Science.gov

Sample records for acoustic travel time

  1. Ocean acoustic tomography - Travel time biases

    NASA Technical Reports Server (NTRS)

    Spiesberger, J. L.

    1985-01-01

    The travel times of acoustic rays traced through a climatological sound-speed profile are compared with travel times computed through the same profile containing an eddy field. The accuracy of linearizing the relations between the travel time difference and the sound-speed deviation at long ranges is assessed using calculations made for two different eddy fields measured in the eastern Atlantic. Significant nonlinearities are found in some cases, and the relationships of the values of these nonlinearities to the range between source and receiver, to the anomaly size associated with the eddies, and to the positions of the eddies are studied. An analytical model of the nonlinearities is discussed.

  2. Uncertainty estimation in seismo-acoustic reflection travel time inversion.

    PubMed

    Dettmer, Jan; Dosso, Stan E; Holland, Charles W

    2007-07-01

    This paper develops a nonlinear Bayesian inversion for high-resolution seabed reflection travel time data including rigorous uncertainty estimation and examination of statistical assumptions. Travel time data are picked on seismo-acoustic traces and inverted for a layered sediment sound-velocity model. Particular attention is paid to picking errors which are often biased, correlated, and nonstationary. Non-Toeplitz data covariance matrices are estimated and included in the inversion along with unknown travel time offset (bias) parameters to account for these errors. Simulated experiments show that neglecting error covariances and biases can cause misleading inversion results with unrealistically high confidence. The inversion samples the posterior probability density and provides a solution in terms of one- and two-dimensional marginal probability densities, correlations, and credibility intervals. Statistical assumptions are examined through the data residuals with rigorous statistical tests. The method is applied to shallow-water data collected on the Malta Plateau during the SCARAB98 experiment. PMID:17614476

  3. Effects of Horizontal Magnetic Fields on Acoustic Travel Times

    NASA Astrophysics Data System (ADS)

    Jain, Rekha

    2007-02-01

    Local helioseismology techniques seek to probe the subsurface magnetic fields and flows by observing waves that emerge at the solar surface after passing through these inhomogeneities. Active regions on the surface of the Sun are distinguished by their strong magnetic fields, and techniques such as time-distance helioseismology can provide a useful diagnostic for probing these structures. Above the active regions, the fields fan out to create a horizontal magnetic canopy. We investigate the effect of a uniform horizontal magnetic field on the travel time of acoustic waves by considering vertical velocity in a simple plane-parallel adiabatically stratified polytrope. It is shown that such fields can lower the upper turning point of p-modes and hence influence their travel time. It is found that acoustic waves reflected from magnetically active regions have travel times up to a minute less than for waves similarly reflected in quiet regions. It is also found that sound speeds are increased below the active regions. These findings are consistent with time-distance measurements.

  4. Ray travel times at long ranges in acoustic waveguides.

    PubMed

    Virovlyansky, A L

    2003-05-01

    The Hamiltonian formalism in terms of the action-angle variables is applied to study ray travel times in a waveguide with a smooth sound speed profile perturbed by a weak range-dependent inhomogeneity. A simple approximate formula relating the differences in ray travel times to range variations of action variables is derived. This relation is applied to study range variations of the timefront (representing ray arrivals in the time-depth plane). Widening and bias of timefront segments in the presence of perturbations are considered. Qualitative and quantitative explanations are given to surprising stability of early portions of timefronts observed in both numerical simulations and field experiments. This phenomenon is interpreted from the viewpoint of Fermat's principle. By ray tracing in a realistic deep water environment with an internal-wave-induced perturbation it has been demonstrated that our approach can be used at ranges up to, at least, 3000 km. PMID:12765372

  5. Effect of Foreshortening on Center-to-Limb Variations of Measured Acoustic Travel Times

    NASA Astrophysics Data System (ADS)

    Zhao, Junwei; Stejko, Andrey; Chen, Ruizhu

    2016-03-01

    We use data observed near the solar disk center by the Solar Dynamics Observatory/Helioseismic and Magnetic Imager (SDO/HMI) to mimic observations at high-latitude areas after applying geometric transform and projection. These data are then used to study how foreshortening affects the time-distance measurements of acoustic travel times. We find that foreshortening reduces the measured mean travel-times through altering the acoustic-power weighting in different harmonic degrees, but the level of reduction and the latitude dependence are not as strong as those measured from the observation data at the same latitude. Foreshortening is not found to be accountable for the systematic center-to-limb effect in the measured acoustic travel-time differences, which is an essential factor for a reliable inference of the Sun's meridional-circulation profile. The differences in the acoustic power spectrum between the mimicked data and the observation data in high-latitude areas suggest that the optical spectrum-line formation height or convection cells in these areas may be the primary cause of the center-to-limb effect in helioseismic analyses.

