of age and residence time were qualitatively similar and increased from 15 days in a shipping channel to >45 days in the upper estuary. Volume-averaged age and residence time decreased during high-flow conditions. Bulk time scales, including the freshwater and salinity turnover times, were far more variable due to the changing river discharge and salt flux through the estuary mouth. A criterion for calculating a suitable averaging time is discussed to satisfy a steady state assumption and to estimate a more representative bulk time scale. When scaled with a freshwater advective time, all time scales were approximately equal to the advective time scale during high-flow conditions and many times higher during low-flow conditions. The mean age, Lagrangian residence, and flushing times exhibited a relationship that was weakly dependent on the freshwater advective time scale demonstrating predictability even in an unsteady, realistic estuary.

  5. Use of focused acoustics for cell disruption to provide ultra scale-down insights of microbial homogenization and its bioprocess impact--recovery of antibody fragments from rec E. coli.

    PubMed

    Li, Qiang; Aucamp, Jean P; Tang, Alison; Chatel, Alex; Hoare, Mike

    2012-08-01

    An ultra scale-down (USD) device that provides insight of how industrial homogenization impacts bioprocess performance is desirable in the biopharmaceutical industry, especially at the early stage of process development where only a small quantity of material is available. In this work, we assess the effectiveness of focused acoustics as the basis of an USD cell disruption method to mimic and study high-pressure, step-wise homogenization of rec Escherichia coli cells for the recovery of an intracellular protein, antibody fragment (Fab'). The release of both Fab' and of overall protein follows first-order reaction kinetics with respect to time of exposure to focused acoustics. The rate constant is directly proportional to applied electrical power input per unit volume. For nearly total protein or Fab' release (>99%), the key physical properties of the disruptate produced by focused acoustics, such as cell debris particle size distribution and apparent viscosity show good agreement with those for homogenates produced by high-pressure homogenization operated to give the same fractional release. The only key difference is observed for partial disruption of cells where focused acoustics yields a disruptate of lower viscosity than homogenization, evidently due to a greater extent of polynucleic acids degradation. Verification of this USD approach to cell disruption by high-pressure homogenization is achieved using USD centrifugation to demonstrate the same sedimentation characteristics of disruptates prepared using both the scaled-down focused acoustic and the pilot-scale homogenization methods for the same fraction of protein release.

  6. Acoustic travel time gauges for in-situ determination of pressure and temperature in multi-anvil apparatus

    SciTech Connect

    Wang, Xuebing; Chen, Ting; Qi, Xintong; Zou, Yongtao; Liebermann, Robert C.; Li, Baosheng; Kung, Jennifer; Yu, Tony; Wang, Yanbin

    2015-08-14

    In this study, we developed a new method for in-situ pressure determination in multi-anvil, high-pressure apparatus using an acoustic travel time approach within the framework of acoustoelasticity. The ultrasonic travel times of polycrystalline Al{sub 2}O{sub 3} were calibrated against NaCl pressure scale up to 15 GPa and 900 °C in a Kawai-type double-stage multi-anvil apparatus in conjunction with synchrotron X-radiation, thereby providing a convenient and reliable gauge for pressure determination at ambient and high temperatures. The pressures derived from this new travel time method are in excellent agreement with those from the fixed-point methods. Application of this new pressure gauge in an offline experiment revealed a remarkable agreement of the densities of coesite with those from the previous single crystal compression studies under hydrostatic conditions, thus providing strong validation for the current travel time pressure scale. The travel time approach not only can be used for continuous in-situ pressure determination at room temperature, high temperatures, during compression and decompression, but also bears a unique capability that none of the previous scales can deliver, i.e., simultaneous pressure and temperature determination with a high accuracy (±0.16 GPa in pressure and ±17 °C in temperature). Therefore, the new in-situ Al{sub 2}O{sub 3} pressure gauge is expected to enable new and expanded opportunities for offline laboratory studies of solid and liquid materials under high pressure and high temperature in multi-anvil apparatus.

  7. Ocean acoustic reverberation tomography.

    PubMed

    Dunn, Robert A

    2015-12-01

    Seismic wide-angle imaging using ship-towed acoustic sources and networks of ocean bottom seismographs is a common technique for exploring earth structure beneath the oceans. In these studies, the recorded data are dominated by acoustic waves propagating as reverberations in the water column. For surveys with a small receiver spacing (e.g., <10 km), the acoustic wave field densely samples properties of the water column over the width of the receiver array. A method, referred to as ocean acoustic reverberation tomography, is developed that uses the travel times of direct and reflected waves to image ocean acoustic structure. Reverberation tomography offers an alternative approach for determining the structure of the oceans and advancing the understanding of ocean heat content and mixing processes. The technique has the potential for revealing small-scale ocean thermal structure over the entire vertical height of the water column and along long survey profiles or across three-dimensional volumes of the ocean. For realistic experimental geometries and data noise levels, the method can produce images of ocean sound speed on a smaller scale than traditional acoustic tomography. PMID:26723303

  8. Ocean acoustic reverberation tomography.

    PubMed

    Dunn, Robert A

    2015-12-01

    Seismic wide-angle imaging using ship-towed acoustic sources and networks of ocean bottom seismographs is a common technique for exploring earth structure beneath the oceans. In these studies, the recorded data are dominated by acoustic waves propagating as reverberations in the water column. For surveys with a small receiver spacing (e.g., <10 km), the acoustic wave field densely samples properties of the water column over the width of the receiver array. A method, referred to as ocean acoustic reverberation tomography, is developed that uses the travel times of direct and reflected waves to image ocean acoustic structure. Reverberation tomography offers an alternative approach for determining the structure of the oceans and advancing the understanding of ocean heat content and mixing processes. The technique has the potential for revealing small-scale ocean thermal structure over the entire vertical height of the water column and along long survey profiles or across three-dimensional volumes of the ocean. For realistic experimental geometries and data noise levels, the method can produce images of ocean sound speed on a smaller scale than traditional acoustic tomography.

  9. Detection of the baryon acoustic peak in the large-scale correlation function of SDSS luminous red galaxies

    SciTech Connect

    Eisenstein, Daniel J.; Zehavi, Idit; Hogg, David W.; Scoccimarro, Roman; Blanton, Michael R.; Nichol, Robert C.; Scranton, Ryan; Seo, Hee-Jong; Tegmark, Max; Zheng, Zheng; Anderson, Scott F.; Annis, Jim; Bahcall, Neta; Brinkmann, Jon; Burles, Scott; Castander, Francisco J.; Connolly, Andrew; Csabai, Istvan; Doi, Mamoru; Fukugita, Masataka; Frieman, Joshua A.; /Arizona U., Astron. Dept. - Steward Observ. /CCPP, New York /Portsmouth U., ICG /Pittsburgh U. /Pennsylvania U. /MIT /Princeton, Inst. Advanced Study /Washington U., Seattle, Astron. Dept. /Fermilab /Princeton U. Observ. /Apache Point Observ. /Barcelona, IEEC /Eotvos U. /Tokyo U., Inst. Astron. /Tokyo U., ICRR /Chicago U., Astron. Astrophys. Ctr. /Johns Hopkins U. /Naval Observ., Flagstaff /Colorado U., CASA /Baltimore, Space Telescope Sci. /Michigan U.

    2005-01-01

    We present the large-scale correlation function measured from a spectroscopic sample of 46,748 luminous red galaxies from the Sloan Digital Sky Survey. The survey region covers 0.72h{sup -3} Gpc{sup 3} over 3816 square degrees and 0.16 < z < 0.47, making it the best sample yet for the study of large-scale structure. We find a well-detected peak in the correlation function at 100h{sup -1} Mpc separation that is an excellent match to the predicted shape and location of the imprint of the recombination-epoch acoustic oscillations on the low-redshift clustering of matter. This detection demonstrates the linear growth of structure by gravitational instability between z {approx} 1000 and the present and confirms a firm prediction of the standard cosmological theory. The acoustic peak provides a standard ruler by which we can measure the ratio of the distances to z = 0.35 and z = 1089 to 4% fractional accuracy and the absolute distance to z = 0.35 to 5% accuracy. From the overall shape of the correlation function, we measure the matter density {Omega}{sub m}h{sup 2} to 8% and find agreement with the value from cosmic microwave background (CMB) anisotropies. Independent of the constraints provided by the CMB acoustic scale, we find {Omega}{sub m} = 0.273 {+-} 0.025 + 0.123(1 + w{sub 0}) + 0.137{Omega}{sub K}. Including the CMB acoustic scale, we find that the spatial curvature is {Omega}{sub K} = -0.010 {+-} 0.009 if the dark energy is a cosmological constant. More generally, our results provide a measurement of cosmological distance, and hence an argument for dark energy, based on a geometric method with the same simple physics as the microwave background anisotropies. The standard cosmological model convincingly passes these new and robust tests of its fundamental properties.

  10. Acoustic emission monitoring from a lab scale high shear granulator--a novel approach.

    PubMed

    Watson, N J; Povey, M J W; Reynolds, G K; Xu, B H; Ding, Y

    2014-04-25

    A new approach to the monitoring of granulation processes using passive acoustics together with precise control over the granulation process has highlighted the importance of particle-particle and particle-bowl collisions in acoustic emission. The results have shown that repeatable acoustic results could be obtained but only when a spray nozzle water addition system was used. Acoustic emissions were recorded from a transducer attached to the bowl and an airborne transducer. It was found that the airborne transducer detected very little from the granulation and only experienced small changes throughout the process. The results from the bowl transducer showed that during granulation the frequency content of the acoustic emission shifted towards the lower frequencies. Results from the discrete element model indicate that when larger particles are used the number of collisions the particles experience reduces. This is a result of the volume conservation methodology used in this study, therefore larger particles results in less particles. These simulation results coupled with previous theoretical work on the frequency content of an impacting sphere explain why the frequency content of the acoustic emissions reduces during granule growth. The acoustic system used was also clearly able to identify when large over-wetted granules were present in the system, highlighting its benefit for detecting undesirable operational conditions. High-speed photography was used to study if visual changes in the granule properties could be linked with the changing acoustic emissions. The high speed photography was only possible towards the latter stages of the granulation process and it was found that larger granules produced a higher magnitude of acoustic emission across a broader frequency range.

  11. Acoustic emission monitoring from a lab scale high shear granulator--a novel approach.

    PubMed

    Watson, N J; Povey, M J W; Reynolds, G K; Xu, B H; Ding, Y

    2014-04-25

    A new approach to the monitoring of granulation processes using passive acoustics together with precise control over the granulation process has highlighted the importance of particle-particle and particle-bowl collisions in acoustic emission. The results have shown that repeatable acoustic results could be obtained but only when a spray nozzle water addition system was used. Acoustic emissions were recorded from a transducer attached to the bowl and an airborne transducer. It was found that the airborne transducer detected very little from the granulation and only experienced small changes throughout the process. The results from the bowl transducer showed that during granulation the frequency content of the acoustic emission shifted towards the lower frequencies. Results from the discrete element model indicate that when larger particles are used the number of collisions the particles experience reduces. This is a result of the volume conservation methodology used in this study, therefore larger particles results in less particles. These simulation results coupled with previous theoretical work on the frequency content of an impacting sphere explain why the frequency content of the acoustic emissions reduces during granule growth. The acoustic system used was also clearly able to identify when large over-wetted granules were present in the system, highlighting its benefit for detecting undesirable operational conditions. High-speed photography was used to study if visual changes in the granule properties could be linked with the changing acoustic emissions. The high speed photography was only possible towards the latter stages of the granulation process and it was found that larger granules produced a higher magnitude of acoustic emission across a broader frequency range. PMID:24491527

  12. A Quaternary Geomagnetic Instability Time Scale

    NASA Astrophysics Data System (ADS)

    Singer, B. S.

    2013-12-01

    Reversals and excursions of Earth's geomagnetic field create marker horizons that are readily detected in sedimentary and volcanic rocks worldwide. An accurate and precise chronology of these geomagnetic field instabilities is fundamental to understanding several aspects of Quaternary climate, dynamo processes, and surface processes. For example, stratigraphic correlation between marine sediment and polar ice records of climate change across the cryospheres benefits from a highly resolved record of reversals and excursions. The temporal patterns of dynamo behavior may reflect physical interactions between the molten outer core and the solid inner core or lowermost mantle. These interactions may control reversal frequency and shape the weak magnetic fields that arise during successive dynamo instabilities. Moreover, weakening of the axial dipole during reversals and excursions enhances the production of cosmogenic isotopes that are used in sediment and ice core stratigraphy and surface exposure dating. The Geomagnetic Instability Time Scale (GITS) is based on the direct dating of transitional polarity states recorded by lava flows using the 40Ar/39Ar method, in parallel with astrochronologic age models of marine sediments in which O isotope and magnetic records have been obtained. A review of data from Quaternary lava flows and sediments yields a GITS comprising 10 polarity reversals and 27 excursions during the past 2.6 million years. Nine of the ten reversals bounding chrons and subchrons are associated with 40Ar/39Ar ages of transitionally-magnetized lava flows. The tenth, the Guass-Matuyama chron boundary, is tightly bracketed by 40Ar/39Ar dated ash deposits. Of the 27 well-documented excursions, 14 occurred during the Matuyama chron and 13 during the Brunhes chron; 19 have been dated directly using the 40Ar/39Ar method on transitionally-magnetized volcanic rocks and form the backbone of the GITS. Excursions are clearly not the rare phenomena once thought

  13. Comparisons of laboratory scale measurements of three-dimensional acoustic propagation with solutions by a parabolic equation model.

    PubMed

    Sturm, Frédéric; Korakas, Alexios

    2013-01-01

    In this paper, laboratory scale measurements of long range across-slope acoustic propagation in a three-dimensional (3-D) wedge-like environment are compared to numerical solutions. In a previous work, it was shown that the experimental data contain strong 3-D effects like mode shadow zones and multiple mode arrivals, in qualitative agreement with theoretical and numerical predictions. In the present work, the experimental data are compared with numerical solutions obtained using a fully 3-D parabolic equation based model. A subspace inversion approach is used for the refinement of some of the parameters describing the model experiment. The inversion procedure is implemented in a Bayesian framework based on the exhaustive search over the parameter space. The comparisons are performed both in the time and in the frequency domain using the maximum a posteriori estimates of the refined parameters as input in the 3-D model. A very good quantitative agreement is achieved between the numerical predictions provided by the 3-D parabolic equation model and the experimental data.

  14. Real-time decomposition and recognition of acoustical patterns with an analog neural computer

    NASA Astrophysics Data System (ADS)

    Mueller, Paul; Van der Spiegel, Jan; Blackman, David; Donham, Christopher; Cummings, Ralph

    1992-09-01

    A prototype programmable analog neural computer has been assembled from over 100 custom VLSI modules containing neurons, synapses, routing switches, and programmable synaptic time constants. The modules are directly interconnected and arbitrary network configurations can be programmed. Connection symmetry and modular construction allow expansion of the network to any size. The network runs in real time analog mode, but connection architecture as well as neuron and synapse parameters are controlled by a digital host. Network performance is monitored by the host through an A/D interface and used in the implementation of learning algorithms. The machine is intended for real time, real world computations. In its current configuration maximal speed is equivalent to that of a digital machine capable of 1011 FLOPS. The programmable synaptic time constants permit the real time computation of temporal patterns as they occur in speech and other acoustic signals. Several applications involving the dynamic decomposition and recognition of acoustical patterns including speech signals (phonemes) are described. The decomposition network is loosely based on the primary auditory system of higher vertebrates. It extracts and represents by the activity in different neuron arrays the following pattern primitives: frequency, bandwidth, amplitude, amplitude modulation, amplitude modulation frequency, frequency modulation, frequency modulation frequency, duration, sequence. The frequency tuned units are the first stage and form the input space for subsequent stages that extract the other primitives, e.g., bandwidth, amplitude modulation, etc., for different frequency bands. Acoustic input generates highly specific, relatively sparse distributed activity in this feature space, which is decoded and recognized by units trained by specific input patterns such as phonemes or diphones or active sonar patterns. Through simple feedback connections in conjunction with synaptic time constants the

  15. Tone and Broadband Noise Separation from Acoustic Data of a Scale-Model Contra-Rotating Open Rotor

    NASA Technical Reports Server (NTRS)

    Sree, Dave; Stephens, David B.

    2014-01-01

    Renewed interest in contra-rotating open rotor technology for aircraft propulsion application has prompted the development of advanced diagnostic tools for better design and improved acoustical performance. In particular, the determination of tonal and broadband components of open rotor acoustic spectra is essential for properly assessing the noise control parameters and also for validating the open rotor noise simulation codes. The technique of phase averaging has been employed to separate the tone and broadband components from a single rotor, but this method does not work for the two-shaft contra-rotating open rotor. A new signal processing technique was recently developed to process the contra-rotating open rotor acoustic data. The technique was first tested using acoustic data taken of a hobby aircraft open rotor propeller, and reported previously. The intent of the present work is to verify and validate the applicability of the new technique to a realistic one-fifth scale open rotor model which has 12 forward and 10 aft contra-rotating blades operating at realistic forward flight Mach numbers and tip speeds. The results and discussions of that study are presented in this paper.

  16. Tone and Broadband Noise Separation from Acoustic Data of a Scale-Model Counter-Rotating Open Rotor

    NASA Technical Reports Server (NTRS)

    Sree, David; Stephens, David B.

    2014-01-01

    Renewed interest in contra-rotating open rotor technology for aircraft propulsion application has prompted the development of advanced diagnostic tools for better design and improved acoustical performance. In particular, the determination of tonal and broadband components of open rotor acoustic spectra is essential for properly assessing the noise control parameters and also for validating the open rotor noise simulation codes. The technique of phase averaging has been employed to separate the tone and broadband components from a single rotor, but this method does not work for the two-shaft contra-rotating open rotor. A new signal processing technique was recently developed to process the contra-rotating open rotor acoustic data. The technique was first tested using acoustic data taken of a hobby aircraft open rotor propeller, and reported previously. The intent of the present work is to verify and validate the applicability of the new technique to a realistic one-fifth scale open rotor model which has 12 forward and 10 aft contra-rotating blades operating at realistic forward flight Mach numbers and tip speeds. The results and discussions of that study are presented in this paper.

  17. Speech timing and linguistic rhythm: on the acoustic bases of rhythm typologies.

    PubMed

    Rathcke, Tamara V; Smith, Rachel H

    2015-05-01

    Research into linguistic rhythm has been dominated by the idea that languages can be classified according to rhythmic templates, amenable to assessment by acoustic measures of vowel and consonant durations. This study tested predictions of two proposals explaining the bases of rhythmic typologies: the Rhythm Class Hypothesis which assumes that the templates arise from an extensive vs a limited use of durational contrasts, and the Control and Compensation Hypothesis which proposes that the templates are rooted in more vs less flexible speech production strategies. Temporal properties of segments, syllables and rhythmic feet were examined in two accents of British English, a "stress-timed" variety from Leeds, and a "syllable-timed" variety spoken by Panjabi-English bilinguals from Bradford. Rhythm metrics were calculated. A perception study confirmed that the speakers of the two varieties differed in their perceived rhythm. The results revealed that both typologies were informative in that to a certain degree, they predicted temporal patterns of the two varieties. None of the metrics tested was capable of adequately reflecting the temporal complexity found in the durational data. These findings contribute to the critical evaluation of the explanatory adequacy of rhythm metrics. Acoustic bases and limitations of the traditional rhythmic typologies are discussed.

  18. Computational Analyses in Support of Sub-scale Diffuser Testing for the A-3 Facility. Part 3; Aero-Acoustic Analyses and Experimental Validation

    NASA Technical Reports Server (NTRS)

    Allgood, Daniel C.; Graham, Jason S.; McVay, Greg P.; Langford, Lester L.

    2008-01-01

    A unique assessment of acoustic similarity scaling laws and acoustic analogy methodologies in predicting the far-field acoustic signature from a sub-scale altitude rocket test facility at the NASA Stennis Space Center was performed. A directional, point-source similarity analysis was implemented for predicting the acoustic far-field. In this approach, experimental acoustic data obtained from "similar" rocket engine tests were appropriately scaled using key geometric and dynamic parameters. The accuracy of this engineering-level method is discussed by comparing the predictions with acoustic far-field measurements obtained. In addition, a CFD solver was coupled with a Lilley's acoustic analogy formulation to determine the improvement of using a physics-based methodology over an experimental correlation approach. In the current work, steady-state Reynolds-averaged Navier-Stokes calculations were used to model the internal flow of the rocket engine and altitude diffuser. These internal flow simulations provided the necessary realistic input conditions for external plume simulations. The CFD plume simulations were then used to provide the spatial turbulent noise source distributions in the acoustic analogy calculations. Preliminary findings of these studies will be discussed.

  19. Large-scale numerical modeling of hydro-acoustic waves generated by tsunamigenic earthquakes

    NASA Astrophysics Data System (ADS)

    Cecioni, C.; Abdolali, A.; Bellotti, G.; Sammarco, P.

    2015-03-01

    Tsunamigenic fast movements of the seabed generate pressure waves in weakly compressible seawater, namely hydro-acoustic waves, which travel at the sound celerity in water (about 1500 m s-1). These waves travel much faster than the counterpart long free-surface gravity waves and contain significant information on the source. Measurement of hydro-acoustic waves can therefore anticipate the tsunami arrival and significantly improve the capability of tsunami early warning systems. In this paper a novel numerical model for reproduction of hydro-acoustic waves is applied to analyze the generation and propagation in real bathymetry of these pressure perturbations for two historical catastrophic earthquake scenarios in Mediterranean Sea. The model is based on the solution of a depth-integrated equation, and therefore results are computationally efficient in reconstructing the hydro-acoustic waves propagation scenarios.

  20. Improved tests for global warming trend extraction in ocean acoustic travel-time data. Final technical report

    SciTech Connect

    Bottone, S.; Gray, H.L.; Woodward, W.A.

    1996-04-01

    A possible indication of the existence of global climate warming is the presence of a trend in the travel time of an acoustic signal along several ocean paths over a period of many years. This report describes new, improved tests for testing for linear trend in time series data with correlated residuals. We introduce a bootstrap based procedure to test for trend in this setting which is better adapted to controlling the significance levels. The procedure is applied to acoustic travel time data generated by the MASIG ocean model. It is shown how to generalize the improved method to multivariate, or vector, time series, which, in the ocean acoustics setting, corresponds to travel time data on many ocean paths. An appendix describes the TRENDS software, which enables the user to perform these calculations using a graphical user interface (GUI).

  1. On time scales and time synchronization using LORAN-C as a time reference signal

    NASA Technical Reports Server (NTRS)

    Chi, A. R.

    1974-01-01

    The long term performance of the eight LORAN-C chains is presented in terms of the Coordinated Universal Time (UTC) of the U.S. Naval Observatory (USNO); and the use of the LORAN-C navigation system for maintaining the user's clock to a UTC scale is described. The atomic time scale and the UTC of several national laboratories and observatories relative to the international atomic time are reported. Typical performance of several NASA tracking station clocks, relative to the USNO master clock, is also presented.

  2. Clinical Studies of Real-Time Monitoring of Lithotripter Performance Using Passive Acoustic Sensors

    NASA Astrophysics Data System (ADS)

    Leighton, T. G.; Fedele, F.; Coleman, A. J.; McCarthy, C.; Ryves, S.; Hurrell, A. M.; De Stefano, A.; White, P. R.

    2008-09-01

    This paper describes the development and clinical testing of a passive device which monitors the passive acoustic emissions generated within the patient's body during Extracorporeal Shock Wave Lithotripsy (ESWL). Designed and clinically tested so that it can be operated by a nurse, the device analyses the echoes generated in the body in response to each ESWL shock, and so gives real time shock-by-shock feedback on whether the stone was at the focus of the lithotripter, and if so whether the previous shock contributed to stone fragmentation when that shock reached the focus. A shock is defined as being `effective' if these two conditions are satisfied. Not only can the device provide real-time feedback to the operator, but the trends in shock `effectiveness' can inform treatment. In particular, at any time during the treatment (once a statistically significant number of shocks have been delivered), the percentage of shocks which were `effective' provides a treatment score TS(t) which reflects the effectiveness of the treatment up to that point. The TS(t) figure is automatically delivered by the device without user intervention. Two clinical studies of the device were conducted, the ethics guidelines permitting only use of the value of TS(t) obtained at the end of treatment (this value is termed the treatment score TS0). The acoustically-derived treatment score was compared with the treatment score CTS2 given by the consultant urologist at the three-week patient's follow-up appointment. In the first clinical study (phase 1), records could be compared for 30 out of the 118 patients originally recruited, and the results of phase 1 were used to refine the parameter values (the `rules') with which the acoustic device provides its treatment score. These rules were tested in phase 2, for which records were compared for 49 of the 85 patients recruited. Considering just the phase 2 results (since the phase 1 data were used to draw up the `rules' under which phase 2 operated

  3. The Space-Time Conservative Schemes for Large-Scale, Time-Accurate Flow Simulations with Tetrahedral Meshes

    NASA Technical Reports Server (NTRS)

    Venkatachari, Balaji Shankar; Streett, Craig L.; Chang, Chau-Lyan; Friedlander, David J.; Wang, Xiao-Yen; Chang, Sin-Chung

    2016-01-01

    Despite decades of development of unstructured mesh methods, high-fidelity time-accurate simulations are still predominantly carried out on structured, or unstructured hexahedral meshes by using high-order finite-difference, weighted essentially non-oscillatory (WENO), or hybrid schemes formed by their combinations. In this work, the space-time conservation element solution element (CESE) method is used to simulate several flow problems including supersonic jet/shock interaction and its impact on launch vehicle acoustics, and direct numerical simulations of turbulent flows using tetrahedral meshes. This paper provides a status report for the continuing development of the space-time conservation element solution element (CESE) numerical and software framework under the Revolutionary Computational Aerosciences (RCA) project. Solution accuracy and large-scale parallel performance of the numerical framework is assessed with the goal of providing a viable paradigm for future high-fidelity flow physics simulations.

  4. Time-Efficient High-Rate Data Flooding in One-Dimensional Acoustic Underwater Sensor Networks.

    PubMed

    Kwon, Jae Kyun; Seo, Bo-Min; Yun, Kyungsu; Cho, Ho-Shin

    2015-10-30

    Because underwater communication environments have poor characteristics, such as severe attenuation, large propagation delays and narrow bandwidths, data is normally transmitted at low rates through acoustic waves. On the other hand, as high traffic has recently been required in diverse areas, high rate transmission has become necessary. In this paper, transmission/reception timing schemes that maximize the time axis use efficiency to improve the resource efficiency for high rate transmission are proposed. The excellence of the proposed scheme is identified by examining the power distributions by node, rate bounds, power levels depending on the rates and number of nodes, and network split gains through mathematical analysis and numerical results. In addition, the simulation results show that the proposed scheme outperforms the existing packet train method.

  5. Time-Efficient High-Rate Data Flooding in One-Dimensional Acoustic Underwater Sensor Networks

    PubMed Central

    Kwon, Jae Kyun; Seo, Bo-Min; Yun, Kyungsu; Cho, Ho-Shin

    2015-01-01

    Because underwater communication environments have poor characteristics, such as severe attenuation, large propagation delays and narrow bandwidths, data is normally transmitted at low rates through acoustic waves. On the other hand, as high traffic has recently been required in diverse areas, high rate transmission has become necessary. In this paper, transmission/reception timing schemes that maximize the time axis use efficiency to improve the resource efficiency for high rate transmission are proposed. The excellence of the proposed scheme is identified by examining the power distributions by node, rate bounds, power levels depending on the rates and number of nodes, and network split gains through mathematical analysis and numerical results. In addition, the simulation results show that the proposed scheme outperforms the existing packet train method. PMID:26528983

  6. Acoustic masking disrupts time-dependent mechanisms of memory encoding in word-list recall.

    PubMed

    Cousins, Katheryn A Q; Dar, Hayim; Wingfield, Arthur; Miller, Paul

    2014-05-01

    Recall of recently heard words is affected by the clarity of presentation: Even if all words are presented with sufficient clarity for successful recognition, those that are more difficult to hear are less likely to be recalled. Such a result demonstrates that memory processing depends on more than whether a word is simply "recognized" versus "not recognized." More surprising is that, when a single item in a list of spoken words is acoustically masked, prior words that were heard with full clarity are also less likely to be recalled. To account for such a phenomenon, we developed the linking-by-active-maintenance model (LAMM). This computational model of perception and encoding predicts that these effects will be time dependent. Here we challenged our model by investigating whether and how the impact of acoustic masking on memory depends on presentation rate. We found that a slower presentation rate causes a more disruptive impact of stimulus degradation on prior, clearly heard words than does a fast rate. These results are unexpected according to prior theories of effortful listening, but we demonstrated that they can be accounted for by LAMM.

  7. Time-dependent seafloor acoustic backscatter (10-100 kHz).

    PubMed

    Sternlicht, Daniel D; de Moustier, Christian P

    2003-11-01

    A time-dependent model of the acoustic intensity backscattered by the seafloor is described and compared with data from a calibrated, vertically oriented, echo-sounder operating at 33 and 93 kHz. The model incorporates the characteristics of the echo-sounder and transmitted pulse, and the water column spreading and absorption losses. Scattering from the water-sediment interface is predicted using Helmholtz-Kirchhoff theory, parametrized by the mean grain size, the coherent reflection coefficient, and the strength and exponent of a power-law roughness spectrum. The composite roughness approach of Jackson et al. [J. Acoust. Soc. Am. 79, 1410-1422 (1986)], modified for the finite duration of the transmitted signal, is used to predict backscatter from subbottom inhomogeneities. It depends on the sediment's volume scattering and attenuation coefficients, as well as the interface characteristics governing sound transmission into the sediment. Estimation of model parameters (mean grain size, roughness spectrum strength and exponent, volume scattering coefficient) reveals ambiguous ranges for the two spectral components. Analyses of model outputs and of physical measurements reported in the literature yield practical constraints on roughness spectrum parameter settings appropriate for echo-envelope-based sediment classification procedures.

  8. Time-dependent seafloor acoustic backscatter (10-100 kHz).

    PubMed

    Sternlicht, Daniel D; de Moustier, Christian P

    2003-11-01

    A time-dependent model of the acoustic intensity backscattered by the seafloor is described and compared with data from a calibrated, vertically oriented, echo-sounder operating at 33 and 93 kHz. The model incorporates the characteristics of the echo-sounder and transmitted pulse, and the water column spreading and absorption losses. Scattering from the water-sediment interface is predicted using Helmholtz-Kirchhoff theory, parametrized by the mean grain size, the coherent reflection coefficient, and the strength and exponent of a power-law roughness spectrum. The composite roughness approach of Jackson et al. [J. Acoust. Soc. Am. 79, 1410-1422 (1986)], modified for the finite duration of the transmitted signal, is used to predict backscatter from subbottom inhomogeneities. It depends on the sediment's volume scattering and attenuation coefficients, as well as the interface characteristics governing sound transmission into the sediment. Estimation of model parameters (mean grain size, roughness spectrum strength and exponent, volume scattering coefficient) reveals ambiguous ranges for the two spectral components. Analyses of model outputs and of physical measurements reported in the literature yield practical constraints on roughness spectrum parameter settings appropriate for echo-envelope-based sediment classification procedures. PMID:14650007

  9. Signal Restoration of Non-stationary Acoustic Signals in the Time Domain

    NASA Technical Reports Server (NTRS)

    Babkin, Alexander S.

