Science.gov

Sample records for acoustic transmission loss

  1. Determining Transmission Loss from Measured External and Internal Acoustic Environments

    NASA Technical Reports Server (NTRS)

    Scogin, Tyler; Smith, A. M.

    2012-01-01

    An estimate of the internal acoustic environment in each internal cavity of a launch vehicle is needed to ensure survivability of Space Launch System (SLS) avionics. Currently, this is achieved by using the noise reduction database of heritage flight vehicles such as the Space Shuttle and Saturn V for liftoff and ascent flight conditions. Marshall Space Flight Center (MSFC) is conducting a series of transmission loss tests to verify and augment this method. For this test setup, an aluminum orthogrid curved panel representing 1/8th of the circumference of a section of the SLS main structure was mounted in between a reverberation chamber and an anechoic chamber. Transmission loss was measured across the panel using microphones. Data measured during this test will be used to estimate the internal acoustic environments for several of the SLS launch vehicle internal spaces.

  2. Measurement of transmission loss characteristics using acoustic intensity techniques at the KU-FRL Acoustic Test Facility

    NASA Technical Reports Server (NTRS)

    Roskam, J.

    1983-01-01

    The transmission loss characteristics of panels using the acoustic intensity technique is presented. The theoretical formulation, installation of hardware, modifications to the test facility, and development of computer programs and test procedures are described. A listing of all the programs is also provided. The initial test results indicate that the acoustic intensity technique is easily adapted to measure transmission loss characteristics of panels. Use of this method will give average transmission loss values. The fixtures developed to position the microphones along the grid points are very useful in plotting the intensity maps of vibrating panels.

  3. Application of High Order Acoustic Finite Elements to Transmission Losses and Enclosure Problems

    NASA Technical Reports Server (NTRS)

    Craggs, A.; Stevenson, G.

    1985-01-01

    A family of acoustic finite elements was developed based on C continuity (acoustic pressure being the nodal variable) and the no-flow condition. The family include triangular, quadrilateral and hexahedral isoparametric elements with linear quadratic and cubic variation in modelling and distortion. Of greatest use in problems with irregular boundaries are the cubic isoparametric elements: the 32 node hexahedral element for three-dimensional systems; and the twelve node quadrilateral and ten node triangular elements for two-dimensional/axisymmetric applications. These elements were applied to problems involving cavity resonances, transmission loss in silencers and the study of end effects, using a Floating Point Systems 164 attached array processor accessed through an Amdahl 5860 mainframe. The elements are presently being used to study the end effects associated with duct terminations within finite enclosures. The transmission losses with various silencers and sidebranches in ducts is also being studied using the same elements.

  4. WaveQ3D: Fast and accurate acoustic transmission loss (TL) eigenrays, in littoral environments

    NASA Astrophysics Data System (ADS)

    Reilly, Sean M.

    This study defines a new 3D Gaussian ray bundling acoustic transmission loss model in geodetic coordinates: latitude, longitude, and altitude. This approach is designed to lower the computation burden of computing accurate environmental effects in sonar training application by eliminating the need to transform the ocean environment into a collection of Nx2D Cartesian radials. This approach also improves model accuracy by incorporating real world 3D effects, like horizontal refraction, into the model. This study starts with derivations for a 3D variant of Gaussian ray bundles in this coordinate system. To verify the accuracy of this approach, acoustic propagation predictions of transmission loss, time of arrival, and propagation direction are compared to analytic solutions and other models. To validate the model's ability to predict real world phenomena, predictions of transmission loss and propagation direction are compared to at-sea measurements, in an environment where strong horizontal refraction effect have been observed. This model has been integrated into U.S. Navy active sonar training system applications, where testing has demonstrated its ability to improve transmission loss calculation speed without sacrificing accuracy.

  5. Acoustic propagation through anisotropic internal wave fields: transmission loss, cross-range coherence, and horizontal refraction.

    PubMed

    Oba, Roger; Finette, Steven

    2002-02-01

    Results of a computer simulation study are presented for acoustic propagation in a shallow water, anisotropic ocean environment. The water column is characterized by random volume fluctuations in the sound speed field that are induced by internal gravity waves, and this variability is superimposed on a dominant summer thermocline. Both the internal wave field and resulting sound speed perturbations are represented in three-dimensional (3D) space and evolve in time. The isopycnal displacements consist of two components: a spatially diffuse, horizontally isotropic component and a spatially localized contribution from an undular bore (i.e., a solitary wave packet or solibore) that exhibits horizontal (azimuthal) anisotropy. An acoustic field is propagated through this waveguide using a 3D parabolic equation code based on differential operators representing wide-angle coverage in elevation and narrow-angle coverage in azimuth. Transmission loss is evaluated both for fixed time snapshots of the environment and as a function of time over an ordered set of snapshots which represent the time-evolving sound speed distribution. Horizontal acoustic coherence, also known as transverse or cross-range coherence, is estimated for horizontally separated points in the direction normal to the source-receiver orientation. Both transmission loss and spatial coherence are computed at acoustic frequencies 200 and 400 Hz for ranges extending to 10 km, a cross-range of 1 km, and a water depth of 68 m. Azimuthal filtering of the propagated field occurs for this environment, with the strongest variations appearing when propagation is parallel to the solitary wave depressions of the thermocline. A large anisotropic degradation in horizontal coherence occurs under the same conditions. Horizontal refraction of the acoustic wave front is responsible for the degradation, as demonstrated by an energy gradient analysis of in-plane and out-of-plane energy transfer. The solitary wave packet is

  6. Acoustic propagation through anisotropic internal wave fields: Transmission loss, cross-range coherence, and horizontal refraction

    NASA Astrophysics Data System (ADS)

    Oba, Roger; Finette, Steven

    2002-02-01

    Results of a computer simulation study are presented for acoustic propagation in a shallow water, anisotropic ocean environment. The water column is characterized by random volume fluctuations in the sound speed field that are induced by internal gravity waves, and this variability is superimposed on a dominant summer thermocline. Both the internal wave field and resulting sound speed perturbations are represented in three-dimensional (3D) space and evolve in time. The isopycnal displacements consist of two components: a spatially diffuse, horizontally isotropic component and a spatially localized contribution from an undular bore (i.e., a solitary wave packet or solibore) that exhibits horizontal (azimuthal) anisotropy. An acoustic field is propagated through this waveguide using a 3D parabolic equation code based on differential operators representing wide-angle coverage in elevation and narrow-angle coverage in azimuth. Transmission loss is evaluated both for fixed time snapshots of the environment and as a function of time over an ordered set of snapshots which represent the time-evolving sound speed distribution. Horizontal acoustic coherence, also known as transverse or cross-range coherence, is estimated for horizontally separated points in the direction normal to the source-receiver orientation. Both transmission loss and spatial coherence are computed at acoustic frequencies 200 and 400 Hz for ranges extending to 10 km, a cross-range of 1 km, and a water depth of 68 m. Azimuthal filtering of the propagated field occurs for this environment, with the strongest variations appearing when propagation is parallel to the solitary wave depressions of the thermocline. A large anisotropic degradation in horizontal coherence occurs under the same conditions. Horizontal refraction of the acoustic wave front is responsible for the degradation, as demonstrated by an energy gradient analysis of in-plane and out-of-plane energy transfer. The solitary wave packet is

  7. Sound Transmission Loss Through a Corrugated-Core Sandwich Panel with Integrated Acoustic Resonators

    NASA Technical Reports Server (NTRS)

    Schiller, Noah H.; Allen, Albert R.; Zalewski, Bart F; Beck, Benjamin S.

    2014-01-01

    The goal of this study is to better understand the effect of structurally integrated resonators on the transmission loss of a sandwich panel. The sandwich panel has facesheets over a corrugated core, which creates long aligned chambers that run parallel to the facesheets. When ports are introduced through the facesheet, the long chambers within the core can be used as low-frequency acoustic resonators. By integrating the resonators within the structure they contribute to the static load bearing capability of the panel while also attenuating noise. An analytical model of a panel with embedded resonators is derived and compared with numerical simulations. Predictions show that acoustic resonators can significantly improve the transmission loss of the sandwich panel around the natural frequency of the resonators. In one configuration with 0.813 m long internal chambers, the diffuse field transmission loss is improved by more than 22 dB around 104 Hz. The benefit is achieved with no added mass or volume relative to the baseline structure. The embedded resonators are effective because they radiate sound out-of-phase with the structure. This results in destructive interference, which leads to less transmitted sound power.

  8. Vibro-acoustic response and sound transmission loss analysis of functionally graded plates

    NASA Astrophysics Data System (ADS)

    Chandra, N.; Raja, S.; Nagendra Gopal, K. V.

    2014-10-01

    This paper presents analytical studies on the vibro-acoustic and sound transmission loss characteristics of functionally graded material (FGM) plates using a simple first-order shear deformation theory. The material properties of the plate are assumed to vary according to power law distribution of the constituent materials in terms of volume fraction. The sound radiation due to sinusoidally varying point load, uniformly distributed load and obliquely incident sound wave is computed by solving the Rayleigh integral with a primitive numerical scheme. Displacement, velocity, acceleration, radiated sound power level, radiated sound pressure level and radiation efficiency of FGM plate for varying power law index are examined. The sound transmission loss of the FGM plate for several incidence angles and varying power law index is studied in detail. It has been found that, for the plate being considered, the sound power level increases monotonically with increase in power law index at lower frequency range (0-500 Hz) and a non-monotonic trend is appeared towards higher frequencies for both point and distributed force excitations. Increased vibration and acoustic response is observed for ceramic-rich FGM plate at higher frequency band; whereas a similar trend is seen for metal-rich FGM plate at lower frequency band. The dBA values are found to be decreasing with increase in power law index. The radiation efficiency of ceramic-rich FGM plate is noticed to be higher than that of metal and metal-rich FGM plates. The transmission loss below the first resonance frequency is high for ceramic-rich FGM plate and low for metal-rich FGM plate and further depends on the specific material property. The study has found that increased transmission loss can be achieved at higher frequencies with metal-rich FGM plates.

  9. Environmentally adaptive acoustic transmission loss prediction in turbulent and nonturbulent atmospheres.

    PubMed

    Wichern, Gordon; Azimi-Sadjadi, Mahmood R; Mungiole, Michael

    2007-05-01

    An environmentally adaptive system for prediction of acoustic transmission loss (TL) in the atmosphere is developed in this paper. This system uses several back propagation neural network predictors, each corresponding to a specific environmental condition. The outputs of the expert predictors are combined using a fuzzy confidence measure and a nonlinear fusion system. Using this prediction methodology the computational intractability of traditional acoustic model-based approaches is eliminated. The proposed TL prediction system is tested on two synthetic acoustic data sets for a wide range of geometrical, source and environmental conditions including both nonturbulent and turbulent atmospheres. Test results of the system showed root mean square (RMS) errors of 1.84 dB for the nonturbulent and 1.36 dB for the turbulent conditions, respectively, which are acceptable levels for near real-time performance. Additionally, the environmentally adaptive system demonstrated improved TL prediction accuracy at high frequencies and large values of horizontal separation between source and receiver. PMID:17521880

  10. Transmission loss in manatee habitats.

    PubMed

    Miksis-Olds, Jennifer L; Miller, James H

    2006-10-01

    The Florida manatee is regularly exposed to high volumes of vessel traffic and other human-related noise because of its coastal distribution. Quantifying specific aspects of the manatee's acoustic environment will allow for a better understanding of how these animals respond to both natural and human-induced changes in their environment. Transmission loss measurements were made in 24 sampling sites that were chosen based on the frequency of manatee presence. The Monterey-Miami Parabolic Equation model was used to relate environmental parameters to transmission loss in two extremely shallow water environments: seagrass beds and dredged habitats. Model accuracy was verified by field tests at all modeled sites. Results indicated that high-use grassbeds have higher levels of transmission loss for frequencies above 2 kHz compared to low-use sites of equal food species composition and density. This also happens to be the range of most efficient sound propagation inside the grassbed habitat and includes the dominant frequencies of manatee vocalizations. The acoustic environment may play a more important role in manatee grassbed selection than seagrass coverage or species composition, as linear regression analysis showed no significant correlation between usage and either total grass coverage, individual species coverage, or aerial pattern. PMID:17069327

  11. Broadband Transmission Loss Due to Reverberant Excitation

    NASA Technical Reports Server (NTRS)

    Barisciano, Lawrence P. Jr.

    1999-01-01

    The noise transmission characteristics of candidate curved aircraft sidewall panel constructions is examined analytically using finite element models of the selected panel geometries. The models are validated by experimental modal analyses and transmission loss testing. The structural and acoustic response of the models are then examined when subjected to random or reverberant excitation, the simulation of which is also discussed. For a candidate curved honeycomb panel, the effect of add-on trim panel treatments is examined. Specifically, two different mounting configurations are discussed and their effect on the transmission loss of the panel is presented. This study finds that the add-on acoustical treatments do improve on the primary structures transmission loss characteristics, however, much more research is necessary to draw any valid conclusions about the optimal configuration for the maximum noise transmission loss. This paper describes several directions for the extension of this work.

  12. Acoustic Trauma - Hearing Loss in Teenagers

    MedlinePlus

    ... Issues Listen Español Text Size Email Print Share Acoustic Trauma - Hearing Loss in Teenagers Page Content Article ... temporary or permanent hearing loss. This is called acoustic trauma. How loud is 85 decibels? Surprisingly, not ...

  13. Sound transmission loss of composite sandwich panels

    NASA Astrophysics Data System (ADS)

    Zhou, Ran

    Light composite sandwich panels are increasingly used in automobiles, ships and aircraft, because of the advantages they offer of high strength-to-weight ratios. However, the acoustical properties of these light and stiff structures can be less desirable than those of equivalent metal panels. These undesirable properties can lead to high interior noise levels. A number of researchers have studied the acoustical properties of honeycomb and foam sandwich panels. Not much work, however, has been carried out on foam-filled honeycomb sandwich panels. In this dissertation, governing equations for the forced vibration of asymmetric sandwich panels are developed. An analytical expression for modal densities of symmetric sandwich panels is derived from a sixth-order governing equation. A boundary element analysis model for the sound transmission loss of symmetric sandwich panels is proposed. Measurements of the modal density, total loss factor, radiation loss factor, and sound transmission loss of foam-filled honeycomb sandwich panels with different configurations and thicknesses are presented. Comparisons between the predicted sound transmission loss values obtained from wave impedance analysis, statistical energy analysis, boundary element analysis, and experimental values are presented. The wave impedance analysis model provides accurate predictions of sound transmission loss for the thin foam-filled honeycomb sandwich panels at frequencies above their first resonance frequencies. The predictions from the statistical energy analysis model are in better agreement with the experimental transmission loss values of the sandwich panels when the measured radiation loss factor values near coincidence are used instead of the theoretical values for single-layer panels. The proposed boundary element analysis model provides more accurate predictions of sound transmission loss for the thick foam-filled honeycomb sandwich panels than either the wave impedance analysis model or the

  14. Acoustic transmission through compound subwavelength slit arrays

    NASA Astrophysics Data System (ADS)

    Ward, G. P.; Hibbins, A. P.; Sambles, J. R.; Smith, J. D.

    2016-07-01

    The angular dependence of the transmission of sound in air through four types of two-dimensional slit arrays formed of aluminium slats is explored, both experimentally and numerically. For a simple, subwavelength periodic slit array, it is well known that Fabry-Perot-like waveguide resonances, supported by the slit cavities, coupled to diffracted evanescent waves, result in enhanced acoustic transmission at frequencies determined by the length, width, and separation of each slit cavity. We demonstrate that altering the spacing or width of some of the slits to form a compound array (i.e., an array having a basis comprised of more than one slit) results in sharp dips in the transmission spectra, which may have a strong angular dependence. These features correspond to phase resonances, which have been studied extensively in the electromagnetic case. This geometry allows for additional near-field configurations compared to the simple array, whereby the field in adjacent cavities can be out of phase. Several types of compound slit arrays are investigated; one such structure is optimized to minimize the effect of boundary-layer loss mechanisms present in each slit cavity, thereby achieving a deep, sharp transmission minimum in a broad maximum.

  15. Asymmetric acoustic transmission in multiple frequency bands

    SciTech Connect

    Sun, Hong-xiang; Yuan, Shou-qi; Zhang, Shu-yi

    2015-11-23

    We report both experimentally and numerically that the multi-band device of the asymmetric acoustic transmission is realized by placing two periodic gratings with different periods on both sides of two brass plates immersed in water. The asymmetric acoustic transmission can exist in four frequency bands below 1500 kHz, which arises from the interaction between various diffractions from the two gratings and Lamb modes in the brass plates immersed in water. The results indicate that the device has the advantages of multiple band, broader bandwidth, and simpler structure. Our finding should have great potential applications in ultrasonic devices.

  16. Acoustic energy transmission in cast iron pipelines

    NASA Astrophysics Data System (ADS)

    Kiziroglou, Michail E.; Boyle, David E.; Wright, Steven W.; Yeatman, Eric M.

    2015-12-01

    In this paper we propose acoustic power transfer as a method for the remote powering of pipeline sensor nodes. A theoretical framework of acoustic power propagation in the ceramic transducers and the metal structures is drawn, based on the Mason equivalent circuit. The effect of mounting on the electrical response of piezoelectric transducers is studied experimentally. Using two identical transducer structures, power transmission of 0.33 mW through a 1 m long, 118 mm diameter cast iron pipe, with 8 mm wall thickness is demonstrated, at 1 V received voltage amplitude. A near-linear relationship between input and output voltage is observed. These results show that it is possible to deliver significant power to sensor nodes through acoustic waves in solid structures. The proposed method may enable the implementation of acoustic - powered wireless sensor nodes for structural and operation monitoring of pipeline infrastructure.

  17. Theoretical vibro-acoustic modeling of acoustic noise transmission through aircraft windows

    NASA Astrophysics Data System (ADS)

    Aloufi, Badr; Behdinan, Kamran; Zu, Jean

    2016-06-01

    In this paper, a fully vibro-acoustic model for sound transmission across a multi-pane aircraft window is developed. The proposed model is efficiently applied for a set of window models to perform extensive theoretical parametric studies. The studied window configurations generally simulate the passenger window designs of modern aircraft classes which have an exterior multi-Plexiglas pane, an interior single acrylic glass pane and a dimmable glass ("smart" glass), all separated by thin air cavities. The sound transmission loss (STL) characteristics of three different models, triple-, quadruple- and quintuple-paned windows identical in size and surface density, are analyzed for improving the acoustic insulation performances. Typical results describing the influence of several system parameters, such as the thicknesses, number and spacing of the window panes, on the transmission loss are then investigated. In addition, a comparison study is carried out to evaluate the acoustic reduction capability of each window model. The STL results show that the higher frequencies sound transmission loss performance can be improved by increasing the number of window panels, however, the low frequency performance is decreased, particularly at the mass-spring resonances.

  18. Rational approximations of viscous losses in vocal tract acoustic modeling

    NASA Astrophysics Data System (ADS)

    Wilhelms-Tricarico, Reiner; McGowan, Richard S.

    2004-06-01

    The modeling of viscous losses in acoustic wave transmission through tubes by a boundary layer approximation is valid if the thickness of the boundary layer is small compared to the hydraulic radius. A method was found to describe the viscous losses that extends the frequency range of the model to very low frequencies and very thin tubes. For higher frequencies, this method includes asymptotically the spectral effects of the boundary layer approximation. The method provides a simplification for the rational approximation of the spectral effects of viscous losses.

  19. Acoustic cloaking by extraordinary sound transmission

    NASA Astrophysics Data System (ADS)

    Zhao, Jiajun; Chen, Zhi Ning; Li, Baowen; Qiu, Cheng-Wei

    2015-06-01

    Isotropic acoustic cloaking is proposed using density-near-zero materials for extraordinary sound transmission. The cloaking cell is made by single-piece homogeneous elastic copper, which can be detached and assembled arbitrarily. We theoretically and numerically demonstrate the cloaking performance by deploying density-near-zero cells in various ways in two-dimensional space as well as in acoustic waveguides. The density-near-zero material can make any inside objects imperceptible along undistorted sound paths. Individually and collectively, the cloaking cell maintains both the planar wavefront and the nearly perfect one-dimensional transmission, in presence of any inserted object. The overall cloaked space can be designed by adding cells without the limit of the total cloaked volume.

  20. Acoustic data transmission through a drillstring

    DOEpatents

    Drumheller, Douglas S.

    1992-01-01

    A method and apparatus for acoustically transmitting data along a drillstring is presented. In accordance with one embodiment of the present invention, acoustic data signals are conditioned to counteract distortions caused by the drillstring. Preferably, this conditioning step comprises multiplying each frequency component of the data signal by exp (-ikL) where L is the transmission length of the drillstring, k is the wave number in the drillstring at the frequency of each component and i is (-1).sup.1/2. In another embodiment of this invention, data signals having a frequency content in at least one passband of the drillstring are generated preferably traveling in only one direction (e.g., up the drillstring) while echoes in the drillstring resulting from the data transmission are suppressed.

  1. Acoustic data transmission through a drillstring

    DOEpatents

    Drumheller, D.S.

    1992-07-07

    A method and apparatus for acoustically transmitting data along a drillstring are presented. In accordance with one embodiment of the present invention, acoustic data signals are conditioned to counteract distortions caused by the drillstring. Preferably, this conditioning step comprises multiplying each frequency component of the data signal by exp ([minus]ikL) where L is the transmission length of the drillstring, k is the wave number in the drillstring at the frequency of each component and i is ([minus]1)[sup 1/2]. In another embodiment of this invention, data signals having a frequency content in at least one passband of the drillstring are generated preferably traveling in only one direction (e.g., up the drillstring) while echoes in the drillstring resulting from the data transmission are suppressed. 20 figs.

  2. Pneumothorax effects on pulmonary acoustic transmission

    PubMed Central

    Balk, Robert A.; Warren, William H.; Royston, Thomas J.; Dai, Zoujun; Peng, Ying; Sandler, Richard H.

    2015-01-01

    Pneumothorax (PTX) is an abnormal accumulation of air between the lung and the chest wall. It is a relatively common and potentially life-threatening condition encountered in patients who are critically ill or have experienced trauma. Auscultatory signs of PTX include decreased breath sounds during the physical examination. The objective of this exploratory study was to investigate the changes in sound transmission in the thorax due to PTX in humans. Nineteen human subjects who underwent video-assisted thoracic surgery, during which lung collapse is a normal part of the surgery, participated in the study. After subjects were intubated and mechanically ventilated, sounds were introduced into their airways via an endotracheal tube. Sounds were then measured over the chest surface before and after lung collapse. PTX caused small changes in acoustic transmission for frequencies below 400 Hz. A larger decrease in sound transmission was observed from 400 to 600 Hz, possibly due to the stronger acoustic transmission blocking of the pleural air. At frequencies above 1 kHz, the sound waves became weaker and so did their changes with PTX. The study elucidated some of the possible mechanisms of sound propagation changes with PTX. Sound transmission measurement was able to distinguish between baseline and PTX states in this small patient group. Future studies are needed to evaluate this technique in a wider population. PMID:26023225

  3. Pneumothorax effects on pulmonary acoustic transmission.

    PubMed

    Mansy, Hansen A; Balk, Robert A; Warren, William H; Royston, Thomas J; Dai, Zoujun; Peng, Ying; Sandler, Richard H

    2015-08-01

    Pneumothorax (PTX) is an abnormal accumulation of air between the lung and the chest wall. It is a relatively common and potentially life-threatening condition encountered in patients who are critically ill or have experienced trauma. Auscultatory signs of PTX include decreased breath sounds during the physical examination. The objective of this exploratory study was to investigate the changes in sound transmission in the thorax due to PTX in humans. Nineteen human subjects who underwent video-assisted thoracic surgery, during which lung collapse is a normal part of the surgery, participated in the study. After subjects were intubated and mechanically ventilated, sounds were introduced into their airways via an endotracheal tube. Sounds were then measured over the chest surface before and after lung collapse. PTX caused small changes in acoustic transmission for frequencies below 400 Hz. A larger decrease in sound transmission was observed from 400 to 600 Hz, possibly due to the stronger acoustic transmission blocking of the pleural air. At frequencies above 1 kHz, the sound waves became weaker and so did their changes with PTX. The study elucidated some of the possible mechanisms of sound propagation changes with PTX. Sound transmission measurement was able to distinguish between baseline and PTX states in this small patient group. Future studies are needed to evaluate this technique in a wider population. PMID:26023225

  4. Acoustic asymmetric transmission based on time-dependent dynamical scattering

    PubMed Central

    Wang, Qing; Yang, Yang; Ni, Xu; Xu, Ye-Long; Sun, Xiao-Chen; Chen, Ze-Guo; Feng, Liang; Liu, Xiao-ping; Lu, Ming-Hui; Chen, Yan-Feng

    2015-01-01

    An acoustic asymmetric transmission device exhibiting unidirectional transmission property for acoustic waves is extremely desirable in many practical scenarios. Such a unique property may be realized in various configurations utilizing acoustic Zeeman effects in moving media as well as frequency-conversion in passive nonlinear acoustic systems and in active acoustic systems. Here we demonstrate a new acoustic frequency conversion process in a time-varying system, consisting of a rotating blade and the surrounding air. The scattered acoustic waves from this time-varying system experience frequency shifts, which are linearly dependent on the blade’s rotating frequency. Such scattering mechanism can be well described theoretically by an acoustic linear time-varying perturbation theory. Combining such time-varying scattering effects with highly efficient acoustic filtering, we successfully develop a tunable acoustic unidirectional device with 20 dB power transmission contrast ratio between two counter propagation directions at audible frequencies. PMID:26038886

  5. Extraordinary acoustic transmission mediated by Helmholtz resonators

    SciTech Connect

    Koju, Vijay; Rowe, Ebony; Robertson, William M.

    2014-07-15

    We demonstrate perfect transmission of sound through a rigid barrier embedded with Helmholtz resonators. The resonators are confined within a waveguide and they are oriented such that one neck protrudes onto each side of the barrier. Perfect sound transmission occurs even though the open area of the necks is less than 3% of the barrier area. Maximum transmission occurs at the resonant frequency of the Helmholtz resonator. Because the dimensions of the Helmholtz resonators are much smaller than the resonant wavelength, the transmission is independent of the direction of sound on the barrier and of the relative placement of the necks. Further, we show that the transmitted sound experiences a continuous phase transition of π radians as a function of frequency through resonance. In simulations of adjacent resonators with slightly offset resonance frequencies, the phase difference leads to destructive interference. By expanding the simulation to a linear array of tuned Helmholtz resonators we show that it is possible to create an acoustic lens. The ability of Helmholtz resonator arrays to manipulate the phase of a plane acoustic wave enables a new class of sonic beam-forming devices analogous to diffractive optics.

  6. Cryogenic acoustic loss of pure and alloyed titanium

    NASA Astrophysics Data System (ADS)

    Matacz, A. L.; Veitch, P. J.; Blair, D. G.

    Low acoustic loss, high yield strength cryogenic materials are required for various high precision experiments, resonant-bar gravitational radiation antennae in particular. We report here acoustic loss measurements of commerically pure and alloyed titanium samples between 4.2 and 300 K. It is shown that machining damage of the surface significantly increased the acoustic loss of pure titanium, particularly below 100 K, and that the high strength alloy Ti-6AI-4V had significantly greater acoustic loss than pure titanium.

  7. Theoretical analysis of sound transmission loss through graphene sheets

    SciTech Connect

    Natsuki, Toshiaki; Ni, Qing-Qing

    2014-11-17

    We examine the potential of using graphene sheets (GSs) as sound insulating materials that can be used for nano-devices because of their small size, super electronic, and mechanical properties. In this study, a theoretical analysis is proposed to predict the sound transmission loss through multi-layered GSs, which are formed by stacks of GS and bound together by van der Waals (vdW) forces between individual layers. The result shows that the resonant frequencies of the sound transmission loss occur in the multi-layered GSs and the values are very high. Based on the present analytical solution, we predict the acoustic insulation property for various layers of sheets under both normal incident wave and acoustic field of random incidence source. The scheme could be useful in vibration absorption application of nano devices and materials.

  8. Comparison of Computational Aeroacoustics Prediction of Acoustic Transmission Through a 3D Stator With Experiment

    NASA Technical Reports Server (NTRS)

    Hixon, Ray; Envia, Edmane; Dahl, Milo; Sutliff, Daniel L.

    2014-01-01

    In this paper, numerical predictions of acoustic transmission through a 3D stator obtained using the NASA BASS code are compared with experimentally measured data. The influence of vane count and stagger as well as frequency and mode order on the transmission loss is investigated. The data-theory comparisons indicate that BASS can predict all the important trends observed in the experimental data.

  9. Comparison of Computational Aeroacoustics Prediction of Acoustic Transmission Through a 3D Stator with Experiment

    NASA Technical Reports Server (NTRS)

    Hixon, Ray; Envia, Edmane; Dahl, Milo; Sutliff, Daniel

    2014-01-01

    In this paper, numerical predictions of acoustic transmission through a 3D stator obtained using the NASA BASS code are compared with experimentally measured data. The influence of vane count and stagger as well as frequency and mode order on the transmission loss is investigated. The data-theory comparisons indicate that BASS can predict all the important trends observed in the experimental data.

  10. Comparative sensitivity analysis of transmission loss in beaked whale environments

    NASA Astrophysics Data System (ADS)

    Wezensky, Eryn M.; Miller, James H.; Tyce, Robert C.

    2001-05-01

    Scientific literature states that anthropogenic sound, such as mid-frequency sonar, may cause a behavioral response in marine mammals. The degree of response is highly variable and dependent upon many factors, including how sound transmission is influenced by environmental features. The physical parameters of the ocean medium, such as sound speed profile and bathymetry, are important controls of underwater acoustic propagation. Determining the acoustic propagation loss of the ocean environment is an application used to identify and correlate influential environmental factors. This study investigates the sensitivity of acoustic propagation loss based on specific physical characteristics found in five different sites representing beaked whale environments. These sites were chosen with regards to existing data on beaked whale distribution, historical mass stranding records, and presence of mid-frequency sonar activity. A range-independent, ray-tracing acoustic propagation model was used to generate a two-dimensional sound field over a range of 30 km. From the results of this experiment, the acoustic importance of bathymetry and sound speed profile of the five beaked whale environments were identified. Preliminary results from the experimental study will be presented.

  11. Sound transmission loss of integrally damped, curved panels

    NASA Technical Reports Server (NTRS)

    Grosveld, Ferdinand W.; Reed, Samuel A.

    1989-01-01

    Results are reported from acoustic transmission-loss measurements on 13 curved Al and composite aircraft-type panels (height 0.81 m, arc length 1.32 m, and curvature radius 2.29 m) without and with integral damping of various types. The fabrication of the panels and the test procedures are described and illustrated with photographs, and the results are presented in graphs. It is found that the loss of a curved panel exceeds the mass-law-predicted loss for a flat panel of the same material and thickness at frequencies below the ring frequency. At higher frequencies, the curved-panel loss is lower than the mass-law loss, being proportional to 20 time the log of thickness. Integral damping is found to be effective both below and above the ring frequency, but different mechanisms are responsible in each case.

  12. Acoustic data transmission through a drill string

    DOEpatents

    Drumheller, D.S.

    1988-04-21

    Acoustical signals are transmitted through a drill string by canceling upward moving acoustical noise and by preconditioning the data in recognition of the comb filter impedance characteristics of the drill string. 5 figs.

  13. Broadband enhanced transmission of acoustic waves through serrated metal gratings

    NASA Astrophysics Data System (ADS)

    Qi, Dong-Xiang; Fan, Ren-Hao; Deng, Yu-Qiang; Peng, Ru-Wen; Wang, Mu; Jiangnan University Collaboration

    In this talk, we present our studies on broadband properties of acoustic waves through metal gratings. We have demonstrated that serrated metal gratings, which introduce gradient coatings, can give rise to broadband transmission enhancement of acoustic waves. Here, we have experimentally and theoretically studied the acoustic transmission properties of metal gratings with or without serrated boundaries. The average transmission is obviously enhanced for serrated metal gratings within a wide frequency range, while the Fabry-Perot resonance is significantly suppressed. An effective medium hypothesis with varying acoustic impedance is proposed to analyze the mechanism, which was verified through comparison with finite-element simulation. The serrated boundary supplies gradient mass distribution and gradient normal acoustic impedance, which could efficiently reduce the boundary reflection. Further, by increasing the region of the serrated boundary, we present a broadband high-transmission grating for wide range of incident angle. Our results may have potential applications to broadband acoustic imaging, acoustic sensing and new acoustic devices. References: [1] Dong-Xiang Qi, Yu-Qiang Deng, Di-Hu Xu, Ren-Hao Fan, Ru-Wen Peng, Ze-Guo Chen, Ming-Hui Lu, X. R. Huang and Mu Wang, Appl. Phys. Lett. 106, 011906 (2015); [2] Dong-Xiang Qi, Ren-Hao Fan, Ru-Wen Peng, Xian-Rong Huang, Ming-Hui Lu, Xu Ni, Qing Hu, and Mu Wang, Applied Physics Letters 101, 061912 (2012).

  14. Verification of three-microphone impedance tube method for measurement of transmission loss in aerogels

    NASA Astrophysics Data System (ADS)

    Connick, Robert J.

    Accurate measurement of normal incident transmission loss is essential for the acoustic characterization of building materials. In this research, a method of measuring normal incidence sound transmission loss proposed by Salissou et al. as a complement to standard E2611-09 of the American Society for Testing and Materials [Standard Test Method for Measurement of Normal Incidence Sound Transmission of Acoustical Materials Based on the Transfer Matrix Method (American Society for Testing and Materials, New York, 2009)] is verified. Two sam- ples from the original literature are used to verify the method as well as a Filtros RTM sample. Following the verification, several nano-material Aerogel samples are measured.

  15. Analytical models for use in fan inflow control structure design. Inflow distortion and acoustic transmission models

    NASA Technical Reports Server (NTRS)

    Gedge, M. R.

    1979-01-01

    Analytical models were developed to study the effect of flow contraction and screening on inflow distortions to identify qualitative design criteria. Results of the study are that: (1) static testing distortions are due to atmospheric turbulence, nacelle boundary layer, exhaust flow reingestion, flow over stand, ground plane, and engine casing; (2) flow contraction suppresses, initially, turbulent axial velocity distortions and magnifies turbulent transverse velocity distortions; (3) perforated plate and gauze screens suppress axial components of velocity distortions to a degree determined by the screen pressure loss coefficient; (4) honeycomb screen suppress transverse components of velocity distortions to a degree determined by the length to diameter ratio of the honeycomb; (5) acoustic transmission loss of perforated plate is controlled by the reactance of its acoustic impedance; (6) acoustic transmission loss of honeycomb screens is negligible; and (7) a model for the direction change due to a corner between honeycomb panels compares favorably with measured data.

  16. Extraordinary acoustic transmission through annuluses in air and its applications in acoustic beam splitter and concentrator

    NASA Astrophysics Data System (ADS)

    Ge, Yong; Sun, Hong-xiang; Liu, Shu-sen; Yuan, Shou-qi; Xia, Jian-ping; Guan, Yi-jun; Zhang, Shu-yi

    2016-08-01

    We report an extraordinary acoustic transmission through two layer annuluses made of metal cylinders in air both numerically and experimentally. The effect arises from the enhancement and reconstruction of the incident source induced by different Mie-resonance modes of the annuluses. The proposed system takes advantages of the consistency in the waveform between the input and output waves, the high amplitude amplification of output waves, and the easy adjustment of structure. More interestingly, we investigate the applications of the extraordinary acoustic transmission in the acoustic beam splitter and acoustic concentrator. Our finding should have an impact on ultrasonic applications.

  17. Extraordinary acoustic transmission through annuluses in air and its applications in acoustic beam splitter and concentrator.

    PubMed

    Ge, Yong; Sun, Hong-Xiang; Liu, Shu-Sen; Yuan, Shou-Qi; Xia, Jian-Ping; Guan, Yi-Jun; Zhang, Shu-Yi

    2016-08-01

    We report an extraordinary acoustic transmission through two layer annuluses made of metal cylinders in air both numerically and experimentally. The effect arises from the enhancement and reconstruction of the incident source induced by different Mie-resonance modes of the annuluses. The proposed system takes advantages of the consistency in the waveform between the input and output waves, the high amplitude amplification of output waves, and the easy adjustment of structure. More interestingly, we investigate the applications of the extraordinary acoustic transmission in the acoustic beam splitter and acoustic concentrator. Our finding should have an impact on ultrasonic applications. PMID:27587144

  18. Transmission and distribution-loss analysis

    SciTech Connect

    Not Available

    1982-05-01

    A previous study developed a methodology for determining the losses in the various elements of an electric utility transmission and distribution system using only generally published system data. In that study the losses at the system peak and the average annual losses of the Niagara Mohawk Power Corporation system were calculated to illustrate the methods. Since there was little or no system loss data available at that time, the methodology of the loss calculations was not verified. The purpose of this study was to verify the methods that were proposed in the previous study. The data, estimates, assumptions, and calculation methods of the original study were checked against the actual Niagara Mohawk system data. The losses calculated in the original study were compared to the system losses derived from actual system data. Revisions to the original methods were recommended to improve the accuracy of the results. As a result of the analysis done in this study, the methods developed in the original study were revised. The revised methods provide reasonable loss calculation results for the Niagara Mohawk system. These methods along with discussions of their application are given. Also included is a description of the procedures followed to find the system losses from the actual system data. The revised loss calculation methods using the published data based on the Niagara Mohawk system data, operation, and loadings, gave reasonable results for that system, and the method may be applicable to similar systems.

  19. Transmission Characteristics of Primate Vocalizations: Implications for Acoustic Analyses

    PubMed Central

    Maciej, Peter; Fischer, Julia; Hammerschmidt, Kurt

    2011-01-01

    Acoustic analyses have become a staple method in field studies of animal vocal communication, with nearly all investigations using computer-based approaches to extract specific features from sounds. Various algorithms can be used to extract acoustic variables that may then be related to variables such as individual identity, context or reproductive state. Habitat structure and recording conditions, however, have strong effects on the acoustic structure of sound signals. The purpose of this study was to identify which acoustic parameters reliably describe features of propagated sounds. We conducted broadcast experiments and examined the influence of habitat type, transmission height, and re-recording distance on the validity (deviation from the original sound) and reliability (variation within identical recording conditions) of acoustic features of different primate call types. Validity and reliability varied independently of each other in relation to habitat, transmission height, and re-recording distance, and depended strongly on the call type. The smallest deviations from the original sounds were obtained by a visually-controlled calculation of the fundamental frequency. Start- and end parameters of a sound were most susceptible to degradation in the environment. Because the recording conditions can have appreciable effects on acoustic parameters, it is advisable to validate the extraction method of acoustic variables from recordings over longer distances before using them in acoustic analyses. PMID:21829682

  20. Inlet total pressure loss due to acoustic wall treatment

    NASA Technical Reports Server (NTRS)

    Miller, B. A.

    1977-01-01

    The effect of diffuser wall acoustic treatment on inlet total pressure loss was experimentally determined. Data were obtained by testing an inlet model with 10 different acoustically treated diffusers differing only in the design of the Helmholtz resonator acoustic treatment. Tests were conducted in a wind tunnel at forward velocities to 41 meters per second for inlet throat Mach numbers of .5 to .8 and angles of attack as high as 50 degrees. Results indicate a pressure loss penalty due to acoustic treatment that increases linearly with the porosity of the acoustic facing sheet. For a surface porosity of 14 percent the total pressure loss was 21 percent greater than that for an untreated inlet.

  1. Experimental realization of extraordinary acoustic transmission using Helmholtz resonators

    SciTech Connect

    Crow, Brian C.; Cullen, Jordan M.; McKenzie, William W.; Koju, Vijay; Robertson, William M.

    2015-02-15

    The phenomenon of extraordinary acoustic transmission through a solid barrier with an embedded Helmholtz resonator (HR) is demonstrated. The Helmholtz resonator consists of an embedded cavity and two necks that protrude, one on each side of the barrier. Extraordinary transmission occurs for a narrow spectral range encompassing the resonant frequency of the Helmholtz resonator. We show that an amplitude transmission of 97.5% is achieved through a resonator whose neck creates an open area of 6.25% of the total barrier area. In addition to the enhanced transmission, we show that there is a smooth, continuous phase transition in the transmitted sound as a function of frequency. The frequency dependent phase transition is used to experimentally realize slow wave propagation for a narrow-band Gaussian wave packet centered at the maximum transmission frequency. The use of parallel pairs of Helmholtz resonators tuned to different resonant frequencies is experimentally explored as a means of increasing the transmission bandwidth. These experiments show that because of the phase transition, there is always a frequency between the two Helmholtz resonant frequencies at which destructive interference occurs whether the resonances are close or far apart. Finally, we explain how the phase transition associated with Helmholtz-resonator-mediated extraordinary acoustic transmission can be exploited to produce diffractive acoustic components including sub-wavelength thickness acoustic lenses.

  2. Characteristics of the transmission loss apparatus at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Grosveld, F. W.

    1983-01-01

    A description of the Transmission Loss Apparatus at NASA Langley Research Center, which is specifically designed to accommodate general aviation type aircraft structures, is presented. The measurement methodology, referred to as the Plate Reference Method, is discussed and compared with the classical method as described in the Standard of the American Society for Testing and Materials. This measurement procedure enables reliable and accurate noise transmission loss measurements down to the 50 Hz one-third octave band. The transmission loss characteristics of add-on acoustical treatments, applied to the basic structure, can be established by inclusion of appropriate absorption corrections for the treatment.

  3. Modal analysis and acoustic transmission through offset-core honeycomb sandwich panels

    NASA Astrophysics Data System (ADS)

    Mathias, Adam Dustin

    The work presented in this thesis is motivated by an earlier research that showed that double, offset-core honeycomb sandwich panels increased thermal resistance and, hence, decreased heat transfer through the panels. This result lead to the hypothesis that these panels could be used for acoustic insulation. Using commercial finite element modeling software, COMSOL Multiphysics, the acoustical properties, specifically the transmission loss across a variety of offset-core honeycomb sandwich panels, is studied for the case of a plane acoustic wave impacting the panel at normal incidence. The transmission loss results are compared with those of single-core honeycomb panels with the same cell sizes. The fundamental frequencies of the panels are also computed in an attempt to better understand the vibrational modes of these particular sandwich-structured panels. To ensure that the finite element analysis software is adequate for the task at hand, two relevant benchmark problems are solved and compared with theory. Results from these benchmark results compared well to those obtained from theory. Transmission loss results from the offset-core honeycomb sandwich panels show increased transmission loss, especially for large cell honeycombs when compared to single-core honeycomb panels.

  4. Time reversal acoustic communication for multiband transmission.

    PubMed

    Song, Aijun; Badiey, Mohsen

    2012-04-01

    In this letter, multiband acoustic communication is proposed to access a relatively wide frequency band. The entire frequency band is divided into multiple separated sub-bands, each of which is several kilohertz in width. Time reversal decision feedback equalizers are used to compensate for inter-symbol interference at each sub-band. The communication scheme was demonstrated in a shallow water acoustic experiment conducted in Kauai, Hawaii during the summer of 2011. Using quadrature phase-shift keying signaling at four sub-bands over the frequency band of 10-32 kHz, a data rate of 32 k bits/s was achieved over a 3 km communication range. PMID:22502482

  5. Finite Element Development of Honeycomb Panel Configurations with Improved Transmission Loss

    NASA Technical Reports Server (NTRS)

    Grosveld, Ferdinand W.; Palumbo, Daniel L.; Klos, Jacob; Castle, William D.

    2006-01-01

    The higher stiffness-to-mass ratio of a honeycomb panel compared to a homogeneous panel results in a lower acoustic critical frequency. Above the critical frequency the panel flexural wave speed is acoustically fast and the structure becomes a more efficient radiator with associated lower sound transmission loss. Finite element models of honeycomb sandwich structures are presented featuring areas where the core is removed from the radiating face sheet disrupting the supersonic flexural and shear wave speeds that exist in the baseline honeycomb panel. These modified honeycomb panel structures exhibit improved transmission loss for a pre-defined diffuse field sound excitation. The models were validated by the sound transmission loss of honeycomb panels measured in the Structural Acoustic Loads and Transmission (SALT) facility at the NASA Langley Research Center. A honeycomb core panel configuration is presented exhibiting a transmission loss improvement of 3-11 dB compared to a honeycomb baseline panel over a frequency range from 170 Hz to 1000 Hz. The improved transmission loss panel configuration had a 5.1% increase in mass over the baseline honeycomb panel, and approximately twice the deflection when excited by a static force.

  6. Impedance matched joined drill pipe for improved acoustic transmission

    DOEpatents

    Moss, William C.

    2000-01-01

    An impedance matched jointed drill pipe for improved acoustic transmission. A passive means and method that maximizes the amplitude and minimize the temporal dispersion of acoustic signals that are sent through a drill string, for use in a measurement while drilling telemetry system. The improvement in signal transmission is accomplished by replacing the standard joints in a drill string with joints constructed of a material that is impedance matched acoustically to the end of the drill pipe to which it is connected. Provides improvement in the measurement while drilling technique which can be utilized for well logging, directional drilling, and drilling dynamics, as well as gamma-ray spectroscopy while drilling post shot boreholes, such as utilized in drilling post shot boreholes.

  7. Recent Enhancements to the NASA Langley Structural Acoustics Loads and Transmission (SALT) Facility

    NASA Technical Reports Server (NTRS)

    Rizzi, Stephen A.; Cabell, Randolph H.; Allen, Albert R.

    2013-01-01

    The Structural Acoustics Loads and Transmission (SALT) facility at the NASA Langley Research Center is comprised of an anechoic room and a reverberant room, and may act as a transmission loss suite when test articles are mounted in a window connecting the two rooms. In the latter configuration, the reverberant room acts as the noise source side and the anechoic room as the receiver side. The noise generation system used for qualification testing in the reverberant room was previously shown to achieve a maximum overall sound pressure level of 141 dB. This is considered to be marginally adequate for generating sound pressure levels typically required for launch vehicle payload qualification testing. Recent enhancements to the noise generation system increased the maximum overall sound pressure level to 154 dB, through the use of two airstream modulators coupled to 35 Hz and 160 Hz horns. This paper documents the acoustic performance of the enhanced noise generation system for a variety of relevant test spectra. Additionally, it demonstrates the capability of the SALT facility to conduct transmission loss and absorption testing in accordance with ASTM and ISO standards, respectively. A few examples of test capabilities are shown and include transmission loss testing of simple unstiffened and built up structures and measurement of the diffuse field absorption coefficient of a fibrous acoustic blanket.

  8. Transport composite fuselage technology: Impact dynamics and acoustic transmission

    NASA Technical Reports Server (NTRS)

    Jackson, A. C.; Balena, F. J.; Labarge, W. L.; Pei, G.; Pitman, W. A.; Wittlin, G.

    1986-01-01

    A program was performed to develop and demonstrate the impact dynamics and acoustic transmission technology for a composite fuselage which meets the design requirements of a 1990 large transport aircraft without substantial weight and cost penalties. The program developed the analytical methodology for the prediction of acoustic transmission behavior of advanced composite stiffened shell structures. The methodology predicted that the interior noise level in a composite fuselage due to turbulent boundary layer will be less than in a comparable aluminum fuselage. The verification of these analyses will be performed by NASA Langley Research Center using a composite fuselage shell fabricated by filament winding. The program also developed analytical methodology for the prediction of the impact dynamics behavior of lower fuselage structure constructed with composite materials. Development tests were performed to demonstrate that the composite structure designed to the same operating load requirement can have at least the same energy absorption capability as aluminum structure.

  9. Comparison of Transmission Line Methods for Surface Acoustic Wave Modeling

    NASA Technical Reports Server (NTRS)

    Wilson, William; Atkinson, Gary

    2009-01-01

    Surface Acoustic Wave (SAW) technology is low cost, rugged, lightweight, extremely low power and can be used to develop passive wireless sensors. For these reasons, NASA is investigating the use of SAW technology for Integrated Vehicle Health Monitoring (IVHM) of aerospace structures. To facilitate rapid prototyping of passive SAW sensors for aerospace applications, SAW models have been developed. This paper reports on the comparison of three methods of modeling SAWs. The three models are the Impulse Response Method (a first order model), and two second order matrix methods; the conventional matrix approach, and a modified matrix approach that is extended to include internal finger reflections. The second order models are based upon matrices that were originally developed for analyzing microwave circuits using transmission line theory. Results from the models are presented with measured data from devices. Keywords: Surface Acoustic Wave, SAW, transmission line models, Impulse Response Method.

  10. Noise transmission loss of a rectangular plate in an infinite baffle

    NASA Technical Reports Server (NTRS)

    Roussos, L. A.

    1985-01-01

    An improved analytical procedure was developed that allows for the efficient calculation of the noise transmission characteristics of a finite rectangular plate. Both isotropic and symmetrically laminated composite plates are considered. The plate is modeled with classic thin-plate theory and is assumed to be simply supported on all four sides. The incident acoustic pressure is assumed to be a plane wave impinging on the plate at an arbitrary angle. The reradiated pressure is assumed to be negligible compared with the blocked pressure, and the plate vibrations are calculated by a normal-mode approach. A Green's function integral equation is used to link the plate vibrations to be transmitted far-field sound waves, and transmission loss is calculated from the ratio of incident to transmitted acoustic powers. The result is a versatile research and engineering analysis tool that predicts noise transmission loss and enables the determination of the modal behavior of the plate.

  11. Refinement and application of acoustic impulse technique to study nozzle transmission characteristics

    NASA Technical Reports Server (NTRS)

    Salikuddin, M.; Brown, W. H.; Ramakrishnan, R.; Tanna, H. K.

    1983-01-01

    An improved acoustic impulse technique was developed and was used to study the transmission characteristics of duct/nozzle systems. To accomplish the above objective, various problems associated with the existing spark-discharge impulse technique were first studied. These included (1) the nonlinear behavior of high intensity pulses, (2) the contamination of the signal with flow noise, (3) low signal-to-noise ratio at high exhaust velocities, and (4) the inability to control or shape the signal generated by the source, specially when multiple spark points were used as the source. The first step to resolve these problems was the replacement of the spark-discharge source with electroacoustic driver(s). These included (1) synthesizing on acoustic impulse with acoustic driver(s) to control and shape the output signal, (2) time domain signal averaging to remove flow noise from the contaminated signal, (3) signal editing to remove unwanted portions of the time history, (4) spectral averaging, and (5) numerical smoothing. The acoustic power measurement technique was improved by taking multiple induct measurements and by a modal decomposition process to account for the contribution of higher order modes in the power computation. The improved acoustic impulse technique was then validated by comparing the results derived by an impedance tube method. The mechanism of acoustic power loss, that occurs when sound is transmitted through nozzle terminations, was investigated. Finally, the refined impulse technique was applied to obtain more accurate results for the acoustic transmission characteristics of a conical nozzle and a multi-lobe multi-tube supressor nozzle.

  12. Dispersion and mirror transmission characteristics of bulk acoustic wave resonators.

    PubMed

    Kokkonen, Kimmo; Pensala, Tuomas; Kaivola, Matti

    2011-01-01

    A heterodyne laser interferometer is used for a detailed study of the acoustic wave fields excited in a 932-MHz solidly mounted ZnO thin-film BAW resonator. The sample is manufactured on a glass substrate, which also allows direct measurement of the vibration fields from the bottom of the acoustic mirror. Vibration fields are measured both on top of the resonator and at the mirror-substrate interface in a frequency range of 350 to 1200 MHz. Plate wave dispersion diagrams are calculated from the experimental data in both cases and the transmission characteristics of the acoustic mirror are determined as a function of both frequency and lateral wave number. The experimental data are compared with 1-D and 2-D simulations to evaluate the validity of the modeling tools commonly used in mirror design. All the major features observed in the 1-D model are identified in the measured dispersion diagrams, and the mirror transmission characteristics predicted for the longitudinal waves, by both the 1-D and the 2-D models, match the measured values well. PMID:21244989

  13. Acoustic transmission across a roughened fluid-fluid interface.

    PubMed

    Lim, R; Paustian, I C; Lopes, J L

    2001-04-01

    A set of tank experiments was performed to investigate acoustic transmission across a roughened fluid-fluid interface with the intention to test heuristic Bragg scattering predictions used to explain observations of anomalous transmission in field experiments. In the tank experiments, two immiscible fluids (vegetable oil floating on glycerin) formed the layers. Small polystyrene beads were floated at the interface to simulate roughness. An array of hydrophones placed in the bottom layer (glycerin) was used to measure the acoustic levels transmitted across the interface. This array was also employed as a beamformer to determine the apparent angle and sound speed of the scattered signals. Data were acquired at subcritical grazing angles in the frequency range of 100-200 kHz for three different bead diameters and for various configurations in which the locations of the beads floating on the interface were varied. Results of these measurements demonstrated that a significant amount of acoustic energy can be scattered into the bottom layer by beads floating at the interface. The scattered levels increased with increasing bead diameter. However, discrepancies occurred between observed propagation properties and the Bragg predictions. By comparing the processed tank data to a computer simulation of the same it was determined that these discrepancies are a consequence of near-field reception of the scattering by the bead array and ignoring the directionality of the scattering by the beads. Consequences to observations made in field experiments are discussed. PMID:11325108

  14. INSTRUMENTATION FOR SURVEYING ACOUSTIC SIGNALS IN NATURAL GAS TRANSMISSION LINES

    SciTech Connect

    John L. Loth; Gary J. Morris; George M. Palmer; Richard Guiler; Deepak Mehra

    2003-09-01

    In the U.S. natural gas is distributed through more than one million miles of high-pressure transmission pipelines. If all leaks and infringements could be detected quickly, it would enhance safety and U.S. energy security. Only low frequency acoustic waves appear to be detectable over distances up to 60 km where pipeline shut-off valves provide access to the inside of the pipeline. This paper describes a Portable Acoustic Monitoring Package (PAMP) developed to record and identify acoustic signals characteristic of: leaks, pump noise, valve and flow metering noise, third party infringement, manual pipeline water and gas blow-off, etc. This PAMP consists of a stainless steel 1/2 inch NPT plumbing tree rated for use on 1000 psi pipelines. Its instrumentation is designed to measure acoustic waves over the entire frequency range from zero to 16,000 Hz by means of four instruments: (1) microphone, (2) 3-inch water full range differential pressure transducer with 0.1% of range sensitivity, (3) a novel 3 inch to 100 inch water range amplifier, using an accumulator with needle valve and (4) a line-pressure transducer. The weight of the PAMP complete with all accessories is 36 pounds. This includes a remote control battery/switch box assembly on a 25-foot extension chord, a laptop data acquisition computer on a field table and a sun shield.

  15. Transmission loss in x-ray framing cameras

    NASA Astrophysics Data System (ADS)

    Bai, Xiaohong; Zhu, BingLi; Bai, Yonglin; Gou, Yongsheng; Xu, Peng; Jin, Jing; Wang, Bo; Liu, Baiyu; Qin, Junjun

    2015-02-01

    We present evidence that transmission loss in gated x-ray framing cameras can affect relative gains. Transmission loss is caused by a variety of factors including: incident voltage waveform, matched load, width of Au electrode gap, and so on. The transition electrode in MCP (Micro-channel Plate) is continuous gradual change line, and it has good capability of compensation. When continuous gradual change micro-strip line is designed, dielectric loss tangent is one of transmission loss factors too. The model structure is designed based on the analysis of modeling and simulation techniques and experiment data as well as forecast target. The transmission loss is reduced from 50% to 25%, the transmission efficiency is greatly improved.

  16. Boundary-Layer Effects on Acoustic Transmission Through Narrow Slit Cavities

    NASA Astrophysics Data System (ADS)

    Ward, G. P.; Lovelock, R. K.; Murray, A. R. J.; Hibbins, A. P.; Sambles, J. R.; Smith, J. D.

    2015-07-01

    We explore the slit-width dependence of the resonant transmission of sound in air through both a slit array formed of aluminum slats and a single open-ended slit cavity in an aluminum plate. Our experimental results accord well with Lord Rayleigh's theory concerning how thin viscous and thermal boundary layers at a slit's walls affect the acoustic wave across the whole slit cavity. By measuring accurately the frequencies of the Fabry-Perot-like cavity resonances, we find a significant 5% reduction in the effective speed of sound through the slits when an individual viscous boundary layer occupies only 5% of the total slit width. Importantly, this effect is true for any airborne slit cavity, with the reduction being achieved despite the slit width being on a far larger scale than an individual boundary layer's thickness. This work demonstrates that the recent prevalent loss-free treatment of narrow slit cavities within acoustic metamaterials is unrealistic.

  17. Subwavelength acoustic focusing by surface-wave-resonance enhanced transmission in doubly negative acoustic metamaterials

    SciTech Connect

    Zhou, Xiaoming; Badreddine Assouar, M. Oudich, Mourad

    2014-11-21

    We present analytical and numerical analyses of a yet unseen lensing paradigm that is based on a solid metamaterial slab in which the wave excitation source is attached. We propose and demonstrate sub-diffraction-limited acoustic focusing induced by surface resonant states in doubly negative metamaterials. The enhancement of evanescent waves across the metamaterial slab produced by their resonant coupling to surface waves is evidenced and quantitatively determined. The effect of metamaterial parameters on surface states, transmission, and wavenumber bandwidth is clearly identified. Based on this concept consisting of a wave source attached on the metamaterial, a high resolution of λ/28.4 is obtained with the optimum effective physical parameters, opening then an exciting way to design acoustic metamaterials for ultrasonic focused imaging.

  18. General analytical approach for sound transmission loss analysis through a thick metamaterial plate

    SciTech Connect

    Oudich, Mourad; Zhou, Xiaoming; Badreddine Assouar, M.

    2014-11-21

    We report theoretically and numerically on the sound transmission loss performance through a thick plate-type acoustic metamaterial made of spring-mass resonators attached to the surface of a homogeneous elastic plate. Two general analytical approaches based on plane wave expansion were developed to calculate both the sound transmission loss through the metamaterial plate (thick and thin) and its band structure. The first one can be applied to thick plate systems to study the sound transmission for any normal or oblique incident sound pressure. The second approach gives the metamaterial dispersion behavior to describe the vibrational motions of the plate, which helps to understand the physics behind sound radiation through air by the structure. Computed results show that high sound transmission loss up to 72 dB at 2 kHz is reached with a thick metamaterial plate while only 23 dB can be obtained for a simple homogeneous plate with the same thickness. Such plate-type acoustic metamaterial can be a very effective solution for high performance sound insulation and structural vibration shielding in the very low-frequency range.

  19. Transmission loss between single-mode Gaussian antennas.

    PubMed

    Perlot, Nicolas; Rohde, Michael

    2016-08-22

    We analytically derive a set of formulas for the transmission loss in vacuum between antennas that send and receive single-mode Gaussian beams. We relate our results to standard far-field link budget parameters. PMID:27557226

  20. Effect of non-uniform perforation in the long concentric resonator on transmission loss and back pressure

    NASA Astrophysics Data System (ADS)

    Lee, Seong-Hyun; Ih, Jeong-Guon

    2008-03-01

    It is known that the acoustical and, possibly, mechanical performance of the perforated resonator can be controlled by the porosity and distribution of holes. To analyze the effect of the porosity distribution pattern on resonator performance, in particular under the design condition of restricted volume, five typical perforation patterns of an acoustically long concentric resonator were investigated experimentally and numerically. Transmission loss and back pressure were used to represent the acoustic and mechanical performance indices, respectively. Prediction of transmission loss was made by segmental decoupling analysis with an empirical impedance model of orifices. Prediction of back pressure was done by computational fluid dynamics analysis. The overall trend of the calculated results matched well with the measured results. In terms of acoustic performance, it is noted that a specific frequency range was mostly influenced by the change of axial porosity pattern. For mechanical performance, a gradual change in porosity played a dominant role in stabilizing the flow field and static pressure distribution. It is concluded that an axial perforation pattern with a gradual change in porosity yields the best performance by forming a flow field with minimized loss and an acoustic field dominated by a quarter-wavelength resonance of equivalent extended pipes. In particular, the most preferred perforation pattern in terms of transmission loss and back pressure was the one with gradually increasing porosity from the upstream part and gradually decreasing porosity from the middle part as far as the downstream end.

  1. An Enhanced Energy Balanced Data Transmission Protocol for Underwater Acoustic Sensor Networks

    PubMed Central

    Javaid, Nadeem; Shah, Mehreen; Ahmad, Ashfaq; Imran, Muhammad; Khan, Majid Iqbal; Vasilakos, Athanasios V.

    2016-01-01

    This paper presents two new energy balanced routing protocols for Underwater Acoustic Sensor Networks (UASNs); Efficient and Balanced Energy consumption Technique (EBET) and Enhanced EBET (EEBET). The first proposed protocol avoids direct transmission over long distance to save sufficient amount of energy consumed in the routing process. The second protocol overcomes the deficiencies in both Balanced Transmission Mechanism (BTM) and EBET techniques. EBET selects relay node on the basis of optimal distance threshold which leads to network lifetime prolongation. The initial energy of each sensor node is divided into energy levels for balanced energy consumption. Selection of high energy level node within transmission range avoids long distance direct data transmission. The EEBET incorporates depth threshold to minimize the number of hops between source node and sink while eradicating backward data transmissions. The EBET technique balances energy consumption within successive ring sectors, while, EEBET balances energy consumption of the entire network. In EEBET, optimum number of energy levels are also calculated to further enhance the network lifetime. Effectiveness of the proposed schemes is validated through simulations where these are compared with two existing routing protocols in terms of network lifetime, transmission loss, and throughput. The simulations are conducted under different network radii and varied number of nodes. PMID:27070605

  2. An Enhanced Energy Balanced Data Transmission Protocol for Underwater Acoustic Sensor Networks.

    PubMed

    Javaid, Nadeem; Shah, Mehreen; Ahmad, Ashfaq; Imran, Muhammad; Khan, Majid Iqbal; Vasilakos, Athanasios V

    2016-01-01

    This paper presents two new energy balanced routing protocols for Underwater Acoustic Sensor Networks (UASNs); Efficient and Balanced Energy consumption Technique (EBET) and Enhanced EBET (EEBET). The first proposed protocol avoids direct transmission over long distance to save sufficient amount of energy consumed in the routing process. The second protocol overcomes the deficiencies in both Balanced Transmission Mechanism (BTM) and EBET techniques. EBET selects relay node on the basis of optimal distance threshold which leads to network lifetime prolongation. The initial energy of each sensor node is divided into energy levels for balanced energy consumption. Selection of high energy level node within transmission range avoids long distance direct data transmission. The EEBET incorporates depth threshold to minimize the number of hops between source node and sink while eradicating backward data transmissions. The EBET technique balances energy consumption within successive ring sectors, while, EEBET balances energy consumption of the entire network. In EEBET, optimum number of energy levels are also calculated to further enhance the network lifetime. Effectiveness of the proposed schemes is validated through simulations where these are compared with two existing routing protocols in terms of network lifetime, transmission loss, and throughput. The simulations are conducted under different network radii and varied number of nodes. PMID:27070605

  3. Acoustic solitons in waveguides with Helmholtz resonators: transmission line approach.

    PubMed

    Achilleos, V; Richoux, O; Theocharis, G; Frantzeskakis, D J

    2015-02-01

    We report experimental results and study theoretically soliton formation and propagation in an air-filled acoustic waveguide side loaded with Helmholtz resonators. We propose a theoretical modeling of the system, which relies on a transmission-line approach, leading to a nonlinear dynamical lattice model. The latter allows for an analytical description of the various soliton solutions for the pressure, which are found by means of dynamical systems and multiscale expansion techniques. These solutions include Boussinesq-like and Korteweg-de Vries pulse-shaped solitons that are observed in the experiment, as well as nonlinear Schrödinger envelope solitons, that are predicted theoretically. The analytical predictions are in excellent agreement with direct numerical simulations and in qualitative agreement with the experimental observations. PMID:25768623

  4. Transmission and Incidence Losses for a Slotted Plate

    NASA Technical Reports Server (NTRS)

    Wilson, Jack; Chima, Rodrick V.; Skews, Beric W.

    1998-01-01

    The objective of this work is to find a model of the stagnation pressure loss resulting from flow through a slotted plate, which is effectively a cascade of flat plate airfoils, particularly at very large angles of incidence. Data from a published experiment is examined, and compared with control volume analysis, and CFD code calculations. An assumption that the loss can be separated into a transmission loss and an incidence loss seems to be justified by the data. Both the data and the CFD code results are consistent with an incidence loss model in which the flow component normal to the slot axis is lost. However, the experimental transmission loss is much larger than calculated values.

  5. Ionospheric Transmission Losses Associated with Mars-orbiting Radars

    NASA Technical Reports Server (NTRS)

    Farrell, W. M.

    2005-01-01

    There are a number of obstacles to radar sounding of the deep Martian subsurface from orbit, including signal losses from the medium conductivity, layer reflective losses, and ground clutter. Another adverse process is signal loss as radio waves propagate through the ionospheric plasma medium. The ionosphere is a plasma consisting of free electrons, ions and neutrals that can effectively damp/attenuate radar signals via electrodneutral collisions. The effect is most severe for transmissions at lower frequencies, which, unfortunately, are also favorable transmissions for deep penetration into the subsurface.

  6. Transmission Loss and Absorption of Corrugated Core Sandwich Panels With Embedded Resonators

    NASA Technical Reports Server (NTRS)

    Allen, Albert R.; Schiller, Noah H.; Zalewski, Bart F.; Rosenthal, Bruce N.

    2014-01-01

    The effect of embedded resonators on the diffuse field sound transmission loss and absorption of composite corrugated core sandwich panels has been evaluated experimentally. Two 1.219 m × 2.438 m panels with embedded resonator arrangements targeting frequencies near 100 Hz were evaluated using non-standard processing of ASTM E90-09 acoustic transmission loss and ASTM C423-09a room absorption test measurements. Each panel is comprised of two composite face sheets sandwiching a corrugated core with a trapezoidal cross section. When inlet openings are introduced in one face sheet, the chambers within the core can be used as embedded acoustic resonators. Changes to the inlet and chamber partition locations allow this type of structure to be tuned for targeted spectrum passive noise control. Because the core chambers are aligned with the plane of the panel, the resonators can be tuned for low frequencies without compromising the sandwich panel construction, which is typically sized to meet static load requirements. Absorption and transmission loss performance improvements attributed to opening the inlets were apparent for some configurations and inconclusive for others.