  6. Improved tests for global warming trend extraction in ocean acoustic travel-time data. Final technical report

    SciTech Connect

    Bottone, S.; Gray, H.L.; Woodward, W.A.

    1996-04-01

    A possible indication of the existence of global climate warming is the presence of a trend in the travel time of an acoustic signal along several ocean paths over a period of many years. This report describes new, improved tests for testing for linear trend in time series data with correlated residuals. We introduce a bootstrap based procedure to test for trend in this setting which is better adapted to controlling the significance levels. The procedure is applied to acoustic travel time data generated by the MASIG ocean model. It is shown how to generalize the improved method to multivariate, or vector, time series, which, in the ocean acoustics setting, corresponds to travel time data on many ocean paths. An appendix describes the TRENDS software, which enables the user to perform these calculations using a graphical user interface (GUI).

  7. Use of acoustic wave travel-time measurements to probe the near-surface layers of the Sun

    NASA Technical Reports Server (NTRS)

    Jefferies, S. M.; Osaki, Y.; Shibahashi, H.; Duvall, T. L., Jr.; Harvey, J. W.; Pomerantz, M. A.

    1994-01-01

    The variation of solar p-mode travel times with cyclic frequency nu is shown to provide information on both the radial variation of the acoustic potential and the depth of the effective source of the oscillations. Observed travel-time data for waves with frequency lower than the acoustic cutoff frequency for the solar atmosphere (approximately equals 5.5 mHz) are inverted to yield the local acoustic cutoff frequency nu(sub c) as a function of depth in the outer convection zone and lower atmosphere of the Sun. The data for waves with nu greater than 5.5 mHz are used to show that the source of the p-mode oscillations lies approximately 100 km beneath the base of the photosphere. This depth is deeper than that determined using a standard mixing-length calculation.

  8. Active Travel-Time Tomography using a Distributed Acoustic Sensing Array

    NASA Astrophysics Data System (ADS)

    Lancelle, C.; Fratta, D.; Lord, N. E.; Wang, H. F.; Chalari, A.

    2015-12-01

    Distributed acoustic sensing (DAS) is a sensor array used for monitoring ground motion by utilizing the interaction of light pulses with sections of a fiber-optic cable. In September 2013 a field test was conducted at the NEES@UCSB Garner Valley field site in Southern California incorporating DAS technology. A 762-meter-long fiber-optic cable was trenched to a depth of about 0.3 m in a rectangular design with two interior diagonal segments. The fiber was excited by a number of sources, including a 45 kN shear shaker and a smaller 450 N portable mass shaker, both of which were available through NEES@UCLA. In addition to these sources, signals were recorded from a minivib source and hammer blows on a steel plate, as well as 8 hours of overnight ambient noise recording. One goal of the field test was to evaluate the use of DAS for tomographic studies. The large number of measurement points inherent to DAS lends itself well to this type of study. Tomograms were constructed using two of the active-sources at multiple locations. There were 8 minivib locations within the array and 13 hammer locations along the boundary of the array. Travel-time data were collected with the DAS array. Two-dimensional velocity tomograms were constructed for different resolutions from the two active sources and compared. In all the images, the lowest velocities lie near the center of the array with higher velocities surrounding this area. The impact results, however, may contain an artifact due to multiple propagation modes. This research is part of the DOE's PoroTomo project.

  9. HELIOSEISMIC SIGNATURE OF CHROMOSPHERIC DOWNFLOWS IN ACOUSTIC TRAVEL-TIME MEASUREMENTS FROM HINODE

    SciTech Connect

    Nagashima, Kaori; Sekii, Takashi; Kosovichev, Alexander G.; Zhao Junwei; Tarbell, Theodore D.

    2009-04-01

    We report on a signature of chromospheric downflows in two emerging flux regions detected by time-distance helioseismology analysis. We use both chromospheric intensity oscillation data in the Ca II H line and photospheric Dopplergrams in the Fe I 557.6 nm line obtained by Hinode/SOT for our analyses. By cross-correlating the Ca II oscillation signals, we have detected a travel-time anomaly in the plage regions; outward travel times are shorter than inward travel times by 0.5-1 minute. However, such an anomaly is absent in the Fe I data. These results can be interpreted as evidence of downflows in the lower chromosphere. The downflow speed is estimated to be below 10 km s{sup -1}. This result demonstrates a new possibility of studying chromospheric flows by time-distance analysis.