    1988-01-01

    Signal restoration is a method of transforming a nonstationary signal acquired by a ground based microphone to an equivalent stationary signal. The benefit of the signal restoration is a simplification of the flight test requirements because it could dispense with the need to acquire acoustic data with another aircraft flying in concert with the rotorcraft. The data quality is also generally improved because the contamination of the signal by the propeller and wind noise is not present. The restoration methodology can also be combined with other data acquisition methods, such as a multiple linear microphone array for further improvement of the test results. The methodology and software are presented for performing the signal restoration in the time domain. The method has no restrictions on flight path geometry or flight regimes. Only requirement is that the aircraft spatial position be known relative to the microphone location and synchronized with the acoustic data. The restoration process assumes that the moving source radiates a stationary signal, which is then transformed into a nonstationary signal by various modulation processes. The restoration contains only the modulation due to the source motion.

  10. A methodology to condition distorted acoustic emission signals to identify fracture timing from human cadaver spine impact tests.

    PubMed

    Arun, Mike W J; Yoganandan, Narayan; Stemper, Brian D; Pintar, Frank A

    2014-12-01

    While studies have used acoustic sensors to determine fracture initiation time in biomechanical studies, a systematic procedure is not established to process acoustic signals. The objective of the study was to develop a methodology to condition distorted acoustic emission data using signal processing techniques to identify fracture initiation time. The methodology was developed from testing a human cadaver lumbar spine column. Acoustic sensors were glued to all vertebrae, high-rate impact loading was applied, load-time histories were recorded (load cell), and fracture was documented using CT. Compression fracture occurred to L1 while other vertebrae were intact. FFT of raw voltage-time traces were used to determine an optimum frequency range associated with high decibel levels. Signals were bandpass filtered in this range. Bursting pattern was found in the fractured vertebra while signals from other vertebrae were silent. Bursting time was associated with time of fracture initiation. Force at fracture was determined using this time and force-time data. The methodology is independent of selecting parameters a priori such as fixing a voltage level(s), bandpass frequency and/or using force-time signal, and allows determination of force based on time identified during signal processing. The methodology can be used for different body regions in cadaver experiments.

  11. On the Uncertainty of the Annular Mode Time Scale

    NASA Astrophysics Data System (ADS)

    Kim, Junsu; Reichler, Thomas

    2015-04-01

    The proper simulation of the annular mode (AM) time scale may be regarded as an important benchmark for climate models. Previous research demonstrated that climate models systematically overestimate this time scale. As suggested by the fluctuation-dissipation theorem, this may imply that models are overly sensitive to external forcings. Previous research also made it clear that calculating the AM time scale is a slowly converging process, necessitating relatively long time series and casting doubts on the usefulness of the historical reanalysis record to constrain climate models in terms of the AM time scale. Here, we use a 4000-year-long control simulation with the GFDL climate model CM2.1 to study the effects of internal atmospheric variability on the stability of the AM time scale. In particular, we ask whether a model's AM time scale and climate sensitivity can be constrained from the 50-year-long reanalysis record. We find that internal variability attaches large uncertainty to the AM time scale when diagnosed from decadal records. Even under fixed forcing conditions, at least 100 years of data are required in order to keep the uncertainty in the AM time scale of the Northern Hemisphere to 10%; over the Southern Hemisphere the required length increases to 200 years. If nature's AM time scale is similarly variable, there is no guarantee that the historical reanalysis record is a fully representative target for model evaluation. We further use the model simulation to investigate the dynamical coupling between the stratosphere and the troposphere from the perspective of the AM time scale. Over the Northern Hemisphere we find only weak indication for influences from stratosphere-troposphere coupling on the AM time scale. The situation is very different over the Southern Hemisphere, where we find robust connections between the AM time scale in the stratosphere and that in the troposphere, confirming and extending earlier results of influences of stratospheric

  12. Scale-dependent intrinsic entropies of complex time series.

    PubMed

    Yeh, Jia-Rong; Peng, Chung-Kang; Huang, Norden E

    2016-04-13

    Multi-scale entropy (MSE) was developed as a measure of complexity for complex time series, and it has been applied widely in recent years. The MSE algorithm is based on the assumption that biological systems possess the ability to adapt and function in an ever-changing environment, and these systems need to operate across multiple temporal and spatial scales, such that their complexity is also multi-scale and hierarchical. Here, we present a systematic approach to apply the empirical mode decomposition algorithm, which can detrend time series on various time scales, prior to analysing a signal's complexity by measuring the irregularity of its dynamics on multiple time scales. Simulated time series of fractal Gaussian noise and human heartbeat time series were used to study the performance of this new approach. We show that our method can successfully quantify the fractal properties of the simulated time series and can accurately distinguish modulations in human heartbeat time series in health and disease.

  13. Timing signatures of large scale solar eruptions

    NASA Astrophysics Data System (ADS)

    Balasubramaniam, K. S.; Hock-Mysliwiec, Rachel; Henry, Timothy; Kirk, Michael S.

    2016-05-01

    We examine the timing signatures of large solar eruptions resulting in flares, CMEs and Solar Energetic Particle events. We probe solar active regions from the chromosphere through the corona, using data from space and ground-based observations, including ISOON, SDO, GONG, and GOES. Our studies include a number of flares and CMEs of mostly the M- and X-strengths as categorized by GOES. We find that the chromospheric signatures of these large eruptions occur 5-30 minutes in advance of coronal high temperature signatures. These timing measurements are then used as inputs to models and reconstruct the eruptive nature of these systems, and explore their utility in forecasts.

  14. A new aerodynamic integral equation based on an acoustic formula in the time domain

    NASA Technical Reports Server (NTRS)

    Farassat, F.

    1984-01-01

    An aerodynamic integral equation for bodies moving at transonic and supersonic speeds is presented. Based on a time-dependent acoustic formula for calculating the noise emanating from the outer portion of a propeller blade travelling at high speed (the Ffowcs Williams-Hawking formulation), the loading terms and a conventional thickness source terms are retained. Two surface and three line integrals are employed to solve an equation for the loading noise. The near-field term is regularized using the collapsing sphere approach to obtain semiconvergence on the blade surface. A singular integral equation is thereby derived for the unknown surface pressure, and is amenable to numerical solutions using Galerkin or collocation methods. The technique is useful for studying the nonuniform inflow to the propeller.

  15. Crosswell acoustic surveying in gas sands: Travel-time pattern recognition, seismic Q and channel waves

    NASA Astrophysics Data System (ADS)

    Albright, J. N.; Johnson, P. A.

    The application of crosswell acoustic measurements to gas sands research has been explored through surveys conducted in the Mesa Verde formation at the Department of Energy Multi-Well Experiment (MWX) site near Rifle, Colorado. The borehole tools used in the survey are similar in concept to those used in commercial service for sonic logging, but they are especially adapted for the stringent requirements of crosswell shooting in hot gas wells. Important information about the geologic structure between wells can be extracted from crosswell scans without resorting to elaborate processing. A useful representation is a display of the travel time of P-waves in terms of the cylindrical coordinates of the transmitter referenced to the receiver. This is known as a gamma-depth ((GAMMA)-Z) plot. Such a representation may yield distinctive patterns, which can be interpreted based on the successful replication of the pattern through computer simulations.

  16. Selective source reduction to identify masked sources using time reversal acoustics

    NASA Astrophysics Data System (ADS)

    Scalerandi, M.; Gliozzi, A. S.; Anderson, Brian E.; Griffa, M.; Johnson, Paul A.; Ulrich, T. J.

    2008-08-01

    The presence of strong sources of elastic waves often makes it impossible to localize weaker ones, which are sometimes the most meaningful, e.g. in the characterization of complexity of active Earth faults or of microdamage in a composite structural material. To address this problem, a selective source reduction method is proposed here which, applied in conjunction with time reversal acoustics (TRA), provides the means to selectively reduce the contribution of strong sources allowing full illumination of the weak ones. The method is complementary to other methods based on TRA which aim at the selective illumination of scatterers in the propagation medium. In this paper, a description of the method is given along with presentation of a few numerical results to demonstrate its usefulness for localization of sources. Validation and some experimental results are also presented.

  17. Time-Accurate Simulations and Acoustic Analysis of Slat Free-Shear Layer

    NASA Technical Reports Server (NTRS)

    Khorrami, Mehdi R.; Singer, Bart A.; Berkman, Mert E.

    2001-01-01

    A detailed computational aeroacoustic analysis of a high-lift flow field is performed. Time-accurate Reynolds Averaged Navier-Stokes (RANS) computations simulate the free shear layer that originates from the slat cusp. Both unforced and forced cases are studied. Preliminary results show that the shear layer is a good amplifier of disturbances in the low to mid-frequency range. The Ffowcs-Williams and Hawkings equation is solved to determine the acoustic field using the unsteady flow data from the RANS calculations. The noise radiated from the excited shear layer has a spectral shape qualitatively similar to that obtained from measurements in a corresponding experimental study of the high-lift system.

  18. Comparative study of acoustic relaxation time of cholesteric liquid crystal and mixtures

    NASA Astrophysics Data System (ADS)

    Bhave, Manisha G.; Gharde, Rita; Radha, S.

    2016-09-01

    The present study focuses on the relaxation processes in Cholesteric Liquid Crystal and mixtures. We have dispersed two different monomers in CLC to form Polymer dispersed liquid crystals (PDCLCs). PDLC films have a remarkable electro-optical behavior since they can be switched from highly light scattering state (OFF) to transparent state (ON) simply by application of an electric field. We have also doped ferroelectric nano - powder (NP) in CLC. The phase transitions occurred at temperatures lower than those exhibited by the mesogenic component before doping. The viscosity, ultrasonic velocity and density show variation with change in the material as well as temperature. The acoustic relaxation time and ultrasonic attenuation decrease with increase in temperature for CLC and CLC+NP. The parameters of PDCLC2 in comparison with PDCLC1 are more linear in isotropic and anisotropic regions. For PDCLC2 the values reach maximum value at the Cholesteric-isotropic transition.

  19. Wideband nonlinear time reversal seismo-acoustic method for landmine detection.

    PubMed

    Sutin, Alexander; Libbey, Brad; Fillinger, Laurent; Sarvazyan, Armen

    2009-04-01

    Acoustic and seismic waves provide a method to localize compliant mines by vibrating the top plate and a thin soil layer above the mine. This vibration is mostly linear, but also includes a small nonlinear deviation. The main goal of this paper is to introduce a method of processing that uses phase-inversion to observe nonlinear effects in a wide frequency band. The method extracts a nonlinear part of surface velocity from two similar broadcast signals of opposite sign by summing and cancelling the linear components and leaving the nonlinear components. This phase-inversion method is combined with time reversal focusing to provide increased seismic vibration and enhance the nonlinear effect. The experiments used six loudspeakers in a wood box placed over sand in which inert landmines were buried. The nonlinear surface velocity of the sand with a mine compared to the sand without a mine was greater as compared to a linear technique. PMID:19354365

  20. Helicopter blade-vortex interaction locations: Scale-model acoustics and free-wake analysis results

    NASA Technical Reports Server (NTRS)

    Hoad, Danny R.

    1987-01-01

    The results of a model rotor acoustic test in the Langley 4by 7-Meter Tunnel are used to evaluate a free-wake analytical technique. An acoustic triangulation technique is used to locate the position in the rotor disk where the blade-vortex interaction noise originates. These locations, along with results of the rotor free-wake analysis, are used to define the geometry of the blade-vortex interaction noise phenomena as well as to determine if the free-wake analysis is a capable diagnostic tool. Data from tests of two teetering rotor systems are used in these analyses.

  1. Time-frequency analysis of acoustic signals in the audio-frequency range generated during Hadfield's steel friction

    NASA Astrophysics Data System (ADS)

    Dobrynin, S. A.; Kolubaev, E. A.; Smolin, A. Yu.; Dmitriev, A. I.; Psakhie, S. G.

    2010-07-01

    Time-frequency analysis of sound waves detected by a microphone during the friction of Hadfield’s steel has been performed using wavelet transform and window Fourier transform methods. This approach reveals a relationship between the appearance of quasi-periodic intensity outbursts in the acoustic response signals and the processes responsible for the formation of wear products. It is shown that the time-frequency analysis of acoustic emission in a tribosystem can be applied, along with traditional approaches, to studying features in the wear and friction process.

  2. Modeling orbital changes on tectonic time scales

    NASA Technical Reports Server (NTRS)

    Crowley, Thomas J.

    1992-01-01

    Geologic time series indicate significant 100 ka and 400 ka pre-Pleistocene climate fluctuations, prior to the time of such fluctuations in Pleistocene ice sheets. The origin of these fluctuations must therefore depend on phenomena other than the ice sheets. In a previous set of experiments, we tested the sensitivity of an energy balance model to orbital insolation forcing, specifically focusing on the filtering effect of the Earth's geography. We found that in equatorial areas, the twice-yearly passage of the sun across the equator interacts with the precession index to generate 100 ka and 400 ka power in our modeled time series. The effect is proportional to the magnitude of land in equatorial regions. We suggest that such changes may reflect monsoonal variations in the real climate system, and the subsequent wind and weathering changes may transfer some of this signal to the marine record. A comparison with observed fluctuations of Triassic lake levels is quite favorable. A number of problems remain to be studied or clarified: (1) the EBM experiments need to be followed up by a limited number of GCM experiments; (2) the sensitivity to secular changes in orbital forcing needs to be examined; (3) the possible modifying role of sedimentary processes on geologic time series warrants considerably more study; (4) the effect of tectonic changes on Earth's rotation rate needs to be studied; and (5) astronomers need to make explicit which of their predictions are robust and geologists and astronomers have to agree on which of the predictions are most testable in the geologic record.

  3. Acoustic resolution photoacoustic Doppler velocity measurements in fluids using time-domain cross-correlation

    NASA Astrophysics Data System (ADS)

    Brunker, J.; Beard, P.

    2013-03-01

    Blood flow measurements have been demonstrated using the acoustic resolution mode of photoacoustic sensing. This is unlike previous flowmetry methods using the optical resolution mode, which limits the maximum penetration depth to approximately 1mm. Here we describe a pulsed time correlation photoacoustic Doppler technique that is inherently flexible, lending itself to both resolution modes. Doppler time shifts are quantified via cross-correlation of pairs of photoacoustic waveforms generated in moving absorbers using pairs of laser light pulses, and the photoacoustic waves detected using an ultrasound transducer. The acoustic resolution mode is employed by using the transducer focal width, rather than the large illuminated volume, to define the lateral spatial resolution. The use of short laser pulses allows depth-resolved measurements to be obtained with high spatial resolution, offering the prospect of mapping flow within microcirculation. Whilst our previous work has been limited to a non-fluid phantom, we now demonstrate measurements in more realistic blood-mimicking phantoms incorporating fluid suspensions of microspheres flowing along an optically transparent tube. Velocities up to 110 mm/s were measured with accuracies approaching 1% of the known velocities, and resolutions of a few mm/s. The velocity range and resolution are scalable with excitation pulse separation, but the maximum measurable velocity was considerably smaller than the value expected from the detector focal beam width. Measurements were also made for blood flowing at velocities up to 13.5 mm/s. This was for a sample reduced to 5% of the normal haematocrit; increasing the red blood cell concentration limited the maximum measurable velocity so that no results were obtained for concentrations greater than 20% of a physiologically realistic haematocrit. There are several possible causes for this limitation; these include the detector bandwidth and irregularities in the flow pattern. Better

  4. Time-frequency analysis of the bistatic acoustic scattering from a spherical elastic shell.

    PubMed

    Anderson, Shaun D; Sabra, Karim G; Zakharia, Manell E; Sessarego, Jean-Pierre

    2012-01-01

    The development of low-frequency sonar systems, using, for instance, a network of autonomous systems in unmanned vehicles, provides a practical means for bistatic measurements (i.e., when the source and receiver are widely separated) allowing for multiple viewpoints of the target of interest. Time-frequency analysis, in particular, Wigner-Ville analysis, takes advantage of the evolution time dependent aspect of the echo spectrum to differentiate a man-made target, such as an elastic spherical shell, from a natural object of the similar shape. A key energetic feature of fluid-loaded and thin spherical shell is the coincidence pattern, also referred to as the mid-frequency enhancement (MFE), that results from antisymmetric Lamb-waves propagating around the circumference of the shell. This article investigates numerically the bistatic variations of the MFE with respect to the monostatic configuration using the Wigner-Ville analysis. The observed time-frequency shifts of the MFE are modeled using a previously derived quantitative ray theory by Zhang et al. [J. Acoust. Soc. Am. 91, 1862-1874 (1993)] for spherical shell's scattering. Additionally, the advantage of an optimal array beamformer, based on joint time delays and frequency shifts is illustrated for enhancing the detection of the MFE recorded across a bistatic receiver array when compared to a conventional time-delay beamformer.

  5. Application of the Time Reversed Acoustic Concept to Earthquake Location and Focal Depth Determination

    NASA Astrophysics Data System (ADS)

    Toksoz, M.; Lu, R.; Pearce, F.; Sarkar, S.

    2007-12-01

    Local and regional seismograms have long codas due to strong scattering of seismic waves in the crust. Accurate identification of individual phases (P, pP, PmP, S, sS, etc.) is difficult because the scattered arrivals complicate the local seismograms and introduce errors in picking phases and their arrival times. These, in turn, introduce errors in hypocenter parameters. Strong scattering, that is a detriment to picking individual phases, makes it possible to apply the Time Reversed Acoustic (TRA) concept to local earthquake location and focal depth determination. The basic idea in TRA is to time reverse the recorded signals (seismograms) and to inject them into the earth. If the earth structure is known, the back-propagated signals could focus at the source. We demonstrate this by synthetic (numerical) examples and with seismograms from earthquakes. Foci, determined by TRA and by traditional methods with arrival times from close-in stations, agree very well. Independently, we present a method based on the TRA concept for earthquake focal depth determination. In a highly scattering medium, the source time function determination and pP identification can be accomplished simply, by autocorrelation of the seismograms.

  6. Time Reversal Mirrors and Cross Correlation Functions in Acoustic Wave Propagation

    NASA Astrophysics Data System (ADS)

    Fishman, Louis; Jonsson, B. Lars G.; de Hoop, Maarten V.

    2009-03-01

    In time reversal acoustics (TRA), a signal is recorded by an array of transducers, time reversed, and then retransmitted into the configuration. The retransmitted signal propagates back through the same medium and retrofocuses on the source that generated the signal. If the transducer array is a single, planar (flat) surface, then this configuration is referred to as a planar, one-sided, time reversal mirror (TRM). In signal processing, for example, in active-source seismic interferometry, the measurement of the wave field at two distinct receivers, generated by a common source, is considered. Cross correlating these two observations and integrating the result over the sources yield the cross correlation function (CCF). Adopting the TRM experiments as the basic starting point and identifying the kinematically correct correspondences, it is established that the associated CCF signal processing constructions follow in a specific, infinite recording time limit. This perspective also provides for a natural rationale for selecting the Green's function components in the TRM and CCF expressions. For a planar, one-sided, TRM experiment and the corresponding CCF signal processing construction, in a three-dimensional homogeneous medium, the exact expressions are explicitly calculated, and the connecting limiting relationship verified. Finally, the TRM and CCF results are understood in terms of the underlying, governing, two-way wave equation, its corresponding time reversal invariance (TRI) symmetry, and the absence of TRI symmetry in the associated one-way wave equations, highlighting the role played by the evanescent modal contributions.

  7. Scaling of coupled dilatancy-diffusion processes in space and time

    NASA Astrophysics Data System (ADS)

    Main, I. G.; Bell, A. F.; Meredith, P. G.; Brantut, N.; Heap, M.

    2012-04-01

    Coupled dilatancy-diffusion processes resulting from microscopically brittle damage due to precursory cracking have been observed in the laboratory and suggested as a mechanism for earthquake precursors. One reason precursors have proven elusive may be the scaling in space: recent geodetic and seismic data placing strong limits on the spatial extent of the nucleation zone for recent earthquakes. Another may be the scaling in time: recent laboratory results on axi-symmetric samples show both a systematic decrease in circumferential extensional strain at failure and a delayed and a sharper acceleration of acoustic emission event rate as strain rate is decreased. Here we examine the scaling of such processes in time from laboratory to field conditions using brittle creep (constant stress loading) to failure tests, in an attempt to bridge part of the strain rate gap to natural conditions, and discuss the implications for forecasting the failure time. Dilatancy rate is strongly correlated to strain rate, and decreases to zero in the steady-rate creep phase at strain rates around 10-9 s-1 for a basalt from Mount Etna. The data are well described by a creep model based on the linear superposition of transient (decelerating) and accelerating micro-crack growth due to stress corrosion. The model produces good fits to the failure time in retrospect using the accelerating acoustic emission event rate, but in prospective tests on synthetic data with the same properties we find failure-time forecasting is subject to systematic epistemic and aleatory uncertainties that degrade predictability. The next stage is to use the technology developed to attempt failure forecasting in real time, using live streamed data and a public web-based portal to quantify the prospective forecast quality under such controlled laboratory conditions.

  8. Shaping volumetric light distribution through turbid media using real-time three-dimensional opto-acoustic feedback.

    PubMed

    Deán-Ben, X Luís; Estrada, Héctor; Razansky, Daniel

    2015-02-15

    Focusing light through turbid media represents a highly fascinating challenge in modern biophotonics. The unique capability of opto-acoustics for high-resolution imaging of light absorption contrast in deep tissues can provide a natural and efficient feedback to control light delivery in a scattering medium. While the basic feasibility of using opto-acoustic readings as a feedback mechanism for wavefront shaping has been recently reported, the suggested approaches may require long acquisition times, making them challenging to be translated into realistic tissue environments. In an attempt to significantly accelerate dynamic wavefront shaping capabilities, we present here a feedback-based approach using real-time three-dimensional opto-acoustic imaging assisted with genetic-algorithm-based optimization. The new technique offers robust performance in the presence of noisy measurements and can simultaneously control the scattered wave field in an entire volumetric region. PMID:25680120

  9. Use of acoustic wave travel-time measurements to probe the near-surface layers of the Sun

    NASA Technical Reports Server (NTRS)

    Jefferies, S. M.; Osaki, Y.; Shibahashi, H.; Duvall, T. L., Jr.; Harvey, J. W.; Pomerantz, M. A.

    1994-01-01

    The variation of solar p-mode travel times with cyclic frequency nu is shown to provide information on both the radial variation of the acoustic potential and the depth of the effective source of the oscillations. Observed travel-time data for waves with frequency lower than the acoustic cutoff frequency for the solar atmosphere (approximately equals 5.5 mHz) are inverted to yield the local acoustic cutoff frequency nu(sub c) as a function of depth in the outer convection zone and lower atmosphere of the Sun. The data for waves with nu greater than 5.5 mHz are used to show that the source of the p-mode oscillations lies approximately 100 km beneath the base of the photosphere. This depth is deeper than that determined using a standard mixing-length calculation.

  10. Generation of Acoustic-Gravity Waves in Ionospheric HF Heating Experiments: Simulating Large-Scale Natural Heat Sources

    NASA Astrophysics Data System (ADS)

    Pradipta, Rezy

    In this thesis, we investigate the potential role played by large-scale anomalous heat sources (e.g. prolonged heat wave events) in generating acoustic-gravity waves (AGWs) that might trigger widespread plasma turbulence in the ionospheric layer. The main hypothesis is that, the thermal gradients associated with the heat wave fronts could act as a source of powerful AGW capable of triggering ionospheric plasma turbulence over extensive areas. In our investigations, first we are going to examine a case study of the summer 2006 North American heat wave event. Our examination of GPS-derived total electron content (TEC) data over the North American sector reveals a quite noticeable increase in the level of daily plasma density fluctuations during the summer 2006 heat wave period. Comparison with the summer 2005 and summer 2007 data further confirms that the observed increase of traveling ionospheric disturbances (TIDs) during the summer 2006 heat wave period was not simply a regular seasonal phenomenon. Furthermore, a series of field experiments had been carried out at the High-frequency Active Auroral Research Program (HAARP) facility in order to physically simulate the process of AGW/TID generation by large-scale thermal gradients in the ionosphere. In these ionospheric HF heating experiments, we create some time-varying artificial thermal gradients at an altitude of 200--300 km above the Earth's surface using vertically-transmitted amplitude-modulated 0-mode HF heater waves. For our experiments, a number of radio diagnostic instruments had been utilized to detect the characteristic signatures of heater-generated AGW/TID. So far, we have been able to obtain several affirmative indications that some artificial AGW/TID are indeed being radiated out from the heated plasma volume during the HAARP-AGW experiments. Based on the experimental evidence, we may conclude that it is certainly quite plausible for large-scale thermal gradients associated with severe heat wave

  11. Multi-bearing defect detection with trackside acoustic signal based on a pseudo time-frequency analysis and Dopplerlet filter

    NASA Astrophysics Data System (ADS)

    Zhang, Haibin; Lu, Siliang; He, Qingbo; Kong, Fanrang

    2016-03-01

    The diagnosis of train bearing defects based on the acoustic signal acquired by a trackside microphone plays a significant role in the transport system. However, the wayside acoustic signal suffers from the Doppler distortion due to the high moving speed and also contains the multi-source signals from different train bearings. This paper proposes a novel solution to overcome the two difficulties in trackside acoustic diagnosis. In the method a pseudo time-frequency analysis (PTFA) based on an improved Dopplerlet transform (IDT) is presented to acquire the time centers for different bearings. With the time centers, we design a series of Dopplerlet filters (DF) in time-frequency domain to work on the signal's time-frequency distribution (TFD) gained by the short time Fourier transform (STFT). Then an inverse STFT (ISTFT) is utilized to get the separated signals for each sound source which means bearing here. Later the resampling method based on certain motion parameters eliminates the Doppler Effect and finally the diagnosis can be made effectively according to the envelope spectrum of each separated signal. With the effectiveness of the technique validated by both simulated and experimental cases, the proposed wayside acoustic diagnostic scheme is expected to be available in wayside defective bearing detection.

  12. Acoustic scaling: A review of progress to date, and of possible future development

    NASA Astrophysics Data System (ADS)

    Mathers, C. D.

    1981-09-01

    The techniques of acoustic modelling have developed to a degree which enables a realistic subjective assessment to be made of at least the major features of a music studio. The successes of the work are reviewed, its limitations are discussed, and the ways in which advancing technology might enable some of these limitations to be overcome in the future are considered.

  13. Objective quality measurement for audio time-scale modification

    NASA Astrophysics Data System (ADS)

    Liu, Fang; Lee, Jae-Joon; Kuo, C. C. J.

    2003-11-01

    The recent ITU-T Recommendation P.862, known as the Perceptual Evaluation of Speech Quality (PESQ) is an objective end-to-end speech quality assessment method for telephone networks and speech codecs through the measurement of received audio quality. To ensure that certain network distortions will not affect the estimated subjective measurement determined by PESQ, the algorithm takes into account packet loss, short-term and long-term time warping resulted from delay variation. However, PESQ does not work well for time-scale audio modification or temporal clipping. We investigated the factors that impact the perceived quality when time-scale modification is involved. An objective measurement of time-scale modification is proposed in this research, where the cross-correlation values obtained from time-scale modification synchronization are used to evaluate the quality of a time-scaled audio sequence. This proposed objective measure has been verified by a subjective test.

  14. Scale Model Acoustic Test Validation of IOP-SS Water Prediction using Loci-STREAM-VoF

    NASA Technical Reports Server (NTRS)

    Nielsen, Tanner; West, Jeff

    2015-01-01

    The Scale Model Acoustic Test (SMAT) is a 5% scale test of the Space Launch System (SLS), which is currently being designed at Marshall Space Flight Center (MSFC). SMAT consists of a 5% scale representation of the ignition overpressure sound-suppression system (IOP-SS) that is being tested to quantify the water flow and induced air entrainment in and around the mobile launcher exhaust hole. This data will be compared with computational fluid dynamics (CFD) simulations using the newly developed Loci-STREAM Volume of Fluid (VoF) methods. Compressible and incompressible VoF methods have been formulated, and are currently being used to simulate the water flow of SMAT IOP-SS. The test data will be used to qualitatively and quantitatively assess and validate the VoF methods.

  15. Classification of Hazelnut Kernels by Using Impact Acoustic Time-Frequency Patterns

    NASA Astrophysics Data System (ADS)

    Kalkan, Habil; Ince, Nuri Firat; Tewfik, Ahmed H.; Yardimci, Yasemin; Pearson, Tom

    2007-12-01

    Hazelnuts with damaged or cracked shells are more prone to infection with aflatoxin producing molds ( Aspergillus flavus). These molds can cause cancer. In this study, we introduce a new approach that separates damaged/cracked hazelnut kernels from good ones by using time-frequency features obtained from impact acoustic signals. The proposed technique requires no prior knowledge of the relevant time and frequency locations. In an offline step, the algorithm adaptively segments impact signals from a training data set in time using local cosine packet analysis and a Kullback-Leibler criterion to assess the discrimination power of different segmentations. In each resulting time segment, the signal is further decomposed into subbands using an undecimated wavelet transform. The most discriminative subbands are selected according to the Euclidean distance between the cumulative probability distributions of the corresponding subband coefficients. The most discriminative subbands are fed into a linear discriminant analysis classifier. In the online classification step, the algorithm simply computes the learned features from the observed signal and feeds them to the linear discriminant analysis (LDA) classifier. The algorithm achieved a throughput rate of 45 nuts/s and a classification accuracy of 96% with the 30 most discriminative features, a higher rate than those provided with prior methods.

  16. On the Assessment of Acoustic Scattering and Shielding by Time Domain Boundary Integral Equation Solutions

    NASA Technical Reports Server (NTRS)

    Hu, Fang Q.; Pizzo, Michelle E.; Nark, Douglas M.

    2016-01-01

    Based on the time domain boundary integral equation formulation of the linear convective wave equation, a computational tool dubbed Time Domain Fast Acoustic Scattering Toolkit (TD-FAST) has recently been under development. The time domain approach has a distinct advantage that the solutions at all frequencies are obtained in a single computation. In this paper, the formulation of the integral equation, as well as its stabilization by the Burton-Miller type reformulation, is extended to cases of a constant mean flow in an arbitrary direction. In addition, a "Source Surface" is also introduced in the formulation that can be employed to encapsulate regions of noise sources and to facilitate coupling with CFD simulations. This is particularly useful for applications where the noise sources are not easily described by analytical source terms. Numerical examples are presented to assess the accuracy of the formulation, including a computation of noise shielding by a thin barrier motivated by recent Historical Baseline F31A31 open rotor noise shielding experiments. Furthermore, spatial resolution requirements of the time domain boundary element method are also assessed using point per wavelength metrics. It is found that, using only constant basis functions and high-order quadrature for surface integration, relative errors of less than 2% may be obtained when the surface spatial resolution is 5 points-per-wavelength (PPW) or 25 points-per-wavelength squared (PPW2).

  17. Gibbs sampling for time-delay-and amplitude estimation in underwater acoustics.

    PubMed

    Michalopoulou, Zoi-Heleni; Picarelli, Michele

    2005-02-01

    Multipath arrivals at a receiving sensor are frequently encountered in many signal-processing areas, including sonar, radar, and communication problems. In underwater acoustics, numerous approaches to source localization, geoacoustic inversion, and tomography rely on accurate multipath arrival extraction. A novel method for estimation of time delays and amplitudes of arrivals with maximum a posteriori (MAP) estimation is presented here. MAP estimation is optimal if appropriate statistical models are selected for the data; implementation, requiring maximization of a multidimensional function, is computationally demanding. Gibbs sampling is proposed as an efficient means for estimating necessary posterior probability distributions, bypassing analytical calculations. The Gibbs sampler includes as unknowns time delays, amplitudes, noise variance, and number of arrivals. Through Monte Carlo simulations, the method is shown to have a performance very close to that of analytical MAP estimation. The method is also shown to be superior to expectation-maximization, which is often applied to time-delay estimation. The Gibbs sampling approach is demonstrated to be more informative than other time-delay estimation methods, providing complete posterior distributions compared to just point estimates; the distributions capture the uncertainty in the problem, presenting likely values of the unknowns that are different from simple point estimates.