  7. Statistical Modeling of Large-Scale Signal Path Loss in Underwater Acoustic Networks

    PubMed Central

    Llor, Jesús; Malumbres, Manuel Perez

    2013-01-01

    In an underwater acoustic channel, the propagation conditions are known to vary in time, causing the deviation of the received signal strength from the nominal value predicted by a deterministic propagation model. To facilitate a large-scale system design in such conditions (e.g., power allocation), we have developed a statistical propagation model in which the transmission loss is treated as a random variable. By applying repetitive computation to the acoustic field, using ray tracing for a set of varying environmental conditions (surface height, wave activity, small node displacements around nominal locations, etc.), an ensemble of transmission losses is compiled and later used to infer the statistical model parameters. A reasonable agreement is found with log-normal distribution, whose mean obeys a log-distance increases, and whose variance appears to be constant for a certain range of inter-node distances in a given deployment location. The statistical model is deemed useful for higher-level system planning, where simulation is needed to assess the performance of candidate network protocols under various resource allocation policies, i.e., to determine the transmit power and bandwidth allocation necessary to achieve a desired level of performance (connectivity, throughput, reliability, etc.). PMID:23396190

  8. Statistical modeling of large-scale signal path loss in underwater acoustic networks.

    PubMed

    Llor, Jesús; Malumbres, Manuel Perez

    2013-01-01

    In an underwater acoustic channel, the propagation conditions are known to vary in time, causing the deviation of the received signal strength from the nominal value predicted by a deterministic propagation model. To facilitate a large-scale system design in such conditions (e.g., power allocation), we have developed a statistical propagation model in which the transmission loss is treated as a random variable. By applying repetitive computation to the acoustic field, using ray tracing for a set of varying environmental conditions (surface height, wave activity, small node displacements around nominal locations, etc.), an ensemble of transmission losses is compiled and later used to infer the statistical model parameters. A reasonable agreement is found with log-normal distribution, whose mean obeys a log-distance increases, and whose variance appears to be constant for a certain range of inter-node distances in a given deployment location. The statistical model is deemed useful for higher-level system planning, where simulation is needed to assess the performance of candidate network protocols under various resource allocation policies, i.e., to determine the transmit power and bandwidth allocation necessary to achieve a desired level of performance (connectivity, throughput, reliability, etc.). PMID:23396190

  9. Validation of a Polyimide Foam Model for Use in Transmission Loss Applications

    NASA Technical Reports Server (NTRS)

    Hong, Kwanwoo; Bolton, J. Stuart; Cano, Roberto J.; Weiser, Erik S.; Jensen, Brian J.; Silcox, Rich; Howerton, Brian M.; Maxon, John; Wang, Tongan; Lorenzi, Tyler

    2010-01-01

    The work described in this paper was focused on the use of a new polyimide foam in a double wall sound transmission loss application. Recall that polyimide foams are functionally attractive, compared to polyurethane foams, for example, owing to their fire resistance. The foam considered here was found to have a flow resistivity that was too high for conventional acoustical applications, and as a result, it was processed by partial crushing to lower the flow resistivity into an acceptable range. Procedures for measuring the flow resistivity and Young s modulus of the material have been described, as was an inverse characterization procedure for estimating the remaining Biot parameters based on standing wave tube measurements of transmission loss and absorption coefficient. The inverse characterization was performed using a finite element model implementation of the Biot poro-elastic material theory. Those parameters were then used to predict the sound transmission loss of a double panel system lined with polyimide foam, and the predictions were compared with full-scale transmission loss measurements. The agreement between the two was reasonable, especially in the high and low frequency limits; however, it was found that the SEA model resulted in an under-prediction of the transmission loss in the mid-frequency range. Nonetheless, it was concluded that the performance of polyimide foam could be predicted using conventional poro-elastic material models and that polyimide foam may offer an attractive alternative to other double wall linings in certain situations: e.g., when fire resistance is a key issue. Future work will concentrate on reducing the density of the foam to values similar to those used in current aircraft sidewall treatments, and developing procedures to improve the performance of the foam in transmission loss applications.

  10. Transmission loss of double panels filled with porogranular materials.

    PubMed

    Chazot, Jean-Daniel; Guyader, Jean-Louis

    2009-12-01

    Sound transmission through hollow structures found its interest in several industrial domains such as building acoustics, automotive industry, and aeronautics. However, in practice, hollow structures are often filled with porous materials to improve acoustic properties without adding an excessive mass. Recently a lot of interest arises for granular materials of low density that can be an alternative to standard absorbing materials. This paper aims to predict vibro-acoustic behavior of double panels filled with porogranular materials by using the patch-mobility method recently published. Biot's theory is a basic tool for the description of porous material but is quite difficult to use in practice, mostly because of the solid phase characterization. The original simplified Biot's model (fluid-fluid model) for porogranular material permitting a considerable reduction in data necessary for calculation has been recently published. The aim of the present paper is to propose a model to predict sound transmission through a double panel filled with a porogranular material. The method is an extension of a previous paper to take into account the porogranular material through fluid-fluid Biot's model. After a global overview of the method, the case of a double panel filled with expanded polystyrene beads is studied and a comparison with measurements is realized. PMID:20000917

  11. Acoustical transmission-line model of the middle-ear cavities and mastoid air cells

    PubMed Central

    Keefe, Douglas H.

    2015-01-01

    An acoustical transmission line model of the middle-ear cavities and mastoid air cell system (MACS) was constructed for the adult human middle ear with normal function. The air-filled cavities comprised the tympanic cavity, aditus, antrum, and MACS. A binary symmetrical airway branching model of the MACS was constructed using an optimization procedure to match the average total volume and surface area of human temporal bones. The acoustical input impedance of the MACS was calculated using a recursive procedure, and used to predict the input impedance of the middle-ear cavities at the location of the tympanic membrane. The model also calculated the ratio of the acoustical pressure in the antrum to the pressure in the middle-ear cavities at the location of the tympanic membrane. The predicted responses were sensitive to the magnitude of the viscothermal losses within the MACS. These predicted input impedance and pressure ratio functions explained the presence of multiple resonances reported in published data, which were not explained by existing MACS models. PMID:25920840

  12. Comparison of models for piping transmission loss estimations

    NASA Astrophysics Data System (ADS)

    Catron, Fred W.; Mann, J. Adin

    2005-09-01

    A frequency dependent model for the transmission loss of piping is important for accurate estimates of the external radiation from pipes and the vibration level of the pipe walls. A statistical energy analysis model is used to predict the transmission loss of piping. Key terms in the model are the modal density and the radiation efficiency of the piping wall. Several available models for each are compared in reference to measured data. In low frequency octave bands, the modal density is low. The model of the transmission loss in these octave bands is augmented with a mass law model in the low frequency regime where the number of modes is small. The different models and a comparison of the models will be presented.

  13. Transmission line corona losses under hoar frost conditions

    SciTech Connect

    Lahti, K.; Nousiainen, K.; Lahtinen, M.

    1997-04-01

    Transmission line corona losses under hoar frost conditions were studied in the climate room of the high voltage laboratory of Tampere University of Technology. The measurements were performed using a coaxial measurement arrangement with different bundle and conductor types. The effects of conductor and bundle type, temperature, applied voltage and hoar frost thickness on corona losses were investigated. A two-conductor bundle had corona losses about 2.5--5 times higher than a three-conductor bundle. Relatively thin hoar frosts were used in the tests. Even the thinnest hoar frost resulted in remarkable corona losses and the losses were very sensitive to changes in the hoar frost thickness. The ambient temperature had a strong influence on the measured losses.

  14. Finite-difference, time-domain analysis of a folded acoustic transmission line.

    PubMed

    Jackson, Charles M

    2005-03-01

    Recently designed, modern versions of renais sance woodwind instruments such as the recorder and serpent use square cross sections and a folded acoustic transmission line. Conventional microwave techniques would expect that this bend would cause unwanted reflections and impedance discontinuities. This paper analyses the folded acoustic transmission line using finite-difference, time-domain techniques and shows that the discontinuity can be compensated with by the use of a manufacturable method. PMID:15857045

  15. A Numerical Investigation of Turbine Noise Source Hierarchy and Its Acoustic Transmission Characteristics

    NASA Technical Reports Server (NTRS)

    VanZante, Dale; Envia, Edmane

    2008-01-01

    Understanding the relative importance of the various turbine noise generation mechanisms and the characteristics of the turbine acoustic transmission loss are essential ingredients in developing robust reduced-order models for predicting the turbine noise signature. A computationally based investigation has been undertaken to help guide the development of a turbine noise prediction capability that does not rely on empiricism. The investigation relies on highly detailed numerical simulations of the unsteady flowfield inside a modern high-pressure turbine (HPT). The simulations are developed using TURBO, which is an unsteady Reynolds-averaged Navier-Stokes (URANS) code capable of multi-stage simulations. The purpose of this study is twofold. First, to determine an estimate of the relative importance of the contributions to the coherent part of the acoustic signature of a turbine from the three potential sources of turbine noise generation, namely, blade-row viscous interaction, potential field interaction, and entropic source associated with the interaction of the blade rows with the temperature nonuniformities caused by the incomplete mixing of the hot fluid and the cooling flow. Second, to develop an understanding of the turbine acoustic transmission characteristics and to assess the applicability of existing empirical and analytical transmission loss models to realistic geometries and flow conditions for modern turbine designs. The investigation so far has concentrated on two simulations: (1) a single-stage HPT and (2) a two-stage HPT and the associated inter-turbine duct/strut segment. The simulations are designed to resolve up to the second harmonic of the blade passing frequency tone in accordance with accepted rules for second order solvers like TURBO. The calculations include blade and vane cooling flows and a radial profile of pressure and temperature at the turbine inlet. The calculation can be modified later to include the combustor pattern factor at the

  16. Underwater asymmetric acoustic transmission structure using the medium with gradient change of impedance

    NASA Astrophysics Data System (ADS)

    Bo, Hu; Jie, Shi; Sheng-Guo, Shi; Yu, Sun; Zhong-Rui, Zhu

    2016-02-01

    We propose an underwater asymmetric acoustic transmission structure comprised of two media each with a gradient change of acoustic impedance. By gradually increasing the acoustic impedances of the media, the propagating direction of the acoustic wave can be continuously bent, resulting in allowing the acoustic wave to pass through along the positive direction and blocking acoustic waves from the negative one. The main advantages of this structure are that the asymmetric transmission effect of this structure can be realized and enhanced more easily in water. We investigate both numerically and experimentally the asymmetric transmission effect. The experimental results show that a highly efficient asymmetric acoustic transmission can be yielded within a remarkable broadband frequency range, which agrees well with the numerical prediction. It is of potential practical significance for various underwater applications such as reducing vibration and noise. Project supported by the National Natural Science Foundation of China (Grant Nos. 11204049 and 11204050), the Program for Changjiang Scholars and Innovative Research Team in University of Ministry of Education of China (Grant No. IRT1228), and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant Nos. 20122304120023 and 20122304120011).

  17. Soliton transmission in optical fibers with loss and saturable nonlinearity

    NASA Astrophysics Data System (ADS)

    Aicklen, Gregory H.; Tamil, Lakshman S.

    1996-09-01

    Optical solitons propagating in media exhibiting saturable nonlinearity offer advantages over Kerr-medium solitons for transmission over large distances through optical fibers with loss. Soliton pulses in saturable media offer greater energy for a given peak power, and upper-branch solitons decrease in width with distance traveled. These properties result in pulses that remain distinct and detectable for greater distances than Kerr-medium solitons do with the same peak power. .

  18. Transmission Loss Calculation using A and B Loss Coefficients in Dynamic Economic Dispatch Problem

    NASA Astrophysics Data System (ADS)

    Jethmalani, C. H. Ram; Dumpa, Poornima; Simon, Sishaj P.; Sundareswaran, K.

    2016-04-01

    This paper analyzes the performance of A-loss coefficients while evaluating transmission losses in a Dynamic Economic Dispatch (DED) Problem. The performance analysis is carried out by comparing the losses computed using nominal A loss coefficients and nominal B loss coefficients in reference with load flow solution obtained by standard Newton-Raphson (NR) method. Density based clustering method based on connected regions with sufficiently high density (DBSCAN) is employed in identifying the best regions of A and B loss coefficients. Based on the results obtained through cluster analysis, a novel approach in improving the accuracy of network loss calculation is proposed. Here, based on the change in per unit load values between the load intervals, loss coefficients are updated for calculating the transmission losses. The proposed algorithm is tested and validated on IEEE 6 bus system, IEEE 14 bus, system IEEE 30 bus system and IEEE 118 bus system. All simulations are carried out using SCILAB 5.4 (www.scilab.org) which is an open source software.

  19. LOSS ESTIMATE FOR ITER ECH TRANSMISSION LINE INCLUDING MULTIMODE PROPAGATION

    SciTech Connect

    Shapiro, Michael; Bigelow, Tim S; Caughman, John B; Rasmussen, David A

    2010-01-01

    The ITER electron cyclotron heating (ECH) transmission lines (TLs) are 63.5-mm-diam corrugated waveguides that will each carry 1 MW of power at 170 GHz. The TL is defined here as the corrugated wave guide system connecting the gyrotron mirror optics unit (MO U) to the entrance of the ECH launcher and includes miter bends and other corrugated wave guide components. The losses on the ITER TL have been calculated for four possible cases corresponding to having HE(11) mode purity at the input of the TL of 100, 97, 90, and 80%. The losses due to coupling, ohmic, and mode conversion loss are evaluated in detail using a numerical code and analytical approaches. Estimates of the calorimetric loss on the line show that the output power is reduced by about 5, +/- 1% because of ohmic loss in each of the four cases. Estimates of the mode conversion loss show that the fraction of output power in the HE(11) mode is similar to 3% smaller than the fraction of input power in the HE(11) mode. High output mode purity therefore can be achieved only with significantly higher input mode purity. Combining both ohmic and mode conversion loss, the efficiency of the TL from the gyrotron MOU to the ECH launcher can be roughly estimated in theory as 92% times the fraction of input power in the HE(11) mode.

  20. Layered unequal loss protection for image transmission over packet loss channels with delay constraints

    NASA Astrophysics Data System (ADS)

    Cai, Jianfei; Li, Xiangjun; Chen, Chang Wen

    2004-10-01

    In the case of high bit rate image transmission or having lots of packets, the FEC (forward error correction) encoding and decoding processes in the ULP (unequal loss protection) based schemes should be applied to individual packet groups instead of all the packets in order to avoid long processing delay. In this paper, we propose a layered ULP (L-ULP) scheme for fast and efficient FEC allocations among different packet groups and also within each packet group. The numerical results show that the proposed L-ULP scheme is quite promising for fast image transmission over packet loss networks.

  1. Information and data real time transmission acoustic underwater system: TRIDENT

    NASA Astrophysics Data System (ADS)

    Trubuil, Joel; Labat, Joel; Lapierre, Gerard

    2001-05-01

    The objective of the Groupe d'Etudes Sous-Marines de l'Atlantique (GESMA) is to develop a robust high data rate acoustic link. A real-time receiver recently developed at ENST Bretagne has just been designed to cope with all perturbations induced by such harsh channels. In order to cope with channel features, a spatio-temporal equalizer introduced by J. Labat et al. [Brevet FT no. 9914844, ``Perfectionnements aux dispositifs d'galisation adaptative pour recepteurs de systemes de communications numriques,'' Nov. 1999] was recently implemented and evaluated. This equalizer is the core of the receiver platform [Trubuil et al., ``Real-time high data rate acoustic link based on spatio temporal blind equalization: the TRIDENT acoustic system,'' OCEANS 2002]. This paper provides an overview of this project. The context of the study and the design of high data rate acoustic link are presented. Last Brest harbor experiments (2002, 2003) are described. The real time horizontal acoustic link performances are evaluated. Two carriers frequencies are available (20, 35 kHz). Acoustic communications for bit rate ranging from 10 to 20 kbps and for channel length (shallow water) ranging from 500 to 4000 m have been conducted successfully over several hours.

  2. Multi-band asymmetric acoustic transmission in a bended waveguide with multiple mechanisms

    NASA Astrophysics Data System (ADS)

    Huang, Yu-lei; Sun, Hong-xiang; Xia, Jian-ping; Yuan, Shou-qi; Ding, Xin-lei

    2016-07-01

    We report the realization of a multi-band device of the asymmetric acoustic transmission by placing a phononic crystal inside a bended waveguide immersed in water, as determined both experimentally and numerically. The asymmetric acoustic transmission exists in three frequency bands below 500 kHz induced by multiple mechanisms. Besides the band gap of the phononic crystal, we also introduce the deaf mode and interaction between the phononic crystal and waveguide. More importantly, this asymmetric transmission can be systematically controlled by mechanically rotating the square rods of the phononic crystal. The device has the advantages of multiple band, broader bandwidth, and adjustable property, showing promising applications in ultrasonic devices.

  3. A transmission-loss monitor using current transformers

    SciTech Connect

    Power, J.F.; Gilpatrick, J.D.; Jason, A.J.

    1993-12-01

    A system for measuring the amount of beam-charge loss in a linear-accelerator structure has been developed that uses a pair of beam-current transformers, otherwise used to monitor the linac beam current. This system is necessary to enable the Ground Test Accelerator (GTA) fast-protect system to shut off the accelerated beam in the event of a beam loss that would deposit sufficient energy to damage the accelerator structure. The present GTA accelerator consists of a 2.5-MeV, H{sup {minus}} RFQ, an intermediate matching section (IMS) and a single DTL cavity with an output energy of 3.2-MeV and transmitted current of 35 mA. Based on the RFQ output beam, melting of the copper structures will occur when about 40 nC of beam is deposited in a point loss. For a grazing angle of 30 mrad, up to 640 nC may be tolerated. The beam-current-transmission-loss monitor (BCTLM) system in conjunction with the fast-protect system measures the amount of beam loss between two toroidal beam-current monitors and automatically terminates the macropulse when the integrated loss reaches a predetermined set point. The design and operation of the BCTLM system used in the IMS and DTL section of the accelerator is described.

  4. Call Transmission Efficiency in Native and Invasive Anurans: Competing Hypotheses of Divergence in Acoustic Signals

    PubMed Central

    Llusia, Diego; Gómez, Miguel; Penna, Mario; Márquez, Rafael

    2013-01-01

    Invasive species are a leading cause of the current biodiversity decline, and hence examining the major traits favouring invasion is a key and long-standing goal of invasion biology. Despite the prominent role of the advertisement calls in sexual selection and reproduction, very little attention has been paid to the features of acoustic communication of invasive species in nonindigenous habitats and their potential impacts on native species. Here we compare for the first time the transmission efficiency of the advertisement calls of native and invasive species, searching for competitive advantages for acoustic communication and reproduction of introduced taxa, and providing insights into competing hypotheses in evolutionary divergence of acoustic signals: acoustic adaptation vs. morphological constraints. Using sound propagation experiments, we measured the attenuation rates of pure tones (0.2–5 kHz) and playback calls (Lithobates catesbeianus and Pelophylax perezi) across four distances (1, 2, 4, and 8 m) and over two substrates (water and soil) in seven Iberian localities. All factors considered (signal type, distance, substrate, and locality) affected transmission efficiency of acoustic signals, which was maximized with lower frequency sounds, shorter distances, and over water surface. Despite being broadcast in nonindigenous habitats, the advertisement calls of invasive L. catesbeianus were propagated more efficiently than those of the native species, in both aquatic and terrestrial substrates, and in most of the study sites. This implies absence of optimal relationship between native environments and propagation of acoustic signals in anurans, in contrast to what predicted by the acoustic adaptation hypothesis, and it might render these vertebrates particularly vulnerable to intrusion of invasive species producing low frequency signals, such as L. catesbeianus. Our findings suggest that mechanisms optimizing sound transmission in native habitat can play a

  5. Call transmission efficiency in native and invasive anurans: competing hypotheses of divergence in acoustic signals.

    PubMed

    Llusia, Diego; Gómez, Miguel; Penna, Mario; Márquez, Rafael

    2013-01-01

    Invasive species are a leading cause of the current biodiversity decline, and hence examining the major traits favouring invasion is a key and long-standing goal of invasion biology. Despite the prominent role of the advertisement calls in sexual selection and reproduction, very little attention has been paid to the features of acoustic communication of invasive species in nonindigenous habitats and their potential impacts on native species. Here we compare for the first time the transmission efficiency of the advertisement calls of native and invasive species, searching for competitive advantages for acoustic communication and reproduction of introduced taxa, and providing insights into competing hypotheses in evolutionary divergence of acoustic signals: acoustic adaptation vs. morphological constraints. Using sound propagation experiments, we measured the attenuation rates of pure tones (0.2-5 kHz) and playback calls (Lithobates catesbeianus and Pelophylax perezi) across four distances (1, 2, 4, and 8 m) and over two substrates (water and soil) in seven Iberian localities. All factors considered (signal type, distance, substrate, and locality) affected transmission efficiency of acoustic signals, which was maximized with lower frequency sounds, shorter distances, and over water surface. Despite being broadcast in nonindigenous habitats, the advertisement calls of invasive L. catesbeianus were propagated more efficiently than those of the native species, in both aquatic and terrestrial substrates, and in most of the study sites. This implies absence of optimal relationship between native environments and propagation of acoustic signals in anurans, in contrast to what predicted by the acoustic adaptation hypothesis, and it might render these vertebrates particularly vulnerable to intrusion of invasive species producing low frequency signals, such as L. catesbeianus. Our findings suggest that mechanisms optimizing sound transmission in native habitat can play a less

  6. Resonant transmission and mode modulation of acoustic waves in H-shaped metallic gratings

    SciTech Connect

    Deng, Yu-Qiang; Fan, Ren-Hao; Zhang, Kun; Peng, Ru-Wen E-mail: dongxiang87@gmail.com; Qi, Dong-Xiang E-mail: dongxiang87@gmail.com

    2015-04-15

    In this work, we demonstrate that resonant full transmission of acoustic waves exists in subwavelength H-shaped metallic gratings, and transmission peaks can be efficiently tuned by adjusting the grating geometry. We investigate this phenomenon through both numerical simulations and theoretical calculations based on rigorous-coupled wave analysis. The transmission peaks are originated from Fabry-Perot resonances together with the couplings between the diffractive wave on the surface and the multiple guided modes in the slits. Moreover, the transmission modes can be efficiently tuned by adjusting the cavity geometry, without changing the grating thickness. The mechanism is analyzed based on an equivalent circuit model and verified by both the theoretical calculations and the numerical simulations. This research has potential application in acoustic-device miniaturization over a wide range of wavelengths.

  7. Dielectric loss measurements using an embedded transmission line resonator

    NASA Astrophysics Data System (ADS)

    Sarabi, Bahman; Stoutimore, M. J. A.; Khalil, Moe; Gladchenko, Sergiy; Kozen, Alexander; Rubloff, Gary; Wellstood, F. C.; Lobb, J. C.; Osborn, K. D.

    2011-03-01

    Lossy dielectrics are a major source of decoherence in superconducting qubits. Superconducting linear resonators have proven to be ideally suited for measuring loss in different dielectrics due to their versatility and relative simplicity in design, fabrication, and measurement. We will present data from samples where the low-loss coplanar resonators are fabricated on top of AlOx dielectric films grown using atomic layer deposition (ALD). Although the low-power loss can be extracted from this geometry, embedding the dielectric under study between metal films has advantages that we will discuss. In addition, ALD films can be grown conformally and without pinholes to small thicknesses in comparison to conventional PECVD films. This allows us to make lumped-element resonators with a relatively small footprint, which can easily be embedded within the transmission line. This research was supported by the Intelligence Advanced Research Projects Activity through the U.S. Army Research Office award No. W911NF-09-1-0351.

  8. A channel transmission losses model for different dryland rivers

    NASA Astrophysics Data System (ADS)

    Costa, A. C.; Bronstert, A.; de Araújo, J. C.

    2012-04-01

    Channel transmission losses in drylands take place normally in extensive alluvial channels or streambeds underlain by fractured rocks. They can play an important role in streamflow rates, groundwater recharge, freshwater supply and channel-associated ecosystems. We aim to develop a process-oriented, semi-distributed channel transmission losses model, using process formulations which are suitable for data-scarce dryland environments and applicable to both hydraulically disconnected losing streams and hydraulically connected losing(/gaining) streams. This approach should be able to cover a large variation in climate and hydro-geologic controls, which are typically found in dryland regions of the Earth. Our model was first evaluated for a losing/gaining, hydraulically connected 30 km reach of the Middle Jaguaribe River (MJR), Ceará, Brazil, which drains a catchment area of 20 000 km2. Secondly, we applied it to a small losing, hydraulically disconnected 1.5 km channel reach in the Walnut Gulch Experimental Watershed (WGEW), Arizona, USA. The model was able to predict reliably the streamflow volume and peak for both case studies without using any parameter calibration procedure. We have shown that the evaluation of the hypotheses on the dominant hydrological processes was fundamental for reducing structural model uncertainties and improving the streamflow prediction. For instance, in the case of the large river reach (MJR), it was shown that both lateral stream-aquifer water fluxes and groundwater flow in the underlying alluvium parallel to the river course are necessary to predict streamflow volume and channel transmission losses, the former process being more relevant than the latter. Regarding model uncertainty, it was shown that the approaches, which were applied for the unsaturated zone processes (highly nonlinear with elaborate numerical solutions), are much more sensitive to parameter variability than those approaches which were used for the saturated zone

  9. Extremely Low Loss Phonon-Trapping Cryogenic Acoustic Cavities for Future Physical Experiments

    PubMed Central

    Galliou, Serge; Goryachev, Maxim; Bourquin, Roger; Abbé, Philippe; Aubry, Jean Pierre; Tobar, Michael E.

    2013-01-01

    Low loss Bulk Acoustic Wave devices are considered from the point of view of the solid state approach as phonon-confining cavities. We demonstrate effective design of such acoustic cavities with phonon-trapping techniques exhibiting extremely high quality factors for trapped longitudinally-polarized phonons of various wavelengths. Quality factors of observed modes exceed 1 billion, with a maximum Q-factor of 8 billion and Q × f product of 1.6 · 1018 at liquid helium temperatures. Such high sensitivities allow analysis of intrinsic material losses in resonant phonon systems. Various mechanisms of phonon losses are discussed and estimated. PMID:23823569

  10. Tunable broadband unidirectional acoustic transmission based on a waveguide with phononic crystal

    NASA Astrophysics Data System (ADS)

    Song, Ailing; Chen, Tianning; Wang, Xiaopeng; Wan, Lele

    2016-08-01

    In this paper, a tunable broadband unidirectional acoustic transmission (UAT) device composed of a bended tube and a superlattice with square columns is proposed and numerically investigated by using finite element method. The UAT is realized in the proposed UAT device within two wide frequency ranges. And the effectiveness of the UAT device is demonstrated by analyzing the sound pressure distributions when the acoustic waves are incident from different directions. The unidirectional band gaps can be effectively tuned by mechanically rotating the square columns, which is a highlight of this paper. Besides, a bidirectional acoustic isolation (BAI) device is obtained by placing two superlattices in the bended tube, in which the acoustic waves cannot propagate along any directions. The physical mechanisms of the proposed UAT device and BAI device are simply discussed. The proposed models show potential applications in some areas, such as unidirectional sonic barrier or noise insulation.

  11. Acoustic transmission enhancement through a soft interlayer with a reactance boundary.

    PubMed

    Quan, Li; Qian, Feng; Liu, Xiaozhou; Gong, Xiufen

    2015-08-01

    Research has shown that acoustic transmission enhancement (ATE) can occur in stiff materials with high acoustic impedance that include a soft interlayer with low acoustic impedance inserted between them without any opening (i.e., without any links between the two stiff materials). Previously, ATE was induced either by coupling acoustic surface waves or Love waves with the Fabry-Perot resonant modes inside the apertures or by the locally resonant modes of the structure. However, in this article ATE is achieved using wave-vector redistribution induced by a reactance boundary. An optimal boundary was designed to adjust the wave vector in the propagation direction, decreasing reflection caused by impedance differences. The role of boundary conditions on ATE was also clarified. PMID:26328694

  12. Decoherence and loss of entanglement in acoustic black holes.

    PubMed

    Lombardo, Fernando C; Turiaci, Gustavo J

    2012-06-29

    We study the process of decoherence in acoustic black holes. We focus on the ion trap model proposed by Horstmann et al. [Phys. Rev. Lett. 104, 250403 (2010)], but the formalism is general to any experimental implementation. For that particular setup, we compute the decoherence time for the experimental parameters that they proposed. We find that a quantum to classical transition occurs during the measurement, and we propose improved parameters to avoid such a feature. We also study the entanglement between the Hawking-pair phonons for an acoustic black hole while in contact with a reservoir, through the quantum correlations, showing that they remain strongly correlated for small enough times and temperatures. PMID:23004956

  13. Acute acoustic trauma: dynamics of hearing loss following cessation of exposure.

    PubMed

    Segal, S; Harell, M; Shahar, A; Englender, M

    1988-07-01

    The natural history of individuals with acute acoustic trauma who ceased to be exposed to impact noise was examined. Retrospective follow-up was carried out for 4 years on patients who were qualified as disabled following acoustic trauma with permanent threshold shift. Eight hundred forty-one individuals (1682 ears) were examined, of which 1514 ears with acoustic trauma were included in the study group; 150 individuals (300 ears) who continued to be exposed to impact noise even after discovery of acoustic trauma comprised the control group. In the latter, as long as exposure to gunfire continued, the severity of acoustic trauma increased. In the study group, during the first year after injury, changes were observed in hearing, whether improvement or deterioration; after this period, hearing loss appeared to be final. We suggest that, after 1 year following acute acoustic trauma, the associated hearing loss be considered as final, provided there is no further exposure to noise. This finding holds great importance from the medicolegal standpoint, an aspect that is unclear in the literature. It clarifies that beyond the period of 1 year after initial exposure, the pathologic process ceases (as long as there is no additional exposure to noise or gunfire). Further hearing deterioration beyond this period is not related to the initial acoustic trauma but rather to other factors. PMID:3177612

  14. Asymmetric acoustic transmission through near-zero-index and gradient-index metasurfaces

    NASA Astrophysics Data System (ADS)

    Shen, Chen; Xie, Yangbo; Li, Junfei; Cummer, Steven A.; Jing, Yun

    2016-05-01

    We present a design of acoustic metasurfaces yielding asymmetric transmission within a certain frequency band. The design consists of a layer of gradient-index metasurface and a layer of low refractive index metasurface. Incident waves are controlled in a wave vector dependent manner to create strong asymmetric transmission. Numerical simulations show that the approach provides high transmission contrast between the two incident directions within the designed frequency band. This is further verified by experiments. Compared to previous designs, the proposed approach yields a compact and planar device. Our design may find applications in various scenarios such as noise control and therapeutic ultrasound.

  15. Acoustic transmission matrix of a variable area duct or nozzle carrying a compressible subsonic flow

    NASA Technical Reports Server (NTRS)

    Miles, J. H.

    1980-01-01

    The differential equations governing the propagation of sound in a variable area duct or nozzle carrying a one-dimensional subsonic compressible fluid flow are derived and put in state variable form using acoustic pressure and particle velocity as the state variables. The duct or nozzle is divided into a number of regions. The region size is selected so that in each region the Mach number can be assumed constant and the area variation can be approximated by an exponential area variation. Consequently, the state variable equation in each region has constant coefficients. The transmission matrix for each region is obtained by solving the constant coefficient acoustic state variable differential equation. The transmission matrix for the duct or nozzle is the product of the individual transmission matrices of each region. Solutions are presented for several geometries with and without mean flow.

  16. Acoustic transmission matrix of a variable area duct or nozzle carrying a compressible subsonic flow

    NASA Technical Reports Server (NTRS)

    Miles, J. H.

    1980-01-01

    The differential equations governing the propagation of sound in a variable area duct or nozzle carrying a one dimensional subsonic compressible fluid flow are derived and put in state variable form using acoustic pressure and particle velocity as the state variables. The duct or nozzle is divided into a number of regions. The region size is selected so that in each region the Mach number can be assumed constant and the area variation can be approximated by an exponential area variation. Consequently, the state variable equation in each region has constant coefficients. The transmission matrix for each region is obtained by solving the constant coefficient acoustic state variable differential equation. The transmission matrix for the duct or nozzle is the product of the individual transmission matrices of each region. Solutions are presented for several geometries with and without mean flow.

  17. Angular dependence of fluctuations in acoustic transmissions relative to tidal direction in the SWAT environment

    NASA Astrophysics Data System (ADS)

    George, Jacob; Field, Robert L.

    2003-10-01

    Recently, fluctuations in continuous wave acoustic transmissions through internal tides that are periodic and have a constant amplitude in range have been studied [J. George and R. L. Field, J. Acoust. Soc. Am. 113, 2333 (2003)]. It was demonstrated through WKB/Pekeris calculations that the fluctuations are significantly greater when the transmission is nearly perpendicular to the tidal direction, and decrease when the transmission becomes more parallel to the tidal direction. Testing the validity of the above results in the realistic ocean provided the motivation for the present work. This was done through simulation using the NRL Coastal Ocean Model (NCOM) fitted to experimental data. The NCOM output provided the sound speed profile as a function of space and time. Results of the simulation will be presented. [Work supported by ONR (PE-62435N), and administered by NRL.

  18. Broadband asymmetric acoustic transmission by a plate with quasi-periodic surface ridges

    SciTech Connect

    Li, Chunhui; Ke, Manzhu Ye, Yangtao; Xu, Shengjun; Qiu, Chunyin; Liu, Zhengyou

    2014-07-14

    In this paper, an acoustic system with broadband asymmetric transmission is designed and fabricated, which consists of a water-immersed aluminum plate engraved with quasi-periodically-patterned ridges on single surface. It demonstrates that when the acoustic waves are launched into the system from the structured side, they can couple into the Lamb modes in the plate efficiently and attain a high transmission; on the contrary, when the waves are incident from the opposite flat side, the coupling is weak, and the transmission is low. Superior to systems with periodic patterning, this quasi-periodically-patterned system has a broad working frequency range due to the collective contributions from the multiple diffractions specific to the structure.

  19. Smaller-loss planar SPP transmission line than conventional microstrip in microwave frequencies

    PubMed Central

    Zhang, Hao Chi; Zhang, Qian; Liu, Jun Feng; Tang, Wenxuan; Fan, Yifeng; Cui, Tie Jun

    2016-01-01

    Transmission line is a basic component in all passive devices, integrated circuits, and systems. Microstrip is the most popular transmission line in the microwave and millimeter-wave frequencies, and has been widely used in current electronic devices, circuits, and systems. One of the important issues to be solved in such applications is the relatively large transmission loss of microstrip. Here, we propose a method to reduce the loss of microwave transmission line based on the designable wavenumber of spoof surface plasmon polaritons (SPPs). Using this characteristic, we analyze and experimentally demonstrate the low-loss feature of the SPP transmission line through the perturbation method and S-parameter measurements, respectively. Both simulation and experimental results show that the SPP transmission line has much smaller transmission loss than traditional microstrip with the same size in the microwave frequencies. Hence, the spoof SPP transmission line may make a big step forward in the low-loss circuits and systems. PMID:26983911

  20. Smaller-loss planar SPP transmission line than conventional microstrip in microwave frequencies.

    PubMed

    Zhang, Hao Chi; Zhang, Qian; Liu, Jun Feng; Tang, Wenxuan; Fan, Yifeng; Cui, Tie Jun

    2016-01-01

    Transmission line is a basic component in all passive devices, integrated circuits, and systems. Microstrip is the most popular transmission line in the microwave and millimeter-wave frequencies, and has been widely used in current electronic devices, circuits, and systems. One of the important issues to be solved in such applications is the relatively large transmission loss of microstrip. Here, we propose a method to reduce the loss of microwave transmission line based on the designable wavenumber of spoof surface plasmon polaritons (SPPs). Using this characteristic, we analyze and experimentally demonstrate the low-loss feature of the SPP transmission line through the perturbation method and S-parameter measurements, respectively. Both simulation and experimental results show that the SPP transmission line has much smaller transmission loss than traditional microstrip with the same size in the microwave frequencies. Hence, the spoof SPP transmission line may make a big step forward in the low-loss circuits and systems. PMID:26983911

  1. Progress in Acoustic Transmission of Power through Walls

    NASA Technical Reports Server (NTRS)

    Sherrit,Stewart; Coty, Benjamin; Bao, Xiaoqi; Bar-Cohen, Yoseph; Badescu, Mircea; Chang, Zensheu

    2008-01-01

    A document presents updated information on implementation of the wireless acoustic-electric feed-through (WAEF) concept, which was reported in Using Piezoelectric Devices To Transmit Power Through Walls (NPO-41157), NASA Tech Briefs, Vol. 32, No. 6 (June 2008), page 70. To recapitulate: In a basic WAEF setup, a transmitting piezoelectric transducer on one side of a wall is driven at resonance to excite ultrasonic vibrations in the wall. A receiving piezoelectric transducer on the opposite side of the wall converts the vibrations back to an ultrasonic AC electric signal, which is then detected and otherwise processed in a manner that depends on the modulation (if any) applied to the signal and whether the signal is used to transmit power, data, or both. The present document expands upon the previous information concerning underlying physical principles, advantages, and potential applications of WAEF. It discusses the design and construction of breadboard prototype piezoelectric transducers for WAEF. It goes on to present results of computational simulations of performance and results of laboratory tests of the prototypes. In one notable test, a 100-W light bulb was lit by WAEF to demonstrate the feasibility of powering a realistic load.

  2. Coherent reflection from surface gravity water waves during reciprocal acoustic transmissions.

    PubMed

    Badiey, Mohsen; Song, Aijun; Smith, Kevin B

    2012-10-01

    During a recent experiment in Kauai, Hawaii, reciprocal transmissions were conducted between two acoustic transceivers mounted on the seafloor at a depth of 100 m. The passage of moving surface wave crests was shown to generate focused and intense coherent acoustic returns, which had increasing or decreasing delay depending on the direction of propagation relative to the direction of surface wave crests. It is shown that a rough surface two-dimensional parabolic equation model with an evolving sea surface can produce qualitative agreement with data for the dynamic surface returns. PMID:23039567

  3. Acoustics

    NASA Technical Reports Server (NTRS)

    Goodman, Jerry R.; Grosveld, Ferdinand

    2007-01-01

    The acoustics environment in space operations is important to maintain at manageable levels so that the crewperson can remain safe, functional, effective, and reasonably comfortable. High acoustic levels can produce temporary or permanent hearing loss, or cause other physiological symptoms such as auditory pain, headaches, discomfort, strain in the vocal cords, or fatigue. Noise is defined as undesirable sound. Excessive noise may result in psychological effects such as irritability, inability to concentrate, decrease in productivity, annoyance, errors in judgment, and distraction. A noisy environment can also result in the inability to sleep, or sleep well. Elevated noise levels can affect the ability to communicate, understand what is being said, hear what is going on in the environment, degrade crew performance and operations, and create habitability concerns. Superfluous noise emissions can also create the inability to hear alarms or other important auditory cues such as an equipment malfunctioning. Recent space flight experience, evaluations of the requirements in crew habitable areas, and lessons learned (Goodman 2003; Allen and Goodman 2003; Pilkinton 2003; Grosveld et al. 2003) show the importance of maintaining an acceptable acoustics environment. This is best accomplished by having a high-quality set of limits/requirements early in the program, the "designing in" of acoustics in the development of hardware and systems, and by monitoring, testing and verifying the levels to ensure that they are acceptable.

  4. Frequency-Preserved Acoustic Diode Model with High Forward-Power-Transmission Rate

    NASA Astrophysics Data System (ADS)

    Liu, Chang; Du, Zongliang; Sun, Zhi; Gao, Huajian; Guo, Xu

    2015-06-01

    The acoustic diode (AD) can provide brighter and clearer ultrasound images by eliminating acoustic disturbances caused by sound waves traveling in two directions at the same time and interfering with each other. Such an AD could give designers new flexibility in making ultrasonic sources like those used in medical imaging or nondestructive testing. However, current AD designs, based on nonlinear effects, only partially fill this role by converting sound to a new frequency and blocking any backward flow of the original frequency. In this work, an AD model that preserves the frequencies of acoustic waves and has a relatively high forward-power-transmission rate is proposed. Theoretical analysis indicates that the proposed AD has forward, reverse, and breakdown characteristics very similar to electrical diodes. The significant rectifying effect of the proposed AD is verified numerically through a one-dimensional example. Possible schemes for experimental realization of this model as well as more complex and efficient AD designs are also discussed.

  5. The Effect of Habitat Acoustics on Common Marmoset Vocal Signal Transmission

    PubMed Central

    MORRILL, RYAN J.; THOMAS, A. WREN; SCHIEL, NICOLA; SOUTO, ANTONIO; MILLER, CORY T.

    2013-01-01

    Noisy acoustic environments present several challenges for the evolution of acoustic communication systems. Among the most significant is the need to limit degradation of spectro-temporal signal structure in order to maintain communicative efficacy. This can be achieved by selecting for several potentially complementary processes. Selection can act on behavioral mechanisms permitting signalers to control the timing and occurrence of signal production to avoid acoustic interference. Likewise, the signal itself may be the target of selection, biasing the evolution of its structure to comprise acoustic features that avoid interference from ambient noise or degrade minimally in the habitat. Here, we address the latter topic for common marmoset (Callithrix jacchus) long-distance contact vocalizations, known as phee calls. Our aim was to test whether this vocalization is specifically adapted for transmission in a species-typical forest habitat, the Atlantic forests of northeastern Brazil. We combined seasonal analyses of ambient habitat acoustics with experiments in which pure tones, clicks, and vocalizations were broadcast and rerecorded at different distances to characterize signal degradation in the habitat. Ambient sound was analyzed from intervals throughout the day and over rainy and dry seasons, showing temporal regularities across varied timescales. Broadcast experiment results indicated that the tone and click stimuli showed the typically inverse relationship between frequency and signaling efficacy. Although marmoset phee calls degraded over distance with marked predictability compared with artificial sounds, they did not otherwise appear to be specially designed for increased transmission efficacy or minimal interference in this habitat. We discuss these data in the context of other similar studies and evidence of potential behavioral mechanisms for avoiding acoustic interference in order to maintain effective vocal communication in common marmosets. PMID

  6. An Approach for Transmission Loss and Cost Allocation by Loss Allocation Index and Co-operative Game Theory

    NASA Astrophysics Data System (ADS)

    Khan, Baseem; Agnihotri, Ganga; Mishra, Anuprita S.

    2016-03-01

    In the present work authors proposed a novel method for transmission loss and cost allocation to users (generators and loads). In the developed methodology transmission losses are allocated to users based on their usage of the transmission line. After usage allocation, particular loss allocation indices (PLAI) are evaluated for loads and generators. Also Cooperative game theory approach is applied for comparison of results. The proposed method is simple and easy to implement on the practical power system. Sample 6 bus and IEEE 14 bus system is used for showing the effectiveness of proposed method.

  7. Characterization of Sound Transmission Loss of Laminated Glass with Analytical and Experimental Approaches

    SciTech Connect

    Sun, Xin; Simmons, Kevin L.; Khaleel, Mohammad A.

    2005-11-30

    In this project, we have developed the general formation for calculating transmission loss of sound waves through multi-layered structures. Full factorial design method has also been used to investigate the relative effect of various geometric and material parameters on the transmission loss. It was found that within the range of practical interest, the most effect way of increasing transmission loss is by increasing either the glass thickness or increasing the inner layer mass density. Experimental measurements of sound transmission loss (in decibels) for four laminated glass samples have been made in accordance to SAE J1400, in third-octave bands between 125 Hz and 8 kHz.

  8. Characterization of the Reverberation Chamber at the NASA Langley Structural Acoustics Loads and Transmission (SALT) Facility

    NASA Technical Reports Server (NTRS)

    Grosveld, Ferdinand W.

    2013-01-01

    In 2011 the noise generating capabilities in the reverberation chamber of the Structural Acoustic Loads and Transmission (SALT) facility at NASA Langley Research Center were enhanced with two fiberglass reinforced polyester resin exponential horns, each coupled to Wyle Acoustic Source WAS-3000 airstream modulators. This report describes the characterization of the reverberation chamber in terms of the background noise, diffusivity, sound pressure levels, the reverberation times and the related overall acoustic absorption in the empty chamber and with the acoustic horn(s) installed. The frequency range of interest includes the 80 Hz to 8000 Hz one-third octave bands. Reverberation time and sound pressure level measurements were conducted and standard deviations from the mean were computed. It was concluded that a diffuse field could be produced above the Schroeder frequency in the 400 Hz one-third octave band and higher for all applications. This frequency could be lowered by installing panel diffusers or moving vanes to improve the acoustic modal overlap in the chamber. In the 80 Hz to 400 Hz one-third octave bands a successful measurement will be dependent on the type of measurement, the test configuration, the source and microphone locations and the desired accuracy. It is recommended that qualification measurements endorsed in the International Standards be conducted for each particular application.

  9. Transmission loss estimation of three-dimensional silencers by system graph approach using multi-domain BEM

    NASA Astrophysics Data System (ADS)

    Park, Young-Bum; Ju, Hyeon-Don; Lee, Shi-Bok

    2009-12-01

    Transmission loss (TL) estimation of three-dimensional silencers with complicated internal structures such as inlet/outlet tubes, thin baffles, perforated tubes, and sound absorbing materials is a demanding job even by powerful numerical approach such as FEM (finite element method) or BEM (boundary element method). The transfer matrix method using the multi-domain BEM data may be an efficient tool to deal with multi-branched acoustic systems but the method has limitation in application since it is based on the assumption of plane wave propagation at the interface of sub-domains. Assembling the whole system equation directly using the multi-domain BEM data is a considerable means to deal with three-dimensional acoustic components, but the intermediate pseudo-unknown variables in the equation assembling process may be too large. An efficient practical method by system graph approach and multi-domain BEM is proposed to formulate the condensed overall acoustic system equation for the whole acoustic system, only with unknown sound pressures on the sub-domain boundaries. The solutions of the overall equation are used to compute the TL of silencers. An air suction silencer for air compressors is tested numerically and experimentally and both results are compared to back up the suggested method.

  10. Auditory nerve synapses persist in ventral cochlear nucleus long after loss of acoustic input in mice with early-onset progressive hearing loss

    PubMed Central

    McGuire, Brian; Fiorillo, Benjamin; Ryugo, David K.; Lauer, Amanda M.

    2015-01-01

    Perceptual performance in persons with hearing loss, especially those using devices to restore hearing, is not fully predicted by traditional audiometric measurements designed to evaluate the status of peripheral function. The integrity of auditory brainstem synapses may vary with different forms of hearing loss, and differential effects on the auditory nerve-brain interface may have particularly profound consequences for the transfer of sound from ear to brain. Loss of auditory nerve synapses in ventral cochlear nucleus (VCN) has been reported after acoustic trauma, ablation of the organ of Corti, and administration of ototoxic compounds. The effects of gradually acquired forms deafness on these synapses are less well understood. We investigated VCN gross morphology and auditory nerve synapse integrity in DBA/2J mice with early-onset progressive sensorineural hearing loss. Hearing status was confirmed using auditory brainstem response audiometry and acoustic startle responses. We found no change in VCN volume, number of macroneurons, or number of VGLUT1-positive auditory nerve terminals between young adult and older, deaf DBA/2J. Cell-type specific analysis revealed no difference in the number of VGLUT1 puncta contacting bushy and multipolar cell body profiles, but the terminals were smaller in deaf DBA/2J mice. Transmission electron microscopy confirmed the presence of numerous healthy, vesicle-filled auditory nerve synapses in older, deaf DBA/2J mice. The present results suggest that synapses can be preserved over a relatively long time-course in gradually acquired deafness. Elucidating the mechanisms supporting survival of central auditory nerve synapses in models of acquired deafness may reveal new opportunities for therapeutic intervention. PMID:25686750

  11. Auditory nerve synapses persist in ventral cochlear nucleus long after loss of acoustic input in mice with early-onset progressive hearing loss.

    PubMed

    McGuire, Brian; Fiorillo, Benjamin; Ryugo, David K; Lauer, Amanda M

    2015-04-24

    Perceptual performance in persons with hearing loss, especially those using devices to restore hearing, is not fully predicted by traditional audiometric measurements designed to evaluate the status of peripheral function. The integrity of auditory brainstem synapses may vary with different forms of hearing loss, and differential effects on the auditory nerve-brain interface may have particularly profound consequences for the transfer of sound from ear to brain. Loss of auditory nerve synapses in ventral cochlear nucleus (VCN) has been reported after acoustic trauma, ablation of the organ of Corti, and administration of ototoxic compounds. The effects of gradually acquired forms deafness on these synapses are less well understood. We investigated VCN gross morphology and auditory nerve synapse integrity in DBA/2J mice with early-onset progressive sensorineural hearing loss. Hearing status was confirmed using auditory brainstem response audiometry and acoustic startle responses. We found no change in VCN volume, number of macroneurons, or number of VGLUT1-positive auditory nerve terminals between young adult and older, deaf DBA/2J. Cell-type specific analysis revealed no difference in the number of VGLUT1 puncta contacting bushy and multipolar cell body profiles, but the terminals were smaller in deaf DBA/2J mice. Transmission electron microscopy confirmed the presence of numerous healthy, vesicle-filled auditory nerve synapses in older, deaf DBA/2J mice. The present results suggest that synapses can be preserved over a relatively long time-course in gradually acquired deafness. Elucidating the mechanisms supporting survival of central auditory nerve synapses in models of acquired deafness may reveal new opportunities for therapeutic intervention. PMID:25686750

  12. A Numerical Investigation of Turbine Noise Source Hierarchy and Its Acoustic Transmission Characteristics: Proof-of-Concept Progress

    NASA Technical Reports Server (NTRS)

    VanZante, Dale; Envia, Edmane

    2008-01-01

    A CFD-based simulation of single-stage turbine was done using the TURBO code to assess its viability for determining acoustic transmission through blade rows. Temporal and spectral analysis of the unsteady pressure data from the numerical simulations showed the allowable Tyler-Sofrin modes that are consistent with expectations. This indicated that high-fidelity acoustic transmission calculations are feasible with TURBO.

  13. Non-ossicular signal transmission in human middle ears: Experimental assessment of the “acoustic route” with perforated tympanic membranes

    PubMed Central

    Voss, Susan E.; Rosowski, John J.; Merchant, Saumil N.; Peake, William T.

    2008-01-01

    Direct acoustic stimulation of the cochlea by the sound-pressure difference between the oval and round windows (called the “acoustic route”) has been thought to contribute to hearing in some pathological conditions, along with the normally dominant “ossicular route.” To determine the efficacy of this acoustic route and its constituent mechanisms in human ears, sound pressures were measured at three locations in cadaveric temporal bones [with intact and perforated tympanic membranes (TMs)]: (1) in the external ear canal lateral to the TM, PTM; (2) in the tympanic cavity lateral to the oval window, POW; and (3) near the round window, PRW. Sound transmission via the acoustic route is described by two concatenated processes: (1) coupling of sound pressure from ear canal to middle-ear cavity, HPCAV≡PCAV/PTM, where PCAV represents the middle-ear cavity pressure, and (2) sound-pressure difference between the windows, HWPD≡(POW−PRW)/PCAV. Results show that: HPCAV depends on perforation size but not perforation location; HWPD depends on neither perforation size nor location. The results (1) provide a description of the window pressures based on measurements, (2) refute the common otological view that TM perforation location affects the “relative phase of the pressures at the oval and round windows,” and (3) show with an intact ossicular chain that acoustic-route transmission is substantially below ossicular-route transmission except for low frequencies with large perforations. Thus, hearing loss from TM perforations results primarily from reduction in sound coupling via the ossicular route. Some features of the frequency dependence of HPCAV and HWPD can be interpreted in terms of a structure-based lumped-element acoustic model of the perforation and middle-ear cavities. PMID:17902851

  14. Transmission losses during two flood events in the Platte River, south-central Nebraska

    NASA Astrophysics Data System (ADS)

    Huang, Yuanyang; Chen, Xunhong; Chen, Xi; Ou, Gengxin

    2015-01-01

    The Platte River in south-central Nebraska is a priority reach to maintain appropriate in-stream flow for healthy stream habitat. Transmission losses normally take place here when flood wave or reservoir-release water travels through during summer and fall. However, it is found that the reservoir-release water hardly arrived at the habitat area due to the transmission losses. Meanwhile, the limited reservoir water also is critical for crop irrigations during the same season. Therefore, to reconcile the water requirement conflict, the knowledge of the temporal-spatial variations of the transmission losses along the river is necessary to better manage the released water. Two flood events, which were only generated by upstream rainstorms, traveled through the nearly non-flowing reach of the Platte River in south-central Nebraska during the summer of 2013. The hydrological records during the two flood events provided unique data sets to study the transmission losses in the reach. The objective of this study was to investigate the temporal-spatial variation of the transmission losses during the two flood events in the reach. A numerical-analytical transmission loss model was developed to support the analysis. The results indicated that the transmission loss process in the study reach would be reasonably simulated using an effective aquifer transmissivity value of 2000 m2/d and an effective stream leakance value of 600 1/d. About 52% and 21% of the stream water flowed into the reach became the transmission losses during the two flood events, respectively. The transmission losses significantly enhanced the stream stage attenuation during the two events. Due to the stream stage attenuation, the total transmission losses decreased linearly between the upstream and downstream gauges, but its detailed spatial variation can be documented based on further hydrogeological data collection along the reach.

  15. One-dimensional pressure transfer models for acoustic-electric transmission channels

    NASA Astrophysics Data System (ADS)

    Wilt, K. R.; Lawry, T. J.; Scarton, H. A.; Saulnier, G. J.

    2015-09-01

    A method for modeling piezoelectric-based ultrasonic acoustic-electric power and data transmission channels is presented. These channels employ piezoelectric disk transducers to convey signals across a series of physical layers using ultrasonic waves. This model decomposes the mechanical pathway of the signal into individual ultrasonic propagation layers which are generally independent of the layer's adjacent domains. Each layer is represented by a two-by-two traveling pressure wave transfer matrix which relates the forward and reverse pressure waves on one side of the layer to the pressure waves on the opposite face, where each face is assumed to be in contact with a domain of arbitrary reference acoustic impedance. A rigorous implementation of ultrasonic beam spreading is introduced and implemented within applicable domains. Compatible pressure-wave models for piezoelectric transducers are given, which relate the electric voltage and current interface of the transducer to the pressure waves on one mechanical interface while also allowing for passive acoustic loading of the secondary mechanical interface. It is also shown that the piezoelectric model's electrical interface is compatible with transmission line parameters (ABCD-parameters), allowing for connection of electronic components and networks. The model is shown to be capable of reproducing the behavior of realistic physical channels.

  16. A study of the connection between tidal velocities, soliton packets and acoustic signal losses

    NASA Astrophysics Data System (ADS)

    Chin-Bing, Stanley A.; Warn-Varnas, Alex C.; King, David B.; Lamb, Kevin G.; Hawkins, James A.; Teixeira, Marvi

    2002-11-01

    Coupled ocean model and acoustic model simulations of soliton packets in the Yellow Sea have indicated that the environmental conditions necessary for anomalous signal losses can occur several times in a 24 h period. These conditions and the subsequent signal losses were observed in simulations made over an 80 h space-time evolution of soliton packets that were generated by a 0.7 m/s tidal velocity [Chin-Bing et al., J. Acoust. Soc. Am. 111, 2459 (2002)]. This particular tidal velocity was used to initiate the Lamb soliton model because the soliton packets that were generated compared favorably with SAR measurements of soliton packets in the Yellow Sea. The tidal velocities in this region can range from 0.3 m/s to 1.2 m/s. In this work we extend our simulations and analyses to include soliton packets generated by other tidal velocities in the 0.3-1.2 m/s band. Anomalous signal losses are again observed. Examples will be shown that illustrate the connections between the tidal velocities, the soliton packets that are generated by these tidal velocities, and the signal losses that can occur when acoustic signals are propagated through these soliton packets. [Work supported by ONR/NRL and by a High Performance Computing DoD grant.

  17. Analytical and experimental investigation on transmission loss of clamped double panels: implication of boundary effects.

    PubMed

    Xin, F X; Lu, T J

    2009-03-01

    The air-borne sound insulation performance of a rectangular double-panel partition clamp mounted on an infinite acoustic rigid baffle is investigated both analytically and experimentally and compared with that of a simply supported one. With the clamped (or simply supported) boundary accounted for by using the method of modal function, a double series solution for the sound transmission loss (STL) of the structure is obtained by employing the weighted residual (Galerkin) method. Experimental measurements with Al double-panel partitions having air cavity are subsequently carried out to validate the theoretical model for both types of the boundary condition, and good overall agreement is achieved. A consistency check of the two different models (based separately on clamped modal function and simply supported modal function) is performed by extending the panel dimensions to infinite where no boundaries exist. The significant discrepancies between the two different boundary conditions are demonstrated in terms of the STL versus frequency plots as well as the panel deflection mode shapes. PMID:19275309

  18. Analogy between the one-dimensional acoustic waveguide and the electrical transmission line in the cases of nonlinearity and relaxation

    NASA Astrophysics Data System (ADS)

    Yang, Desen; Zhang, Haoyang; Shi, Shengguo; Li, Di; Shi, Jie; Hu, Bo

    2015-10-01

    The propagation of plane acoustic waves can be investigated by taking advantage of the electro-acoustical analogy between the one-dimensional acoustic waveguide and the electrical transmission line, because they share the same type of equation. This paper follow the previous studies and expand the analogy into the cases of quadratic nonlinearity and dispersion produced by relaxation process. From the basic equations relating acoustic pressure, density fluctuation and velocity, which are valid for the nonlinear and relaxing media, the equivalent travelling-wave circuits of one-dimensional acoustic waveguide with the consideration of nonlinearity and relaxation processes are obtained. Furthermore, we also discuss the analogy relationship of parameters which exist in the acoustical and electrical systems.

  19. Novel binary PSO algorithm based optimization of transmission expansion planning considering power losses

    NASA Astrophysics Data System (ADS)

    Astuty; Haryono, T.

    2016-04-01

    Transmission expansion planning (TEP) is one of the issue that have to be faced caused by addition of large scale power generation into the existing power system. Optimization need to be conducted to get optimal solution technically and economically. Several mathematic methods have been applied to provide optimal allocation of new transmission line such us genetic algorithm, particle swarm optimization and tabu search. This paper proposed novel binary particle swarm optimization (NBPSO) to determine which transmission line should be added to the existing power system. There are two scenerios in this simulation. First, considering transmission power losses and the second is regardless transmission power losses. NBPSO method successfully obtain optimal solution in short computation time. Compare to the first scenario, the number of new line in second scenario which regardless power losses is less but produces high power losses that cause the cost becoming extremely expensive.

  20. Stabilizing soliton-based multichannel transmission with frequency dependent linear gain-loss

    NASA Astrophysics Data System (ADS)

    Chakraborty, Debananda; Peleg, Avner; Nguyen, Quan M.

    2016-07-01

    We report several major theoretical steps towards realizing stable long-distance multichannel soliton transmission in Kerr nonlinear waveguide loops. We find that transmission destabilization in a single waveguide is caused by resonant formation of radiative sidebands and investigate the possibility to increase transmission stability by optimization with respect to the Kerr nonlinearity coefficient γ. Moreover, we develop a general method for transmission stabilization, based on frequency dependent linear gain-loss in Kerr nonlinear waveguide couplers, and implement it in two-channel and three-channel transmission. We show that the introduction of frequency dependent loss leads to significant enhancement of transmission stability even for non-optimal γ values via decay of radiative sidebands, which takes place as a dynamic phase transition. For waveguide couplers with frequency dependent linear gain-loss, we observe stable oscillations of soliton amplitudes due to decay and regeneration of the radiative sidebands.

  1. Low-Loss Transmission Lines for High-Power Terahertz Radiation

    PubMed Central

    Nanni, Emilio A.; Jawla, Sudheer K.; Shapiro, Michael A.; Woskov, Paul P.; Temkin, Richard J.

    2012-01-01

    Applications of high-power Terahertz (THz) sources require low-loss transmission lines to minimize loss, prevent overheating and preserve the purity of the transmission mode. Concepts for THz transmission lines are reviewed with special emphasis on overmoded, metallic, corrugated transmission lines. Using the fundamental HE11 mode, these transmission lines have been successfully implemented with very low-loss at high average power levels on plasma heating experiments and THz dynamic nuclear polarization (DNP) nuclear magnetic resonance (NMR) experiments. Loss in these lines occurs directly, due to ohmic loss in the fundamental mode, and indirectly, due to mode conversion into high order modes whose ohmic loss increases as the square of the mode index. An analytic expression is derived for ohmic loss in the modes of a corrugated, metallic waveguide, including loss on both the waveguide inner surfaces and grooves. Simulations of loss with the numerical code HFSS are in good agreement with the analytic expression. Experimental tests were conducted to determine the loss of the HE11 mode in a 19 mm diameter, helically-tapped, three meter long brass waveguide with a design frequency of 330 GHz. The measured loss at 250 GHz was 0.029 ± 0.009 dB/m using a vector network analyzer approach and 0.047 ± 0.01 dB/m using a radiometer. The experimental results are in reasonable agreement with theory. These values of loss, amounting to about 1% or less per meter, are acceptable for the DNP NMR application. Loss in a practical transmission line may be much higher than the loss calculated for the HE11 mode due to mode conversion to higher order modes caused by waveguide imperfections or miter bends. PMID:23162673

  2. Low-loss Transmission Lines for High-power Terahertz Radiation

    NASA Astrophysics Data System (ADS)

    Nanni, Emilio Alessandro; Jawla, Sudheer Kumar; Shapiro, Michael A.; Woskov, Paul P.; Temkin, Richard J.

    2012-07-01

    Applications of high-power Terahertz (THz) sources require low-loss transmission lines to minimize loss, prevent overheating and preserve the purity of the transmission mode. Concepts for THz transmission lines are reviewed with special emphasis on overmoded, metallic, corrugated transmission lines. Using the fundamental HE11 mode, these transmission lines have been successfully implemented with very low-loss at high average power levels on plasma heating experiments and THz dynamic nuclear polarization (DNP) nuclear magnetic resonance (NMR) experiments. Loss in these lines occurs directly, due to ohmic loss in the fundamental mode, and indirectly, due to mode conversion into high order modes whose ohmic loss increases as the square of the mode index. An analytic expression is derived for ohmic loss in the modes of a corrugated, metallic waveguide, including loss on both the waveguide inner surfaces and grooves. Simulations of loss with the numerical code HFSS are in good agreement with the analytic expression. Experimental tests were conducted to determine the loss of the HE11 mode in a 19 mm diameter, helically-tapped, three meter long brass waveguide with a design frequency of 330 GHz. The measured loss at 250 GHz was 0.029 ± 0.009 dB/m using a vector network analyzer approach and 0.047 ± 0.01 dB/m using a radiometer. The experimental results are in reasonable agreement with theory. These values of loss, amounting to about 1% or less per meter, are acceptable for the DNP NMR application. Loss in a practical transmission line may be much higher than the loss calculated for the HE11 mode due to mode conversion to higher order modes caused by waveguide imperfections or miter bends.

  3. Low-Loss Transmission Lines for High-Power Terahertz Radiation.

    PubMed

    Nanni, Emilio A; Jawla, Sudheer K; Shapiro, Michael A; Woskov, Paul P; Temkin, Richard J

    2012-07-01

    Applications of high-power Terahertz (THz) sources require low-loss transmission lines to minimize loss, prevent overheating and preserve the purity of the transmission mode. Concepts for THz transmission lines are reviewed with special emphasis on overmoded, metallic, corrugated transmission lines. Using the fundamental HE(11) mode, these transmission lines have been successfully implemented with very low-loss at high average power levels on plasma heating experiments and THz dynamic nuclear polarization (DNP) nuclear magnetic resonance (NMR) experiments. Loss in these lines occurs directly, due to ohmic loss in the fundamental mode, and indirectly, due to mode conversion into high order modes whose ohmic loss increases as the square of the mode index. An analytic expression is derived for ohmic loss in the modes of a corrugated, metallic waveguide, including loss on both the waveguide inner surfaces and grooves. Simulations of loss with the numerical code HFSS are in good agreement with the analytic expression. Experimental tests were conducted to determine the loss of the HE(11) mode in a 19 mm diameter, helically-tapped, three meter long brass waveguide with a design frequency of 330 GHz. The measured loss at 250 GHz was 0.029 ± 0.009 dB/m using a vector network analyzer approach and 0.047 ± 0.01 dB/m using a radiometer. The experimental results are in reasonable agreement with theory. These values of loss, amounting to about 1% or less per meter, are acceptable for the DNP NMR application. Loss in a practical transmission line may be much higher than the loss calculated for the HE(11) mode due to mode conversion to higher order modes caused by waveguide imperfections or miter bends. PMID:23162673

  4. Numerical Study of Transmission Loss Through a Slow Gas Layer Adjacent to a Plate

    NASA Technical Reports Server (NTRS)

    Schiller, Noah H.; Beck, Benjamin S.; Slagle, Adam C.

    2013-01-01

    This paper describes a systematic numerical investigation of the sound transmission loss through a multilayer system consisting of a bagged gas and lightweight panel. The goal of the study is to better understand the effect of the gas on transmission loss and determine whether a gas with a slow speed of sound is beneficial for noise control applications. As part of the study, the density and speed of sound of the gas are varied independently to assess the impact of each on transmission loss. Results show that near grazing incidence the plane wave transmission loss through the multilayer system is more sensitive to the speed of sound than the density of the gas. In addition, it was found that a slow wave speed in the bagged gas provides more low-frequency transmission loss benefit than a fast wave speed. At low angles of incidence, close to the plate normal, the benefit is due to the reduction of the characteristic impedance of the gas. At high angles of incidence, the benefit is attributed to the fact that the incident waves at the air/gas interface are bent towards the surface normal. Since transmission loss is angle dependent, refraction in the slow gas layer results in a significant improvement in the transmission loss at high angles of incidence.

  5. Effect of crystalline quality of diamond film to the propagation loss of surface acoustic wave devices.

    PubMed

    Fujii, Satoshi; Shikata, Shinichi; Uemura, Tomoki; Nakahata, Hideaki; Harima, Hiroshi

    2005-10-01

    Diamond films with various crystal qualities were grown by chemical vapor deposition on silicon wafers. Their crystallinity was characterized by Raman scattering and electron backscattering diffraction. By fabricating a device structure for surface acoustic wave (SAW) using these diamond films, the propagation loss was measured at 1.8 GHz and compared with the crystallinity. It was found that the propagation loss was lowered in relatively degraded films having small crystallites, a narrow distribution in the diamond crystallite size, and preferential grain orientation. This experiment clarifies diamond film characteristics required for high-frequency applications in SAW filters. PMID:16382634

  6. Tunability of acoustic phonon transmission and thermal conductance in three dimensional quasi-periodically stubbed waveguides

    NASA Astrophysics Data System (ADS)

    Xie, Zhong-Xiang; Liu, Jing-Zhong; Yu, Xia; Wang, Hai-Bin; Deng, Yuan-Xiang; Li, Ke-Min; Zhang, Yong

    2015-03-01

    We investigate acoustic phonon transmission and thermal conductance in three dimensional (3D) quasi-periodically stubbed waveguides according to the Fibonacci sequence. Results show that the transmission coefficient exhibits the periodic oscillation upon varying the length of stub/waveguide at low frequency, and the period of such oscillation is tunably decreased with increasing the Fibonacci number N. Interestingly, there also exist some anti-resonant dips that gradually develop into wide stop-frequency gaps with increasing N. As the temperature goes up, a transition of the thermal conductance from the decrease to the increase occurs in these systems. When N is increased, the thermal conductance is approximately decreased with a linear trend. Moreover, the decreasing degree sensitively depends on the variation of temperature. A brief analysis of these results is given.

  7. The application of finite element techniques to acoustic transmission in lined ducts with flow

    NASA Technical Reports Server (NTRS)

    Astley, R. J.; Eversman, W.

    1979-01-01

    The finite element method (FEM) is used to analyze the propagation of sound in two-dimensional nonuniform ducts carrying a compressible subsonic mean flow. Galerkin and residual least squares (RLS) methods with natural and forced boundary conditions are considered. The accuracy of FEM results for the eigenvalue and transmission problems is assessed by comparison with alternative numerical schemes for nonuniform ducts. The results presented and those from associated investigations indicate that modal coupling is a significant feature of the acoustic field, especially at high Mach numbers. A multimodal model therefore appears to be essential if any reliable conclusions are to be drawn in the context of turbofan inlet regions. Improvements to the eigenvalue scheme following the implementation of higher-order Hermitian elements indicate a similar modification for the transmission problem.

