Science.gov

Sample records for acoustic transducer arrays

  1. Analog circuit for controlling acoustic transducer arrays

    DOEpatents

    Drumheller, Douglas S.

    1991-01-01

    A simplified ananlog circuit is presented for controlling electromechanical transducer pairs in an acoustic telemetry system. The analog circuit of this invention comprises a single electrical resistor which replaces all of the digital components in a known digital circuit. In accordance with this invention, a first transducer in a transducer pair of array is driven in series with the resistor. The voltage drop across this resistor is then amplified and used to drive the second transducer. The voltage drop across the resistor is proportional and in phase with the current to the transducer. This current is approximately 90 degrees out of phase with the driving voltage to the transducer. This phase shift replaces the digital delay required by the digital control circuit of the prior art.

  2. Electret Acoustic Transducer Array For Computerized Ultrasound Risk Evaluation System

    DOEpatents

    Moore, Thomas L.; Fisher, Karl A.

    2005-08-09

    An electret-based acoustic transducer array is provided and may be used in a system for examining tissue. The acoustic transducer array is formed with a substrate that has a multiple distinct cells formed therein. Within each of the distinct cells is positioned an acoustic transducing element formed of an electret material. A conductive membrane is formed over the distinct cells and may be flexible.

  3. Transducer Arrays Suitable for Acoustic Imaging

    DTIC Science & Technology

    1978-06-01

    attention is placed on achieving high transduction efficiency and angular beam - widths of at least ±15°• T. Design techniques based on the transmission line...approximation so that the acoustic beam is caused to come to a focus in the exact analogue to a normal lens. The reference phase delays necessary to...fccus the acoustic beam are provided by a tapped surface acoustic wave delay line. A surface Ji acoustic wave is launched down the delay line with a

  4. Capacitive micromachined ultrasonic transducer arrays as tunable acoustic metamaterials.

    PubMed

    Lani, Shane W; Wasequr Rashid, M; Hasler, Jennifer; Sabra, Karim G; Levent Degertekin, F

    2014-02-03

    Capacitive Micromachined Ultrasonic Transducers (CMUTs) operating in immersion support dispersive evanescent waves due to the subwavelength periodic structure of electrostatically actuated membranes in the array. Evanescent wave characteristics also depend on the membrane resonance which is modified by the externally applied bias voltage, offering a mechanism to tune the CMUT array as an acoustic metamaterial. The dispersion and tunability characteristics are examined using a computationally efficient, mutual radiation impedance based approach to model a finite-size array and realistic parameters of variation. The simulations are verified, and tunability is demonstrated by experiments on a linear CMUT array operating in 2-12 MHz range.

  5. Capacitive micromachined ultrasonic transducer arrays as tunable acoustic metamaterials

    SciTech Connect

    Lani, Shane W. E-mail: karim.sabra@me.gatech.edu Sabra, Karim G.; Wasequr Rashid, M.; Hasler, Jennifer; Levent Degertekin, F.

    2014-02-03

    Capacitive Micromachined Ultrasonic Transducers (CMUTs) operating in immersion support dispersive evanescent waves due to the subwavelength periodic structure of electrostatically actuated membranes in the array. Evanescent wave characteristics also depend on the membrane resonance which is modified by the externally applied bias voltage, offering a mechanism to tune the CMUT array as an acoustic metamaterial. The dispersion and tunability characteristics are examined using a computationally efficient, mutual radiation impedance based approach to model a finite-size array and realistic parameters of variation. The simulations are verified, and tunability is demonstrated by experiments on a linear CMUT array operating in 2-12 MHz range.

  6. Studies of the Characteristics of a Densely-Coupled Array of Underwater Acoustic Transmitting Transducers

    NASA Astrophysics Data System (ADS)

    He, Zhengyao; Ma, Yuanliang

    2010-09-01

    The characteristics of a densely-coupled array of underwater acoustic transmitting transducers are studied. At first, the electro-acoustic characteristics such as the admittance, the resonant frequency and the transmitting voltage response, of a low frequency barrel-stave flextensional transducer and a densely-coupled compact array composed of three identical transducers uniformly distributed on a circle with spacing much less than half wavelength, are measured by experiments. Then, the radiation impedances of a single transducer and of transducers in the compact array are calculated by the boundary element model together with the finite element model. Based on the above results, the transducer's equivalent circuit model parameters are calculated in different cases, which include a single transducer in air and in water, and a densely-coupled array of three transducers parallel connected in water. The characteristics of the transducers and array are analyzed by the equivalent circuit model that was obtained. The research results show that when the transducers make up a densely-coupled compact array, the resonant frequency decreases and the transmitting bandwidth broadens. It is also shown that the mutual interactions among elements are significant for the compact array. The mutual radiation resistance between two transducers is close to the self-radiation resistance of the transducers. The vibration velocities of the transducers in the compact array are nearly 1/3 as those of a single transducer, and the radiation acoustic power and transmitting voltage response of the array are nearly the same as those of a single transducer, when the driving voltages of the array and single transducer are unchanged. Furthermore, the transmitting source level of the 3-element compact array is 8.9dB higher than that of the single transducer if the vibration velocities of the transducers in the array are the same as those of the single transducer. The proposed technique can be used

  7. Acoustic transducer

    DOEpatents

    Drumheller, Douglas S.

    2000-01-01

    An active acoustic transducer tool for use down-hole applications. The tool includes a single cylindrical mandrel including a shoulder defining the boundary of a narrowed portion over which is placed a sandwich-style piezoelectric tranducer assembly. The piezoelectric transducer assembly is prestressed by being placed in a thermal interference fit between the shoulder of the mandrel and the base of an anvil which is likewise positioned over the narrower portion of the mandrel. In the preferred embodiment, assembly of the tool is accomplished using a hydraulic jack to stretch the mandrel prior to emplacement of the cylindrical sandwich-style piezoelectric transducer assembly and anvil. After those elements are positioned and secured, the stretched mandrel is allowed to return substantially to its original (pre-stretch) dimensions with the result that the piezoelectric transducer elements are compressed between the anvil and the shoulder of the mandrel.

  8. Acoustic transducer

    DOEpatents

    Drumheller, D.S.

    1997-12-30

    An acoustic transducer is described comprising a one-piece hollow mandrel into the outer surface of which is formed a recess with sides perpendicular to the central axis of the mandrel and separated by a first distance and with a bottom parallel to the central axis and within which recess are a plurality of washer-shaped discs of a piezoelectric material and at least one disc of a temperature-compensating material with the discs being captured between the sides of the recess in a pre-stressed interference fit, typically at 2,000 psi of compressive stress. The transducer also includes a power supply and means to connect to a measurement device. The transducer is intended to be used for telemetry between a measurement device located downhole in an oil or gas well and the surface. The transducer is of an construction that is stronger with fewer joints that could leak fluids into the recess holding the piezoelectric elements than is found in previous acoustic transducers. 4 figs.

  9. Acoustic transducer

    DOEpatents

    Drumheller, Douglas S.

    1997-01-01

    An acoustic transducer comprising a one-piece hollow mandrel into the outer surface of which is formed a recess with sides perpendicular to the central axis of the mandrel and separated by a first distance and with a bottom parallel to the central axis and within which recess are a plurality of washer-shaped discs of a piezoelectric material and at least one disc of a temperature-compensating material with the discs being captured between the sides of the recess in a pre-stressed interference fit, typically at 2000 psi of compressive stress. The transducer also includes a power supply and means to connect to a measurement device. The transducer is intended to be used for telemetry between a measurement device located downhole in an oil or gas well and the surface. The transducer is of an construction that is stronger with fewer joints that could leak fluids into the recess holding the piezoelectric elements than is found in previous acoustic transducers.

  10. Optimization of acoustic emitted field of transducer array for ultrasound imaging.

    PubMed

    He, Zhengyao

    2014-01-01

    A method is proposed to calculate the weight vector of a transducer array for ultrasound imaging to obtain a low-sidelobe transmitting beam pattern based on the near-field response vector. An optimization problem is established, and the second-order cone (SOC) algorithm is used to solve the problem to obtain the weight vector. The optimized acoustic emitted field of the transducer array is then calculated using the Field II program by applying the obtained weight vector to the array. The simulation results with a 64-element 26 MHz linear phased array show that the proposed method can be used to control the sidelobe of the near-field transmitting beam pattern of the transducer array and achieve a low-sidelobe level. The near-field sound pressure distribution of the transducer array using the proposed method focuses much better than that using the standard delay and sum (DAS) beamforming method. The sound energy is more concentrated using the proposed method.

  11. Two-dimensional analytic modeling of acoustic diffraction for ultrasonic beam steering by phased array transducers.

    PubMed

    Wang, Tiansi; Zhang, Chong; Aleksov, Aleksandar; Salama, Islam; Kar, Aravinda

    2017-04-01

    Phased array ultrasonic transducers enable modulating the focal position of the acoustic waves, and this capability is utilized in many applications, such as medical imaging and non-destructive testing. This type of transducers also provides a mechanism to generate tilted wavefronts in acousto-optic deflectors to deflect laser beams for high precision advanced laser material processing. In this paper, a theoretical model is presented for the diffraction of ultrasonic waves emitted by several phased array transducers into an acousto-optic medium such as TeO2 crystal. A simple analytic expression is obtained for the distribution of the ultrasonic displacement field in the crystal. The model prediction is found to be in good agreement with the results of a numerical model that is based on a non-paraxial multi-Gaussian beam (NMGB) model.

  12. Estimation of scatterer size and acoustic concentration in sound field produced by linear phased array transducer

    NASA Astrophysics Data System (ADS)

    Oguri, Takuma; Tamura, Kazuki; Yoshida, Kenji; Mamou, Jonathan; Hasegawa, Hideyuki; Maruyama, Hitoshi; Hachiya, Hiroyuki; Yamaguchi, Tadashi

    2015-07-01

    Although there have been several quantitative ultrasound studies on the methods of estimation of scatterer size and acoustic concentration based on the analysis of RF signals for tissue characterization, some problems, e.g., narrow frequency bandwidths and complex sound fields, have limited the clinical applications of such methods. In this report, two types of ultrasound transducer are investigated for the estimation of the scatterer size and acoustic concentration in two glass bead phantoms of different weight concentrations of 0.25 and 2.50% and those in an excised pig liver. The diameters of the glass beads ranged from 5 to 63 µm with an average of 50 µm. The first transducer is a single element and the other is a linear phased array. A comparison of the estimations obtained using both transducers gives an insight into how these methods could be applied clinically. Results obtained using the two transducers were significantly different. One of the possible explanations is that beamforming could significantly affect the backscatter coefficient estimation, which was not taken into account.

  13. Modeling of phased array transducers.

    PubMed

    Ahmad, Rais; Kundu, Tribikram; Placko, Dominique

    2005-04-01

    Phased array transducers are multi-element transducers, where different elements are activated with different time delays. The advantage of these transducers is that no mechanical movement of the transducer is needed to scan an object. Focusing and beam steering is obtained simply by adjusting the time delay. In this paper the DPSM (distributed point source method) is used to model the ultrasonic field generated by a phased array transducer and to study the interaction effect when two phased array transducers are placed in a homogeneous fluid. Earlier investigations modeled the acoustic field for conventional transducers where all transducer points are excited simultaneously. In this research, combining the concepts of delayed firing and the DPSM, the phased array transducers are modeled semi-analytically. In addition to the single transducer modeling the ultrasonic fields from two phased array transducers placed face to face in a fluid medium is also modeled to study the interaction effect. The importance of considering the interaction effect in multiple transducer modeling is discussed, pointing out that neighboring transducers not only act as ultrasonic wave generators but also as scatterers.

  14. Acoustic transducer for acoustic microscopy

    DOEpatents

    Khuri-Yakub, Butrus T.; Chou, Ching H.

    1990-01-01

    A shear acoustic transducer-lens system in which a shear polarized piezoelectric material excites shear polarized waves at one end of a buffer rod having a lens at the other end which excites longitudinal waves in a coupling medium by mode conversion at selected locations on the lens.

  15. Acoustic transducer for acoustic microscopy

    DOEpatents

    Khuri-Yakub, B.T.; Chou, C.H.

    1990-03-20

    A shear acoustic transducer-lens system is described in which a shear polarized piezoelectric material excites shear polarized waves at one end of a buffer rod having a lens at the other end which excites longitudinal waves in a coupling medium by mode conversion at selected locations on the lens. 9 figs.

  16. Compact Transducers and Arrays

    DTIC Science & Technology

    2005-05-01

    Soc. Am., 104, pp.64-71 44 25.Decarpigny, J.N., J.C. Debus, B. Tocquet & D. Boucher. 1985. "In-Air Analysis Of Piezoelectric Tonpilz Transducers In A... Transducers and Arrays Final Report May 2005 Contacts: Dr. Robert E. Newnham The Pennsylvania State University, 251 MRL, University Park, PA 16802 phone...814) 865-1612 fax: (814) 865-2326 email: ....c xx.....i.i.....ht.. .u a.p.u..c.e.du. Dr. Richard J. Meyer, Jr. Systems Engineering ( Transducers ), ARL

  17. Development of electromagnetic acoustic transducer (EMAT) phased arrays for SFR inspection

    SciTech Connect

    Le Bourdais, Florian; Marchand, Benoît

    2014-02-18

    A long-standing problem for Sodium cooled Fast Reactor (SFR) instrumentation is the development of efficient under-sodium visualization systems adapted to the hot and opaque sodium environment. Electromagnetic Acoustic Transducers (EMAT) are potential candidates for a new generation of Ultrasonic Testing (UT) probes well-suited for SFR inspection that can overcome drawbacks of classical piezoelectric probes in sodium environment. Based on the use of new CIVA simulation tools, we have designed and optimized an advanced EMAT probe for under-sodium visualization. This has led to the development of a fully functional L-wave EMAT sensing system composed of 8 elements and a casing withstanding 200° C sodium inspection. Laboratory experiments demonstrated the probe's ability to sweep an ultrasonic beam to an angle of 15 degrees. Testing in a specialized sodium facility has shown that it was possible to obtain pulse-echo signals from a target under several different angles from a fixed position.

  18. Development of electromagnetic acoustic transducer (EMAT) phased arrays for SFR inspection

    NASA Astrophysics Data System (ADS)

    Le Bourdais, Florian; Marchand, Benoît

    2014-02-01

    A long-standing problem for Sodium cooled Fast Reactor (SFR) instrumentation is the development of efficient under-sodium visualization systems adapted to the hot and opaque sodium environment. Electromagnetic Acoustic Transducers (EMAT) are potential candidates for a new generation of Ultrasonic Testing (UT) probes well-suited for SFR inspection that can overcome drawbacks of classical piezoelectric probes in sodium environment. Based on the use of new CIVA simulation tools, we have designed and optimized an advanced EMAT probe for under-sodium visualization. This has led to the development of a fully functional L-wave EMAT sensing system composed of 8 elements and a casing withstanding 200° C sodium inspection. Laboratory experiments demonstrated the probe's ability to sweep an ultrasonic beam to an angle of 15 degrees. Testing in a specialized sodium facility has shown that it was possible to obtain pulse-echo signals from a target under several different angles from a fixed position.

  19. Electromagnetic acoustic transducer

    DOEpatents

    Alers, George A.; Burns, Jr., Leigh R.; MacLauchlan, Daniel T.

    1988-01-01

    A noncontact ultrasonic transducer for studying the acoustic properties of a metal workpiece includes a generally planar magnetizing coil positioned above the surface of the workpiece, and a generally planar eddy current coil between the magnetizing coil and the workpiece. When a large current is passed through the magnetizing coil, a large magnetic field is applied to the near-surface regions of the workpiece. The eddy current coil can then be operated as a transmitter by passing an alternating current therethrough to excite ultrasonic waves in the surface of the workpiece, or operated as a passive receiver to sense ultrasonic waves in the surface by measuring the output signal. The geometries of the two coils can be varied widely to be effective for different types of ultrasonic waves. The coils are preferably packaged in a housing which does not interfere with their operation, but protects them from a variety of adverse environmental conditions.

  20. Quantitative shear wave optical coherence elastography (SW-OCE) with acoustic radiation force impulses (ARFI) induced by phase array transducer

    NASA Astrophysics Data System (ADS)

    Song, Shaozhen; Le, Nhan Minh; Wang, Ruikang K.; Huang, Zhihong

    2015-03-01

    Shear Wave Optical Coherence Elastography (SW-OCE) uses the speed of propagating shear waves to provide a quantitative measurement of localized shear modulus, making it a valuable technique for the elasticity characterization of tissues such as skin and ocular tissue. One of the main challenges in shear wave elastography is to induce a reliable source of shear wave; most of nowadays techniques use external vibrators which have several drawbacks such as limited wave propagation range and/or difficulties in non-invasive scans requiring precisions, accuracy. Thus, we propose linear phase array ultrasound transducer as a remote wave source, combined with the high-speed, 47,000-frame-per-second Shear-wave visualization provided by phase-sensitive OCT. In this study, we observed for the first time shear waves induced by a 128 element linear array ultrasound imaging transducer, while the ultrasound and OCT images (within the OCE detection range) were triggered simultaneously. Acoustic radiation force impulses are induced by emitting 10 MHz tone-bursts of sub-millisecond durations (between 50 μm - 100 μm). Ultrasound beam steering is achieved by programming appropriate phase delay, covering a lateral range of 10 mm and full OCT axial (depth) range in the imaging sample. Tissue-mimicking phantoms with agarose concentration of 0.5% and 1% was used in the SW-OCE measurements as the only imaging samples. The results show extensive improvements over the range of SW-OCE elasticity map; such improvements can also be seen over shear wave velocities in softer and stiffer phantoms, as well as determining the boundary of multiple inclusions with different stiffness. This approach opens up the feasibility to combine medical ultrasound imaging and SW-OCE for high-resolution localized quantitative measurement of tissue biomechanical property.

  1. Acoustic transducer for nuclear reactor monitoring

    DOEpatents

    Ahlgren, Frederic F.; Scott, Paul F.

    1977-01-01

    A transducer to monitor a parameter and produce an acoustic signal from which the monitored parameter can be recovered. The transducer comprises a modified Galton whistle which emits a narrow band acoustic signal having a frequency dependent upon the parameter being monitored, such as the temperature of the cooling media of a nuclear reactor. Multiple locations within a reactor are monitored simultaneously by a remote acoustic receiver by providing a plurality of transducers each designed so that the acoustic signal it emits has a frequency distinct from the frequencies of signals emitted by the other transducers, whereby each signal can be unambiguously related to a particular transducer.

  2. Pressure-Coupled Acoustic-Transducer Assembly

    NASA Technical Reports Server (NTRS)

    Parker, F. Raymond

    1993-01-01

    Improved acoustic-transducer assembly easy to assemble, relocatable, and used at high temperatures. In assembly, piezoelectric acoustic transducer pressure-coupled to delay line or fixture through soft metal like aluminum, copper or gold. Transducer subassembly includes layered structure of coupling material, transducer, thin disk of coupling material acting as cushion for transducer, electrode disk with coaxial cable lead attached, insulation/damping material, and pressure plate. Pressure coupling precludes problem of matching coefficients of thermal expansion of transducer, coupling material, and delay line.

  3. Piezoelectric materials used in underwater acoustic transducers

    SciTech Connect

    Li, Huidong; Deng, Zhiqun; Carlson, Thomas J.

    2012-07-07

    Piezoelectric materials have been used in underwater acoustic transducers for nearly a century. In this paper, we reviewed four different types of piezoelectric materials: piezoelectric ceramics, single crystals, composites, and polymers, which are widely used in underwater acoustic transducers nowadays. Piezoelectric ceramics are the most dominant material type and are used as a single-phase material or one of the end members in composites. Piezoelectric single crystals offer outstanding electromechanical response but are limited by their manufacturing cost. Piezoelectric polymers provide excellent acoustic impedance matching and transducer fabrication flexibility although their piezoelectric properties are not as good as ceramics and single crystals. Composites combined the merits of ceramics and polymers and are receiving increased attention. The typical structure and electromechanical properties of each type of materials are introduced and discussed with respect to underwater acoustic transducer applications. Their advantages and disadvantages are summarized. Some of the critical design considerations when developing underwater acoustic transducers with these materials are also touched upon.

  4. Cooling Acoustic Transducer with Heat Pipes

    DTIC Science & Technology

    2009-07-29

    0013] Most transducer packages involve a stack of active ceramic. A Tonpilz transducer 10 in the prior art, as depicted in FIG. 1, consists...or corresponding parts throughout the several views and wherein: [0023] FIG. 1 is a prior art depiction of a Tonpilz transducer design; [0024...Distribution is unlimited Attorney Docket No. 97001 COOLING ACOUSTIC TRANSDUCER WITH HEAT PIPES STATEMENT OF GOVERNMENT INTEREST [0001] The

  5. Opto-acoustic transducer for medical applications

    DOEpatents

    Benett, William; Celliers, Peter; Da Silva, Luiz; Glinsky, Michael; London, Richard; Maitland, Duncan; Matthews, Dennis; Krulevich, Peter; Lee, Abraham

    2002-01-01

    This invention is an optically activated transducer for generating acoustic vibrations in a biological medium. The transducer is located at the end of a fiber optic which may be located within a catheter. Energy for operating the transducer is provided optically by laser light transmitted through the fiber optic to the transducer. Pulsed laser light is absorbed in the working fluid of the transducer to generate a thermal pressure and consequent adiabatic expansion of the transducer head such that it does work against the ambient medium. The transducer returns to its original state by a process of thermal cooling. The motion of the transducer within the ambient medium couples acoustic energy into the medium. By pulsing the laser at a high repetition rate (which may vary from CW to 100 kHz) an ultrasonic radiation field can be established locally in the medium. This method of producing ultrasonic vibrations can be used in vivo for the treatment of stroke-related conditions in humans, particularly for dissolving thrombus. The catheter may also incorporate anti-thrombolytic drug treatments as an adjunct therapy and it may be operated in conjunction with ultrasonic detection equipment for imaging and feedback control.

  6. Opto-acoustic transducer for medical applications

    DOEpatents

    Benett, W.; Celliers, P.; Da Silva, L.; Glinsky, M.; London, R.; Maitland, D.; Matthews, D.; Krulevich, P.; Lee, A.

    1999-08-31

    This invention is an optically activated transducer for generating acoustic vibrations in a biological medium. The transducer is located at the end of a fiber optic which may be located within a catheter. Energy for operating the transducer is provided optically by laser light transmitted through the fiber optic to the transducer. Pulsed laser light is absorbed in the working fluid of the transducer to generate a thermal pressure and consequent adiabatic expansion of the transducer head such that it does work against the ambient medium. The transducer returns to its original state by a process of thermal cooling. The motion of the transducer within the ambient medium couples acoustic energy into the medium. By pulsing the laser at a high repetition rate (which may vary from CW to 100 kHz) an ultrasonic radiation field can be established locally in the medium. This method of producing ultrasonic vibrations can be used in vivo for the treatment of stroke-related conditions in humans, particularly for dissolving thrombus. The catheter may also incorporate anti-thrombolytic drug treatments as an adjunct therapy and it may be operated in conjunction with ultrasonic detection equipment for imaging and feedback control. 7 figs.

  7. Opto-acoustic transducer for medical applications

    DOEpatents

    Benett, William; Celliers, Peter; Da Silva, Luiz; Glinsky, Michael; London, Richard; Maitland, Duncan; Matthews, Dennis; Krulevich, Peter; Lee, Abraham

    1999-01-01

    This invention is an optically activated transducer for generating acoustic vibrations in a biological medium. The transducer is located at the end of a fiber optic which may be located within a catheter. Energy for operating the transducer is provided optically by laser light transmitted through the fiber optic to the transducer. Pulsed laser light is absorbed in the working fluid of the transducer to generate a thermal pressure and consequent adiabatic expansion of the transducer head such that it does work against the ambient medium. The transducer returns to its original state by a process of thermal cooling. The motion of the transducer within the ambient medium couples acoustic energy into the medium. By pulsing the laser at a high repetition rate (which may vary from CW to 100 kHz) an ultrasonic radiation field can be established locally in the medium. This method of producing ultrasonic vibrations can be used in vivo for the treatment of stroke-related conditions in humans, particularly for dissolving thrombus. The catheter may also incorporate anti-thrombolytic drug treatments as an adjunct therapy and it may be operated in conjunction with ultrasonic detection equipment for imaging and feedback control.

  8. Acoustic transducer with damping means

    DOEpatents

    Smith, Richard W.; Adamson, Gerald E.

    1976-11-02

    An ultrasonic transducer specifically suited to high temperature sodium applications is described. A piezoelectric active element is joined to the transducer faceplate by coating the faceplate and juxtaposed active element face with wetting agents specifically compatible with the bonding procedure employed to achieve the joint. The opposite face of the active element is fitted with a backing member designed to assure continued electrical continuity during adverse operating conditions which can result in the fracturing of the active element. The fit is achieved employing a spring-loaded electrode operably arranged to electrically couple the internal transducer components, enclosed in a hermetically sealed housing, to accessory components normally employed in transducer applications. Two alternative backing members are taught for assuring electrical continuity. The first employs a resilient, discrete multipoint contact electrode in electrical communication with the active element face. The second employs a resilient, elastomeric, electrically conductive, damped member in electrical communication with the active element face in a manner to effect ring-down of the transducer. Each embodiment provides continued electrical continuity within the transducer in the event the active element fractures, while the second provides the added benefit of damping.

  9. Resonant capacitive MEMS acoustic emission transducers

    NASA Astrophysics Data System (ADS)

    Ozevin, D.; Greve, D. W.; Oppenheim, I. J.; Pessiki, S. P.

    2006-12-01

    We describe resonant capacitive MEMS transducers developed for use as acoustic emission (AE) detectors, fabricated in the commercial three-layer polysilicon surface micromachining process (MUMPs). The 1 cm square device contains six independent transducers in the frequency range between 100 and 500 kHz, and a seventh transducer at 1 MHz. Each transducer is a parallel plate capacitor with one plate free to vibrate, thereby causing a capacitance change which creates an output signal in the form of a current under a dc bias voltage. With the geometric proportions we employed, each transducer responds with two distinct resonant frequencies. In our design the etch hole spacing was chosen to limit squeeze film damping and thereby produce an underdamped vibration when operated at atmospheric pressure. Characterization experiments obtained by capacitance and admittance measurements are presented, and transducer responses to physically simulated AE source are discussed. Finally, we report our use of the device to detect acoustic emissions associated with crack initiation and growth in weld metal.

  10. Acoustic lens for capacitive micromachined ultrasonic transducers

    NASA Astrophysics Data System (ADS)

    Chang, Chienliu; Firouzi, Kamyar; Park, Kwan Kyu; Sarioglu, Ali Fatih; Nikoozadeh, Amin; Yoon, Hyo-Seon; Vaithilingam, Srikant; Carver, Thomas; Khuri-Yakub, Butrus T.

    2014-08-01

    Capacitive micromachined ultrasonic transducers (CMUTs) have great potential to compete with traditional piezoelectric transducers in therapeutic ultrasound applications. In this paper we have designed, fabricated and developed an acoustic lens formed on the CMUT to mechanically focus ultrasound. The acoustic lens was designed based on the paraxial theory and made of silicone rubber for acoustic impedance matching and encapsulation. The CMUT was fabricated based on the local oxidation of silicon (LOCOS) and fusion-bonding. The fabricated CMUT was verified to behave like an electromechanical resonator in air and exhibited wideband response with a center frequency of 2.2 MHz in immersion. The fabrication for the acoustic lens contained two consecutive mold castings and directly formed on the surface of the CMUT. Applied with ac burst input voltages at the center frequency, the CMUT with the acoustic lens generated an output pressure of 1.89 MPa (peak-to-peak) at the focal point with an effective focal gain of 3.43 in immersion. Compared to the same CMUT without a lens, the CMUT with the acoustic lens demonstrated the ability to successfully focus ultrasound and provided a viable solution to the miniaturization of the multi-modality forward-looking endoscopes without electrical focusing.

  11. Millimeter-Wave Acoustic Transducers

    DTIC Science & Technology

    1990-04-01

    Phys . Rev. Lett . 54, 1810 ( 1985 ). 28. S.A. Akhmanov, V.V. Fadeev, R.V. Khokhlov, and O.N. Chunaev, Sov . Phys . JETP Lett . 6, 85...Acoust. Soc. Am. 66, 1801 (1979). 41 . F.P. Milliken, K.W. Schwartz and C.W. Smith, Phys . Rev. Lett . 48, 1204 (1982). 42 . T.E. Huber and H.J. Maris... Phys . Lett . 7, 264 (1965). 7. K.H. Yang, P.L. Richards, and Y.R. Shen, J. Appl. Phys . 44, 1417 (1973). 8. H.K. Wong, G.K. Wong and J.B.

  12. Acoustic transducer apparatus with reduced thermal conduction

    NASA Technical Reports Server (NTRS)

    Lierke, Ernst G. (Inventor); Leung, Emily W. (Inventor); Bhat, Balakrishna T. (Inventor)

    1990-01-01

    A horn is described for transmitting sound from a transducer to a heated chamber containing an object which is levitated by acoustic energy while it is heated to a molten state, which minimizes heat transfer to thereby minimize heating of the transducer, minimize temperature variation in the chamber, and minimize loss of heat from the chamber. The forward portion of the horn, which is the portion closest to the chamber, has holes that reduce its cross-sectional area to minimize the conduction of heat along the length of the horn, with the entire front portion of the horn being rigid and having an even front face to efficiently transfer high frequency acoustic energy to fluid in the chamber. In one arrangement, the horn has numerous rows of holes extending perpendicular to the length of horn, with alternate rows extending perpendicular to one another to form a sinuous path for the conduction of heat along the length of the horn.

  13. Thermal dispersion method for an ultrasonic phased-array transducer

    NASA Astrophysics Data System (ADS)

    Choi, Euna; Lee, Wonseok; Roh, Yongrae

    2016-07-01

    When the driving voltage of an ultrasonic transducer is increased to improve the quality of ultrasound images, heat is generated inside the transducer, which can burn the patient’s skin and degrade transducer performance. In this study, the method to disperse the heat inside an ultrasonic phased-array transducer has been examined. The mechanism of temperature rise due to heat generation inside the transducer was investigated by numerical analysis and the effects of the thermal properties of the components of the transducer such as specific heat and thermal conductivity on the temperature rise were analyzed. On the basis of the results, a heat-dispersive structure was devised to reduce the temperature at the surface of the acoustic lens of the transducer. Prototype transducers were fabricated to check the efficacy of the heat-dispersive structure. By experiments, we have confirmed that the new heat-dispersive structure can reduce the internal temperature by as much as 50% in comparison with the conventional structure, which confirms the validity of the thermal dispersion mechanism developed in this work.

  14. Robust Acoustic Transducers for Bubble Chambers

    NASA Astrophysics Data System (ADS)

    Wells, Jonathan

    2015-04-01

    The PICO collaboration utilizes bubble chambers filled with various superheated liquids as targets for dark matter. Acoustic sensors have proved able to distinguish nuclear recoils from radioactive background on an event-by-event basis. We have recently produced a more robust transducer which should be able to operate for years, rather than months, in the challenging environment of a heated high pressure hydraulic fluid outside these chambers. Indiana University South Bend.

  15. Transducer Development and Characterization for Underwater Acoustic Neutrino Detection Calibration

    PubMed Central

    Saldaña, María; Llorens, Carlos D.; Felis, Ivan; Martínez-Mora, Juan Antonio; Ardid, Miguel

    2016-01-01

    A short bipolar pressure pulse with “pancake” directivity is produced and propagated when an Ultra-High Energy (UHE) neutrino interacts with a nucleus in water. Nowadays, acoustic sensor networks are being deployed in deep seas to detect this phenomenon as a first step toward building a neutrino telescope. In order to study the feasibility of the method, it is critical to have a calibrator that is able to mimic the neutrino signature. In previous works the possibility of using the acoustic parametric technique for this aim was proven. In this study, the array is operated at a high frequency and, by means of the parametric effect, the emission of the low-frequency acoustic bipolar pulse is generated mimicking the UHE neutrino acoustic pulse. To this end, the development of the transducer to be used in the parametric array is described in all its phases. The transducer design process, the characterization tests for the bare piezoelectric ceramic, and the addition of backing and matching layers are presented. The efficiencies and directivity patterns obtained for both primary and parametric beams confirm that the design of the proposed calibrator meets all the requirements for the emitter. PMID:27490547

  16. Transducer Development and Characterization for Underwater Acoustic Neutrino Detection Calibration.

    PubMed

    Saldaña, María; Llorens, Carlos D; Felis, Ivan; Martínez-Mora, Juan Antonio; Ardid, Miguel

    2016-08-02

    A short bipolar pressure pulse with "pancake" directivity is produced and propagated when an Ultra-High Energy (UHE) neutrino interacts with a nucleus in water. Nowadays, acoustic sensor networks are being deployed in deep seas to detect this phenomenon as a first step toward building a neutrino telescope. In order to study the feasibility of the method, it is critical to have a calibrator that is able to mimic the neutrino signature. In previous works the possibility of using the acoustic parametric technique for this aim was proven. In this study, the array is operated at a high frequency and, by means of the parametric effect, the emission of the low-frequency acoustic bipolar pulse is generated mimicking the UHE neutrino acoustic pulse. To this end, the development of the transducer to be used in the parametric array is described in all its phases. The transducer design process, the characterization tests for the bare piezoelectric ceramic, and the addition of backing and matching layers are presented. The efficiencies and directivity patterns obtained for both primary and parametric beams confirm that the design of the proposed calibrator meets all the requirements for the emitter.

  17. Optically selective, acoustically resonant gas detecting transducer

    NASA Technical Reports Server (NTRS)

    Dimeff, J. (Inventor)

    1977-01-01

    A gas analyzer is disclosed which responds to the resonant absorption or emission spectrum of a specific gas by producing an acoustic resonance in a chamber containing a sample of that gas, and which measures the amount of that emission or absorption by measuring the strength of that acoustic resonance, e.g., the maximum periodic pressure, velocity or density achieved. In the preferred embodiment, a light beam is modulated periodically at the acoustical resonance frequency of a closed chamber which contains an optically dense sample of the gas of interest. Periodic heating of the absorbing gas by the light beam causes a cyclic expansion, movement, and pressure within the gas. An amplitude is reached where the increased losses were the cyclic radiation energy received. A transducing system is inclined for converting the pressure variations of the resonant gas into electronic readout signals.

  18. Tonpilz piezoelectric transducers with acoustic matching plates for underwater color image transmission.

    PubMed

    Inoue, T; Nada, T; Tsuchiya, T; Nakanishi, T; Miyama, T; Konno, M

    1993-01-01

    Tonpilz piezoelectric transducers with multiple acoustic matching plates are suitable for color image acoustic transmission, to achieve wideband low-ripple characteristics as well as high-efficiency high-power transmitting capability. The design method for the transducers was investigated on the basis of multiple-mode filter synthesis theory. For transducers with single, double, and triple matching plates, optimum specific acoustic impedances and lengths were calculated. Moreover, based on this design method, a 24 kHz array comprising nine identical transducers with single matching plates was built and evaluated. As a result, this array showed high-efficiency, low-ripple, and wideband characteristics. Excellent agreement between theoretical values and experimental results was obtained. A field test was carried out on color image transmission from a 3500 m sea depth, using the fabricated array, during which good color images were received.

  19. Breathing-Mode Ceramic Element for Therapeutic Array Transducer

    NASA Astrophysics Data System (ADS)

    Otsu, Kenji; Yoshizawa, Shin; Umemura, Shin-ichiro

    2011-07-01

    A new concept of piezoceramic array transducer element using breathing mode has been proposed for therapeutic application. Finite element numerical simulation showed that a concave hemispherical piezoceramic shell with a diameter slightly larger than the wavelength in water is effective for obtaining good acoustic matching with water. A hemispherical piezoceramic element with an inner diameter of 4.0 mm and a thickness of 0.2-0.4 mm produced more than several times higher acoustic power output than a conventional thickness-mode element at the same drive voltage in the simulation. Its good acoustic matching with water is considered to be accomplished by the combined resonance with the spherical bulk of water half covered by the shell, because the resonance was very sensitive to the change in sound speed of the virtual material replacing water with the same acoustic impedance in simulation.

  20. Electromechanical transducer for acoustic telemetry system

    DOEpatents

    Drumheller, D.S.

    1993-06-22

    An improved electromechanical transducer is provided for use in an acoustic telemetry system. The transducer of this invention comprises a stack of ferroelectric ceramic disks interleaved with a plurality of spaced electrodes which are used to electrically pole the ceramic disks. The ceramic stack is housed in a metal tubular drill collar segment. The electrodes are preferably alternatively connected to ground potential and driving potential. This alternating connection of electrodes to ground and driving potential subjects each disk to an equal electric field; and the direction of the field alternates to match the alternating direction of polarization of the ceramic disks. Preferably, a thin metal foil is sandwiched between electrodes to facilitate the electrical connection. Alternatively, a thicker metal spacer plate is selectively used in place of the metal foil in order to promote thermal cooling of the ceramic stack.

  1. Electromechanical transducer for acoustic telemetry system

    DOEpatents

    Drumheller, Douglas S.

    1993-01-01

    An improved electromechanical transducer is provided for use in an acoustic telemetry system. The transducer of this invention comprises a stack of ferroelectric ceramic disks interleaved with a plurality of spaced electrodes which are used to electrically pole the ceramic disks. The ceramic stack is housed in a metal tubular drill collar segment. The electrodes are preferably alternatively connected to ground potential and driving potential. This alternating connection of electrodes to ground and driving potential subjects each disk to an equal electric field; and the direction of the field alternates to match the alternating direction of polarization of the ceramic disks. Preferably, a thin metal foil is sandwiched between electrodes to facilitate the electrical connection. Alternatively, a thicker metal spacer plate is selectively used in place of the metal foil in order to promote thermal cooling of the ceramic stack.

  2. Optoacoustic tomography of breast cancer with arc-array transducer

    NASA Astrophysics Data System (ADS)

    Andreev, Valeri G.; Karabutov, Alexander A.; Solomatin, Sergey V.; Savateeva, Elena V.; Aleinikov, Vadim; Zhulina, Yulia V.; Fleming, R. Declan; Oraevsky, Alexander A.

    2000-05-01

    The second generation of the laser optoacoustic imaging system for breast cancer detection, localization and characterization using a 32-element arc-shaped transducer array was developed and tested. Each acoustic transducer was made of 110-micrometers thick SOLEF PVDF film with dimensions of 1mm X 12.5mm. The frequency band of transducer array provided 0.4-mm axial in-depth resolution. Cylindrical shape of this 10-cm long transducer array provided an improved lateral resolution of 1.0 mm. Original and compact design of low noise preamplifiers and wide band amplifiers was employed. The system sensitivity was optimized by choosing limited bandwidth of ultrasonic detection 20-kHz to 2-MHz. Signal processing was significantly improved and optimized resulting in reduced data collection time of 13 sec. The computer code for digital signal processing employed auto- gain control, high-pass filtering and denoising. An automatic recognition of the opto-acoustic signal detected from the irradiated surface was implemented in order to visualize the breast surface and improve the accuracy of tumor locations. Radial back-projection algorithm was used for image reconstruction. Optimal filtering of image was employed to reduce low and high frequency noise. The advantages and limitations of various contrast-enhancing filters applied to the entire image matrix were studied and discussed. Time necessary for image reconstruction was reduced to 32 sec. The system performance was evaluated initially via acquisition of 2D opto-acoustic images of small absorbing spheres in breast-tissue-like phantoms. Clinical ex-vivo studies of mastectomy specimen were also performed and compared with x-ray radiography and ultrasound.

  3. Characterization and Design of Spiral Frequency Steerable Acoustic Transducers

    NASA Astrophysics Data System (ADS)

    Repale, Rohan

    Structural Health Monitoring (SHM) is an emerging research area devoted to improving the safety and maintainability of civil structures. Guided wave structural testing method is an effective approach used for SHM of plate-like structures using piezoelectric transducers. These transducers are attached to the surface of the structure and are capable of sensing its health by using surface waves. Transducers with beam steering i.e. electronic scanning capabilities can perform surface interrogation with higher precision and ease. A frequency steerable acoustic transducer (FSAT) is capable of beam steering and directional surface wave sensing to detect and localize damage in structures. The objective of this research is to further explore the possibilities of FSAT technology by designing and testing new FSAT designs. The beam steering capability of FSAT can be controlled by manipulating its design parameters. These design parameters therefore play a significant role in FSAT's performance. Studying the design parameters and documenting the performance improvements based on parameter variation is the primary goal of this research. Design and characterization of spiral FSAT was performed and results were simulated. Array FSAT documented results were validated. Modified designs were modeled based on design parameter variations. Characterization of these designs was done and their performance was recorded. Plate simulation results confirm direct relationship between design parameters and beam steering. A set of guidelines for future designs was also proposed. Two designs developed based on the set guidelines were sent to our collaborator Genziko Inc. for fabrication.

  4. Resonant acoustic transducer system for a well drilling string

    DOEpatents

    Kent, William H.; Mitchell, Peter G.

    1981-01-01

    For use in transmitting acoustic waves propagated along a well drilling string, a piezoelectric transducer is provided operating in the relatively low loss acoustic propagation range of the well drilling string. The efficiently coupled transmitting transducer incorporates a mass-spring-piezoelectric transmitter combination permitting resonant operation in the desired low frequency range.

  5. Resonant acoustic transducer system for a well drilling string

    DOEpatents

    Nardi, Anthony P.

    1981-01-01

    For use in transmitting acoustic waves propated along a well drilling string, a piezoelectric transducer is provided operating in the relatively low loss acoustic propagation range of the well drilling string. The efficiently coupled transmitting transducer incorporates a mass-spring-piezoelectric transmitter combination permitting a resonant operation in the desired low frequency range.

  6. Acoustic transducer based on dielectric elastomers

    NASA Astrophysics Data System (ADS)

    Graf, Christian; Maas, Jügen

    2012-04-01

    Dielectric electroactive polymers are thin films based on elastomeric material coated with compliant and conductive electrodes. By applying an electrical field, the polymer performs large deformations, which can be utilized to generate sound waves. When using such kind of electrostatic loudspeakers, no additional resonating sound boxes are required and the vibrating mass is very lightweight, resulting in an excellent impulse and wide-band frequency response. For the loudspeaker's operation both an electrical bias voltage and a mechanical bias stress have to be applied. In this contribution different possibilities are presented to generate the mechanical bias stress. The design of an appropriate power electronics for the acoustic transducer, which is build of standard components, is also described. Finally, the loudspeaker concepts are evaluated by experiments in an anechoic room.

  7. Electromagnetic acoustic transducers (EMATs) for erosion monitoring

    SciTech Connect

    Reimann, K.J.

    1984-05-01

    Early detection, measurement, and monitoring of erosive wear rates can alleviate problems of unpredictable shutdowns, costly downtimes, and improper process operation. The first generation of a nondestructive, noninvasive acoustic-based system was tested on pressure boundaries of fossil energy conversion plants, yielding the desired information. Multiple transducers and wave guides are needed for such a system in order to determine wear profiles in large components. The same information could, however, be obtained with a single, scanning electromagnetic transducer (EMAT). Advantages of such EMAT-based systems motivated this investigation in order to establish criteria and requirements needed for erosion monitoring at elevated (operating) temperatures. The effort concentrated on three areas: (a) development of EMAT design parameters, (b) material-EMAT interaction, and (c) signal processing. Prototype horizontal shearwave EMATs, based on design parameters selected from computer calculations of the static field, were evaluated, and their performance was compared to the performance of piezoelectric transducers. Input power requirements for a larger than 10-dB signal-to-noise (S/N) ratio were established for various structural and hardfacing materials. Effects of surface roughness and temperature were determined for different test conditions. The results indicate that accurate wall thickness measurement can be performed at elevated temperature on rough surfaces as encountered, for instance, in a cyclone. Modern data processing such as signal averaging on correlation improves the S/N ratio from 12 dB to 26 dB and enables wall thickness measurements with an accuracy of +-0.25% of total wall thickness. Additional efforts are needed to determine requirements of EMATs in scanning mode and pulsed static field operation.

  8. Linear Array Ultrasonic Transducers: Sensitivity and Resolution Study

    SciTech Connect

    Kramb, V.A.

    2005-04-09

    The University of Dayton Research Institute (UDRI) under contract by the US Air Force has designed and integrated a fully automated inspection system for the inspection of turbine engines that incorporates linear phased array ultrasonic transducers. Phased array transducers have been successfully implemented into weld and turbine blade root inspections where the defect types are well known and characterized. Embedded defects in aerospace turbine engine components are less well defined, however. In order to determine the applicability of linear arrays to aerospace inspections the sensitivity of array transducers to embedded defects in engine materials must be characterized. In addition, the implementation of array transducers into legacy inspection procedures must take into account any differences in sensitivity between the array transducer and that of the single element transducer currently used. This paper discusses preliminary results in a study that compares the sensitivity of linear array and conventional single element transducers to synthetic hard alpha defects in a titanium alloy.

  9. Linear Array Ultrasonic Transducers: Sensitivity and Resolution Study

    NASA Astrophysics Data System (ADS)

    Kramb, V. A.

    2005-04-01

    The University of Dayton Research Institute (UDRI) under contract by the US Air Force has designed and integrated a fully automated inspection system for the inspection of turbine engines that incorporates linear phased array ultrasonic transducers. Phased array transducers have been successfully implemented into weld and turbine blade root inspections where the defect types are well known and characterized. Embedded defects in aerospace turbine engine components are less well defined, however. In order to determine the applicability of linear arrays to aerospace inspections the sensitivity of array transducers to embedded defects in engine materials must be characterized. In addition, the implementation of array transducers into legacy inspection procedures must take into account any differences in sensitivity between the array transducer and that of the single element transducer currently used. This paper discusses preliminary results in a study that compares the sensitivity of linear array and conventional single element transducers to synthetic hard alpha defects in a titanium alloy.

  10. A frequency selective acoustic transducer for directional Lamb wave sensing.

    PubMed

    Senesi, Matteo; Ruzzene, Massimo

    2011-10-01

    A frequency selective acoustic transducer (FSAT) is proposed for directional sensing of guided waves. The considered FSAT design is characterized by a spiral configuration in wavenumber domain, which leads to a spatial arrangement of the sensing material producing output signals whose dominant frequency component is uniquely associated with the direction of incoming waves. The resulting spiral FSAT can be employed both for directional sensing and generation of guided waves, without relying on phasing and control of a large number of channels. The analytical expression of the shape of the spiral FSAT is obtained through the theoretical formulation for continuously distributed active material as part of a shaped piezoelectric device. Testing is performed by forming a discrete array through the points of the measurement grid of a scanning laser Doppler vibrometer. The discrete array approximates the continuous spiral FSAT geometry, and provides the flexibility to test several configurations. The experimental results demonstrate the strong frequency dependent directionality of the spiral FSAT and suggest its application for frequency selective acoustic sensors, to be employed for the localization of broadband acoustic events, or for the directional generation of Lamb waves for active interrogation of structural health.

  11. Porous silicon bulk acoustic wave resonator with integrated transducer

    PubMed Central

    2012-01-01

    We report that porous silicon acoustic Bragg reflectors and AlN-based transducers can be successfully combined and processed in a commercial solidly mounted resonator production line. The resulting device takes advantage of the unique acoustic properties of porous silicon in order to form a monolithically integrated bulk acoustic wave resonator. PMID:22776697

  12. A simple device to couple linear array transducers to neonate heads for ultrasonic scanning of the brain.

    PubMed

    Smith, W L; Franklin, T D; Katakura, K; Patrick, J T; Fry, F J; Eggleton, R C

    1980-12-01

    A plastisol coupler has been designed that improves acoustical coupling for linear array ultrasound transducers. This device improves both ease in scanning and image quality in real-time scanning of the infant brain.

  13. Multi-particle trapping and manipulation by a high-frequency array transducer

    SciTech Connect

    Yoon, Changhan; Kang, Bong Jin; Lee, Changyang; Kim, Hyung Ham Shung, K. Kirk

    2014-11-24

    We report the multiple micro-particle trapping and manipulation by a single-beam acoustic tweezer using a high-frequency array transducer. A single acoustic beam generated by a 30 MHz ultrasonic linear array transducer can entrap and transport multiple micro-particles located at the main lobe and the grating lobes. The distance between trapped particles can be adjusted by changing the transmit arrangement of array-based acoustic tweezers and subsequently the location of grating lobes. The experiment results showed that the proposed method can trap and manipulate multiple particles within a range of hundreds of micrometers. Due to its simplicity and low acoustic power, which is critical to protect cells from any thermal and mechanical damages, the technique may be used for transportation of cells in cell biology, biosensors, and tissue engineering.

  14. Ultrasonic phased array transducers for nondestructive evaluation of steel structures

    NASA Astrophysics Data System (ADS)

    Song, Sung-Jin; Shin, Hyeon Jae; Jang, You Hyun

    2000-05-01

    An ultrasonic phased array transducer has been developed and demonstrated for the nondestructive evaluation of steel structures. The number of array elements is 64 and the center frequency is about 5 MHz. This phased array transducer is designed to use with the phased array system that does steering, transmission focusing and dynamic receive focusing. Each of the array elements is individually excited according to the focal laws and steering angles. Measurements of ultrasonic beam profiles for the array transducer in a reference steel block are presented and compared with theoretical predictions. Some of the phased array transducer design concepts for the application in steel structures are discussed. The two-dimensional ultrasonic images of the sample steel block including flat bottom holes and side drilled holes are presented. Experimental and theoretical results demonstrate excellent feasibility of the utility of the phased array transducer in imaging and detection of defects in steel structures.

  15. Acoustic trapping with a high frequency linear phased array.

    PubMed

    Zheng, Fan; Li, Ying; Hsu, Hsiu-Sheng; Liu, Changgeng; Tat Chiu, Chi; Lee, Changyang; Ham Kim, Hyung; Shung, K Kirk

    2012-11-19

    A high frequency ultrasonic phased array is shown to be capable of trapping and translating microparticles precisely and efficiently, made possible due to the fact that the acoustic beam produced by a phased array can be both focused and steered. Acoustic manipulation of microparticles by a phased array is advantageous over a single element transducer since there is no mechanical movement required for the array. Experimental results show that 45 μm diameter polystyrene microspheres can be easily and accurately trapped and moved to desired positions by a 64-element 26 MHz phased array.

  16. Acoustic trapping with a high frequency linear phased array

    PubMed Central

    Zheng, Fan; Li, Ying; Hsu, Hsiu-Sheng; Liu, Changgeng; Tat Chiu, Chi; Lee, Changyang; Ham Kim, Hyung; Shung, K. Kirk

    2012-01-01

    A high frequency ultrasonic phased array is shown to be capable of trapping and translating microparticles precisely and efficiently, made possible due to the fact that the acoustic beam produced by a phased array can be both focused and steered. Acoustic manipulation of microparticles by a phased array is advantageous over a single element transducer since there is no mechanical movement required for the array. Experimental results show that 45 μm diameter polystyrene microspheres can be easily and accurately trapped and moved to desired positions by a 64-element 26 MHz phased array. PMID:23258939

  17. Linear-array ultrasonic waveguide transducer for under sodium viewing.

    SciTech Connect

    Sheen, S. H.; Chien, H. T.; Wang, K.; Lawrence, W. P.; Engel, D.; Nuclear Engineering Division

    2010-09-01

    In this report, we first present the basic design of a low-noise waveguide and its performance followed by a review of the array transducer technology. The report then presents the concept and basic designs of arrayed waveguide transducers that can apply to under-sodium viewing for in-service inspection of fast reactors. Depending on applications, the basic waveguide arrays consist of designs for sideway and downward viewing. For each viewing application, two array geometries, linear and circular, are included in design analysis. Methods to scan a 2-D target using a linear array waveguide transducer are discussed. Future plan to develop a laboratory array waveguide prototype is also presented.

  18. Acoustic Emission Transducers: Calibration Activities and Transducer Development.

    DTIC Science & Technology

    2014-09-26

    transducer calibration and development activities -j at NBS is summiarized. DO Fo"� roiion or olv as is OBSOLETE DOS/N 0 102. LP.60 4. 6601...developed. This development was partially supported by the Electric Power Research Institute and the Office of Naval Research. The calibration subjects the...and tangential components of motion must be measured tb describe the dynamic displacement at a point on a surface. We previously have developed the NBS

  19. A new method for anisotropic materials characterization based on phased-array ultrasonic transducers technology

    SciTech Connect

    Frenet, D.; Calmon, P.; Paradis, L.

    1999-12-02

    A method for materials characterization based on the utilization of a ultrasonic array transducer of conical shape has been developed at the CEA. The specific design of this transducer allows the generation and the detection of leaky surface acoustic waves (LSAW) in an efficient way. Additionally, anisotropic materials can be investigated in several azimuthal directions without any mechanical movement. The characterization process relies on the velocity measurement of the LSAW. Experimental results on both isotropic an anisotropic material are reported.

  20. Highly reliable multisensor array (MSA) smart transducers

    NASA Astrophysics Data System (ADS)

    Perotti, José; Lucena, Angel; Mackey, Paul; Mata, Carlos; Immer, Christopher

    2006-05-01

    Many developments in the field of multisensor array (MSA) transducers have taken place in the last few years. Advancements in fabrication technology, such as Micro-Electro-Mechanical Systems (MEMS) and nanotechnology, have made implementation of MSA devices a reality. NASA Kennedy Space Center (KSC) has been developing this type of technology because of the increases in safety, reliability, and performance and the reduction in operational and maintenance costs that can be achieved with these devices. To demonstrate the MSA technology benefits, KSC quantified the relationship between the number of sensors (N) and the associated improvement in sensor life and reliability. A software algorithm was developed to monitor and assess the health of each element and the overall MSA. Furthermore, the software algorithm implemented criteria on how these elements would contribute to the MSA-calculated output to ensure required performance. The hypothesis was that a greater number of statistically independent sensor elements would provide a measurable increase in measurement reliability. A computer simulation was created to answer this question. An array of N sensors underwent random failures in the simulation and a life extension factor (LEF equals the percentage of the life of a single sensor) was calculated by the program. When LEF was plotted as a function of N, a quasiexponential behavior was detected with marginal improvement above N = 30. The hypothesis and follow-on simulation results were then corroborated experimentally. An array composed of eight independent pressure sensors was fabricated. To accelerate sensor life cycle and failure and to simulate degradation over time, the MSA was exposed to an environmental tem-perature of 125°C. Every 24 hours, the experiment's environmental temperature was returned to ambient temperature (27°C), and the outputs of all the MSA sensor elements were measured. Once per week, the MSA calibration was verified at five different

  1. Ultrahigh Frequency Lensless Ultrasonic Transducers for Acoustic Tweezers Application

    PubMed Central

    Hsu, Hsiu-Sheng; Li, Ying; Lee, Changyang; Lin, Anderson; Zhou, Qifa; Kim, Eun Sok; Shung, Kirk Koping

    2014-01-01

    Similar to optical tweezers, a tightly focused ultrasound microbeam is needed to manipulate microparticles in acoustic tweezers. The development of highly sensitive ultrahigh frequency ultrasonic transducers is crucial for trapping particles or cells with a size of a few microns. As an extra lens would cause excessive attenuation at ultrahigh frequencies, two types of 200-MHz lensless transducer design were developed as an ultrasound microbeam device for acoustic tweezers application. Lithium niobate single crystal press-focused (PF) transducer and zinc oxide self-focused transducer were designed, fabricated and characterized. Tightly focused acoustic beams produced by these transducers were shown to be capable of manipulating single microspheres as small as 5 μm two-dimensionally within a range of hundreds of micrometers in distilled water. The size of the trapped microspheres is the smallest ever reported in the literature of acoustic PF devices. These results suggest that these lensless ultrahigh frequency ultrasonic transducers are capable of manipulating particles at the cellular level and that acoustic tweezers may be a useful tool to manipulate a single cell or molecule for a wide range of biomedical applications. PMID:23042219

  2. Performance, Thermal, and Vibration Qualification Testing of Zetec Acoustic Transducers, Model Z0002659-2, Sondicator Probes

    SciTech Connect

    Jacobson, G; Gemberling, S; Lavietes, A

    2006-03-10

    This report is a result of Qualification Test Plan No.001 prepared by Anthony Lavietes. The Qualification Test Plan outlines a list of requirements for thermal and vibrational testing of Zetac's Z0002659-2 Sondicator Probe acoustic transducers (hereafter called ''transducers''). The Zetec transducers are used in a system that employs an array of 7 acoustic transducers. Qualification testing of these transducers was required since they are a modified version of a standard catalog item from the manufacturer. This report documents the thermal, vibrational, and performance testing that was performed on a sampling of these transducers in order to qualify them for flight. A total of 14 transducers were tested. All 14 passed qualification testing with no failures.

  3. Air-Coupled Low Frequency Ultrasonic Transducers and Arrays with PMN-32%PT Piezoelectric Crystals

    PubMed Central

    Kazys, Rymantas J.; Sliteris, Reimondas; Sestoke, Justina

    2017-01-01

    Air-coupled ultrasonic techniques are being increasingly used for material characterization, non-destructive evaluation of composite materials using guided waves as well as for distance measurements. Application of those techniques is mainly limited by the big losses of ultrasonic signals due to attenuation and mismatch of the acoustic impedances of ultrasonic transducers and air. One of the ways to solve this problem is by application of novel more efficient piezoelectric materials like lead magnesium niobate-lead titanate (PMN-PT) type crystals. The objective of this research was the development and investigation of low frequency (<50 kHz) wide band air-coupled ultrasonic transducers and arrays with an improved performance using PMN-32%PT crystals. Results of finite element modelling and experimental investigations of the developed transducers and arrays are presented. For improvement of the performance strip-like matching elements made of low acoustic impedance, materials such as polystyrene foams were applied. It allowed to achieve transduction losses for one single element transducer −11.4 dB, what is better than of commercially available air-coupled ultrasonic transducers. Theoretical and experimental investigations of the acoustic fields radiated by the eight element ultrasonic array demonstrated not only a good performance of the array in a pulse mode, but also very good possibilities to electronically focus and steer the ultrasonic beam in space. PMID:28067807

  4. Air-Coupled Low Frequency Ultrasonic Transducers and Arrays with PMN-32%PT Piezoelectric Crystals.

    PubMed

    Kazys, Rymantas J; Sliteris, Reimondas; Sestoke, Justina

    2017-01-06

    Air-coupled ultrasonic techniques are being increasingly used for material characterization, non-destructive evaluation of composite materials using guided waves as well as for distance measurements. Application of those techniques is mainly limited by the big losses of ultrasonic signals due to attenuation and mismatch of the acoustic impedances of ultrasonic transducers and air. One of the ways to solve this problem is by application of novel more efficient piezoelectric materials like lead magnesium niobate-lead titanate (PMN-PT) type crystals. The objective of this research was the development and investigation of low frequency (<50 kHz) wide band air-coupled ultrasonic transducers and arrays with an improved performance using PMN-32%PT crystals. Results of finite element modelling and experimental investigations of the developed transducers and arrays are presented. For improvement of the performance strip-like matching elements made of low acoustic impedance, materials such as polystyrene foams were applied. It allowed to achieve transduction losses for one single element transducer -11.4 dB, what is better than of commercially available air-coupled ultrasonic transducers. Theoretical and experimental investigations of the acoustic fields radiated by the eight element ultrasonic array demonstrated not only a good performance of the array in a pulse mode, but also very good possibilities to electronically focus and steer the ultrasonic beam in space.

  5. Equivalent Circuit Models for Large Arrays of Curved and Flat Piezoelectric Micromachined Ultrasonic Transducers.

    PubMed

    Akhbari, Sina; Sammoura, Firas; Lin, Liwei

    2016-03-01

    Equivalent circuit models of large arrays of curved (spherical shape) and flat piezoelectric micromachined ultrasonic transducers (pMUTs) have been developed for complex pMUT arrays design and analysis. The exact solutions for circuit parameters in the electromechanical domain, such as mechanical admittance, input electrical impedance, and electromechanical transformer ratio, were analytically derived. By utilizing the array solution methods previously established for the thickness-mode piezoelectric devices and capacitive micromachined ultrasonic transducers (cMUTs), the single pMUT circuit model can be extended to models for array structures. The array model includes both the self- and mutual-acoustic radiation impedances of individual transducers in the acoustic medium. Volumetric displacement, induced piezoelectric current, and pressure field can be derived with respect to the input voltage matrix, material, and geometrical properties of each individual transducer and the array structure. As such, the analytical models presented here can be used as a guideline for analyses and design evaluations of large arrays of curved and flat pMUTs efficiently and can be further generalized to evaluate other pMUT architectures in the form of single devices or arrays.

  6. Piezoelectric transducer design for a miniaturized injectable acoustic transmitter

    SciTech Connect

    Li, Huidong; Jung, Ki Won; Deng, Zhiqun D.

    2015-10-07

    Acoustic telemetry has been an important tool in the last 20 years for studying fish survival and migration behaviors during and after dam passage. This technology uses implantable acoustic transmitters as tags to three-dimensionally track the movement of fish. However, the relatively large weights and sizes of commercially available transmitters limit the populations of fish that could be studied. The surgical implantation procedures required may also injure fish and also incur a significant amount of labor. Therefore, a smaller, lighter, and injectable tag was needed, and similar or better acoustic performance and service life over that provided by existing commercial tags was desired. To develop such a small transmitter, a number of technical challenges, including design optimization of the piezoelectric transducer, needed to be overcome. The goal of our efforts to optimize the transducer focused on improving the average source level in the 180° range in which the transmitter was facing the receiving hydrophone, so as to increase the transmitter’s detection probability. This paper reports the techniques that were explored and developed to achieve this goal. We found that a novel off-center tube transducer improved the average source level of the front half of the transducer by 1.5 dB. An acoustic reflector attached to the back of the transducer also improved the source level by 3 dB when the transducer was pointed toward the receiving hydrophone, although the source level on the sides of the transducer was reduced. We found that too small a gap between the transducer and the component placed behind it resulted in distortion of the beam pattern. To overcome that issue, we connected a tuning inductor in series with the transducer to help optimize the source level. Furthermore, the findings and techniques developed in this work contributed to the successful development and implementation of a new injectable transmitter.

  7. Piezoelectric transducer design for a miniaturized injectable acoustic transmitter

    DOE PAGES

    Li, Huidong; Jung, Ki Won; Deng, Zhiqun D.

    2015-10-07

    Acoustic telemetry has been an important tool in the last 20 years for studying fish survival and migration behaviors during and after dam passage. This technology uses implantable acoustic transmitters as tags to three-dimensionally track the movement of fish. However, the relatively large weights and sizes of commercially available transmitters limit the populations of fish that could be studied. The surgical implantation procedures required may also injure fish and also incur a significant amount of labor. Therefore, a smaller, lighter, and injectable tag was needed, and similar or better acoustic performance and service life over that provided by existing commercialmore » tags was desired. To develop such a small transmitter, a number of technical challenges, including design optimization of the piezoelectric transducer, needed to be overcome. The goal of our efforts to optimize the transducer focused on improving the average source level in the 180° range in which the transmitter was facing the receiving hydrophone, so as to increase the transmitter’s detection probability. This paper reports the techniques that were explored and developed to achieve this goal. We found that a novel off-center tube transducer improved the average source level of the front half of the transducer by 1.5 dB. An acoustic reflector attached to the back of the transducer also improved the source level by 3 dB when the transducer was pointed toward the receiving hydrophone, although the source level on the sides of the transducer was reduced. We found that too small a gap between the transducer and the component placed behind it resulted in distortion of the beam pattern. To overcome that issue, we connected a tuning inductor in series with the transducer to help optimize the source level. Furthermore, the findings and techniques developed in this work contributed to the successful development and implementation of a new injectable transmitter.« less

  8. Apparatus for acoustically coupling an ultrasonic transducer with a body

    NASA Technical Reports Server (NTRS)

    Marshall, Scot H. (Inventor)

    1993-01-01

    An apparatus for acoustically coupling an ultrasonic transducer with a body along whose surface waves are to be transmitted includes a wedge having a first surface for acoustically contacting a subject surface area of a body to be measured, on which surface waves are to be transmitted, and a second surface for accoustically contacting an ultrasonic transducer. The wedge includes a cylinder in which the second surface is present and which is movably disposed in a recess in a block in which the first surface is present, for orienting the first surface and the second surface relative to each other so that ultrasonic waves emitted by the ultrasonic transducer generate surface waves which travel on the subject surface area of the body when the ultrasonic transducer is in acoustic contact with the second surface and the first surface is in acoustic contact with the subject surface area of the body. In the preferred embodiment, there is a third surface which is orientable relative to the first surface so that ultrasonic waves emitted by an ultrasonic transducer in contact with the third surface generate surface waves which travel on the subject surface area of the body when the first surface is an acoustic contact with the subject surface area of the body.

  9. Surface acoustic wave unidirectional transducers for quantum applications

    NASA Astrophysics Data System (ADS)

    Ekström, Maria K.; Aref, Thomas; Runeson, Johan; Björck, Johan; Boström, Isac; Delsing, Per

    2017-02-01

    The conversion efficiency of electric microwave signals into surface acoustic waves in different types of superconducting transducers is studied with the aim of quantum applications. We compare delay lines containing either conventional symmetric transducers (IDTs) or unidirectional transducers (UDTs) at 2.3 GHz and 10 mK. The UDT delay lines improve the insertion loss with 4.7 dB and a directivity of 22 dB is found for each UDT, indicating that 99.4% of the acoustic power goes in the desired direction. The power lost in the undesired direction accounts for more than 90% of the total loss in IDT delay lines, but only ˜3% of the total loss in the floating electrode unidirectional transducer delay lines.

  10. Piezoelectric transducer design for a miniaturized injectable acoustic transmitter

    NASA Astrophysics Data System (ADS)

    Li, H.; Jung, K. W.; Deng, Z. D.

    2015-11-01

    Implantable acoustic transmitters have been used in the last 20 years to track fish movement for fish survival and migration behavior studies. However, the relatively large weights and sizes of commercial transmitters limit the populations of studied fish. The surgical implantation procedures may also affect fish adversely and incur a significant amount of labor. Therefore, a smaller, lighter, and injectable transmitter was needed, and similar or better acoustic performance and service life over those provided by existing commercial transmitters was desired. To develop such a small transmitter, a number of technical challenges, including design optimization of the piezoelectric transducer, needed to be overcome. Our efforts to optimize the transducer focused on improving the average source level in the 180° range in which the signal was not blocked by the transmitter body. We found that a novel off-center tube transducer improved the average source level by 1.5 dB. An acoustic reflector attached to the back of the transducer also improved the source level by 1.3 dB. We found that too small a gap between the transducer and the component placed behind it resulted in distortion of the beam pattern. Lastly, a tuning inductor in series with the transducer was used to help optimize the source level. The findings and techniques developed in this work contributed to the successful development and implementation of a new injectable transmitter.

  11. MEMS acoustic emission transducers designed with high aspect ratio geometry

    NASA Astrophysics Data System (ADS)

    Saboonchi, H.; Ozevin, D.

    2013-09-01

    In this paper, micro-electro-mechanic systems (MEMS) acoustic emission (AE) transducers are manufactured using an electroplating technique. The transducers use a capacitance change as their transduction principle, and are tuned to the range 50-200 kHz. Through the electroplating technique, a thick metal layer (20 μm nickel + 0.5 μm gold) is used to form a freely moving microstructure layer. The presence of the gold layer reduces the potential corrosion of the nickel layer. A dielectric layer is deposited between the two electrodes, thus preventing the stiction phenomenon. The transducers have a measured quality factor in the range 15-30 at atmospheric pressure and are functional without vacuum packaging. The transducers are characterized using electrical and mechanical tests to identify the capacitance, resonance frequency and damping. Ultrasonic wave generation using a Q-switched laser shows the directivity of the transducer sensitivity. The comparison of the MEMS transducers with similar frequency piezoelectric transducers shows that the MEMS AE transducers have better response characteristics and sensitivity at the resonance frequency and well-defined waveform signatures (rise time and decay time) due to pure resonance behavior in the out-of-plane direction. The transducers are sensitive to a unique wave direction, which can be utilized to increase the accuracy of source localization by selecting the correct wave velocity at the structures.

  12. An ultrasonic transducer array for velocity measurement in underwater vehicles.

    PubMed

    Boltryk, P; Hill, M; Keary, A; Phillips, B; Robinson, H; White, P

    2004-04-01

    A correlation velocity log (CVL) is an ultrasonic navigation aid for marine applications, in which velocity is estimated using an acoustic transmitter and a receiver array. CVLs offer advantages over Doppler velocity logs (DVLs) in many autonomous underwater vehicle (AUV) applications, since they can achieve high accuracy at low velocities even during hover manoeuvres. DVLs require narrow beam widths, whilst ideal CVL transmitters have wide beam widths. This gives CVLs the potential to use lower frequencies thus permitting operation in deeper water, reducing power requirements for the same depth, or allowing the use of smaller transducers. Moving patterns in the wavefronts across a 2D receiver array are detected by calculating correlation coefficients between bottom reflections from consecutive transmitted pulses, across all combinations of receiver pairings. The position of the peak correlation value, on a surface representing receiver-pairing separations, is proportional to the vessel's displacement between pulses. A CVL aimed primarily for AUVs has been developed. Its acoustical and signal processing design has been optimised through sea trials and computer modelling of the sound field. This computer model is also used to predict how the distribution of the correlation coefficients varies with distance from the peak position. Current work seeks to increase the resolution of the peak estimate using surface fitting methods. Numerical simulations suggest that peak estimation methods significantly improve system precision when compared with simply identifying the position of the maximum correlation coefficient in the dataset. The peak position may be estimated by fitting a quadratic model to the measured data using least squares or maximum likelihood estimation. Alternatively, radial basis functions and Gaussian processes successfully predict the peak position despite variation between individual correlation datasets. This paper summarises the CVL's main acoustical

  13. Capacitive Ultrasonic Transducer Development for Acoustic Anemometry on Mars

    NASA Astrophysics Data System (ADS)

    Leonard-Pugh, Eurion; Wilson, C.; Calcutt, S.; Davis, L.

