Science.gov

Sample records for acoustic transducers emats

  1. Electromagnetic acoustic transducers (EMATs) for erosion monitoring

    SciTech Connect

    Reimann, K.J.

    1984-05-01

    Early detection, measurement, and monitoring of erosive wear rates can alleviate problems of unpredictable shutdowns, costly downtimes, and improper process operation. The first generation of a nondestructive, noninvasive acoustic-based system was tested on pressure boundaries of fossil energy conversion plants, yielding the desired information. Multiple transducers and wave guides are needed for such a system in order to determine wear profiles in large components. The same information could, however, be obtained with a single, scanning electromagnetic transducer (EMAT). Advantages of such EMAT-based systems motivated this investigation in order to establish criteria and requirements needed for erosion monitoring at elevated (operating) temperatures. The effort concentrated on three areas: (a) development of EMAT design parameters, (b) material-EMAT interaction, and (c) signal processing. Prototype horizontal shearwave EMATs, based on design parameters selected from computer calculations of the static field, were evaluated, and their performance was compared to the performance of piezoelectric transducers. Input power requirements for a larger than 10-dB signal-to-noise (S/N) ratio were established for various structural and hardfacing materials. Effects of surface roughness and temperature were determined for different test conditions. The results indicate that accurate wall thickness measurement can be performed at elevated temperature on rough surfaces as encountered, for instance, in a cyclone. Modern data processing such as signal averaging on correlation improves the S/N ratio from 12 dB to 26 dB and enables wall thickness measurements with an accuracy of +-0.25% of total wall thickness. Additional efforts are needed to determine requirements of EMATs in scanning mode and pulsed static field operation.

  2. A Longitudinal Mode Electromagnetic Acoustic Transducer (EMAT) Based on a Permanent Magnet Chain for Pipe Inspection

    PubMed Central

    Cong, Ming; Wu, Xinjun; Qian, Chunqiao

    2016-01-01

    A new electromagnetic acoustic transducer (EMAT) design, employing a special structure of the permanent magnet chain, is proposed to generate and receive longitudinal guided waves for pipe inspection based on the magnetostriction mechanism. Firstly, a quantitative analysis of the excitation forces shows the influence of the radial component can be ignored. Furthermore, as the axial component of the static magnetic field is dominant, a method of solenoid testing coils connected in series is adopted to increase the signal amplitude. Then, two EMAT configurations are developed to generate and receive the L(0,2) guided wave mode. The experimental results show the circumferential notch can be identified and located successfully. Finally, a detailed investigation of the performance of the proposed EMATs is given. Compared to the conventional EMAT configuration, the proposed configurations have the advantages of small volume, light weight, easy installation and portability, which is helpful to improve inspection efficiency. PMID:27213400

  3. Development of electromagnetic acoustic transducer (EMAT) phased arrays for SFR inspection

    SciTech Connect

    Le Bourdais, Florian; Marchand, Benoît

    2014-02-18

    A long-standing problem for Sodium cooled Fast Reactor (SFR) instrumentation is the development of efficient under-sodium visualization systems adapted to the hot and opaque sodium environment. Electromagnetic Acoustic Transducers (EMAT) are potential candidates for a new generation of Ultrasonic Testing (UT) probes well-suited for SFR inspection that can overcome drawbacks of classical piezoelectric probes in sodium environment. Based on the use of new CIVA simulation tools, we have designed and optimized an advanced EMAT probe for under-sodium visualization. This has led to the development of a fully functional L-wave EMAT sensing system composed of 8 elements and a casing withstanding 200° C sodium inspection. Laboratory experiments demonstrated the probe's ability to sweep an ultrasonic beam to an angle of 15 degrees. Testing in a specialized sodium facility has shown that it was possible to obtain pulse-echo signals from a target under several different angles from a fixed position.

  4. Development of electromagnetic acoustic transducer (EMAT) phased arrays for SFR inspection

    NASA Astrophysics Data System (ADS)

    Le Bourdais, Florian; Marchand, Benoît

    2014-02-01

    A long-standing problem for Sodium cooled Fast Reactor (SFR) instrumentation is the development of efficient under-sodium visualization systems adapted to the hot and opaque sodium environment. Electromagnetic Acoustic Transducers (EMAT) are potential candidates for a new generation of Ultrasonic Testing (UT) probes well-suited for SFR inspection that can overcome drawbacks of classical piezoelectric probes in sodium environment. Based on the use of new CIVA simulation tools, we have designed and optimized an advanced EMAT probe for under-sodium visualization. This has led to the development of a fully functional L-wave EMAT sensing system composed of 8 elements and a casing withstanding 200° C sodium inspection. Laboratory experiments demonstrated the probe's ability to sweep an ultrasonic beam to an angle of 15 degrees. Testing in a specialized sodium facility has shown that it was possible to obtain pulse-echo signals from a target under several different angles from a fixed position.

  5. Advancements in NDE for utilities and the petrochemical industry through electromagnetic acoustic transducers (EMATs)

    NASA Astrophysics Data System (ADS)

    Robertson, M. O.; Stevens, Donald M.; Schlader, Daniel M.; Tilley, Richard M.

    1998-03-01

    The ultrasonic testing (UT) method continues to broaden in its effectiveness and capabilities for nondestructive evaluation (NDE). Much of this expansion can be attributed to advancements in specific techniques of the method. The utilization of electromagnetic acoustic transducers (EMATs) in dedicated ultrasonic systems has provided McDermott Technology, Inc. (MTI), formerly Babcock & Wilcox, with significant advantages over conventional ultrasonics. In recent years, through significant R&D, MTI has been instrumental in bringing about considerable advancements in the maturing EMAT technology. Progress in electronic design, magnet configurations, and sensor concepts has greatly improved system capabilities while reducing cost and equipment size. These improvements, coupled with the inherent advantages of utilizing the non-contact EMAT technique, have combined to make this technology a viable option for many commercial system inspection applications. MTI has recently completed the development and commercialization of an EMAT-based UT scanner for boiler tube thickness measurements. MTI is currently developing an automated EMAT scanner, based on phased array technology, for complete volumetric inspection of circumferential girth welds associated with pipelines (intended primarily for offshore applications). Additional benefits of phased array technology for providing materials characterization are currently being researched.

  6. EMAT (Electromagnetic-Acoustic Transducer) System for Ultrasonic Velocity

    DTIC Science & Technology

    1989-07-01

    of 7 teeth. The permanent magnets were from neodyme -iron-boron and had dimensions of 20x18.6x.5 mm3. Small iron blocks with dimensions of 20x18.6x8 m...permanent magnets for the bias magnetization . The EMATs are mounted on the mechanical support with a distance of 45 m between the two receivers. With the...was chosen for the r.f. coils and an electromagnet with a water-cooled magnetizing coil for the bias magnetization (Fig.1). The Lorentz forces produced

  7. Concrete filled steel pipe inspection using electro magnetic acoustic transducer (EMAT)

    NASA Astrophysics Data System (ADS)

    Na, Won-Bae; Kundu, Tribikram; Ryu, Yeon-Sun; Kim, Jeong-Tae

    2005-05-01

    Concrete-filled steel pipes are usually exposed in hostile environments such as seawater and deicing materials. The outside corrosion of the steel pipe can reduce the wall thickness and the corrosion-induced delamination of internal concrete can increase internal volume or pressure. In addition, the void that can possibly exist in the pipe reduces the bending resistance. To avoid structural failure due to this type of deterioration, appropriate inspection and repair techniques are to be developed. Guided wave techniques have strong potentials for this kind of inspection because of long-distance inspection capability. Among different transducer-coupling mechanism, electro-magnetic acoustic transducers (EMATs) give relatively consistent results in comparison to piezoelectric transducers since they do not need any couplant. In this study EMATs are used for transmitting and receiving cylindrical guided waves through concrete-filled steel pipes. Through time history curves and wavelet transform, it is shown that EMAT-generated cylindrical guided wave techniques have good potential for the interface inspection of concrete-filled steel pipes.

  8. Development of an electromagnetic acoustic transducer (EMAT) for the noncontact excitation of guided ultrasonic waves

    NASA Astrophysics Data System (ADS)

    Fromme, P.

    2015-03-01

    Fatigue damage can develop in aerospace structures at locations of stress concentration, such as fasteners. For the safe operation of the aircraft fatigue cracks need to be detected before reaching a critical length. Guided ultrasonic waves offer an efficient method for the detection and characterization of such defects in large aerospace structures. Noncontact excitation of guided waves was achieved using electromagnetic acoustic transducers (EMAT). The transducer development for the specific excitation of the A0 Lamb wave mode is explained. The radial and angular dependency of the excited guided wave pulses at different frequencies were measured using a noncontact laser interferometer. Based on the induced eddy currents in the plate a theoretical model was developed and reasonably good agreement with the measured transducer performance was achieved. The developed transducers were employed for defect detection in aluminum components using fully noncontact guided wave measurements. Excitation of the A0 Lamb wave mode was achieved using the developed EMAT transducer and the guided wave propagation and scattering was measured using a noncontact laser interferometer. These results provide the basis for the defect characterization in aerospace structures using noncontact guided wave sensors.

  9. Noncontact excitation of guided waves (A0 mode) using an electromagnetic acoustic transducer (EMAT)

    NASA Astrophysics Data System (ADS)

    Fromme, Paul

    2016-02-01

    Fatigue damage can develop in aircraft structures at locations of stress concentration, such as fasteners, and has to be detected before reaching a critical size to ensure safe aircraft operation. Guided ultrasonic waves offer an efficient method for the detection and characterization of such defects in large aerospace structures. Electromagnetic acoustic transducers (EMAT) for the noncontact excitation of guided ultrasonic waves were developed. The transducer development for the specific excitation of the A0 Lamb wave mode with an out-of-plane Lorentz force is explained. The achieved radial and angular dependency of the excited guided wave pulses were measured using a noncontact laser interferometer. Based on the induced eddy currents in the plate a theoretical model was developed. The application of the developed transducers for defect detection in aluminum components using fully noncontact guided wave measurements was demonstrated. Excitation of the A0 Lamb wave mode was achieved using the developed EMAT transducer and the guided wave propagation and scattering was measured using a noncontact laser interferometer.

  10. Use of Electromagnetic Acoustic Transducers (emats) for Cement Bond Logging of Gas Storage Wells

    NASA Astrophysics Data System (ADS)

    Bolshakov, A. O.; Domangue, E. J.; Barolak, J. G.; Patterson, D. J.

    2008-02-01

    According to the Department of Energy (DOE), there are approximately 110 operators maintaining more than 17,000 gas storage wells in over 415 underground storage facilities across the USA. In virtually every application, steel casing, cemented into place, serves to isolate the well from the underground formations. The process of cementing wellbore casing provides two major benefits: 1) cement prevents gas migration between the casing and formation; 2) cement transfers stress from the casing to the formation, increasing the effective strength and working pressure of the casing. Current cement evaluation techniques use an acoustic wave generated and received by a logging tool within the wellbore to detect cement placed outside the casing. These techniques rely on fluid in the casing to provide acoustic coupling between the logging tool and the casing and therefore are unable to operate in gas-filled boreholes. This paper details efforts to confirm the validity and applicability of the use of EMATs for evaluating cement in gas-filled boreholes. The methods and techniques proposed for the cement bond logging using EMATs are confirmed and validated based on the results obtained from the numerical modeling and experiments with physical cement models. Partial funding for this investigation was provided by the DOE and Gas Storage Technology Consortium.

  11. Lift-off compensation for improved accuracy in ultrasonic lamb wave velocity measurements using electromagnetic acoustic transducers (EMATs).

    PubMed

    Morrison, J P; Dixon, S; Potter, M D G; Jian, X

    2006-12-22

    The crystalline texture of a sheet metal strongly affects its formability, so having knowledge of this texture is of great industrial relevance. The texture of rolled sheet metals, such as aluminium and steel, may be determined by ultrasonic measurement of the velocity of the zero order symmetric (S(0)) Lamb wave as a function of angle to the rolling direction. Electromagnetic acoustic transducers (EMATs) may perform this measurement without contacting the sample, therefore reducing perturbation to the plate wave system, as they are electromagnetically coupled to the sheet. The EMAT system measurements are non-destructive and may be made in real time, therefore offering advantages over the conventional techniques such as X-ray and neutron diffraction. It has been noticed that in the two EMAT pitch-catch system, the apparent arrival times of the ultrasonic waves change with variation in lift-off (distance between sample and transducer) due to impedance and aperture effects. For precise and accurate texture parameters to be obtained, accurate absolute ultrasonic velocity measurement is required and hence lift-off must be compensated for. This is of particular importance to online inspection systems where constant lift-off may be difficult to maintain. The impedance behaviour of various coil geometries has been investigated as a function of lift-off and frequency and compared to the received ultrasonic signal and the drive current pulse profile. Theoretical models have been used to explain the observed behaviour, and hence a scheme has been proposed for the compensation of lift-off effects in real time.

  12. Direct measurement of solids: High temperature sensing Final report Experimental development and testing of high temperature pulsed EMATs (electromagnetic acoustic transducer):

    SciTech Connect

    Boyd, D.M.; Spanner, G.E.; Sperline, P.D.

    1988-04-01

    A pulsed laser/pulsed EMAT (electromagnetic acoustic transducer) receiver system has been demonstrated for measuring the time of flight of acoustic signals in hot steel samples. Attenuation and signal-to-noise ratio are important parameters to be monitored. A continuous contact EMAT application was not achieved; thermal analysis found that contact times of 5 seconds with cooling times of 45 seconds are required at 1300/degree/C. The equipment requires field hardening and improved packaging before system reliability can be assessed. 22 refs., 35 figs. (DLC)

  13. A combination of PZT and EMAT transducers for interface inspection.

    PubMed

    Na, Won-Bae; Kundu, Tribikram

    2002-05-01

    A PZT (Lead Zirconate-Titanate) transducer requires a couplant to send and receive mechanical waves. This requirement is a major shortcoming of the PZT technique for use in field applications. In the laboratory environment careful considerations and surface treatments are required to use PZT because the couplant can affect the consistency of experimental results. One alternative to overcome this shortcoming is the use of EMAT (ElectroMagnetic Acoustic Transducer). However, EMAT gives relatively low transmitted ultrasonic energy, with low signal to noise ratio, and the induced energy is critically dependent on the probe proximity to the test object. These are not desirable properties for NDT (nondestructive testing) of civil infrastructures. That is why, in this paper, a combination of PZT and EMAT is introduced for investigating reinforced concrete structures. Interface defects between steel bars and concrete are investigated by this technique. It is shown that the PZT-EMAT combination is very effective for steel bar-concrete interface inspection and the guided waves are useful for nondestructive testing of civil infrastructures.

  14. Acoustic transducer

    DOEpatents

    Drumheller, Douglas S.

    2000-01-01

    An active acoustic transducer tool for use down-hole applications. The tool includes a single cylindrical mandrel including a shoulder defining the boundary of a narrowed portion over which is placed a sandwich-style piezoelectric tranducer assembly. The piezoelectric transducer assembly is prestressed by being placed in a thermal interference fit between the shoulder of the mandrel and the base of an anvil which is likewise positioned over the narrower portion of the mandrel. In the preferred embodiment, assembly of the tool is accomplished using a hydraulic jack to stretch the mandrel prior to emplacement of the cylindrical sandwich-style piezoelectric transducer assembly and anvil. After those elements are positioned and secured, the stretched mandrel is allowed to return substantially to its original (pre-stretch) dimensions with the result that the piezoelectric transducer elements are compressed between the anvil and the shoulder of the mandrel.

  15. Acoustic transducer

    DOEpatents

    Drumheller, D.S.

    1997-12-30

    An acoustic transducer is described comprising a one-piece hollow mandrel into the outer surface of which is formed a recess with sides perpendicular to the central axis of the mandrel and separated by a first distance and with a bottom parallel to the central axis and within which recess are a plurality of washer-shaped discs of a piezoelectric material and at least one disc of a temperature-compensating material with the discs being captured between the sides of the recess in a pre-stressed interference fit, typically at 2,000 psi of compressive stress. The transducer also includes a power supply and means to connect to a measurement device. The transducer is intended to be used for telemetry between a measurement device located downhole in an oil or gas well and the surface. The transducer is of an construction that is stronger with fewer joints that could leak fluids into the recess holding the piezoelectric elements than is found in previous acoustic transducers. 4 figs.

  16. Acoustic transducer

    DOEpatents

    Drumheller, Douglas S.

    1997-01-01

    An acoustic transducer comprising a one-piece hollow mandrel into the outer surface of which is formed a recess with sides perpendicular to the central axis of the mandrel and separated by a first distance and with a bottom parallel to the central axis and within which recess are a plurality of washer-shaped discs of a piezoelectric material and at least one disc of a temperature-compensating material with the discs being captured between the sides of the recess in a pre-stressed interference fit, typically at 2000 psi of compressive stress. The transducer also includes a power supply and means to connect to a measurement device. The transducer is intended to be used for telemetry between a measurement device located downhole in an oil or gas well and the surface. The transducer is of an construction that is stronger with fewer joints that could leak fluids into the recess holding the piezoelectric elements than is found in previous acoustic transducers.

  17. Liquid sodium testing of in-house phased array EMAT transducer for L-wave applications

    SciTech Connect

    Le Bourdais, F.; Le Polles, T.; Baque, F.

    2015-07-01

    This paper describes the development of an in-house phased array EMAT transducer for longitudinal wave inspection in liquid sodium. The work presented herein is part of an undergoing project aimed at improving in-service inspection techniques for the ASTRID reactor project. The design process of the phased array EMAT probe is briefly explained and followed by a review of experimental test results. We first present test results obtained in the laboratory while the last part of the paper describes the liquid sodium testing and the produced ultrasound images. (authors)

  18. The excitation and detection of lamb waves with planar coil electromagnetic acoustic transducers.

    PubMed

    Wilcox, Paul D; Lowe, Michael J S; Cawley, Peter

    2005-12-01

    Planar coil electromagnetic acoustic transducers (EMATs) are investigated for the excitation and detection of Lamb waves in nonferromagnetic metallic wave-guides. Such EMATs are attractive for certain applications due to their omni-directional sensitivity to wave modes with predominantly in-plane surface displacement, such as the So Lamb wave mode. A model is developed that enables the modal content of the radiated Lamb wave field from a transmitting EMAT to be calculated, and the output voltage from a receiving EMAT to be predicted when a Lamb wave mode is incident on it. The predictions from this model are compared with experimental data obtained from 12 different EMATs tested on a 5-mm thick aluminum plate, and good agreement is obtained. The model then is used to analyze the different effects that contribute to the overall Lamb wave modal sensitivity of an EMAT. The relationship between coil geometry and wavelength is examined.

  19. High Temperature Shear Horizontal Electromagnetic Acoustic Transducer for Guided Wave Inspection

    PubMed Central

    Kogia, Maria; Gan, Tat-Hean; Balachandran, Wamadeva; Livadas, Makis; Kappatos, Vassilios; Szabo, Istvan; Mohimi, Abbas; Round, Andrew

    2016-01-01

    Guided Wave Testing (GWT) using novel Electromagnetic Acoustic Transducers (EMATs) is proposed for the inspection of large structures operating at high temperatures. To date, high temperature EMATs have been developed only for thickness measurements and they are not suitable for GWT. A pair of water-cooled EMATs capable of exciting and receiving Shear Horizontal (SH0) waves for GWT with optimal high temperature properties (up to 500 °C) has been developed. Thermal and Computational Fluid Dynamic (CFD) simulations of the EMAT design have been performed and experimentally validated. The optimal thermal EMAT design, material selection and operating conditions were calculated. The EMAT was successfully tested regarding its thermal and GWT performance from ambient temperature to 500 °C. PMID:27110792

  20. Acoustic transducer for acoustic microscopy

    DOEpatents

    Khuri-Yakub, Butrus T.; Chou, Ching H.

    1990-01-01

    A shear acoustic transducer-lens system in which a shear polarized piezoelectric material excites shear polarized waves at one end of a buffer rod having a lens at the other end which excites longitudinal waves in a coupling medium by mode conversion at selected locations on the lens.

  1. Acoustic transducer for acoustic microscopy

    DOEpatents

    Khuri-Yakub, B.T.; Chou, C.H.

    1990-03-20

    A shear acoustic transducer-lens system is described in which a shear polarized piezoelectric material excites shear polarized waves at one end of a buffer rod having a lens at the other end which excites longitudinal waves in a coupling medium by mode conversion at selected locations on the lens. 9 figs.

  2. Continuous Surveillance Technique for Flow Accelerated Corrosion of Pipe Wall Using Electromagnetic Acoustic Transducer

    NASA Astrophysics Data System (ADS)

    Kojima, F.; Kosaka, D.; Umetani, K.

    2011-06-01

    In this paper, we propose a on-line monitoring technique using electromagnetic acoustic transducer (EMAT). In the series of laboratory experiments, carbon steel pipes were used and each sample was fabricated to simulate FAC. Electromagnetic acoustic resonance method (EMAR) is successfully tested for pipe wall thickness measurements. The validity and the feasibility of our method are also demonstrated through the laboratory experiments.

  3. Detecting sensitization in aluminum alloys using acoustic resonance and EMAT ultrasound

    NASA Astrophysics Data System (ADS)

    Cobb, Adam; Macha, Erica; Bartlett, Jonathan; Xia, Yanquan

    2017-02-01

    Sensitization of 5xxx series aluminum alloys is characterized by the gradual precipitation of the alloying element magnesium as a beta phase (Al3Mg2) along the grain boundaries after prolonged exposure to the environment. While the 5xxx alloy is corrosion resistant, these beta phases are corrosive and thus their formation increases the susceptibility of the alloy to intergranular corrosion and stress corrosion cracking. The standardized approach for measuring the degree of sensitization (DoS) is the ASTM G67 test standard. This test, however, is time consuming, difficult to perform, and destructive, as it involves measurement of a mass loss after exposing the alloy to a nitric acid solution. Given the limitations of this test standard, there is a need to develop a nondestructive evaluation (NDE) solution that is easy-to-use, non-intrusive, and faster than current inspection methods while suitable for use outside a laboratory. This paper describes the development of an NDE method for quantifying the DoS value in an alloy using ultrasonic measurements. The work builds upon prior efforts described in the literature that use electromagnetic acoustic transducers (EMATs) to quantify DoS based on velocity measurements. The prior approaches used conventional ultrasonic inspection techniques with short-duration excitation signals (less than 3 cycles) to allow identification of the echo time-of-flight and amplitude decay pattern, but their success was limited by EMAT transducer inefficiency in general, especially at higher frequencies. To overcome these challenges, this paper presents a modified ultrasonic measurement strategy using long-duration excitation signals (greater than 100 cycles), where multiple reverberations in the material overlap. By sweeping through test frequencies, it is possible to establish an acoustic resonance when the wavelength is an integer multiple of twice the material thickness. This approach allows for greatly improved signal to noise ratios as

  4. Selective generation of ultrasonic Lamb waves by electromagnetic acoustic transducers

    NASA Astrophysics Data System (ADS)

    Li, Ming-Liang; Deng, Ming-Xi; Gao, Guang-Jian

    2016-12-01

    In this paper, we describe a modal expansion approach for the analysis of the selective generation of ultrasonic Lamb waves by electromagnetic acoustic transducers (EMATs). With the modal expansion approach for waveguide excitation, an analytical expression of the Lamb wave’s mode expansion coefficient is deduced, which is related to the driving frequency and the geometrical parameters of the EMAT’s meander coil, and lays a theoretical foundation for exactly analyzing the selective generation of Lamb waves with EMATs. The influences of the driving frequency on the mode expansion coefficient of ultrasonic Lamb waves are analyzed when the EMAT’s geometrical parameters are given. The numerical simulations and experimental examinations show that the ultrasonic Lamb wave modes can be effectively regulated (strengthened or restrained) by choosing an appropriate driving frequency of EMAT, with the geometrical parameters given. This result provides a theoretical and experimental basis for selectively generating a single and pure Lamb wave mode with EMATs. Project supported by the National Natural Science Foundation of China (Grant Nos. 11474361 and 11274388).

  5. Electromagnetic acoustic transducer

    DOEpatents

    Alers, George A.; Burns, Jr., Leigh R.; MacLauchlan, Daniel T.

    1988-01-01

    A noncontact ultrasonic transducer for studying the acoustic properties of a metal workpiece includes a generally planar magnetizing coil positioned above the surface of the workpiece, and a generally planar eddy current coil between the magnetizing coil and the workpiece. When a large current is passed through the magnetizing coil, a large magnetic field is applied to the near-surface regions of the workpiece. The eddy current coil can then be operated as a transmitter by passing an alternating current therethrough to excite ultrasonic waves in the surface of the workpiece, or operated as a passive receiver to sense ultrasonic waves in the surface by measuring the output signal. The geometries of the two coils can be varied widely to be effective for different types of ultrasonic waves. The coils are preferably packaged in a housing which does not interfere with their operation, but protects them from a variety of adverse environmental conditions.

  6. Quantitative modeling of the transduction of electromagnetic acoustic transducers operating on ferromagnetic media.

    PubMed

    Ribichini, Remo; Cegla, Frederic; Nagy, Peter B; Cawley, Peter

    2010-12-01

    The noncontact nature of electromagnetic acoustic transducers (EMATs) offers a series of advantages over traditional piezoelectric transducers, but these features are counter-balanced by their relatively low signal-to-noise ratio and their strong dependence on material properties such as electric conductivity, magnetic permeability, and magnetostriction. The implication is that full exploitation of EMATs needs detailed modeling of their operation. A finite element model, accounting for the main transduction mechanisms, has been developed to allow the optimization of the transducers. Magnetostriction is included and described through an analogy with piezoelectricity. The model is used to predict the performance of a simple EMAT: a single current-carrying wire, parallel to a bias magnetic field generating shear horizontal waves in a nickel plate close to it. The results are validated against experiments. The model is able to successfully predict the wave amplitude dependence on significant parameters: the static bias field, the driving current amplitude, and the excitation frequency. The comparison does not employ any arbitrary adjustable parameter; for the first time an absolute validation of a magnetostrictive EMAT model has been achieved. The results are satisfactory: the discrepancy between the numerical predictions and the measured values of wave amplitude per unit current is less than 20% over a 200 kHz frequency range. The study has also shown that magnetostrictive EMAT sensitivity is not only a function of the magnetostrictive properties, because the magnetic permeability also plays a significant role in the transduction mechanism, partly counterbalancing the magnetostrictive effects.

  7. Emats for Immunosensors

    NASA Astrophysics Data System (ADS)

    Ogi, H.; Motohisa, K.; Hoso, Y.; Hatanaka, K.; Ohmori, T.; Hirao, H.

    2008-02-01

    Electromagnetic acoustic transducers (EMATs) have two inherent advantages. First, they allow the wireless-electrodeless measurements. Second, they show higher efficiency for exciting and detecting bulk shear waves. These two characteristics are essential for achieving a high-sensitive oscillator biosensor. This paper shows a Lorentz-force-EMAT biosensor with 50-μm thick aluminum foil for detecting human immunoglobulin G (IgG) by Staphylococcus-aureus protein A immobilized on both surfaces of the foil oscillator. The fundamental resonance frequency near 32 MHz was monitored during the binding reaction, which successfully detected the frequency change for the IgG solution with a concentration of 1 ng/mL.

  8. Finite element analysis for the inhibition of electromagnetic acoustic testing (EMAT) Lamb waves multi-modes

    NASA Astrophysics Data System (ADS)

    Liu, Suzhen; Zhang, Yanwei; Zhang, Chuang; Yang, Qingxin

    2017-02-01

    Lamb waves are widely used in nondestructive testing (NDT) and structural health monitoring (SHM) for its obvious advantages, such as good directionality, longer-range propagation and lower loss etc. However, it is difficult to analysis and to interpret the echo signals because of its multi-modes and dispersion. In this paper, the properties of single-mode Lamb waves which were excited by double EMAT were studied based on the principles of multi-modes and the characteristics of wave structure. Simulation results show that the double transducer excitation structure can stimulate single-mode Lamb waves and eliminate the extra modes, which are produced by modal conversion at ends of the specimen. The single-mode excitation of Lamb waves is beneficial to reduce the difficulty of signal processing and provide reliable information to locate the defect. The researches in this paper can be used as a theoretical basis to design double transducer excitation system.

  9. Acoustic transducer for nuclear reactor monitoring

    DOEpatents

    Ahlgren, Frederic F.; Scott, Paul F.

    1977-01-01

    A transducer to monitor a parameter and produce an acoustic signal from which the monitored parameter can be recovered. The transducer comprises a modified Galton whistle which emits a narrow band acoustic signal having a frequency dependent upon the parameter being monitored, such as the temperature of the cooling media of a nuclear reactor. Multiple locations within a reactor are monitored simultaneously by a remote acoustic receiver by providing a plurality of transducers each designed so that the acoustic signal it emits has a frequency distinct from the frequencies of signals emitted by the other transducers, whereby each signal can be unambiguously related to a particular transducer.

  10. Eddy current enhancement for EMATs

    NASA Astrophysics Data System (ADS)

    Palmer, S. B.; Jian, X.; Dixon, S.

    2007-04-01

    When an electromagnetic acoustic transducer (EMAT) is used to generate ultrasound in an electrically conducting sample, eddy currents are generated in the sample's skin depth as the first stage in transduction. The resultant acoustic wave amplitude is proportional to the amplitude of this eddy current, and so anything that we can do to increase the eddy current will lead to the generation of larger amplitude ultrasonic waves. In eddy current testing, wire coils are often wound onto a ferrite core to increase the generated eddy current, with the effect that inductance of the coil increases greatly. When we are dealing with an EMAT, any increase in the coil inductance is usually unacceptable as it leads to a reduction in the amplitude of a given frequency of eddy current from a limited voltage source. This is particularly relevant where current arises from capacitor discharge, as is typically used in EMAT driver current circuitry. We present a method for electromagnetic acoustic transduction where ferrite is used to increase eddy current amplitude, without significantly increasing coil inductance or changing the frequency content of the eddy current or the generated acoustic wave.

  11. A new electromagnetic acoustic transducer design for generating torsional guided wave modes for pipe inspections

    NASA Astrophysics Data System (ADS)

    Hill, Samuel; Dixon, Steve; Sri Harsha Reddy, K.; Rajagopal, Prabhu; Balasubramaniam, Krishnan

    2017-02-01

    Guided waves inspection is a well-established method for the long-range ultrasonic inspection of pipes. Guided waves, used in a pulse-echo arrangement, can inspect a large range of the pipe from a single point as the pipe structure carries the waves over a large distance due to the relatively low attenuation of the wave modes. However, the complexity of the dispersion characteristics of these pipe guided wave modes are well known, and can lead to diffculty interpreting the obtained results. The torsional family of guided wave modes are generally considered to have much simpler dispersion characteristics; especially the fundamental T(0,1) mode, which is nominally non-dispersive, making it particularly useful for guided wave inspection. Torsional waves have been generated by a circumferential ring of transducers to approximate an axi-symmetric load to excite this T(0, 1) mode. Presented here is a new design of Electromagnetic Acoustic Transducer (EMAT) that can generate a T(0, 1) as a single transducer, rather than a circumferential array of transducers that all need to be excited in order to generate an axisymmetric force. The EMAT consists of a periodic permanent magnet array and a single meander coil, meaning that the excitation of the torsional mode is greatly simplified. The design parameters of this new EMAT are explored, and the ability to detect notch defects on a pipe is demonstrated.

  12. a History of Emats

    NASA Astrophysics Data System (ADS)

    Alers, George

    2008-02-01

    This paper was prepared for a Special Session in the 34th Annual Review of Quantitative NDE devoted to "Applications of EMATs". As such, it reviews the past history of electromagnetic induction of vibrations in metals with special attention to the application to nondestructive testing. The first patent describing the use of Electromagnetic Acoustic Transducers (EMATs) to replace the commonly used piezoelectric transducer was in 1969 but their first appearance in the scientific literature was in 1939 when the principles were applied to exciting and detecting the longitudinal resonance modes of bars of brass. The first true application to nondestructive testing was an R&D program sponsored by the American Gas Association to develop a device for inspecting buried gas pipelines for stress corrosion cracks in the early 1970's. During this same time period, theoretical models to describe the transduction mechanism appeared and led to the engineering of solutions to NDT and NDE problems that could not be accomplished with piezoelectric devices. The papers in the session to follow this historical summary show how the field has developed over the past 30 years and expose an impressive array of applications to quantitative nondestructive evaluation (QNDE) practices.

  13. Pressure-Coupled Acoustic-Transducer Assembly

    NASA Technical Reports Server (NTRS)

    Parker, F. Raymond

    1993-01-01

    Improved acoustic-transducer assembly easy to assemble, relocatable, and used at high temperatures. In assembly, piezoelectric acoustic transducer pressure-coupled to delay line or fixture through soft metal like aluminum, copper or gold. Transducer subassembly includes layered structure of coupling material, transducer, thin disk of coupling material acting as cushion for transducer, electrode disk with coaxial cable lead attached, insulation/damping material, and pressure plate. Pressure coupling precludes problem of matching coefficients of thermal expansion of transducer, coupling material, and delay line.

  14. Bolt axial stress measurement based on a mode-converted ultrasound method using an electromagnetic acoustic transducer.

    PubMed

    Ding, Xu; Wu, Xinjun; Wang, Yugang

    2014-03-01

    A method is proposed to measure the stress on a tightened bolt using an electromagnetic acoustic transducer (EMAT). A shear wave is generated by the EMAT, and a longitudinal wave is obtained from the reflection of the shear wave due to the mode conversion. The ray paths of the longitudinal and the shear wave are analyzed, and the relationship between the bolt axial stress and the ratio of time of flight between two mode waves is then formulated. Based on the above outcomes, an EMAT is developed to measure the bolt axial stress without loosening the bolt, which is required in the conventional EMAT test method. The experimental results from the measurement of the bolt tension show that the shear and the mode-converted longitudinal waves can be received successfully, and the ratio of the times of flight of the shear and the mode-converted longitudinal waves is linearly proportional to the bolt axial tension. The non-contact characteristic of EMAT eliminates the effect of the couplant and also makes the measurement more convenient than the measurement performed using the piezoelectric transducer. This method provides a promising way to measure the stress on tightened bolts.

  15. Modeling of an omni-directional electromagnetic acoustic transducer driven by the Lorentz force mechanism

    NASA Astrophysics Data System (ADS)

    Wang, Shen; Huang, Songling; Zhang, Yu; Zhao, Wei

    2016-12-01

    The electromagnetic acoustic transducers (EMATs) are gaining much attention in recent years due to their non-contact operation in ultrasonic wave generation and reception in NDT field. Quite often the transduction efficiency of EMATs is low, so efforts are always necessary to gain a better understanding of their complex and multi-physics transduction mechanism. In this work, we focused on modeling of an omni-directional Lorentz force-based EMAT operating on an aluminum disk and containing a rounded meander coil to generate a pure Lamb wave mode. We introduced an approach to solve the underlying eddy current equations in cylindrical coordinates directly, and applied this approach to a multi-conductor electromagnetic model to investigate the skin and proximity effects. These effects existed both for the complete and incomplete equations. Then we built the omni-directional EMAT model composed of three sub-models and two geometries. The two-geometry structure made it possible to reduce the total number of elements. Time varying spatial distribution of the Lorentz force vector was plotted. Propagation velocity of the simulated wave packet was compared with the group velocity of desired S0 mode Lamb waves. Interaction of the waves with a slot defect with a depth of 50% thickness was studied. The response to high current excitation and dynamic magnetic field was also investigated.

  16. Piezoelectric materials used in underwater acoustic transducers

    SciTech Connect

    Li, Huidong; Deng, Zhiqun; Carlson, Thomas J.

    2012-07-07

    Piezoelectric materials have been used in underwater acoustic transducers for nearly a century. In this paper, we reviewed four different types of piezoelectric materials: piezoelectric ceramics, single crystals, composites, and polymers, which are widely used in underwater acoustic transducers nowadays. Piezoelectric ceramics are the most dominant material type and are used as a single-phase material or one of the end members in composites. Piezoelectric single crystals offer outstanding electromechanical response but are limited by their manufacturing cost. Piezoelectric polymers provide excellent acoustic impedance matching and transducer fabrication flexibility although their piezoelectric properties are not as good as ceramics and single crystals. Composites combined the merits of ceramics and polymers and are receiving increased attention. The typical structure and electromechanical properties of each type of materials are introduced and discussed with respect to underwater acoustic transducer applications. Their advantages and disadvantages are summarized. Some of the critical design considerations when developing underwater acoustic transducers with these materials are also touched upon.

  17. Cooling Acoustic Transducer with Heat Pipes

    DTIC Science & Technology

    2009-07-29

    0013] Most transducer packages involve a stack of active ceramic. A Tonpilz transducer 10 in the prior art, as depicted in FIG. 1, consists...or corresponding parts throughout the several views and wherein: [0023] FIG. 1 is a prior art depiction of a Tonpilz transducer design; [0024...Distribution is unlimited Attorney Docket No. 97001 COOLING ACOUSTIC TRANSDUCER WITH HEAT PIPES STATEMENT OF GOVERNMENT INTEREST [0001] The

  18. Analog circuit for controlling acoustic transducer arrays

    DOEpatents

    Drumheller, Douglas S.

    1991-01-01

    A simplified ananlog circuit is presented for controlling electromechanical transducer pairs in an acoustic telemetry system. The analog circuit of this invention comprises a single electrical resistor which replaces all of the digital components in a known digital circuit. In accordance with this invention, a first transducer in a transducer pair of array is driven in series with the resistor. The voltage drop across this resistor is then amplified and used to drive the second transducer. The voltage drop across the resistor is proportional and in phase with the current to the transducer. This current is approximately 90 degrees out of phase with the driving voltage to the transducer. This phase shift replaces the digital delay required by the digital control circuit of the prior art.

  19. A New Method to Evaluate Surface Defects with an Electromagnetic Acoustic Transducer

    PubMed Central

    Zhang, Kang; Yi, Pengxing; Li, Yahui; Hui, Bing; Zhang, Xuming

    2015-01-01

    Characterizing a surface defect is very crucial in non-destructive testing (NDT). We employ an electromagnetic acoustic transducer (EMAT) to detect the surface defect of a nonmagnetic material. An appropriate feature that can avoid the interference of the human factor is vital for evaluating the crack quantitatively. Moreover, it can also reduce the influence of other factors, such as the lift-off, during the testing. In this paper, we conduct experiments at various depths of surface cracks in an aluminum plate, and a new feature, lift-off slope (LOS), is put forward for the theoretical and experimental analyses of the lift-off effect on the receiving signals. Besides, by changing the lift-off between the receiving probe and the sample for testing, a new method is adopted to evaluate surface defects with the EMAT. Compared with other features, the theoretical and experimental results show that the feature lift-off slope has many advantages prior to the other features for evaluating the surface defect with the EMAT. This can reduce the lift-off effect of one probe. Meanwhile, it is not essential to measure the signal without defects. PMID:26193282

  20. Opto-acoustic transducer for medical applications

    DOEpatents

    Benett, William; Celliers, Peter; Da Silva, Luiz; Glinsky, Michael; London, Richard; Maitland, Duncan; Matthews, Dennis; Krulevich, Peter; Lee, Abraham

    2002-01-01

    This invention is an optically activated transducer for generating acoustic vibrations in a biological medium. The transducer is located at the end of a fiber optic which may be located within a catheter. Energy for operating the transducer is provided optically by laser light transmitted through the fiber optic to the transducer. Pulsed laser light is absorbed in the working fluid of the transducer to generate a thermal pressure and consequent adiabatic expansion of the transducer head such that it does work against the ambient medium. The transducer returns to its original state by a process of thermal cooling. The motion of the transducer within the ambient medium couples acoustic energy into the medium. By pulsing the laser at a high repetition rate (which may vary from CW to 100 kHz) an ultrasonic radiation field can be established locally in the medium. This method of producing ultrasonic vibrations can be used in vivo for the treatment of stroke-related conditions in humans, particularly for dissolving thrombus. The catheter may also incorporate anti-thrombolytic drug treatments as an adjunct therapy and it may be operated in conjunction with ultrasonic detection equipment for imaging and feedback control.

  1. Opto-acoustic transducer for medical applications

    DOEpatents

    Benett, W.; Celliers, P.; Da Silva, L.; Glinsky, M.; London, R.; Maitland, D.; Matthews, D.; Krulevich, P.; Lee, A.

    1999-08-31

    This invention is an optically activated transducer for generating acoustic vibrations in a biological medium. The transducer is located at the end of a fiber optic which may be located within a catheter. Energy for operating the transducer is provided optically by laser light transmitted through the fiber optic to the transducer. Pulsed laser light is absorbed in the working fluid of the transducer to generate a thermal pressure and consequent adiabatic expansion of the transducer head such that it does work against the ambient medium. The transducer returns to its original state by a process of thermal cooling. The motion of the transducer within the ambient medium couples acoustic energy into the medium. By pulsing the laser at a high repetition rate (which may vary from CW to 100 kHz) an ultrasonic radiation field can be established locally in the medium. This method of producing ultrasonic vibrations can be used in vivo for the treatment of stroke-related conditions in humans, particularly for dissolving thrombus. The catheter may also incorporate anti-thrombolytic drug treatments as an adjunct therapy and it may be operated in conjunction with ultrasonic detection equipment for imaging and feedback control. 7 figs.

  2. Opto-acoustic transducer for medical applications

    DOEpatents

    Benett, William; Celliers, Peter; Da Silva, Luiz; Glinsky, Michael; London, Richard; Maitland, Duncan; Matthews, Dennis; Krulevich, Peter; Lee, Abraham

    1999-01-01

    This invention is an optically activated transducer for generating acoustic vibrations in a biological medium. The transducer is located at the end of a fiber optic which may be located within a catheter. Energy for operating the transducer is provided optically by laser light transmitted through the fiber optic to the transducer. Pulsed laser light is absorbed in the working fluid of the transducer to generate a thermal pressure and consequent adiabatic expansion of the transducer head such that it does work against the ambient medium. The transducer returns to its original state by a process of thermal cooling. The motion of the transducer within the ambient medium couples acoustic energy into the medium. By pulsing the laser at a high repetition rate (which may vary from CW to 100 kHz) an ultrasonic radiation field can be established locally in the medium. This method of producing ultrasonic vibrations can be used in vivo for the treatment of stroke-related conditions in humans, particularly for dissolving thrombus. The catheter may also incorporate anti-thrombolytic drug treatments as an adjunct therapy and it may be operated in conjunction with ultrasonic detection equipment for imaging and feedback control.

  3. Acoustic transducer with damping means

    DOEpatents

    Smith, Richard W.; Adamson, Gerald E.

    1976-11-02

    An ultrasonic transducer specifically suited to high temperature sodium applications is described. A piezoelectric active element is joined to the transducer faceplate by coating the faceplate and juxtaposed active element face with wetting agents specifically compatible with the bonding procedure employed to achieve the joint. The opposite face of the active element is fitted with a backing member designed to assure continued electrical continuity during adverse operating conditions which can result in the fracturing of the active element. The fit is achieved employing a spring-loaded electrode operably arranged to electrically couple the internal transducer components, enclosed in a hermetically sealed housing, to accessory components normally employed in transducer applications. Two alternative backing members are taught for assuring electrical continuity. The first employs a resilient, discrete multipoint contact electrode in electrical communication with the active element face. The second employs a resilient, elastomeric, electrically conductive, damped member in electrical communication with the active element face in a manner to effect ring-down of the transducer. Each embodiment provides continued electrical continuity within the transducer in the event the active element fractures, while the second provides the added benefit of damping.

  4. Numerical time domain modeling of the ultrasonic NDT with electromagnetic acoustic and piezoelectric transducers

    NASA Astrophysics Data System (ADS)

    Marklein, R.; Langenberg, K.-J.; Hübschen, G.; Willems, H.

    2000-05-01

    In principle, apart from laser generated ultrasound, two types of transducers, electromagnetic acoustic transducers (EMAT) and piezoelectric transducers, are applied in ultrasonic NDT. Piezoelectric transducers are primarily used to generate pressure, shear vertical, and Rayleigh waves; whereas electromagnetic acoustic transducers are primarily used to generate shear horizontal as well as Rayleigh waves. This paper presents numerical results for both transducer types in 2-D applying the EFIT code (EFIT: Elastodynamic Finite Integration Technique), which has been developed to simulate in 2-D the SH case and P-SV case separately. Three different cases will be studied in detail: (1.) detection of a backwall breaking notch in an isotropic test block, (2.) crack detection in an isotropic pipeline, and (3.) detection of a cracking an austenitic weld. In case (1.) and (3.) different wave modes (P-, SV-, and R-wave) as well as different inclination angles are used, whereas in case (2.), different wave modes are generated (guided SH-waves and R-waves). The numerical results will be validated against measurements if available.

  5. Resonant capacitive MEMS acoustic emission transducers

    NASA Astrophysics Data System (ADS)

    Ozevin, D.; Greve, D. W.; Oppenheim, I. J.; Pessiki, S. P.

    2006-12-01

    We describe resonant capacitive MEMS transducers developed for use as acoustic emission (AE) detectors, fabricated in the commercial three-layer polysilicon surface micromachining process (MUMPs). The 1 cm square device contains six independent transducers in the frequency range between 100 and 500 kHz, and a seventh transducer at 1 MHz. Each transducer is a parallel plate capacitor with one plate free to vibrate, thereby causing a capacitance change which creates an output signal in the form of a current under a dc bias voltage. With the geometric proportions we employed, each transducer responds with two distinct resonant frequencies. In our design the etch hole spacing was chosen to limit squeeze film damping and thereby produce an underdamped vibration when operated at atmospheric pressure. Characterization experiments obtained by capacitance and admittance measurements are presented, and transducer responses to physically simulated AE source are discussed. Finally, we report our use of the device to detect acoustic emissions associated with crack initiation and growth in weld metal.

  6. Acoustic lens for capacitive micromachined ultrasonic transducers

    NASA Astrophysics Data System (ADS)

    Chang, Chienliu; Firouzi, Kamyar; Park, Kwan Kyu; Sarioglu, Ali Fatih; Nikoozadeh, Amin; Yoon, Hyo-Seon; Vaithilingam, Srikant; Carver, Thomas; Khuri-Yakub, Butrus T.

    2014-08-01

    Capacitive micromachined ultrasonic transducers (CMUTs) have great potential to compete with traditional piezoelectric transducers in therapeutic ultrasound applications. In this paper we have designed, fabricated and developed an acoustic lens formed on the CMUT to mechanically focus ultrasound. The acoustic lens was designed based on the paraxial theory and made of silicone rubber for acoustic impedance matching and encapsulation. The CMUT was fabricated based on the local oxidation of silicon (LOCOS) and fusion-bonding. The fabricated CMUT was verified to behave like an electromechanical resonator in air and exhibited wideband response with a center frequency of 2.2 MHz in immersion. The fabrication for the acoustic lens contained two consecutive mold castings and directly formed on the surface of the CMUT. Applied with ac burst input voltages at the center frequency, the CMUT with the acoustic lens generated an output pressure of 1.89 MPa (peak-to-peak) at the focal point with an effective focal gain of 3.43 in immersion. Compared to the same CMUT without a lens, the CMUT with the acoustic lens demonstrated the ability to successfully focus ultrasound and provided a viable solution to the miniaturization of the multi-modality forward-looking endoscopes without electrical focusing.

  7. Millimeter-Wave Acoustic Transducers

    DTIC Science & Technology

    1990-04-01

    Phys . Rev. Lett . 54, 1810 ( 1985 ). 28. S.A. Akhmanov, V.V. Fadeev, R.V. Khokhlov, and O.N. Chunaev, Sov . Phys . JETP Lett . 6, 85...Acoust. Soc. Am. 66, 1801 (1979). 41 . F.P. Milliken, K.W. Schwartz and C.W. Smith, Phys . Rev. Lett . 48, 1204 (1982). 42 . T.E. Huber and H.J. Maris... Phys . Lett . 7, 264 (1965). 7. K.H. Yang, P.L. Richards, and Y.R. Shen, J. Appl. Phys . 44, 1417 (1973). 8. H.K. Wong, G.K. Wong and J.B.

  8. Numerical design optimization of an EMAT for A0 Lamb wave generation in steel plates

    NASA Astrophysics Data System (ADS)

    Seher, Matthias; Huthwaite, Peter; Lowe, Mike; Nagy, Peter; Cawley, Peter

    2014-02-01

    An electromagnetic acoustic transducer (EMAT) for A0 Lamb wave generation on steel plates is developed to operate at 0.50 MHz-mm. A key objective of the development is to maximize the excitation and reception of the A0 mode, while minimizing those of the S0 mode. The chosen EMAT design consists of an induction coil and a permanent magnet. A finite element (FE) model of the EMAT is developed, coupling the electromagnetic and elastodynamic phenomena. An optimization process using a genetic algorithm is implemented, employing the magnet diameter and liftoff distance from the plate as design parameters and using the FE model to calculate the fitness. The optimal design suggested by the optimization process is physically implemented and the experimental measurements are compared to the FE simulation results. In a further step, the variations of the design parameters are studied numerically and the proposed EMAT design exhibits a robust behavior to small changes of the design parameters.

  9. Analysis of multiple wavelengths of Lamb waves generated by meander-line coil EMATs.

    PubMed

    Zhai, Guofu; Jiang, Tao; Kang, Lei

    2014-02-01

    The electromagnetic acoustic transducers (EMATs) with a meander-line coil possess the capability of generating Lamb waves carrying multiple wavelengths, and the characteristics of multiple wavelengths is analyzed by developing a spatial transversal filter model for the EMAT. It is shown that the characteristics is due to the wavelength spectrum of the EMATs, which is a wavelength-domain representation of information about the wavelength components, and the magnitude of each components is modulated by an envelope which depends on the geometric pattern of the meander-line coil. The characteristics of multiple wavelengths might cause the multi-modes phenomenon, therefore a method for removing the effect of multiple wavelengths is proposed. It is shown that the effect can be removed by designing an EMAT which can produce a special envelop to suppress the harmonic wavelengths. Experiments are set up to study the characteristics of multiple wavelengths and verify the validity of the proposed method.

  10. Optimal impedance on transmission of Lorentz force EMATs

    NASA Astrophysics Data System (ADS)

    Isla, Julio; Seher, Matthias; Challis, Richard; Cegla, Frederic

    2016-02-01

    Electromagnetic-acoustic transducers (EMATs) are attractive for non-destructive inspections because direct contact with the specimen under test is not required. This advantage comes at a high cost in sensitivity and therefore it is important to optimise every aspect of an EMAT. The signal strength produced by EMATs is in part determined by the coil impedance regardless of the transduction mechanism (e.g. Lorentz force, magnetostriction, etc.). There is very little literature on how to select the coil impedance that maximises the wave intensity; this paper addresses that gap. A transformer circuit is used to model the interaction between the EMAT coil and the eddy currents that are generated beneath the coil in the conducting specimen. Expressions for the coil impedances that satisfy the maximum efficiency and maximum power transfer conditions on transmission are presented. To support this analysis, a tunable coil that consists of stacked identical thin layers independently accessed is used so that the coil inductance can be modified while leaving the radiation pattern of the EMAT unaffected.

  11. Study and comparison of different EMAT configurations for SH wave inspection.

    PubMed

    Ribichini, Remo; Cegla, Frederic; Nagy, Peter B; Cawley, Peter

    2011-12-01

    Guided wave inspection has proven to be a very effective method for the rapid inspection of large structures. The fundamental shear horizontal (SH) wave mode in plates and the torsional mode in pipe-like structures are especially useful because of their non-dispersive character. Guided waves can be generated by either piezoelectric transducers or electro- magnetic acoustic transducers (EMATs), and EMATs can be based on either the Lorentz force or magnetostriction. Several EMAT configurations can be used to produce SH waves, the most common being Lorentz-force periodic permanent magnet and magnetostrictive EMATs, the latter being directly applied on the sample or with a bonded strip of highly magnetostrictive material on the plate. This paper compares the performance of these solutions on steel structures. To quantitatively assess the wave amplitude produced by different probes, a finite element model of the elementary transducers has been developed. The results of the model are experimentally validated and the simulations are further used to study the dependence of ultrasonic wave amplitude on key design parameters. The analysis shows that magnetostrictive EMATs directly applied on mild steel plates have comparatively poor performance that is dependent on the precise magneto-mechanical properties of the test object. Periodic permanent magnet EMATs generate intermediate wave amplitudes and are noncontact and insensitive to the variations in properties seen across typical steels. Large signal amplitudes can be achieved with magnetostrictive EMATs with a layer of highly magnetostrictive material attached between the transducer and the plate, but this compromises the noncontact nature of the transducer.

  12. Acoustic transducer apparatus with reduced thermal conduction

    NASA Technical Reports Server (NTRS)

    Lierke, Ernst G. (Inventor); Leung, Emily W. (Inventor); Bhat, Balakrishna T. (Inventor)

    1990-01-01

    A horn is described for transmitting sound from a transducer to a heated chamber containing an object which is levitated by acoustic energy while it is heated to a molten state, which minimizes heat transfer to thereby minimize heating of the transducer, minimize temperature variation in the chamber, and minimize loss of heat from the chamber. The forward portion of the horn, which is the portion closest to the chamber, has holes that reduce its cross-sectional area to minimize the conduction of heat along the length of the horn, with the entire front portion of the horn being rigid and having an even front face to efficiently transfer high frequency acoustic energy to fluid in the chamber. In one arrangement, the horn has numerous rows of holes extending perpendicular to the length of horn, with alternate rows extending perpendicular to one another to form a sinuous path for the conduction of heat along the length of the horn.

  13. Robust Acoustic Transducers for Bubble Chambers

    NASA Astrophysics Data System (ADS)

    Wells, Jonathan

    2015-04-01

    The PICO collaboration utilizes bubble chambers filled with various superheated liquids as targets for dark matter. Acoustic sensors have proved able to distinguish nuclear recoils from radioactive background on an event-by-event basis. We have recently produced a more robust transducer which should be able to operate for years, rather than months, in the challenging environment of a heated high pressure hydraulic fluid outside these chambers. Indiana University South Bend.

  14. Measurement of ultrasonic nonlinear parameter by using electromagnetic acoustic transducer

    NASA Astrophysics Data System (ADS)

    Cai, Zhichao; Liu, Suzhen; Zhang, Chuang

    2017-02-01

    The nonlinear ultrasonic technology is generally known as an effective method for the microcrack detection. However, most of the previous experimental studies were limited by a contact nonlinearity method. Since measurement by the contact method is affected by the coupling conditions, additional nonlinear coefficient are lead into the measurement. This research presents a novel technique for nonlinear ultrasonic wave measurements that uses a non-contact electromagnetic ultrasonic transducer (EMAT). And for a better understanding and a more in-depth analysis of the macroscopic nonlinear behavior of microcrack, the developed FEM modeling approach was built to simulate microcrack induced nonlinearities manifested in electromagnetic ultrasonic waves and validated experimentally. This study has yielded a quantitative characterization strategy for microcrack using EMAT, facilitating deployment of structural health monitoring by noncontact electromagnetic nondestructive testing.

  15. EMAT phased array: A feasibility study of surface crack detection.

    PubMed

    Isla, J; Cegla, F

    2017-02-14

    Electromagnetic-acoustic transducers (EMATs) consist of a magnet and a coil. They are advantageous in some non-destructive evaluation (NDE) applications because no direct contact with the specimen is needed to send and receive ultrasonic waves. However, EMATs commonly require excitation peak powers greater than 1kW and therefore the driving electronics and the EMAT coils have to be bulky. This has hindered the development of EMAT phased arrays with characteristics similar to those of conventional piezoelectric phased arrays. Phased arrays are widely used in NDE because they offer superior defect characterization in comparison to single-element transducers. In this paper, we report a series of novel techniques and design elements that make it possible to construct an EMAT phased array that performs similarly to conventional piezoelectric arrays used in NDE. One of the key enabling features is the use of coded excitation to reduce the excitation peak power to less than 4.8W (24 Vpp and 200mA) so that racetrack coils with dimensions 3.2×18mm(2) can be employed. Moreover, these racetrack coils are laid out along their shortest dimension so that 1/3 of their area is overlapped. This helps to reduce the crosstalk between the coils, i.e., the array elements, to less than -15dB. We show that an 8-element EMAT phased array operating at a central frequency of 1MHz can be used to detect defects which have a width and a depth of 0.2 and 0.8mm respectively and are located on the surface opposite to the array.

  16. Nonlinear ultrasonic measurements with EMATs for detecting pre-cracking fatigue damage

    NASA Astrophysics Data System (ADS)

    Cobb, A.; Capps, M.; Duffer, C.; Feiger, J.; Robinson, K.; Hollingshaus, B.

    2012-05-01

    This paper describes an approach for measuring material degradation using nonlinear acoustics. The importance of this measurement is that prior efforts have shown that the degree of acoustic nonlinearity increases as a function of fatigue damage accumulation. By exploiting this physical mechanism, there is the potential to develop methods for measuring the remaining life of critical components. The challenge with existing approaches for measuring acoustic nonlinearity is that primarily they have only been shown to be successful in a laboratory setting. This paper presents a potential approach for field measurement of acoustic nonlinearity that utilizes Rayleigh waves generated from electromagnetic acoustic transducers (EMATs). Rayleigh waves have unique advantages because the sound propagates along the surface, allowing for application on complex engineering structures. EMATs were used in place of traditional piezoelectric transducers because the sound is generated directly in the metallic structure, eliminating the need for sound coupling fluids that are a source of variability. Custom EMATs were developed and nonlinearity measurements were performed on 410 stainless steel specimens that were subjected to a fatigue process. Some experiments showed an increase in the acoustic nonlinearity of up to 500% compared to the unfatigued value. Other experiments had too much scatter and did not show this relationship consistently due to unanticipated challenges in producing repeatable measurements. Lessons learned from the project effort will be presented to potentially improve the repeatability of the measurement approach. If the scatter can be reduced, this EMAT-based technique could result in a field deployable prognosis tool.

  17. Optically selective, acoustically resonant gas detecting transducer

    NASA Technical Reports Server (NTRS)

    Dimeff, J. (Inventor)

    1977-01-01

    A gas analyzer is disclosed which responds to the resonant absorption or emission spectrum of a specific gas by producing an acoustic resonance in a chamber containing a sample of that gas, and which measures the amount of that emission or absorption by measuring the strength of that acoustic resonance, e.g., the maximum periodic pressure, velocity or density achieved. In the preferred embodiment, a light beam is modulated periodically at the acoustical resonance frequency of a closed chamber which contains an optically dense sample of the gas of interest. Periodic heating of the absorbing gas by the light beam causes a cyclic expansion, movement, and pressure within the gas. An amplitude is reached where the increased losses were the cyclic radiation energy received. A transducing system is inclined for converting the pressure variations of the resonant gas into electronic readout signals.

  18. The Optimization of Lamb and Rayleigh Wave Generation Using Wideband-Low-Frequency EMATs

    NASA Astrophysics Data System (ADS)

    Dixon, S.; Edwards, C.; Palmer, S. B.

    2003-03-01

    This paper describes a non-contact ElectroMagnetic Acoustic Transducer (EMAT) that can be used to generate both Lamb and Rayleigh waves on metal samples. The generated waves are wideband and low frequency with a dominant frequency content centred on approximately 200kHz extending to around 500kHz. Detection of the waves is achieved using a linear coil detection EMAT. The transducers (generator & detector) have been used on both aluminium and steel, but operate more efficiently on aluminium due to its lower electrical resistance and density when compared to steel. Some considerations are described for the design of the generation EMAT including applications where the dynamic field from the coil alone is used to obtain the Lorentz interaction with the sample surface eddy current.

  19. A New Omni-Directional EMAT for Ultrasonic Lamb Wave Tomography Imaging of Metallic Plate Defects

    PubMed Central

    Huang, Songling; Wei, Zheng; Zhao, Wei; Wang, Shen

    2014-01-01

    This paper proposes a new omni-directional electromagnetic acoustic transducer (EMAT) for the ultrasonic Lamb wave (ULW) tomography imaging (TI) of defects in metallic plates. The proposed EMAT is composed of a permanent magnet and a coil with a contra-flexure structure. This new EMAT coil structure is used for omni-directional ULW transmission and reception and ULW TI for the first time. The theoretical background and the working principles of this EMAT are presented and analyzed. The experimental results of its use on a 3 mm thick aluminum plate indicate that the EMAT with a contra-flexure coil (CFC) can transmit and receive a pure single A0 mode ULW with a high signal-to-noise ratio (SNR). Thus, the extraction of the projection data used for ULW TI may be performed accurately. The circumferential consistency of the projection data is only slightly influenced by the distortion of the eddy current field that is induced by the new CFC with an irregular shape. When the new EMAT array is used for ULW TI using the cross-hole method and SIRT arithmetic, a desirable imaging quality can be achieved, and the estimated size of an artificial corrosion defect agreed well with its actual value. The relation between the reconstruction resolution and the number of the new EMATs used is analyzed. More TI experiments are carried out when the aluminum plate defect is in two different locations relative to the EMAT array, for the further investigation of the performances of the new EMATs. PMID:24561398

  20. Electromechanical transducer for acoustic telemetry system

    DOEpatents

    Drumheller, D.S.

    1993-06-22

    An improved electromechanical transducer is provided for use in an acoustic telemetry system. The transducer of this invention comprises a stack of ferroelectric ceramic disks interleaved with a plurality of spaced electrodes which are used to electrically pole the ceramic disks. The ceramic stack is housed in a metal tubular drill collar segment. The electrodes are preferably alternatively connected to ground potential and driving potential. This alternating connection of electrodes to ground and driving potential subjects each disk to an equal electric field; and the direction of the field alternates to match the alternating direction of polarization of the ceramic disks. Preferably, a thin metal foil is sandwiched between electrodes to facilitate the electrical connection. Alternatively, a thicker metal spacer plate is selectively used in place of the metal foil in order to promote thermal cooling of the ceramic stack.

  1. Electromechanical transducer for acoustic telemetry system

    DOEpatents

    Drumheller, Douglas S.

    1993-01-01

    An improved electromechanical transducer is provided for use in an acoustic telemetry system. The transducer of this invention comprises a stack of ferroelectric ceramic disks interleaved with a plurality of spaced electrodes which are used to electrically pole the ceramic disks. The ceramic stack is housed in a metal tubular drill collar segment. The electrodes are preferably alternatively connected to ground potential and driving potential. This alternating connection of electrodes to ground and driving potential subjects each disk to an equal electric field; and the direction of the field alternates to match the alternating direction of polarization of the ceramic disks. Preferably, a thin metal foil is sandwiched between electrodes to facilitate the electrical connection. Alternatively, a thicker metal spacer plate is selectively used in place of the metal foil in order to promote thermal cooling of the ceramic stack.

  2. Electret Acoustic Transducer Array For Computerized Ultrasound Risk Evaluation System

    DOEpatents

    Moore, Thomas L.; Fisher, Karl A.

    2005-08-09

    An electret-based acoustic transducer array is provided and may be used in a system for examining tissue. The acoustic transducer array is formed with a substrate that has a multiple distinct cells formed therein. Within each of the distinct cells is positioned an acoustic transducing element formed of an electret material. A conductive membrane is formed over the distinct cells and may be flexible.