  18. Assessment at full scale of nozzle/wing geometry effects on OTW aero-acoustic characteristics. [short takeoff aircraft noise

    NASA Technical Reports Server (NTRS)

    Groesbeck, D.; Vonglahn, U.

    1979-01-01

    The effects on acoustic characteristics of nozzle type and location on a wing for STOL engine over-the-wing configurations are assessed at full scale on the basis of model-scale data. Three types of nozzle configurations are evaluated: a circular nozzle with external deflector mounted above the wing, a slot nozzle with external deflector mounted on the wing and a slot nozzle mounted on the wing. Nozzle exhaust plane locations with respect to the wing leading edge are varied from 10 to 46 percent chord (flaps retracted) with flap angles of 20 (takeoff altitude) and 60 (approach attitude). Perceived noise levels (PNL) are calculated as a function of flyover distance at 152 m altitude. From these plots, static EPNL values, defined as flyover relative noise levels, are calculated and plotted as a function of lift and thrust ratios. From such plots the acoustic benefits attributable to variations in nozzle/deflector/wing geometry at full scale are assessed for equal aerodynamic performance.

  19. Rapid evaluation of time scale using an optical clock

    NASA Astrophysics Data System (ADS)

    Ido, T.; Hachisu, H.; Nakagawa, F.; Hanado, Y.

    2016-06-01

    Feasibility of steering a time scale using an optical clock is investigated. Since the high stability of optical frequency standards enables rapid evaluation of the scale interval, the requirement for the continuous operation is mitigated. Numerical simulations with the input of real calibration data by a 87Sr lattice clock indicated that the calibrations once in two weeks maintain the time scale within 5 ns level using a currently available hydrogen maser at NICT. “Optical” steering of a time scale by the intermittent calibrations frees an optical frequency standard from being dedicated to the steering, enabling other applications using the same apparatus.

  20. Controlling sound with acoustic metamaterials

    NASA Astrophysics Data System (ADS)

    Cummer, Steven A.; Christensen, Johan; Alù, Andrea

    2016-03-01

    Acoustic metamaterials can manipulate and control sound waves in ways that are not possible in conventional materials. Metamaterials with zero, or even negative, refractive index for sound offer new possibilities for acoustic imaging and for the control of sound at subwavelength scales. The combination of transformation acoustics theory and highly anisotropic acoustic metamaterials enables precise control over the deformation of sound fields, which can be used, for example, to hide or cloak objects from incident acoustic energy. Active acoustic metamaterials use external control to create effective material properties that are not possible with passive structures and have led to the development of dynamically reconfigurable, loss-compensating and parity-time-symmetric materials for sound manipulation. Challenges remain, including the development of efficient techniques for fabricating large-scale metamaterial structures and converting laboratory experiments into useful devices. In this Review, we outline the designs and properties of materials with unusual acoustic parameters (for example, negative refractive index), discuss examples of extreme manipulation of sound and, finally, provide an overview of future directions in the field.

  1. Electrochemical-acoustic time of flight: in operando correlation of physical dynamics with battery charge and health

    SciTech Connect

    Hsieh, AG; Bhadra, S; Hertzberg, BJ; Gjeltema, PJ; Goy, A; Fleischer, JW; Steingart, DA

    2015-01-01

    We demonstrate that a simple acoustic time-of-flight experiment can measure the state of charge and state of health of almost any closed battery. An acoustic conservation law model describing the state of charge of a standard battery is proposed, and experimental acoustic results verify the simulated trends; furthermore, a framework relating changes in sound speed, via density and modulus changes, to state of charge and state of health within a battery is discussed. Regardless of the chemistry, the distribution of density within a battery must change as a function of state of charge and, along with density, the bulk moduli of the anode and cathode changes as well. The shifts in density and modulus also change the acoustic attenuation in a battery. Experimental results indicating both state-of-charge determination and irreversible physical changes are presented for two of the most ubiquitous batteries in the world, the lithium-ion 18650 and the alkaline LR6 (AA). Overall, a one-or two-point acoustic measurement can be related to the interaction of a pressure wave at multiple discrete interfaces within a battery, which in turn provides insights into state of charge, state of health, and mechanical evolution/degradation.

  2. Calibrating passive acoustic monitoring: correcting humpback whale call detections for site-specific and time-dependent environmental characteristics.

    PubMed

    Helble, Tyler A; D'Spain, Gerald L; Campbell, Greg S; Hildebrand, John A

    2013-11-01

    This paper demonstrates the importance of accounting for environmental effects on passive underwater acoustic monitoring results. The situation considered is the reduction in shipping off the California coast between 2008-2010 due to the recession and environmental legislation. The resulting variations in ocean noise change the probability of detecting marine mammal vocalizations. An acoustic model was used to calculate the time-varying probability of detecting humpback whale vocalizations under best-guess environmental conditions and varying noise. The uncorrected call counts suggest a diel pattern and an increase in calling over a two-year period; the corrected call counts show minimal evidence of these features.

  3. Imaging of human tooth using ultrasound based chirp-coded nonlinear time reversal acoustics.

    PubMed

    Dos Santos, Serge; Prevorovsky, Zdenek

    2011-08-01

    Human tooth imaging sonography is investigated experimentally with an acousto-optic noncoupling set-up based on the chirp-coded nonlinear time reversal acoustic concept. The complexity of the tooth internal structure (enamel-dentine interface, cracks between internal tubules) is analyzed by adapting the nonlinear elastic wave spectroscopy (NEWS) with the objective of the tomography of damage. Optimization of excitations using intrinsic symmetries, such as time reversal (TR) invariance, reciprocity, correlation properties are then proposed and implemented experimentally. The proposed medical application of this TR-NEWS approach is implemented on a third molar human tooth and constitutes an alternative of noncoupling echodentography techniques. A 10 MHz bandwidth ultrasonic instrumentation has been developed including a laser vibrometer and a 20 MHz contact piezoelectric transducer. The calibrated chirp-coded TR-NEWS imaging of the tooth is obtained using symmetrized excitations, pre- and post-signal processing, and the highly sensitive 14 bit resolution TR-NEWS instrumentation previously calibrated. Nonlinear signature coming from the symmetry properties is observed experimentally in the tooth using this bi-modal TR-NEWS imaging after and before the focusing induced by the time-compression process. The TR-NEWS polar B-scan of the tooth is described and suggested as a potential application for modern echodentography. It constitutes the basis of the self-consistent harmonic imaging sonography for monitoring cracks propagation in the dentine, responsible of human tooth structural health.

  4. Multiple time scales in multi-state models.

    PubMed

    Iacobelli, Simona; Carstensen, Bendix

    2013-12-30

    In multi-state models, it has been the tradition to model all transition intensities on one time scale, usually the time since entry into the study ('clock-forward' approach). The effect of time since an intermediate event has been accommodated either by changing the time scale to time since entry to the new state ('clock-back' approach) or by including the time at entry to the new state as a covariate. In this paper, we argue that the choice of time scale for the various transitions in a multi-state model should be dealt with as an empirical question, as also the question of whether a single time scale is sufficient. We illustrate that these questions are best addressed by using parametric models for the transition rates, as opposed to the traditional Cox-model-based approaches. Specific advantages are that dependence of failure rates on multiple time scales can be made explicit and described in informative graphical displays. Using a single common time scale for all transitions greatly facilitates computations of probabilities of being in a particular state at a given time, because the machinery from the theory of Markov chains can be applied. However, a realistic model for transition rates is preferable, especially when the focus is not on prediction of final outcomes from start but on the analysis of instantaneous risk or on dynamic prediction. We illustrate the various approaches using a data set from stem cell transplant in leukemia and provide supplementary online material in R. PMID:24027131

  5. Gust Acoustic Response of a Single Airfoil Using the Space-Time CE/SE Method

    NASA Technical Reports Server (NTRS)

    Scott, James (Technical Monitor); Wang, X. Y.; Chang, S. C.; Himansu, A.; Jorgenson, P. C. E.

    2003-01-01

    A 2D parallel Euler code based on the space-time conservation element and solution element (CE/SE) method is validated by solving the benchmark problem I in Category 3 of the Third CAA Workshop. This problem concerns the acoustic field generated by the interaction of a convected harmonic vortical gust with a single airfoil. Three gust frequencies, two gust configurations, and three airfoil geometries are considered. Numerical results at both near and far fields are presented and compared with the analytical solutions, a frequency-domain solver GUST3D solutions, and a time-domain high-order Discontinuous Spectral Element Method (DSEM) solutions. It is shown that the CE/SE solutions agree well with the GUST3D solution for the lowest frequency, while there are discrepancies between CE/SE and GUST3D solutions for higher frequencies. However, the CE/SE solution is in good agreement with the DSEM solution for these higher frequencies. It demonstrates that the CE/SE method can produce accurate results of CAA problems involving complex geometries by using unstructured meshes.

  6. Acoustic levitation of a large solid sphere

    NASA Astrophysics Data System (ADS)

    Andrade, Marco A. B.; Bernassau, Anne L.; Adamowski, Julio C.

    2016-07-01

    We demonstrate that acoustic levitation can levitate spherical objects much larger than the acoustic wavelength in air. The acoustic levitation of an expanded polystyrene sphere of 50 mm in diameter, corresponding to 3.6 times the wavelength, is achieved by using three 25 kHz ultrasonic transducers arranged in a tripod fashion. In this configuration, a standing wave is created between the transducers and the sphere. The axial acoustic radiation force generated by each transducer on the sphere was modeled numerically as a function of the distance between the sphere and the transducer. The theoretical acoustic radiation force was verified experimentally in a setup consisting of an electronic scale and an ultrasonic transducer mounted on a motorized linear stage. The comparison between the numerical and experimental acoustic radiation forces presents a good agreement.

  7. Assessment at full scale of exhaust nozzle-to-wing size on STOL-OTW acoustic characteristics

    NASA Technical Reports Server (NTRS)

    Von Glahn, U.; Groesbeck, D.

    1979-01-01

    On the basis of static zero/acoustic data obtained at model scale, the effect of exhaust nozzle size on flyover noise is evaluated at full scale for different STOL-OTW nozzle configurations. Three types of nozzles are evaluated: a circular/deflector nozzle mounted above the wing, a slot/deflector nozzle mounted on the wing, and a slot nozzle mounted on the wing. The nozzle exhaust plane location, measured from the wing leading edge was varied from 10 to 46 percent of the wing chord (flaps retracted). Flap angles of 20 deg (takeoff) and 60 deg (approach) are included in the study. Initially, perceived noise levels (PNL) are calculated as a function of flyover distance at 152 m altitude. From these plots static EPNL values, defined as flyover relative noise levels, then are obtained as functions of nozzle size for equal aerodynamic performance (lift and thrust). On the basis of these calculations, the acoustic benefits attributable to nozzle size relative to a given wing chord size are assessed.

  8. Quadratic Time-Frequency Analysis of Hydroacoustic Signals as Applied to Acoustic Emissions of Large Whales

    NASA Astrophysics Data System (ADS)

    Le Bras, Ronan; Victor, Sucic; Damir, Malnar; Götz, Bokelmann

    2014-05-01

    In order to enrich the set of attributes in setting up a large database of whale signals, as envisioned in the Baleakanta project, we investigate methods of time-frequency analysis. The purpose of establishing the database is to increase and refine knowledge of the emitted signal and of its propagation characteristics, leading to a better understanding of the animal migrations in a non-invasive manner and to characterize acoustic propagation in oceanic media. The higher resolution for signal extraction and a better separation from other signals and noise will be used for various purposes, including improved signal detection and individual animal identification. The quadratic class of time-frequency distributions (TFDs) is the most popular set of time-frequency tools for analysis and processing of non-stationary signals. Two best known and most studied members of this class are the spectrogram and the Wigner-Ville distribution. However, to be used efficiently, i.e. to have highly concentrated signal components while significantly suppressing interference and noise simultaneously, TFDs need to be optimized first. The optimization method used in this paper is based on the Cross-Wigner-Ville distribution, and unlike similar approaches it does not require prior information on the analysed signal. The method is applied to whale signals, which, just like the majority of other real-life signals, can generally be classified as multicomponent non-stationary signals, and hence time-frequency techniques are a natural choice for their representation, analysis, and processing. We present processed data from a set containing hundreds of individual calls. The TFD optimization method results into a high resolution time-frequency representation of the signals. It allows for a simple extraction of signal components from the TFD's dominant ridges. The local peaks of those ridges can then be used for the signal components instantaneous frequency estimation, which in turn can be used as

  9. Very short NMR relaxation times of anions in ionic liquids: New pulse sequence to eliminate the acoustic ringing

    NASA Astrophysics Data System (ADS)

    Klimavicius, Vytautas; Gdaniec, Zofia; Balevicius, Vytautas

    2014-11-01

    NMR relaxation processes of anions were studied in two neat imidazolium-based room temperature ionic liquids (RTILs) 1-decyl-3-methyl-imidazolium bromide- and chloride. The spin-lattice and spin-spin relaxations of 81Br and 35Cl nuclei were found to be extremely fast due to very strong quadrupolar interactions. The determined relaxation rates are comparable with those observed in the solids or in some critical organic solute/water/salt systems. In order to eliminate the acoustic ringing of the probe-head during relaxation times measurements the novel pulse sequence has been devised. It is based on the conventional inversion recovery pulse sequence, however, instead of the last 90° pulse the subsequence of three 90° pulses applied along axes to fulfill the phase cycling condition is used. Using this pulse sequence it was possible to measure T1 for both studied nuclei. The viscosity measurements have been carried out and the rotational correlation times were calculated. The effective 35Cl quadrupolar coupling constant was found to be almost one order lower than that for 81Br, i.e. 1.8 MHz and 16.0 MHz, respectively. Taking into account the facts that the ratio of (Q(35Cl)/Q(81Br))2 ≈ 0.1 and EFG tensors on the anions are quite similar, analogous structural organizations are expected for both RTILs. The observed T1/T2 (1.27-1.44) ratios were found to be not sufficiently high to confirm the presence of long-living (on the time scale of ⩾10-8 s) mesoscopic structures or heterogeneities in the studied neat ionic liquids.

  10. Multiple time scale complexity analysis of resting state FMRI.

    PubMed

    Smith, Robert X; Yan, Lirong; Wang, Danny J J

    2014-06-01

    The present study explored multi-scale entropy (MSE) analysis to investigate the entropy of resting state fMRI signals across multiple time scales. MSE analysis was developed to distinguish random noise from complex signals since the entropy of the former decreases with longer time scales while the latter signal maintains its entropy due to a "self-resemblance" across time scales. A long resting state BOLD fMRI (rs-fMRI) scan with 1000 data points was performed on five healthy young volunteers to investigate the spatial and temporal characteristics of entropy across multiple time scales. A shorter rs-fMRI scan with 240 data points was performed on a cohort of subjects consisting of healthy young (age 23 ± 2 years, n = 8) and aged volunteers (age 66 ± 3 years, n = 8) to investigate the effect of healthy aging on the entropy of rs-fMRI. The results showed that MSE of gray matter, rather than white matter, resembles closely that of f (-1) noise over multiple time scales. By filtering out high frequency random fluctuations, MSE analysis is able to reveal enhanced contrast in entropy between gray and white matter, as well as between age groups at longer time scales. Our data support the use of MSE analysis as a validation metric for quantifying the complexity of rs-fMRI signals.

  11. Liquidity spillover in international stock markets through distinct time scales.

    PubMed

    Righi, Marcelo Brutti; Vieira, Kelmara Mendes

    2014-01-01

    This paper identifies liquidity spillovers through different time scales based on a wavelet multiscaling method. We decompose daily data from U.S., British, Brazilian and Hong Kong stock markets indices in order to calculate the scale correlation between their illiquidities. The sample is divided in order to consider non-crisis, sub-prime crisis and Eurozone crisis. We find that there are changes in correlations of distinct scales and different periods. Association in finest scales is smaller than in coarse scales. There is a rise on associations in periods of crisis. In frequencies, there is predominance for significant distinctions involving the coarsest scale, while for crises periods there is predominance for distinctions on the finest scale.

  12. Liquidity Spillover in International Stock Markets through Distinct Time Scales

    PubMed Central

    Righi, Marcelo Brutti; Vieira, Kelmara Mendes

    2014-01-01

    This paper identifies liquidity spillovers through different time scales based on a wavelet multiscaling method. We decompose daily data from U.S., British, Brazilian and Hong Kong stock markets indices in order to calculate the scale correlation between their illiquidities. The sample is divided in order to consider non-crisis, sub-prime crisis and Eurozone crisis. We find that there are changes in correlations of distinct scales and different periods. Association in finest scales is smaller than in coarse scales. There is a rise on associations in periods of crisis. In frequencies, there is predominance for significant distinctions involving the coarsest scale, while for crises periods there is predominance for distinctions on the finest scale. PMID:24465918

  13. Scaling features of texts, images and time series

    NASA Astrophysics Data System (ADS)

    Pavlov, Alexey N.; Ebeling, Werner; Molgedey, Lutz; Ziganshin, Amir R.; Anishchenko, Vadim S.

    2001-11-01

    In the given paper, we consider the scaling features of long letter sequences like human writings, discretized images and discretized financial data. Using several approaches we show that the symbolic strings and time series being analyzed have a complex multiscale structure and demonstrate different scalings for large and small fluctuations. We discuss complex phenomena in the scaling behavior of partition functions in the case of high frequency DAX-future data.

  14. Extreme reaction times determine fluctuation scaling in human color vision

    NASA Astrophysics Data System (ADS)

    Medina, José M.; Díaz, José A.

    2016-11-01

    In modern mental chronometry, human reaction time defines the time elapsed from stimulus presentation until a response occurs and represents a reference paradigm for investigating stochastic latency mechanisms in color vision. Here we examine the statistical properties of extreme reaction times and whether they support fluctuation scaling in the skewness-kurtosis plane. Reaction times were measured for visual stimuli across the cardinal directions of the color space. For all subjects, the results show that very large reaction times deviate from the right tail of reaction time distributions suggesting the existence of dragon-kings events. The results also indicate that extreme reaction times are correlated and shape fluctuation scaling over a wide range of stimulus conditions. The scaling exponent was higher for achromatic than isoluminant stimuli, suggesting distinct generative mechanisms. Our findings open a new perspective for studying failure modes in sensory-motor communications and in complex networks.

  15. Studies of a full-scale mechanical prototype line for the ANTARES neutrino telescope and tests of a prototype instrument for deep-sea acoustic measurements

    NASA Astrophysics Data System (ADS)

    Ageron, M.; Aguilar, J. A.; Albert, A.; Ameli, F.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardellier-Desages, F.; Aslanides, E.; Aubert, J.-J.; Auer, R.; Barbarito, E.; Basa, S.; Battaglieri, M.; Bazzotti, M.; Becherini, Y.; Béthoux, N.; Beltramelli, J.; Bertin, V.; Bigi, A.; Billault, M.; Blaes, R.; de Botton, N.; Bouwhuis, M. C.; Bruijn, R.; Brunner, J.; Burgio, G. F.; Busto, J.; Cafagna, F.; Caillat, L.; Calzas, A.; Capone, A.; Caponetto, L.; Carmona, E.; Carr, J.; Castel, D.; Castorina, E.; Cavasinni, V.; Cecchini, S.; Ceres, A.; Charvis, P.; Chauchot, P.; Chiarusi, T.; Circella, M.; Coail, J.-Y.; Colnard, C.; Compére, C.; Coniglione, R.; Cottini, N.; Coyle, P.; Cuneo, S.; Cussatlegras, A.-S.; Damy, G.; van Dantzig, R.; Debonis, G.; de Marzo, C.; de Vita, R.; Dekeyser, I.; Delagnes, E.; Denans, D.; Deschamps, A.; Dessa, J.-X.; Destelle, J.-J.; Dinkespieler, B.; Distefano, C.; Donzaud, C.; Drogou, J.-F.; Druillole, F.; Durand, D.; Ernenwein, J.-P.; Escoffier, S.; Falchini, E.; Favard, S.; Fehr, F.; Feinstein, F.; Fiorello, C.; Flaminio, V.; Fratini, K.; Fuda, J.-L.; Galeotti, S.; Gallone, J.-M.; Giacomelli, G.; Girard, N.; Gojak, C.; Goret, Ph.; Graf, K.; Guilloux, F.; Hallewell, G.; Harakeh, M. N.; Hartmann, B.; Heijboer, A.; Heine, E.; Hello, Y.; Hernández-Rey, J. J.; Hößl, J.; Hoffman, C.; Hogenbirk, J.; Hubbard, J. R.; Jaquet, M.; Jaspers, M.; de Jong, M.; Jouvenot, F.; Kalantar-Nayestanaki, N.; Kappes, A.; Karg, T.; Katz, U.; Keller, P.; Kneib, J. P.; Kok, E.; Kok, H.; Kooijman, P.; Kopper, C.; Kouchner, A.; Kretschmer, W.; Kruijer, A.; Kuch, S.; Lagier, P.; Lahmann, R.; Lamanna, G.; Lamare, P.; Lambard, G.; Languillat, J. C.; Laschinsky, H.; Lavalle, J.; Le Guen, Y.; Le Provost, H.; Le van Suu, A.; Lefévre, D.; Legou, T.; Lelaizant, G.; Lim, G.; Lo Presti, D.; Loaec, G.; Loehner, H.; Loucatos, S.; Louis, F.; Lucarelli, F.; Lyashuk, V.; Mangano, S.; Marcelin, M.; Margiotta, A.; Masullo, R.; Mazéas, F.; Mazure, A.; Megna, R.; Melissas, M.; Migneco, E.; Mongelli, M.; Montaruli, T.; Morganti, M.; Moscoso, L.; Motz, H.; Musumeci, M.; Naumann, C.; Naumann-Godo, M.; Niess, V.; Noble, A.; Olivetto, C.; Ostasch, R.; Palanque-Delabrouille, N.; Payre, P.; Peek, H. Z.; Perez, A.; Petta, C.; Piattelli, P.; Pillet, R.; Pineau, J.-P.; Poinsignon, J.; Popa, V.; Pradier, T.; Racca, C.; Randazzo, N.; van Randwijk, J.; Real, D.; Regnier, M.; van Rens, B.; Réthoré, F.; Rewiersma, P.; Riccobene, G.; Rigaud, V.; Ripani, M.; Roca, V.; Roda, C.; Rolin, J. F.; Rostovtsev, A.; Roux, J.; Ruppi, M.; Russo, G. V.; Rusydi, G.; Salesa, F.; Salomon, K.; Sapienza, P.; Schmitt, F.; Schuller, J.-P.; Shanidze, R.; Sokalski, I.; Spona, T.; Spurio, M.; van der Steenhoven, G.; Stolarczyk, T.; Streeb, K.; Sulak, L.; Taiuti, M.; Tamburini, C.; Tao, C.; Tasca, L.; Terreni, G.; Urbano, F.; Valdy, P.; Valente, V.; Vallage, B.; Vaudaine, G.; Venekamp, G.; Verlaat, B.; Vernin, P.; van Wijk, R.; Wijnker, G.; Wobbe, G.; de Wolf, E.; Yao, A.-F.; Zaborov, D.; Zaccone, H.; Zornoza, J. D.; Zúñiga, J.

    2007-11-01

    A full-scale mechanical prototype line was deployed to a depth of 2500 m to test the leak tightness of the electronics containers and the pressure-resistant properties of an electromechanical cable under evaluation for use in the ANTARES deep-sea neutrino telescope. During a month-long immersion study, line parameter data were taken using miniature autonomous data loggers and shore-based optical time domain reflectometry. Details of the mechanical prototype line, the electromechanical cable and data acquisition are presented. Data taken during the immersion study revealed deficiencies in the pressure resistance of the electromechanical cable terminations at the entry points to the electronics containers. The improvements to the termination, which have been integrated into subsequent detection lines, are discussed. The line also allowed deep-sea acoustic measurements with a prototype hydrophone system. The technical setup of this system is described, and the first results of the data analysis are presented.

  16. Non-invasive and real-time passive acoustic mapping of ultrasound-mediated drug delivery

    NASA Astrophysics Data System (ADS)

    Choi, James J.; Carlisle, Robert C.; Coviello, Christian; Seymour, Len; Coussios, Constantin-C.

    2014-09-01

    New classes of biologically active materials, such as viruses, siRNA, antibodies and a wide range of engineered nanoparticles have emerged as potent agents for diagnosing and treating diseases, yet many of these agents fail because there is no effective route of delivery to their intended targets. Focused ultrasound and its ability to drive microbubble-seeded cavitation have been shown to facilitate drug delivery. However, cavitation is difficult to control temporally and spatially, making prediction of therapeutic outcomes deep in the body difficult. Here, we utilized passive acoustic mapping in vivo to understand how ultrasound parameters influence cavitation dynamics and to correlate spatial maps of cavitation to drug delivery. Focused ultrasound (center frequency: 0.5 MHz, peak-rarefactional pressure: 1.2 MPa, pulse length: 25 cycles or 50,000 cycles, pulse repetition interval: 0.02, 0.2, 1 or 3 s, number of pulses: 80 pulses) was applied to murine xenograft-model tumors in vivo during systemic injection of microbubbles with and without cavitation-sensitive liposomes or type 5 adenoviruses. Analysis of in vivo cavitation dynamics through several pulses revealed that cavitation was more efficiently produced at a lower pulse repetition frequency of 1 Hz than at 50 Hz. Within a pulse, inertial cavitation activity was shown to persist but reduced to 50% and 25% of its initial magnitude in 4.3 and 29.3 ms, respectively. Both through several pulses and within a pulse, the spatial distribution of cavitation was shown to change in time due to variations in microbubble distribution present in tumors. Finally, we demonstrated that the centroid of the mapped cavitation activity was within 1.33  ±  0.6 mm and 0.36 mm from the centroid location of drug release from liposomes and expression of the reporter gene encoded by the adenovirus, respectively. Thus passive acoustic mapping not only unraveled key mechanisms whereby a successful outcome is achieved

  17. Relating the performance of time-reversal-based underwater acoustic communications in different shallow water environments.

    PubMed

    Yang, T C

    2011-10-01

    The performance of underwater acoustic communications, such as the output signal-to-noise ratio (OSNR), is generally dependent on the channel specifics, hence a channel model is normally required as the performance of the channel equalizer depends on the number of tap coefficients used (e.g., a sparse equalizer) which are different for different oceans having different multipath arrivals. This letter presents theoretical arguments, and experimental data from different oceans that suggest that the increase of OSNR with the number of diverse receivers (in terms of the effective number of receivers) and the decrease of OSNR with the channel-estimation error follow a universal relationship using the time-reversal or correlation-based equalizer, despite the fact that the channels have very different properties. The reason is due to the fact that the OSNR is a function of the q function, the auto-correlation of the received impulse responses summed over all receiver channels, and the q function is approximately the same for all shallow waters given a sufficient (≥4-6) number of receivers.

  18. An application of time-reversed acoustics to the imaging of a salt-dome flank

    NASA Astrophysics Data System (ADS)

    Willis, M. E.; Lu, R.; Campman, X.; Toksöz, N.; Zhang, Y.; de Hoop, M. V.

    2005-12-01

    We present results of applying the concept of time-reversed acoustics (TRA) to the imaging of a salt-dome flank in a v(z) medium. A simulated multi-level walk-away VSP survey with sources at the surface and receivers in the borehole can be sorted into an equivalent reverse VSP (RVSP) with effective downhole sources and surface receivers. We apply the TRA process to the RVSP traces and create a zero offset seismic section as if it had been collected from collocated downhole sources and receivers. This procedure effectively redatums the wavefield from the surface to the borehole, eliminating the need for any complicated processing. The redatummed traces are created by summing the autocorrelations of the traces in the RVSP common shot gather. Theory says that each shot gather should be from receivers which completely surround the source. From practical considerations, we only have available the RVSP common receivers on the earth's surface, so we obtain an approximate zero offset section. Even with this restriction, our example shows that the results are encouraging. The image of the salt dome flank is created from the redatummed traces using a standard post-stack depth migration algorithm. This image compares favorably with the salt dome flank model.

  19. Real-Time Debonding Monitoring of Composite Repaired Materials via Electrical, Acoustic, and Thermographic Methods

    NASA Astrophysics Data System (ADS)

    Grammatikos, S. A.; Kordatos, E. Z.; Matikas, T. E.; Paipetis, A. S.

    2014-01-01

    The electrical properties of composite materials have been thoroughly investigated recently for the detection and monitoring of damage in carbon fiber-reinforced polymers (CFRPs) under mechanical loading. Carbon nanotubes are incorporated in the polymer matrix of CFRPs for the enhancement of their electrical properties. The electrical properties have shown to be sensitive to the damage state of the material and hence their monitoring provides the profile of their structural deterioration. The aim of the paper is the cross-validation and benchmarking of an electrical potential change monitoring (EPCM) technique against acoustic emission (AE) and lock-in thermography (LT). All techniques successfully identified damage and its propagation. Thermography was more efficient in quantifying damage and describing dynamically the debond topology, as it provided full 2D imaging of the debond in real time. EPCM was successful in providing quantitative information on debond propagation and its directionality. AE provided consistent information on damage propagation. All techniques identified three stages in the fatigue life of the interrogated coupons. The representation of the fatigue behavior as a function of life fraction, the correlation of AE data with EPCM and LT data, and most importantly the consistent behavior of all tested coupons allowed for both the direct and indirect cross-correlation of all employed methodologies, which consistently identified all aforementioned fatigue life stages.

  20. Acoustic emission descriptors

    NASA Astrophysics Data System (ADS)

    Witos, Franciszek; Malecki, Ignacy

    The authors present selected problems associated with acoustic emission interpreted as a physical phenomenon and as a measurement technique. The authors examine point sources of acoustic emission in isotropic, homogeneous linearly elastic media of different shapes. In the case of an unbounded medium the authors give the analytical form of the stress field and the wave shift field of the acoustic emission. In the case of a medium which is unbounded plate the authors give a form for the equations which is suitable for numerical calculation of the changes over time of selected acoustic emission values. For acoustic emission as a measurement technique, the authors represent the output signal as the resultant of a mechanical input value which describes the source, the transient function of the medium, and the transient function of specific components of the measurement loop. As an effect of this notation, the authors introduce the distinction between an acoustic measurement signal and an acoustic measurement impulse. The authors define the basic parameters of an arbitrary impulse. The authors extensively discuss the signal functions of acoustic emission impulses and acoustic emission signals defined in this article as acoustic emission descriptors (or signal functions of acoustic emission impulses) and advanced acoustic emission descriptors (which are either descriptors associated with acoustic emission applications or the signal functions of acoustic emission signals). The article also contains the results of experimental research on three different problems in which acoustic emission descriptors associated with acoustic emission pulses, acoustic emission applications, and acoustic emission signals are used. These problems are respectively: a problem of the amplitude-load characteristics of acoustic emission pulses in carbon samples subjected to compound uniaxial compression, the use of acoustic emission to predict the durability characteristics of conveyor belts, and

  1. Validation and Simulation of Ares I Scale Model Acoustic Test - 2 - Simulations at 5 Foot Elevation for Evaluation of Launch Mount Effects

    NASA Technical Reports Server (NTRS)

    Strutzenberg, Louise L.; Putman, Gabriel C.