    2012-10-01

    Previous Mars missions have used either mechanical or thermal anemometry techniques. The moving parts of mechanical anemometers are prone to damage during launch and landing and their inertia makes them unsuited for turbulence studies. Thermal anemometers have been used successfully on Mars but are difficult to calibrate and susceptible to varying ambient temperatures. In ultrasonic anemometry, wind speed and sound speed are calculated from two-way time-of-flight measurements between pairs of transducers; three pairs of transducers are used to return a 3-D wind vector. These high-frequency measurements are highly reliable and immune from drift. Piezo-electric ultrasonic anemometers are widely used on Earth due to their full-range accuracy and high measurement frequency. However these transducers have high acoustic impedances and would not work on Mars. We are developing low-mass capacitive ultrasonic transducers for Mars missions which have significantly lower acoustic impedances and would therefore have a much stronger coupling to the Martian atmosphere. These transducers consist of a metallised polymer film pulled taught against a machined metal backplane. The film is drawn towards the backplane by a DC bias voltage. A varying signal is used on top of the DC bias to oscillate the film; generating acoustic waves. This poster will look at the operation of such sensors and the developments necessary to operate the devices under Martian conditions. Transducer performance is determined primarily by two elements; the front film and the backplane. The sensitivity of the transducer is affected by the thickness of the front film; as well as the diameter, curvature and roughness of the metal backplane. We present data on the performance of the sensors and instrument design considerations including signal shapes and transducer arrangements.

  14. Manipulation of Liquids Using Phased Array Generation of Acoustic Radiation Pressure

    NASA Technical Reports Server (NTRS)

    Oeftering, Richard C. (Inventor)

    2000-01-01

    A phased array of piezoelectric transducers is used to control and manipulate contained as well as uncontained fluids in space and earth applications. The transducers in the phased array are individually activated while being commonly controlled to produce acoustic radiation pressure and acoustic streaming. The phased array is activated to produce a single pulse, a pulse burst or a continuous pulse to agitate, segregate or manipulate liquids and gases. The phased array generated acoustic radiation pressure is also useful in manipulating a drop, a bubble or other object immersed in a liquid. The transducers can be arranged in any number of layouts including linear single or multi- dimensional, space curved and annular arrays. The individual transducers in the array are activated by a controller, preferably driven by a computer.

  15. Liquid-membrane coupling response of submersible electrostatic acoustic transducer

    NASA Technical Reports Server (NTRS)

    Cantrell, John H.; Yost, William T.

    1989-01-01

    A mathematical model was developed for the liquid-membrane coupling response of the submersible electrostatic acoustic transducer (ESAT) described by Cantrell et al. (1979). The model accounts for the ESAT's rolloff response and predicts the essential features of the ESAT frequency response. Model predictions were found to agree well with measurements taken over the frequency range from 1 to 11 MHz.

  16. Characterization of HIFU transducers designed for sonochemistry application: Acoustic streaming.

    PubMed

    Hallez, L; Touyeras, F; Hihn, J-Y; Bailly, Y

    2016-03-01

    Cavitation distribution in a High Intensity Focused Ultrasound sonoreactors (HIFU) has been extensively described in the recent literature, including quantification by an optical method (Sonochemiluminescence SCL). The present paper provides complementary measurements through the study of acoustic streaming generated by the same kind of HIFU transducers. To this end, results of mass transfer measurements (electrodiffusional method) were compared to optical method ones (Particle Image Velocimetry). This last one was used in various configurations: with or without an electrode in the acoustic field in order to have the same perturbation of the wave propagation. Results show that the maximum velocity is not located at the focal but shifted near the transducer, and that this shift is greater for high powers. The two cavitation modes (stationary and moving bubbles) are greatly affect the hydrodynamic behavior of our sonoreactors: acoustic streaming and the fluid generated by bubble motion. The results obtained by electrochemical measurements show the same low hydrodynamic activity in the transducer vicinity, the same shift of the active focal toward the transducer, and the same absence of activity in the post-focal axial zone. The comparison with theoretical Eckart's velocities (acoustic streaming in non-cavitating media) confirms a very high activity at the "sonochemical focal", accounted for by wave distortion, which induced greater absorption coefficients. Moreover, the equivalent liquid velocities are one order of magnitude larger than the ones measured by PIV, confirming the enhancement of mass transfer by bubbles oscillation and collapse close to the surface, rather than from a pure streaming effect.

  17. Finite element analysis for acoustic characteristics of a magnetostrictive transducer

    NASA Astrophysics Data System (ADS)

    Kim, Jaehwan; Jung, Eunmi

    2005-12-01

    This paper presents a finite element analysis for a magnetostrictive transducer by taking into account the nonlinear behavior of the magnetostrictive material and fluid interaction. A finite element formulation is derived for the coupling of magnetostrictive and elastic materials based upon a separated magnetic and displacement field calculation and a curve fitting technique of material properties. The fluid and structure coupled problem is taken into account based upon pressure and velocity potential fields formulation. Infinite wave envelope elements are introduced at an artificial boundary to deal with the infinite fluid domain. A finite element code for the analysis of a magnetostrictive transducer is developed. A magnetostrictive tonpilz transducer is taken as an example and verification for the developed program is made by comparing with a commercial code. The acoustic characteristics of the magnetostrictive tonpilz transducer are calculated in terms of radiation pattern and transmitted current response.

  18. Designing of Phased Array Transducers for Industrial Applications

    NASA Astrophysics Data System (ADS)

    Dumas, Ph.; Poguet, J.; Fleury, G.

    2004-02-01

    By increasing inspection speed, and deflection capabilities of the transducers, Phased-array technology has proved its interest to face new ∂ NDT challenges, and is becoming more and more popular in the main industrial fields of activities. This paper describes the main effects of specifications on transducer performances, and explains how to defined them. The second part speaks about the manufacturing step, showing the influence of component choice on performances. Several Phased-array applications examples illustrating these considerations will be presented.

  19. Investigation of a Phase-Locked Loop Receiver for a Parametric Acoustic Receiving Array.

    DTIC Science & Technology

    1980-05-05

    KEY WORDS (Continue on reverse side if necesary and Identify by block number, PARRAY Nonlinear Acoustics Parametric Reception Phase-Locked Loop...loop (PLL) demodulator considered for use with the parametric acoustic receiving array ( PARRAY ). The PARRAY as an acoustic sensor is explained and the...effects of longitudinal transducer motion on the PARRAY are described. This transducer vibration produces intermodulation products between the desired

  20. MEMS Based Acoustic Array

    NASA Technical Reports Server (NTRS)

    Sheplak, Mark (Inventor); Nishida, Toshikaza (Inventor); Humphreys, William M. (Inventor); Arnold, David P. (Inventor)

    2006-01-01

    Embodiments of the present invention described and shown in the specification aid drawings include a combination responsive to an acoustic wave that can be utilized as a dynamic pressure sensor. In one embodiment of the present invention, the combination has a substrate having a first surface and an opposite second surface, a microphone positioned on the first surface of the substrate and having an input and a first output and a second output, wherein the input receives a biased voltage, and the microphone generates an output signal responsive to the acoustic wave between the first output and the second output. The combination further has an amplifier positioned on the first surface of the substrate and having a first input and a second input and an output, wherein the first input of the amplifier is electrically coupled to the first output of the microphone and the second input of the amplifier is electrically coupled to the second output of the microphone for receiving the output sinual from the microphone. The amplifier is spaced from the microphone with a separation smaller than 0.5 mm.

  1. Bonding and impedance matching of acoustic transducers using silver epoxy.

    PubMed

    Son, Kyu Tak; Lee, Chin C

    2012-04-01

    Silver epoxy was selected to bond transducer plates on glass substrates. The properties and thickness of the bonding medium affect the electrical input impedance of the transducer. Thus, the thickness of the silver epoxy bonding layer was used as a design parameter to optimize the structure for the transducer input impedance to match the 50 Ω output impedance of most radio frequency (RF) generators. Simulation and experimental results show that nearly perfect matching is achieved without using any matching circuit. At the matching condition, the transducer operates at a frequency band a little bit below the half-wavelength resonant frequency of the piezoelectric plate. In experiments, lead titanate (PT) piezoelectric plates were employed. Both full-size, 11.5 mm × 2 mm × 0.4 mm, and half-size, 5.75 mm × 2 mm × 0.4 mm, can be well matched using optimal silver epoxy thickness. The transducer assemblies demonstrate high efficiency. The conversion loss from electrical power to acoustic power in soda-lime glass is 4.3 dB. This loss is low considering the fact that the transducers operate at off-resonance by 12%. With proper choice of silver epoxy thickness, the transducer can be matched at the fundamental, the 3rd and 5th harmonic frequencies. This leads to the possible realization of triple-band transducers. Reliability was assessed with thermal cycling test according to Telcordia GR-468-Core recommendation. Of the 30 transducer assemblies tested, none broke until 2900 cycles and 27 have sustained beyond 4050 cycles.

  2. Measurement of the total acoustic output power of HITU transducers

    NASA Astrophysics Data System (ADS)

    Jenderka, Klaus-V.; Beissner, Klaus

    2010-03-01

    The majority of High Intensity Therapeutic Ultrasound (HITU) applications use strongly focused ultrasound fields generating very high local intensities in the focal region. The metrology of these high-power ultrasound fields is a challenge for the established measurement procedures and devices. This paper describes the results of measurements by means of the radiation force for a total acoustic output power up to 400 W at 1.5 MHz and up to 200 W at 2.45 MHz. For this purpose, a radiation force balance set-up was adapted for the determination of large acoustic output powers. For two types of HITU transducers, the relationship between the total acoustic output power and the applied net electrical power was determined at close transducer-target distance. Further, dependence of the measured electro-acoustic radiation conductance on the transducer-target distance was investigated at reduced power levels, considering the appearance of focal anomalies. Concluding, a list of the main uncertainty contributions, and an estimate of the uncertainty for the used radiation force balance set-up is given for measurements at high power levels.

  3. Large Aperture Acoustic Array

    DTIC Science & Technology

    1989-07-01

    1730 GMT. Several propagation models, encompassing normal mode, parabolic equation, fast field and eigenray approaches, were compared using the array... eigenray ) was chosen as the prediction vehicle due to its robust simplicity in this application where the amplitude is controlled by two dominant paths...to the program as a slant range assuming a homogeneous medium with a sound speed of 1500 in/s. This is not normally the case, and for the Septeller

  4. Characterization of high intensity focused ultrasound transducers using acoustic streaming.

    PubMed

    Hariharan, Prasanna; Myers, Matthew R; Robinson, Ronald A; Maruvada, Subha H; Sliwa, Jack; Banerjee, Rupak K

    2008-03-01

    A new approach for characterizing high intensity focused ultrasound (HIFU) transducers is presented. The technique is based upon the acoustic streaming field generated by absorption of the HIFU beam in a liquid medium. The streaming field is quantified using digital particle image velocimetry, and a numerical algorithm is employed to compute the acoustic intensity field giving rise to the observed streaming field. The method as presented here is applicable to moderate intensity regimes, above the intensities which may be damaging to conventional hydrophones, but below the levels where nonlinear propagation effects are appreciable. Intensity fields and acoustic powers predicted using the streaming method were found to agree within 10% with measurements obtained using hydrophones and radiation force balances. Besides acoustic intensity fields, the streaming technique may be used to determine other important HIFU parameters, such as beam tilt angle or absorption of the propagation medium.

  5. TRANSDUCER GENERATED ARRAYS OF ROBOTIC NANO-ARMS.

    PubMed

    Dolzhenko, Egor; Jonoska, Nataša; Seeman, Nadrian C

    2010-06-01

    We consider sets of two-dimensional arrays, called here transducer generated languages, obtained by iterative applications of transducers (finite state automata with output). Each transducer generates a set of blocks of symbols such that the bottom row of a block is an input string accepted by the transducer and, by iterative application of the transducer, each row of the block is an output of the transducer on the preceding row. We show how these arrays can be implemented through molecular assembly of triple crossover DNA molecules. Such assembly could serve as a scaffold for arranging molecular robotic arms capable for simultaneous movements. We observe that transducer generated languages define a class of languages which is a proper subclass of recognizable picture languages, but it containing the class of all factorial local two-dimensional languages. By taking the average growth rate of the number of blocks in the language as a measure of its complexity, we further observe that arrays with high complexity patterns can be generated in this way.

  6. New Design of the Kerfs of an Ultrasonic Two-Dimensional Array Transducer to Minimize Cross-Talk

    NASA Astrophysics Data System (ADS)

    Lee, Wonseok; Roh, Yongrae

    2010-07-01

    The transducer under consideration is a planar two-dimensional (2D) array transducer working at 3.5 MHz. The transducer is composed of 17×17 piezoelectric elements separated by major and minor kerfs. Through finite element analyses (FEA), the performance of the 2D array transducer was investigated in relation to the acoustic impedance and structure of the kerfs. Based on the analysis results, three new types of kerfs were proposed to reduce the cross-talk. Detailed material properties and structures of the new kerfs were determined to provide the lowest cross-talk level and highest pulse-echo sensitivity while preserving a desired acceptance angle at the center frequency of 3.5 MHz. The results in this work can contribute to developing a 2D array transducer which would result in having a higher signal-to-noise level, which in turn will lead to better ultrasonic imaging.

  7. New Design of the Kerfs of an Ultrasonic Two-Dimensional Array Transducer to Minimize Cross-Talk

    NASA Astrophysics Data System (ADS)

    Wonseok Lee,; Yongrae Roh,

    2010-07-01

    The transducer under consideration is a planar two-dimensional (2D) array transducer working at 3.5 MHz. The transducer is composed of 17× 17 piezoelectric elements separated by major and minor kerfs. Through finite element analyses (FEA), the performance of the 2D array transducer was investigated in relation to the acoustic impedance and structure of the kerfs. Based on the analysis results, three new types of kerfs were proposed to reduce the cross-talk. Detailed material properties and structures of the new kerfs were determined to provide the lowest cross-talk level and highest pulse-echo sensitivity while preserving a desired acceptance angle at the center frequency of 3.5 MHz. The results in this work can contribute to developing a 2D array transducer which would result in having a higher signal-to-noise level, which in turn will lead to better ultrasonic imaging.

  8. Acoustic characterization of multi-element, dual-frequency transducers for high-intensity contact ultrasound therapy

    NASA Astrophysics Data System (ADS)

    Burtnyk, M.; N'Djin, W. A.; Persaud, L.; Bronskill, M.; Chopra, R.

    2012-10-01

    High-intensity contact ultrasound therapy can generate precise volumes of thermal damage in deep-seated tissue using interstitial or intracavitary devices. Multi-element, dual-frequency transducers offer increased spatial control of the heating pattern by enabling modulation of ultrasound power and frequency along the device. The performance and acoustic coupling between elements of simple, multi-element, dual-frequency transducers was measured. Transducer arrays were fabricated by cutting halfway through a rectangular plate of PZT, creating individual 4 × 5 mm segments with fundamental frequency (4.1 MHz) and third harmonic (13.3 MHz). Coupling between elements was investigated using a scanning laser vibrometer to measure transducer surface displacements at each frequency and different acoustic powers (0, 10, 20 W/cm2). The measured acoustic power was proportional to the input electrical power with no hysteresis and efficiencies >50% at both frequencies. Maximum transducer surface displacements were observed near element centers, reducing to ˜1/3-maximum near edges. The power and frequency of neighboring transducer segments had little impact on an element's output. In the worst case, an element operating at 4.1 MHz and 20 W/cm2 coupled only 1.5 W/cm2 to its immediate neighboring element. Multi-element, dual-frequency transducers were successfully constructed using a simple dicing method. Coupling between elements was minor, therefore the power and frequency of each transducer element could be considered independent.

  9. Prediction of surface temperature rise of ultrasonic diagnostic array transducers.

    PubMed

    Ohm, Won-Suk; Kim, Jeong Hwan; Kim, Eun Chul

    2008-01-01

    Temperature rise at the surface of an ultrasound transducer used for diagnostic imaging is an important factor in patient safety and regulatory compliance. This paper presents a semianalytical model that is derived from first principles of heat transfer and is simple enough to be implemented in a commercial ultrasound scanner for real-time forecasting of transducer surface temperature. For modeling purposes, one-dimensional array transducers radiating into still air are considered. Promising experimental verification data are shown and practical implementation benefits of the model for thermal design and management of ultrasonic array transducers are discussed. In particular, the reduction in the amount of thermal characterization data required, compared to empirical models, shows promise.

  10. Two-dimensional optoacoustic tomography: transducer array and image reconstruction algorithm

    NASA Astrophysics Data System (ADS)

    Oraevsky, Alexander A.; Andreev, Valeri A.; Karabutov, Alexander A.; Esenaliev, Rinat O.

    1999-06-01

    Opto-acoustic tomography (OAT) utilizes laser pulses to create acoustic sources in tissue and wide-band detection of pressure profiles for the image reconstruction. A new laser optoacoustic imaging system (LOIS) for breast cancer detection and two-dimensional visualization is described. A Q-switched Nd:YAG laser was used for generation of opto-acoustic profiles in phantoms and tissues in vitro. Acoustic pulses were detected by a 12 element linear array of piezoelectric transducers. Each transducer was made of 0.5-mm thick PVDF slabs with dimensions of 4.3 mm X 12.5 mm. Signal-to-noise ratio was calculated and the sensitivity of optoacoustic system was evaluated. The axial (in-depth) resolution and the lateral resolution of the system were determined. The axial resolution of the receiving array was limited by its frequency band and was estimated to be approximately 1 mm. The lateral resolution was about 2.5 times the lateral dimension of the 'tumor' and defined by the finite aperture of the array and relatively large size of the single transducer. The time of full data acquisition was limited by the time allowed in clinical procedure of about 5 - 10 minutes. The procedure of signal processing is described. It includes high-pass signal filtering, compensation for acoustic diffraction, detection of the irradiated surface position and rejection of the reverberating signal. Radial back-projection algorithm for image reconstruction was developed and included in the computer code. Two-dimensional opto-acoustic images of simulated spheres and objects inside tissue phantoms are presented. The contrast of these images and limits of detection and localization of deeply embedded tumors are discussed.

  11. A novel method for fabrication of high-frequency (>100 MHz) ZnO ultrasonic array transducers on silicon substrates

    NASA Astrophysics Data System (ADS)

    Xu, W. J.; Ji, X. M.; Gao, J. M.; Carlier, J.; Zhang, J. Y.; Nongaillard, B.; Huang, Y. P.; Piwakowski, B.

    2012-05-01

    High-frequency ultrasonic transducer arrays are essential for efficient imaging in clinical analysis and nondestructive evaluation (NDE). However, the fabrication of piezoelectric transducers is really a great challenge due to the small features in an array. A novel technique is presented to fabricate thick-film ZnO ultrasonic array transducers. Piezoelectric elements are formed by sputtering thick-film ZnO onto etched features of a silicon substrate so that the difficult etching process for ZnO films is avoided by etching silicon. This process is simple and efficient. A 13-μm-pitch ZnO sandwich array is achieved with a thickness of 8 μm for 300 MHz. Finite element method is employed to simulate the wave propagation in water based on this new transducer configuration. The acoustic field results indicate this configuration has an acceptable performance. A potential application is proposed based on integration with microfluidics.

  12. Adaptation of PWAS transducers to acoustic emission sensors

    NASA Astrophysics Data System (ADS)

    Yu, Lingyu; Momeni, Sepandarmaz; Godinez, Valery; Giurgiutiu, Victor

    2011-04-01

    Piezoelectric wafer active sensors (PWAS) are non-intrusive transducers that can convert mechanical energy into electrical energy, and vice versa. They are well known for their dual use as either actuators or sensors. Though PWAS has shown great potential for active sensing, its capability for acoustic emission (AE) detection has not yet been exploited. In the reported work, we have explored the implementation of PWAS transducers for both passive (AE sensors) and active (in-situ ultrasonic transducers) sensing using a single PWAS network. The objective of the work presented in this paper is to adapt PWAS as AE sensors and compare it to the commercially available AE transducers such as PAC R15. An experiment has been designed to show how PWAS can be used for AE detection and the results were compared to a standard AE sensor, PAC R15I. Tests on compact tension specimens have also been conducted to show PWAS capability to pick up AE events during fatigue loading. PWAS field installation technology has been tested with packaging similar to that used for traditional strain gauges. The performance of packaged PWAS has been compared with that of conventional AE transducers R15I. We have found that PWAS not only can detect the presence of AE events but also can provide a wide frequency bandwidth. At this stage, PWAS underperforms the commercial AE sensors. To make PWAS ready for field test, signal to noise ratio needs to be significantly improved.

  13. Piezoelectric Micromachined Ultrasound Transducer (PMUT) Arrays for Integrated Sensing, Actuation and Imaging

    PubMed Central

    Qiu, Yongqiang; Gigliotti, James V.; Wallace, Margeaux; Griggio, Flavio; Demore, Christine E. M.; Cochran, Sandy; Trolier-McKinstry, Susan

    2015-01-01

    Many applications of ultrasound for sensing, actuation and imaging require miniaturized and low power transducers and transducer arrays integrated with electronic systems. Piezoelectric micromachined ultrasound transducers (PMUTs), diaphragm-like thin film flexural transducers typically formed on silicon substrates, are a potential solution for integrated transducer arrays. This paper presents an overview of the current development status of PMUTs and a discussion of their suitability for miniaturized and integrated devices. The thin film piezoelectric materials required to functionalize these devices are discussed, followed by the microfabrication techniques used to create PMUT elements and the constraints the fabrication imposes on device design. Approaches for electrical interconnection and integration with on-chip electronics are discussed. Electrical and acoustic measurements from fabricated PMUT arrays with up to 320 diaphragm elements are presented. The PMUTs are shown to be broadband devices with an operating frequency which is tunable by tailoring the lateral dimensions of the flexural membrane or the thicknesses of the constituent layers. Finally, the outlook for future development of PMUT technology and the potential applications made feasible by integrated PMUT devices are discussed. PMID:25855038

  14. A novel serrated columnar phased array ultrasonic transducer

    NASA Astrophysics Data System (ADS)

    Zou, Cheng; Sun, Zhenguo; Cai, Dong; Song, Hongwei; Chen, Qiang

    2016-02-01

    Traditionally, wedges are required to generate transverse waves in a solid specimen and mechanical rotation device is needed for interrogation of a specimen with a hollow bore, such as high speed railway locomotive axles, turbine rotors, etc. In order to eliminate the mechanical rotation process, a novel array pattern of phased array ultrasonic transducers named as serrated columnar phased array ultrasonic transducer (SCPAUT) is designed. The elementary transducers are planar rectangular, located on the outside surface of a cylinder. This layout is aimed to generate electrically rotating transverse waveforms so as to inspect the longitudinal cracks on the outside surface of a specimen which has a hollow bore at the center, such as the high speed railway locomotive axles. The general geometry of the SCPAUT and the inspection system are illustrated. A FEM model and mockup experiment has been carried out. The experiment results are in good agreement with the FEM simulation results.

  15. Design and characterization of dual-curvature 1.5-dimensional high-intensity focused ultrasound phased-array transducer.

    PubMed

    Chen, Gin-Shin; Lin, Che-Yu; Jeong, Jong Seob; Cannata, Jonathan M; Lin, Win-Li; Chang, Hsu; Shung, K Kirk

    2012-01-01

    A dual-curvature focused ultrasound phased-array transducer with a symmetric control has been developed for noninvasive ablative treatment of tumors. The 1.5-D array was constructed in-house and the electro-acoustic conversion efficiency was measured to be approximately 65%. In vitro experiments demonstrated that the array uses 256 independent elements to achieve 2-D wide-range high-intensity electronic focusing.

  16. Acoustic backscatter and effective scatterer size estimates using a 2D CMUT transducer

    NASA Astrophysics Data System (ADS)

    Liu, W.; Zagzebski, J. A.; Hall, T. J.; Madsen, E. L.; Varghese, T.; Kliewer, M. A.; Panda, S.; Lowery, C.; Barnes, S.

    2008-08-01

    Compared to conventional piezoelectric transducers, new capacitive microfabricated ultrasonic transducer (CMUT) technology is expected to offer a broader bandwidth, higher resolution and advanced 3D/4D imaging inherent in a 2D array. For ultrasound scatterer size imaging, a broader frequency range provides more information on frequency-dependent backscatter, and therefore, generally more accurate size estimates. Elevational compounding, which can significantly reduce the large statistical fluctuations associated with parametric imaging, becomes readily available with a 2D array. In this work, we show phantom and in vivo breast tumor scatterer size image results using a prototype 2D CMUT transducer (9 MHz center frequency) attached to a clinical scanner. A uniform phantom with two 1 cm diameter spherical inclusions of slightly smaller scatterer size was submerged in oil and scanned by both the 2D CMUT and a conventional piezoelectric linear array transducer. The attenuation and scatterer sizes of the sample were estimated using a reference phantom method. RF correlation analysis was performed using the data acquired by both transducers. The 2D CMUT results indicate that at a 2 cm depth (near the transmit focus for both transducers) the correlation coefficient reduced to less than 1/e for 0.2 mm lateral or 0.25 mm elevational separation between acoustic scanlines. For the conventional array this level of decorrelation requires a 0.3 mm lateral or 0.75 mm elevational translation. Angular and/or elevational compounding is used to reduce the variance of scatterer size estimates. The 2D array transducer acquired RF signals from 140 planes over a 2.8 cm elevational direction. If no elevational compounding is used, the fractional standard deviation of the size estimates is about 12% of the mean size estimate for both the spherical inclusion and the background. Elevational compounding of 11 adjacent planes reduces it to 7% for both media. Using an experimentally estimated

  17. Acoustic backscatter and effective scatterer size estimates using a 2D CMUT transducer

    PubMed Central

    Liu, W; Zagzebski, J A; Hall, T J; Madsen, E L; Varghese, T; Kliewer, M A; Panda, S; Lowery, C; Barnes, S

    2009-01-01

    Compared to conventional piezoelectric transducers, new capacitive microfabricated ultrasonic transducer (CMUT) technology is expected to offer a broader bandwidth, higher resolution and advanced 3D/4D imaging inherent in a 2D array. For ultrasound scatterer size imaging, a broader frequency range provides more information on frequency-dependent backscatter, and therefore, generally more accurate size estimates. Elevational compounding, which can significantly reduce the large statistical fluctuations associated with parametric imaging, becomes readily available with a 2D array. In this work, we show phantom and in vivo breast tumor scatterer size image results using a prototype 2D CMUT transducer (9 MHz center frequency) attached to a clinical scanner. A uniform phantom with two 1 cm diameter spherical inclusions of slightly smaller scatterer size was submerged in oil and scanned by both the 2D CMUT and a conventional piezoelectric linear array transducer. The attenuation and scatterer sizes of the sample were estimated using a reference phantom method. RF correlation analysis was performed using the data acquired by both transducers. The 2D CMUT results indicate that at a 2 cm depth (near the transmit focus for both transducers) the correlation coefficient reduced to less than 1/e for 0.2 mm lateral or 0.25 mm elevational separation between acoustic scanlines. For the conventional array this level of decorrelation requires a 0.3 mm lateral or 0.75 mm elevational translation. Angular and/or elevational compounding is used to reduce the variance of scatterer size estimates. The 2D array transducer acquired RF signals from 140 planes over a 2.8 cm elevational direction. If no elevational compounding is used, the fractional standard deviation of the size estimates is about 12% of the mean size estimate for both the spherical inclusion and the background. Elevational compounding of 11 adjacent planes reduces it to 7% for both media. Using an experimentally estimated

  18. Design and fabrication of a 40-MHz annular array transducer

    PubMed Central

    Ketterling, Jeffrey A.; Lizzi, Frederic L.; Aristizábal, Orlando; Turnbull, Daniel H.

    2006-01-01

    This paper investigates the feasibility of fabricating a 5-ring, focused annular array transducer operating at 40 MHz. The active piezoelectric material of the transducer was a 9-μm thick polyvinylidene fluoride (PVDF) film. One side of the PVDF was metallized with gold and forms the ground plane of the transducer. The array pattern of the transducer and electrical traces to each annulus were formed on a copper-clad polyimide film. The PVDF and polyimide were bonded with a thin layer of epoxy, pressed into a spherically curved shape, and then back filled with epoxy. A 5-ring transducer with equal area elements and 100 μm kerfs between annuli was fabricated and tested. The transducer had a total aperture of 6 mm and a geometric focus of 12 mm. The pulse/echo response from a quartz plate located at the geometric focus, two-way insertion loss (IL), complex impedance, electrical cross-talk, and lateral beamwidth were all measured for each annulus. The complex impedance data from each element were used to perform electrical matching and the measurements were repeated. After impedance matching, fc ≈ 36 MHz and BWs ranged from 31 to 39%. The ILs for the matched annuli ranged from −28 to −38 dB. PMID:16060516

  19. A 7.5 MHz Dual-Layer Transducer Array for 3-D Rectilinear Imaging

    PubMed Central

    Chen, Yuling; Nguyen, Man; Yen, Jesse T.

    2011-01-01

    The difficulties associated with fabrication and interconnection have limited the development of 2-D ultrasound transducer arrays with a large number of elements (>5000). In previous work, we described a 5 MHz center frequency PZT-P[VDF-TrFE] dual-layer transducer, which used 2 perpendicular 1-D arrays for 3-D rectilinear imaging. This design substantially reduces the channel count as well as fabrication complexity, which makes 3-D imaging more realizable. Higher frequencies (>5MHz) are more commonly used in clinical for imaging targets near transducers such as the breast, carotid, and musculoskeletal. In this paper, we present a 7.5 MHz dual-layer transducer array for 3-D rectilinear imaging. A modified acoustic stack model was designed and fabricated. PZT elements were sub-diced to eliminate lateral coupling. This sub-dicing process made the PZT into a 2–2 composite material, which could help improve transducer sensitivity and bandwidth. Full synthetic aperture 3-D data sets were acquired by interfacing the transducer with a Verasonics data acquisition system (VDAS). Offline 3-D beamforming was then performed to obtain volumes of a multi-wire phantom and a cyst phantom. The generalized coherence factor (GCF) was applied to improve the contrast of cyst images. The measured −6 dB fractional bandwidth of the transducer was 71% with a center frequency of 7.5 MHz. The measured lateral beamwidths were 0.521 mm and 0.482 mm in azimuth and elevation respectively, compared with a simulated beamwidth of 0.43 mm. PMID:21842584

  20. 7.5 MHz dual-layer transducer array for 3-D rectilinear imaging.

    PubMed

    Chen, Yuling; Nguyen, Man; Yen, Jesse T

    2011-07-01

    The difficulties associated with fabrication and interconnection have limited the development of 2-D ultrasound transducer arrays with a large number ofelements (>5000). In previous work, we described a 5 MHz center frequency PZT-P[VDF-TrFE] dual-layer transducer that used two perpendicular 1-D arrays for 3-D rectilinear imaging. This design substantially reduces the channel count as well as fabrication complexity, which makes 3-D imaging more realizable. Higher frequencies (>5 MHz) are more commonly used in clinical applications or imaging targets near transducers, such as the breast, carotid and musculoskeletal tissue. In this paper, we present a 7.5 MHz dual-layer transducer array for 3-D rectilinear imaging. A modified acoustic stack model was designed and fabricated. PZT elements were sub-diced to eliminate lateral coupling. This sub-dicing process made the PZT into a 2-2 composite material, which could help improve transducer sensitivity and bandwidth. Full synthetic-aperture 3-D data sets were acquired by interfacing the transducer with a Verasonics data-acquisition system (VDAS). Offline 3-D beamforming was then performed to obtain volumes of a multiwire phantom and a cyst phantom. The generalized coherence factor (GCF) was applied to improve the contrast of cyst images. The measured -6 dB fractional bandwidth of the transducer was 71% with a center frequency of 7.5 MHz. The measured lateral beamwidths were 0.521 mm and 0.482 mm in azimuth and elevation, respectively, compared with a simulated beamwidth of 0.43 mm.

  1. The effect of electronically steering a phased array ultrasound transducer on near-field tissue heating

    PubMed Central

    Payne, Allison; Vyas, Urvi; Todd, Nick; Bever, Joshua de; Christensen, Douglas A.; Parker, Dennis L.

    2011-01-01

    Purpose: This study presents the results obtained from both simulation and experimental techniques that show the effect of mechanically or electronically steering a phased array transducer on proximal tissue heating. Methods: The thermal response of a nine-position raster and a 16-mm diameter circle scanning trajectory executed through both electronic and mechanical scanning was evaluated in computer simulations and experimentally in a homogeneous tissue-mimicking phantom. Simulations were performed using power deposition maps obtained from the hybrid angular spectrum (HAS) method and applying a finite-difference approximation of the Pennes’ bioheat transfer equation for the experimentally used transducer and also for a fully sampled transducer to demonstrate the effect of acoustic window, ultrasound beam overlap and grating lobe clutter on near-field heating. Results: Both simulation and experimental results show that electronically steering the ultrasound beam for the two trajectories using the 256-element phased array significantly increases the thermal dose deposited in the near-field tissues when compared with the same treatment executed through mechanical steering only. In addition, the individual contributions of both beam overlap and grating lobe clutter to the near-field thermal effects were determined through comparing the simulated ultrasound beam patterns and resulting temperature fields from mechanically and electronically steered trajectories using the 256-randomized element phased array transducer to an electronically steered trajectory using a fully sampled transducer with 40 401 phase-adjusted sample points. Conclusions: Three distinctly different three distinctly different transducers were simulated to analyze the tradeoffs of selected transducer design parameters on near-field heating. Careful consideration of design tradeoffs and accurate patient treatment planning combined with thorough monitoring of the near-field tissue temperature will

  2. Ultrasonic fingerprinting by phased array transducer

    NASA Astrophysics Data System (ADS)

    Sednev, D.; Kataeva, O.; Abramets, V.; Pushenko, P.; Tverdokhlebova, T.

    2016-06-01

    Increasing quantity of spent nuclear fuel that must be under national and international control requires a novel approach to safeguard techniques and equipment. One of the proposed approaches is utilize intrinsic features of casks with spent fuel. In this article an application of a phased array ultrasonic method is considered. This study describes an experimental results on ultrasonic fingerprinting of austenitic steel seam weld.

  3. A new electromagnetic acoustic transducer design for generating torsional guided wave modes for pipe inspections

    NASA Astrophysics Data System (ADS)

    Hill, Samuel; Dixon, Steve; Sri Harsha Reddy, K.; Rajagopal, Prabhu; Balasubramaniam, Krishnan

    2017-02-01

    Guided waves inspection is a well-established method for the long-range ultrasonic inspection of pipes. Guided waves, used in a pulse-echo arrangement, can inspect a large range of the pipe from a single point as the pipe structure carries the waves over a large distance due to the relatively low attenuation of the wave modes. However, the complexity of the dispersion characteristics of these pipe guided wave modes are well known, and can lead to diffculty interpreting the obtained results. The torsional family of guided wave modes are generally considered to have much simpler dispersion characteristics; especially the fundamental T(0,1) mode, which is nominally non-dispersive, making it particularly useful for guided wave inspection. Torsional waves have been generated by a circumferential ring of transducers to approximate an axi-symmetric load to excite this T(0, 1) mode. Presented here is a new design of Electromagnetic Acoustic Transducer (EMAT) that can generate a T(0, 1) as a single transducer, rather than a circumferential array of transducers that all need to be excited in order to generate an axisymmetric force. The EMAT consists of a periodic permanent magnet array and a single meander coil, meaning that the excitation of the torsional mode is greatly simplified. The design parameters of this new EMAT are explored, and the ability to detect notch defects on a pipe is demonstrated.

  4. A state feedback electro-acoustic transducer for active control of acoustic impedance.

    PubMed

    Samejima, Toshiya

    2003-03-01

    In this paper, a new control system in which the acoustic impedance of an electro-acoustic transducer diaphragm can be actively varied by modifying design parameters is presented and its effectiveness is theoretically investigated. The proposed control system is based on a state-space description of the control system derived from an electrical equivalent circuit of an electro-acoustic transducer to which a differentiating circuit is connected, and is designed using modem control theory. The optimal quadratic regulator is used in the control system design, with its quadratic performance index formulated for producing desired acoustic impedance. Computer simulations indicate that the acoustic impedance of the diaphragm can be significantly varied over a wide frequency range that includes the range below the resonance frequency of the electro-acoustic transducer. A computer model of the proposed control system is used to illustrate its application to semi-active noise control in a duct. It is demonstrated that the proposed control system provides substantial reductions in the noise radiating from the outlet of the duct, both in the stiffness control range and in the mass control range.

  5. Double-channel, frequency-steered acoustic transducer with 2-D imaging capabilities.

    PubMed

    Baravelli, Emanuele; Senesi, Matteo; Ruzzene, Massimo; De Marchi, Luca; Speciale, Nicolò

    2011-07-01

    A frequency-steerable acoustic transducer (FSAT) is employed for imaging of damage in plates through guided wave inspection. The FSAT is a shaped array with a spatial distribution that defines a spiral in wavenumber space. Its resulting frequency-dependent directional properties allow beam steering to be performed by a single two-channel device, which can be used for the imaging of a two-dimensional half-plane. Ad hoc signal processing algorithms are developed and applied to the localization of acoustic sources and scatterers when FSAT arrays are used as part of pitch-catch and pulse-echo configurations. Localization schemes rely on the spectrogram analysis of received signals upon dispersion compensation through frequency warping and the application of the frequency-angle map characteristic of FSAT. The effectiveness of FSAT designs and associated imaging schemes are demonstrated through numerical simulations and experiments. Preliminary experimental validation is performed by forming a discrete array through the points of the measurement grid of a scanning laser Doppler vibrometer. The presented results demonstrate the frequency-dependent directionality of the spiral FSAT and suggest its application for frequency-selective acoustic sensors, for the localization of broadband acoustic events, or for the directional generation of Lamb waves for active interrogation of structural health.

  6. Tunable optical lens array using viscoelastic material and acoustic radiation force

    SciTech Connect

    Koyama, Daisuke Kashihara, Yuta; Matsukawa, Mami; Hatanaka, Megumi; Nakamura, Kentaro

    2015-10-28

    A movable optical lens array that uses acoustic radiation force was investigated. The lens array consists of a glass plate, two piezoelectric bimorph transducers, and a transparent viscoelastic gel film. A cylindrical lens array with a lens pitch of 4.6 mm was fabricated using the acoustic radiation force generated by the flexural vibration of the glass plate. The focal point and the positioning of the lenses can be changed using the input voltage and the driving phase difference between the two transducers, respectively.

  7. Singulation for imaging ring arrays of capacitive micromachined ultrasonic transducers.

    PubMed

    Chang, Chienliu; Moini, Azadeh; Nikoozadeh, Amin; Sarioglu, Ali Fatih; Apte, Nikhil; Zhuang, Xuefeng; Khuri-Yakub, Butrus T

    2014-10-01

    Singulation of MEMS is a critical step in the transition from wafer-level to die-level devices. As is the case for capacitive micromachined ultrasound transducer (CMUT) ring arrays, an ideal singulation must protect the fragile membranes from the processing environment while maintaining a ring array geometry. The singulation process presented in this paper involves bonding a trench-patterned CMUT wafer onto a support wafer, deep reactive ion etching (DRIE) of the trenches, separating the CMUT wafer from the support wafer and de-tethering the CMUT device from the CMUT wafer. The CMUT arrays fabricated and singulated in this process were ring-shaped arrays, with inner and outer diameters of 5 mm and 10 mm, respectively. The fabricated CMUT ring arrays demonstrate the ability of this method to successfully and safely singulate the ring arrays and is applicable to any arbitrary 2D shaped MEMS device with uspended microstructures, taking advantage of the inherent planar attributes of DRIE.

  8. Acoustic cavity transducers for the manipulation of cells and biomolecules

    NASA Astrophysics Data System (ADS)

    Tovar, Armando; Patel, Maulik; Lee, Abraham P.

    2010-02-01

    A novel fluidic actuator that is simple to fabricate, integrate, and operate is demonstrated for use within microfluidic systems. The actuator is designed around the use of trapped air bubbles in lateral cavities and the resultant acoustic streaming generated from an outside acoustic energy source. The orientation of the lateral cavities to the main microchannel is used to control the bulk fluid motion within the device. The first order flow generated by the oscillating bubble is used to develop a pumping platform that is capable of driving fluid within a chip. This pump is integrated into a recirculation immunoassay device for enhanced biomolecule binding through fluid flow for convection limited transport. The recirculation system showed an increase in binding site concentration when compared with traditional passive and flow-through methods. The acoustic cavity transducer has also been demonstrated for application in particle switching. Bursts of acoustic energy are used to generate a second order streaming pattern near the cavity interface to drive particles away or towards the cavity. The use of this switching mechanism is being extended to the application of sorting cells and other particles within a microfluidic system.

  9. Optical vibration measurements of cross coupling effects in capacitive micromachined ultrasonic transducer arrays

    NASA Astrophysics Data System (ADS)

    Leirset, Erlend; Aksnes, Astrid

    2011-05-01

    Optical vibration measurement systems are excellent tools for characterizing ultrasonic transducers. This paper presents measurements on immersed arrays of capacitive ultrasonic transducers (CMUTs) using a heterodyne interferometer. The interferometer allows measurements of vibrations from DC up to 1 GHz with a noise floor of ~1pm/√Hz. Previously CMUTs have been characterized in air. The transducer is intended for intravascular use. Therefore the CMUTs were characterized in the transparent fluids kerosene and rapeseed oil that have acoustic properties closer to blood. The optical measurements on immersed CMUTs were validated by assessing the measurement errors caused by the acousto optic effects in the fluid. When immersed there is significant cross coupling between individual CMUTs within an array. Simulations presented here indicate that this causes an acoustic wave mode that is bound to the interface between the CMUTs and the fluid. This is confirmed by measurements of the phase velocity and attenuation coefficient of this wave. The measurement results indicate that the wave exists up to a maximum frequency and that the attenuation constant increases with increasing frequency. Rapeseed oil causes a significantly larger attenuation coefficient than kerosene, which most probably is due to a considerable difference in fluid viscosities. There was a mismatch between the simulated and measured phase velocity for low frequencies. It is likely that the cause of this is coupling between the fluid CMUT interface waves and Lamb waves in the substrate of the CMUT array. Measurements performed with the heterodyne interferometer have confirmed the presence of dispersive waves bound to the surface of the transducer by directly showing their propagation along the array. The setup has also characterized the bound waves by measuring dispersion relations.

  10. Modeling the radiation of ultrasonic phased-array transducers with Gaussian beams.

    PubMed

    Huang, Ruiju; Schmerr, Lester W; Sedov, Alexander

    2008-12-01

    A new transducer beam model, called a multi-Gaussian array beam model, is developed to simulate the wave fields radiated by ultrasonic phased-array transducers. This new model overcomes the restrictions on using ordinary multi-Gaussian beam models developed for large single-element transducers in phased-array applications. It is demonstrated that this new beam model can effectively model the steered and focused beams of a linear phased-array transducer.

  11. Diffraction aperture non-ideal behaviour of air coupled transducers array elements designed for NDT.

    PubMed

    Prego Borges, J L; Montero de Espinosa, F; Salazar, J; Garcia-Alvarez, J; Chávez, J A; Turó, A; Garcia-Hernandez, M J

    2006-12-22

    Air coupled piezoelectric ultrasonic array transducers are a novel tool that could lead to interesting advances in the area of non-contact laminar material testing using Lamb wave's propagation techniques. A key issue on the development of such transducers is their efficient coupling to air media (impedance mismatch between the piezoelectric material and air is 90 dB or more). Adaptation layers are used in order to attain good matching and avoid possible serious signal degradation. However, the introduction of these matching layers modify the transducer surface behaviour and, consequently, radiation characteristics are altered, making the usual idealization criteria (of uniform surface movement) adopted for field simulation purposes inaccurate. In our system, we have a concave linear-array transducer of 64 elements (electrically coupled by pairs) working at 0.8 MHz made of PZ27 rectangular piezoceramics (15 mm x 0.3 mm) with two matching layers made of polyurethane and porous cellulose bonded on them. Experimental measurements of the acoustic aperture of single excited array elements have shown an increment on the geometrical dimensions of its active surface. A sub-millimeter vibrometer laser scan has revealed an extension of the aperture beyond the supposed physical single array element dimensions. Non-uniform symmetric apodized velocity surface vibration amplitude profile with a concave delay contour indicates the presumed existence of travelling wave phenomena over the surface of the outer array matching layer. Also, asymptotic propagation velocities around 2500 m/s and attenuation coefficient between 15 and 20 dB/mm has been determined for the travelling waves showing clear tendencies. Further comparisons between the experimental measurements of single array element field radiation diagram and simulated equivalent aperture counterpart reveal good agreement versus the ideal (uniform displaced) rectangular aperture. For this purpose an Impulse Response Method

  12. Optical metrology of AlN piezomachined ultrasonic transducer arrays and piezopumps

    NASA Astrophysics Data System (ADS)

    Mązik, Mateusz; Taha, Inas; Flores, Raquel; Janeiro, Ricardo; Viegas, Jaime

    2015-02-01

    Piezomachined ultrasonic transducer (PMUT) arrays are commonly found in applications in the field of ultrasonography and gesture recognition systems. Their application for bio and chemical sample preparation is another possibility, based on their beam steering and acoustic field manipulation capabilities. Post-fabrication non-destructive measurement of key device temporal and spatial parameters is required in order to adjust either simulation models or tune fabrication steps. In this work we report an optical testing setup for measuring the acoustic spectrum of PMUT devices and arrays, characterize maximum deflection of PMUTs and piezopumps and investigate the load effect of electrical contacts on the spatial and temporal oscillation behavior of these piezoelectric structures. Spatial parameters are evaluated with digital holography and temporal parameters with single point Doppler shift and frequency-shifted. We employ this testing setup to measure our own designed PMUT structures which were fabricated at IME-Singapore, evaluating the relative merits of the PMUT design parameters.

  13. High-Temperature Surface-Acoustic-Wave Transducer

    NASA Technical Reports Server (NTRS)

    Zhao, Xiaoliang; Tittmann, Bernhard R.

    2010-01-01

    Aircraft-engine rotating equipment usually operates at high temperature and stress. Non-invasive inspection of microcracks in those components poses a challenge for the non-destructive evaluation community. A low-profile ultrasonic guided wave sensor can detect cracks in situ. The key feature of the sensor is that it should withstand high temperatures and excite strong surface wave energy to inspect surface/subsurface cracks. As far as the innovators know at the time of this reporting, there is no existing sensor that is mounted to the rotor disks for crack inspection; the most often used technology includes fluorescent penetrant inspection or eddy-current probes for disassembled part inspection. An efficient, high-temperature, low-profile surface acoustic wave transducer design has been identified and tested for nondestructive evaluation of structures or materials. The development is a Sol-Gel bismuth titanate-based surface-acoustic-wave (SAW) sensor that can generate efficient surface acoustic waves for crack inspection. The produced sensor is very thin (submillimeter), and can generate surface waves up to 540 C. Finite element analysis of the SAW transducer design was performed to predict the sensor behavior, and experimental studies confirmed the results. One major uniqueness of the Sol-Gel bismuth titanate SAW sensor is that it is easy to implement to structures of various shapes. With a spray coating process, the sensor can be applied to surfaces of large curvatures. Second, the sensor is very thin (as a coating) and has very minimal effect on airflow or rotating equipment imbalance. Third, it can withstand temperatures up to 530 C, which is very useful for engine applications where high temperature is an issue.

  14. Effects of Non-Elevation-Focalized Linear Array Transducer on Ultrasound Plane-Wave Imaging

    PubMed Central

    Wang, Congzhi; Xiao, Yang; Xia, Jingjing; Qiu, Weibao; Zheng, Hairong

    2016-01-01

    Plane-wave ultrasound imaging (PWUS) has become an important method of ultrasound imaging in recent years as its frame rate has exceeded 10,000 frames per second, allowing ultrasound to be used for two-dimensional shear wave detection and functional brain imaging. However, compared to the traditional focusing and scanning method, PWUS images always suffer from a degradation of lateral resolution and contrast. To improve the image quality of PWUS, many different beamforming algorithms have been proposed and verified. Yet the influence of transducer structure is rarely studied. For this paper, the influence of using an acoustic lens for PWUS was evaluated. Two linear array transducers were fabricated. One was not self-focalized in the elevation direction (non-elevation-focalized transducer, NEFT); the other one was a traditional elevation-focalized transducer (EFT). An initial simulation was conducted to show the influence of elevation focusing. Then the images obtained with NEFT on a standard ultrasound imaging phantom were compared with those obtained with EFT. It was demonstrated that, in a relatively deep region, the contrast of an NEFT image is better than that of an EFT image. These results indicate that a more sophisticated design of ultrasound transducer would further improve the image quality of PWUS. PMID:27845751

  15. Signal processing for damage detection using two different array transducers.

    PubMed

    El Youbi, F; Grondel, S; Assaad, J

    2004-04-01

    This work describes an investigation into the development of a new health monitoring system for aeronautical applications. The health monitoring system is based on the emission and reception of Lamb waves by multi-element piezoelectric transducers (i.e., arrays) bonded to the structure. The emitter array consists of three different elementary bar transducers. These transducers have the same thickness and length but different widths. The receiver array has 32 same elements. This system offers the possibility to understand the nature of the generated waves and to determine the sensitivity of each mode to possible damage. It presents two principal advantages: Firstly, by exciting all elements in phase, it is possible to generate several Lamb modes in the same time. Secondly, the two-dimensional fourier transform (2D-FT) of the received signal can be easily computed. Experimental results concerning an aluminum plate with different hole sizes will be shown. The A0-, S0-, A1-, S1- and S2-modes are generated at the same time. This study shows that the A0 mode seems particularly interesting to detect flaws of this geometrical type.

  16. Laser-scanning photoacoustic microscopy with ultrasonic phased array transducer.

    PubMed

    Zheng, Fan; Zhang, Xiangyang; Chiu, Chi Tat; Zhou, Bill L; Shung, K Kirk; Zhang, Hao F; Jiao, Shuliang

    2012-11-01

    In this paper, we report our latest progress on proving the concept that ultrasonic phased array can improve the detection sensitivity and field of view (FOV) in laser-scanning photoacoustic microscopy (LS-PAM). A LS-PAM system with a one-dimensional (1D) ultrasonic phased array was built for the experiments. The 1D phased array transducer consists of 64 active elements with an overall active dimension of 3.2 mm × 2 mm. The system was tested on imaging phantom and mouse ear in vivo. Experiments showed a 15 dB increase of the signal-to-noise ratio (SNR) when beamforming was employed compared to the images acquired with each single element. The experimental results demonstrated that ultrasonic phased array can be a better candidate for LS-PAM in high sensitivity applications like ophthalmic imaging.

  17. Laser-scanning photoacoustic microscopy with ultrasonic phased array transducer

    PubMed Central

    Zheng, Fan; Zhang, Xiangyang; Chiu, Chi Tat; Zhou, Bill L.; Shung, K. Kirk; Zhang, Hao F.; Jiao, Shuliang

    2012-01-01

    In this paper, we report our latest progress on proving the concept that ultrasonic phased array can improve the detection sensitivity and field of view (FOV) in laser-scanning photoacoustic microscopy (LS-PAM). A LS-PAM system with a one-dimensional (1D) ultrasonic phased array was built for the experiments. The 1D phased array transducer consists of 64 active elements with an overall active dimension of 3.2 mm × 2 mm. The system was tested on imaging phantom and mouse ear in vivo. Experiments showed a 15 dB increase of the signal-to-noise ratio (SNR) when beamforming was employed compared to the images acquired with each single element. The experimental results demonstrated that ultrasonic phased array can be a better candidate for LS-PAM in high sensitivity applications like ophthalmic imaging. PMID:23162708

  18. Theory and operation of 2-D array piezoelectric micromachined ultrasound transducers.

    PubMed

    Dausch, David E; Castellucci, John B; Chou, Derrick R; von Ramm, Olaf T

    2008-11-01

    Piezoelectric micromachined ultrasound transducers (pMUTs) are a new approach for the construction of 2-D arrays for forward-looking 3-D intravascular (IVUS) and intracardiac (ICE) imaging. Two-dimensional pMUT test arrays containing 25 elements (5 x 5 arrays) were bulk micromachined in silicon substrates. The devices consisted of lead zirconate titanate (PZT) thin film membranes formed by deep reactive ion etching of the silicon substrate. Element widths ranged from 50 to 200 microm with pitch from 100 to 300 mum. Acoustic transmit properties were measured in de-ionized water with a calibrated hydrophone placed at a range of 20 mm. Measured transmit frequencies for the pMUT elements ranged from 4 to 13 MHz, and mode of vibration differed for the various element sizes. Element capacitance varied from 30 to over 400 pF depending on element size and PZT thickness. Smaller element sizes generally produced higher acoustic transmit output as well as higher frequency than larger elements. Thicker PZT layers also produced higher transmit output per unit electric field applied. Due to flexure mode operation above the PZT coercive voltage, transmit output increased nonlinearly with increased drive voltage. The pMUT arrays were attached directly to the Duke University T5 Phased Array Scanner to produce real-time pulse-echo B-mode images with the 2-D pMUT arrays.

  19. Dynamic response of an insonified sonar window interacting with a Tonpilz transducer array.

    PubMed

    Hull, Andrew J

    2007-08-01

    This paper derives and evaluates an analytical model of an insonified sonar window in contact with an array of Tonpilz transducers operating in receive mode. The window is fully elastic so that all wave components are present in the analysis. The output of the model is a transfer function of a transducer element output voltage divided by input pressure versus arrival angle and frequency. This model is intended for analysis of sonar systems that are to be built or modified for broadband processing. The model is validated at low frequency with a comparison to a previously derived thin plate model. Once this is done, an example problem is studied so that the effects of higher order wave interaction with acoustic reception can be understood. It was found that these higher order waves cause multiple nulls in the region where the array detects acoustic energy and that their locations in the arrival angle-frequency plane can be determined. The effects of these nulls in the beam patterns of the array are demonstrated.

  20. Acoustic pressure-vector sensor array

    NASA Astrophysics Data System (ADS)

    Huang, Dehua; Elswick, Roy C.; McEachern, James F.

    2004-05-01

    Pressure-vector sensors measure both scalar and vector components of the acoustic field. December 2003 measurements at the NUWC Seneca Lake test facility verify previous observations that acoustic ambient noise spectrum levels measured by acoustic intensity sensors are reduced relative to either acoustic pressure or acoustic vector sensor spectrum levels. The Seneca measurements indicate a reduction by as much as 15 dB at the upper measurement frequency of 2500 Hz. A nonlinear array synthesis theory for pressure-vector sensors will be introduced that allows smaller apertures to achieve narrow beams. The significantly reduced ambient noise of individual pressure-vector elements observed in the ocean by others, and now at Seneca Lake, should allow a nonlinearly combined array to detect significantly lower levels than has been observed in previous multiplicative processing of pressure sensors alone. Nonlinear array synthesis of pressure-vector sensors differs from conventional super-directive algorithms that linearly combine pressure elements with positive and negative weights, thereby reducing the sensitivity of conventional super-directive arrays. The much smaller aperture of acoustic pressure-vector sensor arrays will be attractive for acoustic systems on underwater vehicles, as well as for other applications that require narrow beam acoustic receivers. [The authors gratefully acknowledge the support of ONR and NUWC.

  1. A Low Frequency Broadband Flextensional Ultrasonic Transducer Array.

    PubMed

    Savoia, Alessandro Stuart; Mauti, Barbara; Caliano, Giosuè

    2016-01-01

    In this paper, we propose the design and the fabrication of a multicell, piezoelectrically actuated, flextensional transducer array structure, characterized by a low mechanical impedance, thus allowing wideband and high-sensitivity immersion operation in the low ultrasonic frequency range. The transducer structure, consisting of a plurality of circular elementary cells orderly arranged according to a periodic hexagonal tiling, features a high flexibility in the definition of the active area shape and size. We investigate, by finite element modeling (FEM), the influence of different piezoelectric and elastic materials for the flexural plate, for the plate support and for the backing, on the transducer electroacoustic behavior. We carry out the dimensioning of the transducer components and cell layout, in terms of materials and geometry, respectively, by aiming at a circular active area of 80-mm diameter and broadband operation in the 30-100-kHz frequency range in immersion. PZT-5H ceramic disks and a calibrated thickness stainless steel plate are chosen for the vibrating structure, and FR-4 laminates and a brass plate, respectively, for the plate support and the backing. The diameter of the individual cells is set to 6 mm resulting in 121 cells describing a quasi-circular area, and the total thickness of the transducer is less than 10 mm. We report on the fabrication process flow for the accurate assembly of the transducer, based, respectively, on epoxy resin and wire bonding for the mechanical and electrical interconnection of the individual parts. The results of the electrical impedance and transmit pressure field characterization are finally reported and discussed.

  2. A top-crossover-to-bottom addressed segmented annular array using piezoelectric micromachined ultrasonic transducers

    NASA Astrophysics Data System (ADS)

    Jung, Joontaek; Lee, Wonjun; Kang, Woojin; Hong, Hyeryung; Yuen Song, Hi; Oh, Inn-yeal; Park, Chul Soon; Choi, Hongsoo

    2015-11-01

    We design and fabricate segmented annular arrays (SAAs) using piezoelectric micromachined ultrasonic transducers (pMUTs) to demonstrate the feasibility of acoustic focusing of ultrasound. The fabricated SAAs have 25 concentric top-electrode signal lines and eight bottom-electrodes for grounding to enable electronic steering of selectively grouped ultrasonic transducers from 2393 pMUT elements. Each element in the array is connected by top-crossover-to-bottom metal bridges, which reduce the parasitic capacitance. Circular-shaped pMUT elements, 120 μm in diameter, are fabricated using 1 μm-thick sol-gel lead zirconate titanate on a silicon wafer. To utilize the high-density pMUT array, a deep reactive ion etching process is used for anisotropic silicon etching to realize the transducer membranes. The resonant frequency and effective coupling coefficient of the elements, measured with an impedance analyzer, yields 1.517 MHz and 1.29%, respectively, in air. The SAAs using pMUTs are packaged on a printed circuit board and coated with parylene C for acoustic intensity measurements in water. The ultrasound generated by each segmented array is focused on a selected point in space. When a 5 Vpp, 1.5 MHz square wave is applied, the maximum spatial peak temporal average intensity ({{I}\\text{spta}} ) is found to be 79 mW cm-2 5 mm from the SAAs’ surface without beamforming. The beam widths (-3 dB) of ultrasonic radiation patterns in the elevation and azimuth directions are recorded as 3 and 3.4 mm, respectively. The results successfully show the feasibility of focusing ultrasound on a small area with SAAs using pMUTs.

  3. A novel, flat, electronically-steered phased array transducer for tissue ablation: preliminary results

    NASA Astrophysics Data System (ADS)

    Ellens, Nicholas P. K.; Lucht, Benjamin B. C.; Gunaseelan, Samuel T.; Hudson, John M.; Hynynen, Kullervo H.

    2015-03-01

    Flat, λ/2-spaced phased arrays for therapeutic ultrasound were examined in silico and in vitro. All arrays were made by combining modules made of 64 square elements with 1.5 mm inter-element spacing along both major axes. The arrays were designed to accommodate integrated, co-aligned diagnostic transducers for targeting and monitoring. Six arrays of 1024 elements (16 modules) and four arrays of 6144 elements (96 modules) were modelled and compared according to metrics such as peak pressure amplitude, focal size, ability to be electronically-steered far off-axis and grating lobe amplitude. Two 1024 element prototypes were built and measured in vitro, producing over 100 W of acoustic power. In both cases, the simulation model of the pressure amplitude field was in good agreement with values measured by hydrophone. Using one of the arrays, it was shown that the peak pressure amplitude dropped by only 24% and 25% of the on-axis peak pressure amplitude when steered to the edge of the array (40 mm) at depths of 30 mm and 50 mm. For the 6144 element arrays studied in in silico only, similarly high steerability was found: even when steered 100 mm off-axis, the pressure amplitude decrease at the focus was less than 20%, while the maximum pressure grating lobe was only 20%. Thermal simulations indicate that the modules produce more than enough acoustic power to perform rapid ablations at physiologically relevant depths and steering angles. Arrays such as proposed and tested in this study have enormous potential: their high electronic steerability suggests that they will be able to perform ablations of large volumes without the need for any mechanical translation.

  4. Experimental Investigation of Inter-Element Isolation in a Medical Array Transducer at Various Manufacturing Stages.

    PubMed

    Marinozzi, Franco; Bini, Fabiano; Grandoni, Andrea

    2015-07-09

    This work presents the experimental investigation of vibration maps of a linear array transducer with 192 piezoelements by means of a laser Doppler vibrometer at various manufacturing finishing steps in air and in water. Over the years, many researchers have investigated cross-coupling in fabricated prototypes but not in arrays at various manufacturing stages. Only the central element of the array was driven at its working frequency of 5 MHz. The experimental results showed that the contributions of cross-coupling depend on the elements of the acoustic stack: Lead Zirconate Titanate (PZT), kerf, filler, matching layer, and lens. The oscillation amplitudes spanned from (6 ± 38%) nm to (110 ± 40%) nm when the energized element was tested in air and from (6 ± 57%) nm to (80 ± 67%) nm when measurements were obtained under water. The best inter-element isolation of -22 dB was measured in air after cutting the kerfs, whereas the poorest isolation was -2 dB under water with an acoustic lens (complete acoustic stack). The vibration pattern in water showed a higher standard deviation on the displacement measurements than the one obtained in air, due to the influence of acousto-optic interactions. The amount increased to 30% in water, as estimated by a comparison with the measurements in air. This work describes a valuable method for manufacturers to investigate the correspondence between the manufacturing process and the quantitative evaluations of the resulting effects.

  5. Numerical Simulation of Scattered Waves from Flaws for Ultrasonic Array Transducer

    NASA Astrophysics Data System (ADS)

    Hirose, S.; Kono, N.; Nakahata, K.

    2007-03-01

    To enhance the detectability in the phased array UT, it is essential to have well knowledge on the characteristics of ultrasonic waves from array transducers. This paper proposes a mathematical model of the array transducer and a simulation tool to predict the flaw echoes. The modeling of an array transducer is based on the Rayleigh-Sommerfeld integral and the scattered waves from flaws are calculated with the fast multipole BEM (FMBEM). By using the FMBEM, we can solve large scale scattering problems with relatively low computational cost. Here we focus on the transient wave analysis, in which a pulse-shaped wave is used for exciting elements of the array transducer.

  6. DNA-programmed protein-nanoelectronic transducer array

    NASA Astrophysics Data System (ADS)

    Withey, Gary; Kim, Jin Ho; Xu, Jimmy

    2008-08-01

    By incorporating DNA as addressable linkers, we can direct and coordinate the simultaneous, parallel self-assembling and binding of multiple different redox proteins to designated nanoelectrodes. As a result, we have formed a nanoelectronic-protein transducer array which is capable of real-time, multiplexed detection of several analytes in parallel. The sequence-specificity of DNA hybridization provides the means of encoding spatial address instruction to the otherwise random self-assembling process and enables the desired programmability, scalability, and renewability. Results of this study, under an AFOSR MURI program, demonstrate the feasibility of a new paradigm of biosensing: detection of not only the presence of target substances but also the real-time activities of multiple biomolecules. In this system, the conjugated biomolecules and nanoelectronic components provide the active monitoring and mediating functions in real time, and can be integrated en masse into large arrays in a silicon-based integrated circuit.

  7. Selective generation of ultrasonic Lamb waves by electromagnetic acoustic transducers

    NASA Astrophysics Data System (ADS)

    Li, Ming-Liang; Deng, Ming-Xi; Gao, Guang-Jian

    2016-12-01

    In this paper, we describe a modal expansion approach for the analysis of the selective generation of ultrasonic Lamb waves by electromagnetic acoustic transducers (EMATs). With the modal expansion approach for waveguide excitation, an analytical expression of the Lamb wave’s mode expansion coefficient is deduced, which is related to the driving frequency and the geometrical parameters of the EMAT’s meander coil, and lays a theoretical foundation for exactly analyzing the selective generation of Lamb waves with EMATs. The influences of the driving frequency on the mode expansion coefficient of ultrasonic Lamb waves are analyzed when the EMAT’s geometrical parameters are given. The numerical simulations and experimental examinations show that the ultrasonic Lamb wave modes can be effectively regulated (strengthened or restrained) by choosing an appropriate driving frequency of EMAT, with the geometrical parameters given. This result provides a theoretical and experimental basis for selectively generating a single and pure Lamb wave mode with EMATs. Project supported by the National Natural Science Foundation of China (Grant Nos. 11474361 and 11274388).

  8. Measurement of ultrasonic power and electro-acoustic efficiency of high power transducers.

    PubMed

    Lin, S; Zhang, F

    2000-01-01

    In this paper, an improved method for the measurement of acoustic power and electro-acoustic efficiency of high power ultrasonic transducers is presented. The measuring principle is described, the experimental results are given. In comparison with traditional methods, the method presented in this paper has the advantages of simplicity, economy and practicality. The most important is that it can measure the output acoustic power and the electro-acoustic efficiency of the transducer under the condition of high power and practical applications, such as ultrasonic cleaning and soldering.

  9. Numerical analysis of acoustic impedance microscope utilizing acoustic lens transducer to examine cultured cells.

    PubMed

    Gunawan, Agus Indra; Hozumi, Naohiro; Takahashi, Kenta; Yoshida, Sachiko; Saijo, Yoshifumi; Kobayashi, Kazuto; Yamamoto, Seiji

    2015-12-01

    A new technique is proposed for non-contact quantitative cell observation using focused ultrasonic waves. This technique interprets acoustic reflection intensity into the characteristic acoustic impedance of the biological cell. The cells are cultured on a plastic film substrate. A focused acoustic beam is transmitted through the substrate to its interface with the cell. A two-dimensional (2-D) reflection intensity profile is obtained by scanning the focal point along the interface. A reference substance is observed under the same conditions. These two reflections are compared and interpreted into the characteristic acoustic impedance of the cell based on a calibration curve that was created prior to the observation. To create the calibration curve, a numerical analysis of the sound field is performed using Fourier Transforms and is verified using several saline solutions. Because the cells are suspended by two plastic films, no contamination is introduced during the observation. In a practical observation, a sapphire lens transducer with a center frequency of 300 MHz was employed using ZnO thin film. The objects studied were co-cultured rat-derived glial (astrocyte) cells and glioma cells. The result was the clear observation of the internal structure of the cells. The acoustic impedance of the cells was spreading between 1.62 and 1.72 MNs/m(3). Cytoskeleton was indicated by high acoustic impedance. The introduction of cytochalasin-B led to a significant reduction in the acoustic impedance of the glioma cells; its effect on the glial cells was less significant. It is believed that this non-contact observation method will be useful for continuous cell inspections.

  10. A comparison of methods for focusing the field of a HIFU array transducer through human ribs.

    PubMed

    Gélat, P; Ter Haar, G; Saffari, N

    2014-06-21

    A forward model, which predicts the scattering by human ribs of a multi-element high-intensity focused ultrasound transducer, was used to investigate the efficacy of a range of focusing approaches described in the literature. This forward model is based on the boundary element method and was described by Gélat et al (2011 Phys. Med. Biol. 56 5553-81; 2012 Phys. Med. Biol. 57 8471-97). The model has since been improved and features a complex surface impedance condition at the surface of the ribs. The inverse problem of focusing through the ribs was implemented on six transducer array-rib topologies and five methods of focusing were investigated, including spherical focusing, binarized apodization based on geometric ray tracing, phase conjugation and the decomposition of the time-reversal operator method. The excitation frequency was 1 MHz and the array was of spherical-section type. Both human and idealized rib topologies were considered. The merit of each method of focusing was examined. It was concluded that the constrained optimization approach offers greater potential than the other focusing methods in terms of maximizing the ratio of acoustic pressure magnitudes at the focus to those on the surface of the ribs whilst taking full advantage of the dynamic range of the phased array.

  11. A Spherically-Shaped PZT Thin Film Ultrasonic Transducer with an Acoustic Impedance Gradient Matching Layer Based on a Micromachined Periodically Structured Flexible Substrate

    PubMed Central

    Feng, Guo-Hua; Liu, Wei-Fan

    2013-01-01

    This paper presents the microfabrication of an acoustic impedance gradient matching layer on a spherically-shaped piezoelectric ultrasonic transducer. The acoustic matching layer can be designed to achieve higher acoustic energy transmission and operating bandwidth. Also included in this paper are a theoretical analysis of the device design and a micromachining technique to produce the novel transducer. Based on a design of a lead titanium zirconium (PZT) micropillar array, the constructed gradient acoustic matching layer has much better acoustic transmission efficiency within a 20–50 MHz operation range compared to a matching layer with a conventional quarter-wavelength thickness Parylene deposition. To construct the transducer, periodic microcavities are built on a flexible copper sheet, and then the sheet forms a designed curvature with a ball shaping. After PZT slurry deposition, the constructed PZT micropillar array is released onto a curved thin PZT layer. Following Parylene conformal coating on the processed PZT micropillars, the PZT micropillars and the surrounding Parylene comprise a matching layer with gradient acoustic impedance. By using the proposed technique, the fabricated transducer achieves a center frequency of 26 MHz and a −6 dB bandwidth of approximately 65%. PMID:24113683

  12. High-overtone Self-Focusing Acoustic Transducers for High Frequency Ultrasonic Doppler

    PubMed Central

    Zhu, Jie; Lee, Chuangyuan; Kim, Eun Sok; Wu, Dawei; Hu, Changhong; Zhou, Qifa; Shung, K. Kirk.; Wang, Gaofeng; Yu, Hongyu

    2010-01-01

    This work reports the potential use of high-overtone self-focusing acoustic transducers for high frequency ultrasonic Doppler. By using harmonic frequencies of a thick bulk Lead Zirconate Titanate (PZT) transducer with a novel air-reflector Fresnel lens, we obtained strong ultrasound signals at 60 MHz (3rd harmonic) and 100 MHz (5th harmonic). Both experimental and theoretical analysis has demonstrated that the transducers can be applied to Doppler systems with high frequencies up to 100 MHz. PMID:20206371

  13. Real-time 3-d intracranial ultrasound with an endoscopic matrix array transducer.

    PubMed

    Light, Edward D; Mukundan, Srinivasan; Wolf, Patrick D; Smith, Stephen W

    2007-08-01

    A transducer originally designed for transesophageal echocardiography (TEE) was adapted for real-time volumetric endoscopic imaging of the brain. The transducer consists of a 36 x 36 array with an interelement spacing of 0.18 mm. There are 504 transmitting and 252 receive channels placed in a regular pattern in the array. The operating frequency is 4.5 MHz with a -6 dB bandwidth of 30%. The transducer is fabricated on a 10-layer flexible circuit from Microconnex (Snoqualmie, WA, USA). The purpose of this study is to evaluate the clinical feasibility of real-time 3-D intracranial ultrasound with this device. The Volumetrics Medical Imaging (Durham, NC, USA) 3-D scanner was used to obtain images in a canine model. A transcalvarial acoustic window was created under general anesthesia in the animal laboratory by placing a 10-mm burr hole in the high parietal calvarium of a 50-kg canine subject. The burr-hole was placed in a left parasagittal location to avoid the sagittal sinus, and the transducer was placed against the intact dura mater for ultrasound imaging. Images of the lateral ventricles were produced, including real-time 3-D guidance of a needle puncture of one ventricle. In a second canine subject, contrast-enhanced 3-D Doppler color flow images were made of the cerebral vessels including the complete Circle of Willis. Clinical applications may include real-time 3-D guidance of cerebrospinal fluid extraction from the lateral ventricles and bedside evaluation of critically ill patients where computed tomography and magnetic resonance imaging techniques are unavailable.