  3. Shear wave EMAT thickness measurements of low carbon steel at 450 °C without cooling

    NASA Astrophysics Data System (ADS)

    Lunn, Natasha; Potter, Mark; Dixon, Steve

    2017-02-01

    Performing high temperature online inspection without plant shutdown is highly desirable, yet, development of portable or permanently installed high temperature ultrasonic sensors, without the need for sample surface preparation, remains a key challenge. Low carbon steel pipelines operating at elevated temperatures often develop a magnetostrictive oxide coating (magnetite), which improves electromagnetic acoustic transducer (EMAT) efficiency below the Curie temperature of magnetite (575 °C), via a magnetostrictive mechanism. Coupling the inherent non-contacting nature of EMATs with the enhanced efficiency from a magnetite coating, we are able to continuously operate an uncoded EMAT at elevated temperatures without permanent installation or surface preparation. In this work, a high temperature shear wave EMAT utilizing a high field, high Curie point, permanent magnet has been developed to generate ultrasonic bulk thickness measurements on magnetite coated steel at temperatures of up to 450 °C, without cooling. Relatively high signal-to-noise ratios, in the region of 30 dB for single shot data, have been measured at 450 °C using this technique. The EMAT design and results from high temperature trials, including the performance with change in temperature, sample thickness and EMAT-sample lift-off, are presented here.

  4. Resonant acoustic transducer system for a well drilling string

    DOEpatents

    Kent, William H.; Mitchell, Peter G.

    1981-01-01

    For use in transmitting acoustic waves propagated along a well drilling string, a piezoelectric transducer is provided operating in the relatively low loss acoustic propagation range of the well drilling string. The efficiently coupled transmitting transducer incorporates a mass-spring-piezoelectric transmitter combination permitting resonant operation in the desired low frequency range.

  5. Resonant acoustic transducer system for a well drilling string

    DOEpatents

    Nardi, Anthony P.

    1981-01-01

    For use in transmitting acoustic waves propated along a well drilling string, a piezoelectric transducer is provided operating in the relatively low loss acoustic propagation range of the well drilling string. The efficiently coupled transmitting transducer incorporates a mass-spring-piezoelectric transmitter combination permitting a resonant operation in the desired low frequency range.

  6. Acoustic transducer based on dielectric elastomers

    NASA Astrophysics Data System (ADS)

    Graf, Christian; Maas, Jügen

    2012-04-01

    Dielectric electroactive polymers are thin films based on elastomeric material coated with compliant and conductive electrodes. By applying an electrical field, the polymer performs large deformations, which can be utilized to generate sound waves. When using such kind of electrostatic loudspeakers, no additional resonating sound boxes are required and the vibrating mass is very lightweight, resulting in an excellent impulse and wide-band frequency response. For the loudspeaker's operation both an electrical bias voltage and a mechanical bias stress have to be applied. In this contribution different possibilities are presented to generate the mechanical bias stress. The design of an appropriate power electronics for the acoustic transducer, which is build of standard components, is also described. Finally, the loudspeaker concepts are evaluated by experiments in an anechoic room.

  7. Porous silicon bulk acoustic wave resonator with integrated transducer

    PubMed Central

    2012-01-01

    We report that porous silicon acoustic Bragg reflectors and AlN-based transducers can be successfully combined and processed in a commercial solidly mounted resonator production line. The resulting device takes advantage of the unique acoustic properties of porous silicon in order to form a monolithically integrated bulk acoustic wave resonator. PMID:22776697

  8. Acoustic Emission Transducers: Calibration Activities and Transducer Development.

    DTIC Science & Technology

    2014-09-26

    transducer calibration and development activities -j at NBS is summiarized. DO Fo"� roiion or olv as is OBSOLETE DOS/N 0 102. LP.60 4. 6601...developed. This development was partially supported by the Electric Power Research Institute and the Office of Naval Research. The calibration subjects the...and tangential components of motion must be measured tb describe the dynamic displacement at a point on a surface. We previously have developed the NBS

  9. Ultrahigh Frequency Lensless Ultrasonic Transducers for Acoustic Tweezers Application

    PubMed Central

    Hsu, Hsiu-Sheng; Li, Ying; Lee, Changyang; Lin, Anderson; Zhou, Qifa; Kim, Eun Sok; Shung, Kirk Koping

    2014-01-01

    Similar to optical tweezers, a tightly focused ultrasound microbeam is needed to manipulate microparticles in acoustic tweezers. The development of highly sensitive ultrahigh frequency ultrasonic transducers is crucial for trapping particles or cells with a size of a few microns. As an extra lens would cause excessive attenuation at ultrahigh frequencies, two types of 200-MHz lensless transducer design were developed as an ultrasound microbeam device for acoustic tweezers application. Lithium niobate single crystal press-focused (PF) transducer and zinc oxide self-focused transducer were designed, fabricated and characterized. Tightly focused acoustic beams produced by these transducers were shown to be capable of manipulating single microspheres as small as 5 μm two-dimensionally within a range of hundreds of micrometers in distilled water. The size of the trapped microspheres is the smallest ever reported in the literature of acoustic PF devices. These results suggest that these lensless ultrahigh frequency ultrasonic transducers are capable of manipulating particles at the cellular level and that acoustic tweezers may be a useful tool to manipulate a single cell or molecule for a wide range of biomedical applications. PMID:23042219

  10. Piezoelectric transducer design for a miniaturized injectable acoustic transmitter

    SciTech Connect

    Li, Huidong; Jung, Ki Won; Deng, Zhiqun D.

    2015-10-07

    Acoustic telemetry has been an important tool in the last 20 years for studying fish survival and migration behaviors during and after dam passage. This technology uses implantable acoustic transmitters as tags to three-dimensionally track the movement of fish. However, the relatively large weights and sizes of commercially available transmitters limit the populations of fish that could be studied. The surgical implantation procedures required may also injure fish and also incur a significant amount of labor. Therefore, a smaller, lighter, and injectable tag was needed, and similar or better acoustic performance and service life over that provided by existing commercial tags was desired. To develop such a small transmitter, a number of technical challenges, including design optimization of the piezoelectric transducer, needed to be overcome. The goal of our efforts to optimize the transducer focused on improving the average source level in the 180° range in which the transmitter was facing the receiving hydrophone, so as to increase the transmitter’s detection probability. This paper reports the techniques that were explored and developed to achieve this goal. We found that a novel off-center tube transducer improved the average source level of the front half of the transducer by 1.5 dB. An acoustic reflector attached to the back of the transducer also improved the source level by 3 dB when the transducer was pointed toward the receiving hydrophone, although the source level on the sides of the transducer was reduced. We found that too small a gap between the transducer and the component placed behind it resulted in distortion of the beam pattern. To overcome that issue, we connected a tuning inductor in series with the transducer to help optimize the source level. Furthermore, the findings and techniques developed in this work contributed to the successful development and implementation of a new injectable transmitter.

  11. Piezoelectric transducer design for a miniaturized injectable acoustic transmitter

    DOE PAGES

    Li, Huidong; Jung, Ki Won; Deng, Zhiqun D.

    2015-10-07

    Acoustic telemetry has been an important tool in the last 20 years for studying fish survival and migration behaviors during and after dam passage. This technology uses implantable acoustic transmitters as tags to three-dimensionally track the movement of fish. However, the relatively large weights and sizes of commercially available transmitters limit the populations of fish that could be studied. The surgical implantation procedures required may also injure fish and also incur a significant amount of labor. Therefore, a smaller, lighter, and injectable tag was needed, and similar or better acoustic performance and service life over that provided by existing commercialmore » tags was desired. To develop such a small transmitter, a number of technical challenges, including design optimization of the piezoelectric transducer, needed to be overcome. The goal of our efforts to optimize the transducer focused on improving the average source level in the 180° range in which the transmitter was facing the receiving hydrophone, so as to increase the transmitter’s detection probability. This paper reports the techniques that were explored and developed to achieve this goal. We found that a novel off-center tube transducer improved the average source level of the front half of the transducer by 1.5 dB. An acoustic reflector attached to the back of the transducer also improved the source level by 3 dB when the transducer was pointed toward the receiving hydrophone, although the source level on the sides of the transducer was reduced. We found that too small a gap between the transducer and the component placed behind it resulted in distortion of the beam pattern. To overcome that issue, we connected a tuning inductor in series with the transducer to help optimize the source level. Furthermore, the findings and techniques developed in this work contributed to the successful development and implementation of a new injectable transmitter.« less

  12. Apparatus for acoustically coupling an ultrasonic transducer with a body

    NASA Technical Reports Server (NTRS)

    Marshall, Scot H. (Inventor)

    1993-01-01

    An apparatus for acoustically coupling an ultrasonic transducer with a body along whose surface waves are to be transmitted includes a wedge having a first surface for acoustically contacting a subject surface area of a body to be measured, on which surface waves are to be transmitted, and a second surface for accoustically contacting an ultrasonic transducer. The wedge includes a cylinder in which the second surface is present and which is movably disposed in a recess in a block in which the first surface is present, for orienting the first surface and the second surface relative to each other so that ultrasonic waves emitted by the ultrasonic transducer generate surface waves which travel on the subject surface area of the body when the ultrasonic transducer is in acoustic contact with the second surface and the first surface is in acoustic contact with the subject surface area of the body. In the preferred embodiment, there is a third surface which is orientable relative to the first surface so that ultrasonic waves emitted by an ultrasonic transducer in contact with the third surface generate surface waves which travel on the subject surface area of the body when the first surface is an acoustic contact with the subject surface area of the body.

  13. Multiple focused EMAT designs for improved surface breaking defect characterization

    NASA Astrophysics Data System (ADS)

    Thring, C. B.; Fan, Y.; Edwards, R. S.

    2017-02-01

    Ultrasonic Rayleigh waves can be employed for the detection of surface breaking defects such as rolling contact fatigue and stress corrosion cracking. Electromagnetic Acoustic Transducers (EMATs) are well suited to this technique as they can directly generate Rayleigh waves within the sample without the requirement for wedges, and they are robust and inexpensive compared to laser ultrasonics. Three different EMAT coil types have been developed, and these are compared to assess their ability to detect and characterize small (down to 0.5 mm depth, 1 mm diameter) surface breaking defects in aluminium. These designs are: a pair of linear meander coils used in a pseudo-pulse-echo mode, a pair of focused meander coils also used in pseudo-pulse-echo mode, and a pair of focused racetrack coils used in pitch-catch mode. The linear meander coils are able to detect most of the defects tested, but have a much lower signal to noise ratio and give limited sizing information. The focused meander coils and the focused racetrack coils can detect all defects tested, but have the advantage that they can also characterize the defect sizes on the sample surface, and have a stronger sensitivity at their focal point. Measurements using all three EMAT designs are presented and compared for high resolution imaging of surface-breaking defects.

  14. Surface acoustic wave unidirectional transducers for quantum applications

    NASA Astrophysics Data System (ADS)

    Ekström, Maria K.; Aref, Thomas; Runeson, Johan; Björck, Johan; Boström, Isac; Delsing, Per

    2017-02-01

    The conversion efficiency of electric microwave signals into surface acoustic waves in different types of superconducting transducers is studied with the aim of quantum applications. We compare delay lines containing either conventional symmetric transducers (IDTs) or unidirectional transducers (UDTs) at 2.3 GHz and 10 mK. The UDT delay lines improve the insertion loss with 4.7 dB and a directivity of 22 dB is found for each UDT, indicating that 99.4% of the acoustic power goes in the desired direction. The power lost in the undesired direction accounts for more than 90% of the total loss in IDT delay lines, but only ˜3% of the total loss in the floating electrode unidirectional transducer delay lines.

  15. Transducer Arrays Suitable for Acoustic Imaging

    DTIC Science & Technology

    1978-06-01

    attention is placed on achieving high transduction efficiency and angular beam - widths of at least ±15°• T. Design techniques based on the transmission line...approximation so that the acoustic beam is caused to come to a focus in the exact analogue to a normal lens. The reference phase delays necessary to...fccus the acoustic beam are provided by a tapped surface acoustic wave delay line. A surface Ji acoustic wave is launched down the delay line with a

  16. Piezoelectric transducer design for a miniaturized injectable acoustic transmitter

    NASA Astrophysics Data System (ADS)

    Li, H.; Jung, K. W.; Deng, Z. D.

    2015-11-01

    Implantable acoustic transmitters have been used in the last 20 years to track fish movement for fish survival and migration behavior studies. However, the relatively large weights and sizes of commercial transmitters limit the populations of studied fish. The surgical implantation procedures may also affect fish adversely and incur a significant amount of labor. Therefore, a smaller, lighter, and injectable transmitter was needed, and similar or better acoustic performance and service life over those provided by existing commercial transmitters was desired. To develop such a small transmitter, a number of technical challenges, including design optimization of the piezoelectric transducer, needed to be overcome. Our efforts to optimize the transducer focused on improving the average source level in the 180° range in which the signal was not blocked by the transmitter body. We found that a novel off-center tube transducer improved the average source level by 1.5 dB. An acoustic reflector attached to the back of the transducer also improved the source level by 1.3 dB. We found that too small a gap between the transducer and the component placed behind it resulted in distortion of the beam pattern. Lastly, a tuning inductor in series with the transducer was used to help optimize the source level. The findings and techniques developed in this work contributed to the successful development and implementation of a new injectable transmitter.

  17. MEMS acoustic emission transducers designed with high aspect ratio geometry

    NASA Astrophysics Data System (ADS)

    Saboonchi, H.; Ozevin, D.

    2013-09-01

    In this paper, micro-electro-mechanic systems (MEMS) acoustic emission (AE) transducers are manufactured using an electroplating technique. The transducers use a capacitance change as their transduction principle, and are tuned to the range 50-200 kHz. Through the electroplating technique, a thick metal layer (20 μm nickel + 0.5 μm gold) is used to form a freely moving microstructure layer. The presence of the gold layer reduces the potential corrosion of the nickel layer. A dielectric layer is deposited between the two electrodes, thus preventing the stiction phenomenon. The transducers have a measured quality factor in the range 15-30 at atmospheric pressure and are functional without vacuum packaging. The transducers are characterized using electrical and mechanical tests to identify the capacitance, resonance frequency and damping. Ultrasonic wave generation using a Q-switched laser shows the directivity of the transducer sensitivity. The comparison of the MEMS transducers with similar frequency piezoelectric transducers shows that the MEMS AE transducers have better response characteristics and sensitivity at the resonance frequency and well-defined waveform signatures (rise time and decay time) due to pure resonance behavior in the out-of-plane direction. The transducers are sensitive to a unique wave direction, which can be utilized to increase the accuracy of source localization by selecting the correct wave velocity at the structures.

  18. Capacitive Ultrasonic Transducer Development for Acoustic Anemometry on Mars

    NASA Astrophysics Data System (ADS)

    Leonard-Pugh, Eurion; Wilson, C.; Calcutt, S.; Davis, L.

    2012-10-01

    Previous Mars missions have used either mechanical or thermal anemometry techniques. The moving parts of mechanical anemometers are prone to damage during launch and landing and their inertia makes them unsuited for turbulence studies. Thermal anemometers have been used successfully on Mars but are difficult to calibrate and susceptible to varying ambient temperatures. In ultrasonic anemometry, wind speed and sound speed are calculated from two-way time-of-flight measurements between pairs of transducers; three pairs of transducers are used to return a 3-D wind vector. These high-frequency measurements are highly reliable and immune from drift. Piezo-electric ultrasonic anemometers are widely used on Earth due to their full-range accuracy and high measurement frequency. However these transducers have high acoustic impedances and would not work on Mars. We are developing low-mass capacitive ultrasonic transducers for Mars missions which have significantly lower acoustic impedances and would therefore have a much stronger coupling to the Martian atmosphere. These transducers consist of a metallised polymer film pulled taught against a machined metal backplane. The film is drawn towards the backplane by a DC bias voltage. A varying signal is used on top of the DC bias to oscillate the film; generating acoustic waves. This poster will look at the operation of such sensors and the developments necessary to operate the devices under Martian conditions. Transducer performance is determined primarily by two elements; the front film and the backplane. The sensitivity of the transducer is affected by the thickness of the front film; as well as the diameter, curvature and roughness of the metal backplane. We present data on the performance of the sensors and instrument design considerations including signal shapes and transducer arrangements.

  19. Liquid-membrane coupling response of submersible electrostatic acoustic transducer

    NASA Technical Reports Server (NTRS)

    Cantrell, John H.; Yost, William T.

    1989-01-01

    A mathematical model was developed for the liquid-membrane coupling response of the submersible electrostatic acoustic transducer (ESAT) described by Cantrell et al. (1979). The model accounts for the ESAT's rolloff response and predicts the essential features of the ESAT frequency response. Model predictions were found to agree well with measurements taken over the frequency range from 1 to 11 MHz.

  20. Characterization of HIFU transducers designed for sonochemistry application: Acoustic streaming.

    PubMed

    Hallez, L; Touyeras, F; Hihn, J-Y; Bailly, Y

    2016-03-01

    Cavitation distribution in a High Intensity Focused Ultrasound sonoreactors (HIFU) has been extensively described in the recent literature, including quantification by an optical method (Sonochemiluminescence SCL). The present paper provides complementary measurements through the study of acoustic streaming generated by the same kind of HIFU transducers. To this end, results of mass transfer measurements (electrodiffusional method) were compared to optical method ones (Particle Image Velocimetry). This last one was used in various configurations: with or without an electrode in the acoustic field in order to have the same perturbation of the wave propagation. Results show that the maximum velocity is not located at the focal but shifted near the transducer, and that this shift is greater for high powers. The two cavitation modes (stationary and moving bubbles) are greatly affect the hydrodynamic behavior of our sonoreactors: acoustic streaming and the fluid generated by bubble motion. The results obtained by electrochemical measurements show the same low hydrodynamic activity in the transducer vicinity, the same shift of the active focal toward the transducer, and the same absence of activity in the post-focal axial zone. The comparison with theoretical Eckart's velocities (acoustic streaming in non-cavitating media) confirms a very high activity at the "sonochemical focal", accounted for by wave distortion, which induced greater absorption coefficients. Moreover, the equivalent liquid velocities are one order of magnitude larger than the ones measured by PIV, confirming the enhancement of mass transfer by bubbles oscillation and collapse close to the surface, rather than from a pure streaming effect.

  1. Finite element analysis for acoustic characteristics of a magnetostrictive transducer

    NASA Astrophysics Data System (ADS)

    Kim, Jaehwan; Jung, Eunmi

    2005-12-01

    This paper presents a finite element analysis for a magnetostrictive transducer by taking into account the nonlinear behavior of the magnetostrictive material and fluid interaction. A finite element formulation is derived for the coupling of magnetostrictive and elastic materials based upon a separated magnetic and displacement field calculation and a curve fitting technique of material properties. The fluid and structure coupled problem is taken into account based upon pressure and velocity potential fields formulation. Infinite wave envelope elements are introduced at an artificial boundary to deal with the infinite fluid domain. A finite element code for the analysis of a magnetostrictive transducer is developed. A magnetostrictive tonpilz transducer is taken as an example and verification for the developed program is made by comparing with a commercial code. The acoustic characteristics of the magnetostrictive tonpilz transducer are calculated in terms of radiation pattern and transmitted current response.

  2. Bonding and impedance matching of acoustic transducers using silver epoxy.

    PubMed

    Son, Kyu Tak; Lee, Chin C

    2012-04-01

    Silver epoxy was selected to bond transducer plates on glass substrates. The properties and thickness of the bonding medium affect the electrical input impedance of the transducer. Thus, the thickness of the silver epoxy bonding layer was used as a design parameter to optimize the structure for the transducer input impedance to match the 50 Ω output impedance of most radio frequency (RF) generators. Simulation and experimental results show that nearly perfect matching is achieved without using any matching circuit. At the matching condition, the transducer operates at a frequency band a little bit below the half-wavelength resonant frequency of the piezoelectric plate. In experiments, lead titanate (PT) piezoelectric plates were employed. Both full-size, 11.5 mm × 2 mm × 0.4 mm, and half-size, 5.75 mm × 2 mm × 0.4 mm, can be well matched using optimal silver epoxy thickness. The transducer assemblies demonstrate high efficiency. The conversion loss from electrical power to acoustic power in soda-lime glass is 4.3 dB. This loss is low considering the fact that the transducers operate at off-resonance by 12%. With proper choice of silver epoxy thickness, the transducer can be matched at the fundamental, the 3rd and 5th harmonic frequencies. This leads to the possible realization of triple-band transducers. Reliability was assessed with thermal cycling test according to Telcordia GR-468-Core recommendation. Of the 30 transducer assemblies tested, none broke until 2900 cycles and 27 have sustained beyond 4050 cycles.

  3. Measurement of the total acoustic output power of HITU transducers

    NASA Astrophysics Data System (ADS)

    Jenderka, Klaus-V.; Beissner, Klaus

    2010-03-01

    The majority of High Intensity Therapeutic Ultrasound (HITU) applications use strongly focused ultrasound fields generating very high local intensities in the focal region. The metrology of these high-power ultrasound fields is a challenge for the established measurement procedures and devices. This paper describes the results of measurements by means of the radiation force for a total acoustic output power up to 400 W at 1.5 MHz and up to 200 W at 2.45 MHz. For this purpose, a radiation force balance set-up was adapted for the determination of large acoustic output powers. For two types of HITU transducers, the relationship between the total acoustic output power and the applied net electrical power was determined at close transducer-target distance. Further, dependence of the measured electro-acoustic radiation conductance on the transducer-target distance was investigated at reduced power levels, considering the appearance of focal anomalies. Concluding, a list of the main uncertainty contributions, and an estimate of the uncertainty for the used radiation force balance set-up is given for measurements at high power levels.

  4. DEVELOPMENT OF AN EMAT IN-LINE INSPECTION SYSTEM FOR DETECTION, DISCRIMINATION, AND GRADING OF STRESS CORROSION CRACKING IN PIPELINES

    SciTech Connect

    Jeff Aron; Jon Gore, Roger Dalton; Stuart Eaton; Adrian Bowles; Owen Thomas; Tim Jarman

    2003-07-01

    This report describes progress, experiments, and results for a project to develop a pipeline inline inspection tool that uses electromagnetic acoustic transducers (EMATs) to detect and grade stress corrosion cracking (SCC). There is a brief introduction that gives background material about EMATs and relevant previous Tuboscope work toward a tool. This work left various choices about the modes and transducers for this project. The experimental section then describes the lab systems, improvements to these systems, and setups and techniques to narrow the choices. Improvements, which involved transducer matching networks, better magnetic biasing, and lower noise electronics, led to improved signal to noise (SNR) levels. The setups permitted transducer characterizations and interaction measurements in plates with man-made cracks, pipeline sections with SCC, and a full pipe with SCC. The latter were done with a moveable and compact EMAT setup, called a lab mouse, which is detailed. Next, the results section justifies the mode and transducer choices. These were for magnetostrictive EMATs and the use of EMAT launched modes: SH0 (at 2.1 MHz-mm) and SV1 (at 3.9 MHz-mm). This section then gives details of measurements on these modes. The measurements consisted of signal to noise ratio, insertion loss, magnetic biasing sensitivities crack reflection and transmission coefficients, beam width, standoff and tilt sensitivities. For most of the measurements the section presents analysis curves, such as reflection coefficient versus crack depth. Some notable results for the chosen modes are: that acceptable SNRs were generated in a pipe with magnetostrictive EMATs, that optimum bias for magnetostrictive transmitters and receivers is magnetic saturation, that crack reflection and transmission coefficients from crack interactions agree with 2 D simulations and seem workable for crack grading, and that the mouse has good waveform quality and so is ready for exhaustive measurement EMAT

  5. Characterization of high intensity focused ultrasound transducers using acoustic streaming.

    PubMed

    Hariharan, Prasanna; Myers, Matthew R; Robinson, Ronald A; Maruvada, Subha H; Sliwa, Jack; Banerjee, Rupak K

    2008-03-01

    A new approach for characterizing high intensity focused ultrasound (HIFU) transducers is presented. The technique is based upon the acoustic streaming field generated by absorption of the HIFU beam in a liquid medium. The streaming field is quantified using digital particle image velocimetry, and a numerical algorithm is employed to compute the acoustic intensity field giving rise to the observed streaming field. The method as presented here is applicable to moderate intensity regimes, above the intensities which may be damaging to conventional hydrophones, but below the levels where nonlinear propagation effects are appreciable. Intensity fields and acoustic powers predicted using the streaming method were found to agree within 10% with measurements obtained using hydrophones and radiation force balances. Besides acoustic intensity fields, the streaming technique may be used to determine other important HIFU parameters, such as beam tilt angle or absorption of the propagation medium.

  6. Experimental validation of an 8 element EMAT phased array probe for longitudinal wave generation

    NASA Astrophysics Data System (ADS)

    Le Bourdais, Florian; Marchand, Benoit

    2015-03-01

    Sodium cooled Fast Reactors (SFR) use liquid sodium as a coolant. Liquid sodium being opaque, optical techniques cannot be applied to reactor vessel inspection. This makes it necessary to develop alternative ways of assessing the state of the structures immersed in the medium. Ultrasonic pressure waves are well suited for inspection tasks in this environment, especially using pulsed electromagnetic acoustic transducers (EMAT) that generate the ultrasound directly in the liquid sodium. The work carried out at CEA LIST is aimed at developing phased array EMAT probes conditioned for reactor use. The present work focuses on the experimental validation of a newly manufactured 8 element probe which was designed for beam forming imaging in a liquid sodium environment. A parametric study is carried out to determine the optimal setup of the magnetic assembly used in this probe. First laboratory tests on an aluminium block show that the probe has the required beam steering capabilities.

  7. Experimental validation of an 8 element EMAT phased array probe for longitudinal wave generation

    SciTech Connect

    Le Bourdais, Florian Marchand, Benoit

    2015-03-31

    Sodium cooled Fast Reactors (SFR) use liquid sodium as a coolant. Liquid sodium being opaque, optical techniques cannot be applied to reactor vessel inspection. This makes it necessary to develop alternative ways of assessing the state of the structures immersed in the medium. Ultrasonic pressure waves are well suited for inspection tasks in this environment, especially using pulsed electromagnetic acoustic transducers (EMAT) that generate the ultrasound directly in the liquid sodium. The work carried out at CEA LIST is aimed at developing phased array EMAT probes conditioned for reactor use. The present work focuses on the experimental validation of a newly manufactured 8 element probe which was designed for beam forming imaging in a liquid sodium environment. A parametric study is carried out to determine the optimal setup of the magnetic assembly used in this probe. First laboratory tests on an aluminium block show that the probe has the required beam steering capabilities.

  8. Adaptation of PWAS transducers to acoustic emission sensors

    NASA Astrophysics Data System (ADS)

    Yu, Lingyu; Momeni, Sepandarmaz; Godinez, Valery; Giurgiutiu, Victor

    2011-04-01

    Piezoelectric wafer active sensors (PWAS) are non-intrusive transducers that can convert mechanical energy into electrical energy, and vice versa. They are well known for their dual use as either actuators or sensors. Though PWAS has shown great potential for active sensing, its capability for acoustic emission (AE) detection has not yet been exploited. In the reported work, we have explored the implementation of PWAS transducers for both passive (AE sensors) and active (in-situ ultrasonic transducers) sensing using a single PWAS network. The objective of the work presented in this paper is to adapt PWAS as AE sensors and compare it to the commercially available AE transducers such as PAC R15. An experiment has been designed to show how PWAS can be used for AE detection and the results were compared to a standard AE sensor, PAC R15I. Tests on compact tension specimens have also been conducted to show PWAS capability to pick up AE events during fatigue loading. PWAS field installation technology has been tested with packaging similar to that used for traditional strain gauges. The performance of packaged PWAS has been compared with that of conventional AE transducers R15I. We have found that PWAS not only can detect the presence of AE events but also can provide a wide frequency bandwidth. At this stage, PWAS underperforms the commercial AE sensors. To make PWAS ready for field test, signal to noise ratio needs to be significantly improved.

  9. Transducer Development and Characterization for Underwater Acoustic Neutrino Detection Calibration

    PubMed Central

    Saldaña, María; Llorens, Carlos D.; Felis, Ivan; Martínez-Mora, Juan Antonio; Ardid, Miguel

    2016-01-01

    A short bipolar pressure pulse with “pancake” directivity is produced and propagated when an Ultra-High Energy (UHE) neutrino interacts with a nucleus in water. Nowadays, acoustic sensor networks are being deployed in deep seas to detect this phenomenon as a first step toward building a neutrino telescope. In order to study the feasibility of the method, it is critical to have a calibrator that is able to mimic the neutrino signature. In previous works the possibility of using the acoustic parametric technique for this aim was proven. In this study, the array is operated at a high frequency and, by means of the parametric effect, the emission of the low-frequency acoustic bipolar pulse is generated mimicking the UHE neutrino acoustic pulse. To this end, the development of the transducer to be used in the parametric array is described in all its phases. The transducer design process, the characterization tests for the bare piezoelectric ceramic, and the addition of backing and matching layers are presented. The efficiencies and directivity patterns obtained for both primary and parametric beams confirm that the design of the proposed calibrator meets all the requirements for the emitter. PMID:27490547

  10. Transducer Development and Characterization for Underwater Acoustic Neutrino Detection Calibration.

    PubMed

    Saldaña, María; Llorens, Carlos D; Felis, Ivan; Martínez-Mora, Juan Antonio; Ardid, Miguel

    2016-08-02

    A short bipolar pressure pulse with "pancake" directivity is produced and propagated when an Ultra-High Energy (UHE) neutrino interacts with a nucleus in water. Nowadays, acoustic sensor networks are being deployed in deep seas to detect this phenomenon as a first step toward building a neutrino telescope. In order to study the feasibility of the method, it is critical to have a calibrator that is able to mimic the neutrino signature. In previous works the possibility of using the acoustic parametric technique for this aim was proven. In this study, the array is operated at a high frequency and, by means of the parametric effect, the emission of the low-frequency acoustic bipolar pulse is generated mimicking the UHE neutrino acoustic pulse. To this end, the development of the transducer to be used in the parametric array is described in all its phases. The transducer design process, the characterization tests for the bare piezoelectric ceramic, and the addition of backing and matching layers are presented. The efficiencies and directivity patterns obtained for both primary and parametric beams confirm that the design of the proposed calibrator meets all the requirements for the emitter.

  11. Characterization and Design of Spiral Frequency Steerable Acoustic Transducers

    NASA Astrophysics Data System (ADS)

    Repale, Rohan

    Structural Health Monitoring (SHM) is an emerging research area devoted to improving the safety and maintainability of civil structures. Guided wave structural testing method is an effective approach used for SHM of plate-like structures using piezoelectric transducers. These transducers are attached to the surface of the structure and are capable of sensing its health by using surface waves. Transducers with beam steering i.e. electronic scanning capabilities can perform surface interrogation with higher precision and ease. A frequency steerable acoustic transducer (FSAT) is capable of beam steering and directional surface wave sensing to detect and localize damage in structures. The objective of this research is to further explore the possibilities of FSAT technology by designing and testing new FSAT designs. The beam steering capability of FSAT can be controlled by manipulating its design parameters. These design parameters therefore play a significant role in FSAT's performance. Studying the design parameters and documenting the performance improvements based on parameter variation is the primary goal of this research. Design and characterization of spiral FSAT was performed and results were simulated. Array FSAT documented results were validated. Modified designs were modeled based on design parameter variations. Characterization of these designs was done and their performance was recorded. Plate simulation results confirm direct relationship between design parameters and beam steering. A set of guidelines for future designs was also proposed. Two designs developed based on the set guidelines were sent to our collaborator Genziko Inc. for fabrication.

  12. Shear wave velocity measurements of thin epoxy adhesive samples using broadband EMATs

    NASA Astrophysics Data System (ADS)

    Dixon, S.; Edwards, C.; Palmer, S. B.

    2002-05-01

    This paper describes an ultrasonic analysis of thin epoxy resin samples using normal incidence radially polarized shear wave ElectroMagnetic Acoustic Transducers (EMATs). The adhesive thickness in the first set of experiments was approximately 0.5 mm. The adhesive used in the first set of experiments was obtained from a 2 component cartridge and it was found that adhesive extruded from such cartridges can be inhomogeneous within the same cartridge. The second experiment described here demonstrated how material property changes of a thin adhesive layer (70 μm) could be ultrasonically measured during cure via spectral analysis.

  13. EMAT enhanced dispersion of particles in liquid

    DOEpatents

    Kisner, Roger A.; Rios, Orlando; Melin, Alexander M.; Ludtka, Gerard Michael; Ludtka, Gail Mackiewicz; Wilgen, John B.

    2016-11-29

    Particulate matter is dispersed in a fluid material. A sample including a first material in a fluid state and second material comprising particulate matter are placed into a chamber. The second material is spatially dispersed in the first material utilizing EMAT force. The dispersion process continues until spatial distribution of the second material enables the sample to meet a specified criterion. The chamber and/or the sample is electrically conductive. The EMAT force is generated by placing the chamber coaxially within an induction coil driven by an applied alternating current and placing the chamber and induction coil coaxially within a high field magnetic. The EMAT force is coupled to the sample without physical contact to the sample or to the chamber, by another physical object. Batch and continuous processing are utilized. The chamber may be folded within the bore of the magnet. Acoustic force frequency and/or temperature may be controlled.

  14. A state feedback electro-acoustic transducer for active control of acoustic impedance.

    PubMed

    Samejima, Toshiya

    2003-03-01

    In this paper, a new control system in which the acoustic impedance of an electro-acoustic transducer diaphragm can be actively varied by modifying design parameters is presented and its effectiveness is theoretically investigated. The proposed control system is based on a state-space description of the control system derived from an electrical equivalent circuit of an electro-acoustic transducer to which a differentiating circuit is connected, and is designed using modem control theory. The optimal quadratic regulator is used in the control system design, with its quadratic performance index formulated for producing desired acoustic impedance. Computer simulations indicate that the acoustic impedance of the diaphragm can be significantly varied over a wide frequency range that includes the range below the resonance frequency of the electro-acoustic transducer. A computer model of the proposed control system is used to illustrate its application to semi-active noise control in a duct. It is demonstrated that the proposed control system provides substantial reductions in the noise radiating from the outlet of the duct, both in the stiffness control range and in the mass control range.

  15. Capacitive micromachined ultrasonic transducer arrays as tunable acoustic metamaterials.

    PubMed

    Lani, Shane W; Wasequr Rashid, M; Hasler, Jennifer; Sabra, Karim G; Levent Degertekin, F

    2014-02-03

    Capacitive Micromachined Ultrasonic Transducers (CMUTs) operating in immersion support dispersive evanescent waves due to the subwavelength periodic structure of electrostatically actuated membranes in the array. Evanescent wave characteristics also depend on the membrane resonance which is modified by the externally applied bias voltage, offering a mechanism to tune the CMUT array as an acoustic metamaterial. The dispersion and tunability characteristics are examined using a computationally efficient, mutual radiation impedance based approach to model a finite-size array and realistic parameters of variation. The simulations are verified, and tunability is demonstrated by experiments on a linear CMUT array operating in 2-12 MHz range.

  16. Capacitive micromachined ultrasonic transducer arrays as tunable acoustic metamaterials

    SciTech Connect

    Lani, Shane W. E-mail: karim.sabra@me.gatech.edu Sabra, Karim G.; Wasequr Rashid, M.; Hasler, Jennifer; Levent Degertekin, F.

    2014-02-03

    Capacitive Micromachined Ultrasonic Transducers (CMUTs) operating in immersion support dispersive evanescent waves due to the subwavelength periodic structure of electrostatically actuated membranes in the array. Evanescent wave characteristics also depend on the membrane resonance which is modified by the externally applied bias voltage, offering a mechanism to tune the CMUT array as an acoustic metamaterial. The dispersion and tunability characteristics are examined using a computationally efficient, mutual radiation impedance based approach to model a finite-size array and realistic parameters of variation. The simulations are verified, and tunability is demonstrated by experiments on a linear CMUT array operating in 2-12 MHz range.

  17. Noncontact detection of surface-breaking cracks using a laser acoustic source and an electromagnetic acoustic receiver

    SciTech Connect

    Dewhurst, R.J.; Edwards, C.; Palmer, S.B.

    1986-08-01

    An electromagnetic acoustic transducer (EMAT) is used to detect laser-generated surface acoustic transients. The surface acoustic waves are broadband and can be used to detect and size surface-breaking cracks if used in conjunction with a broadband detector. A broadband EMAT is described and its use to locate artificial surface-breaking defects in both aluminum and steel is demonstrated. A second study reveals that it can also be used for the detection of real surface-breaking cracks, even on rusty steel surfaces. 10 references.

  18. Acoustic cavity transducers for the manipulation of cells and biomolecules

    NASA Astrophysics Data System (ADS)

    Tovar, Armando; Patel, Maulik; Lee, Abraham P.

    2010-02-01

    A novel fluidic actuator that is simple to fabricate, integrate, and operate is demonstrated for use within microfluidic systems. The actuator is designed around the use of trapped air bubbles in lateral cavities and the resultant acoustic streaming generated from an outside acoustic energy source. The orientation of the lateral cavities to the main microchannel is used to control the bulk fluid motion within the device. The first order flow generated by the oscillating bubble is used to develop a pumping platform that is capable of driving fluid within a chip. This pump is integrated into a recirculation immunoassay device for enhanced biomolecule binding through fluid flow for convection limited transport. The recirculation system showed an increase in binding site concentration when compared with traditional passive and flow-through methods. The acoustic cavity transducer has also been demonstrated for application in particle switching. Bursts of acoustic energy are used to generate a second order streaming pattern near the cavity interface to drive particles away or towards the cavity. The use of this switching mechanism is being extended to the application of sorting cells and other particles within a microfluidic system.

  19. A model to predict the ultrasonic field radiated by magnetostrictive effects induced by EMAT in ferromagnetic parts

    NASA Astrophysics Data System (ADS)

    Clausse, B.; Lhémery, A.; Walaszek, H.

    2017-01-01

    An Electro-Magnetic Acoustic Transducer (EMAT) is a non-contact source used in Ultrasonic Testing (UT) which generates three types of dynamic excitations into a ferromagnetic part: Lorentz force, magnetisation force, and magnetostrictive effect. This latter excitation is a strain resulting from a magnetoelastic interaction between the external magnetic field and the mechanical part. Here, a tensor model is developed to transform this effect into an equivalent body force. It assumes weak magnetoelastic coupling and a dynamic magnetic field much smaller than the static one. This approach rigorously formulates the longitudinal Joule’s magnetostriction, and makes it possible to deal with arbitrary material geometries and EMAT configurations. Transduction processes induced by an EMAT in ferromagnetic media are then modelled as equivalent body forces. But many models developed for efficiently predicting ultrasonic field radiation in solids assume source terms given as surface distributions of stress. To use these models, a mathematical method able to accurately transform these body forces into equivalent surface stresses has been developed. By combining these formalisms, the magnetostrictive strain is transformed into equivalent surface stresses, and the ultrasonic field radiated by magnetostrictive effects induced by an EMAT can be both accurately and efficiently predicted. Numerical examples are given for illustration.

  20. High-Temperature Surface-Acoustic-Wave Transducer

    NASA Technical Reports Server (NTRS)

    Zhao, Xiaoliang; Tittmann, Bernhard R.

    2010-01-01

    Aircraft-engine rotating equipment usually operates at high temperature and stress. Non-invasive inspection of microcracks in those components poses a challenge for the non-destructive evaluation community. A low-profile ultrasonic guided wave sensor can detect cracks in situ. The key feature of the sensor is that it should withstand high temperatures and excite strong surface wave energy to inspect surface/subsurface cracks. As far as the innovators know at the time of this reporting, there is no existing sensor that is mounted to the rotor disks for crack inspection; the most often used technology includes fluorescent penetrant inspection or eddy-current probes for disassembled part inspection. An efficient, high-temperature, low-profile surface acoustic wave transducer design has been identified and tested for nondestructive evaluation of structures or materials. The development is a Sol-Gel bismuth titanate-based surface-acoustic-wave (SAW) sensor that can generate efficient surface acoustic waves for crack inspection. The produced sensor is very thin (submillimeter), and can generate surface waves up to 540 C. Finite element analysis of the SAW transducer design was performed to predict the sensor behavior, and experimental studies confirmed the results. One major uniqueness of the Sol-Gel bismuth titanate SAW sensor is that it is easy to implement to structures of various shapes. With a spray coating process, the sensor can be applied to surfaces of large curvatures. Second, the sensor is very thin (as a coating) and has very minimal effect on airflow or rotating equipment imbalance. Third, it can withstand temperatures up to 530 C, which is very useful for engine applications where high temperature is an issue.

  1. Studies of the Characteristics of a Densely-Coupled Array of Underwater Acoustic Transmitting Transducers

    NASA Astrophysics Data System (ADS)

    He, Zhengyao; Ma, Yuanliang

    2010-09-01

    The characteristics of a densely-coupled array of underwater acoustic transmitting transducers are studied. At first, the electro-acoustic characteristics such as the admittance, the resonant frequency and the transmitting voltage response, of a low frequency barrel-stave flextensional transducer and a densely-coupled compact array composed of three identical transducers uniformly distributed on a circle with spacing much less than half wavelength, are measured by experiments. Then, the radiation impedances of a single transducer and of transducers in the compact array are calculated by the boundary element model together with the finite element model. Based on the above results, the transducer's equivalent circuit model parameters are calculated in different cases, which include a single transducer in air and in water, and a densely-coupled array of three transducers parallel connected in water. The characteristics of the transducers and array are analyzed by the equivalent circuit model that was obtained. The research results show that when the transducers make up a densely-coupled compact array, the resonant frequency decreases and the transmitting bandwidth broadens. It is also shown that the mutual interactions among elements are significant for the compact array. The mutual radiation resistance between two transducers is close to the self-radiation resistance of the transducers. The vibration velocities of the transducers in the compact array are nearly 1/3 as those of a single transducer, and the radiation acoustic power and transmitting voltage response of the array are nearly the same as those of a single transducer, when the driving voltages of the array and single transducer are unchanged. Furthermore, the transmitting source level of the 3-element compact array is 8.9dB higher than that of the single transducer if the vibration velocities of the transducers in the array are the same as those of the single transducer. The proposed technique can be used

  2. Calculation of ultrasonic fields radiated in a ferromagnetic medium by an EMAT of arbitrary bias field driven by a current of arbitrary intensity

    SciTech Connect

    Rouge, C.; Lhémery, A.; Aristégui, C.; Walaszek, H.

    2014-02-18

    ElectroMagnetic Acoustic Transducers (EMATs) are contactless transducers generating ultrasonic waves in conductive media, notably shear horizontal and torsional waves (in plates and pipes, respectively), possibly in hostile environments. In a ferromagnetic part, the elastic strain and the magnetic field couple through magnetostriction phenomena, so that a magnetostriction and magnetization forces add up to the Lorentz force created in any conductive medium. Here, a model is proposed to predict these forces for an arbitrary bias field due to the EMAT permanent magnet and whatever the current intensity in its electric circuit, whereas the usual assumption of high bias field and low intensity current leads to important model simplifications. To handle the nonlinear behavior of all the three forces when the usual assumption cannot be made, forces are expressed in the time domain. In particular, magnetostriction force generates waves at several harmonic frequencies of the driving current frequency. Forces are then transformed into equivalent surface stresses readily usable as source terms in existing models of ultrasonic radiation, under the assumption that ultrasonic wavelengths are much longer than force penetration depths, (which is generally true in NDT applications of EMATs). Force spectra computed in various EMAT configurations are compared for illustration.

  3. Influence of the Lift-Off Effect on the Cut-Off Frequency of the EMAT-Generated Rayleigh Wave Signal

    PubMed Central

    Yi, Pengxing; Zhang, Kang; Li, Yahui; Zhang, Xuming

    2014-01-01

    The electromagnetic acoustic transducer (EMAT), a non-contact NDT tool with large lift-off, is becoming an attractive method for detecting the cracks in the metal parts. However, the lift-off of the transducer has a direct effect on the feature that is used to characterize the defects. A detailed investigation on the relationship between the feature and the lift-off of the EMAT is crucial in the detection process. This paper investigates the lift-off effect on the feature, cut-off frequency of EMAT in the Rayleigh wave. The study can be divided into two parts. Firstly, with a multi-field coupling environment, 2-D electromagnetic and wave generation EMAT models are built to simulate the interaction of the Rayleigh wave with the surface crack. Then, the lift-off effect on the cut-off frequency is investigated through simulation and experiment. Compared to the previous studies, it is found that lift-off would cause a negative result when the lift-off varies in the testing process. Besides, the calibration obtained from the tests at a random lift-off value can be used in other tests with any different lift off value provided that the lift-off is kept as a constant during the detection process. PMID:25340446

  4. A frequency selective acoustic transducer for directional Lamb wave sensing.

    PubMed

    Senesi, Matteo; Ruzzene, Massimo

    2011-10-01

    A frequency selective acoustic transducer (FSAT) is proposed for directional sensing of guided waves. The considered FSAT design is characterized by a spiral configuration in wavenumber domain, which leads to a spatial arrangement of the sensing material producing output signals whose dominant frequency component is uniquely associated with the direction of incoming waves. The resulting spiral FSAT can be employed both for directional sensing and generation of guided waves, without relying on phasing and control of a large number of channels. The analytical expression of the shape of the spiral FSAT is obtained through the theoretical formulation for continuously distributed active material as part of a shaped piezoelectric device. Testing is performed by forming a discrete array through the points of the measurement grid of a scanning laser Doppler vibrometer. The discrete array approximates the continuous spiral FSAT geometry, and provides the flexibility to test several configurations. The experimental results demonstrate the strong frequency dependent directionality of the spiral FSAT and suggest its application for frequency selective acoustic sensors, to be employed for the localization of broadband acoustic events, or for the directional generation of Lamb waves for active interrogation of structural health.

  5. DEVELOPMENT OF AN EMAT IN-LINE INSPECTION SYSTEM FOR DETECTION, DISCRIMINATION, AND GRADING OF STRESS CORROSION CRACKING IN PIPELINES

    SciTech Connect

    Jeff Aron; Jeff Jia; Bruce Vance; Wen Chang; Raymond Pohler; Jon Gore; Stuart Eaton; Adrian Bowles; Tim Jarman

    2005-02-01

    This report describes prototypes, measurements, and results for a project to develop a prototype pipeline in-line inspection (ILI) tool that uses electromagnetic acoustic transducers (EMATs) to detect and grade stress corrosion cracking (SCC). The introduction briefly provides motivation and describes SCC, gives some background on EMATs and guided ultrasonic waves, and reviews promising results of a previous project using EMATs for SCC. The experimental section then describes lab measurement techniques and equipment, the lab mouse and prototypes for a mule, and scan measurements made on SCC. The mouse was a moveable and compact EMAT setup. The prototypes were even more compact circuits intended to be pulled or used in an ILI tool. The purpose of the measurements was to determine the best modes, transduction, and processing to use, to characterize the transducers, and to prove EMATs and mule components could produce useful results. Next, the results section summarizes the measurements and describes the mouse scans, processing, prototype circuit operating parameters, and performance for SH0 scans. Results are given in terms of specifications--like SNR, power, insertion loss--and parametric curves--such as signal amplitude versus magnetic bias or standoff, reflection or transmission coefficients versus crack depth. Initially, lab results indicated magnetostrictive transducers using both SH0 and SV1 modes would be worthwhile to pursue in a practical ILI system. However, work with mule components showed that SV1 would be too dispersive, so SV1 was abandoned. The results showed that reflection measurements, when normalized by the direct arrival are sensitive to and correlated with SCC. This was not true for transmission measurements. Processing yields a high data reduction, almost 60 to 1, and permits A and C scan display techniques and software already in use for pipeline inspection. An analysis of actual SH0 scan results for SCC of known dimensions showed that length

  6. Measurement of ultrasonic power and electro-acoustic efficiency of high power transducers.

    PubMed

    Lin, S; Zhang, F

    2000-01-01

    In this paper, an improved method for the measurement of acoustic power and electro-acoustic efficiency of high power ultrasonic transducers is presented. The measuring principle is described, the experimental results are given. In comparison with traditional methods, the method presented in this paper has the advantages of simplicity, economy and practicality. The most important is that it can measure the output acoustic power and the electro-acoustic efficiency of the transducer under the condition of high power and practical applications, such as ultrasonic cleaning and soldering.

  7. Numerical analysis of acoustic impedance microscope utilizing acoustic lens transducer to examine cultured cells.

    PubMed

    Gunawan, Agus Indra; Hozumi, Naohiro; Takahashi, Kenta; Yoshida, Sachiko; Saijo, Yoshifumi; Kobayashi, Kazuto; Yamamoto, Seiji

    2015-12-01

    A new technique is proposed for non-contact quantitative cell observation using focused ultrasonic waves. This technique interprets acoustic reflection intensity into the characteristic acoustic impedance of the biological cell. The cells are cultured on a plastic film substrate. A focused acoustic beam is transmitted through the substrate to its interface with the cell. A two-dimensional (2-D) reflection intensity profile is obtained by scanning the focal point along the interface. A reference substance is observed under the same conditions. These two reflections are compared and interpreted into the characteristic acoustic impedance of the cell based on a calibration curve that was created prior to the observation. To create the calibration curve, a numerical analysis of the sound field is performed using Fourier Transforms and is verified using several saline solutions. Because the cells are suspended by two plastic films, no contamination is introduced during the observation. In a practical observation, a sapphire lens transducer with a center frequency of 300 MHz was employed using ZnO thin film. The objects studied were co-cultured rat-derived glial (astrocyte) cells and glioma cells. The result was the clear observation of the internal structure of the cells. The acoustic impedance of the cells was spreading between 1.62 and 1.72 MNs/m(3). Cytoskeleton was indicated by high acoustic impedance. The introduction of cytochalasin-B led to a significant reduction in the acoustic impedance of the glioma cells; its effect on the glial cells was less significant. It is believed that this non-contact observation method will be useful for continuous cell inspections.

  8. High-overtone Self-Focusing Acoustic Transducers for High Frequency Ultrasonic Doppler

    PubMed Central

    Zhu, Jie; Lee, Chuangyuan; Kim, Eun Sok; Wu, Dawei; Hu, Changhong; Zhou, Qifa; Shung, K. Kirk.; Wang, Gaofeng; Yu, Hongyu

    2010-01-01

    This work reports the potential use of high-overtone self-focusing acoustic transducers for high frequency ultrasonic Doppler. By using harmonic frequencies of a thick bulk Lead Zirconate Titanate (PZT) transducer with a novel air-reflector Fresnel lens, we obtained strong ultrasound signals at 60 MHz (3rd harmonic) and 100 MHz (5th harmonic). Both experimental and theoretical analysis has demonstrated that the transducers can be applied to Doppler systems with high frequencies up to 100 MHz. PMID:20206371

  9. Input impedance matching of acoustic transducers operating at off-resonant frequencies.

    PubMed

    Son, Kyu Tak; Lee, Chin C

    2010-12-01

    The input impedance matching technique of acoustic transducers at off-resonant frequencies is reported. It uses an inherent impedance property of transducers and thus does not need an external electric matching circuit or extra acoustic matching section. The input electrical equivalent circuit includes a radiation component and a dielectric capacitor. The radiation component consists of a radiation resistance and a radiation reactance. The total reactance is the sum of the radiation reactance and the dielectric capacitive reactance. This reactance becomes zero at two frequencies where the impedance is real. The transducer size can be properly chosen so that the impedance at one of the zero-crossing frequencies is close to 50 Ω, the output impedance of signal generators. At this off-resonant operating frequency, the reflection coefficient of the transducer is minimized without using any matching circuit. Other than the size, the impedance can also be fine tuned by adjusting the thickness of material that bonds the transducer plate to the substrates. The acoustic impedance of the substrate and that of the bonding material can also be used as design elements in the transducer structure to achieve better transducer matching. Lead titanate piezoelectric plates were bonded on Lucite, liquid crystal polymer (LCP), and bismuth (Bi) substrates to produce various transducer structures. Their input impedance was simulated using a transducer model and compared with measured values to illustrate the matching principle.

  10. Design of fluid-loaded piezoelectric transducers for acoustic power considerations

    NASA Astrophysics Data System (ADS)

    Grosh, Karl; Lin, Yuan; Nelli Silva, Emilio C.; Kikuchi, Noboru

    1998-07-01

    In this paper, a design methodology for enhancing the acoustic power radiated from fluid-loaded piezoelectric transducers at a particular operating frequency is developed. For many applications the operating frequency is fixed by the absorption of the material and the desired depth of penetration (e.g., therapeutic ultrasound). For therapeutic ultrasound and other industrial applications, the acoustic power is the critical figure of merit. The acoustic power radiated from the transducer system is computed from a finite element formulation of the coupled acoustic, elastic, piezoelectric equations of motion. The sensitivities of the acoustic power to two design variables: the length of the piezoelectric element and the thickness of the matching layer, are derived. Using these sensitivities, a novel design methodology in which remeshing is avoided is developed and the effectiveness of the method is studied. Results from the application of this framework for transducer design demonstrate the dramatic increase in radiated power possible from this two member design space.

  11. Frequency dependence of the acoustic field generated from a spherical cavity transducer with open ends

    SciTech Connect

    Li, Faqi; Zeng, Deping; He, Min; Wang, Zhibiao E-mail: wangzhibiao@haifu.com.cn; Song, Dan; Lei, Guangrong; Lin, Zhou; Zhang, Dong E-mail: wangzhibiao@haifu.com.cn; Wu, Junru

    2015-12-15

    Resolution of high intensity focused ultrasound (HIFU) focusing is limited by the wave diffraction. We have developed a spherical cavity transducer with two open ends to improve the focusing precision without sacrificing the acoustic intensity (App Phys Lett 2013; 102: 204102). This work aims to theoretically and experimentally investigate the frequency dependence of the acoustic field generated from the spherical cavity transducer with two open ends. The device emits high intensity ultrasound at the frequency ranging from 420 to 470 kHz, and the acoustic field is measured by a fiber optic probe hydrophone. The measured results shows that the spherical cavity transducer provides high acoustic intensity for HIFU treatment only in its resonant modes, and a series of resonant frequencies can be choosen. Furthermore, a finite element model is developed to discuss the frequency dependence of the acoustic field. The numerical simulations coincide well with the measured results.

  12. Development of high frequency focused transducers for single beam acoustic tweezers

    NASA Astrophysics Data System (ADS)

    Hsu, Hsiu-Sheng

    Contactless particle trapping and manipulation have found many potential applications in diverse fields, especially in biological and medical research. Among the various methods, optical tweezers is the most well-known and extensively investigated technique. However, there are some limitations for particle manipulation based on optical tweezers. Due to the conceptual similarity with the optical tweezers and recent advances in high frequency ultrasonic transducer, a single beam acoustic tweezer using high frequency (≥ 20 MHz) focused transducer has recently been considered, and its feasibility was theoretically and experimentally investigated. This dissertation mainly describes the development of high frequency focused ultrasonic transducers for single beam acoustic tweezers applications. Three different types of transducers were fabricated. First, a 60 MHz miniature focused transducer (<1 mm) was made using press-focusing technique. The single beam acoustic trapping experiment was performed to manipulate 15 microm polystyrene microspheres using this transducer. In vitro ultrasonic biomicroscopy imaging on the rabbit eye was also obtained with this device. Second approach is to build a 200 MHz self-focused ZnO transducer by sputtering ZnO film on a curved surface of the aluminum backing material. An individual 10 microm microsphere was effectively manipulated in two dimensions by this type of transducer. Another ultrahigh frequency focused transducer based on silicon lens design has also been developed, where a 330 MHz silicon lens transducer was fabricated and evaluated. Microparticle trapping experiment was carried out to demonstrate that silicon lens transducer can manipulate a single microsphere as small as 5 microm. The realization of single beam acoustic tweezers using high frequency focused transducers can offer wide range of applications in biomedical and chemical sciences including intercellular kinetics studies and cell stimulation. Additionally, we

  13. Tonpilz piezoelectric transducers with acoustic matching plates for underwater color image transmission.

    PubMed

    Inoue, T; Nada, T; Tsuchiya, T; Nakanishi, T; Miyama, T; Konno, M

    1993-01-01

    Tonpilz piezoelectric transducers with multiple acoustic matching plates are suitable for color image acoustic transmission, to achieve wideband low-ripple characteristics as well as high-efficiency high-power transmitting capability. The design method for the transducers was investigated on the basis of multiple-mode filter synthesis theory. For transducers with single, double, and triple matching plates, optimum specific acoustic impedances and lengths were calculated. Moreover, based on this design method, a 24 kHz array comprising nine identical transducers with single matching plates was built and evaluated. As a result, this array showed high-efficiency, low-ripple, and wideband characteristics. Excellent agreement between theoretical values and experimental results was obtained. A field test was carried out on color image transmission from a 3500 m sea depth, using the fabricated array, during which good color images were received.

  14. Pressure transducer for measuring acoustic radiation force based on a magnetic sensor

    NASA Astrophysics Data System (ADS)

    Kamimura, H. A. S.; Pavan, T. Z.; Almeida, T. W. J.; Pádua, M. L. A.; Baggio, A. L.; Fatemi, M.; Carneiro, A. A. O.

    2011-01-01

    This work presents a pressure transducer based on a magnetic sensor to measure acoustic radiation force (ARF) and small displacements. The methodology presented in this paper allowed this transducer to be calibrated for use as an acoustic pressure and intensity meter. It can control the acoustic intensity emitted by ultrasound used, for example, in ARF impulse imaging, vibro-acoustography and high-intensity focused ultrasound techniques. The device comprises a magnet, a membrane, a magnetoresistive sensor and a coil to cancel the external magnetic field. When ARF is applied to the membrane, the magnetic field on the sensor changes due to the magnetic target displacement. The variation of the output signal from the magnetic transducer is proportional to the acoustic pressure applied to the membrane. A focused ultrasound transducer with a central frequency of 3 MHz was used to apply a continuous ARF. The sensitivities of the magnetic transducer as an acoustic pressure and intensity meter, evaluated in water, were respectively 0.597 µV MPa-1 and 0.073 µV (W cm-2)-1/2, while those of the needle hydrophone (Onda model HNP-0400) used in the magnetic transducer calibration were respectively, 0.5024 mV MPa-1 and 6.153 mV (W cm-2)-1/2. The transducer resolution to displacement is 5 nm and 6 dB of signal attenuation occurs for 7° of misalignment. The transducer responded well to acoustic pressure in water above 200 kPa.

  15. Resonant acoustic transducer and driver system for a well drilling string communication system

    DOEpatents

    Chanson, Gary J.; Nicolson, Alexander M.

    1981-01-01

    The acoustic data communication system includes an acoustic transmitter and receiver wherein low frequency acoustic waves, propagating in relatively loss free manner in well drilling string piping, are efficiently coupled to the drill string and propagate at levels competitive with the levels of noise generated by drilling machinery also present in the drill string. The transmitting transducer incorporates a mass-spring piezoelectric transmitter and amplifier combination that permits self-oscillating resonant operation in the desired low frequency range.

  16. Resonant-type MEMS transducers excited by two acoustic emission simulation techniques

    NASA Astrophysics Data System (ADS)

    Ozevin, Didem; Greve, David W.; Oppenheim, Irving J.; Pessiki, Stephen

    2004-07-01

    Acoustic emission testing is a passive nondestructive testing technique used to identify the onset and characteristics of damage through the detection and analysis of transient stress waves. Successful detection and implementation of acoustic emission requires good coupling, high transducer sensitivity and ability to discriminate noise from real signals. We report here detection of simulated acoustic emission signals using a MEMS chip fabricated in the multi-user polysilicon surface micromachining (MUMPs) process. The chip includes 18 different transducers with 10 different resonant frequencies in the range of 100 kHz to 1 MHz. It was excited by two different source simulation techniques; pencil lead break and impact loading. The former simulation was accomplished by breaking 0.5 mm lead on the ceramic package. Four transducer outputs were collected simultaneously using a multi-channel oscilloscope. The impact loading was repeated for five different diameter ball bearings. Traditional acoustic emission waveform analysis methods were applied to both data sets to illustrate the identification of different source mechanisms. In addition, a sliding window Fourier transform was performed to differentiate frequencies in time-frequency-amplitude domain. The arrival and energy contents of each resonant frequency were investigated in time-magnitude plots. The advantages of the simultaneous excitation of resonant transducers on one chip are discussed and compared with broadband acoustic emission transducers.

  17. Low-loss unidirectional transducer for high frequency surface acoustic wave devices

    NASA Astrophysics Data System (ADS)

    Biryukov, S. V.; Martin, G.; Schmidt, H.; Wall, B.

    2011-10-01

    A multi-track unidirectional transducer for surface acoustic wave devices is presented. This transducer consists of periodic cells containing in each of the multiple tracks, only two electrodes and two gaps with quarter period width. So the structure has maximal possible dimensions of its elements for a cell period equal to one wavelength. In spite of current technological limitations this permits to implement unidirectional transducers in GHz range. In contrast to known structures with active tracks only, the structure contains alternating both active transducer tracks and passive reflector tracks with different apertures comparable to surface acoustic wave (SAW) wavelength. The tracks strongly interact due to diffraction of waves excited by such electrode structure on a piezoelectric substrate. A structure analysis by means of finite element method shows that complete unidirectionality can be reached. First experimental results are given.

  18. Development of a pseudo phased array technique using EMATs for DM weld testing

    NASA Astrophysics Data System (ADS)

    Cobb, Adam C.; Fisher, Jay L.; Shiokawa, Nobuyuki; Hamano, Toshiaki; Horikoshi, Ryoichi; Ido, Nobukazu

    2015-03-01

    Ultrasonic inspection of dissimilar metal (DM) welds in piping with cast austenitic stainless steel (CASS) has been an area ongoing research for many years given its prevalence in the petrochemical and nuclear industries. A typical inspection strategy for pipe welds is to use an ultrasonic phased array system to scan the weld from a sensor located on the outer surface of the pipe. These inspection systems generally refract either longitudinal or shear vertical (SV) waves at varying angles to inspect the weld radially. In DM welds, however, the welding process can produce a columnar grain structure in the CASS material in a specific orientation. This columnar grain structure can skew ultrasonic waves away from their intended path, especially for SV and longitudinal wave modes. Studies have shown that inspection using the shear horizontal (SH) wave mode significantly reduces the effect of skewing. Electromagnetic acoustic transducers (EMATs) are known to be effective for producing SH waves in field settings. This paper presents an inspection strategy that seeks to reproduce the scanning and imaging capabilities of a commercial phase array system using EMATs. A custom-built EMAT was used to collect data at multiple propagation angles, and a processing strategy known as the synthetic aperture focusing technique (SAFT) was used to combine the data to produce an image. Results are shown using this pseudo phased array technique to inspect samples with a DM weld and artificial defects, demonstrating the potential of this approach in a laboratory setting. Recommendations for future work to transition the technique to the field are also provided.

  19. Development of a pseudo phased array technique using EMATs for DM weld testing

    SciTech Connect

    Cobb, Adam C. Fisher, Jay L.; Shiokawa, Nobuyuki; Hamano, Toshiaki; Horikoshi, Ryoichi; Ido, Nobukazu

    2015-03-31

    Ultrasonic inspection of dissimilar metal (DM) welds in piping with cast austenitic stainless steel (CASS) has been an area ongoing research for many years given its prevalence in the petrochemical and nuclear industries. A typical inspection strategy for pipe welds is to use an ultrasonic phased array system to scan the weld from a sensor located on the outer surface of the pipe. These inspection systems generally refract either longitudinal or shear vertical (SV) waves at varying angles to inspect the weld radially. In DM welds, however, the welding process can produce a columnar grain structure in the CASS material in a specific orientation. This columnar grain structure can skew ultrasonic waves away from their intended path, especially for SV and longitudinal wave modes. Studies have shown that inspection using the shear horizontal (SH) wave mode significantly reduces the effect of skewing. Electromagnetic acoustic transducers (EMATs) are known to be effective for producing SH waves in field settings. This paper presents an inspection strategy that seeks to reproduce the scanning and imaging capabilities of a commercial phase array system using EMATs. A custom-built EMAT was used to collect data at multiple propagation angles, and a processing strategy known as the synthetic aperture focusing technique (SAFT) was used to combine the data to produce an image. Results are shown using this pseudo phased array technique to inspect samples with a DM weld and artificial defects, demonstrating the potential of this approach in a laboratory setting. Recommendations for future work to transition the technique to the field are also provided.