  10. Where the ocean influences the impulse response and its effect on synchronous changes of acoustic travel time.

    PubMed

    Spiesberger, John L

    2011-12-01

    In 1983, sounds at 133 Hz, 0.06 s resolution were transmitted in the Pacific for five days at 2 min intervals over 3709 km between bottom-mounted instruments maintained with atomic clocks. In 1989, a technique was developed to measure changes in acoustic travel time with an accuracy of 135 microseconds at 2 min intervals for selected windows of travel time within the impulse response. The data have short-lived 1 to 10 ms oscillations of travel time with periods less than a few days. Excluding tidal effects, different windows exhibited significant synchronized changes in travel time for periods shorter than 10 h. In the 1980s, this phenomenon was not understood because internal waves have correlation lengths of a few kilometers which are smaller than the way sound was thought to sample the ocean along well-separated and distinct rays corresponding to different windows. The paradox's resolution comes from modern theories that replace the ray-picture with finite wavelength representations that predict sound can be influenced in the upper ocean over horizontal scales such as 20 km or more. Thus, different windows are influenced by the same short-scale fluctuations of sound speed. This conclusion is supported by the data and numerical simulations of the impulse response. PMID:22225021

  11. Acoustic travel time gauges for in-situ determination of pressure and temperature in multi-anvil apparatus

    NASA Astrophysics Data System (ADS)

    Wang, Xuebing; Chen, Ting; Qi, Xintong; Zou, Yongtao; Kung, Jennifer; Yu, Tony; Wang, Yanbin; Liebermann, Robert C.; Li, Baosheng

    2015-08-01

    In this study, we developed a new method for in-situ pressure determination in multi-anvil, high-pressure apparatus using an acoustic travel time approach within the framework of acoustoelasticity. The ultrasonic travel times of polycrystalline Al2O3 were calibrated against NaCl pressure scale up to 15 GPa and 900 °C in a Kawai-type double-stage multi-anvil apparatus in conjunction with synchrotron X-radiation, thereby providing a convenient and reliable gauge for pressure determination at ambient and high temperatures. The pressures derived from this new travel time method are in excellent agreement with those from the fixed-point methods. Application of this new pressure gauge in an offline experiment revealed a remarkable agreement of the densities of coesite with those from the previous single crystal compression studies under hydrostatic conditions, thus providing strong validation for the current travel time pressure scale. The travel time approach not only can be used for continuous in-situ pressure determination at room temperature, high temperatures, during compression and decompression, but also bears a unique capability that none of the previous scales can deliver, i.e., simultaneous pressure and temperature determination with a high accuracy (±0.16 GPa in pressure and ±17 °C in temperature). Therefore, the new in-situ Al2O3 pressure gauge is expected to enable new and expanded opportunities for offline laboratory studies of solid and liquid materials under high pressure and high temperature in multi-anvil apparatus.

  12. Acoustic travel time gauges for in-situ determination of pressure and temperature in multi-anvil apparatus

    SciTech Connect

    Wang, Xuebing; Chen, Ting; Qi, Xintong; Zou, Yongtao; Liebermann, Robert C.; Li, Baosheng; Kung, Jennifer; Yu, Tony; Wang, Yanbin

    2015-08-14

    In this study, we developed a new method for in-situ pressure determination in multi-anvil, high-pressure apparatus using an acoustic travel time approach within the framework of acoustoelasticity. The ultrasonic travel times of polycrystalline Al{sub 2}O{sub 3} were calibrated against NaCl pressure scale up to 15 GPa and 900 °C in a Kawai-type double-stage multi-anvil apparatus in conjunction with synchrotron X-radiation, thereby providing a convenient and reliable gauge for pressure determination at ambient and high temperatures. The pressures derived from this new travel time method are in excellent agreement with those from the fixed-point methods. Application of this new pressure gauge in an offline experiment revealed a remarkable agreement of the densities of coesite with those from the previous single crystal compression studies under hydrostatic conditions, thus providing strong validation for the current travel time pressure scale. The travel time approach not only can be used for continuous in-situ pressure determination at room temperature, high temperatures, during compression and decompression, but also bears a unique capability that none of the previous scales can deliver, i.e., simultaneous pressure and temperature determination with a high accuracy (±0.16 GPa in pressure and ±17 °C in temperature). Therefore, the new in-situ Al{sub 2}O{sub 3} pressure gauge is expected to enable new and expanded opportunities for offline laboratory studies of solid and liquid materials under high pressure and high temperature in multi-anvil apparatus.