    2011-01-01

    The Ares I Scale Model Acoustics Test (ASMAT) is a series of live-fire tests of scaled rocket motors meant to simulate the conditions of the Ares I launch configuration. These tests have provided a well documented set of high fidelity measurements useful for validation including data taken over a range of test conditions and containing phenomena like Ignition Over-Pressure and water suppression of acoustics. Expanding from initial simulations of the ASMAT setup in a held down configuration, simulations have been performed using the Loci/CHEM computational fluid dynamics software for ASMAT tests of the vehicle at 5 ft. elevation (100 ft. real vehicle elevation) with worst case drift in the direction of the launch tower. These tests have been performed without water suppression and have compared the acoustic emissions for launch structures with and without launch mounts. In addition, simulation results have also been compared to acoustic and imagery data collected from similar live-fire tests to assess the accuracy of the simulations. Simulations have shown a marked change in the pattern of emissions after removal of the launch mount with a reduction in the overall acoustic environment experienced by the vehicle and the formation of highly directed acoustic waves moving across the platform deck. Comparisons of simulation results to live-fire test data showed good amplitude and temporal correlation and imagery comparisons over the visible and infrared wavelengths showed qualitative capture of all plume and pressure wave evolution features.

  2. Exchanged ridge demodulation of time-scale manifold for enhanced fault diagnosis of rotating machinery

    NASA Astrophysics Data System (ADS)

    Wang, Jun; He, Qingbo

    2014-05-01

    The vibration or acoustic signal from rotating machinery with localized fault usually behaves as the form of amplitude modulation (AM) and/or frequency modulation (FM). The demodulation techniques are conventional ways to reveal the fault characteristics from the analyzed signals. One of these techniques is the time-scale manifold (TSM) ridge demodulation method with the merits of good time-frequency localization and in-band noise suppression properties. However, due to the essential attribute of wavelet ridge, the survived in-band noise on the achieved TSM will still disturb the envelope extraction of fault-induced impulses. This paper presents an improved TSM ridge demodulation method, called exchanged ridge demodulation of TSM, by combining the benefits of the first two TSMs: the noise suppression of the first TSM and the noise separation of the second TSM. Specifically, the ridge on the second TSM can capture the fault-induced impulses precisely while avoiding the in-band noise smartly. By putting this ridge on the first TSM, the corresponding instantaneous amplitude (IA) waveform can represent the real envelope of pure faulty impulses. Moreover, an adaptive selection method for Morlet wavelet parameters is also proposed based on the smoothness index (SI) in the time-scale domain for an optimal time-scale representation of analyzed signal. The effectiveness of the proposed method is verified by means of a simulation study and applications to diagnosis of bearing defects and gear fault.

  3. Carbon-14 time scale extended: comparison of chronologies.

    PubMed

    Grootes, P M

    1978-04-01

    Thermal diffusion isotopic enrichment of carbon-14 has extended the radiocarbon dating range to about 75,000 years ago. Twenty-eight samples obtained up to June 1976, mainly from northwest Europe, were dated. Consideration of the basic assumptions of carbon-14 dating and of the sources of contamination indicates that the ages are generally reliable. Together with the pollen analytic and stratigraphic the dates yield a more detailed radiocarbon time scale for climatic variations in northwest Europe, showing three early glacial interstades. The radiocarbon time scale agrees with the Camp Century chronology and with the thorium-230 ages of corals representing high sea level stands on New Guinea. Ther is a discrepancy between the radiocarbon time scale and the deep-sea chronology, which may be due to correlation errors. With a modified interpretation of the correlation, all four time scales agree within the estimated experimental uncertainties of the dating techniques used.

  4. NEA Scout Solar Sail: Half-scale Fold Time Lapse

    NASA Video Gallery

    In this time lapse, the Near-Earth Asteroid Scout (NEA Scout) CubeSat team rolls a half-scale prototype of the small satellite's solar sail in preparation for a deployment test. During its mission,...

  5. Acoustic Volume Scattering from the Seafloor and the Small Scale Structure of Heterogeneous Sediments.

    NASA Astrophysics Data System (ADS)

    Lyons, Anthony Patrick

    1995-11-01

    There has been little work on developing and testing seafloor volume scattering models and on the characterization of such volumes because of the complexity of the medium and the paucity of high resolution ground truth data. This dissertation addresses the different physical mechanisms responsible for backscattering from a seafloor volume and their relative importance. This was accomplished by: (1) examining and adapting theoretical and numerical techniques for predicting volume backscatter from seafloor environments in the frequency range from 5-50 kHz, (2) characterizing the physical properties of the seafloor volume that control acoustic backscatter in selected environmental regimes by using the high resolution techniques of CT scanning and p-wave logging and casting these descriptions in a form useful for scattering models, and (3) comparing model results constrained by ground truth information with acoustic data sets obtained in different seafloor environments in order to isolate physical scattering mechanisms which dominate scattering and to examine the effectiveness of the characterization and modeling components of this research. Specifically, a layered, gassy sediment and a sandy, shell hash sediment were examined. The gassy sediment was analyzed by using a continuum model for scattering from the surrounding sediment and a non-spherical bubble model for scattering from the included gas features. Simulations carried out with the bubble model showed that bubble scattering will dominate continuum scattering in soft mud containing gas bubbles. Results of calculations using the bubble scattering model compare well with data taken with the Naval Research Laboratory's Acoustic Sediment Classification System. The comparisons also show that bubbles smaller than those which could be found with CT scanning methods might be important at higher acoustic frequencies. The shell hash sediment was examined by using a single scattering model for the shell pieces instead of

  6. Diffusion Time-Scale of Porous Pressure-Sensitive Paint

    NASA Technical Reports Server (NTRS)

    Liu, Tianshu; Teduka, Norikazu; Kameda, Masaharu; Asai, Keisuke

    2001-01-01

    Pressure-sensitive paint (PSP) is an optical pressure sensor that utilizes the oxygen quenching of luminescence. PSP measurements in unsteady aerodynamic flows require fast time response of the paint. There are two characteristic time-scales that are related to the time response of PSP. One is the luminescent lifetime representing an intrinsic physical limit for the achievable temporal resolution of PSP. Another is the time-scale of oxygen diffusion across the PSP layer. When the time-scale of oxygen diffusion is much larger than the luminescent lifetime, the time response of PSP is controlled by oxygen diffusion. In a thin homogenous polymer layer where diffusion is Fickian, the oxygen concentration 1021 can be described by the diffusion equation in one-dimension.

  7. Time scale for point-defect equilibration in nanostructures

    SciTech Connect

    Millett, Paul C.; Wolf, Dieter; Desai, Tapan; Yamakov, Vesselin

    2008-10-20

    Molecular dynamics simulations of high-temperature annealing are performed on nanostructured materials enabling direct observation of vacancy emission from planar defects (i.e., grain boundaries and free surfaces) to populate the initially vacancy-free grain interiors on a subnanosecond time scale. We demonstrate a universal time-length scale correlation that governs these re-equilibration processes, suggesting that nanostructures are particularly stable against perturbations in their point-defect concentrations, caused for example by particle irradiation or temperature fluctuations.

  8. Subpilot-scale testing of acoustically enhanced cyclone collectors. Final report, September 1988--September 1994

    SciTech Connect

    Galica, M.A.; Campbell, A.H.; Rawlins, D.C.

    1994-08-01

    Gas turbines are used to recover energy from high temperature exhaust gases in coal-fired pressurized-fluidized bed, combined-cycle power generation systems. However, prior to entering the turbine hot-section, the majority of the fly ash must be removed in order to protect the turbine components from erosion, corrosion, and deposition of the ash. The U.S. Department of Energy under the direction of the Morgantown Energy Technology Center (METC) sponsored the development of an acoustically enhanced cyclone collector which offers the potential of achieving environmental control standards under Pressurized Fluid Bed Combustors (PFBC) conditions without the need for post-turbine particulate control. Pulse combustors developed by Manufacturing and Technology Conversation International, Inc. (MTCI) produced the acoustic power necessary to agglomerate ash particles into sizes large enough to be collected in a conventional cyclone system. A hot gas cleanup system that meets both turbine protection and emissions requirements without post-turbine particulate controls would also have improved overall system economics.

  9. Multi-scale description and prediction of financial time series

    NASA Astrophysics Data System (ADS)

    Nawroth, A. P.; Friedrich, R.; Peinke, J.

    2010-08-01

    A new method is proposed that allows a reconstruction of time series based on higher order multi-scale statistics given by a hierarchical process. This method is able to model financial time series not only on a specific scale but for a range of scales. The method itself is based on the general n-scale joint probability density, which can be extracted directly from given data. It is shown how based on this n-scale statistics, general n-point probabilities can be estimated from which predictions can be achieved. Exemplary results are shown for the German DAX index. The ability to model correctly the behaviour of the original process for different scales simultaneously and in time is demonstrated. As a main result it is shown that this method is able to reproduce the known volatility cluster, although the model contains no explicit time dependence. Thus a new mechanism is shown how, in a stationary multi-scale process, volatility clustering can emerge.

  10. Russian national time scale long-term stability

    NASA Technical Reports Server (NTRS)

    Alshina, A. P.; Gaigerov, B. A.; Koshelyaevsky, N. B.; Pushkin, S. B.

    1994-01-01

    The Institute of Metrology for Time and Space NPO 'VNIIFTRI' generates the National Time Scale (NTS) of Russia -- one of the most stable time scales in the world. Its striking feature is that it is based on a free ensemble of H-masers only. During last two years the estimations of NTS longterm stability based only on H-maser intercomparison data gives a flicker floor of about (2 to 3) x 10(exp -15) for averaging times from 1 day to 1 month. Perhaps the most significant feature for a time laboratory is an extremely low possible frequency drift -- it is too difficult to estimate it reliably. The other estimations, free from possible inside the ensemble correlation phenomena, are available based on the time comparison of NTS relative to the stable enough time scale of outer laboratories. The data on NTS comparison relative to the time scale of secondary time and frequency standards at Golitzino and Irkutsk in Russia and relative to NIST, PTB and USNO using GLONASS and GPS time transfer links gives stability estimations which are close to that based on H-maser intercomparisons.

  11. Acoustic Defect-Mode Waveguides Fabricated in Sonic Crystal: Numerical Analyses by Elastic Finite-Difference Time-Domain Method

    NASA Astrophysics Data System (ADS)

    Miyashita, Toyokatsu

    2006-05-01

    A novel acoustic waveguide composed of a line of single defects in a sonic crystal is shown to have desirable properties for acoustic circuits. The absence of a scatterer, i.e., a single defect or a point defect, in artificial crystals such as photonic crystals and phononic crystals leads to some localized resonant modes around the defect. Single defects in a sonic crystal made of acrylic resin cylinders in air are shown in this paper to have resonant modes or defect modes, which are excited successively to form a mode guided along a line of defects. Both a straight waveguide and a sharp bending waveguide composed of lines of single defects are shown equally to have a good transmission with small reflections at the inlet as well as at the outlet within the full band gap of the sonic crystal. Their advantages over conventional line-defect waveguides are clearly shown by their transmission versus frequency characteristics and also by typical examples of their spatial acoustic field distribution. On the basis of these properties, coupled defect-mode waveguides are investigated, and a high mode-coupling ratio is obtained. Defect-mode waveguides in a sonic crystal are expected to be desirable elements for functional acoustic circuits. The results of the elastic finite difference time domain (FDTD) method used as a tool of numerical calculation are also investigated and precisely compared with the experimental band gaps.

  12. Exponentials and Laplace transforms on nonuniform time scales

    NASA Astrophysics Data System (ADS)

    Ortigueira, Manuel D.; Torres, Delfim F. M.; Trujillo, Juan J.

    2016-10-01

    We formulate a coherent approach to signals and systems theory on time scales. The two derivatives from the time-scale calculus are used, i.e., nabla (forward) and delta (backward), and the corresponding eigenfunctions, the so-called nabla and delta exponentials, computed. With these exponentials, two generalised discrete-time Laplace transforms are deduced and their properties studied. These transforms are compatible with the standard Laplace and Z transforms. They are used to study discrete-time linear systems defined by difference equations. These equations mimic the usual continuous-time equations that are uniformly approximated when the sampling interval becomes small. Impulse response and transfer function notions are introduced. This implies a unified mathematical framework that allows us to approximate the classic continuous-time case when the sampling rate is high or to obtain the standard discrete-time case, based on difference equations, when the time grid becomes uniform.

  13. Evaluation of real-time acoustical holography for breast imaging and biopsy guidance

    NASA Astrophysics Data System (ADS)

    Lehman, Constance D.; Andre, Michael P.; Fecht, Barbara A.; Johansen, Jennifer M.; Shelby, Ronald L.; Shelby, Jerod O.

    1999-05-01

    Ultrasound is an attractive modality for adjunctive characterization of certain breast lesions, but it is not considered specific for cancer and it is not recommended for screening. An imaging technique remarkably different from pulse-echo ultrasound, termed Optical SonographyTM (Advanced Diagnostics, Inc.), uses the through-transmission signal. The method was applied to breast examinations in 41 asymptomatic and symptomatic women ranging in age from 18 to 83 years to evaluate this imaging modality for detection and characterization of breast disease and normal tissue. This approach uses coherent sound and coherent light to produce real-time, large field-of-view images with pronounced edge definition in soft tissues of the body. The system patient interface was modified to improve coupling to the breast and bring the chest wall to within 3 cm of the sound beam. System resolution (full width half maximum of the line-spread function) was 0.5 mm for a swept-frequency beam centered at 2.7 MHz. Resolution degrades slightly in the periphery of the very large 15.2-cm field of view. Dynamic range of the reconstructed 'raw' images (no post processing) was 3000:1. Included in the study population were women with dense parenchyma, palpable ductal carcinoma in situ with negative mammography, superficial and deep fibroadenomas, and calcifications. Successful breast imaging was performed in 40 of 41 women. These images were then compared with images generated using conventional X-ray mammography and pulse-echo ultrasound. Margins of lesions and internal textures were particularly well defined and provided substantial contrast to fatty and dense parenchyma. In two malignant lesions, Optical SonographyTM appeared to approximate more closely tumor extent compared to mammography than pulse-echo sonography. These preliminary studies indicate the method has unique potential for detecting, differentiating, and guiding the biopsy of breast lesions using real-time acoustical holography.

  14. The scaling of time series size towards detrended fluctuation analysis

    NASA Astrophysics Data System (ADS)

    Gao, Xiaolei; Ren, Liwei; Shang, Pengjian; Feng, Guochen

    2016-06-01

    In this paper, we introduce a modification of detrended fluctuation analysis (DFA), called multivariate DFA (MNDFA) method, based on the scaling of time series size N. In traditional DFA method, we obtained the influence of the sequence segmentation interval s, and it inspires us to propose a new model MNDFA to discuss the scaling of time series size towards DFA. The effectiveness of the procedure is verified by numerical experiments with both artificial and stock returns series. Results show that the proposed MNDFA method contains more significant information of series compared to traditional DFA method. The scaling of time series size has an influence on the auto-correlation (AC) in time series. For certain series, we obtain an exponential relationship, and also calculate the slope through the fitting function. Our analysis and finite-size effect test demonstrate that an appropriate choice of the time series size can avoid unnecessary influences, and also make the testing results more accurate.

  15. Acoustical effects of blade tip shape changes on a full scale helicopter rotor in a wind tunnel

    NASA Technical Reports Server (NTRS)

    Lee, A.

    1978-01-01

    Four tip shapes were tested. They were rectangular, swept, tapered, and swept-tapered. The measured data covered a wide range of operating conditions. The range of advancing tip Mach numbers were between 0.72 to 0.96, and the advance ratios were from 0.2 to 0.375. At low and moderate advancing tip Mach number, the data in the dbA scale appear to indicate the swept tip is the quietest, swept tapered the second, tapered third and rectangular the most noisy. Above an advancing tip Mach number of about 0.89, a distinct acoustical pulse can be observed, which dominates the acoustical waveform. The pulse shape is symmetric at moderate tip Mach number, changing to a sawtooth shape at high advancing tip Mach numbers. Based on the amplitude of the impulsive noise, it appears the swept-tapered tip is the quietest, tapered tip the second, swept tip third and square tip the most noisy. The data presented in this report should be useful as data bases for modeling and evaluating helicopter impulsive noise.

  16. Controllability of multiplex, multi-time-scale networks

    NASA Astrophysics Data System (ADS)

    Pósfai, Márton; Gao, Jianxi; Cornelius, Sean P.; Barabási, Albert-László; D'Souza, Raissa M.

    2016-09-01

    The paradigm of layered networks is used to describe many real-world systems, from biological networks to social organizations and transportation systems. While recently there has been much progress in understanding the general properties of multilayer networks, our understanding of how to control such systems remains limited. One fundamental aspect that makes this endeavor challenging is that each layer can operate at a different time scale; thus, we cannot directly apply standard ideas from structural control theory of individual networks. Here we address the problem of controlling multilayer and multi-time-scale networks focusing on two-layer multiplex networks with one-to-one interlayer coupling. We investigate the practically relevant case when the control signal is applied to the nodes of one layer. We develop a theory based on disjoint path covers to determine the minimum number of inputs (Ni) necessary for full control. We show that if both layers operate on the same time scale, then the network structure of both layers equally affect controllability. In the presence of time-scale separation, controllability is enhanced if the controller interacts with the faster layer: Ni decreases as the time-scale difference increases up to a critical time-scale difference, above which Ni remains constant and is completely determined by the faster layer. We show that the critical time-scale difference is large if layer I is easy and layer II is hard to control in isolation. In contrast, control becomes increasingly difficult if the controller interacts with the layer operating on the slower time scale and increasing time-scale separation leads to increased Ni, again up to a critical value, above which Ni still depends on the structure of both layers. This critical value is largely determined by the longest path in the faster layer that does not involve cycles. By identifying the underlying mechanisms that connect time-scale difference and controllability for a simplified

  17. Time scale construction from multiple sources of information (Invited)

    NASA Astrophysics Data System (ADS)

    Malinverno, A.

    2013-12-01

    Geological age estimates are provided by diverse chronometers, such as radiometric measurements, astrochronology, and the spacing of magnetic anomalies recorded on mid-ocean ridges by seafloor spreading. These age estimates are affected by errors that can be systematic (e.g., biased radiometric dates due to imperfect assumptions) or random (e.g., imprecise recording of astronomical cycles in sedimentary records). Whereas systematic errors can be reduced by improvements in technique and calibration, uncertainties due to random errors will always be present and need to be dealt with. A Bayesian framework can be used to construct an integrated time scale that is based on several uncertain sources of information. In this framework, each piece of data and the final time scale have an associated probability distribution that describes their uncertainty. The key calculation is to determine the uncertainty in the time scale from the uncertain data that constrain it. In practice, this calculation can be performed by Monte Carlo sampling. In Markov chain Monte Carlo algorithms, the time scale is iteratively perturbed and the perturbed time scale is accepted or rejected depending on how closely it fits the data. The final result is a large ensemble of possible time scales that are consistent with all the uncertain data; while the average of this ensemble defines a 'best' time scale, the ensemble variability quantifies the time scale uncertainty. An example of this approach is the M-sequence (Late Jurassic-Early Cretaceous, ~160-120 Ma) MHTC12 geomagnetic polarity time scale (GPTS) of Malinverno et al. (2012, J. Geophys. Res., B06104, doi:10.1029/2012JB009260). Previous GPTSs were constructed by interpolating between dated marine magnetic anomalies while assuming constant or smoothly varying spreading rates. These GPTSs were typically based on magnetic lineations from one or a few selected spreading centers, and an undesirable result is that they imply larger spreading rate

  18. Slow-time-scale magnetic fields driven by fast-time-scale waves in an underdense relativistic Vlasov plasma

    NASA Astrophysics Data System (ADS)

    Zhu, Shao-ping; He, X. T.; Zheng, C. Y.

    2001-01-01

    Slow-time-scale magnetic fields driven by fast-time-scale electromagnetic waves or plasma waves are examined from the perspective of the Vlasov-Maxwell equations for a relativistic Vlasov plasma. An equation for slow-time-scale magnetic field is obtained. The field proposed in the present paper is a result of wave-wave beating which drives a solenoidal current. The magnitude of the slow-time-scale magnetic field proposed here can be as high as 20 MG at the critical surface for a laser intensity I=1018W/cm2 at wavelength λ0=1.05 μm. The predicted magnetic field is observed in two-dimensional particle simulations presented here.

  19. Heterogeneities and diagenetic control on the spatial distribution of carbonate rocks acoustic properties at the outcrop scale

    NASA Astrophysics Data System (ADS)

    Matonti, C.; Guglielmi, Y.; Viseur, S.; Bruna, P. O.; Borgomano, J.; Dahl, C.; Marié, L.

    2015-01-01

    Carbonate rocks are characterized by a high heterogeneity of their properties at the outcrop scale that results from complex interactions between sedimentary, diagenetic and fracturing processes. Here we show acoustic P-wave velocity measurements conducted step-by-step on three decameter scale outcrop surfaces in Cretaceous carbonate rocks with contrasted heterogeneities: two shallow water highly-fractured (Cassis) and low-fractured (Calissanne) carbonates, and one basin highly-compacted (Grignantes). P-wave measurements were compared to outcrop geology, and with plug porosity, P-wave velocity laboratory measurements and a thin-section study. Results show a strong scale dependence of P-wave velocities which always are lower at the decimeter scale than at the plug scale. Vpin situ-versus-Vpplug large discrepancies (> 2000 m/s) highlight the signature of large heterogeneities (open fractures, stylolithes), and lower discrepancies (< 2000 m/s) highlight the signature of small matrix heterogeneities (porosity type, granulometry, and fracture filling). Variogram analyses were conducted to precise the contrasted outcrop scale Vp signatures. The oblique anisotropy Vpin situ distribution follows the dip of the ripple foresets which are controlling grain sorting and porosity in Calissanne outcrop, the near-isotropic Vp are explained by an early intense fracturing and cementation in Cassis outcrop and the strong horizontal anisotropy with a hole effect behavior on variograms highlights the late re-opening of multiple intervals of compaction bands in Grignantes. These results illustrate that the early diagenesis coupled to fracture or stylolithe reactivation/opening are two key processes that explain the outcrop scale P-wave velocity distribution anisotropy in carbonates.

  20. Reconstruction of the fine structure of an acoustic scatterer against the distorting influence of its large-scale inhomogeneities

    NASA Astrophysics Data System (ADS)

    Burov, V. A.; Grishina, I. M.; Lapshenkina, O. I.; Morozov, S. A.; Rumyantseva, O. D.; Sukhov, E. G.

    2003-11-01

    In the ultrasonic diagnostics of small-size neoplasms of biological tissues at the earliest stage of their development, an efficient way to eliminate the distorting influence of high-contrast or large inhomogeneities of the biological medium is to apply the iterative technique. A simple approach is proposed, which makes it possible with only two iteration steps to achieve an efficient focusing of the tomograph array. At the first step, the unknown distribution of the large-scale inhomogeneities of sound velocity and absorption over the scatterer is reconstructed, where the large-scale inhomogeneities are those whose size exceeds several wavelengths. At the second step, the fine structure of the scatterer is reconstructed against the large-scale background, which can be performed with a high accuracy owing to the evaluation of the background at the first step. The possibility of simultaneous reconstruction of the large-scale and fine structures by the noniterative Grinevich-Novikov algorithm is considered as an alternative. This algorithm reconstructs in an explicit form two-dimensional refractive-absorbing acoustic scatterers of almost arbitrary shape and strength. Taking into account the effects of multiple scattering, this algorithm provides resolution of the fine structure almost as good as that achieved in reconstructing the same structure against an undistorting homogeneous background. The results of numerical simulations of both algorithms are presented.

  1. Acoustic emission analysis on tensile failure of steam-side oxide scales formed on T22 alloy superheater tubes

    SciTech Connect

    Huang, Jun-Lin; Zhou, Ke-Yi Xu, Jian-Qun; Wang, Xin-Meng; Tu, Yi-You

    2014-07-28

    Failure of steam-side oxide scales on boiler tubes can seriously influence the safety of coal-fired power plants. Uniaxial tensile tests employing acoustic emission (AE) monitoring were performed, in this work, to investigate the failure behavior of steam-side oxide scales on T22 alloy boiler superheater tubes. The characteristic frequency spectra of the captured AE signals were obtained by performing fast Fourier transform. Three distinct peak frequency bands, 100-170, 175-250, and 280-390 kHz, encountered in different testing stages were identified in the frequency spectra, which were confirmed to, respectively, correspond to substrate plastic deformation, oxide vertical cracking, and oxide spalling with the aid of scanning electronic microscopy observations, and can thus be used for distinguishing different oxide failure mechanisms. Finally, the critical cracking strain of the oxide scale and the interfacial shear strength of the oxide/substrate interface were estimated, which are the critical parameters urgently desired for modeling the failure behavior of steam-side oxide scales on boiler tubes of coal-fired power plants.

  2. Acoustic emission analysis on tensile failure of steam-side oxide scales formed on T22 alloy superheater tubes

    NASA Astrophysics Data System (ADS)

    Huang, Jun-Lin; Zhou, Ke-Yi; Wang, Xin-Meng; Tu, Yi-You; Xu, Jian-Qun

    2014-07-01

    Failure of steam-side oxide scales on boiler tubes can seriously influence the safety of coal-fired power plants. Uniaxial tensile tests employing acoustic emission (AE) monitoring were performed, in this work, to investigate the failure behavior of steam-side oxide scales on T22 alloy boiler superheater tubes. The characteristic frequency spectra of the captured AE signals were obtained by performing fast Fourier transform. Three distinct peak frequency bands, 100-170, 175-250, and 280-390 kHz, encountered in different testing stages were identified in the frequency spectra, which were confirmed to, respectively, correspond to substrate plastic deformation, oxide vertical cracking, and oxide spalling with the aid of scanning electronic microscopy observations, and can thus be used for distinguishing different oxide failure mechanisms. Finally, the critical cracking strain of the oxide scale and the interfacial shear strength of the oxide/substrate interface were estimated, which are the critical parameters urgently desired for modeling the failure behavior of steam-side oxide scales on boiler tubes of coal-fired power plants.

  3. Multiple-time scales analysis of physiological time series under neural control

    NASA Technical Reports Server (NTRS)

    Peng, C. K.; Hausdorff, J. M.; Havlin, S.; Mietus, J. E.; Stanley, H. E.; Goldberger, A. L.

    1998-01-01

    We discuss multiple-time scale properties of neurophysiological control mechanisms, using heart rate and gait regulation as model systems. We find that scaling exponents can be used as prognostic indicators. Furthermore, detection of more subtle degradation of scaling properties may provide a novel early warning system in subjects with a variety of pathologies including those at high risk of sudden death.

  4. Time scale bias in erosion rates of glaciated landscapes

    PubMed Central

    Ganti, Vamsi; von Hagke, Christoph; Scherler, Dirk; Lamb, Michael P.; Fischer, Woodward W.; Avouac, Jean-Philippe

    2016-01-01

    Deciphering erosion rates over geologic time is fundamental for understanding the interplay between climate, tectonic, and erosional processes. Existing techniques integrate erosion over different time scales, and direct comparison of such rates is routinely done in earth science. On the basis of a global compilation, we show that erosion rate estimates in glaciated landscapes may be affected by a systematic averaging bias that produces higher estimated erosion rates toward the present, which do not reflect straightforward changes in erosion rates through time. This trend can result from a heavy-tailed distribution of erosional hiatuses (that is, time periods where no or relatively slow erosion occurs). We argue that such a distribution can result from the intermittency of erosional processes in glaciated landscapes that are tightly coupled to climate variability from decadal to millennial time scales. In contrast, we find no evidence for a time scale bias in spatially averaged erosion rates of landscapes dominated by river incision. We discuss the implications of our findings in the context of the proposed coupling between climate and tectonics, and interpreting erosion rate estimates with different averaging time scales through geologic time. PMID:27713925

  5. Multiple time scales in the microwave ionization of Rydberg atoms

    SciTech Connect

    Buchleitner, A.; Delande, D.; Zakrzewski, J.; Mantegna, R.N.; Arndt, M.; Walther, H. ||||

    1995-11-20

    We investigate the time dependence of the ionization probability of Rydberg atoms driven by microwave fields, both numerically and experimentally. Our exact quantum results provide evidence for an algebraic decay law on suitably chosen time scales, a phenomenon that is considered to be the signature of nonhyperbolic scattering in unbounded classically chaotic motion. {copyright} {ital 1995} {ital The} {ital American} {ital Physical} {ital Society}.

  6. Atomic Time Scales for the 21st Century

    NASA Astrophysics Data System (ADS)

    Arias, E. F.

    2014-06-01

    The International Bureau of Weights and Measures, in coordination with international organizations and national institutes, maintains and disseminates Coordinated Universal Time (UTC). Other timescales exist for different purposes. This article describes the state-of-the-art in the elaboration of these time scales.

  7. Gust Acoustic Response of a Swept Rectilinear Cascade Using The Space-Time CE/SE Method

    NASA Technical Reports Server (NTRS)

    Wang, X. Y.; Himansu, A.; Jorgenson, P. C.; Chang, S. C.

    2001-01-01

    The benchmark problem 3 in Category 3 of the third Computational Aero-Acoustics (CAA) Workshop sponsored by NASA Glenn Research Center is solved using the space-time conservation element and solution element (CE/SE) method. This problem concerns the unsteady response of a rectilinear swept cascade to an incident gust. The acoustic field generated by the interaction of the gust with swept at plates in the cascade is computed by solving the 3D nonlinear Euler equations using the space-time CE/SE method. A parallel version of the 3D CE/SE Euler solver is employed to obtain numerical solutions for several sweep angles. Numerical solutions are presented and compared with the analytical solutions.

  8. Auroral Substorm Time Scales: Seasonal and IMF Variations

    NASA Technical Reports Server (NTRS)

    Chua, D.; Parks, G. K.; Brittnacher, M.; Germany, G. A.; Spann, J. F.; Six, N. Frank (Technical Monitor)

    2002-01-01

    The time scales and phases of auroral substorm, activity are quantied in this study using the hemispheric power computed from Polar Ultraviolet Imager (UVI) images. We have applied this technique to several hundred substorm events and we are able to quantify how the characterist act, of substorms vary with season and IMF Bz orientation. We show that substorm time scales vary more strongly with season than with IMF Bz orientation. The recovery time for substorm. activity is well ordered by whether or not the nightside oral zone is sunlit. The recovery time scales for substorms occurring in the winter and equinox periods are similar and are both roughly a factor of two longer than in summer when the auroral oval is sunlit. Our results support the hypothesis that the ionosphere plays an active role in governing the dynamics of the aurora.

  9. Crosswell acoustic surveying in gas sands: travel-time pattern recognition, seismic Q and channel waves

    SciTech Connect

    Albright, J.N.; Johnson, P.A.

    1985-01-01

    The application of crosswell acoustic measurements to gas sands research has been explored through surveys conducted in the Mesa Verde formation at the Department of Energy Multi-Well Experiment (MWX) site near Rifle, Colorado. The borehole tools used in the survey are similar in concept to those used in commercial service for sonic logging, but they are especially adapted for the stringent requirements of crosswell shooting in hot gas wells. Important information about the geologic structure between wells can be extracted from crosswell scans without resorting to elaborate processing. A useful representation is a display of the travel time of P-waves in terms of the cylindrical coordinates of the transmitter referenced to the receiver. This is known as a gamma-depth (..gamma..-Z) plot. Such a representation may yield distinctive patterns, which can be interpreted based on the successful replication of the pattern through computer simulations. The apparent seismic Q of P-waves transmitted through the sands at the MWX site is derived using two methods. The first applies to crosswell surveys in which signals can be acquired over a significant range of source-receiver distances. A Q of 15 between well pair MWX 1/2 is derived in this manner. The second method makes use of signals transmitted between wells in a three-well complex and provides an estimate of seismic Q for the rocks bounded by each well pair. Q estimates derived from this technique are 18, 30, and 28 for well bores MWX-1/2, MWX-2/3 and MWX-3/1, respectively. Channel waves propagate through the MWX coals. Evidence suggests that tube waves launched in the transmitter well give rise, under appropriate conditions, to channel waves, which in turn excite tube waves in nearby wells that penetrate the same channel. Although the sequence of conversions is weak, the resulting waveforms are coherent enough to resolve the channel waves through stacking. 8 refs., 10 figs.