  20. EMAT weld inspection and weld machine diagnostic system for continuous coil processing lines

    NASA Astrophysics Data System (ADS)

    Latham, Wayne M.; MacLauchlan, Daniel T.; Geier, Dan P.; Lang, Dennis D.

    1996-11-01

    Weld breaks of steel coil during cold rolling and continuous pickling operations are a significant source of lost productivity and product yield. Babcock and Wilcox Innerspec Technologies has developed a weld process control system which monitors the key variables of the welding process and determines the quality of the welds generated by flash butt welding equipment. This system is known as the Temate 2000 Automated Flash Butt Weld Inspection and Weld Machine Diagnostic System. The Temate 2000 system utilizes electro- magnetic acoustic transducer (EMAT) technology as the basis for performing on-line, real-time, nondestructive weld quality evaluation. This technique accurately detects voids, laps, misalignment and over/under trim conditions in the weld. Results of the EMAT weld inspection are immediately presented to the weld machine operator for disposition. Welding process variables such as voltage, current, platen movements and upset pressures are monitored and collected with the high speed data acquisition system. This data is processed and presented in real-time display to indicate useful welding process information such as platen crabbing, upset force, peak upset current, and many others. Alarming for each variable is provided and allows detailed maintenance reports and summary information to be generated. All weld quality and process parameter data are stored, traceable to each unique weld, and available for post process evaluation. Installation of the Temate 2000 system in a major flat rolled steel mill has contributed to near elimination of weld breakage and increased productivity at this facility.

  1. A lightweight push-pull acoustic transducer composed of a pair of dielectric elastomer films.

    PubMed

    Sugimoto, Takehiro; Ando, Akio; Ono, Kazuho; Morita, Yuichi; Hosoda, Kosuke; Ishii, Daisaku; Nakamura, Kentaro

    2013-11-01

    A lightweight push-pull acoustic transducer using dielectric elastomer films was proposed for use in advanced audio systems in homes. The push-pull structure consists of two dielectric elastomer films developed to serve as an electroactive polymer. The transducer utilizes the change in the surface area of the dielectric elastomer film, induced by an electric-field-induced change in the thickness, for sound generation. The resonance frequency of the transducer was derived from modeling the push-pull configuration to estimate the lower limit of the frequency range. Measurement results presented an advantage of push-pull driving in the suppression of harmonic distortion.

  2. Selection of Shear Horizontal Wave Transducers for Robotic Nondestructive Inspection in Harsh Environments

    PubMed Central

    Choi, Sungho; Cho, Hwanjeong; Lissenden, Cliff J.

    2016-01-01

    Harsh environments and confined spaces require that nondestructive inspections be conducted with robotic systems. Ultrasonic guided waves are well suited for robotic systems because they can provide efficient volumetric coverage when inspecting for various types of damage, including cracks and corrosion. Shear horizontal guided waves are especially well suited for robotic inspection because they are sensitive to cracks oriented perpendicular or parallel to the wave propagation direction and can be generated with electromagnetic acoustic transducers (EMATs) and magnetostrictive transducers (MSTs). Both types of transducers are investigated for crack detection in a stainless steel plate. The MSTs require the robot to apply a compressive normal force that creates frictional force coupling. However, the coupling is observed to be very dependent upon surface roughness and surface debris. The EMATs are coupled through the Lorentz force and are thus noncontact, although they depend on the lift off between transducer and substrate. After comparing advantages and disadvantages of each transducer for robotic inspection the EMATs are selected for application to canisters that store used nuclear fuel. PMID:28025508

  3. Acoustic impedance matching of piezoelectric transducers to the air.

    PubMed

    Gómez Alvarez-Arenas, Tomás E

    2004-05-01

    The purpose of this work is threefold: to investigate material requirements to produce impedance matching layers for air-coupled piezoelectric transducers, to identify materials that meet these requirements, and to propose the best solution to produce air-coupled piezoelectric transducers for the low megahertz frequency range. Toward this end, design criteria for the matching layers and possible configurations are reviewed. Among the several factors that affect the efficiency of the matching layer, the importance of attenuation is pointed out. A standard characterization procedure is applied to a wide collection of candidate materials to produce matching layers. In particular, some types of filtration membranes are studied. From these results, the best materials are identified, and the better matching configuration is proposed. Four pairs of air-coupled piezoelectric transducers also are produced to illustrate the performance of the proposed solution. The lowest two-way insertion loss figure is -24 dB obtained at 0.45 MHz. This increases for higher frequency transducers up to -42 dB at 1.8 MHz and -50 at 2.25 MHz. Typical bandwidth is about 15-20%.

  4. Effect of surface acoustic waves on the catalytic decomposition of ethanol employing a comb transducer for ultrasonic generation

    SciTech Connect

    S. J. Reese; D. H. Hurley; H.W. Rollins

    2006-04-01

    The effect of surface acoustic waves, generated on a silver catalyst using a comb transducer, on the catalytic decomposition of ethanol is examined. The comb transducer employs purely mechanical means for surface acoustic wave (SAW) transduction. Unlike interdigital SAW transducers on piezoelectric substrates, the complicating effects of heat generation due to electromechanical coupling, high electric fields between adjacent electrodes, and acoustoelectric currents are avoided. The ethanol decomposition reactions are carried out at 473 K. The rates of acetaldehyde and ethylene production are retarded when acoustic waves are applied. The rates recover to varying degrees when acoustic excitation ceases.

  5. Tonpilz Underwater Acoustic Transducer Integrating Lead-free Piezoelectric Material

    NASA Astrophysics Data System (ADS)

    Rouffaud, Rémi; Granger, Christian; Hladky-Hennion, Anne-Christine; Thi, Mai Pham; Levassort, Franck

    A Tonpilz transducer based on lead-free piezoelectric material was fabricated, modeled and characterized. The stack is composed of two rings of doped BaTiO3. This composition was initially chosen due to good electromechanical performance (kt at 40%) and high mechanical quality factor (Qm over 500). Comparison of the displacement at the center of the head mass was performed with a PZT-based Tonpilz with the same design for a center frequency at 22 kHz.

  6. Surface acoustic wave generation and detection using graphene interdigitated transducers on lithium niobate

    SciTech Connect

    Mayorov, A. S.; Hunter, N.; Muchenje, W.; Wood, C. D.; Rosamond, M.; Linfield, E. H.; Davies, A. G.; Cunningham, J. E.

    2014-02-24

    We demonstrate the feasibility of using graphene as a conductive electrode for the generation and detection of surface acoustic waves at 100 s of MHz on a lithium niobate substrate. The graphene interdigitated transducers (IDTs) show sensitivity to doping and temperature, and the characteristics of the IDTs are discussed in the context of a lossy transmission line model.

  7. Anodic aluminum oxide-epoxy composite acoustic matching layers for ultrasonic transducer application.

    PubMed

    Fang, H J; Chen, Y; Wong, C M; Qiu, W B; Chan, H L W; Dai, J Y; Li, Q; Yan, Q F

    2016-08-01

    The goal of this work is to demonstrate the application of anodic aluminum oxide (AAO) template as matching layer of ultrasonic transducer. Quarter-wavelength acoustic matching layer is known as a vital component in medical ultrasonic transducers to compensate the acoustic impedance mismatch between piezoelectric element and human body. The AAO matching layer is made of anodic aluminum oxide template filled with epoxy resin, i.e. AAO-epoxy 1-3 composite. Using this composite as the first matching layer, a ∼12MHz ultrasonic transducer based on soft lead zirconate titanate piezoelectric ceramic is fabricated, and pulse-echo measurements show that the transducer exhibits very good performance with broad bandwidth of 68% (-6dB) and two-way insertion loss of -22.7dB. Wire phantom ultrasonic image is also used to evaluate the transducer's performance, and the results confirm the process feasibility and merit of AAO-epoxy composite as a new matching material for ultrasonic transducer application. This matching scheme provides a solution to address the problems existing in the conventional 0-3 composite matching layer and suggests another useful application of AAO template.

  8. Transducer Design Experiments for Ground-Penetrating Acoustic Systems

    DTIC Science & Technology

    2007-11-02

    subsurface imaging experiments have utilized a source (Tx) and receiver (Rx) configuration in which signals produced by a transmitter at the soil surface...development in the field of acoustic subsurface imaging are as follows. First, a transmitter designed to minimize the emission of surface waves, while

  9. Semicylindrical acoustic transducer from a dielectric elastomer film with compliant electrodes.

    PubMed

    Sugimoto, Takehiro; Ono, Kazuho; Ando, Akio; Morita, Yuichi; Hosoda, Kosuke; Ishii, Daisaku

    2011-08-01

    A semicylindrical acoustic transducer was constructed using a dielectric elastomer film with compliant electrodes that is an electroactive polymer composed of a polyurethane elastomer base and polyethylene dioxythiophene/polystyrene sulfonate electrodes. The use of this dielectric elastomer is advantageous because polyurethane is a common material that keeps its shape without any rigid frame. Because the dielectric elastomer films are essentially incompressible, electric-field-induced thickness changes are usually translated into much larger changes of the film area and side length. Here it is proposed that this change in side length can be utilized for sound generation when the film is bent into a semicylindrical shape. Accordingly, a semicylindrical acoustic transducer was fabricated using a film of thickness of 300 μm and its acoustic characteristics were investigated. The transducer can be operated at low applied voltages by reducing the film thickness, as long as the film is thick enough to generate sufficient force to overcome sound radiation impedance. The second harmonic distortion of the transducer was also investigated as a function of the ratio of the direct current bias voltage to the alternating current audio signal amplitude.

  10. Performance, Thermal, and Vibration Qualification Testing of Zetec Acoustic Transducers, Model Z0002659-2, Sondicator Probes

    SciTech Connect

    Jacobson, G; Gemberling, S; Lavietes, A

    2006-03-10

    This report is a result of Qualification Test Plan No.001 prepared by Anthony Lavietes. The Qualification Test Plan outlines a list of requirements for thermal and vibrational testing of Zetac's Z0002659-2 Sondicator Probe acoustic transducers (hereafter called ''transducers''). The Zetec transducers are used in a system that employs an array of 7 acoustic transducers. Qualification testing of these transducers was required since they are a modified version of a standard catalog item from the manufacturer. This report documents the thermal, vibrational, and performance testing that was performed on a sampling of these transducers in order to qualify them for flight. A total of 14 transducers were tested. All 14 passed qualification testing with no failures.

  11. Broadband gradient impedance matching using an acoustic metamaterial for ultrasonic transducers.

    PubMed

    Li, Zheng; Yang, Dan-Qing; Liu, Shi-Lei; Yu, Si-Yuan; Lu, Ming-Hui; Zhu, Jie; Zhang, Shan-Tao; Zhu, Ming-Wei; Guo, Xia-Sheng; Wu, Hao-Dong; Wang, Xin-Long; Chen, Yan-Feng

    2017-02-17

    High-quality broadband ultrasound transducers yield superior imaging performance in biomedical ultrasonography. However, proper design to perfectly bridge the energy between the active piezoelectric material and the target medium over the operating spectrum is still lacking. Here, we demonstrate a new anisotropic cone-structured acoustic metamaterial matching layer that acts as an inhomogeneous material with gradient acoustic impedance along the ultrasound propagation direction. When sandwiched between the piezoelectric material unit and the target medium, the acoustic metamaterial matching layer provides a broadband window to support extraordinary transmission of ultrasound over a wide frequency range. We fabricated the matching layer by etching the peeled silica optical fibre bundles with hydrofluoric acid solution. The experimental measurement of an ultrasound transducer equipped with this acoustic metamaterial matching layer shows that the corresponding -6 dB bandwidth is able to reach over 100%. This new material fully enables new high-end piezoelectric materials in the construction of high-performance ultrasound transducers and probes, leading to considerably improved resolutions in biomedical ultrasonography and compact harmonic imaging systems.

  12. Broadband gradient impedance matching using an acoustic metamaterial for ultrasonic transducers

    PubMed Central

    Li, Zheng; Yang, Dan-Qing; Liu, Shi-Lei; Yu, Si-Yuan; Lu, Ming-Hui; Zhu, Jie; Zhang, Shan-Tao; Zhu, Ming-Wei; Guo, Xia-Sheng; Wu, Hao-Dong; Wang, Xin-Long; Chen, Yan-Feng

    2017-01-01

    High-quality broadband ultrasound transducers yield superior imaging performance in biomedical ultrasonography. However, proper design to perfectly bridge the energy between the active piezoelectric material and the target medium over the operating spectrum is still lacking. Here, we demonstrate a new anisotropic cone-structured acoustic metamaterial matching layer that acts as an inhomogeneous material with gradient acoustic impedance along the ultrasound propagation direction. When sandwiched between the piezoelectric material unit and the target medium, the acoustic metamaterial matching layer provides a broadband window to support extraordinary transmission of ultrasound over a wide frequency range. We fabricated the matching layer by etching the peeled silica optical fibre bundles with hydrofluoric acid solution. The experimental measurement of an ultrasound transducer equipped with this acoustic metamaterial matching layer shows that the corresponding −6 dB bandwidth is able to reach over 100%. This new material fully enables new high-end piezoelectric materials in the construction of high-performance ultrasound transducers and probes, leading to considerably improved resolutions in biomedical ultrasonography and compact harmonic imaging systems. PMID:28211510

  13. Broadband gradient impedance matching using an acoustic metamaterial for ultrasonic transducers

    NASA Astrophysics Data System (ADS)

    Li, Zheng; Yang, Dan-Qing; Liu, Shi-Lei; Yu, Si-Yuan; Lu, Ming-Hui; Zhu, Jie; Zhang, Shan-Tao; Zhu, Ming-Wei; Guo, Xia-Sheng; Wu, Hao-Dong; Wang, Xin-Long; Chen, Yan-Feng

    2017-02-01

    High-quality broadband ultrasound transducers yield superior imaging performance in biomedical ultrasonography. However, proper design to perfectly bridge the energy between the active piezoelectric material and the target medium over the operating spectrum is still lacking. Here, we demonstrate a new anisotropic cone-structured acoustic metamaterial matching layer that acts as an inhomogeneous material with gradient acoustic impedance along the ultrasound propagation direction. When sandwiched between the piezoelectric material unit and the target medium, the acoustic metamaterial matching layer provides a broadband window to support extraordinary transmission of ultrasound over a wide frequency range. We fabricated the matching layer by etching the peeled silica optical fibre bundles with hydrofluoric acid solution. The experimental measurement of an ultrasound transducer equipped with this acoustic metamaterial matching layer shows that the corresponding ‑6 dB bandwidth is able to reach over 100%. This new material fully enables new high-end piezoelectric materials in the construction of high-performance ultrasound transducers and probes, leading to considerably improved resolutions in biomedical ultrasonography and compact harmonic imaging systems.

  14. Acoustic streaming in the transducer plane in ultrasonic particle manipulation devices.

    PubMed

    Lei, Junjun; Glynne-Jones, Peter; Hill, Martyn

    2013-06-07

    In acoustofluidic manipulation and sorting devices, Rayleigh streaming flows are typically found in addition to the acoustic radiation forces. However, experimental work from various groups has described acoustic streaming that occurs in planar devices in a plane parallel to the transducer face. This is typically a four-quadrant streaming pattern with the circulation parallel to the transducer. Understanding its origins is essential for creating designs that limit or control this phenomenon. The cause of this kind of streaming pattern has not been previously explained as it is different from the well-known classical streaming patterns such as Rayleigh streaming and Eckart streaming, whose circulation planes are generally perpendicular to the face of the acoustic transducer. In order to gain insight into these patterns we present a numerical method based on Nyborg's limiting velocity boundary condition that includes terms ignored in the Rayleigh analysis, and verify its predictions against experimental PIV results in a simple device. The results show that the modelled particle trajectories match those found experimentally. Analysis of the dominant terms in the driving equations shows that the origin of this kind of streaming pattern is related to the circulation of the acoustic intensity.

  15. Calibration of ipsilateral stimulus transducer for acoustic reflex measurements.

    PubMed

    Olsen, S; Osterhammel, P A; Rasmussen, A N; Nielsen, L H

    1995-01-01

    Pure-tone Reference Equivalent Threshold Sound Pressure Level (RETSPL) of the ipsilateral stimulus receiver for acoustic reflex measurements on Madsen Electronics type Zodiac 901 impedance audiometer is provided. The results, obtained from 20 normal-hearing subjects, are achieved by comparing hearing threshold levels measured using a TDH 39 telephone (calibrated to ISO 389) with thresholds recorded using the ipsilateral stimulus insert phone. The calibration is referenced to an IEC-711 ear simulator and comprises the following frequencies: 125, 250, 500, 750, 1000, 1500, 2000, 3000, 4000, 6000, 8000 Hz.

  16. Measurement of surface acoustic wave velocity using a variable-line-focus polyurea thin-film ultrasonic transducer.

    PubMed

    Aoyagi, Takahiro; Nakazawa, Marie; Tabaru, Masaya; Nakamura, Kentaro; Ueha, Sadayuki

    2009-08-01

    This paper presents the novel measurement method of the surface acoustic wave velocity by the variable-line- focus transducer using a polyurea piezoelectric ultrasonic transducer. First, a multiresonant polyurea thin-film ultrasonic transducer is fabricated by the vapor deposition polymerization process using 2 monomers. Second, the measurement system of surface acoustic wave velocity modified from the V(z) curve method is established. The system uses the fabricated polyurea thin film as a variable-line-focus transducer at the 30-MHz resonance frequency. The focal length is changed by varying the radius of curvature of the film transducer. To estimate the surface acoustic wave velocities from the measured data theoretically, the photographs of the transducer bent shapes are taken by using a digital microscope, and the bent transducer curvature is modeled by the 7th-order polynomial. To examine the performances of the variable-line-focus transducer, the surface acoustic wave velocities of an aluminum and a synthesized silica glass specimen have been measured. The measured surface acoustic velocities showed good agreement with the reference values.

  17. Design factors of intravascular dual frequency transducers for super-harmonic contrast imaging and acoustic angiography.

    PubMed

    Ma, Jianguo; Martin, K Heath; Li, Yang; Dayton, Paul A; Shung, K Kirk; Zhou, Qifa; Jiang, Xiaoning

    2015-05-07

    Imaging of coronary vasa vasorum may lead to assessment of the vulnerable plaque development in diagnosis of atherosclerosis diseases. Dual frequency transducers capable of detection of microbubble super-harmonics have shown promise as a new contrast-enhanced intravascular ultrasound (CE-IVUS) platform with the capability of vasa vasorum imaging. Contrast-to-tissue ratio (CTR) in CE-IVUS imaging can be closely associated with low frequency transmitter performance. In this paper, transducer designs encompassing different transducer layouts, transmitting frequencies, and transducer materials are compared for optimization of imaging performance. In the layout selection, the stacked configuration showed superior super-harmonic imaging compared with the interleaved configuration. In the transmitter frequency selection, a decrease in frequency from 6.5 MHz to 5 MHz resulted in an increase of CTR from 15 dB to 22 dB when receiving frequency was kept constant at 30 MHz. In the material selection, the dual frequency transducer with the lead magnesium niobate-lead titanate (PMN-PT) 1-3 composite transmitter yielded higher axial resolution compared to single crystal transmitters (70 μm compared to 150 μm pulse length). These comparisons provide guidelines for the design of intravascular acoustic angiography transducers.

  18. Design factors of intravascular dual frequency transducers for super-harmonic contrast imaging and acoustic angiography

    NASA Astrophysics Data System (ADS)

    Ma, Jianguo; Martin, K. Heath; Li, Yang; Dayton, Paul A.; Shung, K. Kirk; Zhou, Qifa; Jiang, Xiaoning

    2015-05-01

    Imaging of coronary vasa vasorum may lead to assessment of the vulnerable plaque development in diagnosis of atherosclerosis diseases. Dual frequency transducers capable of detection of microbubble super-harmonics have shown promise as a new contrast-enhanced intravascular ultrasound (CE-IVUS) platform with the capability of vasa vasorum imaging. Contrast-to-tissue ratio (CTR) in CE-IVUS imaging can be closely associated with low frequency transmitter performance. In this paper, transducer designs encompassing different transducer layouts, transmitting frequencies, and transducer materials are compared for optimization of imaging performance. In the layout selection, the stacked configuration showed superior super-harmonic imaging compared with the interleaved configuration. In the transmitter frequency selection, a decrease in frequency from 6.5 MHz to 5 MHz resulted in an increase of CTR from 15 dB to 22 dB when receiving frequency was kept constant at 30 MHz. In the material selection, the dual frequency transducer with the lead magnesium niobate-lead titanate (PMN-PT) 1-3 composite transmitter yielded higher axial resolution compared to single crystal transmitters (70 μm compared to 150 μm pulse length). These comparisons provide guidelines for the design of intravascular acoustic angiography transducers.

  19. Design factors of intravascular dual frequency transducers for super-harmonic contrast imaging and acoustic angiography

    PubMed Central

    Ma, Jianguo; Martin, K. Heath; Li, Yang; Dayton, Paul A.; Shung, K. Kirk; Zhou, Qifa; Jiang, Xiaoning

    2015-01-01

    Imaging of coronary vasa vasorum may lead to assessment of the vulnerable plaque development in diagnosis of atherosclerosis diseases. Dual frequency transducers capable of detection of microbubble super-harmonics have shown promise as a new contrast-enhanced intravascular ultrasound (CE-IVUS) platform with the capability of vasa vasorum imaging. Contrast-to-tissue ratio (CTR) in CE-IVUS imaging can be closely associated with the low frequency transmitter performance. In this paper, transducer designs encompassing different transducer layouts, transmitting frequencies, and transducer materials are compared for optimization of imaging performance. In the layout selection, the stacked configuration showed superior super-harmonic imaging compared with the interleaved configuration. In the transmitter frequency selection, a decrease in frequency from 6.5 MHz to 5 MHz resulted in an increase of CTR from 15 dB to 22 dB when receiving frequency was kept constant at 30 MHz. In the material selection, the dual frequency transducer with the lead magnesium niobate-lead titanate (PMN-PT) 1-3 composite transmitter yielded higher axial resolution compared to single crystal transmitters (70 μm compared to 150 μm pulse length). These comparisons provide guidelines for design of intravascular acoustic angiography transducers. PMID:25856384

  20. Confocal acoustic radiation force optical coherence elastography using a ring ultrasonic transducer

    SciTech Connect

    Qi, Wenjuan; Li, Rui; Ma, Teng; Kirk Shung, K.; Zhou, Qifa; Chen, Zhongping

    2014-03-24

    We designed and developed a confocal acoustic radiation force optical coherence elastography system. A ring ultrasound transducer was used to achieve reflection mode excitation and generate an oscillating acoustic radiation force in order to generate displacements within the tissue, which were detected using the phase-resolved optical coherence elastography method. Both phantom and human tissue tests indicate that this system is able to sense the stiffness difference of samples and quantitatively map the elastic property of materials. Our confocal setup promises a great potential for point by point elastic imaging in vivo and differentiation of diseased tissues from normal tissue.

  1. Two-dimensional analytic modeling of acoustic diffraction for ultrasonic beam steering by phased array transducers.

    PubMed

    Wang, Tiansi; Zhang, Chong; Aleksov, Aleksandar; Salama, Islam; Kar, Aravinda

    2017-04-01

    Phased array ultrasonic transducers enable modulating the focal position of the acoustic waves, and this capability is utilized in many applications, such as medical imaging and non-destructive testing. This type of transducers also provides a mechanism to generate tilted wavefronts in acousto-optic deflectors to deflect laser beams for high precision advanced laser material processing. In this paper, a theoretical model is presented for the diffraction of ultrasonic waves emitted by several phased array transducers into an acousto-optic medium such as TeO2 crystal. A simple analytic expression is obtained for the distribution of the ultrasonic displacement field in the crystal. The model prediction is found to be in good agreement with the results of a numerical model that is based on a non-paraxial multi-Gaussian beam (NMGB) model.

  2. Estimation of scatterer size and acoustic concentration in sound field produced by linear phased array transducer

    NASA Astrophysics Data System (ADS)

    Oguri, Takuma; Tamura, Kazuki; Yoshida, Kenji; Mamou, Jonathan; Hasegawa, Hideyuki; Maruyama, Hitoshi; Hachiya, Hiroyuki; Yamaguchi, Tadashi

    2015-07-01

    Although there have been several quantitative ultrasound studies on the methods of estimation of scatterer size and acoustic concentration based on the analysis of RF signals for tissue characterization, some problems, e.g., narrow frequency bandwidths and complex sound fields, have limited the clinical applications of such methods. In this report, two types of ultrasound transducer are investigated for the estimation of the scatterer size and acoustic concentration in two glass bead phantoms of different weight concentrations of 0.25 and 2.50% and those in an excised pig liver. The diameters of the glass beads ranged from 5 to 63 µm with an average of 50 µm. The first transducer is a single element and the other is a linear phased array. A comparison of the estimations obtained using both transducers gives an insight into how these methods could be applied clinically. Results obtained using the two transducers were significantly different. One of the possible explanations is that beamforming could significantly affect the backscatter coefficient estimation, which was not taken into account.

  3. Near perfect ultrasonic omnidirectional transducer using the optimal patterning of the zero-index acoustic metamaterials

    NASA Astrophysics Data System (ADS)

    Hyun, Jaeyub; Wang, Semyung

    2016-11-01

    This study proposes the theoretical optimal patterning method based on the geometrical transformation acoustics to design an ultrasonic omnidirectional transducer system, which is composed of the designed near zero-index acoustic metamaterial (ZIAMM). The designed ZIAMM is made of circular rubber rods in water matrix. Meanwhile, the curved unit cell structure is necessary to arrange the designed ZIAMM effectively into the circular-shaped ultrasonic omnidirectional transducer system. To this end, we transform the square unit cell into the curved unit cell in the physical space, instead of starting from a homogeneous medium. Also the periodic boundary condition in the two-dimensional polar coordinate is proposed to calculate the dynamic characteristic (i.e., the effective material properties and the dispersion relation) according to the curvature of curved unit cell. The proposed optimal patterning method is verified through the ZIAMM-based ultrasonic omnidirectional transducer system. Especially the radiation performance of ZIAMM-based ultrasonic omnidirectional transducer system is greatly improved by this optimal patterning.

  4. A modal test method using sound pressure transducers based on vibro-acoustic reciprocity

    NASA Astrophysics Data System (ADS)

    Zhu, W. D.; Liu, J. M.; Xu, Y. F.; Ying, H. Q.

    2014-06-01

    A modal test method that uses sound pressure transducers at fixed locations and an impact hammer roving over a test structure is developed in this work. Since sound pressure transducers are used, the current method deals with a coupled structural-acoustic system. Based on the vibro-acoustic reciprocity, the method is equivalent to one, where acoustic excitations at fixed locations are given and the resulting acceleration of the test structure is measured. The current method can eliminate mass loading due to use of accelerometers, which can destroy existence of repeated or close natural frequencies of a symmetric structure. It can also avoid effects of a nodal line of a mode and an inactive area of a local mode, and measure all the out-of-plane modes within a frequency range of interest, including global and local ones. The coupling between the structure and the acoustic field in a structural-acoustic system introduces asymmetry in the model formulation. An equivalent state space formulation is used for a damped structural-acoustic system and the associated eigenvalue problem is derived. The biorthonormality relations between the left and right eigenvectors and the relations between the structural and acoustic components in the left and right eigenvectors are proved. The frequency response functions associated with the current method are derived and their physical meanings are explained. The guidelines for using the current method, including the types of structures that are suitable for the method, the positions of the sound pressure transducers, and the orientation of the test structure relative to the transducers, are provided. Modal tests were carried out on an automotive disk brake using the traditional and current methods, where multiple accelerometers and microphones were used to measure its dynamic responses induced by impacts, respectively. The differences between the measured natural frequencies using the current method and those from the finite element

  5. Acoustic field of a wedge-shaped section of a spherical cap transducer

    NASA Astrophysics Data System (ADS)

    Ketterling, Jeffrey A.

    2003-12-01

    The acoustic pressure field at an arbitrary point in space is derived for a wedge-shaped section of a spherical cap transducer using the spatial impulse response (SIR) method. For a spherical surface centered at the origin, a wedge shape is created by taking cuts in the X-Y and X-Z planes and removing the smallest surface component. Analytic expressions are derived for the SIR based on spatial location. The expressions utilize the SIR solutions for a spherical cap transducer [Arditi et al., Ultrason. Imaging 3, 37-61 (1981)] with additional terms added to account for the reduced surface area of the wedge. Results from the numerical model are compared to experimental measurements from a wedge transducer with an 8-cm outer diameter and 9-cm geometric focus. The experimental and theoretical -3-dB beamwidths agreed to within 10%+/-5%. The SIR model for a wedge-shaped transducer is easily extended to other spherically curved transducer geometries that consist of combinations of wedge sections and spherical caps.

  6. Annular spherically focused ring transducers for improved single-beam acoustical tweezers

    NASA Astrophysics Data System (ADS)

    Mitri, F. G.

    2016-02-01

    The use of ultrasonic transducers with a central hollow is suggested for improved single-beam acoustical tweezers applications. Within the framework of the Fresnel-Kirchhoff parabolic approximation, a closed-form partial-wave series expansion (PWSE) for the incident velocity potential (or pressure) field is derived for an annular spherically focused ring (asfr) with uniform vibration across its surface in spherical coordinates. The Rayleigh-Sommerfeld diffraction integral and the addition theorems for the Legendre and spherical wave functions are used to obtain the PWSE assuming a weakly focused beam (with a focusing angle α ≤ 20°). The PWSE allows evaluating the incident field from the finite asfr in 3D. Moreover, the obtained solution allows computing efficiently the acoustic scattering and radiation force on a sphere centered on the beam's axis of wave propagation. The analytical solution is valid for wavelengths largely exceeding the radius of the asfr and when the viscosity of the surrounding fluid can be neglected. Numerical predictions for the beam-forming, scattering, and axial time-averaged radiation force are performed with particular emphasis on the asfr thickness, the axial distance separating the sphere from the center of the transducer, the (non-dimensional) size of the transducer, as well as the sphere's elastic properties without restriction to the long- (i.e., Rayleigh) or the short-wavelength (i.e., ray acoustics) regimes. Potential applications of the present solution are in beam-forming design, particle tweezing, and manipulation due to negative forces using ultrasonic asfr transducers.

  7. Annular spherically focused ring transducers for improved single-beam acoustical tweezers

    SciTech Connect

    Mitri, F. G.

    2016-02-14

    The use of ultrasonic transducers with a central hollow is suggested for improved single-beam acoustical tweezers applications. Within the framework of the Fresnel-Kirchhoff parabolic approximation, a closed-form partial-wave series expansion (PWSE) for the incident velocity potential (or pressure) field is derived for an annular spherically focused ring (asfr) with uniform vibration across its surface in spherical coordinates. The Rayleigh-Sommerfeld diffraction integral and the addition theorems for the Legendre and spherical wave functions are used to obtain the PWSE assuming a weakly focused beam (with a focusing angle α ≤ 20°). The PWSE allows evaluating the incident field from the finite asfr in 3D. Moreover, the obtained solution allows computing efficiently the acoustic scattering and radiation force on a sphere centered on the beam's axis of wave propagation. The analytical solution is valid for wavelengths largely exceeding the radius of the asfr and when the viscosity of the surrounding fluid can be neglected. Numerical predictions for the beam-forming, scattering, and axial time-averaged radiation force are performed with particular emphasis on the asfr thickness, the axial distance separating the sphere from the center of the transducer, the (non-dimensional) size of the transducer, as well as the sphere's elastic properties without restriction to the long- (i.e., Rayleigh) or the short-wavelength (i.e., ray acoustics) regimes. Potential applications of the present solution are in beam-forming design, particle tweezing, and manipulation due to negative forces using ultrasonic asfr transducers.

  8. Manipulation of acoustic focusing with an active and configurable planar metasurface transducer

    PubMed Central

    Zhao, Jiajun; Ye, Huapeng; Huang, Kun; Chen, Zhi Ning; Li, Baowen; Qiu, Cheng-Wei

    2014-01-01

    It has a pivotal role in medical science and in industry to concentrate the acoustic energy created with piezoelectric transducers (PTs) into a specific area. However, previous researches seldom consider the focal resolution, whose focal size is much larger than one wavelength. Furthermore, there is to date no such design method of PTs that allows a large degree of freedom to achieve designed focal patterns. Here, an active and configurable planar metasurface PT prototype is proposed to manipulate the acoustic focal pattern and the focal resolution freely. By suitably optimized ring configurations of the active metasurface PT, we demonstrate the manipulation of focal patterns in acoustic far fields, such as the designed focal needle and multi foci. Our method is also able to manipulate and improve the cross-sectional focal resolution from subwavelength to the extreme case: the deep sub-diffraction-limit resolution. Via the acoustic Rayleigh-Sommerfeld diffraction integral (RSI) cum the binary particle swarm optimization (BPSO), the free manipulation of focusing properties is achieved in acoustics for the first time. Our approach may offer more initiatives where the strict control of acoustic high-energy areas is demanding. PMID:25174409

  9. Manipulation of acoustic focusing with an active and configurable planar metasurface transducer

    NASA Astrophysics Data System (ADS)

    Zhao, Jiajun; Ye, Huapeng; Huang, Kun; Chen, Zhi Ning; Li, Baowen; Qiu, Cheng-Wei

    2014-09-01

    It has a pivotal role in medical science and in industry to concentrate the acoustic energy created with piezoelectric transducers (PTs) into a specific area. However, previous researches seldom consider the focal resolution, whose focal size is much larger than one wavelength. Furthermore, there is to date no such design method of PTs that allows a large degree of freedom to achieve designed focal patterns. Here, an active and configurable planar metasurface PT prototype is proposed to manipulate the acoustic focal pattern and the focal resolution freely. By suitably optimized ring configurations of the active metasurface PT, we demonstrate the manipulation of focal patterns in acoustic far fields, such as the designed focal needle and multi foci. Our method is also able to manipulate and improve the cross-sectional focal resolution from subwavelength to the extreme case: the deep sub-diffraction-limit resolution. Via the acoustic Rayleigh-Sommerfeld diffraction integral (RSI) cum the binary particle swarm optimization (BPSO), the free manipulation of focusing properties is achieved in acoustics for the first time. Our approach may offer more initiatives where the strict control of acoustic high-energy areas is demanding.

  10. Acoustic characterization of multi-element, dual-frequency transducers for high-intensity contact ultrasound therapy

    NASA Astrophysics Data System (ADS)

    Burtnyk, M.; N'Djin, W. A.; Persaud, L.; Bronskill, M.; Chopra, R.

    2012-10-01

    High-intensity contact ultrasound therapy can generate precise volumes of thermal damage in deep-seated tissue using interstitial or intracavitary devices. Multi-element, dual-frequency transducers offer increased spatial control of the heating pattern by enabling modulation of ultrasound power and frequency along the device. The performance and acoustic coupling between elements of simple, multi-element, dual-frequency transducers was measured. Transducer arrays were fabricated by cutting halfway through a rectangular plate of PZT, creating individual 4 × 5 mm segments with fundamental frequency (4.1 MHz) and third harmonic (13.3 MHz). Coupling between elements was investigated using a scanning laser vibrometer to measure transducer surface displacements at each frequency and different acoustic powers (0, 10, 20 W/cm2). The measured acoustic power was proportional to the input electrical power with no hysteresis and efficiencies >50% at both frequencies. Maximum transducer surface displacements were observed near element centers, reducing to ˜1/3-maximum near edges. The power and frequency of neighboring transducer segments had little impact on an element's output. In the worst case, an element operating at 4.1 MHz and 20 W/cm2 coupled only 1.5 W/cm2 to its immediate neighboring element. Multi-element, dual-frequency transducers were successfully constructed using a simple dicing method. Coupling between elements was minor, therefore the power and frequency of each transducer element could be considered independent.

  11. Self-Characterization of Commercial Ultrasound Probes in Transmission Acoustic Inverse Scattering: Transducer Model and Volume Integral Formulation

    PubMed Central

    Haynes, Mark; Verweij, Sacha A. M.; Moghaddam, Mahta; Carson, Paul L.

    2014-01-01

    A self-contained source characterization method for commercial ultrasound probes in transmission acoustic inverse scattering is derived and experimentally tested. The method is based on modified scattered field volume integral equations that are linked to the source-scattering transducer model. The source-scattering parameters are estimated via pair-wise transducer measurements and the nonlinear inversion of an acoustic propagation model that is derived. This combination creates a formal link between the transducer characterization and the inverse scattering algorithm. The method is tested with two commercial ultrasound probes in a transmission geometry including provisions for estimating the probe locations and aligning a robotic rotator. The transducer characterization results show that the nonlinear inversion fit the measured data well. The transducer calibration and inverse scattering algorithm are tested on simple targets. Initial images show that the recovered contrasts are physically consistent with expected values. PMID:24569251

  12. A Preliminary Evaluation of Near-Transducer Velocities Collected with Low-Blank Acoustic Doppler Current Profiler

    USGS Publications Warehouse

    Gartner, J.W.; Ganju, N.K.; ,

    2002-01-01

    Many streams and rivers for which the US Geological Survey must provide discharge measurements are too shallow to apply existing acoustic Doppler current profiler techniques for flow measurements of satisfactory quality. Because the same transducer is used for both transmitting and receiving acoustic signals in most Doppler current profilers, some small time delay is required for acoustic "ringing" to be damped out of transducers before meaningful measurements can be made. The result of that time delay is that velocity measurements cannot be made close to the transducer thus limiting the usefulness of these instruments in shallow regions. Manufacturers and users are constantly striving for improvements to acoustic instruments which would permit useful discharge measurements in shallow rivers and streams that are still often measured with techniques and instruments more than a century old. One promising area of advance appeared to be reduction of time delay (blank) required between transmitting and receiving signals during acoustic velocity measurements. Development of a low- or zero-blank transducer by RD Instruments3 held promise that velocity measurements could be made much closer to the transducer and thus in much shallower water. Initial experience indicates that this is not the case; limitation of measurement quality appears to be related to the physical presence of the transducer itself within the flow field. The limitation may be the result of changes to water flow pattern close to the transducer rather than transducer ringing characteristics as a function of blanking distance. Results of field experiments are discussed that support this conclusion and some minimum measurement distances from transducer are suggested based on water current speed and ADCP sample modes.

  13. Optimization of acoustic emitted field of transducer array for ultrasound imaging.

    PubMed

    He, Zhengyao

    2014-01-01

    A method is proposed to calculate the weight vector of a transducer array for ultrasound imaging to obtain a low-sidelobe transmitting beam pattern based on the near-field response vector. An optimization problem is established, and the second-order cone (SOC) algorithm is used to solve the problem to obtain the weight vector. The optimized acoustic emitted field of the transducer array is then calculated using the Field II program by applying the obtained weight vector to the array. The simulation results with a 64-element 26 MHz linear phased array show that the proposed method can be used to control the sidelobe of the near-field transmitting beam pattern of the transducer array and achieve a low-sidelobe level. The near-field sound pressure distribution of the transducer array using the proposed method focuses much better than that using the standard delay and sum (DAS) beamforming method. The sound energy is more concentrated using the proposed method.

  14. Angular Spectrum Method for the Focused Acoustic Field of a Linear Transducer

    NASA Astrophysics Data System (ADS)

    Belgroune, D.; de Belleval, J. F.; Djelouah, H.

    Applications involving non-destructive testing or acoustical imaging are more and more sophisticated. In this context, a model based on the angular spectrum approach is tackled in view to calculate the focused impulse field radiated by a linear transducer through a plane fluid-solid interface. It is well known that electronic focusing, based on a cylindrical delay law, like for the classical cases (lenses, curved transducer), leads to an inaccurate focusing in the solid due to geometric aberrations errors affecting refraction. Generally, there is a significant difference between the acoustic focal distance and the geometrical focal due to refraction. In our work, an optimized delay law, based on the Fermat's principle is established, particularly at an oblique incidence where the geometrical considerations, relatively simple in normal incidence, become quickly laborious. Numerical simulations of impulse field are judiciously carried out. Subsequently, the input parameters are optimally selected in order to achieve good computation accuracy and a high focusing. The overall results, involving compression and shear waves, have highlighted the focusing improvement in the solid when compared to the currently available approaches. Indeed, the acoustic focal distance is very close to geometrical focal distance and then, allows better control of the refracted angular beam profile (refraction angle, focusing depth and focal size).

  15. High-frequency surface acoustic wave device based on thin-film piezoelectric interdigital transducers

    SciTech Connect

    Sarin Kumar, A.K.; Paruch, P.; Triscone, J.-M.; Daniau, W.; Ballandras, S.; Pellegrino, L.; Marre, D.; Tybell, T.

    2004-09-06

    Using high-quality epitaxial c-axis Pb(Zr{sub 0.2}Ti{sub 0.8})O{sub 3} films grown by off-axis magnetron sputtering onto metallic (001) Nb-doped SrTiO{sub 3} substrates, a nonconventional thin-film surface acoustic wave device based on periodic piezoelectric transducers was realized. The piezoelectric transducers consist of a series of ferroelectric domains with alternating polarization states. The artificial modification of the ferroelectric domain structure is performed by using an atomic force microscope tip as a source of electric field, allowing local switching of the polarization. Devices with 1.2 and 0.8 {mu}m wavelength, defined by the modulation period of the polarization, and corresponding to central frequencies in the range 1.50-3.50 GHz have been realized and tested.

  16. A highly directional transducer for multipath mitigation in high-frequency underwater acoustic communications.

    PubMed

    Freeman, Simon E; Emokpae, Lloyd; Nicholas, Michael; Edelmann, Geoffrey F

    2015-08-01

    This paper presents a transducer design of the hollow cylinder type designed to minimize transmission multipath and the need for channel equalization over short acoustic communication distances in shallow water. Operating at 750 kHz, the half-maximum envelope of the main lobe is approximately 3°. The transducer was incorporated into a low-complexity modem system in which it acted as both transmitter and receiver. At-sea testing indicated that the system is capable of operating over horizontal distances of 5 m without evidence of multipath distortion. The system was also found to be effective as an omnidirectional transmitter/receiver in the 10-60 kHz band.

  17. Acoustic backscatter and effective scatterer size estimates using a 2D CMUT transducer

    NASA Astrophysics Data System (ADS)

    Liu, W.; Zagzebski, J. A.; Hall, T. J.; Madsen, E. L.; Varghese, T.; Kliewer, M. A.; Panda, S.; Lowery, C.; Barnes, S.

    2008-08-01

    Compared to conventional piezoelectric transducers, new capacitive microfabricated ultrasonic transducer (CMUT) technology is expected to offer a broader bandwidth, higher resolution and advanced 3D/4D imaging inherent in a 2D array. For ultrasound scatterer size imaging, a broader frequency range provides more information on frequency-dependent backscatter, and therefore, generally more accurate size estimates. Elevational compounding, which can significantly reduce the large statistical fluctuations associated with parametric imaging, becomes readily available with a 2D array. In this work, we show phantom and in vivo breast tumor scatterer size image results using a prototype 2D CMUT transducer (9 MHz center frequency) attached to a clinical scanner. A uniform phantom with two 1 cm diameter spherical inclusions of slightly smaller scatterer size was submerged in oil and scanned by both the 2D CMUT and a conventional piezoelectric linear array transducer. The attenuation and scatterer sizes of the sample were estimated using a reference phantom method. RF correlation analysis was performed using the data acquired by both transducers. The 2D CMUT results indicate that at a 2 cm depth (near the transmit focus for both transducers) the correlation coefficient reduced to less than 1/e for 0.2 mm lateral or 0.25 mm elevational separation between acoustic scanlines. For the conventional array this level of decorrelation requires a 0.3 mm lateral or 0.75 mm elevational translation. Angular and/or elevational compounding is used to reduce the variance of scatterer size estimates. The 2D array transducer acquired RF signals from 140 planes over a 2.8 cm elevational direction. If no elevational compounding is used, the fractional standard deviation of the size estimates is about 12% of the mean size estimate for both the spherical inclusion and the background. Elevational compounding of 11 adjacent planes reduces it to 7% for both media. Using an experimentally estimated

  18. Acoustic backscatter and effective scatterer size estimates using a 2D CMUT transducer

    PubMed Central

    Liu, W; Zagzebski, J A; Hall, T J; Madsen, E L; Varghese, T; Kliewer, M A; Panda, S; Lowery, C; Barnes, S

    2009-01-01

    Compared to conventional piezoelectric transducers, new capacitive microfabricated ultrasonic transducer (CMUT) technology is expected to offer a broader bandwidth, higher resolution and advanced 3D/4D imaging inherent in a 2D array. For ultrasound scatterer size imaging, a broader frequency range provides more information on frequency-dependent backscatter, and therefore, generally more accurate size estimates. Elevational compounding, which can significantly reduce the large statistical fluctuations associated with parametric imaging, becomes readily available with a 2D array. In this work, we show phantom and in vivo breast tumor scatterer size image results using a prototype 2D CMUT transducer (9 MHz center frequency) attached to a clinical scanner. A uniform phantom with two 1 cm diameter spherical inclusions of slightly smaller scatterer size was submerged in oil and scanned by both the 2D CMUT and a conventional piezoelectric linear array transducer. The attenuation and scatterer sizes of the sample were estimated using a reference phantom method. RF correlation analysis was performed using the data acquired by both transducers. The 2D CMUT results indicate that at a 2 cm depth (near the transmit focus for both transducers) the correlation coefficient reduced to less than 1/e for 0.2 mm lateral or 0.25 mm elevational separation between acoustic scanlines. For the conventional array this level of decorrelation requires a 0.3 mm lateral or 0.75 mm elevational translation. Angular and/or elevational compounding is used to reduce the variance of scatterer size estimates. The 2D array transducer acquired RF signals from 140 planes over a 2.8 cm elevational direction. If no elevational compounding is used, the fractional standard deviation of the size estimates is about 12% of the mean size estimate for both the spherical inclusion and the background. Elevational compounding of 11 adjacent planes reduces it to 7% for both media. Using an experimentally estimated

  19. A 3D reconstruction algorithm for magneto-acoustic tomography with magnetic induction based on ultrasound transducer characteristics

    NASA Astrophysics Data System (ADS)

    Ma, Ren; Zhou, Xiaoqing; Zhang, Shunqi; Yin, Tao; Liu, Zhipeng

    2016-12-01

    In this study we present a three-dimensional (3D) reconstruction algorithm for magneto-acoustic tomography with magnetic induction (MAT-MI) based on the characteristics of the ultrasound transducer. The algorithm is investigated to solve the blur problem of the MAT-MI acoustic source image, which is caused by the ultrasound transducer and the scanning geometry. First, we established a transducer model matrix using measured data from the real transducer. With reference to the S-L model used in the computed tomography algorithm, a 3D phantom model of electrical conductivity is set up. Both sphere scanning and cylinder scanning geometries are adopted in the computer simulation. Then, using finite element analysis, the distribution of the eddy current and the acoustic source as well as the acoustic pressure can be obtained with the transducer model matrix. Next, using singular value decomposition, the inverse transducer model matrix together with the reconstruction algorithm are worked out. The acoustic source and the conductivity images are reconstructed using the proposed algorithm. Comparisons between an ideal point transducer and the realistic transducer are made to evaluate the algorithms. Finally, an experiment is performed using a graphite phantom. We found that images of the acoustic source reconstructed using the proposed algorithm are a better match than those using the previous one, the correlation coefficient of sphere scanning geometry is 98.49% and that of cylinder scanning geometry is 94.96%. Comparison between the ideal point transducer and the realistic transducer shows that the correlation coefficients are 90.2% in sphere scanning geometry and 86.35% in cylinder scanning geometry. The reconstruction of the graphite phantom experiment also shows a higher resolution using the proposed algorithm. We conclude that the proposed reconstruction algorithm, which considers the characteristics of the transducer, can obviously improve the resolution of the

  20. Nonlinear behavior of electric power transmission through an elastic wall by acoustic waves and piezoelectric transducers.

    PubMed

    Yang, Zengtao; Yang, Jiashi; Hu, Yuantai

    2008-11-01

    Weakly nonlinear behavior of electric power transmission through an elastic wall by piezoelectric transducers and acoustic waves near resonance is studied based on the cubic theory of nonlinear electroelasticity. An approximate analytical solution is obtained. Output voltage is calculated and plotted. Basic nonlinear behaviors of the power transmission structure are examined. It is found that near nonlinear resonance the electrical input-output relation loses its linearity, becomes multi-valued, and experiences jumps due to large mechanical deformations. The behavior below and above resonance is qualitatively different and is qualitatively material dependent.

  1. Hybrid Semi-numerical Simulation Scheme to Predict Transducer Outputs of Acoustic Microscopes.

    PubMed

    Nierla, Michael; Rupitsch, Stefan

    2015-12-18

    We present a semi-numerical simulation method called SIRFEM, which enables the efficient prediction of high frequency transducer outputs. In particular, this is important for acoustic microscopy where the specimen under investigation is immersed in a coupling fluid. Conventional Finite Element (FE) simulations for such applications would consume too much computational power due to the required spatial and temporal discretization, especially for the coupling fluid between ultrasonic transducer and specimen. However, FE simulations are in most cases essential to consider the mode conversion at and inside the solid specimen as well as the wave propagation in its interior. SIRFEM reduces the computational effort of pure FE simulations by treating only the solid specimen and a small part of the fluid layer with FE. The propagation in the coupling fluid from transducer to specimen and back is processed by the so-called spatial impulse response (SIR). Through this hybrid approach, the number of elements as well as the number of time steps for the FE simulation can be reduced significantly, as it is presented for an axis-symmetric setup. Three B-mode images of a plane 2-D setup - computed at a transducer center frequency of 20 MHz - show that SIRFEM is, furthermore, able to predict reflections at inner structures as well as multiple reflections between those structures and the specimen's surface. For the purpose of a pure 2-D setup, the spatial impulse response of a curved-line transducer is derived and compared to the response function of a cylindrically focused aperture of negligible extend in the third spatial dimension.

  2. Hybrid Seminumerical Simulation Scheme to Predict Transducer Outputs of Acoustic Microscopes.

    PubMed

    Nierla, Michael; Rupitsch, Stefan J

    2016-02-01

    We present a seminumerical simulation method called SIRFEM, which enables the efficient prediction of high-frequency transducer outputs. In particular, this is important for acoustic microscopy where the specimen under investigation is immersed in a coupling fluid. Conventional finite-element (FE) simulations for such applications would consume too much computational power due to the required spatial and temporal discretization, especially for the coupling fluid between ultrasonic transducer and specimen. However, FE simulations are in most cases essential to consider the mode conversion at and inside the solid specimen as well as the wave propagation in its interior. SIRFEM reduces the computational effort of pure FE simulations by treating only the solid specimen and a small part of the fluid layer with FE. The propagation in the coupling fluid from transducer to specimen and back is processed by the so-called spatial impulse response (SIR). Through this hybrid approach, the number of elements as well as the number of time steps for the FE simulation can be reduced significantly, as it is presented for an axis-symmetric setup. Three B-mode images of a plane 2-D setup-computed at a transducer center frequency of 20 MHz-show that SIRFEM is, furthermore, able to predict reflections at inner structures as well as multiple reflections between those structures and the specimen's surface. For the purpose of a pure 2-D setup, the SIR of a curved-line transducer is derived and compared to the response function of a cylindrically focused aperture of negligible extend in the third spatial dimension.

  3. Double-channel, frequency-steered acoustic transducer with 2-D imaging capabilities.

    PubMed

    Baravelli, Emanuele; Senesi, Matteo; Ruzzene, Massimo; De Marchi, Luca; Speciale, Nicolò

    2011-07-01

    A frequency-steerable acoustic transducer (FSAT) is employed for imaging of damage in plates through guided wave inspection. The FSAT is a shaped array with a spatial distribution that defines a spiral in wavenumber space. Its resulting frequency-dependent directional properties allow beam steering to be performed by a single two-channel device, which can be used for the imaging of a two-dimensional half-plane. Ad hoc signal processing algorithms are developed and applied to the localization of acoustic sources and scatterers when FSAT arrays are used as part of pitch-catch and pulse-echo configurations. Localization schemes rely on the spectrogram analysis of received signals upon dispersion compensation through frequency warping and the application of the frequency-angle map characteristic of FSAT. The effectiveness of FSAT designs and associated imaging schemes are demonstrated through numerical simulations and experiments. Preliminary experimental validation is performed by forming a discrete array through the points of the measurement grid of a scanning laser Doppler vibrometer. The presented results demonstrate the frequency-dependent directionality of the spiral FSAT and suggest its application for frequency-selective acoustic sensors, for the localization of broadband acoustic events, or for the directional generation of Lamb waves for active interrogation of structural health.

  4. Single-transducer dual-frequency ultrasound generation to enhance acoustic cavitation.

    PubMed

    Liu, Hao-Li; Hsieh, Chao-Ming

    2009-03-01

    Dual- or multiple-frequency ultrasound stimulation is capable of effectively enhancing the acoustic cavitation effect over single-frequency ultrasound. Potential application of this sonoreactor design has been widely proposed such as on sonoluminescence, sonochemistry enhancement, and transdermal drug release enhancement. All currently available sonoreactor designs employed multiple piezoelectric transducers for generating single-frequency ultrasonic waves separately and then these waves were mixed and interfered in solutions. The purpose of this research is to propose a novel design of generating dual-frequency ultrasonic waves with single piezoelectric elements, thereby enhancing acoustic cavitation. Macroscopic bubbles were detected optically, and they were quantified at either a single-frequency or for different frequency combinations for determining their efficiency for enhancing acoustic cavitation. Visible bubbles were optically detected and hydrogen peroxide was measured to quantify acoustic cavitation. Test water samples with different gas concentrations and different power levels were used to determine the efficacy of enhancing acoustic cavitation of this design. The spectrum obtained from the backscattered signals was also recorded and examined to confirm the occurrence of stable cavitation. The results confirmed that single-element dual-frequency ultrasound stimulation can enhance acoustic cavitation. Under certain testing conditions, the generation of bubbles can be enhanced up to a level of five times higher than the generation of bubbles in single-frequency stimulation, and can increase the hydrogen peroxide production up to an increase of one fold. This design may serve as a useful alternative for future sonoreactor design owing to its simplicity to produce dual- or multiple-frequency ultrasound.

  5. Measurement of elastic nonlinearity using remote laser ultrasonics and CHeap Optical Transducers and dual frequency surface acoustic waves.

    PubMed

    Collison, I J; Stratoudaki, T; Clark, M; Somekh, M G

    2008-11-01

    A nonlinear ultrasonic technique for evaluating material elastic nonlinearity has been developed. It measures the phase modulation of a high frequency (82MHz) surface acoustic wave interacting with a low frequency (1MHz) high amplitude stress inducing surface acoustic wave. A new breed of optical transducers has been developed and used for the generation and detection of the high frequency wave. The CHeap Optical Transducer (CHOT) is an ultrasonic transducer system, optically activated and read by a laser. We show that CHOTs offer advantages over alternative transducers. CHOTs and nonlinear ultrasonics have great potential for aerospace applications. Results measuring changes in ultrasonic velocity corresponding to different stress states of the sample are presented on fused silica and aluminium.

  6. Absolute ultrasonic displacement amplitude measurements with a submersible electrostatic acoustic transducer

    NASA Technical Reports Server (NTRS)

    Yost, William T.; Cantrell, John H.

    1992-01-01

    An experimental technique for absolute measurement of ultrasonic wave particle displacement amplitudes in liquids is reported. The technique is capable of measurements over a frequency range of two decades with a sensitivity less than one angstrom. The technique utilizes a previously reported submersible electrostatic acoustic transducer (ESAT) featuring a conductive membrane stretched over a recessed electrode. An uncertainty analysis shows that the displacement amplitude of an ultrasonic plane wave incident on the ESAT can be experimentally determined to better than 2.3-4 percent, depending on frequency, in the frequency range of 0.5-15 MHz. Membranes with lower and more uniform areal densities can improve the accuracy and extend the operation to higher frequencies.

  7. Frequency spectra of magnetostrictive and Lorentz forces generated in ferromagnetic materials by a CW excited EMAT

    NASA Astrophysics Data System (ADS)

    Rouge, C.; Lhémery, A.; Aristégui, C.

    2014-04-01

    Magnetostriction arises in ferromagnetic materials subjected to magnetization, e.g., when an EMAT (Electro-Magnetic Acoustic Transducer) is used to generate ultrasonic waves. In such a case, the magnetostriction force must be taken into account as a transduction process that adds up to the Lorentz force. When the static magnetic field is high compared to the dynamic field, both forces are driven by the excitation frequency. For lower static relative values of the magnetic fields, the Lorentz force comprises both the excitation frequency and its first harmonic. In this work, a model is derived to predict the frequency content of the magnetostrictive force that comprises several harmonics. The discrete frequency spectrum strongly depends on both the static field and the relative amplitude of the dynamic field. The only material input data needed to predict it is the curve of macroscopic magnetostrictive strain that can be measured in the direction of an imposed magnetic field. Then, the various frequency-dependent distributions of Lorentz and magnetostriction body forces can be transformed into equivalent surface stresses. Examples of computation are given for different static and dynamic magnetic fields to study their influence on the frequency content of waves generated in ferromagnetic materials.

  8. Surface acoustic wave nebulization device with dual interdigitated transducers improves SAWN-MS performance.

    PubMed

    Huang, Yue; Heron, Scott R; Clark, Alicia M; Edgar, J Scott; Yoon, Sung Hwan; Kilgour, David P A; Turecek, Frantisek; Aliseda, Alberto; Goodlett, David R

    2016-06-01

    We compared mass spectrometric (MS) performance of surface acoustic wave nebulization (SAWN) generated by a single interdigitated transducer (IDT) designed to produce a progressive wave (PW) to one with a dual IDT that can in theory generate standing waves (SW). Given that devices using dual IDTs had been shown to produce fewer large size droplets on average, we hypothesized they would improve MS performance by improving the efficiency of desolvation. Indeed, the SW-SAWN chip provided an improved limit of detection of 1 femtomole of peptide placed on chip making it 100× more sensitive than the PW design. However, as measured by high-speed image recording and phase Doppler particle analyzer measurements, there was only a 26% increase in the small diameter (1-10 µm) droplets produced from the new device, precluding a conclusion that the decrease in droplet size was solely responsible for the improvement in MS signal/noise. Given that the dual IDT design produced a more instantaneous plume than the PW design, the more likely contributor to improved MS signal/noise was concluded to be a higher ion flux entering the mass spectrometer for the dual IDT designs. Notably, the dual IDT device allowed production of much higher quality protein mass spectra up to about 20 kDa, compared with the single IDT device. Copyright © 2016 John Wiley & Sons, Ltd.

  9. Pipe wall damage detection by electromagnetic acoustic transducer generated guided waves in absence of defect signals.

    PubMed

    Vasiljevic, Milos; Kundu, Tribikram; Grill, Wolfgang; Twerdowski, Evgeny

    2008-05-01

    Most investigators emphasize the importance of detecting the reflected signal from the defect to determine if the pipe wall has any damage and to predict the damage location. However, often the small signal from the defect is hidden behind the other arriving wave modes and signal noise. To overcome the difficulties associated with the identification of the small defect signal in the time history plots, in this paper the time history is analyzed well after the arrival of the first defect signal, and after different wave modes have propagated multiple times through the pipe. It is shown that the defective pipe can be clearly identified by analyzing these late arriving diffuse ultrasonic signals. Multiple reflections and scattering of the propagating wave modes by the defect and pipe ends do not hamper the defect detection capability; on the contrary, it apparently stabilizes the signal and makes it easier to distinguish the defective pipe from the defect-free pipe. This paper also highlights difficulties associated with the interpretation of the recorded time histories due to mode conversion by the defect. The design of electro-magnetic acoustic transducers used to generate and receive the guided waves in the pipe is briefly described in the paper.

  10. Bendable Electro-Acoustic Transducer Fabricated Utilizing Frequency Dispersion of Elastic Modulus

    NASA Astrophysics Data System (ADS)

    Miyoshi, Tetsu; Ohga, Juro

    2013-09-01

    To realize the speaker diaphragm that can be united with a flexible display without deteriorating lightweight properties and flexibility, a novel bendable electro-acoustic transducer (BEAT) based on 0-3-type piezoelectric composites has been developed. To overcome the trade-off between flexibility and the transmission efficiency of vibration energy, a viscoelastic polymer that has local maximum points in the loss factor as well as large frequency dispersion in the storage modulus near room temperature was employed as the matrix of the piezoelectric composite layer. Against the comparatively slow (10 Hz or less) deformation from the outside, the viscoelastic matrix is viscous enough to prevent cracking and delamination. On the other hand, in the audible range (20 Hz to 20 kHz), the matrix is elastic enough to transmit piezoelectric vibration energy, maintaining a moderately large loss factor as well as a high sound velocity. For the first time, we successfully demonstrated a rollable speaker that can continue to generate a high-quality sound while being rolled and unrolled repeatedly onto a cylinder with a curvature radius of 4 mm.

  11. Characterization of Transducer Performance and Narrowband Transient Ultrasonic Fields in Metals by Rayleigh-Sommerfeld Backpropagation of Compression Acoustic Waves Measured with Double-Pulsed Tv Holography

    NASA Astrophysics Data System (ADS)

    Trillo, Cristina; Doval, Ángel F.; Fernández, José L.; Rodríguez-Gómez, Pablo; López-Vázquez, J. Carlos

    2014-10-01

    This article presents a method aimed at the characterization of the narrowband transient acoustic field radiated by an ultrasonic plane transducer into a homogeneous, isotropic and optically opaque prismatic solid, and the assessment of the performance of the acoustic source. The method relies on a previous technique based on the full-field optical measurement of an acoustic wavepacket at the surface of a solid and its subsequent numerical backpropagation within the material. The experimental results show that quantitative transversal and axial profiles of the complex amplitude of the beam can be obtained at any plane between the measurement and excitation surfaces. The reconstruction of the acoustic field at the transducer face, carried out on a defective transducer model, shows that the method could also be suitable for the nondestructive testing of the performance of ultrasonic sources. In all cases, the measurements were performed with the transducer working under realistic loading conditions.

  12. Change of nonlinear acoustics in ASME grade 122 steel welded joint during creep

    NASA Astrophysics Data System (ADS)

    Ohtani, Toshihiro; Honma, Takumi; Ishii, Yutaka; Tabuchi, Masaaki; Hongo, Hiromichi; Hirao, Masahiko

    2016-02-01

    In this paper, we described the changes of two nonlinear acoustic characterizations; resonant frequency shift and three-wave interaction, with electromagnetic acoustic resonance (EMAR) throughout the creep life in the welded joints of ASME Grade 122, one of high Cr ferritic heat resisting steels. EMAR was a combination of the resonant acoustic technique with a non-contact electromagnetic acoustic transducer (EMAT). These nonlinear acoustic parameters decreased from the start to 50% of creep life. After slightly increased, they rapidly increased from 80% of creep life to rupture. We interpreted these phenomena in terms of dislocation recovery, recrystallization, and restructuring related to the initiation and growth of creep void, with support from the SEM and TEM observation.