  14. Input impedance matching of acoustic transducers operating at off-resonant frequencies.

    PubMed

    Son, Kyu Tak; Lee, Chin C

    2010-12-01

    The input impedance matching technique of acoustic transducers at off-resonant frequencies is reported. It uses an inherent impedance property of transducers and thus does not need an external electric matching circuit or extra acoustic matching section. The input electrical equivalent circuit includes a radiation component and a dielectric capacitor. The radiation component consists of a radiation resistance and a radiation reactance. The total reactance is the sum of the radiation reactance and the dielectric capacitive reactance. This reactance becomes zero at two frequencies where the impedance is real. The transducer size can be properly chosen so that the impedance at one of the zero-crossing frequencies is close to 50 Ω, the output impedance of signal generators. At this off-resonant operating frequency, the reflection coefficient of the transducer is minimized without using any matching circuit. Other than the size, the impedance can also be fine tuned by adjusting the thickness of material that bonds the transducer plate to the substrates. The acoustic impedance of the substrate and that of the bonding material can also be used as design elements in the transducer structure to achieve better transducer matching. Lead titanate piezoelectric plates were bonded on Lucite, liquid crystal polymer (LCP), and bismuth (Bi) substrates to produce various transducer structures. Their input impedance was simulated using a transducer model and compared with measured values to illustrate the matching principle.

  15. Design of fluid-loaded piezoelectric transducers for acoustic power considerations

    NASA Astrophysics Data System (ADS)

    Grosh, Karl; Lin, Yuan; Nelli Silva, Emilio C.; Kikuchi, Noboru

    1998-07-01

    In this paper, a design methodology for enhancing the acoustic power radiated from fluid-loaded piezoelectric transducers at a particular operating frequency is developed. For many applications the operating frequency is fixed by the absorption of the material and the desired depth of penetration (e.g., therapeutic ultrasound). For therapeutic ultrasound and other industrial applications, the acoustic power is the critical figure of merit. The acoustic power radiated from the transducer system is computed from a finite element formulation of the coupled acoustic, elastic, piezoelectric equations of motion. The sensitivities of the acoustic power to two design variables: the length of the piezoelectric element and the thickness of the matching layer, are derived. Using these sensitivities, a novel design methodology in which remeshing is avoided is developed and the effectiveness of the method is studied. Results from the application of this framework for transducer design demonstrate the dramatic increase in radiated power possible from this two member design space.

  16. Frequency dependence of the acoustic field generated from a spherical cavity transducer with open ends

    SciTech Connect

    Li, Faqi; Zeng, Deping; He, Min; Wang, Zhibiao E-mail: wangzhibiao@haifu.com.cn; Song, Dan; Lei, Guangrong; Lin, Zhou; Zhang, Dong E-mail: wangzhibiao@haifu.com.cn; Wu, Junru

    2015-12-15

    Resolution of high intensity focused ultrasound (HIFU) focusing is limited by the wave diffraction. We have developed a spherical cavity transducer with two open ends to improve the focusing precision without sacrificing the acoustic intensity (App Phys Lett 2013; 102: 204102). This work aims to theoretically and experimentally investigate the frequency dependence of the acoustic field generated from the spherical cavity transducer with two open ends. The device emits high intensity ultrasound at the frequency ranging from 420 to 470 kHz, and the acoustic field is measured by a fiber optic probe hydrophone. The measured results shows that the spherical cavity transducer provides high acoustic intensity for HIFU treatment only in its resonant modes, and a series of resonant frequencies can be choosen. Furthermore, a finite element model is developed to discuss the frequency dependence of the acoustic field. The numerical simulations coincide well with the measured results.

  17. Design and Fabrication of a Wide-Aperture HIFU Annular Array Transducer for the Treatment of Deep-Seated Tumors

    NASA Astrophysics Data System (ADS)

    Chen, Gin-Shin; Chang, Hsu; Kuo, Yi-Yuan; Lin, Winli; Chen, Wen-Shiang; Tseng, Wen-Yih

    2011-09-01

    In HIFU treatment applications, the annular array transducer is a feasible solution for the clinical/engineering requirements which are as follows: ablation of tumors deep inside body, electronic dynamic focusing in the depth direction, simple configuration/operation, and lower cost due to fewer elements/channels of amplifier. A 12 cm-diameter, 12 cm-radius-of-curvature annular array transducer has been developed in this study. The pseudo-inverse method was adopted to calculate the desired phase of each element for focusing, and the Rayleigh-Summerfield integral was used to obtain the ultrasonic pressure field. In the simulation, the operating frequency was 0.9 MHz, and the acoustic medium was water. A piece of 1-3 piezocomposite was fabricated using the dice and fill technique for the pilot test. The dimension of the sample was 4×2 cm, and it was thermally shaped using a spherical mold of 12 cm in radius. The results of the simulation showed that the focus could not be moved electronically in the depth direction until the number of elements (annuli) was equal to or higher than 5, and the dynamic focusing range increased as the number of elements increased. The intensity at the acoustic window or skin was also estimated from the simulated results and was only 0.03% of the intensity at focus. The curved composite sample was tested using an impedance analyser and a radiation force balance. The resonant frequency and electro-acoustic efficiency were measured to be 0.914 MHz and 65%, respectively. The results of the simulation can provide a design guideline for the development of different-size HIFU annular array transducers. A prototype of the HIFU annular array transducer designed is being fabricated in-house.

  18. Development of high frequency focused transducers for single beam acoustic tweezers

    NASA Astrophysics Data System (ADS)

    Hsu, Hsiu-Sheng

    Contactless particle trapping and manipulation have found many potential applications in diverse fields, especially in biological and medical research. Among the various methods, optical tweezers is the most well-known and extensively investigated technique. However, there are some limitations for particle manipulation based on optical tweezers. Due to the conceptual similarity with the optical tweezers and recent advances in high frequency ultrasonic transducer, a single beam acoustic tweezer using high frequency (≥ 20 MHz) focused transducer has recently been considered, and its feasibility was theoretically and experimentally investigated. This dissertation mainly describes the development of high frequency focused ultrasonic transducers for single beam acoustic tweezers applications. Three different types of transducers were fabricated. First, a 60 MHz miniature focused transducer (<1 mm) was made using press-focusing technique. The single beam acoustic trapping experiment was performed to manipulate 15 microm polystyrene microspheres using this transducer. In vitro ultrasonic biomicroscopy imaging on the rabbit eye was also obtained with this device. Second approach is to build a 200 MHz self-focused ZnO transducer by sputtering ZnO film on a curved surface of the aluminum backing material. An individual 10 microm microsphere was effectively manipulated in two dimensions by this type of transducer. Another ultrahigh frequency focused transducer based on silicon lens design has also been developed, where a 330 MHz silicon lens transducer was fabricated and evaluated. Microparticle trapping experiment was carried out to demonstrate that silicon lens transducer can manipulate a single microsphere as small as 5 microm. The realization of single beam acoustic tweezers using high frequency focused transducers can offer wide range of applications in biomedical and chemical sciences including intercellular kinetics studies and cell stimulation. Additionally, we

  19. Continuous Surveillance Technique for Flow Accelerated Corrosion of Pipe Wall Using Electromagnetic Acoustic Transducer

    NASA Astrophysics Data System (ADS)

    Kojima, F.; Kosaka, D.; Umetani, K.

    2011-06-01

    In this paper, we propose a on-line monitoring technique using electromagnetic acoustic transducer (EMAT). In the series of laboratory experiments, carbon steel pipes were used and each sample was fabricated to simulate FAC. Electromagnetic acoustic resonance method (EMAR) is successfully tested for pipe wall thickness measurements. The validity and the feasibility of our method are also demonstrated through the laboratory experiments.

  20. Pressure transducer for measuring acoustic radiation force based on a magnetic sensor

    NASA Astrophysics Data System (ADS)

    Kamimura, H. A. S.; Pavan, T. Z.; Almeida, T. W. J.; Pádua, M. L. A.; Baggio, A. L.; Fatemi, M.; Carneiro, A. A. O.

    2011-01-01

    This work presents a pressure transducer based on a magnetic sensor to measure acoustic radiation force (ARF) and small displacements. The methodology presented in this paper allowed this transducer to be calibrated for use as an acoustic pressure and intensity meter. It can control the acoustic intensity emitted by ultrasound used, for example, in ARF impulse imaging, vibro-acoustography and high-intensity focused ultrasound techniques. The device comprises a magnet, a membrane, a magnetoresistive sensor and a coil to cancel the external magnetic field. When ARF is applied to the membrane, the magnetic field on the sensor changes due to the magnetic target displacement. The variation of the output signal from the magnetic transducer is proportional to the acoustic pressure applied to the membrane. A focused ultrasound transducer with a central frequency of 3 MHz was used to apply a continuous ARF. The sensitivities of the magnetic transducer as an acoustic pressure and intensity meter, evaluated in water, were respectively 0.597 µV MPa-1 and 0.073 µV (W cm-2)-1/2, while those of the needle hydrophone (Onda model HNP-0400) used in the magnetic transducer calibration were respectively, 0.5024 mV MPa-1 and 6.153 mV (W cm-2)-1/2. The transducer resolution to displacement is 5 nm and 6 dB of signal attenuation occurs for 7° of misalignment. The transducer responded well to acoustic pressure in water above 200 kPa.

  1. Active control of microbubbles stream in multi-bifurcated flow by using 2D phased array ultrasound transducer.

    PubMed

    Koda, Ren; Koido, Jun; Hosaka, Naoto; Ito, Takumi; Onogi, Shinya; Mochizuki, Takashi; Masuda, Kohji; Ikeda, Seiichi; Arai, Fumihito

    2013-01-01

    We have previously reported our attempt to propel microbbles in flow by a primary Bjerknes force, which is a physical phenomenon where an acoustic wave pushes an obstacle along its direction of propagation. However, when ultrasound was emitted from surface of the body, controlling bubbles in against flow was needed. It is unpractical to use multiple transducers to produce the same number of focal points because single element transducer cannot produce more than two focal points. In this study, we introduced a complex artificial blood vessel according to a capillary model and a 2D array transducer to produce multiple focal points for active control of microbubbles in against flow. Furthermore, we investigated bubble control in viscous fluid. As the results, we confirmed clearly path selection of MBs in viscous fluid as well as in water.

  2. Resonant acoustic transducer and driver system for a well drilling string communication system

    DOEpatents

    Chanson, Gary J.; Nicolson, Alexander M.

    1981-01-01

    The acoustic data communication system includes an acoustic transmitter and receiver wherein low frequency acoustic waves, propagating in relatively loss free manner in well drilling string piping, are efficiently coupled to the drill string and propagate at levels competitive with the levels of noise generated by drilling machinery also present in the drill string. The transmitting transducer incorporates a mass-spring piezoelectric transmitter and amplifier combination that permits self-oscillating resonant operation in the desired low frequency range.

  3. Dynamic Response of an Insonified Sonar Window Interacting with a Tonpilz Transducer Array

    DTIC Science & Technology

    2007-01-03

    NUWC-NPT Technical Report 11,781 3 January 2007 Dynamic Response of an Insonified Sonar Window Interacting with a Tonpilz Transducer Array Andrew J...Code 1516) for their discussions on Tonpilz transducer behavior Reviewed and Approved: 3 January 2007 s S. Griffin Head, Autonomous Systems and...FUNDING NUMBERS Dynamic Response of an Insonified Sonar Window Interacting with a Tonpilz Transducer Array 6. AUTHOR(S) Andrew J. Hull 7. PERFORMING

  4. Annular phased array transducer for preclinical testing of anti-cancer drug efficacy on small animals.

    PubMed

    Kujawska, Tamara; Secomski, Wojciech; Byra, Michał; Postema, Michiel; Nowicki, Andrzej

    2017-04-01

    A technique using pulsed High Intensity Focused Ultrasound (HIFU) to destroy deep-seated solid tumors is a promising noninvasive therapeutic approach. A main purpose of this study was to design and test a HIFU transducer suitable for preclinical studies of efficacy of tested, anti-cancer drugs, activated by HIFU beams, in the treatment of a variety of solid tumors implanted to various organs of small animals at the depth of the order of 1-2cm under the skin. To allow focusing of the beam, generated by such transducer, within treated tissue at different depths, a spherical, 2-MHz, 29-mm diameter annular phased array transducer was designed and built. To prove its potential for preclinical studies on small animals, multiple thermal lesions were induced in a pork loin ex vivo by heating beams of the same: 6W, or 12W, or 18W acoustic power and 25mm, 30mm, and 35mm focal lengths. Time delay for each annulus was controlled electronically to provide beam focusing within tissue at the depths of 10mm, 15mm, and 20mm. The exposure time required to induce local necrosis was determined at different depths using thermocouples. Location and extent of thermal lesions determined from numerical simulations were compared with those measured using ultrasound and magnetic resonance imaging techniques and verified by a digital caliper after cutting the tested tissue samples. Quantitative analysis of the results showed that the location and extent of necrotic lesions on the magnetic resonance images are consistent with those predicted numerically and measured by caliper. The edges of lesions were clearly outlined although on ultrasound images they were fuzzy. This allows to conclude that the use of the transducer designed offers an effective noninvasive tool not only to induce local necrotic lesions within treated tissue without damaging the surrounding tissue structures but also to test various chemotherapeutics activated by the HIFU beams in preclinical studies on small animals.

  5. A 1372-element Large Scale Hemispherical Ultrasound Phased Array Transducer for Noninvasive Transcranial Therapy

    NASA Astrophysics Data System (ADS)

    Song, Junho; Hynynen, Kullervo

    2009-04-01

    Noninvasive transcranial therapy using high intensity focused ultrasound transducers has attracted high interest as a promising new modality for the treatments of brain related diseases. We describe the development of a 1372 element large scale hemispherical ultrasound phased array transducer operating at a resonant frequency of 306 kHz. The hemispherical array has a diameter of 31 cm and a 15.5 cm radius of curvature. It is constructed with piezoelectric (PZT-4) tube elements of a 10 mm in diameter, 6 mm in length and 1.4 mm wall thickness. Each element is quasi-air backed by attaching a cork-rubber membrane on the back of the element. The acoustic efficiency of the element is determined to be approximately 50%. The large number of the elements delivers high power ultrasound and offers better beam steering and focusing capability. Comparisons of sound pressure-squared field measurements with theoretical calculations in water show that the array provides good beam steering and tight focusing capability over an efficient volume of approximately 100×100×80 mm3 with nominal focal spot size of approximately 2.3 mm in diameter at -6 dB. We also present its beam steering and focusing capability through an ex vivo human skull by measuring pressure-squared amplitude after phase corrections. These measurements show the same efficient volume range and focal spot sizes at -6 dB as the ones in water without the skull present. These results indicate that the array is sufficient for use in noninvasive transcranial ultrasound therapy.

  6. A 1372-element Large Scale Hemispherical Ultrasound Phased Array Transducer for Noninvasive Transcranial Therapy

    SciTech Connect

    Song, Junho; Hynynen, Kullervo

    2009-04-14

    Noninvasive transcranial therapy using high intensity focused ultrasound transducers has attracted high interest as a promising new modality for the treatments of brain related diseases. We describe the development of a 1372 element large scale hemispherical ultrasound phased array transducer operating at a resonant frequency of 306 kHz. The hemispherical array has a diameter of 31 cm and a 15.5 cm radius of curvature. It is constructed with piezoelectric (PZT-4) tube elements of a 10 mm in diameter, 6 mm in length and 1.4 mm wall thickness. Each element is quasi-air backed by attaching a cork-rubber membrane on the back of the element. The acoustic efficiency of the element is determined to be approximately 50%. The large number of the elements delivers high power ultrasound and offers better beam steering and focusing capability. Comparisons of sound pressure-squared field measurements with theoretical calculations in water show that the array provides good beam steering and tight focusing capability over an efficient volume of approximately 100x100x80 mm{sup 3} with nominal focal spot size of approximately 2.3 mm in diameter at -6 dB. We also present its beam steering and focusing capability through an ex vivo human skull by measuring pressure-squared amplitude after phase corrections. These measurements show the same efficient volume range and focal spot sizes at -6 dB as the ones in water without the skull present. These results indicate that the array is sufficient for use in noninvasive transcranial ultrasound therapy.

  7. Solid Micro Horn Array (SMIHA) for Acoustic Matching

    NASA Technical Reports Server (NTRS)

    Sherrit, S.; Bao, X.; Bar-Cohen, Y.

    2008-01-01

    Transduction of electrical signals to mechanical signals and vice-versa in piezoelectric materials is controlled by the material coupling coefficient. In general in a loss-less material the ratio of energy conversion per cycle is proportional to the square of the coupling coefficient. In practical transduction however the impedance mismatch between the piezoelectric material and the electrical drive circuitry or the mechanical structure can have a significant impact on the power transfer. This paper looks at novel methods of matching the acoustic impedance of structures to the piezoelectric material in an effort to increase power transmission and efficiency. In typical methods the density and acoustic velocity of the matching layer is adjusted to give good matching between the transducer and the load. The approach discussed in this paper utilizes solid micro horn arrays in the matching layer which channel the stress and increase the strain in the layer. This approach is found to have potential applications in energy harvesting, medical ultrasound and in liquid and gas coupled transducers.

  8. Acoustic positioning using multiple microphone arrays.

    PubMed

    Liu, Hui; Milios, Evangelos

    2005-05-01

    Passive acoustic techniques are presented to solve the localization problem of a sound source in three-dimensional space using off-the-shelf hardware. Multiple microphone arrays are employed, which operate independently, in estimating the direction of arrival of sound, or, equivalently, a direction vector from the array's geometric center towards the source. Direction vectors and array centers are communicated to a central processor, where the source is localized by finding the intersection of the direction lines defined by the direction vectors and the associated array centers. The performance of the method in the air is demonstrated experimentally and compared with a state-of-the-art method that requires centralized digitization of the signals from the microphones of all the arrays.

  9. Resonant-type MEMS transducers excited by two acoustic emission simulation techniques

    NASA Astrophysics Data System (ADS)

    Ozevin, Didem; Greve, David W.; Oppenheim, Irving J.; Pessiki, Stephen

    2004-07-01

    Acoustic emission testing is a passive nondestructive testing technique used to identify the onset and characteristics of damage through the detection and analysis of transient stress waves. Successful detection and implementation of acoustic emission requires good coupling, high transducer sensitivity and ability to discriminate noise from real signals. We report here detection of simulated acoustic emission signals using a MEMS chip fabricated in the multi-user polysilicon surface micromachining (MUMPs) process. The chip includes 18 different transducers with 10 different resonant frequencies in the range of 100 kHz to 1 MHz. It was excited by two different source simulation techniques; pencil lead break and impact loading. The former simulation was accomplished by breaking 0.5 mm lead on the ceramic package. Four transducer outputs were collected simultaneously using a multi-channel oscilloscope. The impact loading was repeated for five different diameter ball bearings. Traditional acoustic emission waveform analysis methods were applied to both data sets to illustrate the identification of different source mechanisms. In addition, a sliding window Fourier transform was performed to differentiate frequencies in time-frequency-amplitude domain. The arrival and energy contents of each resonant frequency were investigated in time-magnitude plots. The advantages of the simultaneous excitation of resonant transducers on one chip are discussed and compared with broadband acoustic emission transducers.

  10. Circumferential phased array of shear-horizontal wave magnetostrictive patch transducers for pipe inspection.

    PubMed

    Kim, Hoe Woong; Lee, Joo Kyung; Kim, Yoon Young

    2013-02-01

    Several investigations report effective uses of magnetostrictive patch transducers to generate and measure longitudinal and torsional guided waves in a pipe. They can be used to form a phased array for the circumferential inspection of pipes. Although there are circumferential phased arrays employing piezoelectric transducers or EMAT's, no magnetostrictive patch transducer based array system has been attempted. In this investigation, we aim to develop a circumferential phased magnetostrictive patch transducer (PMPT) array that can focus shear-horizontal waves at any target point on a cylindrical surface of a pipe. For the development, a specific configuration of a PMPT array employing six magnetostrictive patch transducers is proposed. A wave simulation model is also developed to determine time delays and amplitudes of signals generated by the transducers of the array. This model should be able to predict accurately the angular profiles of shear-horizontal waves generated by the transducers. For wave focusing, the time reversal idea will be utilized. The wave focusing ability of the developed PMPT array is tested with multiple-crack detection experiments. Imaging of localized surface inspection regions is also attempted by using wave signals measured by the developed PMPT array system.

  11. Advancements in NDE for utilities and the petrochemical industry through electromagnetic acoustic transducers (EMATs)

    NASA Astrophysics Data System (ADS)

    Robertson, M. O.; Stevens, Donald M.; Schlader, Daniel M.; Tilley, Richard M.

    1998-03-01

    The ultrasonic testing (UT) method continues to broaden in its effectiveness and capabilities for nondestructive evaluation (NDE). Much of this expansion can be attributed to advancements in specific techniques of the method. The utilization of electromagnetic acoustic transducers (EMATs) in dedicated ultrasonic systems has provided McDermott Technology, Inc. (MTI), formerly Babcock & Wilcox, with significant advantages over conventional ultrasonics. In recent years, through significant R&D, MTI has been instrumental in bringing about considerable advancements in the maturing EMAT technology. Progress in electronic design, magnet configurations, and sensor concepts has greatly improved system capabilities while reducing cost and equipment size. These improvements, coupled with the inherent advantages of utilizing the non-contact EMAT technique, have combined to make this technology a viable option for many commercial system inspection applications. MTI has recently completed the development and commercialization of an EMAT-based UT scanner for boiler tube thickness measurements. MTI is currently developing an automated EMAT scanner, based on phased array technology, for complete volumetric inspection of circumferential girth welds associated with pipelines (intended primarily for offshore applications). Additional benefits of phased array technology for providing materials characterization are currently being researched.

  12. Parametric Acoustic Receiving Array (Parray) Research and Experiments.

    DTIC Science & Technology

    1980-02-06

    AD-AC83 704 TEXAS UNIV AT AUSTIN APPLIED RESEARCH LABS FIG 17/1 PARAMETRIC ACOUSTIC RECEIVING ARRAY ( PARRAY ) RESEARCH AND EXPER-CTC(U) FEB 80 T G...TITLE anld Subtitle) ,__t, I -1rilUl tT :. 40441" ,APT19* .... ,. L PARAMETRIC ACOUSTIC RECEIVING ARRAY ( PARRAY ) inal technical re. m , LIESEARCH AND...WORDS (Continue on reverse side it necaesary and Identify by block number) PARRAY parametric acoustic receiver nonlinear acoustics parametric acoustic

  13. Low-loss unidirectional transducer for high frequency surface acoustic wave devices

    NASA Astrophysics Data System (ADS)

    Biryukov, S. V.; Martin, G.; Schmidt, H.; Wall, B.

    2011-10-01

    A multi-track unidirectional transducer for surface acoustic wave devices is presented. This transducer consists of periodic cells containing in each of the multiple tracks, only two electrodes and two gaps with quarter period width. So the structure has maximal possible dimensions of its elements for a cell period equal to one wavelength. In spite of current technological limitations this permits to implement unidirectional transducers in GHz range. In contrast to known structures with active tracks only, the structure contains alternating both active transducer tracks and passive reflector tracks with different apertures comparable to surface acoustic wave (SAW) wavelength. The tracks strongly interact due to diffraction of waves excited by such electrode structure on a piezoelectric substrate. A structure analysis by means of finite element method shows that complete unidirectionality can be reached. First experimental results are given.

  14. Acoustic Transduction Materials and Devices

    DTIC Science & Technology

    1998-01-01

    are to Cymbal and Tonpilz transducer arrays for 3 - 50 kHz sonars, thin/thick film transducers for 10 - 100 MHz medical acoustic devices...Cymbal arrayed projectors, PMN Tonpilz tunable transducers , thin/thick film micro- Tonpilz transducers and controlling electronics. The Center for...emphasis is shifting to the acoustic vector sensor. Film transducers The goal is to use the tonpilz design to facilitate development of high

  15. Acoustic signal processing toolbox for array processing

    NASA Astrophysics Data System (ADS)

    Pham, Tien; Whipps, Gene T.

    2003-08-01

    The US Army Research Laboratory (ARL) has developed an acoustic signal processing toolbox (ASPT) for acoustic sensor array processing. The intent of this document is to describe the toolbox and its uses. The ASPT is a GUI-based software that is developed and runs under MATLAB. The current version, ASPT 3.0, requires MATLAB 6.0 and above. ASPT contains a variety of narrowband (NB) and incoherent and coherent wideband (WB) direction-of-arrival (DOA) estimation and beamforming algorithms that have been researched and developed at ARL. Currently, ASPT contains 16 DOA and beamforming algorithms. It contains several different NB and WB versions of the MVDR, MUSIC and ESPRIT algorithms. In addition, there are a variety of pre-processing, simulation and analysis tools available in the toolbox. The user can perform simulation or real data analysis for all algorithms with user-defined signal model parameters and array geometries.

  16. Vertical Acoustic Arrays in the Deep Ocean

    NASA Astrophysics Data System (ADS)

    Fisher, F.

    2002-12-01

    The R/P FLIP has made possible the deployments of vertical arrays to study sound propagation and ambient noise in the deep ocean in ways never before possible from existing research vessels. Long vertical arrays can be deployed without the flow noise contamination from platform motion, long a bane for making such studies. The vertical stability of FLIP combined with the deep mooring capability developed by Earl D. Bronson made it possible to deploy multi-element arrays beginning with a versatile 20 element array with variable spacing developed by Bill Whitney in Fred Spiess's group. The 20 element array consisted of bungee mounted hydrophones in metal cages at either uniform spacing or variable spacing to meet directivity or other requirements. It was assembled on station in the vertical and deployed to the desired depths for the elements. Gerald Morris at MPL conducted ambient noise studies using variable spacing of the elements to below the critical depth as well as in the water column above. Vic Anderson used it for his DIMUS processing system for detecting low level signals masked by ambient noise. As a 500 meter array, I used it for a series of CONTRACK (Continuous Tracking of signals at long range) experiments to resolve multipaths so they wouldn't interfere with one another. The VEKA vertical array developed by Rick Swenson of NORDA was deployed in very deep (below 3300 m) water by Dan Ramsdale of NORDA using the winch and double lay armored cable on FLIP, the same cable system for the MPL 20 element array. In my group Bruce Williams designed a rapidly deployable array to study vertical anisotropy of ambient noise as a function of range from near shore shipping via downslope conversion in a series of 48 hours FLIP stations 350, 1000 and 1500 miles from the Pacific coast. A short 120 element array, 1000 meters long, was built by John Hildebrands's group for a test of matched field processing and the SLICE experiment in acoustic tomography research of Peter

  17. Broadband Field Directionally Mapping using Maneuverable Acoustic Sensor Arrays

    DTIC Science & Technology

    2015-09-30

    Maneuverable Acoustic Sensor Arrays David Smith Dept. of Electrical and Computer Engineering Duke University, Box 90291 Durham, NC 27708 phone: (919) 660... acoustic arrays to resolve targets from interferers, and 2) improve the target detection, localization, and tracking performance of long arrays during tow...splines) EM algorithm. Both algorithms were run using a simulated 30 element acoustic vector sensor array with 900 snapshots. Attention has also

  18. A lightweight push-pull acoustic transducer composed of a pair of dielectric elastomer films.

    PubMed

    Sugimoto, Takehiro; Ando, Akio; Ono, Kazuho; Morita, Yuichi; Hosoda, Kosuke; Ishii, Daisaku; Nakamura, Kentaro

    2013-11-01

    A lightweight push-pull acoustic transducer using dielectric elastomer films was proposed for use in advanced audio systems in homes. The push-pull structure consists of two dielectric elastomer films developed to serve as an electroactive polymer. The transducer utilizes the change in the surface area of the dielectric elastomer film, induced by an electric-field-induced change in the thickness, for sound generation. The resonance frequency of the transducer was derived from modeling the push-pull configuration to estimate the lower limit of the frequency range. Measurement results presented an advantage of push-pull driving in the suppression of harmonic distortion.

  19. An Algorithm for Selecting Transducer Element Array Positions

    DTIC Science & Technology

    1988-06-01

    response. A lumped-parameter equivalent circuit of a tonpilz transducer is used to predict element amplitude and phase tolerances for different radiation...lumped-parameter equivalent circuit of a tonpilz transducer is used to predict element amplitude and phase tolerances for different radiation loadings...FIGURES p Figure Page : 2.1 A Tonpilz Type Transducer . . .............. . 6 % 2.2 The Equivalent Circuit .......... .................... 7 2.3 The

  20. Acoustic impedance matching of piezoelectric transducers to the air.

    PubMed

    Gómez Alvarez-Arenas, Tomás E

    2004-05-01

    The purpose of this work is threefold: to investigate material requirements to produce impedance matching layers for air-coupled piezoelectric transducers, to identify materials that meet these requirements, and to propose the best solution to produce air-coupled piezoelectric transducers for the low megahertz frequency range. Toward this end, design criteria for the matching layers and possible configurations are reviewed. Among the several factors that affect the efficiency of the matching layer, the importance of attenuation is pointed out. A standard characterization procedure is applied to a wide collection of candidate materials to produce matching layers. In particular, some types of filtration membranes are studied. From these results, the best materials are identified, and the better matching configuration is proposed. Four pairs of air-coupled piezoelectric transducers also are produced to illustrate the performance of the proposed solution. The lowest two-way insertion loss figure is -24 dB obtained at 0.45 MHz. This increases for higher frequency transducers up to -42 dB at 1.8 MHz and -50 at 2.25 MHz. Typical bandwidth is about 15-20%.

  1. Effect of surface acoustic waves on the catalytic decomposition of ethanol employing a comb transducer for ultrasonic generation

    SciTech Connect

    S. J. Reese; D. H. Hurley; H.W. Rollins

    2006-04-01

    The effect of surface acoustic waves, generated on a silver catalyst using a comb transducer, on the catalytic decomposition of ethanol is examined. The comb transducer employs purely mechanical means for surface acoustic wave (SAW) transduction. Unlike interdigital SAW transducers on piezoelectric substrates, the complicating effects of heat generation due to electromechanical coupling, high electric fields between adjacent electrodes, and acoustoelectric currents are avoided. The ethanol decomposition reactions are carried out at 473 K. The rates of acetaldehyde and ethylene production are retarded when acoustic waves are applied. The rates recover to varying degrees when acoustic excitation ceases.

  2. Breast ultrasound tomography with two parallel transducer arrays: preliminary clinical results

    NASA Astrophysics Data System (ADS)

    Huang, Lianjie; Shin, Junseob; Chen, Ting; Lin, Youzuo; Intrator, Miranda; Hanson, Kenneth; Epstein, Katherine; Sandoval, Daniel; Williamson, Michael

    2015-03-01

    Ultrasound tomography has great potential to provide quantitative estimations of physical properties of breast tumors for accurate characterization of breast cancer. We design and manufacture a new synthetic-aperture breast ultrasound tomography system with two parallel transducer arrays. The distance of these two transducer arrays is adjustable for scanning breasts with different sizes. The ultrasound transducer arrays are translated vertically to scan the entire breast slice by slice and acquires ultrasound transmission and reflection data for whole-breast ultrasound imaging and tomographic reconstructions. We use the system to acquire patient data at the University of New Mexico Hospital for clinical studies. We present some preliminary imaging results of in vivo patient ultrasound data. Our preliminary clinical imaging results show promising of our breast ultrasound tomography system with two parallel transducer arrays for breast cancer imaging and characterization.

  3. Developments and field tests of low-frequency portable acoustic transducers for a mobile exploration and time lapse experiment of a sea-bottom reservoir

    NASA Astrophysics Data System (ADS)

    Tsuruga, K.; Kasahara, J.; Hasada, Y.; Kondo, H.

    2013-12-01

    Depth, scale and resolutions of geophysical explorations for mineral resources are controlled by transmitted seismic energy and wavelength (frequency range). Most explorations in marine have been conducted by survey ship system with arrayed acoustic sources whose dominant frequency range is about 10 to 500 Hz. On the other hand, for shallow parts of sea bottom structure survey, some sub-bottom profilers with frequency range around 3.5kHz are used. To monitor a time lapse of a sea bottom reservoir such as an oil, gas, or methane hydrate reservoir as well as to exploit a mobile survey near a sea bottom by AUVs, it is necessary to use a broadband portable acoustic transducer with a dominant frequency range of 500 Hz to 5 kHz. We have been developing several types of portable acoustic transducers and a transmitting and recording system which is accurately controlled by a GPS clock (Tsuruga et al., 2012). In this pater, we report the new broadband acoustic portable transducers which have larger power than the original cylindrical acoustic transducers in a low frequency range (<5 kHz), partly funded by JOGMEC, and show the preliminary results of field tests at the shallow sea bottom around 32 m deep by means of the transducers and hydrophone receivers array. Each transducer repeatedly transmitted Chirp signals with a unit period of 500 msec in two frequency ranges of 0.5k-4.5kHz and 4k-16kHz . We stacked 500-ms data by 28 times to obtain a transfer function of each source-receiver pair in the time and frequency domains. The preliminary results suggest as the follows: (i) it is successful to broaden the frequency bandwidth (i.e., 2k-10kHz) by extending a geometrical resonance length of a cylindrical acoustic transducers, and (ii) the observation at the sea bottom with accurately controlled timing systems of transmitter and data-logger is very useful to identify the stable and/or unstable seismic phases, that is, waves propagating in a underground and/or in a sea water as

  4. Tonpilz Underwater Acoustic Transducer Integrating Lead-free Piezoelectric Material

    NASA Astrophysics Data System (ADS)

    Rouffaud, Rémi; Granger, Christian; Hladky-Hennion, Anne-Christine; Thi, Mai Pham; Levassort, Franck

    A Tonpilz transducer based on lead-free piezoelectric material was fabricated, modeled and characterized. The stack is composed of two rings of doped BaTiO3. This composition was initially chosen due to good electromechanical performance (kt at 40%) and high mechanical quality factor (Qm over 500). Comparison of the displacement at the center of the head mass was performed with a PZT-based Tonpilz with the same design for a center frequency at 22 kHz.

  5. Surface acoustic wave generation and detection using graphene interdigitated transducers on lithium niobate

    SciTech Connect

    Mayorov, A. S.; Hunter, N.; Muchenje, W.; Wood, C. D.; Rosamond, M.; Linfield, E. H.; Davies, A. G.; Cunningham, J. E.

    2014-02-24

    We demonstrate the feasibility of using graphene as a conductive electrode for the generation and detection of surface acoustic waves at 100 s of MHz on a lithium niobate substrate. The graphene interdigitated transducers (IDTs) show sensitivity to doping and temperature, and the characteristics of the IDTs are discussed in the context of a lossy transmission line model.

  6. Numerical time domain modeling of the ultrasonic NDT with electromagnetic acoustic and piezoelectric transducers

    NASA Astrophysics Data System (ADS)

    Marklein, R.; Langenberg, K.-J.; Hübschen, G.; Willems, H.

    2000-05-01

    In principle, apart from laser generated ultrasound, two types of transducers, electromagnetic acoustic transducers (EMAT) and piezoelectric transducers, are applied in ultrasonic NDT. Piezoelectric transducers are primarily used to generate pressure, shear vertical, and Rayleigh waves; whereas electromagnetic acoustic transducers are primarily used to generate shear horizontal as well as Rayleigh waves. This paper presents numerical results for both transducer types in 2-D applying the EFIT code (EFIT: Elastodynamic Finite Integration Technique), which has been developed to simulate in 2-D the SH case and P-SV case separately. Three different cases will be studied in detail: (1.) detection of a backwall breaking notch in an isotropic test block, (2.) crack detection in an isotropic pipeline, and (3.) detection of a cracking an austenitic weld. In case (1.) and (3.) different wave modes (P-, SV-, and R-wave) as well as different inclination angles are used, whereas in case (2.), different wave modes are generated (guided SH-waves and R-waves). The numerical results will be validated against measurements if available.

  7. Anodic aluminum oxide-epoxy composite acoustic matching layers for ultrasonic transducer application.

    PubMed

    Fang, H J; Chen, Y; Wong, C M; Qiu, W B; Chan, H L W; Dai, J Y; Li, Q; Yan, Q F

    2016-08-01

    The goal of this work is to demonstrate the application of anodic aluminum oxide (AAO) template as matching layer of ultrasonic transducer. Quarter-wavelength acoustic matching layer is known as a vital component in medical ultrasonic transducers to compensate the acoustic impedance mismatch between piezoelectric element and human body. The AAO matching layer is made of anodic aluminum oxide template filled with epoxy resin, i.e. AAO-epoxy 1-3 composite. Using this composite as the first matching layer, a ∼12MHz ultrasonic transducer based on soft lead zirconate titanate piezoelectric ceramic is fabricated, and pulse-echo measurements show that the transducer exhibits very good performance with broad bandwidth of 68% (-6dB) and two-way insertion loss of -22.7dB. Wire phantom ultrasonic image is also used to evaluate the transducer's performance, and the results confirm the process feasibility and merit of AAO-epoxy composite as a new matching material for ultrasonic transducer application. This matching scheme provides a solution to address the problems existing in the conventional 0-3 composite matching layer and suggests another useful application of AAO template.

  8. Design and analysis of an ultrasonic transducer micro-array for near-field imaging of age related macular degeneration

    NASA Astrophysics Data System (ADS)

    Clarke, Clyde C.

    Obtaining quantitative data about tissue has been a goal of ultrasonography since its inception, such data provides invaluable information for diagnosing disease. Traditional ultrasound imaging techniques (B-Mode, C-Mode and M-Mode) have been used to diagnose diseases from images of organs. However, images obtained via these techniques, in some cases, provide limited information about the pathology of the tissues being examined. This is because much of the information that is used for diagnosis depends upon qualitative cues emerging from the echoic profiles of bulk tissue properties. In order to obtain quantitative information about tissue properties, an understanding of the interaction of the ultrasound system proper and tissue is necessary. This requires the creation of detailed models of both the ultrasound imaging system and tissue. These models enable us to obtain quantitative information about tissue, by examining features of backscattered data, generated by the interaction of the ultrasonic imaging system with the tissue under examination. Imaging systems are typically designed with little consideration of the constraints of the imaging environment or the acoustic features of the tissue which include impedance, scatterer size, shape and density. We propose to take into account the physical properties of tissue in designing ultrasonic imaging arrays. We develop a framework for designing ultrasonic imaging systems (primarily the transducer and transducer array) with physical parameters that are tuned to detect specific features of tissue. The design methodology obtains the parameters of an NxN transducer array constrained to a size of e.g. 2mm x 2mm (the size required for medical imaging). The physical parameters of the transducer elements are also obtained for capacitive micromachined ultrasonic transducer (cMUT) technology. In addition to the overall size constraints (2 mm x 2 mm), several other constraints put limitation upon the possible system

  9. Wavelet Analysis for Acoustic Phased Array

    NASA Astrophysics Data System (ADS)

    Kozlov, Inna; Zlotnick, Zvi

    2003-03-01

    Wavelet spectrum analysis is known to be one of the most powerful tools for exploring quasistationary signals. In this paper we use wavelet technique to develop a new Direction Finding (DF) Algorithm for the Acoustic Phased Array (APA) systems. Utilising multi-scale analysis of libraries of wavelets allows us to work with frequency bands instead of individual frequency of an acoustic source. These frequency bands could be regarded as features extracted from quasistationary signals emitted by a noisy object. For detection, tracing and identification of a sound source in a noisy environment we develop smart algorithm. The essential part of this algorithm is a special interacting procedure of the above-mentioned DF-algorithm and the wavelet-based Identification (ID) algorithm developed in [4]. Significant improvement of the basic properties of a receiving APA pattern is achieved.

  10. Dynamic response of an array of flexural plates in acoustic medium

    PubMed Central

    Park, Kwan Kyu; Khuri-Yakub, Brutus T.

    2012-01-01

    The dynamic response of a transducer array made up of circular flexural plates in immersion is analytically calculated. The calculation method includes three steps: (1) the calculation of parallel resonant frequency and the velocity profile of each plate, (2) the calculation of mutual acoustic impedance between the plates, and (3) the calculation of velocity response, including the mechanical and acoustic impedance. The calculation method is validated by both finite element analysis and measurement results of a fabricated capacitive micromachined ultrasonic transducer. Based on the calculated velocity, the near-field pressure and the near-to-far field radiation patterns are presented. The flexural plate array in immersion displays two modes of operation. At low frequency, the mode shape of the transducer array is similar to that of a suspended plate and, at certain frequencies, two groups of plates move in opposite phase, which results in the cancellation of the average velocity. At high frequency, the mode shape is similar to that of a piston transducer; however, the near-field pressure distribution is similar to that of a resilient disk. PMID:23039426

  11. Micromachining techniques in developing high-frequency piezoelectric composite ultrasonic array transducers.

    PubMed

    Liu, Changgeng; Djuth, Frank T; Zhou, Qifa; Shung, K Kirk

    2013-12-01

    Several micromachining techniques for the fabrication of high-frequency piezoelectric composite ultrasonic array transducers are described in this paper. A variety of different techniques are used in patterning the active piezoelectric material, attaching backing material to the transducer, and assembling an electronic interconnection board for transmission and reception from the array. To establish the feasibility of the process flow, a hybrid test ultrasound array transducer consisting of a 2-D array having an 8 × 8 element pattern and a 5-element annular array was designed, fabricated, and assessed. The arrays are designed for a center frequency of ~60 MHz. The 2-D array elements are 105 × 105 μm in size with 5-μm kerfs between elements. The annular array surrounds the square 2-D array and provides the option of transmitting from the annular array and receiving with the 2-D array. Each annular array element has an area of 0.71 mm(2) with a 16-μm kerf between elements. The active piezoelectric material is (1 - x) Pb(Mg1/3Nb2/3)O3-xPbTiO3 (PMN-PT)/epoxy 1-3 composite with a PMN-PT pillar lateral dimension of 8 μm and an average gap width of ~4 μm, which was produced by deep reactive ion etching (DRIE) dry etching techniques. A novel electric interconnection strategy for high-density, small-size array elements was proposed. After assembly, the array transducer was tested and characterized. The capacitance, pulse-echo responses, and crosstalk were measured for each array element. The desired center frequency of ~60 MHz was achieved and the -6-dB bandwidth of the received signal was ~50%. At the center frequency, the crosstalk between adjacent 2-D array elements was about -33 dB. The techniques described herein can be used to build larger arrays containing smaller elements.

  12. Transducer Design Experiments for Ground-Penetrating Acoustic Systems

    DTIC Science & Technology

    2007-11-02

    subsurface imaging experiments have utilized a source (Tx) and receiver (Rx) configuration in which signals produced by a transmitter at the soil surface...development in the field of acoustic subsurface imaging are as follows. First, a transmitter designed to minimize the emission of surface waves, while

  13. Adhesive defect detection in composite adhesive joints using phased array transducers

    NASA Astrophysics Data System (ADS)

    Ren, Baiyang; Lissenden, Cliff J.

    2015-03-01

    Composite materials are widely used in aircraft structures due to their high specific stiffness and strength. The laminated nature of composite structures makes them subject to disbond and delamination. These types of defects will compromise the integrity of the structure and therefore need to be monitored. To monitor aircraft structures, light weight transducers capable of large area coverage are beneficial. Ultrasonic guided waves are able to travel long distance and are sensitive to localized defects. The multi-modal characteristic of propagating guided waves requires optimal mode selection and excitation. Phased array transducers provide good versatility for optimal mode excitation since they can excite different guided wave modes preferentially. Phased array transducers designed for structural health monitoring (SHM) applications are employed in this work to study the interaction between adhesive defects and guided wave modes. Amplitude ratios and wave packet composition are utilized as defect indicators that are uniquely available due to the phased array transducers.

  14. Semicylindrical acoustic transducer from a dielectric elastomer film with compliant electrodes.

    PubMed

    Sugimoto, Takehiro; Ono, Kazuho; Ando, Akio; Morita, Yuichi; Hosoda, Kosuke; Ishii, Daisaku

    2011-08-01

    A semicylindrical acoustic transducer was constructed using a dielectric elastomer film with compliant electrodes that is an electroactive polymer composed of a polyurethane elastomer base and polyethylene dioxythiophene/polystyrene sulfonate electrodes. The use of this dielectric elastomer is advantageous because polyurethane is a common material that keeps its shape without any rigid frame. Because the dielectric elastomer films are essentially incompressible, electric-field-induced thickness changes are usually translated into much larger changes of the film area and side length. Here it is proposed that this change in side length can be utilized for sound generation when the film is bent into a semicylindrical shape. Accordingly, a semicylindrical acoustic transducer was fabricated using a film of thickness of 300 μm and its acoustic characteristics were investigated. The transducer can be operated at low applied voltages by reducing the film thickness, as long as the film is thick enough to generate sufficient force to overcome sound radiation impedance. The second harmonic distortion of the transducer was also investigated as a function of the ratio of the direct current bias voltage to the alternating current audio signal amplitude.

  15. Therapeutic Array Transducer Element Using Coresonance between Hemispherical Piezoceramic Shell and Water Sphere: Effect of Load Masses of Support and Electric Contact

    NASA Astrophysics Data System (ADS)

    Otsu, Kenji; Yoshizawa, Shin; Umemura, Shin-ichiro

    2012-07-01

    For therapeutic ultrasound array transducers, it is necessary to reduce the electrical impedance of their elements so that the transducer can produce high ultrasonic power at a relatively low drive voltage. For this purpose, a new concept of a breathing-mode piezoceramic transducer element has been proposed. Numerical simulation showed its low electric impedance as well as good acoustical coupling between the concave hemispherical piezoceramic shell, with a diameter on the order of a wavelength in water, and the volume of a water sphere half enclosed by the shell. In the preparation of a prototype transducer, the effect of additional load masses of the flange supporting the shell and the electric contact for driving the element was numerically analyzed in this paper.

  16. Measurement of ultrasonic nonlinear parameter by using electromagnetic acoustic transducer

    NASA Astrophysics Data System (ADS)

    Cai, Zhichao; Liu, Suzhen; Zhang, Chuang

    2017-02-01

    The nonlinear ultrasonic technology is generally known as an effective method for the microcrack detection. However, most of the previous experimental studies were limited by a contact nonlinearity method. Since measurement by the contact method is affected by the coupling conditions, additional nonlinear coefficient are lead into the measurement. This research presents a novel technique for nonlinear ultrasonic wave measurements that uses a non-contact electromagnetic ultrasonic transducer (EMAT). And for a better understanding and a more in-depth analysis of the macroscopic nonlinear behavior of microcrack, the developed FEM modeling approach was built to simulate microcrack induced nonlinearities manifested in electromagnetic ultrasonic waves and validated experimentally. This study has yielded a quantitative characterization strategy for microcrack using EMAT, facilitating deployment of structural health monitoring by noncontact electromagnetic nondestructive testing.

  17. Broadband gradient impedance matching using an acoustic metamaterial for ultrasonic transducers.

    PubMed

    Li, Zheng; Yang, Dan-Qing; Liu, Shi-Lei; Yu, Si-Yuan; Lu, Ming-Hui; Zhu, Jie; Zhang, Shan-Tao; Zhu, Ming-Wei; Guo, Xia-Sheng; Wu, Hao-Dong; Wang, Xin-Long; Chen, Yan-Feng

    2017-02-17

    High-quality broadband ultrasound transducers yield superior imaging performance in biomedical ultrasonography. However, proper design to perfectly bridge the energy between the active piezoelectric material and the target medium over the operating spectrum is still lacking. Here, we demonstrate a new anisotropic cone-structured acoustic metamaterial matching layer that acts as an inhomogeneous material with gradient acoustic impedance along the ultrasound propagation direction. When sandwiched between the piezoelectric material unit and the target medium, the acoustic metamaterial matching layer provides a broadband window to support extraordinary transmission of ultrasound over a wide frequency range. We fabricated the matching layer by etching the peeled silica optical fibre bundles with hydrofluoric acid solution. The experimental measurement of an ultrasound transducer equipped with this acoustic metamaterial matching layer shows that the corresponding -6 dB bandwidth is able to reach over 100%. This new material fully enables new high-end piezoelectric materials in the construction of high-performance ultrasound transducers and probes, leading to considerably improved resolutions in biomedical ultrasonography and compact harmonic imaging systems.

  18. Broadband gradient impedance matching using an acoustic metamaterial for ultrasonic transducers

    PubMed Central

    Li, Zheng; Yang, Dan-Qing; Liu, Shi-Lei; Yu, Si-Yuan; Lu, Ming-Hui; Zhu, Jie; Zhang, Shan-Tao; Zhu, Ming-Wei; Guo, Xia-Sheng; Wu, Hao-Dong; Wang, Xin-Long; Chen, Yan-Feng

    2017-01-01

    High-quality broadband ultrasound transducers yield superior imaging performance in biomedical ultrasonography. However, proper design to perfectly bridge the energy between the active piezoelectric material and the target medium over the operating spectrum is still lacking. Here, we demonstrate a new anisotropic cone-structured acoustic metamaterial matching layer that acts as an inhomogeneous material with gradient acoustic impedance along the ultrasound propagation direction. When sandwiched between the piezoelectric material unit and the target medium, the acoustic metamaterial matching layer provides a broadband window to support extraordinary transmission of ultrasound over a wide frequency range. We fabricated the matching layer by etching the peeled silica optical fibre bundles with hydrofluoric acid solution. The experimental measurement of an ultrasound transducer equipped with this acoustic metamaterial matching layer shows that the corresponding −6 dB bandwidth is able to reach over 100%. This new material fully enables new high-end piezoelectric materials in the construction of high-performance ultrasound transducers and probes, leading to considerably improved resolutions in biomedical ultrasonography and compact harmonic imaging systems. PMID:28211510

  19. Broadband gradient impedance matching using an acoustic metamaterial for ultrasonic transducers

    NASA Astrophysics Data System (ADS)

    Li, Zheng; Yang, Dan-Qing; Liu, Shi-Lei; Yu, Si-Yuan; Lu, Ming-Hui; Zhu, Jie; Zhang, Shan-Tao; Zhu, Ming-Wei; Guo, Xia-Sheng; Wu, Hao-Dong; Wang, Xin-Long; Chen, Yan-Feng

    2017-02-01

    High-quality broadband ultrasound transducers yield superior imaging performance in biomedical ultrasonography. However, proper design to perfectly bridge the energy between the active piezoelectric material and the target medium over the operating spectrum is still lacking. Here, we demonstrate a new anisotropic cone-structured acoustic metamaterial matching layer that acts as an inhomogeneous material with gradient acoustic impedance along the ultrasound propagation direction. When sandwiched between the piezoelectric material unit and the target medium, the acoustic metamaterial matching layer provides a broadband window to support extraordinary transmission of ultrasound over a wide frequency range. We fabricated the matching layer by etching the peeled silica optical fibre bundles with hydrofluoric acid solution. The experimental measurement of an ultrasound transducer equipped with this acoustic metamaterial matching layer shows that the corresponding ‑6 dB bandwidth is able to reach over 100%. This new material fully enables new high-end piezoelectric materials in the construction of high-performance ultrasound transducers and probes, leading to considerably improved resolutions in biomedical ultrasonography and compact harmonic imaging systems.

  20. Acoustic streaming in the transducer plane in ultrasonic particle manipulation devices.

    PubMed

    Lei, Junjun; Glynne-Jones, Peter; Hill, Martyn

    2013-06-07

    In acoustofluidic manipulation and sorting devices, Rayleigh streaming flows are typically found in addition to the acoustic radiation forces. However, experimental work from various groups has described acoustic streaming that occurs in planar devices in a plane parallel to the transducer face. This is typically a four-quadrant streaming pattern with the circulation parallel to the transducer. Understanding its origins is essential for creating designs that limit or control this phenomenon. The cause of this kind of streaming pattern has not been previously explained as it is different from the well-known classical streaming patterns such as Rayleigh streaming and Eckart streaming, whose circulation planes are generally perpendicular to the face of the acoustic transducer. In order to gain insight into these patterns we present a numerical method based on Nyborg's limiting velocity boundary condition that includes terms ignored in the Rayleigh analysis, and verify its predictions against experimental PIV results in a simple device. The results show that the modelled particle trajectories match those found experimentally. Analysis of the dominant terms in the driving equations shows that the origin of this kind of streaming pattern is related to the circulation of the acoustic intensity.

  1. Arbitrary shaped, liquid filled reverberators with non-resonant transducers for broadband focusing of ultrasound using Time Reversed Acoustics.

    PubMed

    Sarvazyan, A; Fillinger, L

    2009-03-01

    The ability to generate short focused ultrasonic pulses with duration on the order of one period of carrier frequency depends on the bandwidth of the transmitter as the pulse duration is inversely proportional to the bandwidth. Conventional focusing arrays used for focusing ultrasound have limited bandwidth due to the resonant nature of the piezoelements generating ultrasound. Theoretically it is possible to build a broadband phased array composed of "non-resonant" elements: wedge-shaped or flat-concave piezotransducers, though there are numerous technical difficulties in designing arrays with hundreds of elements of complex shape. This task is much easier to realize in an alternative technique of ultrasound focusing based on the principles of Time Reversed Acoustics (TRA) because in TRA systems, effective focusing can be achieved with just a few, or even one, transducers. The goal of this study is to demonstrate the possibility of broadband focusing of ultrasonic waves using a TRA system with non-resonant transducers and to explore the factors affecting the performance of such a system. A new type of TRA reverberators, such as water-filled thin-wall plastic vessels, which can be used with the submersible piezotransducers fixed internally in the reverberator, are proposed and tested. The experiments are conducted in a water tank with the walls and bottom covered by a sound absorbing lining. A needle hydrophone mounted on a 3D positioning system is used as a beacon for the TRA focusing and then for measuring the spatial distribution of the focused ultrasound field. The bandwidth and spatial distribution of the signal focused by the TRA system using a single channel with the resonant versus non-resonant transducers have been analyzed. Two types of non-resonant transducers were tested: a flat-concave transducer with a diameter of 30 mm, and a thickness varying from 2 mm in the center to 11 mm at the edge, and a specially designed submersible transducer having an

  2. 2D Transducer Array for High-Speed 3D Imaging System

    DTIC Science & Technology

    2007-11-02

    low voltage differential signaling ( LVDS ) interface and a peripheral component interconnect (PCI) bus. The maximum numbers of transmission and...32-channel analog to digital converter (ADC) was attached to the developed transducer array. LVDS 2D Array Front End D a t a A c q u i s i t i o

  3. Calibration of ipsilateral stimulus transducer for acoustic reflex measurements.

    PubMed

    Olsen, S; Osterhammel, P A; Rasmussen, A N; Nielsen, L H

    1995-01-01

    Pure-tone Reference Equivalent Threshold Sound Pressure Level (RETSPL) of the ipsilateral stimulus receiver for acoustic reflex measurements on Madsen Electronics type Zodiac 901 impedance audiometer is provided. The results, obtained from 20 normal-hearing subjects, are achieved by comparing hearing threshold levels measured using a TDH 39 telephone (calibrated to ISO 389) with thresholds recorded using the ipsilateral stimulus insert phone. The calibration is referenced to an IEC-711 ear simulator and comprises the following frequencies: 125, 250, 500, 750, 1000, 1500, 2000, 3000, 4000, 6000, 8000 Hz.

  4. A parametric study of ultrasonic beam profiles for a linear phased array transducer.

    PubMed

    Lee, J H; Choi, S W

    2000-01-01

    A numerical simulation model is presented to investigate the influences of design parameters of linear phased array transducers on beam focusing and steering performance. The characteristic of ultrasonic beam profiles has been simulated on the basis of the Huygen's superposition principle. For the simulation, a linear phased array is considered as the composition of finite number of elements separated by equidistance. Individual elements are considered as two-dimensional point sources. The waves generated from piezoelectric elements are considered as simplified transient ultrasonic waves that are constructed with the cosine function enveloped with a Hanning window. The characteristic of ultrasonic wave propagation into a medium from the phased array transducer is described. The effects of the number, the interelement spacing, steering angle, the focal length, and frequency bandwidth of the piezoelectric elements on beam directivity and ultrasonic pressure field in a linear phased array transducer are systematically discussed.

  5. Measurement of surface acoustic wave velocity using a variable-line-focus polyurea thin-film ultrasonic transducer.

    PubMed

    Aoyagi, Takahiro; Nakazawa, Marie; Tabaru, Masaya; Nakamura, Kentaro; Ueha, Sadayuki

    2009-08-01

    This paper presents the novel measurement method of the surface acoustic wave velocity by the variable-line- focus transducer using a polyurea piezoelectric ultrasonic transducer. First, a multiresonant polyurea thin-film ultrasonic transducer is fabricated by the vapor deposition polymerization process using 2 monomers. Second, the measurement system of surface acoustic wave velocity modified from the V(z) curve method is established. The system uses the fabricated polyurea thin film as a variable-line-focus transducer at the 30-MHz resonance frequency. The focal length is changed by varying the radius of curvature of the film transducer. To estimate the surface acoustic wave velocities from the measured data theoretically, the photographs of the transducer bent shapes are taken by using a digital microscope, and the bent transducer curvature is modeled by the 7th-order polynomial. To examine the performances of the variable-line-focus transducer, the surface acoustic wave velocities of an aluminum and a synthesized silica glass specimen have been measured. The measured surface acoustic velocities showed good agreement with the reference values.

  6. Design factors of intravascular dual frequency transducers for super-harmonic contrast imaging and acoustic angiography.

    PubMed

    Ma, Jianguo; Martin, K Heath; Li, Yang; Dayton, Paul A; Shung, K Kirk; Zhou, Qifa; Jiang, Xiaoning

    2015-05-07

    Imaging of coronary vasa vasorum may lead to assessment of the vulnerable plaque development in diagnosis of atherosclerosis diseases. Dual frequency transducers capable of detection of microbubble super-harmonics have shown promise as a new contrast-enhanced intravascular ultrasound (CE-IVUS) platform with the capability of vasa vasorum imaging. Contrast-to-tissue ratio (CTR) in CE-IVUS imaging can be closely associated with low frequency transmitter performance. In this paper, transducer designs encompassing different transducer layouts, transmitting frequencies, and transducer materials are compared for optimization of imaging performance. In the layout selection, the stacked configuration showed superior super-harmonic imaging compared with the interleaved configuration. In the transmitter frequency selection, a decrease in frequency from 6.5 MHz to 5 MHz resulted in an increase of CTR from 15 dB to 22 dB when receiving frequency was kept constant at 30 MHz. In the material selection, the dual frequency transducer with the lead magnesium niobate-lead titanate (PMN-PT) 1-3 composite transmitter yielded higher axial resolution compared to single crystal transmitters (70 μm compared to 150 μm pulse length). These comparisons provide guidelines for the design of intravascular acoustic angiography transducers.

  7. Design factors of intravascular dual frequency transducers for super-harmonic contrast imaging and acoustic angiography

    NASA Astrophysics Data System (ADS)

    Ma, Jianguo; Martin, K. Heath; Li, Yang; Dayton, Paul A.; Shung, K. Kirk; Zhou, Qifa; Jiang, Xiaoning

    2015-05-01

    Imaging of coronary vasa vasorum may lead to assessment of the vulnerable plaque development in diagnosis of atherosclerosis diseases. Dual frequency transducers capable of detection of microbubble super-harmonics have shown promise as a new contrast-enhanced intravascular ultrasound (CE-IVUS) platform with the capability of vasa vasorum imaging. Contrast-to-tissue ratio (CTR) in CE-IVUS imaging can be closely associated with low frequency transmitter performance. In this paper, transducer designs encompassing different transducer layouts, transmitting frequencies, and transducer materials are compared for optimization of imaging performance. In the layout selection, the stacked configuration showed superior super-harmonic imaging compared with the interleaved configuration. In the transmitter frequency selection, a decrease in frequency from 6.5 MHz to 5 MHz resulted in an increase of CTR from 15 dB to 22 dB when receiving frequency was kept constant at 30 MHz. In the material selection, the dual frequency transducer with the lead magnesium niobate-lead titanate (PMN-PT) 1-3 composite transmitter yielded higher axial resolution compared to single crystal transmitters (70 μm compared to 150 μm pulse length). These comparisons provide guidelines for the design of intravascular acoustic angiography transducers.

  8. Design factors of intravascular dual frequency transducers for super-harmonic contrast imaging and acoustic angiography

    PubMed Central

    Ma, Jianguo; Martin, K. Heath; Li, Yang; Dayton, Paul A.; Shung, K. Kirk; Zhou, Qifa; Jiang, Xiaoning

    2015-01-01

    Imaging of coronary vasa vasorum may lead to assessment of the vulnerable plaque development in diagnosis of atherosclerosis diseases. Dual frequency transducers capable of detection of microbubble super-harmonics have shown promise as a new contrast-enhanced intravascular ultrasound (CE-IVUS) platform with the capability of vasa vasorum imaging. Contrast-to-tissue ratio (CTR) in CE-IVUS imaging can be closely associated with the low frequency transmitter performance. In this paper, transducer designs encompassing different transducer layouts, transmitting frequencies, and transducer materials are compared for optimization of imaging performance. In the layout selection, the stacked configuration showed superior super-harmonic imaging compared with the interleaved configuration. In the transmitter frequency selection, a decrease in frequency from 6.5 MHz to 5 MHz resulted in an increase of CTR from 15 dB to 22 dB when receiving frequency was kept constant at 30 MHz. In the material selection, the dual frequency transducer with the lead magnesium niobate-lead titanate (PMN-PT) 1-3 composite transmitter yielded higher axial resolution compared to single crystal transmitters (70 μm compared to 150 μm pulse length). These comparisons provide guidelines for design of intravascular acoustic angiography transducers. PMID:25856384

  9. A micromachined silicon parallel acoustic delay line (PADL) array for real-time photoacoustic tomography (PAT)

    NASA Astrophysics Data System (ADS)

    Cho, Young Y.; Chang, Cheng-Chung; Wang, Lihong V.; Zou, Jun

    2015-03-01

    To achieve real-time photoacoustic tomography (PAT), massive transducer arrays and data acquisition (DAQ) electronics are needed to receive the PA signals simultaneously, which results in complex and high-cost ultrasound receiver systems. To address this issue, we have developed a new PA data acquisition approach using acoustic time delay. Optical fibers were used as parallel acoustic delay lines (PADLs) to create different time delays in multiple channels of PA signals. This makes the PA signals reach a single-element transducer at different times. As a result, they can be properly received by single-channel DAQ electronics. However, due to their small diameter and fragility, using optical fiber as acoustic delay lines poses a number of challenges in the design, construction and packaging of the PADLs, thereby limiting their performances and use in real imaging applications. In this paper, we report the development of new silicon PADLs, which are directly made from silicon wafers using advanced micromachining technologies. The silicon PADLs have very low acoustic attenuation and distortion. A linear array of 16 silicon PADLs were assembled into a handheld package with one common input port and one common output port. To demonstrate its real-time PAT capability, the silicon PADL array (with its output port interfaced with a single-element transducer) was used to receive 16 channels of PA signals simultaneously from a tissue-mimicking optical phantom sample. The reconstructed PA image matches well with the imaging target. Therefore, the silicon PADL array can provide a 16× reduction in the ultrasound DAQ channels for real-time PAT.

  10. Confocal acoustic radiation force optical coherence elastography using a ring ultrasonic transducer

    SciTech Connect

    Qi, Wenjuan; Li, Rui; Ma, Teng; Kirk Shung, K.; Zhou, Qifa; Chen, Zhongping

    2014-03-24

    We designed and developed a confocal acoustic radiation force optical coherence elastography system. A ring ultrasound transducer was used to achieve reflection mode excitation and generate an oscillating acoustic radiation force in order to generate displacements within the tissue, which were detected using the phase-resolved optical coherence elastography method. Both phantom and human tissue tests indicate that this system is able to sense the stiffness difference of samples and quantitatively map the elastic property of materials. Our confocal setup promises a great potential for point by point elastic imaging in vivo and differentiation of diseased tissues from normal tissue.

  11. Ultrasonic fingerprint sensor using a piezoelectric micromachined ultrasonic transducer array integrated with complementary metal oxide semiconductor electronics

    NASA Astrophysics Data System (ADS)

    Lu, Y.; Tang, H.; Fung, S.; Wang, Q.; Tsai, J. M.; Daneman, M.; Boser, B. E.; Horsley, D. A.

    2015-06-01

    This paper presents an ultrasonic fingerprint sensor based on a 24 × 8 array of 22 MHz piezoelectric micromachined ultrasonic transducers (PMUTs) with 100 μm pitch, fully integrated with 180 nm complementary metal oxide semiconductor (CMOS) circuitry through eutectic wafer bonding. Each PMUT is directly bonded to a dedicated CMOS receive amplifier, minimizing electrical parasitics and eliminating the need for through-silicon vias. The array frequency response and vibration mode-shape were characterized using laser Doppler vibrometry and verified via finite element method simulation. The array's acoustic output was measured using a hydrophone to be ˜14 kPa with a 28 V input, in reasonable agreement with predication from analytical calculation. Pulse-echo imaging of a 1D steel grating is demonstrated using electronic scanning of a 20 × 8 sub-array, resulting in 300 mV maximum received amplitude and 5:1 contrast ratio. Because the small size of this array limits the maximum image size, mechanical scanning was used to image a 2D polydimethylsiloxane fingerprint phantom (10 mm × 8 mm) at a 1.2 mm distance from the array.

  12. Ultrasonic fingerprint sensor using a piezoelectric micromachined ultrasonic transducer array integrated with complementary metal oxide semiconductor electronics

    SciTech Connect

    Lu, Y.; Fung, S.; Wang, Q.; Horsley, D. A.; Tang, H.; Boser, B. E.; Tsai, J. M.; Daneman, M.

    2015-06-29

    This paper presents an ultrasonic fingerprint sensor based on a 24 × 8 array of 22 MHz piezoelectric micromachined ultrasonic transducers (PMUTs) with 100 μm pitch, fully integrated with 180 nm complementary metal oxide semiconductor (CMOS) circuitry through eutectic wafer bonding. Each PMUT is directly bonded to a dedicated CMOS receive amplifier, minimizing electrical parasitics and eliminating the need for through-silicon vias. The array frequency response and vibration mode-shape were characterized using laser Doppler vibrometry and verified via finite element method simulation. The array's acoustic output was measured using a hydrophone to be ∼14 kPa with a 28 V input, in reasonable agreement with predication from analytical calculation. Pulse-echo imaging of a 1D steel grating is demonstrated using electronic scanning of a 20 × 8 sub-array, resulting in 300 mV maximum received amplitude and 5:1 contrast ratio. Because the small size of this array limits the maximum image size, mechanical scanning was used to image a 2D polydimethylsiloxane fingerprint phantom (10 mm × 8 mm) at a 1.2 mm distance from the array.

  13. Investigating an alternative ring design of transducer arrays for tumor treating fields (TTFields).

    PubMed

    Macedo, Mario; Wenger, Cornelia; Salvador, Ricardo; Fernandes, Sofia R; Miranda, Pedro C

    2016-08-01

    Tumor treating fields (TTFields) is a therapy that inhibits cell proliferation and has been approved by the U.S Food and Drug Administration (FDA) for the treatment of Glioblastoma Multiforme. This anti-mitotic technique works non-invasively and regionally, and is associated with less toxicity and a better quality of life. Currently a device called Optune™ is clinically used which works with two perpendicular and alternating array pairs each consisting of 3×3 transducers. The aim of this study is to investigate a theoretical alternative array design which consists of two rings of 16 transducers and thus permits various field directions. A realistic human head model with isotropic tissues was used to simulate the electric field distribution induced by the two types of array layouts. One virtual tumour was modelled as a sphere in the white matter close to one lateral ventricle. Four alternative ring design directions were evaluated by activating arrays of 2×2 transducers on opposite sides of the head. The same amount of current was passed through active transducer arrays of the Optune system and the ring design. The electric field distribution in the brain differs for the various array configurations, with higher fields between activated transducer pairs and lower values in distant areas. Nonetheless, the average electric field strength values in the tumour are comparable for the various configurations. Values between 1.00 and 1.91 V/cm were recorded, which are above the threshold for effective treatment. Increasing the amount of field directions could possibly also increase treatment efficacy, because TTFields' effect on cancer cells is highest when the randomly distributed cell division axis is aligned with the field. The results further predict that slightly changing transducer positions only has a minor effect on the electric field. Thus patients might have some freedom to adjust array positions without major concern for treatment efficacy.