  13. Implementation and Comparison of Acoustic Travel-Time Measurement Procedures for the Helioseismic and Magnetic Imager Time-Distance Helioseismology Pipeline

    NASA Technical Reports Server (NTRS)

    Couvidat, S.; Zhao, J.; Birch, A. C.; Kosovichev, A. G.; Duvall, T. L., Jr.; Parchevsky, K.; Scherrer, P. H.

    2009-01-01

    The Helioseismic and Magnetic Imager (HMI) instrument on board the Solar Dynamics Observatory (SDO) satellite is designed to produce high-resolution Doppler velocity maps of oscillations at the solar surface with high temporal cadence. To take advantage of these high-quality oscillation data, a time-distance helioseismology pipeline has been implemented at the Joint Science Operations Center (JSOC) at Stanford University. The aim of this pipeline is to generate maps of acoustic travel times from oscillations on the solar surface, and to infer subsurface 3D flow velocities and sound-speed perturbations. The wave travel times are measured from cross covariances of the observed solar oscillation signals. For implementation into the pipeline we have investigated three different travel-time definitions developed in time-distance helioseismology: a Gabor wavelet fitting (Kosovichev and Duvall, 1997), a minimization relative to a reference cross-covariance function (Gizon and Birch, 2002), and a linearized version of the minimization method (Gizon and Birch, 2004). Using Doppler velocity data from the Michelson Doppler Imager (MDI) instrument on board SOHO, we tested and compared these definitions for the mean and difference travel-time perturbations measured from reciprocal signals. Although all three procedures return similar travel times in a quiet Sun region, the method of Gizon and Birch (2004) gives travel times that are significantly different from the others in a magnetic (active) region. Thus, for the pipeline implementation we chose the procedures of Kosovichev and Duvall (1997) and Gizon and Birch (2002). We investigated the relationships among these three travel-time definitions, their sensitivities to fitting parameters, and estimated the random errors they produce

  14. Effect of Migration Pathway on Travel Time and Survival of Acoustic-Tagged Juvenile Salmonids in the Columbia River Estuary

    SciTech Connect

    Harnish, Ryan A.; Johnson, Gary E.; McMichael, Geoffrey A.; Hughes, Michael S.; Ebberts, Blaine D.

    2012-02-01

    Off-channel areas (side channels, tidal flats, sand bars, and shallow-water bays) may serve as important migration corridors through estuarine environments for salmon and steelhead smolts. Relatively large percentages (21-33%) of acoustic-tagged yearling and subyearling Chinook salmon and steelhead smolts were detected migrating through off-channel areas of the Columbia River estuary in 2008. The probability of survival for off-channel migrants (0.78-0.94) was similar to or greater than the survival probability of main channel migrants (0.67-0.93). Median travel times were similar for all species or run types and migration pathways we examined, ranging from 1-2 d. The route used by smolts to migrate through the estuary may affect their vulnerability to predation. Acoustic-tagged steelhead that migrated nearest to avian predator nesting colonies experienced higher predation rates (24%) than those that migrated farthest from the colonies (10%). The use of multiple migration pathways may be advantageous to out-migrating smolts because it helps to buffer against high rates of mortality, which may occur in localized areas, and helps to minimize inter- and intraspecific competition.

  15. Implementation and Comparison of Acoustic Travel-Time Measurement Procedures for the Solar Dynamics Observatory-Helioseismic and Magnetic Imager Time-Distance Helioseismology Pipeline

    NASA Technical Reports Server (NTRS)

    Couvidat, S.; Zhao, J.; Birch, A. C.; Kosovichev, A. G.; Duvall, Thomas L., Jr.; Parchevsky, K.; Scherrer, P. H.