  13. A Spherically-Shaped PZT Thin Film Ultrasonic Transducer with an Acoustic Impedance Gradient Matching Layer Based on a Micromachined Periodically Structured Flexible Substrate

    PubMed Central

    Feng, Guo-Hua; Liu, Wei-Fan

    2013-01-01

    This paper presents the microfabrication of an acoustic impedance gradient matching layer on a spherically-shaped piezoelectric ultrasonic transducer. The acoustic matching layer can be designed to achieve higher acoustic energy transmission and operating bandwidth. Also included in this paper are a theoretical analysis of the device design and a micromachining technique to produce the novel transducer. Based on a design of a lead titanium zirconium (PZT) micropillar array, the constructed gradient acoustic matching layer has much better acoustic transmission efficiency within a 20–50 MHz operation range compared to a matching layer with a conventional quarter-wavelength thickness Parylene deposition. To construct the transducer, periodic microcavities are built on a flexible copper sheet, and then the sheet forms a designed curvature with a ball shaping. After PZT slurry deposition, the constructed PZT micropillar array is released onto a curved thin PZT layer. Following Parylene conformal coating on the processed PZT micropillars, the PZT micropillars and the surrounding Parylene comprise a matching layer with gradient acoustic impedance. By using the proposed technique, the fabricated transducer achieves a center frequency of 26 MHz and a −6 dB bandwidth of approximately 65%. PMID:24113683

  14. Arbitrary shaped, liquid filled reverberators with non-resonant transducers for broadband focusing of ultrasound using Time Reversed Acoustics.

    PubMed

    Sarvazyan, A; Fillinger, L

    2009-03-01

    The ability to generate short focused ultrasonic pulses with duration on the order of one period of carrier frequency depends on the bandwidth of the transmitter as the pulse duration is inversely proportional to the bandwidth. Conventional focusing arrays used for focusing ultrasound have limited bandwidth due to the resonant nature of the piezoelements generating ultrasound. Theoretically it is possible to build a broadband phased array composed of "non-resonant" elements: wedge-shaped or flat-concave piezotransducers, though there are numerous technical difficulties in designing arrays with hundreds of elements of complex shape. This task is much easier to realize in an alternative technique of ultrasound focusing based on the principles of Time Reversed Acoustics (TRA) because in TRA systems, effective focusing can be achieved with just a few, or even one, transducers. The goal of this study is to demonstrate the possibility of broadband focusing of ultrasonic waves using a TRA system with non-resonant transducers and to explore the factors affecting the performance of such a system. A new type of TRA reverberators, such as water-filled thin-wall plastic vessels, which can be used with the submersible piezotransducers fixed internally in the reverberator, are proposed and tested. The experiments are conducted in a water tank with the walls and bottom covered by a sound absorbing lining. A needle hydrophone mounted on a 3D positioning system is used as a beacon for the TRA focusing and then for measuring the spatial distribution of the focused ultrasound field. The bandwidth and spatial distribution of the signal focused by the TRA system using a single channel with the resonant versus non-resonant transducers have been analyzed. Two types of non-resonant transducers were tested: a flat-concave transducer with a diameter of 30 mm, and a thickness varying from 2 mm in the center to 11 mm at the edge, and a specially designed submersible transducer having an

  15. Determination of acoustic impedances of multi matching layers for narrowband ultrasonic airborne transducers at frequencies <2.5 MHz - Application of a genetic algorithm.

    PubMed

    Saffar, Saber; Abdullah, Amir

    2012-01-01

    The effective ultrasonic energy radiation into the air of piezoelectric transducers requires using multilayer matching systems with accurately selected acoustic impedances and the thickness of particular layers. One major problem of ultrasonic transducers, radiating acoustic energy into air, is to find the proper acoustic impedances of one or more matching layers. This work aims at developing an original solution to the acoustic impedance mismatch between transducer and air. If the acoustic impedance defences between transducer and air be more, then finding best matching layer(s) is harder. Therefore we consider PZT (lead zirconate titanate piezo electric) transducer and air that has huge acoustic impedance deference. The vibration source energy (PZT), which is used to generate the incident wave, consumes a part of the mechanical energy and converts it to an electrical one in theoretical calculation. After calculating matching layers, we consider the energy source as layer to design a transducer. However, this part of the mechanical energy will be neglected during the mathematical work. This approximation is correct only if the transducer is open-circuit. Since the possibilities of choosing material with required acoustic impedance are limited (the counted values cannot always be realized and applied in practice) it is necessary to correct the differences between theoretical values and the possibilities of practical application of given acoustic impedances. Such a correction can be done by manipulating other parameters of matching layers (e.g. by changing their thickness). The efficiency of the energy transmission from the piezoceramic transducer through different layers with different thickness and different attenuation enabling a compensation of non-ideal real values by changing their thickness was computer analyzed (base on genetic algorithm). Firstly, three theoretical solutions were investigated. Namely, Chebyshev, Desilets and Souquet theories. However, the

  16. Analysis of acoustic impedance matching in dual-band ultrasound transducers.

    PubMed

    Myhre, Ola Finneng; Johansen, Tonni Franke; Johan Angelsen, Bjørn Atle

    2017-02-01

    Dual-frequency band probes are needed for ultrasound (US) reverberation suppression and are useful for image-guided US therapy. A challenge is to design transducer stacks that achieve high bandwidth and efficiency at both operating frequencies when the frequencies are widely separated with a frequency ratio ∼6:1-20:1. This paper studies the loading and backing conditions of transducers in such stacks. Three stack configurations are presented and analyzed using one-dimensional models. It is shown that a configuration with three layers of material separating the transducers is favorable, as it reduces high frequency ringing by ∼20 dB compared to other designs, and matches the low frequency (LF) transducer to the load at a lower frequency. In some cases, the LF load matching is governed by a simple mass-spring interaction in spite of having a complicated matching structure. The proposed design should yield improved performance of reverberation suppression algorithms. Its suitability for reduction of probe heating, also in single-band probes, should be investigated.

  17. A fast full frequency range measurement of nonlinear distortions in the vibration of acoustic transducers and acoustically driven membranes

    NASA Astrophysics Data System (ADS)

    Aerts, J. R. M.; Dirckx, J. J. J.

    2007-11-01

    Recently, a new method was proposed to measure nonlinear distortions in weak nonlinear systems using specially designed broadband excitation signals (odd random phase multisines). During one single experiment, the output response level, the noise level and the level of the nonlinear distortions are simultaneously measured. We implement this method in an opto-acoustic set-up which allows us to measure vibrations with high accuracy. To demonstrate the method, we present results obtained on the membrane of an earphone speaker and a latex membrane. On the earphone good agreement is found between measurements of the produced sound field and the actual membrane vibration using heterodyne interferometry. The results show that heterodyne vibrometry can be used to detect nonlinear distortions which are up to 80 dB below the output level in an acoustically driven system.

  18. Acoustic power measurement of high-intensity focused ultrasound transducer using a pressure sensor.

    PubMed

    Zhou, Yufeng

    2015-03-01

    The acoustic power of high-intensity focused ultrasound (HIFU) is an important parameter that should be measured prior to each treatment to guarantee effective and safe outcomes. A new calibration technique was developed that involves estimating the pressure distribution, calculating the acoustic power using an underwater pressure blast sensor, and compensating the contribution of harmonics to the acoustic power. The output of a clinical extracorporeal HIFU system (center frequency of ~1 MHz, p+ = 2.5-57.2 MPa, p(-) = -1.8 to -13.9 MPa, I(SPPA) = 513-22,940 W/cm(2), -6 dB size of 1.6 × 10 mm: lateral × axial) was measured using this approach and then compared with that obtained using a radiation force balance. Similarities were found between each method at acoustic power ranging from 18.2 W to 912 W with an electrical-to-acoustic conversion efficiency of ~42%. The proposed method has advantages of low weight, smaller size, high sensitivity, quick response, high signal-to-noise ratio (especially at low power output), robust performance, and easy operation of HIFU exposimetry measurement.

  19. Real-time observation of coherent acoustic phonons generated by an acoustically mismatched optoacoustic transducer using x-ray diffraction

    SciTech Connect

    Persson, A. I. H.; Andreasson, B. P.; Enquist, H.; Jurgilaitis, A.; Larsson, J.

    2015-11-14

    The spectrum of laser-generated acoustic phonons in indium antimonide coated with a thin nickel film has been studied using time-resolved x-ray diffraction. Strain pulses that can be considered to be built up from coherent phonons were generated in the nickel film by absorption of short laser pulses. Acoustic reflections at the Ni–InSb interface leads to interference that strongly modifies the resulting phonon spectrum. The study was performed with high momentum transfer resolution together with high time resolution. This was achieved by using a third-generation synchrotron radiation source that provided a high-brightness beam and an ultrafast x-ray streak camera to obtain a temporal resolution of 10 ps. We also carried out simulations, using commercial finite element software packages and on-line dynamic diffraction tools. Using these tools, it is possible to calculate the time-resolved x-ray reflectivity from these complicated strain shapes. The acoustic pulses have a peak strain amplitude close to 1%, and we investigated the possibility to use this device as an x-ray switch. At a bright source optimized for hard x-ray generation, the low reflectivity may be an acceptable trade-off to obtain a pulse duration that is more than an order of magnitude shorter.

  20. Experiments with Ultrasonic Transducers.

    ERIC Educational Resources Information Center

    Greenslade, Thomas R., Jr.

    1994-01-01

    Discusses the use of 40 kHz ultrasonic transducers to study wave phenomena. Determines that the resulting wavelength of 9 mm allows acoustic experiments to be performed on a tabletop. Includes transducer characteristics and activities on speed of sound, reflection, double- and single-slit diffraction, standing waves, acoustical zone plate, and…

  1. Temperature and trapping characterization of an acoustic trap with miniaturized integrated transducers--towards in-trap temperature regulation.

    PubMed

    Johansson, Linda; Evander, Mikael; Lilliehorn, Tobias; Almqvist, Monica; Nilsson, Johan; Laurell, Thomas; Johansson, Stefan

    2013-07-01

    An acoustic trap with miniaturized integrated transducers (MITs) for applications in non-contact trapping of cells or particles in a microfluidic channel was characterized by measuring the temperature increase and trapping strength. The fluid temperature was measured by the fluorescent response of Rhodamine B in the microchannel. The trapping strength was measured by the area of a trapped particle cluster counter-balanced by the hydrodynamic force. One of the main objectives was to obtain quantitative values of the temperature in the fluidic channel to ensure safe handling of cells and proteins. Another objective was to evaluate the trapping-to-temperature efficiency for the trap as a function of drive frequency. Thirdly, trapping-to-temperature efficiency data enables identifying frequencies and voltage values to use for in-trap temperature regulation. It is envisioned that operation with only in-trap temperature regulation enables the realization of small, simple and fast temperature-controlled trap systems. The significance of potential gradients at the trap edges due to the finite size of the miniaturized transducers for the operation was emphasized and expressed analytically. The influence of the acoustic near field was evaluated in FEM-simulation and compared with a more ideal 1D standing wave. The working principle of the trap was examined by comparing measurements of impedance, temperature increase and trapping strength with impedance transfer calculations of fluid-reflector resonances and frequencies of high reflectance at the fluid-reflector boundary. The temperature increase was found to be moderate, 7°C for a high trapping strength, at a fluid flow of 0.5mms(-1) for the optimal driving frequency. A fast temperature response with a fall time of 8s and a rise time of 11s was observed. The results emphasize the importance of selecting the proper drive frequency for long term handling of cells, as opposed to the more pragmatic way of selecting the

  2. Developments and field tests of low-frequency portable acoustic transducers for a mobile exploration and time lapse experiment of a sea-bottom reservoir

    NASA Astrophysics Data System (ADS)

    Tsuruga, K.; Kasahara, J.; Hasada, Y.; Kondo, H.

    2013-12-01

    Depth, scale and resolutions of geophysical explorations for mineral resources are controlled by transmitted seismic energy and wavelength (frequency range). Most explorations in marine have been conducted by survey ship system with arrayed acoustic sources whose dominant frequency range is about 10 to 500 Hz. On the other hand, for shallow parts of sea bottom structure survey, some sub-bottom profilers with frequency range around 3.5kHz are used. To monitor a time lapse of a sea bottom reservoir such as an oil, gas, or methane hydrate reservoir as well as to exploit a mobile survey near a sea bottom by AUVs, it is necessary to use a broadband portable acoustic transducer with a dominant frequency range of 500 Hz to 5 kHz. We have been developing several types of portable acoustic transducers and a transmitting and recording system which is accurately controlled by a GPS clock (Tsuruga et al., 2012). In this pater, we report the new broadband acoustic portable transducers which have larger power than the original cylindrical acoustic transducers in a low frequency range (<5 kHz), partly funded by JOGMEC, and show the preliminary results of field tests at the shallow sea bottom around 32 m deep by means of the transducers and hydrophone receivers array. Each transducer repeatedly transmitted Chirp signals with a unit period of 500 msec in two frequency ranges of 0.5k-4.5kHz and 4k-16kHz . We stacked 500-ms data by 28 times to obtain a transfer function of each source-receiver pair in the time and frequency domains. The preliminary results suggest as the follows: (i) it is successful to broaden the frequency bandwidth (i.e., 2k-10kHz) by extending a geometrical resonance length of a cylindrical acoustic transducers, and (ii) the observation at the sea bottom with accurately controlled timing systems of transmitter and data-logger is very useful to identify the stable and/or unstable seismic phases, that is, waves propagating in a underground and/or in a sea water as

  3. Pipe inspection system of a pipe by three-modes guide wave using polarized-transverse wave EMATs

    NASA Astrophysics Data System (ADS)

    Murayama, Riichi; Weng, Jie; Kobayashi, Makiko

    2015-03-01

    Conventional non-destructive inspection of a pipe by ultrasonic wave has difficulty with inspection efficiency because it is a technique to apply by using longitudinal wave or transverse wave which propagates to the thickness direction of a pipe for smaller area than an ultrasonic sensor. However, a guide wave is provided with a characteristic of long-range propagation to the axis direction of a pipe, so it is possible to detect a lot of defects through wide range of a pipe at once. At present, there is a technique to generate a guide wave by a piezoelectric element (PZT). Such transducer has some difficulties to use in industrial application, which is required high viscosity couplant. Therefore we tried to develop a guide wave inspection system to use an electromagnetic ultrasonic transducer (EMAT) which doesn't require any couplant. First, we could confirm that guide wave can be transmitted and received in aluminum pipe by a shear horizontal polarized-EMAT, and we have confirmed the most suitable transmission and reception EMAT-specification and the most suitable drive condition to generate for L, T and F-mode guide wave. Finally, we have evaluated the detective performance using the developed system.

  4. Quantitative shear wave optical coherence elastography (SW-OCE) with acoustic radiation force impulses (ARFI) induced by phase array transducer

    NASA Astrophysics Data System (ADS)

    Song, Shaozhen; Le, Nhan Minh; Wang, Ruikang K.; Huang, Zhihong

    2015-03-01

    Shear Wave Optical Coherence Elastography (SW-OCE) uses the speed of propagating shear waves to provide a quantitative measurement of localized shear modulus, making it a valuable technique for the elasticity characterization of tissues such as skin and ocular tissue. One of the main challenges in shear wave elastography is to induce a reliable source of shear wave; most of nowadays techniques use external vibrators which have several drawbacks such as limited wave propagation range and/or difficulties in non-invasive scans requiring precisions, accuracy. Thus, we propose linear phase array ultrasound transducer as a remote wave source, combined with the high-speed, 47,000-frame-per-second Shear-wave visualization provided by phase-sensitive OCT. In this study, we observed for the first time shear waves induced by a 128 element linear array ultrasound imaging transducer, while the ultrasound and OCT images (within the OCE detection range) were triggered simultaneously. Acoustic radiation force impulses are induced by emitting 10 MHz tone-bursts of sub-millisecond durations (between 50 μm - 100 μm). Ultrasound beam steering is achieved by programming appropriate phase delay, covering a lateral range of 10 mm and full OCT axial (depth) range in the imaging sample. Tissue-mimicking phantoms with agarose concentration of 0.5% and 1% was used in the SW-OCE measurements as the only imaging samples. The results show extensive improvements over the range of SW-OCE elasticity map; such improvements can also be seen over shear wave velocities in softer and stiffer phantoms, as well as determining the boundary of multiple inclusions with different stiffness. This approach opens up the feasibility to combine medical ultrasound imaging and SW-OCE for high-resolution localized quantitative measurement of tissue biomechanical property.

  5. A hardware model of the auditory periphery to transduce acoustic signals into neural activity

    PubMed Central

    Tateno, Takashi; Nishikawa, Jun; Tsuchioka, Nobuyoshi; Shintaku, Hirofumi; Kawano, Satoyuki

    2013-01-01

    To improve the performance of cochlear implants, we have integrated a microdevice into a model of the auditory periphery with the goal of creating a microprocessor. We constructed an artificial peripheral auditory system using a hybrid model in which polyvinylidene difluoride was used as a piezoelectric sensor to convert mechanical stimuli into electric signals. To produce frequency selectivity, the slit on a stainless steel base plate was designed such that the local resonance frequency of the membrane over the slit reflected the transfer function. In the acoustic sensor, electric signals were generated based on the piezoelectric effect from local stress in the membrane. The electrodes on the resonating plate produced relatively large electric output signals. The signals were fed into a computer model that mimicked some functions of inner hair cells, inner hair cell–auditory nerve synapses, and auditory nerve fibers. In general, the responses of the model to pure-tone burst and complex stimuli accurately represented the discharge rates of high-spontaneous-rate auditory nerve fibers across a range of frequencies greater than 1 kHz and middle to high sound pressure levels. Thus, the model provides a tool to understand information processing in the peripheral auditory system and a basic design for connecting artificial acoustic sensors to the peripheral auditory nervous system. Finally, we discuss the need for stimulus control with an appropriate model of the auditory periphery based on auditory brainstem responses that were electrically evoked by different temporal pulse patterns with the same pulse number. PMID:24324432

  6. Quantitative analysis of temperature dependent acoustic trapping characteristics by using concentric annular type dual element ultrasonic transducer.

    PubMed

    Chung, In-Young; Lee, Jungwoo

    2015-02-01

    This paper presents the temperature dependence of lateral acoustic trapping capability by probing the speed of sound in individual lipid droplets at a given temperature of water and measuring its corresponding displacement, a value for quantitatively evaluating a spring-like behavior of the acoustic trap with certain strength. A 20/40 MHz dual element LiNbO3 ultrasonic transducer is fabricated to simultaneously perform both transverse trapping and sound speed measurement for each droplet over a discrete temperature range from 20°C to 30°C. Time of flight method is employed for pulse tracking that determines the arrival time of an echo reflected back from either a trapped droplet or a mylar film. The estimated speeds of sound in water and droplets are 1484.8 m/s and 1431.6 m/s at 20°C, while 1506.0 m/s and 1400.6 m/s at 30°C, respectively. As the temperature rises, the sound speed in droplets decreases at an average rate of 3.1 m/s/°C, and the speed in water increases at 2.1 m/s/°C. The average displacement varies from 150.0 μm to 179.0 μm with an increasing rate of 2.9 μm/°C, and its standard deviation is obtained between 1.0 μm and 2.0 μm over the same temperature range. Reduced sound speed as a function of rising temperature results in increased displacement, indicating that the trapping strength is adjustable by regulating ambient temperature in water as well as by changing transducer excitation parameters. Therefore, the results suggest that the temperature dependence of this trapping technique can be exploited for developing a remote manipulation tool of micron-sized particles in a thermally fluctuating environment. It is also shown that any deviated trapping strength caused by thermal disturbance near the trap can be restored to its desired level by compensating either temperature difference or trapping system condition.

  7. Diffraction-free acoustic detection for optoacoustic depth profiling of tissue using an optically transparent polyvinylidene fluoride pressure transducer operated in backward and forward mode.

    PubMed

    Jaeger, Michael; Niederhauser, Joël J; Hejazi, Marjaneh; Frenz, Martin

    2005-01-01

    An optoacoustic detection method suitable for depth profiling of optical absorption of layered or continuously varying tissue structures is presented. Detection of thermoelastically induced pressure transients allows reconstruction of optical properties of the sample to a depth of several millimeters with a spatial resolution of 24 mum. Acoustic detection is performed using a specially designed piezoelectric transducer, which is transparent for optical radiation. Thus, ultrasonic signals can be recorded at the same position the tissue is illuminated. Because the optoacoustical sound source is placed in the pulsed-acoustic near field of the pressure sensor, signal distortions commonly associated with acoustical diffraction are eliminated. Therefore, the acoustic signals mimic exactly the depth profile of the absorbed energy. This is illustrated by imaging the absorption profile of a two-layered sample with different absorption coefficients, and of a dye distribution while diffusing into a gelatin phantom.

  8. Growth and optimization of piezoelectric single crystal transducers for energy harvesting from acoustic sources

    NASA Astrophysics Data System (ADS)

    Dhar, Romit

    Low power requirements of modern sensors and electronics have led to the examination of the feasibility of several energy harvesting schemes. This thesis describes the fabrication and performance of an acoustic energy harvester with single crystal piezoelectric unimorph. The unimorphs were fabricated from single crystal relaxor ferroelectric (1-x)PMN - xPT grown with x = 0.3 and 0.32 as the starting composition. It is demonstrated that significant power can be harvested using unimorph structures from an acoustic field at resonance. Passive circuit components were used for output circuit with a resistive load in series with a tunable inductor. A tuning capacitor connected in parallel to the device further increased the power output by matching the impedance of the unimorph. The power harvested can be either used directly for running low-power devices or can be stored in a rechargeable battery. A comparison of the performance of PMN-PT and PZT unimorphs at the resonance of the coupled structure under identical excitation conditions was done. For a certain optimized thickness ratio and circuit parameters, the single crystal PMN-PT unimorph generated 30 mW of power while a PZT unimorph generated 7.5 mW at resonance and room temperature. The harvested output power from the single crystal PMN-PT unimorphs depends on several material properties, physical and ambient parameters and an effort has been made to study their effect on the performance. A self-seeding high pressure Bridgman (HPB) technique was used to grow the PMN-PT single crystal ingots in a cost-effective way in our laboratories. Several techniques of material processing were developed to fabricate the PMN-PT single crystal unimorphs from as grown bulk ingots. This growth technique produced good quality single crystals for our experiments, with a k33 = 0.91 for a <001> oriented bar.

  9. Classification of ASASSN-17em/AT2017cts

    NASA Astrophysics Data System (ADS)

    Bersier, David

    2017-04-01

    We obtained a spectrum of the candidate supernova ASASSN-17em/AT2017cts (ATEL #10241), using the SPRAT spectrograph mounted on the robotic 2m Liverpool Telescope at the Roque de los Muchachos observatory (La Palma).

  10. The design, characterization, and comparison of MEMS comb-drive acoustic emission transducers with the principles of area-change and gap-change

    NASA Astrophysics Data System (ADS)

    Kabir, Minoo; Saboonchi, Hossain; Ozevin, Didem

    2015-04-01

    Comb-drive transducers are made of interdigitized fingers formed by the stationary part known as stator and the moving part known as rotor, and based on the transduction principle of capacitance change. They can be designed as area-change or gap-change mechanism to convert the mechanical signal at in-plane direction into electrical output. The comb-drive transducers can be utilized to differentiate the wave motion in orthogonal directions when they are utilized with the outof- plane transducers. However, their sensitivity is weak to detect the wave motion released by newly formed damage surfaces. In this study, Micro-Electro-Mechanical System (MEMS) comb-drive Acoustic Emission (AE) transducer designs with two different mechanisms are designed, characterized and compared for sensing high frequency wave propagation. The MEMS AE transducers are manufactured using MetalMUMPs (Metal Multi-User MEMS Processes), which use electroplating technique for highly elevated microstructure geometries. Each type of the transducers is numerically modeled using COMSOL Multiphysics program in order to determine the sensitivity based on the applied load. The transducers are experimentally characterized and compared to the numerical models. The experiments include laser excitation to control the direction of the wave generation, and actual crack growth monitoring of aluminum 7075 specimens loaded under fatigue. Behavior and responses of the transducers are compared based on the parameters such as waveform signature, peak frequency, damping, sensitivity, and signal to noise ratio. The comparisons between the measured parameters are scaled according to the respective capacitance of each sensor in order to determine the most sensitive design geometry.

  11. Phantom evaluation of stacked-type dual-frequency 1-3 composite transducers: A feasibility study on intracavitary acoustic angiography.

    PubMed

    Kim, Jinwook; Li, Sibo; Kasoji, Sandeep; Dayton, Paul A; Jiang, Xiaoning

    2015-12-01

    In this paper, we present phantom evaluation results of a stacked-type dual-frequency 1-3 piezoelectric composite transducer as a feasibility study for intracavitary acoustic angiography. Our previous design (6.5/30 MHz PMN-PT single crystal transducer) for intravascular contrast ultrasound imaging exhibited a contrast-to-tissue ratio (CTR) of 12 dB with a penetration depth of 2.5 mm. For improved penetration depth (>3 mm) and comparable contrast-to-tissue ratio (>12 dB), we evaluated a lower frequency 2/14 MHz PZT 1-3 composite transducer. Superharmonic imaging performance of this transducer and a detailed characterization of key parameters for acoustic angiography are presented. The 2/14 MHz arrangement demonstrated a -6 dB fractional bandwidth of 56.5% for the transmitter and 41.8% for the receiver, and produced sufficient peak-negative pressures (>1.5 MPa) at 2 MHz to induce a strong nonlinear harmonic response from microbubble contrast agents. In an in-vitro contrast ultrasound study using a tissue mimicking phantom and 200 μm cellulose microvessels, higher harmonic microbubble responses, from the 5th through the 7th harmonics, were detected with a signal-to-noise ratio of 16 dB. The microvessels were resolved in a two-dimensional image with a -6dB axial resolution of 615 μm (5.5 times the wavelength of 14 MHz waves) and a contrast-to-tissue ratio of 16 dB. This feasibility study, including detailed explanation of phantom evaluation and characterization procedures for key parameters, will be useful for the development of future dual-frequency array transducers for intracavitary acoustic angiography.

  12. 2 kHz high power smart transducer for acoustic sub-bottom profiling applications

    NASA Astrophysics Data System (ADS)

    Sathishkumar, R.

    2013-09-01

    In this study, a 2 kHz Tonpilz projector was designed using a Terfenol-D and modeled in ATILA. For the purpose of modeling studies, it has been determined that a radiating head mass exhibits better transmitting current response (TCR) at 136 mm diameter, where the resonance occurs at 2.4 kHz and the peak value of 118 dB re 1 μPa/A at 1 m occurs at 12 kHz. Also bolt at a 46 mm distance from the center of the head mass offers resonance at 2.4 kHz, and the peak value of 115.3 dB re 1 μPa/A at 1m occurs at 11.5 kHz. This optimized design is fabricated and molded with polyurethane of 3 mm thickness. The prototype was tested at the Acoustic Test Facility (ATF) of National Institute of Ocean Technology (NIOT) for its underwater performances. Based on the result, the fundamental resonance was determined to be 2.18 kHz and the peak value of TCR of 182 dB re 1 μPa/A at 1m occurs at 14 kHz. The maximum value of the RS was found to be -190 dB re 1V/μPa at 1m at a frequency of 2.1 kHz.

  13. APPLICATION OF LARGE APERTURE EMATS TO WELD INSPECTION

    SciTech Connect

    Maclauchlan, D. T.; Clark, S. P.; Hancock, J. W.

    2008-02-28

    One of the most significant developments in EMAT operation is the incorporation of phased array techniques. Phased array EMATs enable electronic beam steering and focusing while operating with temporally short pulses for good range resolution. Using phased array EMAT operation, multiple high powered pulsers are combined in the generation of the ultrasonic wave and multiple elements are combined in the reception of the ultrasonic wave, for improved sensitivity. EMATs make it practical to operate with shear horizontal (SH) waves and scan over a metal part's surface. An EMAT generated line force at the surface launches shear horizontal waves with uniform amplitude for beam angles from -90 deg. to 90 deg. Shear horizontal waves also reflect without mode conversion from surfaces that are parallel to the polarization of the shear wave displacements. The combination of these advantages makes phased array EMATs well suited for weld inspection. Recently, BWXT Services has developed a 32 active channel EMAT phased array system for operation up to 5 MHz. In addition, each element can be constructed with several sub-elements, alternating in polarity, to effectively multiply the number of active elements for a restricted range of beam angles. For example by using elements comprised of 4 sub elements, a 128 active element aperture designed for operation with a nominal 60 deg. beam angle provides good beam steering and focusing performance for 45 deg. to 70 deg. beam angles. The large active apertures allow the use of highly focused beams for good defect detection and high resolution imaging of weld defects. Application of this system to weld inspections has verified that good defect detection and imaging is possible. In addition, operation with SH waves has proven to provide improved detection of lack of fusion at the cap and root of the weld for certain weld geometries. The system has also been used to demonstrate the inspection of submerged metal arc welds while welding.

  14. Fabrication of broadband poly(vinylidene difluoride-trifluroethylene) line-focus ultrasonic transducers for surface acoustic wave measurements of anisotropy of a (100) silicon wafer.

    PubMed

    Lu, Yan; He, Cunfu; Song, Guorong; Wu, Bin; Chung, Cheng-Hsien; Lee, Yung-Chun

    2014-01-01

    This paper investigates a new method for fabrication of broadband line-focus ultrasonic transducers by sol-gel spin-coating the poly(vinylidene difluoride-trifluroethylene) [P(VDF-TrFE)] copolymer film on a concave fine-polished beryllium copper backing. The ferroelectric hysteresis loops of the P(VDF-TrFE) films spin-coated from different molar ratios of VDF/TrFE, 77/23 and 55/45, were measured to select the better mixture. Owing to the better acoustic matching to water, compared with lead zirconate titanate (PZT), the fabricated transducers show relatively wide bandwidth of approximately 50 MHz with high central frequency of 60 MHz obtained at the focal plane when a fused-quartz acts as a reflecting target. Each one of the two finished transducers has a focal length of 5mm and a full aperture angle of 90°. After applying the specially developed digital signal processing algorithm to the defocusing experiment data, which is called V(f,z) analysis method based on two-dimensional fast Fourier transform (2-D FFT), the operating frequency can extend from several MHz to over 90 MHz. Surface acoustic wave (SAW) velocities of a typical (100) silicon wafer was measured along various directions between [100] and [010] to represent the anisotropic features.

  15. Inferring the acoustic dead-zone volume by split-beam echo sounder with narrow-beam transducer on a noninertial platform.

    PubMed

    Patel, Ruben; Pedersen, Geir; Ona, Egil

    2009-02-01

    Acoustic measurement of near-bottom fish with a directional transducer is generally problematical because the powerful bottom echo interferes with weaker echoes from fish within the main lobe but at greater ranges than that of the bottom. The volume that is obscured is called the dead zone. This has already been estimated for the special case of a flat horizontal bottom when observed by an echo sounder with a stable vertical transducer beam [Ona, E., and Mitson, R. B. (1996). ICES J. Mar. Sci. 53, 677-690]. The more general case of observation by a split-beam echo sounder with a transducer mounted on a noninertial platform is addressed here. This exploits the capability of a split-beam echo sounder to measure the bottom slope relative to the beam axis and thence to allow the dead-zone volume over a flat but sloping bottom to be estimated analytically. The method is established for the Simrad EK60 scientific echo sounder, with split-beam transducers operating at 18, 38, 70, 120, and 200 kHz. It is validated by comparing their estimates of seafloor slope near the Lofoten Islands, N67-70, with simultaneous measurements made by two hydrographic multibeam sonars, the Simrad EM100295 kHz and EM30030 kHz systems working in tandem.

  16. Magnetohydrodynamic Underwater Acoustic Transducer

    DTIC Science & Technology

    1986-12-01

    RL. GLNLA, CLNtI. GRLA. GRLB. GLID. GLAD I. GRAA. GRDA . LA. LB. A. RB 2. GXLN.A. GXLNLII GXRLA. GIRLD RFAL (.L VIA - CMPLX(O K-A) (’.0 CMPLX(O K-’.B...ADMITTANCE (OHMS) C COMM•ON / ZIP/ A L.LY.LZ,SRADRODCODRDM.COn.PI. BP.MCD.CON. FO. FF.FD COMPLEX ADMI LBB, CLAD. GRDA , CRAA REAL LLY. LZ. K ADII

  17. Generation, Diffraction and Radiation of Subsonic Flexural Waves on Membranes and Plates: Observations of Structural and Acoustical Wavefields.

    NASA Astrophysics Data System (ADS)

    Matula, Thomas John

    Electromagnetic acoustic wave transducers (EMATs) are described for generating low-frequency tone bursts on metalized membranes in air and elastic plates in water. Bursts on the membrane have phase velocities much less than the speed of sound in the surrounding air and are accompanied by plane evanescent waves. The frequency and time-domain responses of the EMAT and the dependence on gap spacing between the coupling coil and the membrane were studied. Wave -number selective optical and capacitive probes were used to measure the wave properties. Versions of these transducers are insensitive to long wavelength motion of the membrane. Diffraction of the burst by a sharp edge in air was observed as a function of the gap between the membrane and a razor edge. The scattered pressure decreases exponentially with increasing gap as expected from an approximate analysis of edge diffraction of evanescent waves. In related work an EMAT is used to generate 28 kHz tone bursts of bending waves on an aluminum plate. The bursts propagate down into water where the surrounding wavefield is probed. Observations described indicate that there occurs a branching of energy as the wave crosses the air-water interface. Radiation from subsonic flexural plate waves due to the discontinuity in fluid -loading is observed. It is partially analogous to the transition radiation of fast charged particles crossing a dielectric interface. The angular radiation pattern resembles that of a line quadrupole. Near the interface there exists an interference between the two energy branches in water that produces a series of pressure nulls. The pressure nulls are associated with a pi phase change in the wavefield and are indicators of wavefront dislocations. A computation of the wavefield in an unbounded fluid due to a line-moment excitation of a plate is comparable with the null pattern observed but differs in certain details.

  18. Calibration apparatus for recess mounted pressure transducers

    NASA Astrophysics Data System (ADS)

    Marcolini, Michael A.; Miller, William T., Jr.; Baals, Robert A.; Martin, Ruth M.

    1992-04-01

    Measurement of surface pressure fluctuations is important in aerodynamic studies and is conventionally accomplished via thin surface mounted transducers. These transducers contaminate the airflow, leading to the use of transducers located beneath the surface and communicating thereto via a pipette. This solution creates its own problem of transducer calibration due to the structure of the pipette. A calibration apparatus and method for calibrating a pressure transducer are provided. The pressure transducer is located within a test structure having a pipette leading from an outer structure surface to the pressure transducer. The calibration apparatus defines an acoustic cavity. A first end of the acoustic cavity is adapted to fluidly communicate with the pipette leading to the pressure transducer, wherein a channel is formed from the acoustic cavity to the transducer. An acoustic driver is provided for acoustically exciting fluid in the acoustic cavity to generate pressure waves which propagate to the pressure transducer. A pressure sensing microphone is provided for sensing the pressure fluctuations in the cavity near the cavity end, whereby this sensed pressure is compared with a simultaneously pressure sensed by the pressure transducer to permit calibration of the pressure transducer sensings. Novel aspects of the present invention include its use of a calibration apparatus to permit in-situ calibration of recess mounted pressure transducers.

  19. Acoustic Tooth Cleaner

    NASA Technical Reports Server (NTRS)

    Heyman, J. S.

    1984-01-01

    Acoustically-energized water jet aids in plaque breakdown. Acoustic Wand includes acoustic transducer 1/4 wave plate, and tapered cone. Together elements energize solution of water containing mild abrasive injected into mouth to help prevent calculous buildup.

  20. A Preliminary Engineering Design of Intravascular Dual-Frequency Transducers for Contrast-Enhanced Acoustic Angiography and Molecular Imaging

    PubMed Central

    Ma, Jianguo; Martin, K. Heath; Dayton, Paul A.; Jiang, Xiaoning

    2014-01-01

    Current intravascular ultrasound (IVUS) probes are not optimized for contrast detection because of their design for high-frequency fundamental-mode imaging. However, data from transcutaneous contrast imaging suggests the possibility of utilizing contrast ultrasound for molecular imaging or vasa vasorum assessment to further elucidate atherosclerotic plaque deposition. This paper presents the design, fabrication, and characterization of a small-aperture (0.6 × 3 mm) IVUS probe optimized for high-frequency contrast imaging. The design utilizes a dual-frequency (6.5 MHz/30 MHz) transducer arrangement for exciting microbubbles at low frequencies (near their resonance) and detecting their broadband harmonics at high frequencies, minimizing detected tissue backscatter. The prototype probe is able to generate nonlinear microbubble response with more than 1.2 MPa of rarefractional pressure (mechanical index: 0.48) at 6.5 MHz, and is also able to detect microbubble response with a broadband receiving element (center frequency: 30 MHz, −6-dB fractional bandwidth: 58.6%). Nonlinear super-harmonics from microbubbles flowing through a 200-μm-diameter micro-tube were clearly detected with a signal-to-noise ratio higher than 12 dB. Preliminary phantom imaging at the fundamental frequency (30 MHz) and dual-frequency super-harmonic imaging results suggest the promise of small aperture, dual-frequency IVUS transducers for contrast-enhanced IVUS imaging. PMID:24801226

  1. Improved Piezoelectric Loudspeakers And Transducers

    NASA Technical Reports Server (NTRS)

    Regan, Curtis Randall; Jalink, Antony; Hellbaum, Richard F.; Rohrbach, Wayne W.

    1995-01-01

    Loudspeakers and related acoustic transducers of improved type feature both light weight and energy efficiency of piezoelectric transducers and mechanical coupling efficiency. Active component of transducer made from wafer of "rainbow" piezoelectric material, ceramic piezoelectric material chemically reduced on one face. Chemical treatment forms wafer into dishlike shallow section of sphere. Both faces then coated with electrically conductive surface layers serving as electrodes. Applications include high-fidelity loudspeakers, and underwater echo ranging devices.

  2. Modeling of phased array transducers.

    PubMed

    Ahmad, Rais; Kundu, Tribikram; Placko, Dominique

    2005-04-01

    Phased array transducers are multi-element transducers, where different elements are activated with different time delays. The advantage of these transducers is that no mechanical movement of the transducer is needed to scan an object. Focusing and beam steering is obtained simply by adjusting the time delay. In this paper the DPSM (distributed point source method) is used to model the ultrasonic field generated by a phased array transducer and to study the interaction effect when two phased array transducers are placed in a homogeneous fluid. Earlier investigations modeled the acoustic field for conventional transducers where all transducer points are excited simultaneously. In this research, combining the concepts of delayed firing and the DPSM, the phased array transducers are modeled semi-analytically. In addition to the single transducer modeling the ultrasonic fields from two phased array transducers placed face to face in a fluid medium is also modeled to study the interaction effect. The importance of considering the interaction effect in multiple transducer modeling is discussed, pointing out that neighboring transducers not only act as ultrasonic wave generators but also as scatterers.

  3. Real-time monitoring of focused ultrasound blood-brain barrier opening via subharmonic acoustic emission detection: implementation of confocal dual-frequency piezoelectric transducers.

    PubMed

    Tsai, Chih-Hung; Zhang, Jia-Wei; Liao, Yi-Yi; Liu, Hao-Li

    2016-04-07

    Burst-tone focused ultrasound exposure in the presence of microbubbles has been demonstrated to be effective at inducing temporal and local opening of the blood-brain barrier (BBB), which promises significant clinical potential to deliver therapeutic molecules into the central nervous system (CNS). Traditional contrast-enhanced imaging confirmation after focused ultrasound (FUS) exposure serves as a post-operative indicator of the effectiveness of FUS-BBB opening, however, an indicator that can concurrently report the BBB status and BBB-opening effectiveness is required to provide effective feedback to implement this treatment clinically. In this study, we demonstrate the use of subharmonic acoustic emission detection with implementation on a confocal dual-frequency piezoelectric ceramic structure to perform real-time monitoring of FUS-BBB opening. A confocal dual-frequency (0.55 MHz/1.1 MHz) focused ultrasound transducer was designed. The 1.1 MHz spherically-curved ceramic was employed to deliver FUS exposure to induce BBB-opening, whereas the outer-ring 0.55 MHz ceramic was employed to detect the subharmonic acoustic emissions originating from the target position. In stage-1 experiments, we employed spectral analysis and performed an energy spectrum density (ESD) calculation. An optimized 0.55 MHz ESD level change was shown to effectively discriminate the occurrence of BBB-opening. Wideband acoustic emissions received from 0.55 MHz ceramics were also analyzed to evaluate its correlations with erythrocyte extravasations. In stage-2 real-time monitoring experiments, we applied the predetermined ESD change as a detection threshold in PC-controlled algorithm to predict the FUS exposure intra-operatively. In stage-1 experiment, we showed that subharmonic ESD presents distinguishable dynamics between intact BBB and opened BBB, and therefore a threshold ESD change level (5.5 dB) can be identified for BBB-opening prediction. Using this ESD change threshold detection as a

  4. Real-time monitoring of focused ultrasound blood-brain barrier opening via subharmonic acoustic emission detection: implementation of confocal dual-frequency piezoelectric transducers

    NASA Astrophysics Data System (ADS)

    Tsai, Chih-Hung; Zhang, Jia-Wei; Liao, Yi-Yi; Liu, Hao-Li

    2016-04-01

    Burst-tone focused ultrasound exposure in the presence of microbubbles has been demonstrated to be effective at inducing temporal and local opening of the blood-brain barrier (BBB), which promises significant clinical potential to deliver therapeutic molecules into the central nervous system (CNS). Traditional contrast-enhanced imaging confirmation after focused ultrasound (FUS) exposure serves as a post-operative indicator of the effectiveness of FUS-BBB opening, however, an indicator that can concurrently report the BBB status and BBB-opening effectiveness is required to provide effective feedback to implement this treatment clinically. In this study, we demonstrate the use of subharmonic acoustic emission detection with implementation on a confocal dual-frequency piezoelectric ceramic structure to perform real-time monitoring of FUS-BBB opening. A confocal dual-frequency (0.55 MHz/1.1 MHz) focused ultrasound transducer was designed. The 1.1 MHz spherically-curved ceramic was employed to deliver FUS exposure to induce BBB-opening, whereas the outer-ring 0.55 MHz ceramic was employed to detect the subharmonic acoustic emissions originating from the target position. In stage-1 experiments, we employed spectral analysis and performed an energy spectrum density (ESD) calculation. An optimized 0.55 MHz ESD level change was shown to effectively discriminate the occurrence of BBB-opening. Wideband acoustic emissions received from 0.55 MHz ceramics were also analyzed to evaluate its correlations with erythrocyte extravasations. In stage-2 real-time monitoring experiments, we applied the predetermined ESD change as a detection threshold in PC-controlled algorithm to predict the FUS exposure intra-operatively. In stage-1 experiment, we showed that subharmonic ESD presents distinguishable dynamics between intact BBB and opened BBB, and therefore a threshold ESD change level (5.5 dB) can be identified for BBB-opening prediction. Using this ESD change threshold detection as a

  5. Simulation of ultrasonic and EMAT arrays using FEM and FDTD.

    PubMed

    Xie, Yuedong; Yin, Wuliang; Liu, Zenghua; Peyton, Anthony

    2016-03-01

    This paper presents a method which combines electromagnetic simulation and ultrasonic simulation to build EMAT array models. For a specific sensor configuration, Lorentz forces are calculated using the finite element method (FEM), which then can feed through to ultrasonic simulations. The propagation of ultrasound waves is numerically simulated using finite-difference time-domain (FDTD) method to describe their propagation within homogenous medium and their scattering phenomenon by cracks. Radiation pattern obtained with Hilbert transform on time domain waveforms is proposed to characterise the sensor in terms of its beam directivity and field distribution along the steering angle.

  6. Analysis of binary mixtures of aqueous aromatic hydrocarbons with low-phase-noise shear-horizontal surface acoustic wave sensors using multielectrode transducer designs.

    PubMed

    Bender, Florian; Mohler, Rachel E; Ricco, Antonio J; Josse, Fabien

    2014-11-18

    The present work investigates a compact sensor system that provides rapid, real-time, in situ measurements of the identities and concentrations of aromatic hydrocarbons at parts-per-billion concentrations in water through the combined use of kinetic and thermodynamic response parameters. The system uses shear-horizontal surface acoustic wave (SH-SAW) sensors operating directly in the liquid phase. The 103 MHz SAW sensors are coated with thin sorbent polymer films to provide the appropriate limits of detection as well as partial selectivity for the analytes of interest, the BTEX compounds (benzene, toluene, ethylbenzene, and xylenes), which are common indicators of fuel and oil accidental releases in groundwater. Particular emphasis is placed on benzene, a known carcinogen and the most challenging BTEX analyte with regard to both regulated levels and its solubility properties. To demonstrate the identification and quantification of individual compounds in multicomponent aqueous samples, responses to binary mixtures of benzene with toluene as well as ethylbenzene were characterized at concentrations below 1 ppm (1 mg/L). The use of both thermodynamic and kinetic (i.e., steady-state and transient) responses from a single polymer-coated SH-SAW sensor enabled identification and quantification of the two BTEX compounds in binary mixtures in aqueous solution. The signal-to-noise ratio was improved, resulting in lower limits of detection and improved identification at low concentrations, by designing and implementing a type of multielectrode transducer pattern, not previously reported for chemical sensor applications. The design significantly reduces signal distortion and root-mean-square (RMS) phase noise by minimizing acoustic wave reflections from electrode edges, thus enabling limits of detection for BTEX analytes of 9-83 ppb (calculated from RMS noise); concentrations of benzene in water as low as ~100 ppb were measured directly. Reliable quantification of BTEX

  7. Transducer characterization

    SciTech Connect

    Cross, B. T.; Eoff, J. M.; Schuetz, L. J.; Cunningham, K. R.

    1980-07-02

    This report has been prepared specifically for ultrasonic transducer users within the Nondestructive Testing Evaluation (NDE) community of the weapons complex. The purpose of the report is to establish an initial set of uniform procedures for measuring and recording transducer performance data, and to establish a common foundation on which more comprehensive transducer performance evaluations may be added as future transducer performance criteria expands. Transducer parameters and the problems with measuring them are discussed and procedures for measuring transducer performance are recommended with special precautionary notes regarding critical aspects of each measurement. An important consideration regarding the recommended procedures is the cost of implementation. There are two distinct needs for transducer performance characterization in the complex. Production oriented users need a quick, reliable means to check a transducer to ascertain its suitability for continued service. Development groups and the Transducer Center need a comprehensive characterization means to collect adequate data to evaluate theoretical concepts or to build exact replacement transducers. The instrumentation, equipment, and procedures recommended for monitoring production transducers are utilitarian and provide only that information needed to determine transducer condition.

  8. A high temperature EMAT sensor for semi-solid metalworking

    SciTech Connect

    Maxfield, B.; Yu, C.J.; Dax, F.R.

    1995-12-31

    The relationship between solid fraction and temperature for aluminum alloys A356 and A357 were developed by Backerud et al. In the material`s semi-solid state, there are five distinct chemical reactions within the microstructure which change the amount of solid fraction. Reference 1 gives tables that summarize these reactions in the microstructure, the corresponding temperature and the resulting solid fraction. For these two SSM alloys (A356 and A357), approximately 50% of the solid is the primary alpha phase and the rest is the eutectic phase with different constituents. The characteristic temperatures represent the formation of each reaction. These temperatures are observed and confirmed for the SSM material during the laboratory heat tests, these reaction temperatures are 550 C, 555 C, 567 C and 575 C. The corresponding solid fraction for each reaction is 95--100%, 90--95%, 70--90% and 50--70%. A rapid change in solid fraction takes place between 567 to 575 C. Above 575 C, melting of the primary {alpha} phase occurs. It is necessary to monitor the SSM material temperature during heating which is done via an induction coil that surrounds the material. One good means of accomplishing this task is to generate a burst of ultrasound at the top of the cylindrical material using a pulsed laser and detecting the resulting ultrasonic pulse at the bottom surface using an EMAT receiver. This talk describes the EMAT receiver that was used and presents some of the result that they obtained.

  9. Guided acoustic wave inspection system

    SciTech Connect

    Chinn, Diane J.

    2004-10-05

    A system for inspecting a conduit for undesirable characteristics. A transducer system induces guided acoustic waves onto said conduit. The transducer system detects the undesirable characteristics of the conduit by receiving guided acoustic waves that contain information about the undesirable characteristics. The conduit has at least two sides and the transducer system utilizes flexural modes of propagation to provide inspection using access from only the one side of the conduit. Cracking is detected with pulse-echo testing using one transducer to both send and receive the guided acoustic waves. Thinning is detected in through-transmission testing where one transducer sends and another transducer receives the guided acoustic waves.

  10. Transducers for ultrasonic limb plethysmography

    NASA Technical Reports Server (NTRS)

    Nickell, W. T.; Wu, V. C.; Bhagat, P. K.

    1983-01-01

    The design, construction, and performance characteristics of ultasonic transducers suitable for limb plethysmography are presented. Both 3-mm-diameter flat-plate and 12-mm-diameter hemispheric ceramic transducers operating at 2 MHz were fitted in 1-mm thick epoxy-resin lens/acoustic-coupling structures and mounted in exercie-EKG electrode housings for placement on the calf using adhesive collars. The effects of transducer directional characteristics on performance under off-axis rotation and the electrical impedances of the transducers were measured: The flat transducer was found to be sensitive to rotation and have an impedance of 800 ohms; the hemispheric transducer, to be unaffected by rotation and have an impedance of 80 ohms. The use of hemispheric transducers as both transmitter and receiver, or of a flat transducer as transmitter and a hemispheric transducer as receiver, was found to produce adequate dimensional measurements, with minimum care in transducer placement, in short-term physiological experiments and long-term (up to 7-day) attachment tests.

  11. Acoustic force mapping in a hybrid acoustic-optical micromanipulation device supporting high resolution optical imaging† †Electronic supplementary information (ESI) available: Additional information about 1D model calculations for a piezoelectric transducer. See DOI: 10.1039/c6lc00182c Click here for additional data file.

    PubMed Central

    McDougall, Craig; MacDonald, Michael Peter; Ritsch-Marte, Monika

    2016-01-01

    Many applications in the life-sciences demand non-contact manipulation tools for forceful but nevertheless delicate handling of various types of sample. Moreover, the system should support high-resolution optical imaging. Here we present a hybrid acoustic/optical manipulation system which utilizes a transparent transducer, making it compatible with high-NA imaging in a microfluidic environment. The powerful acoustic trapping within a layered resonator, which is suitable for highly parallel particle handling, is complemented by the flexibility and selectivity of holographic optical tweezers, with the specimens being under high quality optical monitoring at all times. The dual acoustic/optical nature of the system lends itself to optically measure the exact acoustic force map, by means of direct force measurements on an optically trapped particle. For applications with (ultra-)high demand on the precision of the force measurements, the position of the objective used for the high-NA imaging may have significant influence on the acoustic force map in the probe chamber. We have characterized this influence experimentally and the findings were confirmed by model simulations. We show that it is possible to design the chamber and to choose the operating point in such a way as to avoid perturbations due to the objective lens. Moreover, we found that measuring the electrical impedance of the transducer provides an easy indicator for the acoustic resonances. PMID:27025398

  12. Piezoelectric transducer

    NASA Technical Reports Server (NTRS)

    Conragan, J.; Muller, R. S.

    1970-01-01

    Transducer consists of a hybrid thin film and a piezoelectric transistor that acts as a stress-sensitive device with built-in gain. It provides a stress/strain transducer that incorporates a signal amplification stage and sensor in a single package.

  13. Acoustic Transduction Materials and Devices

    DTIC Science & Technology

    1998-01-01

    are to Cymbal and Tonpilz transducer arrays for 3 - 50 kHz sonars, thin/thick film transducers for 10 - 100 MHz medical acoustic devices...Cymbal arrayed projectors, PMN Tonpilz tunable transducers , thin/thick film micro- Tonpilz transducers and controlling electronics. The Center for...emphasis is shifting to the acoustic vector sensor. Film transducers The goal is to use the tonpilz design to facilitate development of high

  14. Microinterferometer transducer

    DOEpatents

    Corey, III, Harry S.

    1979-01-01

    An air-bearing microinterferometer transducer is provided for increased accuracy, range and linearity over conventional displacement transducers. A microinterferometer system is housed within a small compartment of an air-bearing displacement transducer housing. A movable cube corner reflector of the interferometer is mounted to move with the displacement gauging probe of the transducer. The probe is disposed for axial displacement by means of an air-bearing. Light from a single frequency laser is directed into an interferometer system within the transducer housing by means of a self-focusing fiber optic cable to maintain light coherency. Separate fringe patterns are monitored by a pair of fiber optic cables which transmit the patterns to a detecting system. The detecting system includes a bidirectional counter which counts the light pattern fringes according to the direction of movement of the probe during a displacement gauging operation.

  15. Model of a Piezoelectric Transducer

    NASA Technical Reports Server (NTRS)

    Goodenow, Debra

    2004-01-01

    It's difficult to control liquid and gas in propellant tanks in zero gravity. A possible a design would utilize acoustic liquid manipulation (ALM) technology which uses ultrasonic beams conducted through a liquid and solid media, to push gas bubbles in the liquid to desirable locations. We can propel and control the bubble with acoustic radiation pressure by aiming the acoustic waves on the bubble s surface. This allows us to design a so called smart tank in which the ALM devices transfer the gas to the outer wall of the tank and isolating the liquid in the center. Because the heat transfer rate of a gas is lower of that of the liquid it would substantially decrease boil off and provide of for a longer storage life. The ALM beam is composed of little wavelets which are individual waves that constructively interfere with each other to produce a single, combined acoustic wave front. This is accomplished by using a set of synchronized ultrasound transducers arranged in an array. A slight phase offset of these elements allows us to focus and steer the beam. The device that we are using to produce the acoustic beam is called the piezoelectric transducer. This device converts electrical energy to mechanical energy, which appears in the form of acoustic energy. Therefore the behavior of the device is dependent on both the mechanical characteristics, such as its density, cross-sectional area, and its electrical characteristics, such as, electric flux permittivity and coupling factor. These devices can also be set up in a number of modes which are determined by the way the piezoelectric device is arranged, and the shape of the transducer. For this application we are using the longitudinal or thickness mode for our operation. The transducer also vibrates in the lateral mode, and one of the goals of my project is to decrease the amount of energy lost to the lateral mode. To model the behavior of the transducers I will be using Pspice, electric circuit modeling tool, to

  16. Acoustics

    NASA Technical Reports Server (NTRS)

    Goodman, Jerry R.; Grosveld, Ferdinand

    2007-01-01

    The acoustics environment in space operations is important to maintain at manageable levels so that the crewperson can remain safe, functional, effective, and reasonably comfortable. High acoustic levels can produce temporary or permanent hearing loss, or cause other physiological symptoms such as auditory pain, headaches, discomfort, strain in the vocal cords, or fatigue. Noise is defined as undesirable sound. Excessive noise may result in psychological effects such as irritability, inability to concentrate, decrease in productivity, annoyance, errors in judgment, and distraction. A noisy environment can also result in the inability to sleep, or sleep well. Elevated noise levels can affect the ability to communicate, understand what is being said, hear what is going on in the environment, degrade crew performance and operations, and create habitability concerns. Superfluous noise emissions can also create the inability to hear alarms or other important auditory cues such as an equipment malfunctioning. Recent space flight experience, evaluations of the requirements in crew habitable areas, and lessons learned (Goodman 2003; Allen and Goodman 2003; Pilkinton 2003; Grosveld et al. 2003) show the importance of maintaining an acceptable acoustics environment. This is best accomplished by having a high-quality set of limits/requirements early in the program, the "designing in" of acoustics in the development of hardware and systems, and by monitoring, testing and verifying the levels to ensure that they are acceptable.

  17. Ultrasonic transducer

    DOEpatents

    Taylor, Steven C.; Kraft, Nancy C.

    2007-03-13

    An ultrasonic transducer having an effective center frequency of about 42 MHz; a bandwidth of greater than 85% at 6 dB; a spherical focus of at least 0.5 inches in water; an F4 lens; a resolution sufficient to be able to detect and separate a 0.005 inch flat-bottomed hole at 0.005 inches below surface; and a beam size of approximately 0.006–0.008 inches measured off a 11/2 mm ball in water at the transducer's focal point.

  18. Lithium tetraborate transducer cuts

    NASA Astrophysics Data System (ADS)

    Kosinski, John; Ballato, Arthur; Lukaszek, Theodore

    1990-03-01

    Lithium tetraborate is a tetragonal material of considerable promise for frequency control and signal processing applications. It exhibits piezoelectric coupling values that fall between those of lithium niobate and quartz, but possesses orientations for which the temperature coefficient of frequency and delay time is zero for bulk and surface acoustic waves. In this report, we discuss the properties of two doubly rotated bulk wave resonator orientations having both first- and second-order temperature coefficients equal to zero. These are suitable for shear and compressional wave transducers in applications where very low temperature sensitivity is required simultaneously with moderately strong piezocoupling coefficients.

  19. Lithium tetraborate transducers

    NASA Astrophysics Data System (ADS)

    Ballato, Arthur; Kosinski, John A.; Lukaszek, Ted J.

    1991-01-01

    Lithium tetraborate is a tetragonal material of considerable promise for frequency control and signal processing applications. It exhibits piezoelectric coupling values that fall between those of lithium niobate and quartz, but possesses orientations for which the temperature coefficient of frequency and delay time is zero for bulk and surface acoustic waves. The properties of two doubly rotated bulk wave resonator orientations having first- and second-order temperature coefficients equal to zero are discussed. These are suitable for shear and compressional wave transducers in applications where very low temperature sensitivity is required simultaneously with moderately strong piezocoupling coefficients.

  20. How to design and construct multielement ultrasonic transducers

    NASA Astrophysics Data System (ADS)

    Burrier, R. A.; Claus, R. O.

    The practical 'how to' design and construction of multielement ultrasonic transducers are described. First, design procedures based on direct calculations of the desired acoustic field are reviewed. Second, techniques for implementing these designs using piezoelectric active elements are discussed. Finally, optical and acoustic test methods for transducer calibration are indicated.

  1. How to design and construct multielement ultrasonic transducers

    NASA Technical Reports Server (NTRS)

    Burrier, R. A.; Claus, R. O.

    1984-01-01

    The practical 'how to' design and construction of multielement ultrasonic transducers are described. First, design procedures based on direct calculations of the desired acoustic field are reviewed. Second, techniques for implementing these designs using piezoelectric active elements are discussed. Finally, optical and acoustic test methods for transducer calibration are indicated.

  2. Broadband, High-Temperature Ultrasonic Transducer

    NASA Technical Reports Server (NTRS)

    Parker, F. Raymond; Winfree, William P.; Barrows, Danny A.

    1995-01-01

    Materials chosen for endurance at high temperatures and acoustic coupling and damping. Acoustic transducer designed to exhibit broad frequency response and to survive temperatures close to melting points of brazing alloys. Attached directly and continuously to hot object monitored ultrasonically: for example, it can be attached to relatively cool spot on workpiece during brazing for taking ultrasonic quality-control measurements.

  3. Method and apparatus for generating acoustic energy

    DOEpatents

    Guerrero, Hector N.

    2002-01-01

    A method and apparatus for generating and emitting amplified coherent acoustic energy. A cylindrical transducer is mounted within a housing, the transducer having an acoustically open end and an acoustically closed end. The interior of the transducer is filled with an active medium which may include scattering nuclei. Excitation of the transducer produces radially directed acoustic energy in the active medium, which is converted by the dimensions of the transducer, the acoustically closed end thereof, and the scattering nuclei, to amplified coherent acoustic energy directed longitudinally within the transducer. The energy is emitted through the acoustically open end of the transducer. The emitted energy can be used for, among other things, effecting a chemical reaction or removing scale from the interior walls of containment vessels.

  4. PRESSURE TRANSDUCER

    DOEpatents

    Sander, H.H.

    1959-10-01

    A pressure or mechanical force transducer particularly adaptable to miniature telemetering systems is described. Basically the device consists of a transistor located within a magnetic field adapted to change in response to mechanical force. The conduction characteristics of the transistor in turn vary proportionally with changes in the magnetic flux across the transistor such that the output (either frequency of amplitude) of the transistor circuit is proportional to mechanical force or pressure.

  5. Pressure transducer

    DOEpatents

    Anderson, Thomas T.; Roop, Conard J.; Schmidt, Kenneth J.; Gunchin, Elmer R.

    1989-01-01

    A pressure transducer suitable for use in high temperature environments includes two pairs of induction coils, each pair being bifilarly wound together, and each pair of coils connected as opposite arms of a four arm circuit; an electrically conductive target moveably positioned between the coil pairs and connected to a diaphragm such that deflection of the diaphragm causes axial movement of the target and an unbalance in the bridge output.

  6. Pressure transducer

    DOEpatents

    Anderson, T.T.; Roop, C.J.; Schmidt, K.J.; Gunchin, E.R.

    1987-02-13

    A pressure transducer suitable for use in high temperature environments includes two pairs of induction coils, each pair being bifilarly wound together, and each pair of coils connected as opposite arms of a four arm circuit; an electrically conductive target moveably positioned between the coil pairs and connected to a diaphragm such that deflection of the diaphragm causes axial movement of the target and an unbalance in the bridge output. 7 figs.

  7. Ferrofluid Transducer.

    DTIC Science & Technology

    The patent discloses magnetic fluid transducer for producing a low-frequency sound field in a fluid medium. The device comprises a non-magnetic...cylindrical housing with end windows. The housing is surrounded by a magnetic-field-generator means and contains a magnetic fluid within the housing. The...magnetic field penetrates the housing and interacts with the magnetic fluid . A body force is developed within the fluid which produces an internal

  8. Stress wave focusing transducers

    SciTech Connect

    Visuri, S.R., LLNL

    1998-05-15

    Conversion of laser radiation to mechanical energy is the fundamental process behind many medical laser procedures, particularly those involving tissue destruction and removal. Stress waves can be generated with laser radiation in several ways: creation of a plasma and subsequent launch of a shock wave, thermoelastic expansion of the target tissue, vapor bubble collapse, and ablation recoil. Thermoelastic generation of stress waves generally requires short laser pulse durations and high energy density. Thermoelastic stress waves can be formed when the laser pulse duration is shorter than the acoustic transit time of the material: {tau}{sub c} = d/c{sub s} where d = absorption depth or spot diameter, whichever is smaller, and c{sub s} = sound speed in the material. The stress wave due to thermoelastic expansion travels at the sound speed (approximately 1500 m/s in tissue) and leaves the site of irradiation well before subsequent thermal events can be initiated. These stress waves, often evolving into shock waves, can be used to disrupt tissue. Shock waves are used in ophthalmology to perform intraocular microsurgery and photodisruptive procedures as well as in lithotripsy to fragment stones. We have explored a variety of transducers that can efficiently convert optical to mechanical energy. One such class of transducers allows a shock wave to be focused within a material such that the stress magnitude can be greatly increased compared to conventional geometries. Some transducer tips could be made to operate regardless of the absorption properties of the ambient media. The size and nature of the devices enable easy delivery, potentially minimally-invasive procedures, and precise tissue- targeting while limiting thermal loading. The transducer tips may have applications in lithotripsy, ophthalmology, drug delivery, and cardiology.