  14. Near perfect ultrasonic omnidirectional transducer using the optimal patterning of the zero-index acoustic metamaterials

    NASA Astrophysics Data System (ADS)

    Hyun, Jaeyub; Wang, Semyung

    2016-11-01

    This study proposes the theoretical optimal patterning method based on the geometrical transformation acoustics to design an ultrasonic omnidirectional transducer system, which is composed of the designed near zero-index acoustic metamaterial (ZIAMM). The designed ZIAMM is made of circular rubber rods in water matrix. Meanwhile, the curved unit cell structure is necessary to arrange the designed ZIAMM effectively into the circular-shaped ultrasonic omnidirectional transducer system. To this end, we transform the square unit cell into the curved unit cell in the physical space, instead of starting from a homogeneous medium. Also the periodic boundary condition in the two-dimensional polar coordinate is proposed to calculate the dynamic characteristic (i.e., the effective material properties and the dispersion relation) according to the curvature of curved unit cell. The proposed optimal patterning method is verified through the ZIAMM-based ultrasonic omnidirectional transducer system. Especially the radiation performance of ZIAMM-based ultrasonic omnidirectional transducer system is greatly improved by this optimal patterning.

  15. Two-dimensional refractive index modulation by phased array transducers in acousto-optic deflectors.

    PubMed

    Wang, Tiansi; Zhang, Chong; Aleksov, Aleksandar; Salama, Islam; Kar, Aravinda

    2017-01-20

    Acousto-optic deflectors are photonic devices that are used for scanning high-power laser beams in advanced microprocessing applications such as marking and direct writing. The operation of conventional deflectors mostly relies on one-dimensional sinusoidal variation of the refractive index in an acousto-optic medium. Sometimes static phased array transducers, such as step configuration or planar configuration transducer architecture, are used to tilt the index modulation planes for achieving higher performance and higher resolution than a single transducer AO device. However, the index can be modulated in two dimensions, and the modulation plane can be tilted arbitrarily by creating dynamic phase gratings in the medium using phased array transducers. This type of dynamic two-dimensional acousto-optic deflector can provide better performance using, for example, a large deflection angle and high diffraction efficiency. This paper utilizes an ultrasonic beam steering approach to study the two-dimensional strain-induced index modulation due to the photoelastic effect. The modulation is numerically simulated, and the effects of various parameters, such as the operating radiofrequency of the transducers, the ultrasonic beam steering angle, and different combinations of pressure on each element of the transducer array, are demonstrated.

  16. Nonparaxial multi-Gaussian beam models and measurement models for phased array transducers.

    PubMed

    Zhao, Xinyu; Gang, Tie

    2009-01-01

    A nonparaxial multi-Gaussian beam model is proposed in order to overcome the limitation that paraxial Gaussian beam models lose accuracy in simulating the beam steering behavior of phased array transducers. Using this nonparaxial multi-Gaussian beam model, the focusing and steering sound fields generated by an ultrasonic linear phased array transducer are calculated and compared with the corresponding results obtained by paraxial multi-Gaussian beam model and more exact Rayleigh-Sommerfeld integral model. In addition, with help of this novel nonparaxial method, an ultrasonic measurement model is provided to investigate the sensitivity of linear phased array transducers versus steering angles. Also the comparisons of model predictions with experimental results are presented to certify the accuracy of this provided measurement model.

  17. A modal test method using sound pressure transducers based on vibro-acoustic reciprocity

    NASA Astrophysics Data System (ADS)

    Zhu, W. D.; Liu, J. M.; Xu, Y. F.; Ying, H. Q.

    2014-06-01

    A modal test method that uses sound pressure transducers at fixed locations and an impact hammer roving over a test structure is developed in this work. Since sound pressure transducers are used, the current method deals with a coupled structural-acoustic system. Based on the vibro-acoustic reciprocity, the method is equivalent to one, where acoustic excitations at fixed locations are given and the resulting acceleration of the test structure is measured. The current method can eliminate mass loading due to use of accelerometers, which can destroy existence of repeated or close natural frequencies of a symmetric structure. It can also avoid effects of a nodal line of a mode and an inactive area of a local mode, and measure all the out-of-plane modes within a frequency range of interest, including global and local ones. The coupling between the structure and the acoustic field in a structural-acoustic system introduces asymmetry in the model formulation. An equivalent state space formulation is used for a damped structural-acoustic system and the associated eigenvalue problem is derived. The biorthonormality relations between the left and right eigenvectors and the relations between the structural and acoustic components in the left and right eigenvectors are proved. The frequency response functions associated with the current method are derived and their physical meanings are explained. The guidelines for using the current method, including the types of structures that are suitable for the method, the positions of the sound pressure transducers, and the orientation of the test structure relative to the transducers, are provided. Modal tests were carried out on an automotive disk brake using the traditional and current methods, where multiple accelerometers and microphones were used to measure its dynamic responses induced by impacts, respectively. The differences between the measured natural frequencies using the current method and those from the finite element

  18. Development of an electromagnetic acoustic transducer (EMAT) for the noncontact excitation of guided ultrasonic waves

    NASA Astrophysics Data System (ADS)

    Fromme, P.

    2015-03-01

    Fatigue damage can develop in aerospace structures at locations of stress concentration, such as fasteners. For the safe operation of the aircraft fatigue cracks need to be detected before reaching a critical length. Guided ultrasonic waves offer an efficient method for the detection and characterization of such defects in large aerospace structures. Noncontact excitation of guided waves was achieved using electromagnetic acoustic transducers (EMAT). The transducer development for the specific excitation of the A0 Lamb wave mode is explained. The radial and angular dependency of the excited guided wave pulses at different frequencies were measured using a noncontact laser interferometer. Based on the induced eddy currents in the plate a theoretical model was developed and reasonably good agreement with the measured transducer performance was achieved. The developed transducers were employed for defect detection in aluminum components using fully noncontact guided wave measurements. Excitation of the A0 Lamb wave mode was achieved using the developed EMAT transducer and the guided wave propagation and scattering was measured using a noncontact laser interferometer. These results provide the basis for the defect characterization in aerospace structures using noncontact guided wave sensors.

  19. Acoustic field of a wedge-shaped section of a spherical cap transducer

    NASA Astrophysics Data System (ADS)

    Ketterling, Jeffrey A.

    2003-12-01

    The acoustic pressure field at an arbitrary point in space is derived for a wedge-shaped section of a spherical cap transducer using the spatial impulse response (SIR) method. For a spherical surface centered at the origin, a wedge shape is created by taking cuts in the X-Y and X-Z planes and removing the smallest surface component. Analytic expressions are derived for the SIR based on spatial location. The expressions utilize the SIR solutions for a spherical cap transducer [Arditi et al., Ultrason. Imaging 3, 37-61 (1981)] with additional terms added to account for the reduced surface area of the wedge. Results from the numerical model are compared to experimental measurements from a wedge transducer with an 8-cm outer diameter and 9-cm geometric focus. The experimental and theoretical -3-dB beamwidths agreed to within 10%+/-5%. The SIR model for a wedge-shaped transducer is easily extended to other spherically curved transducer geometries that consist of combinations of wedge sections and spherical caps.

  20. Annular spherically focused ring transducers for improved single-beam acoustical tweezers

    NASA Astrophysics Data System (ADS)

    Mitri, F. G.

    2016-02-01

    The use of ultrasonic transducers with a central hollow is suggested for improved single-beam acoustical tweezers applications. Within the framework of the Fresnel-Kirchhoff parabolic approximation, a closed-form partial-wave series expansion (PWSE) for the incident velocity potential (or pressure) field is derived for an annular spherically focused ring (asfr) with uniform vibration across its surface in spherical coordinates. The Rayleigh-Sommerfeld diffraction integral and the addition theorems for the Legendre and spherical wave functions are used to obtain the PWSE assuming a weakly focused beam (with a focusing angle α ≤ 20°). The PWSE allows evaluating the incident field from the finite asfr in 3D. Moreover, the obtained solution allows computing efficiently the acoustic scattering and radiation force on a sphere centered on the beam's axis of wave propagation. The analytical solution is valid for wavelengths largely exceeding the radius of the asfr and when the viscosity of the surrounding fluid can be neglected. Numerical predictions for the beam-forming, scattering, and axial time-averaged radiation force are performed with particular emphasis on the asfr thickness, the axial distance separating the sphere from the center of the transducer, the (non-dimensional) size of the transducer, as well as the sphere's elastic properties without restriction to the long- (i.e., Rayleigh) or the short-wavelength (i.e., ray acoustics) regimes. Potential applications of the present solution are in beam-forming design, particle tweezing, and manipulation due to negative forces using ultrasonic asfr transducers.

  1. Annular spherically focused ring transducers for improved single-beam acoustical tweezers

    SciTech Connect

    Mitri, F. G.

    2016-02-14

    The use of ultrasonic transducers with a central hollow is suggested for improved single-beam acoustical tweezers applications. Within the framework of the Fresnel-Kirchhoff parabolic approximation, a closed-form partial-wave series expansion (PWSE) for the incident velocity potential (or pressure) field is derived for an annular spherically focused ring (asfr) with uniform vibration across its surface in spherical coordinates. The Rayleigh-Sommerfeld diffraction integral and the addition theorems for the Legendre and spherical wave functions are used to obtain the PWSE assuming a weakly focused beam (with a focusing angle α ≤ 20°). The PWSE allows evaluating the incident field from the finite asfr in 3D. Moreover, the obtained solution allows computing efficiently the acoustic scattering and radiation force on a sphere centered on the beam's axis of wave propagation. The analytical solution is valid for wavelengths largely exceeding the radius of the asfr and when the viscosity of the surrounding fluid can be neglected. Numerical predictions for the beam-forming, scattering, and axial time-averaged radiation force are performed with particular emphasis on the asfr thickness, the axial distance separating the sphere from the center of the transducer, the (non-dimensional) size of the transducer, as well as the sphere's elastic properties without restriction to the long- (i.e., Rayleigh) or the short-wavelength (i.e., ray acoustics) regimes. Potential applications of the present solution are in beam-forming design, particle tweezing, and manipulation due to negative forces using ultrasonic asfr transducers.

  2. Micromachining Techniques in Developing High-Frequency Piezoelectric Composite Ultrasonic Array Transducers

    PubMed Central

    Liu, Changgeng; Djuth, Frank T.; Zhou, Qifa; Shung, K. Kirk

    2014-01-01

    Several micromachining techniques for the fabrication of high-frequency piezoelectric composite ultrasonic array transducers are described in this paper. A variety of different techniques are used in patterning the active piezoelectric material, attaching backing material to the transducer, and assembling an electronic interconnection board for transmission and reception from the array. To establish the feasibility of the process flow, a hybrid test ultrasound array transducer consisting of a 2-D array having an 8 × 8 element pattern and a 5-element annular array was designed, fabricated, and assessed. The arrays are designed for a center frequency of ~60 MHz. The 2-D array elements are 105 × 105 μm in size with 5-μm kerfs between elements. The annular array surrounds the square 2-D array and provides the option of transmitting from the annular array and receiving with the 2-D array. Each annular array element has an area of 0.71 mm2 with a 16-μm kerf between elements. The active piezoelectric material is (1 − x) Pb(Mg1/3Nb2/3)O3−xPbTiO3 (PMN-PT)/epoxy 1–3 composite with a PMN-PT pillar lateral dimension of 8 μm and an average gap width of ~4 μm, which was produced by deep reactive ion etching (DRIE) dry etching techniques. A novel electric interconnection strategy for high-density, small-size array elements was proposed. After assembly, the array transducer was tested and characterized. The capacitance, pulse–echo responses, and crosstalk were measured for each array element. The desired center frequency of ~60 MHz was achieved and the −6-dB bandwidth of the received signal was ~50%. At the center frequency, the crosstalk between adjacent 2-D array elements was about −33 dB. The techniques described herein can be used to build larger arrays containing smaller elements. PMID:24297027

  3. Manipulation of acoustic focusing with an active and configurable planar metasurface transducer

    PubMed Central

    Zhao, Jiajun; Ye, Huapeng; Huang, Kun; Chen, Zhi Ning; Li, Baowen; Qiu, Cheng-Wei

    2014-01-01

    It has a pivotal role in medical science and in industry to concentrate the acoustic energy created with piezoelectric transducers (PTs) into a specific area. However, previous researches seldom consider the focal resolution, whose focal size is much larger than one wavelength. Furthermore, there is to date no such design method of PTs that allows a large degree of freedom to achieve designed focal patterns. Here, an active and configurable planar metasurface PT prototype is proposed to manipulate the acoustic focal pattern and the focal resolution freely. By suitably optimized ring configurations of the active metasurface PT, we demonstrate the manipulation of focal patterns in acoustic far fields, such as the designed focal needle and multi foci. Our method is also able to manipulate and improve the cross-sectional focal resolution from subwavelength to the extreme case: the deep sub-diffraction-limit resolution. Via the acoustic Rayleigh-Sommerfeld diffraction integral (RSI) cum the binary particle swarm optimization (BPSO), the free manipulation of focusing properties is achieved in acoustics for the first time. Our approach may offer more initiatives where the strict control of acoustic high-energy areas is demanding. PMID:25174409

  4. Manipulation of acoustic focusing with an active and configurable planar metasurface transducer

    NASA Astrophysics Data System (ADS)

    Zhao, Jiajun; Ye, Huapeng; Huang, Kun; Chen, Zhi Ning; Li, Baowen; Qiu, Cheng-Wei

    2014-09-01

    It has a pivotal role in medical science and in industry to concentrate the acoustic energy created with piezoelectric transducers (PTs) into a specific area. However, previous researches seldom consider the focal resolution, whose focal size is much larger than one wavelength. Furthermore, there is to date no such design method of PTs that allows a large degree of freedom to achieve designed focal patterns. Here, an active and configurable planar metasurface PT prototype is proposed to manipulate the acoustic focal pattern and the focal resolution freely. By suitably optimized ring configurations of the active metasurface PT, we demonstrate the manipulation of focal patterns in acoustic far fields, such as the designed focal needle and multi foci. Our method is also able to manipulate and improve the cross-sectional focal resolution from subwavelength to the extreme case: the deep sub-diffraction-limit resolution. Via the acoustic Rayleigh-Sommerfeld diffraction integral (RSI) cum the binary particle swarm optimization (BPSO), the free manipulation of focusing properties is achieved in acoustics for the first time. Our approach may offer more initiatives where the strict control of acoustic high-energy areas is demanding.

  5. Ultrasonic non-destructive testing of pieces of complex geometry with a flexible phased array transducer

    PubMed

    Chatillon; Cattiaux; Serre; Roy

    2000-03-01

    Ultrasonic non-destructive testing of components of complex geometry in the nuclear industry faces several difficulties: sensitivity variations due to unmatched contact, inaccurate localization of defects due to variations of transducer orientation, and uncovered area of the component. To improve the performances of such testing and defect characterization, we propose a new concept of ultrasonic contact phased array transducer. The phased array transducer has a flexible radiating surface able to fit the actual surface of the piece to optimize the contact and thus the sensitivity of the test. To control the transmitted field, and therefore to improve the defect characterization, a delay law optimizing algorithm is developed. To assess the capability of such a transducer, the Champ-Sons model, developed at the French Atomic Energy Commission for predicting field radiated by arbitrary transducers into pieces, has to be extended to sources directly in contact with pieces of complex geometry. The good behavior of this new type of probe predicted by computations is experimentally validated with a jointed transducer positioned on pieces of various profiles.

  6. Finite difference calculation of acoustic streaming including the boundary layer phenomena in an ultrasonic air pump on graphics processing unit array

    NASA Astrophysics Data System (ADS)

    Wada, Yuji; Koyama, Daisuke; Nakamura, Kentaro

    2012-09-01

    Direct finite difference fluid simulation of acoustic streaming on the fine-meshed threedimension model by graphics processing unit (GPU)-oriented calculation array is discussed. Airflows due to the acoustic traveling wave are induced when an intense sound field is generated in a gap between a bending transducer and a reflector. Calculation results showed good agreement with the measurements in the pressure distribution. In addition to that, several flow-vortices were observed near the boundary of the reflector and the transducer, which have been often discussed in acoustic tube near the boundary, and have not yet been observed in the calculation in the ultrasonic air pump of this type.

  7. Self-Characterization of Commercial Ultrasound Probes in Transmission Acoustic Inverse Scattering: Transducer Model and Volume Integral Formulation

    PubMed Central

    Haynes, Mark; Verweij, Sacha A. M.; Moghaddam, Mahta; Carson, Paul L.

    2014-01-01

    A self-contained source characterization method for commercial ultrasound probes in transmission acoustic inverse scattering is derived and experimentally tested. The method is based on modified scattered field volume integral equations that are linked to the source-scattering transducer model. The source-scattering parameters are estimated via pair-wise transducer measurements and the nonlinear inversion of an acoustic propagation model that is derived. This combination creates a formal link between the transducer characterization and the inverse scattering algorithm. The method is tested with two commercial ultrasound probes in a transmission geometry including provisions for estimating the probe locations and aligning a robotic rotator. The transducer characterization results show that the nonlinear inversion fit the measured data well. The transducer calibration and inverse scattering algorithm are tested on simple targets. Initial images show that the recovered contrasts are physically consistent with expected values. PMID:24569251

  8. Linear array transducer for high-power airborne ultrasound using flextensional structure

    NASA Astrophysics Data System (ADS)

    Yamamoto, Jun; Mizuno, Yosuke; Tabaru, Marie; Nakamura, Kentaro

    2015-07-01

    To change the direction of ultrasonic irradiation without moving a transducer, a high-power airborne ultrasonic transducer for a one-dimensional phased array system was designed and tested. A flextensional element transducer with higher-mode bending vibration was fabricated to obtain a high vibration amplitude over a wide aperture, where a phase-compensating stepped structure was employed. The width of the main lobe at half maximum and the sidelobe level were measured to be 14.3 deg and 0.78, respectively. The maximal sound pressure of 132 dB (0 dB re. 0.02 mPa) was obtained under the applied voltage of 4.0 V. The beam steering characteristics of a phased array using eight elements were compared with the simple theory.

  9. Photoacoustic imaging of the human forearm using 40 MHz linear-array transducer

    NASA Astrophysics Data System (ADS)

    Zafar, Haroon; Breathnach, Aedán.; Subhash, Hrebesh M.; Leahy, Martin J.

    2014-02-01

    In this work photoacoustic imaging (PAI) based on multi element linear-array transducer, combined with multichannel collecting system was used for in vivo imaging of microcirculation of the human forearm. The Vevo® 2100 LAZR PAT system (VISUALSONICS) was used for imaging which simultaneously collects high-resolution ultrasound and photoacoustic signals. 3D PA and high frequency ultrasound scans, measured 30.5 mm (length) x 14.1 mm (width) x 10 mm (depth) were acquired from the area of forearm skin using 40 MHz frequency transducer at 860 nm wavelength. 3D structural and functional (microcirculation) maps of the forearm skin were obtained. The multi element linear-array transducer based PAI has been found promising in terms of resolution, imaging depth and imaging speed for in vivo microcirculation imaging within human skin.

  10. Dependence of local sound vibration on time frequency in a monolithic array transducer

    SciTech Connect

    Saiga, N.; Suzuki, T.

    1982-02-01

    An approach of increasing spatial resolution in a monolithic array transducer was carried out which utilized the thickness vibration at frequencies slightly lower than the resonance band. At those frequencies, the optical probing manifested that an usual spatial impulse response shifted into a more sharp and monotonously damping one with a peak amplitude comparable to those in resonance. An actual imaging as a receiving array demonstrated the improvement of spatial resolution and the high uniformity of image contrast.

  11. A Preliminary Evaluation of Near-Transducer Velocities Collected with Low-Blank Acoustic Doppler Current Profiler

    USGS Publications Warehouse

    Gartner, J.W.; Ganju, N.K.; ,

    2002-01-01

    Many streams and rivers for which the US Geological Survey must provide discharge measurements are too shallow to apply existing acoustic Doppler current profiler techniques for flow measurements of satisfactory quality. Because the same transducer is used for both transmitting and receiving acoustic signals in most Doppler current profilers, some small time delay is required for acoustic "ringing" to be damped out of transducers before meaningful measurements can be made. The result of that time delay is that velocity measurements cannot be made close to the transducer thus limiting the usefulness of these instruments in shallow regions. Manufacturers and users are constantly striving for improvements to acoustic instruments which would permit useful discharge measurements in shallow rivers and streams that are still often measured with techniques and instruments more than a century old. One promising area of advance appeared to be reduction of time delay (blank) required between transmitting and receiving signals during acoustic velocity measurements. Development of a low- or zero-blank transducer by RD Instruments3 held promise that velocity measurements could be made much closer to the transducer and thus in much shallower water. Initial experience indicates that this is not the case; limitation of measurement quality appears to be related to the physical presence of the transducer itself within the flow field. The limitation may be the result of changes to water flow pattern close to the transducer rather than transducer ringing characteristics as a function of blanking distance. Results of field experiments are discussed that support this conclusion and some minimum measurement distances from transducer are suggested based on water current speed and ADCP sample modes.

  12. Parametric acoustic arrays: A state of the art review

    NASA Technical Reports Server (NTRS)

    Fenlon, F. H.

    1976-01-01

    Following a brief introduction to the concept of parametric acoustic interactions, the basic properties of parametric transmitting and receiving arrays are considered in the light of conceptual advances resulting from experimental and theoretical investigations that have taken place since 1963.

  13. Transversal Anderson localization of sound in acoustic waveguide arrays.

    PubMed

    Ye, Yangtao; Ke, Manzhu; Feng, Junheng; Wang, Mudi; Qiu, Chunyin; Liu, Zhengyou

    2015-04-22

    We present designs of one-dimensional acoustic waveguide arrays and investigate wave propagation inside. Under the condition of single identical waveguide mode and weak coupling, the acoustic wave motion in waveguide arrays can be modeled with a discrete mode-coupling theory. The coupling constants can be retrieved from simulations or experiments as the function of neighboring waveguide separations. Sound injected into periodic arrays gives rise to the discrete diffraction, exhibiting ballistic or extended transport in transversal direction. But sound injected into randomized waveguide arrays readily leads to Anderson localization transversally. The experimental results show good agreement with simulations and theoretical predictions.

  14. Phantom evaluation of stacked-type dual-frequency 1-3 composite transducers: A feasibility study on intracavitary acoustic angiography.

    PubMed

    Kim, Jinwook; Li, Sibo; Kasoji, Sandeep; Dayton, Paul A; Jiang, Xiaoning

    2015-12-01

    In this paper, we present phantom evaluation results of a stacked-type dual-frequency 1-3 piezoelectric composite transducer as a feasibility study for intracavitary acoustic angiography. Our previous design (6.5/30 MHz PMN-PT single crystal transducer) for intravascular contrast ultrasound imaging exhibited a contrast-to-tissue ratio (CTR) of 12 dB with a penetration depth of 2.5 mm. For improved penetration depth (>3 mm) and comparable contrast-to-tissue ratio (>12 dB), we evaluated a lower frequency 2/14 MHz PZT 1-3 composite transducer. Superharmonic imaging performance of this transducer and a detailed characterization of key parameters for acoustic angiography are presented. The 2/14 MHz arrangement demonstrated a -6 dB fractional bandwidth of 56.5% for the transmitter and 41.8% for the receiver, and produced sufficient peak-negative pressures (>1.5 MPa) at 2 MHz to induce a strong nonlinear harmonic response from microbubble contrast agents. In an in-vitro contrast ultrasound study using a tissue mimicking phantom and 200 μm cellulose microvessels, higher harmonic microbubble responses, from the 5th through the 7th harmonics, were detected with a signal-to-noise ratio of 16 dB. The microvessels were resolved in a two-dimensional image with a -6dB axial resolution of 615 μm (5.5 times the wavelength of 14 MHz waves) and a contrast-to-tissue ratio of 16 dB. This feasibility study, including detailed explanation of phantom evaluation and characterization procedures for key parameters, will be useful for the development of future dual-frequency array transducers for intracavitary acoustic angiography.

  15. Noncontact excitation of guided waves (A0 mode) using an electromagnetic acoustic transducer (EMAT)

    NASA Astrophysics Data System (ADS)

    Fromme, Paul

    2016-02-01

    Fatigue damage can develop in aircraft structures at locations of stress concentration, such as fasteners, and has to be detected before reaching a critical size to ensure safe aircraft operation. Guided ultrasonic waves offer an efficient method for the detection and characterization of such defects in large aerospace structures. Electromagnetic acoustic transducers (EMAT) for the noncontact excitation of guided ultrasonic waves were developed. The transducer development for the specific excitation of the A0 Lamb wave mode with an out-of-plane Lorentz force is explained. The achieved radial and angular dependency of the excited guided wave pulses were measured using a noncontact laser interferometer. Based on the induced eddy currents in the plate a theoretical model was developed. The application of the developed transducers for defect detection in aluminum components using fully noncontact guided wave measurements was demonstrated. Excitation of the A0 Lamb wave mode was achieved using the developed EMAT transducer and the guided wave propagation and scattering was measured using a noncontact laser interferometer.

  16. Simulation study of a chaotic cavity transducer based virtual phased array used for focusing in the bulk of a solid material.

    PubMed

    Delrue, Steven; Van Den Abeele, Koen; Matar, Olivier Bou

    2016-04-01

    In acoustic and ultrasonic non-destructive testing techniques, it is sometimes beneficial to concentrate sound energy at a chosen location in space and at a specific instance in time, for example to improve the signal-to-noise ratio or activate the nonlinearity of damage features. Time Reversal (TR) techniques, taking advantage of the reversible character of the wave equation, are particularly suited to focus ultrasonic waves in time and space. The characteristics of the energy focusing in solid media using principles of time reversed acoustics are highly influenced by the nature and dimensions of the medium, the number of transducers and the length of the received signals. Usually, a large number of transducers enclosing the domain of interest is needed to improve the quality of the focusing. However, in the case of highly reverberant media, the number of transducers can be reduced to only one (single-channel TR). For focusing in a non-reverberant medium, which is impossible when using only one source, an adaptation of the single-channel reciprocal TR procedure has been recently suggested by means of a Chaotic Cavity Transducer (CCT), a single element transducer glued on a cavity of chaotic shape. In this paper, a CCT is used to focus elastic energy, at different times, in different points along a predefined line on the upper surface of a thick solid sample. Doing so, all focusing points can act as a virtual phased array transducer, allowing to focus in any point along the depth direction of the sample. This is impossible using conventional reciprocal TR, as you need to have access to all points in the bulk of the material for detecting signals to be used in the TR process. To asses and provide a better understanding of this concept, a numerical study has been developed, allowing to verify the basic concepts of the virtual phased array and to illustrate multi-component time reversal focusing in the bulk of a solid material.

  17. Angular Spectrum Method for the Focused Acoustic Field of a Linear Transducer

    NASA Astrophysics Data System (ADS)

    Belgroune, D.; de Belleval, J. F.; Djelouah, H.

    Applications involving non-destructive testing or acoustical imaging are more and more sophisticated. In this context, a model based on the angular spectrum approach is tackled in view to calculate the focused impulse field radiated by a linear transducer through a plane fluid-solid interface. It is well known that electronic focusing, based on a cylindrical delay law, like for the classical cases (lenses, curved transducer), leads to an inaccurate focusing in the solid due to geometric aberrations errors affecting refraction. Generally, there is a significant difference between the acoustic focal distance and the geometrical focal due to refraction. In our work, an optimized delay law, based on the Fermat's principle is established, particularly at an oblique incidence where the geometrical considerations, relatively simple in normal incidence, become quickly laborious. Numerical simulations of impulse field are judiciously carried out. Subsequently, the input parameters are optimally selected in order to achieve good computation accuracy and a high focusing. The overall results, involving compression and shear waves, have highlighted the focusing improvement in the solid when compared to the currently available approaches. Indeed, the acoustic focal distance is very close to geometrical focal distance and then, allows better control of the refracted angular beam profile (refraction angle, focusing depth and focal size).

  18. Large Volume Coagulation Utilizing Multiple Cavitation Clouds Generated by Array Transducer Driven by 32 Channel Drive Circuits

    NASA Astrophysics Data System (ADS)

    Nakamura, Kotaro; Asai, Ayumu; Sasaki, Hiroshi; Yoshizawa, Shin; Umemura, Shin-ichiro

    2013-07-01

    High-intensity focused ultrasound (HIFU) treatment is a noninvasive treatment, in which focused ultrasound is generated outside the body and coagulates a diseased tissue. The advantage of this method is minimal physical and mental stress to the patient, and the disadvantage is the long treatment time caused by the smallness of the therapeutic volume by a single exposure. To improve the efficiency and shorten the treatment time, we are focusing attention on utilizing cavitation bubbles. The generated microbubbles can convert the acoustic energy into heat with a high efficiency. In this study, using the class D amplifiers, which we have developed, to drive the array transducer, we demonstrate a new method to coagulate a large volume by a single HIFU exposure through generating cavitation bubbles distributing in a large volume and vibrating all of them. As a result, the coagulated volume by the proposed method was 1.71 times as large as that of the conventional method.

  19. Multi-view Hilbert transformation in full-ring-transducer-array based photoacoustic computed tomography (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Li, Lei; Li, Guo; Zhu, Liren; Xia, Jun; Wang, Lihong V.

    2016-03-01

    Photoacoustic tomography (PAT) exploits optical contrast and ultrasonic detection principles to form images of absorbed optical energy density within tissue. Based on the photoacoustic effect, PAT directly and quantitatively measures specific optical absorption. A full-ring ultrasonic transducer array based photoacoustic computed tomography (PACT) system was recently developed for small animal whole-body imaging with a full-view detection angle and high in-plane resolution (100 µm). However, due to the band-pass frequency response of the piezoelectric transducer elements, the reconstructed images present bipolar (both positive and negative) pixel values, which is artificial and counterintuitive for physicians and biologists seeking to interpret the image. Moreover, bipolar pixel values hinder quantification of physiological parameters, such as oxygen saturation and blood flow speed. Unipolar images can be obtained by deconvolving the raw channel data with the transducer's electrical impulse response and applying non-negativity during iteration, but this process requires complex transducer modeling and time-consuming computation. Here, we present a multi-view Hilbert transformation method to recover the unipolar initial pressure for full-ring PACT. Multi-view Hilbert transformation along the acoustic wave propagation direction minimizes reconstruction artifacts during envelope extraction and maintains the signal-to-noise ratio of the reconstructed images. The in-plane isotropic spatial resolution of this method was quantified to 168 μm within a 20 × 20 mm2 field of view. The effectiveness of the proposed algorithm was first validated by numerical simulations and then demonstrated with ex-vivo mouse brain structural imaging and in-vivo mouse wholebody imaging.

  20. High-frequency surface acoustic wave device based on thin-film piezoelectric interdigital transducers

    SciTech Connect

    Sarin Kumar, A.K.; Paruch, P.; Triscone, J.-M.; Daniau, W.; Ballandras, S.; Pellegrino, L.; Marre, D.; Tybell, T.

    2004-09-06

    Using high-quality epitaxial c-axis Pb(Zr{sub 0.2}Ti{sub 0.8})O{sub 3} films grown by off-axis magnetron sputtering onto metallic (001) Nb-doped SrTiO{sub 3} substrates, a nonconventional thin-film surface acoustic wave device based on periodic piezoelectric transducers was realized. The piezoelectric transducers consist of a series of ferroelectric domains with alternating polarization states. The artificial modification of the ferroelectric domain structure is performed by using an atomic force microscope tip as a source of electric field, allowing local switching of the polarization. Devices with 1.2 and 0.8 {mu}m wavelength, defined by the modulation period of the polarization, and corresponding to central frequencies in the range 1.50-3.50 GHz have been realized and tested.

  1. A highly directional transducer for multipath mitigation in high-frequency underwater acoustic communications.

    PubMed

    Freeman, Simon E; Emokpae, Lloyd; Nicholas, Michael; Edelmann, Geoffrey F

    2015-08-01

    This paper presents a transducer design of the hollow cylinder type designed to minimize transmission multipath and the need for channel equalization over short acoustic communication distances in shallow water. Operating at 750 kHz, the half-maximum envelope of the main lobe is approximately 3°. The transducer was incorporated into a low-complexity modem system in which it acted as both transmitter and receiver. At-sea testing indicated that the system is capable of operating over horizontal distances of 5 m without evidence of multipath distortion. The system was also found to be effective as an omnidirectional transmitter/receiver in the 10-60 kHz band.

  2. A Dual-Layer Transducer Array for 3-D Rectilinear Imaging

    PubMed Central

    Yen, Jesse T.; Seo, Chi Hyung; Awad, Samer I.; Jeong, Jong S.

    2010-01-01

    2-D arrays for 3-D rectilinear imaging require very large element counts (16,000–65,000). The difficulties in fabricating and interconnecting 2-D arrays with a large number of elements (>5,000) have limited the development of suitable transducers for 3-D rectilinear imaging. In this paper, we propose an alternative solution to this problem by using a dual-layer transducer array design. This design consists of two perpendicular 1-D arrays for clinical 3-D imaging of targets near the transducer. These targets include the breast, carotid artery, and musculoskeletal system. This transducer design reduces the fabrication complexity and the channel count making 3-D rectilinear imaging more realizable. With this design, an effective N × N 2-D array can be developed using only N transmitters and N receivers. This benefit becomes very significant when N becomes greater than 128, for example. To demonstrate feasibility, we constructed a 4 × 4 cm prototype dual-layer array. The transmit array uses diced PZT-5H elements, and the receive array is a single sheet of undiced P[VDF-TrFE] copolymer. The receive elements are defined by the copper traces on the flexible interconnect circuit. The measured −6 dB fractional bandwidth was 80% with a center frequency of 4.8 MHz. At 5 MHz, the nearest neighbor crosstalk of the PZT array and PVDF array was −30.4 ± 3.1 dB and −28.8 ± 3.7 dB respectively. This dual-layer transducer was interfaced with an Ultrasonix Sonix RP system, and a synthetic aperture 3-D data set was acquired. We then performed off-line 3-D beamforming to obtain volumes of nylon wire targets. The theoretical lateral beamwidth was 0.52 mm compared to measured beamwidths of 0.65 mm and 0.67 mm in azimuth and elevation respectively. 3-D images of an 8 mm diameter anechoic cyst phantom were also acquired. PMID:19213647

  3. A 3D reconstruction algorithm for magneto-acoustic tomography with magnetic induction based on ultrasound transducer characteristics

    NASA Astrophysics Data System (ADS)

    Ma, Ren; Zhou, Xiaoqing; Zhang, Shunqi; Yin, Tao; Liu, Zhipeng

    2016-12-01

    In this study we present a three-dimensional (3D) reconstruction algorithm for magneto-acoustic tomography with magnetic induction (MAT-MI) based on the characteristics of the ultrasound transducer. The algorithm is investigated to solve the blur problem of the MAT-MI acoustic source image, which is caused by the ultrasound transducer and the scanning geometry. First, we established a transducer model matrix using measured data from the real transducer. With reference to the S-L model used in the computed tomography algorithm, a 3D phantom model of electrical conductivity is set up. Both sphere scanning and cylinder scanning geometries are adopted in the computer simulation. Then, using finite element analysis, the distribution of the eddy current and the acoustic source as well as the acoustic pressure can be obtained with the transducer model matrix. Next, using singular value decomposition, the inverse transducer model matrix together with the reconstruction algorithm are worked out. The acoustic source and the conductivity images are reconstructed using the proposed algorithm. Comparisons between an ideal point transducer and the realistic transducer are made to evaluate the algorithms. Finally, an experiment is performed using a graphite phantom. We found that images of the acoustic source reconstructed using the proposed algorithm are a better match than those using the previous one, the correlation coefficient of sphere scanning geometry is 98.49% and that of cylinder scanning geometry is 94.96%. Comparison between the ideal point transducer and the realistic transducer shows that the correlation coefficients are 90.2% in sphere scanning geometry and 86.35% in cylinder scanning geometry. The reconstruction of the graphite phantom experiment also shows a higher resolution using the proposed algorithm. We conclude that the proposed reconstruction algorithm, which considers the characteristics of the transducer, can obviously improve the resolution of the

  4. Nonlinear behavior of electric power transmission through an elastic wall by acoustic waves and piezoelectric transducers.

    PubMed

    Yang, Zengtao; Yang, Jiashi; Hu, Yuantai

    2008-11-01

    Weakly nonlinear behavior of electric power transmission through an elastic wall by piezoelectric transducers and acoustic waves near resonance is studied based on the cubic theory of nonlinear electroelasticity. An approximate analytical solution is obtained. Output voltage is calculated and plotted. Basic nonlinear behaviors of the power transmission structure are examined. It is found that near nonlinear resonance the electrical input-output relation loses its linearity, becomes multi-valued, and experiences jumps due to large mechanical deformations. The behavior below and above resonance is qualitatively different and is qualitatively material dependent.

  5. Preliminary work of real-time ultrasound imaging system for 2-D array transducer.

    PubMed

    Li, Xu; Yang, Jiali; Ding, Mingyue; Yuchi, Ming

    2015-01-01

    Ultrasound (US) has emerged as a non-invasive imaging modality that can provide anatomical structure information in real time. To enable the experimental analysis of new 2-D array ultrasound beamforming methods, a pre-beamformed parallel raw data acquisition system was developed for 3-D data capture of 2D array transducer. The transducer interconnection adopted the row-column addressing (RCA) scheme, where the columns and rows were active in sequential for transmit and receive events, respectively. The DAQ system captured the raw data in parallel and the digitized data were fed through the field programmable gate array (FPGA) to implement the pre-beamforming. Finally, 3-D images were reconstructed through the devised platform in real-time.

  6. Acoustic Source Localization in Aircraft Interiors Using Microphone Array Technologies

    NASA Technical Reports Server (NTRS)

    Sklanka, Bernard J.; Tuss, Joel R.; Buehrle, Ralph D.; Klos, Jacob; Williams, Earl G.; Valdivia, Nicolas

    2006-01-01

    Using three microphone array configurations at two aircraft body stations on a Boeing 777-300ER flight test, the acoustic radiation characteristics of the sidewall and outboard floor system are investigated by experimental measurement. Analysis of the experimental data is performed using sound intensity calculations for closely spaced microphones, PATCH Inverse Boundary Element Nearfield Acoustic Holography, and Spherical Nearfield Acoustic Holography. Each method is compared assessing strengths and weaknesses, evaluating source identification capability for both broadband and narrowband sources, evaluating sources during transient and steady-state conditions, and quantifying field reconstruction continuity using multiple array positions.

  7. A new omnidirectional shear horizontal wave transducer using face-shear (d24) piezoelectric ring array.

    PubMed

    Miao, Hongchen; Huan, Qiang; Wang, Qiangzhong; Li, Faxin

    2017-02-01

    The non-dispersive fundamental shear horizontal (SH0) wave in plate-like structures is of practical importance in non-destructive testing (NDT) and structural health monitoring (SHM). Theoretically, an omnidirectional SH0 transducer phased array system can be used to inspect defects in a large plate in the similar manner to the phased array transducers used in medical B-scan ultrasonics. However, very few omnidirectional SH0 transducers have been proposed so far. In this work, an omnidirectional SH0 wave piezoelectric transducer (OSH-PT) was proposed, which consists of a ring array of twelve face-shear (d24) trapezoidal PZT elements. Each PZT element can produce face-shear deformation under applied voltage, resulting in circumferential shear deformation in the OSH-PT and omnidirectional SH0 waves in the hosting plate. Both finite element simulations and experiments were conducted to examine the performance of the proposed OSH-PT. Experimental testing shows that the OSH-PT exhibits good omnidirectional properties, no matter it is used as a SH0 wave transmitter or a SH0 wave receiver. This work may greatly promote the applications of SH0 waves in NDT and SHM.

  8. Hybrid Semi-numerical Simulation Scheme to Predict Transducer Outputs of Acoustic Microscopes.

    PubMed

    Nierla, Michael; Rupitsch, Stefan

    2015-12-18

    We present a semi-numerical simulation method called SIRFEM, which enables the efficient prediction of high frequency transducer outputs. In particular, this is important for acoustic microscopy where the specimen under investigation is immersed in a coupling fluid. Conventional Finite Element (FE) simulations for such applications would consume too much computational power due to the required spatial and temporal discretization, especially for the coupling fluid between ultrasonic transducer and specimen. However, FE simulations are in most cases essential to consider the mode conversion at and inside the solid specimen as well as the wave propagation in its interior. SIRFEM reduces the computational effort of pure FE simulations by treating only the solid specimen and a small part of the fluid layer with FE. The propagation in the coupling fluid from transducer to specimen and back is processed by the so-called spatial impulse response (SIR). Through this hybrid approach, the number of elements as well as the number of time steps for the FE simulation can be reduced significantly, as it is presented for an axis-symmetric setup. Three B-mode images of a plane 2-D setup - computed at a transducer center frequency of 20 MHz - show that SIRFEM is, furthermore, able to predict reflections at inner structures as well as multiple reflections between those structures and the specimen's surface. For the purpose of a pure 2-D setup, the spatial impulse response of a curved-line transducer is derived and compared to the response function of a cylindrically focused aperture of negligible extend in the third spatial dimension.

  9. Hybrid Seminumerical Simulation Scheme to Predict Transducer Outputs of Acoustic Microscopes.

    PubMed

    Nierla, Michael; Rupitsch, Stefan J

    2016-02-01

    We present a seminumerical simulation method called SIRFEM, which enables the efficient prediction of high-frequency transducer outputs. In particular, this is important for acoustic microscopy where the specimen under investigation is immersed in a coupling fluid. Conventional finite-element (FE) simulations for such applications would consume too much computational power due to the required spatial and temporal discretization, especially for the coupling fluid between ultrasonic transducer and specimen. However, FE simulations are in most cases essential to consider the mode conversion at and inside the solid specimen as well as the wave propagation in its interior. SIRFEM reduces the computational effort of pure FE simulations by treating only the solid specimen and a small part of the fluid layer with FE. The propagation in the coupling fluid from transducer to specimen and back is processed by the so-called spatial impulse response (SIR). Through this hybrid approach, the number of elements as well as the number of time steps for the FE simulation can be reduced significantly, as it is presented for an axis-symmetric setup. Three B-mode images of a plane 2-D setup-computed at a transducer center frequency of 20 MHz-show that SIRFEM is, furthermore, able to predict reflections at inner structures as well as multiple reflections between those structures and the specimen's surface. For the purpose of a pure 2-D setup, the SIR of a curved-line transducer is derived and compared to the response function of a cylindrically focused aperture of negligible extend in the third spatial dimension.

  10. Detection of Volatile Organics Using a Surface Acoustic Wave Array System

    SciTech Connect

    ANDERSON, LAWRENCE F.; BARTHOLOMEW, JOHN W.; CERNOSEK, RICHARD W.; COLBURN, CHRISTOPHER W.; CROOKS, R.M.; MARTINEZ, R.F.; OSBOURN, GORDON C.; RICCO, A.J.; STATON, ALAN W.; YELTON, WILLIAM G.

    1999-10-14

    A chemical sensing system based on arrays of surface acoustic wave (SAW) delay lines has been developed for identification and quantification of volatile organic compounds (VOCs). The individual SAW chemical sensors consist of interdigital transducers patterned on the surface of an ST-cut quartz substrate to launch and detect the acoustic waves and a thin film coating in the SAW propagation path to perturb the acoustic wave velocity and attenuation during analyte sorption. A diverse set of material coatings gives the sensor arrays a degree of chemical sensitivity and selectivity. Materials examined for sensor application include the alkanethiol-based self-assembled monolayer, plasma-processed films, custom-synthesized conventional polymers, dendrimeric polymers, molecular recognition materials, electroplated metal thin films, and porous metal oxides. All of these materials target a specific chemical fi.mctionality and the enhancement of accessible film surface area. Since no one coating provides absolute analyte specificity, the array responses are further analyzed using a visual-empirical region-of-influence (VERI) pattern recognition algorithm. The chemical sensing system consists of a seven-element SAW array with accompanying drive and control electronics, sensor signal acquisition electronics, environmental vapor sampling hardware, and a notebook computer. Based on data gathered for individual sensor responses, greater than 93%-accurate identification can be achieved for any single analyte from a group of 17 VOCs and water.

  11. Synchronization of an Array of Miniature Acoustic Engines

    NASA Astrophysics Data System (ADS)

    Kwon, Young Sang; Symko, Orest G.

    2004-03-01

    In the development of miniature arrays of acoustic engines for energy conversion, phase-locking of the array ensemble was investigated. As the individual acoustic devices are independent resonant elements, maximum output can be achieved by a coherent summation of the elements of the array. They have small variations in resonant frequency and they have different phases as they are non-linear self-sustained oscillators and their phases depend on the initial conditions. The acoustic engines are based on thermoacoustics, where heat is converted to sound in a resonator by applying a temperature gradient across a stack of high surface area elements. In the experiments described here, the devices oscillate in the frequency range of 3 kHz and they are assembled into arrays of 5 elements and 9 elements. When the array is activated with heat, the acoustic power output is not coherent; it contains all sorts of beats and frequency mixtures produced by each independent oscillator. However, coherence is achieved by the introduction of a relatively weak signal from a separate resonator which phase-locks all the self-sustained acoustic oscillators and causes coherent summation of oscillations. Such approach provides a high intensity acoustic signal which can be used in energy conversion of heat to electricity.

  12. Acoustic imaging system

    DOEpatents

    Smith, Richard W.

    1979-01-01

    An acoustic imaging system for displaying an object viewed by a moving array of transducers as the array is pivoted about a fixed point within a given plane. A plurality of transducers are fixedly positioned and equally spaced within a laterally extending array and operatively directed to transmit and receive acoustic signals along substantially parallel transmission paths. The transducers are sequentially activated along the array to transmit and receive acoustic signals according to a preestablished sequence. Means are provided for generating output voltages for each reception of an acoustic signal, corresponding to the coordinate position of the object viewed as the array is pivoted. Receptions from each of the transducers are presented on the same display at coordinates corresponding to the actual position of the object viewed to form a plane view of the object scanned.

  13. Thermal-independent properties of PIN-PMN-PT single-crystal linear-array ultrasonic transducers.

    PubMed

    Chen, Ruimin; Wu, Jinchuan; Ho Lam, Kwok; Yao, Liheng; Zhou, Qifa; Tian, Jian; Han, Pengdi; Shung, K Kirk

    2012-12-01

    In this paper, low-frequency 32-element linear-array ultrasonic transducers were designed and fabricated using both ternary Pb(In(1/2)Nb(1/2))-Pb(Mg(1/3)Nb(2/3))-PbTiO(3) (PIN-PMN-PT) and binary Pb(Mg(1/3)Nb(2/3))-PbTiO(3) (PMNPT) single crystals. Performance of the array transducers was characterized as a function of temperature ranging from room temperature to 160°C. It was found that the array transducers fabricated using the PIN-PMN-PT single crystal were capable of satisfactory performance at 160°C, having a -6-dB bandwidth of 66% and an insertion loss of 37 dB. The results suggest that the potential of PIN-PMN-PT linear-array ultrasonic transducers for high-temperature ultrasonic transducer applications is promising.

  14. Single-transducer dual-frequency ultrasound generation to enhance acoustic cavitation.

    PubMed

    Liu, Hao-Li; Hsieh, Chao-Ming

    2009-03-01

    Dual- or multiple-frequency ultrasound stimulation is capable of effectively enhancing the acoustic cavitation effect over single-frequency ultrasound. Potential application of this sonoreactor design has been widely proposed such as on sonoluminescence, sonochemistry enhancement, and transdermal drug release enhancement. All currently available sonoreactor designs employed multiple piezoelectric transducers for generating single-frequency ultrasonic waves separately and then these waves were mixed and interfered in solutions. The purpose of this research is to propose a novel design of generating dual-frequency ultrasonic waves with single piezoelectric elements, thereby enhancing acoustic cavitation. Macroscopic bubbles were detected optically, and they were quantified at either a single-frequency or for different frequency combinations for determining their efficiency for enhancing acoustic cavitation. Visible bubbles were optically detected and hydrogen peroxide was measured to quantify acoustic cavitation. Test water samples with different gas concentrations and different power levels were used to determine the efficacy of enhancing acoustic cavitation of this design. The spectrum obtained from the backscattered signals was also recorded and examined to confirm the occurrence of stable cavitation. The results confirmed that single-element dual-frequency ultrasound stimulation can enhance acoustic cavitation. Under certain testing conditions, the generation of bubbles can be enhanced up to a level of five times higher than the generation of bubbles in single-frequency stimulation, and can increase the hydrogen peroxide production up to an increase of one fold. This design may serve as a useful alternative for future sonoreactor design owing to its simplicity to produce dual- or multiple-frequency ultrasound.

  15. Measurement of elastic nonlinearity using remote laser ultrasonics and CHeap Optical Transducers and dual frequency surface acoustic waves.

    PubMed

    Collison, I J; Stratoudaki, T; Clark, M; Somekh, M G

    2008-11-01

    A nonlinear ultrasonic technique for evaluating material elastic nonlinearity has been developed. It measures the phase modulation of a high frequency (82MHz) surface acoustic wave interacting with a low frequency (1MHz) high amplitude stress inducing surface acoustic wave. A new breed of optical transducers has been developed and used for the generation and detection of the high frequency wave. The CHeap Optical Transducer (CHOT) is an ultrasonic transducer system, optically activated and read by a laser. We show that CHOTs offer advantages over alternative transducers. CHOTs and nonlinear ultrasonics have great potential for aerospace applications. Results measuring changes in ultrasonic velocity corresponding to different stress states of the sample are presented on fused silica and aluminium.

  16. Photoacoustic imaging using acoustic reflectors to enhance planar arrays.

    PubMed

    Ellwood, Robert; Zhang, Edward; Beard, Paul; Cox, Ben

    2014-12-01

    Planar sensor arrays have advantages when used for photoacoustic imaging: they do not require the imaging target to be enclosed, and they are easier to manufacture than curved arrays. However, planar arrays have a limited view of the acoustic field due to their finite size; therefore, not all of the acoustic waves emitted from a photoacoustic source can be recorded. This loss of data results in artifacts in the reconstructed photoacoustic image. A detection array configuration which combines a planar Fabry–Pérot sensor with perpendicular acoustic reflectors is described and experimentally implemented. This retains the detection advantages of the planar sensor while increasing the effective detection aperture in order to improve the reconstructed photoacoustic image.

  17. Quantitative modeling of the transduction of electromagnetic acoustic transducers operating on ferromagnetic media.

    PubMed

    Ribichini, Remo; Cegla, Frederic; Nagy, Peter B; Cawley, Peter

    2010-12-01

    The noncontact nature of electromagnetic acoustic transducers (EMATs) offers a series of advantages over traditional piezoelectric transducers, but these features are counter-balanced by their relatively low signal-to-noise ratio and their strong dependence on material properties such as electric conductivity, magnetic permeability, and magnetostriction. The implication is that full exploitation of EMATs needs detailed modeling of their operation. A finite element model, accounting for the main transduction mechanisms, has been developed to allow the optimization of the transducers. Magnetostriction is included and described through an analogy with piezoelectricity. The model is used to predict the performance of a simple EMAT: a single current-carrying wire, parallel to a bias magnetic field generating shear horizontal waves in a nickel plate close to it. The results are validated against experiments. The model is able to successfully predict the wave amplitude dependence on significant parameters: the static bias field, the driving current amplitude, and the excitation frequency. The comparison does not employ any arbitrary adjustable parameter; for the first time an absolute validation of a magnetostrictive EMAT model has been achieved. The results are satisfactory: the discrepancy between the numerical predictions and the measured values of wave amplitude per unit current is less than 20% over a 200 kHz frequency range. The study has also shown that magnetostrictive EMAT sensitivity is not only a function of the magnetostrictive properties, because the magnetic permeability also plays a significant role in the transduction mechanism, partly counterbalancing the magnetostrictive effects.

  18. Concrete filled steel pipe inspection using electro magnetic acoustic transducer (EMAT)

    NASA Astrophysics Data System (ADS)

    Na, Won-Bae; Kundu, Tribikram; Ryu, Yeon-Sun; Kim, Jeong-Tae

    2005-05-01

    Concrete-filled steel pipes are usually exposed in hostile environments such as seawater and deicing materials. The outside corrosion of the steel pipe can reduce the wall thickness and the corrosion-induced delamination of internal concrete can increase internal volume or pressure. In addition, the void that can possibly exist in the pipe reduces the bending resistance. To avoid structural failure due to this type of deterioration, appropriate inspection and repair techniques are to be developed. Guided wave techniques have strong potentials for this kind of inspection because of long-distance inspection capability. Among different transducer-coupling mechanism, electro-magnetic acoustic transducers (EMATs) give relatively consistent results in comparison to piezoelectric transducers since they do not need any couplant. In this study EMATs are used for transmitting and receiving cylindrical guided waves through concrete-filled steel pipes. Through time history curves and wavelet transform, it is shown that EMAT-generated cylindrical guided wave techniques have good potential for the interface inspection of concrete-filled steel pipes.

  19. A 5-MHz cylindrical dual-layer transducer array for 3-D transrectal ultrasound imaging.

    PubMed

    Chen, Yuling; Nguyen, Man; Yen, Jesse T

    2012-07-01

    Two-dimensional transrectal ultrasound (TRUS) is being used in guiding prostate biopsies and treatments. In many cases, the TRUS probes are moved manually or mechanically to acquire volumetric information, making the imaging slow, user dependent, and unreliable. A real-time three-dimensional (3-D) TRUS system could improve reliability and volume rates of imaging during these procedures. In this article, the authors present a 5-MHz cylindrical dual-layer transducer array capable of real-time 3-D transrectal ultrasound without any mechanically moving parts. Compared with fully sampled 2-D arrays, this design substantially reduces the channel count and fabrication complexity. This dual-layer transducer uses PZT elements for transmit and P[VDF-TrFE] copolymer elements for receive, respectively. The mechanical flexibility of both diced PZT and copolymer makes it practical for transrectal applications. Full synthetic aperture 3-D data sets were acquired by interfacing the transducer with a Verasonics Data Acquisition System. Offline 3-D beamforming was then performed to obtain volumes of two wire phantoms and a cyst phantom. Generalized coherence factor was applied to improve the contrast of images. The measured -6-dB fractional bandwidth of the transducer was 62% with a center frequency of 5.66 MHz. The measured lateral beamwidths were 1.28 mm and 0.91 mm in transverse and longitudinal directions, respectively, compared with a simulated beamwidth of 0.92 mm and 0.74 mm.

  20. Guided wave structural health monitoring with an array of novel piezoelectric transducers

    NASA Astrophysics Data System (ADS)

    Lesky, A.; Lissenden, C. J.

    2014-02-01

    Multi-element, conformable piezoelectric strip transducers have been designed and fabricated for structural health monitoring using ultrasonic guided waves. The piezoelectric fiber composite elements function as a strip transducer to activate a planar wave. A mockup of a storage tank or pressure vessel has been constructed from a steel shell and a hexagonal array of strip transducers. A hot spot to which artificial damage has been induced is monitored with the strip transducers. In addition, conventional piezoelectric disks have also been affixed to the shell in a circular pattern for the purpose of comparison. Different operating conditions are represented by the presence of water inside the shell and temperature variations between 20 and 35°C. The strip transducers have been designed to excite the S1 Lamb wave mode at the dilatational wave speed, which is oblivious to the presence of liquid loaded boundary conditions. An artificial defect simulated a surface breaking fatigue crack. Preliminary results are presented for baseline and damaged conditions using transmission and reflection coefficients as a damage-sensitive feature. At the request of the Proceedings Editor, and all authors of the paper, an updated version of this article was published on 8 April 2014. The Corrigendum attached to the corrected article PDF file explains the changes made to the original paper.

  1. A preliminary evaluation work on a 3D ultrasound imaging system for 2D array transducer

    NASA Astrophysics Data System (ADS)

    Zhong, Xiaoli; Li, Xu; Yang, Jiali; Li, Chunyu; Song, Junjie; Ding, Mingyue; Yuchi, Ming

    2016-04-01

    This paper presents a preliminary evaluation work on a pre-designed 3-D ultrasound imaging system. The system mainly consists of four parts, a 7.5MHz, 24×24 2-D array transducer, the transmit/receive circuit, power supply, data acquisition and real-time imaging module. The row-column addressing scheme is adopted for the transducer fabrication, which greatly reduces the number of active channels . The element area of the transducer is 4.6mm by 4.6mm. Four kinds of tests were carried out to evaluate the imaging performance, including the penetration depth range, axial and lateral resolution, positioning accuracy and 3-D imaging frame rate. Several strong reflection metal objects , fixed in a water tank, were selected for the purpose of imaging due to a low signal-to-noise ratio of the transducer. The distance between the transducer and the tested objects , the thickness of aluminum, and the seam width of the aluminum sheet were measured by a calibrated micrometer to evaluate the penetration depth, the axial and lateral resolution, respectively. The experiment al results showed that the imaging penetration depth range was from 1.0cm to 6.2cm, the axial and lateral resolution were 0.32mm and 1.37mm respectively, the imaging speed was up to 27 frames per second and the positioning accuracy was 9.2%.

  2. A compact array calibrator to study the feasibility of acoustic neutrino detection

    NASA Astrophysics Data System (ADS)

    Ardid, M.; Camarena, F.; Felis, I.; Herrero, A.; Llorens, C. D.; Martínez-Mora, J.; Saldaña, M.

    2016-04-01

    Underwater acoustic detection of ultra-high-energy neutrinos was proposed already in 1950s: when a neutrino interacts with a nucleus in water, the resulting particle cascade produces a pressure pulse that has a bipolar temporal structure and propagates within a flat disk-like volume. A telescope that consists of thousands of acoustic sensors deployed in the deep sea can monitor hundreds of cubic kilometres of water looking for these signals and discriminating them from acoustic noise. To study the feasibility of the technique it is critical to have a calibrator able to mimic the neutrino "signature" that can be operated from a vessel. Due to the axial-symmetry of the signal, their very directive short bipolar shape and the constraints of operating at sea, the development of such a calibrator is very challenging. Once the possibility of using the acoustic parametric technique for this aim was validated with the first compact array calibrator prototype, in this paper we describe the new design for such a calibrator composed of an array of piezo ceramic tube transducers emitting in axial direction.

  3. Modeling and simulation of ultrasound fields generated by 2D phased array transducers for medical applications.

    PubMed

    Matrone, G; Quaglia, F; Magenes, G

    2010-01-01

    Modern ultrasound imaging instrumentation for clinical applications allows real-time volumetric scanning of the patients' body. 4D imaging has been made possible thanks to the development of new echographic probes which consist in 2D phased arrays of piezoelectric transducers. In these new devices it is the system electronics which properly drives the matrix elements and focuses the beam in order to obtain a sequence of volumetric images. This paper introduces an ultrasound field simulator based on the Spatial Impulse Response method which is being properly developed to analyze the characteristics of the ultrasound field generated by a 2D phased array of transducers. Thanks to its high configurability by the user, it will represent a very useful tool for electronics designers in developing 4D ultrasound imaging systems components.

  4. The technology of miniature acoustic element arrays

    NASA Technical Reports Server (NTRS)

    Bom, N.; Lancee, C. T.; Ridder, J.; Ligtvoet, C.; Roelandt, J.

    1975-01-01

    Various aspects of miniature element array construction are discussed. Some initial results on optimization of lateral resolution with a special focusing technique in linear array design is presented, together with the constructional details. Furthermore the construction of a catheter tip array is treated in detail.

  5. A spacing compensation factor for the optimization of guided wave annular array transducers.

    PubMed

    Borigo, Cody; Rose, Joseph L; Yan, Fei

    2013-01-01

    Transducer arrays can be utilized in ultrasonic guided wave applications to achieve preferential excitation of particular points on a dispersion curve. These arrays are designed according to the principles of wave interference and the influence of the wavelength excitation spectrum. This paper develops the relationships between the peak wavelength in the excitation spectra and the element spacing of linear comb and annular arrays. The excitation spectra are developed by applying Fourier and Hankel transforms to the spatial loading distribution functions of the comb and annular arrays, respectively. Although the peak wavelength of excitation of a comb array is typically assumed to be equal to the element spacing, it is shown that this can be an inaccurate assumption for annular arrays. The ratio of element spacing to the peak wavelength in the excitation spectrum is termed the spacing compensation factor, and is dependent on the number of array elements and the inner radius. It is determined that the compensation factor is negligible for comb arrays but is crucial for annular arrays in order to achieve optimal mode selection. Finite element analyses and experimental data are used to verify the calculations and demonstrate the significance of the compensation factor.

  6. Liquid sodium testing of in-house phased array EMAT transducer for L-wave applications

    SciTech Connect

    Le Bourdais, F.; Le Polles, T.; Baque, F.

    2015-07-01

    This paper describes the development of an in-house phased array EMAT transducer for longitudinal wave inspection in liquid sodium. The work presented herein is part of an undergoing project aimed at improving in-service inspection techniques for the ASTRID reactor project. The design process of the phased array EMAT probe is briefly explained and followed by a review of experimental test results. We first present test results obtained in the laboratory while the last part of the paper describes the liquid sodium testing and the produced ultrasound images. (authors)

  7. A LiNbO3 ultrasonic phased array transducer of more than 100 MHz

    NASA Astrophysics Data System (ADS)

    Xu, W. J.; Jib, X. M.; Zhang, J. Y.; Carlier, J.; Nongaillard, B.; Queste, S.; Huang, Y. P.; Piwakowski, B.

    2012-05-01

    High-frequency ultrasonic transducer arrays are essential for high resolution imaging in clinical analysis and Non-Destructive Evaluation (NDE). However, the structure design and fabrication of the kerfed ultrasonic array is quite challenging when very high frequency (≥ 100 MHz) is required. Inductively Coupled Plasma (ICP) deep etching process is used to etch 36°/Y-cut lithium niobate (LiNbO3) crystals. Furthermore, a finite element tool, COMSOL, is employed to calculate the electrical properties of the arrays, including crosstalk effect and electrical impedance. At last, arrays with a pitch of 40 μm are fabricated and characterized by a network analyzer. The measured results agree well with the theoretical predictions.

  8. A Longitudinal Mode Electromagnetic Acoustic Transducer (EMAT) Based on a Permanent Magnet Chain for Pipe Inspection

    PubMed Central

    Cong, Ming; Wu, Xinjun; Qian, Chunqiao

    2016-01-01

    A new electromagnetic acoustic transducer (EMAT) design, employing a special structure of the permanent magnet chain, is proposed to generate and receive longitudinal guided waves for pipe inspection based on the magnetostriction mechanism. Firstly, a quantitative analysis of the excitation forces shows the influence of the radial component can be ignored. Furthermore, as the axial component of the static magnetic field is dominant, a method of solenoid testing coils connected in series is adopted to increase the signal amplitude. Then, two EMAT configurations are developed to generate and receive the L(0,2) guided wave mode. The experimental results show the circumferential notch can be identified and located successfully. Finally, a detailed investigation of the performance of the proposed EMATs is given. Compared to the conventional EMAT configuration, the proposed configurations have the advantages of small volume, light weight, easy installation and portability, which is helpful to improve inspection efficiency. PMID:27213400

  9. Absolute ultrasonic displacement amplitude measurements with a submersible electrostatic acoustic transducer

    NASA Technical Reports Server (NTRS)

    Yost, William T.; Cantrell, John H.

    1992-01-01

    An experimental technique for absolute measurement of ultrasonic wave particle displacement amplitudes in liquids is reported. The technique is capable of measurements over a frequency range of two decades with a sensitivity less than one angstrom. The technique utilizes a previously reported submersible electrostatic acoustic transducer (ESAT) featuring a conductive membrane stretched over a recessed electrode. An uncertainty analysis shows that the displacement amplitude of an ultrasonic plane wave incident on the ESAT can be experimentally determined to better than 2.3-4 percent, depending on frequency, in the frequency range of 0.5-15 MHz. Membranes with lower and more uniform areal densities can improve the accuracy and extend the operation to higher frequencies.

  10. The excitation and detection of lamb waves with planar coil electromagnetic acoustic transducers.

    PubMed

    Wilcox, Paul D; Lowe, Michael J S; Cawley, Peter

    2005-12-01

    Planar coil electromagnetic acoustic transducers (EMATs) are investigated for the excitation and detection of Lamb waves in nonferromagnetic metallic wave-guides. Such EMATs are attractive for certain applications due to their omni-directional sensitivity to wave modes with predominantly in-plane surface displacement, such as the So Lamb wave mode. A model is developed that enables the modal content of the radiated Lamb wave field from a transmitting EMAT to be calculated, and the output voltage from a receiving EMAT to be predicted when a Lamb wave mode is incident on it. The predictions from this model are compared with experimental data obtained from 12 different EMATs tested on a 5-mm thick aluminum plate, and good agreement is obtained. The model then is used to analyze the different effects that contribute to the overall Lamb wave modal sensitivity of an EMAT. The relationship between coil geometry and wavelength is examined.

  11. High Temperature Shear Horizontal Electromagnetic Acoustic Transducer for Guided Wave Inspection

    PubMed Central

    Kogia, Maria; Gan, Tat-Hean; Balachandran, Wamadeva; Livadas, Makis; Kappatos, Vassilios; Szabo, Istvan; Mohimi, Abbas; Round, Andrew

    2016-01-01

    Guided Wave Testing (GWT) using novel Electromagnetic Acoustic Transducers (EMATs) is proposed for the inspection of large structures operating at high temperatures. To date, high temperature EMATs have been developed only for thickness measurements and they are not suitable for GWT. A pair of water-cooled EMATs capable of exciting and receiving Shear Horizontal (SH0) waves for GWT with optimal high temperature properties (up to 500 °C) has been developed. Thermal and Computational Fluid Dynamic (CFD) simulations of the EMAT design have been performed and experimentally validated. The optimal thermal EMAT design, material selection and operating conditions were calculated. The EMAT was successfully tested regarding its thermal and GWT performance from ambient temperature to 500 °C. PMID:27110792

  12. New developments in ultrasonic transducers and transducer systems; Proceedings of the Meeting, San Diego, CA, July 21, 22, 1992

    NASA Astrophysics Data System (ADS)

    Lizzi, Frederic L.

    Attention is given to advances in materials and modeling transducer performance, the means to control ultrasonic beams and to measure their properties, the variety of array configurations, and novel transducer configurations and design considerations. Emphasis is placed on new developments in piezoelectric polymer ultrasound transducers and transducer systems; micromachined acoustic matching layers; a dual frequency piezoelectric transducer for medical applications; modeling refraction and attenuation effects in invasive ultrasound probes; design and evaluation of ultrasonic arrays using 1-3 connectivity composites; artifact reduction through the use of concave linear arrays; real-time 3D ultrasound imaging with a 1D fan-beam transducer array; some conceptual approaches to innovative medical ultrasound transducers; and enhanced bandwidth ultrasound transducers with multiple piezoelectric polymer layers. (No individual items are abstracted in this volume)

  13. Seismo-acoustic array installed in Vrancea seismogenic area

    NASA Astrophysics Data System (ADS)

    Ionescu, Constantin; Moldovan, Adrian-Septimiu; Moldovan, Iren-Adelina; Ghica, Daniela

    2010-05-01

    The National Institute for Earth Physics (NIEP) has installed two infrasound networks: a four-element seismo-acoustic array with an 1.2 km aperture (IPLOR) and a three-element array with a 400m aperture (IOANE). Both arrays are installed in Vrancea seismogenic area. Each array element of IPLOR consists of three sensors (a seismic 3C broad-band instrument with 1000V/m/s sensitivity, an accelerometer +/-2g EpiSensor type, and an infrasound Chaparral type sensor) and a 24-bit digitizer (Quanterra Q330). The BB sensors and accelerometers are located in 3 meters deep boreholes, while the infrasound sensors are installed in a plastic 1 mc container connected to a porous flexible pipe or plastic tube (for the central element). Inter-array communication is achieved by radio link (2.4 GHz frequency band) which transmits the data from the six-channel digitizers to the local acquisition system. Each power array element consisted of a 12 V DC source powered by the commercial power line or solar panels. The data acquisition system is based on the Seiscomp3 software; a sampling rate of 100 samples per second is applied for BB seismic instruments and accelerometers, whilst for the infrasound sensor a 20 sps rate is used. Each array element of IPLOR consists of a MBAZEL2007 microbarometer and a 24-bit digitizer. Inter-array communication is achieved by a fiber optic link. The sampling rate is 10 sps. The Vrancea seismo-acoustic array is used to identify and locate events associated with industrial blasts, to detect local and regional events, as well for the complex studies on the Vrancea seismogenic area. Moreover, the array data accelerometers are used in the early warning system for Bucharest. At NIEP, several programs are running to analyze each type of data (seismic and acoustic): for BB seismic data, a software for event detection and characterization, kindly provided by NORSAR, is applied, acceleration data recorded by the episensors are processed with a software developed

  14. Monolithic GaAs surface acoustic wave chemical microsensor array

    SciTech Connect

    HIETALA,VINCENT M.; CASALNUOVO,STEPHEN A.; HELLER,EDWIN J.; WENDT,JOEL R.; FRYE-MASON,GREGORY CHARLES; BACA,ALBERT G.

    2000-03-09

    A four-channel surface acoustic wave (SAW) chemical sensor array with associated RF electronics is monolithically integrated onto one GaAs IC. The sensor operates at 690 MHz from an on-chip SAW based oscillator and provides simple DC voltage outputs by using integrated phase detectors. This sensor array represents a significant advance in microsensor technology offering miniaturization, increased chemical selectivity, simplified system assembly, improved sensitivity, and inherent temperature compensation.

  15. On the acoustic radiation modes of compact regular polyhedral arrays of independent loudspeakers.

    PubMed

    Pasqual, Alexander Mattioli; Martin, Vincent

    2011-09-01

    Compact spherical loudspeaker arrays can be used to provide control over their directivity pattern. Usually, this is made by adjusting the gains of preprogrammed spatial filters corresponding to a finite set of spherical harmonics, or to the acoustic radiation modes of the loudspeaker array. Unlike the former, the latter are closely related to the radiation efficiency of the source and span the subspace of the directivities it can produce. However, the radiation modes depend on frequency for arbitrary distributions of transducers on the sphere, which yields complex directivity filters. This work focuses on the most common loudspeaker array configurations, those following the regular shape of the Platonic solids. It is shown that the radiation modes of these sources are frequency independent, and simple algebraic expressions are derived for their radiation efficiencies. In addition, since such modes are vibration patterns driven by electrical signals, the transduction mechanism of compact multichannel sources is also investigated, which is an important issue, especially if the transducers interact inside a shared cabinet. For Platonic solid loudspeakers, it is shown that the common enclosure does not lead to directivity filters that depend on frequency.

  16. Acoustic Array Development for Wind Turbine Noise Characterization

    SciTech Connect

    Buck, S.; Roadman, J.; Moriarty, P.; Palo, S.