    2010-01-01

    The Helioseismic and Magnetic Imager (HMI) instrument onboard the Solar Dynamics Observatory (SDO) satellite is designed to produce high-resolution Doppler-velocity maps of oscillations at the solar surface with high temporal cadence. To take advantage of these high-quality oscillation data, a time - distance helioseismology pipeline (Zhao et al., Solar Phys. submitted, 2010) has been implemented at the Joint Science Operations Center (JSOC) at Stanford University. The aim of this pipeline is to generate maps of acoustic travel times from oscillations on the solar surface, and to infer subsurface 3D flow velocities and sound-speed perturbations. The wave travel times are measured from cross-covariances of the observed solar oscillation signals. For implementation into the pipeline we have investigated three different travel-time definitions developed in time - distance helioseismology: a Gabor-wavelet fitting (Kosovichev and Duvall, SCORE'96: Solar Convection and Oscillations and Their Relationship, ASSL, Dordrecht, 241, 1997), a minimization relative to a reference cross-covariance function (Gizon and Birch, Astrophys. J. 571, 966, 2002), and a linearized version of the minimization method (Gizon and Birch, Astrophys. J. 614, 472, 2004). Using Doppler-velocity data from the Michelson Doppler Imager (MDI) instrument onboard SOHO, we tested and compared these definitions for the mean and difference traveltime perturbations measured from reciprocal signals. Although all three procedures return similar travel times in a quiet-Sun region, the method of Gizon and Birch (Astrophys. J. 614, 472, 2004) gives travel times that are significantly different from the others in a magnetic (active) region. Thus, for the pipeline implementation we chose the procedures of Kosovichev and Duvall (SCORE'96: Solar Convection and Oscillations and Their Relationship, ASSL, Dordrecht, 241, 1997) and Gizon and Birch (Astrophys. J. 571, 966, 2002). We investigated the relationships among

  16. Sensitivity of ray travel times.

    PubMed

    Smirnov, I. P.; Virovlyansky, A. L.; Zaslavsky, G. M.

    2002-09-01

    Ray in a waveguide can be considered as a trajectory of the corresponding Hamiltonian system, which appears to be chaotic in a nonuniform environment. From the experimental and practical viewpoints, the ray travel time is an important characteristic that, in some way, involves an information about the waveguide condition. It is shown that the ray travel time as a function of the initial momentum and propagation range in the unperturbed waveguide displays a scaling law. Some properties of the ray travel time predicted by this law still persist in periodically nonuniform waveguides with chaotic ray trajectories. As examples we consider few models with special attention to the underwater acoustic waveguide. It is demonstrated for a deep ocean propagation model that even under conditions of ray chaos the ray travel time is determined, to a considerable extent, by the coordinates of the ray endpoints and the number of turning points, i.e., by a topology of the ray path. We show how the closeness of travel times for rays with equal numbers of turning points reveals itself in ray travel time dependencies on the starting momentum and on the depth of the observation point. It has been shown that the same effect is associated with the appearance of the gap between travel times of chaotic and regular rays. The manifestation of the stickiness (the presence of such parts in a chaotic trajectory where the latter exhibits an almost regular behavior) in ray travel times is discussed. (c) 2002 American Institute of Physics. PMID:12779591

  17. Time - A Traveler's Guide

    NASA Astrophysics Data System (ADS)

    Pickover, Clifford A.

    1999-09-01

    "Bucky Fuller thought big," Wired magazine recently noted, "Arthur C. Clarke thinks big, but Cliff Pickover outdoes them both." In his newest book, Cliff Pickover outdoes even himself, probing a mystery that has baffled mystics, philosophers, and scientists throughout history--What is the nature of time?In Time: A Traveler's Guide , Pickover takes readers to the forefront of science as he illuminates the most mysterious phenomenon in the universe--time itself. Is time travel possible? Is time real? Does it flow in one direction only? Does it have a beginning and an end? What is eternity? Pickover's book offers a stimulating blend of Chopin, philosophy, Einstein, and modern physics, spiced with diverting side-trips to such topics as the history of clocks, the nature of free will, and the reason gold glitters. Numerous diagrams ensure readers will have no trouble following along.By the time we finish this book, we understand a wide variety of scientific concepts pertaining to time. And most important, we will understand that time travel is, indeed, possible.

  18. Solar wind travel time

    NASA Astrophysics Data System (ADS)

    Russell, C. T.

    A useful rule of thumb in solar terrestrial studies is that the solar wind travels 4 Earth radii (RE) per minute. Long-term studies of solar wind velocity [e.g., Luhmann et al., 1993; 1994] show that the median velocity is about 420 km/s, corresponding to 3.96 RE min-1. The quartiles are about 370 km/s and 495 km/s, corresponding to 3.48 Re min-1 and 4.66 Re min-1 respectively. This number helps estimate the delays expected when observing a discontinuity at a solar wind monitor; one example is ISEE-3 when it was at the forward libration point (about 60 min). It is also helpful for estimating how much time passes before the dayside magnetosphere is compressed as denser solar wind flows by (about 2.5 min).

  19. Time Travel in the Library

    ERIC Educational Resources Information Center

    Brown, Donna W.