  8. Multiplex transmission system for gate drive signals of inverter circuit using surface acoustic wave filters

    NASA Astrophysics Data System (ADS)

    Suzuki, Akifumi; Ueda, Kensuke; Goka, Shigeyoshi; Wada, Keiji; Kakio, Shoji

    2016-07-01

    We propose and fabricate a multiplexed transmission system based on frequency-division multiple access (FDMA) with surface acoustic wave (SAW) filters. SAW filters are suitable for use in wide-gap switching devices and multilevel inverters because of their capability to operate at high temperatures, good electrical isolation, low cost, and high reliability. Our proposed system reduces the number of electrical signal wires needed to control each switching device and eliminates the need for isolation circuits, simplifying the transmission system and gate drive circuits. We successfully controlled two switching devices with a single coaxial line and confirmed the operation of a single-phase half-bridge inverter at a supply voltage of 100 V, and the total delay time to control the switching devices was less than 2.5 µs. Our experimental results validated our proposed system.

  9. The ecological and evolutionary consequences of noise-induced acoustic habitat loss

    NASA Astrophysics Data System (ADS)

    Tennessen, Jennifer Beissinger

    Anthropogenic threats are facilitating rapid environmental change and exerting novel pressures on the integrity of ecological patterns and processes. Currently, habitat loss is the leading factor contributing to global biodiversity loss. Noise created by human activities is nearly ubiquitous in terrestrial and marine systems, and causes acoustic habitat loss by interfering with species' abilities to freely send and receive critical acoustic biological information. My dissertation investigates how novel sounds from human activities affect ecological and evolutionary processes in space and time in marine and terrestrial systems, and how species may cope with this emerging novel pressure. Using species from both marine and terrestrial systems, I present results from a theoretical investigation, and four acoustic playback experiments combining laboratory studies and field trials, that reveal a range of eco-evolutionary consequences of noiseinduced acoustic habitat loss. First, I use sound propagation modeling to assess how marine shipping noise reduces communication space between mother-calf pairs of North Atlantic right whales (Eubalaena glacialis ), an important unit of an endangered species. I show that shipping noise poses significant challenges for mother-calf pairs, but that vocal compensation strategies can substantially improve communication space. Next, in a series of acoustic playback experiments I show that road traffic noise impairs breeding migration behavior and physiology of wood frogs (Lithobates sylvaticus ). This work reveals the first evidence that traffic noise elicits a physiological stress response and suppresses production of antimicrobial peptides (a component of the innate immune response) in anurans. Further, wood frogs from populations with a history of inhabiting noisy sites mounted reduced physiological stress responses to continuous traffic noise exposure. This research using wood frogs suggests that chronic traffic noise exposure has

  10. Gas density does not affect pulmonary acoustic transmission in normal men.

    PubMed

    Mahagnah, M; Gavriely, N

    1995-03-01

    Fremitus, the transmission of sound and vibration from the mouth to the chest wall, has long been used clinically to examine the pulmonary system. Recently, modern technology has become available to measure the acoustic transfer function (TF) and transit times (TT) of the pulmonary system. Because sound speed is inversely proportional to the square root of gas density in free gas, but not in porous media, we measured the effect of air and Heliox (80% He-20% O2) breathing on pulmonary sound transmission in six healthy subjects to investigate the mechanism of sound transmission. Wide-band noise (75-2,000 Hz) was "injected" into the mouth and picked up over the trachea and chest wall. The averaged power spectra, TF, phase, and coherence were calculated using a fast Fourier transform-based algorithm. The phase data were used to calculate TT as a function of frequency. TF was found to consist of a low-pass filter property with essentially flat transmitted energy to 300 Hz and exponential decline to 600 Hz at the anterior right upper lobe (CR) and flat transmission to 100 Hz with exponential decline to 150 Hz at the right posterior base (BR). TF was not affected by breathing Heliox. The average TT values, calculated from the slopes of the averaged phase, were 1.5 +/- 0.5 ms for trachea to CR and 5.2 +/- 0.5 ms for trachea to BR transmission during air breathing. During Heliox breathing, the values of TT were 1.5 +/- 0.5 ms and 4.9 +/- 0.5 ms from the trachea to CR and from the trachea to BR locations, respectively. These results suggest that sound transmission in the respiratory system is dominated by wave propagation through the parenchymal porous structure. PMID:7775338

  11. Method and apparatus for low-loss signal transmission

    NASA Technical Reports Server (NTRS)

    Siegel, Peter (Inventor); Yeh, Cavour (Inventor); Shimabukuro, Fred (Inventor); Fraser, Scott (Inventor)

    2008-01-01

    The present invention relates to the field of radio-frequency (RF) waveguides. More specifically, the present invention pertains to a method and apparatus that provides ultra-low-loss RF waveguide structures targeted between approximately 300 GHz and approximately 30 THz. The RF waveguide includes a hollow core and a flexible honeycomb, periodic-bandgap structure surrounding the hollow core. The flexible honeycomb, periodic-bandgap structure is formed of a plurality of tubes formed of a dielectric material such as of low-loss quartz, polyethylene, or high-resistivity silicon. Using the RF waveguide, a user may attach a terahertz signal source to the waveguide and pass signals through the waveguide, while a terahertz signal receiver receives the signals.

  12. A collimated focused ultrasound beam of high acoustic transmission and minimum diffraction achieved by using a lens with subwavelength structures

    SciTech Connect

    Lin, Zhou; Tu, Juan; Cheng, Jianchun; Guo, Xiasheng E-mail: dzhang@nju.edu.cn; Wu, Junru; Huang, Pingtong; Zhang, Dong E-mail: dzhang@nju.edu.cn

    2015-09-14

    An acoustic focusing lens incorporated with periodically aligned subwavelength grooves corrugated on its spherical surface has been developed. It is demonstrated theoretically and experimentally that acoustic focusing achieved by using the lens can suppress the relative side-lobe amplitudes, enhance the focal gain, and minimize the shifting of the focus. Use of the lens coupled with a planar ultrasound transducer can generate an ultrasound beam with enhanced acoustic transmission and collimation effect, which offers the capability of improving the safety, efficiency, and accuracy of targeted surgery implemented by high intensity focused ultrasound.

  13. Estimates of the prevalence of anomalous signal losses in the Yellow Sea derived from acoustic and oceanographic computer model simulations

    NASA Astrophysics Data System (ADS)

    Chin-Bing, Stanley A.; King, David B.; Warn-Varnas, Alex C.; Lamb, Kevin G.; Hawkins, James A.; Teixeira, Marvi

    2002-05-01

    The results from collocated oceanographic and acoustic simulations in a region of the Yellow Sea near the Shandong peninsula have been presented [Chin-Bing et al., J. Acoust. Soc. Am. 108, 2577 (2000)]. In that work, the tidal flow near the peninsula was used to initialize a 2.5-dimensional ocean model [K. G. Lamb, J. Geophys. Res. 99, 843-864 (1994)] that subsequently generated internal solitary waves (solitons). The validity of these soliton simulations was established by matching satellite imagery taken over the region. Acoustic propagation simulations through this soliton field produced results similar to the anomalous signal loss measured by Zhou, Zhang, and Rogers [J. Acoust. Soc. Am. 90, 2042-2054 (1991)]. Analysis of the acoustic interactions with the solitons also confirmed the hypothesis that the loss mechanism involved acoustic mode coupling. Recently we have attempted to estimate the prevalence of these anomalous signal losses in this region. These estimates were made from simulating acoustic effects over an 80 hour space-time evolution of soliton packets. Examples will be presented that suggest the conditions necessary for anomalous signal loss may be more prevalent than previously thought. [Work supported by ONR/NRL and by a High Performance Computing DoD grant.

  14. Loss resilience for two-qubit state transmission using distributed phase sensitive amplification

    DOE PAGESBeta

    Dailey, James; Agarwal, Anjali; Toliver, Paul; Peters, Nicholas A.

    2015-11-12

    We transmit phase-encoded non-orthogonal quantum states through a 5-km long fibre-based distributed optical phase-sensitive amplifier (OPSA) using telecom-wavelength photonic qubit pairs. The gain is set to equal the transmission loss to probabilistically preserve input states during transmission. While neither state is optimally aligned to the OPSA, each input state is equally amplified with no measurable degradation in state quality. These results promise a new approach to reduce the effects of loss by encoding quantum information in a two-qubit Hilbert space which is designed to benefit from transmission through an OPSA.

  15. Loss resilience for two-qubit state transmission using distributed phase sensitive amplification

    PubMed Central

    Dailey, James M.; Agarwal, Anjali; Toliver, Paul; Peters, Nicholas A.

    2015-01-01

    We transmit phase-encoded non-orthogonal quantum states through a 5-km long fibre-based distributed optical phase-sensitive amplifier (OPSA) using telecom-wavelength photonic qubit pairs. The gain is set to equal the transmission loss to probabilistically preserve input states during transmission. While neither state is optimally aligned to the OPSA, each input state is equally amplified with no measurable degradation in state quality. These results promise a new approach to reduce the effects of loss by encoding quantum information in a two-qubit Hilbert space which is designed to benefit from transmission through an OPSA. PMID:26559465

  16. Loss resilience for two-qubit state transmission using distributed phase sensitive amplification.

    PubMed

    Dailey, James M; Agarwal, Anjali; Toliver, Paul; Peters, Nicholas A

    2015-01-01

    We transmit phase-encoded non-orthogonal quantum states through a 5-km long fibre-based distributed optical phase-sensitive amplifier (OPSA) using telecom-wavelength photonic qubit pairs. The gain is set to equal the transmission loss to probabilistically preserve input states during transmission. While neither state is optimally aligned to the OPSA, each input state is equally amplified with no measurable degradation in state quality. These results promise a new approach to reduce the effects of loss by encoding quantum information in a two-qubit Hilbert space which is designed to benefit from transmission through an OPSA. PMID:26559465

  17. Loss resilience for two-qubit state transmission using distributed phase sensitive amplification

    NASA Astrophysics Data System (ADS)

    Dailey, James M.; Agarwal, Anjali; Toliver, Paul; Peters, Nicholas A.

    2015-11-01

    We transmit phase-encoded non-orthogonal quantum states through a 5-km long fibre-based distributed optical phase-sensitive amplifier (OPSA) using telecom-wavelength photonic qubit pairs. The gain is set to equal the transmission loss to probabilistically preserve input states during transmission. While neither state is optimally aligned to the OPSA, each input state is equally amplified with no measurable degradation in state quality. These results promise a new approach to reduce the effects of loss by encoding quantum information in a two-qubit Hilbert space which is designed to benefit from transmission through an OPSA.

  18. Jump chaotic behaviour of ultra low loss bulk acoustic wave cavities

    SciTech Connect

    Goryachev, Maxim Farr, Warrick G.; Tobar, Michael E.; Galliou, Serge

    2014-08-11

    We demonstrate a previously unobserved nonlinear phenomenon in an ultra-low loss quartz bulk acoustic wave cavity (Q>3>10{sup 9}), which only occurs below 20 mK in temperature and under relatively weak pumping. The phenomenon reveals the emergence of several stable equilibria (at least two foci and two nodes) and jumps between these quasi states at random times. The degree of this randomness as well as separations between levels can be controlled by the frequency of the incident carrier signal. It is demonstrated that the nature of the effect lies beyond the standard Duffing model.

  19. Transmission spectra and optical losses of infiltration-modified hollow photonic-crystal fibres

    SciTech Connect

    Konorov, Stanislav O; Serebryannikov, E E; Zheltikova, D A; Mitrokhin, V P; Sidorov-Biryukov, D A; Fedotov, Andrei B; Zheltikov, Aleksei M; Kilin, Sergei Ya

    2005-09-30

    Transmission spectra and optical losses of hollow photonic-crystal fibres (PCFs) filled with liquid-phase materials are studied. For hollow PCFs with a cladding period of about 5 {mu}m and a core diameter of about 50 {mu}m, infiltration with water increases optical losses by approximately two orders of magnitude relative to the optical losses of the same PCF before infiltration. (optical fibres)

  20. Direct-Sequence Spread-Spectrum Modulation for Utility Packet Transmission in Underwater Acoustic Communication Networks

    NASA Astrophysics Data System (ADS)

    Duke, Peter S.

    2002-09-01

    This thesis investigates the feasibility and performance of using Direct-Sequence Spread-Spectrum (DSSS) modulation for utility-packet transmission in Seaweb underwater wireless acoustic communications networks, Seaweb networks require robust channel-tolerant utility packets having a low probability of detection (LPD) and allowing for multi-user access, MATLAB code simulated the DSSS transmitter and receiver structures and a modeled channel impulse response represented the underwater environment, The specific modulation scheme implemented is direct-sequence, differentially encoded binary phase-shift keying (DS-DBPSK) with quadrature spreading, Performance is examined using Monte Carlo simulation Bit error rates and packet error rates for various signal-to-noise ratios and channel conditions are presented and the use of a RAKE receiver, forward error-correction coding and symbol interleaving are examined for improving system performance.

  1. Binaural Simulation Experiments in the NASA Langley Structural Acoustics Loads and Transmission Facility

    NASA Technical Reports Server (NTRS)

    Grosveld, Ferdinand W.; Silcox, Richard (Technical Monitor)

    2001-01-01

    A location and positioning system was developed and implemented in the anechoic chamber of the Structural Acoustics Loads and Transmission (SALT) facility to accurately determine the coordinates of points in three-dimensional space. Transfer functions were measured between a shaker source at two different panel locations and the vibrational response distributed over the panel surface using a scanning laser vibrometer. The binaural simulation test matrix included test runs for several locations of the measuring microphones, various attitudes of the mannequin, two locations of the shaker excitation and three different shaker inputs including pulse, broadband random, and pseudo-random. Transfer functions, auto spectra, and coherence functions were acquired for the pseudo-random excitation. Time histories were acquired for the pulse and broadband random input to the shaker. The tests were repeated with a reflective surface installed. Binary data files were converted to universal format and archived on compact disk.

  2. Cascading multi-hop reservation and transmission in underwater acoustic sensor networks.

    PubMed

    Lee, Jae-Won; Cho, Ho-Shin

    2014-01-01

    The long propagation delay in an underwater acoustic channel makes designing an underwater media access control (MAC) protocol more challenging. In particular, handshaking-based MAC protocols widely used in terrestrial radio channels have been known to be inappropriate in underwater acoustic channels, because of the inordinately large latency involved in exchanging control packets. Furthermore, in the case of multi-hop relaying in a hop-by-hop handshaking manner, the end-to-end delay significantly increases. In this paper, we propose a new MAC protocol named cascading multi-hop reservation and transmission (CMRT). In CMRT, intermediate nodes between a source and a destination may start handshaking in advance for the next-hop relaying before handshaking for the previous node is completed. By this concurrent relaying, control packet exchange and data delivery cascade down to the destination. In addition, to improve channel utilization, CMRT adopts a packet-train method where multiple data packets are sent together by handshaking once. Thus, CMRT reduces the time taken for control packet exchange and accordingly increases the throughput. The performance of CMRT is evaluated and compared with that of two conventional MAC protocols (multiple-access collision avoidance for underwater (MACA-U) and MACA-U with packet trains (MACA-UPT)). The results show that CMRT outperforms other MAC protocols in terms of both throughput and end-to-end delay. PMID:25275349

  3. The use of streambed temperatures to estimate transmission losses on an experimental channel.

    SciTech Connect

    Ramon C. Naranjo; Michael H. Young; Richard Niswonger; Julianne J. Miller; Richard H. French

    2001-10-18

    Quantifying channel transmission losses in arid environments is important for a variety of reasons, from engineering design of flood control structures to evaluating recharge. To quantify the losses in an alluvial channel, an experiment was performed on a 2-km reach of an alluvial fan located on the Nevada Test Site. The channel was subjected to three separate flow events. Transmission losses were estimated using standard discharge monitoring and subsurface temperature modeling approach. Four stations were equipped to continuously monitor stage, temperature, and water content. Streambed temperatures measured at 0, 30, 50 and 100 cm depths were used to calibrate VS2DH, a two-dimensional, variably saturated flow model. Average losses based on the difference in flow between each station indicate that 21 percent, 27 percent, and 53 percent of the flow was reduced downgradient of the source. Results from the temperature monitoring identified locations with large thermal gradients, suggesting a conduction-dominated heat transfer on streambed sediments where caliche-cemented surfaces were present. Transmission losses at the lowermost segment corresponded to the smallest thermal gradient, suggesting an advection-dominated heat transfer. Losses predicted by VS2DH are within an order of magnitude of the estimated losses based on discharge measurements. The differences in losses are a result of the spatial extent to which the modeling results are applied and lateral subsurface flow.

  4. Acoustic Reflection and Transmission of 2-Dimensional Rotors and Stators, Including Mode and Frequency Scattering Effects

    NASA Technical Reports Server (NTRS)

    Hanson, Donald B.

    1999-01-01

    A reduced order modeling scheme has been developed for the unsteady acoustic and vortical coupling between blade rows of a turbomachine. The essential behavior of the system is governed by modal scattering coefficients (i.e., reflection and transmission coefficients) of the rotor, stator, inlet and nozzle, which are calculated as if they were connected to non-reflecting ducts. The objective of this report is to identify fundamental behavior of these scattering coefficients for a better understanding of the role of blade row reflection and transmission in noise generation. A 2D flat plate unsteady cascade model is used for the analysis with the expectation that the general behavior presented herein will carry over to models that include more realistic flow and geometry. It is shown that stators scatter input waves into many modes at the same frequency whereas rotors scatter on frequency, or harmonic order. Important cases are shown here the rotor reflection coefficient is greater than unity; a mode at blade passing frequency (BPF) traveling from the stator with unit sound power is reflected by the rotor with more than unit power at 2xBPF and 3xBPE Analysis is presented to explain this unexpected phenomenon. Scattering curves are presented in a format chosen for design use and for physical interpretation. To aid in interpretation of the curves, formulas are derived for special condition where waveforms are parallel to perpendicular to the rotor.

  5. Analytical modeling of a sandwiched plate piezoelectric transformer-based acoustic-electric transmission channel.

    PubMed

    Lawry, Tristan J; Wilt, Kyle R; Scarton, Henry A; Saulnier, Gary J

    2012-11-01

    The linear propagation of electromagnetic and dilatational waves through a sandwiched plate piezoelectric transformer (SPPT)-based acoustic-electric transmission channel is modeled using the transfer matrix method with mixed-domain two-port ABCD parameters. This SPPT structure is of great interest because it has been explored in recent years as a mechanism for wireless transmission of electrical signals through solid metallic barriers using ultrasound. The model we present is developed to allow for accurate channel performance prediction while greatly reducing the computational complexity associated with 2- and 3-dimensional finite element analysis. As a result, the model primarily considers 1-dimensional wave propagation; however, approximate solutions for higher-dimensional phenomena (e.g., diffraction in the SPPT's metallic core layer) are also incorporated. The model is then assessed by comparing it to the measured wideband frequency response of a physical SPPT-based channel from our previous work. Very strong agreement between the modeled and measured data is observed, confirming the accuracy and utility of the presented model. PMID:23192811

  6. Theory of ac loss in power transmission cables with second generation high temperature superconductor wires

    SciTech Connect

    Clem, J. R.; Malozemoff, A. P.

    2010-02-22

    While a considerable amount of work has been done in an effort to understand ac losses in power transmission cables made of first generation high temperature superconductor (HTS) wires, use of second generation (2G) HTS wires brings in some new considerations. The high critical current density of the HTS layer in 2G wires reduces the surface superconductor hysteretic losses, for which a new formula is derived. Instead, gap and polygonal losses, flux transfer losses in imbalanced two-layer cables and ferromagnetic losses for wires with NiW substrates constitute the principal contributions. A formula for the flux transfer losses is also derived with a paramagnetic approximation for the substrate. Current imbalance and losses associated with the magnetic substrate can be minimized by orienting the substrates of the inner winding inward and the outer winding outward.

  7. 1KW Power Transmission Using Wireless Acoustic-Electric Feed-Through (WAEF)

    NASA Technical Reports Server (NTRS)

    Sherrit, S.; Bao, X.; Badescu, M.; Aldrich, J.; Bar-Cohen, Y.; Biederman, W.

    2008-01-01

    A variety of space applications require the delivery of power into sealed structures. Since the structural integrity can be degraded by holes for cabling we present an alternative method of delivering power and information using stress waves to the internal space of a sealed structure. One particular application of this technology is in sample return missions where it is critical to preserve the sample integrity and to prevent earth contamination. Therefore, the container has to be hermetically sealed and the integrity of the seal must be monitored in order to insure to a high degree of reliability the integrity of the sample return vessel. In this study we investigated the use of piezoelectric acoustic-electric power feed-through devices to transfer electric power wirelessly through a solid wall by using elastic or acoustic waves. The technology is applicable to a range of space and terrestrial applications where power is required by electronic equipment inside sealed containers, vacuum or pressure vessels, etc., where holes in the wall are prohibitive or may result in significant structural performance degradation or unnecessarily complex designs. To meet requirements of higher power applications, the feasibility to transfer kilowatts level power was investigated. Pre-stressed longitudinal piezoelectric feed-through devices were analyzed by finite element models and an equivalent circuit model was developed to predict the power transfer characteristics to different electric loads. Based on the results of the analysis a prototype device was designed, fabricated and a demonstration of the transmission of electric power up to 1.068-kW was successfully conducted. Efficiencies in the 80-90% range were also demonstrated and methods to increase the efficiency further are currently being considered.

  8. Acoustic waveguide technique for sensing incipient faults in underground power-transmission cables: including acousto-optic techniques. Final report

    SciTech Connect

    Harrold, R.T.

    1981-09-01

    The feasibility of using acoustic waveguide techniques for sensing incipient faults in underground power transmission cables was determined. Theoretical and practical studies were made of both the acoustic emission spectrum signatures associated with cable incipient faults, and the attenuation of acoustic waves in waterfilled metal tubes used as waveguides. Based on critical data, it can be estimated that in favorable circumstances, the acoustic waveguide system would only be useful for sensing incipient faults in underground cables of approx. 800 meters (approx. 0.5 miles) or less in length. As underground power transmission cables are often several kilometers in length, it was clear at this stage of the study, that simple acoustic waveguide sensing techniques would not be adequate, and some modification would be needed. With DOE approval it was decided to investigate acousto-optic sensing techniques in order to extend the detection range. In particular, a system in which acoustic emissions from cable incipient faults impinge on a fiber-optic lightguide and locally change its refractive indes, and as a consequence, modulate laser light transmitted along the light guide. Experiments based on this concept were successful, and it has been demonstrated that it is possible to sense acoustic emissions with energy levels below one micro-joule. A practical test of this system in the laboratory using a section of compressed gas-insulated cable with an internal flashover was successfully carried out. Long distance fault sensing with this technique should be feasible as laser light can be transmitted several kilometers in fiber optic lightguides. It is believed that laser-acousto-optic fault sensing is a viable technique which, with development, could be applied for fault sensing in power cables and other apparatus.

  9. Hydraulic Fracture Propagation through Preexisting Discontinuity Monitored by Acoustic Emission and Ultrasonic Transmission

    NASA Astrophysics Data System (ADS)

    Stanchits, S.; Lund, J.; Surdi, A.; Edelman, E.; Whitney, N.; Eldredge, R.; Suarez-Rivera, R.

    2011-12-01

    Hydraulic fracturing is critical to enhance hydrocarbon production from ultra-low permeability unconventional reservoirs, and is the common completion methodology for tight formations around the world. Unfortunately, these reservoirs are often highly heterogeneous and their heterogeneity imparts a degree of geometrical complexity in hydraulic fractures that is poorly understood. Fracture complexity (e.g. branching) results in higher surface area and could be beneficial to production provided it remains conductive. Understanding the sources and consequences of fracture complexity is thus of high importance to completion and production operations. In this study we postulate that textural complexity in tight heterogeneous formations induces fracture complexity, and that the main sources of textural complexity are associated with veins, bed boundaries, lithologic contacts, and geologic interfaces. We thus study the effect of interfaces on hydraulic fracture propagation under laboratory conditions by Acoustic Emission (AE) and Ultrasonic Transmission (UT) monitoring techniques. The experiments were conducted on low permeability sandstone blocks of 279 x 279 x 381 mm length with saw cut discontinuities oriented orthogonally to the expected direction of fracture propagation. The rock is loaded in a poly-axial test frame to representative effective in-situ stress conditions of normal and deviatoric stress. Hydraulic fracturing was initiated by injection of silicon oil into a borehole drilled off center from the block. Acoustic emission (AE) events were continuously monitored during testing using nineteen P-wave sensors. Additional sensors were installed to periodically monitor ultrasonic transmission (UT) along various directions oblique and perpendicular to the fracture and the interface. The AE and UT data were recorded using a Vallen AMSY-6 system, with 16-bit amplitude resolution and 5 MHz sampling rate. Detailed analysis of AE localizations allowed us to identify

  10. Loss reduction of leaky surface acoustic wave by loading with high-velocity thin film

    NASA Astrophysics Data System (ADS)

    Kakio, Shoji; Hosaka, Keiko

    2016-07-01

    The propagation properties of a leaky surface acoustic wave (LSAW) on rotated Y-cut X-propagating lithium niobate (YX-LN) substrates loaded with an aluminum nitride (AlN) thin film with a higher phase velocity than that of the substrate were investigated theoretically and experimentally. From the theoretical calculation, it was found that the minimum attenuation can be obtained at a certain thickness of the AlN thin film for a cut angle ranging from 0 to 60° because the cut angle giving the minimum attenuation shifts toward a smaller cut angle as the film thickness is increased. The propagation properties of an LSAW on several rotated YX-LN substrates were measured by using an interdigital transducer (IDT) pair with a wavelength λ of 8 µm, and the predicted shifts of the minimum attenuation toward a smaller cut angle were demonstrated experimentally. For 0° and 10°YX-LN samples, the measured insertion loss and propagation loss were markedly reduced by loading with the AlN thin film. A larger electromechanical coupling factor (16.9%) than that at the cut angle giving zero attenuation without a film and a propagation loss less of 0.02 dB/λ were obtained simultaneously at a film thickness of 0.125 λ for the 10°YX-LN sample.

  11. Weighting of Acoustic Cues to a Manner Distinction by Children With and Without Hearing Loss

    PubMed Central

    Lowenstein, Joanna H.

    2015-01-01

    Purpose Children must develop optimal perceptual weighting strategies for processing speech in their first language. Hearing loss can interfere with that development, especially if cochlear implants are required. The three goals of this study were to measure, for children with and without hearing loss: (a) cue weighting for a manner distinction, (b) sensitivity to those cues, and (c) real-world communication functions. Method One hundred and seven children (43 with normal hearing [NH], 17 with hearing aids [HAs], and 47 with cochlear implants [CIs]) performed several tasks: labeling of stimuli from /bɑ/-to-/wɑ/ continua varying in formant and amplitude rise time (FRT and ART), discrimination of ART, word recognition, and phonemic awareness. Results Children with hearing loss were less attentive overall to acoustic structure than children with NH. Children with CIs, but not those with HAs, weighted FRT less and ART more than children with NH. Sensitivity could not explain cue weighting. FRT cue weighting explained significant amounts of variability in word recognition and phonemic awareness; ART cue weighting did not. Conclusion Signal degradation inhibits access to spectral structure for children with CIs, but cannot explain their delayed development of optimal weighting strategies. Auditory training could strengthen the weighting of spectral cues for children with CIs, thus aiding spoken language acquisition. PMID:25813201

  12. Course of hearing recovery according to frequency in patients with acute acoustic sensorineural hearing loss.

    PubMed

    Harada, Hirofumi; Ichikawa, Daisuke; Imamura, Akihide

    2008-01-01

    Through pure-tone audiometry, we studied the course of hearing recovery in 24 ears of 20 men (ages 18-48 years) who had acute acoustic sensorineural hearing loss (ASHL). All subjects were members of the Japanese Self-Defense Force. The hearing level in 5 ears returned to normal, the hearing level of 13 ears recovered but was not within the normal range, and the hearing level of 6 ears was unchanged. The time from noise exposure to presentation was longer in patients with unchanged hearing than in other patients. Recovery of hearing was poorest at 4,000 Hz, followed by 8,000 and 2,000 Hz. We concluded that hearing in patients with acute ASHL is likely to return to normal when the hearing level at 4,000 Hz recovers gradually; partial recovery of hearing is expected when the hearing level at 4,000 Hz reaches an early plateau. PMID:18616091

  13. Acoustics

    NASA Astrophysics Data System (ADS)

    The acoustics research activities of the DLR fluid-mechanics department (Forschungsbereich Stroemungsmechanik) during 1988 are surveyed and illustrated with extensive diagrams, drawings, graphs, and photographs. Particular attention is given to studies of helicopter rotor noise (high-speed impulsive noise, blade/vortex interaction noise, and main/tail-rotor interaction noise), propeller noise (temperature, angle-of-attack, and nonuniform-flow effects), noise certification, and industrial acoustics (road-vehicle flow noise and airport noise-control installations).

  14. Proving experiments on an acoustic transmission suite and its reverberation room

    NASA Astrophysics Data System (ADS)

    Plumb, G. D.

    An Acoustic Transmission Suite is a facility used for the laboratory measurement of the airborne sound transmission properties of partitions. It consists of a pair of adjoining rooms, the source room and the receive room, with a hole for the construction of the test partition in their common walls. The building is designed to minimize the sound power flow by paths other than that through the test partition. Such a facility has recently been built at the British Broadcasting Corporation (BBC) Research Department. A double brick cavity wall was built to allow the limiting sound insulation performance between the source and receive rooms in the Transmission Suite to be measured. This performance is effectively equal to that which would be measured with a perfectly isolating partition in place, and limits the maximum insulation that could be measured using the Suite. The actual isolation was shown to be impaired by a rigid bond between the test wall and the receive room walls. A demountable lightweight partition was fitted firstly to the receive and then to the source room side of the test wall. This improved the isolation of the test wall and proved that the rigid bond at its edges had been the cause of the impaired isolation. It also revealed a void above the test wall, and a further weakness through the cavity between the source and receive rooms. The mean limiting sound reduction index between the source and receive rooms was shown to be 65 dB, provided that the cavity between source and receive rooms was sealed. In future, a mechanism must be employed which provides vibration isolation between the test wall and the Transmission Suite building structure. The receive room was designed to meet the specifications detailed in the ISO-Standard for reverberation rooms. Proving tests were carried out on the reverberation room and repeatability tests were carried out to evaluate the minimum number of decays needed in each frequency band for absorption coefficient

  15. Losses at magnetic nulls in pulsed-power transmission line systems

    NASA Astrophysics Data System (ADS)

    Mendel, C. W.; Pointon, T. D.; Savage, M. E.; Seidel, D. B.; Magne, I.; Vézinet, R.

    2006-04-01

    Pulsed-power systems operating in the terawatt regime must deal with large electron flows in vacuum transmission lines. In most parts of these transmission lines the electrons are constrained by the self-magnetic field to flow parallel to the conductors. In very low impedance systems, such as those used to drive Z-pinch radiation sources, the currents from multiple transmission lines are added together. This addition necessarily involves magnetic nulls that connect the positive and negative electrodes. The resultant local loss of magnetic insulation results in electron losses at the anode in the vicinity of the nulls. The lost current due to the magnetic null might or might not be appreciable. In some cases the lost current due to the null is not large, but is spatially localized, and may create a gas and plasma release from the anode that can lead to an excessive loss, and possibly to catastrophic damage to the hardware. In this paper we describe an analytic model that uses one geometric parameter (aside from straightforward hardware size measurements) that determines the loss to the anode, and the extent of the loss region when the driving source and load are known. The parameter can be calculated in terms of the magnetic field in the region of the null calculated when no electron flow is present. The model is compared to some experimental data, and to simulations of several different hardware geometries, including some cases with multiple nulls, and unbalanced feeds.

  16. Robust transmission stabilization and dynamic switching in broadband hybrid waveguide systems with nonlinear gain and loss

    NASA Astrophysics Data System (ADS)

    Nguyen, Quan M.; Peleg, Avner; Tran, Thinh P.

    2015-01-01

    We develop a method for transmission stabilization and robust dynamic switching for colliding optical soliton sequences in broadband waveguide systems with nonlinear gain and loss. The method is based on employing hybrid waveguides, consisting of spans with linear gain and cubic loss, and spans with linear loss, cubic gain, and quintic loss. We show that the amplitude dynamics is described by a hybrid Lotka-Volterra (LV) model, and use the model to determine the physical parameter values required for enhanced transmission stabilization and switching. Numerical simulations with coupled nonlinear Schrödinger equations confirm the predictions of the LV model, and show complete suppression of radiative instability and pulse distortion. This enables stable transmission over distances larger by an order of magnitude compared with uniform waveguides with linear gain and cubic loss. Moreover, multiple on-off and off-on dynamic switching events are demonstrated over a wide range of soliton amplitudes, showing the superiority of hybrid waveguides compared with static switching in uniform waveguides.

  17. Losses at magnetic nulls in pulsed-power transmission line systems

    SciTech Connect

    Mendel, C.W. Jr.; Pointon, T.D.; Savage, M.E.; Seidel, D.B.; Magne, I.; Vezinet, R.

    2006-04-15

    Pulsed-power systems operating in the terawatt regime must deal with large electron flows in vacuum transmission lines. In most parts of these transmission lines the electrons are constrained by the self-magnetic field to flow parallel to the conductors. In very low impedance systems, such as those used to drive Z-pinch radiation sources, the currents from multiple transmission lines are added together. This addition necessarily involves magnetic nulls that connect the positive and negative electrodes. The resultant local loss of magnetic insulation results in electron losses at the anode in the vicinity of the nulls. The lost current due to the magnetic null might or might not be appreciable. In some cases the lost current due to the null is not large, but is spatially localized, and may create a gas and plasma release from the anode that can lead to an excessive loss, and possibly to catastrophic damage to the hardware. In this paper we describe an analytic model that uses one geometric parameter (aside from straightforward hardware size measurements) that determines the loss to the anode, and the extent of the loss region when the driving source and load are known. The parameter can be calculated in terms of the magnetic field in the region of the null calculated when no electron flow is present. The model is compared to some experimental data, and to simulations of several different hardware geometries, including some cases with multiple nulls, and unbalanced feeds.

  18. Losses at magnetic nulls in pulsed-power transmission line systems.

    SciTech Connect

    Magne, I.; Savage, Mark Edward; Seidel, David Bruce; Mendel, Clifford Will, Jr.; Pointon, Timothy David; Vezinet, R.

    2004-08-01

    Pulsed-power systems operating in the terawatt regime must deal with large electron flows in vacuum transmission lines. In most parts of these transmission lines the electrons are constrained by the self-magnetic field to flow parallel to the conductors. In very low impedance systems, such as those used to drive Z-pinch radiation sources, the currents from multiple transmission lines are added together. This addition necessarily involves magnetic nulls that connect the positive and negative electrodes. The resultant local loss of magnetic insulation results in electron losses at the anode in the vicinity of the nulls. The lost current due to the magnetic null might or might not be appreciable. In some cases the lost current due to the null is not large, but is spatially localized, and may create a gas and plasma release from the anode that can lead to an excessive loss, and possibly to catastrophic damage to the hardware. In this paper we describe an analytic model that uses one geometric parameter (aside from straightforward hardware size measurements) that determines the loss to the anode, and the extent of the loss region when the driving source and load are known. The parameter can be calculated in terms of the magnetic field in the region of the null calculated when no electron flow is present. The model is compared to some experimental data, and to simulations of several different hardware geometries, including some cases with multiple nulls, and unbalanced feeds.

  19. Random and systematic measurement errors in acoustic impedance as determined by the transmission line method

    NASA Technical Reports Server (NTRS)

    Parrott, T. L.; Smith, C. D.

    1977-01-01

    The effect of random and systematic errors associated with the measurement of normal incidence acoustic impedance in a zero-mean-flow environment was investigated by the transmission line method. The influence of random measurement errors in the reflection coefficients and pressure minima positions was investigated by computing fractional standard deviations of the normalized impedance. Both the standard techniques of random process theory and a simplified technique were used. Over a wavelength range of 68 to 10 cm random measurement errors in the reflection coefficients and pressure minima positions could be described adequately by normal probability distributions with standard deviations of 0.001 and 0.0098 cm, respectively. An error propagation technique based on the observed concentration of the probability density functions was found to give essentially the same results but with a computation time of about 1 percent of that required for the standard technique. The results suggest that careful experimental design reduces the effect of random measurement errors to insignificant levels for moderate ranges of test specimen impedance component magnitudes. Most of the observed random scatter can be attributed to lack of control by the mounting arrangement over mechanical boundary conditions of the test sample.

  20. Measured and calculated transmission losses of sound waves through a helium layer

    NASA Technical Reports Server (NTRS)

    Norum, T. D.

    1973-01-01

    An experiment was performed to measure the transmission losses of sound waves traversing an impedance layer. The sound emanated from a point source and the impedance layer was created by a low-speed helium jet. The transmission losses measured were of the order of 12 db for frequencies of the source between 4 and 12 kHz. These losses are greater than those predicted from analysis when the observer angle is less than about 35 deg, but less than those predicted for larger observer angles. The experimental results indicate that appreciable noise reductions can be realized for an observer shielded by an impedance layer, irrespective of his position relative to the source of sound.

  1. Propagation of narrow-band-high-frequency clicks: measured and modeled transmission loss of porpoise-like clicks in porpoise habitats.

    PubMed

    DeRuiter, Stacy L; Hansen, Michael; Koopman, Heather N; Westgate, Andrew J; Tyack, Peter L; Madsen, Peter T

    2010-01-01

    Estimating the range at which harbor porpoises can detect prey items and environmental objects is integral to understanding their biosonar. Understanding the ranges at which they can use echolocation to detect and avoid obstacles is particularly important for strategies to reduce bycatch. Transmission loss (TL) during acoustic propagation is an important determinant of those detection ranges, and it also influences animal detection functions used in passive acoustic monitoring. However, common assumptions regarding TL have rarely been tested. Here, TL of synthetic porpoise clicks was measured in porpoise habitats in Canada and Denmark, and field data were compared with spherical spreading law and ray-trace (Bellhop) model predictions. Both models matched mean observations quite well in most cases, indicating that a spherical spreading law can usually provide an accurate first-order estimate of TL for porpoise sounds in porpoise habitat. However, TL varied significantly (+/-10 dB) between sites and over time in response to variability in seafloor characteristics, sound-speed profiles, and other short-timescale environmental fluctuations. Such variability should be taken into account in estimates of the ranges at which porpoises can communicate acoustically, detect echolocation targets, and be detected via passive acoustic monitoring. PMID:20059001

  2. Self-Characterization of Commercial Ultrasound Probes in Transmission Acoustic Inverse Scattering: Transducer Model and Volume Integral Formulation

    PubMed Central

    Haynes, Mark; Verweij, Sacha A. M.; Moghaddam, Mahta; Carson, Paul L.

    2014-01-01

    A self-contained source characterization method for commercial ultrasound probes in transmission acoustic inverse scattering is derived and experimentally tested. The method is based on modified scattered field volume integral equations that are linked to the source-scattering transducer model. The source-scattering parameters are estimated via pair-wise transducer measurements and the nonlinear inversion of an acoustic propagation model that is derived. This combination creates a formal link between the transducer characterization and the inverse scattering algorithm. The method is tested with two commercial ultrasound probes in a transmission geometry including provisions for estimating the probe locations and aligning a robotic rotator. The transducer characterization results show that the nonlinear inversion fit the measured data well. The transducer calibration and inverse scattering algorithm are tested on simple targets. Initial images show that the recovered contrasts are physically consistent with expected values. PMID:24569251

  3. A unique method to study acoustic transmission through ducts using signal synthesis and averaging of acoustic pulses

    NASA Technical Reports Server (NTRS)

    Salikuddin, M.; Ramakrishnan, R.; Ahuja, K. K.; Brown, W. H.

    1981-01-01

    An acoustic impulse technique using a loudspeaker driver is developed to measure the acoustic properties of a duct/nozzle system. A signal synthesis method is used to generate a desired single pulse with a flat spectrum. The convolution of the desired signal and the inverse Fourier transform of the reciprocal of the driver's response are then fed to the driver. A signal averaging process eliminates the jet mixing noise from the mixture of jet noise and the internal noise, thereby allowing very low intensity signals to be measured accurately, even for high velocity jets. A theoretical analysis is carried out to predict the incident sound field; this is used to help determine the number and locations of the induct measurement points to account for the contributions due to higher order modes present in the incident tube method. The impulse technique is validated by comparing experimentally determined acoustic characteristics of a duct-nozzle system with similar results obtained by the impedance tube method. Absolute agreement in the comparisons was poor, but the overall shapes of the time histories and spectral distributions were much alike.

  4. Acoustic puncture assist device versus loss of resistance technique for epidural space identification

    PubMed Central

    Mittal, Amit Kumar; Goel, Nitesh; Chowdhury, Itee; Shah, Shagun Bhatia; Singh, Brijesh Pratap; Jakhar, Pradeep

    2016-01-01

    Background and Aims: The conventional techniques of epidural space (EDS) identification based on loss of resistance (LOR) have a higher chance of complications, patchy analgesia and epidural failure, which can be minimised by objective confirmation of space before catheter placement. Acoustic puncture assist device (APAD) technique objectively confirms EDS, thus enhancing success, with lesser complications. This study was planned with the objective to evaluate the APAD technique and compare it to LOR technique for EDS identification and its correlation with ultrasound guided EDS depth. Methods: In this prospective study, the lumbar vertebral spaces were scanned by the ultrasound for measuring depth of the EDS and later correlated with procedural depth measured by either of the technique (APAD or LOR). The data were subjected to descriptive statistics; the concordance correlation coefficient and Bland-Altman analysis with 95% confidence limits. Results: Acoustic dip in pitch and descent in pressure tracing on EDS localisation was observed among the patients of APAD group. Analysis of concordance correlation between the ultrasonography (USG) depth and APAD or LOR depth was significant (r ≥ 0.97 in both groups). Bland-Altman analysis revealed a mean difference of 0.171cm in group APAD and 0.154 cm in group LOR. The 95% limits of agreement for the difference between the two measurements were − 0.569 and 0.226 cm in APAD and − 0.530 to 0.222 cm in LOR group. Conclusion: We found APAD to be a precise tool for objective localisation of the EDS, co-relating well with the pre-procedural USG depth of EDS. PMID:27212720

  5. Acoustic Test Characterization of Melamine Foam for Usage in NASA's Payload Fairing Acoustic Attenuation Systems

    NASA Technical Reports Server (NTRS)

    Hughes, William O.; McNelis, Anne M.; McNelis, Mark E.

    2014-01-01

    The external acoustic liftoff levels predicted for NASA's future heavy lift launch vehicles are expected to be significantly higher than the environment created by today's commercial launch vehicles. This creates a need to develop an improved acoustic attenuation system for future NASA payload fairings. NASA Glenn Research Center initiated an acoustic test series to characterize the acoustic performance of melamine foam, with and without various acoustic enhancements. This testing was denoted as NEMFAT, which stands for NESC Enhanced Melamine Foam Acoustic Test, and is the subject of this paper. Both absorption and transmission loss testing of numerous foam configurations were performed at the Riverbank Acoustical Laboratory in July 2013. The NEMFAT test data provides an initial acoustic characterization and database of melamine foam for NASA. Because of its acoustic performance and lighter mass relative to fiberglass blankets, melamine foam is being strongly considered for use in the acoustic attenuation systems of NASA's future launch vehicles.

  6. Measurement of impulse peak insertion loss from two acoustic test fixtures and four hearing protector conditions with an acoustic shock tube

    PubMed Central

    Murphy, William J.; Fackler, Cameron J.; Berger, Elliott H.; Shaw, Peter B.; Stergar, Mike

    2015-01-01

    Impulse peak insertion loss (IPIL) was studied with two acoustic test fixtures and four hearing protector conditions at the E-A-RCAL Laboratory. IPIL is the difference between the maximum estimated pressure for the open-ear condition and the maximum pressure measured when a hearing protector is placed on an acoustic test fixture (ATF). Two models of an ATF manufactured by the French-German Research Institute of Saint-Louis (ISL) were evaluated with high-level acoustic impulses created by an acoustic shock tube at levels of 134 decibels (dB), 150 dB, and 168 dB. The fixtures were identical except that the E-A-RCAL ISL fixture had ear canals that were 3 mm longer than the National Institute for Occupational Safety and Health (NIOSH) ISL fixture. Four hearing protection conditions were tested: Combat Arms earplug with the valve open, ETYPlugs® earplug, TacticalPro headset, and a dual-protector ETYPlugs earplug with TacticalPro earmuff. The IPILs measured for the E-A-RCAL fixture were 1.4 dB greater than the National Institute for Occupational Safety and Health (NIOSH) ISL ATF. For the E-A-RCAL ISL ATF, the left ear IPIL was 2.0 dB greater than the right ear IPIL. For the NIOSH ATF, the right ear IPIL was 0.3 dB greater than the left ear IPIL. PMID:26356380

  7. Measurement of impulse peak insertion loss from two acoustic test fixtures and four hearing protector conditions with an acoustic shock tube.

    PubMed

    Murphy, William J; Fackler, Cameron J; Berger, Elliott H; Shaw, Peter B; Stergar, Mike

    2015-01-01

    Impulse peak insertion loss (IPIL) was studied with two acoustic test fixtures and four hearing protector conditions at the E-A-RCAL Laboratory. IPIL is the difference between the maximum estimated pressure for the open-ear condition and the maximum pressure measured when a hearing protector is placed on an acoustic test fixture (ATF). Two models of an ATF manufactured by the French-German Research Institute of Saint-Louis (ISL) were evaluated with high-level acoustic impulses created by an acoustic shock tube at levels of 134 decibels (dB), 150 dB, and 168 dB. The fixtures were identical except that the E-A-RCAL ISL fixture had ear canals that were 3 mm longer than the National Institute for Occupational Safety and Health (NIOSH) ISL fixture. Four hearing protection conditions were tested: Combat Arms earplug with the valve open, ETYPlugs ® earplug, TacticalPro headset, and a dual-protector ETYPlugs earplug with TacticalPro earmuff. The IPILs measured for the E-A-RCAL fixture were 1.4 dB greater than the National Institute for Occupational Safety and Health (NIOSH) ISL ATF. For the E-A-RCAL ISL ATF, the left ear IPIL was 2.0 dB greater than the right ear IPIL. For the NIOSH ATF, the right ear IPIL was 0.3 dB greater than the left ear IPIL. PMID:26356380

  8. Mode Conversion Losses in Expansion Units for ITER ECH Transmission Lines

    NASA Astrophysics Data System (ADS)

    Schaub, S. C.; Shapiro, M. A.; Temkin, R. J.; Hanson, G. R.

    2016-01-01

    The ITER electron cyclotron heating transmission lines will consist of 63.5-mm-diameter corrugated waveguides, each carrying 1 MW of 170 GHz microwaves. These transmission lines must include expansion units to accommodate expansion and contraction along the path from the gyrotron microwave sources to the tokamak. A numerical mode matching code has been developed to calculate power losses due to mode conversion of the operating mode, HE11, to higher order modes as a result of the radial discontinuities in a sliding joint. Two expansion unit designs were evaluated, a simple gap expansion unit and a more complex tapered expansion unit. The gap expansion unit demonstrated loss that oscillated rapidly with expansion length, due to trapped modes within the unit. The tapered expansion unit has been shown to effectively suppress these trapped modes at the expense of increased fabrication complexity. In a gap expansion unit, for a waveguide step size of 2.5 mm, loss can be kept below 0.1 % to a maximum expansion length of 17 mm. Expansion units without corrugation on interior walls were also evaluated. Expansion units that lack corrugations are found to increase mode trapping within the units, though not beyond useful application. The mode matching code developed in this paper was also used to estimate mode conversion loss in vacuum pumpouts for the ECH lines; the estimated loss was found to be negligibly small.

  9. Radiation-induced transmission loss in low water peak single mode fibers

    NASA Astrophysics Data System (ADS)

    Wang, Tingyun; Xiao, Zhongyin; Luo, Wenyun; Wen, Jianxiang; Yin, Jianchong; Wu, Wenkai; Gong, Renxiang

    2013-12-01

    Radiation-induced transmission loss in Low Water Peak Single Mode (LWPSM) fiber has been investigated. Formation and conversion processes of defect centers also have been proposed using electron spin resonance in the fiber irradiated with gamma rays. When the irradiation dose is low, Germanium electron center (GEC) and self-trapped hole center (STH) occur. With the increase of dose, E' centers (Si and Ge) and nonbridge oxygen hole centers (NBOHCs) generate. With the help of thermal-bleaching or photo-bleaching, the radiation-induced loss of pre-irradiation optical fiber can be reduced effectively. The obtain results also have been analyzed in detail.

  10. Job loss and depressive symptoms in couples: common stressors, stress transmission, or relationship disruption?

    PubMed

    Howe, George W; Levy, Mindy Lockshin; Caplan, Robert D

    2004-12-01

    Three models of the linkage between stressors and depressive symptoms were tested in 252 couples after job loss. Data were analyzed to test whether depressive symptoms in both members of the couple were due to common stressors, the transmission of stress from 1 member to the other, or changes in relationship quality. Evidence was found for all 3 processes. Common stressors influenced depressive symptoms in both partners. Anger and depressive symptoms of each partner partially mediated these effects on the other partner, as did reductions in relationship quality. Findings suggest that interventions to help couples cope with the aftermath of job loss may hold promise for preventing depressive reactions to stress. PMID:15598169

  11. Characterization of Mode Content and Losses in the ITER ECH Transmission Lines

    NASA Astrophysics Data System (ADS)

    Jawla, Sudheer; Kowalski, Elizabeth; Nanni, Emilio; Shapiro, Michael; Temkin, Richard; Bigelow, Timothy; Rasmussen, David

    2012-10-01

    Estimation of overall losses in the transmission line (TL) due to ohmic loss, inaccurate coupling of the quasi-Gaussian beam to the overmoded waveguide and the mode conversion becomes vital to characterize the ITER ECH system which uses 24 MW RF power at 170 GHz. Components in the TL such as 63.5-mm diameter corrugated waveguides, plane mirrors and polarizers at the miter-bends (MBs) must be characterized for these losses. Tilt and offset of the gyrotron output beam w. r. t. the TL result in excitation of higher order modes (particularly LP11 mode) and therefore additional losses. We calculate that tilting of the mirrors in two consecutive MBs in the TL can convert a significant fraction of the unwanted LP11 mode into the HE11 mode. We have observed that the estimation of mode contents in such systems, using the radiated field measurements in several planes after the waveguide end, requires an extremely high precision alignment of the scanner when measuring the field patterns. Characterizing the plane mirrors and polarizers at miter bends in cold test at low power for small length of TL becomes difficult because the losses are very small. We measured the loss of (0.022 ± 0.008) dB/ miter bend by an S11 technique for a MB with a flat mirror using a vector network analyzer. The same technique is currently being applied to measure the loss of the polarizer miter bends.

  12. Uncertainty of canal seepage losses estimated using flowing water balance with acoustic Doppler devices

    NASA Astrophysics Data System (ADS)

    Martin, Chad A.; Gates, Timothy K.

    2014-09-01

    Seepage losses from unlined irrigation canals amount to a large fraction of the total volume of water diverted for agricultural use, posing problems to both water conservation and water quality. Quantifying these losses and identifying areas where they are most prominent are crucial for determining the severity of seepage-related complications and for assessing the potential benefits of seepage reduction technologies and materials. A relatively easy and inexpensive way to estimate losses over an extensive segment of a canal is the flowing water balance, or inflow-outflow, method. Such estimates, however, have long been considered fraught with ambiguity due both to measurement error and to spatial and temporal variability. This paper presents a water balance analysis that evaluates uncertainty in 60 tests on two typical earthen irrigation canals. Monte Carlo simulation is used to account for a number of different sources of uncertainty. Issues of errors in acoustic Doppler flow measurement, in water level readings, and in evaporation estimates are considered. Storage change and canal wetted perimeter area, affected by variability in the canal prism, as well as lagged vs. simultaneous measurements of discharge at the inflow and outflow ends also are addressed. Mean estimated seepage loss rates for the tested canal reaches ranged from about -0.005 (gain) to 0.110 m3 s-1 per hectare of canal wetted perimeter (or -0.043 to 0.95 m d-1) with estimated probability distributions revealing substantial uncertainty. Across the tests, the average coefficient of variation was about 240% and the average 90th inter-percentile range was 0.143 m3 s-1 per hectare (1.24 m d-1). Sensitivity analysis indicates that while the predominant influence on seepage uncertainty is error in measured discharge at the upstream and downstream ends of the canal test reach, the magnitude and uncertainty of storage change due to unsteady flow also is a significant influence. Recommendations are

  13. Studies of acoustic-electric feed-throughs for power transmission through structures

    NASA Technical Reports Server (NTRS)

    Sherrit, Stewart; Doty, Benjamin; Badescu, Mircea; Bao, Xiaoqi; Bar-Cohen, Yoseph; Aldrich, Jack; Chang, Zensheu

    2006-01-01

    There are numerous engineering design problems where the use of wires to transfer power and communicate data thru the walls of a structure is prohibitive or significantly difficult that it may require a complex design. Using physical feedthroughs in such systems may make them susceptible to leakage of chemicals or gasses, loss of pressure or vacuum, as well as difficulties in providing adequate thermal or electrical insulation. Moreover, feeding wires thru a wall of a structure reduces the strength of the structure and makes the structure prone to cracking due to fatigue that can result from cyclic loading and stress concentrations. One area that has already been identified to require a wireless alternative to electrical feedthroughs is the container of the Mars Sample Return Mission, which will need wireless sensors to sense a pressure leak and to avoid potential contamination. The idea of using elastic or acoustic waves to transfer power was suggested recently by [Y. Hu, et al., July 2003]. This system allows for the avoidance of cabling or wiring. The technology is applicable to the transfer of power for actuation, sensing and other tasks inside any sealed container or vacuum/pressure vessel. An alternative approach to the modeling presented previously [Sherrit et a., 2005] used network analysis to solve the same problem in a clear and expandable manner. Experimental tests on three different designs of these devices were performed. The three designs used different methods of coupling the piezoelectric element to the wall. In the first test the piezoelectric material was bolted using a backing structure. In the second test the piezoelectric was clamped after the application of grease and finally the piezoelectric element was attached using a conductive epoxy. The mechanical clamp with grease produced the highest measured efficiency of 53% however this design was the least practical from a fabrication viewpoint. The power transfer efficiency of conductive epoxy

  14. Simultaneous backward data transmission and power harvesting in an ultrasonic transcutaneous energy transfer link employing acoustically dependent electric impedance modulation.

    PubMed

    Ozeri, Shaul; Shmilovitz, Doron

    2014-09-01

    The advancement and miniaturization of body implanted medical devices pose several challenges to Ultrasonic Transcutaneous Energy Transfer (UTET), such as the need to reduce the size of the piezoelectric resonator, and the need to maximize the UTET link power-transfer efficiency. Accordingly, the same piezoelectric resonator that is used for energy harvesting at the body implant, may also be used for ultrasonic backward data transfer, for instance, through impedance modulation. This paper presents physical considerations and design guidelines of the body implanted transducer of a UTET link with impedance modulation for a backward data transfer. The acoustic matching design procedure was based on the 2×2 transfer matrix chain analysis, in addition to the Krimholtz Leedom and Matthaei KLM transmission line model. The UTET power transfer was carried out at a frequency of 765 kHz, continuous wave (CW) mode. The backward data transfer was attained by inserting a 9% load resistance variation around its matched value (550 Ohm), resulting in a 12% increase in the acoustic reflection coefficient. A backward data transmission rate of 1200 bits/s was experimentally demonstrated using amplitude shift keying, simultaneously with an acoustic power transfer of 20 mW to the implant. PMID:24861424

  15. Wireless acoustic-electric feed-through for power and signal transmission

    NASA Technical Reports Server (NTRS)

    Sherrit, Stewart (Inventor); Bar-Cohen, Yoseph (Inventor); Bao, Xiaoqi (Inventor); Doty, Benjamin (Inventor); Badescu, Mircea (Inventor); Chang, Zensheu (Inventor)

    2011-01-01

    An embodiment provides electrical energy from a source on one side of a medium to a load on the other side of the medium, the embodiment including a first piezoelectric to generate acoustic energy in response to electrical energy from the source, and a second piezoelectric to convert the received acoustic energy to electrical energy used by the load. Other embodiments are described and claimed.

  16. Automatic Assessment of Acquisition and Transmission Losses in Indian Remote Sensing Satellite Data

    NASA Astrophysics Data System (ADS)

    Roy, D.; Purna Kumari, B.; Manju Sarma, M.; Aparna, N.; Gopal Krishna, B.

    2016-06-01

    The quality of Remote Sensing data is an important parameter that defines the extent of its usability in various applications. The data from Remote Sensing satellites is received as raw data frames at the ground station. This data may be corrupted with data losses due to interferences during data transmission, data acquisition and sensor anomalies. Thus it is important to assess the quality of the raw data before product generation for early anomaly detection, faster corrective actions and product rejection minimization. Manual screening of raw images is a time consuming process and not very accurate. In this paper, an automated process for identification and quantification of losses in raw data like pixel drop out, line loss and data loss due to sensor anomalies is discussed. Quality assessment of raw scenes based on these losses is also explained. This process is introduced in the data pre-processing stage and gives crucial data quality information to users at the time of browsing data for product ordering. It has also improved the product generation workflow by enabling faster and more accurate quality estimation.

  17. Laboratory tests on an aircraft fuselage to determine the insertion loss of various acoustic add-on treatments

    NASA Technical Reports Server (NTRS)

    Heitman, K. E.; Mixson, J. S.

    1984-01-01

    This paper describes a laboratory study of add-on acoustic treatments for a propeller-driven light aircraft fuselage. The treatments included: no treatment (i.e., baseline fuselage); a production-type double-wall interior; and various amounts of high density fiberglass added to the baseline fuselage. The sound source was a pneumatic-driver with attached exponential horn, supplied with a broadband signal. Data were acquired at the approximate head positions of the six passenger seats. The results were analyzed on space-averaged narrowband, one-third octave band and overall insertion loss basis. In addition, insertion loss results for the different configurations at specific frequencies representing propeller tone spectra are presented. The propeller tone data includes not only the space-averaged insertion loss, but also the variation of insertion loss at these particular frequencies across the six microphone positions.

  18. Acoustic fatigue and sound transmission characteristics of a ram composite panel design

    NASA Technical Reports Server (NTRS)

    Cockburn, J. A.; Chang, K. Y.; Kao, G. C.

    1972-01-01

    An experimental study to determine the acoustic fatigue characteristics of a flat multi-layered structural panel is described. The test panel represented a proposed design for the outer skin of a research application module to be housed within the space shuttle orbiter vehicle. The test specimen was mounted in one wall of the Wyle 100,000 cu ft reverberation room and exposed to a broadband acoustic environment having an overall level of 145 db. The test panel was exposed to nine separate applications of the acoustic environment, each application consisting of 250 seconds duration. Upon completion of the ninth test run, the specimen was exposed to a simulated micrometeoroid impact near the panel center. One additional test run of 250 seconds duration was then performed to complete the overall simulation of 50 flight missions. The experimental results show that no significant fatigue damage occurred until the test specimen was exposed to a simulated micrometeoroid impact. The intermediate foam layer forming the core of the test specimen suffered considerable damage due to this impact, causing a marked variation in the dynamic characteristics of the overall test panel. During the final application of the acoustic environment, the strain and acceleration response spectra showed considerable variation from those spectra obtained prior to impact of the panel. Fatigue damage from acoustic loading however, was limited to partial de-bonding around the edges of the composite panel.

  19. PSO for Multiobjective Economic Load Dispatch (MELD) for Minimizing Generation Cost and Transmission Losses

    NASA Astrophysics Data System (ADS)

    Jain, Narender Kumar; Nangia, Uma; Jain, Aishwary

    2016-06-01

    In this paper, multiobjective economic load dispatch (MELD) problem considering generation cost and transmission losses has been formulated using priority goal programming (PGP) technique. In this formulation, equality constraint has been considered by inclusion of penalty parameter K. It has been observed that fixing its value to 1,000 keeps the equality constraint within limits. The non-inferior set for IEEE 5, 14 and 30-bus systems has been generated by Particle Swarm Optimization (PSO) technique. The best compromise solution has been chosen as the one which gives equal percentage saving for both the objectives.

  20. Percolation Model of Sensory Transmission and Loss of Consciousness Under General Anesthesia

    NASA Astrophysics Data System (ADS)

    Zhou, David W.; Mowrey, David D.; Tang, Pei; Xu, Yan

    2015-09-01

    Neurons communicate with each other dynamically; how such communications lead to consciousness remains unclear. Here, we present a theoretical model to understand the dynamic nature of sensory activity and information integration in a hierarchical network, in which edges are stochastically defined by a single parameter p representing the percolation probability of information transmission. We validate the model by comparing the transmitted and original signal distributions, and we show that a basic version of this model can reproduce key spectral features clinically observed in electroencephalographic recordings of transitions from conscious to unconscious brain activities during general anesthesia. As p decreases, a steep divergence of the transmitted signal from the original was observed, along with a loss of signal synchrony and a sharp increase in information entropy in a critical manner; this resembles the precipitous loss of consciousness during anesthesia. The model offers mechanistic insights into the emergence of information integration from a stochastic process, laying the foundation for understanding the origin of cognition.

  1. Percolation Model of Sensory Transmission and Loss of Consciousness under General Anesthesia

    PubMed Central

    Zhou, David W.; Mowrey, David D.; Tang, Pei; Xu, Yan

    2015-01-01

    Neurons communicate with each other dynamically. How such communications lead to consciousness remains unclear. Here, we present a theoretical model to understand the dynamic nature of sensory activity and information integration in a hierarchical network, in which edges are stochastically defined by a single parameter, p, representing percolation probability of information transmission. We validate the model by comparing the transmitted and original signal distributions and show that a basic version of this model can reproduce key spectral features clinically observed in electroencephalographic recordings of transitions from conscious to unconscious brain activities during general anesthesia. As p decreases, a steep divergence of the transmitted signal from the original was observed, along with a loss of signal synchrony and a sharp increase in information entropy in a critical manner, resembling the precipitous loss of consciousness during anesthesia. The model offers mechanistic insights into the emergence of information integration from a stochastic process, laying the foundation to understand the origin of cognition. PMID:26382705

  2. Generation of Acoustic Gravity Waves by Periodic Radio Transmissions from a High-Power Ionospheric Heater

    NASA Astrophysics Data System (ADS)

    Frolov, Vladimir; Chernogor, Leonid; Rozumenko, Victor

    The Radiophysical Research Institute (Nizhny Novgorod, Russia) and Kharkiv V. N. Karazin National University (Kharkiv, Ukraine) have studied opportunities for the effective generation of acoustic gravity waves (AGWs) in 3 - 180-min period range. The excitation of such waves was conducted for the last several years using the SURA heating facility (Nizhny Novgorod). The detection of the HF-induced AGWs was carried out in the Radiophysical Observatory located near Kharkiv City at a distance of about 960 km from the SURA. A coherent radar for vertical sounding, an ionosonde, and magnetometer chains were used in our measurements. The main results are the following (see [1-5]): 1. Infrasound oscillation trains with a period of 6 min are detected during periodic SURA heater turn-on and -off. Similar oscillation trains are detected after long time pumping, during periodic transmissions with a period of 20 s, as well as after pumping turn-off. The train recordings begin 28 - 54 min after the heater turn-on or -off, and the train propagation speeds are about 300 - 570 m/s, the value of which is close to the sound speed at upper atmospheric altitudes. The amplitude of the Doppler shift frequency is of 10 - 40 mHz, which fits to the 0.1 - 0.3% electron density disturbances at ionospheric altitudes. The amplitude of the infrasound oscillations depends on the SURA mode of operation and the state of the upper atmosphere and ionosphere. 2. High-power radio transmissions stimulate the generation (or enhancement) of waves at ionospheric altitudes in the range of internal gravity wave periods. The HF-induced waves propagate with speeds of 360 - 460 m/s and produce changes in electron density with amplitudes of 2 - 3%. The generation of such periodic perturbations is more preferable with periods of 10 - 60 minutes. Their features depend significantly on the heater mode of operation. It should be stressed that perturbation intensity increases when a pumping wave frequency approaches

  3. Experimental study using nearfield acoustic holography of sound transmission through fuselage sidewall structures

    NASA Technical Reports Server (NTRS)

    Maynard, J. D.

    1986-01-01

    The reduction of cabin noise in lightweight, propeller-driven aircraft is an especially difficult problem in noise control. Nearfield Acoustic Holography (NAH) was used to determine the mode of vibration and acoustic intensity for panels which differed in: construction (number of stiffening ribs, size of stifening ribs, construction material, and panel surface curvature); boundary support condition (free edge condition or clamped edge condition); and mode of excitation (structural-borne forces or airborne forces). The different samples of aircraft panels are described and the measurement of the natural response frequencies was discussed under various boundary support and excitation conditions. The results of the NAH measurements are presented.

  4. Disease dynamics of Porites bleaching with tissue loss: prevalence, virulence, transmission, and environmental drivers.

    PubMed

    Sudek, M; Williams, G J; Runyon, C; Aeby, G S; Davy, S K

    2015-02-10

    The prevalence, number of species affected, and geographical extent of coral diseases have been increasing worldwide. We present ecological data on the coral disease Porites bleaching with tissue loss (PBTL) from Kaneohe Bay, Oahu (Hawaii, USA), affecting P. compressa. This disease is prevalent throughout the year, although it shows spatio-temporal variability with peak prevalence during the warmer summer months. Temporal variability in disease prevalence showed a strong positive relationship with elevated water temperature. Spatially, PBTL prevalence peaked in clearer waters (lower turbidity) with higher water flow and higher densities of parrotfish, together explaining approximately 26% of the spatial variability in PBTL prevalence. However, the relatively poor performance of the spatial model suggests that other, unmeasured factors may be more important in driving spatial prevalence. PBTL was not transmissible through direct contact or the water column in controlled aquaria experiments, suggesting that this disease may not be caused by a pathogen, is not highly infectious, or perhaps requires a vector for transmission. In general, PBTL results in partial tissue mortality of affected colonies; on average, one-third of the tissue is lost. This disease can affect the same colonies repeatedly, suggesting a potential for progressive damage which could cause increased tissue loss over time. P. compressa is the main framework-building species in Kaneohe Bay; PBTL therefore has the potential to negatively impact the structure of the reefs at this location. PMID:25667337

  5. Transmission of wave energy in curved ducts. [acoustic propagation within rigid walls

    NASA Technical Reports Server (NTRS)

    Rostafinski, W.

    1974-01-01

    Investigation of the ability of circular bends to transmit acoustic energy flux. A formulation of wave-energy flow is developed for motion in curved ducts. A parametric study over a range of frequencies shows the ability of circular bends to transmit energy in the case of perfectly rigid walls.