    2013-11-01

    This report discusses the design and use of a multi-arm, logarithmic spiral acoustic array by the National Renewable Energy Laboratory (NREL) for measurement and characterization of wind turbine-generated noise. The array was developed in collaboration with a team from the University of Colorado Boulder. This design process is a continuation of the elliptical array design work done by Simley. A description of the array system design process is presented, including array shape design, mechanical design, design of electronics and the data acquisition system, and development of post-processing software. System testing and calibration methods are detailed. Results from the initial data acquisition campaign are offered and discussed. Issues faced during this initial deployment of the array are presented and potential remedies discussed.

  17. Simulation of Temperature Field Induced by 8-Element Phased Array HIFU Transducer with Concave Spherical Surface

    NASA Astrophysics Data System (ADS)

    Sun, Wujun; Zhang, Ping; Zhang, Xiaojing; Jian, Xiqi; Li, Zhihua

    2011-09-01

    Multi-element High Intensity Focused Ultrasound (HIFU) transducers can change their focal lengths and form multi-foci. In this paper the Westervelt formula and Pennes bio-heat transfer equation have been used along, with the Finite Difference Time Domain (FDTD) method, to study the temperature distribution induced by an 8-element phased array HIFU transducer inside the human body. We evaluated the effects of the gap in the arc between two rings, the frequency of excitation function and pre-focal length on the temperature field. For HIFU therapy, skin burns were caused by high frequency, small pre-focal length, or a big gap between two rings. The focal region may be no longer an ellipsoid due to high frequency. In addition, the actual focal length is slightly different from the pre-focal length.

  18. Method for Designing an Acoustic Array

    DTIC Science & Technology

    2014-05-01

    leads to the embodiment shown in FIG. 12. Array 56 is composed of four conical sections assembled from truncated cones of various base diameters...stacked on one another. The conical sections gradually decrease in size from bottom to top with an active disc on top. The outer surface of each cone...is slanted to a particular angular direction. [0036] Array 56 produces a conical beam pattern that is depressed in the middle in accordance with the

  19. Evaluation of adhesive-free crossed-electrode poly(vinylidene fluoride) copolymer array transducers for high frequency imaging

    NASA Astrophysics Data System (ADS)

    Wagle, Sanat; Decharat, Adit; Habib, Anowarul; Ahluwalia, Balpreet S.; Melandsø, Frank

    2016-07-01

    High frequency crossed-electrode transducers have been investigated, both as single and dual layer transducers. Prototypes of these transducers were developed for 4 crossed lines (yielding 16 square elements) on a polymer substrate, using a layer-by-layer deposition method for poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] with intermediate sputtered electrodes. The transducer was characterized using various methods [LCR analyzer, a pulse-echo experimental setup, and a numerical Finite element method (FEM) model] and evaluated in terms of uniformity of bandwidth and acoustical energy output. All 16 transducer elements produced broad-banded ultrasonic spectra with small variation in central frequency and -6 dB bandwidth. The frequency responses obtained experimentally were verified using a numerical model.

  20. VHF-induced thermoacoustic imaging of fresh human prostates using a clinical ultrasound transducer array

    NASA Astrophysics Data System (ADS)

    Patch, S. K.; See, W. A.

    2016-03-01

    The purpose of this work was to demonstrate that a clinical ultrasound transducer array can practically detect thermoacoustic pulses induced by irradiation by very high frequency (VHF) electromagnetic energy. This is an important step because thermoacoustic signal strength is directly proportional to the specific absorption rate (SAR), which is lower in the VHF regime than in microwave or optical regimes. A 96-channel transducer array (P4-1) providing 3 cm coverage was incorporated into a benchtop thermoacoustic imaging system for imaging fresh surgical specimens. Thermoacoustic signal was generated by 700 ns irradiation pulses with 11 kV/m electric field strength and 108 MHz carrier frequency. To improve SNR 1024 pulses were averaged at a 250 Hz repetition rate. Two sets of sinograms were acquired, separated by a 2 cm translation along the tomographic axis and reconstructed over a 6 x 6 x 5 cm3 volume. Contrast and in-plane resolution were measured by imaging a homogeneous cylindrical phantom and an 80- micron wire designed to highlight E-field polarization effects. FWHM of the in-plane point spread function varied from 250 microns to 1.1 mm, depending upon transducer used and phantom orientation relative to the electric field. Several fresh human prostates were imaged immediately after surgery. Rudimentary comparison to histology was performed and volumetric reconstruction of the multi-channel P4-1 data visualizes anatomic features that are rarely seen in ultrasound, CT, or MRI. The single element transducer provided superior image contrast, but with inferior resolution.

  1. Scaling of membrane-type locally resonant acoustic metamaterial arrays.

    PubMed

    Naify, Christina J; Chang, Chia-Ming; McKnight, Geoffrey; Nutt, Steven R

    2012-10-01

    Metamaterials have emerged as promising solutions for manipulation of sound waves in a variety of applications. Locally resonant acoustic materials (LRAM) decrease sound transmission by 500% over acoustic mass law predictions at peak transmission loss (TL) frequencies with minimal added mass, making them appealing for weight-critical applications such as aerospace structures. In this study, potential issues associated with scale-up of the structure are addressed. TL of single-celled and multi-celled LRAM was measured using an impedance tube setup with systematic variation in geometric parameters to understand the effects of each parameter on acoustic response. Finite element analysis was performed to predict TL as a function of frequency for structures with varying complexity, including stacked structures and multi-celled arrays. Dynamic response of the array structures under discrete frequency excitation was investigated using laser vibrometry to verify negative dynamic mass behavior.

  2. Development of a 20-MHz wide-bandwidth PMN-PT single crystal phased-array ultrasound transducer.

    PubMed

    Wong, Chi-Man; Chen, Yan; Luo, Haosu; Dai, Jiyan; Lam, Kwok-Ho; Chan, Helen Lai-Wa

    2017-01-01

    In this study, a 20-MHz 64-element phased-array ultrasound transducer with a one-wavelength pitch is developed using a PMN-30%PT single crystal and double-matching layer scheme. High piezoelectric (d33>1000pC/N) and electromechanical coupling (k33>0.8) properties of the single crystal with an optimized fabrication process involving the photolithography technique have been demonstrated to be suitable for wide-bandwidth (⩾70%) and high-sensitivity (insertion loss ⩽30dB) phased-array transducer application. A -6dBbandwidth of 91% and an insertion loss of 29dBfor the 20-MHz 64-element phased-array transducer were achieved. This result shows that the bandwidth is improved comparing with the investigated high-frequency (⩾20MHz) ultrasound transducers using piezoelectric ceramic and single crystal materials. It shows that this phased-array transducer has potential to improve the resolution of biomedical imaging, theoretically. Based on the hypothesis of resolution improvement, this phased-array transducer is capable for small animal (i.e. mouse and zebrafish) studies.

  3. Applications of Flexible Ultrasonic Transducer Array for Defect Detection at 150 °C

    PubMed Central

    Shih, Jeanne-Louise; Wu, Kuo-Ting; Jen, Cheng-Kuei; Chiu, Chun-Hsiung; Tzeng, Jing-Chi; Liaw, Jiunn-Woei

    2013-01-01

    In this study, the feasibility of using a one dimensional 16-element flexible ultrasonic transducer (FUT) array for nondestructive testing at 150 °C is demonstrated. The FUT arrays were made by a sol-gel sprayed piezoelectric film technology; a PZT composite film was sprayed on a titanium foil of 75 μm thickness. Since the FUT array is flexible, it was attached to a steel pipe with an outer diameter of 89 mm and a wall thickness of 6.5 mm at 150 °C. Using the ultrasonic pulse-echo mode, pipe thickness measurements could be performed. Moreover, using the ultrasonic pulse-echo and pitch-catch modes of each element of FUT array, the defect detection was performed on an Al alloy block of 30 mm thickness with a side-drilled hole (SDH) of ϕ3 mm at 150 °C. In addition, a post-processing algorithm based on the total focusing method was used to process the full matrix of these A-scan signals of each single transmitter and multi-receivers, and then the phase-array image was obtained to indicate this defect- SDH. Both results show the capability of FUT array being operated at 150 °C for the corrosion and defect detections. PMID:23322101

  4. Ring array transducers for real-time 3-D imaging of an atrial septal occluder.

    PubMed

    Light, Edward D; Lindsey, Brooks D; Upchurch, Joseph A; Smith, Stephen W

    2012-08-01

    We developed new miniature ring array transducers integrated into interventional device catheters such as used to deploy atrial septal occluders. Each ring array consisted of 55 elements operating near 5 MHz with interelement spacing of 0.20 mm. It was constructed on a flat piece of copper-clad polyimide and then wrapped around an 11 French O.D. catheter. We used a braided cabling technology from Tyco Electronics Corporation to connect the elements to the Volumetric Medical Imaging (VMI) real-time 3-D ultrasound scanner. Transducer performance yielded a -6 dB fractional bandwidth of 20% centered at 4.7 MHz without a matching layer vs. average bandwidth of 60% centered at 4.4 MHz with a matching layer. Real-time 3-D rendered images of an en face view of a Gore Helex septal occluder in a water tank showed a finer texture of the device surface from the ring array with the matching layer.

  5. In-flight measurement of ice growth on an airfoil using an array of ultrasonic transducers

    NASA Technical Reports Server (NTRS)

    Hansman, R. John, Jr.; Kirby, Mark S.; Mcknight, Robert C.; Humes, Robert L.

    1988-01-01

    Results of preliminary tests to measure ice growth on an airfoil during flight icing conditions are presented. Ultrasonic pulse echo measurements of ice thickness are obtained from an array of eight ultrasonic transducers mounted flush with the leading edge of the airfoil. These thickness measurements are used to document the evolution of the ice shape during the encounter in the form of successive ice profiles. Results from 3 research flights are presented and discussed. The accuracy of the ultrasonic measurements is found to be within 0.5 mm of mechanical and stereo photograph measurements of the ice accretion.

  6. Simulation of 3-D radiation beam patterns propagated through a planar interface from ultrasonic phased array transducers.

    PubMed

    Song, Sung-Jin; Kim, Chang-Hwan

    2002-05-01

    Phased array transducers are quite often mounted on solid wedges with specific angles in many practical ultrasonic inspections of thin plates <10 mm in their thickness or welded joints with convex crowns. For the reliable application of phased array techniques with testing set-up, it is essential to have thorough understanding on the characteristics of radiation beam pattern produced in the interrogated medium. To address such a need, this paper proposes a systematic way to calculate full 3-D radiation beam patterns produced in the interrogated solid medium by phased array transducers mounted on a solid wedge. In order to investigate the characteristics of radiation beam patterns in steel, simulation is carried out for 7.5 MHz array transducers mounted on an acrylic wedge with the angle of 15.45 degrees with various of steering angles and/or focal planes.

  7. A Fast Method to Calculate the Spatial Impulse Response for 1-D Linear Ultrasonic Phased Array Transducers.

    PubMed

    Zou, Cheng; Sun, Zhenguo; Cai, Dong; Muhammad, Salman; Zhang, Wenzeng; Chen, Qiang

    2016-11-08

    A method is developed to accurately determine the spatial impulse response at the specifically discretized observation points in the radiated field of 1-D linear ultrasonic phased array transducers with great efficiency. In contrast, the previously adopted solutions only optimize the calculation procedure for a single rectangular transducer and required approximation considerations or nonlinear calculation. In this research, an algorithm that follows an alternative approach to expedite the calculation of the spatial impulse response of a rectangular linear array is presented. The key assumption for this algorithm is that the transducer apertures are identical and linearly distributed on an infinite rigid plane baffled with the same pitch. Two points in the observation field, which have the same position relative to two transducer apertures, share the same spatial impulse response that contributed from corresponding transducer, respectively. The observation field is discretized specifically to meet the relationship of equality. The analytical expressions of the proposed algorithm, based on the specific selection of the observation points, are derived to remove redundant calculations. In order to measure the proposed methodology, the simulation results obtained from the proposed method and the classical summation method are compared. The outcomes demonstrate that the proposed strategy can speed up the calculation procedure since it accelerates the speed-up ratio which relies upon the number of discrete points and the number of the array transducers. This development will be valuable in the development of advanced and faster linear ultrasonic phased array systems.

  8. A Fast Method to Calculate the Spatial Impulse Response for 1-D Linear Ultrasonic Phased Array Transducers

    PubMed Central

    Zou, Cheng; Sun, Zhenguo; Cai, Dong; Muhammad, Salman; Zhang, Wenzeng; Chen, Qiang

    2016-01-01

    A method is developed to accurately determine the spatial impulse response at the specifically discretized observation points in the radiated field of 1-D linear ultrasonic phased array transducers with great efficiency. In contrast, the previously adopted solutions only optimize the calculation procedure for a single rectangular transducer and required approximation considerations or nonlinear calculation. In this research, an algorithm that follows an alternative approach to expedite the calculation of the spatial impulse response of a rectangular linear array is presented. The key assumption for this algorithm is that the transducer apertures are identical and linearly distributed on an infinite rigid plane baffled with the same pitch. Two points in the observation field, which have the same position relative to two transducer apertures, share the same spatial impulse response that contributed from corresponding transducer, respectively. The observation field is discretized specifically to meet the relationship of equality. The analytical expressions of the proposed algorithm, based on the specific selection of the observation points, are derived to remove redundant calculations. In order to measure the proposed methodology, the simulation results obtained from the proposed method and the classical summation method are compared. The outcomes demonstrate that the proposed strategy can speed up the calculation procedure since it accelerates the speed-up ratio which relies upon the number of discrete points and the number of the array transducers. This development will be valuable in the development of advanced and faster linear ultrasonic phased array systems. PMID:27834799

  9. Enhanced sensitivity of surface acoustic wave-based rate sensors incorporating metallic dot arrays.

    PubMed

    Wang, Wen; Shao, Xiuting; Liu, Xinlu; Liu, Jiuling; He, Shitang

    2014-02-26

    A new surface acoustic wave (SAW)-based rate sensor pattern incorporating metallic dot arrays was developed in this paper. Two parallel SAW delay lines with a reverse direction and an operation frequency of 80 MHz on a same X-112°Y LiTaO3 wafer are fabricated as the feedback of two SAW oscillators, and mixed oscillation frequency was used to characterize the external rotation. To enhance the Coriolis force effect acting on the SAW propagation, a copper (Cu) dot array was deposited along the SAW propagation path of the SAW devices. The approach of partial-wave analysis in layered media was referred to analyze the response mechanisms of the SAW based rate sensor, resulting in determination of the optimal design parameters. To improve the frequency stability of the oscillator, the single phase unidirectional transducers (SPUDTs) and combed transducer were used to form the SAW device to minimize the insertion loss and accomplish the single mode selection, respectively. Excellent long-term (measured in hours) frequency stability of 0.1 ppm/h was obtained. Using the rate table with high precision, the performance of the developed SAW rate sensor was evaluated experimentally; satisfactory detection sensitivity (16.7 Hz∙deg∙s(-1)) and good linearity were observed.

  10. Capacitive Micromachined Ultrasonic Transducer Arrays for Integrated Diagnostic/Therapeutic Catheters

    NASA Astrophysics Data System (ADS)

    Wong, Serena H.; Wygant, Ira O.; Yeh, David T.; Zhuang, Xuefeng; Bayram, Baris; Kupnik, Mario; Oralkan, Omer; Ergun, A. Sanli; Yaralioglu, Goksen G.; Khuri-Yakub, Butrus T.

    2006-05-01

    In recent years, medical procedures have become increasingly non-invasive. These include endoscopic procedures and intracardiac interventions (e.g., pulmonary vein isolation for treatment of atrial fibrillation and plaque ablation for treatment of arteriosclerosis). However, current tools suffer from poor visualization and difficult coordination of multiple therapeutic and imaging devices. Dual-mode (imaging and therapeutic) ultrasound arrays provide a solution to these challenges. A dual-mode transducer can provide focused, noncontact ultrasound suitable for therapy and can be used to provide high quality real-time images for navigation and monitoring of the procedure. In the last decade, capacitive micromachined ultrasonic transducers (CMUTs), have become an attractive option for ultrasonic imaging systems due to their fabrication flexibility, improved bandwidth, and integration with electronics. The CMUT's potential in therapeutic applications has also been demonstrated by surface output pressures as high as 1MPa peak to peak and continuous wave (CW) operation. This paper reviews existing interventional CMUT arrays, demonstrates the feasibility of CMUTs for high intensity focused ultrasound (HIFU), and presents a design for the next-generation CMUTs for integrated imaging and HIFU endoscopic catheters.

  11. Generation of the Ultrasonic Guided Waves in a Seamless Stainless Steel Pipe Using an Array Transducer

    SciTech Connect

    Kim, Young H.; Song, Sung-Jin; Park, Joon-Soo; Jeon, Jin Hong; Kim, Jae-Hee; Eom, Heung-Sup; Im, Kwang Hee

    2005-04-09

    Ultrasonic guided waves have been widely employed for the long range inspection of structures such as plates, rods and pipes. In ultrasonic guided waves, however, there are numerous modes with different wave velocities, so that the generation and detection of the appropriate wave mode of the guided wave is one of key techniques in the application of guided waves. In the present work, mode tuning using an array transducer was investigated with the hardware implements to generate ultrasonic guided waves in a seamless stainless steel pipe. For this purpose, 8-channel ultrasonic pulser/receiver and their controller which enables sequential activation of each channels with given time delay were developed. A series of experiments was carried out in order to demonstrate the feasibility of dynamic tuning of modes by hardware: tuning the mode of the generated guided wave, group velocity measurement, tuned receiving and mode identification. As a result, the selective tuning of wave mode can be achieved by changing the time interval between adjacent elements of an array transducer.

  12. The design of a focused ultrasound transducer array for the treatment of stroke: a simulation study

    PubMed Central

    Pajek, Daniel; Hynynen, Kullervo

    2014-01-01

    High intensity focused ultrasound (HIFU) is capable of mechanically disintegrating blood clots at high pressures. Safe thrombolysis may require frequencies higher than those currently utilized by transcranial HIFU. Since the attenuation and focal distortion of ultrasound in bone increases at higher frequencies, resulting focal pressures are diminished. This study investigated the feasibility of using transcranial HIFU for the non-invasive treatment of ischemic stroke. The use of large aperture, 1.1–1.5 MHz phased arrays in targeting four clinically relevant vessel locations was simulated. Resulting focal sizes decreased with frequency, producing a maximum −3 dB depth of field and lateral width of 2.0 and 1.2 mm, respectively. Mean focal gains above an order of magnitude were observed in three of four targets and transducer intensities required to achieve thrombolysis were determined. Required transducer element counts are about an order of magnitude higher than what currently exists and so, although technically feasible, new arrays would need to be developed to realize this as a treatment modality for stroke. PMID:22800986

  13. Measurement of Acoustic Intensity Distribution and Radiation Power of Flat-Plate Phased-Array Sound Source

    NASA Astrophysics Data System (ADS)

    Yokoyama, Tomoki; Takahashi, Kumiko; Seki, Daizaburou; Hasegawa, Akio

    2002-05-01

    The acoustic intensity distribution and radiation power of a flat-plate phased-array sound source consisting of Tonpilz-type transducers were measured. This study shows that the active acoustic intensity is skewed in the direction of wave propagation. In addition, it clarifies that if the measurement is carried out in the immediate vicinity of the sound source, the reactive acoustic intensity distribution is effective for identifying the positions of the individual sound source elements. Experimental values of active radiation power agree well with theoretical values. Conversely, experimental values of reactive radiation power do not agree with theoretical values; it is clear that they fluctuate significantly with distance from the radiating surface. The reason for this is explained in the case of a point sound source.

  14. Acoustic detection and tracking of abyssopelagic animals: description of an autonomous split-beam acoustic array

    NASA Astrophysics Data System (ADS)

    Smith, K. L.; Alexandrou, D.; Edelman, J. L.

    1989-09-01

    Importance of pelagic animals in transport of organic matter at abyssal depths has been suggested based on vertical distribution and gut content analysis. We developed an autonomous acoustic instrument to detect individual pelagic animals, measure their target strength, and track their movements across specific depth boundaries in the deep sea. This instrument consists of a split-beam line array with a beam pattern narrow in the vertical and omnidirectional in the horizontal. Animals (acoustic targets) ⩾2 cm in length can be detected in an insonified radius of 100 m around the array with a position resolution of ca 42 cm. The velocity of a target animal can be resolved using a closely spaced ping sequence. The line array is deployed as a bottom-moored free vehicle with controller electronics, preamplifier, and a battery source for deployments up to several weeks at depths to 6 km. A deployment in the central North Pacific at 100 m altitude above the bottom (5762 m total depth) for 25 h recorded four targets moving through the acoustic field. Estimated size of the targets, based on initial target strength analyses, suggests that two are crustaceans and one is a grenadier fish. The fourth target is indicative of an animal larger than any we have observed in video camera deployments or caugh with baited traps and hooks at this station. Our initial measurements show that abyssopelagic fauna can be detected and their target strengths and movements measured with the acoustic array.

  15. Array gain for a conformal acoustic vector sensor array: An experimental study

    NASA Astrophysics Data System (ADS)

    Wang, Yong; Yang, Yi-Xin; He, Zheng-Yao; Lei, Bo; Sun, Chao; Ma, Yuan-Liang

    2016-12-01

    An acoustic vector sensor can measure the components of particle velocity and the acoustic pressure at the same point simultaneously, which provides a larger array gain against the ambient noise and a higher angular resolution than the omnidirectional pressure sensor. This paper presents an experimental study of array gain for a conformal acoustic vector sensor array in a practical environment. First, the manifold vector is calculated using the real measured data so that the effects of array mismatches can be minimized. Second, an optimal beamformer with a specific spatial response on the basis of the stable directivity of the ambient noise is designed, which can effectively suppress the ambient noise. Experimental results show that this beamformer for the conformal acoustic vector sensor array provides good signal-to-noise ratio enhancement and is more advantageous than the delay-and-sum and minimum variance distortionless response beamformers. Project supported by the China Postdoctoral Science Foundation (Grant No. 2016M592782) and the National Natural Science Foundation of China (Grant Nos. 11274253 and 11604259).

  16. Communication in Pipes Using Acoustic Modems that Provide Minimal Obstruction to Fluid Flow

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph (Inventor); Archer, Eric D. (Inventor); Bao, Xiaoqi (Inventor); Sherrit, Stewart (Inventor)

    2016-01-01

    A plurality of phased array acoustic communication devices are used to communicate data along a tubulation, such as a well. The phased array acoustic communication devices employ phased arrays of acoustic transducers, such as piezoelectric transducers, to direct acoustic energy in desired directions along the tubulation. The system is controlled by a computer-based controller. Information, including data and commands, is communicated using digital signaling.

  17. Reconstruction of the Acoustic Field Using a Conformal Array

    NASA Technical Reports Server (NTRS)

    Valdivia, Nichlas P.; Williams, Earl G.; Klos, Jacob

    2006-01-01

    Near-field acoustical holography (NAH) requires the measurement of the near-field pressure field over a conformal and closed surface in order to recover the acoustic field on a nearby surface. We are interested in the reconstruction of the acoustic field over the fuselage of a Boeing 757 airplane when pressure data is available over an array of microphones that are conformal to the fuselage surface. In this case the strict NAH theory does not hold, but still there are techniques used to overcome this difficulty. The best known is patch NAH, which has been used for planar surfaces. In this work we will discuss two new techniques used for surfaces with an arbitrarily shape: patch inverse boundary element methods (IBEM) and patch equivalent sources method (ESM). We will discuss the theoretical justification of the method and show reconstructions for in-flight data taken inside a Boeing 757 airplane.

  18. A New Method to Evaluate Surface Defects with an Electromagnetic Acoustic Transducer

    PubMed Central

    Zhang, Kang; Yi, Pengxing; Li, Yahui; Hui, Bing; Zhang, Xuming

    2015-01-01

    Characterizing a surface defect is very crucial in non-destructive testing (NDT). We employ an electromagnetic acoustic transducer (EMAT) to detect the surface defect of a nonmagnetic material. An appropriate feature that can avoid the interference of the human factor is vital for evaluating the crack quantitatively. Moreover, it can also reduce the influence of other factors, such as the lift-off, during the testing. In this paper, we conduct experiments at various depths of surface cracks in an aluminum plate, and a new feature, lift-off slope (LOS), is put forward for the theoretical and experimental analyses of the lift-off effect on the receiving signals. Besides, by changing the lift-off between the receiving probe and the sample for testing, a new method is adopted to evaluate surface defects with the EMAT. Compared with other features, the theoretical and experimental results show that the feature lift-off slope has many advantages prior to the other features for evaluating the surface defect with the EMAT. This can reduce the lift-off effect of one probe. Meanwhile, it is not essential to measure the signal without defects. PMID:26193282

  19. Surface acoustic wave nebulization device with dual interdigitated transducers improves SAWN-MS performance.

    PubMed

    Huang, Yue; Heron, Scott R; Clark, Alicia M; Edgar, J Scott; Yoon, Sung Hwan; Kilgour, David P A; Turecek, Frantisek; Aliseda, Alberto; Goodlett, David R

    2016-06-01

    We compared mass spectrometric (MS) performance of surface acoustic wave nebulization (SAWN) generated by a single interdigitated transducer (IDT) designed to produce a progressive wave (PW) to one with a dual IDT that can in theory generate standing waves (SW). Given that devices using dual IDTs had been shown to produce fewer large size droplets on average, we hypothesized they would improve MS performance by improving the efficiency of desolvation. Indeed, the SW-SAWN chip provided an improved limit of detection of 1 femtomole of peptide placed on chip making it 100× more sensitive than the PW design. However, as measured by high-speed image recording and phase Doppler particle analyzer measurements, there was only a 26% increase in the small diameter (1-10 µm) droplets produced from the new device, precluding a conclusion that the decrease in droplet size was solely responsible for the improvement in MS signal/noise. Given that the dual IDT design produced a more instantaneous plume than the PW design, the more likely contributor to improved MS signal/noise was concluded to be a higher ion flux entering the mass spectrometer for the dual IDT designs. Notably, the dual IDT device allowed production of much higher quality protein mass spectra up to about 20 kDa, compared with the single IDT device. Copyright © 2016 John Wiley & Sons, Ltd.

  20. Pipe wall damage detection by electromagnetic acoustic transducer generated guided waves in absence of defect signals.

    PubMed

    Vasiljevic, Milos; Kundu, Tribikram; Grill, Wolfgang; Twerdowski, Evgeny

    2008-05-01

    Most investigators emphasize the importance of detecting the reflected signal from the defect to determine if the pipe wall has any damage and to predict the damage location. However, often the small signal from the defect is hidden behind the other arriving wave modes and signal noise. To overcome the difficulties associated with the identification of the small defect signal in the time history plots, in this paper the time history is analyzed well after the arrival of the first defect signal, and after different wave modes have propagated multiple times through the pipe. It is shown that the defective pipe can be clearly identified by analyzing these late arriving diffuse ultrasonic signals. Multiple reflections and scattering of the propagating wave modes by the defect and pipe ends do not hamper the defect detection capability; on the contrary, it apparently stabilizes the signal and makes it easier to distinguish the defective pipe from the defect-free pipe. This paper also highlights difficulties associated with the interpretation of the recorded time histories due to mode conversion by the defect. The design of electro-magnetic acoustic transducers used to generate and receive the guided waves in the pipe is briefly described in the paper.

  1. Modeling of an omni-directional electromagnetic acoustic transducer driven by the Lorentz force mechanism

    NASA Astrophysics Data System (ADS)

    Wang, Shen; Huang, Songling; Zhang, Yu; Zhao, Wei

    2016-12-01

    The electromagnetic acoustic transducers (EMATs) are gaining much attention in recent years due to their non-contact operation in ultrasonic wave generation and reception in NDT field. Quite often the transduction efficiency of EMATs is low, so efforts are always necessary to gain a better understanding of their complex and multi-physics transduction mechanism. In this work, we focused on modeling of an omni-directional Lorentz force-based EMAT operating on an aluminum disk and containing a rounded meander coil to generate a pure Lamb wave mode. We introduced an approach to solve the underlying eddy current equations in cylindrical coordinates directly, and applied this approach to a multi-conductor electromagnetic model to investigate the skin and proximity effects. These effects existed both for the complete and incomplete equations. Then we built the omni-directional EMAT model composed of three sub-models and two geometries. The two-geometry structure made it possible to reduce the total number of elements. Time varying spatial distribution of the Lorentz force vector was plotted. Propagation velocity of the simulated wave packet was compared with the group velocity of desired S0 mode Lamb waves. Interaction of the waves with a slot defect with a depth of 50% thickness was studied. The response to high current excitation and dynamic magnetic field was also investigated.

  2. Bendable Electro-Acoustic Transducer Fabricated Utilizing Frequency Dispersion of Elastic Modulus

    NASA Astrophysics Data System (ADS)

    Miyoshi, Tetsu; Ohga, Juro

    2013-09-01

    To realize the speaker diaphragm that can be united with a flexible display without deteriorating lightweight properties and flexibility, a novel bendable electro-acoustic transducer (BEAT) based on 0-3-type piezoelectric composites has been developed. To overcome the trade-off between flexibility and the transmission efficiency of vibration energy, a viscoelastic polymer that has local maximum points in the loss factor as well as large frequency dispersion in the storage modulus near room temperature was employed as the matrix of the piezoelectric composite layer. Against the comparatively slow (10 Hz or less) deformation from the outside, the viscoelastic matrix is viscous enough to prevent cracking and delamination. On the other hand, in the audible range (20 Hz to 20 kHz), the matrix is elastic enough to transmit piezoelectric vibration energy, maintaining a moderately large loss factor as well as a high sound velocity. For the first time, we successfully demonstrated a rollable speaker that can continue to generate a high-quality sound while being rolled and unrolled repeatedly onto a cylinder with a curvature radius of 4 mm.

  3. Design of a Subsurface Moored Acoustic Array in Deep Water

    DTIC Science & Technology

    2007-01-01

    concepts were a culmination of many years design teams past experience with undersea cable structures. Offshore structural analysis software [2] was...concept as a baseline, the complete STAFAC mooring with umbilicals is shown in Fig 8., both in elevation view and plan view. Umbilical cables are...navigation. The umbilicals are attached near the upper portion of the HGMS arrays to be consistent with the associate Southeast Alaska Acoustic

  4. Characterization of Transducer Performance and Narrowband Transient Ultrasonic Fields in Metals by Rayleigh-Sommerfeld Backpropagation of Compression Acoustic Waves Measured with Double-Pulsed Tv Holography

    NASA Astrophysics Data System (ADS)

    Trillo, Cristina; Doval, Ángel F.; Fernández, José L.; Rodríguez-Gómez, Pablo; López-Vázquez, J. Carlos

    2014-10-01

    This article presents a method aimed at the characterization of the narrowband transient acoustic field radiated by an ultrasonic plane transducer into a homogeneous, isotropic and optically opaque prismatic solid, and the assessment of the performance of the acoustic source. The method relies on a previous technique based on the full-field optical measurement of an acoustic wavepacket at the surface of a solid and its subsequent numerical backpropagation within the material. The experimental results show that quantitative transversal and axial profiles of the complex amplitude of the beam can be obtained at any plane between the measurement and excitation surfaces. The reconstruction of the acoustic field at the transducer face, carried out on a defective transducer model, shows that the method could also be suitable for the nondestructive testing of the performance of ultrasonic sources. In all cases, the measurements were performed with the transducer working under realistic loading conditions.

  5. Development of a spherically focused phased array transducer for ultrasonic image-guided hyperthermia.

    PubMed

    Liu, Jingfei; Foiret, Josquin; Stephens, Douglas N; Le Baron, Olivier; Ferrara, Katherine W

    2016-07-21

    A 1.5 MHz prolate spheroidal therapeutic array with 128 circular elements was designed to accommodate standard imaging arrays for ultrasonic image-guided hyperthermia. The implementation of this dual-array system integrates real-time therapeutic and imaging functions with a single ultrasound system (Vantage 256, Verasonics). To facilitate applications involving small animal imaging and therapy the array was designed to have a beam depth of field smaller than 3.5 mm and to electronically steer over distances greater than 1 cm in both the axial and lateral directions. In order to achieve the required f number of 0.69, 1-3 piezocomposite modules were mated within the transducer housing. The performance of the prototype array was experimentally evaluated with excellent agreement with numerical simulation. A focal volume (2.70 mm (axial)  ×  0.65 mm (transverse)  ×  0.35 mm (transverse)) defined by the  -6 dB focal intensity was obtained to address the dimensions needed for small animal therapy. An electronic beam steering range defined by the  -3 dB focal peak intensity (17 mm (axial)  ×  14 mm (transverse)  ×  12 mm (transverse)) and  -8 dB lateral grating lobes (24 mm (axial)  ×  18 mm (transverse)  ×  16 mm (transverse)) was achieved. The combined testing of imaging and therapeutic functions confirmed well-controlled local heating generation and imaging in a tissue mimicking phantom. This dual-array implementation offers a practical means to achieve hyperthermia and ablation in small animal models and can be incorporated within protocols for ultrasound-mediated drug delivery.

  6. Development of a spherically focused phased array transducer for ultrasonic image-guided hyperthermia

    NASA Astrophysics Data System (ADS)

    Liu, Jingfei; Foiret, Josquin; Stephens, Douglas N.; Le Baron, Olivier; Ferrara, Katherine W.

    2016-07-01

    A 1.5 MHz prolate spheroidal therapeutic array with 128 circular elements was designed to accommodate standard imaging arrays for ultrasonic image-guided hyperthermia. The implementation of this dual-array system integrates real-time therapeutic and imaging functions with a single ultrasound system (Vantage 256, Verasonics). To facilitate applications involving small animal imaging and therapy the array was designed to have a beam depth of field smaller than 3.5 mm and to electronically steer over distances greater than 1 cm in both the axial and lateral directions. In order to achieve the required f number of 0.69, 1-3 piezocomposite modules were mated within the transducer housing. The performance of the prototype array was experimentally evaluated with excellent agreement with numerical simulation. A focal volume (2.70 mm (axial)  ×  0.65 mm (transverse)  ×  0.35 mm (transverse)) defined by the  -6 dB focal intensity was obtained to address the dimensions needed for small animal therapy. An electronic beam steering range defined by the  -3 dB focal peak intensity (17 mm (axial)  ×  14 mm (transverse)  ×  12 mm (transverse)) and  -8 dB lateral grating lobes (24 mm (axial)  ×  18 mm (transverse)  ×  16 mm (transverse)) was achieved. The combined testing of imaging and therapeutic functions confirmed well-controlled local heating generation and imaging in a tissue mimicking phantom. This dual-array implementation offers a practical means to achieve hyperthermia and ablation in small animal models and can be incorporated within protocols for ultrasound-mediated drug delivery.

  7. Three-Dimensional Mid-Air Acoustic Manipulation by Ultrasonic Phased Arrays

    PubMed Central

    Ochiai, Yoichi; Hoshi, Takayuki; Rekimoto, Jun

    2014-01-01

    The essence of levitation technology is the countervailing of gravity. It is known that an ultrasound standing wave is capable of suspending small particles at its sound pressure nodes. The acoustic axis of the ultrasound beam in conventional studies was parallel to the gravitational force, and the levitated objects were manipulated along the fixed axis (i.e. one-dimensionally) by controlling the phases or frequencies of bolted Langevin-type transducers. In the present study, we considered extended acoustic manipulation whereby millimetre-sized particles were levitated and moved three-dimensionally by localised ultrasonic standing waves, which were generated by ultrasonic phased arrays. Our manipulation system has two original features. One is the direction of the ultrasound beam, which is arbitrary because the force acting toward its centre is also utilised. The other is the manipulation principle by which a localised standing wave is generated at an arbitrary position and moved three-dimensionally by opposed and ultrasonic phased arrays. We experimentally confirmed that expanded-polystyrene particles of 0.6 mm, 1 mm, and 2 mm in diameter could be manipulated by our proposed method. PMID:24849371

  8. Three-dimensional mid-air acoustic manipulation by ultrasonic phased arrays.

    PubMed

    Ochiai, Yoichi; Hoshi, Takayuki; Rekimoto, Jun

    2014-01-01

    The essence of levitation technology is the countervailing of gravity. It is known that an ultrasound standing wave is capable of suspending small particles at its sound pressure nodes. The acoustic axis of the ultrasound beam in conventional studies was parallel to the gravitational force, and the levitated objects were manipulated along the fixed axis (i.e. one-dimensionally) by controlling the phases or frequencies of bolted Langevin-type transducers. In the present study, we considered extended acoustic manipulation whereby millimetre-sized particles were levitated and moved three-dimensionally by localised ultrasonic standing waves, which were generated by ultrasonic phased arrays. Our manipulation system has two original features. One is the direction of the ultrasound beam, which is arbitrary because the force acting toward its centre is also utilised. The other is the manipulation principle by which a localised standing wave is generated at an arbitrary position and moved three-dimensionally by opposed and ultrasonic phased arrays. We experimentally confirmed that expanded-polystyrene particles of 0.6 mm, 1 mm, and 2 mm in diameter could be manipulated by our proposed method.

  9. Subharmonic phased array for crack evaluation using surface acoustic wave

    NASA Astrophysics Data System (ADS)

    Ouchi, Akihiro; Sugawara, Azusa; Ohara, Yoshikazu; Yamanaka, Kazushi

    2015-07-01

    To accurately measure closed crack length, we proposed an imaging method using a subharmonic phased array for crack evaluation using surface acoustic waves (SAW SPACE) with water immersion. We applied SAW SPACE to the hole specimen in a fundamental array (FA) image. The hole was imaged with high resolution. Subsequently, SAW SPACE was applied to fatigue crack and stress corrosion crack (SCC) specimens. A fatigue crack was imaged in FA and subharmonic array (SA) images, and the length of this particular fatigue crack measured in the images was almost the same as that measured by optical observation. The SCC was imaged and its length was accurately measured in the SA image, whereas it was underestimated in the FA image and by optical observation. Thus, we demonstrated that SAW SPACE with water immersion is useful for the accurate measurement of closed crack length and for imaging the distribution of open and closed parts of cracks with high resolution.

  10. Realtime photoacoustic microscopy in vivo with a 30-MHz ultrasound array transducer.

    PubMed

    Zemp, Roger J; Song, Liang; Bitton, Rachel; Shung, K Kirk; Wang, Lihong V

    2008-05-26

    We present a novel high-frequency photoacoustic microscopy system capable of imaging the microvasculature of living subjects in realtime to depths of a few mm. The system consists of a high-repetition-rate Q-switched pump laser, a tunable dye laser, a 30-MHz linear ultrasound array transducer, a multichannel high-frequency data acquisition system, and a shared-RAM multi-core-processor computer. Data acquisition, beamforming, scan conversion, and display are implemented in realtime at 50 frames per second. Clearly resolvable images of 6-microm-diameter carbon fibers are experimentally demonstrated at 80 microm separation distances. Realtime imaging performance is demonstrated on phantoms and in vivo with absorbing structures identified to depths of 2.5-3 mm. This work represents the first high-frequency realtime photoacoustic imaging system to our knowledge.

  11. In-flight measurement of ice growth on an airfoil using an array of ultrasonic transducers

    NASA Technical Reports Server (NTRS)

    Hansman, R. John, Jr.; Kirby, Mark S.; Mcknight, Robert C.; Humes, Robert L.

    1987-01-01

    Results from three research flights to obtain in-flight ultrasonic pulse-echo measurements of airfoil ice thickness as a function of time using an array of eight ultrasonic transducers mounted flush with the leading edge of the airfoil are presented. The accuracy of the thickness measurements is found to be within 0.5 mm of mechanical and stereophotograph measurements of the ice accretion. The ultrasonic measurements demonstrate that the ice growth rate typically varies during the flight, with variations in the ice growth rate for dry ice growth being primarily due to fluctuations in the cloud liquid water content. Discrepancies between experimental results and results predicted by an analytic icing code underline the need for a better understanding of the physics of wet ice growth.

  12. Acoustic Holographic Rendering with Two-dimensional Metamaterial-based Passive Phased Array.

    PubMed

    Xie, Yangbo; Shen, Chen; Wang, Wenqi; Li, Junfei; Suo, Dingjie; Popa, Bogdan-Ioan; Jing, Yun; Cummer, Steven A

    2016-10-14

    Acoustic holographic rendering in complete analogy with optical holography are useful for various applications, ranging from multi-focal lensing, multiplexed sensing and synthesizing three-dimensional complex sound fields. Conventional approaches rely on a large number of active transducers and phase shifting circuits. In this paper we show that by using passive metamaterials as subwavelength pixels, holographic rendering can be achieved without cumbersome circuitry and with only a single transducer, thus significantly reducing system complexity. Such metamaterial-based holograms can serve as versatile platforms for various advanced acoustic wave manipulation and signal modulation, leading to new possibilities in acoustic sensing, energy deposition and medical diagnostic imaging.

  13. Acoustic Holographic Rendering with Two-dimensional Metamaterial-based Passive Phased Array

    NASA Astrophysics Data System (ADS)

    Xie, Yangbo; Shen, Chen; Wang, Wenqi; Li, Junfei; Suo, Dingjie; Popa, Bogdan-Ioan; Jing, Yun; Cummer, Steven A.

    2016-10-01

    Acoustic holographic rendering in complete analogy with optical holography are useful for various applications, ranging from multi-focal lensing, multiplexed sensing and synthesizing three-dimensional complex sound fields. Conventional approaches rely on a large number of active transducers and phase shifting circuits. In this paper we show that by using passive metamaterials as subwavelength pixels, holographic rendering can be achieved without cumbersome circuitry and with only a single transducer, thus significantly reducing system complexity. Such metamaterial-based holograms can serve as versatile platforms for various advanced acoustic wave manipulation and signal modulation, leading to new possibilities in acoustic sensing, energy deposition and medical diagnostic imaging.

  14. Acoustic Holographic Rendering with Two-dimensional Metamaterial-based Passive Phased Array

    PubMed Central

    Xie, Yangbo; Shen, Chen; Wang, Wenqi; Li, Junfei; Suo, Dingjie; Popa, Bogdan-Ioan; Jing, Yun; Cummer, Steven A.

    2016-01-01

    Acoustic holographic rendering in complete analogy with optical holography are useful for various applications, ranging from multi-focal lensing, multiplexed sensing and synthesizing three-dimensional complex sound fields. Conventional approaches rely on a large number of active transducers and phase shifting circuits. In this paper we show that by using passive metamaterials as subwavelength pixels, holographic rendering can be achieved without cumbersome circuitry and with only a single transducer, thus significantly reducing system complexity. Such metamaterial-based holograms can serve as versatile platforms for various advanced acoustic wave manipulation and signal modulation, leading to new possibilities in acoustic sensing, energy deposition and medical diagnostic imaging. PMID:27739472

  15. Multiple matching scheme for broadband 0.72Pb(Mg(13)Nb(23))O(3)-0.28PbTiO(3) single crystal phased-array transducer.

    PubMed

    Lau, S T; Li, H; Wong, K S; Zhou, Q F; Zhou, D; Li, Y C; Luo, H S; Shung, K K; Dai, J Y

    2009-05-01

    Lead magnesium niobate-lead titanate single crystal 0.72Pb(Mg(13)Nb(23))O(3)-0.28PbTiO(3) (abbreviated as PMN-PT) was used to fabricate high performance ultrasonic phased-array transducer as it exhibited excellent piezoelectric properties. In this paper, we focus on the design and fabrication of a low-loss and wide-band transducer for medical imaging applications. A KLM model based simulation software PiezoCAD was used for acoustic design of the transducer including the front-face matching and backing. The calculated results show that the -6 dB transducer bandwidth can be improved significantly by using double lambda8 matching layers and hard backing. A 4.0 MHz PMN-PT transducer array (with 16 elements) was fabricated and tested in a pulse-echo arrangement. A -6 dB bandwidth of 110% and two-way insertion loss of -46.5 dB were achieved.

  16. Optimization of a phased-array transducer for multiple harmonic imaging in medical applications: frequency and topology.

    PubMed

    Matte, Guillaume M; Van Neer, Paul L M J; Danilouchkine, Mike G; Huijssen, Jacob; Verweij, Martin D; de Jong, Nico

    2011-03-01

    Second-harmonic imaging is currently one of the standards in commercial echographic systems for diagnosis, because of its high spatial resolution and low sensitivity to clutter and near-field artifacts. The use of nonlinear phenomena mirrors is a great set of solutions to improve echographic image resolution. To further enhance the resolution and image quality, the combination of the 3rd to 5th harmonics--dubbed the superharmonics--could be used. However, this requires a bandwidth exceeding that of conventional transducers. A promising solution features a phased-array design with interleaved low- and high-frequency elements for transmission and reception, respectively. Because the amplitude of the backscattered higher harmonics at the transducer surface is relatively low, it is highly desirable to increase the sensitivity in reception. Therefore, we investigated the optimization of the number of elements in the receiving aperture as well as their arrangement (topology). A variety of configurations was considered, including one transmit element for each receive element (1/2) up to one transmit for 7 receive elements (1/8). The topologies are assessed based on the ratio of the harmonic peak pressures in the main and grating lobes. Further, the higher harmonic level is maximized by optimization of the center frequency of the transmitted pulse. The achievable SNR for a specific application is a compromise between the frequency-dependent attenuation and nonlinearity at a required penetration depth. To calculate the SNR of the complete imaging chain, we use an approach analogous to the sonar equation used in underwater acoustics. The generated harmonic pressure fields caused by nonlinear wave propagation were modeled with the iterative nonlinear contrast source (INCS) method, the KZK, or the Burger's equation. The optimal topology for superharmonic imaging was an interleaved design with 1 transmit element per 6 receive elements. It improves the SNR by ~5 dB compared with

  17. Acoustic contrast control in an arc-shaped area using a linear loudspeaker array.

    PubMed

    Zhao, Sipei; Qiu, Xiaojun; Burnett, Ian

    2015-02-01

    This paper proposes a method of creating acoustic contrast control in an arc-shaped area using a linear loudspeaker array. The boundary of the arc-shaped area is treated as the envelope of the tangent lines that can be formed by manipulating the phase profile of the loudspeakers in the array. When compared with the existing acoustic contrast control method, the proposed method is able to generate sound field inside an arc-shaped area and achieve a trade-off between acoustic uniformity and acoustic contrast. The acoustic contrast created by the proposed method increases while the acoustic uniformity decreases with frequency.

  18. Magnetostrictive helical array transducer for inspecting spiral welded pipes using flexural guided waves

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaowei; Tang, Zhifeng; Lv, Fuzai

    2017-02-01

    A wavefront analysis indicates that a flexural wave propagates at a helix angle with respect to the pipe axis. The expression for calculation of the helix angle for each flexural mode is given, and the helix angle dispersion curves for flexural modes are calculated. According to the new understanding of flexural guided waves, a magnetostrictive helical array transducer (MHAT) is proposed for selectively exciting a single predominant flexural torsional guided wave in a pipe and inspecting spiral welded pipes using flexural waves. A MHAT contains a pre-magnetized magnetostrictive patch that is helically coupled with the outer surface of a pipe, and an array of novel compound comb coils that are wrapped around the helical magnetostrictive patch. The proposed wideband MHAT possesses the direction control ability. A verification experiment indicates that flexural torsional mode T(3,1) at center frequency f=64kHz is effectively actuated by a MHAT with 13-degree helix angle. A 20-degree MHAT is adopted to inspect a spiral welded pipe, an artificial notch with cross section loss CSL=2.7% is effectively detected by using flexural waves.

  19. Ultrasound Nondestructive Evaluation (NDE) Imaging with Transducer Arrays and Adaptive Processing

    PubMed Central

    Li, Minghui; Hayward, Gordon

    2012-01-01

    This paper addresses the challenging problem of ultrasonic non-destructive evaluation (NDE) imaging with adaptive transducer arrays. In NDE applications, most materials like concrete, stainless steel and carbon-reinforced composites used extensively in industries and civil engineering exhibit heterogeneous internal structure. When inspected using ultrasound, the signals from defects are significantly corrupted by the echoes form randomly distributed scatterers, even defects that are much larger than these random reflectors are difficult to detect with the conventional delay-and-sum operation. We propose to apply adaptive beamforming to the received data samples to reduce the interference and clutter noise. Beamforming is to manipulate the array beam pattern by appropriately weighting the per-element delayed data samples prior to summing them. The adaptive weights are computed from the statistical analysis of the data samples. This delay-weight-and-sum process can be explained as applying a lateral spatial filter to the signals across the probe aperture. Simulations show that the clutter noise is reduced by more than 30 dB and the lateral resolution is enhanced simultaneously when adaptive beamforming is applied. In experiments inspecting a steel block with side-drilled holes, good quantitative agreement with simulation results is demonstrated. PMID:22368457

  20. Ultrasound nondestructive evaluation (NDE) imaging with transducer arrays and adaptive processing.

    PubMed

    Li, Minghui; Hayward, Gordon

    2012-01-01

    This paper addresses the challenging problem of ultrasonic non-destructive evaluation (NDE) imaging with adaptive transducer arrays. In NDE applications, most materials like concrete, stainless steel and carbon-reinforced composites used extensively in industries and civil engineering exhibit heterogeneous internal structure. When inspected using ultrasound, the signals from defects are significantly corrupted by the echoes form randomly distributed scatterers, even defects that are much larger than these random reflectors are difficult to detect with the conventional delay-and-sum operation. We propose to apply adaptive beamforming to the received data samples to reduce the interference and clutter noise. Beamforming is to manipulate the array beam pattern by appropriately weighting the per-element delayed data samples prior to summing them. The adaptive weights are computed from the statistical analysis of the data samples. This delay-weight-and-sum process can be explained as applying a lateral spatial filter to the signals across the probe aperture. Simulations show that the clutter noise is reduced by more than 30 dB and the lateral resolution is enhanced simultaneously when adaptive beamforming is applied. In experiments inspecting a steel block with side-drilled holes, good quantitative agreement with simulation results is demonstrated.

  1. Development of a C-Scan phased array ultrasonic imaging system using a 64-element 35MHz transducer

    NASA Astrophysics Data System (ADS)

    Zheng, Fan; Hu, Changhong; Zhang, Lequan; Snook, Kevin; Liang, Yu; Hackenberger, Wesley S.; Liu, Ruibin; Geng, Xuecang; Jiang, Xiaoning; Shung, K. Kirk

    2011-04-01

    Phased array imaging systems provide the features of electronic beam steering and dynamic depth focusing that cannot be obtained with conventional linear array systems. This paper presents a system design of a digital ultrasonic imaging system, which is capable of handling a 64-element 35MHz center frequency phased array transducer. The system consists of 5 parts: an analog front-end, a data digitizer, a DSP based beamformer, a computer controlled motorized linear stage, and a computer for post image processing and visualization. Using a motorized linear stage, C-scan images, parallel to the surface of scanned objects may be generated. This digital ultrasonic imaging system in combination a 35 MHz phased array appears to be a promising tool for NDT applications with high spatial resolution. It may also serve as an excellent research platform for high frequency phased array design and testing as well as ultrasonic array signal algorithm developing using system's raw RF data acquisition function.

  2. New piezocrystal material in the development of a 96-element array transducer for MR-guided focused ultrasound surgery

    NASA Astrophysics Data System (ADS)

    Qiu, Zhen; Habeshaw, Roderick; Fortine, Julien; Huang, Zhihong; Démoré, Christine; Cochran, Sandy

    2012-11-01

    Piezocrystal materials have been recognized as having better performance than piezoelectric ceramics, and have thus been widely adopted in ultrasound imaging arrays. Although their behaviour is susceptible to temperature and pressure, their large electromechanical coupling coefficients and other excellent piezoelectric properties also offer the potential for further improvements in the efficiency of therapeutic ultrasound transducers. Furthermore, new piezocrystals with modified compositions have been developed recently to increase their tolerance to temperature and pressure. In this work, a prototype of faceted bowl transducer was designed and manufactured as a proof of concept to explore practical issues associated with adoption of piezocrystals for magnetic resonance imaging guided focused ultrasound surgery.

  3. Acoustical Direction Finding with Time-Modulated Arrays.

    PubMed

    Clark, Ben; Flint, James A

    2016-12-11

    Time-Modulated Linear Arrays (TMLAs) offer useful efficiency savings over conventional phased arrays when applied in parameter estimation applications. The present paper considers the application of TMLAs to acoustic systems and proposes an algorithm for efficiently deriving the arrival angle of a signal. The proposed technique is applied in the frequency domain, where the signal and harmonic content is captured. Using a weighted average method on harmonic amplitudes and their respective main beam angles, it is possible to determine an estimate for the signal's direction of arrival. The method is demonstrated and evaluated using results from both numerical and practical implementations and performance data is provided. The use of Micro-Electromechanical Systems (MEMS) sensors allows time-modulation techniques to be applied at ultrasonic frequencies. Theoretical predictions for an array of five isotropic elements with half-wavelength spacing and 1000 data samples suggest an accuracy of ± 1 ∘ within an angular range of approximately ± 50 ∘ . In experiments of a 40 kHz five-element microphone array, a Direction of Arrival (DoA) estimation within ± 2 . 5 ∘ of the target signal is readily achieved inside a ± 45 ∘ range using a single switched input stage and a simple hardware setup.

  4. Acoustical Direction Finding with Time-Modulated Arrays

    PubMed Central

    Clark, Ben; Flint, James A.

    2016-01-01

    Time-Modulated Linear Arrays (TMLAs) offer useful efficiency savings over conventional phased arrays when applied in parameter estimation applications. The present paper considers the application of TMLAs to acoustic systems and proposes an algorithm for efficiently deriving the arrival angle of a signal. The proposed technique is applied in the frequency domain, where the signal and harmonic content is captured. Using a weighted average method on harmonic amplitudes and their respective main beam angles, it is possible to determine an estimate for the signal’s direction of arrival. The method is demonstrated and evaluated using results from both numerical and practical implementations and performance data is provided. The use of Micro-Electromechanical Systems (MEMS) sensors allows time-modulation techniques to be applied at ultrasonic frequencies. Theoretical predictions for an array of five isotropic elements with half-wavelength spacing and 1000 data samples suggest an accuracy of ±1∘ within an angular range of approximately ±50∘. In experiments of a 40 kHz five-element microphone array, a Direction of Arrival (DoA) estimation within ±2.5∘ of the target signal is readily achieved inside a ±45∘ range using a single switched input stage and a simple hardware setup. PMID:27973432

  5. The Prediction of Transducer Element Performance from In-Air Measurements.

    DTIC Science & Technology

    1982-01-19

    radiating face velocity and the input current to the transducer at resonance. The equivalent circuit values of a group of Tonpilz -type transducers were...of a group of Tonpilz -type transducers were measured, and the self and mutual interaction acoustic loadings for a specific array geometry were...34 Tonpilz "-Type Transducer ...... ............ 6 2. Generalized Equivalent Circuit Model . ...... 11 3. The Ideal Transformer ..... .............. 14

  6. System and Method for Calculating the Directivity Index of a Passive Acoustic Array

    DTIC Science & Technology

    2007-07-27

    DIRECTIVITY INDEX OF A PASSIVE ACOUSTIC ARRAY STATEMENT OF GOVERNMENT INTEREST [0001] The invention described herein may be manufactured and used by or...directed to a system and method for calculating the directivity index of a passive acoustic array with directional sensors in an isotropic noise field...and to provide an efficient way to create, modify, and model any array geometry for the purposes of determining the directivity index of the array as

  7. Observer-based beamforming algorithm for acoustic array signal processing.

    PubMed

    Bai, Long; Huang, Xun

    2011-12-01

    In the field of noise identification with microphone arrays, conventional delay-and-sum (DAS) beamforming is the most popular signal processing technique. However, acoustic imaging results that are generated by DAS beamforming are easily influenced by background noise, particularly for in situ wind tunnel tests. Even when arithmetic averaging is used to statistically remove the interference from the background noise, the results are far from perfect because the interference from the coherent background noise is still present. In addition, DAS beamforming based on arithmetic averaging fails to deliver real-time computational capability. An observer-based approach is introduced in this paper. This so-called observer-based beamforming method has a recursive form similar to the state observer in classical control theory, thus holds a real-time computational capability. In addition, coherent background noise can be gradually rejected in iterations. Theoretical derivations of the observer-based beamforming algorithm are carefully developed in this paper. Two numerical simulations demonstrate the good coherent background noise rejection and real-time computational capability of the observer-based beamforming, which therefore can be regarded as an attractive algorithm for acoustic array signal processing.

  8. Monitoring of high-intensity focused ultrasound treatment by shear wave elastography induced by two-dimensional-array therapeutic transducer

    NASA Astrophysics Data System (ADS)

    Iwasaki, Ryosuke; Takagi, Ryo; Nagaoka, Ryo; Jimbo, Hayato; Yoshizawa, Shin; Saijo, Yoshifumi; Umemura, Shin-ichiro

    2016-07-01

    Shear wave elastography (SWE) is expected to be a noninvasive monitoring method of high-intensity focused ultrasound (HIFU) treatment. However, conventional SWE techniques encounter difficulty in inducing shear waves with adequate displacements in deep tissue. To observe tissue coagulation at the HIFU focal depth via SWE, in this study, we propose using a two-dimensional-array therapeutic transducer for not only HIFU exposure but also creating shear sources. The results show that the reconstructed shear wave velocity maps detected the coagulated regions as the area of increased propagation velocity even in deep tissue. This suggests that “HIFU-push” shear elastography is a promising solution for the purpose of coagulation monitoring in deep tissue, because push beams irradiated by the HIFU transducer can naturally reach as deep as the tissue to be coagulated by the same transducer.

  9. Model of a Piezoelectric Transducer

    NASA Technical Reports Server (NTRS)

    Goodenow, Debra

    2004-01-01

    It's difficult to control liquid and gas in propellant tanks in zero gravity. A possible a design would utilize acoustic liquid manipulation (ALM) technology which uses ultrasonic beams conducted through a liquid and solid media, to push gas bubbles in the liquid to desirable locations. We can propel and control the bubble with acoustic radiation pressure by aiming the acoustic waves on the bubble s surface. This allows us to design a so called smart tank in which the ALM devices transfer the gas to the outer wall of the tank and isolating the liquid in the center. Because the heat transfer rate of a gas is lower of that of the liquid it would substantially decrease boil off and provide of for a longer storage life. The ALM beam is composed of little wavelets which are individual waves that constructively interfere with each other to produce a single, combined acoustic wave front. This is accomplished by using a set of synchronized ultrasound transducers arranged in an array. A slight phase offset of these elements allows us to focus and steer the beam. The device that we are using to produce the acoustic beam is called the piezoelectric transducer. This device converts electrical energy to mechanical energy, which appears in the form of acoustic energy. Therefore the behavior of the device is dependent on both the mechanical characteristics, such as its density, cross-sectional area, and its electrical characteristics, such as, electric flux permittivity and coupling factor. These devices can also be set up in a number of modes which are determined by the way the piezoelectric device is arranged, and the shape of the transducer. For this application we are using the longitudinal or thickness mode for our operation. The transducer also vibrates in the lateral mode, and one of the goals of my project is to decrease the amount of energy lost to the lateral mode. To model the behavior of the transducers I will be using Pspice, electric circuit modeling tool, to

  10. A synchronous serial bus for multidimensional array acoustic logging tool

    NASA Astrophysics Data System (ADS)

    Men, Baiyong; Ju, Xiaodong; Lu, Junqiang; Qiao, Wenxiao

    2016-12-01

    In high-temperature and spatial borehole applications, a distributed structure is employed in a multidimensional array acoustic logging tool (MDALT) based on a phased array technique for electronic systems. However, new challenges, such as synchronous multichannel data acquisition, multinode real-time control and bulk data transmission in a limited interval, have emerged. To address these challenges, we developed a synchronous serial bus (SSB) in this study. SSB works in a half-duplex mode via a master-slave architecture. It also consists of a single master, several slaves, a differential clock line and a differential data line. The clock line is simplex, whereas the data line is half-duplex and synchronous to the clock line. A reliable communication between the master and the slaves with real-time adjustment of synchronisation is achieved by rationally designing the frame format and protocol of communication and by introducing a scramble code and a Hamming error-correcting code. The control logic of the master and the slaves is realized in field programmable gate array (FPGA) or complex programmable logic device (CPLD). The clock speed of SSB is 10 MHz, the effective data rate of the bulk data transmission is over 99%, and the synchronous errors amongst the slaves are less than 10 ns. Room-temperature test, high-temperature test (175 °C) and field test demonstrate that the proposed SSB is qualified for MDALT.

  11. Detection of impulsive sources from an aerostat-based acoustic array data collection system

    NASA Astrophysics Data System (ADS)

    Prather, Wayne E.; Clark, Robert C.; Strickland, Joshua; Frazier, Wm. Garth; Singleton, Jere

    2009-05-01

    An aerostat based acoustic array data collection system was deployed at the NATO TG-53 "Acoustic Detection of Weapon Firing" Joint Field Experiment conducted in Bourges, France during the final two weeks of June 2008. A variety of impulsive sources including mortar, artillery, gunfire, RPG, and explosive devices were fired during the test. Results from the aerostat acoustic array will be presented against the entire range of sources.

  12. Array Receivers and Sound Sources for Three Dimensional Shallow Water Acoustic Field Experiments

    DTIC Science & Technology

    2016-12-06

    Water Acoustic Field Experiments NOOO 14-15-1-2893 Sc. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Sd. PROJECT NUMBER Ying Tsong-Lin 132893SP Se. TASK...testing. 1S. SUBJECT TERMS acoustics, shallow water , Arctic Ocean , 3-D acoustic propagation, shelfbreak 16. SECURITY CLASSIFICATION OF: R b...Approved f or public release; distribution is unlimited. Array Receivers and Sound Sources for Three-Dimensional Shallow- Water Acoustic Field

  13. Determination of acoustic impedances of multi matching layers for narrowband ultrasonic airborne transducers at frequencies <2.5 MHz - Application of a genetic algorithm.

    PubMed

    Saffar, Saber; Abdullah, Amir

    2012-01-01

    The effective ultrasonic energy radiation into the air of piezoelectric transducers requires using multilayer matching systems with accurately selected acoustic impedances and the thickness of particular layers. One major problem of ultrasonic transducers, radiating acoustic energy into air, is to find the proper acoustic impedances of one or more matching layers. This work aims at developing an original solution to the acoustic impedance mismatch between transducer and air. If the acoustic impedance defences between transducer and air be more, then finding best matching layer(s) is harder. Therefore we consider PZT (lead zirconate titanate piezo electric) transducer and air that has huge acoustic impedance deference. The vibration source energy (PZT), which is used to generate the incident wave, consumes a part of the mechanical energy and converts it to an electrical one in theoretical calculation. After calculating matching layers, we consider the energy source as layer to design a transducer. However, this part of the mechanical energy will be neglected during the mathematical work. This approximation is correct only if the transducer is open-circuit. Since the possibilities of choosing material with required acoustic impedance are limited (the counted values cannot always be realized and applied in practice) it is necessary to correct the differences between theoretical values and the possibilities of practical application of given acoustic impedances. Such a correction can be done by manipulating other parameters of matching layers (e.g. by changing their thickness). The efficiency of the energy transmission from the piezoceramic transducer through different layers with different thickness and different attenuation enabling a compensation of non-ideal real values by changing their thickness was computer analyzed (base on genetic algorithm). Firstly, three theoretical solutions were investigated. Namely, Chebyshev, Desilets and Souquet theories. However, the

  14. Linear-array-based photoacoustic imaging of human microcirculation with a range of high frequency transducer probes

    NASA Astrophysics Data System (ADS)

    Zafar, Haroon; Breathnach, Aedán; Subhash, Hrebesh M.; Leahy, Martin J.

    2015-05-01

    Photoacoustic imaging (PAI) with a linear-array-based probe can provide a convenient means of imaging the human microcirculation within its native structural context and adds functional information. PAI using a multielement linear transducer array combined with multichannel collecting system was used for in vivo volumetric imaging of the blood microcirculation, the total concentration of hemoglobin (HbT), and the hemoglobin oxygen saturation (sO2) within human tissue. Three-dimensional (3-D) PA and ultrasound (US) volumetric scans were acquired from the forearm skin by linearly translating the transducer with a stepper motor over a region of interest, while capturing two-dimensional images using 15, 21, and 40 MHz frequency transducer probes. For the microvasculature imaging, PA images were acquired at 800- and 1064-nm wavelengths. For the HbT and sO2 estimates, PA images were collected at 750- and 850-nm wavelengths. 3-D microcirculation, HbT, and sO2 maps of the forearm skin were obtained from normal subjects. The linear-array-based PAI has been found promising in terms of resolution, imaging depth, and imaging speed for in vivo microcirculation imaging within human skin. We believe that a reflection type probe, similar to existing clinical US probes, is most likely to succeed in real clinical applications. Its advantages include ease of use, speed, and familiarity for radiographers and clinicians.

  15. Acoustic Detection and Tracking of a Class I UAS with a Small Tetrahedral Microphone Array

    DTIC Science & Technology

    2014-09-01

    Acoustic Detection and Tracking of a Class I UAS with a Small Tetrahedral Microphone Array by Minas Benyamin and Geoffrey H Goldman ARL...20783-1138 ARL-TR-7086 September 2014 Acoustic Detection and Tracking of a Class I UAS with a Small Tetrahedral Microphone Array Minas...with a Small Tetrahedral Microphone Array 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Minas Benyamin and

  16. Analysis of acoustic impedance matching in dual-band ultrasound transducers.

    PubMed

    Myhre, Ola Finneng; Johansen, Tonni Franke; Johan Angelsen, Bjørn Atle

    2017-02-01

    Dual-frequency band probes are needed for ultrasound (US) reverberation suppression and are useful for image-guided US therapy. A challenge is to design transducer stacks that achieve high bandwidth and efficiency at both operating frequencies when the frequencies are widely separated with a frequency ratio ∼6:1-20:1. This paper studies the loading and backing conditions of transducers in such stacks. Three stack configurations are presented and analyzed using one-dimensional models. It is shown that a configuration with three layers of material separating the transducers is favorable, as it reduces high frequency ringing by ∼20 dB compared to other designs, and matches the low frequency (LF) transducer to the load at a lower frequency. In some cases, the LF load matching is governed by a simple mass-spring interaction in spite of having a complicated matching structure. The proposed design should yield improved performance of reverberation suppression algorithms. Its suitability for reduction of probe heating, also in single-band probes, should be investigated.

  17. Acoustic source localization in mixed field using spherical microphone arrays

    NASA Astrophysics Data System (ADS)

    Huang, Qinghua; Wang, Tong

    2014-12-01

    Spherical microphone arrays have been used for source localization in three-dimensional space recently. In this paper, a two-stage algorithm is developed to localize mixed far-field and near-field acoustic sources in free-field environment. In the first stage, an array signal model is constructed in the spherical harmonics domain. The recurrent relation of spherical harmonics is independent of far-field and near-field mode strengths. Therefore, it is used to develop spherical estimating signal parameter via rotational invariance technique (ESPRIT)-like approach to estimate directions of arrival (DOAs) for both far-field and near-field sources. In the second stage, based on the estimated DOAs, simple one-dimensional MUSIC spectrum is exploited to distinguish far-field and near-field sources and estimate the ranges of near-field sources. The proposed algorithm can avoid multidimensional search and parameter pairing. Simulation results demonstrate the good performance for localizing far-field sources, or near-field ones, or mixed field sources.

  18. Electrochemically synthesized magnetic nanowire heterostructures and arrays for acoustic sensing

    NASA Astrophysics Data System (ADS)

    McGary, Patrick David

    Biological cilia in humans and animals serve many functions, including sensing of acoustic and sensory signals and actuation for mobility in small species or for motion of bodily fluids in larger species. This work sought to fabricate nanowire arrays as artificial cilia. Arrays of tiny sensors at nanoscale dimensions have theoretical advantages to macroscale sensors including higher spatial resolution, miniscule size, and higher ultimate strength for each sensing element. Theoretical investigations showed that a magnetic/non-magnetic heterostructure would enable nanowires with improved sensitivity over single element nanowires. Here, nanowire structures included a soft magnetostrictive sensing segment (such as Ni or Fe1-xGax [also called galfenol]), a permanent magnetic segment to provide an integrated magnetic bias, and a long and hard non-magnetic end segment to increase the viscous drag force of the fluid on the nanowire. Galfenol is a new large magnetostrictive material that has moderate magnetostriction but excellent mechanical properties. This work included the first successful electroplating process for this unique alloy. This enabled the fabrication of these alloys into nanoscopic form. These nanowire structures were grown into nanoporous anodic aluminum oxide (AAO) templates using a robust two-step anodization process. When grown at the proper conditions (temperature, electrolyte, and voltage), the templates contained highly-ordered nanopores with small diameters (10-100 nm), short center-to-center distances (25-250 nm), and long lengths (0.1-100 mum). Metal contacts were deposited onto one side of the templates, and magnetostrictive, magnetic, and non-magnetic materials were sequentially electrodeposited into the nanopores. Controlling the non-magnetic segment lengths enabled control of the nanowire resonant frequency. By using graded nanowire lengths across the array, frequency filtering as a pre-filter for subsequent signal processing could be performed

  19. Simulations and measurements of 3-D ultrasonic fields radiated by phased-array transducers using the westervelt equation.

    PubMed

    Doinikov, Alexander A; Novell, Anthony; Calmon, Pierre; Bouakaz, Ayache

    2014-09-01

    The purpose of this work is to validate, by comparing numerical and experimental results, the ability of the Westervelt equation to predict the behavior of ultrasound beams generated by phased-array transducers. To this end, the full Westervelt equation is solved numerically and the results obtained are compared with experimental measurements. The numerical implementation of the Westervelt equation is performed using the explicit finite-difference time-domain method on a three-dimensional Cartesian grid. The validation of the developed numerical code is first carried out by using experimental data obtained for two different focused circular transducers in the regimes of small-amplitude and finite-amplitude excitations. Then, the comparison of simulated and measured ultrasonic fields is extended to the case of a modified 32-element array transducer. It is shown that the developed code is capable of correctly predicting the behavior of the main lobe and the grating lobes in the cases of zero and nonzero steering angles for both the fundamental and the second-harmonic components.