  9. Consideration of Design Parameters of Ultrasonic Transducer for Fruit

    NASA Astrophysics Data System (ADS)

    Kim, K. B.; Kim, M. S.; Lee, S. D.; Choi, M. Y.

    2005-04-01

    This study was conducted to develop the ultrasonic transducers for non-destructive contact measurement of fruits. The design parameters for ultrasonic transducer such as acoustical impedance of fruits, kinds of piezoelectric materials, ultrasonic wave frequency, and transducer diameter were investigated. In order to match the impedance between piezoelectric material and fruit, various materials were evaluated. And to control the bandwidth of ultrasonic wave of the transducer, various backing materials were fabricated and evaluated. Especially, the wear plate of the transducer was designed and fabricated considering curvature of fruit. Finally, the ultrasonic transducer having 100 kHz of central frequency were fabricated and tested.

  10. High energy, low frequency, ultrasonic transducer

    DOEpatents

    Brown, Albert E.

    2000-01-01

    A wide bandwidth, ultrasonic transducer to generate nondispersive, extensional, pulsed acoustic pressure waves into concrete reinforced rods and tendons. The wave propagation distance is limited to double the length of the rod. The transducer acoustic impedance is matched to the rod impedance for maximum transfer of acoustic energy. The efficiency of the transducer is approximately 60 percent, depending upon the type of active elements used in the transducer. The transducer input energy is, for example, approximately 1 mJ. Ultrasonic reflections will occur at points along the rod where there are changes of one percent of a wavelength in the rod diameter. A reduction in the rod diameter will reflect a phase reversed echo, as compared with the reflection from an incremental increase in diameter. Echo signal processing of the stored waveform permits a reconstruction of those echoes into an image of the rod. The ultrasonic transducer has use in the acoustic inspection of long (40+foot) architectural reinforcements and structural supporting members, such as in bridges and dams.

  11. Acoustic Translation of an Acoustically Levitated Sample

    NASA Technical Reports Server (NTRS)

    Barmatz, M. B.; Allen, J. L.

    1986-01-01

    Acoustic-levitation apparatus uses only one acoustic mode to move sample from one region of chamber to another. Sample heated and cooled quickly by translation between hot and cold regions of levitation chamber. Levitated sample is raised into furnace region by raising plunger. Frequency of sound produced by transducers adjusted by feedback system to maintain (102) resonant mode, which levitates sample midway between transducers and plunger regardless of plunger position.

  12. Multifunctional transducer

    NASA Technical Reports Server (NTRS)

    Feldstein, C.; Lewis, G. W.; Culler, V. H.; Merrbaum, S. (Inventor)

    1981-01-01

    Several parameters of a small region of a muscle tissue or other object, can be simultaneously measured using with minimal traumatizing or damage of the object, a trifunctional transducer which can determine the force applied by a muscle fiber, the displacement of the fiber, and the change in thickness of the fiber. The transducer has three legs with inner ends joined together and outer ends formed to piece the tissue and remain within it. Two of the legs are relatively stiff, to measure force applied by the tissue, and a third leg is relatively flexible to measure displacement of the tissue relative to one or both stiff legs, and with the three legs lying in a common plane so that the force and displacement measurements all relate to the same direction of muscle movements. A flexible loop is attached to one of the stiff legs to measure changes in muscle thickness, with the upper end of the loop fixed to the leg and the lower end of the loop bearing against the surface of the tissue and being free to slide on the leg.

  13. Method and means for measuring acoustic emissions

    DOEpatents

    Renken, Jr., Claus J.

    1976-01-06

    The detection of acoustic emissions emanating from an object is achieved with a capacitive transducer coupled to the object. The capacitive transducer is charged and then allowed to discharge with the rate of discharge being monitored. Oscillations in the rate of discharge about the normally exponential discharge curve for the capacitive transducer indicate the presence of acoustic emissions.

  14. Piezoelectric radiofrequency transducers as passive buried sensors

    NASA Astrophysics Data System (ADS)

    Rétornaz, T.; Friedt, J.-M.; Alzuaga, S.; Baron, T.; Lebrasseur, É.; Martin, G.; Laroche, T.; Ballandras, S.; Griselin, M.; Simonnet, J.-P.

    2012-09-01

    We demonstrate that single-piezoelectric substrate-based acoustic transducers act as ideal sensors for probing with various RADAR strategies. Because these sensors are intrinsically passive devices working in the radiofrequency range, they exhibit improved interrogation range and robustness with respect to silicon-based radio frequency identification tags. Both wideband (acoustic delay lines) and narrowband (acoustic resonators) transducers are shown to be compatible with pulse-mode and frequency-modulated continuous-wave RADAR strategies, respectively. We particularly focus on the ground-penetrating RADAR (GPR) application in which the lack of local energy source makes these sensors suitable candidates for buried applications in roads, building or civil engineering monitoring. A novel acoustic sensor concept - high-overtone bulk acoustic resonator - is especially suited as sensor interrogated by a wide range of antenna set, as demonstrated with GPR units working in the 100 and 200 MHz range.

  15. New Methods and Transducer Designs for Ultrasonic Diagnostics and Therapy

    NASA Astrophysics Data System (ADS)

    Rybyanets, A. N.; Naumenko, A. A.; Sapozhnikov, O. A.; Khokhlova, V. A.

    Recent advances in the field of physical acoustics, imaging technologies, piezoelectric materials, and ultrasonic transducer design have led to emerging of novel methods and apparatus for ultrasonic diagnostics, therapy and body aesthetics. The paper presents the results on development and experimental study of different high intensity focused ultrasound (HIFU) transducers. Technological peculiarities of the HIFU transducer design as well as theoretical and numerical models of such transducers and the corresponding HIFU fields are discussed. Several HIFU transducers of different design have been fabricated using different advanced piezoelectric materials. Acoustic field measurements for those transducers have been performed using a calibrated fiber optic hydrophone and an ultrasonic measurement system (UMS). The results of ex vivo experiments with different tissues as well as in vivo experiments with blood vessels are presented that prove the efficacy, safety and selectivity of the developed HIFU transducers and methods.

  16. Focused high frequency needle transducer for ultrasonic imaging and trapping

    NASA Astrophysics Data System (ADS)

    Hsu, Hsiu-Sheng; Zheng, Fan; Li, Ying; Lee, Changyang; Zhou, Qifa; Kirk Shung, K.

    2012-07-01

    A miniature focused needle transducer (<1 mm) was fabricated using the press-focusing technique. The measured pulse-echo waveform showed the transducer had center frequency of 57.5 MHz with 54% bandwidth and 14 dB insertion loss. To evaluate the performance of this type of transducer, invitro ultrasonic biomicroscopy imaging on the rabbit eye was obtained. Moreover, a single beam acoustic trapping experiment was performed using this transducer. Trapping of targeted particle size smaller than the ultrasonic wavelength was observed. Potential applications of these devices include minimally invasive measurements of retinal blood flow and single beam acoustic trapping of microparticles.

  17. Ultrasonic Transducer Irradiation Test Results

    SciTech Connect

    Daw, Joshua; Palmer, Joe; Ramuhalli, Pradeep; Keller, Paul; Montgomery, Robert; Chien, Hual-Te; Kohse, Gordon; Tittmann, Bernhard; Reinhardt, Brian; Rempe, Joy

    2015-02-01

    Ultrasonic technologies offer the potential for high-accuracy and -resolution in-pile measurement of a range of parameters, including geometry changes, temperature, crack initiation and growth, gas pressure and composition, and microstructural changes. Many Department of Energy-Office of Nuclear Energy (DOE-NE) programs are exploring the use of ultrasonic technologies to provide enhanced sensors for in-pile instrumentation during irradiation testing. For example, the ability of small diameter ultrasonic thermometers (UTs) to provide a temperature profile in candidate metallic and oxide fuel would provide much needed data for validating new fuel performance models. Other ongoing efforts include an ultrasonic technique to detect morphology changes (such as crack initiation and growth) and acoustic techniques to evaluate fission gas composition and pressure. These efforts are limited by the lack of identified ultrasonic transducer materials capable of long term performance under irradiation test conditions. For this reason, the Pennsylvania State University (PSU) was awarded an ATR NSUF project to evaluate the performance of promising magnetostrictive and piezoelectric transducers in the Massachusetts Institute of Technology Research Reactor (MITR) up to a fast fluence of at least 1021 n/cm2. The goal of this research is to characterize and demonstrate magnetostrictive and piezoelectric transducer operation during irradiation, enabling the development of novel radiation-tolerant ultrasonic sensors for use in Material Testing Reactors (MTRs). As such, this test is an instrumented lead test and real-time transducer performance data is collected along with temperature and neutron and gamma flux data. The current work bridges the gap between proven out-of-pile ultrasonic techniques and in-pile deployment of ultrasonic sensors by acquiring the data necessary to demonstrate the performance of ultrasonic transducers. To date, one piezoelectric

  18. Acoustic imaging system

    DOEpatents

    Smith, Richard W.

    1979-01-01

    An acoustic imaging system for displaying an object viewed by a moving array of transducers as the array is pivoted about a fixed point within a given plane. A plurality of transducers are fixedly positioned and equally spaced within a laterally extending array and operatively directed to transmit and receive acoustic signals along substantially parallel transmission paths. The transducers are sequentially activated along the array to transmit and receive acoustic signals according to a preestablished sequence. Means are provided for generating output voltages for each reception of an acoustic signal, corresponding to the coordinate position of the object viewed as the array is pivoted. Receptions from each of the transducers are presented on the same display at coordinates corresponding to the actual position of the object viewed to form a plane view of the object scanned.

  19. Acoustic sensors for fission gas characterization: R and D skills devoted to innovative instrumentation in MTR, non-destructive devices in hot lab facilities and specific transducers for measurements of LWR rods in nuclear plants

    SciTech Connect

    Ferrandis, J.Y.; Leveque, G.; Rosenkrantz, E.; Augereau, F.; Combette, P.

    2015-07-01

    First of all, we will present the main principle of the method. A piezoelectric transducer, driven by a pulse generator, generates the acoustic waves in a cavity that may be the fuel rod or a chamber connected to an instrumented rod. The composition determination consists in measuring the time of flight of the acoustic signal emitted. The pressure can be estimated by a calibration process, above the measurement of the amplitude of the signal. Two projects will then be detailed. The first project consists in the development of advanced instrumentation for in-pile experiments in Material Testing Reactor. It constitutes a main goal for the improvement of the nuclear fuel behavior knowledge. This acoustic method was tested with success during a first experiment called REMORA 3, and the results were used to differentiate helium and fission gas release kinetics under transient operating conditions. This experiment was lead at OSIRIS reactor (CEA Saclay, France). As a first step of the development program, we performed in-pile tests on the most sensitive component, i.e., the piezoelectric transducer. For this purpose, the active part of this sensor has been qualified on gamma and neutron radiations and at high temperature. Various industrial piezo-ceramics were exposed to a high activity Cobalt source for few days. The cumulated dose was ranged from 50 kGy up to 2 MGy. Next, these devices were placed inside a Material Test Reactor to investigate their reliability towards neutron fluence. The final fluence after 150 days of irradiation was up to 1.6.10{sup 21}n/cm{sup 2} (for thermal neutron). Irreversible variations have been measured. Next, a specific sensor has been implemented on an instrumented fuel rod and tested in the frame of a REMORA 3 Irradiation test. It was the first experiment under high mixed, temperature neutron and gamma flux. A first irradiation phase took place in March 2010 in the OSIRIS reactor and in November 2010 for the second step of the

  20. Measurement methods of ultrasonic transducer sensitivity.

    PubMed

    Xiao, Dingguo; Fan, Qiong; Xu, Chunguang; Zhang, Xiuhua

    2016-05-01

    Sensitivity is an important parameter to describe the electro-acoustic energy conversion efficiency of ultrasonic transducer. In this paper, the definition of sensitivity and reciprocity of ultrasonic transducer is studied. The frequency response function of a transducer is the spectrum of its sensitivity, which reflects the response sensitivity of the transducer for input signals at different frequencies. Four common methods which are used to measure the disc-vibrator transducer sensitivity are discussed in current investigation. The reciprocity method and the pulse-echo method are based on the reciprocity of the transducer. In the laser vibrometer method measurement, the normal velocity on the transducer radiating surface is directly measured by a laser vibrometer. In the measurement process of the hydrophone method, a calibrated hydrophone is used to measure the transmitted field. The validity of these methods is checked by experimental test. All of the four methods described are sufficiently accurate for transducer sensitivity measurement, while each method has its advantages and limitations. In practical applications, the appropriate method to measure transducer sensitivity should be selected based on actual conditions.

  1. Glass-windowed ultrasound transducers.

    PubMed

    Yddal, Tostein; Gilja, Odd Helge; Cochran, Sandy; Postema, Michiel; Kotopoulis, Spiros

    2016-05-01

    In research and industrial processes, it is increasingly common practice to combine multiple measurement modalities. Nevertheless, experimental tools that allow the co-linear combination of optical and ultrasonic transmission have rarely been reported. The aim of this study was to develop and characterise a water-matched ultrasound transducer architecture using standard components, with a central optical window larger than 10 mm in diameter allowing for optical transmission. The window can be used to place illumination or imaging apparatus such as light guides, miniature cameras, or microscope objectives, simplifying experimental setups. Four design variations of a basic architecture were fabricated and characterised with the objective to assess whether the variations influence the acoustic output. The basic architecture consisted of a piezoelectric ring and a glass disc, with an aluminium casing. The designs differed in piezoelectric element dimensions: inner diameter, ID=10 mm, outer diameter, OD=25 mm, thickness, TH=4 mm or ID=20 mm, OD=40 mm, TH=5 mm; glass disc dimensions OD=20-50 mm, TH=2-4 mm; and details of assembly. The transducers' frequency responses were characterised using electrical impedance spectroscopy and pulse-echo measurements, the acoustic propagation pattern using acoustic pressure field scans, the acoustic power output using radiation force balance measurements, and the acoustic pressure using a needle hydrophone. Depending on the design and piezoelectric element dimensions, the resonance frequency was in the range 350-630 kHz, the -6 dB bandwidth was in the range 87-97%, acoustic output power exceeded 1 W, and acoustic pressure exceeded 1 MPa peak-to-peak. 3D stress simulations were performed to predict the isostatic pressure required to induce material failure and 4D acoustic simulations. The pressure simulations indicated that specific design variations could sustain isostatic pressures up to 4.8 MPa.The acoustic simulations were able to

  2. New developments in ultrasonic transducers and transducer systems; Proceedings of the Meeting, San Diego, CA, July 21, 22, 1992

    NASA Astrophysics Data System (ADS)

    Lizzi, Frederic L.

    Attention is given to advances in materials and modeling transducer performance, the means to control ultrasonic beams and to measure their properties, the variety of array configurations, and novel transducer configurations and design considerations. Emphasis is placed on new developments in piezoelectric polymer ultrasound transducers and transducer systems; micromachined acoustic matching layers; a dual frequency piezoelectric transducer for medical applications; modeling refraction and attenuation effects in invasive ultrasound probes; design and evaluation of ultrasonic arrays using 1-3 connectivity composites; artifact reduction through the use of concave linear arrays; real-time 3D ultrasound imaging with a 1D fan-beam transducer array; some conceptual approaches to innovative medical ultrasound transducers; and enhanced bandwidth ultrasound transducers with multiple piezoelectric polymer layers. (No individual items are abstracted in this volume)

  3. Electromechanical acoustic liner

    NASA Technical Reports Server (NTRS)

    Sheplak, Mark (Inventor); Cattafesta, III, Louis N. (Inventor); Nishida, Toshikazu (Inventor); Horowitz, Stephen Brian (Inventor)

    2007-01-01

    A multi-resonator-based system responsive to acoustic waves includes at least two resonators, each including a bottom plate, side walls secured to the bottom plate, and a top plate disposed on top of the side walls. The top plate includes an orifice so that a portion of an incident acoustical wave compresses gas in the resonators. The bottom plate or the side walls include at least one compliant portion. A reciprocal electromechanical transducer coupled to the compliant portion of each of the resonators forms a first and second transducer/compliant composite. An electrical network is disposed between the reciprocal electromechanical transducer of the first and second resonator.

  4. Circumferential phased array of shear-horizontal wave magnetostrictive patch transducers for pipe inspection.

    PubMed

    Kim, Hoe Woong; Lee, Joo Kyung; Kim, Yoon Young

    2013-02-01

    Several investigations report effective uses of magnetostrictive patch transducers to generate and measure longitudinal and torsional guided waves in a pipe. They can be used to form a phased array for the circumferential inspection of pipes. Although there are circumferential phased arrays employing piezoelectric transducers or EMAT's, no magnetostrictive patch transducer based array system has been attempted. In this investigation, we aim to develop a circumferential phased magnetostrictive patch transducer (PMPT) array that can focus shear-horizontal waves at any target point on a cylindrical surface of a pipe. For the development, a specific configuration of a PMPT array employing six magnetostrictive patch transducers is proposed. A wave simulation model is also developed to determine time delays and amplitudes of signals generated by the transducers of the array. This model should be able to predict accurately the angular profiles of shear-horizontal waves generated by the transducers. For wave focusing, the time reversal idea will be utilized. The wave focusing ability of the developed PMPT array is tested with multiple-crack detection experiments. Imaging of localized surface inspection regions is also attempted by using wave signals measured by the developed PMPT array system.

  5. Pressure compensated transducer system with constrained diaphragm

    NASA Astrophysics Data System (ADS)

    Percy, Joseph L.

    1992-08-01

    An acoustic source apparatus has an acoustic transducer that is enclosed in a substantially rigid and watertight enclosure to resist the pressure of water on the transducer and to seal the transducer from the water. The enclosure has an opening through which acoustic signals pass and over which is placed a resilient, expandable and substantially water-impermeable diaphragm. A net stiffens and strengthens the diaphragm as well as constrains the diaphragm from overexpansion or from migrating due to buoyancy forces. Pressurized gas, regulated at slightly above ambient pressure, is supplied to the enclosure and the diaphragm to compensate for underwater ambient pressures. Gas pressure regulated at above ambient pressure is used to selectively tune the pressure levels within the enclosure and diaphragm so that diaphragm resonance can be achieved. Controls are used to selectively fill, as well as vent the enclosure and diaphragm during system descent and ascent, respectively. A signal link is used to activate these controls and to provide the driving force for the acoustic transducer.

  6. High Sensitivity EMAT System using Chirp Pulse Compression and Its Application to Crater End Detection in Continuous Casting

    NASA Astrophysics Data System (ADS)

    Iizuka, Y.; Awajiya, Y.

    2014-06-01

    A high sensitivity EMAT system using chirp pulse compression technique was developed. The system uses a high power gated amplifier having 2kVpp output to transmit chirp waves. Pulse compression of the received signals are performed digitally in a PC after amplification and analog-to-digital conversion. A 20dB improvement of the signal-to-noise ratio was achieved by chirp pulse compression and synchronous averaging. A new surface cooling technique was also developed to improve the signal amplitude of the bulk shear wave with hot steel, and its effectiveness was demonstrated. An actual plant test of crater end detection by the developed EMAT system was conducted at a continuous caster, and clear detection by non-contact EMATs was achieved.

  7. Acoustic levitation of a large solid sphere

    NASA Astrophysics Data System (ADS)

    Andrade, Marco A. B.; Bernassau, Anne L.; Adamowski, Julio C.

    2016-07-01

    We demonstrate that acoustic levitation can levitate spherical objects much larger than the acoustic wavelength in air. The acoustic levitation of an expanded polystyrene sphere of 50 mm in diameter, corresponding to 3.6 times the wavelength, is achieved by using three 25 kHz ultrasonic transducers arranged in a tripod fashion. In this configuration, a standing wave is created between the transducers and the sphere. The axial acoustic radiation force generated by each transducer on the sphere was modeled numerically as a function of the distance between the sphere and the transducer. The theoretical acoustic radiation force was verified experimentally in a setup consisting of an electronic scale and an ultrasonic transducer mounted on a motorized linear stage. The comparison between the numerical and experimental acoustic radiation forces presents a good agreement.

  8. Irradiation Testing of Ultrasonic Transducers

    SciTech Connect

    Daw, Joshua; Tittmann, Bernhard; Reinhardt, Brian; Kohse, Gordon E.; Ramuhalli, Pradeep; Montgomery, Robert O.; Chien, Hual-Te; Villard, Jean-Francois; Palmer, Joe; Rempe, Joy

    2014-07-30

    Ultrasonic technologies offer the potential for high accuracy and resolution in-pile measurement of a range of parameters, including geometry changes, temperature, crack initiation and growth, gas pressure and composition, and microstructural changes. Many Department of Energy-Office of Nuclear Energy (DOE-NE) programs are exploring the use of ultrasonic technologies to provide enhanced sensors for in-pile instrumentation during irradiation testing. For example, the ability of single, small diameter ultrasonic thermometers (UTs) to provide a temperature profile in candidate metallic and oxide fuel would provide much needed data for validating new fuel performance models. Other efforts include an ultrasonic technique to detect morphology changes (such as crack initiation and growth) and acoustic techniques to evaluate fission gas composition and pressure. These efforts are limited by the lack of existing knowledge of ultrasonic transducer material survivability under irradiation conditions. For this reason, the Pennsylvania State University (PSU) was awarded an Advanced Test Reactor National Scientific User Facility (ATR NSUF) project to evaluate promising magnetostrictive and piezoelectric transducer performance in the Massachusetts Institute of Technology Research Reactor (MITR) up to a fast fluence of at least 1021 n/cm2 (E> 0.1 MeV). The goal of this research is to characterize magnetostrictive and piezoelectric transducer survivability during irradiation, enabling the development of novel radiation tolerant ultrasonic sensors for use in Material and Test Reactors (MTRs). As such, this test will be an instrumented lead test and real-time transducer performance data will be collected along with temperature and neutron and gamma flux data. The current work bridges the gap between proven out-of-pile ultrasonic techniques and in-pile deployment of ultrasonic sensors by acquiring the data necessary to demonstrate the performance of ultrasonic transducers.

  9. Irradiation Testing of Ultrasonic Transducers

    SciTech Connect

    Daw, Joshua; Tittmann, Bernhard; Reinhardt, Brian; Kohse, Gordon E.; Ramuhalli, Pradeep; Montgomery, Robert O.; Chien, Hual-Te; Villard, Jean-Francois; Palmer, Joe; Rempe, Joy

    2013-12-01

    Ultrasonic technologies offer the potential for high accuracy and resolution in-pile measurement of a range of parameters, including geometry changes, temperature, crack initiation and growth, gas pressure and composition, and microstructural changes. Many Department of Energy-Office of Nuclear Energy (DOE-NE) programs are exploring the use of ultrasonic technologies to provide enhanced sensors for in-pile instrumentation during irradiation testing. For example, the ability of single, small diameter ultrasonic thermometers (UTs) to provide a temperature profile in candidate metallic and oxide fuel would provide much needed data for validating new fuel performance models. Other efforts include an ultrasonic technique to detect morphology changes (such as crack initiation and growth) and acoustic techniques to evaluate fission gas composition and pressure. These efforts are limited by the lack of existing knowledge of ultrasonic transducer material survivability under irradiation conditions. For this reason, the Pennsylvania State University (PSU) was awarded an Advanced Test Reactor National Scientific User Facility (ATR NSUF) project to evaluate promising magnetostrictive and piezoelectric transducer performance in the Massachusetts Institute of Technology Research Reactor (MITR) up to a fast fluence of at least 1021 n/cm2 (E> 0.1 MeV). The goal of this research is to characterize magnetostrictive and piezoelectric transducer survivability during irradiation, enabling the development of novel radiation tolerant ultrasonic sensors for use in Material and Test Reactors (MTRs). As such, this test will be an instrumented lead test and real-time transducer performance data will be collected along with temperature and neutron and gamma flux data. The current work bridges the gap between proven out-of-pile ultrasonic techniques and in-pile deployment of ultrasonic sensors by acquiring the data necessary to demonstrate the performance of ultrasonic transducers.

  10. Acoustic Emission Based Surveillance System for Prediction of Stress Fractures

    DTIC Science & Technology

    2007-09-01

    withstand irrigation. The transducers were mounted on the specimen using cyanoacrylate glue . The acoustic emission signal from the transducers was...respectively. An acoustic emission transducer (Pico, PAC, NJ) was mounted at the mid-span of the specimens using cyanoacrylate glue . Signal from the

  11. Modeling of functionally graded piezoelectric ultrasonic transducers.

    PubMed

    Rubio, Wilfredo Montealegre; Buiochi, Flávio; Adamowski, Julio Cezar; Silva, Emílio Carlos Nelli

    2009-05-01

    The application of functionally graded material (FGM) concept to piezoelectric transducers allows the design of composite transducers without interfaces, due to the continuous change of property values. Thus, large improvements can be achieved, as reduction of stress concentration, increasing of bonding strength, and bandwidth. This work proposes to design and to model FGM piezoelectric transducers and to compare their performance with non-FGM ones. Analytical and finite element (FE) modeling of FGM piezoelectric transducers radiating a plane pressure wave in fluid medium are developed and their results are compared. The ANSYS software is used for the FE modeling. The analytical model is based on FGM-equivalent acoustic transmission-line model, which is implemented using MATLAB software. Two cases are considered: (i) the transducer emits a pressure wave in water and it is composed of a graded piezoceramic disk, and backing and matching layers made of homogeneous materials; (ii) the transducer has no backing and matching layer; in this case, no external load is simulated. Time and frequency pressure responses are obtained through a transient analysis. The material properties are graded along thickness direction. Linear and exponential gradation functions are implemented to illustrate the influence of gradation on the transducer pressure response, electrical impedance, and resonance frequencies.

  12. Comparison between 1-3 piezocomposite and PZT ceramic for high-intensity focused ultrasound transducer applications

    NASA Astrophysics Data System (ADS)

    Chen, Gin-Shin; Liu, Hsin-Chih; Lin, Yu-Li

    2012-10-01

    In this study, one PZT-ceramic focused transducer and 1-3 PZT-4-epoxy composite focused transducers with various volume fraction and aspect ratio were constructed in-house for the evaluation of coupling factor, dielectric loss tangent, mechanical quality factor, bandwidth, electro-acoustic efficiency and acoustic impedance. The experimental results demonstrated that the coupling factor of composite transducers varied from 0.61 to 0.68 when that of the ceramic transducer was 0.49. Loss tangents at 1 kHz of composite transducers and that of the PZT-ceramic transducer were in the same scale. The mechanical quality factor of composite transducers was lower than that of the PZT-ceramic transducer due to more thermal loss induced in epoxy. As a result, the ceramic transducer had higher efficiency (87% approximately) as compared to the composite transducers (57%˜67%). For all that the bandwidth of composite transducers was wider than that of ceramic transducer and the characteristic acoustic impedance of composite transducers was apparently lower than that of ceramic transducer. Therefore, the optimized 1-3 piezocomposites possess advantages of flexible shaping, wide bandwidth, low acoustic impedance and reasonable efficiency and are suitable for HIFU transducer applications.

  13. Transducer characterization for Vibrothermography

    NASA Astrophysics Data System (ADS)

    Vaddi, Jyani Somayajulu

    Vibrothermography, also known as Sonic IR and Thermosonics, is an NDE technique for finding cracks and flaws based on vibration-induced frictional rubbing of unbonded surfaces. The vibration is usually generated by a piezoelectric stack transducer which transduces electrical energy into large amplitude mechanical vibrations. The purpose of this study is to develop an understanding of the excitation process for vibrothermography so that optimal parameters and transducers for the testing can be selected. The amplitude and impedance transfer characteristics of the transducer system control the vibration of the sample. Within a linear contact (no tip chatter) model, the interaction between the transducer system and the specimen can be characterized using the theory of linear time-invariant (LTI) systems and electro-mechanical Norton equivalence. This work presents quantitative measurements of the performance of piezoelectric stack transducers in a vibrothermography excitation system and the effect of transducer performance and specimen characteristics on the induced vibration in the specimen. We show that with compliant coupling, the specimen vibration is directly proportional to the transducer open circuit velocity and that the system resonances generated because of metal-metal contact of specimen and transducer are disconnected by adding a couplant between specimen and transducer. We then give suggestions for transducer and couplant selection for vibrothermography and suggest methods to flatten the velocity spectrum of the transducer. We extend our analysis to high amplitude transducer behavior and elaborate on the effect of power amplifier saturation on the transducer behavior. The saturation effect negates the effect of adding an external inductance to flatten the transducer velocity spectrum. Finally, preliminary results are reported on the effect of transducer degradation phenomenon.

  14. PRESSURE TRANSDUCER RESEARCH.

    DTIC Science & Technology

    PIEZOELECTRIC TRANSDUCERS, PRESSURE), UNDERGROUND EXPLOSIONS, ELECTRICAL RESISTANCE, SEEBECK EFFECT , PRESSURE GAGES, SHOCK WAVES, STRESSES, COMPUTER PROGRAMMING, NUCLEAR EXPLOSIONS, NUCLEAR RADIATION.

  15. Ultrasonic transducers for cure monitoring: design, modelling and validation

    NASA Astrophysics Data System (ADS)

    Lionetto, Francesca; Montagna, Francesco; Maffezzoli, Alfonso

    2011-12-01

    The finite element method (FEM) has been applied to simulate the ultrasonic wave propagation in a multilayered transducer, expressly designed for high-frequency dynamic mechanical analysis of polymers. The FEM model includes an electro-acoustic (active element) and some acoustic (passive elements) transmission lines. The simulation of the acoustic propagation accounts for the interaction between the piezoceramic and the materials in the buffer rod and backing, and the coupling between the electric and mechanical properties of the piezoelectric material. As a result of the simulations, the geometry and size of the modelled ultrasonic transducer has been optimized and used for the realization of a prototype transducer for cure monitoring. The transducer performance has been validated by measuring the velocity changes during the polymerization of a thermosetting matrix of composite materials.

  16. Transducer applications, a compilation

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The characteristics and applications of transducers are discussed. Subjects presented are: (1) thermal measurements, (2) liquid level and fluid flow measurements, (3) pressure transducers, (4) stress-strain measurements, (5) acceleration and velocity measurements, (6) displacement and angular rotation, and (7) transducer test and calibration methods.

  17. Megahertz tonpilz transducer

    NASA Astrophysics Data System (ADS)

    Van Tol, Dave; Hughes, W. Jack

    1999-06-01

    The tonpilz configuration is applied to a transducer operating in the megahertz frequency range. The KLM model is used to design the transducer using readily available components. The construction techniques used are the same as those applied to standard high frequency transducers. Modeled and measured pulse-echo results display a high level of agreement, but impedance and sensitivity comparisons are less promising.

  18. Frequency response calibration of recess-mounted pressure transducers

    NASA Astrophysics Data System (ADS)

    Marcolini, M. A.; Lorber, P. F.; Miller, W. T., Jr.; Covino, A. F., Jr.

    1991-03-01

    A technique is described for measuring the frequency response of pressure transducers mounted inside a model, where a narrow pipette leads to an orifice at the surface. An acoustic driver is mounted to a small chamber which has an opening at the opposite end with an O-ring seal to place over the orifice. A 3.18 mm (1/8 inch) reference microphone is mounted to one side of the chamber. The acoustic driver receives an input of white noise, and the transducer and reference microphone outputs are compared to obtain the frequency response of the pressure transducer. Selected results are presented in the form of power spectra for both the transducer and the reference, as well as the amplitude variation and phase shift between the two signals as a function of frequency. The effect of pipette length and the use of this technique for identifying both blocked orifices and faulty transducers are described.

  19. Frequency response calibration of recess-mounted pressure transducers

    NASA Technical Reports Server (NTRS)

    Marcolini, M. A.; Lorber, P. F.; Miller, W. T., Jr.; Covino, A. F., Jr.

    1991-01-01

    A technique is described for measuring the frequency response of pressure transducers mounted inside a model, where a narrow pipette leads to an orifice at the surface. An acoustic driver is mounted to a small chamber which has an opening at the opposite end with an O-ring seal to place over the orifice. A 3.18 mm (1/8 inch) reference microphone is mounted to one side of the chamber. The acoustic driver receives an input of white noise, and the transducer and reference microphone outputs are compared to obtain the frequency response of the pressure transducer. Selected results are presented in the form of power spectra for both the transducer and the reference, as well as the amplitude variation and phase shift between the two signals as a function of frequency. The effect of pipette length and the use of this technique for identifying both blocked orifices and faulty transducers are described.

  20. High Temperature Ultrasonic Transducer for Real-time Inspection

    NASA Astrophysics Data System (ADS)

    Amini, Mohammad Hossein; Sinclair, Anthony N.; Coyle, Thomas W.

    A broadband ultrasonic transducer with a novel porous ceramic backing layer is introduced to operate at 700 °C. 36° Y-cut lithium niobate (LiNbO3) single crystal was selected for the piezoelectric element. By appropriate choice of constituent materials, porosity and pore size, the acoustic impedance and attenuation of a zirconia-based backing layer were optimized. An active brazing alloy with high temperature and chemical stability was selected to bond the transducer layers together. Prototype transducers have been tested at temperatures up to 700 °C. The experiments confirmed that transducer integrity was maintained.

  1. Calculation of Elastic Anisotropy Using Emats Validated by Ebsd in Rolled Aluminium Sheet

    NASA Astrophysics Data System (ADS)

    Essex, S. D.; Potter, M. D. G.; Dixon, S.

    2009-03-01

    Determining the Orientation Distribution Function (ODF) accurately and quickly in a non-destructive manner has many benefits and applications within industry. The ODF is essentially a quantitative description of the existence of anisotropy, or texture, within a metal sheet. The anisotropy can be seen experimentally by the variation in Lamb wave velocities in the plane of the sheet as a function of angle to the Rolling Direction. The anisotropy can be quantitatively described by the Orientation Distribution Coefficients (ODCs) W400, W420 and W440. Electron Backscatter Diffraction (EBSD) is a technique performed in a SEM. It infers the crystallographic directions of crystals near-surface, and can be applied to a number of samples. It enables the accurate quantitative and qualitative description of microstructural properties such as grain size. By manipulating the Bunge-Euler angle data given by the EBSD technique, here we describe a method to extrapolate the effective elastic constants for Aluminium sheet, and go on to generate a method to predict a Lamb wave velocity profile as a function of angle in a directly comparable format to that measured using a commercially available EMAT-EMAT S0 Lamb wave velocity measurement system. Results show a very good correlation between the predicted velocity trace from EBSD compared to that measured ultrasonically, and hence the respective ODCs, except in the cases where surface to bulk texture inhomogeneity exist.

  2. Transducer selection and application in magnetoacoustic tomography with magnetic induction

    NASA Astrophysics Data System (ADS)

    Zhou, Yuqi; Wang, Jiawei; Sun, Xiaodong; Ma, Qingyu; Zhang, Dong

    2016-03-01

    As an acoustic receiver, transducer plays a vital role in signal acquisition and image reconstruction for magnetoacoustic tomography with magnetic induction (MAT-MI). In order to optimize signal acquisition, the expressions of acoustic pressure detection and waveform collection are theoretically studied based on the radiation theory of acoustic dipole and the reception pattern of transducer. Pressure distributions are simulated for a cylindrical phantom model using a planar piston transducer with different radii and bandwidths. The proposed theory is also verified by the experimental measurements of acoustic waveform detection for an aluminum foil cylinder. It is proved that acoustic pressure with sharp and clear boundary peaks can be detected by the large-radius transducer with wide bandwidth, reflecting the differential of the induced Lorentz force accurately, which is helpful for precise conductivity reconstruction. To detect acoustic pressure with acceptable pressure amplitude, peak pressure ratio, amplitude ratio, and improved signal to noise ratio, the scanning radius of 5-10 times the radius of the object should be selected to improve the accuracy of image reconstruction. This study provides a theoretical and experimental basis for transducer selection and application in MAT-MI to obtain reconstructed images with improved resolution and definition.

  3. Integrated transducer systems

    NASA Astrophysics Data System (ADS)

    Syrzycki, Marek; Parameswaran, M.; Chapman, Glenn H.

    1995-06-01

    In the paper we discuss possible solutions to problems pertaining the implementation of integrated transducer systems, based on examples of WSI image transducers, magnetic field sensors and tactile sensors arrays, as well as arrays of chemical sensors. We also present the issues common to large area transducer arrays, such as building-in redundancy into WSI transducer arrays, and frequency domain circuits for the future communication pathway in integrated transducer systems. Advantages of standard CMOS technology, enhanced with various post-fabrication processes such as silicon micromachining and laser linking, are also stressed.

  4. Trielectrode capacitive pressure transducer

    NASA Technical Reports Server (NTRS)

    Coon, G. W. (Inventor)

    1976-01-01

    A capacitive transducer and circuit especially suited for making measurements in a high-temperature environment are described. The transducer includes two capacitive electrodes and a shield electrode. As the temperature of the transducer rises, the resistance of the insulation between the capacitive electrode decreases and a resistive current attempts to interfere with the capacitive current between the capacitive electrodes. The shield electrode and the circuit coupled there reduce the resistive current in the transducer. A bridge-type circuit coupled to the transducer ignores the resistive current and measures only the capacitive current flowing between the capacitive electrodes.

  5. The Prediction of Transducer Element Performance from In-Air Measurements.

    DTIC Science & Technology

    1982-01-19

    radiating face velocity and the input current to the transducer at resonance. The equivalent circuit values of a group of Tonpilz -type transducers were...of a group of Tonpilz -type transducers were measured, and the self and mutual interaction acoustic loadings for a specific array geometry were...34 Tonpilz "-Type Transducer ...... ............ 6 2. Generalized Equivalent Circuit Model . ...... 11 3. The Ideal Transformer ..... .............. 14

  6. DeepFocus Acoustic Microscope Transducer

    SciTech Connect

    2011-01-01

    A new nondestructive testing device being used to analyse nuclear fuel could reduce costs for manufacturing and other industry. For more information about INL research projects, visit http://www.facebook.com/idahonationallaboratory.

  7. DeepFocus Acoustic Microscope Transducer

    ScienceCinema

    None

    2016-07-12

    A new nondestructive testing device being used to analyse nuclear fuel could reduce costs for manufacturing and other industry. For more information about INL research projects, visit http://www.facebook.com/idahonationallaboratory.

  8. Cooling Acoustic Transcucer with Heat Pipes

    DTIC Science & Technology

    2009-07-19

    pipes. [0013] Most transducer packages involve a stack of active ceramic. A Tonpilz transducer 10 in the prior art, as depicted in FIG. 1...identical or corresponding parts throughout the several views and wherein: [0023] FIG. 1 is a prior art depiction of a Tonpilz transducer design...Distribution is unlimited 20090916027 Attorney Docket No. 97001 COOLING ACOUSTIC TRANSDUCER WITH HEAT PIPES STATEMENT OF GOVERNMENT INTEREST [0001

  9. Acoustic emission intrusion detector

    DOEpatents

    Carver, Donald W.; Whittaker, Jerry W.

    1980-01-01

    An intrusion detector is provided for detecting a forcible entry into a secured structure while minimizing false alarms. The detector uses a piezoelectric crystal transducer to sense acoustic emissions. The transducer output is amplified by a selectable gain amplifier to control the sensitivity. The rectified output of the amplifier is applied to a Schmitt trigger circuit having a preselected threshold level to provide amplitude discrimination. Timing circuitry is provided which is activated by successive pulses from the Schmitt trigger which lie within a selected time frame for frequency discrimination. Detected signals having proper amplitude and frequency trigger an alarm within the first complete cycle time of a detected acoustical disturbance signal.

  10. Crossflow force transducer. [LMFBR

    SciTech Connect

    Mulcahy, T M

    1982-05-01

    A force transducer for measuring lift and drag coefficients for a circular cylinder in turbulent water flow is presented. In addition to describing the actual design and construction of the strain-gauged force- ring based transducer, requirements for obtained valid fluid force test data are discussed, and pertinent flow test experience is related.

  11. Reflector-based phase calibration of ultrasound transducers.

    PubMed

    van Neer, Paul L M J; Vos, Hendrik J; de Jong, Nico

    2011-01-01

    Recently, the measurement of phase transfer functions (PTFs) of piezoelectric transducers has received more attention. These PTFs are useful for e.g. coding and interference based imaging methods, and ultrasound contrast microbubble research. Several optical and acoustic methods to measure a transducer's PTF have been reported in literature. The optical methods require a setup to which not all ultrasound laboratories have access to. The acoustic methods require accurate distance and acoustic wave speed measurements. A small error in these leads to a large error in phase, e.g. an accuracy of 0.1% on an axial distance of 10cm leads to an uncertainty in the PTF measurement of ±97° at 4MHz. In this paper we present an acoustic pulse-echo method to measure the PTF of a transducer, which is based on linear wave propagation and only requires an estimate of the wave travel distance and the acoustic wave speed. In our method the transducer is excited by a monofrequency sine burst with a rectangular envelope. The transducer initially vibrates at resonance (transient regime) prior to the forcing frequency response (steady state regime). The PTF value of the system is the difference between the phases deduced from the transient and the steady state regimes. Good agreement, to within 7°, was obtained between KLM simulations and measurements on two transducers in a 1-8MHz frequency range. The reproducibility of the method was ±10°, with a systematic error of 2° at 1MHz increasing to 16° at 8MHz. This work demonstrates that the PTF of a transducer can be measured in a simple laboratory setting.

  12. Triple-resonant transducers.

    PubMed

    Butler, Stephen C

    2012-06-01

    A detailed analysis is presented of two novel multiple-resonant transducers which produce a wider transmit response than that of a conventional Tonpilz-type transducer. These multi-resonant transducers are Tonpilz-type longitudinal vibrators that produce three coupled resonances and are referred to as triple-resonant transducers (TRTs). One of these designs is a mechanical series arrangement of a tail mass, piezoelectric ceramic stack, central mass, compliant spring, second central mass, second compliant spring, and a piston-radiating head mass. The other TRT design is a mechanical series arrangement of a tail mass, piezoelectric ceramic stack, central mass, compliant spring, and head mass with a quarter-wave matching layer of poly(methyl methacrylate) on the head mass. Several prototype transducer element designs were fabricated that demonstrated proof-of-concept.

  13. High temperature, high power piezoelectric composite transducers.

    PubMed

    Lee, Hyeong Jae; Zhang, Shujun; Bar-Cohen, Yoseph; Sherrit, Stewart

    2014-08-08

    Piezoelectric composites are a class of functional materials consisting of piezoelectric active materials and non-piezoelectric passive polymers, mechanically attached together to form different connectivities. These composites have several advantages compared to conventional piezoelectric ceramics and polymers, including improved electromechanical properties, mechanical flexibility and the ability to tailor properties by using several different connectivity patterns. These advantages have led to the improvement of overall transducer performance, such as transducer sensitivity and bandwidth, resulting in rapid implementation of piezoelectric composites in medical imaging ultrasounds and other acoustic transducers. Recently, new piezoelectric composite transducers have been developed with optimized composite components that have improved thermal stability and mechanical quality factors, making them promising candidates for high temperature, high power transducer applications, such as therapeutic ultrasound, high power ultrasonic wirebonding, high temperature non-destructive testing, and downhole energy harvesting. This paper will present recent developments of piezoelectric composite technology for high temperature and high power applications. The concerns and limitations of using piezoelectric composites will also be discussed, and the expected future research directions will be outlined.

  14. High Temperature, High Power Piezoelectric Composite Transducers

    PubMed Central

    Lee, Hyeong Jae; Zhang, Shujun; Bar-Cohen, Yoseph; Sherrit, StewarT.

    2014-01-01

    Piezoelectric composites are a class of functional materials consisting of piezoelectric active materials and non-piezoelectric passive polymers, mechanically attached together to form different connectivities. These composites have several advantages compared to conventional piezoelectric ceramics and polymers, including improved electromechanical properties, mechanical flexibility and the ability to tailor properties by using several different connectivity patterns. These advantages have led to the improvement of overall transducer performance, such as transducer sensitivity and bandwidth, resulting in rapid implementation of piezoelectric composites in medical imaging ultrasounds and other acoustic transducers. Recently, new piezoelectric composite transducers have been developed with optimized composite components that have improved thermal stability and mechanical quality factors, making them promising candidates for high temperature, high power transducer applications, such as therapeutic ultrasound, high power ultrasonic wirebonding, high temperature non-destructive testing, and downhole energy harvesting. This paper will present recent developments of piezoelectric composite technology for high temperature and high power applications. The concerns and limitations of using piezoelectric composites will also be discussed, and the expected future research directions will be outlined. PMID:25111242

  15. Human Performance Tool Development and Analysis Support. FY15 Task: Early Manpower Assessment Tool (EMAT) for STAMPS

    DTIC Science & Technology

    2015-10-01

    1 Annual Progress Report (A003) for Human Performance Tool Development and Analysis Support FY15 Task: EARLY MANPOWER ASSESSMENT TOOL (EMAT...00-2015 to 00-00-2015 4. TITLE AND SUBTITLE Human Performance Tool Development and Analysis Support 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c...for the development and maintenance of the U.S. Navy’s Leading Edge Architecture got Prototyping Systems (LEAPS) Integrated Digital Environment

  16. Acoustic/Magnetic Stress Sensor

    NASA Technical Reports Server (NTRS)

    Heyman, J. S.; Namkung, M.

    1986-01-01

    High-resolution sensor fast, portable, does not require permanent bonding to structure. Sensor measures nondestructively type (compressive or tensile) and magnitude of stresses and stress gradients present in class of materials. Includes precise high-resolution acoustic interferometer, sending acoustic transducer, receiving acoustic transducer, electromagnet coil and core, power supply, and magnetic-field-measuring device such as Hall probe. This measurement especially important for construction and applications where steel is widely used. Sensor useful especially for nondestructive evaluation of stress in steel members because of portability, rapid testing, and nonpermanent installation.

  17. Embedded Ultrasonic Transducers for Active and Passive Concrete Monitoring

    PubMed Central

    Niederleithinger, Ernst; Wolf, Julia; Mielentz, Frank; Wiggenhauser, Herbert; Pirskawetz, Stephan

    2015-01-01

    Recently developed new transducers for ultrasonic transmission, which can be embedded right into concrete, are now used for non-destructive permanent monitoring of concrete. They can be installed during construction or thereafter. Large volumes of concrete can be monitored for changes of material properties by a limited number of transducers. The transducer design, the main properties as well as installation procedures are presented. It is shown that compressional waves with a central frequency of 62 kHz are mainly generated around the transducer’s axis. The transducer can be used as a transmitter or receiver. Application examples demonstrate that the transducers can be used to monitor concrete conditions parameters (stress, temperature, …) as well as damages in an early state or the detection of acoustic events (e.g., crack opening). Besides application in civil engineering our setups can also be used for model studies in geosciences. PMID:25923928

  18. Broadband electrical impedance matching for piezoelectric ultrasound transducers.

    PubMed

    Huang, Haiying; Paramo, Daniel

    2011-12-01

    This paper presents a systematic method for designing broadband electrical impedance matching networks for piezoelectric ultrasound transducers. The design process involves three steps: 1) determine the equivalent circuit of the unmatched piezoelectric transducer based on its measured admittance; 2) design a set of impedance matching networks using a computerized Smith chart; and 3) establish the simulation model of the matched transducer to evaluate the gain and bandwidth of the impedance matching networks. The effectiveness of the presented approach is demonstrated through the design, implementation, and characterization of impedance matching networks for a broadband acoustic emission sensor. The impedance matching network improved the power of the acquired signal by 9 times.

  19. Pre-processing of data coming from a laser-EMAT system for non-destructive testing of steel slabs.

    PubMed

    Sgarbi, Mirko; Colla, Valentina; Cateni, Sivia; Higson, Stuart

    2012-01-01

    Non destructive test systems are increasingly applied in the industrial context for their strong potentialities in improving and standardizing quality control. Especially in the intermediate manufacturing stages, early detection of defects on semi-finished products allow their direction towards later production processes according to their quality, with consequent considerable savings in time, energy, materials and work. However, the raw data coming from non destructive test systems are not always immediately suitable for sophisticated defect detection algorithms, due to noise and disturbances which are unavoidable, especially in harsh operating conditions, such as the ones which are typical of the steelmaking cycle. The paper describes some pre-processing operations which are required in order to exploit the data coming from a non destructive test system. Such a system is based on the joint exploitation of Laser and Electro-Magnetic Acoustic Transducer technologies and is applied to the detection of surface and sub-surface cracks in cold and hot steel slabs.

  20. Magnetomechanical Acoustic Emission - A Review

    DTIC Science & Technology

    1986-09-01

    Nickel Alloys Ferromagnetic Materials LA Acoustic Emission Barkhausen noise O-A Residual Stress ’~20 ABSTWA 7- ontinue reverse ad. Ii nedceeory and...also called magneto-acoustic emission [13], or acoustic Barkhausen effect [1]. When a ferromagnetic sample is placed in an alternating magnetic field...transducer, which should be insensitive to a magnetic field, was attached to a sample. A flux sensing coil and a Barkhausen noise (BN) probe are also

  1. Acoustic actuation of bioinspired microswimmers.

    PubMed

    Kaynak, Murat; Ozcelik, Adem; Nourhani, Amir; Lammert, Paul E; Crespi, Vincent H; Huang, Tony Jun

    2017-01-31

    Acoustic actuation of bioinspired microswimmers is experimentally demonstrated. Microswimmers are fabricated in situ in a microchannel. Upon acoustic excitation, the flagellum of the microswimmer oscillates, which in turn generates linear or rotary movement depending on the swimmer design. The speed of these bioinspired microswimmers is tuned by adjusting the voltage amplitude applied to the acoustic transducer. Simple microfabrication and remote actuation are promising for biomedical applications.

  2. A Treatise on Acoustic Radiation. Volume 2. Acoustic Transducers

    DTIC Science & Technology

    1983-01-01

    55 1.25 METHODS OF ANALYZING ONE-CONNECTION AND MULTIPLE-CONNECTION MECHANICAL SYSTEMS...VARIATIONAL METHODS ................................................................ 97 1.50 GENERALIZED COORDINATES, GENERALIZED FORCES, VARIATIONAL...176 1.72 BOND GRAPHS AND IMPEDANCE METHODS FOR 2-PORTS ................................... 178 2.1 PROJECTORS AND

  3. Compact Transducers and Arrays

    DTIC Science & Technology

    2005-05-01

    Soc. Am., 104, pp.64-71 44 25.Decarpigny, J.N., J.C. Debus, B. Tocquet & D. Boucher. 1985. "In-Air Analysis Of Piezoelectric Tonpilz Transducers In A... Transducers and Arrays Final Report May 2005 Contacts: Dr. Robert E. Newnham The Pennsylvania State University, 251 MRL, University Park, PA 16802 phone...814) 865-1612 fax: (814) 865-2326 email: ....c xx.....i.i.....ht.. .u a.p.u..c.e.du. Dr. Richard J. Meyer, Jr. Systems Engineering ( Transducers ), ARL

  4. Acoustic phonons, surface plasmons and surface acoustic plasmons in a superlattice and their nonreciprocal device applications

    NASA Astrophysics Data System (ADS)

    Derov, John S.

    1987-05-01

    The literature was surveyed to determine potential applications of acoustic and plasma phenomena in superlattices. The use of folded zone acoustic phonons and acoustic surface plasmons in 3 to 5 compounds like AlGaAs/GaAs superlattices is addressed. A dielectric phonon filter is presented and an acoustic resonator is considered. Surface plasmons and surface acoustic plasmons are discussed and a transducer, delay line and mixer are proposed as applications. A 500 GHz isolator utilizing surface magnetoplasmons is also presented.

  5. Detecting Contaminant Particles Acoustically

    NASA Technical Reports Server (NTRS)

    Wyett, L. M.

    1986-01-01

    Apparatus "listens" for particles in interior of complex turbomachinery. Contact microphones are attached at several points on pump housing. Acoustic transducer also attached to housing to excite entire pump with sound. Frequency of sound is slowly raised until pump resonates. Microphones detect noise of loose particles scraping against pump parts. Such as machining chips in turbopumps or other machinery without disassembly.

  6. Digital magnetic temperature transducer.

    NASA Technical Reports Server (NTRS)

    Tchernev, D. I.; Collier, T. E.

    1971-01-01

    A new digital magnetic temperature transducer is reported. The device utilizes the discontinuous behavior of the initial permeability with temperature at the Curie temperature of some magnetic materials. Since the Curie temperature is determined by the chemical and crystallographic composition of the particular material only, the transducer requires no calibration and has extremely high stability and reproducibility with time. The output of the transducer is inherently digital and, therefore, is directly compatible with the digital information processing and control without A/D conversion. The temperature-sensing portion of the transducer consists only of magnetic cores and wire and, therefore, has extremely high reliability, is shock and radiation insensitive, small, and virtually indestructible.

  7. Improved myocardium transducer

    NASA Technical Reports Server (NTRS)

    Culler, V. H.; Feldstein, C.; Lewis, G. W.

    1979-01-01

    Method of implanting myocardium transducer uses special indented pins that are caught and securely held by epicardial fibers. Pins are small enough to cause minimum of trauma to myocardium during implantation or removal.

  8. Acoustic well cleaner

    DOEpatents

    Maki, Jr., Voldi E.; Sharma, Mukul M.

    1997-01-21

    A method and apparatus are disclosed for cleaning the wellbore and the near wellbore region. A sonde is provided which is adapted to be lowered into a borehole and which includes a plurality of acoustic transducers arranged around the sonde. Electrical power provided by a cable is converted to acoustic energy. The high intensity acoustic energy directed to the borehole wall and into the near wellbore region, redissolves or resuspends the material which is reducing the permeability of the formation and/or restricting flow in the wellbore.

  9. Multilayer ionic polymer transducer

    NASA Astrophysics Data System (ADS)

    Akle, Barbar J.; Leo, Donald J.

    2003-07-01

    A transducer consisting of multiple layers of ionic polymer material is developed for applications in sensing, actuation, and control. The transducer consists of two to four individual layers each approximately 200 microns thick. The transducers are connected in parallel to minimize the electric field requirements for actuation. The tradeoff in deflection and force can be controlled by controlling the mechanical constraint at the interface. Packaging the transducer in an outer coating produces a hard constraint between layers and reduces the deflection with a force that increases linearly with the number of layers. This configuration also increases the bandwidth of the transducer. Removing the outer packaging produces an actuator that maintains the deflection of a single layer but has an increased force output. This is obtained by allowing the layers to slide relative to one another during bending. Experiments on transducers with one to three layers are performed and the results are compared to Newbury"s equivalent circuit model, which was modified to accommodate the multilayer polymers. The modification was performed on four different boundary conditions, two electrical the series and the parallel connection, and two mechanical the zero interfacial friction and the zero slip on the interface. Results demonstrate that the largest obstacle to obtaining good performance is water transport between the individual layers. Water crossover produces a near short circuit electrical condition and produces feedthrough between actuation layers and sensing layers. Electrical feedthrough due to water crossover eliminates the ability to produce a transducer that has combined sensing and actuation properties. Eliminating water crossover through good insulation enables the development of a small (5 mm x 30 mm) transducer that has sensing and actuation bandwidth on the order of 100 Hz.

  10. Thermal dispersion method for an ultrasonic phased-array transducer

    NASA Astrophysics Data System (ADS)

    Choi, Euna; Lee, Wonseok; Roh, Yongrae

    2016-07-01

    When the driving voltage of an ultrasonic transducer is increased to improve the quality of ultrasound images, heat is generated inside the transducer, which can burn the patient’s skin and degrade transducer performance. In this study, the method to disperse the heat inside an ultrasonic phased-array transducer has been examined. The mechanism of temperature rise due to heat generation inside the transducer was investigated by numerical analysis and the effects of the thermal properties of the components of the transducer such as specific heat and thermal conductivity on the temperature rise were analyzed. On the basis of the results, a heat-dispersive structure was devised to reduce the temperature at the surface of the acoustic lens of the transducer. Prototype transducers were fabricated to check the efficacy of the heat-dispersive structure. By experiments, we have confirmed that the new heat-dispersive structure can reduce the internal temperature by as much as 50% in comparison with the conventional structure, which confirms the validity of the thermal dispersion mechanism developed in this work.

  11. Metal cap flexural transducers for air-coupled ultrasonics

    NASA Astrophysics Data System (ADS)

    Eriksson, T. J. R.; Dixon, S.; Ramadas, S. N.

    2015-03-01

    Ultrasonic generation and detection in fluids is inefficient due to the large difference in acoustic impedance between the piezoelectric element and the propagation medium, leading to large internal reflections and energy loss. One way of addressing the problem is to use a flexural transducer, which uses the bending modes in a thin plate or membrane. As the plate bends, it displaces the medium in front of it, hence producing sound waves. A piezoelectric flexural transducer can generate large amplitude displacements in fluid media for relatively low excitation voltages. Commercially available flexural transducers for air applications operate at 40 kHz, but there exists ultrasound applications that require significantly higher frequencies, e.g. flow measurements. Relatively little work has been done to date to understand the underlying physics of the flexural transducer, and hence how to design it to have specific properties suitable for particular applications. This paper investigates the potential of the flexural transducer and its operating principles. Two types of actuation methods are considerd: piezoelectric and electrodynamic. The piezoelectrically actuated transducer is more energy efficient and intrinsically safe, but the electrodynamic transducer has the advantage of being less sensitive to high temperature environments. The theory of vibrating plates is used to predict transducer frequency in addition to front face amplitude, which shows good correlation with experimental results.

  12. Thermoacoustic power conversion using a piezoelectric transducer.

    PubMed

    Jensen, Carl; Raspet, Richard

    2010-07-01

    The predicted efficiency of a simple thermoacoustic waste heat power conversion device has been investigated as part of a collaborative effort combining a thermoacoustic engine with a piezoelectric transducer. Symko et al. [Microelectron. J. 35, 185-191 (2004)] at the University of Utah built high frequency demonstration engines for this application, and Lynn [ASMDC report, accession number ADA491030 (2008)] at the University of Washington designed and built a high efficiency piezoelectric unimorph transducer for electroacoustic conversion. The design presented in this paper is put forward to investigate the potential of a simple high frequency, air filled, standing wave thermoacoustic device to be competitive with other small generator technologies such as thermoelectric devices. The thermoacoustic generator is simulated using a low-amplitude approximation for thermoacoustics and the acoustic impedance of the transducer is modeled using an equivalent circuit model calculated from the transducer's mechanical and electrical properties. The calculations demonstrate that a device performance of around 10% of Carnot efficiency could be expected from the design which is competitive with currently available thermoelectric generators.

  13. Improved performance of the optically scanned transducer

    NASA Astrophysics Data System (ADS)

    Turner, C. W.; Bolorforosh, M. S.

    1992-11-01

    The rapid increase in the use of ultrasound in both clinical and industrial applications requires more advanced and reliable imaging systems for calibrating and characterizing high performance ultrasonic transducers. The optically scanned hydrophone (OSH) is an alternative imaging system capable of quasi-real time imaging of broadband acoustic fields. The main application of the OSH is in the imaging and characterization of acoustic fields such as those emitted from clinical and therapeutic transducers. In this paper, the recent development of the OSH and its application to real time imaging of broadband acoustic fields are reported. Using improved fabrication techniques the optical sampling efficiency of the OSH has been considerably improved. This is achieved by adopting new assembly techniques and incorporating a novel differential electrode configuration. The improved optical sampling efficiency has provided a more competitive, versatile, and faster imaging system. The performance of the modified OSH is compared against the other types of hydrophone such as the spot poled and the needle types.

  14. Optical piezoelectric transducer for nano-ultrasonics.

    PubMed

    Lin, Kung-Hsuan; Chern, Gia-Wei; Yu, Cheng-Ta; Liu, Tzu-Ming; Pan, Chang-Chi; Chen, Guan-Ting; Chyi, Jen-Inn; Huang, Sheng-Wen; Li, Pai-Chi; Sun, Chi-Kuang

    2005-08-01

    Piezoelectric semiconductor strained layers can be treated as piezoelectric transducers to generate nanometer-wavelength and THz-frequency acoustic waves. The mechanism of nano-acoustic wave (NAW) generation in strained piezoelectric layers, induced by femtosecond optical pulses, can be modeled by a macroscopic elastic continuum theory. The optical absorption change of the strained layers modulated by NAW through quantum-confined Franz-Keldysh (QCFK) effects allows optical detection of the propagating NAW. Based on these piezoelectric-based optical principles, we have designed an optical piezoelectric transducer (OPT) to generate NAW. The optically generated NAW is then applied to one-dimensional (1-D) ultrasonic scan for thickness measurement, which is the first step toward multidimensional nano-ultrasonic imaging. By launching a NAW pulse and resolving the returned acoustic echo signal with femtosecond optical pulses, the thickness of the studied layer can be measured with <1 nm resolution. This nano-structured OPT technique will provide the key toward the realization of nano-ultrasonics, which is analogous to the typical ultrasonic techniques but in a nanometer scale.

  15. Gel-Filled Holders For Ultrasonic Transducers

    NASA Technical Reports Server (NTRS)

    Companion, John A.

    1992-01-01

    In new technique, ultrasonic transducer embedded in rubbery, castable, low-loss gel to enable transducer to "look" into surface of test object or human body at any desired angle. Composed of solution of water and ethylene glycol in collagen matrix. Provides total contact of water bath, also used on bodies or objects too large for water baths, even if moving. Also provides look angles of poly(methyl methacrylate) angle block with potential of reduced acoustic impedance and refraction. Custom-tailored to task at hand, and gel sufficiently inexpensive to be discarded upon completion. Easy to couple ultrasound in and out of gel, minimizing losses and artifacts of other types of standoffs employed in ultrasonic testing.

  16. Simulation of transducer-couplant effects on broadband ultrasonic signals

    NASA Technical Reports Server (NTRS)

    Vary, A.

    1980-01-01

    The increasing use of broadband, pulse-echo ultrasonics in nondestructive evaluation of flaws and material properties has generated a need for improved understanding of the way signals are modified by coupled and bonded thin-layer interfaces associated with transducers. This understanding is most important when using frequency spectrum analyses for characterizing material properties. In this type of application, signals emanating from material specimens can be strongly influenced by couplant and bond-layers in the acoustic path. Computer synthesized waveforms were used to simulate a range of interface conditions encountered in ultrasonic transducer systems operating in the 20 to 80 MHz regime. The adverse effects of thin-layer multiple reflections associated with various acoustic impedance conditions are demonstrated. The information presented is relevant to ultrasonic transducer design, specimen preparation, and couplant selection.

  17. Tissue deformation induced by radiation force from Gaussian transducers.

    PubMed

    Myers, Matthew R

    2006-05-01

    Imaging techniques based upon the tissue mechanical response to an acoustic radiation force are being actively researched. In this paper a model for predicting steady-state tissue displacement induced by a radiation force arising from the absorption of Gaussian ultrasound beams is presented. A simple analytic expression is derived that agrees closely with the numerical quadrature of the displacement convolution integrals. The analytic result reveals the dependence of the steady-state axial displacement upon the operational parameters, e.g., an inverse proportional relationship to the tissue shear modulus. The derivation requires that the transducer radius be small compared to the focal length, but accurate results were obtained for transducer radii comparable to the focal length. Favorable comparisons with displacement predictions for non-Gaussian transducers indicate that the theory is also useful for a broader range of transducer intensity profiles.

  18. Dynamic acoustic tractor beams

    SciTech Connect

    Mitri, F. G.

    2015-03-07

    Pulling a sphere and vibrating it around an equilibrium position by amplitude-modulation in the near-field of a single finite circular piston transducer is theoretically demonstrated. Conditions are found where a fluid hexane sphere (with arbitrary radius) chosen as an example, centered on the axis of progressive propagating waves and submerged in non-viscous water, experiences an attractive (steady) force pulling it towards the transducer, as well as an oscillatory force forcing it to vibrate back-and-forth. Numerical predictions for the dynamic force illustrate the theory and suggest an innovative method in designing dynamic acoustical tractor beams.