  6. Transmission loss of orthogonally rib-stiffened double-panel structures with cavity absorption.

    PubMed

    Xin, F X; Lu, T J

    2011-04-01

    The transmission loss of sound through infinite orthogonally rib-stiffened double-panel structures having cavity-filling fibrous sound absorptive materials is theoretically investigated. The propagation of sound across the fibrous material is characterized using an equivalent fluid model, and the motions of the rib-stiffeners are described by including all possible vibrations, i.e., flexural displacements, bending, and torsional rotations. The effects of fluid-structure coupling are account for by enforcing velocity continuity conditions at fluid-panel interfaces. By taking full advantage of the periodic nature of the double-panel, the space-harmonic approach and virtual work principle are applied to solve the sets of resultant governing equations, which are eventually truncated as a finite system of simultaneous algebraic equations and numerically solved insofar as the solution converges. To validate the proposed model, a comparison between the present model predictions and existing numerical and experimental results for a simplified version of the double-panel structure is carried out, with overall agreement achieved. The model is subsequently employed to explore the influence of the fluid-structure coupling between fluid in the cavity and the two panels on sound transmission across the orthogonally rib-stiffened double-panel structure. Obtained results demonstrate that this fluid-structure coupling affects significantly sound transmission loss (STL) at low frequencies and cannot be ignored when the rib-stiffeners are sparsely distributed. As a highlight of this research, an integrated optimal algorithm toward lightweight, high-stiffness and superior sound insulation capability is proposed, based on which a preliminary optimal design of the double-panel structure is performed. PMID:21476648

  7. Numerical Estimation of Sound Transmission Loss in Launch Vehicle Payload Fairing

    NASA Astrophysics Data System (ADS)

    Chandana, Pawan Kumar; Tiwari, Shashi Bhushan; Vukkadala, Kishore Nath

    2016-06-01

    Coupled acoustic-structural analysis of a typical launch vehicle composite payload faring is carried out, and results are validated with experimental data. Depending on the frequency range of interest, prediction of vibro-acoustic behavior of a structure is usually done using the finite element method, boundary element method or through statistical energy analysis. The present study focuses on low frequency dynamic behavior of a composite payload fairing structure using both coupled and uncoupled vibro-acoustic finite element models up to 710 Hz. A vibro-acoustic model, characterizing the interaction between the fairing structure, air cavity, and satellite, is developed. The external sound pressure levels specified for the payload fairing's acoustic test are considered as external loads for the analysis. Analysis methodology is validated by comparing the interior noise levels with those obtained from full scale Acoustic tests conducted in a reverberation chamber. The present approach has application in the design and optimization of acoustic control mechanisms at lower frequencies.

  8. Progress in understanding water balance, transmission loss, and groundwater recharge dynamics in drylands

    NASA Astrophysics Data System (ADS)

    Larsen, Joshua

    2016-04-01

    Water resources of sufficient quality for human and ecosystem use are by definition limited within dryland environments. A critical determination of surface water resource availability in drylands is the loss of water as flow is transmitted downstream. These losses can occur via infiltration, evaporation, and terminal ponding, and provide the pathways for groundwater recharge. However, improving our understanding of these dynamics is hampered by the lack of monitoring data and high degree of hydrological variability, which in combination impacts our ability to create calibrated models or indeed validate their results. A summary of progress in understanding transmission losses is presented, which highlights the main limitations and pathways forward. In addition, new research using novel analysis of groundwater hydrographs for recharge estimation, storage - discharge analysis for recharge estimation, geochemical tracers, remote sensing for the calibration of flow hydraulic models, and ecohydrology feedbacks will be presented that in combination pave the way for a greater understanding of how the water budget is partitioned in dryland areas and the sensitivity of this partitioning to change.

  9. The effects of experimentally induced conductive hearing loss on spectral and temporal aspects of sound transmission through the ear

    PubMed Central

    Lupo, J. Eric; Koka, Kanthaiah; Thornton, Jennifer L.; Tollin, Daniel J.

    2010-01-01

    Conductive hearing loss (CHL) is known to produce hearing deficits, including deficits in sound localization ability. The differences in sound intensities and timing experienced between the two tympanic membranes are important cues to sound localization (ILD and ITD, respectively). Although much is known about the effect of CHL on hearing levels, little investigation has been conducted into the actual impact of CHL on sound location cues. This study investigated effects of CHL induced by earplugs on cochlear microphonic (CM) amplitude and timing and their corresponding effect on the ILD and ITD location cues. Acoustic and CM measurements were made in 5 chinchillas before and after earplug insertion, and again after earplug removal using pure tones (500 Hz to 24 kHz). ILDs in the unoccluded condition demonstrated position and frequency dependence where peak far-lateral ILDs approached 30 dB for high frequencies. Unoccluded ear ITD cues demonstrated positional and frequency dependence with increased ITD cue for both decreasing frequency (± 420 µs at 500 Hz, ± 310 µs for 1–4 kHz ) and increasingly lateral sound source locations. Occlusion of the ear canal with foam plugs resulted in a mild, frequency-dependent conductive hearing loss of 10–38 dB (mean 31 ± 3.9 dB) leading to a concomitant frequency dependent increase in ILDs at all source locations. The effective ITDs increased in a frequency dependent manner with ear occlusion as a direct result of the acoustic properties of the plugging material, the latter confirmed via acoustical measurements using a model ear canal with varying volumes of acoustic foam. Upon ear plugging with acoustic foam, a mild CHL is induced. Furthermore, the CHL induced by acoustic foam results in substantial changes in the magnitudes of both the ITD and ILD cues to sound location. PMID:21073935

  10. A study of methods of prediction and measurement of the transmission of sound through the walls of light aircraft

    NASA Technical Reports Server (NTRS)

    Forssen, B.; Wang, Y. S.; Raju, P. K.; Crocker, M. J.

    1981-01-01

    The acoustic intensity technique was applied to the sound transmission loss of panel structures (single, composite, and stiffened). A theoretical model of sound transmission through a cylindrical shell is presented.

  11. A high transmission broadband gradient index lens using elastic shell acoustic metamaterial elements.

    PubMed

    Titovich, Alexey S; Norris, Andrew N; Haberman, Michael R

    2016-06-01

    The use of cylindrical elastic shells as elements in acoustic metamaterial devices is demonstrated through simulations and underwater measurements of a cylindrical-to-plane wave lens. Transformation acoustics of a circular region to a square dictate that the effective density in the lens remain constant and equal to that of water. Piecewise approximation to the desired effective compressibility is achieved using a square array with elements based on the elastic shell metamaterial concept developed by Titovich and Norris [J. Acoust. Soc. Am. 136(4), 1601-1609 (2014)]. The sizes of the elements are chosen based on availability of shells, minimizing fabrication difficulties. The tested device is neutrally buoyant comprising 48 elements of nine different types of commercial shells made from aluminum, brass, copper, and polymers. Simulations indicate a broadband range in which the device acts as a cylindrical to plane wave lens. The experimental findings confirm the broadband quadropolar response from approximately 20 to 40 kHz, with positive gain of the radiation pattern in the four plane wave directions. PMID:27369162

  12. The oblique incidence measurement of transmission loss by an impulse method

    NASA Astrophysics Data System (ADS)

    Davies, J. C.; Gibbs, B. M.

    1981-02-01

    The oblique incidence transmission loss of a free standing panel has been determined experimentally with the use of short duration impulsive signals. The geometry of the source, panel and receiver is such that the direct signal can be isolated and, on subsequent analysis, the infinite panel response obtained. Agreement with mass law is good and the angular and spectral variation of coincidence is clearly seen. Closer inspection of the time history of the transmitted waves shows a signal which arrives after the direct signal has effectively finished and before the arrival of scattered waves from the edge of the plate. Frequency analysis of this component reveals a coincidence type dip which is independent of angle and frequency.

  13. Studies of the acoustic transmission characteristics of coaxial nozzles with inverted velocity profiles: Comprehensive data report. [nozzle transfer functions

    NASA Technical Reports Server (NTRS)

    Dean, P. D.; Salikuddin, M.; Ahuja, K. K.; Plumblee, H. E.; Mungur, P.

    1979-01-01

    The efficiency of internal noise radiation through a coannular exhaust nozzle with an inverted velocity profile was studied. A preliminary investigation was first undertaken (1) to define the test parameters which influence the internal noise radiation; (2) to develop a test methodology which could realistically be used to examine the effects of the test parameters; and (3) to validate this methodology. The result was the choice of an acoustic impulse as the internal noise source in the jet nozzles. Noise transmission characteristics of a coannular nozzle system were then investigated. In particular, the effects of fan convergence angle, core extension length to annulus height ratio and flow Mach numbers and temperatures were studied. Relevant spectral data only is presented in the form of normalized nozzle transfer function versus nondimensional frequency.

  14. Frequency modulation at a moving material interface and a conservation law for wave number. [acoustic wave reflection and transmission

    NASA Technical Reports Server (NTRS)

    Kleinstein, G. G.; Gunzburger, M. D.

    1976-01-01

    An integral conservation law for wave numbers is considered. In order to test the validity of the proposed conservation law, a complete solution for the reflection and transmission of an acoustic wave impinging normally on a material interface moving at a constant speed is derived. The agreement between the frequency condition thus deduced from the dynamic equations of motion and the frequency condition derived from the jump condition associated with the integral equation supports the proposed law as a true conservation law. Additional comparisons such as amplitude discontinuities and Snells' law in a moving media further confirm the stated proposition. Results are stated concerning frequency and wave number relations across a shock front as predicted by the proposed conservation law.

  15. NEMS With Broken T Symmetry: Graphene Based Unidirectional Acoustic Transmission Lines

    PubMed Central

    Zanjani, Mehdi B.; Davoyan, Arthur R.; Engheta, Nader; Lukes, Jennifer R.

    2015-01-01

    In this work we discuss the idea of one-way acoustic signal isolation in low dimensional nanoelectromechanical oscillators. We report a theoretical study showing that one-way conversion between in-phase and anti-phase vibrational modes of a double layer graphene nanoribbon is achieved by introducing spatio-temporal modulation of system properties. The required modulation length in order to reach full conversion between the two modes is subsequently calculated. Generalization of the method beyond graphene nanoribbons and realization of a NEMS signal isolator are also discussed. PMID:25993637

  16. Low-Power Testing of Losses in Millimeter-Wave Transmission Lines for High-Power Applications

    SciTech Connect

    Han, S. T.; Comfoltey, E. N.; Shapiro, Michael; Sirigiri, Jagadishwar R.; Tax, David; Temkin, Richard J; Woskov, P. P.; Chang, Won; Rasmussen, David A

    2008-08-01

    We report the measurement of small losses in transmission line (TL) components intended for high-power millimeter-wave applications. Measurements were made using two different low-power techniques: a coherent technique using a vector network analyzer (VNA) and an incoherent technique using a radiometer. The measured loss in a 140 GHz 12.7 mm diameter TL system, consisting of 1.7 m of circular corrugated waveguide and three miter bends, is dominated by the miter bend loss. The measured loss was 0.3 {+-} 0.1 dB per miter bend using a VNA; and 0.22 {+-} 0.1 dB per miter bend using a radiometer. Good agreement between the two measurement techniques implies that both are useful for measuring small losses. To verify the methodology, the VNA technique was employed to measure the extremely small transmission loss in a 170 GHz ITER prototype TL system consisting of three lengths of 1 m, 63.5 mm diameter, circular corrugated waveguide and two miter bends. The measured loss of 0.05 {+-} 0.02 dB per miter bend may be compared with the theoretical loss of 0.027 dB per miter bend. These results suggest that low-power testing of TL losses, utilizing a small, simple TL system and a VNA, is a reliable method for evaluating performance of low-loss millimeter-wave TL components intended for use in high-power applications.

  17. Transmission and reflection of acoustic and entropy waves through a stator-rotor stage

    NASA Astrophysics Data System (ADS)

    Bauerheim, Michael; Duran, Ignacio; Livebardon, Thomas; Wang, Gaofeng; Moreau, Stéphane; Poinsot, Thierry

    2016-07-01

    The propagation of acoustic, entropy and vorticity waves through turbine stages is of significant interest in the field of core noise. In particular, entropy spots have been shown to generate significant noise when accelerated through turbine stages: the so-called indirect combustion noise. Analytical models for the propagation of acoustic, vorticity and entropy waves through a stator vane, developed since the seventies, are generally based on restrictive assumptions such as low frequency waves. In order to analyze such assumptions, the theory of Cumpsty and Marble is extended to rotating rows and applied to a 2D stator-rotor turbine stage. The theoretical transfer functions are then compared with numerical predictions from forced compressible Large-Eddy Simulations of a 2D stator-rotor configuration, using a fluid-fluid coupling strategy with an overset-grid method. The comparisons between the analytical model and the simulations are in good agreement. To improve the analytical predictions, the attenuation due to the entropy spot deformation through the stator vane or the rotor blade is then included, modeled either analytically or extracted from the mean flow of the simulations. The complete analytical model reveals a good agreement with 2D simulations, which allows the prediction and minimization of both direct and indirect noise at the design-stage without computation.

  18. The effect on the transmission loss of a double wall panel of using helium gas in the gap

    NASA Technical Reports Server (NTRS)

    Atwal, M. S.; Crocker, M. J.

    1985-01-01

    The possibility of increasing the sound-power transmission loss of a double panel by using helium gas in the gap is investigated. The transmission loss of a panel is defined as ten times the common logarithm of the ratio of the sound power incident on the panel to the sound power transmitted to the space on the other side of the panel. The work is associated with extensive research being done to develop new techniques for predicting the interior noise levels on board high-speed advanced turboprop aircraft and reducing the noise levels with a minimum weight penalty. Helium gas was chosen for its inert properties and its low impedance compared with air. With helium in the gap, the impedance mismatch experienced by the sound wave will be greater than that with air in the gap. It is seen that helium gas in the gap increases the transmission loss of the double panel over a wide range of frequencies.

  19. Experimental study using Nearfield Acoustical Holography of sound transmission fuselage sidewall structures

    NASA Technical Reports Server (NTRS)

    Maynard, J. D.

    1983-01-01

    This project involves the development of the Nearfield Acoustic Holography (NAH) technique (in particular its extension from single frequency to wideband noise measurement) and its application in a detailed study of the noise radiation characteristics of several samples of aircraft sidewall panels. With the extensive amount of information provided by the NAH technique, the properties of the sound field radiated by the panels may be correlated with their structure, mounting, and excitation (single frequency or wideband, spatially correlated or uncorrelated, structure-borne). The work accomplished at the beginning of this grant period included: (1) Calibration of the 256 microphone array and test of its accuracy. (2) extension of the facility to permit measurements on wideband noise sources. The extensions incuded the addition of high-speed data acquisition hardware and an array processor, and the development of new software. (3) Installation of motion picture graphics for correlating panel motion with structure, mounting, radiation, etc. (4) Development of new holographic data processing techniques.

  20. Acoustic echo cancellation for full-duplex voice transmission on fading channels

    NASA Technical Reports Server (NTRS)

    Park, Sangil; Messer, Dion D.

    1990-01-01

    This paper discusses the implementation of an adaptive acoustic echo canceler for a hands-free cellular phone operating on a fading channel. The adaptive lattice structure, which is particularly known for faster convergence relative to the conventional tapped-delay-line (TDL) structure, is used in the initialization stage. After convergence, the lattice coefficients are converted into the coefficients for the TDL structure which can accommodate a larger number of taps in real-time operation due to its computational simplicity. The conversion method of the TDL coefficients from the lattice coefficients is derived and the DSP56001 assembly code for the lattice and TDL structure is included, as well as simulation results and the schematic diagram for the hardware implementation.

  1. Weighting of Acoustic Cues to a Manner Distinction by Children with and without Hearing Loss

    ERIC Educational Resources Information Center

    Nittrouer, Susan; Lowenstein, Joanna H.

    2015-01-01

    Purpose: Children must develop optimal perceptual weighting strategies for processing speech in their first language. Hearing loss can interfere with that development, especially if cochlear implants are required. The three goals of this study were to measure, for children with and without hearing loss: (a) cue weighting for a manner distinction,…

  2. Charge-state-dependent energy loss of slow ions. I. Experimental results on the transmission of highly charged ions

    NASA Astrophysics Data System (ADS)

    Wilhelm, Richard A.; Gruber, Elisabeth; Smejkal, Valerie; Facsko, Stefan; Aumayr, Friedrich

    2016-05-01

    We report on energy loss measurements of slow (v ≪v0 ), highly charged (Q >10 ) ions upon transmission through a 1-nm-thick carbon nanomembrane. We emphasize here the scaling of the energy loss with the velocity and charge exchange or loss. We show that a weak linear velocity dependence exists, whereas charge exchange dominates the kinetic energy loss, especially in the case of a large charge capture. A universal scaling of the energy loss with the charge exchange and velocity is found and discussed in this paper. A model for charge-state-dependent energy loss for slow ions is presented in paper II in this series [R. A. Wilhelm and W. Möller, Phys. Rev. A 93, 052709 (2016), 10.1103/PhysRevA.93.052709].

  3. Tunable acoustic waveguide based on vibro-acoustic metamaterials with shunted piezoelectric unit cells

    NASA Astrophysics Data System (ADS)

    Kwon, Byung-Jin; Jung, Jin-Young; Lee, Dooho; Park, Kwang-Chun; Oh, Il-Kwon

    2015-10-01

    We propose a new class of acoustic waveguides with tunable bandgaps (TBs) by using vibro-acoustic metamaterials with shunted periodic piezoelectric unit cells. The unit metamaterial cells that consist of a single crystal piezoelectric transducer and an electrical shunt circuit are designed to induce a strong vibro-acousto-electrical coupling, resulting in a tunable acoustic bandgap as well as local structural resonance and Bragg scattering bandgaps. The present results show that the TB frequency can be actively controlled and the transmission loss of the acoustic wave can be greatly improved by simply changing the inductance values in the shunt circuit.

  4. A Spectral Analysis Approach for Acoustic Radiation from Composite Panels

    NASA Technical Reports Server (NTRS)

    Turner, Travis L.; Singh, Mahendra P.; Mei, Chuh

    2004-01-01

    A method is developed to predict the vibration response of a composite panel and the resulting far-field acoustic radiation due to acoustic excitation. The acoustic excitation is assumed to consist of obliquely incident plane waves. The panel is modeled by a finite element analysis and the radiated field is predicted using Rayleigh's integral. The approach can easily include other effects such as shape memory alloy (SMA) ber reinforcement, large detection thermal postbuckling, and non-symmetric SMA distribution or lamination. Transmission loss predictions for the case of an aluminum panel excited by a harmonic acoustic pressure are shown to compare very well with a classical analysis. Results for a composite panel with and without shape memory alloy reinforcement are also presented. The preliminary results demonstrate that the transmission loss can be significantly increased with shape memory alloy reinforcement. The mechanisms for further transmission loss improvement are identified and discussed.

  5. Sound Transmission Loss Prediction of the Composite Fuselage with Different Methods

    NASA Astrophysics Data System (ADS)

    Yuan, Chongxin; Bergsma, Otto; Beukers, Adriaan

    2012-12-01

    Increase of sound transmission loss(TL) of the fuselage is vital to build a comfortable cabin environment. In this paper, to find a convenient and accurate means for predicting the fuselage TL, the fuselage is modeled as a composite cylinder, and its TL is predicted with the analytical, the statistic energy analysis (SEA) and the hybrid FE&SEA method. The TL results predicted by the three methods are compared to each other and they show good agreement, but in terms of model building the SEA method is the most convenient one. Therefore, the parameters including the layup, the materials, the geometry, and the structure type are studied with the SEA method. It is observed that asymmetric laminates provide better sound insulation in general. It is further found that glass fiber laminates result in the best sound insulation as compared with graphite and aramid fiber laminates. In addition, the cylinder length has little influence on the sound insulation, while an increase of the radius considerably reduces the TL at low frequencies. Finally, by a comparison among an unstiffened laminate, a sandwich panel and a stiffened panel, the sandwich panel presents the largest TL at high frequencies and the stiffened panel demonstrates the poorest sound insulation at all frequencies.

  6. A Transparent Loss Recovery Scheme Using Packet Redirection for Wireless Video Transmissions

    NASA Astrophysics Data System (ADS)

    Shih, Chi-Huang; Shieh, Ce-Kuen; Hwang, Wen-Shyang

    2007-12-01

    With the wide deployment of wireless networks and the rapid integration of various emerging networking technologies nowadays, Internet video applications must be updated on a sufficiently timely basis to support high end-to-end quality of service (QoS) levels over heterogeneous infrastructures. However, updating the legacy applications to provide QoS support is both complex and expensive since the video applications must communicate with underlying architectures when carrying out QoS provisioning, and furthermore, should be both aware of and adaptive to variations in the network conditions. Accordingly, this paper presents a transparent loss recovery scheme to transparently support the robust video transmission on behalf of real-time streaming video applications. The proposed scheme includes the following two modules: (i) a transparent QoS mechanism which enables the QoS setup of video applications without the requirement for any modification of the existing legacy applications through its use of an efficient packet redirection scheme; and (ii) an instant frame-level FEC technique which performs online FEC bandwidth allocation within TCP-friendly rate constraints in a frame-by-frame basis to minimize the additional FEC processing delay. The experimental results show that the proposed scheme achieves nearly the same video quality that can be obtained by the optimal frame-level FEC under varying network conditions while maintaining low end-to-end delay.

  7. Sound transmission loss of double plates with an air cavity between them in a rigid duct.

    PubMed

    Kim, Hyun-Sil; Kim, Sang-Ryul; Lee, Seong-Hyun; Seo, Yun-Ho; Ma, Pyung-Sik

    2016-05-01

    In this paper, the sound transmission loss (STL) of thin double plates with an air cavity between them in a rigid duct is considered using an analytical approach. The vibration motion of the plate and sound pressure field are expanded in terms of an infinite series of the modal functions. Under the plane wave condition, a low frequency solution is derived by including the first few symmetric modes. It is determined that the peak frequencies of the double plates coincide with those of each single plate. When the two plates are identical, the STL becomes zero at the natural frequencies of the single plate. However, when the two plates are not identical, the STL is always greater than zero. The location and amplitude of the dips are investigated using an approximate solution when the cavity depth is very small. It is observed that dividing the single plate into two plates with an air cavity in between degrades the STL in the low frequency range, while the equivalent surface mass density is preserved. However, when the cavity depth is not small, the STL of the single plate can be smaller than that of the double plates. PMID:27250128

  8. Arctic acoustics ultrasonic modeling studies

    NASA Astrophysics Data System (ADS)

    Chamuel, Jacques R.

    1990-03-01

    A unique collection of laboratory ultrasonic modeling results are presented revealing and characterizing hidden pulsed seismoacoustic wave phenomena from 3-D range dependent liquid/solid boundaries. The research succeeded in isolating and identifying low frequency (10 to 500 Hz) transmission loss mechanisms and provided physical insight into Arctic acoustic problems generally beyond the state-of-the-art of theoretical and numerical analysis. The ultrasonic modeling studies dealt with controversial issues and existing discrepancies on seismo-acoustic waves at water/ice interface, sea ice thickness determination, low frequency transmission loss, and bottom leaky Rayleigh waves. The areas investigated include leaky Rayleigh waves at water/ice interface, leaky flexural waves in floating ice plates, effects of dry/wet cracks in sea ice on plate waves and near grazing acoustic waves, edge waves in floating plates, low frequency backscatter from ice keel width resonances, conversion of underwater acoustic waves into plate waves by keels, nondispersive flexural wave along apex of small angle solid wedge, Scholte and leaky Rayleigh waves along apex of immersed 90 ice wedge, backscatter from trailing edge of floes, floating plate resonances associated with near-grazing underwater acoustic waves, acoustic coupling between adjacent floes, and multiple bottom leaky Rayleigh wave components in water layer over solid bottom.

  9. Influence of the airflow speed along transmission lines on the DC corona discharge loss, using finite element approach

    SciTech Connect

    Shemshadi, A.; Akbari, A.; Niayesh, K.

    2012-07-15

    Corona discharge is of great interest from the physical point of view and due to its numerous practical applications in industry and especially one of the most important sources of loss in the high voltage transmission lines. This paper provides guidelines for the amount of electric loss caused by corona phenomenon occurred around a DC high voltage wire placed between two flat plates and influence of wind speed rate on the amount of corona loss using COMSOL Multiphysics. So electric potential distribution patterns and charge density diffusion around the wire are studied in this article.

  10. Numerical study on AC loss characteristics of superconducting power transmission cables comprising coated conductors with magnetic substrates

    NASA Astrophysics Data System (ADS)

    Amemiya, N.; Nakahata, M.

    2007-10-01

    Electromagnetic field analyses were made for mono-layer conductors comprising coated conductors for superconducting power transmission cables in order to evaluate their AC loss characteristics. We focused on the magnetic properties of the substrates of coated conductors. The current distribution in each coated conductor and the magnetic flux profile around each coated conductor were visualized. The influence of relative permeability and the space between coated conductors on the AC loss characteristics of mono-layer conductors were studied based on the visualized current and magnetic flux distributions. The influence of a saturated magnetic property on a calculated AC loss was also discussed.

  11. Effects of ionization and ion loss on dust ion- acoustic solitary waves in a collisional dusty plasma with suprathermal electrons

    NASA Astrophysics Data System (ADS)

    Tribeche, Mouloud; Mayout, Saliha

    2016-07-01

    The combined effects of ionization, ion loss and electron suprathermality on dust ion- acoustic solitary waves in a collisional dusty plasma are examined. Carrying out a small but finite amplitude analysis, a damped Korteweg- de Vries (dK-- dV) equation is derived. The damping term decreases with the increase of the spectral index and saturates for Maxwellian electrons. Choosing typical plasma parameters, the analytical approximate solution of the dK- dV equation is numerically analyzed. We first neglect the ionization and ion loss effects and account only for collisions to estimate the relative importance between these damping terms which can act concurrently. Interestingly, we found that as the suprathermal character of the electrons becomes important, the strength of the collisions related dissipation becomes more important and causes the DIA solitary wave amplitude to decay more rapidly. Moreover, the collisional damping may largely prevail over the ionization and ion loss related damping. The latter becomes more effective as the electrons evolve far away from their thermal equilibrium. Our results complement and provide new insights into previously published work on this problem.

  12. Loss of acoustic black hole effect in a structure of finite size

    NASA Astrophysics Data System (ADS)

    Tang, Liling; Cheng, Li

    2016-07-01

    The Acoustic Black Hole (ABH) effect takes place in thin-walled structures with diminishing thickness as a result of the reduction in the bending wave speed. It was shown to exist as a broadband phenomenon, based on wave propagation theory in structures of semi-infinite size. The ABH effect exhibits appealing features for various applications, such as passive vibration control, energy harvesting, and sound radiation control. In this paper, we demonstrate the disappearance of the ABH effect in a finite beam at specific frequency ranges above the cut-on frequency, both experimentally and theoretically. Analyses show that the phenomenon takes place at frequencies which are close to the low order local resonant frequencies of the portion of the beam demarcated by the position of the excitation force. These frequencies can be predicted so that the phenomenon can be avoided for the targeted frequency ranges in ABH applications.

  13. A membrane-type acoustic metamaterial with adjustable acoustic properties

    NASA Astrophysics Data System (ADS)

    Langfeldt, F.; Riecken, J.; Gleine, W.; von Estorff, O.

    2016-07-01

    A new realization of a membrane-type acoustic metamaterial (MAM) with adjustable sound transmission properties is presented. The proposed design distinguishes itself from other realizations by a stacked arrangement of two MAMs which is inflated using pressurized air. The static pressurization leads to large nonlinear deformations and, consequently, geometrical stiffening of the MAMs which is exploited to adjust the eigenmodes and sound transmission loss of the structure. A theoretical analysis of the proposed inflatable MAM design using numerical and analytical models is performed in order to identify two important mechanisms, namely the shifting of the eigenfrequencies and modal residuals due to the pressurization, responsible for the transmission loss adjustment. Analytical formulas are provided for predicting the eigenmode shifting and normal incidence sound transmission loss of inflated single and double MAMs using the concept of effective mass. The investigations are concluded with results from a test sample measurement inside an impedance tube, which confirm the theoretical predictions.

  14. Low-Power Testing of Losses in Millimeter-Wave Transmission Lines for High-Power Applications.

    PubMed

    Han, S T; Comfoltey, E N; Shapiro, M A; Sirigiri, J R; Tax, D S; Temkin, R J; Woskov, P P; Rasmussen, D A

    2008-11-01

    We report the measurement of small losses in transmission line (TL) components intended for high-power millimeter-wave applications. Measurements were made using two different low-power techniques: a coherent technique using a vector network analyzer (VNA) and an incoherent technique using a radiometer. The measured loss in a 140 GHz 12.7 mm diameter TL system, consisting of 1.7 m of circular corrugated waveguide and three miter bends, is dominated by the miter bend loss. The measured loss was 0.3±0.1 dB per miter bend using a VNA; and 0.22±0.1 dB per miter bend using a radiometer. Good agreement between the two measurement techniques implies that both are useful for measuring small losses. To verify the methodology, the VNA technique was employed to measure the extremely small transmission loss in a 170 GHz ITER prototype TL system consisting of three lengths of 1 m, 63.5 mm diameter, circular corrugated waveguide and two miter bends. The measured loss of 0.05±0.02 dB per miter bend may be compared with the theoretical loss of 0.027 dB per miter bend. These results suggest that low-power testing of TL losses, utilizing a small, simple TL system and a VNA, is a reliable method for evaluating performance of low-loss millimeter-wave TL components intended for use in high-power applications. PMID:19081774

  15. Low-Power Testing of Losses in Millimeter-Wave Transmission Lines for High-Power Applications

    PubMed Central

    Han, S. T.; Comfoltey, E. N.; Shapiro, M. A.; Sirigiri, J. R.; Tax, D. S.; Temkin, R. J.; Woskov, P. P.; Rasmussen, D. A.

    2008-01-01

    We report the measurement of small losses in transmission line (TL) components intended for high-power millimeter-wave applications. Measurements were made using two different low-power techniques: a coherent technique using a vector network analyzer (VNA) and an incoherent technique using a radiometer. The measured loss in a 140 GHz 12.7 mm diameter TL system, consisting of 1.7 m of circular corrugated waveguide and three miter bends, is dominated by the miter bend loss. The measured loss was 0.3±0.1 dB per miter bend using a VNA; and 0.22±0.1 dB per miter bend using a radiometer. Good agreement between the two measurement techniques implies that both are useful for measuring small losses. To verify the methodology, the VNA technique was employed to measure the extremely small transmission loss in a 170 GHz ITER prototype TL system consisting of three lengths of 1 m, 63.5 mm diameter, circular corrugated waveguide and two miter bends. The measured loss of 0.05±0.02 dB per miter bend may be compared with the theoretical loss of 0.027 dB per miter bend. These results suggest that low-power testing of TL losses, utilizing a small, simple TL system and a VNA, is a reliable method for evaluating performance of low-loss millimeter-wave TL components intended for use in high-power applications. PMID:19081774

  16. Numerical modeling and experimental validation of the acoustic transmission of aircraft's double-wall structures including sound package

    NASA Astrophysics Data System (ADS)

    Rhazi, Dilal

    In the field of aeronautics, reducing the harmful effects of acoustics constitutes a major concern at the international level and justifies the call for further research, particularly in Canada where aeronautics is a key economic sector, which operates in a context of global competition. Aircraft sidewall structure is usually of a double wall construction with a curved ribbed metallic skin and a lightweight composite or sandwich trim separated by a cavity filled with a noise control treatment. The latter is of a great importance in the transport industry, and continues to be of interest in many engineering applications. However, the insertion loss noise control treatment depends on the excitation of the supporting structure. In particular, Turbulent Boundary Layer is of interest to several industries. This excitation is difficult to simulate in laboratory conditions, given the prohibiting costs and difficulties associated with wind tunnel and in-flight tests. Numerical simulation is the only practical way to predict the response to such excitations and to analyze effects of design changes to the response to such excitation. Another kinds of excitations encountered in industrial are monopole, rain on the Roof and diffuse acoustic field. Deterministic methods can calculate in each point the spectral response of the system. Most known are numerical methods such as finite elements and boundary elements methods. These methods generally apply to the low frequency where modal behavior of the structure dominates. However, the high limit of calculation in frequency of these methods cannot be defined in a strict way because it is related to the capacity of data processing and to the nature of the studied mechanical system. With these challenges in mind, and with limitations of the main numerical codes on the market, the manufacturers have expressed the need for simple models immediately available as early as the stage of preliminary drafts. This thesis represents an attempt

  17. Loss tangent and complex modulus estimated by acoustic radiation force creep and shear wave dispersion

    NASA Astrophysics Data System (ADS)

    Amador, Carolina; Urban, Matthew W.; Chen, Shigao; Greenleaf, James F.

    2012-03-01

    Elasticity imaging methods have been used to study tissue mechanical properties and have demonstrated that tissue elasticity changes with disease state. In current shear wave elasticity imaging methods typically only shear wave speed is measured and rheological models, e.g. Kelvin-Voigt, Maxwell and Standard Linear Solid, are used to solve for tissue mechanical properties such as the shear viscoelastic complex modulus. This paper presents a method to quantify viscoelastic material properties in a model-independent way by estimating the complex shear elastic modulus over a wide frequency range using time-dependent creep response induced by acoustic radiation force. This radiation force induced creep method uses a conversion formula that is the analytic solution of a constitutive equation. The proposed method in combination with shearwave dispersion ultrasound vibrometry is used to measure the complex modulus so that knowledge of the applied radiation force magnitude is not necessary. The conversion formula is shown to be sensitive to sampling frequency and the first reliable measure in time according to numerical simulations using the Kelvin-Voigt model creep strain and compliance. Representative model-free shear complex moduli from homogeneous tissue mimicking phantoms and one excised swine kidney were obtained. This work proposes a novel model-free ultrasound-based elasticity method that does not require a rheological model with associated fitting requirements.

  18. Loss tangent and complex modulus estimated by acoustic radiation force creep and shear wave dispersion.

    PubMed

    Amador, Carolina; Urban, Matthew W; Chen, Shigao; Greenleaf, James F

    2012-03-01

    Elasticity imaging methods have been used to study tissue mechanical properties and have demonstrated that tissue elasticity changes with disease state. In current shear wave elasticity imaging methods typically only shear wave speed is measured and rheological models, e.g. Kelvin-Voigt, Maxwell and Standard Linear Solid, are used to solve for tissue mechanical properties such as the shear viscoelastic complex modulus. This paper presents a method to quantify viscoelastic material properties in a model-independent way by estimating the complex shear elastic modulus over a wide frequency range using time-dependent creep response induced by acoustic radiation force. This radiation force induced creep method uses a conversion formula that is the analytic solution of a constitutive equation. The proposed method in combination with shearwave dispersion ultrasound vibrometry is used to measure the complex modulus so that knowledge of the applied radiation force magnitude is not necessary. The conversion formula is shown to be sensitive to sampling frequency and the first reliable measure in time according to numerical simulations using the Kelvin-Voigt model creep strain and compliance. Representative model-free shear complex moduli from homogeneous tissue mimicking phantoms and one excised swine kidney were obtained. This work proposes a novel model-free ultrasound-based elasticity method that does not require a rheological model with associated fitting requirements. PMID:22345425

  19. Loss tangent and complex modulus estimated by acoustic radiation force creep and shear wave dispersion

    PubMed Central

    Amador, Carolina; Urban, Matthew W; Chen, Shigao; Greenleaf, James F

    2012-01-01

    Elasticity imaging methods have been used to study tissue mechanical properties and have demonstrated that tissue elasticity changes with disease state. In current shear wave elasticity imaging methods typically only shear wave speed is measured and rheological models, e.g., Kelvin-Voigt, Maxwell and Standard Linear Solid, are used to solve for tissue mechanical properties such as the shear viscoelastic complex modulus. This paper presents a method to quantify viscoelastic material properties in a model-independent way by estimating the complex shear elastic modulus over a wide frequency range using time-dependent creep response induced by acoustic radiation force. This radiation force induced creep (RFIC) method uses a conversion formula that is the analytic solution of a constitutive equation. The proposed method in combination with Shearwave Dispersion Ultrasound Vibrometry (SDUV) is used to measure the complex modulus so that knowledge of the applied radiation force magnitude is not necessary. The conversion formula is shown to be sensitive to sampling frequency and the first reliable measure in time according to numerical simulations using the Kelvin-Voigt model creep strain and compliance. Representative model-free shear complex moduli from homogeneous tissue mimicking phantoms and one excised swine kidney were obtained. This work proposes a novel model-free ultrasound-based elasticity method that does not require a rheological model with associated fitting requirements. PMID:22345425

  20. Application of the finite element method in the calculation of transmission loss of flat and curved panels

    NASA Astrophysics Data System (ADS)

    Koval, L. R.; Motamedi, S.; Ramakrishnan, J. V.

    1985-09-01

    This investigation represents an extension of a study of Roussos (1985) who considered the noise transmission loss of a rectangular plate in an infinite baffle. Roussos, who employed an analytical formulation, considered an unstiffened plate. While it is difficult to consider stiffeners by means of analytical methods, the difficulties can be avoided by employing a finite element procedure. For this reason, the present study is concerned with the implementation of a finite element method. The representation of the panel transmission loss is discussed, and the determination of the panel motion by means of the finite element technique is described, taking into account an isotropic flat panel, the exciting force, an eigenvalue problem, the radiation pressure, a plate element, and a cylindrical shell element. Numerical results are considered for a flat panel, a curved panel, and a stiffened flat panel.

  1. Determination of acoustic speed for improving leak detection and location in gas pipelines

    NASA Astrophysics Data System (ADS)

    Li, Shuaiyong; Wen, Yumei; Li, Ping; Yang, Jin; Yang, Lili

    2014-02-01

    The commonly used cross-correlation technique for leak location requires that the acoustic speed is known and invariable. In practice, the gas leakage-induced acoustic waves propagate along multiple paths including in-pipe gas and pipe wall, and the acoustic waves in different transmission paths exhibit different acoustic speeds and different dispersive behaviors, which bring a great challenge for leak detection and location in the gas pipelines. In this study, based on the vibration theory of cylindrical elastic thin shell, the wavenumber formulae in different transmission paths are derived to predict the acoustic speeds and the acoustical coupling between the in-pipe gas and the pipe wall is analyzed to determine the dominant transmission path. In addition, the velocity dispersions in the dominant transmission path are suppressed by selection of a characteristic frequency band of the gas leakage-induced acoustic waves. The theoretical predictions are verified in the experiment and the results show that the theoretical acoustic speed is slightly larger than the measured acoustic speed. Thus, the theoretical acoustic speed formula is modified considering the effect of the structural loss factor and consequently the location error using the modified acoustic speed is reduced by two times compared to that using the theoretical acoustic speed.

  2. Determination of acoustic speed for improving leak detection and location in gas pipelines.

    PubMed

    Li, Shuaiyong; Wen, Yumei; Li, Ping; Yang, Jin; Yang, Lili

    2014-02-01

    The commonly used cross-correlation technique for leak location requires that the acoustic speed is known and invariable. In practice, the gas leakage-induced acoustic waves propagate along multiple paths including in-pipe gas and pipe wall, and the acoustic waves in different transmission paths exhibit different acoustic speeds and different dispersive behaviors, which bring a great challenge for leak detection and location in the gas pipelines. In this study, based on the vibration theory of cylindrical elastic thin shell, the wavenumber formulae in different transmission paths are derived to predict the acoustic speeds and the acoustical coupling between the in-pipe gas and the pipe wall is analyzed to determine the dominant transmission path. In addition, the velocity dispersions in the dominant transmission path are suppressed by selection of a characteristic frequency band of the gas leakage-induced acoustic waves. The theoretical predictions are verified in the experiment and the results show that the theoretical acoustic speed is slightly larger than the measured acoustic speed. Thus, the theoretical acoustic speed formula is modified considering the effect of the structural loss factor and consequently the location error using the modified acoustic speed is reduced by two times compared to that using the theoretical acoustic speed. PMID:24593385

  3. Thermal analysis of a planetary transmission with spherical roller bearings operating after complete loss of oil

    NASA Technical Reports Server (NTRS)

    Coe, H. H.

    1984-01-01

    Planetsys and Spherbean, two computer programs developed for the analysis of rolling element bearings, were used to simulate the thermal performance of an OH-58 helicopter main rotor transmission. A steady state and a transient thermal analysis were made and temperatures thus calculated were compared with experimental data obtained from a transmission that was operated to destruction, which occurred about 30 min after all the oil was drained from the transmission. Temperatures predicted by Spherbean were within 3% of the corresponding measured values at 15 min elapsed time and within 9% at 25 min. Spherbean also indicates a potential for high bearing cage temperatures with misalignment and outer ring rotation.

  4. Enhancing active and passive remote sensing in the ocean using broadband acoustic transmissions and coherent hydrophone arrays

    NASA Astrophysics Data System (ADS)

    Tran, Duong Duy

    The statistics of broadband acoustic signal transmissions in a random continental shelf waveguide are characterized for the fully saturated regime. The probability distribution of broadband signal energies after saturated multi-path propagation is derived using coherence theory. The frequency components obtained from Fourier decomposition of a broadband signal are each assumed to be fully saturated, where the energy spectral density obeys the exponential distribution with 5.6 dB standard deviation and unity scintillation index. When the signal bandwidth and measurement time are respectively larger than the correlation bandwidth and correlation time of its energy spectral density components, the broadband signal energy obtained by integrating the energy spectral density across the signal bandwidth then follows the Gamma distribution with standard deviation smaller than 5.6 dB and scintillation index less than unity. The theory is verified with broadband transmissions in the Gulf of Maine shallow water waveguide in the 300-1200 Hz frequency range. The standard deviations of received broadband signal energies range from 2.7 to 4.6 dB for effective bandwidths up to 42 Hz, while the standard deviations of individual energy spectral density components are roughly 5.6 dB. The energy spectral density correlation bandwidths of the received broadband signals are found to be larger for signals with higher center frequency. Sperm whales in the New England continental shelf and slope were passively localized, in both range and bearing using a single low-frequency (< 2500 Hz), densely sampled, towed horizontal coherent hydrophone array system. Whale bearings were estimated using time-domain beamforming that provided high coherent array gain in sperm whale click signal-to-noise ratio. Whale ranges from the receiver array center were estimated using the moving array triangulation technique from a sequence of whale bearing measurements. The dive profile was estimated for a sperm

  5. Age and hearing loss and the use of acoustic cues in fricative categorization.

    PubMed

    Scharenborg, Odette; Weber, Andrea; Janse, Esther

    2015-09-01

    This study examined the use of fricative noise information and coarticulatory cues for categorization of word-final fricatives [s] and [f] by younger and older Dutch listeners alike. Particularly, the effect of information loss in the higher frequencies on the use of these two cues for fricative categorization was investigated. If information in the higher frequencies is less strongly available, fricative identification may be impaired or listeners may learn to focus more on coarticulatory information. The present study investigates this second possibility. Phonetic categorization results showed that both younger and older Dutch listeners use the primary cue fricative noise and the secondary cue coarticulatory information to distinguish word-final [f] from [s]. Individual hearing sensitivity in the older listeners modified the use of fricative noise information, but did not modify the use of coarticulatory information. When high-frequency information was filtered out from the speech signal, fricative noise could no longer be used by the younger and older adults. Crucially, they also did not learn to rely more on coarticulatory information as a compensatory cue for fricative categorization. This suggests that listeners do not readily show compensatory use of this secondary cue to fricative identity when fricative categorization becomes difficult. PMID:26428779

  6. Acoustic waveguide technique for sensing incipient faults in underground power-transmission cables: Including acousto-optic techniques

    NASA Astrophysics Data System (ADS)

    Harrold, R. T.

    1981-09-01

    Theoretical and practical studies were made of both the acoustic emission, spectrum signatures associated with underground cable incipient faults, and the attenuation of acoustic waves in waterfilled metal tubes used as waveguided. Based on critical data, it can be estimated that in favorable circumstances, the acoustic waveguide system would only be useful for sensing incipient faults in underground cables of approx. 800 meters of less in length. A system were investigated which acoustic emissions from cable incipient faults impinge on a fiber-optic lightguide and locally change its refractive index and modulate laser light transmitted along the light guide. Experiments based on this concept show that is is possible t sense acoustic emissions with energy levels below on micro-joule. A test of this system using a section of compressed gas-insulated cable with an internal flashover was successfully carried out.

  7. Enhanced GABA Transmission Drives Bradykinesia Following Loss of Dopamine D2 Receptor Signaling.

    PubMed

    Lemos, Julia C; Friend, Danielle M; Kaplan, Alanna R; Shin, Jung Hoon; Rubinstein, Marcelo; Kravitz, Alexxai V; Alvarez, Veronica A

    2016-05-18

    Bradykinesia is a prominent phenotype of Parkinson's disease, depression, and other neurological conditions. Disruption of dopamine (DA) transmission plays an important role, but progress in understanding the exact mechanisms driving slowness of movement has been impeded due to the heterogeneity of DA receptor distribution on multiple cell types within the striatum. Here we show that selective deletion of DA D2 receptors (D2Rs) from indirect-pathway medium spiny neurons (iMSNs) is sufficient to impair locomotor activity, phenocopying DA depletion models of Parkinson's disease, despite this mouse model having intact DA transmission. There was a robust enhancement of GABAergic transmission and a reduction of in vivo firing in striatal and pallidal neurons. Mimicking D2R signaling in iMSNs with Gi-DREADDs restored the level of tonic GABAergic transmission and rescued the motor deficit. These findings indicate that DA, through D2R activation in iMSNs, regulates motor output by constraining the strength of GABAergic transmission. PMID:27196975

  8. An analysis method for transmission measurements of superconducting resonators with applications to quantum-regime dielectric-loss measurements

    NASA Astrophysics Data System (ADS)

    Deng, Chunqing; Otto, Martin; Lupascu, Adrian

    2013-08-01

    Superconducting resonators provide a convenient way to measure loss tangents of various dielectrics at low temperature. For the purpose of examining the microscopic loss mechanisms in dielectrics, precise measurements of the internal quality factor at different values of energy stored in the resonators are required. Here, we present a consistent method to analyze a LC superconducting resonator coupled to a transmission line. We first derive an approximate expression for the transmission S-parameter S21(ω), with ω the excitation frequency, based on a complete circuit model. In the weak coupling limit, we show that the internal quality factor is reliably determined by fitting the approximate form of S21(ω). Since the voltage V of the capacitor of the LC circuit is required to determine the energy stored in the resonator, we next calculate the relation between V and the forward propagating wave voltage Vin+, with the latter being the parameter controlled in experiments. Due to the dependence of the quality factor on voltage, V is not simply proportional to Vin+. We find a self-consistent way to determine the relation between V and Vin+, which employs only the fitting parameters for S21(ω) and a linear scaling factor. We then examine the resonator transmission in the cases of port reflection and impedance mismatch. We find that resonator transmission asymmetry is primarily due to the reflection from discontinuity in transmission lines. We show that our analysis method to extract the internal quality factor is robust in the non-ideal cases above. Finally, we show that the analysis method used for the LC resonator can be generalized to arbitrary weakly coupled lumped and distributed resonators. The generalization uses a systematic approximation on the response function based on the pole and zero which are closest to the resonance frequency. This Closest Pole and Zero Method is a valuable tool for analyzing physical measurements of high-Q resonators.

  9. Experimental demonstration of an acoustic magnifying hyperlens

    NASA Astrophysics Data System (ADS)

    Li, Jensen; Fok, Lee; Yin, Xiaobo; Bartal, Guy; Zhang, Xiang

    2009-12-01

    Acoustic metamaterials can manipulate sound waves in surprising ways, which include collimation, focusing, cloaking, sonic screening and extraordinary transmission. Recent theories suggested that imaging below the diffraction limit using passive elements can be realized by acoustic superlenses or magnifying hyperlenses. These could markedly enhance the capabilities in underwater sonar sensing, medical ultrasound imaging and non-destructive materials testing. However, these proposed approaches suffer narrow working frequency bands and significant resonance-induced loss, which hinders them from successful experimental realization. Here, we report the experimental demonstration of an acoustic hyperlens that magnifies subwavelength objects by gradually converting evanescent components into propagating waves. The fabricated acoustic hyperlens relies on straightforward cutoff-free propagation and achieves deep-subwavelength resolution with low loss over a broad frequency bandwidth.

  10. Single-mode porous fiber for low-loss polarization maintaining terahertz transmission

    NASA Astrophysics Data System (ADS)

    Rana, Sohel; Saiful Islam, Md.; Faisal, Mohammad; Roy, Krishna Chandra; Islam, Raonaqul; Kaijage, Shubi F.

    2016-07-01

    We report on a polymer-based porous-core photonic crystal fiber for simultaneous high-birefringent and low-loss propagation of narrowband terahertz (THz) electromagnetic waves. The high birefringence is induced by using rotated elliptical air holes inside the porous-core. The fiber is numerically analyzed with an efficient finite-element method. The simulation results exhibit an extremely high birefringence of ˜0.042 and a very low effective material loss of ˜0.07 cm-1 at an operating frequency of 1 THz. Moreover, we have found an optimal rotation angle (θ)=n30 deg (n is an odd integer). Other modal features of the fiber, such as confinement loss, power fraction, effective area, bending loss, and dispersion, also have been analyzed. We anticipate that the proposed fiber would be suitable in polarization maintaining THz wave guidance applications.

  11. Predictors and impact of losses to follow-up in an HIV-1 perinatal transmission cohort in Malawi.

    PubMed

    Ioannidis, J P; Taha, T E; Kumwenda, N; Broadhead, R; Mtimavalye, L; Miotti, P; Yellin, F; Contopoulos-Ioannidis, D G; Biggar, R J

    1999-08-01

    Predictors and the impact of losses to follow-up of infants born to a large HIV- infected cohort of delivering women in urban Malawi were studied. The women enrolled in an intervention trial including vaginal cleansing with chlorhexidine at the time of delivery. Findings showed that of the 2156 infants born to HIV- infected mothers, about 1359 (63.1%) had been diagnosed with HIV infection, 797 (36.9%) with undetermined status, 144 (6.7%) with missing status, and about 653 (30.3%) were never brought back for follow-up. The odds of HIV positivity decreased in the determination of infectious status (P = 0.03) despite the probability of additional transmission from breast-feeding. Late-coming and lost children of less educated parents had similar birth weight (P = 0.50) and were likely less to return. This was probably due to the fact that the fathers of the lost children were farmers. Besides, infant birth weight, twins vs. singletons, and maternal education were affiliated with significant variation in the observed risk of perinatal transmission among HIV-positive infants. Thus, with regard to the intervention trial, the LFU were approximately equal in both groups. There was no evidence that the losses were unbalanced between arms in relation to the predictors of transmission. PMID:10480709

  12. Record 500 km unrepeatered 1 Tbit/s (10 x 100 G) transmission over an ultra-low loss fiber.

    PubMed

    Gainov, Vladimir; Gurkin, Nikolay; Lukinih, Sergey; Makovejs, Sergejs; Akopov, Sergey; Ten, Sergey; Nanii, Oleg; Treshchikov, Vladimir; Sleptsov, Mikhail

    2014-09-22

    In this work we experimentally demonstrate 1 Tbit/s (10 x 100 Gbit/s) unrepeatered transmission over 500.5 km using dual polarization quadrature phase shift keyed (DP-QPSK) format and real-time processing. Such ultra-long distance is enabled by the use of high-performance 100G DP-QPSK transponders (the required optical signal-to-noise ratio is 12 dB), ultra-low loss Corning SMF-28 ULL fiber (the average attenuation of the spools used in this experiment <0.160 dB/km), and optimization of remotely-pumped optical amplifiers. To the best of our knowledge this is the longest unrepeatered 100G-based 1 Tb/s WDM transmission distance reported to date. PMID:25321702

  13. 100 Gbit/s WDM transmission at 2 µm: transmission studies in both low-loss hollow core photonic bandgap fiber and solid core fiber.

    PubMed

    Zhang, H; Kavanagh, N; Li, Z; Zhao, J; Ye, N; Chen, Y; Wheeler, N V; Wooler, J P; Hayes, J R; Sandoghchi, S R; Poletti, F; Petrovich, M N; Alam, S U; Phelan, R; O'Carroll, J; Kelly, B; Grüner-Nielsen, L; Richardson, D J; Corbett, B; Garcia Gunning, F C

    2015-02-23

    We show for the first time 100 Gbit/s total capacity at 2 µm waveband, using 4 × 9.3 Gbit/s 4-ASK Fast-OFDM direct modulation and 4 × 15.7 Gbit/s NRZ-OOK external modulation, spanning a 36.3 nm wide wavelength range. WDM transmission was successfully demonstrated over 1.15 km of low-loss hollow core photonic bandgap fiber (HC-PBGF) and over 1 km of solid core fiber (SCF). We conclude that the OSNR penalty associated with the SCF is minimal, while a ~1-2 dB penalty was observed after the HC-PBGF probably due to mode coupling to higher-order modes. PMID:25836529

  14. Single and three-phase AC losses in HTS superconducting power transmission line prototype cables

    SciTech Connect

    Daney, D.E.; Boenig, H.J.; Maley, M.P.; Coulter, J.Y.; Fleshler, S.

    1997-11-01

    AC losses in two, one-meter-long lengths of HTS prototype multi-strand conductors (PMC`s) are measured with a temperature-difference calorimeter. Both single-phase and three-phase losses are examined with ac currents up to 1,000 A rms. The calorimeter, designed specifically for these measurements, has a precision of 1 mW. PMC {number_sign}1 has two helically-wound, non-insulated layers of HTS tape (19 tapes per layer), each layer wrapped with opposite pitch. PMC {number_sign}2 is identical except for insulation between the layers. The measured ac losses show no significant effect of interlayer insulation and depend on about the third power of the current--a result in agreement with the Bean-Norris model adapted to the double-helix configuration. The three-phase losses are a factor of two higher than those exhibited by a single isolated conductor, indicating a significant interaction between phases.

  15. Multi-stage pulse tube cryocooler with acoustic impedance constructed to reduce transient cool down time and thermal loss

    NASA Technical Reports Server (NTRS)

    Gedeon, David R. (Inventor); Wilson, Kyle B. (Inventor)

    2008-01-01

    The cool down time for a multi-stage, pulse tube cryocooler is reduced by configuring at least a portion of the acoustic impedance of a selected stage, higher than the first stage, so that it surrounds the cold head of the selected stage. The surrounding acoustic impedance of the selected stage is mounted in thermally conductive connection to the warm region of the selected stage for cooling the acoustic impedance and is fabricated of a high thermal diffusivity, low thermal radiation emissivity material, preferably aluminum.

  16. Analysis of catalytic gas products using electron energy-loss spectroscopy and residual gas analysis for operando transmission electron microscopy.

    PubMed

    Miller, Benjamin K; Crozier, Peter A

    2014-06-01

    Operando transmission electron microscopy (TEM) of catalytic reactions requires that the gas composition inside the TEM be known during the in situ reaction. Two techniques for measuring gas composition inside the environmental TEM are described and compared here. First, electron energy-loss spectroscopy, both in the low-loss and core-loss regions of the spectrum was utilized. The data were quantified using a linear combination of reference spectra from individual gasses to fit a mixture spectrum. Mass spectrometry using a residual gas analyzer was also used to quantify the gas inside the environmental cell. Both electron energy-loss spectroscopy and residual gas analysis were applied simultaneously to a known 50/50 mixture of CO and CO2, so the results from the two techniques could be compared and evaluated. An operando TEM experiment was performed using a Ru catalyst supported on silica spheres and loaded into the TEM on a specially developed porous pellet TEM sample. Both techniques were used to monitor the conversion of CO to CO2 over the catalyst, while simultaneous atomic resolution imaging of the catalyst was performed. PMID:24815065

  17. Single-mode optical fiber for high-power, low-loss UV transmission.

    PubMed

    Colombe, Yves; Slichter, Daniel H; Wilson, Andrew C; Leibfried, Dietrich; Wineland, David J

    2014-08-11

    We report large-mode-area solid-core photonic crystal fibers made from fused silica that resist ultraviolet (UV) solarization even at relatively high optical powers. Using a process of hydrogen loading and UV irradiation of the fibers, we demonstrate stable single-mode transmission over hundreds of hours for fiber output powers of 10 mW at 280 nm and 125 mW at 313 nm (limited only by the available laser power). Fiber attenuation ranges from 0.9 dB/m to 0.13 dB/m at these wavelengths, and is unaffected by bending for radii above 50 mm. PMID:25321060

  18. Finite Element Development and Specifications of a Patched, Recessed Nomex Core Honeycomb Panel for Increased Sound Transmission Loss

    NASA Technical Reports Server (NTRS)

    Grosveld, Ferdinand W.

    2007-01-01

    This informal report summarizes the development and the design specifications of a recessed nomex core honeycomb panel in fulfillment of the deliverable in Task Order 13RBE, Revision 10, Subtask 17. The honeycomb panel, with 0.020-inch thick aluminum face sheets, has 0.016-inch thick aluminum patches applied to twenty-five, 6 by 6 inch, quarter inch thick recessed cores. A 10 dB higher transmission loss over the frequency range 250 - 1000 Hz was predicted by a MSC/NASTRAN finite element model when compared with the transmission loss of the base nomex core honeycomb panel. The static displacement, due to a unit force applied at either the core or recessed core area, was of the same order of magnitude as the static displacement of the base honeycomb panel when exposed to the same unit force. The mass of the new honeycomb design is 5.1% more than the base honeycomb panel. A physical model was constructed and is being tested.

  19. Acoustic metamaterials for sound mitigation

    NASA Astrophysics Data System (ADS)

    Assouar, Badreddine; Oudich, Mourad; Zhou, Xiaoming

    2016-05-01

    We provide theoretical and numerical analyses of the behavior of a plate-type acoustic metamaterial considered in an air-borne sound environment in view of sound mitigation application. Two configurations of plate are studied, a spring-mass one and a pillar system-based one. The acoustic performances of the considered systems are investigated with different approaches and show that a high sound transmission loss (STL) up to 82 dB is reached with a metamaterial plate with a thickness of 0.5 mm. The physical understanding of the acoustic behavior of the metamaterial partition is discussed based on both air-borne and structure-borne approaches. Confrontation between the STL, the band structure, the displacement fields and the effective mass density of the plate metamaterial is made to have a complete physical understanding of the different mechanisms involved. xml:lang="fr"

  20. Morphological Correlates of Hearing Loss after Cochlear Implantation and Electro-Acoustic Stimulation in a Hearing-Impaired Guinea Pig Model

    PubMed Central

    Reiss, Lina A.J.; Stark, Gemaine; Nguyen-Huynh, Anh T.; Spear, Kayce A.; Zhang, Hongzheng; Tanaka, Chiemi; Li, Hongzhe

    2016-01-01

    Hybrid or electro-acoustic stimulation (EAS) cochlear implants (CIs) are designed to provide high-frequency electric hearing together with residual low-frequency acoustic hearing. However, 30-50% of EAS CI recipients lose residual hearing after implantation. The objective of this study was to determine the mechanisms of EAS-induced hearing loss in an animal model with high-frequency hearing loss. Guinea pigs were exposed to 24 hours of noise (12-24 kHz at 116 dB) to induce a high-frequency hearing loss. After recovery, two groups of animals were implanted (n=6 per group), with one group receiving chronic acoustic and electric stimulation for 10 weeks, and the other group receiving no stimulation during this time frame. A third group (n=6) was not implanted, but received chronic acoustic stimulation. Auditory brainstem responses were recorded biweekly to monitor changes in hearing. The organ of Corti was immunolabeled with phalloidin, anti-CtBP2, and anti-GluR2 to quantify hair cells, ribbons and post-synaptic receptors. The lateral wall was immunolabeled with phalloidin and lectin to quantify stria vascularis capillary diameters. Bimodal or trimodal diameter distributions were observed; the number and location of peaks were objectively determined using the Aikake Information Criterion and Expectation Maximization algorithm. Noise exposure led to immediate hearing loss at 16-32 kHz for all groups. Cochlear implantation led to additional hearing loss at 4-8 kHz; this hearing loss was negatively and positively correlated with minimum and maximum peaks of the bimodal or trimodal distributions of stria vascularis capillary diameters, respectively. After chronic stimulation, no significant group changes in thresholds were seen; however, elevated thresholds at 1 kHz in implanted, stimulated animals were significantly correlated with decreased presynaptic ribbon and postsynaptic receptor counts. Inner and outer hair cell counts did not differ between groups and were not

  1. Morphological correlates of hearing loss after cochlear implantation and electro-acoustic stimulation in a hearing-impaired Guinea pig model.

    PubMed

    Reiss, Lina A J; Stark, Gemaine; Nguyen-Huynh, Anh T; Spear, Kayce A; Zhang, Hongzheng; Tanaka, Chiemi; Li, Hongzhe

    2015-09-01

    Hybrid or electro-acoustic stimulation (EAS) cochlear implants (CIs) are designed to provide high-frequency electric hearing together with residual low-frequency acoustic hearing. However, 30-50% of EAS CI recipients lose residual hearing after implantation. The objective of this study was to determine the mechanisms of EAS-induced hearing loss in an animal model with high-frequency hearing loss. Guinea pigs were exposed to 24 h of noise (12-24 kHz at 116 dB) to induce a high-frequency hearing loss. After recovery, two groups of animals were implanted (n = 6 per group), with one group receiving chronic acoustic and electric stimulation for 10 weeks, and the other group receiving no stimulation during this time frame. A third group (n = 6) was not implanted, but received chronic acoustic stimulation. Auditory brainstem responses were recorded biweekly to monitor changes in hearing. The organ of Corti was immunolabeled with phalloidin, anti-CtBP2, and anti-GluR2 to quantify hair cells, ribbons and post-synaptic receptors. The lateral wall was immunolabeled with phalloidin and lectin to quantify stria vascularis capillary diameters. Bimodal or trimodal diameter distributions were observed; the number and location of peaks were objectively determined using the Aikake Information Criterion and Expectation Maximization algorithm. Noise exposure led to immediate hearing loss at 16-32 kHz for all groups. Cochlear implantation led to additional hearing loss at 4-8 kHz; this hearing loss was negatively and positively correlated with minimum and maximum peaks of the bimodal or trimodal distributions of stria vascularis capillary diameters, respectively. After chronic stimulation, no significant group changes in thresholds were seen; however, elevated thresholds at 1 kHz in implanted, stimulated animals were significantly correlated with decreased presynaptic ribbon and postsynaptic receptor counts. Inner and outer hair cell counts did not differ between groups and

  2. Steady-state entanglement of distant transmons, stabilised against high transmission loss

    NASA Astrophysics Data System (ADS)

    Motzoi, Felix; Halperin, Eli; Wang, Xiaoting; Whaley, Birgitta; Schirmer, Sophie

    2015-03-01

    Being able to stabilise entanglement over long distances and long times provides numerous advantages over pulsed experiments (avoiding variability, synchronisation, and calibration issues) while providing an important resource on-demand, which can then be potentially distilled and used to construct a quantum network. We show how existing superconducting technologies can be entangled over distances of tens of meters providing resilient stabilisation even in the presence of high inefficiency of the transmission channel. This can be achieved both in the dispersive and near-resonant cavity regimes using simple protocols that employ correlated environmental interactions and symmetry breaking. These require only a single-frequency drive that interacts sequentially with each cavity-qubit system. The dispersive regime protocol uses feedback while the near-resonant regime protocol is autonomous.

  3. Universal method for crosstalk noise and transmission loss analysis for N-port nonblocking optical router for photonic networks-on-chip

    NASA Astrophysics Data System (ADS)

    Xie, Yiyuan; Zhang, Zhendong; Song, Tingting; He, Chao; Li, Jiachao; Wang, Guijin

    2016-05-01

    Crosstalk noise and transmission loss are two key elements in determining the performance of optical routers. We propose a universal method for crosstalk noise and transmission loss analysis for the N-port nonblocking optical router used in photonic networks-on-chip. Utilizing this method, we study the crosstalk noise and transmission loss for the five-, six-, seven-, and eight-port optical routers. We ascertain that the crosstalk noise and transmission loss are different for different input-output pairs. For the five-port optical router, the maximum crosstalk noise ranges from 0 to -7.07 dBm, and the transmission loss ranges from -9.05 to -0.51 dB. Furthermore, based on the crosstalk noise and transmission loss, we analyze optical signal-to-noise ratio (OSNR) and bit error ratio (BER) for the five-, six-, seven-, and eight-port nonblocking optical routers. As the number of ports increases, the minimum average OSNR decreases and the average BER increases. In addition, in order to present the performance of the routers more visually, a fiber-optic communications system is designed to simulate the transmission processes of the signals of the different paths of the routers in Optisystem. The results show that the power amplitude of the input signal is obviously higher than the corresponding output signal. With this method, we can easily evaluate the transmission loss, crosstalk noise, OSNR, and BER of high-radix nonblocking optical routers and conveniently study the performance of the N-port optical router.

  4. Room Acoustics

    NASA Astrophysics Data System (ADS)

    Kuttruff, Heinrich; Mommertz, Eckard

    The traditional task of room acoustics is to create or formulate conditions which ensure the best possible propagation of sound in a room from a sound source to a listener. Thus, objects of room acoustics are in particular assembly halls of all kinds, such as auditoria and lecture halls, conference rooms, theaters, concert halls or churches. Already at this point, it has to be pointed out that these conditions essentially depend on the question if speech or music should be transmitted; in the first case, the criterion for transmission quality is good speech intelligibility, in the other case, however, the success of room-acoustical efforts depends on other factors that cannot be quantified that easily, not least it also depends on the hearing habits of the listeners. In any case, absolutely "good acoustics" of a room do not exist.

  5. Loss of Predominant Shank3 Isoforms Results in Hippocampus-Dependent Impairments in Behavior and Synaptic Transmission

    PubMed Central

    Kouser, Mehreen; Speed, Haley E.; Dewey, Colleen M.; Reimers, Jeremy M.; Widman, Allie J.; Gupta, Natasha; Liu, Shunan; Jaramillo, Thomas C.; Bangash, Muhammad; Xiao, Bo; Worley, Paul F.

    2013-01-01

    The Shank3 gene encodes a scaffolding protein that anchors multiple elements of the postsynaptic density at the synapse. Previous attempts to delete the Shank3 gene have not resulted in a complete loss of the predominant naturally occurring Shank3 isoforms. We have now characterized a homozygous Shank3 mutation in mice that deletes exon 21, including the Homer binding domain. In the homozygous state, deletion of exon 21 results in loss of the major naturally occurring Shank3 protein bands detected by C-terminal and N-terminal antibodies, allowing us to more definitively examine the role of Shank3 in synaptic function and behavior. This loss of Shank3 leads to an increased localization of mGluR5 to both synaptosome and postsynaptic density-enriched fractions in the hippocampus. These mice exhibit a decrease in NMDA/AMPA excitatory postsynaptic current ratio in area CA1 of the hippocampus, reduced long-term potentiation in area CA1, and deficits in hippocampus-dependent spatial learning and memory. In addition, these mice also exhibit motor-coordination deficits, hypersensitivity to heat, novelty avoidance, altered locomotor response to novelty, and minimal social abnormalities. These data suggest that Shank3 isoforms are required for normal synaptic transmission/plasticity in the hippocampus, as well as hippocampus-dependent spatial learning and memory. PMID:24259569

  6. High-density information transmission and waveguide integration with low crosstalk and propagation loss

    NASA Astrophysics Data System (ADS)

    Guo, Jianjun; Su, Weiheng; Liang, Yao; Zhang, Fengchun; Huang, Xuguang

    2016-03-01

    Photonic waveguides are fundamental components for photonic integrated circuits (PICs). Although a wide spectrum of nanophotonic structures, i.e., silicon waveguides and plasmonic waveguides, have been exploited for optical interconnects, these structures either can only support one polarization or they are not able to be integrated within a 1-μm scale due to strong crosstalk. The hurdle for high-density information transmission and waveguide integration is mainly the lack of a compact waveguide structure that can support different polarization states with low crosstalk. We propose and numerically demonstrate an ultralong-range waveguide that supports both transverse electric- and transverse magnetic-like polarizations. The propagation length of this waveguide is several decimeters with working bandwidths as great as 160 nm for both polarizations. In addition, this design is very compact with a small center-to-center distance of 1 μm between two adjacent waveguides while the isolation is as high as more than 69.3 dB. This waveguide is also able to guide light efficiently through a 90 deg bend with a 1-μm bending radius for both polarizations. Our work opens new perspectives for high-density waveguide integration in PICs, which would benefit various applications with limited physical space, such as on-chip information processing and sensing.