  20. A Flexible Ultrasound Transducer Array with Micro-Machined Bulk PZT

    PubMed Central

    Wang, Zhe; Xue, Qing-Tang; Chen, Yuan-Quan; Shu, Yi; Tian, He; Yang, Yi; Xie, Dan; Luo, Jian-Wen; Ren, Tian-Ling

    2015-01-01

    This paper proposes a novel flexible piezoelectric micro-machined ultrasound transducer, which is based on PZT and a polyimide substrate. The transducer is made on the polyimide substrate and packaged with medical polydimethylsiloxane. Instead of etching the PZT ceramic, this paper proposes a method of putting diced PZT blocks into holes on the polyimide which are pre-etched. The device works in d31 mode and the electromechanical coupling factor is 22.25%. Its flexibility, good conformal contacting with skin surfaces and proper resonant frequency make the device suitable for heart imaging. The flexible packaging ultrasound transducer also has a good waterproof performance after hundreds of ultrasonic electric tests in water. It is a promising ultrasound transducer and will be an effective supplementary ultrasound imaging method in the practical applications. PMID:25625905

  1. A fast full frequency range measurement of nonlinear distortions in the vibration of acoustic transducers and acoustically driven membranes

    NASA Astrophysics Data System (ADS)

    Aerts, J. R. M.; Dirckx, J. J. J.

    2007-11-01

    Recently, a new method was proposed to measure nonlinear distortions in weak nonlinear systems using specially designed broadband excitation signals (odd random phase multisines). During one single experiment, the output response level, the noise level and the level of the nonlinear distortions are simultaneously measured. We implement this method in an opto-acoustic set-up which allows us to measure vibrations with high accuracy. To demonstrate the method, we present results obtained on the membrane of an earphone speaker and a latex membrane. On the earphone good agreement is found between measurements of the produced sound field and the actual membrane vibration using heterodyne interferometry. The results show that heterodyne vibrometry can be used to detect nonlinear distortions which are up to 80 dB below the output level in an acoustically driven system.

  2. Acoustic power measurement of high-intensity focused ultrasound transducer using a pressure sensor.

    PubMed

    Zhou, Yufeng

    2015-03-01

    The acoustic power of high-intensity focused ultrasound (HIFU) is an important parameter that should be measured prior to each treatment to guarantee effective and safe outcomes. A new calibration technique was developed that involves estimating the pressure distribution, calculating the acoustic power using an underwater pressure blast sensor, and compensating the contribution of harmonics to the acoustic power. The output of a clinical extracorporeal HIFU system (center frequency of ~1 MHz, p+ = 2.5-57.2 MPa, p(-) = -1.8 to -13.9 MPa, I(SPPA) = 513-22,940 W/cm(2), -6 dB size of 1.6 × 10 mm: lateral × axial) was measured using this approach and then compared with that obtained using a radiation force balance. Similarities were found between each method at acoustic power ranging from 18.2 W to 912 W with an electrical-to-acoustic conversion efficiency of ~42%. The proposed method has advantages of low weight, smaller size, high sensitivity, quick response, high signal-to-noise ratio (especially at low power output), robust performance, and easy operation of HIFU exposimetry measurement.

  3. Real-time observation of coherent acoustic phonons generated by an acoustically mismatched optoacoustic transducer using x-ray diffraction

    SciTech Connect

    Persson, A. I. H.; Andreasson, B. P.; Enquist, H.; Jurgilaitis, A.; Larsson, J.

    2015-11-14

    The spectrum of laser-generated acoustic phonons in indium antimonide coated with a thin nickel film has been studied using time-resolved x-ray diffraction. Strain pulses that can be considered to be built up from coherent phonons were generated in the nickel film by absorption of short laser pulses. Acoustic reflections at the Ni–InSb interface leads to interference that strongly modifies the resulting phonon spectrum. The study was performed with high momentum transfer resolution together with high time resolution. This was achieved by using a third-generation synchrotron radiation source that provided a high-brightness beam and an ultrafast x-ray streak camera to obtain a temporal resolution of 10 ps. We also carried out simulations, using commercial finite element software packages and on-line dynamic diffraction tools. Using these tools, it is possible to calculate the time-resolved x-ray reflectivity from these complicated strain shapes. The acoustic pulses have a peak strain amplitude close to 1%, and we investigated the possibility to use this device as an x-ray switch. At a bright source optimized for hard x-ray generation, the low reflectivity may be an acceptable trade-off to obtain a pulse duration that is more than an order of magnitude shorter.

  4. Integrated transducer systems

    NASA Astrophysics Data System (ADS)

    Syrzycki, Marek; Parameswaran, M.; Chapman, Glenn H.

    1995-06-01

    In the paper we discuss possible solutions to problems pertaining the implementation of integrated transducer systems, based on examples of WSI image transducers, magnetic field sensors and tactile sensors arrays, as well as arrays of chemical sensors. We also present the issues common to large area transducer arrays, such as building-in redundancy into WSI transducer arrays, and frequency domain circuits for the future communication pathway in integrated transducer systems. Advantages of standard CMOS technology, enhanced with various post-fabrication processes such as silicon micromachining and laser linking, are also stressed.

  5. Bolt axial stress measurement based on a mode-converted ultrasound method using an electromagnetic acoustic transducer.

    PubMed

    Ding, Xu; Wu, Xinjun; Wang, Yugang

    2014-03-01

    A method is proposed to measure the stress on a tightened bolt using an electromagnetic acoustic transducer (EMAT). A shear wave is generated by the EMAT, and a longitudinal wave is obtained from the reflection of the shear wave due to the mode conversion. The ray paths of the longitudinal and the shear wave are analyzed, and the relationship between the bolt axial stress and the ratio of time of flight between two mode waves is then formulated. Based on the above outcomes, an EMAT is developed to measure the bolt axial stress without loosening the bolt, which is required in the conventional EMAT test method. The experimental results from the measurement of the bolt tension show that the shear and the mode-converted longitudinal waves can be received successfully, and the ratio of the times of flight of the shear and the mode-converted longitudinal waves is linearly proportional to the bolt axial tension. The non-contact characteristic of EMAT eliminates the effect of the couplant and also makes the measurement more convenient than the measurement performed using the piezoelectric transducer. This method provides a promising way to measure the stress on tightened bolts.

  6. Experiments with Ultrasonic Transducers.

    ERIC Educational Resources Information Center

    Greenslade, Thomas R., Jr.

    1994-01-01

    Discusses the use of 40 kHz ultrasonic transducers to study wave phenomena. Determines that the resulting wavelength of 9 mm allows acoustic experiments to be performed on a tabletop. Includes transducer characteristics and activities on speed of sound, reflection, double- and single-slit diffraction, standing waves, acoustical zone plate, and…

  7. Two-dimensional capacitive micromachined ultrasonic transducer (CMUT) arrays for a miniature integrated volumetric ultrasonic imaging system

    NASA Astrophysics Data System (ADS)

    Zhuang, Xuefeng; Wygant, Ira O.; Yeh, David T.; Nikoozadeh, Amin; Oralkan, Omer; Ergun, Arif S.; Cheng, Ching-Hsiang; Huang, Yongli; Yaralioglu, Goksen G.; Khuri-Yakub, Butrus T.

    2005-04-01

    We have designed, fabricated, and characterized two-dimensional 16x16-element capacitive micromachined ultrasonic transducer (CMUT) arrays. The CMUT array elements have a 250-μm pitch, and when tested in immersion, have a 5 MHz center frequency and 99% fractional bandwidth. The fabrication process is based on standard silicon micromachining techniques and therefore has the advantages of high yield, low cost, and ease of integration. The transducers have a Si3N4 membrane and are fabricated on a 400-μm thick silicon substrate. A low parasitic capacitance through-wafer via connects each CMUT element to a flip-chip bond pad on the back side of the wafer. Each through wafer via is 20 μm in diameter and 400 μm deep. The interconnects form metal-insulator-semiconductor (MIS) junctions with the surrounding high-resistivity silicon substrate to establish isolation and to reduce parasitic capacitance. Each through-wafer via has less than 0.06 pF of parasitic capacitance. We have investigated a Au-In flip-chip bonding process to connect the 2D CMUT array to a custom integrated circuit (IC) with transmit and receive electronics. To develop this process, we fabricated fanout structures on silicon, and flip-chip bonded these test dies to a flat surface coated with gold. The average series resistance per bump is about 3 Ohms, and 100% yield is obtained for a total of 30 bumps.

  8. Acoustic Eaton lens array and its fluid application

    NASA Astrophysics Data System (ADS)

    Kim, Sang-Hoon; Sy, Pham-Van; Das, Mukunda P.

    2017-03-01

    A principle of an acoustic Eaton lens array and its application as a removable tsunami wall is proposed theoretically. The lenses are made of expandable rubber pillars or balloons and create a stop-band by rotating the incoming tsunami wave and reduce the pressure by canceling each other. The diameter of each lens is larger than the wavelength of the tsunami near the coast, that is, order of a kilometer. The impedance matching on the border of the lenses results in a little reflection. Before a tsunami, the balloons are buried underground in shallow water near the coast in folded or rounded form. Upon sounding of the tsunami alarm, water and air are pumped into the pillars, which expand and erect the wall above the sea level within a few hours. After the tsunami, the water and air are released from the pillars, which are then buried underground for reuse. Electricity is used to power the entire process. A numerical simulation with a linear tsunami model was carried out.

  9. Temperature and trapping characterization of an acoustic trap with miniaturized integrated transducers--towards in-trap temperature regulation.

    PubMed

    Johansson, Linda; Evander, Mikael; Lilliehorn, Tobias; Almqvist, Monica; Nilsson, Johan; Laurell, Thomas; Johansson, Stefan

    2013-07-01

    An acoustic trap with miniaturized integrated transducers (MITs) for applications in non-contact trapping of cells or particles in a microfluidic channel was characterized by measuring the temperature increase and trapping strength. The fluid temperature was measured by the fluorescent response of Rhodamine B in the microchannel. The trapping strength was measured by the area of a trapped particle cluster counter-balanced by the hydrodynamic force. One of the main objectives was to obtain quantitative values of the temperature in the fluidic channel to ensure safe handling of cells and proteins. Another objective was to evaluate the trapping-to-temperature efficiency for the trap as a function of drive frequency. Thirdly, trapping-to-temperature efficiency data enables identifying frequencies and voltage values to use for in-trap temperature regulation. It is envisioned that operation with only in-trap temperature regulation enables the realization of small, simple and fast temperature-controlled trap systems. The significance of potential gradients at the trap edges due to the finite size of the miniaturized transducers for the operation was emphasized and expressed analytically. The influence of the acoustic near field was evaluated in FEM-simulation and compared with a more ideal 1D standing wave. The working principle of the trap was examined by comparing measurements of impedance, temperature increase and trapping strength with impedance transfer calculations of fluid-reflector resonances and frequencies of high reflectance at the fluid-reflector boundary. The temperature increase was found to be moderate, 7°C for a high trapping strength, at a fluid flow of 0.5mms(-1) for the optimal driving frequency. A fast temperature response with a fall time of 8s and a rise time of 11s was observed. The results emphasize the importance of selecting the proper drive frequency for long term handling of cells, as opposed to the more pragmatic way of selecting the

  10. Complex Source and Radiation Behaviors of Small Elements of Linear and Matrix Flexible Ultrasonic Phased-Array Transducers

    NASA Astrophysics Data System (ADS)

    Amory, V.; Lhémery, A.

    2008-02-01

    Inspection of irregular components is problematical: maladjustment of transducer shoes to surfaces causes aberrations. Flexible phased-arrays (FPAs) designed at CEA LIST to maximize contact are driven by adapted delay laws to compensate for irregularities. Optimizing FPA requires simulation tools. The behavior of one element computed by FEM is observed at the surface and its radiation experimentally validated. Efforts for one element prevent from simulating a FPA by FEM. A model is proposed where each element behaves as nonuniform source of stresses. Exact and asymptotic formulas for Lamb problem are used as convolution kernels for longitudinal, transverse and head waves; the latter is of primary importance for angle-T-beam inspections.

  11. A 256×2562-D array transducer with Row-column addressing for 3-D Rectilinear Imaging

    PubMed Central

    Seo, Chi Hyung; Yen, Jesse T.

    2010-01-01

    We present simulation and experimental results from a 5 MHz, 256 × 256 2-D (65,536 elements, 38.4 mm × 38.4 mm) 2-D array transducer with row-column addressing. The main benefits of this design are a reduced number of interconnects, a modified transmit/receive switching scheme with a simple diode circuit, and an ability to perform volumetric imaging of targets near the transducer with transmit beamforming in azimuth and receive beamforming in elevation. The final dimensions of a transducer were 38.4 mm × 38.4 mm × 300 μm. After prototyping a row-column transducer, the series resonance impedance was 104 Ω at 5.4 MHz. The measured -6 dB fractional bandwidth was 53% with a center frequency of 5.3 MHz. The SNR at the transmit focus was measured to be 30 dB. At 5 MHz, the average nearest neighbor crosstalk was -25 dB. In this paper, we present 3-D images of 5 pairs of nylon wires embedded in a clear gelatin phantom and of an 8 mm diameter cylindrical anechoic cyst phantom acquired from a 256 × 256 2-D array transducer made from a 1–3 composite. We display the azimuth and elevation B-scans as well as the C-scan. The cross-section of the wires is visible in the azimuth B-scan while the long axes can be seen in the elevation B-scan and C-scans. The pair of wires with 1 mm axial separation is discernible in the elevational B-scan while all the pairs of wires were distinguishable in the short-axis B-scan. Using a single wire from the wire target phantom, the measured lateral beamwidth was 0.68 mm and 0.70 mm at 30 mm depth in transmit beamforming and receive beamforming respectively compared to the simulated beamwidth of 0.55 mm. The cross-section of the cyst is visible in the azimuth B-scan while the long axes can be seen in the elevation B-scan and C-scans as a rectangle. PMID:19406713

  12. First IDA Submittal for Transducer Element Design for Loosely Packed Planar Array Common Problem 1.1

    DTIC Science & Technology

    1966-05-11

    FIRST IDA SUBMITTAL FOR TRANSDUCER ELEMENT DESIGN FOR LOOSELY PACKED PLANAR ARRAY CID COMMON PROBLEM 1. 1 Submitted to Conformal/Planar Array Project...R4JEN2’ TRACOR, INC. MID BAND 6..I ~JUUliL-UnLU i C.P. 1 5 INCH CIRCULRR HERD MIO BRINO LPz.3777 QP=E +iD L1oooo -i00 F -WFC 4q(TI’ ERT R-EC c-AE O ALPPE...8217 LcO [a x I. Cr l Z2) D zS x) q." L)I I Iu T~ xj Co4 C3= 1-L Z (nw x V O vV 5% C3 CD .* * -3x U l 1C .) uw wU -A CID .4 i I--I- U- 49 (1’)W uri J m LAJ 0

  13. Extension of the crosstalk cancellation method in ultrasonic transducer arrays from the harmonic regime to the transient one.

    PubMed

    Bybi, A; Grondel, S; Assaad, J; Hladky-Hennion, A-C

    2014-02-01

    This paper describes a procedure to extend the crosstalk correction method presented in a previous paper [A. Bybi, S. Grondel, J. Assaad, A.-C. Hladky-Hennion, M. Rguiti, Reducing crosstalk in array structures by controlling the excitation voltage of individual elements: a feasibility study, Ultrasonics, 53 (6) (2013) 1135-1140] from the harmonic regime to the transient one. For this purpose a part of an ultrasonic transducer array radiating in water is modeled around the frequency 0.5 MHz using the finite element method. The study is carried out at low frequency in order to respect the same operating conditions than the previous paper. This choice facilitated the fabrication of the transducer arrays and the comparison of the numerical results with the experimental ones. The modeled array is composed of seventeen elements with the central element excited, while the others are grounded. The matching layers and the backing are not taken into account which limits the crosstalk only to the piezoelectric elements and fluid. This consideration reduces the structure density mesh and results in faster computation time (about 25 min for each configuration using a computer with a processor Intel Core i5-3210M, frequency 2.5 GHz and having 4 Go memory (RAM)). The novelty of this research work is to prove the efficiency of the crosstalk correction method in large frequency band as it is the case in medical imaging. The numerical results show the validity of the approach and demonstrate that crosstalk can be reduced by at least 13 dB in terms of displacement. Consequently, the directivity pattern of the individual element can be improved.

  14. MRI-guided Therapeutic Ultrasound : In vitro Validation of a New MR Compatible, Phased Array, Contact Endorectal Ultrasound Transducer with Active Feedback Control of Temperature Evolution

    NASA Astrophysics Data System (ADS)

    Salomir, Rares; Rata, Mihaela; Lafon, Cyril; Melodelima, David; Chapelon, Jean-Yves; Mathias, Adrien; Cotton, François; Bonmartin, Alain; Cathignol, Dominique

    2006-05-01

    Contact application of high intensity ultrasound was demonstrated to be suitable for thermal ablation of sectorial tumours of the digestive duct. Experimental validation of a new MR compatible ultrasonic device is described here, dedicated to the minimal invasive therapy of localized colorectal cancer. This is a cylindrical 1D 64-element phased array transducer of 14 mm diameter and 25 mm height (Imasonic, France) allowing electronic rotation of the acoustic beam. Operating frequency ranges from 3.5 to 4.0 MHz and up to 5 effective electrical watts per element are available. A plane wave is reconstructed by simultaneous excitation of eigth adjacent elements with an appropriate phase law. Driving electronics operates outside the Faraday cage of the scanner and provides fast switching capabilities. Excellent passive and active compatibility with the MRI data acquisition has been demonstrated. In addition, feasibility of active temperature control has been demonstrated based on real-time data export out of the MR scanner and a PID feedback algorithm. Further studies will address the in-vivo validation and the integration of a miniature NMR coil for increased SNR in the near field.

  15. Lift-off compensation for improved accuracy in ultrasonic lamb wave velocity measurements using electromagnetic acoustic transducers (EMATs).

    PubMed

    Morrison, J P; Dixon, S; Potter, M D G; Jian, X

    2006-12-22

    The crystalline texture of a sheet metal strongly affects its formability, so having knowledge of this texture is of great industrial relevance. The texture of rolled sheet metals, such as aluminium and steel, may be determined by ultrasonic measurement of the velocity of the zero order symmetric (S(0)) Lamb wave as a function of angle to the rolling direction. Electromagnetic acoustic transducers (EMATs) may perform this measurement without contacting the sample, therefore reducing perturbation to the plate wave system, as they are electromagnetically coupled to the sheet. The EMAT system measurements are non-destructive and may be made in real time, therefore offering advantages over the conventional techniques such as X-ray and neutron diffraction. It has been noticed that in the two EMAT pitch-catch system, the apparent arrival times of the ultrasonic waves change with variation in lift-off (distance between sample and transducer) due to impedance and aperture effects. For precise and accurate texture parameters to be obtained, accurate absolute ultrasonic velocity measurement is required and hence lift-off must be compensated for. This is of particular importance to online inspection systems where constant lift-off may be difficult to maintain. The impedance behaviour of various coil geometries has been investigated as a function of lift-off and frequency and compared to the received ultrasonic signal and the drive current pulse profile. Theoretical models have been used to explain the observed behaviour, and hence a scheme has been proposed for the compensation of lift-off effects in real time.

  16. Investigation of a Parametric Acoustic Receiving Array for Mobile Applications.

    DTIC Science & Technology

    1980-11-05

    KEY WORDS (Continue on reverse side it necessary and identify by block number) PARRAY Turbulence Nonlinear acoustics Phase-locked loop receiver... PARRAY ) exploits the nonlinearity of acoustic waves in water to achieve directional reception of low frequency acoustic waves using only two high...implementation of PARRAYs on submarine platforms. i Analysis, fabrication, and testing of a phase-locked loop receiver ..is described"’’ DDIFORM, 1473

  17. A Deconvolution Approach for the Mapping of Acoustic Sources (DAMAS) Determined from Phased Microphone Arrays

    NASA Technical Reports Server (NTRS)

    Brooks, Thomas F.; Humphreys, William M., Jr.

    2004-01-01

    Current processing of acoustic array data is burdened with considerable uncertainty. This study reports an original methodology that serves to demystify array results, reduce misinterpretation, and accurately quantify position and strength of acoustic sources. Traditional array results represent noise sources that are convolved with array beamform response functions, which depend on array geometry, size (with respect to source position and distributions), and frequency. The Deconvolution Approach for the Mapping of Acoustic Sources (DAMAS) method removes beamforming characteristics from output presentations. A unique linear system of equations accounts for reciprocal influence at different locations over the array survey region. It makes no assumption beyond the traditional processing assumption of statistically independent noise sources. The full rank equations are solved with a new robust iterative method. DAMAS is quantitatively validated using archival data from a variety of prior high-lift airframe component noise studies, including flap edge/cove, trailing edge, leading edge, slat, and calibration sources. Presentations are explicit and straightforward, as the noise radiated from a region of interest is determined by simply summing the mean-squared values over that region. DAMAS can fully replace existing array processing and presentations methodology in most applications. It appears to dramatically increase the value of arrays to the field of experimental acoustics.

  18. A Deconvolution Approach for the Mapping of Acoustic Sources (DAMAS) Determined from Phased Microphone Arrays

    NASA Technical Reports Server (NTRS)

    Brooks, Thomas F.; Humphreys, William M.

    2006-01-01

    Current processing of acoustic array data is burdened with considerable uncertainty. This study reports an original methodology that serves to demystify array results, reduce misinterpretation, and accurately quantify position and strength of acoustic sources. Traditional array results represent noise sources that are convolved with array beamform response functions, which depend on array geometry, size (with respect to source position and distributions), and frequency. The Deconvolution Approach for the Mapping of Acoustic Sources (DAMAS) method removes beamforming characteristics from output presentations. A unique linear system of equations accounts for reciprocal influence at different locations over the array survey region. It makes no assumption beyond the traditional processing assumption of statistically independent noise sources. The full rank equations are solved with a new robust iterative method. DAMAS is quantitatively validated using archival data from a variety of prior high-lift airframe component noise studies, including flap edge/cove, trailing edge, leading edge, slat, and calibration sources. Presentations are explicit and straightforward, as the noise radiated from a region of interest is determined by simply summing the mean-squared values over that region. DAMAS can fully replace existing array processing and presentations methodology in most applications. It appears to dramatically increase the value of arrays to the field of experimental acoustics.

  19. A hardware model of the auditory periphery to transduce acoustic signals into neural activity

    PubMed Central

    Tateno, Takashi; Nishikawa, Jun; Tsuchioka, Nobuyoshi; Shintaku, Hirofumi; Kawano, Satoyuki

    2013-01-01

    To improve the performance of cochlear implants, we have integrated a microdevice into a model of the auditory periphery with the goal of creating a microprocessor. We constructed an artificial peripheral auditory system using a hybrid model in which polyvinylidene difluoride was used as a piezoelectric sensor to convert mechanical stimuli into electric signals. To produce frequency selectivity, the slit on a stainless steel base plate was designed such that the local resonance frequency of the membrane over the slit reflected the transfer function. In the acoustic sensor, electric signals were generated based on the piezoelectric effect from local stress in the membrane. The electrodes on the resonating plate produced relatively large electric output signals. The signals were fed into a computer model that mimicked some functions of inner hair cells, inner hair cell–auditory nerve synapses, and auditory nerve fibers. In general, the responses of the model to pure-tone burst and complex stimuli accurately represented the discharge rates of high-spontaneous-rate auditory nerve fibers across a range of frequencies greater than 1 kHz and middle to high sound pressure levels. Thus, the model provides a tool to understand information processing in the peripheral auditory system and a basic design for connecting artificial acoustic sensors to the peripheral auditory nervous system. Finally, we discuss the need for stimulus control with an appropriate model of the auditory periphery based on auditory brainstem responses that were electrically evoked by different temporal pulse patterns with the same pulse number. PMID:24324432

  20. Use of Electromagnetic Acoustic Transducers (emats) for Cement Bond Logging of Gas Storage Wells

    NASA Astrophysics Data System (ADS)

    Bolshakov, A. O.; Domangue, E. J.; Barolak, J. G.; Patterson, D. J.

    2008-02-01

    According to the Department of Energy (DOE), there are approximately 110 operators maintaining more than 17,000 gas storage wells in over 415 underground storage facilities across the USA. In virtually every application, steel casing, cemented into place, serves to isolate the well from the underground formations. The process of cementing wellbore casing provides two major benefits: 1) cement prevents gas migration between the casing and formation; 2) cement transfers stress from the casing to the formation, increasing the effective strength and working pressure of the casing. Current cement evaluation techniques use an acoustic wave generated and received by a logging tool within the wellbore to detect cement placed outside the casing. These techniques rely on fluid in the casing to provide acoustic coupling between the logging tool and the casing and therefore are unable to operate in gas-filled boreholes. This paper details efforts to confirm the validity and applicability of the use of EMATs for evaluating cement in gas-filled boreholes. The methods and techniques proposed for the cement bond logging using EMATs are confirmed and validated based on the results obtained from the numerical modeling and experiments with physical cement models. Partial funding for this investigation was provided by the DOE and Gas Storage Technology Consortium.

  1. An electronic-nose sensor node based on a polymer-coated surface acoustic wave array for wireless sensor network applications.

    PubMed

    Tang, Kea-Tiong; Li, Cheng-Han; Chiu, Shih-Wen

    2011-01-01

    This study developed an electronic-nose sensor node based on a polymer-coated surface acoustic wave (SAW) sensor array. The sensor node comprised an SAW sensor array, a frequency readout circuit, and an Octopus II wireless module. The sensor array was fabricated on a large K(2) 128° YX LiNbO3 sensing substrate. On the surface of this substrate, an interdigital transducer (IDT) was produced with a Cr/Au film as its metallic structure. A mixed-mode frequency readout application specific integrated circuit (ASIC) was fabricated using a TSMC 0.18 μm process. The ASIC output was connected to a wireless module to transmit sensor data to a base station for data storage and analysis. This sensor node is applicable for wireless sensor network (WSN) applications.

  2. Quantitative analysis of temperature dependent acoustic trapping characteristics by using concentric annular type dual element ultrasonic transducer.

    PubMed

    Chung, In-Young; Lee, Jungwoo

    2015-02-01

    This paper presents the temperature dependence of lateral acoustic trapping capability by probing the speed of sound in individual lipid droplets at a given temperature of water and measuring its corresponding displacement, a value for quantitatively evaluating a spring-like behavior of the acoustic trap with certain strength. A 20/40 MHz dual element LiNbO3 ultrasonic transducer is fabricated to simultaneously perform both transverse trapping and sound speed measurement for each droplet over a discrete temperature range from 20°C to 30°C. Time of flight method is employed for pulse tracking that determines the arrival time of an echo reflected back from either a trapped droplet or a mylar film. The estimated speeds of sound in water and droplets are 1484.8 m/s and 1431.6 m/s at 20°C, while 1506.0 m/s and 1400.6 m/s at 30°C, respectively. As the temperature rises, the sound speed in droplets decreases at an average rate of 3.1 m/s/°C, and the speed in water increases at 2.1 m/s/°C. The average displacement varies from 150.0 μm to 179.0 μm with an increasing rate of 2.9 μm/°C, and its standard deviation is obtained between 1.0 μm and 2.0 μm over the same temperature range. Reduced sound speed as a function of rising temperature results in increased displacement, indicating that the trapping strength is adjustable by regulating ambient temperature in water as well as by changing transducer excitation parameters. Therefore, the results suggest that the temperature dependence of this trapping technique can be exploited for developing a remote manipulation tool of micron-sized particles in a thermally fluctuating environment. It is also shown that any deviated trapping strength caused by thermal disturbance near the trap can be restored to its desired level by compensating either temperature difference or trapping system condition.

  3. Diffraction-free acoustic detection for optoacoustic depth profiling of tissue using an optically transparent polyvinylidene fluoride pressure transducer operated in backward and forward mode.

    PubMed

    Jaeger, Michael; Niederhauser, Joël J; Hejazi, Marjaneh; Frenz, Martin

    2005-01-01

    An optoacoustic detection method suitable for depth profiling of optical absorption of layered or continuously varying tissue structures is presented. Detection of thermoelastically induced pressure transients allows reconstruction of optical properties of the sample to a depth of several millimeters with a spatial resolution of 24 mum. Acoustic detection is performed using a specially designed piezoelectric transducer, which is transparent for optical radiation. Thus, ultrasonic signals can be recorded at the same position the tissue is illuminated. Because the optoacoustical sound source is placed in the pulsed-acoustic near field of the pressure sensor, signal distortions commonly associated with acoustical diffraction are eliminated. Therefore, the acoustic signals mimic exactly the depth profile of the absorbed energy. This is illustrated by imaging the absorption profile of a two-layered sample with different absorption coefficients, and of a dye distribution while diffusing into a gelatin phantom.

  4. Growth and optimization of piezoelectric single crystal transducers for energy harvesting from acoustic sources

    NASA Astrophysics Data System (ADS)

    Dhar, Romit

    Low power requirements of modern sensors and electronics have led to the examination of the feasibility of several energy harvesting schemes. This thesis describes the fabrication and performance of an acoustic energy harvester with single crystal piezoelectric unimorph. The unimorphs were fabricated from single crystal relaxor ferroelectric (1-x)PMN - xPT grown with x = 0.3 and 0.32 as the starting composition. It is demonstrated that significant power can be harvested using unimorph structures from an acoustic field at resonance. Passive circuit components were used for output circuit with a resistive load in series with a tunable inductor. A tuning capacitor connected in parallel to the device further increased the power output by matching the impedance of the unimorph. The power harvested can be either used directly for running low-power devices or can be stored in a rechargeable battery. A comparison of the performance of PMN-PT and PZT unimorphs at the resonance of the coupled structure under identical excitation conditions was done. For a certain optimized thickness ratio and circuit parameters, the single crystal PMN-PT unimorph generated 30 mW of power while a PZT unimorph generated 7.5 mW at resonance and room temperature. The harvested output power from the single crystal PMN-PT unimorphs depends on several material properties, physical and ambient parameters and an effort has been made to study their effect on the performance. A self-seeding high pressure Bridgman (HPB) technique was used to grow the PMN-PT single crystal ingots in a cost-effective way in our laboratories. Several techniques of material processing were developed to fabricate the PMN-PT single crystal unimorphs from as grown bulk ingots. This growth technique produced good quality single crystals for our experiments, with a k33 = 0.91 for a <001> oriented bar.

  5. Deduction of the acoustic impedance of the ground via a simulated three-dimensional microphone array.

    PubMed

    Alberts, W C Kirkpatrick; Sanchez, Kevin J

    2013-11-01

    While commonly used ground impedance deduction methods often utilize pairs of vertically separated microphones, deployed arrays rarely have this configuration, which increases the difficulty in automatically deducing local ground impedance from these arrays. The ability to deduce ground impedance using random sounds incident on a three-dimensional array would increase, for example, the accuracy of estimated elevation angles. The methods described by the American National Standards Institute Method for Determining the Acoustic Impedance of Ground Surfaces are extended to simulate deducing ground impedance by a three-dimensional array. Ground parameters indicative of grassland are successfully determined using a simulated three-dimensional array.

  6. Direct measurement of solids: High temperature sensing Final report Experimental development and testing of high temperature pulsed EMATs (electromagnetic acoustic transducer):

    SciTech Connect

    Boyd, D.M.; Spanner, G.E.; Sperline, P.D.

    1988-04-01

    A pulsed laser/pulsed EMAT (electromagnetic acoustic transducer) receiver system has been demonstrated for measuring the time of flight of acoustic signals in hot steel samples. Attenuation and signal-to-noise ratio are important parameters to be monitored. A continuous contact EMAT application was not achieved; thermal analysis found that contact times of 5 seconds with cooling times of 45 seconds are required at 1300/degree/C. The equipment requires field hardening and improved packaging before system reliability can be assessed. 22 refs., 35 figs. (DLC)

  7. The design, characterization, and comparison of MEMS comb-drive acoustic emission transducers with the principles of area-change and gap-change

    NASA Astrophysics Data System (ADS)

    Kabir, Minoo; Saboonchi, Hossain; Ozevin, Didem

    2015-04-01

    Comb-drive transducers are made of interdigitized fingers formed by the stationary part known as stator and the moving part known as rotor, and based on the transduction principle of capacitance change. They can be designed as area-change or gap-change mechanism to convert the mechanical signal at in-plane direction into electrical output. The comb-drive transducers can be utilized to differentiate the wave motion in orthogonal directions when they are utilized with the outof- plane transducers. However, their sensitivity is weak to detect the wave motion released by newly formed damage surfaces. In this study, Micro-Electro-Mechanical System (MEMS) comb-drive Acoustic Emission (AE) transducer designs with two different mechanisms are designed, characterized and compared for sensing high frequency wave propagation. The MEMS AE transducers are manufactured using MetalMUMPs (Metal Multi-User MEMS Processes), which use electroplating technique for highly elevated microstructure geometries. Each type of the transducers is numerically modeled using COMSOL Multiphysics program in order to determine the sensitivity based on the applied load. The transducers are experimentally characterized and compared to the numerical models. The experiments include laser excitation to control the direction of the wave generation, and actual crack growth monitoring of aluminum 7075 specimens loaded under fatigue. Behavior and responses of the transducers are compared based on the parameters such as waveform signature, peak frequency, damping, sensitivity, and signal to noise ratio. The comparisons between the measured parameters are scaled according to the respective capacitance of each sensor in order to determine the most sensitive design geometry.

  8. Underwater hybrid near-field acoustical holography based on the measurement of vector hydrophone array

    NASA Astrophysics Data System (ADS)

    Hu, Bo; Yang, Desen; Sun, Yu

    2010-06-01

    Hybrid near-field acoustical holography (NAH) is developed for reconstructing acoustic radiation from a cylindrical source in a complex underwater environment. In hybrid NAH, we combine statistically optimized near-field acoustical holography (SONAH) and broadband acoustical holography from intensity measurements (BAHIM) to reconstruct the underwater cylindrical source field. First, the BAHIM is utilized to regenerate as much acoustic pressures on the hologram surface as necessary, and then the acoustic pressures are taken as input to the formulation implemented numerically by SONAH. The main advantages of this technology are that the complex pressure on the hologram surface can be reconstructed without reference signal, and the measurement array can be smaller than the source, thus the practicability and efficiency of this technology are greatly enhanced. Numerical examples of a cylindrical source are demonstrated. Test results show that hybrid NAH can yield a more accurate reconstruction than conventional NAH. Then, an experiment has been carried out with a vector hydrophone array. The experimental results show the advantage of hybrid NAH in the reconstruction of an acoustic field and the feasibility of using a vector hydrophone array in an underwater NAH measurement, as well as the identification and localization of noise sources.

  9. Directivity and Sensitivity of Fiber-Optic Cable Measuring Ground Motion using a Distributed Acoustic Sensing Array

    NASA Astrophysics Data System (ADS)

    Lancelle, C.; Lord, N. E.; Wang, H. F.; Fratta, D.; Nigbor, R. L.; Chalari, A.; Karaulanov, R.; Baldwin, J. A.; Castongia, E.

    2014-12-01

    Distributed acoustic sensing (DAS) is a relatively recent development for measurement of ground motion by using a fiber-optic cable itself as the sensor. In September 2013 a field test was conducted at the NEES@UCSB Garner Valley field site in Southern California incorporating DAS technology. A 762 meter long fiber-optic cable was trenched to a depth of about 0.3 m in a rectangular design with two interior diagonal segments. Existing instruments at the field site include the Garner Valley Downhole Array (GVDA) surface and borehole accelerometers and pore pressure transducers. A PASSCAL seismometer array and four NEES@UCLA tri-axial accelerometers were also deployed along the two interior diagonal segments. These sensors also recorded most of the source events. One goal of the field test was to study the response of the fiber-optic cable to various vibration sources, including a 45 kN shear shaker and a smaller 450 N portable mass shaker, both of which were available through NEES@UCLA. In addition to the shear sources, signals were recorded from a mini-Vibe source and hammer blows on a steel plate. The focus of this study is on the directivity and the sensitivity of the fiber-optic cable and the distributed acoustic sensor. Preliminary results indicate that the fiber-optic cable is most effective if oriented in the direction of maximum strain. Even with the directional response, signals were recorded throughout the array for different cable orientations at distances up to two-hundred meters. Move-out of different phases could be seen over several meters of traces recorded one-meter apart. Sensitivity of the fiber-optic cable relative to the other instruments is also presented.

  10. 2 kHz high power smart transducer for acoustic sub-bottom profiling applications

    NASA Astrophysics Data System (ADS)

    Sathishkumar, R.

    2013-09-01

    In this study, a 2 kHz Tonpilz projector was designed using a Terfenol-D and modeled in ATILA. For the purpose of modeling studies, it has been determined that a radiating head mass exhibits better transmitting current response (TCR) at 136 mm diameter, where the resonance occurs at 2.4 kHz and the peak value of 118 dB re 1 μPa/A at 1 m occurs at 12 kHz. Also bolt at a 46 mm distance from the center of the head mass offers resonance at 2.4 kHz, and the peak value of 115.3 dB re 1 μPa/A at 1m occurs at 11.5 kHz. This optimized design is fabricated and molded with polyurethane of 3 mm thickness. The prototype was tested at the Acoustic Test Facility (ATF) of National Institute of Ocean Technology (NIOT) for its underwater performances. Based on the result, the fundamental resonance was determined to be 2.18 kHz and the peak value of TCR of 182 dB re 1 μPa/A at 1m occurs at 14 kHz. The maximum value of the RS was found to be -190 dB re 1V/μPa at 1m at a frequency of 2.1 kHz.

  11. An Intelligent Sensor Array Distributed System for Vibration Analysis and Acoustic Noise Characterization of a Linear Switched Reluctance Actuator

    PubMed Central

    Salvado, José; Espírito-Santo, António; Calado, Maria

    2012-01-01

    This paper proposes a distributed system for analysis and monitoring (DSAM) of vibrations and acoustic noise, which consists of an array of intelligent modules, sensor modules, communication bus and a host PC acting as data center. The main advantages of the DSAM are its modularity, scalability, and flexibility for use of different type of sensors/transducers, with analog or digital outputs, and for signals of different nature. Its final cost is also significantly lower than other available commercial solutions. The system is reconfigurable, can operate either with synchronous or asynchronous modes, with programmable sampling frequencies, 8-bit or 12-bit resolution and a memory buffer of 15 kbyte. It allows real-time data-acquisition for signals of different nature, in applications that require a large number of sensors, thus it is suited for monitoring of vibrations in Linear Switched Reluctance Actuators (LSRAs). The acquired data allows the full characterization of the LSRA in terms of its response to vibrations of structural origins, and the vibrations and acoustic noise emitted under normal operation. The DSAM can also be used for electrical machine condition monitoring, machine fault diagnosis, structural characterization and monitoring, among other applications. PMID:22969364

  12. Fast contactless vibrating structure characterization using real time field programmable gate array-based digital signal processing: demonstrations with a passive wireless acoustic delay line probe and vision.

    PubMed

    Goavec-Mérou, G; Chrétien, N; Friedt, J-M; Sandoz, P; Martin, G; Lenczner, M; Ballandras, S

    2014-01-01

    Vibrating mechanical structure characterization is demonstrated using contactless techniques best suited for mobile and rotating equipments. Fast measurement rates are achieved using Field Programmable Gate Array (FPGA) devices as real-time digital signal processors. Two kinds of algorithms are implemented on FPGA and experimentally validated in the case of the vibrating tuning fork. A first application concerns in-plane displacement detection by vision with sampling rates above 10 kHz, thus reaching frequency ranges above the audio range. A second demonstration concerns pulsed-RADAR cooperative target phase detection and is applied to radiofrequency acoustic transducers used as passive wireless strain gauges. In this case, the 250 ksamples/s refresh rate achieved is only limited by the acoustic sensor design but not by the detection bandwidth. These realizations illustrate the efficiency, interest, and potentialities of FPGA-based real-time digital signal processing for the contactless interrogation of passive embedded probes with high refresh rates.

  13. Fast contactless vibrating structure characterization using real time field programmable gate array-based digital signal processing: Demonstrations with a passive wireless acoustic delay line probe and vision

    NASA Astrophysics Data System (ADS)

    Goavec-Mérou, G.; Chrétien, N.; Friedt, J.-M.; Sandoz, P.; Martin, G.; Lenczner, M.; Ballandras, S.

    2014-01-01

    Vibrating mechanical structure characterization is demonstrated using contactless techniques best suited for mobile and rotating equipments. Fast measurement rates are achieved using Field Programmable Gate Array (FPGA) devices as real-time digital signal processors. Two kinds of algorithms are implemented on FPGA and experimentally validated in the case of the vibrating tuning fork. A first application concerns in-plane displacement detection by vision with sampling rates above 10 kHz, thus reaching frequency ranges above the audio range. A second demonstration concerns pulsed-RADAR cooperative target phase detection and is applied to radiofrequency acoustic transducers used as passive wireless strain gauges. In this case, the 250 ksamples/s refresh rate achieved is only limited by the acoustic sensor design but not by the detection bandwidth. These realizations illustrate the efficiency, interest, and potentialities of FPGA-based real-time digital signal processing for the contactless interrogation of passive embedded probes with high refresh rates.

  14. Fiber-optic hydrophone array for acoustic surveillance in the littoral

    NASA Astrophysics Data System (ADS)

    Hill, David; Nash, Phillip

    2005-05-01

    We describe a fibre-optic hydrophone array system architecture that can be tailored to meet the underwater acoustic surveillance requirements of the military, counter terrorist and customs authorities in protecting ports and harbours, offshore production facilities or coastal approaches. Physically the fibre-optic hydrophone array is in the form of a lightweight cable, enabling rapid deployment from a small vessel. Based upon an optical architecture of time and wavelength multiplexed interferometric hydrophones, the array is comprised of a series of hydrophone sub-arrays. Using multiple sub-arrays, extended perimeters many tens of kilometres in length can be monitored. Interrogated via a long (~50km) optical fibre data link, the acoustic date is processed using the latest open architecture sonar processing platform, ensuring that acoustic targets below, on and above the surface are detected, tracked and classified. Results obtained from an at sea trial of a 96-channel hydrophone array are given, showing the passive detection and tracking of a diver, small surface craft and big ocean going ships beyond the horizon. Furthermore, we describe how the OptaMarine fibre-optic hydrophone array fits into an integrated multi-layered approach to port and harbour security consisting of active sonar for diver detection and hull imaging, as well as thermal imaging and CCTV for surface monitoring. Finally, we briefly describe a complimentary land perimeter intruder detection system consisting of an array of fibre optic accelerometers.

  15. Frequency division multiple transmission method to utilize the wide bandwidth property of capacitive micromachined ultrasonic transducer arrays

    NASA Astrophysics Data System (ADS)

    Lee, Seunghun; Kim, Bae-Hyung; Jeon, Taeho; Kim, Youngil; Cho, Kyungil; Song, Jongkeun

    2013-03-01

    CMUT-on-ASIC integration techniques are promising for the development of lower cost smaller volume scanners with higher performance in terms of features and image qualities because it minimizes parasitic capacitances and ultimately improves signal-to-noise ratio (SNR). Moreover, a frequency bandwidth of CMUT array is known as relatively broader than that of other ultrasonic transducer arrays. To utilize the wide bandwidth characteristic of the CMUT arrays, in this paper, we introduce a FDMA (frequency division multiple access) based ultrasound imaging technique using orthogonally band-divided coded signals to provide dynamic transmit focused imaging without sacrificing the frame rate. In the presented method, the orthogonal sub-band coded signals are simultaneously fired on multiple ranges, in which each signal is focused at a different range, in one transmission event. This paper also presents an ultrasound imageformation method and a modulation and demodulation process of orthogonal sub-band coded signals designed within the frequency bandwidth of the CMUT arrays. The presented method is verified by computer simulations using Field II and experiments. The simulation results using a computer generated tissue mimicking phantom show that the presented method can be achieved with both increased image quality and frame rate. The experimental results to verify the feasibility of the presented method using orthogonal sub-band coded signals show that the reflected signals from targets are successfully separated into two compressed signals. Currently, we are extending the presented approach to ultrasound imaging technique for volumetric ultrasound scanners using 2-D CMUT-on-ASIC arrays.

  16. Tracking sperm whale (Physeter macrocephalus) dive profiles using a towed passive acoustic array

    NASA Astrophysics Data System (ADS)

    Thode, Aaron

    2004-07-01

    A passive acoustic method is presented for tracking sperm whale dive profiles, using two or three hydrophones deployed as either a vertical or large-aperture towed array. The relative arrival times between the direct and surface-reflected acoustic paths are used to obtain the ranges and depths of animals with respect to the array, provided that the hydrophone depths are independently measured. Besides reducing the number of hydrophones required, exploiting surface reflections simplifies automation of the data processing. Experimental results are shown from 2002 and 2003 cruises in the Gulf of Mexico for two different towed array deployments. The 2002 deployment consisted of two short-aperture towed arrays separated by 170 m, while the 2003 deployment placed an autonomous acoustic recorder in tandem with a short-aperture towed array, and used ship noise to time-align the acoustic data. The resulting dive profiles were independently checked using single-hydrophone localizations, whenever multipath reflections from the ocean bottom could be exploited to effectively create a large-aperture vertical array. This technique may have applications for basic research and for real-time mitigation for seismic airgun surveys.

  17. Reflection at a liquid-solid interface of a transient ultrasonic field radiated by a linear phased array transducer.

    PubMed

    Maghlaoui, Nadir; Belgroune, Djema; Ourak, Mohamed; Djelouah, Hakim

    2016-09-01

    In order to put in evidence the specular reflection and the non-specular reflection in the transient case, we have used a model for the study of the transient ultrasonic waves radiated by a linear phased array transducer in a liquid and reflected by a solid plane interface. This method is an extension of the angular spectrum method to the transient case where the reflection at the plane interface is taken into account by using the reflection coefficient for harmonic plane waves. The results obtained highlighted the different components of the ultrasonic field: the direct and edge waves as well as the longitudinal head waves or leaky Rayleigh waves. The transient representation of these waves have been carefully analyzed and discussed by the rays model. Instantaneous cartographies allowed a clear description of all the waves which appear at the liquid-solid interface. The obtained results have been compared to those obtained with a finite element method package.

  18. Stability of Programmable Shunt Valve Settings with Simultaneous Use of the Optune Transducer Array: A Case Report

    PubMed Central

    Chan, Andrew K; Winkler, Ethan A; Viner, Jennifer A; Taylor, Jennie W; McDermott, Michael W.

    2016-01-01

    The Optune® transducer array (Novocure Ltd., Haifa, Israel) is an FDA-approved noninvasive regional therapy that aims to inhibit the growth of glioblastoma multiforme (GBM) cells via utilization of alternating electric fields. Some patients with GBM may develop hydrocephalus and benefit from subsequent shunt placement, but special attention must be paid to patients in whom programmable valves are utilized, given the potential effect of the magnetic fields on valve settings. We present the first case report illustrating the stability of programmable shunt valve settings in a neurosurgical patient undergoing therapy with the Optune device. In this study, shunt valve settings were stable over a period of five days despite Optune therapy. This is reassuring for patients with GBM who require simultaneous treatment with both the Optune device and a programmable shunt system. PMID:27551653

  19. Stability of Programmable Shunt Valve Settings with Simultaneous Use of the Optune Transducer Array: A Case Report.

    PubMed

    Chan, Andrew K; Birk, Harjus S; Winkler, Ethan A; Viner, Jennifer A; Taylor, Jennie W; McDermott, Michael W

    2016-07-07

    The Optune® transducer array (Novocure Ltd., Haifa, Israel) is an FDA-approved noninvasive regional therapy that aims to inhibit the growth of glioblastoma multiforme (GBM) cells via utilization of alternating electric fields. Some patients with GBM may develop hydrocephalus and benefit from subsequent shunt placement, but special attention must be paid to patients in whom programmable valves are utilized, given the potential effect of the magnetic fields on valve settings. We present the first case report illustrating the stability of programmable shunt valve settings in a neurosurgical patient undergoing therapy with the Optune device. In this study, shunt valve settings were stable over a period of five days despite Optune therapy. This is reassuring for patients with GBM who require simultaneous treatment with both the Optune device and a programmable shunt system.

  20. Sea Test of a Parametric Acoustic Receiving Array at Stage I.

    DTIC Science & Technology

    1980-11-07

    SUPPLEMENTARY NOTES It. KEY WORDS (CoathwRae on reverse side iI necessary and Identify by block inmber) PARRAY Nonlinear acoustics Sea test...Austin, has been engaged in a program to develop an experimental parametric acoustic receiving array ( PARRAY ). A sea test was performed in shallow...FIGURES v LIST OF TABLES vii 1. INTRODUCTION 1 II. SEA TEST OBJECTIVES 5 III. EXPERIMENTAL PARRAY DESCRIPTION AND INSTALLATION 7 A. System Hardware 7 B

  1. Assessment of Microphone Phased Array for Measuring Launch Vehicle Lift-off Acoustics

    NASA Technical Reports Server (NTRS)

    Garcia, Roberto

    2012-01-01

    The specific purpose of the present work was to demonstrate the suitability of a microphone phased array for launch acoustics applications via participation in selected firings of the Ares I Scale Model Acoustics Test. The Ares I Scale Model Acoustics Test is a part of the discontinued Constellation Program Ares I Project, but the basic understanding gained from this test is expected to help development of the Space Launch System vehicles. Correct identification of sources not only improves the predictive ability, but provides guidance for a quieter design of the launch pad and optimization of the water suppression system. This document contains the results of the NASA Engineering and Safety Center assessment.

  2. Focused, phased-array plane piston and spherically-shaped concave piston transducers: comparison for the same aperture and focal point.

    PubMed

    Warriner, Renée K; Cobbold, Richard S C

    2012-04-01

    It has sometimes been assumed that the phased-array plane piston transducer and the spherically-shaped concave piston transducer are equivalent structures when both have the same aperture and focal point. This assumption has not been previously examined, nor has an expression for the on-axis impulse response of the focused, phased-array plane piston transducer been derived. It is shown in this paper how such an expression can be obtained. Comparisons of the impulse response for both structures show similarities, as well as some differences that could be significant as the observation point approaches the focal point. Comparisons are also performed for wide-band pulses close to the focus as well as for sinusoidal excitation. A physical explanation for the cause of the impulse response discrepancy is shown to be due to the nature of the piston focusing delay and its effect on the Rayleigh integral.

  3. Large-region acoustic source mapping using a movable array and sparse covariance fitting.

    PubMed

    Zhao, Shengkui; Tuna, Cagdas; Nguyen, Thi Ngoc Tho; Jones, Douglas L

    2017-01-01

    Large-region acoustic source mapping is important for city-scale noise monitoring. Approaches using a single-position measurement scheme to scan large regions using small arrays cannot provide clean acoustic source maps, while deploying large arrays spanning the entire region of interest is prohibitively expensive. A multiple-position measurement scheme is applied to scan large regions at multiple spatial positions using a movable array of small size. Based on the multiple-position measurement scheme, a sparse-constrained multiple-position vectorized covariance matrix fitting approach is presented. In the proposed approach, the overall sample covariance matrix of the incoherent virtual array is first estimated using the multiple-position array data and then vectorized using the Khatri-Rao (KR) product. A linear model is then constructed for fitting the vectorized covariance matrix and a sparse-constrained reconstruction algorithm is proposed for recovering source powers from the model. The user parameter settings are discussed. The proposed approach is tested on a 30 m × 40 m region and a 60 m × 40 m region using simulated and measured data. Much cleaner acoustic source maps and lower sound pressure level errors are obtained compared to the beamforming approaches and the previous sparse approach [Zhao, Tuna, Nguyen, and Jones, Proc. IEEE Intl. Conf. on Acoustics, Speech and Signal Processing (ICASSP) (2016)].

  4. Inverse least-squares modeling of vapor descriptors using polymer-coated surface acoustic wave sensor array responses.

    PubMed

    Grate, J W; Patrash, S J; Kaganovet, S N; Abraham, M H; Wise, B M; Gallagher, N B

    2001-11-01

    In previous work, it was shown that, in principle, vapor descriptors could be derived from the responses of an array of polymer-coated acoustic wave devices. This new chemometric classification approach was based on polymer/vapor interactions following the well-established linear solvation energy relationships (LSERs) and the surface acoustic wave (SAW) transducers being mass sensitive. Mathematical derivations were included and were supported by simulations. In this work, an experimental data set of polymer-coated SAW vapor sensors is investigated. The data set includes 20 diverse polymers tested against 18 diverse organic vapors. It is shown that interfacial adsorption can influence the response behavior of sensors with nonpolar polymers in response to hydrogen-bonding vapors; however, in general, most sensor responses are related to vapor interactions with the polymers. It is also shown that polymer-coated SAW sensor responses can be empirically modeled with LSERs, deriving an LSER for each individual sensor based on its responses to the 18 vapors. Inverse least-squares methods are used to develop models that correlate and predict vapor descriptors from sensor array responses. Successful correlations can be developed by multiple linear regression (MLR), principal components regression (PCR), and partial least-squares (PLS) regression. MLR yields the best fits to the training data, however cross-validation shows that prediction of vapor descriptors for vapors not in the training set is significantly more successful using PCR or PLS. In addition, the optimal dimension of the PCR and PLS models supports the dimensionality of the LSER formulation and SAW response models.

  5. Array of piezoelectric wires in acoustic energy harvesting

    NASA Astrophysics Data System (ADS)

    Golestanyan, Edvin

    An acoustic energy harvesting mechanism to harvest a travelling sound wave at a low audible frequency (180 ˜ 200Hz) is further developed and studied both experimentally and numerically. The acoustic energy harvester in this study consists of a quarter-wavelength straight tube resonator and multiple piezoelectric oscillators in wire and plate shapes placed inside the tube. When the tube resonator is excited by an incident sound at its acoustic resonant frequency, the amplified acoustic pressure inside the tube drives the vibration motions of piezoelectric oscillators, resulting in generating electricity. It has been found that a single piezoelectric plate generates more power than a wire, but with placing in multiple-rows piezoelectric wires more power is produced. Parallel and series connections of multiple piezoelectric oscillators have also been studied and expressions for calculating optimum loading resistance have been presented. It has been found that the series connection generates more power than parallel connection. As the number of piezoelectric oscillators increases, the magnitude of the single loading resistance decreases. The decrease of loading resistance is more intense in multiple wires than in multiple plates and in parallel connection than in series connection.

  6. A Large-Aperture Acoustic Array to Observe Oceanic Density Structure

    DTIC Science & Technology

    1975-12-01

    Subtitle) ._,,, , , : A ^ARGE-APERTURb ^ COUSTIC ARRAY TO ^OBSERVE OCEANIC DENSITY STRUCTURE t 7. AUTHORfj; G. Thomas/Kaye READ INSTRUCTIONS...o CO (M MARINE PHYSICAL LABORATORY of the Scripps Institution of Oceanography San Diego, California 92132 A LARGE APERTURE ACOUSTIC ARRAY TO...Contracts Contract Effective Date: Contract Expiration Date; Amount of Contract: Layered Inhomogeneities N00014-69- A -0200-6038 \\ 1 April 1972 Jiß

  7. 3D Ultrasonic Needle Tracking with a 1.5D Transducer Array for Guidance of Fetal Interventions

    PubMed Central

    West, Simeon J.; Mari, Jean-Martial; Ourselin, Sebastien; David, Anna L.; Desjardins, Adrien E.

    2016-01-01

    Ultrasound image guidance is widely used in minimally invasive procedures, including fetal surgery. In this context, maintaining visibility of medical devices is a significant challenge. Needles and catheters can readily deviate from the ultrasound imaging plane as they are inserted. When the medical device tips are not visible, they can damage critical structures, with potentially profound consequences including loss of pregnancy. In this study, we performed 3D ultrasonic tracking of a needle using a novel probe with a 1.5D array of transducer elements that was driven by a commercial ultrasound system. A fiber-optic hydrophone integrated into the needle received transmissions from the probe, and data from this sensor was processed to estimate the position of the hydrophone tip in the coordinate space of the probe. Golay coding was used to increase the signal-to-noise (SNR). The relative tracking accuracy was better than 0.4 mm in all dimensions, as evaluated using a water phantom. To obtain a preliminary indication of the clinical potential of 3D ultrasonic needle tracking, an intravascular needle insertion was performed in an in vivo pregnant sheep model. The SNR values ranged from 12 to 16 at depths of 20 to 31 mm and at an insertion angle of 49° relative to the probe surface normal. The results of this study demonstrate that 3D ultrasonic needle tracking with a fiber-optic hydrophone sensor and a 1.5D array is feasible in clinically realistic environments. PMID:28111644

  8. Unique gel-coupled acoustic sensor array monitors human voice and physiology

    NASA Astrophysics Data System (ADS)

    Scanlon, Michael

    2002-11-01

    The health and performance of soldiers, firefighters, and other first responders in strenuous and hazardous environments can be continuously and remotely monitored with body-worn acoustic sensors. The Army Research Laboratory's gel-coupled acoustic physiological monitoring sensor has acoustic impedance properties similar to the skin that facilitate the transmission of body sounds into the sensor pad, yet significantly repel ambient airborne noises due to an impedance mismatch. Acoustic signal processing detects physiological events such as heartbeats, breaths, wheezes, coughs, blood pressure, activity, motion, and voice for communication and automatic speech recognition. Acoustic sensors can be in a helmet or in a strap around the neck, chest, and wrist. Although the physiological sounds have high SNR, the acoustic sensor also responds to motion-induced artifacts that sometimes obscure meaningful physiology. A noise-canceling sensor array configuration helps remove motion noise by using two acoustic sensors on the front sides of the neck and 2 additional acoustic sensors on each wrist. The motion noise detected on all 4 sensors will be dissimilar and out of phase, yet the physiology on all 4 sensors is covariant. Pulse wave transit time between neck and wrist will indicate systolic blood pressure. Data from a firefighter experiment will be presented.

  9. Fabrication of broadband poly(vinylidene difluoride-trifluroethylene) line-focus ultrasonic transducers for surface acoustic wave measurements of anisotropy of a (100) silicon wafer.

    PubMed

    Lu, Yan; He, Cunfu; Song, Guorong; Wu, Bin; Chung, Cheng-Hsien; Lee, Yung-Chun

    2014-01-01

    This paper investigates a new method for fabrication of broadband line-focus ultrasonic transducers by sol-gel spin-coating the poly(vinylidene difluoride-trifluroethylene) [P(VDF-TrFE)] copolymer film on a concave fine-polished beryllium copper backing. The ferroelectric hysteresis loops of the P(VDF-TrFE) films spin-coated from different molar ratios of VDF/TrFE, 77/23 and 55/45, were measured to select the better mixture. Owing to the better acoustic matching to water, compared with lead zirconate titanate (PZT), the fabricated transducers show relatively wide bandwidth of approximately 50 MHz with high central frequency of 60 MHz obtained at the focal plane when a fused-quartz acts as a reflecting target. Each one of the two finished transducers has a focal length of 5mm and a full aperture angle of 90°. After applying the specially developed digital signal processing algorithm to the defocusing experiment data, which is called V(f,z) analysis method based on two-dimensional fast Fourier transform (2-D FFT), the operating frequency can extend from several MHz to over 90 MHz. Surface acoustic wave (SAW) velocities of a typical (100) silicon wafer was measured along various directions between [100] and [010] to represent the anisotropic features.

  10. The Design and Analysis of Split Row-Column Addressing Array for 2-D Transducer

    PubMed Central

    Li, Xu; Jia, Yanping; Ding, Mingyue; Yuchi, Ming

    2016-01-01

    For 3-D ultrasound imaging, the row-column addressing (RCA) with 2N connections for an N × N 2-D array makes the fabrication and interconnection simpler than the fully addressing with N2 connections. However, RCA degrades the image quality because of defocusing in signal channel direction in the transmit event. To solve this problem, a split row-column addressing scheme (SRCA) is proposed in this paper. Rather than connecting all the elements in the signal channel direction together, this scheme divides the elements in the signal channel direction into several disconnected blocks, thus enables focusing beam access in both signal channel and switch channel directions. Selecting an appropriate split scheme is the key for SRCA to maintaining a reasonable tradeoff between the image quality and the number of connections. Various split schemes for a 32 × 32 array are fully investigated with point spread function (PSF) analysis and imaging simulation. The result shows the split scheme with five blocks (4, 6, 12, 6, and 4 elements of each block) can provide similar image quality to fully addressing. The splitting schemes for different array sizes from 16 × 16 to 96 × 96 are also discussed. PMID:27690029

  11. Phased-ultrasonic receiving-planar array transducer for partial discharge location in transformer.

    PubMed

    Yongfen, Luo; Shengchang, Ji; Yanming, Li

    2006-03-01

    Partial discharge (PD) location in transformers is very important, and many methods that have been brought forward in past decades have a limitation theoretically, namely, they cannot locate multiple PDs in electrical equipment. In this paper, a new PD location method based on UHF and ultrasonic-phased arrays receiving theory has been presented, which has a possibility to locate multiple PDs. According to the method, a phased-ultrasonic receiving-planar array sensor that possesses 16 * 16 elements is designed; and, based on the phased-array theory, the characteristics of the plane sensor are studied. The laboratory experimental tests on the plane sensor element indicates that it has a good performance within the frequency band of the main ultrasonic energy produced by PD in transformer oil. Location tests are conducted on one or two piezoelectric ultrasonic sources in oil, which are both simulated as PD sources and triggered by an electrical pulse whose front is considered as a time benchmark in the locating algorithm. The test results show locations to one and two PDs can be realized in a single measurement, which lays a foundation for locating PDs in a power transformer in service.

  12. The Design and Analysis of Split Row-Column Addressing Array for 2-D Transducer.

    PubMed

    Li, Xu; Jia, Yanping; Ding, Mingyue; Yuchi, Ming

    2016-09-27

    For 3-D ultrasound imaging, the row-column addressing (RCA) with 2N connections for an N × N 2-D array makes the fabrication and interconnection simpler than the fully addressing with N² connections. However, RCA degrades the image quality because of defocusing in signal channel direction in the transmit event. To solve this problem, a split row-column addressing scheme (SRCA) is proposed in this paper. Rather than connecting all the elements in the signal channel direction together, this scheme divides the elements in the signal channel direction into several disconnected blocks, thus enables focusing beam access in both signal channel and switch channel directions. Selecting an appropriate split scheme is the key for SRCA to maintaining a reasonable tradeoff between the image quality and the number of connections. Various split schemes for a 32 × 32 array are fully investigated with point spread function (PSF) analysis and imaging simulation. The result shows the split scheme with five blocks (4, 6, 12, 6, and 4 elements of each block) can provide similar image quality to fully addressing. The splitting schemes for different array sizes from 16 × 16 to 96 × 96 are also discussed.

  13. Acoustic source localization using a polyhedral microphone array and an improved generalized cross-correlation technique

    NASA Astrophysics Data System (ADS)

    Padois, Thomas; Sgard, Franck; Doutres, Olivier; Berry, Alain

    2017-01-01

    Millions of workers are exposed to excessive noise levels each day. Acoustic solutions have to be developed to protect workers from hearing loss. The first step of an acoustic diagnosis is the source localization which can be performed with a microphone array. Spherical microphone arrays can be used to detect the acoustic source positions in a workplace. In this study, a spherical microphone array, with polyhedral discretization, is proposed and compared with a spherical array with a slightly different geometry. The generalized cross-correlation technique is used to detect the source positions. Moreover, two criteria are introduced to improve the noise source map. The first is based on the geometric properties of the microphone array and the scan zone whereas the second is based on the energy of the spatial likelihood function. Numerical data are used to provide a systematic comparison of both geometries and criteria. Finally, experiments in a reverberant room reveal that the polyhedral microphone array associated with both criteria provides the best noise source map.

  14. Inferring the acoustic dead-zone volume by split-beam echo sounder with narrow-beam transducer on a noninertial platform.

    PubMed

    Patel, Ruben; Pedersen, Geir; Ona, Egil

    2009-02-01

    Acoustic measurement of near-bottom fish with a directional transducer is generally problematical because the powerful bottom echo interferes with weaker echoes from fish within the main lobe but at greater ranges than that of the bottom. The volume that is obscured is called the dead zone. This has already been estimated for the special case of a flat horizontal bottom when observed by an echo sounder with a stable vertical transducer beam [Ona, E., and Mitson, R. B. (1996). ICES J. Mar. Sci. 53, 677-690]. The more general case of observation by a split-beam echo sounder with a transducer mounted on a noninertial platform is addressed here. This exploits the capability of a split-beam echo sounder to measure the bottom slope relative to the beam axis and thence to allow the dead-zone volume over a flat but sloping bottom to be estimated analytically. The method is established for the Simrad EK60 scientific echo sounder, with split-beam transducers operating at 18, 38, 70, 120, and 200 kHz. It is validated by comparing their estimates of seafloor slope near the Lofoten Islands, N67-70, with simultaneous measurements made by two hydrographic multibeam sonars, the Simrad EM100295 kHz and EM30030 kHz systems working in tandem.

  15. Three-dimensional Ultrasound Molecular Imaging of Angiogenesis in Colon Cancer using a Clinical Matrix Array Ultrasound Transducer

    PubMed Central

    Wang, Huaijun; Kaneko, Osamu F.; Tian, Lu; Hristov, Dimitre; Willmann, Jürgen K.

    2015-01-01

    Objectives We sought to assess the feasibility and reproducibility of three-dimensional (3D) ultrasound molecular imaging (USMI) of vascular endothelial growth factor receptor 2 (VEGFR2) expression in tumor angiogenesis using a clinical matrix array transducer and a clinical grade VEGFR2-targeted contrast agent in a murine model of human colon cancer. Materials and Methods Animal studies were approved by the Institutional Administrative Panel on Laboratory Animal Care. Mice with human colon cancer xenografts (n=33) were imaged with a clinical ultrasound system and transducer (Philips iU22; X6-1) following intravenous injection of either clinical grade VEGFR2-targeted microbubbles (MBVEGFR2) or non-targeted control microbubbles (MBControl). Nineteen mice were scanned twice to assess imaging reproducibility. Fourteen mice were scanned both before and 24h after treatment with either bevacizumab (n=7) or saline only (n=7). 3D USMI datasets were retrospectively reconstructed into multiple consecutive 1-mm thick USMI data sets to simulate 2D imaging. Vascular VEGFR2 expression was assessed ex vivo using immunofluorescence. Results 3D USMI was highly reproducible using both MBVEGFR2 and MBControl (ICC=0.83). VEGFR2-targeted USMI signal significantly (P=0.02) decreased by 57% following anti-angiogenic treatment compared to the control group, which correlated well with ex vivo VEGFR2 expression on immunofluorescence (rho=0.93, P=0.003). If only central 1-mm tumor planes were analyzed to assess anti-angiogenic treatment response, the USMI signal change was significantly (P=0.006) overestimated by an average of 27% (range, 2–73%) compared to 3D USMI. Conclusions 3D USMI is feasible and highly reproducible and allows accurate assessment and monitoring of VEGFR2 expression in tumor angiogenesis in a murine model of human colon cancer. PMID:25575176

  16. Spontaneous assembly of chemically encoded two-dimensional coacervate droplet arrays by acoustic wave patterning

    PubMed Central

    Tian, Liangfei; Martin, Nicolas; Bassindale, Philip G.; Patil, Avinash J.; Li, Mei; Barnes, Adrian; Drinkwater, Bruce W.; Mann, Stephen

    2016-01-01

    The spontaneous assembly of chemically encoded, molecularly crowded, water-rich micro-droplets into periodic defect-free two-dimensional arrays is achieved in aqueous media by a combination of an acoustic standing wave pressure field and in situ complex coacervation. Acoustically mediated coalescence of primary droplets generates single-droplet per node micro-arrays that exhibit variable surface-attachment properties, spontaneously uptake dyes, enzymes and particles, and display spatial and time-dependent fluorescence outputs when exposed to a reactant diffusion gradient. In addition, coacervate droplet arrays exhibiting dynamical behaviour and exchange of matter are prepared by inhibiting coalescence to produce acoustically trapped lattices of droplet clusters that display fast and reversible changes in shape and spatial configuration in direct response to modulations in the acoustic frequencies and fields. Our results offer a novel route to the design and construction of ‘water-in-water' micro-droplet arrays with controllable spatial organization, programmable signalling pathways and higher order collective behaviour. PMID:27708286

  17. Spontaneous assembly of chemically encoded two-dimensional coacervate droplet arrays by acoustic wave patterning

    NASA Astrophysics Data System (ADS)

    Tian, Liangfei; Martin, Nicolas; Bassindale, Philip G.; Patil, Avinash J.; Li, Mei; Barnes, Adrian; Drinkwater, Bruce W.; Mann, Stephen

    2016-10-01

    The spontaneous assembly of chemically encoded, molecularly crowded, water-rich micro-droplets into periodic defect-free two-dimensional arrays is achieved in aqueous media by a combination of an acoustic standing wave pressure field and in situ complex coacervation. Acoustically mediated coalescence of primary droplets generates single-droplet per node micro-arrays that exhibit variable surface-attachment properties, spontaneously uptake dyes, enzymes and particles, and display spatial and time-dependent fluorescence outputs when exposed to a reactant diffusion gradient. In addition, coacervate droplet arrays exhibiting dynamical behaviour and exchange of matter are prepared by inhibiting coalescence to produce acoustically trapped lattices of droplet clusters that display fast and reversible changes in shape and spatial configuration in direct response to modulations in the acoustic frequencies and fields. Our results offer a novel route to the design and construction of `water-in-water' micro-droplet arrays with controllable spatial organization, programmable signalling pathways and higher order collective behaviour.