  19. Catheter transducer and circuit

    NASA Technical Reports Server (NTRS)

    Harrison, D. R.; Kerwin, W. J.

    1971-01-01

    Simple integrated circuit located at transducer, enables use of single coaxial cable for both input and output connections. Circuit is sensitive to changes in RC time constant, has much improved sensitivity characteristics, and is unaffected by changes in cable capacitance effects.

  20. Broadband Ultrasonic Transducers

    NASA Technical Reports Server (NTRS)

    Heyser, R. C.

    1986-01-01

    New geometry spreads out resonance region of piezoelectric crystal. In new transducer, crystal surfaces made nonparallel. One surface planar; other, concave. Geometry designed to produce nearly uniform response over a predetermined band of frequencies and to attenuate strongly frequencies outside band. Greater bandwidth improves accuracy of sonar and ultrasonic imaging equipment.

  1. Pulse mode of operation of a spherical piezoceramic transducer filled with liquid and having a correcting electric circuit.

    PubMed

    Konovalov, S I; Kuz'menko, A G

    2010-12-01

    By means of a computational method, the possibility of radiating a short acoustic pulse by a transducer in the form of a piezoceramic sphere internally filled with liquid is investigated. An electric inductive-resistive circuit is connected to the electric input of the transducer. Solution is obtained based on scheme-analogs theory for piezoceramic transducers, and spectral Fourier transform theory. The values of parameters of the system, providing minimal durations of radiated signals, are determined. Computation was carried out for different values of relative thicknesses of the transducer wall. The estimates of durations and amplitudes of the acoustic signals radiated into the external medium are obtained.

  2. High-frequency transducers for medical ultrasonic imaging

    NASA Astrophysics Data System (ADS)

    Snook, Kevin A.; Zhao, Jian-Zhong; Alves, Carlos H. F.; Cannata, Jonathan M.; Chen, WoHsing; Meyer, Richard J., Jr.; Ritter, Timothy A.; Shung, K. Kirk

    2000-04-01

    A wide variety of fabrication techniques and materials produce ultrasound transducers with very different performance characteristics. High frequency (50 MHz), focused single element transducers using lead zirconate titanate (PZT) fiber composite, lead titanate (PbTiO3) ceramic, polyvinylidene fluoride (PVDF) polymer and lithium niobate (LiNbO3) single crystal are compared in design and performance. The transducers were all constructed with a 3 mm aperture and f- number of 2 - 3. Design considerations discussed include optimization of designs using different lens, backing and matching materials for acoustic matching and the use of several electrical tuning techniques to match the transducers to the 50(Omega) circuitry. Transducers were tested for insertion loss and -6dB bandwidth using a quartz flat- plate target. Insertion loss measurements between transducers were -20dB to -50dB with bandwidths in the range of 50 - 120%. Through the use of an ultrasound backscatter microscope (UBM), the transducer were compared using in vitro images of the human eye. Images of a wire phantom were also made for comparison of lateral and axial resolution of each device.

  3. Curved PVDF airborne transducer.

    PubMed

    Wang, H; Toda, M

    1999-01-01

    In the application of airborne ultrasonic ranging measurement, a partially cylindrical (curved) PVDF transducer can effectively couple ultrasound into the air and generate strong sound pressure. Because of its geometrical features, the ultrasound beam angles of a curved PVDF transducer can be unsymmetrical (i.e., broad horizontally and narrow vertically). This feature is desired in some applications. In this work, a curved PVDF air transducer is investigated both theoretically and experimentally. Two resonances were observed in this transducer. They are length extensional mode and flexural bending mode. Surface vibration profiles of these two modes were measured by a laser vibrometer. It was found from the experiment that the surface vibration was not uniform along the curvature direction for both vibration modes. Theoretical calculations based on a model developed in this work confirmed the experimental results. Two displacement peaks were found in the piezoelectric active direction of PVDF film for the length extensional mode; three peaks were found for the flexural bending mode. The observed peak positions were in good agreement with the calculation results. Transient surface displacement measurements revealed that vibration peaks were in phase for the length extensional mode and out of phase for the flexural bending mode. Therefore, the length extensional mode can generate a stronger ultrasound wave than the flexural bending mode. The resonance frequencies and vibration amplitudes of the two modes strongly depend on the structure parameters as well as the material properties. For the transducer design, the theoretical model developed in this work can be used to optimize the ultrasound performance.

  4. Seismic transducer modeling using ABAQUS

    SciTech Connect

    Stephen R. Novascone

    2004-05-01

    A seismic transducer, known as an orbital vibrator, consists of a rotating imbalance driven by an electric motor. When suspended in a liquid-filled wellbore, vibrations of the device are coupled to the surrounding geologic media. In this mode, an orbital vibrator can be used as an efficient rotating dipole source for seismic imaging. Alternately, the motion of an orbital vibrator is affected by the physical properties of the surrounding media. From this point of view, an orbital vibrator can be used as a stand-alone sensor. The reaction to the surroundings can be sensed and recorded by geophones inside the orbital vibrator. These reactions are a function of the media’s physical properties such as modulus, damping, and density, thereby identifying the rock type. This presentation shows how the orbital vibrator and surroundings were modeled with an ABAQUS acoustic FEM. The FEM is found to compare favorably with theoretical predictions. A 2D FEM and analytical model are compared to an experimental data set. Each model compares favorably with the data set.

  5. Acoustic neuroma

    MedlinePlus

    Vestibular schwannoma; Tumor - acoustic; Cerebellopontine angle tumor; Angle tumor; Hearing loss - acoustic; Tinnitus - acoustic ... Acoustic neuromas have been linked with the genetic disorder neurofibromatosis type 2 (NF2). Acoustic neuromas are uncommon.

  6. Future needs for biomedical transducers

    NASA Technical Reports Server (NTRS)

    Wooten, F. T.

    1971-01-01

    In summary there are three major classes of transducer improvements required: improvements in existing transducers, needs for unexploited physical science phenomena in transducer design, and needs for unutilized physiological phenomena in transducer design. During the next decade, increasing emphasis will be placed on noninvasive measurement in all of these areas. Patient safety, patient comfort, and the need for efficient utilization of the time of both patient and physician requires that noninvasive methods of monitoring be developed.

  7. Ionic electroactive hybrid transducers

    NASA Astrophysics Data System (ADS)

    Akle, Barbar J.; Bennett, Matthew D.; Leo, Donald J.

    2005-05-01

    Ionic electroactive actuators have received considerable attention in the past ten years. Ionic electroactive polymers, sometimes referred to as artificial muscles, have the ability to generate large bending strain and moderate stress at low applied voltages. Typical types of ionic electroactive polymer transducers include ionic polymers, conducting polymers, and carbon nanotubes. Preliminary research combining multiple types of materials proved to enhance certain transduction properties such as speed of response, maximum strain, or quasi-static actuation. Recently it was demonstrated that ionomer-ionic liquid transducers can operate in air for long periods of time (>250,000 cycles) and showed potential to reduce or eliminate the back-relaxation issue associated with ionomeric polymers. In addition, ionic liquids have higher electrical stability window than those operated with water as the solvent thereby increasing the maximum strain that the actuator can produce. In this work, a new technique developed for plating metal particulates on the surface of ionomeric materials is applied to the development of hybrid transducers that incorporate carbon nanotubes and conducting polymers as electrode materials. The new plating technique, named the direct assembly process, consists of mixing a conducting powder with an ionomer solution. This technique has demonstrated improved response time and strain output as compared to previous methods. Furthermore, the direct assembly process is less costly to implement than traditional impregnation-reduction methods due to less dependence on reducing agents, it requires less time, and is easier to implement than other processes. Electrodes applied using this new technique of mixing RuO2 (surface area 45~65m2/g) particles and Nafion dispersion provided 5x the displacement and 10x the force compared to a transducer made with conventional methods. Furthermore, the study illustrated that the response speed of the transducer is optimized

  8. Performance enhancement of an air-coupled multiple moving membrane capacitive micromachined ultrasonic transducer using an optimized middle plate configuration

    NASA Astrophysics Data System (ADS)

    Emadi, Arezoo; Buchanan, Douglas

    2016-10-01

    A multiple moving membrane capacitive micromachined ultrasonic transducer has been developed. This transducer cell structure includes a second flexible plate suspended between the transducer top plate and the fixed bottom electrode. The added plate influences the transducer top plate deflection map and, therefore, the transducer properties. Three series of individual air-coupled, dual deflectable plate transducers and two 1×27 element transducer arrays were fabricated using multiuser microelectromechanical systems (MEMS) processes (MUMPs). Each set of transducers included devices with middle plate radii from 22% to 65% of the corresponding transducer top plate radius. The effect of the transducer middle plate configuration has been investigated. Electrical, optical, and acoustic characterizations were conducted and the results were compared with the simulation findings. It was found that the transducer top plate amplitude of vibration is significantly enhanced with a wider middle deflectable plate. The electrical and optical measurement results are shown to be in good agreement with simulation results. The acoustic measurement results indicated a 37% increase in the amplitude of transmitted signal by the 1-MHz air-couple transducer when its middle plate radius was increased by 35%.

  9. Design of matching layers for high-frequency ultrasonic transducers

    PubMed Central

    Fei, Chunlong; Ma, Jianguo; Chiu, Chi Tat; Williams, Jay A.; Fong, Wayne; Chen, Zeyu; Zhu, BenPeng; Xiong, Rui; Shi, Jing; Hsiai, Tzung K.; Shung, K. Kirk; Zhou, Qifa

    2015-01-01

    Matching the acoustic impedance of high-frequency (≥100 MHz) ultrasound transducers to an aqueous loading medium remains a challenge for fabricating high-frequency transducers. The traditional matching layer design has been problematic to establish high matching performance given requirements on both specific acoustic impedance and precise thickness. Based on both mass-spring scheme and microwave matching network analysis, we interfaced metal-polymer layers for the matching effects. Both methods hold promises for guiding the metal-polymer matching layer design. A 100 MHz LiNbO3 transducer was fabricated to validate the performance of the both matching layer designs. In the pulse-echo experiment, the transducer echo amplitude increased by 84.4% and its −6dB bandwidth increased from 30.2% to 58.3% comparing to the non-matched condition, demonstrating that the matching layer design method is effective for developing high-frequency ultrasonic transducers. PMID:26445518

  10. Nano-optomechanical transducer

    DOEpatents

    Rakich, Peter T; El-Kady, Ihab F; Olsson, Roy H; Su, Mehmet Fatih; Reinke, Charles; Camacho, Ryan; Wang, Zheng; Davids, Paul

    2013-12-03

    A nano-optomechanical transducer provides ultrabroadband coherent optomechanical transduction based on Mach-wave emission that uses enhanced photon-phonon coupling efficiencies by low impedance effective phononic medium, both electrostriction and radiation pressure to boost and tailor optomechanical forces, and highly dispersive electromagnetic modes that amplify both electrostriction and radiation pressure. The optomechanical transducer provides a large operating bandwidth and high efficiency while simultaneously having a small size and minimal power consumption, enabling a host of transformative phonon and signal processing capabilities. These capabilities include optomechanical transduction via pulsed phonon emission and up-conversion, broadband stimulated phonon emission and amplification, picosecond pulsed phonon lasers, broadband phononic modulators, and ultrahigh bandwidth true time delay and signal processing technologies.

  11. Three dimensional transducer

    DOEpatents

    Warren, Oden Lee; Asif, Syed Amanulla Syed; Oh, Yunje; Feng, Yuxin; Cyrankowski, Edward; Major, Ryan

    2014-09-30

    A testing instrument for mechanical testing at nano or micron scale includes a transducer body, and a coupling shaft coupled with a probe tip. A transducer body houses a capacitor. The capacitor includes first and second counter electrodes and a center electrode assembly interposed therebetween. The center electrode assembly is movable with the coupling shaft relative to the first and second counter electrodes, for instance in one or more of dimensions including laterally and normally. The center electrode assembly includes a center plate coupled with the coupling shaft and one or more springs extending from the center plate. Upper and lower plates are coupled with the center plate and cover the center plate and the one or more springs. A shaft support assembly includes one or more support elements coupled along the coupling shaft. The shaft support assembly provides lateral support to the coupling shaft.

  12. Fluid force transducer

    DOEpatents

    Jendrzejczyk, Joseph A.

    1982-01-01

    An electrical fluid force transducer for measuring the magnitude and direction of fluid forces caused by lateral fluid flow, includes a movable sleeve which is deflectable in response to the movement of fluid, and a rod fixed to the sleeve to translate forces applied to the sleeve to strain gauges attached to the rod, the strain gauges being connected in a bridge circuit arrangement enabling generation of a signal output indicative of the magnitude and direction of the force applied to the sleeve.

  13. Training Tree Transducers

    DTIC Science & Technology

    2004-01-01

    trees (similar to the role played by the finite- state acceptor FSA for strings). We describe the version (equivalent to TSG ( Schabes , 1990)) where...strictly contained in tree sets of tree adjoining gram- mars (Joshi and Schabes , 1997). 4 Extended-LHS Tree Transducers (xR) Section 1 informally described...changes without modifying the training procedure, as long as we stick to tree automata. 10 Related Work Tree substitution grammars or TSG ( Schabes , 1990

  14. Polymer film composite transducer

    DOEpatents

    Owen, Thomas E.

    2005-09-20

    A composite piezoelectric transducer, whose piezoeletric element is a "ribbon wound" film of piezolectric material. As the film is excited, it expands and contracts, which results in expansion and contraction of the diameter of the entire ribbon winding. This is accompanied by expansion and contraction of the thickness of the ribbon winding, such that the sound radiating plate may be placed on the side of the winding.

  15. Reducing Thermal Conduction In Acoustic Levitators

    NASA Technical Reports Server (NTRS)

    Lierke, Ernst G.; Leung, Emily W.; Bhat, Balakrishna T.

    1991-01-01

    Acoustic transducers containing piezoelectric driving elements made more resistant to heat by reduction of effective thermal-conductance cross sections of metal vibration-transmitting rods in them, according to proposal. Used to levitate small objects acoustically for noncontact processing in furnaces. Reductions in cross sections increase amplitudes of transmitted vibrations and reduce loss of heat from furnaces.

  16. Thin film strain transducer

    NASA Astrophysics Data System (ADS)

    Rand, J. L.

    1981-01-01

    Previous attempts to develop an appropriate sensor for measuring the stress or strain of high altitude balloons during flight are reviewed as well as the various conditions that must be met by such a device. The design, development and calibration of a transducer which promises to satisfy the necessary design constraints are described. The thin film strain transducer has a low effective modulus so as not to interfere with the strain that would naturally occur in the balloon. In addition, the transducer has a high sensitivity to longitudinal strain (7.216 mV/V/unit strain) which is constant for all temperature from room temperature to -80 C and all strains from 5 percent compression to 10 percent tensile strain. At the same time, the sensor is relatively insensitive (0.27 percent) to transverse forces. The device has a standard 350 ohm impedance which is compatible with available bridge balance, amplification and telemetry instrumentation now available for balloon flight. Recommendations are included for improved coatings to provide passive thermal control as well as model, tethered and full scale flight testing.

  17. Broadband terahertz ultrasonic transducer based on a laser-driven piezoelectric semiconductor superlattice.

    PubMed

    Maznev, A A; Manke, Kara J; Lin, Kung-Hsuan; Nelson, Keith A; Sun, Chi-Kuang; Chyi, Jen-Inn

    2012-01-01

    Spectral characteristics of laser-generated acoustic waves in an InGaN/GaN superlattice structure are studied at room temperature. Acoustic vibrations in the structure are excited with a femtosecond laser pulse and detected via transmission of a delayed probe pulse. Seven acoustic modes of the superlattice are detected, with frequencies spanning a range from 0.36 to 2.5THz. Acoustic waves up to ∼2THz in frequency are not significantly attenuated within the transducer which indicates excellent interface quality of the superlattice. The findings hold promise for broadband THz acoustic spectroscopy.

  18. Broadband Terahertz Ultrasonic Transducer Bbased on a Laser-driven Piezoelectric Semiconductor Superlattice

    SciTech Connect

    Maznev, A A; Manke, K; Lin, K.-H.; Nelson, Keith A; Sun, C.-K.; Chyi, J.-I.

    2011-01-01

    Spectral characteristics of laser-generated acoustic waves in an InGaN/GaN superlattice structure are studied at room temperature. Acoustic vibrations in the structure are excited with a femtosecond laser pulse and detected via transmission of a delayed probe pulse. Seven acoustic modes of the superlattice are detected, with frequencies spanning a range from 0.36 to 2.5 THz. Acoustic waves up to ~2 THz in frequency are not significantly attenuated within the transducer which indicates excellent interface quality of the superlattice. The findings hold promise for broadband THz acoustic spectroscopy.

  19. Acoustic Communications for UUVs

    DTIC Science & Technology

    2016-06-07

    Acoustic Communications for UUVs Josko Catipovic Lee Freitag Naval Undersea Warfare Center Woods Hole Oceanographic Institution Newport, RI 02841... Woods Hole, MA 02543 (401) 832-3259 (508) 289-3285 catipovicj@npt.nuwc.navy.mil lfreitag@whoi.edu Dan Nagle Sam Smith Naval Undersea Warfare Center...positioned within a streamlined flow shield which reduces drag and protects them from damage. While the HF transducers are placed on the structure and the

  20. Communication in Pipes Using Acoustic Modems that Provide Minimal Obstruction to Fluid Flow

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph (Inventor); Archer, Eric D. (Inventor); Bao, Xiaoqi (Inventor); Sherrit, Stewart (Inventor)

    2016-01-01

    A plurality of phased array acoustic communication devices are used to communicate data along a tubulation, such as a well. The phased array acoustic communication devices employ phased arrays of acoustic transducers, such as piezoelectric transducers, to direct acoustic energy in desired directions along the tubulation. The system is controlled by a computer-based controller. Information, including data and commands, is communicated using digital signaling.

  1. Physics of thermo-acoustic sound generation

    NASA Astrophysics Data System (ADS)

    Daschewski, M.; Boehm, R.; Prager, J.; Kreutzbruck, M.; Harrer, A.

    2013-09-01

    We present a generalized analytical model of thermo-acoustic sound generation based on the analysis of thermally induced energy density fluctuations and their propagation into the adjacent matter. The model provides exact analytical prediction of the sound pressure generated in fluids and solids; consequently, it can be applied to arbitrary thermal power sources such as thermophones, plasma firings, laser beams, and chemical reactions. Unlike existing approaches, our description also includes acoustic near-field effects and sound-field attenuation. Analytical results are compared with measurements of sound pressures generated by thermo-acoustic transducers in air for frequencies up to 1 MHz. The tested transducers consist of titanium and indium tin oxide coatings on quartz glass and polycarbonate substrates. The model reveals that thermo-acoustic efficiency increases linearly with the supplied thermal power and quadratically with thermal excitation frequency. Comparison of the efficiency of our thermo-acoustic transducers with those of piezoelectric-based airborne ultrasound transducers using impulse excitation showed comparable sound pressure values. The present results show that thermo-acoustic transducers can be applied as broadband, non-resonant, high-performance ultrasound sources.

  2. A simple device to couple linear array transducers to neonate heads for ultrasonic scanning of the brain.

    PubMed

    Smith, W L; Franklin, T D; Katakura, K; Patrick, J T; Fry, F J; Eggleton, R C

    1980-12-01

    A plastisol coupler has been designed that improves acoustical coupling for linear array ultrasound transducers. This device improves both ease in scanning and image quality in real-time scanning of the infant brain.

  3. Characterization of noncontact piezoelectric transducer with conically shaped piezoelement

    NASA Technical Reports Server (NTRS)

    Williams, James H., Jr.; Ochi, Simeon C. U.

    1988-01-01

    The characterization of a dynamic surface displacement transducer (IQI Model 501) by a noncontact method is presented. The transducer is designed for ultrasonic as well as acoustic emission measurements and, according to the manufacturer, its characteristic features include a flat frequency response range which is from 50 to 1000 kHz and a quality factor Q of less than unity. The characterization is based on the behavior of the transducer as a receiver and involves exciting the transducer directly by transient pulse input stress signals of quasi-electrostatic origin and observing its response in a digital storage oscilloscope. Theoretical models for studying the response of the transducer to pulse input stress signals and for generating pulse stress signals are presented. The characteristic features of the transducer which include the central frequency f sub o, quality factor Q, and flat frequency response range are obtained by this noncontact characterization technique and they compare favorably with those obtained by a tone burst method which are also presented.

  4. Focusing of ferroelectret air-coupled ultrasound transducers

    NASA Astrophysics Data System (ADS)

    Gaal, Mate; Bartusch, Jürgen; Dohse, Elmar; Schadow, Florian; Köppe, Enrico

    2016-02-01

    Air-coupled ultrasound has been applied increasingly as a non-destructive testing method for lightweight construction in recent years. It is particularly appropriate for composite materials being used in automotive and aviation industry. Air-coupled ultrasound transducers mostly consist of piezoelectric materials and matching layers. However, their fabrication is challenging and their signal-to-noise ratio often not sufficient for many testing requirements. To enhance the efficiency, air-coupled ultrasound transducers made of cellular polypropylene have been developed. Because of its small density and sound velocity, this piezoelectric ferroelectret matches the small acoustic impedance of air much better than matching layers applied in conventional transducers. In our contribution, we present two different methods of spherical focusing of ferroelectret transducers for the further enhancement of their performance in NDT applications. Measurements on carbon-fiber-reinforced polymer (CFRP) samples and on metal adhesive joints performed with commercially available focused air-coupled ultrasound transducers are compared to measurements executed with self-developed focused ferroelectret transducers.

  5. Experimental Evaluation of Three Designs of Electrodynamic Flexural Transducers

    PubMed Central

    Eriksson, Tobias J. R.; Laws, Michael; Kang, Lei; Fan, Yichao; Ramadas, Sivaram N.; Dixon, Steve

    2016-01-01

    Three designs for electrodynamic flexural transducers (EDFT) for air-coupled ultrasonics are presented and compared. An all-metal housing was used for robustness, which makes the designs more suitable for industrial applications. The housing is designed such that there is a thin metal plate at the front, with a fundamental flexural vibration mode at ∼50 kHz. By using a flexural resonance mode, good coupling to the load medium was achieved without the use of matching layers. The front radiating plate is actuated electrodynamically by a spiral coil inside the transducer, which produces an induced magnetic field when an AC current is applied to it. The transducers operate without the use of piezoelectric materials, which can simplify manufacturing and prolong the lifetime of the transducers, as well as open up possibilities for high-temperature applications. The results show that different designs perform best for the generation and reception of ultrasound. All three designs produced large acoustic pressure outputs, with a recorded sound pressure level (SPL) above 120 dB at a 40 cm distance from the highest output transducer. The sensitivity of the transducers was low, however, with single shot signal-to-noise ratio (SNR)≃15 dB in transmit–receive mode, with transmitter and receiver 40 cm apart. PMID:27571075

  6. Reducing the Effect of Transducer Mount Induced Noise (XMIN) on Aeroacoustic Wind Tunnel Testing Data with a New Transducer Mount Design

    NASA Technical Reports Server (NTRS)

    Herron, Andrew J.; Reed, Darren K.; Nance, Donald K.

    2015-01-01

    Characterization of flight vehicle unsteady aerodynamics is often studied via large scale wind tunnel testing. Boundary layer noise is measured by miniature pressure transducers installed in a model. Noise levels (2-5 dB ref. 20 µPa) can be induced when transducer is mounted out of flush with model outer surface. This effect must be minimized to accurately determine aerodynamically induced acoustic environments.

  7. Acoustic energy transmission in cast iron pipelines

    NASA Astrophysics Data System (ADS)

    Kiziroglou, Michail E.; Boyle, David E.; Wright, Steven W.; Yeatman, Eric M.

    2015-12-01

    In this paper we propose acoustic power transfer as a method for the remote powering of pipeline sensor nodes. A theoretical framework of acoustic power propagation in the ceramic transducers and the metal structures is drawn, based on the Mason equivalent circuit. The effect of mounting on the electrical response of piezoelectric transducers is studied experimentally. Using two identical transducer structures, power transmission of 0.33 mW through a 1 m long, 118 mm diameter cast iron pipe, with 8 mm wall thickness is demonstrated, at 1 V received voltage amplitude. A near-linear relationship between input and output voltage is observed. These results show that it is possible to deliver significant power to sensor nodes through acoustic waves in solid structures. The proposed method may enable the implementation of acoustic - powered wireless sensor nodes for structural and operation monitoring of pipeline infrastructure.

  8. Breathing-Mode Ceramic Element for Therapeutic Array Transducer

    NASA Astrophysics Data System (ADS)

    Otsu, Kenji; Yoshizawa, Shin; Umemura, Shin-ichiro

    2011-07-01

    A new concept of piezoceramic array transducer element using breathing mode has been proposed for therapeutic application. Finite element numerical simulation showed that a concave hemispherical piezoceramic shell with a diameter slightly larger than the wavelength in water is effective for obtaining good acoustic matching with water. A hemispherical piezoceramic element with an inner diameter of 4.0 mm and a thickness of 0.2-0.4 mm produced more than several times higher acoustic power output than a conventional thickness-mode element at the same drive voltage in the simulation. Its good acoustic matching with water is considered to be accomplished by the combined resonance with the spherical bulk of water half covered by the shell, because the resonance was very sensitive to the change in sound speed of the virtual material replacing water with the same acoustic impedance in simulation.

  9. Particle manipulation by a non-resonant acoustic levitator

    SciTech Connect

    Andrade, Marco A. B.; Pérez, Nicolás; Adamowski, Julio C.

    2015-01-05

    We present the analysis of a non-resonant acoustic levitator, formed by an ultrasonic transducer and a concave reflector. In contrast to traditional levitators, the geometry presented herein does not require the separation distance between the transducer and the reflector to be a multiple of half wavelength. The levitator behavior is numerically predicted by applying a numerical model to calculate the acoustic pressure distribution and the Gor'kov theory to obtain the potential of the acoustic radiation force that acts on a levitated particle. We also demonstrate that levitating particles can be manipulated by controlling the reflector position while maintaining the transducer in a fixed position.

  10. Thin film strain transducer

    NASA Technical Reports Server (NTRS)

    Rand, J. L. (Inventor)

    1984-01-01

    A strain transducer system and process for making the same is disclosed. A beryllium copper ring having four strain gages is electrically connected in Wheatstone bridge fashion to the output instrumentation. Tabs are bonded to a balloon or like surface with strain on the surface causing bending of a ring which provides an electrical signal through the gages proportional to the surface strain. A photographic pattern of a one half ring segment as placed on a sheet of beryllium copper for chem-mill etch formation is illustrated.

  11. An electromechanical displacement transducer

    NASA Astrophysics Data System (ADS)

    Villiers, Marius; Mahboob, Imran; Nishiguchi, Katsuhiko; Hatanaka, Daiki; Fujiwara, Akira; Yamaguchi, Hiroshi

    2016-08-01

    Two modes of an electromechanical resonator are coupled through the strain inside the structure with a cooperativity as high as 107, a state-of-the-art value for purely mechanical systems, which enables the observation of normal-mode splitting. This coupling is exploited to transduce the resonator’s fundamental mode into the bandwidth of the second flexural mode, which is 1.4 MHz higher in frequency. Thus, an all-mechanical heterodyne detection scheme is implemented that can be developed into a high-precision displacement sensor.

  12. Wellbore pressure transducer

    DOEpatents

    Shuck, Lowell Z.

    1979-01-01

    Subterranean earth formations containing energy values are subjected to hydraulic fracturing procedures to enhance the recovery of the energy values. These fractures are induced in the earth formation by pumping liquid into the wellbore penetrating the earth formation until the pressure of the liquid is sufficient to fracture the earth formation adjacent to the wellbore. The present invention is directed to a transducer which is positionable within the wellbore to generate a signal indicative of the fracture initiation useful for providing a timing signal to equipment for seismic mapping of the fracture as it occurs and for providing a measurement of the pressure at which the fracture is initiated.

  13. RADIO-ACTIVE TRANSDUCER

    DOEpatents

    Wanetick, S.

    1962-03-01

    ABS>ure the change in velocity of a moving object. The transducer includes a radioactive source having a collimated beam of radioactive particles, a shield which can block the passage of the radioactive beam, and a scintillation detector to measure the number of radioactive particles in the beam which are not blocked by the shield. The shield is operatively placed across the radioactive beam so that any motion normal to the beam will cause the shield to move in the opposite direction thereby allowing more radioactive particles to reach the detector. The number of particles detected indicates the acceleration. (AEC)

  14. LLNL`s acoustic spectrometer

    SciTech Connect

    Baker, J.

    1997-03-17

    This paper describes the development of a frequency sensitive acoustic transducer that operates in the 10 Hz to 10 kHz regime. This device uses modem silicon microfabrication techniques to form mechanical tines that resonate at specified frequencies. This high-sensitivity device is intended for low-power battery powered applications.

  15. Acoustic Microscopy at Cryogenic Temperatures.

    DTIC Science & Technology

    1982-01-01

    intensities are used, and quantitatitvely acount for the onset of nonlinear excess attenuation. Aooeuuaiol For DTIC TAB Unaranounc ed Just if icat to By...to acoustic power is a reasonable value and can be acounted for by assuming a one-way transducer conversion loss of 5 dB, a lens illumination loss of

  16. Transducer of linear displacements

    NASA Astrophysics Data System (ADS)

    Malamed, Y. R.

    1984-02-01

    The basic PLP transducer is designed for a UIM-29 microscope and a 2-coordinate measuring instrument with electronic digital readout. Its optical system consists of an AL-107B light-emitting diode as light source, two condenser lenses, a special wedge carrying two pairs of joined receiver lenses, a prism-mirror, a photoreceiver, a wedge-shape transparent replica of a twin diffraction grating which prevents light reflected by the air-glass interface from focusing on the receiver photodiodes, and a reflective replica of a diffraction grating on a movable carriage. The already available three models of this transducer are PLP1-0.2, PLP1-0.5, and PLP1-1.0 with respectively 625, 250, 125 lines/mm on the transparent replica and respectively 312.5, 125, 62.5 lines/mm on the reflective replica. The scale of moire-interference fringes characterizing the shift between both diffraction gratings per grating period (9.16 mm in each model) is respectively 0.8, 2.0, 4.0 microns and the angle between the two arrays of grating lines on the transparent replica is respectively 36 + or - 4 deg, 90 + or - 10 deg, 190 + or - 20 deg.

  17. Ultrasonic Transducers for Fourier Analysis.

    ERIC Educational Resources Information Center

    Greenslade, Thomas B., Jr.

    1995-01-01

    Describes an experiment that uses the ultrasonic transducer for demonstrating the Fourier components of waveshapes such as the square and triangular waves produced by laboratory function generators. (JRH)

  18. [Transducer hygiene -- an underrated topic?].

    PubMed

    Merz, E

    2005-02-01

    Transducers are medical products that are categorized as uncritical, semicritical and critical, depending on their applications and perceived risks. Uncritical medical products are transducers that solely come in contact with the intact skin, such as transducers used for sonography of the abdomen or breast. Semicritical medical products are transducers that come in contact with mucosal membranes or diseased skin, comprising transducers used for transesophageal, transvesical, transvaginal, transrectal and perineal sonography. Critical medical products are transducers that come in contact with blood, internal tissues or organs, such as transducers used for intraoperative sonography. Under the most unfavorable circumstances, sonographic transducers can become contaminated with pathogenic agents (e. g., MRSA, HBV, HCV, HIV, Herpes viruses) and turn into a not to be underrated source of infection. For this reason, correct handling as well as cleaning and disinfection of the transducers are indispensable. Depending on the application, the recommended handling of the transducers differs. Transducers counted to the uncritical medical products are adequately cleaned by removal of the applied ultrasound gel with subsequent wipe disinfection (e. g., foam spray). Transducers counted to the semicritical medical products, such as transvaginal or perineal transducers , should be exclusively used after a suitable cover has been applied. A Latex(R) allergy must be excluded before the examination. The cover is to be disposed after completion of the examination and the transducer itself cleaned and disinfected. The disinfecting agent must be antiviral but also compatible with the material (caution: damage to the transducer membrane when using an unsuited alcoholic disinfecting agent). In case of rupture of the protecting cover during the examination, the transducer is considered contaminated with secretion or even blood and must be thoroughly cleaned with subsequent disinfection

  19. Nonlinear characterization with burst excitation of 1-3 piezocomposite transducers.

    PubMed

    Casals, J A; Albareda, A; Pérez, R; García, J E; Minguella, E; Montero de Espinosa, F

    2003-06-01

    Ultrasonic transducers made with 1-3 connectivity piezocomposites are frequently used in Medical applications and nondestructive testing. When the transducer is used for special applications as, for instance air-coupled transmission, it is necessary to compensate for the high difference of acoustic impedance between transducer and medium using high amplitude pulses to generate high acoustic signal. Thus, the nonlinear behavior of the transducer must be taken into account in similar application conditions. The newly developed method, which performs the nonlinear characterization with burst signal excitation near the thickness resonance frequency, is based on the measure of the current as well as the vibration velocity of the piezocomposite transducer. The current of the stationary response is measured before the end of the burst signal excitation. Burst excitation enables us to measure the nonlinear characterization without producing overheating in the transducers. The amplitude level dependence of mechanical losses tandelta(m) and the stiffness increases |Deltac/c(0)| have been studied, as well as the velocity dependence of a point of the transducer, measured with a laser vibrometer. In this method, the power level applied to the transducers can be higher than other nonlinear measurement methods, providing measurements of high accuracy.

  20. A New High-Temperature Ultrasonic Transducer for Continuous Inspection.

    PubMed

    Amini, Mohammad Hossein; Sinclair, Anthony N; Coyle, Thomas W

    2016-03-01

    A novel design of piezoelectric ultrasonic transducer is introduced, suitable for operation at temperatures of up to 700 °C-800 °C. Lithium niobate single crystal is chosen as the piezoelectric element primarily due to the high Curie temperature of 1200 °C. A backing element based on a porous ceramic is designed for which the pore volume fraction and average pore diameter in the ceramic matrix can be controlled in the manufacturing process; this enables the acoustic impedance and attenuation to be selected to match their optimal values as predicted by a one-dimensional transducer model of the entire transducer. Porous zirconia is selected as the ceramic matrix material of the backing element to obtain an ultrasonic signal with center frequency of 2.7-3 MHz, and 3-dB bandwidth of 90%-95% at the targeted operating temperature. Acoustic coupling of the piezocrystal to the backing element and matching layer is investigated using commercially available high-temperature adhesives and brazing alloys. The performance of the transducer as a function of temperature is studied. Stable bonding and clear signals were obtained using an aluminum brazing alloy as the bonding agent.

  1. An opening electromagnetic transducer

    NASA Astrophysics Data System (ADS)

    Sun, Yanhua; Kang, Yihua

    2013-12-01

    Tubular solenoids have been widely used without any change since an electrical wire was discovered to create magnetic fields by Hans Christian Oersted in 1820 and thereby the wire was first coiled as a helix into a solenoid coil by William Sturgeon in 1823 and was improved by Joseph Henry in 1829 [see http://www.myetymology.com/encyclopedia/History_of_the_electricity.html; J. M. D. Coey, Magnetism and Magnetic Materials (Cambridge University Press, New York, 2010); and F. Winterberg, Plasma Phys. 8, 541553 (1996)]. A magnetic control method of C-shaped carrying-current wire is proposed, and thereby a new opening electromagnetic transducer evidently differing from the traditional tubular solenoid is created, capable of directly encircling and centering the acted objects in it, bringing about convenient and innovative electromagnetic energy conversion for electromagnetic heating, electromagnetic excitation, physical information capture, and electro-mechanical motion used in science research, industry, and even biomedical activities.

  2. Optically transduced MEMS magnetometer

    DOEpatents

    Nielson, Gregory N; Langlois, Eric

    2014-03-18

    MEMS magnetometers with optically transduced resonator displacement are described herein. Improved sensitivity, crosstalk reduction, and extended dynamic range may be achieved with devices including a deflectable resonator suspended from the support, a first grating extending from the support and disposed over the resonator, a pair of drive electrodes to drive an alternating current through the resonator, and a second grating in the resonator overlapping the first grating to form a multi-layer grating having apertures that vary dimensionally in response to deflection occurring as the resonator mechanically resonates in a plane parallel to the first grating in the presence of a magnetic field as a function of the Lorentz force resulting from the alternating current. A plurality of such multi-layer gratings may be disposed across a length of the resonator to provide greater dynamic range and/or accommodate fabrication tolerances.

  3. Lead-free piezoelectric materials and ultrasonic transducers for medical imaging

    NASA Astrophysics Data System (ADS)

    Taghaddos, Elaheh; Hejazi, Mehdi; Safari, Ahmad

    2015-06-01

    Piezoelectric materials have been vastly used in ultrasonic transducers for medical imaging. In this paper, firstly, the most promising lead-free compositions with perovskite structure for medical imaging applications have been reviewed. The electromechanical properties of various lead-free ceramics, composites, and single crystals based on barium titanate, bismuth sodium titanate, potassium sodium niobate, and lithium niobate are presented. Then, fundamental principles and design considerations of ultrasonic transducers are briefly described. Finally, recent developments in lead-free ultrasonic probes are discussed and their acoustic performance is compared to lead-based transducers. Focused transducers with different beam focusing methods such as lens focusing and mechanical shaping are explained. Additionally, acoustic characteristics of lead-free probes including the pulse-echo results as well as their imaging capabilities for various applications such as phantom imaging, in vitro intravascular ultrasound imaging of swine aorta, and in vivo or ex vivo imaging of human eyes and skin are reviewed.

  4. Acoustic-emission linear-pulse holography

    SciTech Connect

    Collins, H.D.; Lemon, D.K.; Busse, L.J.

    1982-06-01

    This paper describes Acoustic Emission Linear Pulse Holography which combines the advantages of linear imaging and acoustic emission into a single NDE inspection system. This unique system produces a chronological linear holographic image of a flaw by utilizing the acoustic energy emitted during crack growth. Conventional linear holographic imaging uses an ultrasonic transducer to transmit energy into the volume being imaged. When the crack or defect reflects that energy, the crack acts as a new source of acoustic waves. To formulate an image of that source, a receiving transducer is scanned over the volume of interest and the phase of the received signals is measured at successive points on the scan. The innovation proposed here is the utilization of the crack generated acoustic emission as the acoustic source and generation of a line image of the crack as it grows. A thirty-two point sampling array is used to construct phase-only linear holograms of simulated acoustic emission sources on large metal plates. The phases are calculated using the pulse time-of-flight (TOF) times from the reference transducer to the array of receivers. Computer reconstruction of the image is accomplished using a one-dimensional FFT algorithm (i.e., backward wave). Experimental results are shown which graphically illustrate the unique acoustic emission images of a single point and a linear crack in a 100 mm x 1220 mm x 1220 mm aluminum plate.

  5. Underwater Multimode Directional Transducer Evaluation

    DTIC Science & Technology

    2003-12-01

    The work described in the present thesis is intended to establish a procedure for analyzing directional transducers for future underwater wireless...networks, as well as to carry out the performance evaluation of a multimode transducer prototype with respect to its main operational requirements

  6. Simulation of sound field in a tissue medium generated by a concave spherically annular transducer.

    PubMed

    Qian, Shengyou; Kamakura, Tomoo; Akiyama, Masahiko

    2006-12-22

    The concave spherically annular transducer is regarded as a negative and a positive concave spherical transducer, and the spheroidal beam equation is used to simulate the linear and nonlinear sound field in a tissue medium generated by this transducer. It is found that the acoustic focus of the ring does not coincide with the acoustic focus of its central part. If the width of the ring increases, its acoustic focus will move toward the geometric focus and the amplitudes of nonlinear harmonics will increase obviously. If there are several coaxial rings placed on the concave spherical surface, more than one peak will appear along the axial direction for the fundamental, and high harmonics focus better. The distribution of sound field will change with the number and the excited signals of rings, so it maybe is a potential approach to treat locally big tumors.

  7. Direct measurement of solids: High temperature sensing: Phase 2, Experimental development and testing on furnace-heated steel blocks

    SciTech Connect

    Lemon, D.K.; Daly, D.S.

    1985-12-01

    Using average velocity measurements to estimate average profile temperature shows promise and merits further investigation. The current generation of electromagnetic acoustic transducers (EMATs) can transmit and detect signals in steel below the magnetic transition temperature. Techniques for calibrating ultrasonic velocity to internal temperature need further development. EMATs are inadequate ultrasonic transmitters for these applications. A high-energy, pulsed laser capable of generating more intense ultrasonic signals should be investigated as a transmitter. Recommendations are given for further work.

  8. A new method for anisotropic materials characterization based on phased-array ultrasonic transducers technology

    SciTech Connect

    Frenet, D.; Calmon, P.; Paradis, L.

    1999-12-02

    A method for materials characterization based on the utilization of a ultrasonic array transducer of conical shape has been developed at the CEA. The specific design of this transducer allows the generation and the detection of leaky surface acoustic waves (LSAW) in an efficient way. Additionally, anisotropic materials can be investigated in several azimuthal directions without any mechanical movement. The characterization process relies on the velocity measurement of the LSAW. Experimental results on both isotropic an anisotropic material are reported.

  9. Ultrasonic transducer for operation with a magnetic-fluid contact layer

    SciTech Connect

    Korovin, V.M.; Korovina, L.A.; Raikher, Yu.L.

    1988-12-01

    By solving the problem of holding a drop of magnetic fluid in a thin layer between a piezoelectric plate and the surface of an object that is being inspected a computational procedure has been developed for the design and production parameters of an ultrasonic transducer with an integrated permanent magnet that operates with a magnetic-fluid acoustic contact. The basic conclusions about the operation are supported experimentally using a prototype transducer designed in accord with the procedure as developed.

  10. Long-Term Stability of the NIST Conical Reference Transducer.

    PubMed

    Fick, Steven E; Proctor, Thomas M

    2011-01-01

    The National Institute of Standards and Technology (NIST) Conical Reference Transducer (CRT) is designed for purposes requiring frequency response characteristics much more uniform than those attainable with ultrasonic transducers conventionally used for acoustic emission (AE) nondestructive testing. The high performance of the CRT results from the use of design elements radically different from those of conventional transducers. The CRT was offered for sale for 15 years (1985 to 2000). Each CRT was furnished with data which expressed, as a function of frequency, the transducer sensitivity in volts per micrometer of normal displacement on the test block. Of the 22 transducers constructed, eight were reserved for long term research and were stored undisturbed in a laboratory with well controlled temperature and humidity. In 2009, the sensitivities of these eight units were redetermined. The 2009 data have been compared with data from similar tests conducted in 1985. The results of this comparison verify the claim "Results of tests of the long term stability of CRT characteristics indicate that, if proper care is taken, tens of years of service can reasonably be expected." made in the CRT specifications document furnished to prospective customers.

  11. Safety Issues for HIFU Transducer Design

    NASA Astrophysics Data System (ADS)

    Fleury, Gérard; Berriet, Rémi; Chapelon, Jean Yves; ter Haar, Gail; Lafon, Cyril; Le Baron, Olivier; Chupin, Laurent; Pichonnat, Fabrice; Lenormand, Jérôme

    2005-03-01

    In contrast with most ultrasound modalities for medical applications, (especially ultrasound imaging), High Intensity Focused Ultrasound (HIFU) involves technologies and procedures which may present risk to the patient. These risks, resulting from the high power levels required for effective therapy, should be taken into account at the earliest stages in the design of a system dedicated to HIFU treatment. An understanding of these risks must thus be shared amongst the many players in the field of therapy using high power ultrasound. Moreover, since the number of applications of HIFU has increased appreciably over recent years and the technology is ready to move from the research to the industrial level, it is worth now considering solutions that should be put in place to guarantee the safety of the patient during HIFU treatment. This paper reports thoughts on this, identifies some risks to the patient that must be taken into consideration in the design of HIFU transducers, and proposes some solutions that could prevent the deleterious consequences of transducer misuse or failure. For the main risks identified, such as exceeding the desired acoustic power or poor control of tissue targeting, a description of transducer performance that could potentially result in problems is systematically sought. This allows proposals for precautions to be taken during operation to be made. Parameters which should be monitored to ensure safe use are also suggested. This type of approach, which should be undertaken for the different components of a therapeutic system, highlights the challenges that must be faced in the immediate future for the development and safe exploitation of HIFU systems. The necessity for standard definitions of the parameters to be checked or monitored during HIFU treatments is crucial in this approach, as is the availability of reliable dedicated measurement devices. Co-ordinated action on these topics in the HIFU community would contribute to the

  12. In plant demonstration of high temperature EM pulser and pulsed EMAT receiver: Final report: Experimental development and testing of ultrasonic system for high temperature applications on hot steel

    SciTech Connect

    Boyd, D.M.; Sperline, P.D.

    1988-11-01

    This report describes work performed under the Field Work Proposal on the ''In-Plant Demonstration of a High-Temperature EM Pulser and pulsed EMAT Receiver'' for the Department of Energy's Office of Industrial Programs. Cost sharing by the American Iron and Steel Institute (AISI) helped provide both technical guidance and equipment for the plant demonstration. This report covers the time period from January 1988 through September 1988.

  13. Circuit for Driving Piezoelectric Transducers

    NASA Technical Reports Server (NTRS)

    Randall, David P.; Chapsky, Jacob

    2009-01-01

    The figure schematically depicts an oscillator circuit for driving a piezoelectric transducer to excite vibrations in a mechanical structure. The circuit was designed and built to satisfy application-specific requirements to drive a selected one of 16 such transducers at a regulated amplitude and frequency chosen to optimize the amount of work performed by the transducer and to compensate for both (1) temporal variations of the resonance frequency and damping time of each transducer and (2) initially unknown differences among the resonance frequencies and damping times of different transducers. In other words, the circuit is designed to adjust itself to optimize the performance of whichever transducer is selected at any given time. The basic design concept may be adaptable to other applications that involve the use of piezoelectric transducers in ultrasonic cleaners and other apparatuses in which high-frequency mechanical drives are utilized. This circuit includes three resistor-capacitor networks that, together with the selected piezoelectric transducer, constitute a band-pass filter having a peak response at a frequency of about 2 kHz, which is approximately the resonance frequency of the piezoelectric transducers. Gain for generating oscillations is provided by a power hybrid operational amplifier (U1). A junction field-effect transistor (Q1) in combination with a resistor (R4) is used as a voltage-variable resistor to control the magnitude of the oscillation. The voltage-variable resistor is part of a feedback control loop: Part of the output of the oscillator is rectified and filtered for use as a slow negative feedback to the gate of Q1 to keep the output amplitude constant. The response of this control loop is much slower than 2 kHz and, therefore, does not introduce significant distortion of the oscillator output, which is a fairly clean sine wave. The positive AC feedback needed to sustain oscillations is derived from sampling the current through the

  14. Numerical comparison of patch and sandwich piezoelectric transducers for transmitting ultrasonic waves

    NASA Astrophysics Data System (ADS)

    Loveday, Philip W.

    2006-03-01

    Guided wave ultrasonic inspection is becoming an important method of non-destructive testing for long, slender structures such as pipes and rails. Often it is desirable to use transducers that can strongly excite a specific mode of wave propagation in the waveguide. Piezoelectric patch transducers are frequently employed, by researchers, for exciting waves in beam like structures. Sonar systems frequently make use of resonant transducers, such as sandwich transducers, for acoustic wave generation and this principle has been used to excite waves in a rail. This paper compares the two transduction approaches, for launching bending waves in rectangular waveguides, with numerical modeling. The numerical modeling combined a waveguide finite element model, of the waveguide, with conventional three-dimensional piezoelectric finite element models of the transducers. The waveguide finite elements were formulated using a complex exponential to describe the wave propagation along the structure and conventional finite element interpolation over the area of the element. Consequently, only a two-dimensional finite element mesh covering the cross-section of the waveguide is required. The harmonic forced response of the waveguide was used to compute a complex dynamic stiffness matrix which represented the waveguide in the transducer model. The effects of geometrical parameters of patch and sandwich transducers were considered before the comparison was made. It appears that piezoelectric patch transducers offer advantages at low frequencies while sandwich transducers are superior at high frequencies, where resonance can be exploited, at the cost of more complex design.

  15. Electroacoustic response of 1-3 piezocomposite transducers for high power applications

    NASA Astrophysics Data System (ADS)

    Jae Lee, Hyeong; Zhang, Shujun; Geng, Xuecang; Shrout, Thomas R.

    2012-12-01

    The electroacoustic performance of 1-3 piezoelectric composite transducers with low loss polymer filler was studied and compared to monolithic Pb(Zr,Ti)O3 (PZT) piezoelectric transducers. The 1-3 composite transducers exhibited significantly high electromechanical coupling factor (kt ˜ 0.64) when compared to monolithic counterparts (kt ˜ 0.5), leading to the improved bandwidth and loop sensitivity, being on the order of 67% and -24.0 dB versus 44% and -24.8 dB, respectively. In addition, the acoustic output power and transmit efficiency (˜50%) were found to be comparable to the monolithic PZT transducers, demonstrating potential for broad bandwidth, high power ultrasonic transducer applications.

  16. Application of high-temperature superconducting wires to magnetostrictive transducers for underwater sonar

    SciTech Connect

    Voccio, J.P.; Joshi, C.H.; Lindberg, J.F.

    1994-07-01

    Recently discovered cryogenic magnetostrictive materials show maximum strains greater than any room temperature materials. These cryogenic magnetostrictors can be combined with high-temperature superconducting (HTS) coils to create a sonar transducer with high efficiency and high acoustic power density. A prototype low-frequency (< 1,000 Hz) magnetostrictive transducer is described. This transducer uses a terbium-dysprosium (TbDy) magnetostrictor rod with HTS coils cooled to 50--80 K using a single-stage cryocooler. The device is designed for operation at water depths of 100 m and is believed to be the first fully integrated prototype demonstration of HTS.

  17. Methods to calibrate the absolute receive sensitivity of single-element, focused transducers.

    PubMed

    Rich, Kyle T; Mast, T Douglas

    2015-09-01

    Absolute pressure measurements of acoustic emissions by single-element, focused passive cavitation detectors would be facilitated by improved wideband receive calibration techniques. Here, calibration methods were developed to characterize the absolute, frequency-dependent receive sensitivity of a spherically focused, single-element transducer using pulse-echo and pitch-catch techniques. Validation of these calibration methods on a focused receiver were made by generating a pulse from a small diameter source at the focus of the transducer and comparing the absolute pressure measured by a calibrated hydrophone to that of the focused transducer using the receive sensitivities determined here.

  18. Microfluidic device for acoustic cell lysis

    SciTech Connect

    Branch, Darren W.; Cooley, Erika Jane; Smith, Gennifer Tanabe; James, Conrad D.; McClain, Jaime L.

    2015-08-04

    A microfluidic acoustic-based cell lysing device that can be integrated with on-chip nucleic acid extraction. Using a bulk acoustic wave (BAW) transducer array, acoustic waves can be coupled into microfluidic cartridges resulting in the lysis of cells contained therein by localized acoustic pressure. Cellular materials can then be extracted from the lysed cells. For example, nucleic acids can be extracted from the lysate using silica-based sol-gel filled microchannels, nucleic acid binding magnetic beads, or Nafion-coated electrodes. Integration of cell lysis and nucleic acid extraction on-chip enables a small, portable system that allows for rapid analysis in the field.

  19. Micromachined silicon seismic transducers

    SciTech Connect

    Barron, C.C.; Fleming, J.G.; Sniegowski, J.J.; Armour, D.L.; Fleming, R.P.

    1995-08-01

    Batch-fabricated silicon seismic transducers could revolutionize the discipline of CTBT monitoring by providing inexpensive, easily depolyable sensor arrays. Although our goal is to fabricate seismic sensors that provide the same performance level as the current state-of-the-art ``macro`` systems, if necessary one could deploy a larger number of these small sensors at closer proximity to the location being monitored in order to compensate for lower performance. We have chosen a modified pendulum design and are manufacturing prototypes in two different silicon micromachining fabrication technologies. The first set of prototypes, fabricated in our advanced surface- micromachining technology, are currently being packaged for testing in servo circuits -- we anticipate that these devices, which have masses in the 1--10 {mu}g range, will resolve sub-mG signals. Concurrently, we are developing a novel ``mold`` micromachining technology that promises to make proof masses in the 1--10 mg range possible -- our calculations indicate that devices made in this new technology will resolve down to at least sub-{mu}G signals, and may even approach to 10{sup {minus}10} G/{radical}Hz acceleration levels found in the low-earth-noise model.

  20. Kinetic energy transducing system

    SciTech Connect

    Danihel, M.

    1986-07-08

    A device is described for converting wave energy to mechanical motion comprising: a frame, at least one wave energy transducer each of which has a float to ride upon the undulating surface of a body of water, a rocker shaft rotatably mounted in the frame and connected to the float by a rocker arm to turn in response to movement of the float upon the undulating water surface, a pair of unidirectional clutch mechanisms coupled to the rocker shaft, a drive shaft rotatably mounted on the frame and connected to the clutch mechanisms to turn in a single direction of rotation responsive to alternative engagement of the clutch mechanisms therewith and turning movement of the rocker shaft in both directions of rotation, and a hydrofoil system for each float including a vertical shaft extending downwardly from the bottom of each float, a transverse rod which is rotatably coupled to the vertical shaft, a pair of hydrofoil wings secured to the transverse rod on opposite sides of the vertical shaft, and means for centering the hydrofoil wings acting between the vertical shaft and the transverse rod to urge the hydrofoil wings toward horizontal orientation.

  1. Optoacoustic tomography of breast cancer with arc-array transducer

    NASA Astrophysics Data System (ADS)

    Andreev, Valeri G.; Karabutov, Alexander A.; Solomatin, Sergey V.; Savateeva, Elena V.; Aleinikov, Vadim; Zhulina, Yulia V.; Fleming, R. Declan; Oraevsky, Alexander A.

    2000-05-01

    The second generation of the laser optoacoustic imaging system for breast cancer detection, localization and characterization using a 32-element arc-shaped transducer array was developed and tested. Each acoustic transducer was made of 110-micrometers thick SOLEF PVDF film with dimensions of 1mm X 12.5mm. The frequency band of transducer array provided 0.4-mm axial in-depth resolution. Cylindrical shape of this 10-cm long transducer array provided an improved lateral resolution of 1.0 mm. Original and compact design of low noise preamplifiers and wide band amplifiers was employed. The system sensitivity was optimized by choosing limited bandwidth of ultrasonic detection 20-kHz to 2-MHz. Signal processing was significantly improved and optimized resulting in reduced data collection time of 13 sec. The computer code for digital signal processing employed auto- gain control, high-pass filtering and denoising. An automatic recognition of the opto-acoustic signal detected from the irradiated surface was implemented in order to visualize the breast surface and improve the accuracy of tumor locations. Radial back-projection algorithm was used for image reconstruction. Optimal filtering of image was employed to reduce low and high frequency noise. The advantages and limitations of various contrast-enhancing filters applied to the entire image matrix were studied and discussed. Time necessary for image reconstruction was reduced to 32 sec. The system performance was evaluated initially via acquisition of 2D opto-acoustic images of small absorbing spheres in breast-tissue-like phantoms. Clinical ex-vivo studies of mastectomy specimen were also performed and compared with x-ray radiography and ultrasound.

  2. Experimental study of underwater transmission characteristics of high-frequency 30 MHz polyurea ultrasonic transducer.

    PubMed

    Nakazawa, Marie; Aoyagi, Takahiro; Tabaru, Masaya; Nakamura, Kentaro; Ueha, Sadayuki

    2014-02-01

    In this paper, we present the transmission characteristics of a polyurea ultrasonic transducer operating in water. In this study, we used a polyurea transducer with fundamental resonance at approximately 30 MHz. Firstly, acoustic pressure radiated from the transducer was measured using a hydrophone, which has a diameter of 0.2 mm. The transmission characteristics such as relative bandwidth, pulse width, and acoustic sensitivity were calculated from the experimental results. The results of the experiment showed a relative bandwidth of 50% and a pulse width of 0.061 μs. The acoustic sensitivity was 0.60 kPa/V with good linearity, where the correlation coefficient R in the fitting calculation was 0.996. A maximum pressure of 13.1 kPa was observed when the transducer was excited at a zero-to-peak voltage of 21 V. Moreover, we experimentally verified the results. The results of the pulse/echo experiment showed that the estimated diameters of the copper wires were 458 and 726 μm, where the differences between the actual and measured values were 15% and 4%, respectively. Acoustic streaming was also observed so that a particle velocity map was estimated by particle image velocimetry (PIV). The sound pressure calculated from the particle velocity obtained by PIV showed good agreement with the acoustic pressure measured using the hydrophone, where the differences between the calculated and measured values were 12-19%.

  3. Passive wireless ultrasonic transducer systems

    NASA Astrophysics Data System (ADS)

    Zhong, C. H.; Croxford, A. J.; Wilcox, P. D.

    2014-02-01

    Inductive coupling and capacitive coupling both offer simple solutions to wirelessly probe ultrasonic transducers. This paper investigates the theory and feasibility of such system in the context of non-destructive evaluation (NDE) applications. Firstly, the physical principles and construction of an inductively coupled transducer system (ICTS) and a capacitively coupled transducer system (CCTS) are introduced. Then the development of a transmission line model with the measured impedance of a bonded piezoelectric ceramic disc representing a sensor attached to an arbitrary solid substrate for both systems is described. The models are validated experimentally. Several applications of CCTS are presented, such CCTS for the underwater and through-composite testing.

  4. Passive focusing techniques for piezoelectric air-coupled ultrasonic transducers.

    PubMed

    Gómez Álvarez-Arenas, Tomás E; Camacho, Jorge; Fritsch, Carlos

    2016-04-01

    This paper proposes a novel passive focusing system for Air-Coupled Ultrasonic (ACU) piezoelectric transducers which is inspired by the Newtonian-Cassegrain (NC) telescope concept. It consist of a primary spherical mirror with an output hole and a flat secondary mirror, normal to the propagation axis, that is the transducer surface itself. The device is modeled and acoustic field is calculated showing a collimated beam with a symmetrical focus. A prototype according to this design is built and tested with an ACU piezoelectric transducer with center frequency at 400 kHz, high-sensitivity, wideband and 25 mm diameter flat aperture. The acoustic field is measured and compared with calculations. The presented prototype exhibit a 1.5 mm focus width and a collimated beam up to 15 mm off the output hole. In addition, the performance of this novel design is compared, both theoretically and experimentally, with two techniques used before for electrostatic transducers: the Fresnel Zone Plate - FZP and the off-axis parabolic or spherical mirror. The proposed NC arrangement has a coaxial design, which eases the transducers positioning and use in many applications, and is less bulky than off-axis mirrors. Unlike in off-axis mirrors, it is now possible to use a spherical primary mirror with minimum aberrations. FZP provides a more compact solution and is easy to build, but presents some background noise due to interference of waves diffracted at out of focus regions. By contrast, off-axis parabolic mirrors provide a well defined focus and are free from background noise, although they are bulky and more difficult to build. Spherical mirrors are more easily built, but this yields a non symmetric beam and a poorly defined focus.

  5. Acoustic Neuroma

    MedlinePlus

    ... search IRSA's site Unique Hits since January 2003 Acoustic Neuroma Click Here for Acoustic Neuroma Practice Guideline ... to microsurgery. One doctor's story of having an acoustic neuroma In August 1991, Dr. Thomas F. Morgan ...

  6. Structural tests using a MEMS acoustic emission sensor

    NASA Astrophysics Data System (ADS)

    Oppenheim, Irving J.; Greve, David W.; Ozevin, Didem; Hay, D. Robert; Hay, Thomas R.; Pessiki, Stephen P.; Tyson, Nathan L.

    2006-03-01

    In a collaborative project at Lehigh and Carnegie Mellon, a MEMS acoustic emission sensor was designed and fabricated as a suite of six resonant-type capacitive transducers in the frequency range between 100 and 500 kHz. Characterization studies showed good comparisons between predicted and experimental electro-mechanical behavior. Acoustic emission events, simulated experimentally in steel ball impact and in pencil lead break tests, were detected and source localization was demonstrated. In this paper we describe the application of the MEMS device in structural testing, both in laboratory and in field applications. We discuss our findings regarding housing and mounting (acoustic coupling) of the MEMS device with its supporting electronics, and we then report the results of structural testing. In all tests, the MEMS transducers were used in parallel with commercial acoustic emission sensors, which thereby serve as a benchmark and permit a direct observation of MEMS device functionality. All tests involved steel structures, with particular interest in propagation of existing cracks or flaws. A series of four laboratory tests were performed on beam specimens fabricated from two segments (Grade 50 steel) with a full penetration weld (E70T-4 electrode material) at midspan. That weld region was notched, an initial fatigue crack was induced, and the specimens were then instrumented with one commercial transducer and with one MEMS device; data was recorded from five individual transducers on the MEMS device. Under a four-point bending test, the beam displayed both inelastic behavior and crack propagation, including load drops associated with crack instability. The MEMS transducers detected all instability events as well as many or most of the acoustic emissions occurring during plasticity and stable crack growth. The MEMS transducers were less sensitive than the commercial transducer, and did not detect as many events, but the normalized cumulative burst count obtained

  7. Multi-particle trapping and manipulation by a high-frequency array transducer

    SciTech Connect

    Yoon, Changhan; Kang, Bong Jin; Lee, Changyang; Kim, Hyung Ham Shung, K. Kirk

    2014-11-24

    We report the multiple micro-particle trapping and manipulation by a single-beam acoustic tweezer using a high-frequency array transducer. A single acoustic beam generated by a 30 MHz ultrasonic linear array transducer can entrap and transport multiple micro-particles located at the main lobe and the grating lobes. The distance between trapped particles can be adjusted by changing the transmit arrangement of array-based acoustic tweezers and subsequently the location of grating lobes. The experiment results showed that the proposed method can trap and manipulate multiple particles within a range of hundreds of micrometers. Due to its simplicity and low acoustic power, which is critical to protect cells from any thermal and mechanical damages, the technique may be used for transportation of cells in cell biology, biosensors, and tissue engineering.

  8. Aeroelastic structural acoustic control.

    PubMed

    Clark, R L; Frampton, K D

    1999-02-01

    Static, constant-gain, output-feedback control compensators were designed to increase the transmission loss across a panel subjected to mean flow on one surface and a stationary, acoustic half-space on the opposite surface. The multi-input, multi-output control system was based upon the use of an array of colocated transducer pairs. The performance of the static-gain, output-feedback controller was compared to that of the full state-feedback controller using the same control actuator arrays, and was found to yield comparable levels of performance for practical limitations on control effort. Additionally, the resulting static compensators proved to be dissipative in nature, and thus the design varied little as a function of the aeroelastic coupling induced by the fluid-structure interaction under subsonic flow conditions. Several parametric studies were performed, comparing the effects of control-effort penalty as well as the number of transducer pairs used in the control system.

  9. Investigation of a Phase-Locked Loop Receiver for a Parametric Acoustic Receiving Array.

    DTIC Science & Technology

    1980-05-05

    KEY WORDS (Continue on reverse side if necesary and Identify by block number, PARRAY Nonlinear Acoustics Parametric Reception Phase-Locked Loop...loop (PLL) demodulator considered for use with the parametric acoustic receiving array ( PARRAY ). The PARRAY as an acoustic sensor is explained and the...effects of longitudinal transducer motion on the PARRAY are described. This transducer vibration produces intermodulation products between the desired

  10. Acoustically induced current flow in graphene

    NASA Astrophysics Data System (ADS)

    Miseikis, V.; Cunningham, J. E.; Saeed, K.; O'Rorke, R.; Davies, A. G.