  10. Real-time detection of undersea mines: a complete screening and acoustic fusion processing system

    NASA Astrophysics Data System (ADS)

    Sacramone, Anthony; Desai, Mukund N.

    1999-08-01

    A complete mine detection/classification (D/C) system has been specified and implemented, which runs in real-time, and has been exercised on the latest available dual-frequency side-scan sonar acoustic image sets. The compete DC system is comprised of a collection of algorithms that has been developed and evolved at Draper Laboratory over the past decade. The detection process consists of image normalization, enhancement, segmentation, and feature extraction algorithms. The enhancement algorithm is a variant of a Markov Random Field based anomaly screener developed in FY-94. The feature that were extracted were those derived in FY-93. A distance constrained matching algorithm, which was developed in FY-95, is used to generate a list of high and low frequency fused tokens. The classification process involves the evaluation of a hierarchy of three multi-layer perceptron neural networks: HF, LF, and HF/LF fused. Research performed in FY-95 also concentrated on the development of several variants of information fusion with hierarchical neural networks. The 'discriminant-combining' variant of fusion was selected as part of this DC system. In addition, a classification post- processing and decision node statistic modification step, which was developed in FY-96, was included. This paper will describe the algorithm that were implemented. However, the emphasis will be on the performance results of processing the latest available side-scan imagery, comparison of single sensor vs dual-frequency sensor results, and the issues that were encountered while exercising the DC system on the new data set.

  11. Real-time optoacoustic brain microscopy with hybrid optical and acoustic resolution

    NASA Astrophysics Data System (ADS)

    Estrada, Héctor; Turner, Jake; Kneipp, Moritz; Razansky, Daniel

    2014-04-01

    Conventional optoacoustic microscopy operates in two distinct modes of optical resolution, for visualization of superficial tissue layers, or acoustic resolution, intended for deep imaging in scattering tissues. Here we introduce a new microscope design with hybrid optical and acoustic resolution, which provides a smooth transition from optical resolution in superficial microscopic imaging to ultrasonic resolution when imaging at greater depths within intensely scattering tissue layers. Experimental validation of the new hybrid optoacoustic microscopy method was performed in phantoms and by means of transcranial mouse brain imaging in vivo.

  12. Thermodynamics constrains allometric scaling of optimal development time in insects.

    PubMed

    Dillon, Michael E; Frazier, Melanie R

    2013-01-01

    Development time is a critical life-history trait that has profound effects on organism fitness and on population growth rates. For ectotherms, development time is strongly influenced by temperature and is predicted to scale with body mass to the quarter power based on 1) the ontogenetic growth model of the metabolic theory of ecology which describes a bioenergetic balance between tissue maintenance and growth given the scaling relationship between metabolism and body size, and 2) numerous studies, primarily of vertebrate endotherms, that largely support this prediction. However, few studies have investigated the allometry of development time among invertebrates, including insects. Abundant data on development of diverse insects provides an ideal opportunity to better understand the scaling of development time in this ecologically and economically important group. Insects develop more quickly at warmer temperatures until reaching a minimum development time at some optimal temperature, after which development slows. We evaluated the allometry of insect development time by compiling estimates of minimum development time and optimal developmental temperature for 361 insect species from 16 orders with body mass varying over nearly 6 orders of magnitude. Allometric scaling exponents varied with the statistical approach: standardized major axis regression supported the predicted quarter-power scaling relationship, but ordinary and phylogenetic generalized least squares did not. Regardless of the statistical approach, body size alone explained less than 28% of the variation in development time. Models that also included optimal temperature explained over 50% of the variation in development time. Warm-adapted insects developed more quickly, regardless of body size, supporting the "hotter is better" hypothesis that posits that ectotherms have a limited ability to evolutionarily compensate for the depressing effects of low temperatures on rates of biological processes. The

  13. Thermodynamics Constrains Allometric Scaling of Optimal Development Time in Insects

    PubMed Central

    Dillon, Michael E.; Frazier, Melanie R.

    2013-01-01

    Development time is a critical life-history trait that has profound effects on organism fitness and on population growth rates. For ectotherms, development time is strongly influenced by temperature and is predicted to scale with body mass to the quarter power based on 1) the ontogenetic growth model of the metabolic theory of ecology which describes a bioenergetic balance between tissue maintenance and growth given the scaling relationship between metabolism and body size, and 2) numerous studies, primarily of vertebrate endotherms, that largely support this prediction. However, few studies have investigated the allometry of development time among invertebrates, including insects. Abundant data on development of diverse insects provides an ideal opportunity to better understand the scaling of development time in this ecologically and economically important group. Insects develop more quickly at warmer temperatures until reaching a minimum development time at some optimal temperature, after which development slows. We evaluated the allometry of insect development time by compiling estimates of minimum development time and optimal developmental temperature for 361 insect species from 16 orders with body mass varying over nearly 6 orders of magnitude. Allometric scaling exponents varied with the statistical approach: standardized major axis regression supported the predicted quarter-power scaling relationship, but ordinary and phylogenetic generalized least squares did not. Regardless of the statistical approach, body size alone explained less than 28% of the variation in development time. Models that also included optimal temperature explained over 50% of the variation in development time. Warm-adapted insects developed more quickly, regardless of body size, supporting the “hotter is better” hypothesis that posits that ectotherms have a limited ability to evolutionarily compensate for the depressing effects of low temperatures on rates of biological processes

  14. Large-scale investigation of plaster detachments in historical murals by acoustic stimulation and video-holographic detection

    NASA Astrophysics Data System (ADS)

    Guelker, Gerd; Hinsch, Klaus D.; Joost, Holger

    2001-10-01

    In the conservation of historical murals an important issue is the detection of plaster or paint layers that detach from the supporting material and thus threaten to fall off. Commonly, walls are inspected by the acoustic response to a gentle finger-tapping (percussion method). Since this is a costly and cumbersome technique there is need for a metrological instrument serving the same purpose. In the last few years we have shown, that a time-average version of electronic speckle pattern interferometry (ESPI) with increased sensitivity in combination with acoustic excitation of the object can be a powerful tool for monitoring of loose areas. It offers full-field, video real time capability and has the advantage of non-contact and remote operation which, for example, is extremely useful in large buildings. Recently, a fully computer-based evaluation and control system was added to the system to assist in the introduction of the method as a generally approved tool in artwork monitoring. Principles of the method and instrumental features of the equipment are presented and some results and their interpretation obtained with the computerized system in the church and chapel at St. John's convent at Mnstair, Switzerland are demonstrated.

  15. Deviations from uniform power law scaling in nonstationary time series

    NASA Technical Reports Server (NTRS)

    Viswanathan, G. M.; Peng, C. K.; Stanley, H. E.; Goldberger, A. L.

    1997-01-01

    A classic problem in physics is the analysis of highly nonstationary time series that typically exhibit long-range correlations. Here we test the hypothesis that the scaling properties of the dynamics of healthy physiological systems are more stable than those of pathological systems by studying beat-to-beat fluctuations in the human heart rate. We develop techniques based on the Fano factor and Allan factor functions, as well as on detrended fluctuation analysis, for quantifying deviations from uniform power-law scaling in nonstationary time series. By analyzing extremely long data sets of up to N = 10(5) beats for 11 healthy subjects, we find that the fluctuations in the heart rate scale approximately uniformly over several temporal orders of magnitude. By contrast, we find that in data sets of comparable length for 14 subjects with heart disease, the fluctuations grow erratically, indicating a loss of scaling stability.

  16. A Permanent Automated Real-Time Passive Acoustic Monitoring System for Bottlenose Dolphin Conservation in the Mediterranean Sea

    PubMed Central

    Brunoldi, Marco; Bozzini, Giorgio; Casale, Alessandra; Corvisiero, Pietro; Grosso, Daniele; Magnoli, Nicodemo; Alessi, Jessica; Bianchi, Carlo Nike; Mandich, Alberta; Morri, Carla; Povero, Paolo; Wurtz, Maurizio; Melchiorre, Christian; Viano, Gianni; Cappanera, Valentina; Fanciulli, Giorgio; Bei, Massimiliano; Stasi, Nicola; Taiuti, Mauro

    2016-01-01

    Within the framework of the EU Life+ project named LIFE09 NAT/IT/000190 ARION, a permanent automated real-time passive acoustic monitoring system for the improvement of the conservation status of the transient and resident population of bottlenose dolphin (Tursiops truncatus) has been implemented and installed in the Portofino Marine Protected Area (MPA), Ligurian Sea. The system is able to detect the simultaneous presence of dolphins and boats in the area and to give their position in real time. This information is used to prevent collisions by diffusing warning messages to all the categories involved (tourists, professional fishermen and so on). The system consists of two gps-synchronized acoustic units, based on a particular type of marine buoy (elastic beacon), deployed about 1 km off the Portofino headland. Each one is equipped with a four-hydrophone array and an onboard acquisition system which can record the typical social communication whistles emitted by the dolphins and the sound emitted by boat engines. Signals are pre-filtered, digitized and then broadcast to the ground station via wi-fi. The raw data are elaborated to get the direction of the acoustic target to each unit, and hence the position of dolphins and boats in real time by triangulation. PMID:26789265

  17. A Permanent Automated Real-Time Passive Acoustic Monitoring System for Bottlenose Dolphin Conservation in the Mediterranean Sea.

    PubMed

    Brunoldi, Marco; Bozzini, Giorgio; Casale, Alessandra; Corvisiero, Pietro; Grosso, Daniele; Magnoli, Nicodemo; Alessi, Jessica; Bianchi, Carlo Nike; Mandich, Alberta; Morri, Carla; Povero, Paolo; Wurtz, Maurizio; Melchiorre, Christian; Viano, Gianni; Cappanera, Valentina; Fanciulli, Giorgio; Bei, Massimiliano; Stasi, Nicola; Taiuti, Mauro

    2016-01-01

    Within the framework of the EU Life+ project named LIFE09 NAT/IT/000190 ARION, a permanent automated real-time passive acoustic monitoring system for the improvement of the conservation status of the transient and resident population of bottlenose dolphin (Tursiops truncatus) has been implemented and installed in the Portofino Marine Protected Area (MPA), Ligurian Sea. The system is able to detect the simultaneous presence of dolphins and boats in the area and to give their position in real time. This information is used to prevent collisions by diffusing warning messages to all the categories involved (tourists, professional fishermen and so on). The system consists of two gps-synchronized acoustic units, based on a particular type of marine buoy (elastic beacon), deployed about 1 km off the Portofino headland. Each one is equipped with a four-hydrophone array and an onboard acquisition system which can record the typical social communication whistles emitted by the dolphins and the sound emitted by boat engines. Signals are pre-filtered, digitized and then broadcast to the ground station via wi-fi. The raw data are elaborated to get the direction of the acoustic target to each unit, and hence the position of dolphins and boats in real time by triangulation.

  18. A Permanent Automated Real-Time Passive Acoustic Monitoring System for Bottlenose Dolphin Conservation in the Mediterranean Sea.

    PubMed

    Brunoldi, Marco; Bozzini, Giorgio; Casale, Alessandra; Corvisiero, Pietro; Grosso, Daniele; Magnoli, Nicodemo; Alessi, Jessica; Bianchi, Carlo Nike; Mandich, Alberta; Morri, Carla; Povero, Paolo; Wurtz, Maurizio; Melchiorre, Christian; Viano, Gianni; Cappanera, Valentina; Fanciulli, Giorgio; Bei, Massimiliano; Stasi, Nicola; Taiuti, Mauro

    2016-01-01

    Within the framework of the EU Life+ project named LIFE09 NAT/IT/000190 ARION, a permanent automated real-time passive acoustic monitoring system for the improvement of the conservation status of the transient and resident population of bottlenose dolphin (Tursiops truncatus) has been implemented and installed in the Portofino Marine Protected Area (MPA), Ligurian Sea. The system is able to detect the simultaneous presence of dolphins and boats in the area and to give their position in real time. This information is used to prevent collisions by diffusing warning messages to all the categories involved (tourists, professional fishermen and so on). The system consists of two gps-synchronized acoustic units, based on a particular type of marine buoy (elastic beacon), deployed about 1 km off the Portofino headland. Each one is equipped with a four-hydrophone array and an onboard acquisition system which can record the typical social communication whistles emitted by the dolphins and the sound emitted by boat engines. Signals are pre-filtered, digitized and then broadcast to the ground station via wi-fi. The raw data are elaborated to get the direction of the acoustic target to each unit, and hence the position of dolphins and boats in real time by triangulation. PMID:26789265

  19. Using a numerical model to understand the connection between the ocean and acoustic travel-time measurements.

    PubMed

    Powell, Brian S; Kerry, Colette G; Cornuelle, Bruce D

    2013-10-01

    Measurements of acoustic ray travel-times in the ocean provide synoptic integrals of the ocean state between source and receiver. It is known that the ray travel-time is sensitive to variations in the ocean at the transmission time, but the sensitivity of the travel-time to spatial variations in the ocean prior to the acoustic transmission have not been quantified. This study examines the sensitivity of ray travel-time to the temporally and spatially evolving ocean state in the Philippine Sea using the adjoint of a numerical model. A one year series of five day backward integrations of the adjoint model quantify the sensitivity of travel-times to varying dynamics that can alter the travel-time of a 611 km ray by 200 ms. The early evolution of the sensitivities reveals high-mode internal waves that dissipate quickly, leaving the lowest three modes, providing a connection to variations in the internal tide generation prior to the sample time. They are also strongly sensitive to advective effects that alter density along the ray path. These sensitivities reveal how travel-time measurements are affected by both nearby and distant waters. Temporal nonlinearity of the sensitivities suggests that prior knowledge of the ocean state is necessary to exploit the travel-time observations.

  20. Physics in space-time with scale-dependent metrics

    NASA Astrophysics Data System (ADS)

    Balankin, Alexander S.

    2013-10-01

    We construct three-dimensional space Rγ3 with the scale-dependent metric and the corresponding Minkowski space-time Mγ,β4 with the scale-dependent fractal (DH) and spectral (DS) dimensions. The local derivatives based on scale-dependent metrics are defined and differential vector calculus in Rγ3 is developed. We state that Mγ,β4 provides a unified phenomenological framework for dimensional flow observed in quite different models of quantum gravity. Nevertheless, the main attention is focused on the special case of flat space-time M1/3,14 with the scale-dependent Cantor-dust-like distribution of admissible states, such that DH increases from DH=2 on the scale ≪ℓ0 to DH=4 in the infrared limit ≫ℓ0, where ℓ0 is the characteristic length (e.g. the Planck length, or characteristic size of multi-fractal features in heterogeneous medium), whereas DS≡4 in all scales. Possible applications of approach based on the scale-dependent metric to systems of different nature are briefly discussed.

  1. A scaling procedure for panel vibro-acoustic response induced by turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Xiaojian, Zhao; Bangcheng, AI; Ziqiang, Liu; Dun, Li

    2016-10-01

    A new method of predicting structure vibration based on scaled model is proposed for panel vibration induced by turbulent boundary layer. The aerodynamic effects such as the variation of TBL excitation and its frequency for a scaled model used, and the material properties are also considered in the proposed scaling law. The contributions of resonant modes dominate the energy of low-frequency vibration, and the scaling procedure is derived with the analytical expansion method. For high-frequency vibration, the SEA method is used to derive the scaling law because of the highly coupled modes in the frequency range of analysis. A criterion is also proposed to identify the boundary between high-frequency and low-frequency vibration. For the validation of the proposed scaling procedure, an experiment is conducted with scaled plate models under external excitation. Despite slightly offset of resonant frequencies in the low frequency range likely caused by the difference in the condition of panel fixing, the results reveal that the proposed scaling procedure is effective.

  2. Segregation time-scales in model granular flows

    NASA Astrophysics Data System (ADS)

    Staron, Lydie; Phillips, Jeremy C.

    2016-04-01

    Segregation patterns in natural granular systems offer a singular picture of the systems evolution. In many cases, understanding segregation dynamics may help understanding the system's history as well as its future evolution. Among the key questions, one concerns the typical time-scales at which segregation occurs. In this contribution, we present model granular flows simulated by means of the discrete Contact Dynamics method. The granular flows are bi-disperse, namely exhibiting two grain sizes. The flow composition and its dynamics are systematically varied, and the segregation dynamics carefully analyzed. We propose a physical model for the segregation that gives account of the observed dependence of segregation time scales on composition and dynamics. References L. Staron and J. C. Phillips, Stress partition and micro-structure in size-segregating granular flows, Phys. Rev. E 92 022210 (2015) L. Staron and J. C. Phillips, Segregation time-scales in bi-disperse granular flows, Phys. Fluids 26 (3), 033302 (2014)

  3. An algorithm for the Italian atomic time scale

    NASA Technical Reports Server (NTRS)

    Cordara, F.; Vizio, G.; Tavella, P.; Pettiti, V.

    1994-01-01

    During the past twenty years, the time scale at the IEN has been realized by a commercial cesium clock, selected from an ensemble of five, whose rate has been continuously steered towards UTC to maintain a long term agreement within 3 x 10(exp -13). A time scale algorithm, suitable for a small clock ensemble and capable of improving the medium and long term stability of the IEN time scale, has been recently designed taking care of reducing the effects of the seasonal variations and the sudden frequency anomalies of the single cesium clocks. The new time scale, TA(IEN), is obtained as a weighted average of the clock ensemble computed once a day from the time comparisons between the local reference UTC(IEN) and the single clocks. It is foreseen to include in the computation also ten cesium clocks maintained in other Italian laboratories to further improve its reliability and its long term stability. To implement this algorithm, a personal computer program in Quick Basic has been prepared and it has been tested at the IEN time and frequency laboratory. Results obtained using this algorithm on the real clocks data relative to a period of about two years are presented.

  4. Evaluation of Scaling Invariance Embedded in Short Time Series

    PubMed Central

    Pan, Xue; Hou, Lei; Stephen, Mutua; Yang, Huijie; Zhu, Chenping

    2014-01-01

    Scaling invariance of time series has been making great contributions in diverse research fields. But how to evaluate scaling exponent from a real-world series is still an open problem. Finite length of time series may induce unacceptable fluctuation and bias to statistical quantities and consequent invalidation of currently used standard methods. In this paper a new concept called correlation-dependent balanced estimation of diffusion entropy is developed to evaluate scale-invariance in very short time series with length . Calculations with specified Hurst exponent values of show that by using the standard central moving average de-trending procedure this method can evaluate the scaling exponents for short time series with ignorable bias () and sharp confidential interval (standard deviation ). Considering the stride series from ten volunteers along an approximate oval path of a specified length, we observe that though the averages and deviations of scaling exponents are close, their evolutionary behaviors display rich patterns. It has potential use in analyzing physiological signals, detecting early warning signals, and so on. As an emphasis, the our core contribution is that by means of the proposed method one can estimate precisely shannon entropy from limited records. PMID:25549356

  5. Evaluation of scaling invariance embedded in short time series.

    PubMed

    Pan, Xue; Hou, Lei; Stephen, Mutua; Yang, Huijie; Zhu, Chenping

    2014-01-01

    Scaling invariance of time series has been making great contributions in diverse research fields. But how to evaluate scaling exponent from a real-world series is still an open problem. Finite length of time series may induce unacceptable fluctuation and bias to statistical quantities and consequent invalidation of currently used standard methods. In this paper a new concept called correlation-dependent balanced estimation of diffusion entropy is developed to evaluate scale-invariance in very short time series with length ~10(2). Calculations with specified Hurst exponent values of 0.2,0.3,...,0.9 show that by using the standard central moving average de-trending procedure this method can evaluate the scaling exponents for short time series with ignorable bias (≤0.03) and sharp confidential interval (standard deviation ≤0.05). Considering the stride series from ten volunteers along an approximate oval path of a specified length, we observe that though the averages and deviations of scaling exponents are close, their evolutionary behaviors display rich patterns. It has potential use in analyzing physiological signals, detecting early warning signals, and so on. As an emphasis, the our core contribution is that by means of the proposed method one can estimate precisely shannon entropy from limited records.

  6. Acoustic testing of a supersonic tip speed fan with acoustic treatment and rotor casting slots. Quiet engine program scale model fan C

    NASA Technical Reports Server (NTRS)

    Kazin, S. B.

    1973-01-01

    Acoustic tests were conducted on a high tip speed (1550 ft/sec, 472.44 m/sec) single stage fan with varying amounts of wall acoustic treatment and with circumferential slots over the rotor blade tips. The slots were also tested with acoustic treatment placed behind the slots. The wall treatment results show that the inlet treatment is more effective at high fan speeds and aft duct treatment is more effective at low fan speeds. Maximum PNL's on a 200-foot (60.96 m) sideline show the untreated slots to have increased the rear radiated noise at approach. However, when the treatment was added to the slots inlet radiated noise was decreased, resulting in little change relative to the solid casing on an EPNL basis.

  7. Going up in time and length scales in modeling polymers

    NASA Astrophysics Data System (ADS)

    Grest, Gary S.

    Polymer properties depend on a wide range of coupled length and time scales, with unique macroscopic viscoelastic behavior stemming from interactions at the atomistic level. The need to probe polymers across time and length scales and particularly computational modeling is inherently challenging. Here new paths to probing long time and length scales including introducing interactions into traditional bead-spring models and coarse graining of atomistic simulations will be compared and discussed. Using linear polyethylene as a model system, the degree of coarse graining with two to six methylene groups per coarse-grained bead derived from a fully atomistic melt simulation were probed. We show that the degree of coarse graining affects the measured dynamic. Using these models we were successful in probing highly entangled melts and were able reach the long-time diffusive regime which is computationally inaccessible using atomistic simulations. We simulated the relaxation modulus and shear viscosity of well-entangled polyethylene melts for scaled times of 500 µs. Results for plateau modulus are in good agreement with experiment. The long time and length scale is coupled to the macroscopic viscoelasticity where the degree of coarse graining sets the minimum length scale instrumental in defining polymer properties and dynamics. Results will be compared to those obtained from simple bead-spring models to demonstrate the additional insight that can be gained from atomistically inspired coarse grained models. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  8. Time scales for molecule formation by ion-molecule reactions

    NASA Technical Reports Server (NTRS)

    Langer, W. D.; Glassgold, A. E.

    1976-01-01

    Analytical solutions are obtained for nonlinear differential equations governing the time-dependence of molecular abundances in interstellar clouds. Three gas-phase reaction schemes are considered separately for the regions where each dominates. The particular case of CO, and closely related members of the Oh and CH families of molecules, is studied for given values of temperature, density, and the radiation field. Nonlinear effects and couplings with particular ions are found to be important. The time scales for CO formation range from 100,000 to a few million years, depending on the chemistry and regime. The time required for essentially complete conversion of C(+) to CO in the region where the H3(+) chemistry dominates is several million years. Because this time is longer than or comparable to dynamical time scales for dense interstellar clouds, steady-state abundances may not be observed in such clouds.

  9. Memory on multiple time-scales in an Abelian sandpile

    NASA Astrophysics Data System (ADS)

    Sokolov, Andrey; Melatos, Andrew; Kieu, Tien; Webster, Rachel

    2015-06-01

    We report results of a numerical analysis of the memory effects in two-dimensional Abelian sandpiles. It is found that a sandpile forgets its instantaneous configuration in two distinct stages: a fast stage and a slow stage, whose durations roughly scale as N and N2 respectively, where N is the linear size of the sandpile. We confirm the presence of the longer time-scale by an independent diagnostic based on analysing emission probabilities of a hidden Markov model applied to a time-averaged sequence of avalanche sizes. The application of hidden Markov modelling to the output of sandpiles is novel. It discriminates effectively between a sandpile time series and a shuffled control time series with the same time-averaged event statistics and hence deserves further development as a pattern-recognition tool for Abelian sandpiles.

  10. The Galaxy Viewed at Very Short Time-Scales

    NASA Astrophysics Data System (ADS)

    Radnia, Navid; Siegmund, O.; Welsh, B.; Mcphate, J.; Rogers, D.; Charles, P.; Buckley, D.

    2010-01-01

    We present high time-resolution astronomical observations recorded with the Berkeley Visible Image Tube (BVIT) photon counting detector mounted on the 10m South African Large Telescope (SALT). Relative B and V-band photometric fluxes were obtained as a function of time for targets that included Polar-type cataclysmic variables (UZ For, OY Car, V1033Cen), low-mass X-ray binaries (GX 339-4, UY Vol), pulsars (PSR 0540-69), dMe flare stars (CN Leo) and active galactic nucleii (Mkn 618). These observations, which were recorded during several nights of engineering time at SALT in early 2009, indicate that there are many types of astrophysical processes operating over very short time-scales in a wide variety of astronomical objects. The high-time resolution capability of the BVIT detector allowed emission features occurring on time-scales as short as tens of milli-seconds to be revealed. In particular, we have measured the optical period of the PSR 0540-69 pulsar to be 0.05065018808s and we have also detected several quasi-periodic oscillations operating on time-scales of < 0.5 s in the emitted flux from the X-ray transient source, GX 339-4. These preliminary data indicate that the new field of high time-resolution astronomy is providing important new insights into the transient nature of the Universe.

  11. Renormalized time scale for anticipating and lagging synchronization.

    PubMed

    Hayashi, Yoshikatsu; Nasuto, Slawomir J; Eberle, Henry

    2016-05-01

    Anticipating synchronization has been recently proposed as a mechanism of interaction in dynamical systems which are able to bring about predictions of future states of a driver system. We suggest that an interesting insight into anticipating synchronization can be obtained by the renormalization of the time scale in the driven system. Our approach directly links the feedback delay of the driven system with the renormalized time scale of the driven system, identifying the main component in the anticipating synchronization paradigm and suggesting an alternative method to generate anticipating and lagging synchronization. PMID:27300902

  12. Dynamics symmetries of Hamiltonian system on time scales

    SciTech Connect

    Peng, Keke Luo, Yiping

    2014-04-15

    In this paper, the dynamics symmetries of Hamiltonian system on time scales are studied. We study the symmetries and quantities based on the calculation of variation and Lie transformation group. Particular focus lies in: the Noether symmetry leads to the Noether conserved quantity and the Lie symmetry leads to the Noether conserved quantity if the infinitesimal transformations satisfy the structure equation. As the new application of result, at end of the article, we give a simple example of Noether symmetry and Lie symmetry on time scales.

  13. A multi-band spectral subtraction-based algorithm for real-time noise cancellation applied to gunshot acoustics

    NASA Astrophysics Data System (ADS)

    Ramos, António L. L.; Holm, Sverre; Gudvangen, Sigmund; Otterlei, Ragnvald

    2013-06-01

    Acoustical sniper positioning is based on the detection and direction-of-arrival estimation of the shockwave and the muzzle blast acoustical signals. In real-life situations, the detection and direction-of-arrival estimation processes is usually performed under the influence of background noise sources, e.g., vehicles noise, and might result in non-negligible inaccuracies than can affect the system performance and reliability negatively, specially when detecting the muzzle sound under long range distance and absorbing terrains. This paper introduces a multi-band spectral subtraction based algorithm for real-time noise reduction, applied to gunshot acoustical signals. The ballistic shockwave and the muzzle blast signals exhibit distinct frequency contents that are affected differently by additive noise. In most real situations, the noise component is colored and a multi-band spectral subtraction approach for noise reduction contributes to reducing the presence of artifacts in denoised signals. The proposed algorithm is tested using a dataset generated by combining signals from real gunshots and real vehicle noise. The noise component was generated using a steel tracked military tank running on asphalt and includes, therefore, the sound from the vehicle engine, which varies slightly in frequency over time according to the engine's rpm, and the sound from the steel tracks as the vehicle moves.

  14. Overcoming the diffraction limit in wave physics using a time-reversal mirror and a novel acoustic sink.

    PubMed

    de Rosny, J; Fink, M

    2002-09-16

    In recent years, time-reversal (TR) mirrors have been developed that create TR waves for ultrasonic transient fields propagating through complex media. A TR wave back propagates and refocuses exactly at its initial source. However, because of diffraction, even if the source is pointlike the wave refocuses on a spot size that cannot be smaller than half a wavelength. Here, by using a TR interpretation of this limit, we show that this latter limitation can be overcome if the source is replaced by its TR image. This new device acts as an acoustic sink that absorbs the TR wave. Here we report the first experimental result obtained with an acoustic sink where a focal spot size of less than 1/14th of one wavelength is recorded.

  15. Generation and Propagation of a Picosecond Acoustic Pulse at a Buried Interface: Time-Resolved X-Ray Diffraction Measurements

    SciTech Connect

    Lee, S.H.; Cavalieri, A.L.; Fritz, D.M.; Swan, M.C.; Reis, D.A.; Hegde, R.S.; Reason, M.; Goldman, R.S.

    2005-12-09

    We report on the propagation of coherent acoustic wave packets in (001) surface oriented Al{sub 0.3}Ga{sub 0.7}As/GaAs heterostructure, generated through localized femtosecond photoexcitation of the GaAs. Transient structural changes in both the substrate and film are measured with picosecond time-resolved x-ray diffraction. The data indicate an elastic response consisting of unipolar compression pulses of a few hundred picosecond duration traveling along [001] and [001] directions that are produced by predominately impulsive stress. The transmission and reflection of the strain pulses are in agreement with an acoustic mismatch model of the heterostructure and free-space interfaces.

  16. Ion Acoustic Wave Frequencies and Onset Times During Type 3 Solar Radio Bursts

    NASA Technical Reports Server (NTRS)

    Cairns, Iver H.; Robinson, P. A.

    1995-01-01

    Conflicting interpretations exist for the low-frequency ion acoustic (S) waves often observed by ISEE 3 in association with intense Langmuir (L) waves in the source regions of type III solar radio bursts near 1 AU. Two indirect lines of observational evidence, as well as plasma theory, suggest they are produced by the electrostatic (ES) decay L yields L(PRIME) + S. However, contrary to theoretical predictions, an existing analysis of the wave frequencies instead favors the electromagnetic (EM) decays L yields T + S, where T denotes an EM wave near the plasma frequency. This conflict is addressed here by comparing the observed wave frequencies and onset times with theoretical predictions for the ES and EM decays, calculated using the time-variable electron beam and magnetic field orientation data, rather than the nominal values used previously. Field orientation effects and beam speed variations are shown analytically to produce factor-of-three effects, greater than the difference in wave frequencies predicted for the ES and EM decays; effects of similar magnitude occur in the events analyzed here. The S-wave signals are extracted by hand from a sawtooth noise background, greatly improving the association between S waves and intense L waves. Very good agreement exists between the time-varying predictions for the ES decay and the frequencies of most (but not all) wave bursts. The waves occur only after the ES decay becomes kinematically allowed, which is consistent with the ES decay proceeding and producing most of the observed signals. Good agreement exists between the EM decay's predictions and a significant fraction of the S-wave observations while the EM decay is kinematically allowed. The wave data are not consistent, however, with the EM decay being the dominant nonlinear process. Often the observed waves are sufficiently broadband to overlap simultaneously the frequency ranges predicted for the ES and EM decays. Coupling the dominance of the ES decay with this

  17. 4-D imaging of seepage in earthen embankments with time-lapse inversion of self-potential data constrained by acoustic emissions localization

    NASA Astrophysics Data System (ADS)

    Rittgers, J. B.; Revil, A.; Planes, T.; Mooney, M. A.; Koelewijn, A. R.