  18. A Mixer-Receiver for the Parametric Acoustic Receiving Array (PARRAY)

    DTIC Science & Technology

    1978-09-18

    oo NuMSIS _______ SEP05! I4 _ T~y~~~~f .~ ~ MIXER-BECEIVER FOR THE PARAMETRIC ACOUSTIC K ~~~~~ hnica l P.cP.rL) )RECEIVING ARRAY ( PARRAY ) ~~. I...ic receiver B PARRAY nonlinear acoustics $~~~~~~~t 5AC T ~CnntInu. on ,.v ~~.. •ld~ U n.c. .•I.y and Id.nSE~~ Ay bh~rA nu~~ba r) — — (U) A...receiver for a Parametric Acoustic Receiving Array ( PARRAY ’~ based on a high performance mixer appears to be well suited to the requirements of some PARRAY

  19. Source localization from an elevated acoustic sensor array in a refractive atmosphere.

    PubMed

    Ostashev, Vladimir E; Scanlon, Michael V; Wilson, D Keith; Vecherin, Sergey N

    2008-12-01

    Localization of sound sources on the ground from an acoustic sensor array elevated on a tethered aerostat is considered. To improve estimation of the source coordinates, one should take into account refraction of sound rays due to atmospheric stratification. Using a geometrical acoustics approximation for a stratified moving medium, formulas for the source coordinates are derived that account for sound refraction. The source coordinates are expressed in terms of the direction of sound propagation as measured by the sensor array, its coordinates, and the vertical profiles of temperature and wind velocity. Employing these formulas and typical temperature and wind velocity profiles in the atmosphere, it is shown numerically that sound refraction is important for accurate predictions of the source coordinates. Furthermore, it is shown that the effective sound speed approximation, which is widely used in atmospheric acoustics, fails to correctly predict the source coordinates if the grazing angle of sound propagation is relatively large.

  20. Acoustic phonon spectrum and thermal transport in nanoporous alumina arrays

    DOE PAGES

    Kargar, Fariborz; Ramirez, Sylvester; Debnath, Bishwajit; ...

    2015-10-28

    We report results of a combined investigation of thermal conductivity and acoustic phonon spectra in nanoporous alumina membranes with the pore diameter decreasing from D=180 nm to 25 nm. The samples with the hexagonally arranged pores were selected to have the same porosity Ø ≈13%. The Brillouin-Mandelstam spectroscopy measurements revealed bulk-like phonon spectrum in the samples with D = 180 nm pores and spectral features, which were attributed to spatial confinement, in the samples with 25 nm and 40 nm pores. The velocity of the longitudinal acoustic phonons was reduced in the samples with smaller pores. As a result, analysismore » of the experimental data and calculated phonon dispersion suggests that both phonon-boundary scattering and phonon spatial confinement affect heat conduction in membranes with the feature sizes D < 40 nm.« less

  1. Acoustic phonon spectrum and thermal transport in nanoporous alumina arrays

    SciTech Connect

    Kargar, Fariborz; Ramirez, Sylvester; Debnath, Bishwajit; Malekpour, Hoda; Lake, Roger; Balandin, Alexander A.

    2015-10-28

    We report results of a combined investigation of thermal conductivity and acoustic phonon spectra in nanoporous alumina membranes with the pore diameter decreasing from D=180 nm to 25 nm. The samples with the hexagonally arranged pores were selected to have the same porosity Ø ≈13%. The Brillouin-Mandelstam spectroscopy measurements revealed bulk-like phonon spectrum in the samples with D = 180 nm pores and spectral features, which were attributed to spatial confinement, in the samples with 25 nm and 40 nm pores. The velocity of the longitudinal acoustic phonons was reduced in the samples with smaller pores. As a result, analysis of the experimental data and calculated phonon dispersion suggests that both phonon-boundary scattering and phonon spatial confinement affect heat conduction in membranes with the feature sizes D < 40 nm.

  2. Seismo-acoustic Signals Recorded at KSIAR, the Infrasound Array Installed at PS31

    NASA Astrophysics Data System (ADS)

    Kim, T. S.; Che, I. Y.; Jeon, J. S.; Chi, H. C.; Kang, I. B.

    2014-12-01

    One of International Monitoring System (IMS)'s primary seismic stations, PS31, called Korea Seismic Research Station (KSRS), was installed around Wonju, Korea in 1970s. It has been operated by US Air Force Technical Applications Center (AFTAC) for more than 40 years. KSRS is composed of 26 seismic sensors including 19 short period, 6 long period and 1 broad band seismometers. The 19 short period sensors were used to build an array with a 10-km aperture while the 6 long period sensors were used for a relatively long period array with a 40-km aperture. After KSRS was certified as an IMS station in 2006 by Comprehensive Nuclear Test Ban Treaty Organization (CTBTO), Korea Institute of Geoscience and Mineral Resources (KIGAM) which is the Korea National Data Center started to take over responsibilities on the operation and maintenance of KSRS from AFTAC. In April of 2014, KIGAM installed an infrasound array, KSIAR, on the existing four short period seismic stations of KSRS, the sites KS05, KS06, KS07 and KS16. The collocated KSIAR changed KSRS from a seismic array into a seismo-acoustic array. The aperture of KSIAR is 3.3 km. KSIAR also has a 100-m small aperture infrasound array at KS07. The infrasound data from KSIAR except that from the site KS06 is being transmitted in real time to KIGAM with VPN and internet line. An initial analysis on seismo-acoustic signals originated from local and regional distance ranges has been performed since May 2014. The analysis with the utilization of an array process called Progressive Multi-Channel Correlation (PMCC) detected seismo-acoustic signals caused by various sources including small explosions in relation to constructing local tunnels and roads. Some of them were not found in the list of automatic bulletin of KIGAM. The seismo-acoustic signals recorded by KSIAR are supplying a useful information for discriminating local and regional man-made events from natural events.

  3. A methodology for analyzing an acoustic scene in sensor arrays

    NASA Astrophysics Data System (ADS)

    Man, Hong; Hohil, Myron E.; Desai, Sachi

    2007-10-01

    Presented here is a novel clustering method for Hidden Markov Models (HMMs) and its application in acoustic scene analysis. In this method, HMMs are clustered based on a similarity measure for stochastic models defined as the generalized probability product kernel (GPPK), which can be efficiently evaluated according to a fast algorithm introduced by Chen and Man (2005) [1]. Acoustic signals from various sources are partitioned into small frames. Frequency features are extracted from each of the frames to form observation vectors. These frames are further grouped into segments, and an HMM is trained from each of such segments. An unknown segment is categorized with a known event if its HMM has the closest similarity with the HMM from the corresponding labeled segment. Experiments are conducted on an underwater acoustic dataset from Steven Maritime Security Laboratory, Data set contains a swimmer signature, a noise signature from the Hudson River, and a test sequence with a swimmer in the Hudson River. Experimental results show that the proposed method can successfully associate the test sequence with the swimmer signature at very high confidence, despite their different time behaviors.

  4. Photoacoustic tomography of small animal brain with a curved array transducer.

    PubMed

    Yang, Xinmai; Maurudis, Anastasios; Gamelin, John; Aguirre, Andres; Zhu, Quing; Wang, Lihong V

    2009-01-01

    We present the application of a curved array photoacoustic tomographic imaging system that can provide rapid, high-resolution photoacoustic imaging of small animal brains. The system is optimized to produce a B-mode, 90-deg field-of-view image at sub-200-microm resolution at a frame rate of approximately 1 frame/second when a 10-Hz pulse repetition rate laser is employed. By rotating samples, a complete 360-deg scan can be achieved within 15 s. In previous work, two-dimensional (2-D) ex vivo mouse brain cortex imaging has been reported. We report three-dimensional (3-D) small animal brain imaging obtained with the curved array system. The results are presented as a series of 2-D cross-sectional images. Besides structural imaging, the blood oxygen saturation of the animal brain cortex is also measured in vivo. In addition, the system can measure the time-resolved relative changes in blood oxygen saturation level in the small animal brain cortex. Last, ultrasonic gel coupling, instead of the previously adopted water coupling, is conveniently used in near-real-time 2-D imaging.

  5. Adaptive phase calibration of a microphone array for acoustic holography.

    PubMed

    Teal, Paul D; Poletti, Mark A

    2010-04-01

    Previous work has indicated that a limitation on the performance of a circular microphone array for holographic sound field recording at low frequencies is phase mismatch between the microphones in the array. At low frequencies these variations become more significant than at mid-range and high frequencies because the high order phase mode responses at low frequencies are lower in amplitude. This paper demonstrates the feasibility of a "self-calibration" method. The basis of the calibration is to estimate the location of one or more wide-band sources using mid-range frequencies and to use this source location information to perform correction to the array at low frequencies. In its simplest form the calibration must be performed in an anechoic environment, since multipath effects at widely differing frequencies are uncorrelated. The approach is first demonstrated in such an environment using recordings from an array of high quality microphones. The technique is then extended to an adaptive calibration that can be used in an environment that is somewhat reverberant. The validity of the adaptive approach is demonstrated using recordings from an array of inexpensive microphones.

  6. Design and fabrication of passive wireless sensor array system using composite coding resonant SAW transducer

    NASA Astrophysics Data System (ADS)

    Li, Ping; Wen, Yumei

    2006-02-01

    This paper presents a novel composite SAW (surface acoustic wave) passive wireless sensor system involving a resonator and a delay line. While the interrogational signal is a sinusoidal burst, the response is a delayed and damped oscillation. The frequency and the delay time of response are related to the measurand and the coding of the sensor element, respectively. The composite sensor consists of a SAW resonator and a delay line. It combines the advantages of these two devices and can be used as elements of multiple sensors for longer distance passive wireless measurements. As the wireless sensing response is weak and transient, in order to get the response with the maximum signal-to-noise ratio, the interrogational frequency is designed to be adjustable according to the result of frequency estimation. As a result, an optimal sensing result is achieved. In the transceiver set-up, the software DDS (direct digital synthesis) source with a rather high resolution is implemented to track the passive wireless sensor. An isolated switch is set in transmitter to depress the correlation leakage noise after switching off the wireless RF (radio frequency) interrogation signal. In this paper, the characteristics of the response, the working procedure of the signal processing, sensor temperature test results and the system error analyses are elaborated. A prototype instrument is built. Experimental results show the effectiveness of the instrumentation and the advantages of the composite sensor system.

  7. Partial-aperture array imaging in acoustic waveguides

    NASA Astrophysics Data System (ADS)

    Tsogka, Chrysoula; Mitsoudis, Dimitrios A.; Papadimitropoulos, Symeon

    2016-12-01

    We consider the problem of imaging extended reflectors in waveguides using partial-aperture array, i.e. an array that does not span the whole depth of the waveguide. For this imaging, we employ a method that back-propagates a weighted modal projection of the usual array response matrix. The challenge in this setup is to correctly define this projection matrix in order to maintain good energy concentration properties for the imaging method, which were obtained previously by Tsogka et al (2013 SIAM J. Imaging Sci. 6 2714-39) for the full-aperture case. In this paper we propose a way of achieving this and study the properties of the resulting imaging method.

  8. Design and fabrication of a 5 MHz ultrasonic phased array probe with curved transducer

    NASA Astrophysics Data System (ADS)

    Fischer, Julia; Herzog, Thomas; Walter, Susan; Heuer, Henning

    2013-05-01

    A 5 MHz, 16-element phased array concave ultrasonic probe for non-destructive testing has been designed, fabricated and tested. To improve the probes performance its curvature, as opposed to present solutions, was not obtained by adding a corresponding delay wedge, but rather by manufacturing the functional elements (i.e. active material, matching layer) with a curvature. The piezoelectric material used here was a 1-3 composite material made of PZT. The finished probe was tested on a steel half circle with the corresponding radius (100 mm) and on the Olympus PAUT test piece. Good results could be obtained. Three transverse holes with a diameter of 1 mm and a distance of 5 mm to one another could be detected and resolved.

  9. Magnetohydrodynamic Underwater Acoustic Transducer

    DTIC Science & Technology

    1986-12-01

    RL. GLNLA, CLNtI. GRLA. GRLB. GLID. GLAD I. GRAA. GRDA . LA. LB. A. RB 2. GXLN.A. GXLNLII GXRLA. GIRLD RFAL (.L VIA - CMPLX(O K-A) (’.0 CMPLX(O K-’.B...ADMITTANCE (OHMS) C COMM•ON / ZIP/ A L.LY.LZ,SRADRODCODRDM.COn.PI. BP.MCD.CON. FO. FF.FD COMPLEX ADMI LBB, CLAD. GRDA , CRAA REAL LLY. LZ. K ADII

  10. Acoustic and vibration performance evaluations of a velocity sensing hull array

    NASA Astrophysics Data System (ADS)

    Cray, Benjamin A.; Christman, Russell A.

    1996-04-01

    Acoustic and vibration measurements were conducted at the Naval Undersea Warfare Center's Seneca Lake Facility to investigate the in situ signal response of a linear array of velocity sensors (sensors that measure either acoustic particle acceleration, velocity, or displacement have generically been denoted as velocity sensors) on a coating. The coating used at Seneca Lake consisted of air-voided elastomeric tiles with an overall coating thickness of approximately 3 inches. The accelerometer array and coating were mounted on the Seneca Lake Hull Fixture, which measures 33 feet lengthwise with an arc length of 20 feet. The fixture weighs approximately 30 tons. Specifically, measurements of in situ sensitivity, velocity reduction, reflection gain, array beam response, and equivalent planewave self-noise levels are presented.

  11. Infrasonic and seismic signals from earthquakes and explosions observed with Plostina seismo-acoustic array

    NASA Astrophysics Data System (ADS)

    Ghica, D.; Ionescu, C.

    2012-04-01

    Plostina seismo-acoustic array has been recently deployed by the National Institute for Earth Physics in the central part of Romania, near the Vrancea epicentral area. The array has a 2.5 km aperture and consists of 7 seismic sites (PLOR) and 7 collocated infrasound instruments (IPLOR). The array is being used to assess the importance of collocated seismic and acoustic sensors for the purposes of (1) seismic monitoring of the local and regional events, and (2) acoustic measurement, consisting of detection of the infrasound events (explosions, mine and quarry blasts, earthquakes, aircraft etc.). This paper focuses on characterization of infrasonic and seismic signals from the earthquakes and explosions (accidental and mining type). Two Vrancea earthquakes with magnitude above 5.0 were selected to this study: one occurred on 1st of May 2011 (MD = 5.3, h = 146 km), and the other one, on 4th October 2011 (MD = 5.2, h = 142 km). The infrasonic signals from the earthquakes have the appearance of the vertical component of seismic signals. Because the mechanism of the infrasonic wave formation is the coupling of seismic waves with the atmosphere, trace velocity values for such signals are compatible with the characteristics of the various seismic phases observed with PLOR array. The study evaluates and characterizes, as well, infrasound and seismic data recorded from the explosion caused by the military accident produced at Evangelos Florakis Naval Base, in Cyprus, on 11th July 2011. Additionally, seismo-acoustic signals presumed to be related to strong mine and quarry blasts were investigated. Ground truth of mine observations provides validation of this interpretation. The combined seismo-acoustic analysis uses two types of detectors for signal identification: one is the automatic detector DFX-PMCC, applied for infrasound detection and characterization, while the other one, which is used for seismic data, is based on array processing techniques (beamforming and frequency

  12. Customization of the acoustic field produced by a piezoelectric array through interelement delays

    PubMed Central

    Chitnis, Parag V.; Barbone, Paul E.; Cleveland, Robin O.

    2008-01-01

    A method for producing a prescribed acoustic pressure field from a piezoelectric array was investigated. The array consisted of 170 elements placed on the inner surface of a 15 cm radius spherical cap. Each element was independently driven by using individual pulsers each capable of generating 1.2 kV. Acoustic field customization was achieved by independently controlling the time when each element was excited. The set of time delays necessary to produce a particular acoustic field was determined by using an optimization scheme. The acoustic field at the focal plane was simulated by using the angular spectrum method, and the optimization searched for the time delays that minimized the least squared difference between the magnitudes of the simulated and desired pressure fields. The acoustic field was shaped in two different ways: the −6 dB focal width was increased to different desired widths and the ring-shaped pressure distributions of various prescribed diameters were produced. For both cases, the set of delays resulting from the respective optimization schemes were confirmed to yield the desired pressure distributions by using simulations and measurements. The simulations, however, predicted peak positive pressures roughly half those obtained from the measurements, which was attributed to the exclusion of nonlinearity in the simulations. PMID:18537369

  13. Acoustic contrast, planarity and robustness of sound zone methods using a circular loudspeaker array.

    PubMed

    Coleman, Philip; Jackson, Philip J B; Olik, Marek; Møller, Martin; Olsen, Martin; Abildgaard Pedersen, Jan

    2014-04-01

    Since the mid 1990s, acoustics research has been undertaken relating to the sound zone problem-using loudspeakers to deliver a region of high sound pressure while simultaneously creating an area where the sound is suppressed-in order to facilitate independent listening within the same acoustic enclosure. The published solutions to the sound zone problem are derived from areas such as wave field synthesis and beamforming. However, the properties of such methods differ and performance tends to be compared against similar approaches. In this study, the suitability of energy focusing, energy cancelation, and synthesis approaches for sound zone reproduction is investigated. Anechoic simulations based on two zones surrounded by a circular array show each of the methods to have a characteristic performance, quantified in terms of acoustic contrast, array control effort and target sound field planarity. Regularization is shown to have a significant effect on the array effort and achieved acoustic contrast, particularly when mismatched conditions are considered between calculation of the source weights and their application to the system.

  14. An acoustic-array based structural health monitoring technique for wind turbine blades

    NASA Astrophysics Data System (ADS)

    Aizawa, Kai; Poozesh, Peyman; Niezrecki, Christopher; Baqersad, Javad; Inalpolat, Murat; Heilmann, Gunnar

    2015-04-01

    This paper proposes a non-contact measurement technique for health monitoring of wind turbine blades using acoustic beamforming techniques. The technique works by mounting an audio speaker inside a wind turbine blade and observing the sound radiated from the blade to identify damage within the structure. The main hypothesis for the structural damage detection is that the structural damage (cracks, edge splits, holes etc.) on the surface of a composite wind turbine blade results in changes in the sound radiation characteristics of the structure. Preliminary measurements were carried out on two separate test specimens, namely a composite box and a section of a wind turbine blade to validate the methodology. The rectangular shaped composite box and the turbine blade contained holes with different dimensions and line cracks. An acoustic microphone array with 62 microphones was used to measure the sound radiation from both structures when the speaker was located inside the box and also inside the blade segment. A phased array beamforming technique and CLEAN-based subtraction of point spread function from a reference (CLSPR) were employed to locate the different damage types on both the composite box and the wind turbine blade. The same experiment was repeated by using a commercially available 48-channel acoustic ring array to compare the test results. It was shown that both the acoustic beamforming and the CLSPR techniques can be used to identify the damage in the test structures with sufficiently high fidelity.

  15. Seismic and Acoustic Array Monitoring of Signal from Tungurahua Volcano, Ecuador

    NASA Astrophysics Data System (ADS)

    Terbush, B. R.; Anthony, R. E.; Johnson, J. B.; Ruiz, M. C.

    2012-12-01

    Tungurahua Volcano is an active stratovolcano located in Ecuador's eastern Cordillera. Since its most recent cycle of eruptive activity, beginning in 1999, it has produced both strombolian-to-vulcanian eruptions, and regular vapor emissions. Tungurahua is located above the city of Baños, so volcanic activity is well-monitored by Ecuador's Instituto Geofisico Nacional with a seismic and infrasound network, and other surveillance tools. Toward better understanding of the complex seismic and acoustic signals associated with low-level Tungurahua activity, and which are often low in signal-to-noise, we deployed temporary seismo-acoustic arrays between June 9th and 20th in 2012. This deployment was part of a Field Volcano Geophysics class, a collaboration between New Mexico Institute of Mining and Technology and the Escuela Politecnica Nacional's Instituto Geofísico in Ecuador. Two six-element arrays were deployed on the flank of the volcano. A seismo-acoustic array, which consisted of combined broadband seismic and infrasound sensors, possessed 100-meter spacing, and was deployed five kilometers north of the vent in an open field at 2700 m. The second array had only acoustic sensors with 30-meter spacing, and was deployed approximately six kilometers northwest of the vent, on an old pyroclastic flow deposit. The arrays picked up signals from four distinct explosion events, a number of diverse tremor signals, local volcano tectonic and long period earthquakes, and a regional tectonic event of magnitude 4.9. Coherency of both seismic and acoustic array data was quantified using Fisher Statistics, which was effective for identifying myriad signals. For most signals Fisher Statistics were particularly high in low frequency bands, between 0.5 and 2 Hz. Array analyses helped to filter out noise induced by cultural sources and livestock signals, which were particularly pronounced in the deployment site. Volcan Tungurahua sources were considered plane wave signals and could

  16. Coherent acoustic vibrations in silicon submicron spiral arrays

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Masashi; Liu, Jianxun; Ye, Dexian; Lu, Toh-Ming

    2009-08-01

    Mechanical properties of complex silicon submicron structures have been studied both experimentally and theoretically using time resolved ultrafast spectroscopy and finite element analysis. Periodic and random arrays of single-turned silicon submircron spirals were grown using the oblique angle deposition technique. Resonant vibrational modes of the submicron spirals were coherently excited by femtosecond laser pulses. Excitation of multiple harmonics of the resonant vibrations has been observed, and the mode patterns of the excited vibrations in the submicron spirals have been calculated.

  17. Particle velocity gradient based acoustic mode beamforming for short linear vector sensor arrays.

    PubMed

    Gur, Berke

    2014-06-01

    In this paper, a subtractive beamforming algorithm for short linear arrays of two-dimensional particle velocity sensors is described. The proposed method extracts the highly directional acoustic modes from the spatial gradients of the particle velocity field measured at closely spaced sensors along the array. The number of sensors in the array limits the highest order of modes that can be extracted. Theoretical analysis and numerical simulations indicate that the acoustic mode beamformer achieves directivity comparable to the maximum directivity that can be obtained with differential microphone arrays of equivalent aperture. When compared to conventional delay-and-sum beamformers for pressure sensor arrays, the proposed method achieves comparable directivity with 70%-85% shorter apertures. Moreover, the proposed method has additional capabilities such as high front-back (port-starboard) discrimination, frequency and steer direction independent response, and robustness to correlated ambient noise. Small inter-sensor spacing that results in very compact apertures makes the proposed beamformer suitable for space constrained applications such as hearing aids and short towed arrays for autonomous underwater platforms.

  18. Design of acoustic logging signal source of imitation based on field programmable gate array

    NASA Astrophysics Data System (ADS)

    Zhang, K.; Ju, X. D.; Lu, J. Q.; Men, B. Y.

    2014-08-01

    An acoustic logging signal source of imitation is designed and realized, based on the Field Programmable Gate Array (FPGA), to improve the efficiency of examining and repairing acoustic logging tools during research and field application, and to inspect and verify acoustic receiving circuits and corresponding algorithms. The design of this signal source contains hardware design and software design,and the hardware design uses an FPGA as the control core. Four signals are made first by reading the Random Access Memory (RAM) data which are inside the FPGA, then dealing with the data by digital to analog conversion, amplification, smoothing and so on. Software design uses VHDL, a kind of hardware description language, to program the FPGA. Experiments illustrate that the ratio of signal to noise for the signal source is high, the waveforms are stable, and also its functions of amplitude adjustment, frequency adjustment and delay adjustment are in accord with the characteristics of real acoustic logging waveforms. These adjustments can be used to imitate influences on sonic logging received waveforms caused by many kinds of factors such as spacing and span of acoustic tools, sonic speeds of different layers and fluids, and acoustic attenuations of different cementation planes.

  19. Crack Orientation and Depth Estimation in a Low-Pressure Turbine Disc Using a Phased Array Ultrasonic Transducer and an Artificial Neural Network

    PubMed Central

    Yang, Xiaoxia; Chen, Shili; Jin, Shijiu; Chang, Wenshuang

    2013-01-01

    Stress corrosion cracks (SCC) in low-pressure steam turbine discs are serious hidden dangers to production safety in the power plants, and knowing the orientation and depth of the initial cracks is essential for the evaluation of the crack growth rate, propagation direction and working life of the turbine disc. In this paper, a method based on phased array ultrasonic transducer and artificial neural network (ANN), is proposed to estimate both the depth and orientation of initial cracks in the turbine discs. Echo signals from cracks with different depths and orientations were collected by a phased array ultrasonic transducer, and the feature vectors were extracted by wavelet packet, fractal technology and peak amplitude methods. The radial basis function (RBF) neural network was investigated and used in this application. The final results demonstrated that the method presented was efficient in crack estimation tasks. PMID:24064602

  20. Crack orientation and depth estimation in a low-pressure turbine disc using a phased array ultrasonic transducer and an artificial neural network.

    PubMed

    Yang, Xiaoxia; Chen, Shili; Jin, Shijiu; Chang, Wenshuang

    2013-09-13

    Stress corrosion cracks (SCC) in low-pressure steam turbine discs are serious hidden dangers to production safety in the power plants, and knowing the orientation and depth of the initial cracks is essential for the evaluation of the crack growth rate, propagation direction and working life of the turbine disc. In this paper, a method based on phased array ultrasonic transducer and artificial neural network (ANN), is proposed to estimate both the depth and orientation of initial cracks in the turbine discs. Echo signals from cracks with different depths and orientations were collected by a phased array ultrasonic transducer, and the feature vectors were extracted by wavelet packet, fractal technology and peak amplitude methods. The radial basis function (RBF) neural network was investigated and used in this application. The final results demonstrated that the method presented was efficient in crack estimation tasks.

  1. Performance enhancement of an air-coupled multiple moving membrane capacitive micromachined ultrasonic transducer using an optimized middle plate configuration

    NASA Astrophysics Data System (ADS)

    Emadi, Arezoo; Buchanan, Douglas

    2016-10-01

    A multiple moving membrane capacitive micromachined ultrasonic transducer has been developed. This transducer cell structure includes a second flexible plate suspended between the transducer top plate and the fixed bottom electrode. The added plate influences the transducer top plate deflection map and, therefore, the transducer properties. Three series of individual air-coupled, dual deflectable plate transducers and two 1×27 element transducer arrays were fabricated using multiuser microelectromechanical systems (MEMS) processes (MUMPs). Each set of transducers included devices with middle plate radii from 22% to 65% of the corresponding transducer top plate radius. The effect of the transducer middle plate configuration has been investigated. Electrical, optical, and acoustic characterizations were conducted and the results were compared with the simulation findings. It was found that the transducer top plate amplitude of vibration is significantly enhanced with a wider middle deflectable plate. The electrical and optical measurement results are shown to be in good agreement with simulation results. The acoustic measurement results indicated a 37% increase in the amplitude of transmitted signal by the 1-MHz air-couple transducer when its middle plate radius was increased by 35%.

  2. Source localization with acoustic sensor arrays using generative model based fitting with sparse constraints.

    PubMed

    Velasco, Jose; Pizarro, Daniel; Macias-Guarasa, Javier

    2012-10-15

    This paper presents a novel approach for indoor acoustic source localization using sensor arrays. The proposed solution starts by defining a generative model, designed to explain the acoustic power maps obtained by Steered Response Power (SRP) strategies. An optimization approach is then proposed to fit the model to real input SRP data and estimate the position of the acoustic source. Adequately fitting the model to real SRP data, where noise and other unmodelled effects distort the ideal signal, is the core contribution of the paper. Two basic strategies in the optimization are proposed. First, sparse constraints in the parameters of the model are included, enforcing the number of simultaneous active sources to be limited. Second, subspace analysis is used to filter out portions of the input signal that cannot be explained by the model. Experimental results on a realistic speech database show statistically significant localization error reductions of up to 30% when compared with the SRP-PHAT strategies.

  3. Source Localization with Acoustic Sensor Arrays Using Generative Model Based Fitting with Sparse Constraints

    PubMed Central

    Velasco, Jose; Pizarro, Daniel; Macias-Guarasa, Javier

    2012-01-01

    This paper presents a novel approach for indoor acoustic source localization using sensor arrays. The proposed solution starts by defining a generative model, designed to explain the acoustic power maps obtained by Steered Response Power (SRP) strategies. An optimization approach is then proposed to fit the model to real input SRP data and estimate the position of the acoustic source. Adequately fitting the model to real SRP data, where noise and other unmodelled effects distort the ideal signal, is the core contribution of the paper. Two basic strategies in the optimization are proposed. First, sparse constraints in the parameters of the model are included, enforcing the number of simultaneous active sources to be limited. Second, subspace analysis is used to filter out portions of the input signal that cannot be explained by the model. Experimental results on a realistic speech database show statistically significant localization error reductions of up to 30% when compared with the SRP-PHAT strategies. PMID:23202021

  4. Estimation of low-altitude moving target trajectory using single acoustic array.

    PubMed

    Tong, Jianfei; Xie, Wei; Hu, Yu-Hen; Bao, Ming; Li, Xiaodong; He, Wei

    2016-04-01

    An acoustic-signature based method of estimating the flight trajectory of low-altitude flying aircraft that only requires a stationary microphone array is proposed. This method leverages the Doppler shifts of engine sound to estimate the closest point of approach distance, time, and speed. It also leverages the acoustic phase shift over the microphone array to estimate the direction of arrival of the target. Combining these parameters, this algorithm provides a total least square estimate of the target trajectory under the assumption of constant target height, direction, and speed. Analytical bounds of potential performance degradation due to noise are derived and the estimation error caused by signal propagation delay is analyzed, and both are verified with extensive simulation. The proposed algorithm is also validated by processing the data collected in field experiments.

  5. Helmet-mounted acoustic array for hostile fire detection and localization in an urban environment

    NASA Astrophysics Data System (ADS)

    Scanlon, Michael V.

    2008-04-01

    The detection and localization of hostile weapons firing has been demonstrated successfully with acoustic sensor arrays on unattended ground sensors (UGS), ground-vehicles, and unmanned aerial vehicles (UAVs). Some of the more mature systems have demonstrated significant capabilities and provide direct support to ongoing counter-sniper operations. The Army Research Laboratory (ARL) is conducting research and development for a helmet-mounted system to acoustically detect and localize small arms firing, or other events such as RPG, mortars, and explosions, as well as other non-transient signatures. Since today's soldier is quickly being asked to take on more and more reconnaissance, surveillance, & target acquisition (RSTA) functions, sensor augmentation enables him to become a mobile and networked sensor node on the complex and dynamic battlefield. Having a body-worn threat detection and localization capability for events that pose an immediate danger to the soldiers around him can significantly enhance their survivability and lethality, as well as enable him to provide and use situational awareness clues on the networked battlefield. This paper addresses some of the difficulties encountered by an acoustic system in an urban environment. Complex reverberation, multipath, diffraction, and signature masking by building structures makes this a very harsh environment for robust detection and classification of shockwaves and muzzle blasts. Multifunctional acoustic detection arrays can provide persistent surveillance and enhanced situational awareness for every soldier.

  6. Development and Evaluation of an Experimental Parametric Acoustic Receiving Array (PARRAY)

    DTIC Science & Technology

    1979-02-16

    The development, test, and evaluation of an experimental parametric acoustic receiving array ( PARRAY ) with a pump-hydrophone separation of 340 m are...described in this report. Tests in Lake Travis, Texas, demonstrated a greater than 40 dB reduction in the self-noise floor of the experimental PARRAY ...major hardware subsystems employed in the experimental PARRAY : high spectral purity pump signal generation; commensurate power amplification; high

  7. The prediction of transducer element performance from in air measurements

    NASA Astrophysics Data System (ADS)

    Schafer, M. E.

    1982-01-01

    A technique has been developed which accurately predicts the performance of underwater acoustic arrays prior to array construction. The technique is based upon the measurement of lumped-parameter equivalent circuit values for each element in the array, and is accurate in predicting the array transmit, receive and beam pattern response. The measurement procedure determines the shunt electrical and motional circuit elements from electrical imittance measurements. The electromechanical transformation ratio is derived from in-air measurements of the radiating face velocity and the input current to the transducer at resonance. The equivalent circuit values of a group of Tonpilz-type transducers were measured, and the self and mutual interaction acoustic loadings for a specific array geometry were calculated. The response of the elements was then predicted for water-loaded array conditions. Based on the predictions, a selection scheme was developed which minimized the effects of inter-element variability on array performance. The measured transmitting, receiving and beam pattern characteristics of a test array, built using the selected elements, were compared to predictions made before the array was built. The results indicated that the technique is accurate over a wide frequency range.

  8. Modal content based damage indicators and phased array transducers for structural health monitoring of aircraft structures using ultrasonic guided waves

    NASA Astrophysics Data System (ADS)

    Ren, Baiyang

    Composite materials, especially carbon fiber reinforced polymers (CFRP), have been widely used in the aircraft industry because of their high specific strength and stiffness, resistance to corrosion and good fatigue life. Due to their highly anisotropic material properties and laminated structures, joining methods like bolting and riveting are no longer appropriate for joining CFRP since they initiate defects during the assembly and severely compromise the integrity of the structure; thus new techniques for joining CFRP are highly demanded. Adhesive bonding is a promising method because it relieves stress concentration, reduces weight and provides smooth surfaces. Additionally, it is a low-cost alternative to the co-cured method which is currently used to manufacture components of aircraft fuselage. Adhesive defects, disbonds at the interface between adherend and adhesive layer, are focused on in this thesis because they can be initialized by either poor surface preparation during the manufacturing or fatigue loads during service. Aircraft need structural health monitoring (SHM) systems to increase safety and reduce loss, and adhesive bonds usually represent the hotspots of the assembled structure. There are many nondestructive evaluation (NDE) methods for bond inspection. However, these methods cannot be readily integrated into an SHM system because of the bulk size and weight of the equipment and requirement of accessibility to one side of the bonded joint. The first objective of this work is to develop instruments, actuators, sensors and a data acquisition system for SHM of bond lines using ultrasonic guided waves which are well known to be able to cover large volume of the structure and inaccessible regions. Different from widely used guided wave sensors like PZT disks, the new actuators, piezoelectric fiber composite (PFC) phased array transducers0 (PAT), can control the modal content of the excited waves and the new sensors, polyvinylidene fluoride (PVDF

  9. Calibration apparatus for recess mounted pressure transducers

    NASA Astrophysics Data System (ADS)

    Marcolini, Michael A.; Miller, William T., Jr.; Baals, Robert A.; Martin, Ruth M.

    1992-04-01

    Measurement of surface pressure fluctuations is important in aerodynamic studies and is conventionally accomplished via thin surface mounted transducers. These transducers contaminate the airflow, leading to the use of transducers located beneath the surface and communicating thereto via a pipette. This solution creates its own problem of transducer calibration due to the structure of the pipette. A calibration apparatus and method for calibrating a pressure transducer are provided. The pressure transducer is located within a test structure having a pipette leading from an outer structure surface to the pressure transducer. The calibration apparatus defines an acoustic cavity. A first end of the acoustic cavity is adapted to fluidly communicate with the pipette leading to the pressure transducer, wherein a channel is formed from the acoustic cavity to the transducer. An acoustic driver is provided for acoustically exciting fluid in the acoustic cavity to generate pressure waves which propagate to the pressure transducer. A pressure sensing microphone is provided for sensing the pressure fluctuations in the cavity near the cavity end, whereby this sensed pressure is compared with a simultaneously pressure sensed by the pressure transducer to permit calibration of the pressure transducer sensings. Novel aspects of the present invention include its use of a calibration apparatus to permit in-situ calibration of recess mounted pressure transducers.

  10. Acoustic power measurement of high intensity focused ultrasound in medicine based on radiation force.

    PubMed

    Shou, Wende; Huang, Xiaowei; Duan, Shimei; Xia, Rongmin; Shi, Zhonglong; Geng, Xiaoming; Li, Faqi

    2006-12-22

    How to measure the acoustic power of HIFU is one of the most important tasks in its medical application. In the paper a whole series of formula for calculating the radiation force related to the acoustic power radiated by a single element focusing transducer and by the focusing transducer array were given. Various system of radiation force balance (RFB) to measure the acoustic power of HIFU in medicine were designed and applied in China. In high power experiments, the dependence of radiation force acting the absorbing target on the target position at the beam axis of focusing transducer was fined. There is a peak value of "radiation force" acting the absorbing target in the focal region when the acoustic power through the focal plane exceeds some threshold. In order to avoid this big measurement error caused by the 'peak effect' in focal region, the distance between the absorbing target of RFB and the focusing transducer or transducer array was defined to be equal to or less than 0.7 times of the focal length in the National Standard of China for the measurements of acoustic power and field characteristics of HIFU. More than six different therapeutic equipments of HIFU have been examined by RFB for measuring the acoustic power since 1998. These results show that RFB with the absorbing target is valid in the acoustic power range up to 500W with good linearity for the drive voltage squared of focusing transducer or array. The uncertainty of measurement is within +/-15%.

  11. A novel acoustic emission beamforming method with two uniform linear arrays on plate-like structures.

    PubMed

    Xiao, Denghong; He, Tian; Pan, Qiang; Liu, Xiandong; Wang, Jin; Shan, Yingchun

    2014-02-01

    A novel acoustic emission (AE) source localization approach based on beamforming with two uniform linear arrays is proposed, which can localize acoustic sources without accurate velocity, and is particularly suited for plate-like structures. Two uniform line arrays are distributed in the x-axis direction and y-axis direction. The accurate x and y coordinates of AE source are determined by the two arrays respectively. To verify the location accuracy and effectiveness of the proposed approach, the simulation of AE wave propagation in a steel plate based on the finite element method and the pencil-lead-broken experiment are conducted, and the AE signals obtained from the simulations and experiments are analyzed using the proposed method. Moreover, to study the ability of the proposed method more comprehensive, a plate of carbon fiber reinforced plastics is taken for the pencil-lead-broken test, and the AE source localization is also realized. The results indicate that the two uniform linear arrays can localize different sources accurately in two directions even though the localizing velocity is deviated from the real velocity, which demonstrates the effectiveness of the proposed method in AE source localization for plate-like structures.

  12. 4D ICE: A 2D Array Transducer with Integrated ASIC in a 10 Fr Catheter for Real-Time 3D Intracardiac Echocardiography.

    PubMed

    Wildes, Douglas; Lee, Warren; Haider, Bruno; Cogan, Scott; Sundaresan, Krishnakumar; Mills, David; Yetter, Christopher; Hart, Patrick; Haun, Christopher; Concepcion, Mikael; Kirkhorn, Johan; Bitoun, Marc

    2016-10-12

    We developed a 2.5 x 6.6 mm 2D array transducer with integrated transmit/receive ASIC for 4D ICE (real-time 3D IntraCardiac Echocardiography) applications. The ASIC and transducer design were optimized so that the high voltage transmit, low-voltage TGC (time-gain control) and preamp, subaperture beamformer, and digital control circuits for each transducer element all fit within the 0.019 mm2 area of the element. The transducer assembly was deployed in a 10 Fr (3.3 mm diameter) catheter, integrated with a GE Vivid1 E9 ultrasound imaging system, and evaluated in three pre-clinical studies. 2D image quality and imaging modes were comparable to commercial 2D ICE catheters. The 4D field of view was at least 90° x 60° x 8 cm and could be imaged at 30 volumes/sec, sufficient to visualize cardiac anatomy and other diagnostic and therapy catheters. 4D ICE should significantly reduce X-ray fluoroscopy use and dose during electrophysiology (EP) ablation procedures. 4D ICE may be able to replace trans-esophageal echocardiography (TEE), and the associated risks and costs of general anesthesia, for guidance of some structural heart procedures.

  13. Robotic vehicle uses acoustic array for detection and localization in urban environments

    NASA Astrophysics Data System (ADS)

    Young, Stuart H.; Scanlon, Michael V.

    2001-09-01

    Sophisticated robotic platforms with diverse sensor suites are quickly replacing the eyes and ears of soldiers on the complex battlefield. The Army Research Laboratory (ARL) in Adelphi, Maryland has developed a robot-based acoustic detection system that will detect an impulsive noise event, such as a sniper's weapon firing or door slam, and activate a pan-tilt to orient a visible and infrared camera toward the detected sound. Once the cameras are cued to the target, onboard image processing can then track the target and/or transmit the imagery to a remote operator for navigation, situational awareness, and target detection. Such a vehicle can provide reconnaissance, surveillance, and target acquisition for soldiers, law enforcement, and rescue personnel, and remove these people from hazardous environments. ARL's primary robotic platforms contain 16-in. diameter, eight-element acoustic arrays. Additionally, a 9- in. array is being developed in support of DARPA's Tactical Mobile Robot program. The robots have been tested in both urban and open terrain. The current acoustic processing algorithm has been optimized to detect the muzzle blast from a sniper's weapon, and reject many interfering noise sources such as wind gusts, generators, and self-noise. However, other detection algorithms for speech and vehicle detection/tracking are being developed for implementation on this and smaller robotic platforms. The collaboration between two robots, both with known positions and orientations, can provide useful triangulation information for more precise localization of the acoustic events. These robots can be mobile sensor nodes in a larger, more expansive, sensor network that may include stationary ground sensors, UAVs, and other command and control assets. This report will document the performance of the robot's acoustic localization, describe the algorithm, and outline future work.

  14. Origami acoustics: using principles of folding structural acoustics for simple and large focusing of sound energy

    NASA Astrophysics Data System (ADS)

    Harne, Ryan L.; Lynd, Danielle T.

    2016-08-01

    Fixed in spatial distribution, arrays of planar, electromechanical acoustic transducers cannot adapt their wave energy focusing abilities unless each transducer is externally controlled, creating challenges for the implementation and portability of such beamforming systems. Recently, planar, origami-based structural tessellations are found to facilitate great versatility in system function and properties through kinematic folding. In this research we bridge the physics of acoustics and origami-based design to discover that the simple topological reconfigurations of a Miura-ori-based acoustic array yield many orders of magnitude worth of reversible change in wave energy focusing: a potential for acoustic field morphing easily obtained through deployable, tessellated architectures. Our experimental and theoretical studies directly translate the roles of folding the tessellated array to the adaptations in spectral and spatial wave propagation sensitivities for far field energy transmission. It is shown that kinematic folding rules and flat-foldable tessellated arrays collectively provide novel solutions to the long-standing challenges of conventional, electronically-steered acoustic beamformers. While our examples consider sound radiation from the foldable array in air, linear acoustic reciprocity dictates that the findings may inspire new innovations for acoustic receivers, e.g. adaptive sound absorbers and microphone arrays, as well as concepts that include water-borne waves.

  15. Acoustic-emission linear-pulse holography

    SciTech Connect

    Collins, H.D.; Lemon, D.K.; Busse, L.J.

    1982-06-01

    This paper describes Acoustic Emission Linear Pulse Holography which combines the advantages of linear imaging and acoustic emission into a single NDE inspection system. This unique system produces a chronological linear holographic image of a flaw by utilizing the acoustic energy emitted during crack growth. Conventional linear holographic imaging uses an ultrasonic transducer to transmit energy into the volume being imaged. When the crack or defect reflects that energy, the crack acts as a new source of acoustic waves. To formulate an image of that source, a receiving transducer is scanned over the volume of interest and the phase of the received signals is measured at successive points on the scan. The innovation proposed here is the utilization of the crack generated acoustic emission as the acoustic source and generation of a line image of the crack as it grows. A thirty-two point sampling array is used to construct phase-only linear holograms of simulated acoustic emission sources on large metal plates. The phases are calculated using the pulse time-of-flight (TOF) times from the reference transducer to the array of receivers. Computer reconstruction of the image is accomplished using a one-dimensional FFT algorithm (i.e., backward wave). Experimental results are shown which graphically illustrate the unique acoustic emission images of a single point and a linear crack in a 100 mm x 1220 mm x 1220 mm aluminum plate.

  16. Acoustic emission linear pulse holography

    DOEpatents

    Collins, H. Dale; Busse, Lawrence J.; Lemon, Douglas K.

    1985-01-01

    Defects in a structure are imaged as they propagate, using their emitted acoustic energy as a monitored source. Short bursts of acoustic energy propagate through the structure to a discrete element receiver array. A reference timing transducer located between the array and the inspection zone initiates a series of time-of-flight measurements. A resulting series of time-of-flight measurements are then treated as aperture data and are transferred to a computer for reconstruction of a synthetic linear holographic image. The images can be displayed and stored as a record of defect growth.

  17. Acoustic emission linear pulse holography

    SciTech Connect

    Collins, H. D.; Busse, L. J.; Lemon, D. K.

    1985-07-30

    Defects in a structure are imaged as they propagate, using their emitted acoustic energy as a monitored source. Short bursts of acoustic energy propagate through the structure to a discrete element receiver array. A reference timing transducer located between the array and the inspection zone initiates a series of time-of-flight measurements. A resulting series of time-of-flight measurements are then treated as aperture data and are transferred to a computer for reconstruction of a synthetic linear holographic image. The images can be displayed and stored as a record of defect growth.

  18. Underwater patch near-field acoustical holography based on particle velocity and vector hydrophone array

    NASA Astrophysics Data System (ADS)

    Hu, Bo; Yang, DeSen; Li, SiChun; Sun, Yu; Mo, ShiQi; Shi, ShengGuo

    2012-11-01

    One-step patch near-field acoustical holography (PNAH) is a powerful tool for identifying noise sources from the partially known sound pressure field. The acoustical property to be reconstructed on the surface of interest is related to the partially measured pressure on the hologram surface in terms of sampling and bandlimiting matrices, which cost more in computation. A one-step procedure based on measuring of the normal component of the particle velocity is described, including the mathematical formulation. The numerical simulation shows that one-step PNAH based on particle velocity can obtain more accurately reconstructed results and it is also less sensitive to noise than the method based on pressure. These findings are confirmed by an underwater near-field acoustical holography experiment conducted with a vector hydrophone array. The experimental results have illustrated the high performance of one-step PNAH based on particle velocity in the reconstruction of sound field and the advantages of a vector hydrophone array in an underwater near-field measurement.

  19. Chemometric Classification of Unknown Vapors by Conversion of Sensor Array Pattern Vectors to Vapor Descriptors: Extension from Mass-Transducing Sensors To Volume-Transducing Sensors

    SciTech Connect

    Grate, Jay W.; Wise, Barry M.

    2001-06-28

    A new chemometric method was recently described for classifying unknowns by transforming the vector containing the responses from a multivariate detector to a vector containing descriptors of the detected analyte (Grate et al. 1999). This approach was derived for sensor arrays where each sensor's signal is proportional to the amount of vapor sorbed by a polymer on the sensor surface. In this case, the response is proportional to the partition coefficient, K, and the concentration of the vapor in the gas phase, Cv, where K is the ratio of the concentration of vapor in the sorbent polymer phase, Cs, to Cv.

  20. Microfluidic device for acoustic cell lysis

    SciTech Connect

    Branch, Darren W.; Cooley, Erika Jane; Smith, Gennifer Tanabe; James, Conrad D.; McClain, Jaime L.

    2015-08-04

    A microfluidic acoustic-based cell lysing device that can be integrated with on-chip nucleic acid extraction. Using a bulk acoustic wave (BAW) transducer array, acoustic waves can be coupled into microfluidic cartridges resulting in the lysis of cells contained therein by localized acoustic pressure. Cellular materials can then be extracted from the lysed cells. For example, nucleic acids can be extracted from the lysate using silica-based sol-gel filled microchannels, nucleic acid binding magnetic beads, or Nafion-coated electrodes. Integration of cell lysis and nucleic acid extraction on-chip enables a small, portable system that allows for rapid analysis in the field.

  1. Development of Highly Sensitive Bulk Acoustic Wave Device Biosensor Arrays for Screening and Early Detection of Prostate Cancer

    DTIC Science & Technology

    2009-01-01

    Acoustic Wave Device Biosensor Arrays for Screening and Early Detection of Prostate Cancer PRINCIPAL INVESTIGATOR: Anthony J. Dickherber, Ph.D...Arrays for Screening and Early Detection of Prostate Cancer 5b. GRANT NUMBER W81XWH-07-1-0099 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d...of developing a cost-effective, highly sensitive and highly selective sensor array for the detection of early cancer proliferation. First I report

  2. Complete Acoustic Stop-Bands in 2-D Periodic Arrays of Liquid Cylinders

    NASA Astrophysics Data System (ADS)

    Kushwaha, M. S.; Halevi, P.

    1996-03-01

    Periodic binary systems can give rise to complete acoustic band--gaps (i.e. stop--bands) within which sound and vibrations are forbidden. We compute the band structure for 2D periodic arrays of long water cylinders surrounded by mercury. We have neglected the wall (latex) material needed to hold the liquid, assuming that it is sufficiently light and thin. Complete acoustic stop--bands are found for both square and hexagonal lattices. We emphasize that such a simple 2D inhomogeneous system of liquids exhibits the widest stop--bands ever reported for elastic as well as for dielectric composites. We find gap/midgap ratios as high as ~ 1. For mercury cylinders surrounded by water the gaps obtained are much smaller.

  3. Acoustic investigation of wall jet over a backward-facing step using a microphone phased array

    NASA Astrophysics Data System (ADS)

    Perschke, Raimund F.; Ramachandran, Rakesh C.; Raman, Ganesh

    2015-02-01

    The acoustic properties of a wall jet over a hard-walled backward-facing step of aspect ratios 6, 3, 2, and 1.5 are studied using a 24-channel microphone phased array at Mach numbers up to M=0.6. The Reynolds number based on inflow velocity and step height assumes values from Reh = 3.0 ×104 to 7.2 ×105. Flow without and with side walls is considered. The experimental setup is open in the wall-normal direction and the expansion ratio is effectively 1. In case of flow through a duct, symmetry of the flow in the spanwise direction is lost downstream of separation at all but the largest aspect ratio as revealed by oil paint flow visualization. Hydrodynamic scattering of turbulence from the trailing edge of the step contributes significantly to the radiated sound. Reflection of acoustic waves from the bottom plate results in a modulation of power spectral densities. Acoustic source localization has been conducted using a 24-channel microphone phased array. Convective mean-flow effects on the apparent source origin have been assessed by placing a loudspeaker underneath a perforated flat plate and evaluating the displacement of the beamforming peak with inflow Mach number. Two source mechanisms are found near the step. One is due to interaction of the turbulent wall jet with the convex edge of the step. Free-stream turbulence sound is found to be peaked downstream of the step. Presence of the side walls increases free-stream sound. Results of the flow visualization are correlated with acoustic source maps. Trailing-edge sound and free-stream turbulence sound can be discriminated using source localization.

  4. Seismo-Acoustic Array Observations of Shallow Conduit Processes at Fuego Volcano, Guatemala

    NASA Astrophysics Data System (ADS)

    Waite, G. P.; Lyons, J. J.; Nadeau, P. A.

    2008-12-01

    We deployed small antennas of six broadband seismic and five acoustic sensors 900 m north of the active vent of Fuego volcano during January 2008 to investigate the source of explosions and background tremor. The L-shaped seismic array had stations spaced 30 m apart with one axis parallel to the ridge that runs north from the summit and the other axis down to the west for a total aperture of 150 m. The infrasound sensors were deployed in a similar array, but with an average station spacing of 50 m. There was no lava effusion during the four-day deployment, but explosions were clearly recorded with the seismic and acoustic arrays approximately once per hour with varied amounts of ash, and with durations from ~20-150 s. In addition to the explosions, our seismic array recorded constant volcanic tremor at 1.9 Hz and various discrete events that were not generally detected by the acoustic array. The dominant class of such events, which repeated approximately 10 times per hour, had an impulsive onset with first motion toward the vent, a short duration of <5 s, dominant frequencies from 1-3 Hz, and no infrasound component. All of the seismic signals were predominately surface waves radiating from the direction of the vent. Apparent velocities from overlapping 1 or 2 s windows of explosions decreased from 1-2 km/s at the onset to about 500 m/s at the arrival of the ground-coupled airwave. Events with no apparent infrasound also have low apparent velocities of 0.5 - 2 km/s, suggesting they are occurring at shallow depths. For these events, a weak P-wave arrival was typically observed about 200 ms before the shear- and surface-wave train. We also recorded some explosions that had very little seismic signal until the arrival of the ground-coupled airwave. Source inversion was not possible due to the limited array geometry, but we used forward modeling of candidate source geometries to infer differences between the sources of the dominant seismic signals. Constraints from

  5. Detection/classification/quantification of chemical agents using an array of surface acoustic wave (SAW) devices

    NASA Astrophysics Data System (ADS)

    Milner, G. Martin

    2005-05-01

    ChemSentry is a portable system used to detect, identify, and quantify chemical warfare (CW) agents. Electro chemical (EC) cell sensor technology is used for blood agents and an array of surface acoustic wave (SAW) sensors is used for nerve and blister agents. The combination of the EC cell and the SAW array provides sufficient sensor information to detect, classify and quantify all CW agents of concern using smaller, lighter, lower cost units. Initial development of the SAW array and processing was a key challenge for ChemSentry requiring several years of fundamental testing of polymers and coating methods to finalize the sensor array design in 2001. Following the finalization of the SAW array, nearly three (3) years of intensive testing in both laboratory and field environments were required in order to gather sufficient data to fully understand the response characteristics. Virtually unbounded permutations of agent characteristics and environmental characteristics must be considered in order to operate against all agents and all environments of interest to the U.S. military and other potential users of ChemSentry. The resulting signal processing design matched to this extensive body of measured data (over 8,000 agent challenges and 10,000 hours of ambient data) is considered to be a significant advance in state-of-the-art for CW agent detection.

  6. Standoff photoacoustic detections with high-sensitivity microphones and acoustic arrays

    NASA Astrophysics Data System (ADS)

    Choa, Fow-Sen; Wang, Chen-Chia; Khurgin, Jacob; Samuels, Alan; Trivedi, Sudhir; Gupta, Deepa

    2016-05-01

    Standoff detection of dangerous chemicals like explosives, nerve gases, and harmful aerosols has continuously been an important subject due to the serious concern about terrorist threats to both overseas and homeland lives and facility. Compared with other currently available standoff optical detection techniques, like Raman, photo-thermal, laser induced breakdown spectroscopy,...etc., photoacoustic (PA) sensing has the advantages of background free and very high detection sensitivity, no need of back reflection surfaces, and 1/R instead of 1/R2 signal decay distance dependence. Furthermore, there is still a great room for PA sensitivity improvement by using different PA techniques, including lockin amplifier, employing new microphones, and microphone array techniques. Recently, we have demonstrated standoff PA detection of isopropanol vapor, solid phase TNT and RDX at a standoff distance. To further calibrate the detection sensitivity, we use nerve gas simulants that were generated and calibrated by a commercial vapor generator. For field operations, array of microphones and microphone-reflector pairs can be utilized to achieve noise rejection and signal enhancement. We have experimentally demonstrated signal enhancement and noise reduction using an array of 4 microphone/4 reflector system as well as an array of 16-microphone/1 reflector. In this work we will review and compare different standoff techniques and discuss the advantages of using different photoacoustic techniques. We will also discuss new advancement of using new types of microphone and the performance comparison of using different structure of microphone arrays and combining lock-in amplifier with acoustic arrays. Demonstration of out-door real-time operations with high power mid-IR laser and microphone array will be presented.

  7. Acoustic Tooth Cleaner

    NASA Technical Reports Server (NTRS)

    Heyman, J. S.

    1984-01-01

    Acoustically-energized water jet aids in plaque breakdown. Acoustic Wand includes acoustic transducer 1/4 wave plate, and tapered cone. Together elements energize solution of water containing mild abrasive injected into mouth to help prevent calculous buildup.

  8. A Preliminary Engineering Design of Intravascular Dual-Frequency Transducers for Contrast-Enhanced Acoustic Angiography and Molecular Imaging

    PubMed Central

    Ma, Jianguo; Martin, K. Heath; Dayton, Paul A.; Jiang, Xiaoning

    2014-01-01

    Current intravascular ultrasound (IVUS) probes are not optimized for contrast detection because of their design for high-frequency fundamental-mode imaging. However, data from transcutaneous contrast imaging suggests the possibility of utilizing contrast ultrasound for molecular imaging or vasa vasorum assessment to further elucidate atherosclerotic plaque deposition. This paper presents the design, fabrication, and characterization of a small-aperture (0.6 × 3 mm) IVUS probe optimized for high-frequency contrast imaging. The design utilizes a dual-frequency (6.5 MHz/30 MHz) transducer arrangement for exciting microbubbles at low frequencies (near their resonance) and detecting their broadband harmonics at high frequencies, minimizing detected tissue backscatter. The prototype probe is able to generate nonlinear microbubble response with more than 1.2 MPa of rarefractional pressure (mechanical index: 0.48) at 6.5 MHz, and is also able to detect microbubble response with a broadband receiving element (center frequency: 30 MHz, −6-dB fractional bandwidth: 58.6%). Nonlinear super-harmonics from microbubbles flowing through a 200-μm-diameter micro-tube were clearly detected with a signal-to-noise ratio higher than 12 dB. Preliminary phantom imaging at the fundamental frequency (30 MHz) and dual-frequency super-harmonic imaging results suggest the promise of small aperture, dual-frequency IVUS transducers for contrast-enhanced IVUS imaging. PMID:24801226

  9. Can you hear me now? Range-testing a submerged passive acoustic receiver array in a Caribbean coral reef habitat

    USGS Publications Warehouse

    Selby, Thomas H.; Hart, Kristen M.; Fujisaki, Ikuko; Smith, Brian J.; Pollock, Clayton J; Hillis-Star, Zandy M; Lundgren, Ian; Oli, Madan K.

    2016-01-01

    Submerged passive acoustic technology allows researchers to investigate spatial and temporal movement patterns of many marine and freshwater species. The technology uses receivers to detect and record acoustic transmissions emitted from tags attached to an individual. Acoustic signal strength naturally attenuates over distance, but numerous environmental variables also affect the probability a tag is detected. Knowledge of receiver range is crucial for designing acoustic arrays and analyzing telemetry data. Here, we present a method for testing a relatively large-scale receiver array in a dynamic Caribbean coastal environment intended for long-term monitoring of multiple species. The U.S. Geological Survey and several academic institutions in collaboration with resource management at Buck Island Reef National Monument (BIRNM), off the coast of St. Croix, recently deployed a 52 passive acoustic receiver array. We targeted 19 array-representative receivers for range-testing by submersing fixed delay interval range-testing tags at various distance intervals in each cardinal direction from a receiver for a minimum of an hour. Using a generalized linear mixed model (GLMM), we estimated the probability of detection across the array and assessed the effect of water depth, habitat, wind, temperature, and time of day on the probability of detection. The predicted probability of detection across the entire array at 100 m distance from a receiver was 58.2% (95% CI: 44.0–73.0%) and dropped to 26.0% (95% CI: 11.4–39.3%) 200 m from a receiver indicating a somewhat constrained effective detection range. Detection probability varied across habitat classes with the greatest effective detection range occurring in homogenous sand substrate and the smallest in high rugosity reef. Predicted probability of detection across BIRNM highlights potential gaps in coverage using the current array as well as limitations of passive acoustic technology within a complex coral reef

  10. Phased Acoustic Array Measurements of a 5.75 Percent Hybrid Wing Body Aircraft

    NASA Technical Reports Server (NTRS)

    Burnside, Nathan J.; Horne, William C.; Elmer, Kevin R.; Cheng, Rui; Brusniak, Leon

    2016-01-01

    Detailed acoustic measurements of the noise from the leading-edge Krueger flap of a 5.75 percent Hybrid Wing Body (HWB) aircraft model were recently acquired with a traversing phased microphone array in the AEDC NFAC (Arnold Engineering Development Complex, National Full Scale Aerodynamics Complex) 40- by 80-Foot Wind Tunnel at NASA Ames Research Center. The spatial resolution of the array was sufficient to distinguish between individual support brackets over the full-scale frequency range of 100 to 2875 Hertz. For conditions representative of landing and take-off configuration, the noise from the brackets dominated other sources near the leading edge. Inclusion of flight-like brackets for select conditions highlights the importance of including the correct number of leading-edge high-lift device brackets with sufficient scale and fidelity. These measurements will support the development of new predictive models.

  11. Deconvolution methods and systems for the mapping of acoustic sources from phased microphone arrays

    NASA Technical Reports Server (NTRS)

    Brooks, Thomas F. (Inventor); Humphreys, Jr., William M. (Inventor)

    2010-01-01

    A method and system for mapping acoustic sources determined from a phased microphone array. A plurality of microphones are arranged in an optimized grid pattern including a plurality of grid locations thereof. A linear configuration of N equations and N unknowns can be formed by accounting for a reciprocal influence of one or more beamforming characteristics thereof at varying grid locations among the plurality of grid locations. A full-rank equation derived from the linear configuration of N equations and N unknowns can then be iteratively determined. A full-rank can be attained by the solution requirement of the positivity constraint equivalent to the physical assumption of statically independent noise sources at each N location. An optimized noise source distribution is then generated over an identified aeroacoustic source region associated with the phased microphone array in order to compile an output presentation thereof, thereby removing the beamforming characteristics from the resulting output presentation.

  12. Deconvolution Methods and Systems for the Mapping of Acoustic Sources from Phased Microphone Arrays

    NASA Technical Reports Server (NTRS)

    Brooks, Thomas F. (Inventor); Humphreys, Jr., William M. (Inventor)

    2012-01-01

    Mapping coherent/incoherent acoustic sources as determined from a phased microphone array. A linear configuration of equations and unknowns are formed by accounting for a reciprocal influence of one or more cross-beamforming characteristics thereof at varying grid locations among the plurality of grid locations. An equation derived from the linear configuration of equations and unknowns can then be iteratively determined. The equation can be attained by the solution requirement of a constraint equivalent to the physical assumption that the coherent sources have only in phase coherence. The size of the problem may then be reduced using zoning methods. An optimized noise source distribution is then generated over an identified aeroacoustic source region associated with a phased microphone array (microphones arranged in an optimized grid pattern including a plurality of grid locations) in order to compile an output presentation thereof, thereby removing beamforming characteristics from the resulting output presentation.

  13. Modeling of systems wireless data transmission based on antenna arrays in underwater acoustic channels

    NASA Astrophysics Data System (ADS)

    Fedosov, V. P.; Lomakina, A. V.; Legin, A. A.; Voronin, V. V.

    2016-05-01

    In this paper the system of wireless transmission of data based on the use an adaptive algorithm for processing spatial-time signals using antenna arrays is presented. In the transmission of data in a multipath propagation of signals have been used such technologies as a MIMO (Multiple input-Multiple output) and OFDM (Orthogonal frequency division multiplexing) to solve the problem of increasing the maximum speed of data transfer and the low probability of errors. The adaptation process is based on the formation of the directional pattern equivalent to the amplitude antenna array in the signal arrival direction with the highest capacity on one of propagation paths in the channel. The simulation results showed that the use of an adaptive algorithm on the reception side can significantly reduce the probability of bit errors, thus to increase throughput in an underwater acoustic data channel.

  14. Single- and double-difference algorithms for position and time-delay calibration of transducer-elements in a sparse array.

    PubMed

    Li, Yue; Sharp, Ian; Hedley, Mark; Ho, Phil; Guo, Y Jay

    2007-06-01

    A method for the calibration of the position and time delay of transducer elements in a large, sparse array used for underwater, high-resolution, ultrasound imaging has been described in a previous work. This algorithm is based on the direct algorithm used in the global positioning system (GPS), but the wave propagation speed is treated as one of the to-be-calibrated parameters. In this article, the performance of two other commonly used GPS algorithms, namely the single-difference algorithm and the double-difference algorithm, is evaluated. The calibration of the propagation speed also is integrated into these two algorithms. Furthermore, a novel, least-squares method is proposed to calibrate the time delay associated with each transducer element for these two algorithms. The performances of these algorithms are theoretically analyzed and evaluated using numerical analysis and simulation study. The performance of the direct algorithm, the single-difference algorithm, and the double-difference algorithm is compared. It was found that the single-difference algorithm has the best performance among the three algorithms for the current application, and it is capable of calibrating the position and time delay of transducer elements to an accuracy of one-tenth of a wavelength.

  15. Improved Piezoelectric Loudspeakers And Transducers

    NASA Technical Reports Server (NTRS)

    Regan, Curtis Randall; Jalink, Antony; Hellbaum, Richard F.; Rohrbach, Wayne W.

    1995-01-01

    Loudspeakers and related acoustic transducers of improved type feature both light weight and energy efficiency of piezoelectric transducers and mechanical coupling efficiency. Active component of transducer made from wafer of "rainbow" piezoelectric material, ceramic piezoelectric material chemically reduced on one face. Chemical treatment forms wafer into dishlike shallow section of sphere. Both faces then coated with electrically conductive surface layers serving as electrodes. Applications include high-fidelity loudspeakers, and underwater echo ranging devices.

  16. THE BARYON ACOUSTIC OSCILLATION BROADBAND AND BROAD-BEAM ARRAY: DESIGN OVERVIEW AND SENSITIVITY FORECASTS

    SciTech Connect

    Pober, Jonathan C.; Parsons, Aaron R.; McQuinn, Matthew; Ali, Zaki; DeBoer, David R.; McDonald, Patrick; Aguirre, James E.; Bradley, Richard F.; Chang, Tzu-Ching; Morales, Miguel F.

    2013-03-15

    This work describes a new instrument optimized for a detection of the neutral hydrogen 21 cm power spectrum between redshifts of 0.5 and 1.5: the Baryon Acoustic Oscillation Broadband and Broad-beam (BAOBAB) array. BAOBAB will build on the efforts of a first generation of 21 cm experiments that are targeting a detection of the signal from the Epoch of Reionization at z {approx} 10. At z {approx} 1, the emission from neutral hydrogen in self-shielded overdense halos also presents an accessible signal, since the dominant, synchrotron foreground emission is considerably fainter than at redshift 10. The principle science driver for these observations are baryon acoustic oscillations in the matter power spectrum which have the potential to act as a standard ruler and constrain the nature of dark energy. BAOBAB will fully correlate dual-polarization antenna tiles over the 600-900 MHz band with a frequency resolution of 300 kHz and a system temperature of 50 K. The number of antennas will grow in staged deployments, and reconfigurations of the array will allow for both traditional imaging and high power spectrum sensitivity operations. We present calculations of the power spectrum sensitivity for various array sizes, with a 35 element array measuring the cosmic neutral hydrogen fraction as a function of redshift, and a 132 element system detecting the BAO features in the power spectrum, yielding a 1.8% error on the z {approx} 1 distance scale, and, in turn, significant improvements to constraints on the dark energy equation of state over an unprecedented range of redshifts from {approx}0.5 to 1.5.

  17. A new sparse design method on phased array-based acoustic emission sensor for partial discharge detection

    NASA Astrophysics Data System (ADS)

    Xie, Qing; Cheng, Shuyi; Lü, Fangcheng; Li, Yanqing

    2014-03-01

    The acoustic detecting performance of a partial discharge (PD) ultrasonic sensor array can be improved by increasing the number of array elements. However, it will increase the complexity and cost of the PD detection system. Therefore, a sparse sensor with an optimization design can be chosen to ensure good acoustic performance. In this paper, first, a quantitative method is proposed for evaluating the acoustic performance of a square PD ultrasonic array sensor. Second, a method of sparse design is presented to combine the evaluation method with the chaotic monkey algorithm. Third, an optimal sparse structure of a 3 × 3 square PD ultrasonic array sensor is deduced. It is found that, under different sparseness and sparse structure, the main beam width of the directivity function shows a small variation, while the sidelobe amplitude shows a bigger variation. For a specific sparseness, the acoustic performance under the optimal sparse structure is close to that using a full array. Finally, some simulations based on the above method show that, for certain sparseness, the sensor with the optimal sparse structure exhibits superior positioning accuracy compared to that with a stochastic one. The sensor array structure may be chosen according to the actual requirements for an actual engineering application.

  18. Acoustic emission source location on large plate-like structures using a local triangular sensor array

    NASA Astrophysics Data System (ADS)

    Aljets, Dirk; Chong, Alex; Wilcox, Steve; Holford, Karen

    2012-07-01

    A new acoustic emission (AE) source location method was developed for large plate-like structures, which evaluates the location of the source using a combined time of flight and modal source location algorithm. Three sensors are installed in a triangular array with a sensor to sensor distance of just a few centimeters. The direction from the sensor array to the AE source can be established by analysing the arrival times of the A0 component of the signal to the three sensors whilst the distance can be evaluated using the separation of S0 and A0 mode at each sensor respectively. The close positioning of the sensors allows the array to be installed in a single housing. This simplifies mounting, wiring and calibration procedures for non-destructive testing (NDT) and structural health monitoring (SHM) applications. Furthermore, this array could reduce the number of sensors needed to monitor large structures compared to other methods. An automatic wave mode identification method is also presented.

  19. Indirect calibration of a large microphone array for in-duct acoustic measurements

    NASA Astrophysics Data System (ADS)

    Leclère, Q.; Pereira, A.; Finez, A.; Souchotte, P.

    2016-08-01

    This paper addresses the problem of in situ calibration of a pin hole-mounted microphone array for in-duct acoustic measurements. One approach is to individually measure the frequency response of each microphone, by submitting the probe to be calibrated and a reference microphone to the same pressure field. Although simple, this task may be very time consuming for large microphone arrays and eventually suffer from lack of access to microphones once they are installed on the test bench. An alternative global calibration procedure is thus proposed in this paper. The approach is based on the fact that the acoustic pressure can be expanded onto an analytically known spatial basis. A projection operator is defined allowing the projection of measurements onto the duct modal basis. The main assumption of the method is that the residual resulting from the difference between actual and projected measurements is mainly dominated by calibration errors. An iterative procedure to estimate the calibration factors of each microphone is proposed and validated through an experimental set-up. In addition, it is shown that the proposed scheme allows an optimization of physical parameters such as the sound speed and parameters associated to the test bench itself, such as the duct radius or the termination reflection coefficient.

  20. Location optimization of a long T-shaped acoustic resonator array in noise control of enclosures

    NASA Astrophysics Data System (ADS)

    Yu, Ganghua; Cheng, Li

    2009-11-01

    Acoustic resonators are widely used in various noise control applications. In the pursuit of better performance and broad band control, multiple resonators or a resonator array are usually needed. The interaction among resonators significantly impacts on the control performance and leads to the requirement for a systematic design tool to determine their locations. In this work, simulated annealing (SA) algorithm is employed to optimize the locations of a set of long T-shaped acoustic resonators (TARs) for noise control inside an enclosure. Multiple optimal configurations are shown to exist. The control performance in terms of sound pressure level reduction, however, seems to be independent of the initial resonator-locations. Optimal solutions obtained from the SA approach are shown to outperform other existing methods for a TAR array design. Numerical simulations are systematically verified by experiments. Optimal locations are then synthesized, leading to a set of criteria, applicable to the present configuration, to guide engineering applications. It is concluded that the proposed optimization approach provides a systematic and effective tool to optimize the locations of TARs in noise control inside enclosures.