    2012-03-01

    We demonstrate the directed control of charge carriers in graphene using the electric field that accompanies the propagation of surface acoustic waves (SAWs) on a piezoelectric surface. Graphene grown by chemical vapor deposition was transferred to the surface of lithium niobate, allowing its direct integration with interdigital transducers used for SAW generation and detection. Radio frequency (RF) signal applied to the transducers at their resonant frequency was found to generate a direct current flow by the transport of p-type charge carriers. The acoustically induced current scales linearly with the applied RF power and can be observed even in presence of a counter-flow current induced by an applied bias.

  11. Fixture for holding testing transducer

    DOEpatents

    Wagner, T.A.; Engel, H.P.

    A fixture for mounting an ultrasonic transducer against the end of a threaded bolt or stud to test the same for flaws. A base means threadedly secured to the side of the bolt has a rotating ring thereon. A post rising up from the ring (parallel to the axis of the workpiece) pivotally mounts a variable length cross arm, on the inner end of which is mounted the transducer. A spring means acts between the cross arm and the base to apply the testing transducer against the workpiece at a constant pressure. The device maintains constant for successive tests the radial and circumferential positions of the testing transducer and its contact pressure against the end of the workpiece.

  12. Fixture for holding testing transducer

    DOEpatents

    Wagner, Thomas A.; Engel, Herbert P.

    1984-01-01

    A fixture for mounting an ultrasonic transducer against the end of a threaded bolt or stud to test the same for flaws. A base means threadedly secured to the side of the bolt has a rotating ring thereon. A post rising up from the ring (parallel to the axis of the workpiece) pivotally mounts a variable length cross arm, on the inner end of which is mounted the transducer. A spring means acts between the cross arm and the base to apply the testing transducer against the workpiece at a constant pressure. The device maintains constant for successive tests the radial and circumferential positions of the testing transducer and its contact pressure against the end of the workpiece.

  13. TRANSDUCER FIELD IMAGING USING ACOUSTOGRAPHY

    PubMed Central

    Sandhu, Jaswinder S.; Schoonover, Robert W.; Weber, Joshua I.; Tawiah, J.; Kunin, Vitaliy; Anastasio, Mark A.

    2013-01-01

    A common current practice for transducer field mapping is to scan, point-by-point, a hydrophone element in a 2D raster at various distances from the transducer radiating surface. This approach is tedious, requiring hours of scanning time to generate full cross-sectional and/or axial field distributions. Moreover, the lateral resolution of the field distribution image is dependent on the indexing steps between data points. Acoustography is an imaging process in which an acousto-optical (AO) area sensor is employed to record the intensity of an ultrasound wavefield on a two-dimensional plane. This paper reports on the application of acoustography as a simple but practical method for assessing transducer field characteristics. A case study performed on a commercial transducer is reported, where the radiated fields are imaged using acoustography and compared to the corresponding quantities that are predicted numerically. PMID:23967016

  14. An enzyme logic bioprotonic transducer

    SciTech Connect

    Miyake, Takeo; Keene, Scott; Deng, Yingxin; Rolandi, Marco; Josberger, Erik E.

    2015-01-01

    Translating ionic currents into measureable electronic signals is essential for the integration of bioelectronic devices with biological systems. We demonstrate the use of a Pd/PdH{sub x} electrode as a bioprotonic transducer that connects H{sup +} currents in solution into an electronic signal. This transducer exploits the reversible formation of PdH{sub x} in solution according to PdH↔Pd + H{sup +} + e{sup −}, and the dependence of this formation on solution pH and applied potential. We integrate the protonic transducer with glucose dehydrogenase as an enzymatic AND gate for glucose and NAD{sup +}. PdH{sub x} formation and associated electronic current monitors the output drop in pH, thus transducing a biological function into a measurable electronic output.

  15. An enzyme logic bioprotonic transducer

    NASA Astrophysics Data System (ADS)

    Miyake, Takeo; Josberger, Erik E.; Keene, Scott; Deng, Yingxin; Rolandi, Marco

    2015-01-01

    Translating ionic currents into measureable electronic signals is essential for the integration of bioelectronic devices with biological systems. We demonstrate the use of a Pd/PdHx electrode as a bioprotonic transducer that connects H+ currents in solution into an electronic signal. This transducer exploits the reversible formation of PdHx in solution according to PdH↔Pd + H+ + e-, and the dependence of this formation on solution pH and applied potential. We integrate the protonic transducer with glucose dehydrogenase as an enzymatic and gate for glucose and NAD+. PdHx formation and associated electronic current monitors the output drop in pH, thus transducing a biological function into a measurable electronic output.

  16. Efficient Driving of Piezoelectric Transducers Using a Biaxial Driving Technique.

    PubMed

    Pichardo, Samuel; Silva, Rafael R C; Rubel, Oleg; Curiel, Laura

    2015-01-01

    Efficient driving of piezoelectric materials is desirable when operating transducers for biomedical applications such as high intensity focused ultrasound (HIFU) or ultrasound imaging. More efficient operation reduces the electric power required to produce the desired bioeffect or contrast. Our preliminary work [Cole et al. Journal of Physics: Condensed Matter. 2014;26(13):135901.] suggested that driving transducers by applying orthogonal electric fields can significantly reduce the coercivity that opposes ferroelectric switching. We present here the experimental validation of this biaxial driving technique using piezoelectric ceramics typically used in HIFU. A set of narrow-band transducers was fabricated with two sets of electrodes placed in an orthogonal configuration (following the propagation and the lateral mode). The geometry of the ceramic was chosen to have a resonance frequency similar for the propagation and the lateral mode. The average (± s.d.) resonance frequency of the samples was 465.1 (± 1.5) kHz. Experiments were conducted in which each pair of electrodes was driven independently and measurements of effective acoustic power were obtained using the radiation force method. The efficiency (acoustic/electric power) of the biaxial driving method was compared to the results obtained when driving the ceramic using electrodes placed only in the pole direction. Our results indicate that the biaxial method increases efficiency from 50% to 125% relative to the using a single electric field.

  17. Efficient Driving of Piezoelectric Transducers Using a Biaxial Driving Technique

    PubMed Central

    2015-01-01

    Efficient driving of piezoelectric materials is desirable when operating transducers for biomedical applications such as high intensity focused ultrasound (HIFU) or ultrasound imaging. More efficient operation reduces the electric power required to produce the desired bioeffect or contrast. Our preliminary work [Cole et al. Journal of Physics: Condensed Matter. 2014;26(13):135901.] suggested that driving transducers by applying orthogonal electric fields can significantly reduce the coercivity that opposes ferroelectric switching. We present here the experimental validation of this biaxial driving technique using piezoelectric ceramics typically used in HIFU. A set of narrow-band transducers was fabricated with two sets of electrodes placed in an orthogonal configuration (following the propagation and the lateral mode). The geometry of the ceramic was chosen to have a resonance frequency similar for the propagation and the lateral mode. The average (± s.d.) resonance frequency of the samples was 465.1 (± 1.5) kHz. Experiments were conducted in which each pair of electrodes was driven independently and measurements of effective acoustic power were obtained using the radiation force method. The efficiency (acoustic/electric power) of the biaxial driving method was compared to the results obtained when driving the ceramic using electrodes placed only in the pole direction. Our results indicate that the biaxial method increases efficiency from 50% to 125% relative to the using a single electric field. PMID:26418550

  18. Acoustic cross-correlation flowmeter for solid-gas flow

    DOEpatents

    Sheen, S.H.; Raptis, A.C.

    1984-05-14

    Apparatus for measuring particle velocity in a solid-gas flow within a pipe includes: first and second transmitting transducers for transmitting first and second ultrasonic signals into the pipe at first and second locations, respectively, along the pipe; an acoustic decoupler, positioned between said first and second transmitting transducers, for acoustically isolating said first and second signals from one another; first and second detecting transducers for detecting said first and second signals and for generating first and second detected signals; and means for cross-correlating said first and second output signals.

  19. Acoustic cross-correlation flowmeter for solid-gas flow

    DOEpatents

    Sheen, Shuh-Haw; Raptis, Apostolos C.

    1986-01-01

    Apparatus for measuring particle velocity in a solid-gas flow within a pipe includes: first and second transmitting transducers for transmitting first and second ultrasonic signals into the pipe at first and second locations, respectively, along the pipe; an acoustic decoupler, positioned between said first and second transmitting transducers, for acoustically isolating said first and second signals from one another; first and second detecting transducers for detecting said first and second signals and for generating first and second detected signals in response to said first and second detected signals; and means for cross-correlating said first and second output signals.

  20. A new ultrasonic transducer for improved contrast nonlinear imaging.

    PubMed

    Bouakaz, Ayache; Cate, Folkert ten; de Jong, Nico

    2004-08-21

    Second harmonic imaging has provided significant improvement in contrast detection over fundamental imaging. This improvement is a result of a higher contrast-to-tissue ratio (CTR) achievable at the second harmonic frequency. Nevertheless, the differentiation between contrast and tissue at the second harmonic frequency is still in many situations cumbersome and contrast detection remains nowadays as one of the main challenges, especially in the capillaries. The reduced CTR is mainly caused by the generation of second harmonic energy from nonlinear propagation effects in tissue, which hence obscures the echoes from contrast bubbles. In a previous study, we demonstrated theoretically that the CTR increases with the harmonic number. Therefore the purpose of our study was to increase the CTR by selectively looking to the higher harmonic frequencies. In order to be able to receive these high frequency components (third up to the fifth harmonic), a new ultrasonic phased array transducer has been constructed. The main advantage of the new design is its wide frequency bandwidth. The new array transducer contains two different types of elements arranged in an interleaved pattern (odd and even elements). This design enables separate transmission and reception modes. The odd elements operate at 2.8 MHz and 80% bandwidth, whereas the even elements have a centre frequency of 900 kHz with a bandwidth of 50%. The probe is connected to a Vivid 5 system (GE-Vingmed) and proper software is developed for driving. The total bandwidth of such a transducer is estimated to be more than 150% which enables higher harmonic imaging at an adequate sensitivity and signal to noise ratio compared to standard medical array transducers. We describe in this paper the design and fabrication of the array transducer. Moreover its acoustic properties are measured and its performances for nonlinear contrast imaging are evaluated in vitro and in vivo. The preliminary results demonstrate the advantages of

  1. High intensity ultrasound transducer used in gene transfection

    NASA Astrophysics Data System (ADS)

    Morrison, Kyle P.; Keilman, George W.; Noble, Misty L.; Brayman, Andrew A.; Miao, Carol H.

    2012-11-01

    This paper describes a novel therapeutic high intensity non-focused ultrasound (HIU) transducer designed with uniform pressure distribution to aid in accelerated gene transfer in large animal liver tissues in vivo. The underlying HIU transducer was used to initiate homogeneous cavitation throughout the tissue while delivering up to 2.7 MPa at 1.1 MHz across its radiating surface. The HIU transducer was built into a 6 cm diameter x 1.3 cm tall housing ergonomically designed to avoid collateral damage to the surrounding anatomy during dynamic motion. The ultrasound (US) radiation was applied in a 'paintbrush-like' manner to the surface of the liver. The layers and geometry of the transducer were carefully selected to maximize the active diameter (5.74 cm), maximize the electrical to acoustic conversion efficiency (85%) to achieve 2.7 MPa of peak negative pressure, maximize the frequency operating band at the fundamental resonance to within a power transfer delta of 1 dB, and reduce the pressure delta to within 2 dB across the radiating surface. For maximum peak voltage into the transducer, a high performance piezoceramic was chosen and a DC bias circuit was built integral to the system. An apodized two element annular pattern was made from a single piezoceramic element, resulting in significant pressure uniformity enhancement. In addition to using apodization for pressure uniformity, a proprietary multi-layered structure was used to improve efficiency while sustaining an operating band from 900 kHz to 1.3 MHz. The resultant operating band allowed for dithering techniques using frequency modulation. The underlying HIU transducer for use in large animals enhances gene expression up to 6300-fold.

  2. Surface acoustic wave dust deposition monitor

    DOEpatents

    Fasching, G.E.; Smith, N.S. Jr.

    1988-02-12

    A system is disclosed for using the attenuation of surface acoustic waves to monitor real time dust deposition rates on surfaces. The system includes a signal generator, a tone-burst generator/amplifier connected to a transmitting transducer for converting electrical signals into acoustic waves. These waves are transmitted through a path defining means adjacent to a layer of dust and then, in turn, transmitted to a receiving transducer for changing the attenuated acoustic wave to electrical signals. The signals representing the attenuated acoustic waves may be amplified and used in a means for analyzing the output signals to produce an output indicative of the dust deposition rates and/or values of dust in the layer. 8 figs.

  3. Acoustic non-diffracting Airy beam

    SciTech Connect

    Lin, Zhou; Guo, Xiasheng Tu, Juan; Ma, Qingyu; Wu, Junru; Zhang, Dong

    2015-03-14

    The acoustic non-diffracting Airy beam as its optical counterpart has unique features of self-bending and self-healing. The complexity of most current designs handicaps its applications. A simple design of an acoustic source capable of generating multi-frequency and broad-band acoustic Airy beam has been theoretically demonstrated by numerical simulations. In the design, a piston transducer is corrugated to induce spatial phase variation for transducing the Airy function. The piston's surface is grooved in a pattern that the width of each groove corresponds to the half wavelength of Airy function. The resulted frequency characteristics and its dependence on the size of the piston source are also discussed. This simple design may promote the wide applications of acoustic Airy beam particularly in the field of medical ultrasound.

  4. Thermal Wick Cooling for Vibroacoustic Transducers

    DTIC Science & Technology

    2009-09-25

    affecting vibrational characteristics of the transducer . (2) Description of the Prior Art [0004] Vibroacoustic transducers , such as piezoceramic tonpilz ...Distribution is unlimited 20091013084 Attorney Docket No. 84708 THERMAL WICK COOLING FOR VIBROACOUSTIC TRANSDUCERS STATEMENT OF GOVERNMENT INTEREST...INVENTION (1) Field of the Invention [0003] The present invention provides a device for cooling a vibroacoustic transducer without adversely

  5. A Martian acoustic anemometer.

    PubMed

    Banfield, Don; Schindel, David W; Tarr, Steve; Dissly, Richard W

    2016-08-01

    An acoustic anemometer for use on Mars has been developed. To understand the processes that control the interaction between surface and atmosphere on Mars, not only the mean winds, but also the turbulent boundary layer, the fluxes of momentum, heat and molecular constituents between surface and atmosphere must be measured. Terrestrially this is done with acoustic anemometers, but the low density atmosphere on Mars makes it challenging to adapt such an instrument for use on Mars. This has been achieved using capacitive transducers and pulse compression, and was successfully demonstrated on a stratospheric balloon (simulating the Martian environment) and in a dedicated Mars Wind Tunnel facility. This instrument achieves a measurement accuracy of ∼5 cm/s with an update rate of >20 Hz under Martian conditions.

  6. 3-D numerical modeling for axisymmetrical piezoelectric structures: application to high-frequency ultrasonic transducers.

    PubMed

    Filoux, Erwan; Callé, Samuel; Lou-Moeller, Rasmus; Lethiecq, Marc; Levassort, Franck

    2010-05-01

    The transient analysis of piezoelectric transducers is often performed using finite-element or finite-difference time-domain methods, which efficiently calculate the vibration of the structure but whose numerical dispersion prevents the modeling of waves propagating over large distances. A second analytical or numerical simulation is therefore often required to calculate the pressure field in the propagating medium (typically water) to deduce many important characteristics of the transducer, such as spatial resolutions and side lobe levels. This is why a hybrid algorithm was developed, combining finite- difference and pseudo-spectral methods in the case of 2-D configurations to simulate accurately both the generation of acoustic waves by the piezoelectric transducer and their propagation in the surrounding media using a single model. The algorithm was redefined in this study to take all three dimensions into account and to model single-element transducers, which usually present axisymmetrical geometry. This method was validated through comparison of its results with those of finite-element software, and was used to simulate the behavior of planar and lens-focused transducers. A high-frequency (30 MHz) transducer based on a screen-printed piezoelectric thick film was fabricated and characterized. The numerical results of the hybrid algorithm were found to be in good agreement with the experimental measurements of displacements at the surface of the transducer and of pressure radiated in water in front of the transducer.

  7. Radiation impedance and equivalent circuit for piezoelectric ultrasonic composite transducers of vibrational mode-conversion.

    PubMed

    Lin, Shuyu

    2012-01-01

    The piezoelectric ultrasonic composite transducer, which can be used in either gas or liquid media, is studied in this paper. The composite transducer is composed of a longitudinal sandwich piezoelectric transducer, a mechanical transformer, and a metal circular plate in flexural vibration. Acoustic radiation is produced by the flexural circular plate, which is excited by the longitudinal sandwich transducer and transformer. Based on the classic flexural theory of plates, the equivalent lumped parameters for a plate in axially symmetric flexural vibration with free boundary conditions are obtained. The radiation impedance of the plate is derived and the relationship between the radiation impedance and the frequency is analyzed. The equivalent circuits for the plate in flexural vibration and the composite transducer are given. The vibrational modes and the harmonic response of the composite piezoelectric transducer are simulated by the numerical method. Based on the theoretical and numerical analysis, two composite piezoelectric ultrasonic transducers are designed and manufactured, their admittance-frequency curves are measured, and the resonance frequency is obtained. The flexural vibrational displacement distribution of the transducer is measured with a laser scanning vibrometer. It is shown that the theoretical results are in good agreement with the measured resonance frequency and the displacement distribution.

  8. Acoustic emission linear pulse holography

    DOEpatents

    Collins, H. Dale; Busse, Lawrence J.; Lemon, Douglas K.

    1985-01-01

    Defects in a structure are imaged as they propagate, using their emitted acoustic energy as a monitored source. Short bursts of acoustic energy propagate through the structure to a discrete element receiver array. A reference timing transducer located between the array and the inspection zone initiates a series of time-of-flight measurements. A resulting series of time-of-flight measurements are then treated as aperture data and are transferred to a computer for reconstruction of a synthetic linear holographic image. The images can be displayed and stored as a record of defect growth.

  9. Acoustic emission linear pulse holography

    SciTech Connect

    Collins, H. D.; Busse, L. J.; Lemon, D. K.

    1985-07-30

    Defects in a structure are imaged as they propagate, using their emitted acoustic energy as a monitored source. Short bursts of acoustic energy propagate through the structure to a discrete element receiver array. A reference timing transducer located between the array and the inspection zone initiates a series of time-of-flight measurements. A resulting series of time-of-flight measurements are then treated as aperture data and are transferred to a computer for reconstruction of a synthetic linear holographic image. The images can be displayed and stored as a record of defect growth.

  10. Applications of acoustics in the measurement of coal slab thickness

    NASA Technical Reports Server (NTRS)

    Hadden, W. J., Jr.; Mills, J. M.; Pierce, A. D.

    1980-01-01

    The determination of the possibility of employing acoustic waves at ultrasonic frequencies for measurements of thicknesses of slabs of coal backed by shale is investigated. Fundamental information concerning the acoustical properties of coal, and the relationship between these properties and the structural and compositional parameters used to characterize coal samples was also sought. The testing device, which utilizes two matched transducers, is described.

  11. Acoustic resonance spectroscopy for the advanced undergraduate laboratory

    NASA Astrophysics Data System (ADS)

    Franco-Villafañe, J. A.; Flores-Olmedo, E.; Báez, G.; Gandarilla-Carrillo, O.; Méndez-Sánchez, R. A.

    2012-11-01

    We present a simple experiment that allows advanced undergraduates to learn the principles and applications of spectroscopy. The technique, known as acoustic resonance spectroscopy, is applied to study a vibrating rod. The setup includes electromagnetic-acoustic transducers, an audio amplifier and a vector network analyzer. Typical results of compressional, torsional and bending waves are analyzed and compared with analytical results.

  12. Frequency wavenumber design of spiral macro fiber composite directional transducers

    NASA Astrophysics Data System (ADS)

    Carrara, Matteo; Ruzzene, Massimo

    2015-04-01

    This work is focused on design and testing of a novel class of transducers for Structural Health Monitoring (SHM), able to perform directional interrogation of plate-like structures. These transducers leverage guided waves (GWs), and in particular Lamb waves, that have emerged as a very prominent option for assessing the state of a structure during operation. GW-SHM approaches greatly benefit from the use of transducers with controllable directional characteristics, so that selective scanning of a surface can be performed to locate damage, impacts, or cracks. In the concepts that we propose, continuous beam steering and directional actuation are achieved through proper selection of the excitation frequency. The design procedure takes advantage of the wavenumber representation of the device, and formulates the problem using a Fourier-based approach. The active layer of the transducer is made of piezoelectric fibers embedded into an epoxy matrix, allowing the device to be flexible, and thus suitable for application on non{ at surfaces. Proper shaping of the electrodes pattern through a compensation function allows taking into account the anisotropy level introduced by the active layer. The resulting spiral frequency steerable acoustic actuator is a configuration that features (i) enhanced performance, (ii) reduced complexity, and (iii) reduced hardware requirements of such devices.

  13. Inductively coupled transducer system for damage detection in composites

    NASA Astrophysics Data System (ADS)

    Zhong, C. H.; Croxford, A. J.; Wilcox, P. D.

    2012-04-01

    The laminated construction of composite offers the possibility of permanently embedding sensors into structure, for example, ultrasonic transducers which can be used for NDE applications. An attractive and simple solution for probing embedded sensors wirelessly is via inductive coupling. However, before this can be achieved it is necessary to have a full understanding and proper design strategy for the inductively coupled system. This paper presents the developments of both system design procedure and a computer program for one dimensional inductively coupled transducer system mounted on a solid substrate. The design strategy in this paper mainly focuses on issues of localization of transducers, and optimizing the signal to noise level. Starting from a three coil equivalent circuit, this paper also explains how the measured impedance of a bonded piezoelectric disc is implemented into the system model representing a transducer bonded to an arbitrary solid substrate. The computer programme using this model provides immediate predictions of electrical input impedance, acoustic response and pulse-echo response. A series of experiments and calculations have been performed in order to validate the model. This has enabled the degree of accuracy required for various parameters within the model, such as mutual inductance between the coils and self-inductance of coils, to be assessed. Once validated, the model can be used as a tool to predict the effect of physical parameters, such as distance, lateral misalignment between the coils, and the coil geometry on the performance of an inductively coupled system.

  14. Air-Coupled Low Frequency Ultrasonic Transducers and Arrays with PMN-32%PT Piezoelectric Crystals

    PubMed Central

    Kazys, Rymantas J.; Sliteris, Reimondas; Sestoke, Justina

    2017-01-01

    Air-coupled ultrasonic techniques are being increasingly used for material characterization, non-destructive evaluation of composite materials using guided waves as well as for distance measurements. Application of those techniques is mainly limited by the big losses of ultrasonic signals due to attenuation and mismatch of the acoustic impedances of ultrasonic transducers and air. One of the ways to solve this problem is by application of novel more efficient piezoelectric materials like lead magnesium niobate-lead titanate (PMN-PT) type crystals. The objective of this research was the development and investigation of low frequency (<50 kHz) wide band air-coupled ultrasonic transducers and arrays with an improved performance using PMN-32%PT crystals. Results of finite element modelling and experimental investigations of the developed transducers and arrays are presented. For improvement of the performance strip-like matching elements made of low acoustic impedance, materials such as polystyrene foams were applied. It allowed to achieve transduction losses for one single element transducer −11.4 dB, what is better than of commercially available air-coupled ultrasonic transducers. Theoretical and experimental investigations of the acoustic fields radiated by the eight element ultrasonic array demonstrated not only a good performance of the array in a pulse mode, but also very good possibilities to electronically focus and steer the ultrasonic beam in space. PMID:28067807

  15. Air-Coupled Low Frequency Ultrasonic Transducers and Arrays with PMN-32%PT Piezoelectric Crystals.

    PubMed

    Kazys, Rymantas J; Sliteris, Reimondas; Sestoke, Justina

    2017-01-06

    Air-coupled ultrasonic techniques are being increasingly used for material characterization, non-destructive evaluation of composite materials using guided waves as well as for distance measurements. Application of those techniques is mainly limited by the big losses of ultrasonic signals due to attenuation and mismatch of the acoustic impedances of ultrasonic transducers and air. One of the ways to solve this problem is by application of novel more efficient piezoelectric materials like lead magnesium niobate-lead titanate (PMN-PT) type crystals. The objective of this research was the development and investigation of low frequency (<50 kHz) wide band air-coupled ultrasonic transducers and arrays with an improved performance using PMN-32%PT crystals. Results of finite element modelling and experimental investigations of the developed transducers and arrays are presented. For improvement of the performance strip-like matching elements made of low acoustic impedance, materials such as polystyrene foams were applied. It allowed to achieve transduction losses for one single element transducer -11.4 dB, what is better than of commercially available air-coupled ultrasonic transducers. Theoretical and experimental investigations of the acoustic fields radiated by the eight element ultrasonic array demonstrated not only a good performance of the array in a pulse mode, but also very good possibilities to electronically focus and steer the ultrasonic beam in space.

  16. Development of a MEMS device for acoustic emission testing

    NASA Astrophysics Data System (ADS)

    Ozevin, Didem; Pessiki, Stephen P.; Jain, Akash; Greve, David W.; Oppenheim, Irving J.

    2003-08-01

    Acoustic emission testing is an important technology for evaluating structural materials, and especially for detecting damage in structural members. Significant new capabilities may be gained by developing MEMS transducers for acoustic emission testing, including permanent bonding or embedment for superior coupling, greater density of transducer placement, and a bundle of transducers on each device tuned to different frequencies. Additional advantages include capabilities for maintenance of signal histories and coordination between multiple transducers. We designed a MEMS device for acoustic emission testing that features two different mechanical types, a hexagonal plate design and a spring-mass design, with multiple detectors of each type at ten different frequencies in the range of 100 kHz to 1 MHz. The devices were fabricated in the multi-user polysilicon surface micromachining (MUMPs) process and we have conducted electrical characterization experiments and initial experiments on acoustic emission detection. We first report on C(V) measurements and perform a comparison between predicted (design) and measured response. We next report on admittance measurements conducted at pressures varying from vacuum to atmospheric, identifying the resonant frequencies and again providing a comparison with predicted performance. We then describe initial calibration experiments that compare the performance of the detectors to other acoustic emission transducers, and we discuss the overall performance of the device as a sensor suite, as contrasted to the single-channel performance of most commercial transducers.

  17. Tunable acoustic waveguide based on vibro-acoustic metamaterials with shunted piezoelectric unit cells

    NASA Astrophysics Data System (ADS)

    Kwon, Byung-Jin; Jung, Jin-Young; Lee, Dooho; Park, Kwang-Chun; Oh, Il-Kwon

    2015-10-01

    We propose a new class of acoustic waveguides with tunable bandgaps (TBs) by using vibro-acoustic metamaterials with shunted periodic piezoelectric unit cells. The unit metamaterial cells that consist of a single crystal piezoelectric transducer and an electrical shunt circuit are designed to induce a strong vibro-acousto-electrical coupling, resulting in a tunable acoustic bandgap as well as local structural resonance and Bragg scattering bandgaps. The present results show that the TB frequency can be actively controlled and the transmission loss of the acoustic wave can be greatly improved by simply changing the inductance values in the shunt circuit.

  18. Auto-positioning ultrasonic transducer system

    NASA Technical Reports Server (NTRS)

    Buchanan, Randy K. (Inventor)

    2010-01-01

    An ultrasonic transducer apparatus and process for determining the optimal transducer position for flow measurement along a conduit outer surface. The apparatus includes a transmitting transducer for transmitting an ultrasonic signal, said transducer affixed to a conduit outer surface; a guide rail attached to a receiving transducer for guiding movement of a receiving transducer along the conduit outer surface, wherein the receiving transducer receives an ultrasonic signal from the transmitting transducer and sends a signal to a data acquisition system; and a motor for moving the receiving transducer along the guide rail, wherein the motor is controlled by a controller. The method includes affixing a transmitting transducer to an outer surface of a conduit; moving a receiving transducer on the conduit outer surface, wherein the receiving transducer is moved along a guide rail by a motor; transmitting an ultrasonic signal from the transmitting transducer that is received by the receiving transducer; communicating the signal received by the receiving transducer to a data acquisition and control system; and repeating the moving, transmitting, and communicating along a length of the conduit.

  19. Radially sandwiched cylindrical piezoelectric transducer

    NASA Astrophysics Data System (ADS)

    Lin, Shuyu; Fu, Zhiqiang; Zhang, Xiaoli; Wang, Yong; Hu, Jing

    2013-01-01

    A new type of radially sandwiched piezoelectric short cylindrical transducer is developed and its radial vibration is studied. The transducer is composed of a solid metal disk, a radially polarized piezoelectric ceramic short tube and a metal tube. The radial vibrations of the solid metal disk, the radially polarized piezoelectric tube and the metal tube are analyzed and their electromechanical equivalent circuits are introduced. Based on the mechanical boundary conditions among the metal disk, the piezoelectric tube and the metal tube, a three-port electromechanical equivalent circuit for the radially sandwiched transducer is obtained and the frequency equation is given. The theoretical relationship of the resonance and anti-resonance frequencies and the effective electromechanical coupling coefficient with the geometrical dimensions is analyzed. The radial vibration of the sandwiched transducer is simulated by using two different numerical methods. It is shown that the analytical resonance and anti-resonance frequencies are in good agreement with the numerically simulated results. The transducer is expected to be used in piezoelectric resonators, actuators and ultrasonic radiators in ultrasonic and underwater sound applications.

  20. Laser optoacoustic diagnostics of femtosecond filaments in air using wideband piezoelectric transducers

    NASA Astrophysics Data System (ADS)

    Uryupina, D. S.; Bychkov, A. S.; Pushkarev, D. V.; Mitina, E. V.; Savel'ev, A. B.; Kosareva, O. G.; Panov, N. A.; Karabutov, A. A.; Cherepetskaya, E. B.

    2016-09-01

    New opportunities in ultrasound diagnostics of femtosecond laser filaments with wideband piezoelectric transducers are considered. Transverse spatial resolution better than 100 microns is demonstrated in the single and regular multiple filamentation regime making path toward 3D filament tomography. The simple analytical model of the cylindrical acoustic source fitted well with the experimental data.

  1. Energy trapping in power transmission through an elastic plate by finite piezoelectric transducers.

    PubMed

    Yang, Zengtao; Yang, Jiashi; Hu, Yuantai

    2008-11-01

    We study transmission of electric energy through an elastic plate by acoustic wave propagation and piezoelectric transducers. Our mechanics model consists of an elastic plate with finite piezoelectric patches on both sides of the plate. A theoretical analysis using the equations of elasticity and piezoelectricity is performed. Energy trapping that describes the confinement and localization of the vibration energy is examined.

  2. Design Parameters of a Miniaturized Piezoelectric Underwater Acoustic Transmitter

    PubMed Central

    Li, Huidong; Deng, Zhiqun Daniel; Yuan, Yong; Carlson, Thomas J.

    2012-01-01

    PZT ceramics have been widely used in underwater acoustic transducers. However, literature available discussing the design parameters of a miniaturized PZT-based low-duty-cycle transmitter is very limited. This paper discusses some of the design parameters—the backing material, driving voltage, PZT material type, power consumption and the transducer length of a miniaturized acoustic fish tag using a PZT tube. Four different types of PZT were evaluated with respect to the source level, energy consumption and bandwidth of the transducer. The effect of the tube length on the source level is discussed. The results demonstrate that ultralow-density closed-cell foam is the best backing material for the PZT tube. The Navy Type VI PZTs provide the best source level with relatively low energy consumption and that a low transducer capacitance is preferred for high efficiency. A 35% reduction in the transducer length results in 2 dB decrease in source level. PMID:23012534

  3. Strong acoustic coupling to a superconducting qubit

    NASA Astrophysics Data System (ADS)

    Gustafsson, Martin; Aref, Thomas; Frisk Kockum, Anton; Ekström, Maria; Johansson, Göran; Delsing, Per

    2014-03-01

    Micromechanical resonators can be used to store quantum information, as shown in several recent experiments. These resonators typically have the form of membranes or beams, and phonons are localized to their vibrational eigenmodes. We present a different kind of mechanical quantum device, where propagating phonons serve as carriers for quantum information. At the core of our device is a superconducting qubit, designed to couple to Surface Acoustic Waves (SAW) in the underlying substrate through the piezoelectric effect. This type of coupling can be very strong, and in our case exceeds the coupling to any external electromagnetic modes. The acoustic waves propagate freely on the surface of the substrate, and we use a remote electro-acoustic transducer to address the qubit acoustically and listen to its emission of phonons. This presentation focuses on the basic properties of our acoustic quantum system, and we include experimental data that demonstrate the quantized coupling between the qubit and the propagating acoustic waves.

  4. The use of a segmented transducer for rib sparing in HIFU treatments.

    PubMed

    Civale, John; Clarke, Robert; Rivens, Ian; ter Haar, Gail

    2006-11-01

    The use of focused ultrasound as a minimally invasive treatment for tumours is rapidly expanding. Target organs include the liver and kidneys. Both single element and phased array transducers may be used in the clinic. The presence of the rib cage presents a problem in high intensity focused ultrasound (HIFU) treatment planning, due to its high attenuation of the HIFU beam resulting in a loss of power at the focus as well as an increase in the risk of damage at the rib and to overlying tissues, including the skin. In this paper, a linearly segmented transducer, in which all active elements are driven in phase, has been investigated. The aim of the study was to investigate how a beam with a clinically useful profile could be achieved by removing the contribution of edge segments from one side of the transducer to the field. We have considered the case in which the HIFU beam approaches the rib cage during a treatment and investigated configurations of the transducer for which up to three segments on the edge are switched off. This problem has been studied initially using a linear acoustic field program to model the segmented transducer's acoustic beam profile. Experimental measurements of the transducer's acoustic field were performed using an automated beam plotting system. Temperature measurements were made on a rib surface for two transducer configurations using a fine wire thermocouple. A thermochromic liquid crystal material was used to assess qualitatively the heating pattern generated by the ultrasound beam. We show the rib sparing potential of the segmented transducer during HIFU treatment by demonstrating a reduction in the prefocal width of the ultrasound beam when edge segments are switched off. This has been predicted with the acoustic field model and demonstrated experimentally by acoustic field measurements and observations of the heating pattern generated by the ultrasound beam. A significant decrease in the temperature rise on a rib was observed in

  5. A novel design of micromachined capacitive Lamb wave transducers

    NASA Astrophysics Data System (ADS)

    Ge, Lifeng

    2006-11-01

    A new design for micromachined capacitive Lamb wave transducers (mCLWT) has been developed. The design is based on a theoretical TDK model previously developed for groove ultrasonic transducers. By the investigation of the dynamic behavior of a rectangular high aspect ratio diaphragm of the mCLWTs, the second order bending mode of the diaphragm is exploited to excite and detect Lamb wave. The new exiting mechanism can minimize the energy of the acoustic radiation at the normal direction of the diaphragm so as to provide more energy coupled into the Lamb wave in the silicon substrate. Also, the natural frequencies and mode shapes of such a mCLWT can be determined accurately from its geometry and materials used, so the TDK model provides guidance for the optimal design of mCLWTs.

  6. Twenty years of barrel-stave flextensional transducer technology in Canada

    NASA Astrophysics Data System (ADS)

    Jones, Dennis F.

    2005-04-01

    The barrel-stave flextensional transducer, a compact underwater sound source, was conceived at DRDC Atlantic in 1986 [G. W. McMahon and D. F. Jones, U.S. Patent No. 4,922,470 (1 May 1990); Canadian Patent No. 1,285,646 (2 July 1991)]. Over the years, five barrel-stave designs belonging to three flextensional classes were built and tested at DRDC Atlantic. Three Class I transducers with operating frequencies ranging from 800 to 1600 Hz were integrated into submarine communications buoys, low frequency active horizontal projector arrays, and a broadband sonar towbody. A high-power Class II and broadband (1-7 kHz) Class III transducer were deployed under the ice in the Lincoln Sea for research related to rapidly deployable surveillance systems. These barrel-stave flextensional transducers have also supported a variety of marine mammal studies including vocal mimicry in long-finned pilot whales, coda dialects in sperm whales, and the R&D of acoustic detection and tracking systems for endangered northern right whales. In August 2004 a barrel-stave transducer was used to lure a trapped juvenile humpback whale to the sluice gates of a tidal generating station on the Annapolis River in Nova Scotia by transmitting humpback whale calls underwater. The acoustic performance parameters for all 5 transducers will be presented.

  7. Double frequency piezoelectric transducer design for harmonic imaging purposes in NDT.

    PubMed

    Montero de Espinosa, Francisco; Martínez, Oscar; Elvira Segura, Luis; Gómez-Ullate, Luis

    2005-06-01

    Harmonic imaging (HI) has emerged as a very promising tool for medical imaging, although there has been little published work using this technique in ultrasonic nondestructive testing (NDT). The core of the technique, which uses nonlinear propagation effects arising in the medium due to the microstructure or the existence of defects, is the ability to design transducers capable of emitting at one frequency and receiving at twice this frequency. The transducers that have been used so far are usually double crystal configurations with coaxial geometry, and commonly using a disc surrounded by a ring. Such a geometry permits the design of broadband transducers if each transducer element is adapted to the medium with its corresponding matching layers. Nevertheless, the different geometry of the emission and reception apertures creates difficulties when resolving the images. In this work, a new transducer design with different emission and reception apertures is resented. It makes use of the traditional construction procedures used to make piezocomposite transducers and the well-known theory of the mode coupling in piezoelectric resonators when the lateral dimensions are comparable with the thickness of the piezoceramic. In this work the design, construction, and characterization of a prototype to be used in NDT of metallic materials is presented. The acoustic field is calculated using water as a propagation medium, and these theoretical predictions then are compared with the experimental measurements. The predicted acoustic performances for the case of propagation in stainless steel are shown.

  8. Noncontact monitoring of surface-wave nonlinearity for predicting the remaining life of fatigued steels

    NASA Astrophysics Data System (ADS)

    Ogi, Hirotsugu; Hirao, Masahiko; Aoki, Shinji

    2001-07-01

    A nonlinear acoustic measurement is studied for fatigue damage monitoring. An electromagnetic acoustic transducer (EMAT) magnetostrictively couples to a surface-shear-wave resonance along the circumference of a rod specimen during rotating bending fatigue of carbon steels. Excitation of the EMAT at half of the resonance frequency caused the standing wave to contain only the second-harmonic component, which was received by the same EMAT to determine the second-harmonic amplitude. Thus measured surface-wave nonlinearity always showed two distinct peaks at 60% and 85% of the total life. We attribute the earlier peak to crack nucleation and growth, and the later peak to an increase of free dislocations associated with crack extension in the final stage. This noncontact resonance-EMAT measurement can monitor the evolution of the surface-shear-wave nonlinearity throughout the metal's fatigue life and detect the pertinent precursors of the eventual failure.

  9. Exploratory Study of the Acoustic Performance of Piezoelectric Actuators

    NASA Technical Reports Server (NTRS)

    SantaMaria, O. S.; Thurlow, E. M.; Jones, M. G.

    1989-01-01

    The proposed ducted fan engine has prompted the need for increasingly lightweight and efficient noise control devices. Exploratory tests at the NASA Langley Research Center were conducted to evaluate three piezoelectric specimens as possible control transducers: a Polyvinylidene Flouride (PVDF) piezofilm sample and two composite samples of Lead Zirconate Titanate (PZT) rods embedded in fiberglass. The tests measured the acoustic output efficiency and evaluated the noise control characteristics when interacting with a primary sound source. The results showed that a PZT sample could diminish the reflected acoustic waves. However, the PZT acoustic output must increase by several orders of magnitude to qualify as a control transducer for the ducted fan engine.

  10. Wideband Single-Crystal Transducer for Bone Characterization

    NASA Technical Reports Server (NTRS)

    Liang, Yu; Snook, Kevin

    2012-01-01

    The microgravity conditions of space travel result in unique physiological demands on the human body. In particular, the absence of the continual mechanical stresses on the skeletal system that are present on Earth cause the bones to decalcify. Trabecular structure decreases in thickness and increases in spacing, resulting in decreased bone strength and increased risk of injury. Thus, monitoring bone health is a high priority for long-term space travel. A single probe covering all frequency bands of interest would be ideal for such measurements, and this would also minimize storage space and eliminate the complexity of integrating multiple probes. This invention is an ultrasound transducer for the structural characterization of bone. Such characterization measures features of reflected and transmitted ultrasound signals, and correlates these signals with bone structure metrics such as bone mineral density, trabecular spacing, and thickness, etc. The techniques used to determine these various metrics require measurements over a broad range of ultrasound frequencies, and therefore, complete characterization requires the use of several narrowband transducers. This is a single transducer capable of making these measurements in all the required frequency bands. The device achieves this capability through a unique combination of a broadband piezoelectric material; a design incorporating multiple resonator sizes with distinct, overlapping frequency spectra; and a micromachining process for producing the multiple-resonator pattern with common electrode surfaces between the resonators. This device consists of a pattern of resonator bars with common electrodes that is wrapped around a central mandrel such that the radiating faces of the resonators are coplanar and can be simultaneously applied to the sample to be measured. The device operates as both a source and receiver of acoustic energy. It is operated by connection to an electronic system capable of both providing an

  11. Cyclones and attractive streaming generated by acoustical vortices.

    PubMed

    Riaud, Antoine; Baudoin, Michael; Thomas, Jean-Louis; Bou Matar, Olivier

    2014-07-01

    Acoustical and optical vortices have attracted great interest due to their ability to capture and manipulate particles with the use of radiation pressure. Here we show that acoustical vortices can also induce axial vortical flow reminiscent of cyclones, whose topology can be controlled by adjusting the properties of the acoustical beam. In confined geometry, the phase singularity enables generating "attractive streaming" with the flow directed toward the transducer. This opens perspectives for contactless vortical flow control.

  12. Digital control of high-intensity acoustic testing

    NASA Technical Reports Server (NTRS)

    Slusser, R. A.

    1975-01-01

    A high intensity acoustic test system is reported that consists of a reverberation room measuring 18 feet wide by 21 feet long by 26 feet high, with an internal volume of 10,900 cubic feet. The room is rectangular in shape. Acoustic energy is supplied through two 50-Hz cutoff exponential horns about 12 feet long. Each of the two horns has two transducers rated at 4000 acoustic watts each. A gaseous nitrogen supply is used to supply the energy. The equalized electrical signal is corrected by a circuit designed to compensate for the transducer nonlinearity, then fed into one channel of a phase linear power amplifier, then into the transducer. The amplifiers have been modified to increase their reliability. The acoustic energy in the room is monitored by six B and K 1/2-inch condenser microphones. The electrical signal from each microphone is fed into a six channel real time averager to give a spatial average of the signals.

  13. Nonlinear characterization of a single-axis acoustic levitator

    SciTech Connect

    Andrade, Marco A. B.; Ramos, Tiago S.; Okina, Fábio T. A.; Adamowski, Julio C.

    2014-04-15

    The nonlinear behavior of a 20.3 kHz single-axis acoustic levitator formed by a Langevin transducer with a concave radiating surface and a concave reflector is experimentally investigated. In this study, a laser Doppler vibrometer is applied to measure the nonlinear sound field in the air gap between the transducer and the reflector. Additionally, an electronic balance is used in the measurement of the acoustic radiation force on the reflector as a function of the distance between the transducer and the reflector. The experimental results show some effects that cannot be described by the linear acoustic theory, such as the jump phenomenon, harmonic generation, and the hysteresis effect. The influence of these nonlinear effects on the acoustic levitation of small particles is discussed.

  14. Environmental control system transducer development study

    NASA Technical Reports Server (NTRS)

    Brudnicki, M. J.

    1973-01-01

    A failure evaluation of the transducers used in the environmental control systems of the Apollo command service module, lunar module, and portable life support system is presented in matrix form for several generic categories of transducers to enable identification of chronic failure modes. Transducer vendors were contacted and asked to supply detailed information. The evaluation data generated for each category of transducer were compiled and published in failure design evaluation reports. The evaluation reports also present a review of the failure and design data for the transducers and suggest both design criteria to improve reliability of the transducers and, where necessary, design concepts for required redesign of the transducers. Remedial designs were implemented on a family of pressure transducers and on the oxygen flow transducer. The design concepts were subjected to analysis, breadboard fabrication, and verification testing.

  15. Acoustic and microwave tests in a cylindrical cavity for acoustic gas thermometry at high temperature

    PubMed Central

    Zhang, K.; Feng, X.J.; Gillis, K.; Moldover, M.; Zhang, J.T.; Lin, H.; Qu, J.F.; Duan, Y.N.

    2016-01-01

    Relative primary acoustic gas thermometry determines the ratios of thermodynamic temperatures from measured ratios of acoustic and microwave resonance frequencies in a gas-filled metal cavity on isotherms of interest. When measured in a cavity with known dimensions, the frequencies of acoustic resonances in a gas determine the speed of sound, which is a known function of the thermodynamic temperature T. Changes in the dimensions of the cavity are measured using the frequencies of the cavity's microwave resonances. We explored techniques and materials for acoustic gas thermometry at high temperatures using a cylindrical cavity with remote acoustic transducers. We used gas-filled ducts as acoustic waveguides to transmit sound between the cavity at high temperatures and the acoustic transducers at room temperature. We measured non-degenerate acoustic modes in a cylindrical cavity in the range 295 K < T < 797 K. The fractional uncertainty of the measured acoustic frequencies increased from 2×10−6 at 295 K to 5×10−6 at 797 K. In addition, we measured the frequencies of several transverse magnetic (TM) microwave resonances up to 1000 K in order to track changes in the cavity's length L and radius R. The fractional standard deviation of the values of L deduced from three TM modes increased from 3×10−6 for T < 600 K to 57×10−6 at 1000 K. We observed similar inconsistencies in a previous study. PMID:26903106

  16. Generation of planar blast waves using carbon nanotubes-poly-dimethylsiloxane optoacoustic transducer

    NASA Astrophysics Data System (ADS)

    Moon, C.; Fan, X.; Ha, K.; Kim, D.

    2017-01-01

    We have generated planar blast waves over the large area using carbon nanotubes(CNT)-poly-dimethylsiloxane(PDMS) optoacoustic transducer. Pulse laser is absorbed by CNT and converted to heat, and the heat is transferred to PDMS inducing its thermal expansion and blast wave generation. To theoretically describe the planar blast wave generation, we build one-dimensional simulation model and find analytical solutions for temperature and pressure distributions. The analytical solution validated by the experimental data sheds light on how to improve the performance of the new transducer. Resonance of acoustic waves inside the transducer is also discussed. The new optoacoustic transducer optimized based on the fundamental understandings will be useful in generating high quality blast waves for research and industrial applications.

  17. Dual Flat Flextensional Ultrasound Transducers for Enhancement of Transdermal Drug Delivery

    NASA Astrophysics Data System (ADS)

    Zhang, Hong-Ye; Yeo, Swee-Hock

    2004-09-01

    The development of a lightweight, simple-structure and low-power-consumption sonophoresis device for drug delivery is required. For this purpose, a new sonophoresis device with dual flat flextensional ultrasound transducers was fabricated and investigated in this work. When both ultrasound transducers were operated at their fundamental resonance frequency (26.83 kHz), the radiated acoustic intensity (Isptp) was about 2 to 4 times higher than that generated by a single ultrasound transducer in the proposed device. The proposed sonophoresis device has the capability to reduce the applied voltage at least twofold. Compared to the ultrasonic probe or converter from a commercial sonicator that weighs about one kilogram, the proposed sonophoresis device with double ultrasound transducers weighs only 73.3 g. All the results showed that the proposed sonophoresis device is feasible for use in practical applications.

  18. Modeling and analysis of fiber-optic mode transducers - Single fiber with periodic perturbations

    NASA Astrophysics Data System (ADS)

    Huang, Weiping; Xu, Chenglin; Chaudhuri, Sujeet K.

    1991-11-01

    The fiber-optic LP01-LP11 mode transducers are analyzed by a scalar coupled-mode theory with vector correction. The authors deal with fiber-optic mode transducers made of a single fiber with periodic perturbations due to microbends, acoustic waves, or a photoinduced index grating. Both the couplings caused by the index perturbations and by the vector property of the fields (polarization effect) are taken into account in the analysis. Approximate analytical solutions to the coupled-mode equations are obtained. The power exchange among the modes along the fiber and spectral properties of the mode transducers are examined. The functions of the mode transducers used as wavelength filters and polarizers are studied.

  19. Design and some practical applications of ultrasonic transducers with axicon lenses

    NASA Astrophysics Data System (ADS)

    Katchadjian, P.; Desimone, C.; Garcia, A.

    2013-01-01

    In this paper the applications, detailed in previous papers, referred to ultrasonic transducers with the addition of axicon lenses are extended. Axicon lenses, both contact and immersion, for normal and angular incidence were manufactured, in order to study defectology in welds and other components. For immersion transducers, as had already been made for contact transducers, signal amplitude in function of the depth of the reflector and transverse acoustic pressure at the focus were measured. For this purpose a small metallic sphere submerged in different fluids was used. Several practical applications are shown where it is possible to exploit the advantages that these transducers offer: high resolution measurements for corrosion, laminations and thickness reduction. Discrimination between a weld root and a defect very close to it, etc. Measurements in anisotropic materials (composites) in order to achieve an SNR improvement.

  20. Using Silver Nano-Particle Ink in Electrode Fabrication of High Frequency Copolymer Ultrasonic Transducers: Modeling and Experimental Investigation

    PubMed Central

    Decharat, Adit; Wagle, Sanat; Jacobsen, Svein; Melandsø, Frank

    2015-01-01

    High frequency polymer-based ultrasonic transducers are produced with electrodes thicknesses typical for printed electrodes obtained from silver (Ag) nano-particle inks. An analytical three-port network is used to study the acoustic effects imposed by a thick electrode in a typical layered transducer configuration. Results from the network model are compared to experimental findings for the implemented transducer configuration, to obtain a better understanding of acoustical effects caused by the additional printed mass loading. The proposed investigation might be supportive of identification of suitable electrode-depositing methods. It is also believed to be useful as a feasibility study for printed Ag-based electrodes in high frequency transducers, which may reduce both the cost and production complexity of these devices. PMID:25903552

  1. Multi sensor transducer and weight factor

    NASA Technical Reports Server (NTRS)

    Immer, Christopher D. (Inventor); Lane, John (Inventor); Eckhoff, Anthony J. (Inventor); Perotti, Jose M. (Inventor)

    2004-01-01

    A multi-sensor transducer and processing method allow insitu monitoring of the senor accuracy and transducer `health`. In one embodiment, the transducer has multiple sensors to provide corresponding output signals in response to a stimulus, such as pressure. A processor applies individual weight factors to reach of the output signals and provide a single transducer output that reduces the contribution from inaccurate sensors. The weight factors can be updated and stored. The processor can use the weight factors to provide a `health` of the transducer based upon the number of accurate versus in-accurate sensors in the transducer.

  2. Acoustic Radiation from Transducer in Semi-infinite Fluid Medium

    DTIC Science & Technology

    2016-06-07

    NAVAL UNDERWATER SYSTI’.MS CENTER NEW I:.OOCON LABORATORY NEW l.DNIX.X’I, CONNECXIcur 06320 Technical Meioorandum TM No. 841087 II II m II II WI...PROJECT NUMBER K96714 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Naval Underwater Systems Center, New ...Center, New London, CT, 06320 10. SPONSOR/MONITOR’S ACRONYM(S) NUSC 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 12. DISTRIBUTION/AVAILABILITY

  3. Impedance matching network for high frequency ultrasonic transducer for cellular applications.

    PubMed

    Kim, Min Gon; Yoon, Sangpil; Kim, Hyung Ham; Shung, K Kirk

    2016-02-01

    An approach for the design of an impedance matching network (IMN) for high frequency ultrasonic transducers with large apertures based on impedance analysis for cellular applications is presented in this paper. The main objectives were to maximize energy transmission from the excitation source to the ultrasonic transducers for cell manipulation and to achieve low input parameters for the safe operation of an ultrasonic transducer because the piezoelectric material in high frequency ultrasonic transducers is prone to breakage due to its being extremely thin. Two ultrasonic transducers, which were made of lithium niobate single crystal with the thickness of 15 μm, having apertures of 4.3 mm (fnumber=1.23) and 2.6mm (fnumber=0.75) were tested. L-type IMN was selected for high sensitivity and compact design of the ultrasonic transducers. The target center frequency was chosen as the frequency where the electrical admittance (|Y|) and phase angle (θz) from impedance analysis was maximal and zero, respectively. The reference center frequency and reference echo magnitude were selected as the center frequency and echo magnitude, measured by pulse-echo testing, of the ultrasonic transducer without IMN. Initial component values and topology of IMN were determined using the Smith chart, and pulse-echo testing was analyzed to verify the performance of the ultrasonic transducers with and without IMN. After several iterations between changing component values and topology of IMN, and pulse-echo measurement of the ultrasonic transducer with IMN, optimized component values and topology of IMN were chosen when the measured center frequency from pulse-echo testing was comparable to the target frequency, and the measured echo magnitude was at least 30% larger than the reference echo magnitude. Performance of an ultrasonic transducer with and without IMN was tested by observing a tangible dent on the surface of a plastic petridish and single cell response after an acoustic pulse was

  4. Impedance Matching Network for High Frequency Ultrasonic Transducer for Cellular Applications

    PubMed Central

    Kim, Min Gon; Yoon, Sangpil; Kim, Hyung Ham; Shung, K. Kirk

    2015-01-01

    An approach for the design of an impedance matching network (IMN) for high frequency ultrasonic transducers with large apertures based on impedance analysis for cellular applications is presented in this paper. The main objectives were to maximize energy transmission from the excitation source to the ultrasonic transducers for cell manipulation and to achieve low input parameters for the safe operation of an ultrasonic transducer because the piezoelectric material in high frequency ultrasonic transducers is prone to breakage due to its being extremely thin. Two ultrasonic transducers, which were made of lithium niobate single crystal with the thickness of 15 μm, having apertures of 4.3 mm (fnumber = 1.23) and 2.6 mm (fnumber = 0.75) were tested. L-type IMN was selected for high sensitivity and compact design of the ultrasonic transducers. The target center frequency was chosen as the frequency where the electrical admittance (∣Y∣) and phase angle (θz) from impedance analysis was maximal and zero, respectively. The reference center frequency and reference echo magnitude were selected as the center frequency and echo magnitude, measured by pulse-echo testing, of the ultrasonic transducer without IMN. Initial component values and topology of IMN were determined using the Smith chart, and pulse-echo testing was analyzed to verify the performance of the ultrasonic transducers with and without IMN. After several iterations between changing component values and topology of IMN, and pulse-echo measurement of the ultrasonic transducer with IMN, optimized component values and topology of IMN were chosen when the measured center frequency from pulse-echo testing was comparable to the target frequency, and the measured echo magnitude was at least 30% larger than the reference echo magnitude. Performance of an ultrasonic transducer with and without IMN was tested by observing a tangible dent on the surface of a plastic petridish and single cell response after an acoustic

  5. Acoustically based fetal heart rate monitor

    NASA Technical Reports Server (NTRS)

    Baker, Donald A.; Zuckerwar, Allan J.

    1991-01-01

    The acoustically based fetal heart rate monitor permits an expectant mother to perform the fetal Non-Stress Test in her home. The potential market would include the one million U.S. pregnancies per year requiring this type of prenatal surveillance. The monitor uses polyvinylidene fluoride (PVF2) piezoelectric polymer film for the acoustic sensors, which are mounted in a seven-element array on a cummerbund. Evaluation of the sensor ouput signals utilizes a digital signal processor, which performs a linear prediction routine in real time. Clinical tests reveal that the acoustically based monitor provides Non-Stress Test records which are comparable to those obtained with a commercial ultrasonic transducer.

  6. Copper vapor laser acoustic thermometry system

    DOEpatents

    Galkowski, Joseph J.

    1987-01-01

    A copper vapor laser (CVL) acoustic thermometry system is disclosed. The invention couples an acoustic pulse a predetermined distance into a laser tube by means of a transducer and an alumina rod such that an echo pulse is returned along the alumina rod to the point of entry. The time differential between the point of entry of the acoustic pulse into the laser tube and the exit of the echo pulse is related to the temperature at the predetermined distance within the laser tube. This information is processed and can provide an accurate indication of the average temperature within the laser tube.

  7. Non-bonded ultrasonic transducer

    DOEpatents

    Eoff, J.M.

    1984-07-06

    A mechanically assembled non-bonded ultrasonic transducer includes a substrate, a piezoelectric film, a wetting agent, a thin metal electrode, and a lens held in intimate contact by a mechanical clamp. No epoxy or glue is used in the assembly of this device.

  8. Angled-focused 45 MHz PMN-PT single element transducer for intravascular ultrasound imaging.

    PubMed

    Yoon, Sangpil; Williams, Jay; Kang, Bong Jin; Yoon, Changhan; Cabrera-Munoz, Nestor; Jeong, Jong Seob; Lee, Sang Goo; Shung, K Kirk; Kim, Hyung Ham

    2015-06-01

    A transducer with an angled and focused aperture for intravascular ultrasound imaging has been developed. The acoustic stack for the angled-focused transducer was made of PMN-PT single crystal with one matching layer, one protective coating layer, and a highly damped backing layer. It was then press-focused to a desired focal length and inserted into a thin needle housing with an angled tip. A transducer with an angled and unfocused aperture was also made, following the same fabrication procedure, to compare the performance of the two transducers. The focused and unfocused transducers were tested to measure their center frequencies, bandwidths, and spatial resolutions. Lateral resolution of the angled-focused transducer (AFT) improved more than two times compared to that of the angled-unfocused transducer (AUT). A tissue-mimicking phantom in water and a rabbit aorta tissue sample in rabbit blood were scanned using AFT and AUT. Imaging with AFT offered improved contrast, over imaging with AUT, of the tissue-mimicking phantom and the rabbit aorta tissue sample by 23 dB and 8 dB, respectively. The results show that AFT has strong potential to provide morphological and pathological information of coronary arteries with high resolution and high contrast.

  9. Effect of the Matching Circuit on the Electromechanical Characteristics of Sandwiched Piezoelectric Transducers.

    PubMed

    Lin, Shuyu; Xu, Jie

    2017-02-10

    The input electrical impedance behaves as a capacitive when a piezoelectric transducer is excited near its resonance frequency. In order to increase the energy transmission efficiency, a series or parallel inductor should be used to compensate the capacitive impedance of the piezoelectric transducer. In this paper, the effect of the series matching inductor on the electromechanical characteristics of the piezoelectric transducer is analyzed. The dependency of the resonance/anti-resonance frequency, the effective electromechanical coupling coefficient, the electrical quality factor and the electro-acoustical efficiency on the matching inductor is obtained. It is shown that apart from compensating the capacitive impedance of the piezoelectric transducer, the series matching inductor can also change the electromechanical characteristics of the piezoelectric transducer. When series matching inductor is increased, the resonance frequency is decreased and the anti-resonance unchanged; the effective electromechanical coupling coefficient is increased. For the electrical quality factor and the electroacoustic efficiency, the dependency on the matching inductor is different when the transducer is operated at the resonance and the anti-resonance frequency. The electromechanical characteristics of the piezoelectric transducer with series matching inductor are measured. It is shown that the theoretically predicted relationship between the electromechanical characteristics and the series matching inductor is in good agreement with the experimental results.

  10. Effect of the Matching Circuit on the Electromechanical Characteristics of Sandwiched Piezoelectric Transducers

    PubMed Central

    Lin, Shuyu; Xu, Jie

    2017-01-01

    The input electrical impedance behaves as a capacitive when a piezoelectric transducer is excited near its resonance frequency. In order to increase the energy transmission efficiency, a series or parallel inductor should be used to compensate the capacitive impedance of the piezoelectric transducer. In this paper, the effect of the series matching inductor on the electromechanical characteristics of the piezoelectric transducer is analyzed. The dependency of the resonance/anti-resonance frequency, the effective electromechanical coupling coefficient, the electrical quality factor and the electro-acoustical efficiency on the matching inductor is obtained. It is shown that apart from compensating the capacitive impedance of the piezoelectric transducer, the series matching inductor can also change the electromechanical characteristics of the piezoelectric transducer. When series matching inductor is increased, the resonance frequency is decreased and the anti-resonance unchanged; the effective electromechanical coupling coefficient is increased. For the electrical quality factor and the electroacoustic efficiency, the dependency on the matching inductor is different when the transducer is operated at the resonance and the anti-resonance frequency. The electromechanical characteristics of the piezoelectric transducer with series matching inductor are measured. It is shown that the theoretically predicted relationship between the electromechanical characteristics and the series matching inductor is in good agreement with the experimental results. PMID:28208583

  11. Angled-focused 45 MHz PMN-PT single element transducer for intravascular ultrasound imaging

    PubMed Central

    Yoon, Sangpil; Williams, Jay; Kang, Bong Jin; Yoon, Changhan; Cabrera-Munoz, Nestor; Jeong, Jong Seob; Lee, Sang Goo; Shung, K. Kirk; Kim, Hyung Ham

    2015-01-01

    A transducer with an angled and focused aperture for intravascular ultrasound imaging has been developed. The acoustic stack for the angled-focused transducer was made of PMN-PT single crystal with one matching layer, one protective coating layer, and a highly damped backing layer. It was then press-focused to a desired focal length and inserted into a thin needle housing with an angled tip. A transducer with an angled and unfocused aperture was also made, following the same fabrication procedure, to compare the performance of the two transducers. The focused and unfocused transducers were tested to measure their center frequencies, bandwidths, and spatial resolutions. Lateral resolution of the angled-focused transducer (AFT) improved more than two times compared to that of the angled-unfocused transducer (AUT). A tissue-mimicking phantom in water and a rabbit aorta tissue sample in rabbit blood were scanned using AFT and AUT. Imaging with AFT offered improved contrast, over imaging with AUT, of the tissue-mimicking phantom and the rabbit aorta tissue sample by 23 dB and 8 dB, respectively. The results show that AFT has strong potential to provide morphological and pathological information of coronary arteries with high resolution and high contrast. PMID:25914443

  12. Acoustic Neuroma

    MedlinePlus

    An acoustic neuroma is a benign tumor that develops on the nerve that connects the ear to the brain. ... can press against the brain, becoming life-threatening. Acoustic neuroma can be difficult to diagnose, because the ...

  13. Acoustic and Seismic Modalities for Unattended Ground Sensors

    SciTech Connect

    Elbring, G.J.; Ladd, M.D.; McDonald, T.S.; Sleefe, G.E.

    1999-03-31

    In this paper, we have presented the relative advantages and complementary aspects of acoustic and seismic ground sensors. A detailed description of both acoustic and seismic ground sensing methods has been provided. Acoustic and seismic phenomenology including source mechanisms, propagation paths, attenuation, and sensing have been discussed in detail. The effects of seismo-acoustic and acousto-seismic interactions as well as recommendations for minimizing seismic/acoustic cross talk have been highlighted. We have shown representative acoustic and seismic ground sensor data to illustrate the advantages and complementary aspects of the two modalities. The data illustrate that seismic transducers often respond to acoustic excitation through acousto-seismic coupling. Based on these results, we discussed the implications of this phenomenology on the detection, identification, and localization objectives of unattended ground sensors. We have concluded with a methodology for selecting the preferred modality (acoustic and/or seismic) for a particular application.