    2015-02-01

    New methods are required to combine the information contained in the passive electrical and seismic signals to detect, localize and monitor hydromechanical disturbances in porous media. We propose a field experiment showing how passive seismic and electrical data can be combined together to detect a preferential flow path associated with internal erosion in a Earth dam. Continuous passive seismic and electrical (self-potential) monitoring data were recorded during a 7-d full-scale levee (earthen embankment) failure test, conducted in Booneschans, Netherlands in 2012. Spatially coherent acoustic emissions events and the development of a self-potential anomaly, associated with induced concentrated seepage and internal erosion phenomena, were identified and imaged near the downstream toe of the embankment, in an area that subsequently developed a series of concentrated water flows and sand boils, and where liquefaction of the embankment toe eventually developed. We present a new 4-D grid-search algorithm for acoustic emissions localization in both time and space, and the application of the localization results to add spatially varying constraints to time-lapse 3-D modelling of self-potential data in the terms of source current localization. Seismic signal localization results are utilized to build a set of time-invariant yet spatially varying model weights used for the inversion of the self-potential data. Results from the combination of these two passive techniques show results that are more consistent in terms of focused ground water flow with respect to visual observation on the embankment. This approach to geophysical monitoring of earthen embankments provides an improved approach for early detection and imaging of the development of embankment defects associated with concentrated seepage and internal erosion phenomena. The same approach can be used to detect various types of hydromechanical disturbances at larger scales.

  18. Acoustic biosensors

    PubMed Central

    Fogel, Ronen; Seshia, Ashwin A.

    2016-01-01

    Resonant and acoustic wave devices have been researched for several decades for application in the gravimetric sensing of a variety of biological and chemical analytes. These devices operate by coupling the measurand (e.g. analyte adsorption) as a modulation in the physical properties of the acoustic wave (e.g. resonant frequency, acoustic velocity, dissipation) that can then be correlated with the amount of adsorbed analyte. These devices can also be miniaturized with advantages in terms of cost, size and scalability, as well as potential additional features including integration with microfluidics and electronics, scaled sensitivities associated with smaller dimensions and higher operational frequencies, the ability to multiplex detection across arrays of hundreds of devices embedded in a single chip, increased throughput and the ability to interrogate a wider range of modes including within the same device. Additionally, device fabrication is often compatible with semiconductor volume batch manufacturing techniques enabling cost scalability and a high degree of precision and reproducibility in the manufacturing process. Integration with microfluidics handling also enables suitable sample pre-processing/separation/purification/amplification steps that could improve selectivity and the overall signal-to-noise ratio. Three device types are reviewed here: (i) bulk acoustic wave sensors, (ii) surface acoustic wave sensors, and (iii) micro/nano-electromechanical system (MEMS/NEMS) sensors. PMID:27365040

  19. Acoustic biosensors.

    PubMed

    Fogel, Ronen; Limson, Janice; Seshia, Ashwin A

    2016-06-30

    Resonant and acoustic wave devices have been researched for several decades for application in the gravimetric sensing of a variety of biological and chemical analytes. These devices operate by coupling the measurand (e.g. analyte adsorption) as a modulation in the physical properties of the acoustic wave (e.g. resonant frequency, acoustic velocity, dissipation) that can then be correlated with the amount of adsorbed analyte. These devices can also be miniaturized with advantages in terms of cost, size and scalability, as well as potential additional features including integration with microfluidics and electronics, scaled sensitivities associated with smaller dimensions and higher operational frequencies, the ability to multiplex detection across arrays of hundreds of devices embedded in a single chip, increased throughput and the ability to interrogate a wider range of modes including within the same device. Additionally, device fabrication is often compatible with semiconductor volume batch manufacturing techniques enabling cost scalability and a high degree of precision and reproducibility in the manufacturing process. Integration with microfluidics handling also enables suitable sample pre-processing/separation/purification/amplification steps that could improve selectivity and the overall signal-to-noise ratio. Three device types are reviewed here: (i) bulk acoustic wave sensors, (ii) surface acoustic wave sensors, and (iii) micro/nano-electromechanical system (MEMS/NEMS) sensors. PMID:27365040

  20. Midfrontal theta tracks action monitoring over multiple interactive time scales.

    PubMed

    Cohen, Michael X

    2016-11-01

    Quickly detecting and correcting mistakes is a crucial brain function. EEG studies have identified an idiosyncratic electrophysiological signature of online error correction, termed midfrontal theta. Midfrontal theta has so far been investigated over the fast time-scale of a few hundred milliseconds. But several aspects of behavior and brain activity unfold over multiple time scales, displaying "scale-free" dynamics that have been linked to criticality and optimal flexibility when responding to changing environmental demands. Here we used a novel line-tracking task to demonstrate that midfrontal theta is a transient yet non-phase-locked response that is modulated by task performance over at least three time scales: a few hundred milliseconds at the onset of a mistake, task performance over a fixed window of the previous 5s, and scale-free-like fluctuations over many tens of seconds. These findings provide novel evidence for a role of midfrontal theta in online behavioral adaptation, and suggest new approaches for linking EEG signatures of human executive functioning to its neurobiological underpinnings. PMID:27475291

  1. Midfrontal theta tracks action monitoring over multiple interactive time scales.

    PubMed

    Cohen, Michael X

    2016-11-01

    Quickly detecting and correcting mistakes is a crucial brain function. EEG studies have identified an idiosyncratic electrophysiological signature of online error correction, termed midfrontal theta. Midfrontal theta has so far been investigated over the fast time-scale of a few hundred milliseconds. But several aspects of behavior and brain activity unfold over multiple time scales, displaying "scale-free" dynamics that have been linked to criticality and optimal flexibility when responding to changing environmental demands. Here we used a novel line-tracking task to demonstrate that midfrontal theta is a transient yet non-phase-locked response that is modulated by task performance over at least three time scales: a few hundred milliseconds at the onset of a mistake, task performance over a fixed window of the previous 5s, and scale-free-like fluctuations over many tens of seconds. These findings provide novel evidence for a role of midfrontal theta in online behavioral adaptation, and suggest new approaches for linking EEG signatures of human executive functioning to its neurobiological underpinnings.

  2. Separation of Time Scales in a Quantum Newton's Cradle.

    PubMed

    van den Berg, R; Wouters, B; Eliëns, S; De Nardis, J; Konik, R M; Caux, J-S

    2016-06-01

    We provide detailed modeling of the Bragg pulse used in quantum Newton's-cradle-like settings or in Bragg spectroscopy experiments for strongly repulsive bosons in one dimension. We reconstruct the postpulse time evolution and study the time-dependent local density profile and momentum distribution by a combination of exact techniques. We further provide a variety of results for finite interaction strengths using a time-dependent Hartree-Fock analysis and bosonization-refermionization techniques. Our results display a clear separation of time scales between rapid and trap-insensitive relaxation immediately after the pulse, followed by slow in-trap periodic behavior. PMID:27314723

  3. An evaluation of acoustic seabed classification techniques for marine biotope monitoring over broad-scales (>1 km 2) and meso-scales (10 m 2-1 km 2)

    NASA Astrophysics Data System (ADS)

    van Rein, H.; Brown, C. J.; Quinn, R.; Breen, J.; Schoeman, D.

    2011-07-01

    Acoustic seabed classification is a useful tool for monitoring marine benthic habitats over broad-scales (>1 km 2) and meso-scales (10 m 2-1 km 2). Its utility in this context was evaluated using two approaches: by describing natural changes in the temporal distribution of marine biotopes across the broad-scale (4 km 2), and by attempting to detect specific experimentally-induced changes to kelp-dominated biotopes across the meso-scale (100 m 2). For the first approach, acoustic backscatter mosaics were constructed using sidescan sonar and multibeam echosounder data collected from Church Bay (Rathlin Island, Northern Ireland) in 1999, 2008 and 2009. The mosaics were manually segmented into acoustic facies, which were ground-truthed using a drop-video camera. Biotopes were classified from the video by multivariate exploratory analysis and cross-tabulated with the acoustic facies, showing a positive correlation. These results were integrated with bathymetric data to map the distribution of seven unique biotopes in Church Bay. Kappa analysis showed the biotope distribution was highly similar between the biotope maps, possibly due to the stability of bedforms shaped by the tidal regime around Rathlin Island. The greatest biotope change in this approach was represented by seasonal and annual changes in the growth of the seagrass, Zostera marina. In the second approach, sidescan sonar data were collected before and after the removal of 100 m 2 of kelp from three sites. Comparison of the data revealed no differences between the high-resolution backscatter imagery. It is concluded that acoustic seabed classification can be used to monitor change over broad- and meso-scales but not necessarily for all biotopes; its success depends on the type of acoustic system employed and the biological characteristics of the target biotope.

  4. Separation of time scales in the HCA model for sand

    NASA Astrophysics Data System (ADS)

    Niemunis, Andrzej; Wichtmann, Torsten

    2014-10-01

    Separation of time scales is used in a high cycle accumulation (HCA) model for sand. An important difficulty of the model is the limited applicability of the Miner's rule to multiaxial cyclic loadings applied simultaneously or in a combination with monotonic loading. Another problem is the lack of simplified objective HCA formulas for geotechnical settlement problems. Possible solutions of these problems are discussed.

  5. Speech Compensation for Time-Scale-Modified Auditory Feedback

    ERIC Educational Resources Information Center

    Ogane, Rintaro; Honda, Masaaki

    2014-01-01

    Purpose: The purpose of this study was to examine speech compensation in response to time-scale-modified auditory feedback during the transition of the semivowel for a target utterance of /ija/. Method: Each utterance session consisted of 10 control trials in the normal feedback condition followed by 20 perturbed trials in the modified auditory…

  6. Maximum principles for second order dynamic equations on time scales

    NASA Astrophysics Data System (ADS)

    Stehlik, Petr; Thompson, Bevan

    2007-07-01

    This paper establishes some new maximum principles for second order dynamic equations on time scales, including: a strong maximum principle; a generalized maximum principle; and a boundary point lemma. The new results include, as special cases, well-known ideas for ordinary differential equations and difference equations.

  7. Gott Time Machines, BTZ Black Hole Formation, and Choptuik Scaling

    NASA Astrophysics Data System (ADS)

    Birmingham, Danny; Sen, Siddhartha

    2000-02-01

    We study the formation of Bañados-Teitelboim-Zanelli black holes by the collision of point particles. It is shown that the Gott time machine, originally constructed for the case of vanishing cosmological constant, provides a precise mechanism for black hole formation. As a result, one obtains an exact analytic understanding of the Choptuik scaling.

  8. Acoustic Treatment Design Scaling Methods. Volume 5; Analytical and Experimental Data Correlation

    NASA Technical Reports Server (NTRS)

    Chien, W. E.; Kraft, R. E.; Syed, A. A.

    1999-01-01

    The primary purpose of the study presented in this volume is to present the results and data analysis of in-duct transmission loss measurements. Transmission loss testing was performed on full-scale, 1/2-scale, and 115-scale treatment panel samples. The objective of the study was to compare predicted and measured transmission loss for full-scale and subscale panels in an attempt to evaluate the variations in suppression between full- and subscale panels which were ostensibly of equivalent design. Generally, the results indicated an unsatisfactory agreement between measurement and prediction, even for full-scale. This was attributable to difficulties encountered in obtaining sufficiently accurate test results, even with extraordinary care in calibrating the instrumentation and performing the test. Test difficulties precluded the ability to make measurements at frequencies high enough to be representative of subscale liners. It is concluded that transmission loss measurements without ducts and data acquisition facilities specifically designed to operate with the precision and complexity required for high subscale frequency ranges are inadequate for evaluation of subscale treatment effects.

  9. Time scale algorithm: Definition of ensemble time and possible uses of the Kalman filter

    NASA Technical Reports Server (NTRS)

    Tavella, Patrizia; Thomas, Claudine

    1990-01-01

    The comparative study of two time scale algorithms, devised to satisfy different but related requirements, is presented. They are ALGOS(BIPM), producing the international reference TAI at the Bureau International des Poids et Mesures, and AT1(NIST), generating the real-time time scale AT1 at the National Institute of Standards and Technology. In each case, the time scale is a weighted average of clock readings, but the weight determination and the frequency prediction are different because they are adapted to different purposes. The possibility of using a mathematical tool, such as the Kalman filter, together with the definition of the time scale as a weighted average, is also analyzed. Results obtained by simulation are presented.

  10. THEORETICAL REVIEW The Hippocampus, Time, and Memory Across Scales

    PubMed Central

    Howard, Marc W.; Eichenbaum, Howard

    2014-01-01

    A wealth of experimental studies with animals have offered insights about how neural networks within the hippocampus support the temporal organization of memories. These studies have revealed the existence of “time cells” that encode moments in time, much as the well-known “place cells” map locations in space. Another line of work inspired by human behavioral studies suggests that episodic memories are mediated by a state of temporal context that changes gradually over long time scales, up to at least a few thousand seconds. In this view, the “mental time travel” hypothesized to support the experience of episodic memory corresponds to a “jump back in time” in which a previous state of temporal context is recovered. We suggest that these 2 sets of findings could be different facets of a representation of temporal history that maintains a record at the last few thousand seconds of experience. The ability to represent long time scales comes at the cost of discarding precise information about when a stimulus was experienced—this uncertainty becomes greater for events further in the past. We review recent computational work that describes a mechanism that could construct such a scale-invariant representation. Taken as a whole, this suggests the hippocampus plays its role in multiple aspects of cognition by representing events embedded in a general spatiotemporal context. The representation of internal time can be useful across nonhippocampal memory systems. PMID:23915126

  11. Acoustic emission: Towards a real-time diagnosis technique for Proton Exchange Membrane Fuel Cell operation

    NASA Astrophysics Data System (ADS)

    Legros, B.; Thivel, P.-X.; Bultel, Y.; Boinet, M.; Nogueira, R. P.

    This paper deals with one of the needs for PEMFC to be economically reliable: diagnosis tool for water management. This issue is actually a key parameter for both performance and durability improvement. Acoustic emission (AE) technique was employed to survey PEM single cell under various operating conditions. AE events coming from different sources have thus been identified, classified and finally ascribed to different phenomena induced by MEA water uptake and/or biphasic flow in the gas channel thanks to a statistical post-treatment of the acoustic data. Results, although qualitative, seems trusty enough to unravel hidden correlations between AE hits and physicochemical phenomena taking place during the cell operation and open up the way for an innovative and non-invasive online diagnosis tool.

  12. Powered-Lift Aerodynamics and Acoustics. [conferences

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Powered lift technology is reviewed. Topics covered include: (1) high lift aerodynamics; (2) high speed and cruise aerodynamics; (3) acoustics; (4) propulsion aerodynamics and acoustics; (5) aerodynamic and acoustic loads; and (6) full-scale and flight research.

  13. Characterization of a binary karst aquifer using process time scales

    NASA Astrophysics Data System (ADS)

    Birk, Steffen; Wagner, Thomas

    2013-04-01

    Within "a theoretical framework for the interpretation of karst spring signals" (Covington, EGU2012-853-1) process length scales that characterize the travel distances required for damping pulses of physicochemical parameters of spring waters such as electrical conductivity and temperature were derived (Covington et al., J. Geophys. Res., 2012). These length scales can be converted to corresponding process time scales characterizing the travel times needed for damping the pulses. This is particularly convenient if the travel distance is unknown. In this case the time lag between the increase of spring discharge and subsequent physicochemical responses at the spring may provide an estimate of the travel time. In binary karst aquifers with localized recharge from a sinking stream, the recharge pulse can be directly observed and thus travel times are readily obtained from the time delay of the physicochemical spring responses. If the spring response is strongly damped travel times can be inferred from artificial tracer testing. In this work, time scales for carbonate dissolution and heat transport were used for characterizing the binary Lurbach-Tanneben karst aquifer (Austria). This aquifer receives allogenic recharge from the sinking stream Lurbach and is drained by two springs, namely the Hammerbach and the Schmelzbach. The two springs show different thermal responses to two recharge events in December 2008: Whereas the temperature of the Schmelzbach responds within one day after the flood pulse in the Lurbach, the temperature signal is strongly damped at the Hammerbach. The evaluation based on the thermal time scale thus suggests that the Schmelzbach spring is fed by conduits with hydraulic diameters at least in the order of decimetres. In contrast, the damping of the thermal responses at the Hammerbach may be due to lower hydraulic diameters and/or longer residence times. Interestingly, the Hammerbach did show thermal responses in the time before a flood event in

  14. Simultaneous bilateral real-time 3-d transcranial ultrasound imaging at 1 MHz through poor acoustic windows.

    PubMed

    Lindsey, Brooks D; Nicoletto, Heather A; Bennett, Ellen R; Laskowitz, Daniel T; Smith, Stephen W

    2013-04-01

    Ultrasound imaging has been proposed as a rapid, portable alternative imaging modality to examine stroke patients in pre-hospital or emergency room settings. However, in performing transcranial ultrasound examinations, 8%-29% of patients in a general population may present with window failure, in which case it is not possible to acquire clinically useful sonographic information through the temporal bone acoustic window. In this work, we describe the technical considerations, design and fabrication of low-frequency (1.2 MHz), large aperture (25.3 mm) sparse matrix array transducers for 3-D imaging in the event of window failure. These transducers are integrated into a system for real-time 3-D bilateral transcranial imaging-the ultrasound brain helmet-and color flow imaging capabilities at 1.2 MHz are directly compared with arrays operating at 1.8 MHz in a flow phantom with attenuation comparable to the in vivo case. Contrast-enhanced imaging allowed visualization of arteries of the Circle of Willis in 5 of 5 subjects and 8 of 10 sides of the head despite probe placement outside of the acoustic window. Results suggest that this type of transducer may allow acquisition of useful images either in individuals with poor windows or outside of the temporal acoustic window in the field.

  15. Effect of ageing in fibre bundle models on the evolution of acoustic and silent damage in time-dependent failure

    NASA Astrophysics Data System (ADS)

    Lennartz, S.; Main, I. G.; Zaiser, M.; Kun, F.

    2012-04-01

    The spatio-temporal evolution of damage in brittle materials is often modelled by fibre bundle models. In real fibre bundles (such as suspension bridge ropes), and in other composite materials such as rocks and ceramics, the evolution of damage as a function of stress and time can be recorded using acoustic emissions (AE), and used to asses the integrity of the sample and its lifetime. Such monitoring however tells only part of the story, since time-dependent, effectively 'silent' damage also occurs without AE, and small AE events may not be recorded below some recording threshold set by the background noise. The proportion of seismic to aseismic deformation is important for a number of applications, for example providing a strong constraint on plate boundary dynamics and estimates of earthquake hazard. Accordingly we have modified the usual fibre bundle model by introducing some additional ageing, which results in silent damage below a nominal threshold for more dynamic deformation. This enables us to model the effect of the model parameters on the ratio of acoustic to total damage, and how it evolves in time under a given stress history. We found that the silent damage dominates the process and that for a constant applied stress the ratio between acoustic and silent emissions is approximately constant over a wide range of time. The proportionality factor depends strongly on the applied stress and only weakly on the ageing parameter, while it is the other way around for the failure time which depends more on the ageing parameter than on the applied stress.

  16. Classifying acoustic signals into phoneme categories: average and dyslexic readers make use of complex dynamical patterns and multifractal scaling properties of the speech signal.

    PubMed

    Hasselman, Fred

    2015-01-01

    Several competing aetiologies of developmental dyslexia suggest that the problems with acquiring literacy skills are causally entailed by low-level auditory and/or speech perception processes. The purpose of this study is to evaluate the diverging claims about the specific deficient peceptual processes under conditions of strong inference. Theoretically relevant acoustic features were extracted from a set of artificial speech stimuli that lie on a /bAk/-/dAk/ continuum. The features were tested on their ability to enable a simple classifier (Quadratic Discriminant Analysis) to reproduce the observed classification performance of average and dyslexic readers in a speech perception experiment. The 'classical' features examined were based on component process accounts of developmental dyslexia such as the supposed deficit in Envelope Rise Time detection and the deficit in the detection of rapid changes in the distribution of energy in the frequency spectrum (formant transitions). Studies examining these temporal processing deficit hypotheses do not employ measures that quantify the temporal dynamics of stimuli. It is shown that measures based on quantification of the dynamics of complex, interaction-dominant systems (Recurrence Quantification Analysis and the multifractal spectrum) enable QDA to classify the stimuli almost identically as observed in dyslexic and average reading participants. It seems unlikely that participants used any of the features that are traditionally associated with accounts of (impaired) speech perception. The nature of the variables quantifying the temporal dynamics of the speech stimuli imply that the classification of speech stimuli cannot be regarded as a linear aggregate of component processes that each parse the acoustic signal independent of one another, as is assumed by the 'classical' aetiologies of developmental dyslexia. It is suggested that the results imply that the differences in speech perception performance between average and

  17. Classifying acoustic signals into phoneme categories: average and dyslexic readers make use of complex dynamical patterns and multifractal scaling properties of the speech signal.

    PubMed

    Hasselman, Fred

    2015-01-01

    Several competing aetiologies of developmental dyslexia suggest that the problems with acquiring literacy skills are causally entailed by low-level auditory and/or speech perception processes. The purpose of this study is to evaluate the diverging claims about the specific deficient peceptual processes under conditions of strong inference. Theoretically relevant acoustic features were extracted from a set of artificial speech stimuli that lie on a /bAk/-/dAk/ continuum. The features were tested on their ability to enable a simple classifier (Quadratic Discriminant Analysis) to reproduce the observed classification performance of average and dyslexic readers in a speech perception experiment. The 'classical' features examined were based on component process accounts of developmental dyslexia such as the supposed deficit in Envelope Rise Time detection and the deficit in the detection of rapid changes in the distribution of energy in the frequency spectrum (formant transitions). Studies examining these temporal processing deficit hypotheses do not employ measures that quantify the temporal dynamics of stimuli. It is shown that measures based on quantification of the dynamics of complex, interaction-dominant systems (Recurrence Quantification Analysis and the multifractal spectrum) enable QDA to classify the stimuli almost identically as observed in dyslexic and average reading participants. It seems unlikely that participants used any of the features that are traditionally associated with accounts of (impaired) speech perception. The nature of the variables quantifying the temporal dynamics of the speech stimuli imply that the classification of speech stimuli cannot be regarded as a linear aggregate of component processes that each parse the acoustic signal independent of one another, as is assumed by the 'classical' aetiologies of developmental dyslexia. It is suggested that the results imply that the differences in speech perception performance between average and

  18. Classifying acoustic signals into phoneme categories: average and dyslexic readers make use of complex dynamical patterns and multifractal scaling properties of the speech signal

    PubMed Central

    2015-01-01

    Several competing aetiologies of developmental dyslexia suggest that the problems with acquiring literacy skills are causally entailed by low-level auditory and/or speech perception processes. The purpose of this study is to evaluate the diverging claims about the specific deficient peceptual processes under conditions of strong inference. Theoretically relevant acoustic features were extracted from a set of artificial speech stimuli that lie on a /bAk/-/dAk/ continuum. The features were tested on their ability to enable a simple classifier (Quadratic Discriminant Analysis) to reproduce the observed classification performance of average and dyslexic readers in a speech perception experiment. The ‘classical’ features examined were based on component process accounts of developmental dyslexia such as the supposed deficit in Envelope Rise Time detection and the deficit in the detection of rapid changes in the distribution of energy in the frequency spectrum (formant transitions). Studies examining these temporal processing deficit hypotheses do not employ measures that quantify the temporal dynamics of stimuli. It is shown that measures based on quantification of the dynamics of complex, interaction-dominant systems (Recurrence Quantification Analysis and the multifractal spectrum) enable QDA to classify the stimuli almost identically as observed in dyslexic and average reading participants. It seems unlikely that participants used any of the features that are traditionally associated with accounts of (impaired) speech perception. The nature of the variables quantifying the temporal dynamics of the speech stimuli imply that the classification of speech stimuli cannot be regarded as a linear aggregate of component processes that each parse the acoustic signal independent of one another, as is assumed by the ‘classical’ aetiologies of developmental dyslexia. It is suggested that the results imply that the differences in speech perception performance between

  19. Apparatus for real-time acoustic imaging of Rayleigh-Bénard convection

    SciTech Connect

    Kuehn, Kerry, K.

    2008-10-28

    We have successfully designed, built and tested an experimental apparatus which is capable of providing the first real-time ultrasound images of Rayleigh-B\\'{e}nard convection in optically opaque fluids confined to large aspect ratio experimental cells. The apparatus employs a modified version of a commercially available ultrasound camera to capture images (30 frames per second) of flow patterns in a fluid undergoing Rayleigh Bénard convection. The apparatus was validated by observing convection rolls in 5cSt polydimethylsiloxane (PDMS) polymer fluid. Our first objective, after having built the apparatus, was to use it to study the sequence of transitions from diffusive to time--dependent heat transport in liquid mercury. The aim was to provide important information on pattern formation in the largely unexplored regime of very low Prandtl number fluids. Based on the theoretical stability diagram for liquid mercury, we anticipated that straight rolls should be stable over a range of Rayleigh numbers, between 1708 and approximately 1900. Though some of our power spectral densities were suggestive of the existence of weak convection, we have been unable to unambiguously visualize stable convection rolls above the theoretical onset of convection in liquid mercury. Currently, we are seeking ways to increase the sensitivity of our apparatus, such as (i) improving the acoustic impedance matching between our materials in the ultrasound path and (ii) reducing the noise level in our acoustic images due to turbulence and cavitation in the cooling fluids circulating above and below our experimental cell. If we are able to convincingly improve the sensitivity of our apparatus, and we still do not observe stable convection rolls in liquid mercury, then it may be the case that the theoretical stability diagram requires revision. In that case, either (i) straight rolls are not stable in a large aspect ratio cell at the Prandtl numbers associated with liquid mercury, or (ii) they

  20. Real-time simulation of large-scale floods

    NASA Astrophysics Data System (ADS)

    Liu, Q.; Qin, Y.; Li, G. D.; Liu, Z.; Cheng, D. J.; Zhao, Y. H.

    2016-08-01

    According to the complex real-time water situation, the real-time simulation of large-scale floods is very important for flood prevention practice. Model robustness and running efficiency are two critical factors in successful real-time flood simulation. This paper proposed a robust, two-dimensional, shallow water model based on the unstructured Godunov- type finite volume method. A robust wet/dry front method is used to enhance the numerical stability. An adaptive method is proposed to improve the running efficiency. The proposed model is used for large-scale flood simulation on real topography. Results compared to those of MIKE21 show the strong performance of the proposed model.

  1. Characterizing Complex Time Series from the Scaling of Prediction Error.

    NASA Astrophysics Data System (ADS)

    Hinrichs, Brant Eric

    This thesis concerns characterizing complex time series from the scaling of prediction error. We use the global modeling technique of radial basis function approximation to build models from a state-space reconstruction of a time series that otherwise appears complicated or random (i.e. aperiodic, irregular). Prediction error as a function of prediction horizon is obtained from the model using the direct method. The relationship between the underlying dynamics of the time series and the logarithmic scaling of prediction error as a function of prediction horizon is investigated. We use this relationship to characterize the dynamics of both a model chaotic system and physical data from the optic tectum of an attentive pigeon exhibiting the important phenomena of nonstationary neuronal oscillations in response to visual stimuli.

  2. The Available Time Scale: Measuring Foster Parents' Available Time to Foster

    ERIC Educational Resources Information Center

    Cherry, Donna J.; Orme, John G.; Rhodes, Kathryn W.

    2009-01-01

    This article presents a new measure of available time specific to fostering, the Available Time Scale (ATS). It was tested with a national sample of 304 foster mothers and is designed to measure the amount of time foster parents are able to devote to fostering activities. The ATS has excellent reliability, and good support exists for its validity.…

  3. Energy and time determine scaling in biological and computer designs.

    PubMed

    Moses, Melanie; Bezerra, George; Edwards, Benjamin; Brown, James; Forrest, Stephanie

    2016-08-19

    Metabolic rate in animals and power consumption in computers are analogous quantities that scale similarly with size. We analyse vascular systems of mammals and on-chip networks of microprocessors, where natural selection and human engineering, respectively, have produced systems that minimize both energy dissipation and delivery times. Using a simple network model that simultaneously minimizes energy and time, our analysis explains empirically observed trends in the scaling of metabolic rate in mammals and power consumption and performance in microprocessors across several orders of magnitude in size. Just as the evolutionary transitions from unicellular to multicellular animals in biology are associated with shifts in metabolic scaling, our model suggests that the scaling of power and performance will change as computer designs transition to decentralized multi-core and distributed cyber-physical systems. More generally, a single energy-time minimization principle may govern the design of many complex systems that process energy, materials and information.This article is part of the themed issue 'The major synthetic evolutionary transitions'. PMID:27431524

  4. Anomalous multiphoton photoelectric effect in ultrashort time scales.

    PubMed

    Kupersztych, J; Raynaud, M

    2005-09-30

    In a multiphoton photoelectric process, an electron needs to absorb a given number of photons to escape the surface of a metal. It is shown for the first time that this number is not a constant depending only on the characteristics of the metal and light, but varies with the interaction duration in ultrashort time scales. The phenomenon occurs when electromagnetic energy is transferred, via ultrafast excitation of electron collective modes, to conduction electrons in a duration less than the electron energy damping time. It manifests itself through a dramatic increase of electron production.

  5. Wavelet analysis and scaling properties of time series

    NASA Astrophysics Data System (ADS)

    Manimaran, P.; Panigrahi, Prasanta K.; Parikh, Jitendra C.

    2005-10-01

    We propose a wavelet based method for the characterization of the scaling behavior of nonstationary time series. It makes use of the built-in ability of the wavelets for capturing the trends in a data set, in variable window sizes. Discrete wavelets from the Daubechies family are used to illustrate the efficacy of this procedure. After studying binomial multifractal time series with the present and earlier approaches of detrending for comparison, we analyze the time series of averaged spin density in the 2D Ising model at the critical temperature, along with several experimental data sets possessing multifractal behavior.

  6. Precise stellar surface gravities from the time scales of convectively driven brightness variations.

    PubMed

    Kallinger, Thomas; Hekker, Saskia; García, Rafael A; Huber, Daniel; Matthews, Jaymie M

    2016-01-01

    A significant part of the intrinsic brightness variations in cool stars of low and intermediate mass arises from surface convection (seen as granulation) and acoustic oscillations (p-mode pulsations). The characteristics of these phenomena are largely determined by the stars' surface gravity (g). Detailed photometric measurements of either signal can yield an accurate value of g. However, even with ultraprecise photometry from NASA's Kepler mission, many stars are too faint for current methods or only moderate accuracy can be achieved in a limited range of stellar evolutionary stages. This means that many of the stars in the Kepler sample, including exoplanet hosts, are not sufficiently characterized to fully describe the sample and exoplanet properties. We present a novel way to measure surface gravities with accuracies of about 4%. Our technique exploits the tight relation between g and the characteristic time scale of the combined granulation and p-mode oscillation signal. It is applicable to all stars with a convective envelope, including active stars. It can measure g in stars for which no other analysis is now possible. Because it depends on the time scale (and no other properties) of the signal, our technique is largely independent of the type of measurement (for example, photometry or radial velocity measurements) and the calibration of the instrumentation used. However, the oscillation signal must be temporally resolved; thus, it cannot be applied to dwarf stars observed by Kepler in its long-cadence mode.