  1. An Integrated Surface Acoustic Wave-Based Chemical Microsensor Array for Gas-Phase Chemical Analysis Microsystems

    SciTech Connect

    Casalnuovo, stephen A.; Frye-Mason, Gregory C.; Heller, Edwin J.; Hietala, Vincent M.; Kottenstette, Richard J.; Lewis, Patrick R.; Manginell, Ronald P.; Matzke, Carolyn M.

    1999-07-20

    This paper describes preliminary results in the development of an acoustic wave (SAW) microsensor array. The array is based on a novel configuration that allows for three sensors and a phase reference. Two configurations of the integrated array are discussed: a hybrid multichip-module based on a quartz SAW sensor with GaAs microelectronics and a fully monolithic GaAs-based SAW. Preliminary data are also presented for the use of the integrated SAW array in a gas-phase chemical micro system that incorporates microfabricated sample collectors and concentrators along with gas chromatography (GC) columns.

  2. Transcranial passive acoustic mapping with hemispherical sparse arrays using CT-based skull-specific aberration corrections: a simulation study.

    PubMed

    Jones, Ryan M; O'Reilly, Meaghan A; Hynynen, Kullervo

    2013-07-21

    The feasibility of transcranial passive acoustic mapping with hemispherical sparse arrays (30 cm diameter, 16 to 1372 elements, 2.48 mm receiver diameter) using CT-based aberration corrections was investigated via numerical simulations. A multi-layered ray acoustic transcranial ultrasound propagation model based on CT-derived skull morphology was developed. By incorporating skull-specific aberration corrections into a conventional passive beamforming algorithm (Norton and Won 2000 IEEE Trans. Geosci. Remote Sens. 38 1337-43), simulated acoustic source fields representing the emissions from acoustically-stimulated microbubbles were spatially mapped through three digitized human skulls, with the transskull reconstructions closely matching the water-path control images. Image quality was quantified based on main lobe beamwidths, peak sidelobe ratio, and image signal-to-noise ratio. The effects on the resulting image quality of the source's emission frequency and location within the skull cavity, the array sparsity and element configuration, the receiver element sensitivity, and the specific skull morphology were all investigated. The system's resolution capabilities were also estimated for various degrees of array sparsity. Passive imaging of acoustic sources through an intact skull was shown possible with sparse hemispherical imaging arrays. This technique may be useful for the monitoring and control of transcranial focused ultrasound (FUS) treatments, particularly non-thermal, cavitation-mediated applications such as FUS-induced blood-brain barrier disruption or sonothrombolysis, for which no real-time monitoring techniques currently exist.

  3. Transcranial passive acoustic mapping with hemispherical sparse arrays using CT-based skull-specific aberration corrections: a simulation study

    PubMed Central

    Jones, Ryan M.; O’Reilly, Meaghan A.; Hynynen, Kullervo

    2013-01-01

    The feasibility of transcranial passive acoustic mapping with hemispherical sparse arrays (30 cm diameter, 16 to 1372 elements, 2.48 mm receiver diameter) using CT-based aberration corrections was investigated via numerical simulations. A multi-layered ray acoustic transcranial ultrasound propagation model based on CT-derived skull morphology was developed. By incorporating skull-specific aberration corrections into a conventional passive beamforming algorithm (Norton and Won 2000 IEEE Trans. Geosci. Remote Sens. 38 1337–43), simulated acoustic source fields representing the emissions from acoustically-stimulated microbubbles were spatially mapped through three digitized human skulls, with the transskull reconstructions closely matching the water-path control images. Image quality was quantified based on main lobe beamwidths, peak sidelobe ratio, and image signal-to-noise ratio. The effects on the resulting image quality of the source’s emission frequency and location within the skull cavity, the array sparsity and element configuration, the receiver element sensitivity, and the specific skull morphology were all investigated. The system’s resolution capabilities were also estimated for various degrees of array sparsity. Passive imaging of acoustic sources through an intact skull was shown possible with sparse hemispherical imaging arrays. This technique may be useful for the monitoring and control of transcranial focused ultrasound (FUS) treatments, particularly non-thermal, cavitation-mediated applications such as FUS-induced blood-brain barrier disruption or sonothrombolysis, for which no real-time monitoring technique currently exists. PMID:23807573

  4. Transcranial passive acoustic mapping with hemispherical sparse arrays using CT-based skull-specific aberration corrections: a simulation study

    NASA Astrophysics Data System (ADS)

    Jones, Ryan M.; O'Reilly, Meaghan A.; Hynynen, Kullervo

    2013-07-01

    The feasibility of transcranial passive acoustic mapping with hemispherical sparse arrays (30 cm diameter, 16 to 1372 elements, 2.48 mm receiver diameter) using CT-based aberration corrections was investigated via numerical simulations. A multi-layered ray acoustic transcranial ultrasound propagation model based on CT-derived skull morphology was developed. By incorporating skull-specific aberration corrections into a conventional passive beamforming algorithm (Norton and Won 2000 IEEE Trans. Geosci. Remote Sens. 38 1337-43), simulated acoustic source fields representing the emissions from acoustically-stimulated microbubbles were spatially mapped through three digitized human skulls, with the transskull reconstructions closely matching the water-path control images. Image quality was quantified based on main lobe beamwidths, peak sidelobe ratio, and image signal-to-noise ratio. The effects on the resulting image quality of the source’s emission frequency and location within the skull cavity, the array sparsity and element configuration, the receiver element sensitivity, and the specific skull morphology were all investigated. The system’s resolution capabilities were also estimated for various degrees of array sparsity. Passive imaging of acoustic sources through an intact skull was shown possible with sparse hemispherical imaging arrays. This technique may be useful for the monitoring and control of transcranial focused ultrasound (FUS) treatments, particularly non-thermal, cavitation-mediated applications such as FUS-induced blood-brain barrier disruption or sonothrombolysis, for which no real-time monitoring techniques currently exist.

  5. Modelling of the acoustic field of a multi-element HIFU array scattered by human ribs.

    PubMed

    Gélat, Pierre; Ter Haar, Gail; Saffari, Nader

    2011-09-07

    The efficacy of high-intensity focused ultrasound (HIFU) for the treatment of a range of different cancers, including those of the liver, prostate and breast, has been demonstrated. As a non-invasive focused therapy, HIFU offers considerable advantages over techniques such as chemotherapy and surgical resection in terms of reduced risk of harmful side effects. Despite this, there are a number of significant challenges which currently hinder its widespread clinical application. One of these challenges is the need to transmit sufficient energy through the rib cage to induce tissue necrosis in the required volume whilst minimizing the formation of side lobes. Multi-element random-phased arrays are currently showing great promise in overcoming the limitations of single-element transducers. Nevertheless, successful treatment of a patient with liver tumours requires a thorough understanding of the way in which the ultrasonic pressure field from a HIFU array is scattered by the rib cage. In order to address this, a boundary element approach based on a generalized minimal residual (GMRES) implementation of the Burton-Miller formulation was used in conjunction with phase conjugation techniques to focus the field of a 256-element random HIFU array behind human ribs at locations requiring intercostal and transcostal treatment. Simulations were carried out on a 3D mesh of quadratic pressure patches generated using CT scan anatomical data for adult ribs 9-12 on the right side. The methodology was validated on spherical and cylindrical scatterers. Field calculations were also carried out for idealized ribs, consisting of arrays of strip-like scatterers, demonstrating effects of splitting at the focus. This method has the advantage of fully accounting for the effect of scattering and diffraction in 3D under continuous wave excitation.

  6. Real-time monitoring of focused ultrasound blood-brain barrier opening via subharmonic acoustic emission detection: implementation of confocal dual-frequency piezoelectric transducers.

    PubMed

    Tsai, Chih-Hung; Zhang, Jia-Wei; Liao, Yi-Yi; Liu, Hao-Li

    2016-04-07

    Burst-tone focused ultrasound exposure in the presence of microbubbles has been demonstrated to be effective at inducing temporal and local opening of the blood-brain barrier (BBB), which promises significant clinical potential to deliver therapeutic molecules into the central nervous system (CNS). Traditional contrast-enhanced imaging confirmation after focused ultrasound (FUS) exposure serves as a post-operative indicator of the effectiveness of FUS-BBB opening, however, an indicator that can concurrently report the BBB status and BBB-opening effectiveness is required to provide effective feedback to implement this treatment clinically. In this study, we demonstrate the use of subharmonic acoustic emission detection with implementation on a confocal dual-frequency piezoelectric ceramic structure to perform real-time monitoring of FUS-BBB opening. A confocal dual-frequency (0.55 MHz/1.1 MHz) focused ultrasound transducer was designed. The 1.1 MHz spherically-curved ceramic was employed to deliver FUS exposure to induce BBB-opening, whereas the outer-ring 0.55 MHz ceramic was employed to detect the subharmonic acoustic emissions originating from the target position. In stage-1 experiments, we employed spectral analysis and performed an energy spectrum density (ESD) calculation. An optimized 0.55 MHz ESD level change was shown to effectively discriminate the occurrence of BBB-opening. Wideband acoustic emissions received from 0.55 MHz ceramics were also analyzed to evaluate its correlations with erythrocyte extravasations. In stage-2 real-time monitoring experiments, we applied the predetermined ESD change as a detection threshold in PC-controlled algorithm to predict the FUS exposure intra-operatively. In stage-1 experiment, we showed that subharmonic ESD presents distinguishable dynamics between intact BBB and opened BBB, and therefore a threshold ESD change level (5.5 dB) can be identified for BBB-opening prediction. Using this ESD change threshold detection as a

  7. Real-time monitoring of focused ultrasound blood-brain barrier opening via subharmonic acoustic emission detection: implementation of confocal dual-frequency piezoelectric transducers

    NASA Astrophysics Data System (ADS)

    Tsai, Chih-Hung; Zhang, Jia-Wei; Liao, Yi-Yi; Liu, Hao-Li

    2016-04-01

    Burst-tone focused ultrasound exposure in the presence of microbubbles has been demonstrated to be effective at inducing temporal and local opening of the blood-brain barrier (BBB), which promises significant clinical potential to deliver therapeutic molecules into the central nervous system (CNS). Traditional contrast-enhanced imaging confirmation after focused ultrasound (FUS) exposure serves as a post-operative indicator of the effectiveness of FUS-BBB opening, however, an indicator that can concurrently report the BBB status and BBB-opening effectiveness is required to provide effective feedback to implement this treatment clinically. In this study, we demonstrate the use of subharmonic acoustic emission detection with implementation on a confocal dual-frequency piezoelectric ceramic structure to perform real-time monitoring of FUS-BBB opening. A confocal dual-frequency (0.55 MHz/1.1 MHz) focused ultrasound transducer was designed. The 1.1 MHz spherically-curved ceramic was employed to deliver FUS exposure to induce BBB-opening, whereas the outer-ring 0.55 MHz ceramic was employed to detect the subharmonic acoustic emissions originating from the target position. In stage-1 experiments, we employed spectral analysis and performed an energy spectrum density (ESD) calculation. An optimized 0.55 MHz ESD level change was shown to effectively discriminate the occurrence of BBB-opening. Wideband acoustic emissions received from 0.55 MHz ceramics were also analyzed to evaluate its correlations with erythrocyte extravasations. In stage-2 real-time monitoring experiments, we applied the predetermined ESD change as a detection threshold in PC-controlled algorithm to predict the FUS exposure intra-operatively. In stage-1 experiment, we showed that subharmonic ESD presents distinguishable dynamics between intact BBB and opened BBB, and therefore a threshold ESD change level (5.5 dB) can be identified for BBB-opening prediction. Using this ESD change threshold detection as a

  8. Evaluation of bias voltage modulation sequence for nonlinear contrast agent imaging using a capacitive micromachined ultrasonic transducer array.

    PubMed

    Novell, Anthony; Legros, Mathieu; Grégoire, Jean-Marc; Dayton, Paul A; Bouakaz, Ayache

    2014-09-07

    Many clinical diagnoses have now been improved thanks to the development of new techniques dedicated to contrast agent nonlinear imaging. Over the past few years, Capacitive Micromachined Ultrasonic Transducers (cMUTs) have emerged as a promising alternative to traditional piezoelectric transducers. One notable advantage of cMUTs is their wide frequency bandwidth. However, their use in nonlinear imaging approaches such as those used to detect contrast agents have been challenging due their intrinsic nonlinear character. We propose a new contrast imaging sequence, called bias voltage modulation (BVM), specifically developed for cMUTs to suppress their inherent nonlinear behavior. Theoretical and experimental results show that a complete cancellation of the nonlinear signal from the source can be reached when the BVM sequence is implemented. In-vitro validation of the sequence is performed using a cMUT probe connected to an open scanner and a flow phantom setup containing SonoVue microbubbles. Compared to the standard amplitude modulation imaging mode, a 6 dB increase of contrast-to-tissue ratio was achieved when the BVM sequence is applied. These results reveal that the problem of cMUT nonlinearity can be addressed, thus expanding the potential of this new transducer technology for nonlinear contrast agent detection and imaging.

  9. Improving Plating by Use of Intense Acoustic Beams

    NASA Technical Reports Server (NTRS)

    Oeftering, Richard C.; Denofrio, Charles

    2003-01-01

    An improved method of selective plating of metals and possibly other materials involves the use of directed high-intensity acoustic beams. The beams, typically in the ultrasonic frequency range, can be generated by fixed-focus transducers (see figure) or by phased arrays of transducers excited, variously, by continuous waves, tone bursts, or single pulses. The nonlinear effects produced by these beams are used to alter plating processes in ways that are advantageous.

  10. Active Travel-Time Tomography using a Distributed Acoustic Sensing Array

    NASA Astrophysics Data System (ADS)

    Lancelle, C.; Fratta, D.; Lord, N. E.; Wang, H. F.; Chalari, A.

    2015-12-01

    Distributed acoustic sensing (DAS) is a sensor array used for monitoring ground motion by utilizing the interaction of light pulses with sections of a fiber-optic cable. In September 2013 a field test was conducted at the NEES@UCSB Garner Valley field site in Southern California incorporating DAS technology. A 762-meter-long fiber-optic cable was trenched to a depth of about 0.3 m in a rectangular design with two interior diagonal segments. The fiber was excited by a number of sources, including a 45 kN shear shaker and a smaller 450 N portable mass shaker, both of which were available through NEES@UCLA. In addition to these sources, signals were recorded from a minivib source and hammer blows on a steel plate, as well as 8 hours of overnight ambient noise recording. One goal of the field test was to evaluate the use of DAS for tomographic studies. The large number of measurement points inherent to DAS lends itself well to this type of study. Tomograms were constructed using two of the active-sources at multiple locations. There were 8 minivib locations within the array and 13 hammer locations along the boundary of the array. Travel-time data were collected with the DAS array. Two-dimensional velocity tomograms were constructed for different resolutions from the two active sources and compared. In all the images, the lowest velocities lie near the center of the array with higher velocities surrounding this area. The impact results, however, may contain an artifact due to multiple propagation modes. This research is part of the DOE's PoroTomo project.

  11. Analysis of binary mixtures of aqueous aromatic hydrocarbons with low-phase-noise shear-horizontal surface acoustic wave sensors using multielectrode transducer designs.

    PubMed

    Bender, Florian; Mohler, Rachel E; Ricco, Antonio J; Josse, Fabien

    2014-11-18

    The present work investigates a compact sensor system that provides rapid, real-time, in situ measurements of the identities and concentrations of aromatic hydrocarbons at parts-per-billion concentrations in water through the combined use of kinetic and thermodynamic response parameters. The system uses shear-horizontal surface acoustic wave (SH-SAW) sensors operating directly in the liquid phase. The 103 MHz SAW sensors are coated with thin sorbent polymer films to provide the appropriate limits of detection as well as partial selectivity for the analytes of interest, the BTEX compounds (benzene, toluene, ethylbenzene, and xylenes), which are common indicators of fuel and oil accidental releases in groundwater. Particular emphasis is placed on benzene, a known carcinogen and the most challenging BTEX analyte with regard to both regulated levels and its solubility properties. To demonstrate the identification and quantification of individual compounds in multicomponent aqueous samples, responses to binary mixtures of benzene with toluene as well as ethylbenzene were characterized at concentrations below 1 ppm (1 mg/L). The use of both thermodynamic and kinetic (i.e., steady-state and transient) responses from a single polymer-coated SH-SAW sensor enabled identification and quantification of the two BTEX compounds in binary mixtures in aqueous solution. The signal-to-noise ratio was improved, resulting in lower limits of detection and improved identification at low concentrations, by designing and implementing a type of multielectrode transducer pattern, not previously reported for chemical sensor applications. The design significantly reduces signal distortion and root-mean-square (RMS) phase noise by minimizing acoustic wave reflections from electrode edges, thus enabling limits of detection for BTEX analytes of 9-83 ppb (calculated from RMS noise); concentrations of benzene in water as low as ~100 ppb were measured directly. Reliable quantification of BTEX

  12. Aeroelastic structural acoustic control.

    PubMed

    Clark, R L; Frampton, K D

    1999-02-01

    Static, constant-gain, output-feedback control compensators were designed to increase the transmission loss across a panel subjected to mean flow on one surface and a stationary, acoustic half-space on the opposite surface. The multi-input, multi-output control system was based upon the use of an array of colocated transducer pairs. The performance of the static-gain, output-feedback controller was compared to that of the full state-feedback controller using the same control actuator arrays, and was found to yield comparable levels of performance for practical limitations on control effort. Additionally, the resulting static compensators proved to be dissipative in nature, and thus the design varied little as a function of the aeroelastic coupling induced by the fluid-structure interaction under subsonic flow conditions. Several parametric studies were performed, comparing the effects of control-effort penalty as well as the number of transducer pairs used in the control system.

  13. Transducer characterization

    SciTech Connect

    Cross, B. T.; Eoff, J. M.; Schuetz, L. J.; Cunningham, K. R.

    1980-07-02

    This report has been prepared specifically for ultrasonic transducer users within the Nondestructive Testing Evaluation (NDE) community of the weapons complex. The purpose of the report is to establish an initial set of uniform procedures for measuring and recording transducer performance data, and to establish a common foundation on which more comprehensive transducer performance evaluations may be added as future transducer performance criteria expands. Transducer parameters and the problems with measuring them are discussed and procedures for measuring transducer performance are recommended with special precautionary notes regarding critical aspects of each measurement. An important consideration regarding the recommended procedures is the cost of implementation. There are two distinct needs for transducer performance characterization in the complex. Production oriented users need a quick, reliable means to check a transducer to ascertain its suitability for continued service. Development groups and the Transducer Center need a comprehensive characterization means to collect adequate data to evaluate theoretical concepts or to build exact replacement transducers. The instrumentation, equipment, and procedures recommended for monitoring production transducers are utilitarian and provide only that information needed to determine transducer condition.

  14. Feasibility of vibro-acoustography with a quasi-2D ultrasound array transducer for detection and localizing of permanent prostate brachytherapy seeds: A pilot ex vivo study

    SciTech Connect

    Mehrmohammadi, Mohammad; Kinnick, Randall R.; Fatemi, Mostafa; Alizad, Azra; Davis, Brian J.

    2014-09-15

    Purpose: Effective permanent prostate brachytherapy (PPB) requires precise placement of radioactive seeds in and around the prostate. The impetus for this research is to examine a new ultrasound-based imaging modality, vibro-acoustography (VA), which may serve to provide a high rate of PPB seed detection while also effecting enhanced prostate imaging. The authors investigate the ability of VA, implemented on a clinical ultrasound (US) scanner and equipped with a quasi-2D (Q2D) array US transducer, to detect and localize PPB seeds in excised prostate specimens. Methods: Nonradioactive brachytherapy seeds were implanted into four excised cadaver prostates. A clinical US scanner equipped with a Q2D array US transducer was customized to acquire both US and C-scan VA images at various depths. The VA images were then used to detect and localize the implanted seeds in prostate tissue. To validate the VA results, computed tomography (CT) images of the same tissue samples were obtained to serve as the reference by which to evaluate the performance of VA in PPB seed detection. Results: The results indicate that VA is capable of accurately identifying the presence and distribution of PPB seeds with a high imaging contrast. Moreover, a large ratio of the PPB seeds implanted into prostate tissue samples could be detected through acquired VA images. Using CT-based seed identification as the standard, VA was capable of detecting 74%–92% of the implanted seeds. Additionally, the angular independency of VA in detecting PPB seeds was demonstrated through a well-controlled phantom experiment. Conclusions: Q2DVA detected a substantial portion of the seeds by using a 2D array US transducer in excised prostate tissue specimens. While VA has inherent advantages associated with conventional US imaging, it has the additional advantage of permitting detection of PPB seeds independent of their orientation. These results suggest the potential of VA as a method for PPB imaging that

  15. A new ultrasonic transducer for improved contrast nonlinear imaging.

    PubMed

    Bouakaz, Ayache; Cate, Folkert ten; de Jong, Nico

    2004-08-21

    Second harmonic imaging has provided significant improvement in contrast detection over fundamental imaging. This improvement is a result of a higher contrast-to-tissue ratio (CTR) achievable at the second harmonic frequency. Nevertheless, the differentiation between contrast and tissue at the second harmonic frequency is still in many situations cumbersome and contrast detection remains nowadays as one of the main challenges, especially in the capillaries. The reduced CTR is mainly caused by the generation of second harmonic energy from nonlinear propagation effects in tissue, which hence obscures the echoes from contrast bubbles. In a previous study, we demonstrated theoretically that the CTR increases with the harmonic number. Therefore the purpose of our study was to increase the CTR by selectively looking to the higher harmonic frequencies. In order to be able to receive these high frequency components (third up to the fifth harmonic), a new ultrasonic phased array transducer has been constructed. The main advantage of the new design is its wide frequency bandwidth. The new array transducer contains two different types of elements arranged in an interleaved pattern (odd and even elements). This design enables separate transmission and reception modes. The odd elements operate at 2.8 MHz and 80% bandwidth, whereas the even elements have a centre frequency of 900 kHz with a bandwidth of 50%. The probe is connected to a Vivid 5 system (GE-Vingmed) and proper software is developed for driving. The total bandwidth of such a transducer is estimated to be more than 150% which enables higher harmonic imaging at an adequate sensitivity and signal to noise ratio compared to standard medical array transducers. We describe in this paper the design and fabrication of the array transducer. Moreover its acoustic properties are measured and its performances for nonlinear contrast imaging are evaluated in vitro and in vivo. The preliminary results demonstrate the advantages of

  16. Performance Assessment of Multi-Array Processing with Ground Truth for Infrasonic, Seismic and Seismo-Acoustic Events

    DTIC Science & Technology

    2012-07-03

    INTRODUCTION AND SUMMARY OF RESEARCH ............................................................1 2. MULTIPLE-ARRAY DETECTION ASESSMENT AND...RELATIONSHIP TO ENVIRONMENTAL CONDITIONS .............................................................................................2 2.1 Abstract...followed by the systematic application of the procedures to seismo-acoustic data in Korea and the western US during the final phase. The optimization of

  17. Cetacean acoustic detections from free-floating vertical hydrophone arrays in the southern California Current.

    PubMed

    Griffiths, Emily T; Barlow, Jay

    2016-11-01

    Drifting acoustic recorders were deployed in the southern California Current during Fall 2014. Two hydrophones configured as a 2-m vertical array at 100 m depth recorded using a 192 kHz sample rate on a 10% duty cycle (2 min/20 min). Beaked whales were detected in 33 of 8618 two-minute recordings. Sperm whales were detected in 185 recordings, and dolphins in 2291 recordings. Many beaked whales detected were over an abyssal plain and not associated with slope or seamount features. Results show the feasibility of using free-floating recording systems to detect a variety of cetacean species over periods of several months.

  18. Phase-based dispersion analysis for acoustic array borehole logging data.

    PubMed

    Assous, Said; Elkington, Peter; Linnett, Laurie

    2014-04-01

    A phase-based dispersion analysis method for velocity (slowness) extraction from guided waves recorded by an acoustic borehole logging tool in a geological formation is presented. The technique consists of acquiring waveforms from an array of receivers distributed along the tool and constructing the dispersion characteristic by processing in the frequency domain and exploiting phase information to measure the travel time for each frequency component. The approach is nonparametric and completely data-driven and provides high resolution estimates that do not rely on velocity guesses or assumptions regarding the type of modes. Results are free of the aliases and spurious modes which are characteristic of some prior approaches. Examples of dispersion estimation curves are presented using synthesized flexural waves and field data from wireline dipole sonic tools; results are compared with those from the weighted spectral semblance (WSS) and amplitude and phase slowness estimation (APES) methods to demonstrate the effectiveness and utility of the proposed method.

  19. Functional delay and sum beamforming for three-dimensional acoustic source identification with solid spherical arrays

    NASA Astrophysics Data System (ADS)

    Yang, Yang; Chu, Zhigang; Shen, Linbang; Xu, Zhongming

    2016-07-01

    Solid spherical arrays have become particularly attractive tools for doing acoustic sources identification in cabin environments. Spherical harmonics beamforming (SHB) is the popular conventional algorithm. Regrettably, its results suffer from severe sidelobe contaminations and the existing solutions are incapable of removing these contaminations both significantly and efficiently. This paper focuses on conquering these problems by creating a novel functional delay and sum (FDAS) algorithm. First and foremost, a new delay and sum (DAS) algorithm is established, and for which, the point spread function (PSF) is derived, the determination principle of the truncated upper limit of the spherical harmonics degree is explored, and the performance is examined as well as compared with that of SHB. Next, the FDAS algorithm is created by combining DAS and the functional beamforming (FB) approach initially suggested for planar arrays, and its merits are demonstrated. Additionally, performances of DAS and FDAS are probed into under the situation that the source is not at the focus point. Several interesting results have emerged: (1) the truncated upper limit of the spherical harmonics degree, capable of making DAS meet FB's requirement, exists and its minimum value depends only on the wave number and the array radius. (2) DAS can accurately locate and quantify the single source and the incoherent or coherent sources, and its comprehensive performance is not inferior to that of SHB. (3) For single source or incoherent sources, FDAS can not only accurately locate and quantify the source, but also significantly and efficiently attenuate sidelobes, effectively detect weak sources and acquire somewhat better spatial resolution. In contrast to that, for coherent sources, FDAS is not available. (4) DAS can invariably quantify the source accurately, irrespectively of the focus distance, whereas FDAS is burdened with a quantification deviation growing with the increase of the exponent

  20. Combined microphone array and lock-in amplifier operations for outdoor photo-acoustic sensing

    NASA Astrophysics Data System (ADS)

    Islam, Mohammad; Lay, Joshua; Wang, Chen-Chia; Trivedi, Sudhir; Samuels, Alan; Khurgin, Jacob; Sen-Choa, Fow

    2005-05-01

    Mid-infrared (MIR) standoff photoacoustic (PA) sensing of explosive chemicals and nerve gas stimulants at calibrated concentration have been demonstrated in door. When they are operated out door, array beam forming technique has to be employed to reject ambient noise and enhance signal. Lock-in amplifier usually needs to be used to achieve weak signal detection in a noisy environment. If we can combine these two techniques we will be able to reject both spatial and temporal noise and achieve a great signal to noise ratio (SNR) performance. From the best of our knowledge no literature has described how to combine these two techniques. In this work we demonstrated combined array and lock in amplifier operation in outdoor environment. A simplified system includes a signal generator, a speaker source, a lock in amplifier, 4 spy-phones with 4 parabolic reflectors to collect the acoustic signal, a National-Instrument NI6259 data acquisition system with both A to D (ADC) and D to A converters (DAC), and a PC. To combine these two techniques, each of the array collected signals was digitized by the ADC. Their path delays were adjusted in the computer to synchronize the phase. By using a PC controlled ADC the processing time is very long (~1s). To synchronize them without using costly high-speed customer made hardware, we delayed the reference signal by send it through the same ADC- PCDAC path as the array signals. By doing so, a good lock-in operation with stable phase was obtained.

  1. Inter-costal Liver Ablation Under Real Time MR-Thermometry With Partial Activation Of A HIFU Phased Array Transducer

    NASA Astrophysics Data System (ADS)

    Quesson, Bruno; Merle, Mathilde; Köhler, Max; Mougenot, Charles; Roujol, Sebastien; de Senneville, Baudouin Denis; Moonen, Chrit

    2010-03-01

    HIFU ablation of tumours located inside the liver is hampered by the rib cage, which partially obstructs the beam path and may create adverse effects such as skin burns. This study presents a method for selectively deactivating the transducer elements causing undesired temperature increases near the bones. A manual segmentation of the bones visualized on 3D anatomical MR images acquired prior to sonication was performed to identify the beam obstruction. The resulting mask was projected (ray tracing starting from the focal point) on the transducer and elements with more than 50% obstruction of their active surface were deactivated. The effectiveness of the method for HIFU ablations is demonstrated ex vivo and in vivo in the liver of pigs with real-time MR thermometry, using the proton resonant frequency (PRF) method. For both ex vivo and in vivo experiments, the temperature increase near the bones was significantly reduced when the elements located in front of the ribs were deactivated. The temperature evolution at the focal point were similar, indicative of the absence of loss of heating efficacy when the elements were deactivated. This method is simple, rapid and reliable and allows to perform intercostal MRgHIFU ablation of the liver while sparing the ribs.

  2. Quantitative verification of thin-film polyvinylidene fluoride (PVDF) transducer array performance up to 60 °C

    NASA Astrophysics Data System (ADS)

    Hakoda, Christopher; Ren, Baiyang; Lissenden, Cliff J.; Rose, Joseph L.

    2017-02-01

    Thin-film PVDF (polyvinylidene fluoride) transducers are appealing as low cost, light weight, durable, and flexible sensors for structural health monitoring applications in aircraft structures. However, due to the relatively low Curie temperature of PVDF, there is a concern that it's performance will drop below acceptable levels during elevated-temperature operating conditions. To verify acceptable performance in these environmental operating conditions, temperature history data were collected between 23-60 °C. The effect of temperature on the thin-film PVDF was investigated and a temperature-independent damage feature was assessed. The temperature dependence of the signal's peak amplitude was investigated in both the time domain and the spectral domain to get two damage features. It was found that the measurement of the incident guided wave by the thin-film PVDF transducer had a temperature dependence that varied with frequency. A third damage feature, the mode ratio, was also calculated in the spectral domain with the goal of defining a damage feature that is temperature independent. A comparison of how well these damage features performed when used to identify a notch in an aluminum plate was made using receiver operating characteristic curves and their respective area under the curve values. This result demonstrated that a temperature-independent damage feature can be calculated, to some degree, by using a mode ratio between two modes of similar temperature dependence.

  3. Acoustically based fetal heart rate monitor

    NASA Technical Reports Server (NTRS)

    Baker, Donald A.; Zuckerwar, Allan J.

    1991-01-01

    The acoustically based fetal heart rate monitor permits an expectant mother to perform the fetal Non-Stress Test in her home. The potential market would include the one million U.S. pregnancies per year requiring this type of prenatal surveillance. The monitor uses polyvinylidene fluoride (PVF2) piezoelectric polymer film for the acoustic sensors, which are mounted in a seven-element array on a cummerbund. Evaluation of the sensor ouput signals utilizes a digital signal processor, which performs a linear prediction routine in real time. Clinical tests reveal that the acoustically based monitor provides Non-Stress Test records which are comparable to those obtained with a commercial ultrasonic transducer.

  4. Self-adapting root-MUSIC algorithm and its real-valued formulation for acoustic vector sensor array

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Zhang, Guo-jun; Xue, Chen-yang; Zhang, Wen-dong; Xiong, Ji-jun

    2012-12-01

    In this paper, based on the root-MUSIC algorithm for acoustic pressure sensor array, a new self-adapting root-MUSIC algorithm for acoustic vector sensor array is proposed by self-adaptive selecting the lead orientation vector, and its real-valued formulation by Forward-Backward(FB) smoothing and real-valued inverse covariance matrix is also proposed, which can reduce the computational complexity and distinguish the coherent signals. The simulation experiment results show the better performance of two new algorithm with low Signal-to-Noise (SNR) in direction of arrival (DOA) estimation than traditional MUSIC algorithm, and the experiment results using MEMS vector hydrophone array in lake trails show the engineering practicability of two new algorithms.

  5. Fiber-optic interferometric acoustic sensors for wind tunnel applications

    NASA Technical Reports Server (NTRS)

    Cho, Y. C.

    1993-01-01

    Progress in developing fiber-optic interferometric sensors for aeroacoustic measurements in wind tunnels, performed under the NASA program, is reported. Preliminary results show that the fiber-optic interferometer sensor array is a powerful instrument for solving complex acoustic measurement problems in wind tunnels, which cannot be resolved with the conventional transducer technique.

  6. Guided acoustic wave inspection system

    SciTech Connect

    Chinn, Diane J.

    2004-10-05

    A system for inspecting a conduit for undesirable characteristics. A transducer system induces guided acoustic waves onto said conduit. The transducer system detects the undesirable characteristics of the conduit by receiving guided acoustic waves that contain information about the undesirable characteristics. The conduit has at least two sides and the transducer system utilizes flexural modes of propagation to provide inspection using access from only the one side of the conduit. Cracking is detected with pulse-echo testing using one transducer to both send and receive the guided acoustic waves. Thinning is detected in through-transmission testing where one transducer sends and another transducer receives the guided acoustic waves.

  7. Particle manipulation with acoustic vortex beam induced by a brass plate with spiral shape structure

    NASA Astrophysics Data System (ADS)

    Wang, Tian; Ke, Manzhu; Li, Weiping; Yang, Qian; Qiu, Chunyin; Liu, Zhengyou

    2016-09-01

    In this work, we give direct demonstration of acoustic radiation force and acoustic torque on particles exerted by an acoustic vortex beam, which is realized by an acoustic artificial structure plate instead of traditional transducer arrays. First, the first order acoustic vortex beam, which has the distinctive features of a linear and continuous phase variation from -π to π around its propagation axis and a magnitude null at its core, is obtained through one single acoustic source incident upon a structured brass plate with Archimedean spiral grating engraved on the back surface. Second, annular self-patterning of polystyrene particles with a radius of 90 μm is realized in the gradient field of this acoustic vortex beam. In addition, we further exhibit acoustic angular momentum transfer to an acoustic absorptive matter, which is verified by a millimeter-sized polylactic acid disk self-rotating in water in the acoustic field of the generated vortex beam.

  8. Time-reversal acoustic focusing system as a virtual random phased array.

    PubMed

    Sarvazyan, Armen; Fillinger, Laurent; Gavrilov, Leonid

    2010-04-01

    This paper compares the performance of two different systems for dynamic focusing of ultrasonic waves: conventional 2-D phased arrays (PA) and a focusing system based on the principles of time-reversed acoustics (TRA). Focused ultrasound fields obtained in the experiments with the TRA focusing system (TRA FS), which employs a liquid-filled reverberator with 4 piezotransducers attached to its wall, are compared with the focused fields obtained by mathematical simulation of PAs comprised from several tens to several hundreds of elements distributed randomly on the array surface. The experimental and simulated focusing systems had the same aperture and operated at a frequency centered about 600 kHz. Experimental results demonstrated that the TRA FS with a small number of channels can produce complex focused patterns and can steer them with efficiency comparable to that of a PA with hundreds of elements. It is shown that the TRA FS can be realized using an extremely simple means, such as a reverberator made of a water-filled plastic bottle with just a few piezotransducers attached to its walls.

  9. Three-dimensional acoustic imaging with planar microphone arrays and compressive sensing

    NASA Astrophysics Data System (ADS)

    Ning, Fangli; Wei, Jingang; Qiu, Lianfang; Shi, Hongbing; Li, Xiaofan

    2016-10-01

    For obtaining super-resolution source maps, we extend compressive sensing (CS) to three-dimensional acoustic imaging. Source maps are simulated with a planar microphone array and a CS algorithm. Comparing the source maps of the CS algorithm with those of the conventional beamformer (CBF) and Tikhonov Regularization (TIKR), we find that the CS algorithm is computationally more effective and can obtain much higher resolution source maps than the CBF and TIKR. The effectiveness of the CS algorithm is analyzed. The CS algorithm can locate the sound sources exactly when the frequency is above 4000 Hz and the signal-to-noise ratio (SNR) is above 12 dB. The location error of the CS algorithm increases as the frequency drops below the threshold, and the errors in location and power increase as SNR decreases. The further from the array the source is, the larger the location error is. The lateral resolution of the CS algorithm is much better than the range resolution. Finally, experimental measurements are conducted in a semi-anechoic room. Two mobile phones are served as sound sources. The results show that the CS algorithm can reconstruct two sound sources near the bottom of the two mobile phones where the speakers are located. The feasibility of the CS algorithm is also validated with the experiment.

  10. Modulation of Radio Frequency Signals by Nonlinearly Generated Acoustic Fields

    DTIC Science & Technology

    2014-01-01

    Kirchhoff’s theorem, typically applied to EM waves, determining the far-field patterns of an acoustic source from amplitude and phase measurements made in...two noncollinear ultrasonic baffled piston sources. The theory is extended to the modeling of the sound beams generated by parametric transducer arrays ...typically applied to EM waves, determining the far-field patterns of an acoustic source from amplitude and phase measurements made in the near-field by

  11. Evaluation of the resolution of a metamaterial acoustic leaky wave antenna.

    PubMed

    Naify, Christina J; Rogers, Jeffery S; Guild, Matthew D; Rohde, Charles A; Orris, Gregory J

    2016-06-01

    Acoustic antennas have long been utilized to directionally steer acoustic waves in both air and water. Typically, these antennas are comprised of arrays of active acoustic elements, which are electronically phased to steer the acoustic profile in the desired direction. A new technology, known as an acoustic leaky wave antenna (LWA), has recently been shown to achieve directional steering of acoustic waves using a single active transducer coupled to a transmission line passive aperture. The LWA steers acoustic energy by preferential coupling to an input frequency and can be designed to steer from backfire to endfire, including broadside. This paper provides an analysis of resolution as a function of both input frequency and antenna length. Additionally, the resolution is compared to that achieved using an array of active acoustic elements.

  12. Field testing of a convergent array of acoustic Doppler profilers for high-resolution velocimetry in energetic tidal currents

    SciTech Connect

    Harding, Samuel F.; Sellar, Brian; Richmond, Marshall C.

    2016-04-25

    An array of single-beam acoustic Doppler profilers has been developed for the high resolution measurement of three-dimensional tidal flow velocities and subsequently tested in an energetic tidal site. This configuration has been developed to increase spatial resolution of velocity measurements in comparison to conventional acoustic Doppler profilers (ADPs) which characteristically use divergent acoustic beams emanating from a single instrument. This is achieved using geometrically convergent acoustic beams creating a sample volume at the focal point of 0.03 m3. Away from the focal point, the array is also able to simultaneously reconstruct three-dimensional velocity components in a profile throughout the water column, and is referred to herein as a convergent-beam acoustic Doppler profiler (C-ADP). Mid-depth profiling is achieved through integration of the sensor platform with the operational commercial-scale Alstom 1MW DeepGen-IV Tidal Turbine deployed at the European Marine Energy Center, Orkney Isles, UK. This proof-of-concept paper outlines the C-ADP system configuration and comparison to measurements provided by co-installed reference instrumentation.

  13. Room acoustics analysis using circular arrays: an experimental study based on sound field plane-wave decomposition.

    PubMed

    Torres, Ana M; Lopez, Jose J; Pueo, Basilio; Cobos, Maximo

    2013-04-01

    Plane-wave decomposition (PWD) methods using microphone arrays have been shown to be a very useful tool within the applied acoustics community for their multiple applications in room acoustics analysis and synthesis. While many theoretical aspects of PWD have been previously addressed in the literature, the practical advantages of the PWD method to assess the acoustic behavior of real rooms have been barely explored so far. In this paper, the PWD method is employed to analyze the sound field inside a selected set of real rooms having a well-defined purpose. To this end, a circular microphone array is used to capture and process a number of impulse responses at different spatial positions, providing angle-dependent data for both direct and reflected wavefronts. The detection of reflected plane waves is performed by means of image processing techniques applied over the raw array response data and over the PWD data, showing the usefulness of image-processing-based methods for room acoustics analysis.

  14. Direct calculation of acoustic streaming including the boundary layer phenomena in an ultrasonic air pump

    NASA Astrophysics Data System (ADS)

    Wada, Yuji; Koyama, Daisuke; Nakamura, Kentaro

    2012-05-01

    Direct finite difference fluid simulation of acoustic streaming on the fine-meshed three-dimensiona model by graphics processing unit (GPU)-oriented calculation array is discussed. Airflows due to the acoustic traveling wave are induced when an intense sound field is generated in a gap between a bending transducer and a reflector. Calculation results showed good agreement with the measurements in the pressure distribution. In addition to that, several flow-vortices were observed near the boundary of the reflector and the transducer, which have been often discussed in acoustic tube near the boundary, and have never been observed in the calculation in the ultrasonic air pump of this type.

  15. Transducers for ultrasonic limb plethysmography

    NASA Technical Reports Server (NTRS)

    Nickell, W. T.; Wu, V. C.; Bhagat, P. K.

    1983-01-01

    The design, construction, and performance characteristics of ultasonic transducers suitable for limb plethysmography are presented. Both 3-mm-diameter flat-plate and 12-mm-diameter hemispheric ceramic transducers operating at 2 MHz were fitted in 1-mm thick epoxy-resin lens/acoustic-coupling structures and mounted in exercie-EKG electrode housings for placement on the calf using adhesive collars. The effects of transducer directional characteristics on performance under off-axis rotation and the electrical impedances of the transducers were measured: The flat transducer was found to be sensitive to rotation and have an impedance of 800 ohms; the hemispheric transducer, to be unaffected by rotation and have an impedance of 80 ohms. The use of hemispheric transducers as both transmitter and receiver, or of a flat transducer as transmitter and a hemispheric transducer as receiver, was found to produce adequate dimensional measurements, with minimum care in transducer placement, in short-term physiological experiments and long-term (up to 7-day) attachment tests.

  16. Means of manufacturing annular arrays

    DOEpatents

    Day, R.A.

    1985-10-10

    A method is described for manufacturing an annular acoustic transducer array from a plate of transducer material, which enables production of precision aligned arrays at low cost. The circular plate is sawed along at least two lines that are radial to the axis of the plate. At steps along each radial cut, the plate is rotated first in one direction and then in an opposite direction by a predetermined angle such as slightly less than 90/sup 0/. The cuts result in the forming of several largely ring-shaped lands, each largely ring-shaped land being joined to the other rings of different radii by thin portions of the plate, and each ring being cut into segments. The bridges that join different rings hold the transducer together until it can be mounted on a lens.

  17. Analytical method for evaluating the quality of acoustic fields radiated by a multielement therapeutic array with electronic focus steering

    NASA Astrophysics Data System (ADS)

    Ilyin, S. A.; Yuldashev, P. V.; Khokhlova, V. A.; Gavrilov, L. R.; Rosnitskiy, P. B.; Sapozhnikov, O. A.

    2015-01-01

    The paper presents an analytical method for calculating and analyzing the quality of 3-D acoustic fields of multielement phased arrays used in noninvasive ultrasound surgical devices. An analytical solution for the far field of each of its elements is used when calculating the array field. This method significantly accelerates calculations while preserving the high accuracy of results as compared to conventional direct numerical integration. Radiation from typical phased arrays is calculated using this approach, and the quality of their dynamic focusing is analyzed. Undesired diffraction effects caused by electronic focus steering are considered: an amplitude decrease in the main maximum and the appearance of grating lobes. The quality of dynamic focusing of the acoustic fields of two practically interesting arrays with a quasi-random element distribution (256 and 1024 elements, respectively), as well as of the regular array consisting of 256 elements is compared. In addition as well, a study is made of how the dimensions of the array elements and their spatial distributions affect the dimensions of the areas in which dynamic focusing is possible without occurrence of strong grating lobes and significant decrease in pressure amplitude at the main focus.

  18. Theory and investigation of acoustic multiple-input multiple-output systems based on spherical arrays in a room.

    PubMed

    Morgenstern, Hai; Rafaely, Boaz; Zotter, Franz

    2015-11-01

    Spatial attributes of room acoustics have been widely studied using microphone and loudspeaker arrays. However, systems that combine both arrays, referred to as multiple-input multiple-output (MIMO) systems, have only been studied to a limited degree in this context. These systems can potentially provide a powerful tool for room acoustics analysis due to the ability to simultaneously control both arrays. This paper offers a theoretical framework for the spatial analysis of enclosed sound fields using a MIMO system comprising spherical loudspeaker and microphone arrays. A system transfer function is formulated in matrix form for free-field conditions, and its properties are studied using tools from linear algebra. The system is shown to have unit-rank, regardless of the array types, and its singular vectors are related to the directions of arrival and radiation at the microphone and loudspeaker arrays, respectively. The formulation is then generalized to apply to rooms, using an image source method. In this case, the rank of the system is related to the number of significant reflections. The paper ends with simulation studies, which support the developed theory, and with an extensive reflection analysis of a room impulse response, using the platform of a MIMO system.

  19. A Towable, Moving-Coil Acoustic Target for Low Frequency Array Calibration.

    DTIC Science & Technology

    1981-04-29

    moving-coil transducers will give some insight causing rubbing in the gap . into more reliable design.casnrubginteap 6. Piston Skew - A slight amount...differential pressure between the transducer magnetic gap may rub against the coil, shorting interior and exterior. it out. 5 TR 6369 PISTON MAGNET AIR...this type of the tow body first; however, the availability of transducer tow bodies that were ideal in size, shape, 3. Gap diameter - optimum flux

  20. Acoustic imaging in a water filled metallic pipe

    SciTech Connect

    Kolbe, W.F.; Turko, B.T.; Leskovar, B.

    1984-04-01

    A method is described for the imaging of the interior of a water filled metallic pipe using acoustical techniques. The apparatus consists of an array of 20 acoustic transducers mounted circumferentially around the pipe. Each transducer is pulsed in sequence, and the echos resulting from bubbles in the interior are digitized and processed by a computer to generate an image. The electronic control and digitizing system and the software processing of the echo signals are described. The performance of the apparatus is illustrated by the imaging of simulated bubbles consisting of thin walled glass spheres suspended in the pipe.

  1. Acoustic imaging in a water filled metallic pipe

    NASA Astrophysics Data System (ADS)

    Kolbe, W. F.; Turko, B. T.; Leskovar, B.

    1984-04-01

    A method is described for imaging the interior of a water filled metallic pipe using acoustical techniques. The apparatus consists of an array of 20 acoustic transducers mounted circumferentially around the pipe. Each transducer is pulsed in sequence, and the echos resulting from bubbles in the interior are digitized and processed by a computer to generate an image. The electronic control and digitizing system and the software processing of the echo signals are described. The performance of the apparatus is illustrated by the imaging of simulated bubbles consisting of thin walled glass spheres suspended in the pipe.

  2. Detection and localization using an acoustic array on a small robotic platform

    NASA Astrophysics Data System (ADS)

    Young, Stuart H.; Scanlon, Michael V.

    2003-09-01

    The future battlefield will require an unprecedented level of automation in which soldier-operated autonomous and semi-autonomous ground, air and sea platforms along with mounted and dismounted soldiers will function as a tightly coupled team. Sophisticated robotic platforms with diverse sensor suites will be an integral part of the Objective Force, and must be able to collaborate not only amongst themselves but also with their manned partners. The Army Research Laboratory has developed a robot-based acoustic detection system that will detect and localize on an impulsive noise event, such as a sniper's weapon firing. Additionally, acoustic sensor arrays worn on a soldier's helmet or equipment can enhance his situational awareness and RSTA capabilities. The Land Warrior or Objective Force Warrior body-worn computer can detect tactically significant impulsive signatures from bullets, mortars, artillery, and missiles or spectral signatures from tanks, helicopters, UAVs, and mobile robots. Time-difference-of-arrival techniques can determine a sound's direction of arrival, while head attitude sensors can instantly determine the helmet orientation at time of capture. With precision GPS location of the soldier, along with the locations of other soldiers, robots, or unattended ground sensors that heard the same event, triangulation techniques can produce an accurate location of the target. Data from C-4 explosions and 0.50-Caliber shots shows that both helmet and robot systems can localize on the same event. This provides an awesome capability - mobile robots and soldiers working together on an ever-changing battlespace to detect the enemy and improve the survivability, mobility, and lethality of our future warriors.

  3. Acoustic force mapping in a hybrid acoustic-optical micromanipulation device supporting high resolution optical imaging† †Electronic supplementary information (ESI) available: Additional information about 1D model calculations for a piezoelectric transducer. See DOI: 10.1039/c6lc00182c Click here for additional data file.

    PubMed Central

    McDougall, Craig; MacDonald, Michael Peter; Ritsch-Marte, Monika

    2016-01-01

    Many applications in the life-sciences demand non-contact manipulation tools for forceful but nevertheless delicate handling of various types of sample. Moreover, the system should support high-resolution optical imaging. Here we present a hybrid acoustic/optical manipulation system which utilizes a transparent transducer, making it compatible with high-NA imaging in a microfluidic environment. The powerful acoustic trapping within a layered resonator, which is suitable for highly parallel particle handling, is complemented by the flexibility and selectivity of holographic optical tweezers, with the specimens being under high quality optical monitoring at all times. The dual acoustic/optical nature of the system lends itself to optically measure the exact acoustic force map, by means of direct force measurements on an optically trapped particle. For applications with (ultra-)high demand on the precision of the force measurements, the position of the objective used for the high-NA imaging may have significant influence on the acoustic force map in the probe chamber. We have characterized this influence experimentally and the findings were confirmed by model simulations. We show that it is possible to design the chamber and to choose the operating point in such a way as to avoid perturbations due to the objective lens. Moreover, we found that measuring the electrical impedance of the transducer provides an easy indicator for the acoustic resonances. PMID:27025398

  4. Piezoelectric transducer

    NASA Technical Reports Server (NTRS)

    Conragan, J.; Muller, R. S.

    1970-01-01

    Transducer consists of a hybrid thin film and a piezoelectric transistor that acts as a stress-sensitive device with built-in gain. It provides a stress/strain transducer that incorporates a signal amplification stage and sensor in a single package.

  5. Microinterferometer transducer

    DOEpatents

    Corey, III, Harry S.

    1979-01-01

    An air-bearing microinterferometer transducer is provided for increased accuracy, range and linearity over conventional displacement transducers. A microinterferometer system is housed within a small compartment of an air-bearing displacement transducer housing. A movable cube corner reflector of the interferometer is mounted to move with the displacement gauging probe of the transducer. The probe is disposed for axial displacement by means of an air-bearing. Light from a single frequency laser is directed into an interferometer system within the transducer housing by means of a self-focusing fiber optic cable to maintain light coherency. Separate fringe patterns are monitored by a pair of fiber optic cables which transmit the patterns to a detecting system. The detecting system includes a bidirectional counter which counts the light pattern fringes according to the direction of movement of the probe during a displacement gauging operation.

  6. Dual-frequency super harmonic imaging piezoelectric transducers for transrectal ultrasound

    NASA Astrophysics Data System (ADS)

    Kim, Jinwook; Li, Sibo; Kasoji, Sandeep; Dayton, Paul A.; Jiang, Xiaoning

    2015-03-01

    In this paper, a 2/14 MHz dual-frequency single-element transducer and a 2/22 MHz sub-array (16/48-elements linear array) transducer were developed for contrast enhanced super-harmonic ultrasound imaging of prostate cancer with the low frequency ultrasound transducer as a transmitter for contrast agent (microbubble) excitation and the high frequency transducer as a receiver for detection of nonlinear responses from microbubbles. The 1-3 piezoelectric composite was used as active materials of the single-element transducers due to its low acoustic impedance and high coupling factor. A high dielectric constant PZT ceramic was used for the sub-array transducer due to its high dielectric property induced relatively low electrical impedance. The possible resonance modes of the active elements were estimated using finite element analysis (FEA). The pulse-echo response, peak-negative pressure and bubble response were tested, followed by in vitro contrast imaging tests using a graphite-gelatin tissue-mimicking phantom. The single-element dual frequency transducer (8 × 4 × 2 mm3) showed a -6 dB fractional bandwidth of 56.5% for the transmitter, and 41.8% for the receiver. A 2 MHz-transmitter (730 μm pitch and 6.5 mm elevation aperture) and a 22 MHz-receiver (240 μm pitch and 1.5 mm aperture) of the sub-array transducer exhibited -6 dB fractional bandwidth of 51.0% and 40.2%, respectively. The peak negative pressure at the far field was about -1.3 MPa with 200 Vpp, 1-cycle 2 MHz burst, which is high enough to excite microbubbles for nonlinear responses. The 7th harmonic responses from micro bubbles were successfully detected in the phantom imaging test showing a contrast-to-tissue ratio (CTR) of 16 dB.

  7. Acoustic positioning using a tetrahedral ultrashort baseline array of an acoustic modem source transmitting frequency-hopped sequences.

    PubMed

    Beaujean, Pierre-Philippe J; Mohamed, Asif I; Warin, Raphael

    2007-01-01

    Acoustic communications and positioning are vital aspects of unmanned underwater vehicle operations. The usage of separate units on each vehicle has become an issue in terms of frequency bandwidth, space, power, and cost. Most vehicles rely on acoustic modems transmitting frequency-hopped multiple frequency-shift keyed sequences for command-and-control operations, which can be used to locate the vehicle with a good level of accuracy without requiring extra signal transmission. In this paper, an ultrashort baseline acoustic positioning technique has been designed, simulated, and tested to locate an acoustic modem source in three dimensions using a tetrahedral, half-wavelength acoustic antenna. The position estimation is performed using the detection sequence contained in each message, which is a series of frequency-hopped pulses. Maximum likelihood estimation of azimuth and elevation estimation is performed using a varying number of pulse and various signal-to-noise ratios. Simulated and measured position estimation error match closely, and indicate that the accuracy of this system improves dramatically as the number of pulses processed increases, given a fixed signal-to-noise ratio.

  8. A Synthetic Phased Array Surface Acoustic Wave Sensor for Quantifying Bolt Tension

    PubMed Central

    Martinez, Jairo; Sisman, Alper; Onen, Onursal; Velasquez, Dean; Guldiken, Rasim

    2012-01-01

    In this paper, we report our findings on implementing a synthetic phased array surface acoustic wave sensor to quantify bolt tension. Maintaining proper bolt tension is important in many fields such as for ensuring safe operation of civil infrastructures. Significant advantages of this relatively simple methodology is its capability to assess bolt tension without any contact with the bolt, thus enabling measurement at inaccessible locations, multiple bolt measurement capability at a time, not requiring data collection during the installation and no calibration requirements. We performed detailed experiments on a custom-built flexible bench-top experimental setup consisting of 1018 steel plate of 12.7 mm (½ in) thickness, a 6.4 mm (¼ in) grade 8 bolt and a stainless steel washer with 19 mm (¾ in) of external diameter. Our results indicate that this method is not only capable of clearly distinguishing properly bolted joints from loosened joints but also capable of quantifying how loose the bolt actually is. We also conducted detailed signal-to-noise (SNR) analysis and showed that the SNR value for the entire bolt tension range was sufficient for image reconstruction.

  9. Azimuthal cement evaluation with an acoustic phased-arc array transmitter: numerical simulations and field tests

    NASA Astrophysics Data System (ADS)

    Che, Xiao-Hua; Qiao, Wen-Xiao; Ju, Xiao-Dong; Wang, Rui-Jia

    2016-03-01

    We developed a novel cement evaluation logging tool, named the azimuthally acoustic bond tool (AABT), which uses a phased-arc array transmitter with azimuthal detection capability. We combined numerical simulations and field tests to verify the AABT tool. The numerical simulation results showed that the radiation direction of the subarray corresponding to the maximum amplitude of the first arrival matches the azimuth of the channeling when it is behind the casing. With larger channeling size in the circumferential direction, the amplitude difference of the casing wave at different azimuths becomes more evident. The test results showed that the AABT can accurately locate the casing collars and evaluate the cement bond quality with azimuthal resolution at the casing—cement interface, and can visualize the size, depth, and azimuth of channeling. In the case of good casing—cement bonding, the AABT can further evaluate the cement bond quality at the cement—formation interface with azimuthal resolution by using the amplitude map and the velocity of the formation wave.

  10. Quantitative and qualitative analyses of under-balcony acoustics with real and simulated arrays of multiple sources

    NASA Astrophysics Data System (ADS)

    Kwon, Youngmin

    The objective of this study was to quantitatively and qualitatively identify the acoustics of the under-balcony areas in music performance halls under realistic conditions that are close to an orchestral performance in consideration of multiple music instrumental sources and their diverse sound propagation patterns. The study executed monaural and binaural impulse response measurements with an array of sixteen directional sources (loudspeakers) for acoustical assessments. Actual measurements in a performance hall as well as computer simulations were conducted for the quantitative assessments. Psycho-acoustical listening tests were conducted for the qualitative assessments using the music signals binaurally recorded in the hall with the same source array. The results obtained from the multiple directional source tests were analyzed by comparing them to those obtained from the tests performed with a single omni-directional source. These two sets of results obtained in the under-balcony area were also compared to those obtained in the main orchestra area. The quantitative results showed that the use of a single source conforming to conventional measurement protocol seems to be competent for measurements of the room acoustical parameters such as EDTmid, RTmid, C80500-2k, IACCE3 and IACCL3. These quantitative measures, however, did not always agree with the results of the qualitative assessments. The primary reason is that, in many other acoustical analysis respects, the acoustical phenomena shown from the multiple source measurements were not similar to those shown from the single source measurements. Remarkable differences were observed in time-domain impulse responses, frequency content, spectral distribution, directional distribution of the early reflections, and in sound energy density over time. Therefore, the room acoustical parameters alone should not be the acoustical representative characterizing a performance hall or a specific area such as the under

  11. Twenty years of barrel-stave flextensional transducer technology in Canada

    NASA Astrophysics Data System (ADS)

    Jones, Dennis F.

    2005-04-01

    The barrel-stave flextensional transducer, a compact underwater sound source, was conceived at DRDC Atlantic in 1986 [G. W. McMahon and D. F. Jones, U.S. Patent No. 4,922,470 (1 May 1990); Canadian Patent No. 1,285,646 (2 July 1991)]. Over the years, five barrel-stave designs belonging to three flextensional classes were built and tested at DRDC Atlantic. Three Class I transducers with operating frequencies ranging from 800 to 1600 Hz were integrated into submarine communications buoys, low frequency active horizontal projector arrays, and a broadband sonar towbody. A high-power Class II and broadband (1-7 kHz) Class III transducer were deployed under the ice in the Lincoln Sea for research related to rapidly deployable surveillance systems. These barrel-stave flextensional transducers have also supported a variety of marine mammal studies including vocal mimicry in long-finned pilot whales, coda dialects in sperm whales, and the R&D of acoustic detection and tracking systems for endangered northern right whales. In August 2004 a barrel-stave transducer was used to lure a trapped juvenile humpback whale to the sluice gates of a tidal generating station on the Annapolis River in Nova Scotia by transmitting humpback whale calls underwater. The acoustic performance parameters for all 5 transducers will be presented.

  12. Parallel acoustic delay lines for photoacoustic tomography

    PubMed Central

    Yapici, Murat Kaya; Kim, Chulhong; Chang, Cheng-Chung; Jeon, Mansik; Guo, Zijian; Cai, Xin

    2012-01-01

    Abstract. Achieving real-time photoacoustic (PA) tomography typically requires multi-element ultrasound transducer arrays and their associated multiple data acquisition (DAQ) electronics to receive PA waves simultaneously. We report the first demonstration of a photoacoustic tomography (PAT) system using optical fiber-based parallel acoustic delay lines (PADLs). By employing PADLs to introduce specific time delays, the PA signals (on the order of a few micro seconds) can be forced to arrive at the ultrasonic transducers at different times. As a result, time-delayed PA signals in multiple channels can be ultimately received and processed in a serial manner with a single-element transducer, followed by single-channel DAQ electronics. Our results show that an optically absorbing target in an optically scattering medium can be photoacoustically imaged using the newly developed PADL-based PAT system. Potentially, this approach could be adopted to significantly reduce the complexity and cost of ultrasonic array receiver systems. PMID:23139043

  13. Generation of acoustic helical wavefronts using metasurfaces

    NASA Astrophysics Data System (ADS)

    Esfahlani, Hussein; Lissek, Herve; Mosig, Juan R.

    2017-01-01

    It has been shown that acoustic waves with helical wavefronts can carry angular momentum, which can be transmitted towards a propagating medium. Such a wave field can be achieved by using a planar array of electroacoustic transducers, forming a given spatial distribution of phased sound sources which produce the desired helical wavefronts. Here, we introduce a technique to generate acoustic vortices, based on the passive acoustic metasurface concept. The proposed metasurface is composed of space-coiled cylindrical unit cells transmitting sound pressure with a controllable phase shift, which are arranged in a discretized circular configuration, and thus passively transforming an incident plane wavefront into the desired helical wavefront. This method presents the advantage of overcoming the restrictions on using many acoustic sources, and it is implemented with a transmitting metasurface which can be easily three-dimensionally printed. The proposed straightforward design principle can be adopted for easy production of acoustic angular momentum with minimum complexity and using a single source.

  14. Detection of coffee flavour ageing by solid-phase microextraction/surface acoustic wave sensor array technique (SPME/SAW).

    PubMed

    Barié, Nicole; Bücking, Mark; Stahl, Ullrich; Rapp, Michael

    2015-06-01

    The use of polymer coated surface acoustic wave (SAW) sensor arrays is a very promising technique for highly sensitive and selective detection of volatile organic compounds (VOCs). We present new developments to achieve a low cost sensor setup with a sampling method enabling the highly reproducible detection of volatiles even in the ppb range. Since the VOCs of coffee are well known by gas chromatography (GC) research studies, the new sensor array was tested for an easy assessable objective: coffee ageing during storage. As reference method these changes were traced with a standard GC/FID set-up, accompanied by sensory panellists. The evaluation of GC data showed a non-linear characteristic for single compound concentrations as well as for total peak area values, disabling prediction of the coffee age. In contrast, the new SAW sensor array demonstrates a linear dependency, i.e. being capable to show a dependency between volatile concentration and storage time.

  15. Seismic and Acoustic Studies from a Seafloor Array on the Juan de Fuca Ridge

    NASA Astrophysics Data System (ADS)

    McDonald, Mark Armstrong

    This dissertation consists of two related but separate studies, one a refraction seismic study of the oceanic crust and the other an acoustic study of whale behavior in the presence of noise, both using seafloor array data. The goal of the first study was to measure the lateral thickness variability in the extrusive volcanic layer on the Juan de Fuca Ridge. The Juan de Fuca Ridge is a medium rate (6 cm per year full rate), active spreading center, separating the Juan de Fuca and Pacific plates. It is a site of volcanic eruptions, associated with creation of new oceanic crust, and hydrothermal vents which are important in the chemical balance of the oceans. To better understand the mechanisms controlling hydrothermal venting and the creation of new crust, a seismic refraction survey was conducted over a 20 km by 30 km area of the ridge. This survey, conducted in August of 1990, used airguns as energy sources and ocean bottom seismometers as recorders. A 3-dimensional traveltime inversion was used to interpret extrusive volcanic layer thickness changes of 300 m, occurring over less than several kilometers laterally. These thickness changes are interpreted as lava accumulations on the low side of listric faults in an episodic spreading system. The traveltime inversion also reveals a large horizontal seismic velocity anisotropy which is confined to the upper 500 m of crust. Compressional velocities are 3.35 km/s in the ridge strike direction and 2.25 km/s across strike. This anisotropy is believed to be caused by oriented fractures within the extrusive layer. The second study involved the tracking and analysis of whale vocalizations which were recorded on the array 10 percent of the time. The goal was to determine if noises such as generated by the airguns, shipping or earthquakes affected the behavior of these fin and blue whales. The vocalization patterns allow analysis of swimming speed, direction, respiration cycle and call interaction. While no clear noise

  16. The use of GPS arrays in detecting shock-acoustic waves generated during rocket launchings

    NASA Astrophysics Data System (ADS)

    Afraimovich, E. L.; Kosogorov, E. A.; Perevalova, N. P.; Plotnikov, A. V.

    2001-12-01

    This paper is concerned with the parameters of shock-acoustic waves (SAW) generated during rocket launchings. We have developed the interferometric method for determining SAW parameters (including angular characteristics of the wave vector, and the SAW phase velocity, as well as the direction towards the source) using GPS-arrays. Contrary to the conventional radio-probing techniques, the proposed method provides an estimate of SAW parameters without a priori information about the site and time of a rocket launching. The application of the method is illustrated by a case study of ionospheric effects from launchings of rockets PROTON, SOYUZ and SPACE SHUTTLE from Baikonur and Kennedy Space Center cosmodromes in 1998-2000. In spite of a difference of rocket characteristics, the ionospheric response for all launchings had the character of an /N-wave corresponding to the form of a shock wave. The SAW period /T is 270-360s, and the amplitude exceeds the standard deviation of total electron content background fluctuations in this range of periods under quiet and moderate geomagnetic conditions by factors of 2-5 as a minimum. The angle of elevation of the SAW wave vector varies from /30° to /60°, and the SAW phase velocity (900-1200m/s) approaches the sound velocity at heights of the ionospheric /F-region maximum. The position of the SAW source, inferred by neglecting refraction corrections, corresponds to the segment of the rockets path at a distance no less than 200-900km from the launch pad, and to the rocket flying altitude no less than 100km. Our data are consistent with the existing view that SAW are generated during a nearly horizontal flight of the rocket with its engine in operation in the acceleration segment of the path at 100-130km altitudes in the lower atmosphere.

  17. The Acoustic Signal of a Helicopter can be Used to Track it With Seismic Arrays

    NASA Astrophysics Data System (ADS)

    Eibl, Eva P. S.; Lokmer, Ivan; Bean, Christopher J.; Akerlie, Eggert

    2016-04-01

    We apply traditional frequency domain methods usually applied to volcanic tremor on seismic recordings of a helicopter. On a volcano the source can be repeating, closely spaced earthquakes whereas for a helicopter the source are repeating pressure pulses from the rotor blades that are converted through acoustic-to-seismic coupling. In both cases the seismic signal is referred to as tremor. As frequency gliding is in this case merely caused by the Doppler effect, not a change in the source, we can use its shape to deduce properties of the helicopter. We show in this analysis that the amount of rotor blades, rotor revolutions per minute (RPM), flight direction, height and location can be deduced. The signal was recorded by a seven station broadband array with an aperture of 1.6 km. Our spacing is close enough to record the signal at all stations and far enough to observe traveltime differences. We perform a detailed spectral and location analysis of the signal, and compare our results with the known information on the helicopter's speed, location, height, the frequency of the blades rotation and the amount of blades. This analysis is based on the characteristic shape of the curve i.e. speed of the gliding, minimum and maximum fundamental frequency, amplitudes at the inflection points at different stations and traveltimes deduced from the inflection points at different stations. The helicopter GPS track gives us a robust way of testing the method. This observation has an educative value, because the same principles can be applied to signals in different disciplines.

  18. Baryonic acoustic oscillations from 21 cm intensity mapping: the Square Kilometre Array case

    NASA Astrophysics Data System (ADS)

    Villaescusa-Navarro, Francisco; Alonso, David; Viel, Matteo

    2017-04-01

    We quantitatively investigate the possibility of detecting baryonic acoustic oscillations (BAO) using single-dish 21 cm intensity mapping observations in the post-reionization era. We show that the telescope beam smears out the isotropic BAO signature and, in the case of the Square Kilometre Array (SKA) instrument, makes it undetectable at redshifts z ≳ 1. We however demonstrate that the BAO peak can still be detected in the radial 21 cm power spectrum and describe a method to make this type of measurements. By means of numerical simulations, containing the 21 cm cosmological signal as well as the most relevant Galactic and extra-Galactic foregrounds and basic instrumental effect, we quantify the precision with which the radial BAO scale can be measured in the 21 cm power spectrum. We systematically investigate the signal to noise and the precision of the recovered BAO signal as a function of cosmic variance, instrumental noise, angular resolution and foreground contamination. We find that the expected noise levels of SKA would degrade the final BAO errors by ∼5 per cent with respect to the cosmic-variance limited case at low redshifts, but that the effect grows up to ∼65 per cent at z ∼ 2-3. Furthermore, we find that the radial BAO signature is robust against foreground systematics, and that the main effect is an increase of ∼20 per cent in the final uncertainty on the standard ruler caused by the contribution of foreground residuals as well as the reduction in sky area needed to avoid high-foreground regions. We also find that it should be possible to detect the radial BAO signature with high significance in the full redshift range. We conclude that a 21 cm experiment carried out by the SKA should be able to make direct measurements of the expansion rate H(z) with measure the expansion with competitive per cent level precision on redshifts z ≲ 2.5.

  19. Acoustics

    NASA Technical Reports Server (NTRS)

    Goodman, Jerry R.; Grosveld, Ferdinand

    2007-01-01

    The acoustics environment in space operations is important to maintain at manageable levels so that the crewperson can remain safe, functional, effective, and reasonably comfortable. High acoustic levels can produce temporary or permanent hearing loss, or cause other physiological symptoms such as auditory pain, headaches, discomfort, strain in the vocal cords, or fatigue. Noise is defined as undesirable sound. Excessive noise may result in psychological effects such as irritability, inability to concentrate, decrease in productivity, annoyance, errors in judgment, and distraction. A noisy environment can also result in the inability to sleep, or sleep well. Elevated noise levels can affect the ability to communicate, understand what is being said, hear what is going on in the environment, degrade crew performance and operations, and create habitability concerns. Superfluous noise emissions can also create the inability to hear alarms or other important auditory cues such as an equipment malfunctioning. Recent space flight experience, evaluations of the requirements in crew habitable areas, and lessons learned (Goodman 2003; Allen and Goodman 2003; Pilkinton 2003; Grosveld et al. 2003) show the importance of maintaining an acceptable acoustics environment. This is best accomplished by having a high-quality set of limits/requirements early in the program, the "designing in" of acoustics in the development of hardware and systems, and by monitoring, testing and verifying the levels to ensure that they are acceptable.

  20. The use of a segmented transducer for rib sparing in HIFU treatments.

    PubMed

    Civale, John; Clarke, Robert; Rivens, Ian; ter Haar, Gail

    2006-11-01

    The use of focused ultrasound as a minimally invasive treatment for tumours is rapidly expanding. Target organs include the liver and