  7. Sagittal acoustic waves in finite solid-fluid superlattices: Band-gap structure, surface and confined modes, and omnidirectional reflection and selective transmission

    NASA Astrophysics Data System (ADS)

    El Hassouani, Y.; El Boudouti, E. H.; Djafari-Rouhani, B.; Aynaou, H.

    2008-11-01

    Using a Green’s function method, we present a comprehensive theoretical analysis of the propagation of sagittal acoustic waves in superlattices (SLs) made of alternating elastic solid and ideal fluid layers. This structure may exhibit very narrow pass bands separated by large stop bands. In comparison with solid-solid SLs, we show that the band gaps originate both from the periodicity of the system (Bragg-type gaps) and the transmission zeros induced by the presence of the solid layers immersed in the fluid. The width of the band gaps strongly depends on the thickness and the contrast between the elastic parameters of the two constituting layers. In addition to the usual crossing of subsequent bands, solid-fluid SLs may present a closing of the bands, giving rise to large gaps separated by flat bands for which the group velocity vanishes. Also, we give an analytical expression that relates the density of states and the transmission and reflection group delay times in finite-size systems embedded between two fluids. In particular, we show that the transmission zeros may give rise to a phase drop of π in the transmission phase, and therefore, a negative delta peak in the delay time when the absorption is taken into account in the system. A rule on the confined and surface modes in a finite SL made of N cells with free surfaces is demonstrated, namely, there are always N-1 modes in the allowed bands, whereas there is one and only one mode corresponding to each band gap. Finally, we present a theoretical analysis of the occurrence of omnidirectional reflection in a layered media made of alternating solid and fluid layers. We discuss the conditions for such a structure to exhibit total reflection of acoustic incident waves in a given frequency range for all incident angles. Also, we show how this structure can be used as an acoustic filter that may transmit selectively certain frequencies within the omnidirectional gaps. In particular, we show the possibility of

  8. Acoustic Test Results of Melamine Foam with Application to Payload Fairing Acoustic Attenuation Systems

    NASA Technical Reports Server (NTRS)

    Hughes, William O.; McNelis, Anne M.

    2014-01-01

    A spacecraft at launch is subjected to a harsh acoustic and vibration environment resulting from the passage of acoustic energy, created during the liftoff of a launch vehicle, through the vehicle's payload fairing. In order to ensure the mission success of the spacecraft it is often necessary to reduce the resulting internal acoustic sound pressure levels through the usage of acoustic attenuation systems. Melamine foam, lining the interior walls of the payload fairing, is often utilized as the main component of such a system. In order to better understand the acoustic properties of melamine foam, with the goal of developing improved acoustic attenuation systems, NASA has recently performed panel level testing on numerous configurations of melamine foam acoustic treatments at the Riverbank Acoustical Laboratory. Parameters assessed included the foam's thickness and density, as well as the effects of a top outer cover sheet material and mass barriers embedded within the foam. This testing followed the ASTM C423 standard for absorption and the ASTM E90 standard for transmission loss. The acoustic test data obtained and subsequent conclusions are the subjects of this paper.

  9. Effects of ionization and ion loss on dust ion-acoustic solitary waves in a collisional dusty plasma with suprathermal electrons

    NASA Astrophysics Data System (ADS)

    Mayout, Saliha; Gougam, Leila Ait; Tribeche, Mouloud

    2016-03-01

    The combined effects of ionization, ion loss, and electron suprathermality on dust ion-acoustic solitary waves in a collisional dusty plasma are examined. Carrying out a small but finite amplitude analysis, a damped Korteweg-de Vries (dK-dV) equation is derived. The damping term decreases with the increase of the spectral index and saturates for Maxwellian electrons. Choosing typical plasma parameters, the analytical approximate solution of the dK-dV equation is numerically analyzed. We first neglect the ionization and ion loss effects and account only for collisions to estimate the relative importance between these damping terms which can act concurrently. Interestingly, we found that as the suprathermal character of the electrons becomes important, the strength of the collisions related dissipation becomes more important and causes the dust ion-acoustic solitary wave amplitude to decay more rapidly. Moreover, the collisional damping may largely prevail over the ionization and ion loss related damping. The latter becomes more effective as the electrons evolve far away from their thermal equilibrium. Our results complement and provide new insights into previously published work on this problem.

  10. Sound isolation performance of interior acoustical sash

    NASA Astrophysics Data System (ADS)

    Tocci, Gregory

    2002-05-01

    In existing, as well as new buildings, an interior light of glass mounted on the inside of a prime window is used to improve the sound transmission loss otherwise obtained by the prime window alone. Interior acoustical sash is most often 1/4 in. (6 mm) monolithic or laminated glass, and is typically spaced 3 in. to 6 in. from the glass of the prime window. This paper presents TL data measured at Riverbank Acoustical Laboratories by Solutia (formerly Monsanto) for lightweight prime windows of various types, with and without interior acoustical sash glazed with 1/4 in. laminated glass. The TL data are used to estimate the A-weighted insertion loss of interior acoustical sash when applied to prime windows glazed with lightweight glass for four transportation noise source types-highway traffic, aircraft, electric rail, and diesel rail. The analysis also has been extended to determine the insertion loss expressed as a change in OITC. The data also exhibit the reductions in insertion loss that can result from short-circuiting the interior acoustical sash with the prime window. [Work supported by Solutia, Inc.

  11. The influence of oceanic internal waves on the phase stability of broadband acoustic transmission at long range

    NASA Astrophysics Data System (ADS)

    Viechnicki, John Thomas

    1999-12-01

    Instantaneous phase stability in acoustic wavefields measured during the 1994 Acoustic Engineering Test (AET) is examined. AET is one of several preliminary Acoustic Thermometry of Ocean Climate (ATOC) experiments conducted in the past several years. Internal waves are assumed to be the mechanism responsible for phase decorrelation over time scales of ten to thirty minutes. The AET experiment had a center frequency of 75 Hz and a 3 megameter path length. Comparison of numerical simulations to experimental results provide insight into how internal waves scatter sound and can be used to constrain statistical descriptors of realistic deep ocean internal wave fields. Ray-based wavefield simulations are performed using both Deterministic Ray Theory (DRT) and Stochastic Ray Theory (SRT), while full wave simulations are performed using the co insensitive parabolic equation model. This work complements recent similar inference studies of Colosi et al. (1994) and Heaney (1997) on other preliminary ATOC experiments. Working within the framework of the Garrett- Munk internal wave spectrum, phase coherence time, which was observed to be roughly ten to fifteen minutes in the AET experiment, is found to be dependent on the vertically integrated potential energy density, ɛ, and the bounds on the horizontal wavenumber spectrum, k min and kmax. Results suggest that phase coherence is insensitive to mode number cutoff, jmax . Two manifestations of the phase decorrelation observed in simulations are studied. Temporal wavefront wander as defined by Flatté et al. (1979) is examined over the decorrelation period as a function of the horizontal wavenumber spectrum. Intermittent structure that appears and disappears throughout the wavefront on time scales of ten to thirty minutes is examined. This intermittent structure is observed in both full wave modeling and DRT but not SRT.

  12. Acoustical and anatomical determination of sound production and transmission in West Indian (Trichechus manatus) and Amazonian (T. inunguis) manatees.

    PubMed

    Landrau-Giovannetti, Nelmarie; Mignucci-Giannoni, Antonio A; Reidenberg, Joy S

    2014-10-01

    West Indian (Trichechus manatus) and Amazonian (T. inunguis) manatees are vocal mammals, with most sounds produced for communication between mothers and calves. While their hearing and vocalizations have been well studied, the actual mechanism of sound production is unknown. Acoustical recordings and anatomical examination were used to determine the source of sound generation. Recordings were performed on live captive manatees from Puerto Rico, Cuba and Colombia (T. manatus) and from Peru (T. inunguis) to determine focal points of sound production. The manatees were recorded using two directional hydrophones placed on the throat and nasal region and an Edirol-R44 digital recorder. The average sound intensity level was analyzed to evaluate the sound source with a T test: paired two sample for means. Anatomical examinations were conducted on six T. manatus carcasses from Florida and Puerto Rico. During necropsies, the larynx, trachea, and nasal areas were dissected, with particular focus on identifying musculature and soft tissues capable of vibrating or constricting the airway. From the recordings we found that the acoustical intensity was significant (P < 0.0001) for both the individuals and the pooled manatees in the ventral throat region compared to the nasal region. From the dissection we found two raised areas of tissue in the lateral walls of the manatee's laryngeal lumen that are consistent with mammalian vocal folds. They oppose each other and may be able to regulate airflow between them when they are adducted or abducted by muscular control of arytenoid cartilages. Acoustic and anatomical evidence taken together suggest vocal folds as the mechanism for sound production in manatees. PMID:25044536

  13. Studies of the acoustic transmission characteristics of coaxial nozzles with inverted velocity profiles, volume 1. [jet engine noise radiation through coannular exhaust nozzles

    NASA Technical Reports Server (NTRS)

    Dean, P. D.; Salikuddin, M.; Ahuja, K. K.; Plumblee, H. E.; Mungur, P.

    1979-01-01

    The efficiency of internal noise radiation through coannular exhaust nozzle with an inverted velocity profile was studied. A preliminary investigation was first undertaken to: (1) define the test parameters which influence the internal noise radiation; (2) develop a test methodology which could realistically be used to examine the effects of the test parameters; (3) and to validate this methodology. The result was the choice of an acoustic impulse as the internal noise source in the in the jet nozzles. Noise transmission characteristics of a nozzle system were then investigated. In particular, the effects of fan nozzle convergence angle, core extention length to annulus height ratio, and flow Mach number and temperatures were studied. The results are presented as normalized directivity plots.

  14. Acoustic calibration apparatus for calibrating plethysmographic acoustic pressure sensors

    NASA Technical Reports Server (NTRS)

    Zuckerwar, Allan J. (Inventor); Davis, David C. (Inventor)

    1995-01-01

    An apparatus for calibrating an acoustic sensor is described. The apparatus includes a transmission material having an acoustic impedance approximately matching the acoustic impedance of the actual acoustic medium existing when the acoustic sensor is applied in actual in-service conditions. An elastic container holds the transmission material. A first sensor is coupled to the container at a first location on the container and a second sensor coupled to the container at a second location on the container, the second location being different from the first location. A sound producing device is coupled to the container and transmits acoustic signals inside the container.

  15. Conditions for reflection and transmission of an ion acoustic soliton in a dusty plasma with variable charge dust

    SciTech Connect

    Malik, Hitendra K.; Tomar, Renu; Dahiya, Raj P.

    2014-07-15

    Modified Korteweg-de Vries (mKdV) equations are derived for the incident, reflected, and transmitted waves in order to examine the soliton reflection and its transmission through an inhomogeneous plasma comprising ions, dust grains with fluctuating charge and two types of electrons, namely nonisothermal electrons and isothermal electrons. All the mKdV equations are coupled at the point of reflection and solved for the reflected soliton. Unlike others, a relation is established between the velocity shifts of the incident, reflected and transmitted solitons, and based on a critical value of the shift of incident soliton the strengths of the soliton reflection and transmission are talked about. Conditions are obtained for the soliton reflection and its transmission, and a comparative study is made for the two cases of fixed and fluctuating charges on the dust grains.

  16. Determination of energy release zones arising due to current losses in the convolution region of the magnetically insulated transmission lines of the ANGARA-5-1 facility

    SciTech Connect

    Grabovski, E. V.; Gribov, A. N.; Laukhin, Ya. N.; Shishlov, A. O.

    2015-05-15

    Among the factors limiting electromagnetic pulse transmission to the load in high-power electro-physical facilities, current losses in magnetically insulated transmission lines (MITLs) are of significant importance. One of such facilities is ANGARA-5-1—a multimodule facility with an output electric power of up to 6 TW. A fairly complicated configuration of the magnetic field in the convolution region of several MITLs makes it difficult to fix the places of current losses there. In this work, these places were determined by detecting the positions of IR sources in the convolution region of the MITLs of the ANGARA-5-1 facility.

  17. Broadband acoustic properties of a murine skull

    NASA Astrophysics Data System (ADS)

    Estrada, Héctor; Rebling, Johannes; Turner, Jake; Razansky, Daniel

    2016-03-01

    It has been well recognized that the presence of a skull imposes harsh restrictions on the use of ultrasound and optoacoustic techniques in the study, treatment and modulation of the brain function. We propose a rigorous modeling and experimental methodology for estimating the insertion loss and the elastic constants of the skull over a wide range of frequencies and incidence angles. A point-source-like excitation of ultrawideband acoustic radiation was induced via the absorption of nanosecond duration laser pulses by a 20 μm diameter microsphere. The acoustic waves transmitted through the skull are recorded by a broadband, spherically focused ultrasound transducer. A coregistered pulse-echo ultrasound scan is subsequently performed to provide accurate skull geometry to be fed into an acoustic transmission model represented in an angular spectrum domain. The modeling predictions were validated by measurements taken from a glass cover-slip and ex vivo adult mouse skulls. The flexible semi-analytical formulation of the model allows for seamless extension to other transducer geometries and diverse experimental scenarios involving broadband acoustic transmission through locally flat solid structures. It is anticipated that accurate quantification and modeling of the skull transmission effects would ultimately allow for skull aberration correction in a broad variety of applications employing transcranial detection or transmission of high frequency ultrasound.

  18. Channel Transmission Loss Studies During Ephemeral Flow Events: ER-5-3 Channel and Cambric Ditch, Nevada Test Site, Nye County, Nevada

    SciTech Connect

    J.J. Miller; S.A. Mizell; R.H. French; D.G. Meadows; M.H. Young

    2005-10-01

    Transmission losses along ephemeral channels are an important, yet poorly understood, aspect of rainfall-runoff prediction. Losses occur as flow infiltrates channel bed, banks, and floodplains. Estimating transmission losses in arid environments is difficult because of the variability of surficial geomorphic characteristics and infiltration capacities of soils and near-surface low-permeability geologic layers (e.g., calcrete). Transmission losses in ephemeral channels are nonlinear functions of discharge and time (Lane, 1972), and vary spatially along the channel reach and with soil antecedent moisture conditions (Sharma and Murthy, 1994). Rainfall-runoff models used to estimate peak discharge and runoff volume for flood hazard assessment are not designed specifically for ephemeral channels, where transmission loss can be significant because of the available storage volume in channel soils. Accuracy of the flow routing and rainfall-runoff models is dependent on the transmission loss estimate. Transmission loss rate is the most uncertain parameter in flow routing through ephemeral channels. This research, sponsored by the U.S. Department of Energy, National Nuclear Security Administration (DOE/NNSA) and conducted at the Nevada Test Site (NTS), is designed to improve understanding of the impact of transmission loss on ephemeral flood modeling and compare various methodologies for predicting runoff from rainfall events. Various applications of this research to DOE projects include more site-specific accuracy in runoff prediction; possible reduction in size of flood mitigation structures at the NTS; and a better understanding of expected infiltration from runoff losses into landfill covers. Two channel transmission loss field experiments were performed on the NTS between 2001 and 2003: the first was conducted in the ER-5-3 channel (Miller et al., 2003), between March and June 2001, and the second was conducted in the Cambric Ditch (Mizell et al., 2005), between April

  19. Acoustic Optimization of Automotive Exhaust Heat Thermoelectric Generator

    NASA Astrophysics Data System (ADS)

    Su, C. Q.; Ye, B. Q.; Guo, X.; Hui, P.

    2012-06-01

    The potential for thermoelectric exhaust heat recovery in vehicles has been increasing with recent advances in the efficiency of thermoelectric generators (TEGs). This study analyzes the acoustic attenuation performance of exhaust-based TEGs. The acoustic characteristics of two different thermal designs of exhaust gas heat exchanger in TEGs are discussed in terms of transmission loss and acoustic insertion loss. GT-Power simulations and bench tests on a dynamometer with a high-performance production engine are carried out. Results indicate that the acoustic attenuation of TEGs could be determined and optimized. In addition, the feasibility of integration of exhaust-based TEGs and engine mufflers into the exhaust line is tested, which can help to reduce space and improve vehicle integration.

  20. Acoustic source for generating an acoustic beam

    DOEpatents

    Vu, Cung Khac; Sinha, Dipen N.; Pantea, Cristian

    2016-05-31

    An acoustic source for generating an acoustic beam includes a housing; a plurality of spaced apart piezo-electric layers disposed within the housing; and a non-linear medium filling between the plurality of layers. Each of the plurality of piezoelectric layers is configured to generate an acoustic wave. The non-linear medium and the plurality of piezo-electric material layers have a matching impedance so as to enhance a transmission of the acoustic wave generated by each of plurality of layers through the remaining plurality of layers.

  1. Assessing responses of humpback whales to North Pacific Acoustic Laboratory (NPAL) transmissions: results of 2001--2003 aerial surveys north of Kauai.

    PubMed

    Mobley, Joseph R

    2005-03-01

    Eight aerial surveys were flown north of the Hawaiian island of Kauai during 2001 when the North Pacific Acoustic Laboratory (NPAL) source was not transmitting, and during 2002 and 2003 when it was. All surveys were performed during the period of peak residency of humpback whales (Feb-Mar). During 2002 and 2003, surveys commenced immediately upon cessation of a 24-h cycle of transmissions. Numbers and distribution of whales observed within 40 km of the NPAL source during 2001 (source off) were compared with those observed during 2002 and 2003 (source on). A total of 75 sightings was noted during 2001, as compared with 81 and 55 during 2002 and 2003, respectively. Differences in sighting rates (sightings/km) across years were not statistically significant. Assessment of distributional changes relied upon comparisons of three measures: (a) location depths; (b) distance from the NPAL source; and (c) distance offshore. None of the distributional comparisons revealed statistically significant differences across years. Several possible interpretations are examined: (a) whales have habituated to the NPAL signal; (b) insufficient statistical power exists in the present design to detect any effects; and (c) the effects are short-lived and become undetectable shortly after the cessation of transmissions. PMID:15810697

  2. Channeling energy loss of He 2+ in Si by transmission and back-scattering measurements: Experiments and computer modeling

    NASA Astrophysics Data System (ADS)

    Lulli, G.; Albertazzi, E.; Bentini, G. G.; Bianconi, M.; Lotti, R.

    2002-06-01

    Path-dependent electronic stopping of 3.35 MeV He 2+ ions in Si, is investigated by Rutherford back-scattering channeling in Si/SiO 2 wafers and transmission energy loss measurements in thin (1 1 0) membranes. A model which makes use of the 3-D Si electron density to calculate the stopping due to valence electrons, and the program convolution approximation for swift particles (CASP) to calculate the stopping due to core electrons, has been introduced into a Monte Carlo code for the simulation of channeling. The only adjustment allowed is the normalization to the empirical random stopping. An agreement of simulations and experiments within ±10-15% is obtained if both valence and core electron stopping components are scaled in the normalization procedure. To perform a significant comparison with the results obtained by a full atomic (CASP) model, we have also used a different normalization scheme, keeping the core component fixed and scaling only the valence electron contribution. In this case the results of the solid model, although slightly less accurate, become very similar to those obtained with the free-atom model.

  3. Verification of an acoustic transmission matrix analysis of sound propagation in a variable area duct without flow

    NASA Technical Reports Server (NTRS)

    Miles, J. H.

    1981-01-01

    A predicted standing wave pressure and phase angle profile for a hard wall rectangular duct with a region of converging-diverging area variation is compared to published experimental measurements in a study of sound propagation without flow. The factor of 1/2 area variation used is sufficient magnitude to produce large reflections. The prediction is based on a transmission matrix approach developed for the analysis of sound propagation in a variable area duct with and without flow. The agreement between the measured and predicted results is shown to be excellent.

  4. Effect of Coversheet Materials on the Acoustic Performance of Melamine Foam

    NASA Technical Reports Server (NTRS)

    McNelis, Anne M.; Hughes, William O.

    2015-01-01

    Melamine foam is a highly absorptive material that is often used inside the payload fairing walls of a launch vehicle. This foam reduces the acoustic excitation environment that the spacecraft experiences during launch. Often, the melamine foam is enclosed by thin coversheet materials for contamination protection, thermal protection, and electrostatic discharge control. Previous limited acoustic testing by NASA Glenn Research Center has shown that the presence of a coversheet material on the melamine foam can have a significant impact on the absorption coefficient and the transmission loss. As a result of this preliminary finding a more extensive acoustic test program using several different coversheet materials on melamine foam was performed. Those test results are summarized in this paper. Additionally, a method is provided to use the acoustic absorption and transmission loss data obtained from panel level testing to predict their combined effect for the noise reduction of a launch vehicle payload fairing.

  5. Quantifying loss of acoustic communication space for right whales in and around a U.S. National Marine Sanctuary.

    PubMed

    Hatch, Leila T; Clark, Christopher W; Van Parijs, Sofie M; Frankel, Adam S; Ponirakis, Dimitri W

    2012-12-01

    The effects of chronic exposure to increasing levels of human-induced underwater noise on marine animal populations reliant on sound for communication are poorly understood. We sought to further develop methods of quantifying the effects of communication masking associated with human-induced sound on contact-calling North Atlantic right whales (Eubalaena glacialis) in an ecologically relevant area (~10,000 km(2) ) and time period (peak feeding time). We used an array of temporary, bottom-mounted, autonomous acoustic recorders in the Stellwagen Bank National Marine Sanctuary to monitor ambient noise levels, measure levels of sound associated with vessels, and detect and locate calling whales. We related wind speed, as recorded by regional oceanographic buoys, to ambient noise levels. We used vessel-tracking data from the Automatic Identification System to quantify acoustic signatures of large commercial vessels. On the basis of these integrated sound fields, median signal excess (the difference between the signal-to-noise ratio and the assumed recognition differential) for contact-calling right whales was negative (-1 dB) under current ambient noise levels and was further reduced (-2 dB) by the addition of noise from ships. Compared with potential communication space available under historically lower noise conditions, calling right whales may have lost, on average, 63-67% of their communication space. One or more of the 89 calling whales in the study area was exposed to noise levels ≥120 dB re 1 μPa by ships for 20% of the month, and a maximum of 11 whales were exposed to noise at or above this level during a single 10-min period. These results highlight the limitations of exposure-threshold (i.e., dose-response) metrics for assessing chronic anthropogenic noise effects on communication opportunities. Our methods can be used to integrate chronic and wide-ranging noise effects in emerging ocean-planning forums that seek to improve management of cumulative effects

  6. Influence of viscosity on the reflection and transmission of an acoustic wave by a periodic array of screens. The general 3-D problem

    PubMed Central

    Homentcovschi, Dorel; Miles, Ronald N.

    2008-01-01

    An analysis is presented of the diffraction of a pressure wave by a periodic grating including the influence of the air viscosity. The direction of the incoming pressure wave is arbitrary. As opposed to the classical nonviscous case, the problem cannot be reduced to a plane problem having a definite 3-D character. The system of partial differential equations used for solving the problem consists of the compressible Navier-Stokes equations associated with no-slip boundary conditions on solid surfaces. The problem is reduced to a system of two hypersingular integral equations for determining the velocity components in the slits’ plane and a hypersingular integral equation for the normal component of velocity. These equations are solved by using Galerkin’s method with some special trial functions. The results can be applied in designing protective screens for miniature microphones realized in MEMS technology. In this case, the physical dimensions of the device are on the order of the viscous boundary layer so that the viscosity cannot be neglected. The analysis indicates that the openings in the screen should be on the order of 10 microns in order to avoid excessive attenuation of the signal. This paper also provides the variation of the transmission coefficient with frequency in the acoustical domain. PMID:19122753

  7. Improvement of Shape Factor and Loss of Surface Acoustic Wave Resonator Filter Composed of SiO2/High-Density-Electrode/LiTaO3

    NASA Astrophysics Data System (ADS)

    Murata, Takaki; Kadota, Michio; Nakao, Takeshi; Matsuda, Kenji; Hashimoto, Ken-ya

    2009-07-01

    Radio frequency (RF) filters in high frequencies using surface acoustic waves (SAWs), such as MediaFLOTM, time division synchronous code division multiple access (TD-SCDMA) in China's handy phone system, and the global positioning system (GPS) in cars, require a narrow bandwidth. Thus, the SAW substrates for their RF filters also require an excellent temperature coefficient of frequency (TCF) and an optimum electromechanical coupling factor. The authors reported an RF SAW filter for MediaFLOTM using a shear horizontal (SH) leaky SAW (LSAW) on a flattened SiO2 film/high-density metal electrode/36-48°Y·X-LiTaO3 substrate. Although it had a good TCF and a large attenuation out of the pass band, it had a slightly large loss at the pass band only at room temperature compared with that of the conventional Al-electrode/42°Y·X-LiTaO3 in the previous report. In this study, calculation using the coupling-of-modes (COM) theory showed the effect of a new phase inverse method of obtaining a steep slope at the right side of the filter frequency characteristic, although the previous paper showed only the measured frequency characteristics. In addition, an RF SAW filter with a lower loss at the pass band and a better TCF than that of the previous report has been realized.

  8. PRSEUS Acoustic Panel Fabrication

    NASA Technical Reports Server (NTRS)

    Nicolette, Velicki; Yovanof, Nicolette P.; Baraja, Jaime; Mathur, Gopal; Thrash, Patrick; Pickell, Robert

    2011-01-01

    This report describes the development of a novel structural concept, Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS), that addresses the demanding fuselage loading requirements for the Hybrid Wing or Blended Wing Body (BWB) airplane configuration with regards to acoustic response. A PRSEUS panel was designed and fabricated and provided to NASA-LaRC for acoustic response testing in the Structural Acoustics Loads and Transmission (SALT) facility). Preliminary assessments of the sound transmission characteristics of a PRSEUS panel subjected to a representative Hybrid Wing Body (HWB) operating environment were completed for the NASA Environmentally Responsible Aviation (ERA) Program.

  9. Amino acid substitutions in the coat protein result in loss of insect transmissibility of a plant virus.

    PubMed Central

    Atreya, P L; Atreya, C D; Pirone, T P

    1991-01-01

    Amino acids near the N terminus of the coat protein of tobacco vein mottling virus were deleted or altered by site-directed mutagenesis to determine the effect on aphid transmissibility of the virus. Deletion of a three amino acid sequence Asp-Ala-Gly, which is conserved in aphid-transmissible potyvirus isolates, abolished transmission. The mutation Ala----Thr in this triplet drastically reduced transmission, whereas the mutation Asp----Asn had no effect, and the mutation Asp----Lys consistently reverted to the wild-type residue. The mutation Lys----Glu, in the residue adjacent to the glycine of the triplet, drastically reduced transmission, whereas the mutation Gln----Pro, seven residues downstream from the glycine had no effect. Comparison of the sequences of other potyviruses suggests that the presence of a glycine residue at the third position of the Asp-Ala-Gly triplet is critical for aphid transmissibility and that certain changes in the residues adjacent to this position abolish or greatly reduce aphid transmissibility. PMID:1881922

  10. Acoustic neuroma

    MedlinePlus

    Vestibular schwannoma; Tumor - acoustic; Cerebellopontine angle tumor; Angle tumor ... Acoustic neuromas have been linked with the genetic disorder neurofibromatosis type 2 (NF2). Acoustic neuromas are uncommon.

  11. Ultrasonic airborne insertion loss measurements at normal incidence (L).

    PubMed

    Farley, Jayrin; Anderson, Brian E

    2010-12-01

    Transmission loss and insertion loss measurements of building materials at audible frequencies are commonly made using plane wave tubes or as a panel between reverberant rooms. These measurements provide information for noise isolation control in architectural acoustics and in product development. Airborne ultrasonic sound transmission through common building materials has not been fully explored. Technologies and products that utilize ultrasonic frequencies are becoming increasingly more common, hence the need to conduct such measurements. This letter presents preliminary measurements of the ultrasonic insertion loss levels for common building materials over a frequency range of 28-90 kHz using continuous-wave excitation. PMID:21218864

  12. Coupled resonator filter with single-layer acoustic coupler.

    PubMed

    Jamneala, Tiberiu; Small, Martha; Ruby, Rich; Larson, John D

    2008-10-01

    We discuss the operation of novel coupled-resonator filters with single-layer acoustic couplers. Our analysis employs the physical Mason model for acoustic resonators. Their simpler fabrication process is counterbalanced by the high acoustic attenuation of suitable coupler materials. At high levels of attenuation, both the phase and the acoustic impedance must be treated as complex quantities to accurately predict the filter insertion loss. We demonstrate that the typically poor near-band rejection of coupled resonator filters can be improved at the die level by connecting a small capacitance between the input and output of the filter to produce a pair of tunable transmission minima. We make use of these theoretical findings to fabricate coupled resonators filters operating at 2.45 GHz. PMID:18986880

  13. Assessment of adequacy of ray acoustics approach for prediction of barrier insertion loss in the presence of a reflecting ground

    NASA Astrophysics Data System (ADS)

    Pazos, Daniel F. P.; Musafir, Ricardo E.; Avital, Eldad J.

    2002-11-01

    The precision of insertion loss prediction obtained by applying Kurze-Anderson formula to each of the four possible ray paths connecting source and observer in the presence of a reflecting ground, and computing interference appropriately, is discussed. To this end, the field behind the barrier, given by the method described, is compared to that obtained by solving numerically the continuity and momentum equations simultaneously, using the appropriate boundary conditions to account for the perfectly reflecting ground and the barrier. Analysis of the agreement of the interference patterns obtained in both cases, for pure tones and for octave bands, permits determining the range in which the much simpler ray method provides sufficient results. Calculations with the Kurze-Anderson formula are performed with Mathematica 4.0, while the numerical propagation code is written in Fortran.

  14. Sound field diffusivity in NASA Langley Research Center hardwalled acoustic facilities

    NASA Technical Reports Server (NTRS)

    Mcgary, M. C.

    1982-01-01

    Cross correlation measurements were performed to determine the quality of the sound fields in the ANRL reverberation room and the ANRL transmission loss facility. The results indicate the level of sound field diffuseness which may be attained in these hardwalled acoustic facilities.

  15. Study of damping, saturation and surface losses on low level detection of NO2 using time resolved pulsed photo acoustic technique

    NASA Astrophysics Data System (ADS)

    Yehya, F.; Chaudhary, A. K.

    2014-02-01

    The time resolved pulsed photo-acoustic (PA) spectrum of atmospheric pollutant gas (NO2) buffered in two different mediums is reported. The closed window PA resonance cell made of stainless steel filled with highly pure NO2 gas mixed with air and nitrogen separately to study the role of buffer gases for the generation of radial modes of higher frequency and damping effect in the same cavity. The energy storage phenomena of the resonant cavity is explained using coupled oscillator theory. The second harmonics i.e. λ=532 nm pulses obtained from Q-switched Nd: YAG laser having 7 ns pulse width is used to excite the resonant modes of the cavity. The losses corresponding to radial and longitudinal modes are estimated experimentally and found to have a good agreement with their corresponding theoretical values. The dependence of saturation behavior of NO2 as an artifact of the PA cell along with gas molecules at different values of the incident laser energy has been discussed for the first time. In addition, we have successfully demonstrated the effect of damping on the quality factor-Q of the cavity which is not only responsible for generation of higher order modes but also decide the low level detection of the PA system. The developed PA sensor helped us to achieve minimum detection concentration of NO2 of the order of 0.213 ppbV and 1.2 ppbV.

  16. Microstructure of highly strained BiFeO3 thin films: Transmission electron microscopy and electron-energy loss spectroscopy studies

    NASA Astrophysics Data System (ADS)

    Heon Kim, Young; Bhatnagar, Akash; Pippel, Eckhard; Alexe, Marin; Hesse, Dietrich

    2014-01-01

    Microstructure and electronic structure of highly strained bismuth ferrite (BiFeO3) thin films grown on lanthanum aluminate substrates are studied using high-resolution transmission and scanning transmission electron microscopies and electron energy loss spectroscopy (EELS). Monoclinic and tetragonal phases were observed in films grown at different temperatures, and a mix of both phases was detected in a film grown at intermediate temperature. In this film, a smooth transition of the microstructure was found between the monoclinic and the tetragonal phases. A considerable increase in the c-axis parameters was observed in both phases compared with the rhombohedral bulk phase. The off-center displacement of iron (Fe) ions was increased in the monoclinic phase as compared with the tetragonal phase. EEL spectra show different electronic structures in the monoclinic and the tetragonal phases. These experimental observations are well consistent with the results of theoretical first-principle calculations performed.

  17. Microstructure of highly strained BiFeO{sub 3} thin films: Transmission electron microscopy and electron-energy loss spectroscopy studies

    SciTech Connect

    Heon Kim, Young; Bhatnagar, Akash; Pippel, Eckhard; Hesse, Dietrich; Alexe, Marin

    2014-01-28

    Microstructure and electronic structure of highly strained bismuth ferrite (BiFeO{sub 3}) thin films grown on lanthanum aluminate substrates are studied using high-resolution transmission and scanning transmission electron microscopies and electron energy loss spectroscopy (EELS). Monoclinic and tetragonal phases were observed in films grown at different temperatures, and a mix of both phases was detected in a film grown at intermediate temperature. In this film, a smooth transition of the microstructure was found between the monoclinic and the tetragonal phases. A considerable increase in the c-axis parameters was observed in both phases compared with the rhombohedral bulk phase. The off-center displacement of iron (Fe) ions was increased in the monoclinic phase as compared with the tetragonal phase. EEL spectra show different electronic structures in the monoclinic and the tetragonal phases. These experimental observations are well consistent with the results of theoretical first-principle calculations performed.

  18. Lightweight acoustic treatments for aerospace applications

    NASA Astrophysics Data System (ADS)

    Naify, Christina Jeanne

    2011-12-01

    Increase in the use of composites for aerospace applications has the benefit of decreased structural weight, but at the cost of decreased acoustic performance. Stiff, lightweight structures (such as composites) are traditionally not ideal for acoustic insulation applications because of high transmission loss at low frequencies. A need has thus arisen for effective sound insulation materials for aerospace and automotive applications with low weight addition. Current approaches, such as the addition of mass law dominated materials (foams) also perform poorly when scaled to small thickness and low density. In this dissertation, methods which reduce sound transmission without adding significant weight are investigated. The methods presented are intended to be integrated into currently used lightweight structures such as honeycomb sandwich panels and to cover a wide range of frequencies. Layering gasses of differing acoustic impedances on a panel substantially reduced the amount of sound energy transmitted through the panel with respect to the panel alone or an equivalent-thickness single species gas layer. The additional transmission loss derives from successive impedance mismatches at the interfaces between gas layers and the resulting inefficient energy transfer. Attachment of additional gas layers increased the transmission loss (TL) by as much as 17 dB at high (>1 kHz) frequencies. The location and ordering of the gasses with respect to the panel were important factors in determining the magnitude of the total TL. Theoretical analysis using a transfer matrix method was used to calculate the frequency dependence of sound transmission for the different configurations tested. The method accurately predicted the relative increases in TL observed with the addition of different gas layer configurations. To address low-frequency sound insulation, membrane-type locally resonant acoustic materials (LRAM) were fabricated, characterized, and analyzed to understand their

  19. Acoustic dispersive prism.

    PubMed

    Esfahlani, Hussein; Karkar, Sami; Lissek, Herve; Mosig, Juan R

    2016-01-01

    The optical dispersive prism is a well-studied element, which allows separating white light into its constituent spectral colors, and stands in nature as water droplets. In analogy to this definition, the acoustic dispersive prism should be an acoustic device with capability of splitting a broadband acoustic wave into its constituent Fourier components. However, due to the acoustical nature of materials as well as the design and fabrication difficulties, there is neither any natural acoustic counterpart of the optical prism, nor any artificial design reported so far exhibiting an equivalent acoustic behaviour. Here, based on exotic properties of the acoustic transmission-line metamaterials and exploiting unique physical behaviour of acoustic leaky-wave radiation, we report the first acoustic dispersive prism, effective within the audible frequency range 800 Hz-1300 Hz. The dispersive nature, and consequently the frequency-dependent refractive index of the metamaterial are exploited to split the sound waves towards different and frequency-dependent directions. Meanwhile, the leaky-wave nature of the structure facilitates the sound wave radiation into the ambient medium. PMID:26739504

  20. Acoustic dispersive prism

    PubMed Central

    Esfahlani, Hussein; Karkar, Sami; Lissek, Herve; Mosig, Juan R.

    2016-01-01

    The optical dispersive prism is a well-studied element, which allows separating white light into its constituent spectral colors, and stands in nature as water droplets. In analogy to this definition, the acoustic dispersive prism should be an acoustic device with capability of splitting a broadband acoustic wave into its constituent Fourier components. However, due to the acoustical nature of materials as well as the design and fabrication difficulties, there is neither any natural acoustic counterpart of the optical prism, nor any artificial design reported so far exhibiting an equivalent acoustic behaviour. Here, based on exotic properties of the acoustic transmission-line metamaterials and exploiting unique physical behaviour of acoustic leaky-wave radiation, we report the first acoustic dispersive prism, effective within the audible frequency range 800 Hz–1300 Hz. The dispersive nature, and consequently the frequency-dependent refractive index of the metamaterial are exploited to split the sound waves towards different and frequency-dependent directions. Meanwhile, the leaky-wave nature of the structure facilitates the sound wave radiation into the ambient medium. PMID:26739504

  1. Acoustic dispersive prism

    NASA Astrophysics Data System (ADS)

    Esfahlani, Hussein; Karkar, Sami; Lissek, Herve; Mosig, Juan R.

    2016-01-01

    The optical dispersive prism is a well-studied element, which allows separating white light into its constituent spectral colors, and stands in nature as water droplets. In analogy to this definition, the acoustic dispersive prism should be an acoustic device with capability of splitting a broadband acoustic wave into its constituent Fourier components. However, due to the acoustical nature of materials as well as the design and fabrication difficulties, there is neither any natural acoustic counterpart of the optical prism, nor any artificial design reported so far exhibiting an equivalent acoustic behaviour. Here, based on exotic properties of the acoustic transmission-line metamaterials and exploiting unique physical behaviour of acoustic leaky-wave radiation, we report the first acoustic dispersive prism, effective within the audible frequency range 800 Hz-1300 Hz. The dispersive nature, and consequently the frequency-dependent refractive index of the metamaterial are exploited to split the sound waves towards different and frequency-dependent directions. Meanwhile, the leaky-wave nature of the structure facilitates the sound wave radiation into the ambient medium.

  2. Vehicular sources in acoustic propagation experiments

    NASA Technical Reports Server (NTRS)

    Prado, Gervasio; Fitzgerald, James; Arruda, Anthony; Parides, George

    1990-01-01

    One of the most important uses of acoustic propagation models lies in the area of detection and tracking of vehicles. Propagation models are used to compute transmission losses in performance prediction models and to analyze the results of past experiments. Vehicles can also provide the means for cost effective experiments to measure acoustic propagation conditions over significant ranges. In order to properly correlate the information provided by the experimental data and the propagation models, the following issues must be taken into consideration: the phenomenology of the vehicle noise sources must be understood and characterized; the vehicle's location or 'ground truth' must be accurately reproduced and synchronized with the acoustic data; and sufficient meteorological data must be collected to support the requirements of the propagation models. The experimental procedures and instrumentation needed to carry out propagation experiments are discussed. Illustrative results are presented for two cases. First, a helicopter was used to measure propagation losses at a range of 1 to 10 Km. Second, a heavy diesel-powered vehicle was used to measure propagation losses in the 300 to 2200 m range.

  3. Study of semiconductor valence plasmon line shapes via electron energy-loss spectroscopy in the transmission electron microscope

    SciTech Connect

    Kundmann, M.K.

    1988-11-01

    Electron energy-loss spectra of the semiconductors Si, AlAs, GaAs, InAs, InP, and Ge are examined in detail in the regime of outer-shell and plasmon energy losses (0--100eV). Particular emphasis is placed on modeling and analyzing the shapes of the bulk valence plasmon lines. A line shape model based on early work by Froehlich is derived and compared to single-scattering probability distributions extracted from the measured spectra. Model and data are found to be in excellent agreement, thus pointing the way to systematic characterization of the plasmon component of EELS spectra. The model is applied to three separate investigations. 82 refs.

  4. Quantitative imaging analysis and investigation of transmission loss in PbF2 crystals by laser ablation-inductively coupled plasma-mass spectrometry method.

    PubMed

    Zhang, Guoxia; Wang, Zheng; Li, Qing; Zhou, Hui; Zhu, Yan; Du, Yiping

    2016-07-01

    We developed a procedure for preparing matrix-matched calibration standards for the quantitative imaging of multiple trace elements in PbF2 crystals by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). In this facile approach, PbO powder was employed as the matrix with the addition of a series of standard solutions, followed by drying and tableting, for determining the concentrations of (24)Mg, (27)Al, (89)Y, (103)Rh, (133)Cs, (175)Lu and (209)Bi in transparent samples (with homogeneous element distribution). (206)Pb was chosen as the internal standard and the correlation coefficients of the calibration curves for all elements ranged from 0.9987 to 0.9999 after internal standard correction. The analysis showed good agreement with the results observed by established ICP-MS methods, following acid dissolution of the samples. Finally, the element distributions and transmission curves of a PbF2 sample with non-transparent and transparent sections were visualized. The distribution images, in conjunction with the transmission curves, suggested that the enrichment of Mg, Al, Rh, Cs, and Bi atoms in the non-transparent section of the sample could explain the loss in transmission observed for that section. PMID:27154704

  5. Effect of in-material losses on terahertz absorption, transmission, and reflection in photonic crystals made of polar dielectrics

    SciTech Connect

    Serebryannikov, Andriy E.; Nojima, S.; Alici, K. B.; Ozbay, Ekmel

    2015-10-07

    The effect of the material absorption factor on terahertz absorption (A), transmittance (T), and reflectance (R) for slabs of PhC that comprise rods made of GaAs, a polar dielectric, is studied. The main goal was to illustrate how critical a choice of the absorption factor for simulations is and to indicate the importance of the possible modification of the absorption ability by using either active or lossy impurities. The spectra of A, T, and R are strongly sensitive to the location of the polaritonic gap with respect to the photonic pass and stop bands connected with periodicity that enables the efficient combination of the effects of material and structural parameters. It will be shown that the spectra can strongly depend on the utilized value of the material absorption factor. In particular, both narrow and wide absorption bands may appear owing to a variation of the material parameters with a frequency in the vicinity of the polaritonic gap. The latter are often achieved at wideband suppression of transmission, so that an ultra-wide stop band can appear as a result of adjustment of the stop bands having different origin. The results obtained at simultaneous variation of the absorption factor and frequency, and angle of incidence and frequency, indicate the possibility of the existence of wide ranges of tolerance, in which the basic features do remain. This allows for mitigating the accuracy requirements for the absorption factor in simulations and promises the efficient absorption of nonmonochromatic waves and beams with a wide angular spectrum. Suppression of narrowband effects in transmission is demonstrated at rather large values of the absorption factor, when they appear due to either the defect modes related to structural defects or dispersion inspired variations of the material parameters in the vicinity of the polaritonic gap. Comparison with auxiliary structures helps one to detect the common features and differences of homogeneous slabs and slabs of a

  6. Optimal Siting and Sizing of Multiple DG Units for the Enhancement of Voltage Profile and Loss Minimization in Transmission Systems Using Nature Inspired Algorithms.

    PubMed

    Ramamoorthy, Ambika; Ramachandran, Rajeswari

    2016-01-01

    Power grid becomes smarter nowadays along with technological development. The benefits of smart grid can be enhanced through the integration of renewable energy sources. In this paper, several studies have been made to reconfigure a conventional network into a smart grid. Amongst all the renewable sources, solar power takes the prominent position due to its availability in abundance. Proposed methodology presented in this paper is aimed at minimizing network power losses and at improving the voltage stability within the frame work of system operation and security constraints in a transmission system. Locations and capacities of DGs have a significant impact on the system losses in a transmission system. In this paper, combined nature inspired algorithms are presented for optimal location and sizing of DGs. This paper proposes a two-step optimization technique in order to integrate DG. In a first step, the best size of DG is determined through PSO metaheuristics and the results obtained through PSO is tested for reverse power flow by negative load approach to find possible bus locations. Then, optimal location is found by Loss Sensitivity Factor (LSF) and weak (WK) bus methods and the results are compared. In a second step, optimal sizing of DGs is determined by PSO, GSA, and hybrid PSOGSA algorithms. Apart from optimal sizing and siting of DGs, different scenarios with number of DGs (3, 4, and 5) and PQ capacities of DGs (P alone, Q alone, and P and Q both) are also analyzed and the results are analyzed in this paper. A detailed performance analysis is carried out on IEEE 30-bus system to demonstrate the effectiveness of the proposed methodology. PMID:27057557

  7. Optimal Siting and Sizing of Multiple DG Units for the Enhancement of Voltage Profile and Loss Minimization in Transmission Systems Using Nature Inspired Algorithms

    PubMed Central

    Ramamoorthy, Ambika; Ramachandran, Rajeswari

    2016-01-01

    Power grid becomes smarter nowadays along with technological development. The benefits of smart grid can be enhanced through the integration of renewable energy sources. In this paper, several studies have been made to reconfigure a conventional network into a smart grid. Amongst all the renewable sources, solar power takes the prominent position due to its availability in abundance. Proposed methodology presented in this paper is aimed at minimizing network power losses and at improving the voltage stability within the frame work of system operation and security constraints in a transmission system. Locations and capacities of DGs have a significant impact on the system losses in a transmission system. In this paper, combined nature inspired algorithms are presented for optimal location and sizing of DGs. This paper proposes a two-step optimization technique in order to integrate DG. In a first step, the best size of DG is determined through PSO metaheuristics and the results obtained through PSO is tested for reverse power flow by negative load approach to find possible bus locations. Then, optimal location is found by Loss Sensitivity Factor (LSF) and weak (WK) bus methods and the results are compared. In a second step, optimal sizing of DGs is determined by PSO, GSA, and hybrid PSOGSA algorithms. Apart from optimal sizing and siting of DGs, different scenarios with number of DGs (3, 4, and 5) and PQ capacities of DGs (P alone, Q alone, and  P and Q both) are also analyzed and the results are analyzed in this paper. A detailed performance analysis is carried out on IEEE 30-bus system to demonstrate the effectiveness of the proposed methodology. PMID:27057557

  8. A Stratified Acoustic Model Accounting for Phase Shifts for Underwater Acoustic Networks

    PubMed Central

    Wang, Ping; Zhang, Lin; Li, Victor O. K.

    2013-01-01

    Accurate acoustic channel models are critical for the study of underwater acoustic networks. Existing models include physics-based models and empirical approximation models. The former enjoy good accuracy, but incur heavy computational load, rendering them impractical in large networks. On the other hand, the latter are computationally inexpensive but inaccurate since they do not account for the complex effects of boundary reflection losses, the multi-path phenomenon and ray bending in the stratified ocean medium. In this paper, we propose a Stratified Acoustic Model (SAM) based on frequency-independent geometrical ray tracing, accounting for each ray's phase shift during the propagation. It is a feasible channel model for large scale underwater acoustic network simulation, allowing us to predict the transmission loss with much lower computational complexity than the traditional physics-based models. The accuracy of the model is validated via comparisons with the experimental measurements in two different oceans. Satisfactory agreements with the measurements and with other computationally intensive classical physics-based models are demonstrated. PMID:23669708

  9. Sound Transmission Through a Curved Honeycomb Composite Panel

    NASA Technical Reports Server (NTRS)

    Klos, Jacob; Robinson, Jay H.; Buehrle, Ralph D.

    2003-01-01

    Composite structures are often used in aircraft because of the advantages offered by a high strength to weight ratio. However, the acoustical properties of these light and stiff structures can often be less than desirable resulting in high aircraft interior noise levels. In this paper, measurements and predictions of the transmission loss of a curved honeycomb composite panel are presented. The transmission loss predictions are validated by comparisons to measurements. An assessment of the behavior of the panel is made from the dispersion characteristics of transverse waves propagating in the panel. The speed of transverse waves propagating in the panel is found to be sonic or supersonic over the frequency range from 100 to 5000 Hz. The acoustical benefit of reducing the wave speed for transverse vibration is demonstrated.

  10. Experimental study of noise transmission into a general aviation aircraft

    NASA Technical Reports Server (NTRS)

    Vaicaitis, R.; Bofilios, D. A.; Eisler, R.

    1984-01-01

    The effect of add-on treatments on noise transmission into a cabin of a light aircraft was studied under laboratory conditions for diffuse and localized noise inputs. Results indicate that stiffening skin panels with honeycomb would provide on the average 3dB to 7 dB insertion loss over the most of selected frequency range H1 to 1000 Hz. Addition of damping tape on top of the honeycomb treatment increases insertion loss by 2dB to 3dB. Porous acoustic blankets show no attenuation of transmitted noise for frequencies below 300 Hz. Insertion of impervious vinyl septa between the layers of porous acoustic blankets do not provide additional noise reduction for frequencies up to about 500 Hz. Similar behavior was observed for noise barriers composed of urethane elastomer, decoupler foam and acoustic foam. A treatment composed from several layers of acoustic foams does not increase noise attenuation for the entire frequency range studied. An acoustic treatment composed of honeycomb panels, constrained layer damping tape, 2 to 3 inches of porous acoustic blankets, and limptrim which is isolated from the vibrations of the main fuselage structure seems to provide the best option for noise control.

  11. Development of an analytical solution of modified Biot's equations for the optimization of lightweight acoustic protection.

    PubMed

    Kanfoud, Jamil; Ali Hamdi, Mohamed; Becot, François-Xavier; Jaouen, Luc

    2009-02-01

    During lift-off, space launchers are submitted to high-level of acoustic loads, which may damage sensitive equipments. A special acoustic absorber has been previously integrated inside the fairing of space launchers to protect the payload. A new research project has been launched to develop a low cost fairing acoustic protection system using optimized layers of porous materials covered by a thin layer of fabric. An analytical model is used for the analysis of acoustic wave propagation within the multilayer porous media. Results have been validated by impedance tube measurements. A parametric study has been conducted to determine optimal mechanical and acoustical properties of the acoustic protection under dimensional thickness constraints. The effect of the mounting conditions has been studied. Results reveal the importance of the lateral constraints on the absorption coefficient particularly in the low frequency range. A transmission study has been carried out, where the fairing structure has been simulated by a limp mass layer. The transmission loss and noise reduction factors have been computed using Biot's theory and the local acoustic impedance approximation to represent the porous layer effect. Comparisons between the two models show the frequency domains for which the local impedance model is valid. PMID:19206863

  12. Loss of neuronal GSK3β reduces dendritic spine stability and attenuates excitatory synaptic transmission via β-catenin.

    PubMed

    Ochs, S M; Dorostkar, M M; Aramuni, G; Schön, C; Filser, S; Pöschl, J; Kremer, A; Van Leuven, F; Ovsepian, S V; Herms, J

    2015-04-01

    Central nervous glycogen synthase kinase 3β (GSK3β) is implicated in a number of neuropsychiatric diseases, such as bipolar disorder, depression, schizophrenia, fragile X syndrome or anxiety disorder. Many drugs employed to treat these conditions inhibit GSK3β either directly or indirectly. We studied how conditional knockout of GSK3β affected structural synaptic plasticity. Deletion of the GSK3β gene in a subset of cortical and hippocampal neurons in adult mice led to reduced spine density. In vivo imaging revealed that this was caused by a loss of persistent spines, whereas stabilization of newly formed spines was reduced. In electrophysiological recordings, these structural alterations correlated with a considerable drop in the frequency and amplitude of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor-dependent miniature excitatory postsynaptic currents. Expression of constitutively active β-catenin caused reduction in spine density and electrophysiological alterations similar to GSK3β knockout, suggesting that the effects of GSK3β knockout were mediated by the accumulation of β-catenin. In summary, changes of dendritic spines, both in quantity and in morphology, are correlates of experience-dependent synaptic plasticity; thus, these results may help explain the mechanism of action of psychotropic drugs inhibiting GSK3β. PMID:24912492

  13. Acoustic propagation in the Hudson River Estuary: Analysis of experimental measurements and numerical modeling results

    NASA Astrophysics Data System (ADS)

    Radhakrishnan, Sreeram

    Underwater intrusion detection is an ongoing security concern in port and harbor areas. Of particular interest is to detect SCUBA divers, unmanned underwater vehicles and small boats from their acoustic signature. A thorough understanding of the effects of the shallow water propagating medium on acoustic signals can help develop new technologies and improve the performance of existing acoustic based surveillance systems. The Hudson River Estuary provides us with such a shallow water medium to conduct research and improve our knowledge of shallow water acoustics. Acoustic propagation in the Hudson River Estuary is highly affected by the temporal and spatial variability of salinity and temperature due to tides, freshwater inflows, winds etc. The primary goal of this research is to help develop methodologies to predict the formation of an acoustic field in the realistic environment of the lower Hudson River Estuary. Shallow water high-frequency acoustic propagation experiments were conducted in the Hudson River near Hoboken, New Jersey. Channel Impulse Response (CIR) measurements were carried out in the frequency band from 10 to 100 kHz for distances up to 200 meters in a water depth of 8-10 meters which formed the basis for experimental Transmission Loss (TL). CIR data was also utilized to demonstrate multi-path propagation in shallow water. Acoustic propagation models based on Ray Theory and Parabolic Equation methods were implemented in the frequency band from 10 to 100 kHz and TL was estimated. The sound velocity profiles required as input by acoustic propagation models were calculated from in-situ measurements of temperature, salinity and depth. Surface reflection loss was obtained from CIR data and incorporated into the acoustic propagation models. Experimentally obtained TL was used to validate the acoustic model predictions. An outcome of this research is an operational acoustic transmission loss (TL) forecast system based on the existing, Stevens New York

  14. Improved silica-zirconia sol synthesis for fabrication of a single-mode embedded dielectric channel waveguide with low transmission losses.

    PubMed

    He, M; Yuan, X-C; Bu, J; Ong, B H

    2007-01-20

    A novel inorganic-organic hybrid silica-zirconia solgel material, which can generate 10 microm thick film in a single spin-coating process, has been developed and employed in the fabrication of an embedded dielectric channel waveguide on a silica buffer layer of a silicon substrate. The fabricated channel waveguide core had steep ridge walls, good smoothness, and high robustness, and the novel sol synthesis enabled a precise control of the geometrical and optical parameters of the embedded dielectric channel waveguide. In the 1.55 microm telecommunication window, the fundamental modes TE(00) and TM(00) in the embedded channel waveguide had low transmission losses of 0.40 +/- 0.03 dB/cm and 0.59 +/- 0.03 dB/cm, respectively. PMID:17228373

  15. Improved silica-zirconia sol synthesis for fabrication of a single-mode embedded dielectric channel waveguide with low transmission losses

    NASA Astrophysics Data System (ADS)

    He, M.; Yuan, X.-C.; Bu, J.; Ong, B. H.

    2007-01-01

    A novel inorganic-organic hybrid silica-zirconia solgel material, which can generate 10 μm thick film in a single spin-coating process, has been developed and employed in the fabrication of an embedded dielectric channel waveguide on a silica buffer layer of a silicon substrate. The fabricated channel waveguide core had steep ridge walls, good smoothness, and high robustness, and the novel sol synthesis enabled a precise control of the geometrical and optical parameters of the embedded dielectric channel waveguide. In the 1.55 μm telecommunication window, the fundamental modes TE00 and TM00 in the embedded channel waveguide had low transmission losses of 0.40±0.03 dB/cm and 0.59±0.03 dB/cm, respectively.

  16. Estimation of Effective Transmission Loss Due to Subtropical Hydrometeor Scatters using a 3D Rain Cell Model for Centimeter and Millimeter Wave Applications

    NASA Astrophysics Data System (ADS)

    Ojo, J. S.; Owolawi, P. A.

    2014-12-01

    The problem of hydrometeor scattering on microwave radio communication down links continues to be of interest as the number of the ground and earth space terminals continually grows The interference resulting from the hydrometeor scattering usually leads to the reduction in the signal-to-noise ratio ( SNR) at the affected terminal and at worst can even end up in total link outage. In this paper, an attempt has been made to compute the effective transmission loss due to subtropical hydrometeors on vertically polarized signals in Earth-satellite propagation paths in the Ku, Ka and V band frequencies based on the modified Capsoni 3D rain cell model. The 3D rain cell model has been adopted and modified using the subtropical log-normal distributions of raindrop sizes and introducing the equivalent path length through rain in the estimation of the attenuation instead of the usual specific attenuation in order to account for the attenuation of both wanted and unwanted paths to the receiver. The co-channels, interference at the same frequency is very prone to the higher amount of unwanted signal at the elevation considered. The importance of joint transmission is also considered.

  17. Acoustic imaging system

    DOEpatents

    Smith, Richard W.

    1979-01-01

    An acoustic imaging system for displaying an object viewed by a moving array of transducers as the array is pivoted about a fixed point within a given plane. A plurality of transducers are fixedly positioned and equally spaced within a laterally extending array and operatively directed to transmit and receive acoustic signals along substantially parallel transmission paths. The transducers are sequentially activated along the array to transmit and receive acoustic signals according to a preestablished sequence. Means are provided for generating output voltages for each reception of an acoustic signal, corresponding to the coordinate position of the object viewed as the array is pivoted. Receptions from each of the transducers are presented on the same display at coordinates corresponding to the actual position of the object viewed to form a plane view of the object scanned.

  18. Loss to Followup: A Major Challenge to Successful Implementation of Prevention of Mother-to-Child Transmission of HIV-1 Programs in Sub-Saharan Africa.

    PubMed

    Kalembo, Fatch W; Zgambo, Maggie

    2012-01-01

    Purpose. The purpose of this paper was to explore how loss to followup (LFTU) has affected the successful implementation of prevention of mother to child transmission of HIV-1 (PMTCT) programs in sub-Saharan Africa. Methods. We conducted an electronic search from the following databases PubMed, ScienceDirect, Directory of Open Access Journals (DOAJs), and PyscINFO. Additional searches were made in WHO, UNAIDS, UNICEF, Google, and Google scholar websites for (1) peer-reviewed published research, (2) scientific and technical reports, and (3) papers presented on scientific conferences. Results. A total of 678 articles, published from 1990 to 2011, were retrieved. Only 44 articles met our inclusion criteria and were included in the study. The rates of LTFU of mother-child pairs ranged from 19% to 89.4 in the reviewed articles. Health facility factors, fear of HIV-1 test, stigma and discrimination, home deliveries and socioeconomic factors were identified as reasons for LTFU. Conclusion. There is a great loss of mother-child pairs to follow up in PMTCT programs in sub-Saharan Africa. There is need for more research studies to develop public health models of care that can help to improve followup of mother-child pairs in PMTCT programs in Sub-Saharan Africa. PMID:24052879

  19. Transition section for acoustic waveguides

    DOEpatents

    Karplus, H.H.B.

    1975-10-28

    A means of facilitating the transmission of acoustic waves with minimal reflection between two regions having different specific acoustic impedances is described comprising a region exhibiting a constant product of cross-sectional area and specific acoustic impedance at each cross-sectional plane along the axis of the transition region. A variety of structures that exhibit this feature is disclosed, the preferred embodiment comprising a nested structure of doubly reentrant cones. This structure is useful for monitoring the operation of nuclear reactors in which random acoustic signals are generated in the course of operation.

  20. Guided acoustic wave inspection system

    DOEpatents

    Chinn, Diane J.

    2004-10-05

    A system for inspecting a conduit for undesirable characteristics. A transducer system induces guided acoustic waves onto said conduit. The transducer system detects the undesirable characteristics of the conduit by receiving guided acoustic waves that contain information about the undesirable characteristics. The conduit has at least two sides and the transducer system utilizes flexural modes of propagation to provide inspection using access from only the one side of the conduit. Cracking is detected with pulse-echo testing using one transducer to both send and receive the guided acoustic waves. Thinning is detected in through-transmission testing where one transducer sends and another transducer receives the guided acoustic waves.

  1. Acoustic metamaterial design and applications

    NASA Astrophysics Data System (ADS)

    Zhang, Shu

    The explosion of interest in metamaterials is due to the dramatically increased manipulation ability over light as well as sound waves. This material research was stimulated by the opportunity to develop an artificial media with negative refractive index and the application in superlens which allows super-resolution imaging. High-resolution acoustic imaging techniques are the essential tools for nondestructive testing and medical screening. However, the spatial resolution of the conventional acoustic imaging methods is restricted by the incident wavelength of ultrasound. This is due to the quickly fading evanescent fields which carry the subwavelength features of objects. By focusing the propagating wave and recovering the evanescent field, a flat lens with negative-index can potentially overcome the diffraction limit. We present the first experimental demonstration of focusing ultrasound waves through a flat acoustic metamaterial lens composed of a planar network of subwavelength Helmholtz resonators. We observed a tight focus of half-wavelength in width at 60.5 KHz by imaging a point source. This result is in excellent agreement with the numerical simulation by transmission line model in which we derived the effective mass density and compressibility. This metamaterial lens also displays variable focal length at different frequencies. Our experiment shows the promise of designing compact and light-weight ultrasound imaging elements. Moreover, the concept of metamaterial extends far beyond negative refraction, rather giving enormous choice of material parameters for different applications. One of the most interesting examples these years is the invisible cloak. Such a device is proposed to render the hidden object undetectable under the flow of light or sound, by guiding and controlling the wave path through an engineered space surrounding the object. However, the cloak designed by transformation optics usually calls for a highly anisotropic metamaterial, which

  2. Sound insulation property of membrane-type acoustic metamaterials carrying different masses at adjacent cells

    NASA Astrophysics Data System (ADS)

    Zhang, Yuguang; Wen, Jihong; Zhao, Honggang; Yu, Dianlong; Cai, Li; Wen, Xisen

    2013-08-01

    We present the experimental realization and theoretical understanding of membrane-type acoustic metamaterials embedded with different masses at adjacent cells, capable of increasing the transmission loss at low frequency. Owing to the reverse vibration of adjacent cells, Transmission loss (TL) peaks appear, and the magnitudes of the TL peaks exceed the predicted results of the composite wall. Compared with commonly used configuration, i.e., all cells carrying with identical mass, the nonuniformity of attaching masses causes another much low TL peak. Finite element analysis was employed to validate and provide insights into the TL behavior of the structure.

  3. Passive acoustic threat detection in estuarine environments

    NASA Astrophysics Data System (ADS)

    Borowski, Brian; Sutin, Alexander; Roh, Heui-Seol; Bunin, Barry

    2008-04-01

    The Maritime Security Laboratory (MSL) at Stevens Institute of Technology supports research in a range of areas relevant to harbor security, including passive acoustic detection of underwater threats. The difficulties in using passive detection in an urban estuarine environment include intensive and highly irregular ambient noise and the complexity of sound propagation in shallow water. MSL conducted a set of tests in the Hudson River near Manhattan in order to measure the main parameters defining the detection distance of a threat: source level of a scuba diver, transmission loss of acoustic signals, and ambient noise. The source level of the diver was measured by comparing the diver's sound with a reference signal from a calibrated emitter placed on his path. Transmission loss was measured by comparing noise levels of passing ships at various points along their routes, where their distance from the hydrophone was calculated with the help of cameras and custom software. The ambient noise in the Hudson River was recorded under varying environmental conditions and amounts of water traffic. The passive sonar equation was then applied to estimate the range of detection. Estimations were done for a subset of the recorded noise levels, and we demonstrated how variations in the noise level, attenuation, and the diver's source level influence the effective range of detection. Finally, we provided analytic estimates of how an array improves upon the detection distance calculated by a single hydrophone.

  4. PORTABLE ACOUSTIC MONITORING PACKAGE (PAMP)

    SciTech Connect

    John L. Loth; Gary J. Morris; George M. Palmer; Richard Guiler; Patrick Browning

    2004-07-20

    The Portable Acoustic Monitoring Package (PAMP) has been designed to record and monitor the acoustic signal in natural gas transmission lines. In particular the three acoustic signals associated with a line leak. The system is portable ({approx}30 lbs) and is designed for line pressures up to 1000 psi. It has become apparent that cataloging of the various background acoustic signals in natural gas transmission line is very important if a system to identify leak signals is to be developed. The low-pressure (0-200 psig) laboratory test phase has been completed and a number of field trials have been conducted. Before the cataloging phase could begin, a few problems identified in field trials identified had to be corrected such as: (1) Decreased microphone sensitivity at line pressures above 250 psig. (2) The inability to deal with large data sets collected when cataloging the variety of signals in a transmission line. (3) The lack of an available online acoustic calibration system. These problems have been solved and the WVU PAMP is now fully functional over the entire pressure range found in the Natural Gas transmission lines in this region. Field portability and reliability have been greatly improved. Data collection and storage have also improved to the point were the full acoustic spectrum of acoustic signals can be accurately cataloged, recorded and described.

  5. Incidence of Avian Influenza in Adamawa State, Nigeria: The Epidemiology, Economic Losses and the Possible Role of Wild Birds in the Transmission of the Disease

    NASA Astrophysics Data System (ADS)

    Ja`Afar-Furo, M. R.; Balla, H. G.; Tahir, A. S.; Haskainu, C.

    Reducing the huge economic losses due to diseases in poultry as the second largest industry in Nigeria after oil means improving the protein intake of the majority. Similarly, this will also promotes a steady income for the teeming farmers. This study investigated the incidence of the lethal avian influenza in Adamawa State, Nigeria, with particular emphasis on the socio-economic and cultural activities of the poultry farmers, economic losses and the possible role of wild birds in the transmission of the disease. Data were collected from 316 and 458 direct and indirect respondents, respectively, from 6 affected villages and a town in 2 Local Government Areas (LGAs): Girei and Yola-North. Results revealed that a larger (25.71%) proportion of the respondents fell within the age range of 31-40 years, with majority (54.91%) as females. While the bulk (54.65%) of the respondents were illiterates, 95.47% of the direct respondents derived their incomes from crop production, whereas 59.17% of the indirect respondents from livestock rearing. About 26,049 birds worth N13, 454,800.00 was cumulative economic loss incurred by the poultry farmers, whereas that of the government was put at N1, 119,781.10. Of the mortalities experienced in the wildlife before the outbreak of the disease, Bubulcus ibis (64.29) and Tadarida nigeriae (86.36) were the highest. The study recommends a massive rural extension on Poultry Production with absolute biosecurity, involving all stakeholders (Veterinary Surgeons, Animal Scientists/health workers, wildlife specialists, Agricultural Economists, Information Officers etc.) in a collaborative form for high synergistic effects.