  7. Precise stellar surface gravities from the time scales of convectively driven brightness variations

    PubMed Central

    Kallinger, Thomas; Hekker, Saskia; García, Rafael A.; Huber, Daniel; Matthews, Jaymie M.

    2016-01-01

    A significant part of the intrinsic brightness variations in cool stars of low and intermediate mass arises from surface convection (seen as granulation) and acoustic oscillations (p-mode pulsations). The characteristics of these phenomena are largely determined by the stars’ surface gravity (g). Detailed photometric measurements of either signal can yield an accurate value of g. However, even with ultraprecise photometry from NASA’s Kepler mission, many stars are too faint for current methods or only moderate accuracy can be achieved in a limited range of stellar evolutionary stages. This means that many of the stars in the Kepler sample, including exoplanet hosts, are not sufficiently characterized to fully describe the sample and exoplanet properties. We present a novel way to measure surface gravities with accuracies of about 4%. Our technique exploits the tight relation between g and the characteristic time scale of the combined granulation and p-mode oscillation signal. It is applicable to all stars with a convective envelope, including active stars. It can measure g in stars for which no other analysis is now possible. Because it depends on the time scale (and no other properties) of the signal, our technique is largely independent of the type of measurement (for example, photometry or radial velocity measurements) and the calibration of the instrumentation used. However, the oscillation signal must be temporally resolved; thus, it cannot be applied to dwarf stars observed by Kepler in its long-cadence mode. PMID:26767193

  8. Precise stellar surface gravities from the time scales of convectively driven brightness variations.

    PubMed

    Kallinger, Thomas; Hekker, Saskia; García, Rafael A; Huber, Daniel; Matthews, Jaymie M

    2016-01-01

    A significant part of the intrinsic brightness variations in cool stars of low and intermediate mass arises from surface convection (seen as granulation) and acoustic oscillations (p-mode pulsations). The characteristics of these phenomena are largely determined by the stars' surface gravity (g). Detailed photometric measurements of either signal can yield an accurate value of g. However, even with ultraprecise photometry from NASA's Kepler mission, many stars are too faint for current methods or only moderate accuracy can be achieved in a limited range of stellar evolutionary stages. This means that many of the stars in the Kepler sample, including exoplanet hosts, are not sufficiently characterized to fully describe the sample and exoplanet properties. We present a novel way to measure surface gravities with accuracies of about 4%. Our technique exploits the tight relation between g and the characteristic time scale of the combined granulation and p-mode oscillation signal. It is applicable to all stars with a convective envelope, including active stars. It can measure g in stars for which no other analysis is now possible. Because it depends on the time scale (and no other properties) of the signal, our technique is largely independent of the type of measurement (for example, photometry or radial velocity measurements) and the calibration of the instrumentation used. However, the oscillation signal must be temporally resolved; thus, it cannot be applied to dwarf stars observed by Kepler in its long-cadence mode. PMID:26767193

  9. Accuracy Assessment in rainfall upscaling in multiple time scales

    NASA Astrophysics Data System (ADS)

    Yu, H.; Wang, C.; Lin, Y.

    2008-12-01

    Long-term hydrologic parameters, e.g. annual precipitations, are usually used to represent the general hydrologic characteristics in a region. Recently, the analysis of the impact of climate change to hydrological patterns primarily relies on the measurement and/or the estimations in long time scales, e.g. year. Under the general condition of the prevalence of short-term measurements, therefore, it is important to understand the accuracy of upscaling for the long-term estimations of hydrologic parameters. This study applies spatiotemporal geostatistical method to analyze and discuss the accuracy of precipitation upscaling in Taiwan under the different time scales, and also quantifies the uncertainty in the upscaled long-term precipitations. In this study, two space-time upscaling approaches developed by Bayesian Maximum Entropy method (BME) are presented 1) UM1: data aggregation followed by BME estimation and 2) UM2: BME estimation followed by aggregation. The investigation and comparison are also implemented to assess the performance of the rainfall estimations in multiple time scales in Taiwan by the two upscaling. Keywords: upscaling, geostatistics, BME, uncertainty analysis

  10. Reconstructions of solar irradiance on centennial time scales

    NASA Astrophysics Data System (ADS)

    Krivova, Natalie; Solanki, Sami K.; Dasi Espuig, Maria; Kok Leng, Yeo

    Solar irradiance is the main external source of energy to Earth's climate system. The record of direct measurements covering less than 40 years is too short to study solar influence on Earth's climate, which calls for reconstructions of solar irradiance into the past with the help of appropriate models. An obvious requirement to a competitive model is its ability to reproduce observed irradiance changes, and a successful example of such a model is presented by the SATIRE family of models. As most state-of-the-art models, SATIRE assumes that irradiance changes on time scales longer than approximately a day are caused by the evolving distribution of dark and bright magnetic features on the solar surface. The surface coverage by such features as a function of time is derived from solar observations. The choice of these depends on the time scale in question. Most accurate is the version of the model that employs full-disc spatially-resolved solar magnetograms and reproduces over 90% of the measured irradiance variation, including the overall decreasing trend in the total solar irradiance over the last four cycles. Since such magnetograms are only available for about four decades, reconstructions on time scales of centuries have to rely on disc-integrated proxies of solar magnetic activity, such as sunspot areas and numbers. Employing a surface flux transport model and sunspot observations as input, we have being able to produce synthetic magnetograms since 1700. This improves the temporal resolution of the irradiance reconstructions on centennial time scales. The most critical aspect of such reconstructions remains the uncertainty in the magnitude of the secular change.

  11. AST Launch Vehicle Acoustics

    NASA Technical Reports Server (NTRS)

    Houston, Janice; Counter, D.; Giacomoni, D.

    2015-01-01

    The liftoff phase induces acoustic loading over a broad frequency range for a launch vehicle. These external acoustic environments are then used in the prediction of internal vibration responses of the vehicle and components which result in the qualification levels. Thus, predicting these liftoff acoustic (LOA) environments is critical to the design requirements of any launch vehicle. If there is a significant amount of uncertainty in the predictions or if acoustic mitigation options must be implemented, a subscale acoustic test is a feasible pre-launch test option to verify the LOA environments. The NASA Space Launch System (SLS) program initiated the Scale Model Acoustic Test (SMAT) to verify the predicted SLS LOA environments and to determine the acoustic reduction with an above deck water sound suppression system. The SMAT was conducted at Marshall Space Flight Center and the test article included a 5% scale SLS vehicle model, tower and Mobile Launcher. Acoustic and pressure data were measured by approximately 250 instruments. The SMAT liftoff acoustic results are presented, findings are discussed and a comparison is shown to the Ares I Scale Model Acoustic Test (ASMAT) results.

  12. Time scale of diffusion in molecular and cellular biology

    NASA Astrophysics Data System (ADS)

    Holcman, D.; Schuss, Z.

    2014-05-01

    Diffusion is the driver of critical biological processes in cellular and molecular biology. The diverse temporal scales of cellular function are determined by vastly diverse spatial scales in most biophysical processes. The latter are due, among others, to small binding sites inside or on the cell membrane or to narrow passages between large cellular compartments. The great disparity in scales is at the root of the difficulty in quantifying cell function from molecular dynamics and from simulations. The coarse-grained time scale of cellular function is determined from molecular diffusion by the mean first passage time of molecular Brownian motion to a small targets or through narrow passages. The narrow escape theory (NET) concerns this issue. The NET is ubiquitous in molecular and cellular biology and is manifested, among others, in chemical reactions, in the calculation of the effective diffusion coefficient of receptors diffusing on a neuronal cell membrane strewn with obstacles, in the quantification of the early steps of viral trafficking, in the regulation of diffusion between the mother and daughter cells during cell division, and many other cases. Brownian trajectories can represent the motion of a molecule, a protein, an ion in solution, a receptor in a cell or on its membrane, and many other biochemical processes. The small target can represent a binding site or an ionic channel, a hidden active site embedded in a complex protein structure, a receptor for a neurotransmitter on the membrane of a neuron, and so on. The mean time to attach to a receptor or activator determines diffusion fluxes that are key regulators of cell function. This review describes physical models of various subcellular microdomains, in which the NET coarse-grains the molecular scale to a higher cellular-level, thus clarifying the role of cell geometry in determining subcellular function.

  13. Sublinear scaling for time-dependent stochastic density functional theory

    SciTech Connect

    Gao, Yi; Neuhauser, Daniel; Baer, Roi; Rabani, Eran

    2015-01-21

    A stochastic approach to time-dependent density functional theory is developed for computing the absorption cross section and the random phase approximation (RPA) correlation energy. The core idea of the approach involves time-propagation of a small set of stochastic orbitals which are first projected on the occupied space and then propagated in time according to the time-dependent Kohn-Sham equations. The evolving electron density is exactly represented when the number of random orbitals is infinite, but even a small number (≈16) of such orbitals is enough to obtain meaningful results for absorption spectrum and the RPA correlation energy per electron. We implement the approach for silicon nanocrystals using real-space grids and find that the overall scaling of the algorithm is sublinear with computational time and memory.

  14. Small-Scale Trial for Evaluating Directional Resolution of Single Spherical Biconcave Acoustic Lens in Designing of Ambient Noise Imaging System

    NASA Astrophysics Data System (ADS)

    Mori, Kazuyoshi; Ogasawara, Hanako; Nakamura, Toshiaki

    2008-05-01

    Ambient noise imaging (ANI) is the revolutionary idea of detecting objects by using natural ocean background noise. From the analysis results obtained by the finite difference time domain (FDTD) method in our previous studies, it was supposed that a spherical biconcave lens with an aperture diameter of 2.0 m has a sufficient directional resolution (for example, the beam width is 1° at 60 kHz) for realizing an ANI system. In this study, to confirm the analysis results, we performed a small-scale trial of one-fifth space in a water tank. The lens, made of acrylic resin, has an aperture diameter of 400 mm and a radius of curvature of 500 mm. A burst pulse of 25 cycles at 300 kHz, whose frequency increases 5 times, was radiated from the sound source. The sound pressure after passage through the acoustic lens was measured by moving the receiver around the image point. Results show that the shapes of -3 dB areas are similar to the FDTD analysis results at small incidence angles. It was verified that this lens has a sufficient directional resolution for use in the ANI system, because -3 dB areas do not overlap each other.

  15. Entropy Production of Nanosystems with Time Scale Separation

    NASA Astrophysics Data System (ADS)

    Wang, Shou-Wen; Kawaguchi, Kyogo; Sasa, Shin-ichi; Tang, Lei-Han

    2016-08-01

    Energy flows in biomolecular motors and machines are vital to their function. Yet experimental observations are often limited to a small subset of variables that participate in energy transport and dissipation. Here we show, through a solvable Langevin model, that the seemingly hidden entropy production is measurable through the violation spectrum of the fluctuation-response relation of a slow observable. For general Markov systems with time scale separation, we prove that the violation spectrum exhibits a characteristic plateau in the intermediate frequency region. Despite its vanishing height, the plateau can account for energy dissipation over a broad time scale. Our findings suggest a general possibility to probe hidden entropy production in nanosystems without direct observation of fast variables.

  16. Entropy Production of Nanosystems with Time Scale Separation.

    PubMed

    Wang, Shou-Wen; Kawaguchi, Kyogo; Sasa, Shin-Ichi; Tang, Lei-Han

    2016-08-12

    Energy flows in biomolecular motors and machines are vital to their function. Yet experimental observations are often limited to a small subset of variables that participate in energy transport and dissipation. Here we show, through a solvable Langevin model, that the seemingly hidden entropy production is measurable through the violation spectrum of the fluctuation-response relation of a slow observable. For general Markov systems with time scale separation, we prove that the violation spectrum exhibits a characteristic plateau in the intermediate frequency region. Despite its vanishing height, the plateau can account for energy dissipation over a broad time scale. Our findings suggest a general possibility to probe hidden entropy production in nanosystems without direct observation of fast variables. PMID:27563943

  17. Human interface and transmit frequency control for the through-air acoustic real-time high resolution vision substitute system.

    PubMed

    Taki, Hirofumi; Sato, Toru

    2005-01-01

    Existing vision substitute systems are not useful as navigation system due to the limitation of spatial and time resolution. In this study we propose a transmit control method free from range aliasing for a high resolution acoustic vision substitute systems, which we previously proposed. We also examine a human-machine information transfer method with a vibrotactile stimulator array consisting of 13 × 21 elements. It presents the target area of 30 degree × 60 degree by the sampling interval of 1 degree at the center. The system presents range, direction, and surface topography of targets to the subject.

  18. Large-scale Advanced Propfan (LAP) performance, acoustic and weight estimation, January, 1984

    NASA Technical Reports Server (NTRS)

    Parzych, D.; Shenkman, A.; Cohen, S.

    1985-01-01

    In comparison to turbo-prop applications, the Prop-Fan is designed to operate in a significantly higher range of aircraft flight speeds. Two concerns arise regarding operation at very high speeds: aerodynamic performance and noise generation. This data package covers both topics over a broad range of operating conditions for the eight (8) bladed SR-7L Prop-Fan. Operating conditions covered are: Flight Mach Number 0 - 0.85; blade tip speed 600-800 ft/sec; and cruise power loading 20-40 SHP/D2. Prop-Fan weight and weight scaling estimates are also included.

  19. Solar Irradiance Variations on Active Region Time Scales

    NASA Technical Reports Server (NTRS)

    Labonte, B. J. (Editor); Chapman, G. A. (Editor); Hudson, H. S. (Editor); Willson, R. C. (Editor)

    1984-01-01

    The variations of the total solar irradiance is an important tool for studying the Sun, thanks to the development of very precise sensors such as the ACRIM instrument on board the Solar Maximum Mission. The largest variations of the total irradiance occur on time scales of a few days are caused by solar active regions, especially sunspots. Efforts were made to describe the active region effects on total and spectral irradiance.

  20. Biogenic Calcium Phosphate Transformation in Soils over Millennium Time Scales

    SciTech Connect

    Sato, S.; Neves, E; Solomon, D; Liang, B; Lehmann, J

    2009-01-01

    Changes in bioavailability of phosphorus (P) during pedogenesis and ecosystem development have been shown for geogenic calcium phosphate (Ca-P). However, very little is known about long-term changes of biogenic Ca-P in soil. Long-term transformation characteristics of biogenic Ca-P were examined using anthropogenic soils along a chronosequence from centennial to millennial time scales. Phosphorus fractionation of Anthrosols resulted in overall consistency with the Walker and Syers model of geogenic Ca-P transformation during pedogenesis. The biogenic Ca-P (e.g., animal and fish bones) disappeared to 3% of total P within the first ca. 2,000 years of soil development. This change concurred with increases in P adsorbed on metal-oxides surfaces, organic P, and occluded P at different pedogenic time. Phosphorus K-edge X-ray absorption near-edge structure (XANES) spectroscopy revealed that the crystalline and therefore thermodynamically most stable biogenic Ca-P was transformed into more soluble forms of Ca-P over time. While crystalline hydroxyapatite (34% of total P) dominated Ca-P species after about 600-1,000 years, {Beta}-tricalcium phosphate increased to 16% of total P after 900-1,100 years, after which both Ca-P species disappeared. Iron-associated P was observable concurrently with Ca-P disappearance. Soluble P and organic P determined by XANES maintained relatively constant (58-65%) across the time scale studied. Conclusions - Disappearance of crystalline biogenic Ca-P on a time scale of a few thousand years appears to be ten times faster than that of geogenic Ca-P.

  1. Evaluation of a scale-model experiment to investigate long-range acoustic propagation

    NASA Technical Reports Server (NTRS)

    Parrott, Tony L.; Mcaninch, Gerry L.; Carlberg, Ingrid A.

    1987-01-01

    Tests were conducted to evaluate the feasibility of using a scale-model experiment situated in an anechoic facility to investigate long-range sound propagation over ground terrain. For a nominal scale factor of 100:1, attenuations along a linear array of six microphones colinear with a continuous-wave type of sound source were measured over a wavelength range from 10 to 160 for a nominal test frequency of 10 kHz. Most tests were made for a hard model surface (plywood), but limited tests were also made for a soft model surface (plywood with felt). For grazing-incidence propagation over the hard surface, measured and predicted attenuation trends were consistent for microphone locations out to between 40 and 80 wavelengths. Beyond 80 wavelengths, significant variability was observed that was caused by disturbances in the propagation medium. Also, there was evidence of extraneous propagation-path contributions to data irregularities at more remote microphones. Sensitivity studies for the hard-surface and microphone indicated a 2.5 dB change in the relative excess attenuation for a systematic error in source and microphone elevations on the order of 1 mm. For the soft-surface model, no comparable sensitivity was found.

  2. Scaling detection in time series: diffusion entropy analysis.

    PubMed

    Scafetta, Nicola; Grigolini, Paolo

    2002-09-01

    The methods currently used to determine the scaling exponent of a complex dynamic process described by a time series are based on the numerical evaluation of variance. This means that all of them can be safely applied only to the case where ordinary statistical properties hold true even if strange kinetics are involved. We illustrate a method of statistical analysis based on the Shannon entropy of the diffusion process generated by the time series, called diffusion entropy analysis (DEA). We adopt artificial Gauss and Lévy time series, as prototypes of ordinary and anomalous statistics, respectively, and we analyze them with the DEA and four ordinary methods of analysis, some of which are very popular. We show that the DEA determines the correct scaling exponent even when the statistical properties, as well as the dynamic properties, are anomalous. The other four methods produce correct results in the Gauss case but fail to detect the correct scaling in the case of Lévy statistics. PMID:12366207

  3. Time scale interactions and the coevolution of humans and water

    NASA Astrophysics Data System (ADS)

    Sivapalan, Murugesu; Blöschl, Günter

    2015-09-01

    We present a coevolutionary view of hydrologic systems, revolving around feedbacks between environmental and social processes operating across different time scales. This brings to the fore an emphasis on emergent phenomena in changing water systems, such as the levee effect, adaptation to change, system lock-in, and system collapse due to resource depletion. Changing human values play a key role in the emergence of these phenomena and should therefore be considered as internal to the system. Guidance is provided for the framing and modeling of these phenomena to test alternative hypotheses about how they arose. A plurality of coevolutionary models, from stylized to comprehensive system-of-system models, may assist strategic water management for long time scales through facilitating stakeholder participation, exploring the possibility space of alternative futures, and helping to synthesize the observed dynamics in a wide range of case studies. Future research opportunities lie in exploring emergent phenomena arising from time scale interactions through historical, comparative, and process studies of human-water feedbacks.

  4. The Steppengrille (Gryllus spec./assimilis): selective filters and signal mismatch on two time scales.

    PubMed

    Rothbart, Matti Michael; Hennig, Ralf Matthias

    2012-01-01

    In Europe, several species of crickets are available commercially as pet food. Here we investigated the calling song and phonotactic selectivity for sound patterns on the short and long time scales for one such a cricket, Gryllus spec., available as "Gryllus assimilis", the Steppengrille, originally from Ecuador. The calling song consisted of short chirps (2-3 pulses, carrier frequency: 5.0 kHz) emitted with a pulse period of 30.2 ms and chirp rate of 0.43 per second. Females exhibited high selectivity on both time scales. The preference for pulse period peaked at 33 ms which was higher then the pulse period produced by males. Two consecutive pulses per chirp at the correct pulse period were already sufficient for positive phonotaxis. The preference for the chirp pattern was limited by selectivity for small chirp duty cycles and for chirp periods between 200 ms and 500 ms. The long chirp period of the songs of males was unattractive to females. On both time scales a mismatch between the song signal of the males and the preference of females was observed. The variability of song parameters as quantified by the coefficient of variation was below 50% for all temporal measures. Hence, there was not a strong indication for directional selection on song parameters by females which could account for the observed mismatch. The divergence of the chirp period and female preference may originate from a founder effect, when the Steppengrille was cultured. Alternatively the mismatch was a result of selection pressures exerted by commercial breeders on low singing activity, to satisfy customers with softly singing crickets. In the latter case the prominent divergence between male song and female preference was the result of domestication and may serve as an example of rapid evolution of song traits in acoustic communication systems. PMID:22970154

  5. The Steppengrille (Gryllus spec./assimilis): Selective Filters and Signal Mismatch on Two Time Scales

    PubMed Central

    Rothbart, Matti Michael; Hennig, Ralf Matthias

    2012-01-01

    In Europe, several species of crickets are available commercially as pet food. Here we investigated the calling song and phonotactic selectivity for sound patterns on the short and long time scales for one such a cricket, Gryllus spec., available as “Gryllus assimilis”, the Steppengrille, originally from Ecuador. The calling song consisted of short chirps (2–3 pulses, carrier frequency: 5.0 kHz) emitted with a pulse period of 30.2 ms and chirp rate of 0.43 per second. Females exhibited high selectivity on both time scales. The preference for pulse period peaked at 33 ms which was higher then the pulse period produced by males. Two consecutive pulses per chirp at the correct pulse period were already sufficient for positive phonotaxis. The preference for the chirp pattern was limited by selectivity for small chirp duty cycles and for chirp periods between 200 ms and 500 ms. The long chirp period of the songs of males was unattractive to females. On both time scales a mismatch between the song signal of the males and the preference of females was observed. The variability of song parameters as quantified by the coefficient of variation was below 50% for all temporal measures. Hence, there was not a strong indication for directional selection on song parameters by females which could account for the observed mismatch. The divergence of the chirp period and female preference may originate from a founder effect, when the Steppengrille was cultured. Alternatively the mismatch was a result of selection pressures exerted by commercial breeders on low singing activity, to satisfy customers with softly singing crickets. In the latter case the prominent divergence between male song and female preference was the result of domestication and may serve as an example of rapid evolution of song traits in acoustic communication systems. PMID:22970154

  6. Scaling brain size, keeping timing: evolutionary preservation of brain rhythms.

    PubMed

    Buzsáki, György; Logothetis, Nikos; Singer, Wolf

    2013-10-30

    Despite the several-thousand-fold increase of brain volume during the course of mammalian evolution, the hierarchy of brain oscillations remains remarkably preserved, allowing for multiple-time-scale communication within and across neuronal networks at approximately the same speed, irrespective of brain size. Deployment of large-diameter axons of long-range neurons could be a key factor in the preserved time management in growing brains. We discuss the consequences of such preserved network constellation in mental disease, drug discovery, and interventional therapies.

  7. Scaling Brain Size, Keeping Timing: Evolutionary Preservation of Brain Rhythms

    PubMed Central

    Buzsáki, György; Logothetis, Nikos; Singer, Wolf

    2014-01-01

    Despite the several-thousand-fold increase of brain volume during the course of mammalian evolution, the hierarchy of brain oscillations remains remarkably preserved, allowing for multiple-time-scale communication within and across neuronal networks at approximately the same speed, irrespective of brain size. Deployment of large-diameter axons of long-range neurons could be a key factor in the preserved time management in growing brains. We discuss the consequences of such preserved network constellation in mental disease, drug discovery, and interventional therapies. PMID:24183025

  8. SIGNIFICANT FOREGROUND UNRELATED NON-ACOUSTIC ANISOTROPY ON THE 1 DEGREE SCALE IN WILKINSON MICROWAVE ANISOTROPY PROBE 5-YEAR OBSERVATIONS

    SciTech Connect

    Jiang Bizhu; Zhang Shuangnan; Lieu, Richard; Wakker, Bart

    2010-01-01

    The spectral variation of the cosmic microwave background (CMB) as observed by WMAP was tested using foreground reduced WMAP5 data, by producing subtraction maps at the 1 deg. angular resolution between the two cosmological bands of V and W, for masked sky areas that avoid the Galactic disk. The resulting V - W map revealed a non-acoustic signal over and above the WMAP5 pixel noise, with two main properties. First, it possesses quadrupole power at the approx1 muK level which may be attributed to foreground residuals. Second, it fluctuates also at all values of l> 2, especially on the 1 deg. scale (200 approx< l approx< 300). The behavior is random and symmetrical about zero temperature with an rms approx7 muK, or 10% of the maximum CMB anisotropy, which would require a 'cosmic conspiracy' among the foreground components if it is a consequence of their existence. Both anomalies must be properly diagnosed and corrected if 'precision' cosmology is the claim. The second anomaly is, however, more interesting because it opens the question on whether the CMB anisotropy genuinely represents primordial density seeds.

  9. Scale and time dependence of serial correlations in word-length time series of written texts

    NASA Astrophysics Data System (ADS)

    Rodriguez, E.; Aguilar-Cornejo, M.; Femat, R.; Alvarez-Ramirez, J.

    2014-11-01

    This work considered the quantitative analysis of large written texts. To this end, the text was converted into a time series by taking the sequence of word lengths. The detrended fluctuation analysis (DFA) was used for characterizing long-range serial correlations of the time series. To this end, the DFA was implemented within a rolling window framework for estimating the variations of correlations, quantified in terms of the scaling exponent, strength along the text. Also, a filtering derivative was used to compute the dependence of the scaling exponent relative to the scale. The analysis was applied to three famous English-written literary narrations; namely, Alice in Wonderland (by Lewis Carrol), Dracula (by Bram Stoker) and Sense and Sensibility (by Jane Austen). The results showed that high correlations appear for scales of about 50-200 words, suggesting that at these scales the text contains the stronger coherence. The scaling exponent was not constant along the text, showing important variations with apparent cyclical behavior. An interesting coincidence between the scaling exponent variations and changes in narrative units (e.g., chapters) was found. This suggests that the scaling exponent obtained from the DFA is able to detect changes in narration structure as expressed by the usage of words of different lengths.

  10. Online Doppler Effect Elimination Based on Unequal Time Interval Sampling for Wayside Acoustic Bearing Fault Detecting System.

    PubMed

    Ouyang, Kesai; Lu, Siliang; Zhang, Shangbin; Zhang, Haibin; He, Qingbo; Kong, Fanrang

    2015-08-27

    The railway occupies a fairly important position in transportation due to its high speed and strong transportation capability. As a consequence, it is a key issue to guarantee continuous running and transportation safety of trains. Meanwhile, time consumption of the diagnosis procedure is of extreme importance for the detecting system. However, most of the current adopted techniques in the wayside acoustic defective bearing detector system (ADBD) are offline strategies, which means that the signal is analyzed after the sampling process. This would result in unavoidable time latency. Besides, the acquired acoustic signal would be corrupted by the Doppler effect because of high relative speed between the train and the data acquisition system (DAS). Thus, it is difficult to effectively diagnose the bearing defects immediately. In this paper, a new strategy called online Doppler effect elimination (ODEE) is proposed to remove the Doppler distortion online by the introduced unequal interval sampling scheme. The steps of proposed strategy are as follows: The essential parameters are acquired in advance. Then, the introduced unequal time interval sampling strategy is used to restore the Doppler distortion signal, and the amplitude of the signal is demodulated as well. Thus, the restored Doppler-free signal is obtained online. The proposed ODEE method has been employed in simulation analysis. Ultimately, the ODEE method is implemented in the embedded system for fault diagnosis of the train bearing. The results are in good accordance with the bearing defects, which verifies the good performance of the proposed strategy.

  11. Online Doppler Effect Elimination Based on Unequal Time Interval Sampling for Wayside Acoustic Bearing Fault Detecting System

    PubMed Central

    Ouyang, Kesai; Lu, Siliang; Zhang, Shangbin; Zhang, Haibin; He, Qingbo; Kong, Fanrang

    2015-01-01

    The railway occupies a fairly important position in transportation due to its high speed and strong transportation capability. As a consequence, it is a key issue to guarantee continuous running and transportation safety of trains. Meanwhile, time consumption of the diagnosis procedure is of extreme importance for the detecting system. However, most of the current adopted techniques in the wayside acoustic defective bearing detector system (ADBD) are offline strategies, which means that the signal is analyzed after the sampling process. This would result in unavoidable time latency. Besides, the acquired acoustic signal would be corrupted by the Doppler effect because of high relative speed between the train and the data acquisition system (DAS). Thus, it is difficult to effectively diagnose the bearing defects immediately. In this paper, a new strategy called online Doppler effect elimination (ODEE) is proposed to remove the Doppler distortion online by the introduced unequal interval sampling scheme. The steps of proposed strategy are as follows: The essential parameters are acquired in advance. Then, the introduced unequal time interval sampling strategy is used to restore the Doppler distortion signal, and the amplitude of the signal is demodulated as well. Thus, the restored Doppler-free signal is obtained online. The proposed ODEE method has been employed in simulation analysis. Ultimately, the ODEE method is implemented in the embedded system for fault diagnosis of the train bearing. The results are in good accordance with the bearing defects, which verifies the good performance of the proposed strategy. PMID:26343657

  12. Online Doppler Effect Elimination Based on Unequal Time Interval Sampling for Wayside Acoustic Bearing Fault Detecting System.

    PubMed

    Ouyang, Kesai; Lu, Siliang; Zhang, Shangbin; Zhang, Haibin; He, Qingbo; Kong, Fanrang

    2015-01-01

    The railway occupies a fairly important position in transportation due to its high speed and strong transportation capability. As a consequence, it is a key issue to guarantee continuous running and transportation safety of trains. Meanwhile, time consumption of the diagnosis procedure is of extreme importance for the detecting system. However, most of the current adopted techniques in the wayside acoustic defective bearing detector system (ADBD) are offline strategies, which means that the signal is analyzed after the sampling process. This would result in unavoidable time latency. Besides, the acquired acoustic signal would be corrupted by the Doppler effect because of high relative speed between the train and the data acquisition system (DAS). Thus, it is difficult to effectively diagnose the bearing defects immediately. In this paper, a new strategy called online Doppler effect elimination (ODEE) is proposed to remove the Doppler distortion online by the introduced unequal interval sampling scheme. The steps of proposed strategy are as follows: The essential parameters are acquired in advance. Then, the introduced unequal time interval sampling strategy is used to restore the Doppler distortion signal, and the amplitude of the signal is demodulated as well. Thus, the restored Doppler-free signal is obtained online. The proposed ODEE method has been employed in simulation analysis. Ultimately, the ODEE method is implemented in the embedded system for fault diagnosis of the train bearing. The results are in good accordance with the bearing defects, which verifies the good performance of the proposed strategy. PMID:26343657

  13. Two-time-scale population evolution on a singular landscape

    NASA Astrophysics Data System (ADS)

    Xu, Song; Jiao, Shuyun; Jiang, Pengyao; Ao, Ping

    2014-01-01

    Under the effect of strong genetic drift, it is highly probable to observe gene fixation or gene loss in a population, shown by singular peaks on a potential landscape. The genetic drift-induced noise gives rise to two-time-scale diffusion dynamics on the bipeaked landscape. We find that the logarithmically divergent (singular) peaks do not necessarily imply infinite escape times or biological fixations by iterating the Wright-Fisher model and approximating the average escape time. Our analytical results under weak mutation and weak selection extend Kramers's escape time formula to models with B (Beta) function-like equilibrium distributions and overcome constraints in previous methods. The constructed landscape provides a coherent description for the bistable system, supports the quantitative analysis of bipeaked dynamics, and generates mathematical insights for understanding the boundary behaviors of the diffusion model.