  14. Acoustical experiment of yogurt fermentation process.

    PubMed

    Ogasawara, H; Mizutani, K; Ohbuchi, T; Nakamura, T

    2006-12-22

    One of the important factors through food manufacturing is hygienic management. Thus, food manufactures prove their hygienic activities by taking certifications like a Hazard Analysis and Critical Control Point (HACCP). This concept also applies to food monitoring. Acoustical measurements have advantage for other measurement in food monitoring because they make it possible to measure with noncontact and nondestructive. We tried to monitor lactic fermentation of yogurt by a probing sensor using a pair of acoustic transducers. Temperature of the solution changes by the reaction heat of fermentation. Consequently the sound velocity propagated through the solution also changes depending on the temperature. At the same time, the solution change its phase from liquid to gel. The transducers usage in the solution indicates the change of the temperature as the change of the phase difference between two transducers. The acoustic method has advantages of nondestructive measurement that reduces contamination of food product by measuring instrument. The sensor was inserted into milk with lactic acid bacterial stain of 19 degrees C and monitored phase retardation of propagated acoustic wave and its temperature with thermocouples in the mild. The monitoring result of fermentation from milk to Caspian Sea yogurt by the acoustic transducers with the frequency of 3.7 MHz started to show gradient change in temperature caused by reaction heat of fermentation but stop the gradient change at the end although the temperature still change. The gradient change stopped its change because of phase change from liquid to gel. The present method will be able to measure indirectly by setting transducers outside of the measuring object. This noncontact sensing method will have great advantage of reduces risk of food contamination from measuring instrument because the measurement probes are set out of fermentation reactor or food containers. Our proposed method will contribute to the

  15. Material fabrication using acoustic radiation forces

    SciTech Connect

    Sinha, Naveen N.; Sinha, Dipen N.; Goddard, Gregory Russ

    2015-12-01

    Apparatus and methods for using acoustic radiation forces to order particles suspended in a host liquid are described. The particles may range in size from nanometers to millimeters, and may have any shape. The suspension is placed in an acoustic resonator cavity, and acoustical energy is supplied thereto using acoustic transducers. The resulting pattern may be fixed by using a solidifiable host liquid, forming thereby a solid material. Patterns may be quickly generated; typical times ranging from a few seconds to a few minutes. In a one-dimensional arrangement, parallel layers of particles are formed. With two and three dimensional transducer arrangements, more complex particle configurations are possible since different standing-wave patterns may be generated in the resonator. Fabrication of periodic structures, such as metamaterials, having periods tunable by varying the frequency of the acoustic waves, on surfaces or in bulk volume using acoustic radiation forces, provides great flexibility in the creation of new materials. Periodicities may range from millimeters to sub-micron distances, covering a large portion of the range for optical and acoustical metamaterials.

  16. Liquid lens using acoustic radiation force.

    PubMed

    Koyama, Daisuke; Isago, Ryoichi; Nakamura, Kentaro

    2011-03-01

    A liquid lens is proposed that uses acoustic radiation force with no mechanical moving parts. It consists of a cylindrical acrylic cell filled with two immiscible liquids (degassed water and silicone oil) and a concave ultrasound transducer. The focal point of the transducer is located on the oil-water interface, which functions as a lens. The acoustic radiation force is generated when there is a difference in the acoustic energy densities of different media. An acoustic standing wave was generated in the axial direction of the lens and the variation of the shape of the oil-water interface was observed by optical coherence tomography (OCT). The lens profile can be rapidly changed by varying the acoustic radiation force from the transducer. The kinematic viscosity of silicone oil was optimized to minimize the response times of the lens. Response times of 40 and 80 ms when switching ultrasonic radiation on and off were obtained with a kinematic viscosity of 200 cSt. The path of a laser beam transmitted through the lens was calculated by ray-tracing simulations based on the experimental results obtained by OCT. The transmitted laser beam could be focused by applying an input voltage. The liquid lens could be operated as a variable-focus lens by varying the input voltage.

  17. Laser and acoustic lens for lithotripsy

    DOEpatents

    Visuri, Steven R.; Makarewicz, Anthony J.; London, Richard A.; Benett, William J.; Krulevitch, Peter; Da Silva, Luiz B.

    2002-01-01

    An acoustic focusing device whose acoustic waves are generated by laser radiation through an optical fiber. The acoustic energy is capable of efficient destruction of renal and biliary calculi and deliverable to the site of the calculi via an endoscopic procedure. The device includes a transducer tip attached to the distal end of an optical fiber through which laser energy is directed. The transducer tip encapsulates an exogenous absorbing dye. Under proper irradiation conditions (high absorbed energy density, short pulse duration) a stress wave is produced via thermoelastic expansion of the absorber for the destruction of the calculi. The transducer tip can be configured into an acoustic lens such that the transmitted acoustic wave is shaped or focused. Also, compressive stress waves can be reflected off a high density/low density interface to invert the compressive wave into a tensile stress wave, and tensile stresses may be more effective in some instances in disrupting material as most materials are weaker in tension than compression. Estimations indicate that stress amplitudes provided by this device can be magnified more than 100 times, greatly improving the efficiency of optical energy for targeted material destruction.

  18. Wideband Single Crystal Transducer for Bone Characterization

    NASA Technical Reports Server (NTRS)

    Sahul, Raffi

    2015-01-01

    Phase II objectives: Optimize the Phase I transducer for sensitivity; Test different transmit signals for optimum performance; Demonstrate compatibility with electronics; Confirm additional transducer capabilities over conventional systems by calibrating with other methods.

  19. A new application of PVDF line-focus transducers on measuring dispersion curves of a layered medium

    NASA Astrophysics Data System (ADS)

    Lee, Yung-Chun; Ko, Shin-Pin

    2000-05-01

    In the past few years, PVDF line-focus acoustic transducers have been proven to be a useful and convenient tool for accurately measuring surface wave velocity. The transducer is very easy to construct and the measurement system can be readily established with conventional ultrasonic instruments. In this investigation, however, the capability of PVDF line-focus transducers will be further extended to the measurement of dispersion relation of surface acoustic waves of a layered medium. To achieve this, a number of line-focus transducers are first fabricated with PVDF films of various thickness so that they can operate at different frequencies. Experimental testing on these transducers shows that surface acoustic waves of frequency ranging from 2 MHz to 20 MHz can be effectively generated and detected. For the determination of surface wave velocity as a function of frequency, a new method of processing the measured waveforms during a z-direction defocusing measurements is developed. A mathematical model is given to explain how this method works. With the transducers and the analyzing method, the surface wave dispersion relation of a layer/substrate configuration have been experimentally determined. Samples include thick polymeric films as well as metal films deposited on glass, aluminum, and silicon crystal. Possibility of determining material properties of the layers from the measured dispersion curves will be discussed.

  20. Acoustic Seaglider

    DTIC Science & Technology

    2008-03-07

    a national naval responsibility. Acoustic sensors on mobile, autonomous platforms will enable basic research topics on temporal and spatial...problem and acoustic navigation and communications within the context of distributed autonomous persistent undersea surveillance sensor networks...Acoustic sensors on mobile, autonomous platforms will enable basic research topics on temporal and spatial coherence and the description of ambient

  1. Acoustic seal

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M. (Inventor)

    2006-01-01

    The invention relates to a sealing device having an acoustic resonator. The acoustic resonator is adapted to create acoustic waveforms to generate a sealing pressure barrier blocking fluid flow from a high pressure area to a lower pressure area. The sealing device permits noncontacting sealing operation. The sealing device may include a resonant-macrosonic-synthesis (RMS) resonator.

  2. Acoustic Seal

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M. (Inventor)

    2006-01-01

    The invention relates to a sealing device having an acoustic resonator. The acoustic resonator is adapted to create acoustic waveforms to generate a sealing pressure barrier blocking fluid flow from a high pressure area to a lower pressure area. The sealing device permits noncontacting sealing operation. The sealing device may include a resonant-macrosonic-synthesis (RMS) resonator.

  3. Active micromixer using surface acoustic wave streaming

    SciTech Connect

    Branch; Darren W. , Meyer; Grant D. , Craighead; Harold G.

    2011-05-17

    An active micromixer uses a surface acoustic wave, preferably a Rayleigh wave, propagating on a piezoelectric substrate to induce acoustic streaming in a fluid in a microfluidic channel. The surface acoustic wave can be generated by applying an RF excitation signal to at least one interdigital transducer on the piezoelectric substrate. The active micromixer can rapidly mix quiescent fluids or laminar streams in low Reynolds number flows. The active micromixer has no moving parts (other than the SAW transducer) and is, therefore, more reliable, less damaging to sensitive fluids, and less susceptible to fouling and channel clogging than other types of active and passive micromixers. The active micromixer is adaptable to a wide range of geometries, can be easily fabricated, and can be integrated in a microfluidic system, reducing dead volume. Finally, the active micromixer has on-demand on/off mixing capability and can be operated at low power.

  4. System for controlled acoustic rotation of objects

    NASA Technical Reports Server (NTRS)

    Barmatz, M. B. (Inventor)

    1983-01-01

    A system is described for use with acoustically levitated objects, which enables close control of rotation of the object. One system includes transducers that propagate acoustic waves along the three dimensions (X, Y, Z) of a chamber of rectangular cross section. Each transducers generates one wave which is resonant to a corresponding chamber dimension to acoustically levitate an object, and additional higher frequency resonant wavelengths for controlling rotation of the object. The three chamber dimensions and the corresponding three levitation modes (resonant wavelengths) are all different, to avoid degeneracy, or interference, of waves with one another, that could have an effect on object rotation. Only the higher frequencies, with pairs of them having the same wavelength, are utilized to control rotation, so that rotation is controlled independently of levitation and about any arbitrarily chosen axis.

  5. Acoustic power measurement of high intensity focused ultrasound in medicine based on radiation force.

    PubMed

    Shou, Wende; Huang, Xiaowei; Duan, Shimei; Xia, Rongmin; Shi, Zhonglong; Geng, Xiaoming; Li, Faqi

    2006-12-22

    How to measure the acoustic power of HIFU is one of the most important tasks in its medical application. In the paper a whole series of formula for calculating the radiation force related to the acoustic power radiated by a single element focusing transducer and by the focusing transducer array were given. Various system of radiation force balance (RFB) to measure the acoustic power of HIFU in medicine were designed and applied in China. In high power experiments, the dependence of radiation force acting the absorbing target on the target position at the beam axis of focusing transducer was fined. There is a peak value of "radiation force" acting the absorbing target in the focal region when the acoustic power through the focal plane exceeds some threshold. In order to avoid this big measurement error caused by the 'peak effect' in focal region, the distance between the absorbing target of RFB and the focusing transducer or transducer array was defined to be equal to or less than 0.7 times of the focal length in the National Standard of China for the measurements of acoustic power and field characteristics of HIFU. More than six different therapeutic equipments of HIFU have been examined by RFB for measuring the acoustic power since 1998. These results show that RFB with the absorbing target is valid in the acoustic power range up to 500W with good linearity for the drive voltage squared of focusing transducer or array. The uncertainty of measurement is within +/-15%.

  6. New Design of the Kerfs of an Ultrasonic Two-Dimensional Array Transducer to Minimize Cross-Talk

    NASA Astrophysics Data System (ADS)

    Lee, Wonseok; Roh, Yongrae

    2010-07-01

    The transducer under consideration is a planar two-dimensional (2D) array transducer working at 3.5 MHz. The transducer is composed of 17×17 piezoelectric elements separated by major and minor kerfs. Through finite element analyses (FEA), the performance of the 2D array transducer was investigated in relation to the acoustic impedance and structure of the kerfs. Based on the analysis results, three new types of kerfs were proposed to reduce the cross-talk. Detailed material properties and structures of the new kerfs were determined to provide the lowest cross-talk level and highest pulse-echo sensitivity while preserving a desired acceptance angle at the center frequency of 3.5 MHz. The results in this work can contribute to developing a 2D array transducer which would result in having a higher signal-to-noise level, which in turn will lead to better ultrasonic imaging.

  7. New Design of the Kerfs of an Ultrasonic Two-Dimensional Array Transducer to Minimize Cross-Talk

    NASA Astrophysics Data System (ADS)

    Wonseok Lee,; Yongrae Roh,

    2010-07-01

    The transducer under consideration is a planar two-dimensional (2D) array transducer working at 3.5 MHz. The transducer is composed of 17× 17 piezoelectric elements separated by major and minor kerfs. Through finite element analyses (FEA), the performance of the 2D array transducer was investigated in relation to the acoustic impedance and structure of the kerfs. Based on the analysis results, three new types of kerfs were proposed to reduce the cross-talk. Detailed material properties and structures of the new kerfs were determined to provide the lowest cross-talk level and highest pulse-echo sensitivity while preserving a desired acceptance angle at the center frequency of 3.5 MHz. The results in this work can contribute to developing a 2D array transducer which would result in having a higher signal-to-noise level, which in turn will lead to better ultrasonic imaging.

  8. Evaluation of adhesive-free crossed-electrode poly(vinylidene fluoride) copolymer array transducers for high frequency imaging

    NASA Astrophysics Data System (ADS)

    Wagle, Sanat; Decharat, Adit; Habib, Anowarul; Ahluwalia, Balpreet S.; Melandsø, Frank

    2016-07-01

    High frequency crossed-electrode transducers have been investigated, both as single and dual layer transducers. Prototypes of these transducers were developed for 4 crossed lines (yielding 16 square elements) on a polymer substrate, using a layer-by-layer deposition method for poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] with intermediate sputtered electrodes. The transducer was characterized using various methods [LCR analyzer, a pulse-echo experimental setup, and a numerical Finite element method (FEM) model] and evaluated in terms of uniformity of bandwidth and acoustical energy output. All 16 transducer elements produced broad-banded ultrasonic spectra with small variation in central frequency and -6 dB bandwidth. The frequency responses obtained experimentally were verified using a numerical model.

  9. 21 CFR 882.1950 - Tremor transducer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Tremor transducer. 882.1950 Section 882.1950 Food... DEVICES NEUROLOGICAL DEVICES Neurological Diagnostic Devices § 882.1950 Tremor transducer. (a) Identification. A tremor transducer is a device used to measure the degree of tremor caused by certain...

  10. 21 CFR 882.1950 - Tremor transducer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Tremor transducer. 882.1950 Section 882.1950 Food... DEVICES NEUROLOGICAL DEVICES Neurological Diagnostic Devices § 882.1950 Tremor transducer. (a) Identification. A tremor transducer is a device used to measure the degree of tremor caused by certain...

  11. 21 CFR 882.1950 - Tremor transducer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Tremor transducer. 882.1950 Section 882.1950 Food... DEVICES NEUROLOGICAL DEVICES Neurological Diagnostic Devices § 882.1950 Tremor transducer. (a) Identification. A tremor transducer is a device used to measure the degree of tremor caused by certain...

  12. 21 CFR 882.1950 - Tremor transducer.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Tremor transducer. 882.1950 Section 882.1950 Food... DEVICES NEUROLOGICAL DEVICES Neurological Diagnostic Devices § 882.1950 Tremor transducer. (a) Identification. A tremor transducer is a device used to measure the degree of tremor caused by certain...

  13. 21 CFR 882.1950 - Tremor transducer.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Tremor transducer. 882.1950 Section 882.1950 Food... DEVICES NEUROLOGICAL DEVICES Neurological Diagnostic Devices § 882.1950 Tremor transducer. (a) Identification. A tremor transducer is a device used to measure the degree of tremor caused by certain...

  14. 21 CFR 870.2880 - Ultrasonic transducer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Ultrasonic transducer. 870.2880 Section 870.2880...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2880 Ultrasonic transducer. (a) Identification. An ultrasonic transducer is a device applied to the skin to transmit and...

  15. 21 CFR 870.2880 - Ultrasonic transducer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ultrasonic transducer. 870.2880 Section 870.2880...) MEDICAL DEVICES CARDIOVASCULAR DEVICES Cardiovascular Monitoring Devices § 870.2880 Ultrasonic transducer. (a) Identification. An ultrasonic transducer is a device applied to the skin to transmit and...

  16. Thin-film optoacoustic transducers for subcellular Brillouin oscillation imaging of individual biological cells.

    PubMed

    Pérez-Cota, Fernando; Smith, Richard J; Moradi, Emilia; Marques, Leonel; Webb, Kevin F; Clark, Matt

    2015-10-01

    At low frequencies ultrasound is a valuable tool to mechanically characterize and image biological tissues. There is much interest in using high-frequency ultrasound to investigate single cells. Mechanical characterization of vegetal and biological cells by measurement of Brillouin oscillations has been demonstrated using ultrasound in the GHz range. This paper presents a method to extend this technique from the previously reported single-point measurements and line scans into a high-resolution acoustic imaging tool. Our technique uses a three-layered metal-dielectric-metal film as a transducer to launch acoustic waves into the cell we want to study. The design of this transducer and measuring system is optimized to overcome the vulnerability of a cell to the exposure of laser light and heat without sacrificing the signal-to-noise ratio. The transducer substrate shields the cell from the laser radiation, efficiently generates acoustic waves, facilitates optical detection in transmission, and aids with heat dissipation away from the cell. This paper discusses the design of the transducers and instrumentation and presents Brillouin frequency images on phantom, fixed, and living cells.

  17. Pulsed-Source Interferometry in Acoustic Imaging

    NASA Technical Reports Server (NTRS)

    Shcheglov, Kirill; Gutierrez, Roman; Tang, Tony K.

    2003-01-01

    A combination of pulsed-source interferometry and acoustic diffraction has been proposed for use in imaging subsurface microscopic defects and other features in such diverse objects as integrated-circuit chips, specimens of materials, and mechanical parts. A specimen to be inspected by this technique would be mounted with its bottom side in contact with an acoustic transducer driven by a continuous-wave acoustic signal at a suitable frequency, which could be as low as a megahertz or as high as a few hundred gigahertz. The top side of the specimen would be coupled to an object that would have a flat (when not vibrating) top surface and that would serve as the acoustical analog of an optical medium (in effect, an acoustical "optic").

  18. Acoustic tensometry. II - Methods and apparatus /survey/

    NASA Astrophysics Data System (ADS)

    Bobrenko, V. M.; Kutsenko, A. N.; Sheremetikov, A. S.

    1981-08-01

    Acoustic methods for determining the stress-strain state of a solid are analyzed; the methods are based on the results obtained in a previous article on acoustic tensometry (Bobrenko et al., 1980), as well as other literature and patent information on the subject. The analysis, relevant to factory conditions, is broken down into a study of three methods: (1) the measurement of absolute propagation times of ultrasonic space waves; (2) the measurement of absolute velocities of Rayleigh waves; and (3) the measurement of acoustic anisotrophy. Features of the acoustic and electronic units, and the demands imposed on the transducers are also considered. Practical recommendations are given for using the acoustic methods, depending on the relative dimensions of the testpieces.

  19. Acoustic tensometry. II - Methods and apparatus /survey/

    NASA Astrophysics Data System (ADS)

    Bobrenko, V. M.; Kutsenko, A. N.; Sheremetikov, A. S.

    1980-12-01

    Acoustic methods for determining the stress-strain state of a solid are analyzed; the methods are based on the results obtained in a previous article on acoustic tensometry (Bobrenko et al., 1980), as well as other literature and patent information on the subject. The analysis, relevant to factory conditions, is broken down into a study of three methods: (1) the measurement of absolute propagation times of ultrasonic space waves; (2) the measurement of absolute velocities of Rayleigh waves; and (3) the measurement of acoustic anisotrophy. Features of the acoustic and electronic units, and the demands imposed on the transducers are also considered. Practical recommendations are given for using the acoustic methods, depending on the relative dimensions of the testpieces.

  20. Generation of acoustic helical wavefronts using metasurfaces

    NASA Astrophysics Data System (ADS)

    Esfahlani, Hussein; Lissek, Herve; Mosig, Juan R.

    2017-01-01

    It has been shown that acoustic waves with helical wavefronts can carry angular momentum, which can be transmitted towards a propagating medium. Such a wave field can be achieved by using a planar array of electroacoustic transducers, forming a given spatial distribution of phased sound sources which produce the desired helical wavefronts. Here, we introduce a technique to generate acoustic vortices, based on the passive acoustic metasurface concept. The proposed metasurface is composed of space-coiled cylindrical unit cells transmitting sound pressure with a controllable phase shift, which are arranged in a discretized circular configuration, and thus passively transforming an incident plane wavefront into the desired helical wavefront. This method presents the advantage of overcoming the restrictions on using many acoustic sources, and it is implemented with a transmitting metasurface which can be easily three-dimensionally printed. The proposed straightforward design principle can be adopted for easy production of acoustic angular momentum with minimum complexity and using a single source.

  1. Reverberation Reduction in Capacitive Micromachined Ultrasonic Transducers (CMUTs) by Front-face Reflectivity Minimization

    NASA Astrophysics Data System (ADS)

    Savoia, Alessandro Stuart; La Mura, Monica; Mauti, Barbara; Lamberti, Nicola; Caliano, Giosuè

    Front-face acoustic reflectivity of ultrasonic imaging transducers, due to acoustic impedance mismatch with the propagation medium, may cause reverberation phenomena during wideband pulse-echo operation. Front-face reflectivity may be reduced by promoting the transmission of the echoes, received from the medium, to the transducer backing, and by maximizing the mechanical-to-electrical energy conversion and dissipation by tuning the electrical load impedance connected to the transducer. In Capacitive Micromachined Ultrasonic Transducers (CMUTs), the energy transfer from the medium to the backing is very low due to the large impedance mismatch between the medium and the transducer substrate, typically made of silicon. Reverse Fabrication Process (RFP) makes it possible providing CMUTs with custom substrate materials, thus eliminating the original silicon microfabrication support. In this paper, we propose two methods for the front-face reflectivity reduction in RFP-CMUTs: the first one is based on the use of low-impedance, highly attenuating backing materials, and the second one is based on the maximization of the mechanoelectrical energy conversion and dissipation. We analyze the methods by finite element simulations and experimentally validate the obtained results by fabricating and characterizing single-element RFP-CMUTs provided with different backing materials and electrical loads.

  2. Performance of tonpilz transducers with segmented piezoelectric stacks using materials with high electromechanical coupling coefficient.

    PubMed

    Thompson, Stephen C; Meyer, Richard J; Markley, Douglas C

    2014-01-01

    Tonpilz acoustic transducers for use underwater often include a stack of piezoelectric material pieces polarized along the length of the stack and having alternating polarity. The pieces are interspersed with electrodes, bonded together, and electrically connected in parallel. The stack is normally much shorter than a quarter wavelength at the fundamental resonance frequency so that the mechanical behavior of the transducer is not affected by the segmentation. When the transducer bandwidth is less than a half octave, as has conventionally been the case, for example, with lead zirconate titanate (PZT) material, stack segmentation has no significant effect on the mechanical behavior of the device in its normal operating band near the fundamental resonance. However, when a high coupling coefficient material such as lead magnesium niobate-lead titanate (PMN-PT) is used to achieve a wider bandwidth with the tonpilz, the performance difference between a segmented stack and a similar piezoelectric section with electrodes only at the two ends can be significant. This paper investigates the effects of stack segmentation on the performance of wideband underwater tonpilz acoustic transducers. Included is a discussion of a particular tonpilz transducer design using single crystal piezoelectric material with high coupling coefficient compared with a similar design using more traditional PZT ceramics.

  3. Endoscopic Therapeutic Device Using Focused Ultrasonic Small Transducer

    NASA Astrophysics Data System (ADS)

    Yasui, Akihiro; Haga, Yoichi; Chen, Jiun-Jie; Iseki, Hiroshi; Esashi, Masayoshi; Wada, Hiroshi

    In this research, an ultrasonic probe (5.5 mm in diameter), which has a concave PZT transducer at its tip, was fabricated for ultrasonic treatments such as sonoporation and sonodynamic therapy in the human body using a catheter and/or endoscope. Ultrasound has the potential to enhance cytotoxicity of drugs such as porphyrins, a process referred to as sonodynamic therapy, and also to deliver macromolecules such as plasmid DNA, a process referred to as sonoporation. The fabricated probe was then experimentally characterized by measuring the acoustic intensity distribution around the focal point, using a PVDF needle-type ultrasonic hydrophone. When the PZT transducer was driven by a 120 Volts peak-to-peak AC signal at 1.83 MHz, the ultrasound output was successfully focused at the focal point, with a peak intensity of 24.9 W/cm2 (0.87 MPa). Using the fabricated probe, cultured Chinese Hamster Ovary (CHO) cells were exposed to ultrasound (1.83 MHz, continuous wave, peak acoustic pressure of 0.5 MPa) for 2 s in the presence of microbubbles MB-3 and Green Fluorescent Protein (GFP) plasmid DNA. As a result of sonication, the expression of GFP was observed in CHO cells.

  4. The prediction of transducer element performance from in air measurements

    NASA Astrophysics Data System (ADS)

    Schafer, M. E.

    1982-01-01

    A technique has been developed which accurately predicts the performance of underwater acoustic arrays prior to array construction. The technique is based upon the measurement of lumped-parameter equivalent circuit values for each element in the array, and is accurate in predicting the array transmit, receive and beam pattern response. The measurement procedure determines the shunt electrical and motional circuit elements from electrical imittance measurements. The electromechanical transformation ratio is derived from in-air measurements of the radiating face velocity and the input current to the transducer at resonance. The equivalent circuit values of a group of Tonpilz-type transducers were measured, and the self and mutual interaction acoustic loadings for a specific array geometry were calculated. The response of the elements was then predicted for water-loaded array conditions. Based on the predictions, a selection scheme was developed which minimized the effects of inter-element variability on array performance. The measured transmitting, receiving and beam pattern characteristics of a test array, built using the selected elements, were compared to predictions made before the array was built. The results indicated that the technique is accurate over a wide frequency range.

  5. Self-Calibrating Pressure Transducer

    NASA Technical Reports Server (NTRS)

    Lueck, Dale E. (Inventor)

    2006-01-01

    A self-calibrating pressure transducer is disclosed. The device uses an embedded zirconia membrane which pumps a determined quantity of oxygen into the device. The associated pressure can be determined, and thus, the transducer pressure readings can be calibrated. The zirconia membrane obtains oxygen .from the surrounding environment when possible. Otherwise, an oxygen reservoir or other source is utilized. In another embodiment, a reversible fuel cell assembly is used to pump oxygen and hydrogen into the system. Since a known amount of gas is pumped across the cell, the pressure produced can be determined, and thus, the device can be calibrated. An isolation valve system is used to allow the device to be calibrated in situ. Calibration is optionally automated so that calibration can be continuously monitored. The device is preferably a fully integrated MEMS device. Since the device can be calibrated without removing it from the process, reductions in costs and down time are realized.

  6. A silicon electrostatic ultrasonic transducer

    NASA Astrophysics Data System (ADS)

    Suzuki, Kenichiro; Higuchi, Kohei; Tanigawa, Hiroshi

    1989-11-01

    An electric ultrasonic transducer is developed by using a silicon IC process. Design considerations are first presented to obtain high sensitivity and the desired frequency responses in air. The measured transmitter sensitivity is 19.1 dB (0 dB = 1 microbar/V) at a point 50 cm away from the devices, when the devices are operated at 150 kHz. The receiving sensitivity is 0.47 mV/Pa in the 10-130-kHz range, with bias voltages as low as 30 V. An electronic sector scanning operation is also achieved by time-sequentially driving seven elements arranged in a linear array on the same chip. The results should be helpful in the design of phased-array transducers integrated with electronic scanning circuits.

  7. Advanced Geothermal Optical Transducer (AGOT)

    SciTech Connect

    2004-09-01

    Today's geothermal pressure-temperature measuring tools are short endurance, high value instruments, used sparingly because their loss is a major expense. In this project LEL offered to build and test a rugged, affordable, downhole sensor capable ofretuming an uninterrupted data stream at pressures and of 10,000 psi and temperatures up to 250 C, thus permitting continuous deep-well logging. It was proposed to meet the need by specializing LEL's patented 'Twin Column Transducer' technology to satisfy the demands of geothermal pressure/temperature measurements. TCT transducers have very few parts, none of which are moving parts, and all of which can be fabricated from high-temperature super alloys or from ceramics; the result is an extremely rugged device, essentially impervious to chemical attack and readily modified to operate at high pressure and temperature. To measure pressure and temperature they capitalize on the relative expansion of optical elements subjected to thermal or mechanical stresses; if one element is maintained at a reference pressure while the other is opened to ambient, the differential displacement then serves as a measure of pressure. A transducer responding to temperature rather than pressure is neatly created by 'inverting' the pressure-measuring design so that both deflecting structures see identical temperatures and temperature gradients, but whose thermal expansion coefficients are deliberately mismatched to give differential expansion. The starting point for development of a PT Tool was the company's model DPT feedback-stabilized 5,000 psi sensor (U.S. Patent 5,311,014, 'Optical Transducer for Measuring Downhole Pressure', claiming a pressure transducer capable of measuring static, dynamic, and true bi-directional differential pressure at high temperatures), shown in the upper portion of Figure 1. The DPT occupies a 1 x 2 x 4-inch volume, weighs 14 ounces, and is accurate to 1 percent of full scale. Employing a pair of identical, low

  8. Exploitation of capacitive micromachined transducers for nonlinear ultrasound imaging.

    PubMed

    Novell, Anthony; Legros, Mathieu; Felix, Nicolas; Bouakaz, Ayache

    2009-12-01

    Capacitive micromachined ultrasonic transducers (CMUTs) present advantages such as wide frequency bandwidth, which could be further developed for nonlinear imaging. However, the driving electrostatic force induces a nonlinear behavior of the CMUT, thus generating undesirable harmonic components in the generated acoustic signal. Consequently, the use of CMUT for harmonic imaging (with or without contrast agents) becomes challenging. This paper suggests 2 compensation approaches, linear and nonlinear methods, to cancel unwanted nonlinear components. Furthermore, nonlinear responses from contrast agent were evaluated using CMUT in transmit before and after compensation. The results were compared with those obtained using a PZT transducer in transmit. Results showed that CMUT nonlinear behavior is highly influenced by the excitation to bias voltage ratio. Measurements of output pressure very close to the CMUT surface allow the estimation of optimal parameters for each compensation approach. Both methods showed a harmonic reduction higher than 20 dB when one element or several elements are excited. In addition, the study demonstrates that nonlinear approach seems to be more efficient because it is shown to be less sensitive to interelement variability and further avoids fundamental component deterioration. The results from contrast agent measurements showed that the responses obtained using CMUT elements in transmit with compensation were similar to those from PZT transducer excitation. This experimental study demonstrates the opportunity to use CMUT with traditional harmonic contrast imaging techniques.

  9. Torquemeter With Variable Reluctance Transducer

    NASA Astrophysics Data System (ADS)

    Gonzalez, Julio

    1987-01-01

    A new variable reluctance transducer is described. Two static coils constitute two branches of a Wheastone bridge. The magnetic circuit of each one of the windings is closed through two gear wheels attached to the shaft. These are related to each other in such a way as to leave two air gaps, each of these in front of one of the coils in the stator assambly. These gaps change with the torque.

  10. Thermal model for piezoelectric transducers (L).

    PubMed

    Butler, John L; Butler, Alexander L; Butler, Stephen C

    2012-10-01

    A lumped parameter equivalent circuit basis for calculating and allocating heat power sources in a transducer is presented along with experimental results. The simple model allows heat power calculations at resonance based on readily attainable parameters for transducers with uniform fields. Measured and finite element analysis of steady state thermal results are compared for the monopole mode of the single crystal driven modal transducer projector. The model serves as a physical and computational aid in the evaluation of piezoelectric transducer heating and may be used for evaluating highly coupled single crystal as well as ceramic piezoelectric transducers.

  11. Structural health monitoring using polymer-based capacitive micromachined ultrasonic transducers (CMUTs).

    PubMed

    Hutchins, D A; Billson, D R; Bradley, R J; Ho, K S

    2011-12-01

    Transducers based on a capacitive micromachined ultrasonic transducer (CMUT) design have been fabricated using a rapid prototyping technique. This results in a device that is constructed principally from polymers, in a process which is simple and inexpensive. The resultant devices can be attached to the surfaces of solids. Their peak sensitivity is in the 80-100 kHz range, making them ideal for applications such as acoustic emission and structural health monitoring. Good low frequency sensitivity leads to applications in vibration monitoring.

  12. Sub-wavelength ultrasonic therapy using a spherical cavity transducer with open ends

    NASA Astrophysics Data System (ADS)

    Li, Faqi; Wang, Hua; Zeng, Deping; Fan, Tingbo; Geng, Hao; Tu, Juan; Guo, Xiasheng; Gong, Xiaobo; Zhao, Chunliang; Wang, Zhilong; Zhang, Dong; Wang, Zhibiao

    2013-05-01

    High intensity focused ultrasound (HIFU) focusing precision is limited by conventional focusing ultrasound methods. The aim of this study is to develop an ultrasonic focusing modality by using a spherical cavity transducer with open ends. Experimental measurements and numerical simulations were performed to study the acoustic field and the induced tissue lesion using this transducer. The results demonstrate that the focusing zone is smaller while the focusing gain of sound pressure is higher (about 3 times) than the conventional concave focusing method. The results demonstrate great clinical potentials of enhancing the precision of HIFU therapy to the sub-wavelength level.

  13. Characterization of dielectric electroactive polymer transducers

    NASA Astrophysics Data System (ADS)

    Nielsen, Dennis; Møller, Martin B.; Sarban, Rahimullah; Lassen, Benny; Knott, Arnold; Andersen, Michael A. E.

    2014-03-01

    Throughout this paper, a small-signal model of the Dielectric Electro Active Polymer (DEAP) transducer is analyzed. The DEAP transducer have been proposed as an alternative to the electrodynamic transducer in sound reproduction systems. In order to understand how the DEAP transducer works, and provide guidelines for design optimization, accurate characterization of the transducer must be established. A small signal model of the DEAP transducer is derived and its validity is investigated using impedance measurements. Impedance measurements are shown for a push-pull DEAP based loudspeaker, and the dependency of the biasing voltage is explained. A measuring setup is proposed, which allows the impedance to be measured, while the DEAP transducer is connected to its biasing source.

  14. Finite element analysis of hysteresis effects in piezoelectric transducers

    NASA Astrophysics Data System (ADS)

    Simkovics, Reinhard; Landes, Hermann; Kaltenbacher, Manfred; Hoffelner, Johann; Lerch, Reinhard

    2000-06-01

    The design of ultrasonic transducers for high power applications, e.g. in medical therapy or production engineering, asks for effective computer aided design tools to analyze the occurring nonlinear effects. In this paper the finite-element-boundary-element package CAPA is presented that allows to model different types of electromechanical sensors and actuators. These transducers are based on various physical coupling effects, such as piezoelectricity or magneto- mechanical interactions. Their computer modeling requires the numerical solution of a multifield problem, such as coupled electric-mechanical fields or magnetic-mechanical fields as well as coupled mechanical-acoustic fields. With the reported software environment we are able to compute the dynamic behavior of electromechanical sensors and actuators by taking into account geometric nonlinearities, nonlinear wave propagation and ferroelectric as well as magnetic material nonlinearities. After a short introduction to the basic theory of the numerical calculation schemes, two practical examples will demonstrate the applicability of the numerical simulation tool. As a first example an ultrasonic thickness mode transducer consisting of a piezoceramic material used for high power ultrasound production is examined. Due to ferroelectric hysteresis, higher order harmonics can be detected in the actuators input current. Also in case of electrical and mechanical prestressing a resonance frequency shift occurs, caused by ferroelectric hysteresis and nonlinear dependencies of the material coefficients on electric field and mechanical stresses. As a second example, a power ultrasound transducer used in HIFU-therapy (high intensity focused ultrasound) is presented. Due to the compressibility and losses in the propagating fluid a nonlinear shock wave generation can be observed. For both examples a good agreement between numerical simulation and experimental data has been achieved.

  15. A spiral wave front beacon for underwater navigation: transducer prototypes and testing.

    PubMed

    Dzikowicz, Benjamin R; Hefner, Brian T

    2012-05-01

    Transducers for acoustic beacons which can produce outgoing signals with wave fronts whose horizontal cross sections are circular or spiral are studied experimentally. A remote hydrophone is used to determine its aspect relative to the transducers by comparing the phase of the circular signal to the phase of the spiral signal. The transducers for a "physical-spiral" beacon are made by forming a strip of 1-3 piezocomposite transducer material around either a circular or spiral backing. A "phased-spiral" beacon is made from an array of transducer elements which can be driven either in phase or staggered out of phase so as to produce signals with either a circular or spiral wave front. Measurements are made to study outgoing signals and their usefulness in determining aspect angle. Vertical beam width is also examined and phase corrections applied when the hydrophone is out of the horizontal plane of the beacon. While numerical simulations indicate that the discontinuity in the physical-spiral beacon introduces errors into the measured phase, damping observed at the ends of the piezocomposite material is a more significant source of error. This damping is also reflected in laser Doppler vibrometer measurements of the transducer's surface velocity.

  16. Tonpilz Piezoelectric Transducer with a Bending Piezoelectric Disk on The Radiation Surface

    NASA Astrophysics Data System (ADS)

    Yamamoto, Mitsuru; Shiba, Hiroshi; Fujii, Taro; Hama, Yoshinori; Hoshino, Takamichi; Inoue, Takeshi

    2003-05-01

    In recent years, it has become necessary to use wide-band signals in various kinds of signal processing and communication technology fields. One of these is the field of underwater acoustic technology, and therefore wide-band transducers are needed in this field. To address this need, we developed a Tonpilz piezoelectric transducer with a bending piezoelectric disk on the radiation surface of the front mass. This transducer was designed by providing a bending piezoelectric disk on the radiation surface of the front mass of a conventional Tonpilz piezoelectric transducer to enable it to generate in two resonance modes: the longitudinal vibration resonance mode and the bending vibration resonance mode of the bending disk. Coupling these two resonance modes makes it possible to achieve low-frequency transmission, and wide-band signals can be attained by adjusting the phase in the two modes. We obtained the optimum design dimensions of the transducer through analysis using the finite element method (FEM), and constructed a prototype based on the analysis. Experiments verified that the measured results for the prototype correspond well to the simulation results and that the bandwidth can be widened without changing the external size of the conventional transducer.

  17. Improving Plating by Use of Intense Acoustic Beams

    NASA Technical Reports Server (NTRS)

    Oeftering, Richard C.; Denofrio, Charles

    2003-01-01

    An improved method of selective plating of metals and possibly other materials involves the use of directed high-intensity acoustic beams. The beams, typically in the ultrasonic frequency range, can be generated by fixed-focus transducers (see figure) or by phased arrays of transducers excited, variously, by continuous waves, tone bursts, or single pulses. The nonlinear effects produced by these beams are used to alter plating processes in ways that are advantageous.

  18. Space manufacturing of surface acoustic wave devices, appendix D

    NASA Technical Reports Server (NTRS)

    Sardella, G.

    1973-01-01

    Space manufacturing of transducers in a vibration free environment is discussed. Fabrication of the masks, and possible manufacturing of the surface acoustic wave components aboard a space laboratory would avoid the inherent ground vibrations and the frequency limitation imposed by a seismic isolator pad. The manufacturing vibration requirements are identified. The concepts of space manufacturing are analyzed. A development program for manufacturing transducers is recommended.

  19. Origami acoustics: using principles of folding structural acoustics for simple and large focusing of sound energy

    NASA Astrophysics Data System (ADS)

    Harne, Ryan L.; Lynd, Danielle T.

    2016-08-01

    Fixed in spatial distribution, arrays of planar, electromechanical acoustic transducers cannot adapt their wave energy focusing abilities unless each transducer is externally controlled, creating challenges for the implementation and portability of such beamforming systems. Recently, planar, origami-based structural tessellations are found to facilitate great versatility in system function and properties through kinematic folding. In this research we bridge the physics of acoustics and origami-based design to discover that the simple topological reconfigurations of a Miura-ori-based acoustic array yield many orders of magnitude worth of reversible change in wave energy focusing: a potential for acoustic field morphing easily obtained through deployable, tessellated architectures. Our experimental and theoretical studies directly translate the roles of folding the tessellated array to the adaptations in spectral and spatial wave propagation sensitivities for far field energy transmission. It is shown that kinematic folding rules and flat-foldable tessellated arrays collectively provide novel solutions to the long-standing challenges of conventional, electronically-steered acoustic beamformers. While our examples consider sound radiation from the foldable array in air, linear acoustic reciprocity dictates that the findings may inspire new innovations for acoustic receivers, e.g. adaptive sound absorbers and microphone arrays, as well as concepts that include water-borne waves.

  20. Acoustic tweezers via sub–time-of-flight regime surface acoustic waves

    PubMed Central

    Collins, David J.; Devendran, Citsabehsan; Ma, Zhichao; Ng, Jia Wei; Neild, Adrian; Ai, Ye

    2016-01-01

    Micrometer-scale acoustic waves are highly useful for refined optomechanical and acoustofluidic manipulation, where these fields are spatially localized along the transducer aperture but not along the acoustic propagation direction. In the case of acoustic tweezers, such a conventional acoustic standing wave results in particle and cell patterning across the entire width of a microfluidic channel, preventing selective trapping. We demonstrate the use of nanosecond-scale pulsed surface acoustic waves (SAWs) with a pulse period that is less than the time of flight between opposing transducers to generate localized time-averaged patterning regions while using conventional electrode structures. These nodal positions can be readily and arbitrarily positioned in two dimensions and within the patterning region itself through the imposition of pulse delays, frequency modulation, and phase shifts. This straightforward concept adds new spatial dimensions to which acoustic fields can be localized in SAW applications in a manner analogous to optical tweezers, including spatially selective acoustic tweezers and optical waveguides. PMID:27453940

  1. Method and apparatus for sizing and separating warp yarns using acoustical energy

    DOEpatents

    Sheen, Shuh-Haw; Chien, Hual-Te; Raptis, Apostolos C.; Kupperman, David S.

    1998-01-01

    A slashing process for preparing warp yarns for weaving operations including the steps of sizing and/or desizing the yarns in an acoustic resonance box and separating the yarns with a leasing apparatus comprised of a set of acoustically agitated lease rods. The sizing step includes immersing the yarns in a size solution contained in an acoustic resonance box. Acoustic transducers are positioned against the exterior of the box for generating an acoustic pressure field within the size solution. Ultrasonic waves that result from the acoustic pressure field continuously agitate the size solution to effect greater mixing and more uniform application and penetration of the size onto the yarns. The sized yarns are then separated by passing the warp yarns over and under lease rods. Electroacoustic transducers generate acoustic waves along the longitudinal axis of the lease rods, creating a shearing motion on the surface of the rods for splitting the yarns.

  2. THz Acoustic Spectroscopy by using Double Quantum Wells and Ultrafast Optical Spectroscopy

    PubMed Central

    Wei, Fan Jun; Yeh, Yu-Hsiang; Sheu, Jinn-Kong; Lin, Kung-Hsuan

    2016-01-01

    GaN is a pivotal material for acoustic transducers and acoustic spectroscopy in the THz regime, but its THz phonon properties have not been experimentally and comprehensively studied. In this report, we demonstrate how to use double quantum wells as a THz acoustic transducer for measuring generated acoustic phonons and deriving a broadband acoustic spectrum with continuous frequencies. We experimentally investigated the sub-THz frequency dependence of acoustic attenuation (i.e., phonon mean-free paths) in GaN, in addition to its physical origins such as anharmonic scattering, defect scattering, and boundary scattering. A new upper limit of attenuation caused by anharmonic scattering, which is lower than previously reported values, was obtained. Our results should be noteworthy for THz acoustic spectroscopy and for gaining a fundamental understanding of heat conduction. PMID:27346494

  3. Method and apparatus for sizing and separating warp yarns using acoustical energy

    DOEpatents

    Sheen, S.H.; Chien, H.T.; Raptis, A.C.; Kupperman, D.S.

    1998-05-19

    A slashing process is disclosed for preparing warp yarns for weaving operations including the steps of sizing and/or desizing the yarns in an acoustic resonance box and separating the yarns with a leasing apparatus comprised of a set of acoustically agitated lease rods. The sizing step includes immersing the yarns in a size solution contained in an acoustic resonance box. Acoustic transducers are positioned against the exterior of the box for generating an acoustic pressure field within the size solution. Ultrasonic waves that result from the acoustic pressure field continuously agitate the size solution to effect greater mixing and more uniform application and penetration of the size onto the yarns. The sized yarns are then separated by passing the warp yarns over and under lease rods. Electroacoustic transducers generate acoustic waves along the longitudinal axis of the lease rods, creating a shearing motion on the surface of the rods for splitting the yarns. 2 figs.

  4. Electromechanical transduction in multilayer ionic transducers

    NASA Astrophysics Data System (ADS)

    Akle, Barbar; Leo, Donald J.

    2004-10-01

    A transducer consisting of multiple layers of ionic polymer material is developed for applications in sensing, actuation and control. A multilayer transducer is fabricated by layering individual transducers on top of one another. Each multilayer transducer consists of two to four individual layers each approximately 200 µm thick. The electrical characteristics of the transducers can be varied by connecting the layers in either a parallel arrangement or a series arrangement. The tradeoff in deflection and force is obtained by controlling the mechanical constraint at the interface. Packaging the transducer in an outer coating produces a hard constraint between layers and reduces the deflection with a force that increases linearly with the number of layers. This configuration also increases the bandwidth of the transducer. Removing the outer packaging produces an actuator that maintains the deflection of a single layer with an increased force output. This is obtained by allowing the layers to slide relative to one another during bending. Experiments on transducers with one to three layers are performed and the results are compared to an equivalent circuit model which was modified to accommodate multilayer transducers. The modification is performed on four different boundary conditions: two electrical, the series and the parallel connection, and two mechanical, the zero interfacial friction and the zero slip on the interface. Expressions for blocked force, free deflection, and electrical impedance of the transducer are developed in terms of fundamental material parameters, transducer geometry, and the number of individual layers. The trends in the transducer response are validated using experiments on transducers with multiple polymer layers.

  5. Electromechanically active polymer transducers: research in Europe

    NASA Astrophysics Data System (ADS)

    Carpi, Federico; Graz, Ingrid; Jager, Edwin; Ladegaard Skov, Anne; Vidal, Frédéric

    2013-10-01

    Smart materials and structures based on electromechanically active polymers (EAPs) represent a fast growing and stimulating field of research and development. EAPs are materials capable of changing dimensions and/or shape in response to suitable electrical stimuli. They are commonly classified in two major families: ionic EAPs (activated by an electrically induced transport of ions and/or solvent) and electronic EAPs (activated by electrostatic forces). These polymers show interesting properties, such as sizable active strains and/or stresses in response to electrical driving, high mechanical flexibility, low density, structural simplicity, ease of processing and scalability, no acoustic noise and, in most cases, low costs. Since many of these characteristics can also describe natural muscle tissues from an engineering standpoint, it is not surprising that EAP transducers are sometimes also referred to as 'muscle-like smart materials' or 'artificial muscles'. They are used not only to generate motion, but also to sense or harvest energy from it. In particular, EAP electromechanical transducers are studied for applications that can benefit from their 'biomimetic' characteristics, with possible usages from the micro- to the macro-scale, spanning several disciplines, such as mechatronics, robotics, automation, biotechnology and biomedical engineering, haptics, fluidics, optics and acoustics. Currently, the EAP field is just undergoing its initial transition from academic research into commercialization, with companies starting to invest in this technology and the first products appearing on the market. This focus issue is intentionally aimed at gathering contributions from the most influential European groups working in the EAP field. In fact, today Europe hosts the broadest EAP community worldwide. The rapid expansion of the EAP field in Europe, where it historically has strong roots, has stimulated the creation of the 'European Scientific Network for Artificial

  6. Waterless Coupling of Ultrasound from Planar Contact Transducers to Curved and Irregular Surfaces during Non-destructive Ultrasonic Evaluations

    SciTech Connect

    Denslow, Kayte M.; Diaz, Aaron A.; Jones, Anthony M.; Meyer, Ryan M.; Cinson, Anthony D.; Wells, Mondell D.

    2012-04-30

    The Applied Physics group at the Pacific The Applied Physics group at the Pacific Northwest National Laboratory (PNNL) in Richland, WA has evaluated a method for waterless/liquidless coupling of ultrasonic energy from planar ultrasonic contact transducers to irregular test surfaces for ultrasonic non-destructive evaluation applications. Dry couplant material placed between a planar transducer face and a curved or uneven steel or plastic surface allows for effective sound energy coupling and preserves the integrity of the planar transducer sound field by serving as an acoustic impedance matching layer, providing good surface area contact between geometrically dissimilar surfaces and conforming to rough and unsmooth surfaces. Sound fields radiating from planar ultrasonic contact transducers coupled to curved and uneven surfaces using the dry coupling method were scanned and mapped using a Pinducer receiver connected to a raster scanner. Transducer sound field coverage at several ultrasonic frequencies and several distances from the transducer contact locations were found to be in good agreement with theoretical beam divergence and sound field coverage predictions for planar transducers coupled to simple, planar surfaces. This method is valuable for applications that do not allow for the use of traditional liquid-based ultrasonic couplants due to the sensitivity of the test materials to liquids and for applications that might otherwise require curved transducers or custom coupling wedges. The selection of dry coupling material is reported along with the results of theoretical sound field predictions, the laboratory testing apparatus and the empirical sound field data.

  7. Particle manipulation with acoustic vortex beam induced by a brass plate with spiral shape structure

    NASA Astrophysics Data System (ADS)

    Wang, Tian; Ke, Manzhu; Li, Weiping; Yang, Qian; Qiu, Chunyin; Liu, Zhengyou

    2016-09-01

    In this work, we give direct demonstration of acoustic radiation force and acoustic torque on particles exerted by an acoustic vortex beam, which is realized by an acoustic artificial structure plate instead of traditional transducer arrays. First, the first order acoustic vortex beam, which has the distinctive features of a linear and continuous phase variation from -π to π around its propagation axis and a magnitude null at its core, is obtained through one single acoustic source incident upon a structured brass plate with Archimedean spiral grating engraved on the back surface. Second, annular self-patterning of polystyrene particles with a radius of 90 μm is realized in the gradient field of this acoustic vortex beam. In addition, we further exhibit acoustic angular momentum transfer to an acoustic absorptive matter, which is verified by a millimeter-sized polylactic acid disk self-rotating in water in the acoustic field of the generated vortex beam.

  8. Shear wave transducer for boreholes

    DOEpatents

    Mao, N.H.

    1984-08-23

    A technique and apparatus is provided for estimating in situ stresses by measuring stress-induced velocity anisotropy around a borehole. Two sets each of radially and tangentially polarized transducers are placed inside the hole with displacement directions either parallel or perpendicular to the principal stress directions. With this configuration, relative travel times are measured by both a pulsed phase-locked loop technique and a cross correlation of digitized waveforms. The biaxial velocity data are used to back-calculate the applied stress.

  9. Solar cell angular position transducer

    NASA Technical Reports Server (NTRS)

    Sandford, M. C.; Gray, D. L. (Inventor)

    1980-01-01

    An angular position transducer utilizing photocells and a light source is disclosed. The device uses a fully rotatable baffle which is connected via an actuator shaft to the body whose rotational displacement is to be measured. The baffle blocks the light path between the light source and the photocells so that a constant semicircular beam of light reaches the photocells. The current produced by the photocells is fed through a resistor, a differential amplifier measures the voltage drop across the resistor which indicates the angular position of the actuator shaft and hence of the object.

  10. Two-dimensional optoacoustic tomography: transducer array and image reconstruction algorithm

    NASA Astrophysics Data System (ADS)

    Oraevsky, Alexander A.; Andreev, Valeri A.; Karabutov, Alexander A.; Esenaliev, Rinat O.

    1999-06-01

    Opto-acoustic tomography (OAT) utilizes laser pulses to create acoustic sources in tissue and wide-band detection of pressure profiles for the image reconstruction. A new laser optoacoustic imaging system (LOIS) for breast cancer detection and two-dimensional visualization is described. A Q-switched Nd:YAG laser was used for generation of opto-acoustic profiles in phantoms and tissues in vitro. Acoustic pulses were detected by a 12 element linear array of piezoelectric transducers. Each transducer was made of 0.5-mm thick PVDF slabs with dimensions of 4.3 mm X 12.5 mm. Signal-to-noise ratio was calculated and the sensitivity of optoacoustic system was evaluated. The axial (in-depth) resolution and the lateral resolution of the system were determined. The axial resolution of the receiving array was limited by its frequency band and was estimated to be approximately 1 mm. The lateral resolution was about 2.5 times the lateral dimension of the 'tumor' and defined by the finite aperture of the array and relatively large size of the single transducer. The time of full data acquisition was limited by the time allowed in clinical procedure of about 5 - 10 minutes. The procedure of signal processing is described. It includes high-pass signal filtering, compensation for acoustic diffraction, detection of the irradiated surface position and rejection of the reverberating signal. Radial back-projection algorithm for image reconstruction was developed and included in the computer code. Two-dimensional opto-acoustic images of simulated spheres and objects inside tissue phantoms are presented. The contrast of these images and limits of detection and localization of deeply embedded tumors are discussed.

  11. Wideband Single-Crystal Transducer for Bone Characterization

    NASA Technical Reports Server (NTRS)

    Liang, Yu; Snook, Kevin

    2012-01-01

    The microgravity conditions of space travel result in unique physiological demands on the human body. In particular, the absence of the continual mechanical stresses on the skeletal system that are present on Earth cause the bones to decalcify. Trabecular structure decreases in thickness and increases in spacing, resulting in decreased bone strength and increased risk of injury. Thus, monitoring bone health is a high priority for long-term space travel. A single probe covering all frequency bands of interest would be ideal for such measurements, and this would also minimize storage space and eliminate the complexity of integrating multiple probes. This invention is an ultrasound transducer for the structural characterization of bone. Such characterization measures features of reflected and transmitted ultrasound signals, and correlates these signals with bone structure metrics such as bone mineral density, trabecular spacing, and thickness, etc. The techniques used to determine these various metrics require measurements over a broad range of ultrasound frequencies, and therefore, complete characterization requires the use of several narrowband transducers. This is a single transducer capable of making these measurements in all the required frequency bands. The device achieves this capability through a unique combination of a broadband piezoelectric material; a design incorporating multiple resonator sizes with distinct, overlapping frequency spectra; and a micromachining process for producing the multiple-resonator pattern with common electrode surfaces between the resonators. This device consists of a pattern of resonator bars with common electrodes that is wrapped around a central mandrel such that the radiating faces of the resonators are coplanar and can be simultaneously applied to the sample to be measured. The device operates as both a source and receiver of acoustic energy. It is operated by connection to an electronic system capable of both providing an

  12. Acoustic imaging in a water filled metallic pipe

    SciTech Connect

    Kolbe, W.F.; Turko, B.T.; Leskovar, B.

    1984-04-01

    A method is described for the imaging of the interior of a water filled metallic pipe using acoustical techniques. The apparatus consists of an array of 20 acoustic transducers mounted circumferentially around the pipe. Each transducer is pulsed in sequence, and the echos resulting from bubbles in the interior are digitized and processed by a computer to generate an image. The electronic control and digitizing system and the software processing of the echo signals are described. The performance of the apparatus is illustrated by the imaging of simulated bubbles consisting of thin walled glass spheres suspended in the pipe.

  13. Acoustic imaging in a water filled metallic pipe

    NASA Astrophysics Data System (ADS)

    Kolbe, W. F.; Turko, B. T.; Leskovar, B.

    1984-04-01

    A method is described for imaging the interior of a water filled metallic pipe using acoustical techniques. The apparatus consists of an array of 20 acoustic transducers mounted circumferentially around the pipe. Each transducer is pulsed in sequence, and the echos resulting from bubbles in the interior are digitized and processed by a computer to generate an image. The electronic control and digitizing system and the software processing of the echo signals are described. The performance of the apparatus is illustrated by the imaging of simulated bubbles consisting of thin walled glass spheres suspended in the pipe.

  14. ERROR COMPENSATOR FOR A POSITION TRANSDUCER

    DOEpatents

    Fowler, A.H.

    1962-06-12

    A device is designed for eliminating the effect of leadscrew errors in positioning machines in which linear motion of a slide is effected from rotary motion of a leadscrew. This is accomplished by providing a corrector cam mounted on the slide, a cam follower, and a transducer housing rotatable by the follower to compensate for all the reproducible errors in the transducer signal which can be related to the slide position. The transducer has an inner part which is movable with respect to the transducer housing. The transducer inner part is coupled to the means for rotating the leadscrew such that relative movement between this part and its housing will provide an output signal proportional to the position of the slide. The corrector cam and its follower perform the compensation by changing the angular position of the transducer housing by an amount that is a function of the slide position and the error at that position. (AEC)

  15. A numerical study on the heat transfer generated by a piezoelectric transducer in a microfluidic system

    NASA Astrophysics Data System (ADS)

    Catarino, S. O.; Miranda, J. M.; Lanceros-Mendez, S.; Minas, G.

    2012-11-01

    The present work describes the modelling of heat transfer produced by the acoustic streaming phenomenon, generated through a piezoelectric transducer in a microagitator. Besides the fluids mixing, this phenomenon also promotes the fluids heating. The numerical approach used in this work comprises three main groups of equations: the piezoelectric, the compressible Navier-Stokes, and the heat transfer equations. It was concluded that the heat transfer due to the acoustic wave propagation, without other external heat sources, is not sufficient to increase significantly the fluid temperature.

  16. Comparison of the Effects of using Tygon Tubing in Rocket Propulsion Ground Test Pressure Transducer Measurements

    NASA Technical Reports Server (NTRS)

    Farr, Rebecca A.; Wiley, John T.; Vitarius, Patrick

    2005-01-01

    This paper documents acoustics environments data collected during liquid oxygen- ethanol hot-fire rocket testing at NASA Marshall Space Flight Center in November- December 2003. The test program was conducted during development testing of the RS-88 development engine thrust chamber assembly in support of the Orbital Space Plane Crew Escape System Propulsion Program Pad Abort Demonstrator. In addition to induced environments analysis support, coincident data collected using other sensors and methods has allowed benchmarking of specific acoustics test measurement methodologies during propulsion tests. Qualitative effects on data characteristics caused by using tygon sense lines of various lengths in pressure transducer measurements is discussed here.

  17. Acoustic emission testing of composite vessels under sustained loading

    NASA Technical Reports Server (NTRS)

    Lark, R. F.; Moorhead, P. E.

    1978-01-01

    Acoustic emissions (AE) generated from Kevlar 49/epoxy composite pressure vessels subjected to sustained load-to-failure tests were studied. Data from two different transducer locations on the vessels were compared. It was found that AE from vessel wall-mounted transducers showed a wide variance from those for identical vessels subjected to the same pressure loading. Emissions from boss-mounted transducers did, however, yield values that were relatively consistent. It appears that the signals from the boss-mounted transducers represent an integrated average of the emissions generated by fibers fracturing during the vessel tests. The AE from boss-mounted transducers were also independent of time for vessel failure. This suggests that a similar number of fiber fractures must occur prior to initiation of vessel failure. These studies indicate a potential for developing an AE test procedure for predicting the residual service life or integrity of composite vessels.

  18. Development of a thermal test object for the measurement of ultrasound intracavity transducer self-heating.

    PubMed

    Killingback, Alban L T; Newey, Valentine R; El-Brawany, Mohamed A; Nassiri, Dariush K

    2008-12-01

    The elevated surface temperature of diagnostic ultrasound transducers imposes an important limitation to their safe use in clinical situations. Moreover, particular care should be taken if transvaginal transducers are to be used during routine scans in the first few weeks of pregnancy as the transducer surface can be very close to embryonic/fetal tissues. Published results have shown that the heating of tissue due to transducer self-heating can equal and often exceed the acoustic heating contribution. In this article, we report the development of a portable self contained thermal test object (TTO) capable of assessing the self-heating of intracavity diagnostic ultrasound transducers. The thermal conductivity and volumetric heat capacity of the tissue mimicking material (TMM) used in the TTO were measured, yielding values of (0.56 +/- 0.01) W m(-1) K(-1) and (3.5 +/- 0.8) MJ m(-3) K(-1). The speed of sound of the TMM was measured as 1540 m s(-1) and the attenuation over a frequency range of 2 to 10 MHz was found to be (0.50 +/- 0.01) dB cm(-1) MHz(-1). These results are in excellent agreement with the International Electrotechnical Commission (IEC 60601-2-37) requirements and the previously published properties of biological soft tissue. The temperature stability and uniformity, and suitability of the TTO for the measurement of transducer self-heating were tested and found to be satisfactory. The TTO reached a stable temperature of 37 degrees C in 3 h and the spatial variation in temperature was less than +/- 0.2 degrees C. Lastly, transducer self-heating measurements from a transvaginal transducer exceeded the IEC temperature limit of 43 degrees C in less than 5 min and the temperature reached after 30 min was 47.3 degrees C.

  19. Dual-frequency super harmonic imaging piezoelectric transducers for transrectal ultrasound

    NASA Astrophysics Data System (ADS)

    Kim, Jinwook; Li, Sibo; Kasoji, Sandeep; Dayton, Paul A.; Jiang, Xiaoning

    2015-03-01

    In this paper, a 2/14 MHz dual-frequency single-element transducer and a 2/22 MHz sub-array (16/48-elements linear array) transducer were developed for contrast enhanced super-harmonic ultrasound imaging of prostate cancer with the low frequency ultrasound transducer as a transmitter for contrast agent (microbubble) excitation and the high frequency transducer as a receiver for detection of nonlinear responses from microbubbles. The 1-3 piezoelectric composite was used as active materials of the single-element transducers due to its low acoustic impedance and high coupling factor. A high dielectric constant PZT ceramic was used for the sub-array transducer due to its high dielectric property induced relatively low electrical impedance. The possible resonance modes of the active elements were estimated using finite element analysis (FEA). The pulse-echo response, peak-negative pressure and bubble response were tested, followed by in vitro contrast imaging tests using a graphite-gelatin tissue-mimicking phantom. The single-element dual frequency transducer (8 × 4 × 2 mm3) showed a -6 dB fractional bandwidth of 56.5% for the transmitter, and 41.8% for the receiver. A 2 MHz-transmitter (730 μm pitch and 6.5 mm elevation aperture) and a 22 MHz-receiver (240 μm pitch and 1.5 mm aperture) of the sub-array transducer exhibited -6 dB fractional bandwidth of 51.0% and 40.2%, respectively. The peak negative pressure at the far field was about -1.3 MPa with 200 Vpp, 1-cycle 2 MHz burst, which is high enough to excite microbubbles for nonlinear responses. The 7th harmonic responses from micro bubbles were successfully detected in the phantom imaging test showing a contrast-to-tissue ratio (CTR) of 16 dB.

  20. Efficient counter-propagating wave acoustic micro-particle manipulation

    NASA Astrophysics Data System (ADS)

    Grinenko, A.; Ong, C. K.; Courtney, C. R. P.; Wilcox, P. D.; Drinkwater, B. W.

    2012-12-01

    A simple acoustic system consisting of a pair of parallel singe layered piezoelectric transducers submerged in a fluid used to form standing waves by a superposition of two counter-propagating waves is reported. The nodal positions of the standing wave are controlled by applying a variable phase difference to the transducers. This system was used to manipulate polystyrene micro-beads trapped at the nodal positions of the standing wave. The demonstrated good manipulation capability of the system is based on a lowering of the reflection coefficient in a narrow frequency band near the through-thickness resonance of the transducer plates.