  6. Transmission eigenvalues

    NASA Astrophysics Data System (ADS)

    Cakoni, Fioralba; Haddar, Houssem

    2013-10-01

    In inverse scattering theory, transmission eigenvalues can be seen as the extension of the notion of resonant frequencies for impenetrable objects to the case of penetrable dielectrics. The transmission eigenvalue problem is a relatively late arrival to the spectral theory of partial differential equations. Its first appearance was in 1986 in a paper by Kirsch who was investigating the denseness of far-field patterns for scattering solutions of the Helmholtz equation or, in more modern terminology, the injectivity of the far-field operator [1]. The paper of Kirsch was soon followed by a more systematic study by Colton and Monk in the context of developing the dual space method for solving the inverse scattering problem for acoustic waves in an inhomogeneous medium [2]. In this paper they showed that for a spherically stratified media transmission eigenvalues existed and formed a discrete set. Numerical examples were also given showing that in principle transmission eigenvalues could be determined from the far-field data. This first period of interest in transmission eigenvalues was concluded with papers by Colton et al in 1989 [3] and Rynne and Sleeman in 1991 [4] showing that for an inhomogeneous medium (not necessarily spherically stratified) transmission eigenvalues, if they existed, formed a discrete set. For the next seventeen years transmission eigenvalues were ignored. This was mainly due to the fact that, with the introduction of various sampling methods to determine the shape of an inhomogeneous medium from far-field data, transmission eigenvalues were something to be avoided and hence the fact that transmission eigenvalues formed at most a discrete set was deemed to be sufficient. In addition, questions related to the existence of transmission eigenvalues or the structure of associated eigenvectors were recognized as being particularly difficult due to the nonlinearity of the eigenvalue problem and the special structure of the associated transmission

  7. Transmission eigenvalues

    NASA Astrophysics Data System (ADS)

    Cakoni, Fioralba; Haddar, Houssem

    2013-10-01

    In inverse scattering theory, transmission eigenvalues can be seen as the extension of the notion of resonant frequencies for impenetrable objects to the case of penetrable dielectrics. The transmission eigenvalue problem is a relatively late arrival to the spectral theory of partial differential equations. Its first appearance was in 1986 in a paper by Kirsch who was investigating the denseness of far-field patterns for scattering solutions of the Helmholtz equation or, in more modern terminology, the injectivity of the far-field operator [1]. The paper of Kirsch was soon followed by a more systematic study by Colton and Monk in the context of developing the dual space method for solving the inverse scattering problem for acoustic waves in an inhomogeneous medium [2]. In this paper they showed that for a spherically stratified media transmission eigenvalues existed and formed a discrete set. Numerical examples were also given showing that in principle transmission eigenvalues could be determined from the far-field data. This first period of interest in transmission eigenvalues was concluded with papers by Colton et al in 1989 [3] and Rynne and Sleeman in 1991 [4] showing that for an inhomogeneous medium (not necessarily spherically stratified) transmission eigenvalues, if they existed, formed a discrete set. For the next seventeen years transmission eigenvalues were ignored. This was mainly due to the fact that, with the introduction of various sampling methods to determine the shape of an inhomogeneous medium from far-field data, transmission eigenvalues were something to be avoided and hence the fact that transmission eigenvalues formed at most a discrete set was deemed to be sufficient. In addition, questions related to the existence of transmission eigenvalues or the structure of associated eigenvectors were recognized as being particularly difficult due to the nonlinearity of the eigenvalue problem and the special structure of the associated transmission

  8. Wideband link-budget analysis for undersea acoustic signaling

    NASA Astrophysics Data System (ADS)

    Rice, Joseph A.; Hansen, Joseph T.

    2002-11-01

    Link-budget analysis is commonly applied to satellite and wireless communications for estimating the signal-to-noise ratio (SNR) at the receiver. Link-budget analysis considers transmitter power, transmitter antenna gain, channel losses, channel noise, and receiver antenna gain. For underwater signaling, the terms of the sonar equation readily translate to a formulation of the link budget. However, the strong frequency dependence of underwater acoustic propagation requires special consideration, and is represented as an intermediate result called the channel SNR. The channel SNR includes ambient-noise and transmission-loss components. Several acoustic communication and navigation problems are addressed through wideband link-budget analyses. [Work sponsored by ONR 321.

  9. Acoustic telemetry.

    SciTech Connect

    Drumheller, Douglas Schaeffer; Kuszmaul, Scott S.

    2003-08-01

    Broadcasting messages through the earth is a daunting task. Indeed, broadcasting a normal telephone conversion through the earth by wireless means is impossible with todays technology. Most of us don't care, but some do. Industries that drill into the earth need wireless communication to broadcast navigation parameters. This allows them to steer their drill bits. They also need information about the natural formation that they are drilling. Measurements of parameters such as pressure, temperature, and gamma radiation levels can tell them if they have found a valuable resource such as a geothermal reservoir or a stratum bearing natural gas. Wireless communication methods are available to the drilling industry. Information is broadcast via either pressure waves in the drilling fluid or electromagnetic waves in the earth and well tubing. Data transmission can only travel one way at rates around a few baud. Given that normal Internet telephone modems operate near 20,000 baud, these data rates are truly very slow. Moreover, communication is often interrupted or permanently blocked by drilling conditions or natural formation properties. Here we describe a tool that communicates with stress waves traveling through the steel drill pipe and production tubing in the well. It's based on an old idea called Acoustic Telemetry. But what we present here is more than an idea. This tool exists, it's drilled several wells, and it works. Currently, it's the first and only acoustic telemetry tool that can withstand the drilling environment. It broadcasts one way over a limited range at much faster rates than existing methods, but we also know how build a system that can communicate both up and down wells of indefinite length.

  10. Representative environments for reduced estimation time of wide area acoustic performance

    NASA Astrophysics Data System (ADS)

    Fabre, Josette Paquin

    Advances in ocean modeling (Barron et al., 2006) have improved such that ocean forecasts and even ensembles ( e.g., Coelho et al., 2009) representing ocean uncertainty are becoming more widely available. This facilitates nowcasts (current time ocean fields/analyses) and forecasts (predicted ocean fields) of acoustic propagation conditions in the ocean which can greatly improve the planning of acoustic experiments. Modeling of acoustic transmission loss (TL) provides information about how the environment impacts acoustic performance for various systems and system configurations of interest. It is, however, very time consuming to compute acoustic propagation to and from many potential source and receiver locations for multiple locations on an area-wide grid for multiple analysis/forecast times, ensembles and scenarios of interest. Currently, to make such wide area predictions, an area is gridded and acoustic predictions for multiple directions (or radials) at each grid point for a single time period or ensemble, are computed to estimate performance on the grid. This grid generally does not consider the environment and can neglect important environmental acoustic features or can over-compute in areas of environmental acoustic isotropy. This effort develops two methods to pre-examine the area and time frame in terms of the environmental acoustics in order to prescribe an environmentally optimized computational grid that takes advantage of environmental-acoustic similarities and differences to characterize an area, time frame and ensemble with fewer acoustic model predictions and thus less computation time. Such improvement allows for a more thorough characterization of the time frame and area of interest. The first method is based on critical factors in the environment that typically indicate acoustic response, and the second method is based on a more robust full waveguide mode-based description of the environment. Results are shown for the critical factors method and

  11. Acoustic cooling engine

    DOEpatents

    Hofler, Thomas J.; Wheatley, John C.; Swift, Gregory W.; Migliori, Albert

    1988-01-01

    An acoustic cooling engine with improved thermal performance and reduced internal losses comprises a compressible fluid contained in a resonant pressure vessel. The fluid has a substantial thermal expansion coefficient and is capable of supporting an acoustic standing wave. A thermodynamic element has first and second ends and is located in the resonant pressure vessel in thermal communication with the fluid. The thermal response of the thermodynamic element to the acoustic standing wave pumps heat from the second end to the first end. The thermodynamic element permits substantial flow of the fluid through the thermodynamic element. An acoustic driver cyclically drives the fluid with an acoustic standing wave. The driver is at a location of maximum acoustic impedance in the resonant pressure vessel and proximate the first end of the thermodynamic element. A hot heat exchanger is adjacent to and in thermal communication with the first end of the thermodynamic element. The hot heat exchanger conducts heat from the first end to portions of the resonant pressure vessel proximate the hot heat exchanger. The hot heat exchanger permits substantial flow of the fluid through the hot heat exchanger. The resonant pressure vessel can include a housing less than one quarter wavelength in length coupled to a reservoir. The housing can include a reduced diameter portion communicating with the reservoir. The frequency of the acoustic driver can be continuously controlled so as to maintain resonance.

  12. Classroom Acoustics: Understanding Barriers to Learning.

    ERIC Educational Resources Information Center

    Crandell, Carl C., Ed.; Smaldino, Joseph J., Ed.

    2001-01-01

    This booklet explores classroom acoustics and their importance on the learning potential of children with hearing loss and related disabilities. The booklet also reviews research on classroom acoustics and the need for the development of classroom acoustics standards. Chapters examine: 1) a speech-perception model demonstrating the linkage between…

  13. Acoustic Neuroma

    MedlinePlus

    An acoustic neuroma is a benign tumor that develops on the nerve that connects the ear to the brain. ... can press against the brain, becoming life-threatening. Acoustic neuroma can be difficult to diagnose, because the ...

  14. Where does all the water go? Partitioning water transmission losses in a data-sparse, multi-channel and low-gradient dryland river system using modelling and remote sensing

    NASA Astrophysics Data System (ADS)

    Jarihani, Abdollah A.; Larsen, Joshua R.; Callow, John N.; McVicar, Tim R.; Johansen, Kasper

    2015-10-01

    Drylands cover approximately one-third of the Earth's surface, are home to nearly 40% of the Earth's population and are characterised by limited water resources and ephemeral river systems with an extremely variable flow regime and high transmission losses. These losses include actual evaporation, infiltration to the soil and groundwater and residual (terminal) water remaining after flood events. These critical components of the water balance of dryland river systems remain largely unknown due to the scarcity of observational data and the difficulty in accurately accounting for the flow distribution in such large multi-channel floodplain systems. While hydrodynamic models can test hypotheses concerning the water balance of infrequent flood events, the scarcity of flow measurement data inhibits model calibration, constrains model accuracy and therefore utility. This paper provides a novel approach to this problem by combining modelling, remotely-sensed data, and limited field measurements, to investigate the partitioning of flood transmissions losses based on seven flood events between February 2006 and April 2012 along a 180 km reach of the Diamantina River in the Lake Eyre Basin, Australia. Transmission losses were found to be high, on average 46% of total inflow within 180 km reach segment or 7 GL/km (range: 4-10 GL/km). However, in 180 km reach, transmission losses vary non-linearly with flood discharge, with smaller flows resulting in higher losses (up to 68%), which diminish in higher flows (down to 24%) and in general there is a minor increase in losses with distance downstream. Partitioning these total losses into the major components shows that actual evaporation was the most significant component (21.6% of total inflow), followed by infiltration (13.2%) and terminal water storage (11.2%). Lateral inflow can be up to 200% of upstream inflow (mean = 86%) and is therefore a critical parameter in the water balance and transmission loss calculations. This study

  15. Acoustic Seal

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M. (Inventor)

    2006-01-01

    The invention relates to a sealing device having an acoustic resonator. The acoustic resonator is adapted to create acoustic waveforms to generate a sealing pressure barrier blocking fluid flow from a high pressure area to a lower pressure area. The sealing device permits noncontacting sealing operation. The sealing device may include a resonant-macrosonic-synthesis (RMS) resonator.

  16. Acoustic seal

    NASA Technical Reports Server (NTRS)

    Steinetz, Bruce M. (Inventor)

    2006-01-01

    The invention relates to a sealing device having an acoustic resonator. The acoustic resonator is adapted to create acoustic waveforms to generate a sealing pressure barrier blocking fluid flow from a high pressure area to a lower pressure area. The sealing device permits noncontacting sealing operation. The sealing device may include a resonant-macrosonic-synthesis (RMS) resonator.

  17. Structural Acoustics and Vibrations

    NASA Astrophysics Data System (ADS)

    Chaigne, Antoine

    This chapter is devoted to vibrations of structures and to their coupling with the acoustic field. Depending on the context, the radiated sound can be judged as desirable, as is mostly the case for musical instruments, or undesirable, like noise generated by machinery. In architectural acoustics, one main goal is to limit the transmission of sound through walls. In the automobile industry, the engineers have to control the noise generated inside and outside the passenger compartment. This can be achieved by means of passive or active damping. In general, there is a strong need for quieter products and better sound quality generated by the structures in our daily environment.

  18. Acoustic detection of pneumothorax

    NASA Astrophysics Data System (ADS)

    Mansy, Hansen A.; Royston, Thomas J.; Balk, Robert A.; Sandler, Richard H.

    2003-04-01

    This study aims at investigating the feasibility of using low-frequency (<2000 Hz) acoustic methods for medical diagnosis. Several candidate methods of pneumothorax detection were tested in dogs. In the first approach, broadband acoustic signals were introduced into the trachea during end-expiration and transmitted waves were measured at the chest surface. Pneumothorax was found to consistently decrease pulmonary acoustic transmission in the 200-1200-Hz frequency band, while less change was observed at lower frequencies (p<0.0001). The ratio of acoustic energy between low (<220 Hz) and mid (550-770 Hz) frequency bands was significantly different in the control (healthy) and pneumothorax states (p<0.0001). The second approach measured breath sounds in the absence of an external acoustic input. Pneumothorax was found to be associated with a preferential reduction of sound amplitude in the 200- to 700-Hz range, and a decrease of sound amplitude variation (in the 300 to 600-Hz band) during the respiration cycle (p<0.01 for each). Finally, chest percussion was implemented. Pneumothorax changed the frequency and decay rate of percussive sounds. These results imply that certain medical conditions may be reliably detected using appropriate acoustic measurements and analysis. [Work supported by NIH/NHLBI #R44HL61108.

  19. Noise suppression in curved glass shells using macro-fiber-composite actuators studied by the means of digital holography and acoustic measurements

    NASA Astrophysics Data System (ADS)

    Mokrý, P.; Psota, P.; Steiger, K.; Václavík, J.; Doleček, R.; Lédl, V.; Šulc, M.

    2015-02-01

    The paper presents methods and experimental results of the semi-active control of noise transmission in a curved glass shell with attached piezoelectric macro fiber composite (MFC) actuators. The semi-active noise control is achieved via active elasticity control of piezoelectric actuators by connecting them to an active electric shunt circuit that has a negative effective capacitance. Using this approach, it is possible to suppress the vibration of the glass shell in the normal direction with respect to its surface and to increase the acoustic transmission loss of the piezoelectric MFC-glass composite structure. The effect of the MFC actuators connected to the negative capacitance shunt circuit on the surface distribution of the normal vibration amplitude is studied using frequency-shifted digital holography (FSDH). The principle of the used FSDH method is described in the paper. The frequency dependence of the acoustic transmission loss through the piezoelectric MFC-glass composite structure is estimated using measurements of the specific acoustic impedance of the curved glass shell. The specific acoustic impedance is measured using two microphones and a laser Doppler vibrometer (LDV). The results from the LDV measurements are compared with the FSDH data. The results of the experiments show that using this approach, the acoustic transmission loss in a glass shell can be increased by 36 dB in the frequency range around 247 Hz and by 25 dB in the frequency range around 258 Hz. The experiments indicate that FSDH measurements provide an efficient tool that can be used for fast and accurate measurements of the acoustic transmission loss in large planar structures.

  20. Influence of panel fastening on the acoustic performance of light-weight building elements: Study by sound transmission and laser scanning vibrometry

    NASA Astrophysics Data System (ADS)

    Roozen, N. B.; Muellner, H.; Labelle, L.; Rychtáriková, M.; Glorieux, C.

    2015-06-01

    Structural details and workmanship can cause considerable differences in sound insulation properties of timber frame partitions. In this study, the influence of panel fastening is investigated experimentally by means of standardized sound reduction index measurements, supported by detailed scanning laser Doppler vibrometry. In particular the effect of the number of screws used to fasten the panels to the studs, and the tightness of the screws, is studied using seven different configurations of lightweight timber frame building elements. In the frequency range from 300 to 4000 Hz, differences in the weighted sound reduction index RW as large as 10 dB were measured, suggesting that the method of fastening can have a large impact on the acoustic performance of building elements. Using the measured vibrational responses of the element, its acoustic radiation efficiency was computed numerically by means of a Rayleigh integral. The increased radiation efficiency partly explains the reduced sound reduction index. Loosening the screws, or reducing the number of screws, lowers the radiation efficiency, and significantly increases the sound reduction index of the partition.

  1. Gestational malaria associated to Plasmodium vivax and Plasmodium falciparum placental mixed-infection followed by foetal loss: a case report from an unstable transmission area in Brazil.

    PubMed

    Carvalho, Bruna O; Matsuda, Joycenéa S; Luz, Sergio L B; Martinez-Espinosa, Flor E; Leite, Juliana A; Franzin, Fernanda; Orlandi, Patrícia P; Gregoracci, Gustavo B; Lacerda, Marcus V G; Nogueira, Paulo A; Costa, Fabio T M

    2011-01-01

    Gestational malaria is a multi-factorial syndrome leading to poor outcomes for both the mother and foetus. Although an unusual increasing in the number of hospitalizations caused by Plasmodium vivax has been reported in Brazil, mortality is rarely observed. This is a report of a gestational malaria case that occurred in the city of Manaus (Amazonas State, Brazil) and resulted in foetal loss. The patient presented placental mixed-infection by Plasmodium vivax and Plasmodium falciparum after diagnosis by nested-PCR, however microscopic analysis failed to detect P. falciparum in the peripheral blood. Furthermore, as the patient did not receive proper treatment for P. falciparum and hospitalization occurred soon after drug treatment, it seems that P. falciparum pathology was modulated by the concurrent presence of P. vivax. Collectively, this case confirms the tropism towards the placenta by both of these species of parasites, reinforces the notion that co-existence of distinct malaria parasites interferes on diseases' outcomes, and opens discussions regarding diagnostic methods, malaria treatment during pregnancy and prenatal care for women living in unstable transmission areas of malaria, such as the Brazilian Amazon. PMID:21708032

  2. Rapid geo-acoustic characterization from a seismic survey

    NASA Astrophysics Data System (ADS)

    Heaney, Kevin D.; Sternlicht, Daniel; Teranishi, Arthur; Castille, Brett; Hamilton, Michael

    2002-05-01

    A recent transmission loss experiment was conducted in Long Beach Harbor for the THUMS Long Beach Company. The objective of the experiment was to measure the range at which the received level was 160 dB for compliance with Marine Mammal regulations. This short experiment provided the opportunity to test the rapid geo-acoustic characterization (RGC) algorithm and perform real-time geo-acoustic inversions from a seismic source. The airgun source transmitted pulses every 20 s corresponding to every 45 m. The water depth was 10-15 m and the water was assumed to be iso-velocity. The data quality was excellent, providing clear striation patterns in the broadband frequency display. The RGC algorithm matches the observed time-spread, striation slope, and TL slope to precomputed values using a normal mode algorithm and parametric geo-acoustic profiles based on Hamilton and Bachman's model. Precomputation of the acoustic observables, combined with real-time signal processing permits real time geo-acoustic characterization.

  3. One-dimensional rigid film acoustic metamaterials

    NASA Astrophysics Data System (ADS)

    Ma, Fuyin; Wu, Jiu Hui; Huang, Meng

    2015-11-01

    We have designed a 1D film-type acoustic metamaterial structure consisting of several polymer films directly stacked on each other. It is experimentally revealed that the mass density law can be broken by such structures in the low frequency range. By comparing the sound transmission loss (STL) curves of structures with different numbers of cycles, materials and incident sound directions, several physical properties of the 1D film-type acoustic metamaterial are revealed, which consist of cyclical effects, surface effects and orientation effects. It is suggested that the excellent low frequency sound insulation capacity is influenced by both the cycle number and the stiffness of the film surface. Meanwhile, the surface effect plays a dominant role among these physical properties. Due to the surface acoustic property, for structures with a particular combination form, the STL dominated by the cyclical effects may reach saturation with increasing number of construction periods. Moreover, in some cases, the sound insulation ability is diverse for different sound incidence directions. This kind of 1D film-type periodic structure with these special physical properties provides a new concept for the regulation of sound waves.

  4. Grazing incidence modeling of a metamaterial-inspired dual-resonance acoustic liner

    NASA Astrophysics Data System (ADS)

    Beck, Benjamin S.

    2014-03-01

    To reduce the noise emitted by commercial aircraft turbofan engines, the inlet and aft nacelle ducts are lined with acoustic absorbing structures called acoustic liners. Traditionally, these structures consist of a perforated facesheet bonded on top of a honeycomb core. These traditional perforate over honeycomb core (POHC) liners create an absorption spectra where the maximum absorption occurs at a frequency that is dictated by the depth of the honeycomb core; which acts as a quarter-wave resonator. Recent advances in turbofan engine design have increased the need for thin acoustic liners that are effective at low frequencies. One design that has been developed uses an acoustic metamaterial architecture to improve the low frequency absorption. Specifically, the liner consists of an array of Helmholtz resonators separated by quarter-wave volumes to create a dual-resonance acoustic liner. While previous work investigated the acoustic behavior under normal incidence, this paper outlines the modeling and predicted transmission loss and absorption of a dual-resonance acoustic metamaterial when subjected to grazing incidence sound.

  5. Acoustic network event classification using swarm optimization

    NASA Astrophysics Data System (ADS)

    Burman, Jerry

    2013-05-01

    Classifying acoustic signals detected by distributed sensor networks is a difficult problem due to the wide variations that can occur in the transmission of terrestrial, subterranean, seismic and aerial events. An acoustic event classifier was developed that uses particle swarm optimization to perform a flexible time correlation of a sensed acoustic signature to reference data. In order to mitigate the effects from interference such as multipath, the classifier fuses signatures from multiple sensors to form a composite sensed acoustic signature and then automatically matches the composite signature with reference data. The approach can classify all types of acoustic events but is particularly well suited to explosive events such as gun shots, mortar blasts and improvised explosive devices that produce an acoustic signature having a shock wave component that is aperiodic and non-linear. The classifier was applied to field data and yielded excellent results in terms of reconstructing degraded acoustic signatures from multiple sensors and in classifying disparate acoustic events.

  6. Volumetric Imaging Using Acoustical Holography

    NASA Astrophysics Data System (ADS)

    Garlick, T. F.; Garlick, G. F.

    Transmission acoustical holography holds tremendous promise for medical imaging applications. As with optical holography, an image is obtained using the interference of two coherent acoustic sources, the transmitted object wave with a reference wave. Although resultant images are true holograms, depth can be difficult to quantify and an entire volume in one image can often result in "too much" information. Since Physicians/Radiologists are often interested in viewing a single plane at a time, techniques have been developed to generate acoustic holograms of "slices" within a volume. These primarily include focused transmission holography with spatial and frequency filtering techniques. These techniques along with an overview and current status of acoustical holography in medical imaging applications will be presented

  7. Sound insulation and energy harvesting based on acoustic metamaterial plate

    NASA Astrophysics Data System (ADS)

    Assouar, Badreddine; Oudich, Mourad; Zhou, Xiaoming

    2015-03-01

    The emergence of artificially designed sub-wavelength acoustic materials, denoted acoustic metamaterials (AMM), has significantly broadened the range of materials responses found in nature. These engineered materials can indeed manipulate sound/vibration in surprising ways, which include vibration/sound insulation, focusing, cloaking, acoustic energy harvesting …. In this work, we report both on the analysis of the airborne sound transmission loss (STL) through a thin metamaterial plate and on the possibility of acoustic energy harvesting. We first provide a theoretical study of the airborne STL and confronted them to the structure-borne dispersion of a metamaterial plate. Second, we propose to investigate the acoustic energy harvesting capability of the plate-type AMM. We have developed semi-analytical and numerical methods to investigate the STL performances of a plate-type AMM with an airborne sound excitation having different incident angles. The AMM is made of silicone rubber stubs squarely arranged in a thin aluminum plate, and the STL is calculated at low-frequency range [100Hz to 3kHz] for an incoming incident sound pressure wave. The obtained analytical and numerical STL present a very good agreement confirming the reliability of developed approaches. A comparison between computed STL and the band structure of the considered AMM shows an excellent agreement and gives a physical understanding of the observed behavior. On another hand, the acoustic energy confinement in AMM with created defects with suitable geometry was investigated. The first results give a general view for assessing the acoustic energy harvesting performances making use of AMM.

  8. Ear-canal acoustic admittance and reflectance measurements in human neonates. II. Predictions of middle-ear dysfunction and sensorineural hearing loss

    NASA Astrophysics Data System (ADS)

    Keefe, Douglas H.; Gorga, Michael P.; Neely, Stephen T.; Zhao, Fei; Vohr, Betty R.

    2003-01-01

    This report describes relationships between middle-ear measurements of acoustic admittance and energy reflectance (YR) and measurements of hearing status using visual reinforcement audiometry in a neonatal hearing-screening population. Analyses were performed on 2638 ears in which combined measurements were obtained [Norton et al., Ear Hear. 21, 348-356 (2000)]. The measurements included distortion-product otoacoustic emissions (DPOAE), transient evoked otoacoustic emissions (TEOAE), and auditory brainstem responses (ABR). Models to predict hearing status using DPOAEs, TEOAEs, or ABRs were each improved by the addition of the YR factors as interactions, in which factors were calculated using factor loadings from Keefe et al. [J. Acoust. Soc. Am. 113, 389-406 (2003)]. This result suggests that information on middle-ear status improves the ability to predict hearing status. The YR factors were used to construct a middle-ear dysfunction test on 1027 normal-hearing ears in which DPOAE and TEOAE responses were either both present or both absent, the latter condition being viewed as indicative of middle-ear dysfunction. The middle-ear dysfunction test classified these ears with a nonparametric area (A) under the relative operating characteristic curve of A=0.86, and classified normal-hearing ears that failed two-stage hearing-screening tests with areas A=0.84 for DPOAE/ABR, and A=0.81 for TEOAE/ABR tests. The middle-ear dysfunction test adequately generalized to a new sample population (A=0.82).

  9. Acoustic hemostasis

    NASA Astrophysics Data System (ADS)

    Crum, Lawrence; Beach, Kirk; Carter, Stephen; Chandler, Wayne; Curra, Francesco; Kaczkowski, Peter; Keilman, George; Khokhlova, Vera; Martin, Roy; Mourad, Pierre; Vaezy, Shahram

    2000-07-01

    In cases of severe injury, physicians speak of a "golden hour"—a brief grace period in which quickly applied, proper therapy can save the life of the patient. Much of this mortality results from exsanguination, i.e., bleeding to death—often from internal hemorrhage. The inability of a paramedic to treat breaches in the vascular system deep within the body or to stem the loss of blood from internal organs is a major reason for the high level of mortality associated with blunt trauma. We have undertaken an extensive research program to treat the problem of internal bleeding. Our approach is as follows: (a) We use scanning ultrasound to identify internal bleeding and hemorrhage, (b) we use ultrasound imaging to locate specific breaches in the vascular system, both from damaged vessels and gross damage to the capillary bed, and (c) we use High Intensity Focused Ultrasound (HIFU) to treat the damaged region and to induce hemostasis. We present a general review of this research with some emphasis on the role of nonlinear acoustics.

  10. Design and optimization of membrane-type acoustic metamaterials

    NASA Astrophysics Data System (ADS)

    Blevins, Matthew Grant

    One of the most common problems in noise control is the attenuation of low frequency noise. Typical solutions require barriers with high density and/or thickness. Membrane-type acoustic metamaterials are a novel type of engineered material capable of high low-frequency transmission loss despite their small thickness and light weight. These materials are ideally suited to applications with strict size and weight limitations such as aircraft, automobiles, and buildings. The transmission loss profile can be manipulated by changing the micro-level substructure, stacking multiple unit cells, or by creating multi-celled arrays. To date, analysis has focused primarily on experimental studies in plane-wave tubes and numerical modeling using finite element methods. These methods are inefficient when used for applications that require iterative changes to the structure of the material. To facilitate design and optimization of membrane-type acoustic metamaterials, computationally efficient dynamic models based on the impedance-mobility approach are proposed. Models of a single unit cell in a waveguide and in a baffle, a double layer of unit cells in a waveguide, and an array of unit cells in a baffle are studied. The accuracy of the models and the validity of assumptions used are verified using a finite element method. The remarkable computational efficiency of the impedance-mobility models compared to finite element methods enables implementation in design tools based on a graphical user interface and in optimization schemes. Genetic algorithms are used to optimize the unit cell design for a variety of noise reduction goals, including maximizing transmission loss for broadband, narrow-band, and tonal noise sources. The tools for design and optimization created in this work will enable rapid implementation of membrane-type acoustic metamaterials to solve real-world noise control problems.

  11. Topological Acoustics

    NASA Astrophysics Data System (ADS)

    Yang, Zhaoju; Gao, Fei; Shi, Xihang; Lin, Xiao; Gao, Zhen; Chong, Yidong; Zhang, Baile

    2015-03-01

    The manipulation of acoustic wave propagation in fluids has numerous applications, including some in everyday life. Acoustic technologies frequently develop in tandem with optics, using shared concepts such as waveguiding and metamedia. It is thus noteworthy that an entirely novel class of electromagnetic waves, known as "topological edge states," has recently been demonstrated. These are inspired by the electronic edge states occurring in topological insulators, and possess a striking and technologically promising property: the ability to travel in a single direction along a surface without backscattering, regardless of the existence of defects or disorder. Here, we develop an analogous theory of topological fluid acoustics, and propose a scheme for realizing topological edge states in an acoustic structure containing circulating fluids. The phenomenon of disorder-free one-way sound propagation, which does not occur in ordinary acoustic devices, may have novel applications for acoustic isolators, modulators, and transducers.

  12. Topological acoustics.

    PubMed

    Yang, Zhaoju; Gao, Fei; Shi, Xihang; Lin, Xiao; Gao, Zhen; Chong, Yidong; Zhang, Baile

    2015-03-20

    The manipulation of acoustic wave propagation in fluids has numerous applications, including some in everyday life. Acoustic technologies frequently develop in tandem with optics, using shared concepts such as waveguiding and metamedia. It is thus noteworthy that an entirely novel class of electromagnetic waves, known as "topological edge states," has recently been demonstrated. These are inspired by the electronic edge states occurring in topological insulators, and possess a striking and technologically promising property: the ability to travel in a single direction along a surface without backscattering, regardless of the existence of defects or disorder. Here, we develop an analogous theory of topological fluid acoustics, and propose a scheme for realizing topological edge states in an acoustic structure containing circulating fluids. The phenomenon of disorder-free one-way sound propagation, which does not occur in ordinary acoustic devices, may have novel applications for acoustic isolators, modulators, and transducers. PMID:25839273

  13. Low-Loss Wide-Band Floating Electrode Type Unidirectional Transducer Filters and Ladder-Type Resonator Filters Using High-Temperature-Stable High Electromechanical Coupling Surface Acoustic Wave Substrates

    NASA Astrophysics Data System (ADS)

    Yamanouchi, Kazuhiko; Ishii, Toru

    2003-05-01

    The important properties required for surface acoustic wave (SAW) substrates are large electromechanical coupling coefficients (k2), small temperature coefficient of frequency (TCF), low propagation loss, among other. LiNbO3 is a good SAW substrate because of its good properties and large size. We developed SiO2/rotated Y-cut, X-propagating LiNbO3 leaky SAW substrates with a large k2 (over 0.2) and zero TCF at a small thickness of SiO2 of H/λ=0.2 (H: SiO2 film thickness, λ: SAW wave-length) compared to those of other substrates and zero propagation attenuation in the case of metalized surface. In this paper, the theoretical and experimental results for SAW filters, resonators and resonator filters are described. The low-loss filters using floating electrode type unidirectional transducer (FEUDT) showed an insertion loss of below 1 dB at a center frequency of 400 MHz and bandwidth of 20 MHz. Also, the resonator showed the wide-band characteristics and resonator filters showed a bandwidth of 80 MHz at a center frequency of 500 MHz.

  14. Acoustic neuroma

    MedlinePlus

    Vestibular schwannoma; Tumor - acoustic; Cerebellopontine angle tumor; Angle tumor ... 177. Battista RA. Gamma knife radiosurgery for vestibular schwannoma. Otolaryngol Clin North Am . 2009;42:635-654. ...

  15. Acoustically Tailored Composite Rotorcraft Fuselage Panels

    NASA Technical Reports Server (NTRS)

    Hambric, Stephen; Shepherd, Micah; Koudela, Kevin; Wess, Denis; Snider, Royce; May, Carl; Kendrick, Phil; Lee, Edward; Cai, Liang-Wu

    2015-01-01

    A rotorcraft roof sandwich panel has been redesigned to optimize sound power transmission loss (TL) and minimize structure-borne sound for frequencies between 1 and 4 kHz where gear meshing noise from the transmission has the most impact on speech intelligibility. The roof section, framed by a grid of ribs, was originally constructed of a single honeycomb core/composite face sheet panel. The original panel has coincidence frequencies near 700 Hz, leading to poor TL across the frequency range of 1 to 4 kHz. To quiet the panel, the cross section was split into two thinner sandwich subpanels separated by an air gap. The air gap was sized to target the fundamental mass-spring-mass resonance of the double panel system to less than 500 Hz. The panels were designed to withstand structural loading from normal rotorcraft operation, as well as 'man-on-the-roof' static loads experienced during maintenance operations. Thin layers of VHB 9469 viscoelastomer from 3M were also included in the face sheet ply layups, increasing panel damping loss factors from about 0.01 to 0.05. Measurements in the NASA SALT facility show the optimized panel provides 6-11 dB of acoustic transmission loss improvement, and 6-15 dB of structure-borne sound reduction at critical rotorcraft transmission tonal frequencies. Analytic panel TL theory simulates the measured performance quite well. Detailed finite element/boundary element modeling of the baseline panel simulates TL slightly more accurately, and also simulates structure-borne sound well.

  16. Acoustic metamaterials capable of both sound insulation and energy harvesting

    NASA Astrophysics Data System (ADS)

    Li, Junfei; Zhou, Xiaoming; Huang, Guoliang; Hu, Gengkai

    2016-04-01

    Membrane-type acoustic metamaterials are well known for low-frequency sound insulation. In this work, by introducing a flexible piezoelectric patch, we propose sound-insulation metamaterials with the ability of energy harvesting from sound waves. The dual functionality of the metamaterial device has been verified by experimental results, which show an over 20 dB sound transmission loss and a maximum energy conversion efficiency up to 15.3% simultaneously. This novel property makes the metamaterial device more suitable for noise control applications.

  17. Experimental study of acoustical characteristics of honeycomb sandwich structures

    NASA Astrophysics Data System (ADS)

    Peters, Portia Renee

    Loss factor measurements were performed on sandwich panels to determine the effects of different skin and core materials on the acoustical properties. Results revealed inserting a viscoelastic material in the core's mid-plane resulted in the highest loss factor. Panels constructed with carbon-fiber skins exhibited larger loss factors than glass-fiber skins. Panels designed to achieve subsonic wave speed did not show a significant increase in loss factor above the coincidence frequency. The para-aramid core had a larger loss factor value than the meta-aramid core. Acoustic absorption coefficients were measured for honeycomb sandwiches designed to incorporate multiple sound-absorbing devices, including Helmholtz resonators and porous absorbers. The structures consisted of conventional honeycomb cores filled with closed-cell polyurethane foams of various densities and covered with perforated composite facesheets. Honeycomb cores filled with higher density foam resulted in higher absorption coefficients over the frequency range of 50 -- 1250 Hz. However, this trend was not observed at frequencies greater than 1250 Hz, where the honeycomb filled with the highest density foam yielded the lowest absorption coefficient among samples with foam-filled cores. The energy-recycling semi-active vibration suppression method (ERSA) was employed to determine the relationship between vibration suppression and acoustic damping for a honeycomb sandwich panel. Results indicated the ERSA method simultaneously reduced the sound transmitted through the panel and the panel vibration. The largest reduction in sound transmitted through the panel was 14.3% when the vibrations of the panel were reduced by 7.3%. The influence of different design parameters, such as core density, core material, and cell size on wave speeds of honeycomb sandwich structures was experimentally analyzed. Bending and shear wave speeds were measured and related to the transmission loss performance for various material

  18. Treated cabin acoustic prediction using statistical energy analysis

    NASA Technical Reports Server (NTRS)

    Yoerkie, Charles A.; Ingraham, Steven T.; Moore, James A.

    1987-01-01

    The application of statistical energy analysis (SEA) to the modeling and design of helicopter cabin interior noise control treatment is demonstrated. The information presented here is obtained from work sponsored at NASA Langley for the development of analytic modeling techniques and the basic understanding of cabin noise. Utility and executive interior models are developed directly from existing S-76 aircraft designs. The relative importance of panel transmission loss (TL), acoustic leakage, and absorption to the control of cabin noise is shown using the SEA modeling parameters. It is shown that the major cabin noise improvement below 1000 Hz comes from increased panel TL, while above 1000 Hz it comes from reduced acoustic leakage and increased absorption in the cabin and overhead cavities.

  19. Membrane-constrained acoustic metamaterials for low frequency sound insulation

    NASA Astrophysics Data System (ADS)

    Wang, Xiaole; Zhao, Hui; Luo, Xudong; Huang, Zhenyu

    2016-01-01

    We present a constrained membrane-type acoustic metamaterial (CMAM) that employs constraint sticks to add out-of-plane dimensions in the design space of MAM. A CMAM sample, which adopts constraint sticks to suppress vibrations at the membrane center, was fabricated to achieve a sound transmission loss (STL) peak of 26 dB at 140 Hz, with the static areal density of 6.0 kg/m2. The working mechanism of the CMAM as an acoustic metamaterial is elucidated by calculating the averaged normal displacement, the equivalent areal density, and the effective dynamic mass of a unit cell through finite element simulations. Furthermore, the vibration modes of the CMAM indicate that the eigenmodes related to STL dips are shifted into high frequencies, thus broadening its effective bandwidth significantly. Three samples possessing the same geometry and material but different constraint areas were fabricated to illustrate the tunability of STL peaks at low frequencies.

  20. Musical Acoustics

    NASA Astrophysics Data System (ADS)

    Gough, Colin

    This chapter provides an introduction to the physical and psycho-acoustic principles underlying the production and perception of the sounds of musical instruments. The first section introduces generic aspects of musical acoustics and the perception of musical sounds, followed by separate sections on string, wind and percussion instruments.

  1. Investigation of fuselage acoustic treatment for a twin-engine turboprop aircraft in flight and laboratory tests

    NASA Technical Reports Server (NTRS)

    Mixson, J. S.; Oneal, R. L.; Grosveld, F. W.

    1984-01-01

    A flight and laboratory study of sidewall acoustic treatment for cabin noise control is described. In flight, cabin noise levels were measured at six locations with three treatment configurations. Noise levels from narrow-band analysis are reduced to one-third octave format and used to calculate insertion loss, IL, defined as the reduction of interior noise associated with the addition of a treatment. Laboratory tests used a specially constructed structural panel modeled after the propeller plane section of the aircraft sidewall, and acoustic treatments representing those used in flight. Lab measured transmission loss and absorption values were combined using classical acoustic procedures to obtain a prediction of IL. Comparison with IL values measured in flight for the boundary layer component of the noise indicated general agreement.

  2. Seabed acoustics of a sand ridge on the New Jersey continental shelf.

    PubMed

    Knobles, D P; Wilson, P S; Goff, J A; Cho, S E

    2008-09-01

    Acoustic measurements were made on a sand ridge on the New Jersey continental shelf. Data collected on two L arrays separated by 20 km from a single multi-frequency tow suggest small horizontal environmental variability. Values for the sound speed structure of the seabed are extracted by first applying a geo-acoustic inversion method to broadband and narrowband acoustic data from short-range sources. Then, a parabolic equation algorithm is used to properly include the bathymetry and sub-bottom layering. Finally, the frequency dependence of the seabed attenuation is inferred by optimizing the model fit to long-range transmission loss data in the 50-3000 Hz band. PMID:19045558

  3. Creep-Induced Microstructural Changes and Acoustic Characterization in a Cr-Mo-V Steel

    NASA Astrophysics Data System (ADS)

    Ohtani, Toshihiro; Yin, Fuxing; Kamada, Yasuhiro

    2008-05-01

    We studied the evolution of microstructure in a Cr-Mo-V steel (JIS-SNB16) during creep by monitoring ultrasonic attenuation. After obtaining a series of creep samples with various strains under a tensile stress of 25 MPa at 923 K, we removed small samples from the creep samples and measured free vibration resonance frequencies and attenuation coefficients with electromagnetic acoustic resonance (EMAR). EMAR is a combination of the resonant acoustic technique with a non-contact electromagnetic acoustic transducer (EMAT). The attenuation measurement is inherently free from any energy loss, resulting in pure attenuation in a metal sample. Furthermore, we observed the evolution of microstructure with electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM). The result from the small samples shows the same trend as our previous result from larger sample. We propose a non-destructive method using EMAR to evaluate creep damage in small specimens sampled from structural metals in-service.

  4. Objective sampling with EAGLE to improve acoustic prediction accuracy

    NASA Astrophysics Data System (ADS)

    Rike, Erik R.; Delbalzo, Donald R.

    2003-10-01

    Some Navy operations require extensive acoustic calculations. The standard computational approach is to calculate on a regular grid of points and radials. In complex environmental areas, this implies a dense grid and many radials (i.e., long run times) to achieve acceptable accuracy and detail. However, Navy tactical decision aid calculations must be timely and exhibit adequate accuracy or the results may be too old or too imprecise to be valuable. This dilemma led to a new concept, OGRES (Objective Grid/Radials using Environmentally-sensitive Selection), which produces irregular acoustic grids [Rike and DelBalzo, Proc. IEEE Oceans (2002)]. Its premise is that physical environmental complexity controls the need for dense sampling in space and azimuth, and that transmission loss already computed for nearby coordinates on previous iterations can be used to predict that complexity. Recent work in this area to further increase accuracy and efficiency by using better metrics and interpolation routines has led to the Efficient Acoustic Gridder for Littoral Environments (EAGLE). On each iteration, EAGLE produces an acoustic field for the entire area of interest with ever-increasing resolution and accuracy. An example is presented where approximately an order of magnitude efficiency improvement (over regular grids) is demonstrated. [Work sponsored by ONR.

  5. Acoustic trauma caused by lightning.

    PubMed

    Mora-Magaña, I; Collado-Corona, M A; Toral-Martiñòn, R; Cano, A

    1996-03-01

    Lesions produced by exposure to noise are frequent in everyday life. Injuries may be found in all systems of the human body, from the digestive to the endocrine, from the cardiovascular to the nervous system. Many organs may be damaged, the ear being one of them. It is known that noise produced by factories, airports, musical instruments and even toys can cause auditory loss. Noises in nature can also cause acoustic trauma. This report is the case history of acoustic trauma caused by lightning. The patient was studied with CAT scan, electroencephalogram, and brain mapping, impedance audiometry with tympanogram and acoustic reflex, audiometry and evoked otoacoustics emissions: distortion products and transients. PMID:8882110

  6. A novel sensor for monitoring acoustic cavitation. Part I: Concept, theory, and prototype development.

    PubMed

    Zeqiri, Bajram; Gélat, Pierre N; Hodnett, Mark; Lee, Nigel D

    2003-10-01

    This paper describes a new concept for an ultrasonic cavitation sensor designed specifically for monitoring acoustic emissions generated by small microbubbles when driven by an applied acoustic field. Its novel features include a hollow, open-ended, cylindrical shape, with the sensor being a right circular cylinder of height 32 mm and external diameter 38 mm. The internal diameter of the sensor is 30 mm; its inner surface is fabricated from a 110-microm layer of piezoelectrically active film whose measurement bandwidth is sufficient to enable acoustic emissions up to and beyond 10 MHz to be monitored. When in use, the sensor is immersed within the liquid test medium and high frequency (megahertz) acoustic emissions occurring within the hollow body of the sensor are monitored. In order to shield the sensor response from events occurring outside the cylinder, the outer surface of the sensor cylinder is encapsulated within a special 4-mm thick polyurethane-based cavitation shield with acoustic properties specifically developed to be minimally perturbing to the 40 kHz applied acoustic field but attenuating to ultrasound generated at megahertz frequencies (plane-wave transmission loss > 30 dB at 1 MHz). This paper introduces the rationale behind the new sensor, describing details of its construction and the materials formulation program undertaken to develop the cavitation shield. PMID:14609074

  7. Investigation of the sound transmission behavior of a chamber core cylinder

    NASA Astrophysics Data System (ADS)

    Li, Deyu; Vipperman, Jeffrey S.

    2002-05-01

    Several kinds of novel composite structures, such as advanced grid stiffened (AGS) and chamber core (CC) structures have been designed, fabricated, and investigated for both civil and military applications. The chamber core composite is a novel advanced sandwich-type structure that is created by filament winding an inner shell onto a cylindrical mandrel, arranging previously fabricated U-shaped channels around the perimeter of this shell to form the inner chamber walls, and filament winding an outer shell followed by a co-cure process. In this study, the structural/acoustic behavior of a normal composite chamber core cylinder is investigated both theoretically and experimentally. Lightly coupled structural and acoustic modal parameters are identified using experimental modal analysis techniques. The properties of sound transmission loss (TL) of the cylinder are also investigated experimentally. The effect of the structural/acoustic natural frequencies and the damping on the sound transmission loss is analyzed. Finally, passive control strategies are discussed, and several passive control materials for improving the sound transmission loss (0-500 Hz) of the cylinder are experimentally evaluated. [Work sponsored by the Air Force Research Laboratory Space Vehicles Directorate (AFRL/VS), POC Dr. Steven Lane, (505) 846-9944.

  8. Microfiber interferometric acoustic transducers.

    PubMed

    Wang, Xiuxin; Jin, Long; Li, Jie; Ran, Yang; Guan, Bai-Ou

    2014-04-01

    Acoustic and ultrasonic transducers are key components in biomedical information technology, which has been applied in medical diagnosis, photoacoustic endoscopy and photoacoustic imaging. In this paper, an acoustic transducer based on Fabry-Perot interferometer (FPI) fabricated in a microscaled optical fiber is demonstrated. The transducer is fabricated by forming two wavelength-matched Bragg gratings into the microfiber by means of side illumination with a 193nm excimer laser. When placing the transducer in water, the applied acoustic signal periodically changes the refractive index (RI) of the surrounding liquid and modulates the transmission of the FPI based on the evanescent-field interaction between the liquid and the transmitting light. As a result, the acoustic signal can be constructed with a tunable laser whose output wavelength is located at the slope of the inteferometric fringes. The transducer presents a sensitivity of 10 times higher than the counterparts fabricated in conventional singlemode fibers and has great potential to achieve higher resolution for photoacoustic imaging due to its reduced diameter. PMID:24718189

  9. A research program to reduce interior noise in general aviation airplanes. Design of an acoustic panel test facility

    NASA Technical Reports Server (NTRS)

    Roskam, J.; Muirhead, V. U.; Smith, H. W.; Henderson, T. D.

    1977-01-01

    The design, construction, and costs of a test facility for determining the sound transmission loss characteristics of various panels and panel treatments are described. The pressurization system and electronic equipment used in experimental testing are discussed as well as the reliability of the facility and the data gathered. Tests results are compared to pertinent acoustical theories for panel behavior and minor anomalies in the data are examined. A method for predicting panel behavior in the stiffness region is also presented.

  10. Acoustic Neuroma

    MedlinePlus

    ... slow growing tumor which arise primarily from the vestibular portion of the VIII cranial nerve and lie ... you have a "brain tumor" called acoustic neuroma (vestibular schwannoma). You think you are the only one ...

  11. Underwater Acoustics

    NASA Astrophysics Data System (ADS)

    Kuperman, William A.; Roux, Philippe

    It is well underwater established that sound waves, compared to electromagnetic waves, propagate long distances in the ocean. Hence, in the ocean as opposed to air or a vacuum, one uses sound navigation and ranging (SONAR) instead navigation and ranging (SONAR) of radar, acoustic communication instead of radio, and acoustic imaging and tomography instead of microwave or optical imaging or X-ray tomography. Underwater acoustics is the science of sound in water (most commonly in the ocean) and encompasses not only the study of sound propagation, but also the masking of sound signals by interfering phenomenon and signal processing for extracting these signals from interference. This chapter we will present the basics physics of ocean acoustics and then discuss applications.

  12. Structural Acoustics and Vibrations

    NASA Astrophysics Data System (ADS)

    Chaigne, Antoine

    This structural chapter is devoted to vibrations of structures and to their coupling with the acoustic field. Depending on the context, the radiated sound can be judged as desirable, as is mostly the case for musical instruments, or undesirable, like noise generated by machinery. In architectural acoustics, one main goal is to limit the transmission of sound through walls. In the automobile industry, the engineers have to control the noise generated inside and outside the passenger compartment. This can be achieved by means of passive or active damping. In general, there is a strong need for quieter products and better sound quality generated by the structures in our daily environment.

  13. Frequency-domain methods for modeling a nonlinear acoustic orifice

    NASA Astrophysics Data System (ADS)

    Egolf, David P.; Murphy, William J.; Franks, John R.; Kirlin, R. Lynn

    2002-11-01

    This presentation describes frequency-domain methods for simulating transmission loss across a single orifice mounted in an acoustic waveguide. The work was a preamble to research involving earplugs containing one or more orifices. Simulation methods included direct Fourier transformation, linearization about an operating point, and Volterra series. They were applied to an electric-circuit analog of the acoustic system containing the orifice. The orifice itself was characterized by an empirical expression for nonlinear impedance obtained by fitting curves to experimental resistance and reactance data reported by other authors. Their data-collection procedures required the impedance expression presented herein to be properly labeled as a describing function, a quantity well known in the nonlinear control systems literature. Results of the computer simulations were compared to experimental transmission-loss data. For a single-tone input sound pressure, the computer code accurately predicted the output fundamental (i.e., without harmonics). For a broadband input, the simulated output was less accurate, but acceptable. Levels of the sound-pressure input ranged from 60 to 160 dB. [Work supported by the National Institute for Occupational Safety and Health, Cincinnati, OH, through a research associateship granted the first author by the National Research Council.] a)Currently on leave at National Institute for Occupational Safety and Health, Cincinnati, OH.

  14. An analysis of the acoustic input impedance of the ear.

    PubMed

    Withnell, Robert H; Gowdy, Lauren E

    2013-10-01

    Ear canal acoustics was examined using a one-dimensional lossy transmission line with a distributed load impedance to model the ear. The acoustic input impedance of the ear was derived from sound pressure measurements in the ear canal of healthy human ears. A nonlinear least squares fit of the model to data generated estimates for ear canal radius, ear canal length, and quantified the resistance that would produce transmission losses. Derivation of ear canal radius has application to quantifying the impedance mismatch at the eardrum between the ear canal and the middle ear. The length of the ear canal was found, in general, to be longer than the length derived from the one-quarter wavelength standing wave frequency, consistent with the middle ear being mass-controlled at the standing wave frequency. Viscothermal losses in the ear canal, in some cases, may exceed that attributable to a smooth rigid wall. Resistance in the middle ear was found to contribute significantly to the total resistance. In effect, this analysis "reverse engineers" physical parameters of the ear from sound pressure measurements in the ear canal. PMID:23917695

  15. Simulation of detection and beamforming with acoustical ground sensors

    NASA Astrophysics Data System (ADS)

    Wilson, D. Keith; Sadler, Brian M.; Pham, Tien

    2002-08-01

    An interactive platform has been developed for simulating the detection and direction-finding performance of battlefield acoustic ground sensors. The simulations use the Acoustic Battlefield Aid (ABFA) as a computational engine to determine the signal propagation and resulting frequency-domain signal characteristics at the receiving sensor array. There are three components to the propagation predictions: the transmission loss (signal attenuation from target to sensor), signal saturation (degree of signal randomization), and signal coherence across the beamforming array. The transmission loss is predicted with a parabolic solution to the wave equation that accounts for sound refraction and ground interactions; signal saturation and coherence are predicted from the theory for line-of-sight wave propagation through turbulence. Based on these calculations, random frequency-domain signal samples are generated. The signal samples are then mixed with noise and fed to the selected detection or beamforming algorithm. After averaging over a number of trials, results are overlaid on a terrain map to show the sensor coverage. Currently available algorithms include the Neyman-Pearson criterion and Bayes risk minimization for detection, and the conventional, MVDR, and MUSIC beamformers. Users can readily add their own algorithms through a 'plug-in' interface. The interface requires only a text file listing the algorithm parameters and defaults, and a Matlab routine or Windows dynamic link library that implements the algorithm.

  16. Sensitivity of acoustic propagation to uncertainties in the marine environment as characterized by various rapid environmental assessment methods

    NASA Astrophysics Data System (ADS)

    Pecknold, Sean; Osler, John C.

    2012-02-01

    Accurate sonar performance prediction modelling depends on a good knowledge of the local environment, including bathymetry, oceanography and seabed properties. The function of rapid environmental assessment (REA) is to obtain relevant environmental data in a tactically relevant time frame, with REA methods categorized by the nature and immediacy of their application, from historical databases through remotely sensed data to in situ acquisition. However, each REA approach is subject to its own set of uncertainties, which are in turn transferred to uncertainty in sonar performance prediction. An approach to quantify and manage this uncertainty has been developed through the definition of sensitivity metrics and Monte Carlo simulations of acoustic propagation using multiple realizations of the marine environment. This approach can be simplified by using a linearized two-point sensitivity measure based on the statistics of the environmental parameters used by acoustic propagation models. The statistical properties of the environmental parameters may be obtained from compilations of historical data, forecast conditions or in situ measurements. During a field trial off the coast of Nova Scotia, a set of environmental data, including oceanographic and geoacoustic parameters, were collected together with acoustic transmission loss data. At the same time, several numerical models to forecast the oceanographic conditions were run for the area, including 5- and 1-day forecasts as well as nowcasts. Data from the model runs are compared to each other and to in situ environmental sampling, and estimates of the environmental uncertainties are calculated. The forecast and in situ data are used with historical geoacoustic databases and geoacoustic parameters collected using REA techniques, respectively, to perform acoustic transmission loss predictions, which are then compared to measured transmission loss. The progression of uncertainties in the marine environment, within and

  17. Acoustical evaluation of carbonized and activated cotton nonwovens.

    PubMed

    Jiang, N; Chen, J Y; Parikh, D V

    2009-12-01

    An activated carbon fiber nonwoven (ACF) was manufactured from a cotton nonwoven fabric. For the ACF acoustic application, a nonwoven composite of ACF with cotton nonwoven as a base layer was developed. Also produced were the composites of the cotton nonwoven base layer with a layer of glassfiber nonwoven, and the cotton nonwoven base layer with a layer of cotton fiber nonwoven. Their noise absorption coefficients and sound transmission loss were measured using the Brüel and Kjaer impedance tube instrument. Statistical significance of the differences between the composites was tested using the method of Duncan's grouping. The study concluded that the ACF composite exhibited a greater ability to absorb normal incidence sound waves than the composites with either glassfiber or cotton fiber. The analysis of sound transmission loss revealed that the three composites still obeyed the mass law of transmission loss. The composite with the surface layer of cotton fiber nonwoven possessed a higher fabric density and therefore showed a better sound insulation than the composites with glassfiber and ACF. PMID:19664919

  18. Reducing Thermal Conduction In Acoustic Levitators

    NASA Technical Reports Server (NTRS)

    Lierke, Ernst G.; Leung, Emily W.; Bhat, Balakrishna T.

    1991-01-01

    Acoustic transducers containing piezoelectric driving elements made more resistant to heat by reduction of effective thermal-conductance cross sections of metal vibration-transmitting rods in them, according to proposal. Used to levitate small objects acoustically for noncontact processing in furnaces. Reductions in cross sections increase amplitudes of transmitted vibrations and reduce loss of heat from furnaces.

  19. Acoustic biosensors

    PubMed Central

    Fogel, Ronen; Seshia, Ashwin A.

    2016-01-01

    Resonant and acoustic wave devices have been researched for several decades for application in the gravimetric sensing of a variety of biological and chemical analytes. These devices operate by coupling the measurand (e.g. analyte adsorption) as a modulation in the physical properties of the acoustic wave (e.g. resonant frequency, acoustic velocity, dissipation) that can then be correlated with the amount of adsorbed analyte. These devices can also be miniaturized with advantages in terms of cost, size and scalability, as well as potential additional features including integration with microfluidics and electronics, scaled sensitivities associated with smaller dimensions and higher operational frequencies, the ability to multiplex detection across arrays of hundreds of devices embedded in a single chip, increased throughput and the ability to interrogate a wider range of modes including within the same device. Additionally, device fabrication is often compatible with semiconductor volume batch manufacturing techniques enabling cost scalability and a high degree of precision and reproducibility in the manufacturing process. Integration with microfluidics handling also enables suitable sample pre-processing/separation/purification/amplification steps that could improve selectivity and the overall signal-to-noise ratio. Three device types are reviewed here: (i) bulk acoustic wave sensors, (ii) surface acoustic wave sensors, and (iii) micro/nano-electromechanical system (MEMS/NEMS) sensors. PMID:27365040

  20. Acoustic biosensors.

    PubMed

    Fogel, Ronen; Limson, Janice; Seshia, Ashwin A

    2016-06-30

    Resonant and acoustic wave devices have been researched for several decades for application in the gravimetric sensing of a variety of biological and chemical analytes. These devices operate by coupling the measurand (e.g. analyte adsorption) as a modulation in the physical properties of the acoustic wave (e.g. resonant frequency, acoustic velocity, dissipation) that can then be correlated with the amount of adsorbed analyte. These devices can also be miniaturized with advantages in terms of cost, size and scalability, as well as potential additional features including integration with microfluidics and electronics, scaled sensitivities associated with smaller dimensions and higher operational frequencies, the ability to multiplex detection across arrays of hundreds of devices embedded in a single chip, increased throughput and the ability to interrogate a wider range of modes including within the same device. Additionally, device fabrication is often compatible with semiconductor volume batch manufacturing techniques enabling cost scalability and a high degree of precision and reproducibility in the manufacturing process. Integration with microfluidics handling also enables suitable sample pre-processing/separation/purification/amplification steps that could improve selectivity and the overall signal-to-noise ratio. Three device types are reviewed here: (i) bulk acoustic wave sensors, (ii) surface acoustic wave sensors, and (iii) micro/nano-electromechanical system (MEMS/NEMS) sensors. PMID:27365040

  1. New transmission line analogy applied to single and multilayered piezoelectric transducers.

    PubMed

    Dion, J L

    1993-01-01

    It is shown that a piezoelectric element vibrating in an extensional or shear mode can be modeled rigorously by systematic use of the transmission line analogy and the superposition theorem. A schematic representation of such an element which is in a way more intuitive than others representations is introduced. The stresses on the electroded faces are considered as sources of stress applied at the two ends of an acoustic transmission line, since the acoustical perturbations may be considered as originating on these faces. Using transmission line theory, a complete set of expressions is found for electrical impedance, acoustic stresses, and velocities. Computed results are exactly the same as those given by the classical method, even if the computation sequence is almost entirely different. An intuitive graphical model for a piezoelectric element is proposed. It is also shown that the acoustic velocities on opposite faces of an asymmetrical loaded piezoelectric plate are exactly equal at the antiresonance frequency when internal losses are neglected. The programs developed can be used efficiently for practical multilayered transducer design. PMID:18263222

  2. Controlling sound with acoustic metamaterials

    NASA Astrophysics Data System (ADS)

    Cummer, Steven A.; Christensen, Johan; Alù, Andrea

    2016-03-01

    Acoustic metamaterials can manipulate and control sound waves in ways that are not possible in conventional materials. Metamaterials with zero, or even negative, refractive index for sound offer new possibilities for acoustic imaging and for the control of sound at subwavelength scales. The combination of transformation acoustics theory and highly anisotropic acoustic metamaterials enables precise control over the deformation of sound fields, which can be used, for example, to hide or cloak objects from incident acoustic energy. Active acoustic metamaterials use external control to create effective material properties that are not possible with passive structures and have led to the development of dynamically reconfigurable, loss-compensating and parity-time-symmetric materials for sound manipulation. Challenges remain, including the development of efficient techniques for fabricating large-scale metamaterial structures and converting laboratory experiments into useful devices. In this Review, we outline the designs and properties of materials with unusual acoustic parameters (for example, negative refractive index), discuss examples of extreme manipulation of sound and, finally, provide an overview of future directions in the field.

  3. Plate mode propagation losses in solidly mounted resonators.

    PubMed

    Thalmayr, Florian; Hashimoto, Ken-Ya; Omori, Tatsuya; Yamaguchi, Masatsune

    2010-12-01

    This paper investigates the acoustic losses of propagating eigenmodes through the acoustic mirror of a solidly mounted resonator (SMR) to clarify how resonator properties are influenced by reflection coefficients for the thickness shear (TS) wave as well as that for the thickness extensional (TE) wave. To this end, we analyze the effective acoustic admittance for several test structures with different mirror properties. Leaky modes are distinguished from plate-like modes and the propagation losses are quantified by calculating mode quality factors. The dependence of the propagation properties of leaky eigenmodes is compared with the mirror properties in terms of bulk wave transmission coefficients obtained by the one-dimensional Mason¿s model. It is shown that the TE-like main mode couples with TS-like spurious modes, which then influence the leaky loss of the main mode as well. The coupling strength is strongly frequency-dependent and drastically changes with the mirror design. This result explains previous experimental results reported on SMR design. PMID:21156381

  4. AC losses in BiPbSrCaCuO-2223/Ag multifilamentary tapes in conditions similar to those in superconducting transmission lines

    NASA Astrophysics Data System (ADS)

    Majoros, M.; Glowacki, B. A.; Campbell, A. M.; Han, Z.; Vase, P.

    1998-12-01

    Transport AC losses in BiPbSrCaCuO-2223/Ag multifilamentary tape with 19 filaments were measured. The sample was 1.05 m long, wound in form of a helix with a gap between the tapes comparable with the tape width. Two different types of potential leads-tape following, axis following-with taps positioned in the centre of the tape were mounted on inner as well as outer surface of the helical sample. AC losses were measured at power frequencies by an electrical method using a lock-in nanovoltmeter. The influence of potential wires arrangement and the potential taps position on measured AC loss level and its frequency dependence was analysed.

  5. Estimating suspended solids concentrations from backscatter intensity measured by acoustic Doppler current profiler in San Francisco Bay, California

    USGS Publications Warehouse

    Gartner, J.W.

    2004-01-01

    The estimation of mass concentration of suspended solids is one of the properties needed to understand the characteristics of sediment transport in bays and estuaries. However, useful measurements or estimates of this property are often problematic when employing the usual methods of determination from collected water samples or optical sensors. Analysis of water samples tends to undersample the highly variable character of suspended solids, and optical sensors often become useless from biological fouling in highly productive regions. Acoustic sensors, such as acoustic Doppler current profilers that are now routinely used to measure water velocity, have been shown to hold promise as a means of quantitatively estimating suspended solids from acoustic backscatter intensity, a parameter used in velocity measurement. To further evaluate application of this technique using commercially available instruments, profiles of suspended solids concentrations are estimated from acoustic backscatter intensity recorded by 1200- and 2400-kHz broadband acoustic Doppler current profilers located at two sites in San Francisco Bay, California. ADCP backscatter intensity is calibrated using optical backscatterance data from an instrument located at a depth close to the ADCP transducers. In addition to losses from spherical spreading and water absorption, calculations of acoustic transmission losses account for attenuation from suspended sediment and correction for nonspherical spreading in the near field of the acoustic transducer. Acoustic estimates of suspended solids consisting of cohesive and noncohesive sediments are found to agree within about 8-10% (of the total range of concentration) to those values estimated by a second optical backscatterance sensor located at a depth further from the ADCP transducers. The success of this approach using commercially available Doppler profilers provides promise that this technique might be appropriate and useful under certain conditions in

  6. The acoustic environment of the Florida manatee: Correlation with level of habitat use

    NASA Astrophysics Data System (ADS)

    Miksis-Olds, Jennifer L.; Miller, James H.; Tyack, Peter L.

    2001-05-01

    The Florida manatee is regularly exposed to high volumes of vessel traffic and other human-related noise pollutants because of their coastal distribution. Quantifying specific aspects of the manatees' acoustic environment will allow for a better understanding of how these animals are responding to both natural and human induced changes in their environment. Acoustic recordings and transmission loss measurements were made in two critical manatee habitats: seagrass beds and dredged basins. Twenty-four sampling sites were chosen based on the frequency of manatee presence in specific areas from 2000-2003. Recordings were composed of both ambient noise levels and transient noise sources. The Monterey-Miami Parabolic Equation Model (MMPE) was used to relate environmental parameters to transmission loss, and model outputs were verified by field tests at all sites. Preliminary results indicate that high-use grassbeds have higher levels of transmission loss compared to low-use sites. Additionally, high-use grassbeds have lower ambient noise in the early morning and later afternoon hours compared to low-use grassbeds. The application of noise measurements and model results can now be used to predict received levels, signal-to-noise ratios, and reliable detection of biologically relevant signals in manatee habitats and in the many different environments that marine mammals live.

  7. Vibro-acoustic modelling of aircraft double-walls with structural links using Statistical Energy Analysis

    NASA Astrophysics Data System (ADS)

    Campolina, Bruno L.

    The prediction of aircraft interior noise involves the vibroacoustic modelling of the fuselage with noise control treatments. This structure is composed of a stiffened metallic or composite panel, lined with a thermal and acoustic insulation layer (glass wool), and structurally connected via vibration isolators to a commercial lining panel (trim). The goal of this work aims at tailoring the noise control treatments taking design constraints such as weight and space optimization into account. For this purpose, a representative aircraft double-wall is modelled using the Statistical Energy Analysis (SEA) method. Laboratory excitations such as diffuse acoustic field and point force are addressed and trends are derived for applications under in-flight conditions, considering turbulent boundary layer excitation. The effect of the porous layer compression is firstly addressed. In aeronautical applications, compression can result from the installation of equipment and cables. It is studied analytically and experimentally, using a single panel and a fibrous uniformly compressed over 100% of its surface. When compression increases, a degradation of the transmission loss up to 5 dB for a 50% compression of the porous thickness is observed mainly in the mid-frequency range (around 800 Hz). However, for realistic cases, the effect should be reduced since the compression rate is lower and compression occurs locally. Then the transmission through structural connections between panels is addressed using a four-pole approach that links the force-velocity pair at each side of the connection. The modelling integrates experimental dynamic stiffness of isolators, derived using an adapted test rig. The structural transmission is then experimentally validated and included in the double-wall SEA model as an equivalent coupling loss factor (CLF) between panels. The tested structures being flat, only axial transmission is addressed. Finally, the dominant sound transmission paths are

  8. PORTABLE ACOUSTIC MONITORING PACKAGE (PAMP)

    SciTech Connect

    John l. Loth; Gary J. Morris; George M. Palmer; Richard Guiler; Deepak Mehra

    2003-07-01

    The 1st generation acoustic monitoring package was designed to detect and analyze weak acoustic signals inside natural gas transmission lines. Besides a microphone it housed a three-inch diameter aerodynamic acoustic signal amplifier to maximize sensitivity to leak induced {Delta}p type signals. The theory and test results of this aerodynamic signal amplifier was described in the master's degree thesis of our Research Assistant Deepak Mehra who is about to graduate. To house such a large three-inch diameter sensor required the use of a steel 300-psi rated 4 inch weld neck flange, which itself weighed already 29 pounds. The completed 1st generation Acoustic Monitoring Package weighed almost 100 pounds. This was too cumbersome to mount in the field, on an access port at a pipeline shut-off valve. Therefore a 2nd generation and truly Portable Acoustic Monitor was built. It incorporated a fully self-contained {Delta}p type signal sensor, rated for line pressures up to 1000 psi with a base weight of only 6 pounds. This is the Rosemont Inc. Model 3051CD-Range 0, software driven sensor, which is believed to have industries best total performance. Its most sensitive unit was purchased with a {Delta}p range from 0 to 3 inch water. This resulted in the herein described 2nd generation: Portable Acoustic Monitoring Package (PAMP) for pipelines up to 1000 psi. Its 32-pound total weight includes an 18-volt battery. Together with a 3 pound laptop with its 4-channel data acquisition card, completes the equipment needed for field acoustic monitoring of natural gas transmission pipelines.