  14. OBSERVATIONS OF THE INTERACTION OF ACOUSTIC WAVES AND SMALL-SCALE MAGNETIC FIELDS IN A QUIET SUN

    SciTech Connect

    Chitta, Lakshmi Pradeep; Kariyappa, R.; Jain, Rekha; Jefferies, Stuart M. E-mail: rkari@iiap.res.in E-mail: stuartj@ifa.hawaii.edu

    2012-01-10

    The effect of the magnetic field on photospheric intensity and velocity oscillations at the sites of small-scale magnetic fields (SMFs) in a quiet Sun near the solar disk center is studied. We use observations made by the G-band filter in the Solar Optical Telescope on board Hinode for intensity oscillations; Doppler velocity, magnetic field, and continuum intensity are derived from an Ni I photospheric absorption line at 6767.8 A using the Michelson Doppler Imager on board the Solar and Heliospheric Observatory. Our analysis shows that both the high-resolution intensity observed in the G band and velocity oscillations are influenced by the presence of a magnetic field. While intensity oscillations are suppressed at all frequencies in strong magnetic field regions compared to weak magnetic field regions, velocity oscillations show an enhancement of power in the frequency band 5.5-7 mHz. We find that there is a drop of 20%-30% in the p-mode power of velocity oscillations within the SMFs when compared to the regions surrounding them. Our findings indicate that the nature of the interaction of acoustic waves with the quiet Sun SMFs is similar to that of large-scale magnetic fields in active regions. We also report the first results of the center-to-limb variation of such effects using the observations of the quiet Sun from the Helioseismic and Magnetic Imager (HMI) aboard the Solar Dynamics Observatory (SDO). The independent verification of these interactions using SDO/HMI suggests that the velocity power drop of 20%-30% in p-modes is fairly constant across the solar disk.

  15. Time scale hierarchies in the functional organization of complex behaviors.

    PubMed

    Perdikis, Dionysios; Huys, Raoul; Jirsa, Viktor K

    2011-09-01

    Traditional approaches to cognitive modelling generally portray cognitive events in terms of 'discrete' states (point attractor dynamics) rather than in terms of processes, thereby neglecting the time structure of cognition. In contrast, more recent approaches explicitly address this temporal dimension, but typically provide no entry points into cognitive categorization of events and experiences. With the aim to incorporate both these aspects, we propose a framework for functional architectures. Our approach is grounded in the notion that arbitrary complex (human) behaviour is decomposable into functional modes (elementary units), which we conceptualize as low-dimensional dynamical objects (structured flows on manifolds). The ensemble of modes at an agent's disposal constitutes his/her functional repertoire. The modes may be subjected to additional dynamics (termed operational signals), in particular, instantaneous inputs, and a mechanism that sequentially selects a mode so that it temporarily dominates the functional dynamics. The inputs and selection mechanisms act on faster and slower time scales then that inherent to the modes, respectively. The dynamics across the three time scales are coupled via feedback, rendering the entire architecture autonomous. We illustrate the functional architecture in the context of serial behaviour, namely cursive handwriting. Subsequently, we investigate the possibility of recovering the contributions of functional modes and operational signals from the output, which appears to be possible only when examining the output phase flow (i.e., not from trajectories in phase space or time). PMID:21980278

  16. Time scaling of tree rings cell production in Siberia

    NASA Astrophysics Data System (ADS)

    Popkova, Margarita; Babushkina, Elena; Tychkov, Ivan; Shishov, Vladimir; Vaganov, Eugene

    2016-04-01

    It is assumed that an annual tree-ring growth is adequately determined by a linear function of local or regional precipitation and temperature with a set of coefficients that are temporally invariant. But often that relations are non-linear. The process-based tree-ring VS-model can be used to resolve the critical processes linking climate variables to tree-ring formation. This work describes a new block of VS-model which allows to estimate a cell production in tree rings and transfer it into time scale based on the simulated integral growth rates of the model. In the algorithm of time identification for cell production we used a integral growth rates simulated by the VS-model for each growing season. The obtained detailed approach with a calculation of the time of each cell formation improves significantly the date accuracy of new cell formation in growing season. As a result for each cell in the tree-ring we estimate the temporal moment of the cell production corresponded to the seasonal growth rate in the same time scale. The approach was applied and tested for the cell measurements obtained for Scots pine (Pinus sylvestris) for the period 1964-2013 in Malaya Minusa river (Khakassia, South Siberia). The work was supported by the Russian Science Foundation (RSF # 14-14-00219)

  17. A Hierarchy of Time-Scales and the Brain

    PubMed Central

    Kiebel, Stefan J.; Daunizeau, Jean; Friston, Karl J.

    2008-01-01

    In this paper, we suggest that cortical anatomy recapitulates the temporal hierarchy that is inherent in the dynamics of environmental states. Many aspects of brain function can be understood in terms of a hierarchy of temporal scales at which representations of the environment evolve. The lowest level of this hierarchy corresponds to fast fluctuations associated with sensory processing, whereas the highest levels encode slow contextual changes in the environment, under which faster representations unfold. First, we describe a mathematical model that exploits the temporal structure of fast sensory input to track the slower trajectories of their underlying causes. This model of sensory encoding or perceptual inference establishes a proof of concept that slowly changing neuronal states can encode the paths or trajectories of faster sensory states. We then review empirical evidence that suggests that a temporal hierarchy is recapitulated in the macroscopic organization of the cortex. This anatomic-temporal hierarchy provides a comprehensive framework for understanding cortical function: the specific time-scale that engages a cortical area can be inferred by its location along a rostro-caudal gradient, which reflects the anatomical distance from primary sensory areas. This is most evident in the prefrontal cortex, where complex functions can be explained as operations on representations of the environment that change slowly. The framework provides predictions about, and principled constraints on, cortical structure–function relationships, which can be tested by manipulating the time-scales of sensory input. PMID:19008936

  18. The Role of Time-Scales in Socio-hydrology

    NASA Astrophysics Data System (ADS)

    Blöschl, Günter; Sivapalan, Murugesu

    2016-04-01

    Much of the interest in hydrological modeling in the past decades revolved around resolving spatial variability. With the rapid changes brought about by human impacts on the hydrologic cycle, there is now an increasing need to refocus on time dependency. We present a co-evolutionary view of hydrologic systems, in which every part of the system including human systems, co-evolve, albeit at different rates. The resulting coupled human-nature system is framed as a dynamical system, characterized by interactions of fast and slow time scales and feedbacks between environmental and social processes. This gives rise to emergent phenomena such as the levee effect, adaptation to change and system collapse due to resource depletion. Changing human values play a key role in the emergence of these phenomena and should therefore be considered as internal to the system in a dynamic way. The co-evolutionary approach differs from the traditional view of water resource systems analysis as it allows for path dependence, multiple equilibria, lock-in situations and emergent phenomena. The approach may assist strategic water management for long time scales through facilitating stakeholder participation, exploring the possibility space of alternative futures, and helping to synthesise the observed dynamics of different case studies. Future research opportunities include the study of how changes in human values are connected to human-water interactions, historical analyses of trajectories of system co-evolution in individual places and comparative analyses of contrasting human-water systems in different climate and socio-economic settings. Reference Sivapalan, M. and G. Blöschl (2015) Time scale interactions and the coevolution of humans and water. Water Resour. Res., 51, 6988-7022, doi:10.1002/2015WR017896.

  19. Terrestrial Waters and Sea Level Variations on Interannual Time Scale

    NASA Technical Reports Server (NTRS)

    Llovel, W.; Becker, M.; Cazenave, A.; Jevrejeva, S.; Alkama, R.; Decharme, B.; Douville, H.; Ablain, M.; Beckley, B.

    2011-01-01

    On decadal to multi-decadal time scales, thermal expansion of sea waters and land ice loss are the main contributors to sea level variations. However, modification of the terrestrial water cycle due to climate variability and direct anthropogenic forcing may also affect sea level. For the past decades, variations in land water storage and corresponding effects on sea level cannot be directly estimated from observations because these are almost non-existent at global continental scale. However, global hydrological models developed for atmospheric and climatic studies can be used for estimating total water storage. For the recent years (since mid-2002), terrestrial water storage change can be directly estimated from observations of the GRACE space gravimetry mission. In this study, we analyse the interannual variability of total land water storage, and investigate its contribution to mean sea level variability at interannual time scale. We consider three different periods that, each, depend on data availability: (1) GRACE era (2003-2009), (2) 1993-2003 and (3) 1955-1995. For the GRACE era (period 1), change in land water storage is estimated using different GRACE products over the 33 largest river basins worldwide. For periods 2 and 3, we use outputs from the ISBA-TRIP (Interactions between Soil, Biosphere, and Atmosphere-Total Runoff Integrating Pathways) global hydrological model. For each time span, we compare change in land water storage (expressed in sea level equivalent) to observed mean sea level, either from satellite altimetry (periods 1 and 2) or tide gauge records (period 3). For each data set and each time span, a trend has been removed as we focus on the interannual variability. We show that whatever the period considered, interannual variability of the mean sea level is essentially explained by interannual fluctuations in land water storage, with the largest contributions arising from tropical river basins.

  20. Pipeline monitoring using acoustic principal component analysis recognition with the Mel scale

    NASA Astrophysics Data System (ADS)

    Wan, Chunfeng; Mita, Akira

    2009-05-01

    In modern cities, many important pipelines are laid underground. In order to prevent these lifeline infrastructures from accidental damage, monitoring systems are becoming indispensable. Third party activities were shown by recent reports to be a major cause of pipeline damage. Potential damage threat to the pipeline can be identified by detecting dangerous construction equipment nearby by studying the surrounding noise. Sound recognition technologies are used to identify them by their sounds, which can easily be captured by small sensors deployed along the pipelines. Pattern classification methods based on principal component analysis (PCA) were used to recognize the sounds from road cutters. In this paper, a Mel residual, i.e. the PCA residual in the Mel scale, is proposed to be the recognition feature. Determining if a captured sound belongs to a road cutter only requires checking how large its Mel residual is. Experiments were conducted and results showed that the proposed Mel-residual-based PCA recognition worked very well. The proposed Mel PCA residual recognition method will be very useful for pipeline monitoring systems to prevent accidental breakage and to ensure the safety of underground lifeline infrastructures.

  1. An alternative quantitative acoustical and electrical method for detection of cell adhesion process in real-time.

    PubMed

    Le Guillou-Buffello, Delphine; Gindre, Marcel; Johnson, Paul; Laugier, Pascal; Migonney, Véronique

    2011-04-01

    Sauerbrey [(1956), Z Phys 55:206-222] showed that the shift in resonance frequency of thickness shear mode (TSM) of a quartz crystal sensor is proportional to the mass, which is deposited on it. However, new powerful electrical circuits were developed that are capable of operating TSM quartz crystal sensors in fluids which enabled this method to be introduced into electrochemical and biological applications. These applications include the detection of virus capsids, bacteria, mammalian cells, the interaction of DNA and RNA with complementary strands, specific recognition of protein ligands by immobilized receptors, and last but not least the study of complete immunosensors. Piezoelectric quartz transducers allow a label-free identification of molecules; they are more than mass sensors since the biosensor response is also influenced by the surface charge of adsorbed proteins, interfacial phenomena, surface roughness and viscoelastic properties of the adhered biomaterial. These new characteristics have recently been used to investigate cell, liposome, and protein adhesion onto surfaces, thus permitting the rapid determination of morphological cell changes as a response to pharmacological substances, and changes in the water content of biopolymers avoiding of time-consuming methods. We validated an alternative quantitative acoustical engineering for cell adhesion process monitored by the TSM. Shear acoustical results (motional resistance) are further correlated to cell counting procedures and are sensitive of adhesion processes in real-time.

  2. Flight parameter estimation using instantaneous frequency and time delay measurements from a three-element planar acoustic array.

    PubMed

    Lo, Kam W

    2016-05-01

    The acoustic signal emitted by a turbo-prop aircraft consists of a strong narrowband tone superimposed on a broadband random component. A ground-based three-element planar acoustic array can be used to estimate the full set of flight parameters of a turbo-prop aircraft in transit by measuring the time delay (TD) between the signal received at the reference sensor and the signal received at each of the other two sensors of the array over a sufficiently long period of time. This paper studies the possibility of using instantaneous frequency (IF) measurements from the reference sensor to improve the precision of the flight parameter estimates. A simplified Cramer-Rao lower bound analysis shows that the standard deviations in the estimates of the aircraft velocity and altitude can be greatly reduced when IF measurements are used together with TD measurements. Two flight parameter estimation algorithms that utilize both IF and TD measurements are formulated and their performances are evaluated using both simulated and real data. PMID:27250134

  3. Decay of surface nanostructures via long-time-scale dynamics

    SciTech Connect

    Voter, A.F.; Stanciu, N.

    1998-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The authors have developed a new approach for extending the time scale of molecular dynamics simulations. For infrequent-event systems, the category that includes most diffusive events in the solid phase, this hyperdynamics method can extend the simulation time by a few orders of magnitude compared to direct molecular dynamics. The trajectory is run on a potential surface that has been biased to raise the energy in the potential basins without affecting the transition state region. The method is described and applied to surface and bulk diffusion processes, achieving microsecond and millisecond simulation times. The authors have also developed a new parallel computing method that is efficient for small system sizes. The combination of the hyperdynamics with this parallel replica dynamics looks promising as a general materials simulation tool.

  4. Optimal Control Modification for Time-Scale Separated Systems

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.

    2012-01-01

    Recently a new optimal control modification has been introduced that can achieve robust adaptation with a large adaptive gain without incurring high-frequency oscillations as with the standard model-reference adaptive control. This modification is based on an optimal control formulation to minimize the L2 norm of the tracking error. The optimal control modification adaptive law results in a stable adaptation in the presence of a large adaptive gain. This study examines the optimal control modification adaptive law in the context of a system with a time scale separation resulting from a fast plant with a slow actuator. A singular perturbation analysis is performed to derive a modification to the adaptive law by transforming the original system into a reduced-order system in slow time. A model matching conditions in the transformed time coordinate results in an increase in the actuator command that effectively compensate for the slow actuator dynamics. Simulations demonstrate effectiveness of the method.

  5. Multiple-Time Scaling and Universal Behavior of the Earthquake Interevent Time Distribution

    SciTech Connect

    Bottiglieri, M.; Godano, C.; Lippiello, E.; Arcangelis, L. de

    2010-04-16

    The interevent time distribution characterizes the temporal occurrence in seismic catalogs. Universal scaling properties of this distribution have been evidenced for entire catalogs and seismic sequences. Recently, these universal features have been questioned and some criticisms have been raised. We investigate the existence of universal scaling properties by analyzing a Californian catalog and by means of numerical simulations of an epidemic-type model. We show that the interevent time distribution exhibits a universal behavior over the entire temporal range if four characteristic times are taken into account. The above analysis allows us to identify the scaling form leading to universal behavior and explains the observed deviations. Furthermore, it provides a tool to identify the dependence on the mainshock magnitude of the c parameter that fixes the onset of the power law decay in the Omori law.

  6. Using acoustic information to perceive room size: effects of blindness, room reverberation time, and stimulus.

    PubMed

    Kolarik, Andrew J; Pardhan, Shahina; Cirstea, Silvia; Moore, Brian C J

    2013-01-01

    Blind participants greatly rely on sound for spatial information regarding the surrounding environment. It is not yet established whether lack of vision to calibrate audition in far space affects blind participants' internal spatial representation of acoustic room size. Furthermore, blind participants may rely more on farthest distance estimates to sound sources compared with sighted participants when perceiving room size. Here we show that judgments of apparent room size and sound distance are correlated, more so for blind than for sighted participants. Sighted participants judged a reverberant virtual room to be larger for speech than for music or noise stimuli, whereas blind participants did not. The results suggest that blindness affects the use of room reverberation for distance and room-size judgments. PMID:24386717

  7. Time interval measurement device based on surface acoustic wave filter excitation, providing 1 ps precision and stability

    SciTech Connect

    Panek, Petr; Prochazka, Ivan

    2007-09-15

    This article deals with the time interval measurement device, which is based on a surface acoustic wave (SAW) filter as a time interpolator. The operating principle is based on the fact that a transversal SAW filter excited by a short pulse can generate a finite signal with highly suppressed spectra outside a narrow frequency band. If the responses to two excitations are sampled at clock ticks, they can be precisely reconstructed from a finite number of samples and then compared so as to determine the time interval between the two excitations. We have designed and constructed a two-channel time interval measurement device which allows independent timing of two events and evaluation of the time interval between them. The device has been constructed using commercially available components. The experimental results proved the concept. We have assessed the single-shot time interval measurement precision of 1.3 ps rms that corresponds to the time of arrival precision of 0.9 ps rms in each channel. The temperature drift of the measured time interval on temperature is lower than 0.5 ps/K, and the long term stability is better than {+-}0.2 ps/h. These are to our knowledge the best values reported for the time interval measurement device. The results are in good agreement with the error budget based on the theoretical analysis.

  8. Time interval measurement device based on surface acoustic wave filter excitation, providing 1 ps precision and stability

    NASA Astrophysics Data System (ADS)

    Panek, Petr; Prochazka, Ivan

    2007-09-01

    This article deals with the time interval measurement device, which is based on a surface acoustic wave (SAW) filter as a time interpolator. The operating principle is based on the fact that a transversal SAW filter excited by a short pulse can generate a finite signal with highly suppressed spectra outside a narrow frequency band. If the responses to two excitations are sampled at clock ticks, they can be precisely reconstructed from a finite number of samples and then compared so as to determine the time interval between the two excitations. We have designed and constructed a two-channel time interval measurement device which allows independent timing of two events and evaluation of the time interval between them. The device has been constructed using commercially available components. The experimental results proved the concept. We have assessed the single-shot time interval measurement precision of 1.3ps rms that corresponds to the time of arrival precision of 0.9ps rms in each channel. The temperature drift of the measured time interval on temperature is lower than 0.5ps/K, and the long term stability is better than ±0.2ps/h. These are to our knowledge the best values reported for the time interval measurement device. The results are in good agreement with the error budget based on the theoretical analysis.

  9. Time Scale Optimization and the Hunt for Astronomical Cycles in Deep Time Strata

    NASA Astrophysics Data System (ADS)

    Meyers, Stephen R.

    2016-04-01

    A valuable attribute of astrochronology is the direct link between chronometer and climate change, providing a remarkable opportunity to constrain the evolution of the surficial Earth System. Consequently, the hunt for astronomical cycles in strata has spurred the development of a rich conceptual framework for climatic/oceanographic change, and has allowed exploration of the geologic record with unprecedented temporal resolution. Accompanying these successes, however, has been a persistent skepticism about appropriate astrochronologic testing and circular reasoning: how does one reliably test for astronomical cycles in stratigraphic data, especially when time is poorly constrained? From this perspective, it would seem that the merits and promise of astrochronology (e.g., a geologic time scale measured in ≤400 kyr increments) also serves as its Achilles heel, if the confirmation of such short rhythms defies rigorous statistical testing. To address these statistical challenges in astrochronologic testing, a new approach has been developed that (1) explicitly evaluates time scale uncertainty, (2) is resilient to common problems associated with spectrum confidence level assessment and 'multiple testing', and (3) achieves high statistical power under a wide range of conditions (it can identify astronomical cycles when present in data). Designated TimeOpt (for "time scale optimization"; Meyers 2015), the method employs a probabilistic linear regression model framework to investigate amplitude modulation and frequency ratios (bundling) in stratigraphic data, while simultaneously determining the optimal time scale. This presentation will review the TimeOpt method, and demonstrate how the flexible statistical framework can be further extended to evaluate (and optimize upon) complex sedimentation rate models, enhancing the statistical power of the approach, and addressing the challenge of unsteady sedimentation. Meyers, S. R. (2015), The evaluation of eccentricity

  10. Role of relaxation time scale in noisy signal transduction.

    PubMed

    Maity, Alok Kumar; Chaudhury, Pinaki; Banik, Suman K

    2015-01-01

    Intra-cellular fluctuations, mainly triggered by gene expression, are an inevitable phenomenon observed in living cells. It influences generation of phenotypic diversity in genetically identical cells. Such variation of cellular components is beneficial in some contexts but detrimental in others. To quantify the fluctuations in a gene product, we undertake an analytical scheme for studying few naturally abundant linear as well as branched chain network motifs. We solve the Langevin equations associated with each motif under the purview of linear noise approximation and derive the expressions for Fano factor and mutual information in close analytical form. Both quantifiable expressions exclusively depend on the relaxation time (decay rate constant) and steady state population of the network components. We investigate the effect of relaxation time constraints on Fano factor and mutual information to indentify a time scale domain where a network can recognize the fluctuations associated with the input signal more reliably. We also show how input population affects both quantities. We extend our calculation to long chain linear motif and show that with increasing chain length, the Fano factor value increases but the mutual information processing capability decreases. In this type of motif, the intermediate components act as a noise filter that tune up input fluctuations and maintain optimum fluctuations in the output. For branched chain motifs, both quantities vary within a large scale due to their network architecture and facilitate survival of living system in diverse environmental conditions.

  11. Time scale algorithms for an inhomogeneous group of atomic clocks

    NASA Technical Reports Server (NTRS)

    Jacques, C.; Boulanger, J.-S.; Douglas, R. J.; Morris, D.; Cundy, S.; Lam, H. F.

    1993-01-01

    Through the past 17 years, the time scale requirements at the National Research Council (NRC) have been met by the unsteered output of its primary laboratory cesium clocks, supplemented by hydrogen masers when short-term stability better than 2 x 10(exp -12)tau(sup -1/2) has been required. NRC now operates three primary laboratory cesium clocks, three hydrogen masers, and two commercial cesium clocks. NRC has been using ensemble averages for internal purposes for the past several years, and has a realtime algorithm operating on the outputs of its high-resolution (2 x 10(exp -13) s at 1 s) phase comparators. The slow frequency drift of the hydrogen masers has presented difficulties in incorporating their short-term stability into the ensemble average, while retaining the long-term stability of the laboratory cesium frequency standards. We report on this work on algorithms for an inhomogeneous ensemble of atomic clocks, and on our initial work on time scale algorithms that could incorporate frequency calibrations at NRC from the next generation of Zacharias fountain cesium frequency standards having frequency accuracies that might surpass 10(exp -15), or from single-trapped-ion frequency standards (Ba+, Sr+,...) with even higher potential accuracies. The requirements for redundancy in all the elements (including the algorithms) of an inhomogeneous ensemble that would give a robust real-time output of the algorithms are presented and discussed.

  12. Time scales in the context of general relativity.

    PubMed

    Guinot, Bernard

    2011-10-28

    Towards 1967, the accuracy of caesium frequency standards reached such a level that the relativistic effect could not be ignored anymore. Corrections began to be applied for the gravitational frequency shift and for distant time comparisons. However, these corrections were not applied to an explicit theoretical framework. Only in 1991 did the International Astronomical Union provide metrics (then improved in 2000) for a definition of space-time coordinates in reference systems centred at the barycentre of the Solar System and at the centre of mass of the Earth. In these systems, the temporal coordinates (coordinate times) can be realized on the basis of one of them, the International Atomic Time (TAI), which is itself a realized time scale. The definition and the role of TAI in this context will be recalled. There remain controversies regarding the name to be given to the unit of coordinate times and to other quantities appearing in the theory. However, the idea that astrometry and celestial mechanics should adopt the usual metrological rules is progressing, together with the use of the International System of Units, among astronomers. PMID:21930569

  13. Time scales in the context of general relativity.

    PubMed

    Guinot, Bernard

    2011-10-28

    Towards 1967, the accuracy of caesium frequency standards reached such a level that the relativistic effect could not be ignored anymore. Corrections began to be applied for the gravitational frequency shift and for distant time comparisons. However, these corrections were not applied to an explicit theoretical framework. Only in 1991 did the International Astronomical Union provide metrics (then improved in 2000) for a definition of space-time coordinates in reference systems centred at the barycentre of the Solar System and at the centre of mass of the Earth. In these systems, the temporal coordinates (coordinate times) can be realized on the basis of one of them, the International Atomic Time (TAI), which is itself a realized time scale. The definition and the role of TAI in this context will be recalled. There remain controversies regarding the name to be given to the unit of coordinate times and to other quantities appearing in the theory. However, the idea that astrometry and celestial mechanics should adopt the usual metrological rules is progressing, together with the use of the International System of Units, among astronomers.

  14. Scale-space analysis of time series in circulatory research.

    PubMed

    Mortensen, Kim Erlend; Godtliebsen, Fred; Revhaug, Arthur

    2006-12-01

    Statistical analysis of time series is still inadequate within circulation research. With the advent of increasing computational power and real-time recordings from hemodynamic studies, one is increasingly dealing with vast amounts of data in time series. This paper aims to illustrate how statistical analysis using the significant nonstationarities (SiNoS) method may complement traditional repeated-measures ANOVA and linear mixed models. We applied these methods on a dataset of local hepatic and systemic circulatory changes induced by aortoportal shunting and graded liver resection. We found SiNoS analysis more comprehensive when compared with traditional statistical analysis in the following four ways: 1) the method allows better signal-to-noise detection; 2) including all data points from real time recordings in a statistical analysis permits better detection of significant features in the data; 3) analysis with multiple scales of resolution facilitates a more differentiated observation of the material; and 4) the method affords excellent visual presentation by combining group differences, time trends, and multiscale statistical analysis allowing the observer to quickly view and evaluate the material. It is our opinion that SiNoS analysis of time series is a very powerful statistical tool that may be used to complement conventional statistical methods.

  15. Multiple time-scale methods in particle simulations of plasmas

    SciTech Connect

    Cohen, B.I.

    1985-02-14

    This paper surveys recent advances in the application of multiple time-scale methods to particle simulation of collective phenomena in plasmas. These methods dramatically improve the efficiency of simulating low-frequency kinetic behavior by allowing the use of a large timestep, while retaining accuracy. The numerical schemes surveyed provide selective damping of unwanted high-frequency waves and preserve numerical stability in a variety of physics models: electrostatic, magneto-inductive, Darwin and fully electromagnetic. The paper reviews hybrid simulation models, the implicitmoment-equation method, the direct implicit method, orbit averaging, and subcycling.

  16. Scaling in a Continuous Time Model for Biological Aging

    NASA Astrophysics Data System (ADS)

    de Almeida, R. M. C.; Thomas, G. L.

    In this paper, we consider a generalization to the asexual version of Penna model for biological aging, where we take a continuous time limit. The genotype associated to each individual is an interval of real numbers over which Dirac δ-functions are defined, representing genetically programmed diseases to be switched on at defined ages of the individual life. We discuss two different continuous limits for the evolution equation and two different mutation protocols, to be implemented during reproduction. Exact stationary solutions are obtained and scaling properties are discussed.

  17. Natural vs human-induced changes at the Tauranga Harbour area (New Zealand): a time -series acoustic seabed classification comparison

    NASA Astrophysics Data System (ADS)

    Capperucci, Ruggero Maria; Bartholomä, Alexander; Renken, Sabrina; De Lange, Willem

    2013-04-01

    to be described by a larger number of acoustic classes, allowing a better sub-division of acoustic zones that carries both the sedimentological and the topographic information into the final map. The evolution of the channel morphology and occurred largely in the past, thus the differences observed in the data can not be univocally ascribed to the dredging operations. Changes in the distribution of surface sediments, bedforms and shell lags can also be mapped. Although a general sedimentary pattern can be recognised over the time series data, a reduction in the shell coverage and the shallowing of the lower Western Channel could be related to an adjustment of the hydrodynamic conditions due to the dredging activities in the shipping channel nearby.

  18. Time-Dependent Earthquake Forecasts on a Global Scale

    NASA Astrophysics Data System (ADS)

    Rundle, J. B.; Holliday, J. R.; Turcotte, D. L.; Graves, W. R.

    2014-12-01

    We develop and implement a new type of global earthquake forecast. Our forecast is a perturbation on a smoothed seismicity (Relative Intensity) spatial forecast combined with a temporal time-averaged ("Poisson") forecast. A variety of statistical and fault-system models have been discussed for use in computing forecast probabilities. An example is the Working Group on California Earthquake Probabilities, which has been using fault-based models to compute conditional probabilities in California since 1988. An example of a forecast is the Epidemic-Type Aftershock Sequence (ETAS), which is based on the Gutenberg-Richter (GR) magnitude-frequency law, the Omori aftershock law, and Poisson statistics. The method discussed in this talk is based on the observation that GR statistics characterize seismicity for all space and time. Small magnitude event counts (quake counts) are used as "markers" for the approach of large events. More specifically, if the GR b-value = 1, then for every 1000 M>3 earthquakes, one expects 1 M>6 earthquake. So if ~1000 M>3 events have occurred in a spatial region since the last M>6 earthquake, another M>6 earthquake should be expected soon. In physics, event count models have been called natural time models, since counts of small events represent a physical or natural time scale characterizing the system dynamics. In a previous research, we used conditional Weibull statistics to convert event counts into a temporal probability for a given fixed region. In the present paper, we move belyond a fixed region, and develop a method to compute these Natural Time Weibull (NTW) forecasts on a global scale, using an internally consistent method, in regions of arbitrary shape and size. We develop and implement these methods on a modern web-service computing platform, which can be found at www.openhazards.com and www.quakesim.org. We also discuss constraints on the User Interface (UI) that follow from practical considerations of site usability.

  19. Scale analysis of pre- and post-midnight ESF bubbles at storm time and quiet time

    NASA Astrophysics Data System (ADS)

    Chen, K. Y.; Su, S. Y.; Yeh, H. C.; Liu, C. H.

    This paper investigates intermediate scale plasma structures observed by ROCSAT-1 in the equatorial F region The empirical mode decomposition EMD method of Hilbert-Huang transform HHT technique is utilized to develop a procedure of scale analysis that allows the mutually correlated components in velocity density and relative density gradient to be identified and extracted Comparing the three data sets good match in wave form is found for velocity and density in scales between kilometers and hundred meters It implies that there are electric fields proportional to density fluctuation -- delta N N in the form similar to what is expected for the Rayleigh Taylor instability In smaller scales velocity and density don t correlate to each other more the good match is then found in velocity and density gradient This is the manifestation of the Boltzmann relation By studying the cases in post-midnight and pre-midnight under storm time and quiet time we find the one-to-one match hold although it is known that ESF bubbles can be driven by different mechanisms under different conditions In other words the spatial structures of electric field in the intermediate scale will always be correlated to the density structures in a manner of delta E sim - delta N N independent of the mechanisms driving the ESF bubbles It is interesting to note that the relation delta V z quad sim delta N N for irregularities in scale of kilometers holds only for ESF occurs within -5 dip latitude while the Boltzmann relation delta

  20. Cross-Scale Modelling of Subduction from Minute to Million of Years Time Scale

    NASA Astrophysics Data System (ADS)

    Sobolev, S. V.; Muldashev, I. A.

    2015-12-01

    Subduction is an essentially multi-scale process with time-scales spanning from geological to earthquake scale with the seismic cycle in-between. Modelling of such process constitutes one of the largest challenges in geodynamic modelling today.Here we present a cross-scale thermomechanical model capable of simulating the entire subduction process from rupture (1 min) to geological time (millions of years) that employs elasticity, mineral-physics-constrained non-linear transient viscous rheology and rate-and-state friction plasticity. The model generates spontaneous earthquake sequences. The adaptive time-step algorithm recognizes moment of instability and drops the integration time step to its minimum value of 40 sec during the earthquake. The time step is then gradually increased to its maximal value of 5 yr, following decreasing displacement rates during the postseismic relaxation. Efficient implementation of numerical techniques allows long-term simulations with total time of millions of years. This technique allows to follow in details deformation process during the entire seismic cycle and multiple seismic cycles. We observe various deformation patterns during modelled seismic cycle that are consistent with surface GPS observations and demonstrate that, contrary to the conventional ideas, the postseismic deformation may be controlled by viscoelastic relaxation in the mantle wedge, starting within only a few hours after the great (M>9) earthquakes. Interestingly, in our model an average slip velocity at the fault closely follows hyperbolic decay law. In natural observations, such deformation is interpreted as an afterslip, while in our model it is caused by the viscoelastic relaxation of mantle wedge with viscosity strongly varying with time. We demonstrate that our results are consistent with the postseismic surface displacement after the Great Tohoku Earthquake for the day-to-year time range. We will also present results of the modeling of deformation of the