  9. Radiosurgery of acoustic neurinomas

    SciTech Connect

    Flickinger, J.C.; Lunsford, L.D.; Coffey, R.J.; Linskey, M.E.; Bissonette, D.J.; Maitz, A.H.; Kondziolka, D. )

    1991-01-15

    Eighty-five patients with acoustic neurinomas underwent stereotactic radiosurgery with the gamma unit at the University of Pittsburgh (Pittsburgh, PA) during its first 30 months of operation. Neuroimaging studies performed in 40 patients with more than 1 year follow-up showed that tumors were smaller in 22 (55%), unchanged in 17 (43%), and larger in one (2%). The 2-year actuarial rates for preservation of useful hearing and any hearing were 46% and 62%, respectively. Previously undetected neuropathies of the trigeminal (n = 12) and facial nerves (n = 14) occurred 1 week to 1 year after radiosurgery (median, 7 and 6 months, respectively), and improved at median intervals of 13 and 8 months, respectively, after onset. Hearing loss was significantly associated with increasing average tumor diameter (P = 0.04). No deterioration of any cranial nerve function has yet developed in seven patients with average tumor diameters less than 10 mm. Radiosurgery is an important treatment alternative for selected acoustic neurinoma patients.

  10. Bound states in one-dimensional acoustic parity-time-symmetric lattices for perfect sensing

    NASA Astrophysics Data System (ADS)

    Zhao, Degang; Shen, Yaxi; Zhang, Yu; Zhu, Xuefeng; Yi, Lin

    2016-08-01

    In this letter, we study the propagation of acoustic waves through a one-dimensional multilayer structure composed of a thin defect layer sandwiched by two phononic crystals. Two kinds of defect states will generate in band gaps and both of them cause unitary transmission. However, they have very unlike field distributions due to the different contrasted acoustic impedances between the defect layer and its neighboring layers. Spectral positions of transmission peaks can be exactly determined by the resonant phase condition. In a non-dissipative system, these resonant states correspond to single crossing point of two eigenvalues of scattering matrix. When gain and loss are introduced to judiciously construct an acoustic parity-time-symmetric lattice, the crossing point will split into a pair of exceptional points (EPs). Interestingly, the EPs correspond to unidirectional zero reflection that is very sensitive to the thickness of defect layer. Taking advantage of this virtue, a very sensitive acoustic sensor can be designed, which has potentially applications in ultrasonic inspection, noise detection, ultrasonic medicine, etc.

  11. Prospects for coupling Surface Acoustic Waves to superconducting qubits

    NASA Astrophysics Data System (ADS)

    Gustafsson, Martin

    2013-03-01

    Recent years have seen great development in the quantum control of mechanical resonators. These usually consist of membranes, cantilevers or suspended beams, whose vibrational modes can be cooled to the quantum ground state. This presentation will focus on a different kind of micromechanical system, where the motion is not confined to a mode with fixed boundaries, but propagates along the surface of a microchip. These modes are known as Surface Acoustic Waves (SAWs), and superficially resemble ripples on water, moving with low loss along the surfaces of solids. On a piezoelectric substrate, electrode gratings known as Interdigital Transducers (IDTs) can be used to convert power between the electric and acoustic domains. Devices based on this effect are of profound technological importance as filters and analog signal processors in the RF domain. In the realm of quantum information processing, SAWs have primarily been used to transport carriers and excitons through piezoelectric semiconductors, in the electric potential wells propagating along with the mechanical wave. Our approach, however, is different in that we aim to explore the mechanical wave itself as a carrier of quantum information. We have previously shown that a single-electron transistor can be used as a local probe for SAWs, with encouraging sensitivity levels. Building on this, we now investigate the prospects for coupling a SAW beam directly to a superconducting qubit. By merging a circuit model for an IDT with a quasi-classical description of a transmon qubit, we estimate that the qubit can couple to an acoustic transmission line with approximately the same strength as to an electrical one. This type of coupling opens for acoustic analogs of recent experiments in microwave quantum optics, including the generation of non-classical acoustic states.

  12. Evidence for anisotropic dielectric properties of monoclinic hafnia using valence electron energy-loss spectroscopy in high-resolution transmission electron microscopy and ab initio time-dependent density-functional theory

    NASA Astrophysics Data System (ADS)

    Guedj, C.; Hung, L.; Zobelli, A.; Blaise, P.; Sottile, F.; Olevano, V.

    2014-12-01

    The effect of nanocrystal orientation on the energy loss spectra of monoclinic hafnia (m-HfO2) is measured by high resolution transmission electron microscopy (HRTEM) and valence energy loss spectroscopy (VEELS) on high quality samples. For the same momentum-transfer directions, the dielectric properties are also calculated ab initio by time-dependent density-functional theory (TDDFT). Experiments and simulations evidence anisotropy in the dielectric properties of m-HfO2, most notably with the direction-dependent oscillator strength of the main bulk plasmon. The anisotropic nature of m-HfO2 may contribute to the differences among VEELS spectra reported in literature. The good agreement between the complex dielectric permittivity extracted from VEELS with nanometer spatial resolution, TDDFT modeling, and past literature demonstrates that the present HRTEM-VEELS device-oriented methodology is a possible solution to the difficult nanocharacterization challenges given in the International Technology Roadmap for Semiconductors.

  13. Evidence for anisotropic dielectric properties of monoclinic hafnia using valence electron energy-loss spectroscopy in high-resolution transmission electron microscopy and ab initio time-dependent density-functional theory

    SciTech Connect

    Guedj, C.; Hung, L.; Sottile, F.; Zobelli, A.; Blaise, P.; Olevano, V.

    2014-12-01

    The effect of nanocrystal orientation on the energy loss spectra of monoclinic hafnia (m-HfO{sub 2}) is measured by high resolution transmission electron microscopy (HRTEM) and valence energy loss spectroscopy (VEELS) on high quality samples. For the same momentum-transfer directions, the dielectric properties are also calculated ab initio by time-dependent density-functional theory (TDDFT). Experiments and simulations evidence anisotropy in the dielectric properties of m-HfO{sub 2}, most notably with the direction-dependent oscillator strength of the main bulk plasmon. The anisotropic nature of m-HfO{sub 2} may contribute to the differences among VEELS spectra reported in literature. The good agreement between the complex dielectric permittivity extracted from VEELS with nanometer spatial resolution, TDDFT modeling, and past literature demonstrates that the present HRTEM-VEELS device-oriented methodology is a possible solution to the difficult nanocharacterization challenges given in the International Technology Roadmap for Semiconductors.

  14. Scanning tomographic acoustic microscopy

    NASA Astrophysics Data System (ADS)

    Lee, Hua

    2002-11-01

    This paper provides an overview of the design and development of the scanning tomographic acoustic microscopy (STAM). This research effort spans over a period of more than 12 years, which successfully elevated the acoustic microscopy from the traditional intensity-mapping mode to the level of holographic and tomographic imaging. The tomographic imaging capability of STAM was developed on the platform of the scanning laser acoustic microscope (SLAM), which operates in a coherent transmission mode with plane-wave illumination and scanning laser wavefield detection. The image formation techniques were based on the backward propagation method implemented in the plane-to-plane format. In this paper, the key elements of the design and development, including the modification of the data-acquisition hardware, implementation of image reconstruction algorithms for multiple-frequency and multiple-angle tomography, and the high-precision phase-correction and image registration techniques for the superposition of coherent sub-images, will be discussed. Results of full-scale experiments will also be included to demonstrate the capability of holographic and tomographic image formation in microscopic scale.

  15. NW-MILO Acoustic Data Collection

    SciTech Connect

    Matzner, Shari; Myers, Joshua R.; Maxwell, Adam R.; Jones, Mark E.

    2010-02-17

    signatures of small vessels. The sampling rate of 8 kHz and low pass filtering to 2 kHz results in an alias-free signal in the frequency band that is appropriate for small vessels. Calibration was performed using a Lubell underwater speaker so that the raw data signal levels can be converted to sound pressure. Background noise is present due to a nearby pump and as a result of tidal currents. More study is needed to fully characterize the noise, but it does not pose an obstacle to using the acoustic data for the purposes of vessel detection and signature analysis. The detection range for a small vessel was estimated using the calibrated voltage response of the system and a cylindrical spreading model for transmission loss. The sound pressure of a typical vessel with an outboard motor was found to be around 140 dB mPa, and could theoretically be detected from 10 km away. In practical terms, a small vessel could reliably be detected from 3 - 5 km away. The data is archived in netCDF files, a standard scientific file format that is "self describing". This means that each data file contains the metadata - timestamps, units, origin, etc. - needed to make the data meaningful and portable. Other file formats, such as XML, are also supported. A visualization tool has been developed to view the acoustic data in the form of spectrograms, along with the coincident radar track data and camera images.

  16. Evaluation of Parallel-Element, Variable-Impedance, Broadband Acoustic Liner Concepts

    NASA Technical Reports Server (NTRS)

    Jones, Michael G.; Howerton, Brian M.; Ayle, Earl

    2012-01-01

    Recent trends in aircraft engine design have highlighted the need for acoustic liners that provide broadband sound absorption with reduced liner thickness. Three such liner concepts are evaluated using the NASA normal incidence tube. Two concepts employ additive manufacturing techniques to fabricate liners with variable chamber depths. The first relies on scrubbing losses within narrow chambers to provide acoustic resistance necessary for sound absorption. The second employs wide chambers that provide minimal resistance, and relies on a perforated sheet to provide acoustic resistance. The variable-depth chambers used in both concepts result in reactance spectra near zero. The third liner concept employs mesh-caps (resistive sheets) embedded at variable depths within adjacent honeycomb chambers to achieve a desired impedance spectrum. Each of these liner concepts is suitable for use as a broadband sound absorber design, and a transmission line model is presented that provides good comparison with their respective acoustic impedance spectra. This model can therefore be used to design acoustic liners to accurately achieve selected impedance spectra. Finally, the effects of increasing the perforated facesheet thickness are demonstrated, and the validity of prediction models based on lumped element and wave propagation approaches is investigated. The lumped element model compares favorably with measured results for liners with thin facesheets, but the wave propagation model provides good comparisons for a wide range of facesheet thicknesses.

  17. Chromospheric heating by acoustic shock waves

    NASA Technical Reports Server (NTRS)

    Jordan, Stuart D.

    1993-01-01

    Work by Anderson & Athay (1989) suggests that the mechanical energy required to heat the quiet solar chromosphere might be due to the dissipation of weak acoustic shocks. The calculations reported here demonstrate that a simple picture of chromospheric shock heating by acoustic waves propagating upward through a model solar atmosphere, free of both magnetic fields and local inhomogeneities, cannot reproduce their chromospheric model. The primary reason is the tendency for vertically propagating acoustic waves in the range of allowed periods to dissipate too low in the atmosphere, providing insufficient residual energy for the middle chromosphere. The effect of diverging magnetic fields and the corresponding expanding acoustic wavefronts on the mechanical dissipation length is then discussed as a means of preserving a quasi-acoustic heating hypothesis. It is argued that this effect, in a canopy that overlies the low chromosphere, might preserve the acoustic shock hypothesis consistent with the chromospheric radiation losses computed by Anderson & Athay.

  18. Acoustic transducer for acoustic microscopy

    DOEpatents

    Khuri-Yakub, Butrus T.; Chou, Ching H.

    1990-01-01

    A shear acoustic transducer-lens system in which a shear polarized piezoelectric material excites shear polarized waves at one end of a buffer rod having a lens at the other end which excites longitudinal waves in a coupling medium by mode conversion at selected locations on the lens.

  19. Acoustic transducer for acoustic microscopy

    DOEpatents

    Khuri-Yakub, B.T.; Chou, C.H.

    1990-03-20

    A shear acoustic transducer-lens system is described in which a shear polarized piezoelectric material excites shear polarized waves at one end of a buffer rod having a lens at the other end which excites longitudinal waves in a coupling medium by mode conversion at selected locations on the lens. 9 figs.

  20. Optical-resolution photoacoustic imaging through thick tissue with a thin capillary as a dual optical-in acoustic-out waveguide

    NASA Astrophysics Data System (ADS)

    Simandoux, Olivier; Stasio, Nicolino; Gateau, Jérome; Huignard, Jean-Pierre; Moser, Christophe; Psaltis, Demetri; Bossy, Emmanuel

    2015-03-01

    We demonstrate the ability to guide high-frequency photoacoustic waves through thick tissue with a water-filled silica-capillary (150 μm inner diameter and 30 mm long). An optical-resolution photoacoustic image of a 30 μm diameter absorbing nylon thread was obtained by guiding the acoustic waves in the capillary through a 3 cm thick fat layer. The transmission loss through the capillary was about -20 dB, much lower than the -120 dB acoustic attenuation through the fat layer. The overwhelming acoustic attenuation of high-frequency acoustic waves by biological tissue can therefore be avoided by the use of a small footprint capillary acoustic waveguide for remote detection. We finally demonstrate that the capillary can be used as a dual optical-in acoustic-out waveguide, paving the way for the development of minimally invasive optical-resolution photoacoustic endoscopes free of any acoustic or optical elements at their imaging tip.

  1. Acoustic metasurface with hybrid resonances.

    PubMed

    Ma, Guancong; Yang, Min; Xiao, Songwen; Yang, Zhiyu; Sheng, Ping

    2014-09-01

    An impedance-matched surface has the property that an incident wave generates no reflection. Here we demonstrate that by using a simple construction, an acoustically reflecting surface can acquire hybrid resonances and becomes impedance-matched to airborne sound at tunable frequencies, such that no reflection is generated. Each resonant cell of the metasurface is deep-subwavelength in all its spatial dimensions, with its thickness less than the peak absorption wavelength by two orders of magnitude. As there can be no transmission, the impedance-matched acoustic wave is hence either completely absorbed at one or multiple frequencies, or converted into other form(s) of energy, such as an electrical current. A high acoustic-electrical energy conversion efficiency of 23% is achieved. PMID:24880731

  2. 500 km unrepeatered 200 Gbit·s-1 transmission over a G.652-compliant ultra-low loss fiber only

    NASA Astrophysics Data System (ADS)

    Gainov, V. V.; Gurkin, N. V.; Lukinih, S. N.; Shikhaliev, I. I.; Skvortsov, P. I.; Makovejs, S.; Akopov, S. G.; Ten, S. Y.; Nanii, O. E.; Treshchikov, V. N.

    2015-06-01

    In this work we experimentally demonstrate 200 Gb·s-1 (2  ×  100 G) unrepeatered transmission over 502.1 km using a dual polarization quadrature phase-shift-keyed (DP-QPSK) format and real-time processing. Such ultra-long distance is enabled by the use of high-performance 100 G DP-QPSK transponders (the required optical signal-to-noise ratio is 12 dB), Corning® SMF-28® ULL fiber (the average attenuation of the spools used in this experiment ~0.160 dB km-1), and optimization of remotely pumped optical amplifiers, bidirectional Raman amplifiers, and dispersion precompensation.

  3. Acoustic Properties of Polyurethane Composition Reinforced with Carbon Nanotubes and Silicon Oxide Nano-powder

    NASA Astrophysics Data System (ADS)

    Orfali, Wasim A.

    This article demonstrates the acoustic properties of added small amount of carbon-nanotube and siliconoxide nano powder (S-type, P-Type) to the host material polyurethane composition. By adding CNT and/or nano-silica in the form of powder at different concentrations up to 2% within the PU composition to improve the sound absorption were investigated in the frequency range up to 1600 Hz. Sound transmission loss measurement of the samples were determined using large impedance tube. The tests showed that addition of 0.2 wt.% Silicon Oxide Nano-powder and 0.35 wt.% carbon nanotube to polyurethane composition improved sound transmissions loss (Sound Absorption) up to 80 dB than that of pure polyurethane foam sample.

  4. Medical Acoustics

    NASA Astrophysics Data System (ADS)

    Beach, Kirk; Dunmire, Barbrina

    Medical acoustics can be subdivided into diagnostics and therapy. Diagnostics are further separated into auditory and ultrasonic methods, and both employ low amplitudes. Therapy (excluding medical advice) uses ultrasound for heating, cooking, permeablizing, activating and fracturing tissues and structures within the body, usually at much higher amplitudes than in diagnostics. Because ultrasound is a wave, linear wave physics are generally applicable, but recently nonlinear effects have become more important, even in low-intensity diagnostic applications.

  5. Acoustic chaos

    SciTech Connect

    Lauterborn, W.; Parlitz, U.; Holzfuss, J.; Billo, A.; Akhatov, I.

    1996-06-01

    Acoustic cavitation, a complex, spatio-temporal dynamical system, is investigated with respect to its chaotic properties. The sound output, the {open_quote}{open_quote}noise{close_quote}{close_quote}, is subjected to time series analysis. The spatial dynamics of the bubble filaments is captured by high speed holographic cinematography and subsequent digital picture processing from the holograms. Theoretical models are put forward for describing the pattern formation. {copyright} {ital 1996 American Institute of Physics.}

  6. Acoustic Facies Analysis of Side-Scan Sonar Data

    NASA Astrophysics Data System (ADS)

    Dwan, Fa Shu

    Acoustic facies analysis methods have allowed the generation of system-independent values for the quantitative seafloor acoustic parameter, backscattering strength, from GLORIA and (TAMU) ^2 side-scan sonar data. The resulting acoustic facies parameters enable quantitative comparisons of data collected by different sonar systems, data from different environments, and measurements made with survey geometries. Backscattering strength values were extracted from the sonar amplitude data by inversion based on the sonar equation. Image processing products reveal seafloor features and patterns of relative intensity. To quantitatively compare data collected at different times or by different systems, and to ground truth-measurements and geoacoustic models, quantitative corrections must be made on any given data set for system source level, beam pattern, time-varying gain, processing gain, transmission loss, absorption, insonified area contribution, and grazing angle effects. In the sonar equation, backscattering strength is the sonar parameter which is directly related to seafloor properties. The GLORIA data used in this study are from the edge of a distal lobe of the Monterey Fan. An interfingered region of strong and weak seafloor signal returns from a flat seafloor region provides an ideal data set for this study. Inversion of imagery data from the region allows the quantitative definition of different acoustic facies. The (TAMU) ^2 data used are from a calibration site near the Green Canyon area of the Gulf of Mexico. Acoustic facies analysis techniques were implemented to generate statistical information for acoustic facies based on the estimates of backscattering strength. The backscattering strength values have been compared with Lambert's Law and other functions to parameterize the description of the acoustic facies. The resulting Lambertian constant values range from -26 dB to -36 dB. A modified Lambert relationship, which consists of both intercept and slope

  7. Graphical Acoustic Liner Design and Analysis Tool

    NASA Technical Reports Server (NTRS)

    Howerton, Brian M. (Inventor); Jones, Michael G. (Inventor)

    2016-01-01

    An interactive liner design and impedance modeling tool comprises software utilized to design acoustic liners for use in constrained spaces, both regularly and irregularly shaped. A graphical user interface allows the acoustic channel geometry to be drawn in a liner volume while the surface impedance calculations are updated and displayed in real-time. A one-dimensional transmission line model may be used as the basis for the impedance calculations.

  8. Extreme stiffness hyperbolic elastic metamaterial for total transmission subwavelength imaging

    NASA Astrophysics Data System (ADS)

    Lee, Hyuk; Oh, Joo Hwan; Seung, Hong Min; Cho, Seung Hyun; Kim, Yoon Young

    2016-04-01

    Subwavelength imaging by metamaterials and extended work to pursue total transmission has been successfully demonstrated with electromagnetic and acoustic waves very recently. However, no elastic counterpart has been reported because earlier attempts suffer from considerable loss. Here, for the first time, we realize an elastic hyperbolic metamaterial lens and experimentally show total transmission subwavelength imaging with measured wave field inside the metamaterial lens. The main idea is to compensate for the decreased impedance in the perforated elastic metamaterial by utilizing extreme stiffness, which has not been independently actualized in a continuum elastic medium so far. The fabricated elastic lens is capable of directly transferring subwavelength information from the input to the output boundary. In the experiment, this intriguing phenomenon is confirmed by scanning the elastic structures inside the lens with laser scanning vibrometer. The proposed elastic metamaterial lens will bring forth significant guidelines for ultrasonic imaging techniques.

  9. Extreme stiffness hyperbolic elastic metamaterial for total transmission subwavelength imaging.

    PubMed

    Lee, Hyuk; Oh, Joo Hwan; Seung, Hong Min; Cho, Seung Hyun; Kim, Yoon Young

    2016-01-01

    Subwavelength imaging by metamaterials and extended work to pursue total transmission has been successfully demonstrated with electromagnetic and acoustic waves very recently. However, no elastic counterpart has been reported because earlier attempts suffer from considerable loss. Here, for the first time, we realize an elastic hyperbolic metamaterial lens and experimentally show total transmission subwavelength imaging with measured wave field inside the metamaterial lens. The main idea is to compensate for the decreased impedance in the perforated elastic metamaterial by utilizing extreme stiffness, which has not been independently actualized in a continuum elastic medium so far. The fabricated elastic lens is capable of directly transferring subwavelength information from the input to the output boundary. In the experiment, this intriguing phenomenon is confirmed by scanning the elastic structures inside the lens with laser scanning vibrometer. The proposed elastic metamaterial lens will bring forth significant guidelines for ultrasonic imaging techniques. PMID:27040762

  10. Extreme stiffness hyperbolic elastic metamaterial for total transmission subwavelength imaging

    PubMed Central

    Lee, Hyuk; Oh, Joo Hwan; Seung, Hong Min; Cho, Seung Hyun; Kim, Yoon Young

    2016-01-01

    Subwavelength imaging by metamaterials and extended work to pursue total transmission has been successfully demonstrated with electromagnetic and acoustic waves very recently. However, no elastic counterpart has been reported because earlier attempts suffer from considerable loss. Here, for the first time, we realize an elastic hyperbolic metamaterial lens and experimentally show total transmission subwavelength imaging with measured wave field inside the metamaterial lens. The main idea is to compensate for the decreased impedance in the perforated elastic metamaterial by utilizing extreme stiffness, which has not been independently actualized in a continuum elastic medium so far. The fabricated elastic lens is capable of directly transferring subwavelength information from the input to the output boundary. In the experiment, this intriguing phenomenon is confirmed by scanning the elastic structures inside the lens with laser scanning vibrometer. The proposed elastic metamaterial lens will bring forth significant guidelines for ultrasonic imaging techniques. PMID:27040762

  11. Modeling sound transmission through the pulmonary system and chest with application to diagnosis of a collapsed lung

    NASA Astrophysics Data System (ADS)

    Royston, T. J.; Zhang, X.; Mansy, H. A.; Sandler, R. H.

    2002-04-01

    A theoretical and experimental study was undertaken to examine the feasibility of using audible-frequency vibro-acoustic waves for diagnosis of pneumothorax, a collapsed lung. The hypothesis was that the acoustic response of the chest to external excitation would change with this condition. In experimental canine studies, external acoustic energy was introduced into the trachea via an endotracheal tube. For the control (nonpneumothorax) state, it is hypothesized that sound waves primarily travel through the airways, couple to the lung parenchyma, and then are transmitted directly to the chest wall. In contradistinction, when a pneumothorax is present the intervening air presents an added barrier to efficient acoustic energy transfer. Theoretical models of sound transmission through the pulmonary system and chest region to the chest wall surface are developed to more clearly understand the mechanisms of intensity loss when a pneumothorax is present, relative to a baseline case. These models predict significant decreases in acoustic transmission strength when a pneumothorax is present, in qualitative agreement with experimental measurements. Development of the models, their extension via finite element analysis, and comparisons with experimental canine studies are reviewed.

  12. Mid-frequency acoustic propagation in shallow water on the New Jersey shelf: mean intensity.

    PubMed

    Tang, Dajun; Henyey, Frank S; Wang, Zhongkang; Williams, Kevin L; Rouseff, Daniel; Dahl, Peter H; Quijano, Jorge; Choi, Jee Woong

    2008-09-01

    Mid-frequency (1-10 kHz) sound propagation was measured at ranges 1-9 km in shallow water in order to investigate intensity statistics. Warm water near the bottom results in a sound speed minimum. Environmental measurements include sediment sound speed and water sound speed and density from a towed conductivity-temperature-depth chain. Ambient internal waves contribute to acoustic fluctuations. A simple model involving modes with random phases predicts the mean transmission loss to within a few dB. Quantitative ray theory fails due to near axial focusing. Fluctuations of the intensity field are dominated by water column variability. PMID:19045567

  13. Acoustic Tooth Cleaner

    NASA Technical Reports Server (NTRS)

    Heyman, J. S.

    1984-01-01

    Acoustically-energized water jet aids in plaque breakdown. Acoustic Wand includes acoustic transducer 1/4 wave plate, and tapered cone. Together elements energize solution of water containing mild abrasive injected into mouth to help prevent calculous buildup.

  14. Acoustic scattering response of hierarchic honeycomb structures for cylindrical and spherical structures

    NASA Astrophysics Data System (ADS)

    Mor, Arun

    Sandwich panels with honeycomb core are often employed in structures for improved mechanical properties with lightweight. Honeycombs are defined by non-overlapping and periodic unit cells. Most research conducted on these sandwich panels focuses on stiffness and strength properties. The acoustic aspect of these panels has been focused on sound transmission loss. For acoustics, previous studies used effective honeycomb orthotropic elastic moduli based on Cartesian unit cell geometry to model the core as a homogeneous structure. While efficient, this modeling approach loses accuracy at higher frequencies. Furthermore, when used for curved panels, the effective moduli are only approximate. In this work, mechanical and acoustic characteristics of cylindrical and spherical honeycomb panels are studied using finite element analysis. The unit cell geometry core is oriented both radially and in the transverse direction. The models are analyzed for sound scattering measured by target strength with interactions between structure and the acoustic medium through coupling between the domains. Both air and water are compared for the acoustic region. Different honeycomb core geometries varying in the hexagon arrangement, number of unit cells and level of hierarchy are studied. The structures developed are constrained to have the same total mass allowing for comparisons based on only changes in stiffness properties. The effect of face sheet thickness on the mechanical and acoustic properties of the curved sandwich structures is also studied. The vibration and acoustic scattering behavior of these structures have been investigated for natural frequencies between 1-1000 Hz to predict and understand the different responses near and at resonances. The target strength response of the structures has been studied in the near field at both front and back of the structures. The effect of acoustic coupling is observed clearly on varying the outer domains properties between air and water. It

  15. A study of methods to predict and measure the transmission of sound through the walls of light aircraft. Integration of certain singular boundary element integrals for applications in linear acoustics

    NASA Technical Reports Server (NTRS)

    Zimmerle, D.; Bernhard, R. J.

    1985-01-01

    An alternative method for performing singular boundary element integrals for applications in linear acoustics is discussed. The method separates the integral of the characteristic solution into a singular and nonsingular part. The singular portion is integrated with a combination of analytic and numerical techniques while the nonsingular portion is integrated with standard Gaussian quadrature. The method may be generalized to many types of subparametric elements. The integrals over elements containing the root node are considered, and the characteristic solution for linear acoustic problems are examined. The method may be generalized to most characteristic solutions.

  16. Acoustic plane waves incident on an oblique clamped panel in a rectangular duct

    NASA Technical Reports Server (NTRS)

    Unz, H.; Roskam, J.

    1980-01-01

    The theory of acoustic plane waves incident on an oblique clamped panel in a rectangular duct was developed from basic theoretical concepts. The coupling theory between the elastic vibrations of the panel (plate) and the oblique incident acoustic plane wave in infinite space was considered in detail, and was used for the oblique clamped panel in the rectangular duct. The partial differential equation which governs the vibrations of the clamped panel (plate) was modified by adding to it stiffness (spring) forces and damping forces. The Transmission Loss coefficient and the Noise Reduction coefficient for oblique incidence were defined and derived in detail. The resonance frequencies excited by the free vibrations of the oblique finite clamped panel (plate) were derived and calculated in detail for the present case.

  17. A lightweight low-frequency sound insulation membrane-type acoustic metamaterial

    NASA Astrophysics Data System (ADS)

    Lu, Kuan; Wu, Jiu Hui; Guan, Dong; Gao, Nansha; Jing, Li

    2016-02-01

    A novel membrane-type acoustic metamaterial with a high sound transmission loss (STL) at low frequencies (⩽500Hz) was designed and the mechanisms were investigated by using negative mass density theory. This metamaterial's structure is like a sandwich with a thin (thickness=0.25mm) lightweight flexible rubber material within two layers of honeycomb cell plates. Negative mass density was demonstrated at frequencies below the first natural frequency, which results in the excellent low-frequency sound insulation. The effects of different structural parameters of the membrane on the sound-proofed performance at low frequencies were investigated by using finite element method (FEM). The numerical results show that, the STL can be modulated to higher value by changing the structural parameters, such as the membrane surface density, the unite cell film shape, and the membrane tension. The acoustic metamaterial proposed in this study could provide a potential application in the low-frequency noise insulation.

  18. Acoustic Mechanical Feedthroughs

    NASA Technical Reports Server (NTRS)

    Sherrit, Stewart; Walkemeyer, Phillip; Bao, Xiaoqi; Bar-Cohen, Yoseph; Badescu, Mircea

    2013-01-01

    Electromagnetic motors can have problems when operating in extreme environments. In addition, if one needs to do mechanical work outside a structure, electrical feedthroughs are required to transport the electric power to drive the motor. In this paper, we present designs for driving rotary and linear motors by pumping stress waves across a structure or barrier. We accomplish this by designing a piezoelectric actuator on one side of the structure and a resonance structure that is matched to the piezoelectric resonance of the actuator on the other side. Typically, piezoelectric motors can be designed with high torques and lower speeds without the need for gears. One can also use other actuation materials such as electrostrictive, or magnetostrictive materials in a benign environment and transmit the power in acoustic form as a stress wave and actuate mechanisms that are external to the benign environment. This technology removes the need to perforate a structure and allows work to be done directly on the other side of a structure without the use of electrical feedthroughs, which can weaken the structure, pipe, or vessel. Acoustic energy is pumped as a stress wave at a set frequency or range of frequencies to produce rotary or linear motion in a structure. This method of transferring useful mechanical work across solid barriers by pumping acoustic energy through a resonant structure features the ability to transfer work (rotary or linear motion) across pressure or thermal barriers, or in a sterile environment, without generating contaminants. Reflectors in the wall of barriers can be designed to enhance the efficiency of the energy/power transmission. The method features the ability to produce a bi-directional driving mechanism using higher-mode resonances. There are a variety of applications where the presence of a motor is complicated by thermal or chemical environments that would be hostile to the motor components and reduce life and, in some instances, not be

  19. Acoustic transducer

    DOEpatents

    Drumheller, D.S.

    1997-12-30

    An acoustic transducer is described comprising a one-piece hollow mandrel into the outer surface of which is formed a recess with sides perpendicular to the central axis of the mandrel and separated by a first distance and with a bottom parallel to the central axis and within which recess are a plurality of washer-shaped discs of a piezoelectric material and at least one disc of a temperature-compensating material with the discs being captured between the sides of the recess in a pre-stressed interference fit, typically at 2,000 psi of compressive stress. The transducer also includes a power supply and means to connect to a measurement device. The transducer is intended to be used for telemetry between a measurement device located downhole in an oil or gas well and the surface. The transducer is of an construction that is stronger with fewer joints that could leak fluids into the recess holding the piezoelectric elements than is found in previous acoustic transducers. 4 figs.

  20. Acoustic transducer

    DOEpatents

    Drumheller, Douglas S.

    1997-01-01

    An acoustic transducer comprising a one-piece hollow mandrel into the outer surface of which is formed a recess with sides perpendicular to the central axis of the mandrel and separated by a first distance and with a bottom parallel to the central axis and within which recess are a plurality of washer-shaped discs of a piezoelectric material and at least one disc of a temperature-compensating material with the discs being captured between the sides of the recess in a pre-stressed interference fit, typically at 2000 psi of compressive stress. The transducer also includes a power supply and means to connect to a measurement device. The transducer is intended to be used for telemetry between a measurement device located downhole in an oil or gas well and the surface. The transducer is of an construction that is stronger with fewer joints that could leak fluids into the recess holding the piezoelectric elements than is found in previous acoustic transducers.

  1. Perturbation measurement of waveguides for acoustic thermometry

    NASA Astrophysics Data System (ADS)

    Lin, H.; Feng, X. J.; Zhang, J. T.

    2013-09-01

    Acoustic thermometers normally embed small acoustic transducers in the wall bounding a gas-filled cavity resonator. At high temperature, insulators of transducers loss electrical insulation and degrade the signal-to-noise ratio. One essential solution to this technical trouble is to couple sound by acoustic waveguides between resonator and transducers. But waveguide will break the ideal acoustic surface and bring perturbations(Δf+ig) to the ideal resonance frequency. The perturbation model for waveguides was developed based on the first-order acoustic theory in this paper. The frequency shift Δf and half-width change g caused by the position, length and radius of waveguides were analyzed using this model. Six different length of waveguides (52˜1763 mm) were settled on the cylinder resonator and the perturbation (Δf+ig) were measured at T=332 K and p=250˜500 kPa. The experiment results agreed with the theoretical prediction very well.

  2. [The effects of acoustic overstimulation].

    PubMed

    Häusler, R

    2004-01-01

    Basic aspects of acoustic trauma are presented. Exposure to loud noise leads to an acoustic traumatization with a temporary threshold shift initially and, with increasing exposure, intensity and duration, a permanent hearing loss. Impulse sound such as hammer blows on metal, gun shots and other detonations reaching peak levels of 160 to 180 dB is particularly hazardous to the inner ear. Playing loud musical instruments such as trumpets or percussion may also lead to hearing damage. Less dangerous than often believed is listening to electronically amplified music with walkmen, at discos or rock concerts. The reason is that, while the sound level is quite high, the particularly dangerous sound peaks are absent, as loudspeakers usually have an output limit of 110-120 dB. Traffic noise (cars, trains, air planes) is usually not threatening to the ear, but it may represent a considerable subjective annoyance and a stress factor leading to psychosomatic disturbances (neurovegetative symptoms, sleeping disorders). An effective treatment for the acoustic trauma is still missing. The systematic and consequent prophylaxis either with individual ear protectors (plugs or ear muffs) or by reducing the noise level at the source by means of isolation, encapsulation, or by using motors that are less noisy remains very important. Increasing awareness of acoustic pollution and preventive means have led to a reduction in the incidence of the acoustic trauma in the last decades. PMID:14997996

  3. On whether azimuthal isotropy and alongshelf translational invariance are present in low-frequency acoustic propagation along the New Jersey shelfbreak.

    PubMed

    Lynch, James F; Emerson, Chris; Abbot, Philip A; Gawarkiewicz, Glen G; Newhall, Arthur E; Lin, Ying-Tsong; Duda, Timothy F

    2012-02-01

    To understand the issues associated with the presence (or lack) of azimuthal isotropy and horizontal (along isobath) invariance of low-frequency (center frequencies of 600 Hz and 900 Hz) acoustic propagation in a shelfbreak environment, a series of experiments were conducted under the Autonomous Wide-Aperture Cluster for Surveillance component of the Shallow Water 2006 experiment. Transmission loss data reported here were from two mobile acoustic sources executing (nearly) circular tracks transmitting to sonobuoy receivers in the circle centers, and from one 12.5 km alongshelf acoustic track. The circle radii were 7.5 km. Data are from September 8, 2006. Details of the acoustic and environmental measurements are presented. Simple analytic and computer models are used to assess the variability expected due to the ocean and seabed conditions encountered. A comparison of model results and data is made, which shows preliminary consistency between the data and the models, but also points towards further work that should be undertaken specifically in enlarging the range and frequency parameter space, and in looking at integrated transmission loss. PMID:22352604

  4. Magneto acoustical emission in nanocrystalline Mn–Zn ferrites

    SciTech Connect

    Praveena, K.; Murthty, S.R.

    2013-11-15

    Graphical abstract: Mn{sub 0.4}Zn{sub 0.6}Fe{sub 2}O{sub 4} powders were prepared by microwave hydrothermal method. The powders were characterized by X-ray diffraction, transmission electron microscope. The powders were sintered at different temperatures 400, 500, 600, 700, 800 and 900 °C/30 min using microwave sintering method. The grain size was estimated by scanning electron microscope. The room temperature dielectric and magnetic properties were studied in the frequency range (100 kHz–1.8 GHz). The magnetization properties were measured upto 1.5 T. The acoustic emission has been measured along the hysteresis loops from 80 K to Curie temperature. It is found that the magneto-acoustic emission (MAE) activity along hysteresis loop is proportional to the hysteresis losses during the same loop. This law has been verified on series of polycrystalline ferrites and found that the law is valid whatever the composition, the grain size and temperature. It is also found that the domain wall creation/or annihilation processes are the origin of the MAE. - Highlights: • The AE been measured along the hysteresis loops from 80 K to Curie temperature. • The MAE activity along hysteresis loop is proportional to P{sub h} during the same loop. • It is found that the domain wall creation/or annihilation processes are the origin of the MAE. - Abstract: Mn{sub 0.4}Zn{sub 0.6}Fe{sub 2}O{sub 4} powders were prepared by microwave hydrothermal method. The powders were characterized by X-ray diffraction, transmission electron microscope. The powders were sintered at different temperatures 400, 500, 600, 700, 800 and 900 °C/30 min using microwave sintering method. The grain size was estimated by scanning electron microscope. The room temperature dielectric and magnetic properties were studied in the frequency range (100 kHz–1.8 GHz). The magnetization properties were measured upto 1.5 T. The acoustic emission has been measured along the hysteresis loops from 80 K to Curie

  5. Photovoltaic array loss mechanisms

    NASA Technical Reports Server (NTRS)

    Gonzalez, Charles

    1986-01-01

    Loss mechanisms which come into play when solar cell modules are mounted in arrays are identified. Losses can occur either from a reduction in the array electrical performance or with nonoptimal extraction of power from the array. Electrical performance degradation is caused by electrical mismatch, transmission losses from cell surface soiling and steep angle of reflectance, and electrical losses from field wiring resistance and the voltage drop across blocking diodes. The second type of loss, concerned with the operating points of the array, can involve nonoptimal load impedance and limiting the operating envelope of the array to specific ranges of voltage and current. Each of the loss mechanisms are discussed and average energy losses expected from soiling, steep reflectance angles and circuit losses are calculated.

  6. Invariant currents in lossy acoustic waveguides with complete local symmetry

    NASA Astrophysics Data System (ADS)

    Kalozoumis, P. A.; Richoux, O.; Diakonos, F. K.; Theocharis, G.; Schmelcher, P.

    2015-07-01

    We implement the concept of complete local symmetry in lossy acoustic waveguides. Despite the presence of losses, the existence of a spatially invariant current is shown theoretically and observed experimentally. We demonstrate how this invariant current leads to the generalization of the Bloch and parity theorems for lossy systems defining a mapping of the pressure field between symmetry-related spatial domains. Using experimental data, we verify this mapping with remarkable accuracy. For the performed experiment, we employ a construction technique based on local symmetries that allows the design of setups with prescribed perfect transmission resonances in the lossless case. Our results reveal the fundamental role of symmetries in restricted spatial domains, and they clearly indicate that completely locally symmetric devices constitute a promising class of setups with regard to the manipulation of wave propagation.

  7. Structural Acoustic Prediction and Interior Noise Control Technology

    NASA Technical Reports Server (NTRS)

    Mathur, G. P.; Chin, C. L.; Simpson, M. A.; Lee, J. T.; Palumbo, Daniel L. (Technical Monitor)

    2001-01-01

    This report documents the results of Task 14, "Structural Acoustic Prediction and Interior Noise Control Technology". The task was to evaluate the performance of tuned foam elements (termed Smart Foam) both analytically and experimentally. Results taken from a three-dimensional finite element model of an active, tuned foam element are presented. Measurements of sound absorption and sound transmission loss were taken using the model. These results agree well with published data. Experimental performance data were taken in Boeing's Interior Noise Test Facility where 12 smart foam elements were applied to a 757 sidewall. Several configurations were tested. Noise reductions of 5-10 dB were achieved over the 200-800 Hz bandwidth of the controller. Accelerometers mounted on the panel provided a good reference for the controller. Configurations with far-field error microphones outperformed near-field cases.

  8. The North Pacific Acoustic Laboratory deep-water acoustic propagation experiments in the Philippine Sea.

    PubMed

    Worcester, Peter F; Dzieciuch, Matthew A; Mercer, James A; Andrew, Rex K; Dushaw, Brian D; Baggeroer, Arthur B; Heaney, Kevin D; D'Spain, Gerald L; Colosi, John A; Stephen, Ralph A; Kemp, John N; Howe, Bruce M; Van Uffelen, Lora J; Wage, Kathleen E

    2013-10-01

    A series of experiments conducted in the Philippine Sea during 2009-2011 investigated deep-water acoustic propagation and ambient noise in this oceanographically and geologically complex region: (i) the 2009 North Pacific Acoustic Laboratory (NPAL) Pilot Study/Engineering Test, (ii) the 2010-2011 NPAL Philippine Sea Experiment, and (iii) the Ocean Bottom Seismometer Augmentation of the 2010-2011 NPAL Philippine Sea Experiment. The experimental goals included (a) understanding the impacts of fronts, eddies, and internal tides on acoustic propagation, (b) determining whether acoustic methods, together with other measurements and ocean modeling, can yield estimates of the time-evolving ocean state useful for making improved acoustic predictions, (c) improving our understanding of the physics of scattering by internal waves and spice, (d) characterizing the depth dependence and temporal variability of ambient noise, and (e) understanding the relationship between the acoustic field in the water column and the seismic field in the seafloor. In these experiments, moored and ship-suspended low-frequency acoustic sources transmitted to a newly developed distributed vertical line array receiver capable of spanning the water column in the deep ocean. The acoustic transmissions and ambient noise were also recorded by a towed hydrophone array, by acoustic Seagliders, and by ocean bottom seismometers. PMID:24116529

  9. Hearing Loss

    MedlinePlus

    ... version of this page please turn Javascript on. Hearing Loss What is Hearing Loss? Hearing loss is a common problem caused by ... sec Click to watch this video Types of Hearing Loss Hearing loss comes in many forms. It can ...

  10. Acoustic add-drop filters based on phononic crystal ring resonators

    NASA Astrophysics Data System (ADS)

    Rostami-Dogolsara, Babak; Moravvej-Farshi, Mohammad Kazem; Nazari, Fakhroddin

    2016-01-01

    We report the design procedure for an acoustic add-drop filter (ADF) composed of two line-defect waveguides coupled through a ring resonator cavity (RRC) all based on a phononic crystal (PnC) platform. Using finite difference time domain and plane wave expansion methods, we study the propagation of acoustic waves through the PnC based ADF structures. Numerical results show that the quality factor for the ADF with a quasisquare ring resonator with a frequency band of 95 Hz centered about 75.21 kHz is Q ˜ 800. We show that the addition of an appropriate scatterer at each RRC corner can reduce the scattering loss, enhancing the quality factor and the transmission efficiency. Moreover, it is also shown that by increasing the coupling gaps between the RRC and waveguides the quality factor can be increased by ˜25 times, at the expense of a significant reduction in the transmission efficiency this is attributed to the enhanced selectivity in expense of weakened coupling. Finally, by varying the effective path length of the acoustic wave in the RRC, via selectively varying the inclusions physical and geometrical properties, we show how one can ultra-fine and fine-tune the resonant frequency of the ADF.

  11. Comparison of Comet Enflow and VA One Acoustic-to-Structure Power Flow Predictions

    NASA Technical Reports Server (NTRS)

    Grosveld, Ferdinand W.; Schiller, Noah H.; Cabell, Randolph H.

    2010-01-01

    Comet Enflow is a commercially available, high frequency vibroacoustic analysis software based on the Energy Finite Element Analysis (EFEA). In this method the same finite element mesh used for structural and acoustic analysis can be employed for the high frequency solutions. Comet Enflow is being validated for a floor-equipped composite cylinder by comparing the EFEA vibroacoustic response predictions with Statistical Energy Analysis (SEA) results from the commercial software program VA One from ESI Group. Early in this program a number of discrepancies became apparent in the Enflow predicted response for the power flow from an acoustic space to a structural subsystem. The power flow anomalies were studied for a simple cubic, a rectangular and a cylindrical structural model connected to an acoustic cavity. The current investigation focuses on three specific discrepancies between the Comet Enflow and the VA One predictions: the Enflow power transmission coefficient relative to the VA One coupling loss factor; the importance of the accuracy of the acoustic modal density formulation used within Enflow; and the recommended use of fast solvers in Comet Enflow. The frequency region of interest for this study covers the one-third octave bands with center frequencies from 16 Hz to 4000 Hz.

  12. A novel broadband waterborne acoustic absorber

    NASA Astrophysics Data System (ADS)

    Wang, Changxian; Wen, Weibin; Huang, Yixing; Chen, Mingji; Lei, Hongshuai; Fang, Daining

    2016-07-01

    In this paper, we extended the ray tracing theory in polar coordinate system, and originally proposed the Snell-Descartes law in polar coordinates. Based on these theories, a novel broadband waterborne acoustic absorber device was proposed. This device is designed with gradient-distributing materials along radius, which makes the incidence acoustic wave ray warps. The echo reduction effects of this device were investigated by finite element analysis, and the numerical results show that the reflectivity of acoustic wave for the new device is lower than that of homogenous and Alberich layers in almost all frequency 0-30 kHz at the same loss factor.

  13. Separation of viscothermal losses and scattering in ultrasonic characterization of porous media.

    PubMed

    Ayrault, Christophe; Griffiths, Stéphane

    2006-12-01

    This paper presents a method for separating viscothermal and scattering losses in ultrasonic characterization of porous media. This method is based on variations of the static pressure of the saturating fluid. Experimental results were already presented in previous papers and the losses separation was verified experimentally. The aim of this paper is to present an analytic justification of this losses separation in the case of this experimental method and to show that it is possible to estimate acoustic parameters without the knowledge of scattering characteristics. The standard scattering length is used to renormalize speed and transmission through the porous medium, described as an equivalent fluid. Under certain assumptions corresponding to a weak scattering regime, it is shown how viscothermal and scattering losses can be separated easily without knowing scattering characteristics. Application of this model is presented in the case of weak scattering in a polyurethane foam and in the limit case of stronger scattering in a glass beads sample. PMID:16859724

  14. Acoustic cryocooler

    DOEpatents

    Swift, Gregory W.; Martin, Richard A.; Radenbaugh, Ray

    1990-01-01

    An acoustic cryocooler with no moving parts is formed from a thermoacoustic driver (TAD) driving a pulse tube refrigerator (PTR) through a standing wave tube. Thermoacoustic elements in the TAD are spaced apart a distance effective to accommodate the increased thermal penetration length arising from the relatively low TAD operating frequency in the range of 15-60 Hz. At these low operating frequencies, a long tube is required to support the standing wave. The tube may be coiled to reduce the overall length of the cryocooler. One or two PTR's are located on the standing wave tube adjacent antinodes in the standing wave to be driven by the standing wave pressure oscillations. It is predicted that a heat input of 1000 W at 1000 K will maintian a cooling load of 5 W at 80 K.

  15. Acoustic transducer

    DOEpatents

    Drumheller, Douglas S.

    2000-01-01

    An active acoustic transducer tool for use down-hole applications. The tool includes a single cylindrical mandrel including a shoulder defining the boundary of a narrowed portion over which is placed a sandwich-style piezoelectric tranducer assembly. The piezoelectric transducer assembly is prestressed by being placed in a thermal interference fit between the shoulder of the mandrel and the base of an anvil which is likewise positioned over the narrower portion of the mandrel. In the preferred embodiment, assembly of the tool is accomplished using a hydraulic jack to stretch the mandrel prior to emplacement of the cylindrical sandwich-style piezoelectric transducer assembly and anvil. After those elements are positioned and secured, the stretched mandrel is allowed to return substantially to its original (pre-stretch) dimensions with the result that the piezoelectric transducer elements are compressed between the anvil and the shoulder of the mandrel.

  16. Acoustic hemostasis

    NASA Astrophysics Data System (ADS)

    Crum, L.; Andrew, M.; Bailey, M.; Beach, K.; Brayman, A.; Curra, F.; Kaczkowski, P.; Kargl, S.; Martin, R.; Vaezy, S.

    2003-04-01

    Over the past several years, the Center for Industrial and Medical Ultrasound (CIMU) at the Applied Physics Laboratory in the University of Washington has undertaken a broad research program in the general area of High Intensity Focused Ultrasound (HIFU). Our principal emphasis has been on the use of HIFU to induce hemostasis; in particular, CIMU has sought to develop a small, lightweight, portable device that would use ultrasound for both imaging and therapy. Such a technology is needed because nearly 50% of combat casualty mortality results from exsanguinations, or uncontrolled bleeding. A similar percentage occurs for civilian death due to trauma. In this general review, a presentation of the general problem will be given, as well as our recent approaches to the development of an image-guided, transcutaneous, acoustic hemostasis device. [Work supported in part by the USAMRMC, ONR and the NIH.

  17. Optimally tuned vibration absorbers to control sound transmission

    NASA Astrophysics Data System (ADS)

    Grissom, Michael; Belegundu, Ashok; Koopmann, Gary

    2002-05-01

    A design optimization method is proposed for controlling broadband vibration of a structure and it concomitant acoustic radiation using multiple-tuned absorbers. A computationally efficient model of a structure is developed and coupled with a nonlinear optimization search algorithm. The eigenvectors of the original structure are used as repeated basis functions in the analysis of the structural dynamic re-analysis problem. The re-analysis time for acoustic power computations is reduced by calculating and storing modal radiation resistance matrices at discrete frequencies. The matrices are then interpolated within the optimization loop for eigenvalues that fall between stored frequencies. The method is demonstrated by applying multiple-tuned vibration absorbers to an acoustically-excited composite panel. The absorber parameters are optimized with an objective of maximizing the panel's sound power transmission loss. It is shown that in some cases the optimal solution includes vibration absorbers that are tuned very closely in frequency, thus acting effectively as a broadband vibration absorber (BBVA). The numerical model and design optimization method are validated experimentally, and the BBVA is found to be an effective noise abatement tool.

  18. An overview of acoustic telemetry

    SciTech Connect

    Drumheller, D.S.

    1992-01-01

    Acoustic telemetry has been a dream of the drilling industry for the past 50 years. It offers the promise of data rates which are one-hundred times greater than existing technology. Such a system would open the door to true logging-while-drilling technology and bring enormous profits to its developers. The basic idea is to produce an encoded sound wave at the bottom of the well, let it propagate up the steel drillpipe, and extract the data from the signal at the surface. Unfortunately, substantial difficulties arise. The first difficult problem is to produce the sound wave. Since the most promising transmission wavelengths are about 20 feet, normal transducer efficiencies are quire low. Compounding this problem is the structural complexity of the bottomhole assembly and drillstring. For example, the acoustic impedance of the drillstring changes every 30 feet and produces an unusual scattering pattern in the acoustic transmission. This scattering pattern causes distortion of the signal and is often confused with signal attenuation. These problems are not intractable. Recent work has demonstrated that broad frequency bands exist which are capable of transmitting data at rates up to 100 bits per second. Our work has also identified the mechanism which is responsible for the observed anomalies in the patterns of signal attenuation. Furthermore in the past few years a body of experience has been developed in designing more efficient transducers for application to metal waveguides. The direction of future work is clear. New transducer designs which are more efficient and compatible with existing downhole power supplies need to be built and tested; existing field test data need to be analyzed for transmission bandwidth and attenuation; and the new and less expensive methods of collecting data on transmission path quality need to be incorporated into this effort. 11 refs.

  19. Pulsed EMAT (Electromagnetic Acoustic Transducer) acoustic measurements on a horizontal continuous caster for internal temperature determination

    NASA Astrophysics Data System (ADS)

    Boyd, Donald M.

    1989-10-01

    Development of a Pulsed Electromagnetic Acoustic Transducer (EMAT) through transmission system for acoustic measurements on steel billets up to 1300 C was completed. Laboratory measurements of acoustic velocity were made, and used to determine the average internal temperature of hot stainless and carbon steel billets. Following the success of the laboratory system development, the laboratory EMAT system was subsequently tested successfully at the Baltimore Specialty Steel Co. on a horizontal continuous caster. Details of the sensor system development and the steel plant demonstration results are presented. Future directions for the high temperature pulsed EMAT internal temperature concept are discussed for potential material processing applications.

  20. Acoustic energy in ducts - Further observations

    NASA Technical Reports Server (NTRS)

    Eversman, W.

    1979-01-01

    The transmission of acoustic energy in uniform ducts carrying uniform flow is investigated with the purpose of clarifying two points of interest. The two commonly used definitions of acoustic 'energy' flux are shown to be related by a Legendre transformation of the Lagrangian density exactly as in deriving the Hamiltonian density in mechanics. In the acoustic case the total energy density and the Hamiltonian density are not the same which accounts for two different 'energy' fluxes. When the duct has acoustically absorptive walls neither of the two flux expressions gives correct results. A reevaluation of the basis of derivation of the energy density and energy flux provides forms which yield consistent results for soft walled ducts.

  1. Acoustics class at Berklee College of Music

    NASA Astrophysics Data System (ADS)

    Hoover, Anthony K.

    2003-04-01

    Berklee College of Music (in Boston) was developing its outstanding Music Technologies Division, and understood the need for a comprehensive class on acoustics. The result was a three-credit-hour class, offered twice per year, covering the fundamentals, architectural acoustics (outdoors, indoors, and transmission), vibration isolation, hearing and psychoacoustics, and more. One outgrowth was the Acoustical Society at Berklee, with presentations by local and visiting ASA members, yearly visits to an anechoic chamber, special studio sessions, tours, and joint meetings with professional societies. Over 2000 students have completed and performed well in the class. The author's favorite measure of success is the growing number of students who have chosen a career in acoustics. This paper will summarize and discuss this class.

  2. Acoustic-optical imaging without immersion

    NASA Technical Reports Server (NTRS)

    Liu, H.

    1979-01-01

    System using membraneous end wall of Bragg cell to separate test specimen from acoustic transmission medium, operates in real time and uses readily available optical components. System can be easily set up and maintained by people with little or no training in holography.

  3. Localization of acoustic modes in periodic porous silicon structures

    PubMed Central

    2014-01-01

    The propagation of longitudinal acoustic waves in multilayer structures based on porous silicon and the experimental measurement of acoustic transmission for the structures in the gigahertz range are reported and studied theoretically. The considered structures exhibit band gaps in the transmission spectrum and these are localized modes inside the band gap, coming from defect layers introduced in periodic systems. The frequency at which the acoustic resonances appear can be tuned by changing the porosity and/or thickness of the defect layer. PMID:25206317

  4. Shingles Transmission

    MedlinePlus

    ... on Shingles Immunization Action Coalition Chickenpox Q&As Transmission Language: English Español (Spanish) Recommend on Facebook Tweet ... Prevention & Treatment Related Pages Preventing Varicella Zoster Virus Transmission in Healthcare Settings Related Links Medline Plus NIH ...

  5. Measurement of acoustical characteristics of mosques in Saudi Arabia.

    PubMed

    Abdou, Adel A

    2003-03-01

    The study of mosque acoustics, with regard to acoustical characteristics, sound quality for speech intelligibility, and other applicable acoustic criteria, has been largely neglected. In this study a background as to why mosques are designed as they are and how mosque design is influenced by worship considerations is given. In the study the acoustical characteristics of typically constructed contemporary mosques in Saudi Arabia have been investigated, employing a well-known impulse response. Extensive field measurements were taken in 21 representative mosques of different sizes and architectural features in order to characterize their acoustical quality and to identify the impact of air conditioning, ceiling fans, and sound reinforcement systems on their acoustics. Objective room-acoustic indicators such as reverberation time (RT) and clarity (C50) were measured. Background noise (BN) was assessed with and without the operation of air conditioning and fans. The speech transmission index (STI) was also evaluated with and without the operation of existing sound reinforcement systems. The existence of acoustical deficiencies was confirmed and quantified. The study, in addition to describing mosque acoustics, compares design goals to results obtained in practice and suggests acoustical target values for mosque design. The results show that acoustical quality in the investigated mosques deviates from optimum conditions when unoccupied, but is much better in the occupied condition. PMID:12656385

  6. Measurement of acoustical characteristics of mosques in Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Abdou, Adel A.

    2003-03-01

    The study of mosque acoustics, with regard to acoustical characteristics, sound quality for speech intelligibility, and other applicable acoustic criteria, has been largely neglected. In this study a background as to why mosques are designed as they are and how mosque design is influenced by worship considerations is given. In the study the acoustical characteristics of typically constructed contemporary mosques in Saudi Arabia have been investigated, employing a well-known impulse response. Extensive field measurements were taken in 21 representative mosques of different sizes and architectural features in order to characterize their acoustical quality and to identify the impact of air conditioning, ceiling fans, and sound reinforcement systems on their acoustics. Objective room-acoustic indicators such as reverberation time (RT) and clarity (C50) were measured. Background noise (BN) was assessed with and without the operation of air conditioning and fans. The speech transmission index (STI) was also evaluated with and without the operation of existing sound reinforcement systems. The existence of acoustical deficiencies was confirmed and quantified. The study, in addition to describing mosque acoustics, compares design goals to results obtained in practice and suggests acoustical target values for mosque design. The results show that acoustical quality in the investigated mosques deviates from optimum conditions when unoccupied, but is much better in the occupied condition.

  7. Interaction of doxorubicin with the subcellular structures of the sensitive and Bcl-xL-overexpressing MCF-7 cell line: confocal and low-energy-loss transmission electron microscopy.

    PubMed

    Mhawi, A Amir

    2009-10-01

    The present investigation was directed to examine the interaction of the anti-cancer agent doxorubicin (DOX) with the subcellular compartments of the drug sensitive and Bcl-xL-overexpressing (Bcl-xL) MCF-7 cells using confocal and low-energy-loss transmission electron microscopy (LELTEM). Intracellular detection of DOX with LELTEM was carried out without specific antibodies or heavy metal stains but via the electron-induced molecular orbital excitation of the drug. Cells were incubated with 10 microM DOX for 1 min, 1, 24, and 48 h and then examined live by confocal microscope and as very thin sections in an electron microscope equipped with an energy filter having an energy resolution of 1eV. Ultrastructural localization of DOX, obtained from pairs of images taken at energy losses of 3+/-1 and 10+/-1eV, were analyzed and correlated with the confocal observations. When the sensitive and Bcl-xL cells were examined under the confocal microscope after 1 min, DOX uptake could not be detected in the nuclei nor in the cytoplasm whereas LELTEM observation revealed that at this stage of incubation the drug has already been incorporated by both cell types and that the nuclear membrane, nucleolus, and mitochondria of the Bcl-xL cells were temporally less DOX-responsive as compared to the sensitive cells. As the incubation time increased, nuclear membranes and nucleoli of both cell types appeared equally sensitive to DOX, nonetheless, mitochondria of the Bcl-xL cells remained invulnerable to DOX for 24h. The results point to LELTEM feasibility to better characterize yet unresolved cellular events caused by DOX and suggest a transitory role for Bcl-xL overexpression in protecting the cellular compartments from DOX invasion. PMID:19502069

  8. Consideration of some factors affecting low-frequency fuselage noise transmission for propeller aircraft

    NASA Technical Reports Server (NTRS)

    Mixson, J. S.; Roussos, L. A.

    1986-01-01

    Possible reasons for disagreement between measured and predicted trends of sidewall noise transmission at low frequency are investigated using simplified analysis methods. An analytical model combining incident plane acoustic waves with an infinite flat panel is used to study the effects of sound incidence angle, plate structural properties, frequency, absorption, and the difference between noise reduction and transmission loss. Analysis shows that these factors have significant effects on noise transmission but they do not account for the differences between measured and predicted trends at low frequencies. An analytical model combining an infinite flat plate with a normally incident acoustic wave having exponentially decaying magnitude along one coordinate is used to study the effect of a localized source distribution such as is associated with propeller noise. Results show that the localization brings the predicted low-frequency trend of noise transmission into better agreement with measured propeller results. This effect is independent of low-frequency stiffness effects that have been previously reported to be associated with boundary conditions.

  9. The Impact of Model Uncertainty on Spatial Compensation in Structural Acoustic Control

    NASA Technical Reports Server (NTRS)

    Clark, Robert L.

    2005-01-01

    Turbulent boundary layer (TBL) noise is considered a primary contribution to the interior noise present in commercial airliners. There are numerous investigations of interior noise control devoted to aircraft panels; however, practical realization is a potential challenge since physical boundary conditions are uncertain at best. In most prior studies, pinned or clamped boundary conditions were assumed; however, realistic panels likely display a range of boundary conditions between these two limits. Uncertainty in boundary conditions is a challenge for control system designers, both in terms of the compensator implemented and the location of transducers required to achieve the desired control. The impact of model uncertainties, specifically uncertain boundaries, on the selection of transducer locations for structural acoustic control is considered herein. The final goal of this work is the design of an aircraft panel structure that can reduce TBL noise transmission through the use of a completely adaptive, single-input, single-output control system. The feasibility of this goal is demonstrated through the creation of a detailed analytical solution, followed by the implementation of a test model in a transmission loss apparatus. Successfully realizing a control system robust to variations in boundary conditions can lead to the design and implementation of practical adaptive structures that could be used to control the transmission of sound to the interior of aircraft. Results from this research effort indicate it is possible to optimize the design of actuator and sensor location and aperture, minimizing the impact of boundary conditions on the desired structural acoustic control.

  10. Acoustic Inversion in Optoacoustic Tomography: A Review

    PubMed Central

    Rosenthal, Amir; Ntziachristos, Vasilis; Razansky, Daniel

    2013-01-01

    Optoacoustic tomography enables volumetric imaging with optical contrast in biological tissue at depths beyond the optical mean free path by the use of optical excitation and acoustic detection. The hybrid nature of optoacoustic tomography gives rise to two distinct inverse problems: The optical inverse problem, related to the propagation of the excitation light in tissue, and the acoustic inverse problem, which deals with the propagation and detection of the generated acoustic waves. Since the two inverse problems have different physical underpinnings and are governed by different types of equations, they are often treated independently as unrelated problems. From an imaging standpoint, the acoustic inverse problem relates to forming an image from the measured acoustic data, whereas the optical inverse problem relates to quantifying the formed image. This review focuses on the acoustic aspects of optoacoustic tomography, specifically acoustic reconstruction algorithms and imaging-system practicalities. As these two aspects are intimately linked, and no silver bullet exists in the path towards high-performance imaging, we adopt a holistic approach in our review and discuss the many links between the two aspects. Four classes of reconstruction algorithms are reviewed: time-domain (so called back-projection) formulae, frequency-domain formulae, time-reversal algorithms, and model-based algorithms. These algorithms are discussed in the context of the various acoustic detectors and detection surfaces which are commonly used in experimental studies. We further discuss the effects of non-ideal imaging scenarios on the quality of reconstruction and review methods that can mitigate these effects. Namely, we consider the cases of finite detector aperture, limited-view tomography, spatial under-sampling of the acoustic signals, and acoustic heterogeneities and losses. PMID:24772060

  11. Muscles in a mouse model of spinal muscular atrophy show profound defects in neuromuscular development even in the absence of failure in neuromuscular transmission or loss of motor neurons

    PubMed Central

    Lee, Young il; Mikesh, Michelle; Smith, Ian; Rimer, Mendell; Thompson, Wesley

    2011-01-01

    A mouse model of the devastating human disease "spinal muscular atrophy" (SMA) was used to investigate the severe muscle weakness and spasticity that precedes the death of these animals near the end of the 2nd postnatal week. Counts of motor units to the soleus muscle as well as of axons in the soleus muscle nerve showed no loss of motor neurons. Similarly, neither immunostaining of neuromuscular junctions nor the measurement of the tension generated by nerve stimulation gave evidence of any significant impairment in neuromuscular transmission, even when animals were maintained up to 5 days longer via a supplementary diet. However, the muscles were clearly weaker, generating less than half their normal tension. Weakness in 3 muscles examined in the study appears due to a severe but uniform reduction in muscle fiber size. The size reduction results from a failure of muscle fibers to grow during early postnatal development and, in soleus, to a reduction in number of fibers generated. Neuromuscular development is severely delayed in these mutant animals: expression of myosin heavy chain isoforms, the elimination of polyneuronal innervation, the maturation in the shape of the AChR plaque, the arrival of SCs at the junctions and their coverage of the nerve terminal, the development of junctional folds. Thus, if SMA in this particular mouse is a disease of motor neurons, it can act in a manner that does not result in their death or disconnection from their targets but nonetheless alters many aspects of neuromuscular development. PMID:21658376

  12. Solid Micro Horn Array (SMIHA) for Acoustic Matching

    NASA Technical Reports Server (NTRS)

    Sherrit, S.; Bao, X.; Bar-Cohen, Y.

    2008-01-01

    Transduction of electrical signals to mechanical signals and vice-versa in piezoelectric materials is controlled by the material coupling coefficient. In general in a loss-less material the ratio of energy conversion per cycle is proportional to the square of the coupling coefficient. In practical transduction however the impedance mismatch between the piezoelectric material and the electrical drive circuitry or the mechanical structure can have a significant impact on the power transfer. This paper looks at novel methods of matching the acoustic impedance of structures to the piezoelectric material in an effort to increase power transmission and efficiency. In typical methods the density and acoustic velocity of the matching layer is adjusted to give good matching between the transducer and the load. The approach discussed in this paper utilizes solid micro horn arrays in the matching layer which channel the stress and increase the strain in the layer. This approach is found to have potential applications in energy harvesting, medical ultrasound and in liquid and gas coupled transducers.

  13. Education in acoustics and vibration at UFSC--Brazil

    NASA Astrophysics Data System (ADS)

    Gerges, Samir N. Y.

    2002-11-01

    In the 1970s, Brazil invested heavily on postgraduate program of all areas, especially in acoustics and vibration. Several universities achieved benefits from these investments, namely the Federal University of Santa Catarina (UFSC), the Federal University of Rio de Janeiro (UFRJ), and the Federal University of Santa Maria (UFSM). Part of the undergraduate and postgraduate studies at the Mechanical Engineering Department (EMC) of the Federal University of Santa Catarina relates to vibration and noise. On the undergraduate level an optional course called Noise Control, totaling 54 hours, is offered, which covers basic acoustics and noise control concepts. In the postgraduate program Master's and Doctorate degrees students can attend courses and pursue studies in the area of noise and vibration. This area of concentration is supported by a well equipped laboratory consisting of two reverberation chambers, with a third one, for transmission loss measurements, under construction, together with a hemianechoic room and equipment for the measurement and analysis of noise and vibration. Part of this laboratory, the Industrial Noise Laboratory, is accredited by the Brazilian authorities for measurements of and research on hearing protectors. [Work supported by the Federal Government, and industry.

  14. Factors which influence acoustic surveys of marine mammals

    NASA Astrophysics Data System (ADS)

    Rogers, Tracey L.; Ciaglia, Michaela B.; Cato, Douglas H.

    2005-09-01

    Traditionally, many marine mammal populations have been estimated by visual surveys. These count the animals that are available-either seals hauled-out on the ice or whales at the water's surface. Corrections are then made to include the animals that were not seen either because they were in (seals) or under (whales) the water. However when the majority of the animals in a population are not available to a visual survey this approach may be less effective. So we investigated whether acoustic surveys offered promise for estimating the distribution and abundance of Antarctic pack-ice seals. Four acoustic surveys were conducted (October 1996, 1997; December 1997, 1999) between longitudes 600E and 1500E. Surveys were bounded to the south by fast-ice, shelf-ice or the Antarctic continent and to the north by the edge of the pack-ice. No crabeater seals were heard. Leopard and Ross seals were highly vociferous in December coinciding with their breeding season. To predict the area surveyed we modeled transmission loss and measurements of received background levels. To identify the number of seals calling we modeled calling behavior. A preliminary estimate of 0.13 male leopard seals/km2 was calculated which is in the high-density range described from the literature.

  15. Acoustic attenuation design requirements established through EPNL parametric trades

    NASA Technical Reports Server (NTRS)

    Veldman, H. F.

    1972-01-01

    An optimization procedure for the provision of an acoustic lining configuration that is balanced with respect to engine performance losses and lining attenuation characteristics was established using a method which determined acoustic attenuation design requirements through parametric trade studies using the subjective noise unit of effective perceived noise level (EPNL).

  16. Resonant acoustic transducer system for a well drilling string

    DOEpatents

    Kent, William H.; Mitchell, Peter G.

    1981-01-01

    For use in transmitting acoustic waves propagated along a well drilling string, a piezoelectric transducer is provided operating in the relatively low loss acoustic propagation range of the well drilling string. The efficiently coupled transmitting transducer incorporates a mass-spring-piezoelectric transmitter combination permitting resonant operation in the desired low frequency range.

  17. Resonant acoustic transducer system for a well drilling string

    DOEpatents

    Nardi, Anthony P.

    1981-01-01

    For use in transmitting acoustic waves propated along a well drilling string, a piezoelectric transducer is provided operating in the relatively low loss acoustic propagation range of the well drilling string. The efficiently coupled transmitting transducer incorporates a mass-spring-piezoelectric transmitter combination permitting a resonant operation in the desired low frequency range.

  18. Acoustical Barriers To Learning: Children at Risk in Every Classroom.

    ERIC Educational Resources Information Center

    Nelson, Peggy B.; Soli, Sig

    2000-01-01

    This article reviews relevant literature on acoustical barriers to successful learning and provides guidance for school personnel making decisions regarding classroom facilities. Effects of noisy classrooms on young listeners, second language learners, and those with hearing loss are discussed. A rationale for the classroom acoustics standards is…

  19. Acoustic Holography

    NASA Astrophysics Data System (ADS)

    Kim, Yang-Hann

    One of the subtle problems that make noise control difficult for engineers is the invisibility of noise or sound. A visual image of noise often helps to determine an appropriate means for noise control. There have been many attempts to fulfill this rather challenging objective. Theoretical (or numerical) means for visualizing the sound field have been attempted, and as a result, a great deal of progress has been made. However, most of these numerical methods are not quite ready for practical applications to noise control problems. In the meantime, rapid progress with instrumentation has made it possible to use multiple microphones and fast signal-processing systems. Although these systems are not perfect, they are useful. A state-of-the-art system has recently become available, but it still has many problematic issues; for example, how can one implement the visualized noise field. The constructed noise or sound picture always consists of bias and random errors, and consequently, it is often difficult to determine the origin of the noise and the spatial distribution of the noise field. Section 26.2 of this chapter introduces a brief history, which is associated with sound visualization, acoustic source identification methods and what has been accomplished with a line or surface array. Section 26.2.3 introduces difficulties and recent studies, including de-Dopplerization and de-re verberation methods, both essential for visualizing a moving noise source, such as occurs for cars or trains. This section also addresses what produces ambiguity in realizing real sound sources in a room or closed space. Another major issue associated with sound/noise visualization is whether or not we can distinguish between mutual dependencies of noise in space (Sect. 26.2.4); for example, we are asked to answer the question, Can we see two birds singing or one bird with two beaks?

  20. Acoustic Holography

    NASA Astrophysics Data System (ADS)

    Kim, Yang-Hann

    One of the subtle problems that make noise control difficult for engineers is the invisibility of noise or sound. A visual image of noise often helps to determine an appropriate means for noise control. There have been many attempts to fulfill this rather challenging objective. Theoretical (or numerical) means for visualizing the sound field have been attempted, and as a result, a great deal of progress has been made. However, most of these numerical methods are not quite ready for practical applications to noise control problems. In the meantime, rapid progress with instrumentation has made it possible to use multiple microphones and fast signal-processing systems. Although these systems are not perfect, they are useful. A state-of-the-art system has recently become available, but it still has many problematic issues; for example, how can one implement the visualized noise field. The constructed noise or sound picture always consists of bias and random errors, and consequently, it is often difficult to determine the origin of the noise and the spatial distribution of the noise field. Section 26.2 of this chapter introduces a brief history, which is associated with "sound visualization," acoustic source identification methods and what has been accomplished with a line or surface array. Section 26.2.3 introduces difficulties and recent studies, including de-Dopplerization and de-reverberation methods, both essentialfor visualizing a moving noise source, such as occurs for cars or trains. This section also addresses what produces ambiguity in realizing real sound sources in a room or closed space. Another major issue associated with sound/noise visualization is whether or not we can distinguish between mutual dependencies of noise in space (Sect. 26.2.4); for example, we are asked to answer the question, "Can we see two birds singing or one bird with two beaks?"

  1. What Is an Acoustic Neuroma

    MedlinePlus

    ... Acoustic Neuroma An acoustic neuroma, also called a vestibular schwannoma, is a rare benign tumor of the ... Acoustic Neuroma? An acoustic neuroma, known as a vestibular schwannoma, is a benign (non-cancerous) growth that ...

  2. Canonical Acoustics and Its Application to Surface Acoustic Wave on Acoustic Metamaterials

    NASA Astrophysics Data System (ADS)

    Shen, Jian Qi

    2016-08-01

    In a conventional formalism of acoustics, acoustic pressure p and velocity field u are used for characterizing acoustic waves propagating inside elastic/acoustic materials. We shall treat some fundamental problems relevant to acoustic wave propagation alternatively by using canonical acoustics (a more concise and compact formalism of acoustic dynamics), in which an acoustic scalar potential and an acoustic vector potential (Φ ,V), instead of the conventional acoustic field quantities such as acoustic pressure and velocity field (p,u) for characterizing acoustic waves, have been defined as the fundamental variables. The canonical formalism of the acoustic energy-momentum tensor is derived in terms of the acoustic potentials. Both the acoustic Hamiltonian density and the acoustic Lagrangian density have been defined, and based on this formulation, the acoustic wave quantization in a fluid is also developed. Such a formalism of acoustic potentials is employed to the problem of negative-mass-density assisted surface acoustic wave that is a highly localized surface bound state (an eigenstate of the acoustic wave equations). Since such a surface acoustic wave can be strongly confined to an interface between an acoustic metamaterial (e.g., fluid-solid composite structures with a negative dynamical mass density) and an ordinary material (with a positive mass density), it will give rise to an effect of acoustic field enhancement on the acoustic interface, and would have potential applications in acoustic device design for acoustic wave control.

  3. International Space Station Acoustics - A Status Report

    NASA Technical Reports Server (NTRS)

    Allen, Christopher S.; Denham, Samuel A.

    2011-01-01

    It is important to control acoustic noise aboard the International Space Station (ISS) to provide a satisfactory environment for voice communications, crew productivity, and restful sleep, and to minimize the risk for temporary and permanent hearing loss. Acoustic monitoring is an important part of the noise control process on ISS, providing critical data for trend analysis, noise exposure analysis, validation of acoustic analysis and predictions, and to provide strong evidence for ensuring crew health and safety, thus allowing Flight Certification. To this purpose, sound level meter (SLM) measurements and acoustic noise dosimetry are routinely performed. And since the primary noise sources on ISS include the environmental control and life support system (fans and airflow) and active thermal control system (pumps and water flow), acoustic monitoring will indicate changes in hardware noise emissions that may indicate system degradation or performance issues. This paper provides the current acoustic levels in the ISS modules and sleep stations, and is an update to the status presented in 20031. Many new modules, and sleep stations have been added to the ISS since that time. In addition, noise mitigation efforts have reduced noise levels in some areas. As a result, the acoustic levels on the ISS have improved.

  4. International Space Station Acoustics - A Status Report

    NASA Technical Reports Server (NTRS)

    Allen, Christopher S.

    2015-01-01

    It is important to control acoustic noise aboard the International Space Station (ISS) to provide a satisfactory environment for voice communications, crew productivity, alarm audibility, and restful sleep, and to minimize the risk for temporary and permanent hearing loss. Acoustic monitoring is an important part of the noise control process on ISS, providing critical data for trend analysis, noise exposure analysis, validation of acoustic analyses and predictions, and to provide strong evidence for ensuring crew health and safety, thus allowing Flight Certification. To this purpose, sound level meter (SLM) measurements and acoustic noise dosimetry are routinely performed. And since the primary noise sources on ISS include the environmental control and life support system (fans and airflow) and active thermal control system (pumps and water flow), acoustic monitoring will reveal changes in hardware noise emissions that may indicate system degradation or performance issues. This paper provides the current acoustic levels in the ISS modules and sleep stations and is an update to the status presented in 2011. Since this last status report, many payloads (science experiment hardware) have been added and a significant number of quiet ventilation fans have replaced noisier fans in the Russian Segment. Also, noise mitigation efforts are planned to reduce the noise levels of the T2 treadmill and levels in Node 3, in general. As a result, the acoustic levels on the ISS continue to improve.

  5. Multimaterial Acoustic Fibers

    NASA Astrophysics Data System (ADS)

    Chocat, Noemie

    The emergence of multimaterial fibers that combine a multiplicity of solid materials with disparate electrical, optical, and mechanical properties into a single fiber presents new opportunities for extending fiber applications well beyond optical transmission. Fiber reflectors, thermal detectors, photodetectors, chemical sensors, surface-emitting fiber lasers, fiber diodes, and other functional fiber devices have been demonstrated with this approach. Yet, throughout this development and indeed the development of fibers in general, a key premise has remained unchanged : that fibers are essentially static devices incapable of controllably changing their properties at high frequencies. Unique opportunities would arise if a rapid, electrically-driven mechanism for changing fiber properties existed. A wide spectrum of hitherto passive fiber devices could at once become active with applications spanning electronics, mechanics, acoustics, and optics, with the benefits of large surface-area, structural robustness, and mechanical flexibility. This thesis addresses the challenges and opportunities associated with the realization of electromechanical transduction in fibers through the integration of internal piezoelectric and electrostrictive domains. The fundamental challenges related to the fabrication of piezoelectric devices in fiber form are analyzed from a materials perspective, and candidate materials and geometries are selected that are compatible with the thermal drawing process. The first realization of a thermally drawn piezoelectric fiber device is reported and its piezoelectric response is established over a wide range of frequencies. The acoustic properties of piezoelectric fiber devices are characterized and related to their mechanical and geometric properties. Collective effects in multi-fiber constructs are discussed and demonstrated by the realization of a linear phased array of piezoelectric fibers capable of acoustic beam steering. High strain actuation

  6. Advanced Rotorcraft Transmission program summary

    NASA Astrophysics Data System (ADS)

    Bossler, Robert B., Jr.; Heath, Gregory F.

    1992-07-01

    The current status of the Advanced Rotorcraft Transmission (ART) program is reviewed. The discussion includes a general configuration and face gear description, weight analysis, stress analysis, reliability analysis, acoustic analysis, face gear testing, and planned torque split testing. Design descriptions include the face gear webs sized for equal stiffness, a positive engagement clutch, the lubrication system, and a high contact ratio planetary. Test results for five gear materials and three housing materials are presented.

  7. Symptoms of Acoustic Neuroma

    MedlinePlus

    ... Watch and Wait Radiation Microsurgery Acoustic Neuroma Decision Tree Questions for Your Physician Questions to Ask Yourself ... Watch and Wait Radiation Microsurgery Acoustic Neuroma Decision Tree Questions for Your Physician Questions to Ask Yourself ...

  8. Acoustic emission frequency discrimination

    NASA Technical Reports Server (NTRS)

    Sugg, Frank E. (Inventor); Graham, Lloyd J. (Inventor)

    1988-01-01

    In acoustic emission nondestructive testing, broadband frequency noise is distinguished from narrow banded acoustic emission signals, since the latter are valid events indicative of structural flaws in the material being examined. This is accomplished by separating out those signals which contain frequency components both within and beyond (either above or below) the range of valid acoustic emission events. Application to acoustic emission monitoring during nondestructive bond verification and proof loading of undensified tiles on the Space Shuttle Orbiter is considered.

  9. Beamforming in an acoustic shadow

    NASA Technical Reports Server (NTRS)

    Havelock, David; Stinson, Michael; Daigle, Gilles

    1993-01-01

    The sound field deep within an acoustic shadow region is less well understood than that outside the shadow region. Signal levels are substantially lower within the shadow, but beamforming difficulties arise for other reasons such as loss of spatial coherence. Based on analysis of JAPE-91 data, and other data, three types of characteristic signals within acoustic shadow regions are identified. These signal types may correspond to different, intermittent signal propagation conditions. Detection and classification algorithms might take advantage of the signal characteristics. Frequency coherence is also discussed. The extent of coherence across frequencies is shown to be limited, causing difficulties for source classification based on harmonic amplitude relationships. Discussions emphasize short-term characteristics on the order of one second. A video presentation on frequency coherence shows the similarity, in the presence of atmospheric turbulence, between the received signal from a stable set of harmonics generated by a loudspeaker and that received from a helicopter hovering behind a hill.

  10. Tutorial on architectural acoustics

    NASA Astrophysics Data System (ADS)

    Shaw, Neil; Talaske, Rick; Bistafa, Sylvio

    2002-11-01

    This tutorial is intended to provide an overview of current knowledge and practice in architectural acoustics. Topics covered will include basic concepts and history, acoustics of small rooms (small rooms for speech such as classrooms and meeting rooms, music studios, small critical listening spaces such as home theatres) and the acoustics of large rooms (larger assembly halls, auditoria, and performance halls).

  11. Acoustic modeling of the speech organ

    NASA Astrophysics Data System (ADS)

    Kacprowski, J.

    The state of research on acoustic modeling of phonational and articulatory speech producing elements is reviewed. Consistent with the physical interpretation of the speech production process, the acoustic theory of speech production is expressed as the product of three factors: laryngeal involvement, sound transmission, and emanations from the mouth and/or nose. Each of these factors is presented in the form of a simplified mathematical description which provides the theoretical basis for the formation of physical models of the appropriate functional members of this complex bicybernetic system. Vocal tract wall impedance, vocal tract synthesizers, laryngeal dysfunction, vowel nasalization, resonance circuits, and sound wave propagation are discussed.

  12. Assessing the acoustical climate of underground stations.

    PubMed

    Nowicka, Elzbieta

    2007-01-01

    Designing a proper acoustical environment--indispensable to speech recognition--in long enclosures is difficult. Although there is some literature on the acoustical conditions in underground stations, there is still little information about methods that make estimation of correct reverberation conditions possible. This paper discusses the assessment of the reverberation conditions of underground stations. A comparison of the measurements of reverberation time in Warsaw's underground stations with calculated data proves there are divergences between measured and calculated early decay time values, especially for long source-receiver distances. Rapid speech transmission index values for measured stations are also presented. PMID:18082025

  13. Local frequency dependence in transcranial ultrasound transmission.

    PubMed

    White, P J; Clement, G T; Hynynen, K

    2006-05-01

    The development of large-aperture multiple-source transducer arrays for ultrasound transmission through the human skull has demonstrated the possibility of controlled and substantial acoustic energy delivery into the brain parenchyma without the necessitation of a craniotomy. The individual control of acoustic parameters from each ultrasound source allows for the correction of distortions arising from transmission through the skull bone and also opens up the possibility for electronic steering of the acoustic focus within the brain. In addition, the capability to adjust the frequency of insonation at different locations on the skull can have an effect on ultrasound transmission. To determine the efficacy and applicability of a multiple-frequency approach with such a device, this study examined the frequency dependence of ultrasound transmission in the range of 0.6-1.4 MHz through a series of 17 points on four ex vivo human skulls. Effects beyond those that are characteristic of frequency-dependent attenuation were examined. Using broadband pulses, it was shown that the reflected spectra from the skull revealed information regarding ultrasound transmission at specific frequencies. A multiple-frequency insonation with optimized frequencies over the entirety of five skull specimens was found to yield on average a temporally brief 230% increase in the transmitted intensity with an 88% decrease in time-averaged intensity transmission within the focal volume. This finding demonstrates a potential applicability of a multiple-frequency approach in transcranial ultrasound transmission. PMID:16625043

  14. Nonlinear acoustic fields in acoustic metamaterial based on a cylindrical pipe with periodically arranged side holes.

    PubMed

    Fan, Li; Ge, Huan; Zhang, Shu-yi; Gao, Hai-fei; Liu, Yong-hui; Zhang, Hui

    2013-06-01

    Nonlinear acoustic fields in transmission-line acoustic metamaterials based on a cylindrical pipe with periodically arranged side holes are studied, in which the dispersions and characteristic parameters of the nonlinear acoustic waves are obtained with the Bloch theory, and meanwhile the distributions of the fundamental wave (FW) and second harmonic wave (SHW) in the metamaterial are simulated. Three characteristic frequency bands are defined according to the relations between the frequencies of the FW, SHW, and the low-frequency forbidden band (LFB) in the metamaterial. Especially, when the FW is in the LFB while the SHW is outside the LFB, the SHW can transmit through the metamaterial although the FW is blocked, which exhibits the possibility to extract the information from the SHW instead of the FW. In addition, experiments are carried out to measure the distributions of the acoustic pressures for the FW and SHW along the metamaterial and the experimental results are in agreement with the theory. PMID:23742339

  15. Origami acoustics: using principles of folding structural acoustics for simple and large focusing of sound energy

    NASA Astrophysics Data System (ADS)

    Harne, Ryan L.; Lynd, Danielle T.

    2016-08-01

    Fixed in spatial distribution, arrays of planar, electromechanical acoustic transducers cannot adapt their wave energy focusing abilities unless each transducer is externally controlled, creating challenges for the implementation and portability of such beamforming systems. Recently, planar, origami-based structural tessellations are found to facilitate great versatility in system function and properties through kinematic folding. In this research we bridge the physics of acoustics and origami-based design to discover that the simple topological reconfigurations of a Miura-ori-based acoustic array yield many orders of magnitude worth of reversible change in wave energy focusing: a potential for acoustic field morphing easily obtained through deployable, tessellated architectures. Our experimental and theoretical studies directly translate the roles of folding the tessellated array to the adaptations in spectral and spatial wave propagation sensitivities for far field energy transmission. It is shown that kinematic folding rules and flat-foldable tessellated arrays collectively provide novel solutions to the long-standing challenges of conventional, electronically-steered acoustic beamformers. While our examples consider sound radiation from the foldable array in air, linear acoustic reciprocity dictates that the findings may inspire new innovations for acoustic receivers, e.g. adaptive sound absorbers and microphone arrays, as well as concepts that include water-borne waves.

  16. AQUIFER TRANSMISSIVITY

    EPA Science Inventory

    Evaluation of groundwater resources requires the knowledge of the capacity of aquifers to store and transmit ground water. This requires estimates of key hydraulic parameters, such as the transmissivity, among others. The transmissivity T (m2/sec) is a hydrauli...

  17. On the evaluation of effective density for plate- and membrane-type acoustic metamaterials without mass attached.

    PubMed

    Huang, Tai-Yun; Shen, Chen; Jing, Yun

    2016-08-01

    The effective densities of plate- and membrane-type acoustic metamaterials (AMMs) without mass attached are studied theoretically and numerically. Three models, including the analytic model (based on the plate flexural wave equation and the membrane wave equation), approximate model (under the low frequency approximation), and the finite element method (FEM) model, are first used to calculate the acoustic impedance of square and clamped plates or membranes. The effective density is then obtained using the resulting acoustic impedance and a lumped model. Pressure transmission coefficients of the AMMs are computed using the obtained densities. The effect of the loss from the plate is also taken into account. Results from different models are compared and good agreement is found, particularly between the analytic model and the FEM model. The approximate model is less accurate when the frequency of interest is above the first resonance frequency of the plate or membrane. The approximate model, however, provides simple formulae to predict the effective densities of plate- or membrane-type AMMs and is accurate for the negative density frequency region. The methods presented in this paper are useful in designing AMMs for manipulating acoustic waves. PMID:27586723

  18. Acoustical coupling of lizard eardrums.

    PubMed

    Christensen-Dalsgaard, Jakob; Manley, Geoffrey A

    2008-12-01

    Lizard ears are clear examples of two-input pressure-difference receivers, with up to 40-dB differences in eardrum vibration amplitude in response to ipsi- and contralateral stimulus directions. The directionality is created by acoustical coupling of the eardrums and interaction of the direct and indirect sound components on the eardrum. The ensuing pressure-difference characteristics generate the highest directionality of any similar-sized terrestrial vertebrate ear. The aim of the present study was to measure the gain of the direct and indirect sound components in three lizard species: Anolis sagrei and Basiliscus vittatus (iguanids) and Hemidactylus frenatus (gekkonid) by laser vibrometry, using either free-field sound or a headphone and coupler for stimulation. The directivity of the ear of these lizards is pronounced in the frequency range from 2 to 5 kHz. The directivity is ovoidal, asymmetrical across the midline, but largely symmetrical across the interaural axis (i.e., front-back). Occlusion of the contralateral ear abolishes the directionality. We stimulated the two eardrums with a coupler close to the eardrum to measure the gain of the sound pathways. Within the frequency range of maximal directionality, the interaural transmission gain (compared to sound arriving directly) is close to or even exceeds unity, indicating a pronounced acoustical transparency of the lizard head and resonances in the interaural cavities. Our results show that the directionality of the lizard ear is caused by the acoustic interaction of the two eardrums. The results can be largely explained by a simple acoustical model based on an electrical analog circuit. PMID:18648878

  19. Acoustical Coupling of Lizard Eardrums

    PubMed Central

    Manley, Geoffrey A.

    2008-01-01

    Lizard ears are clear examples of two-input pressure-difference receivers, with up to 40-dB differences in eardrum vibration amplitude in response to ipsi- and contralateral stimulus directions. The directionality is created by acoustical coupling of the eardrums and interaction of the direct and indirect sound components on the eardrum. The ensuing pressure-difference characteristics generate the highest directionality of any similar-sized terrestrial vertebrate ear. The aim of the present study was to measure the gain of the direct and indirect sound components in three lizard species: Anolis sagrei and Basiliscus vittatus (iguanids) and Hemidactylus frenatus (gekkonid) by laser vibrometry, using either free-field sound or a headphone and coupler for stimulation. The directivity of the ear of these lizards is pronounced in the frequency range from 2 to 5 kHz. The directivity is ovoidal, asymmetrical across the midline, but largely symmetrical across the interaural axis (i.e., front–back). Occlusion of the contralateral ear abolishes the directionality. We stimulated the two eardrums with a coupler close to the eardrum to measure the gain of the sound pathways. Within the frequency range of maximal directionality, the interaural transmission gain (compared to sound arriving directly) is close to or even exceeds unity, indicating a pronounced acoustical transparency of the lizard head and resonances in the interaural cavities. Our results show that the directionality of the lizard ear is caused by the acoustic interaction of the two eardrums. The results can be largely explained by a simple acoustical model based on an electrical analog circuit. PMID:18648878

  20. Technological, biological, and acoustical constraints to music perception in cochlear implant users.

    PubMed

    Limb, Charles J; Roy, Alexis T

    2014-02-01

    Despite advances in technology, the ability to perceive music remains limited for many cochlear implant users. This paper reviews the technological, biological, and acoustical constraints that make music an especially challenging stimulus for cochlear implant users, while highlighting recent research efforts to overcome these shortcomings. The limitations of cochlear implant devices, which have been optimized for speech comprehension, become evident when applied to music, particularly with regards to inadequate spectral, fine-temporal, and dynamic range representation. Beyond the impoverished information transmitted by the device itself, both peripheral and central auditory nervous system deficits are seen in the presence of sensorineural hearing loss, such as auditory nerve degeneration and abnormal auditory cortex activation. These technological and biological constraints to effective music perception are further compounded by the complexity of the acoustical features of music itself that require the perceptual integration of varying rhythmic, melodic, harmonic, and timbral elements of sound. Cochlear implant users not only have difficulty perceiving spectral components individually (leading to fundamental disruptions in perception of pitch, melody, and harmony) but also display deficits with higher perceptual integration tasks required for music perception, such as auditory stream segregation. Despite these current limitations, focused musical training programs, new assessment methods, and improvements in the representation and transmission of the complex acoustical features of music through technological innovation offer the potential for significant advancements in cochlear implant-mediated music perception. PMID:23665130

  1. Elastic parabolic equation solutions for underwater acoustic problems using seismic sources.

    PubMed

    Frank, Scott D; Odom, Robert I; Collis, Jon M

    2013-03-01

    Several problems of current interest involve elastic bottom range-dependent ocean environments with buried or earthquake-type sources, specifically oceanic T-wave propagation studies and interface wave related analyses. Additionally, observed deep shadow-zone arrivals are not predicted by ray theoretic methods, and attempts to model them with fluid-bottom parabolic equation solutions suggest that it may be necessary to account for elastic bottom interactions. In order to study energy conversion between elastic and acoustic waves, current elastic parabolic equation solutions must be modified to allow for seismic starting fields for underwater acoustic propagation environments. Two types of elastic self-starter are presented. An explosive-type source is implemented using a compressional self-starter and the resulting acoustic field is consistent with benchmark solutions. A shear wave self-starter is implemented and shown to generate transmission loss levels consistent with the explosive source. Source fields can be combined to generate starting fields for source types such as explosions, earthquakes, or pile driving. Examples demonstrate the use of source fields for shallow sources or deep ocean-bottom earthquake sources, where down slope conversion, a known T-wave generation mechanism, is modeled. Self-starters are interpreted in the context of the seismic moment tensor. PMID:23464007

  2. Review of Combustion-acoustic Instabilities

    NASA Technical Reports Server (NTRS)

    Oyediran, Ayo; Darling, Douglas; Radhakrishnan, Krishnan

    1995-01-01

    Combustion-acoustic instabilities occur when the acoustic energy increase due to the unsteady heat release of the flame is greater than the losses of acoustic energy from the system. The problem of combustion-acoustic instability is a concern in many devices for various reasons, as each device may have a unique mechanism causing unsteady heat release rates and many have unique boundary conditions. To accurately predict and quantify combustion-acoustic stabilities, the unsteady heat release rate and boundary conditions need to be accurately determined. The present review brings together work performed on a variety of practical combustion devices. Many theoretical and experimental investigations of the unsteady heat release rate have been performed, some based on perturbations in the fuel delivery system particularly for rocket instabilities, while others are based on hydrodynamic processes as in ramjet dump combustors. The boundary conditions for rocket engines have been analyzed and measured extensively. However, less work has been done to measure acoustic boundary conditions in many other combustion systems.

  3. On the thermo-acoustic Fant equation

    NASA Astrophysics Data System (ADS)

    Murray, P. R.; Howe, M. S.

    2012-07-01

    A 'reduced complexity' equation is derived to investigate combustion instabilities of a Rijke burner. The equation is nonlinear and furnishes limit cycle solutions for finite amplitude burner modes. It is a generalisation to combustion flows of the Fant equation used to investigate the production of voiced speech by unsteady throttling of flow by the vocal folds [G. Fant, Acoustic Theory of Speech Production. Mouton, The Hague, 1960]. In the thermo-acoustic problem the throttling occurs at the flame holder. The Fant equation governs the unsteady volume flow past the flame holder which, in turn, determines the acoustics of the entire system. The equation includes a fully determinate part that depends on the geometry of the flame holder and the thermo-acoustic system, and terms defined by integrals involving thermo-aerodynamic sources, such as a flame and vortex sound sources. These integrals provide a clear indication of what must be known about the flow to obtain a proper understanding of the dynamics of the thermo-acoustic system. Illustrative numerical results are presented for the linearised equation. This governs the growth rates of the natural acoustic modes, determined by system geometry, boundary conditions and mean temperature distribution, which are excited into instability by unsteady heat release from the flame and damped by large scale vorticity production and radiation losses into the environment. In addition, the equation supplies information about the 'combustion modes' excited by the local time-delay feedback dynamics of the flame.

  4. Broadband unidirectional transmission of sound in unblocked channel

    NASA Astrophysics Data System (ADS)

    Zhu, Yi-Fan; Zou, Xin-Ye; Liang, Bin; Cheng, Jian-Chun

    2015-04-01

    We have designed and experimentally fabricated a straight channel capable of realizing unidirectional acoustic transmission within a broad band while leaving a gap much wider than the wavelength that may serve as a passage for other entities such as fluids or objects. This extraordinary feature stems from a distinctly different mechanism that directs the sound path asymmetrically by employing acoustic metasurfaces. The numerical and experimental results agree quite well with the theoretical predictions. Our scheme may open up avenue for the design of acoustic one-way devices and have potentials in various applications such as architectural acoustics or medical ultrasound.

  5. An Overview of Acoustic Telemetry

    SciTech Connect

    Drumheller, D.S.

    1992-03-24

    Acoustic telemetry has been a dream of the drilling industry for the past 50 years. It offers the promise of data rates which are one-hundred times greater than existing technology. Such a system would open the door to true logging-while-drilling technology and bring enormous profits to its developers. The oil and gas industry has led in most of the attempts to develop this type of telemetry system; however, very substantial efforts have also been made through government sponsored work in the geothermal industry. None of these previous attempts have lead to a commercial telemetry system. Conceptually, the problem looks easy. The basic idea is to produce an encoded sound wave at the bottom of the well, let it propagate up the steel drillpipe, and extract the data from the signal at the surface. Unfortunately, substantial difficulties arise. The first difficult problem is to produce the sound wave. Since the most promising transmission wavelengths are about 20 feet, normal transducer efficiencies are quite low. Compounding this problem is the structural complexity of the bottomhole assembly and drillstring. For example, the acoustic impedance of the drillstring changes every 30 feet and produces an unusual scattering pattern in the acoustic transmission. This scattering pattern causes distortion of the signal and is often confused with signal attenuation. These problems are not intractable. Recent work has demonstrated that broad frequency bands exist which are capable of transmitting data at rates up to 100 bits per second. Our work has also identified the mechanism which is responsible for the observed anomalies in the patterns of signal attenuation. Furthermore in the past few years a body of experience has been developed in designing more efficient transducers for application to metal Waveguides. The direction of future work is clear. New transducer designs which are more efficient and compatible with existing downhole power supplies need to be built and tested

  6. Enhancing sound absorption and transmission through flexible multi-layer micro-perforated structures.

    PubMed

    Bravo, Teresa; Maury, Cédric; Pinhède, Cédric

    2013-11-01

    Theoretical and experimental results are presented into the sound absorption and transmission properties of multi-layer structures made up of thin micro-perforated panels (ML-MPPs). The objective is to improve both the absorption and insulation performances of ML-MPPs through impedance boundary optimization. A fully coupled modal formulation is introduced that predicts the effect of the structural resonances onto the normal incidence absorption coefficient and transmission loss of ML-MPPs. This model is assessed against standing wave tube measurements and simulations based on impedance translation method for two double-layer MPP configurations of relevance in building acoustics and aeronautics. Optimal impedance relationships are proposed that ensure simultaneous maximization of both the absorption and the transmission loss under normal incidence. Exhaustive optimization of the double-layer MPPs is performed to assess the absorption and/or transmission performances with respect to the impedance criterion. It is investigated how the panel volumetric resonances modify the excess dissipation that can be achieved from non-modal optimization of ML-MPPs. PMID:24180777

  7. Evaluation of the resolution of a metamaterial acoustic leaky wave antenna.

    PubMed

    Naify, Christina J; Rogers, Jeffery S; Guild, Matthew D; Rohde, Charles A; Orris, Gregory J

    2016-06-01

    Acoustic antennas have long been utilized to directionally steer acoustic waves in both air and water. Typically, these antennas are comprised of arrays of active acoustic elements, which are electronically phased to steer the acoustic profile in the desired direction. A new technology, known as an acoustic leaky wave antenna (LWA), has recently been shown to achieve directional steering of acoustic waves using a single active transducer coupled to a transmission line passive aperture. The LWA steers acoustic energy by preferential coupling to an input frequency and can be designed to steer from backfire to endfire, including broadside. This paper provides an analysis of resolution as a function of both input frequency and antenna length. Additionally, the resolution is compared to that achieved using an array of active acoustic elements. PMID:27369149

  8. Local Frequency Dependence in Transcranial Ultrasound Transmission

    NASA Astrophysics Data System (ADS)

    White, P. J.; Clement, G. T.; Hynynen, K.

    2006-05-01

    The development of large-aperture multiple-source transducer arrays for ultrasound transmission through the human skull has demonstrated the possibility of controlled and substantial acoustic energy delivery into the brain parenchyma without the necessitation of a craniotomy. The individual control of acoustic parameters from each ultrasound source allows for the correction of distortions arising from transmission through the skull bone and also opens up the possibility for electronic steering of the acoustic focus within the brain. In addition, the capability to adjust the frequency of sonication at different locations on the skull can have an effect on ultrasound transmission. To determine the efficacy and applicability of a multiple-frequency approach with such a device, this study examined the frequency dependence of ultrasound transmission in the range of 0.6-1.4 MHz through a series of seventeen points on four ex vivo human skulls. Effects beyond those that are characteristic of frequency-dependent attenuation were examined. Using broadband pulses, it was shown that the reflected spectra from the skull revealed information regarding ultrasound transmission at specific frequencies. This finding demonstrates a potential applicability of a multiple-frequency approach in transcranial ultrasound transmission.

  9. AST Launch Vehicle Acoustics

    NASA Technical Reports Server (NTRS)

    Houston, Janice; Counter, D.; Giacomoni, D.

    2015-01-01

    The liftoff phase induces acoustic loading over a broad frequency range for a launch vehicle. These external acoustic environments are then used in the prediction of internal vibration responses of the vehicle and components which result in the qualification levels. Thus, predicting these liftoff acoustic (LOA) environments is critical to the design requirements of any launch vehicle. If there is a significant amount of uncertainty in the predictions or if acoustic mitigation options must be implemented, a subscale acoustic test is a feasible pre-launch test option to verify the LOA environments. The NASA Space Launch System (SLS) program initiated the Scale Model Acoustic Test (SMAT) to verify the predicted SLS LOA environments and to determine the acoustic reduction with an above deck water sound suppression system. The SMAT was conducted at Marshall Space Flight Center and the test article included a 5% scale SLS vehicle model, tower and Mobile Launcher. Acoustic and pressure data were measured by approximately 250 instruments. The SMAT liftoff acoustic results are presented, findings are discussed and a comparison is shown to the Ares I Scale Model Acoustic Test (ASMAT) results.

  10. Acoustic Translation of an Acoustically Levitated Sample

    NASA Technical Reports Server (NTRS)

    Barmatz, M. B.; Allen, J. L.

    1986-01-01

    Acoustic-levitation apparatus uses only one acoustic mode to move sample from one region of chamber to another. Sample heated and cooled quickly by translation between hot and cold regions of levitation chamber. Levitated sample is raised into furnace region by raising plunger. Frequency of sound produced by transducers adjusted by feedback system to maintain (102) resonant mode, which levitates sample midway between transducers and plunger regardless of plunger position.

  11. The acoustic performance of double-skin facades: A design support tool for architects

    NASA Astrophysics Data System (ADS)

    Batungbakal, Aireen

    This study assesses and validates the influence of measuring sound in the urban environment and the influence of glass facade components in reducing sound transmission to the indoor environment. Among the most reported issues affecting workspaces, increased awareness to minimize noise led building designers to reconsider the design of building envelopes and its site environment. Outdoor sound conditions, such as traffic noise, challenge designers to accurately estimate the capability of glass facades in acquiring an appropriate indoor sound quality. Indicating the density of the urban environment, field-tests acquired existing sound levels in areas of high commercial development, employment, and traffic activity, establishing a baseline for sound levels common in urban work areas. Composed from the direct sound transmission loss of glass facades simulated through INSUL, a sound insulation software, data is utilized as an informative tool correlating the response of glass facade components towards existing outdoor sound levels of a project site in order to achieve desired indoor sound levels. This study progresses to link the disconnection in validating the acoustic performance of glass facades early in a project's design, from conditioned settings such as field-testing and simulations to project completion. Results obtained from the study's facade simulations and facade comparison supports that acoustic comfort is not limited to a singular solution, but multiple design options responsive to its environment.

  12. A numerically efficient damping model for acoustic resonances in microfluidic cavities

    NASA Astrophysics Data System (ADS)

    Hahn, P.; Dual, J.

    2015-06-01

    Bulk acoustic wave devices are typically operated in a resonant state to achieve enhanced acoustic amplitudes and high acoustofluidic forces for the manipulation of microparticles. Among other loss mechanisms related to the structural parts of acoustofluidic devices, damping in the fluidic cavity is a crucial factor that limits the attainable acoustic amplitudes. In the analytical part of this study, we quantify all relevant loss mechanisms related to the fluid inside acoustofluidic micro-devices. Subsequently, a numerical analysis of the time-harmonic visco-acoustic and thermo-visco-acoustic equations is carried out to verify the analytical results for 2D and 3D examples. The damping results are fitted into the framework of classical linear acoustics to set up a numerically efficient device model. For this purpose, all damping effects are combined into an acoustofluidic loss factor. Since some components of the acoustofluidic loss factor depend on the acoustic mode shape in the fluid cavity, we propose a two-step simulation procedure. In the first step, the loss factors are deduced from the simulated mode shape. Subsequently, a second simulation is invoked, taking all losses into account. Owing to its computational efficiency, the presented numerical device model is of great relevance for the simulation of acoustofluidic particle manipulation by means of acoustic radiation forces or acoustic streaming. For the first time, accurate 3D simulations of realistic micro-devices for the quantitative prediction of pressure amplitudes and the related acoustofluidic forces become feasible.

  13. A numerically efficient damping model for acoustic resonances in microfluidic cavities

    SciTech Connect

    Hahn, P. Dual, J.

    2015-06-15

    Bulk acoustic wave devices are typically operated in a resonant state to achieve enhanced acoustic amplitudes and high acoustofluidic forces for the manipulation of microparticles. Among other loss mechanisms related to the structural parts of acoustofluidic devices, damping in the fluidic cavity is a crucial factor that limits the attainable acoustic amplitudes. In the analytical part of this study, we quantify all relevant loss mechanisms related to the fluid inside acoustofluidic micro-devices. Subsequently, a numerical analysis of the time-harmonic visco-acoustic and thermo-visco-acoustic equations is carried out to verify the analytical results for 2D and 3D examples. The damping results are fitted into the framework of classical linear acoustics to set up a numerically efficient device model. For this purpose, all damping effects are combined into an acoustofluidic loss factor. Since some components of the acoustofluidic loss factor depend on the acoustic mode shape in the fluid cavity, we propose a two-step simulation procedure. In the first step, the loss factors are deduced from the simulated mode shape. Subsequently, a second simulation is invoked, taking all losses into account. Owing to its computational efficiency, the presented numerical device model is of great relevance for the simulation of acoustofluidic particle manipulation by means of acoustic radiation forces or acoustic streaming. For the first time, accurate 3D simulations of realistic micro-devices for the quantitative prediction of pressure amplitudes and the related acoustofluidic forces become feasible.

  14. Thirty years of underwater acoustic signal processing in China

    NASA Astrophysics Data System (ADS)

    Li, Qihu

    2012-11-01

    Advances in technology and theory in 30 years of underwater acoustic signal processing and its applications in China are presented in this paper. The topics include research work in the field of underwater acoustic signal modeling, acoustic field matching, ocean waveguide and internal wave, the extraction and processing technique for acoustic vector signal information, the space/time correlation characteristics of low frequency acoustic channels, the invariant features of underwater target radiated noise, the transmission technology of underwater voice/image data and its anti-interference technique. Some frontier technologies in sonar design are also discussed, including large aperture towed line array sonar, high resolution synthetic aperture sonar, deep sea siren and deep sea manned subsea vehicle, diver detection sonar and demonstration projector of national ocean monitoring system in China, etc.

  15. Dynamic response and acoustic fatigue of stiffened composite structure

    NASA Technical Reports Server (NTRS)

    Soovere, J.

    1984-01-01

    The results of acoustic fatigue and dynamic response tests performed on L-1011 graphite-epoxy (GrE) aileron and panel components are reported. The aileron featured glass microballoons between the GrE skins. Tests yielded random fatigue data from double and single cantilever coupons and modal data from impedance hammer and loudspeaker impulses. Numerical and sample test data were obtained on combined acoustic and shear loads, acoustic and thermal loads, random fatigue and damping of the integrally stiffened and secondary bonded panels. The fatigue data indicate a fatigue life beyond 10 million cycles. The acoustic data suggested that noise transmission could be enhanced in the integrally stiffened panels, which were more acoustic-fatigue resistant than were the secondary bonded panels.

  16. The magnitude of loss to follow-up of HIV-exposed infants along the prevention of mother-to-child HIV transmission continuum of care: a systematic review and meta-analysis

    PubMed Central

    Sibanda, Euphemia L.; Weller, Ian V.D.; Hakim, James G.; Cowan, Frances M.

    2013-01-01

    Introduction: Although prevention of mother-to-child HIV transmission (PMTCT) programs are widely implemented, many children do not benefit from them because of loss to follow-up (LTFU). We conducted a systematic review to determine the magnitude of infant/baby LTFU along the PMTCT cascade. Methods: Eligible publications reported infant LTFU outcomes from standard care PMTCT programs (not intervention studies) at any stage of the cascade. Literature searches were conducted in Medline, Embase, Web of Knowledge, CINAHL Plus, and Maternity and Infant Care. Extracted data included setting, methods of follow-up, PMTCT regimens, and proportion and timing of LTFU. For programs in sub-Saharan Africa, random-effects meta-analysis was done using Stata v10. Because of heterogeneity, predictive intervals (PrIs; approximate 95% confidence intervals of a future study based on extent of observed heterogeneity) were computed. Results: A total of 826 papers were identified; 25 publications were eligible. Studies were published from 2001 to 2012 and were mostly from sub-Saharan Africa (three were from India, one from UK and one from Ireland). There was extensive heterogeneity in findings. Eight studies reported on LTFU of pregnant HIV-positive women between antenatal care (ANC) registration and delivery, which ranged from 10.9 to 68.1%, pooled proportion 49.08% [95% confidence interval (CI) 39.6–60.9%], and PrI 22.0–100%. Fourteen studies reported LTFU of infants within 3 months of delivery, range 4.8–75%, pooled proportion 33.9% (27.6–41.5), and PrI 15.4–74.2. Children were also lost after HIV testing; this was reported in five studies, pooled estimate 45.5% (35.9–57.6), PrI 18.7–100%. Programs that actively tracked defaulters had better retention outcomes. Conclusion: There is unacceptable infant LTFU from PMTCT programs. Countries should incorporate defaulter-tracking as standard to improve retention. PMID:24056068

  17. Nonlinear Acoustics in Fluids

    NASA Astrophysics Data System (ADS)

    Lauterborn, Werner; Kurz, Thomas; Akhatov, Iskander

    At high sound intensities or long propagation distances at in fluids sufficiently low damping acoustic phenomena become nonlinear. This chapter focuses on nonlinear acoustic wave properties in gases and liquids. The origin of nonlinearity, equations of state, simple nonlinear waves, nonlinear acoustic wave equations, shock-wave formation, and interaction of waves are presented and discussed. Tables are given for the nonlinearity parameter B/A for water and a range of organic liquids, liquid metals and gases. Acoustic cavitation with its nonlinear bubble oscillations, pattern formation and sonoluminescence (light from sound) are modern examples of nonlinear acoustics. The language of nonlinear dynamics needed for understanding chaotic dynamics and acoustic chaotic systems is introduced.

  18. Acoustic Change Complex: Clinical Implications.

    PubMed

    Kim, Jae-Ryong

    2015-12-01

    The acoustic change complex (ACC) is a cortical auditory evoked potential elicited in response to a change in an ongoing sound. The characteristics and potential clinical implications of the ACC are reviewed in this article. The P1-N1-P2 recorded from the auditory cortex following presentation of an acoustic stimulus is believed to reflect the neural encoding of a sound signal, but this provides no information regarding sound discrimination. However, the neural processing underlying behavioral discrimination capacity can be measured by modifying the traditional methodology for recording the P1-N1-P2. When obtained in response to an acoustic change within an ongoing sound, the resulting waveform is referred to as the ACC. When elicited, the ACC indicates that the brain has detected changes within a sound and the patient has the neural capacity to discriminate the sounds. In fact, results of several studies have shown that the ACC amplitude increases with increasing magnitude of acoustic changes in intensity, spectrum, and gap duration. In addition, the ACC can be reliably recorded with good test-retest reliability not only from listeners with normal hearing but also from individuals with hearing loss, hearing aids, and cochlear implants. The ACC can be obtained even in the absence of attention, and requires relatively few stimulus presentations to record a response with a good signal-to-noise ratio. Most importantly, the ACC shows reasonable agreement with behavioral measures. Therefore, these findings suggest that the ACC might represent a promising tool for the objective clinical evaluation of auditory discrimination and/or speech perception capacity. PMID:26771009

  19. Acoustic Change Complex: Clinical Implications

    PubMed Central

    2015-01-01

    The acoustic change complex (ACC) is a cortical auditory evoked potential elicited in response to a change in an ongoing sound. The characteristics and potential clinical implications of the ACC are reviewed in this article. The P1-N1-P2 recorded from the auditory cortex following presentation of an acoustic stimulus is believed to reflect the neural encoding of a sound signal, but this provides no information regarding sound discrimination. However, the neural processing underlying behavioral discrimination capacity can be measured by modifying the traditional methodology for recording the P1-N1-P2. When obtained in response to an acoustic change within an ongoing sound, the resulting waveform is referred to as the ACC. When elicited, the ACC indicates that the brain has detected changes within a sound and the patient has the neural capacity to discriminate the sounds. In fact, results of several studies have shown that the ACC amplitude increases with increasing magnitude of acoustic changes in intensity, spectrum, and gap duration. In addition, the ACC can be reliably recorded with good test-retest reliability not only from listeners with normal hearing but also from individuals with hearing loss, hearing aids, and cochlear implants. The ACC can be obtained even in the absence of attention, and requires relatively few stimulus presentations to record a response with a good signal-to-noise ratio. Most importantly, the ACC shows reasonable agreement with behavioral measures. Therefore, these findings suggest that the ACC might represent a promising tool for the objective clinical evaluation of auditory discrimination and/or speech perception capacity. PMID:26771009

  20. Mass loss

    NASA Technical Reports Server (NTRS)

    Goldberg, Leo

    1987-01-01

    Observational evidence for mass loss from cool stars is reviewed. Spectra line profiles are used for the derivation of mass-loss rates with the aid of the equation of continuity. This equation implies steady mass loss with spherical symmetry. Data from binary stars, Mira variables, and red giants in globular clusters are examined. Silicate emission is discussed as a useful indicator of mass loss in the middle infrared spectra. The use of thermal millimeter-wave radiation, Very Large Array (VLA) measurement of radio emission, and OH/IR masers are discussed as a tool for mass loss measurement. Evidence for nonsteady mass loss is also reviewed.

  1. Micro acoustic resonant chambers for heating/agitating/mixing (MARCHAM)

    NASA Astrophysics Data System (ADS)

    Sherrit, Stewart; Noell, Aaron C.; Fisher, Anita M.; Takano, Nobuyuki; Grunthaner, Frank

    2016-04-01

    A variety of applications require the mixing and/or heating of a slurry made from a powder/fluid mixture. One of these applications, Sub Critical Water Extraction (SCWE), is a process where water and an environmental powder sample (sieved soil, drill cuttings, etc.) are heated in a sealed chamber to temperatures greater than 200 degrees Celsius by allowing the pressure to increase, but without reaching the critical point of water. At these temperatures, the ability of water to extract organics from solid particulate increases drastically. This paper describes the modeling and experimentation on the use of an acoustic resonant chamber which is part of an amino acid detection instrument called Astrobionibbler [Noell et al. 2014, 2015]. In this instrument we use acoustics to excite a fluid- solid fines mixture in different frequency/amplitude regimes to accomplish a variety of sample processing tasks. Driving the acoustic resonant chamber at lower frequencies can create circulation patterns in the fluid and mixes the liquid and fines, while driving the chamber at higher frequencies one can agitate the fluid and powder and create a suspension. If one then drives the chamber at high amplitude at resonance heating of the slurry occurs. In the mixing and agitating cell the particle levitation force depends on the relative densities and compressibility's of the particulate and fluid and on the kinetic and potential energy densities associated with the velocity and pressure fields [Glynne-Jones, Boltryk and Hill 2012] in the cell. When heating, the piezoelectric transducer and chamber is driven at high power in resonance where the solid/fines region is modelled as an acoustic transmission line with a large loss component. In this regime, heat is pumped into the solution/fines mixture and rapidly heats the sample. We have modeled the piezoelectric transducer/chamber/ sample using Mason's equivalent circuit. In order to assess the validity of the model we have built and

  2. Acoustic communication in insect disease vectors

    PubMed Central

    Vigoder, Felipe de Mello; Ritchie, Michael Gordon; Gibson, Gabriella; Peixoto, Alexandre Afranio

    2013-01-01

    Acoustic signalling has been extensively studied in insect species, which has led to a better understanding of sexual communication, sexual selection and modes of speciation. The significance of acoustic signals for a blood-sucking insect was first reported in the XIX century by Christopher Johnston, studying the hearing organs of mosquitoes, but has received relatively little attention in other disease vectors until recently. Acoustic signals are often associated with mating behaviour and sexual selection and changes in signalling can lead to rapid evolutionary divergence and may ultimately contribute to the process of speciation. Songs can also have implications for the success of novel methods of disease control such as determining the mating competitiveness of modified insects used for mass-release control programs. Species-specific sound “signatures” may help identify incipient species within species complexes that may be of epidemiological significance, e.g. of higher vectorial capacity, thereby enabling the application of more focussed control measures to optimise the reduction of pathogen transmission. Although the study of acoustic communication in insect vectors has been relatively limited, this review of research demonstrates their value as models for understanding both the functional and evolutionary significance of acoustic communication in insects. PMID:24473800

  3. Effective acoustic modeling for robust speaker recognition

    NASA Astrophysics Data System (ADS)

    Hasan Al Banna, Taufiq

    Robustness due to mismatched train/test conditions is the biggest challenge facing the speaker recognition community today, with transmission channel and environmental noise degradation being the prominent factors. Performance of state-of-the art speaker recognition methods aim at mitigating these factors by effectively modeling speech in multiple recording conditions, so that it can learn to distinguish between inter-speaker and intra-speaker variability. The increasing demand and availability of large development corpora introduces difficulties in effective data utilization and computationally efficient modeling. Traditional compensation strategies operate on higher dimensional utterance features, known as supervectors, which are obtained from the acoustic modeling of short-time features. Feature compensation is performed during front-end processing. Motivated by the covariance structure of conventional acoustic features, we envision that feature normalization and compensation can be integrated into the acoustic modeling. In this dissertation, we investigate the following fundamental research challenges: (i) analysis of data requirements for effective and efficient background model training, (ii) introducing latent factor analysis modeling of acoustic features, (iii) integration of channel compensation strategies in mixture-models, and (iv) development of noise robust background models using factor analysis. The effectiveness of the proposed solutions are demonstrated in various noisy and channel degraded conditions using the recent evaluation datasets released by the National Institute of Standards and Technology (NIST). These research accomplishments make an important step towards improving speaker recognition robustness in diverse acoustic conditions.

  4. Localized acoustic surface modes

    NASA Astrophysics Data System (ADS)

    Farhat, Mohamed; Chen, Pai-Yen; Bağcı, Hakan

    2016-04-01

    We introduce the concept of localized acoustic surface modes. We demonstrate that they are induced on a two-dimensional cylindrical rigid surface with subwavelength corrugations under excitation by an incident acoustic plane wave. Our results show that the corrugated rigid surface is acoustically equivalent to a cylindrical scatterer with uniform mass density that can be represented using a Drude-like model. This, indeed, suggests that plasmonic-like acoustic materials can be engineered with potential applications in various areas including sensing, imaging, and cloaking.

  5. Low frequency acoustic microscope

    DOEpatents

    Khuri-Yakub, Butrus T.

    1986-11-04

    A scanning acoustic microscope is disclosed for the detection and location of near surface flaws, inclusions or voids in a solid sample material. A focused beam of acoustic energy is directed at the sample with its focal plane at the subsurface flaw, inclusion or void location. The sample is scanned with the beam. Detected acoustic energy specularly reflected and mode converted at the surface of the sample and acoustic energy reflected by subsurface flaws, inclusions or voids at the focal plane are used for generating an interference signal which is processed and forms a signal indicative of the subsurface flaws, inclusions or voids.

  6. Hair Loss

    MedlinePlus

    ... may cause hair loss in women. If your hair loss has occurred gradually with advancing age, FOLLICULAR DEGENERATION may be the cause. Post-pregnancy hormone changes usually reverse themselves without any treatment. While follicular degeneration cannot ...

  7. Optimization of an acoustic telemetry array for detecting transmitter-implanted fish

    USGS Publications Warehouse

    Clements, S.; Jepsen, D.; Karnowski, M.; Schreck, C.B.

    2005-01-01

    The development of miniature acoustic transmitters and economical, robust automated receivers has enabled researchers to study the movement patterns and survival of teleosts in estuarine and ocean environments, including many species and age-classes that were previously considered too small for implantation. During 2001-2003, we optimized a receiver mooring system to minimize gear and data loss in areas where current action or wave action and acoustic noise are high. In addition, we conducted extensive tests to determine (1) the performance of a transmitter and receiver (Vemco, Ltd.) that are widely used, particularly in North America and Europe and (2) the optimal placement of receivers for recording the passage of fish past a point in a linear-flow environment. Our results suggest that in most locations the mooring system performs well with little loss of data; however, boat traffic remains a concern due to entanglement with the mooring system. We also found that the reception efficiency of the receivers depends largely on the method and location of deployment. In many cases, we observed a range of 0-100% reception efficiency (the percentage of known transmissions that are detected while the receiver is within range of the transmitter) when using a conventional method of mooring. The efficiency was improved by removal of the mounting bar and obstructions from the mooring line. ?? Copyright by the American Fisheries Society 2005.

  8. Transmissible amyloid.

    PubMed

    Tjernberg, L O; Rising, A; Johansson, J; Jaudzems, K; Westermark, P

    2016-08-01

    There are around 30 human diseases associated with protein misfolding and amyloid formation, each one caused by a certain protein or peptide. Many of these diseases are lethal and together they pose an enormous burden to society. The prion protein has attracted particular interest as being shown to be the pathogenic agent in transmissible diseases such as kuru, Creutzfeldt-Jakob disease and bovine spongiform encephalopathy. Whether similar transmission could occur also in other amyloidoses such as Alzheimer's disease, Parkinson's disease and serum amyloid A amyloidosis is a matter of intense research and debate. Furthermore, it has been suggested that novel biomaterials such as artificial spider silk are potentially amyloidogenic. Here, we provide a brief introduction to amyloid, prions and other proteins involved in amyloid disease and review recent evidence for their potential transmission. We discuss the similarities and differences between amyloid and silk, as well as the potential hazards associated with protein-based biomaterials. PMID:27002185

  9. Optically selective, acoustically resonant gas detecting transducer

    NASA Technical Reports Server (NTRS)

    Dimeff, J. (Inventor)

    1977-01-01

    A gas analyzer is disclosed which responds to the resonant absorption or emission spectrum of a specific gas by producing an acoustic resonance in a chamber containing a sample of that gas, and which measures the amount of that emission or absorption by measuring the strength of that acoustic resonance, e.g., the maximum periodic pressure, velocity or density achieved. In the preferred embodiment, a light beam is modulated periodically at the acoustical resonance frequency of a closed chamber which contains an optically dense sample of the gas of interest. Periodic heating of the absorbing gas by the light beam causes a cyclic expansion, movement, and pressure within the gas. An amplitude is reached where the increased losses were the cyclic radiation energy received. A transducing system is inclined for converting the pressure variations of the resonant gas into electronic readout signals.

  10. Disability evaluation in acoustic blast trauma

    PubMed Central

    Raju, Ganesan

    2015-01-01

    Introduction: Acoustic blast trauma is different from Noise induced hearing loss. Blast trauma can damage the tympanic membrane, ossicles and cochlea singly or in combination. It produces immediate severe hearing loss and may be associated with tinnitus and vestibular symptoms. Hearing loss recovers spontaneously in many cases but may be permanent in 30-55% cases. Thirteen patients working in an explosive manufacturing unit in Andhra Pradesh were exposed to blast trauma at work place. All these workers complained of immediate hearing loss and were subjected to audiological investigations. Methods: Initial evaluation showed a severe sensorineural type of hearing loss 10 of the 13 cases (77%). They were referred to our Medical board for disability evaluation after 2-3 years of initial injury. Pure tone audiometry indicated severe hearing loss in 12 of 13 cases (92%) that was not correlating clinically. Re-evaluation with Acoustic reflex and ABR (BERA) tests were done and permanent disability was evaluated with the results of these investigations. Observations: No significant hearing loss was found in most patients and these patients had minimal disability. Conclusion: Objective hearing tests should be carried out after one year or more before evaluation of permanent disability. PMID:26957811

  11. Rotorcraft transmissions

    NASA Technical Reports Server (NTRS)

    Coy, John J.

    1990-01-01

    Highlighted here is that portion of the Lewis Research Center's helicopter propulsion systems program that deals with drive train technology and the related mechanical components. The major goals of the program are to increase life, reliability, and maintainability, to reduce weight, noise, and vibration, and to maintain the relatively high mechanical efficiency of the gear train. The current activity emphasizes noise reduction technology and analytical code development, followed by experimental verification. Selected significant advances in technology for transmissions are reviewed, including advanced configurations and new analytical tools. Finally, the plan for transmission research in the future is presented.

  12. Chromospheric Heating by Acoustic Waves Compared to Radiative Cooling

    NASA Astrophysics Data System (ADS)

    Sobotka, M.; Heinzel, P.; Švanda, M.; Jurčák, J.; del Moro, D.; Berrilli, F.

    2016-07-01

    Acoustic and magnetoacoustic waves are among the possible candidate mechanisms that heat the upper layers of the solar atmosphere. A weak chromospheric plage near the large solar pore NOAA 11005 was observed on 2008 October 15, in the Fe i 617.3 nm and Ca ii 853.2 nm lines of the Interferometric Bidimemsional Spectrometer attached to the Dunn Solar Telescope. In analyzing the Ca ii observations (with spatial and temporal resolutions of 0.″4 and 52 s) the energy deposited by acoustic waves is compared to that released by radiative losses. The deposited acoustic flux is estimated from the power spectra of Doppler oscillations measured in the Ca ii line core. The radiative losses are calculated using a grid of seven one-dimensional hydrostatic semi-empirical model atmospheres. The comparison shows that the spatial correlation of the maps of radiative losses and acoustic flux is 72%. In a quiet chromosphere, the contribution of acoustic energy flux to radiative losses is small, only about 15%. In active areas with a photospheric magnetic-field strength between 300 and 1300 G and an inclination of 20°–60°, the contribution increases from 23% (chromospheric network) to 54% (a plage). However, these values have to be considered as lower limits and it might be possible that the acoustic energy flux is the main contributor to the heating of bright chromospheric network and plages.

  13. Sound transmission through triple-panel structures lined with poroelastic materials

    NASA Astrophysics Data System (ADS)

    Liu, Yu

    2015-03-01

    In this paper, previous theories on the prediction of sound transmission loss for a double-panel structure lined with poroelastic materials are extended to address the problem of a triple-panel structure. Six typical configurations are considered for a triple-panel structure based on the method of coupling the porous layers to the facing panels which determines critically the sound insulation performance of the system. The transfer matrix method is employed to solve the system by applying appropriate types of boundary conditions for these configurations. The transmission loss of the triple-panel structures in a diffuse sound field is calculated as a function of frequency and compared with that of corresponding double-panel structures. Generally, the triple-panel structure with poroelastic linings has superior acoustic performance to the double-panel counterpart, remarkably in the mid-high frequency range and possibly at low frequencies, by selecting appropriate configurations in which those with two air gaps in the structure exhibit the best overall performance over the entire frequency range. The poroelastic lining significantly lowers the cut-on frequency above which the triple-panel structure exhibits noticeably higher transmission loss. Compared with a double-panel structure, the wider range of system parameters for a triple-panel structure due to the additional partition provides more design space for tuning the sound insulation performance. Despite the increased structural complexity, the triple-panel structure lined with poroelastic materials has the obvious advantages in sound transmission loss while without the penalties in weight and volume, and is hence a promising replacement for the widely used double-panel sandwich structure.

  14. Acoustics Critical Readiness Review

    NASA Technical Reports Server (NTRS)

    Ballard, Kenny

    2010-01-01

    This presentation reviews the status of the acoustic equipment from the medical operations perspective. Included is information about the acoustic dosimeters, sound level meter, and headphones that are planned for use while on orbit. Finally there is information about on-orbit hearing assessments.

  15. The challenge of acoustics

    NASA Astrophysics Data System (ADS)

    Lord, P.

    1981-01-01

    The various applications of acoustics, including sonar, ultrasonic examination of unborn foetuses and architectural applications, are briefly reviewed. Problems in traffic and industrial noise, auditorium design and explosive noise are considered in more detail. The educational aspects of acoustical science and technology are briefly considered.

  16. Perturbations From Ducts on the Modes of Acoustic Thermometers

    PubMed Central

    Gillis, K. A.; Lin, H.; Moldover, M. R.

    2009-01-01

    We examine the perturbations of the modes of an acoustic thermometer caused by circular ducts used either for gas flow or as acoustic waveguides coupled to remote transducers. We calculate the acoustic admittance of circular ducts using a model based on transmission line theory. The admittance is used to calculate the perturbations to the resonance frequencies and half-widths of the modes of spherical and cylindrical acoustic resonators as functions of the duct’s radius, length, and the locations of the transducers along the duct's length. To verify the model, we measured the complex acoustic admittances of a series of circular tubes as a function of length between 200 Hz and 10 kHz using a three-port acoustic coupler. The absolute magnitude of the specific acoustic admittance is approximately one. For a 1.4 mm inside-diameter, 1.4 m long tube, the root mean square difference between the measured and modeled specific admittances (both real and imaginary parts) over this frequency range was 0.018. We conclude by presenting design considerations for ducts connected to acoustic thermometers.

  17. Rapid Acoustic Survey for Biodiversity Appraisal

    PubMed Central

    Sueur, Jérôme; Pavoine, Sandrine; Hamerlynck, Olivier; Duvail, Stéphanie

    2008-01-01

    Biodiversity assessment remains one of the most difficult challenges encountered by ecologists and conservation biologists. This task is becoming even more urgent with the current increase of habitat loss. Many methods–from rapid biodiversity assessments (RBA) to all-taxa biodiversity inventories (ATBI)–have been developed for decades to estimate local species richness. However, these methods are costly and invasive. Several animals–birds, mammals, amphibians, fishes and arthropods–produce sounds when moving, communicating or sensing their environment. Here we propose a new concept and method to describe biodiversity. We suggest to forego species or morphospecies identification used by ATBI and RBA respectively but rather to tackle the problem at another evolutionary unit, the community level. We also propose that a part of diversity can be estimated and compared through a rapid acoustic analysis of the sound produced by animal communities. We produced α and β diversity indexes that we first tested with 540 simulated acoustic communities. The α index, which measures acoustic entropy, shows a logarithmic correlation with the number of species within the acoustic community. The β index, which estimates both temporal and spectral dissimilarities, is linearly linked to the number of unshared species between acoustic communities. We then applied both indexes to two closely spaced Tanzanian dry lowland coastal forests. Indexes reveal for this small sample a lower acoustic diversity for the most disturbed forest and acoustic dissimilarities between the two forests suggest that degradation could have significantly decreased and modified community composition. Our results demonstrate for the first time that an indicator of biological diversity can be reliably obtained in a non-invasive way and with a limited sampling effort. This new approach may facilitate the appraisal of animal diversity at large spatial and temporal scales. PMID:19115006

  18. Highly directional acoustic receivers.

    PubMed

    Cray, Benjamin A; Evora, Victor M; Nuttall, Albert H

    2003-03-01

    The theoretical directivity of a single combined acoustic receiver, a device that can measure many quantities of an acoustic field at a collocated point, is presented here. The formulation is developed using a Taylor series expansion of acoustic pressure about the origin of a Cartesian coordinate system. For example, the quantities measured by a second-order combined receiver, denoted a dyadic sensor, are acoustic pressure, the three orthogonal components of acoustic particle velocity, and the nine spatial gradients of the velocity vector. The power series expansion, which can be of any order, is cast into an expression that defines the directivity of a single receiving element. It is shown that a single highly directional dyadic sensor can have a directivity index of up to 9.5 dB. However, there is a price to pay with highly directive sensors; these sensors can be significantly more sensitive to nonacoustic noise sources. PMID:12656387

  19. Ocean acoustic hurricane classification.

    PubMed

    Wilson, Joshua D; Makris, Nicholas C

    2006-01-01

    Theoretical and empirical evidence are combined to show that underwater acoustic sensing techniques may be valuable for measuring the wind speed and determining the destructive power of a hurricane. This is done by first developing a model for the acoustic intensity and mutual intensity in an ocean waveguide due to a hurricane and then determining the relationship between local wind speed and underwater acoustic intensity. From this it is shown that it should be feasible to accurately measure the local wind speed and classify the destructive power of a hurricane if its eye wall passes directly over a single underwater acoustic sensor. The potential advantages and disadvantages of the proposed acoustic method are weighed against those of currently employed techniques. PMID:16454274

  20. Acoustic Remote Sensing

    NASA Astrophysics Data System (ADS)

    Dowling, David R.; Sabra, Karim G.

    2015-01-01

    Acoustic waves carry information about their source and collect information about their environment as they propagate. This article reviews how these information-carrying and -collecting features of acoustic waves that travel through fluids can be exploited for remote sensing. In nearly all cases, modern acoustic remote sensing involves array-recorded sounds and array signal processing to recover multidimensional results. The application realm for acoustic remote sensing spans an impressive range of signal frequencies (10-2 to 107 Hz) and distances (10-2 to 107 m) and involves biomedical ultrasound imaging, nondestructive evaluation, oil and gas exploration, military systems, and Nuclear Test Ban Treaty monitoring. In the past two decades, approaches have been developed to robustly localize remote sources; remove noise and multipath distortion from recorded signals; and determine the acoustic characteristics of the environment through which the sound waves have traveled, even when the recorded sounds originate from uncooperative sources or are merely ambient noise.