    2005-01-01

    A Time Travel project in the library gives enthusiasm to students to connect with the past and reinforces their research skills while instilling respect for the past years. The librarian should choose one specific decade to highlight in the library and create an extravaganza that would allow memorabilia from that time period to be located without…

  20. Genetic Time Travel.

    PubMed

    Krause, Johannes; Pääbo, Svante

    2016-05-01

    At its core, genetics is a historical discipline. Mutations are passed on from generation to generation and accumulate as a result of chance as well as of selection within and between populations and species. However, until recently, geneticists were confined to the study of present-day genetic variation and could only indirectly make inferences about the historical processes that resulted in the variation in present-day gene pools. This "time trap" has now been overcome thanks to the ability to analyze DNA extracted from ancient remains, and this is about to revolutionize several aspects of genetics. PMID:27183562

  1. Treating time travel quantum mechanically

    NASA Astrophysics Data System (ADS)

    Allen, John-Mark A.

    2014-10-01

    The fact that closed timelike curves (CTCs) are permitted by general relativity raises the question as to how quantum systems behave when time travel to the past occurs. Research into answering this question by utilizing the quantum circuit formalism has given rise to two theories: Deutschian-CTCs (D-CTCs) and "postselected" CTCs (P-CTCs). In this paper the quantum circuit approach is thoroughly reviewed, and the strengths and shortcomings of D-CTCs and P-CTCs are presented in view of their nonlinearity and time-travel paradoxes. In particular, the "equivalent circuit model"—which aims to make equivalent predictions to D-CTCs, while avoiding some of the difficulties of the original theory—is shown to contain errors. The discussion of D-CTCs and P-CTCs is used to motivate an analysis of the features one might require of a theory of quantum time travel, following which two overlapping classes of alternate theories are identified. One such theory, the theory of "transition probability" CTCs (T-CTCs), is fully developed. The theory of T-CTCs is shown not to have certain undesirable features—such as time-travel paradoxes, the ability to distinguish nonorthogonal states with certainty, and the ability to clone or delete arbitrary pure states—that are present with D-CTCs and P-CTCs. The problems with nonlinear extensions to quantum mechanics are discussed in relation to the interpretation of these theories, and the physical motivations of all three theories are discussed and compared.

  2. 5 CFR 630.207 - Travel time.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 5 Administrative Personnel 1 2013-01-01 2013-01-01 false Travel time. 630.207 Section 630.207 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT CIVIL SERVICE REGULATIONS ABSENCE AND LEAVE Definitions and General Provisions for Annual and Sick Leave § 630.207 Travel time. The travel time granted an employee under section 6303(d) of title...

  3. 5 CFR 630.207 - Travel time.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 5 Administrative Personnel 1 2014-01-01 2014-01-01 false Travel time. 630.207 Section 630.207 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT CIVIL SERVICE REGULATIONS ABSENCE AND LEAVE Definitions and General Provisions for Annual and Sick Leave § 630.207 Travel time. The travel time granted an employee under section 6303(d) of title...

  4. 5 CFR 630.207 - Travel time.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 5 Administrative Personnel 1 2011-01-01 2011-01-01 false Travel time. 630.207 Section 630.207 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT CIVIL SERVICE REGULATIONS ABSENCE AND LEAVE Definitions and General Provisions for Annual and Sick Leave § 630.207 Travel time. The travel time granted...

  5. 5 CFR 630.207 - Travel time.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 5 Administrative Personnel 1 2012-01-01 2012-01-01 false Travel time. 630.207 Section 630.207 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT CIVIL SERVICE REGULATIONS ABSENCE AND LEAVE Definitions and General Provisions for Annual and Sick Leave § 630.207 Travel time. The travel time granted...

  6. 5 CFR 630.207 - Travel time.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 5 Administrative Personnel 1 2010-01-01 2010-01-01 false Travel time. 630.207 Section 630.207 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT CIVIL SERVICE REGULATIONS ABSENCE AND LEAVE Definitions and General Provisions for Annual and Sick Leave § 630.207 Travel time. The travel time granted...

  7. Network Structure and Travel Time Perception

    PubMed Central

    Parthasarathi, Pavithra; Levinson, David; Hochmair, Hartwig

    2013-01-01

    The purpose of this research is to test the systematic variation in the perception of travel time among travelers and relate the variation to the underlying street network structure. Travel survey data from the Twin Cities metropolitan area (which includes the cities of Minneapolis and St. Paul) is used for the analysis. Travelers are classified into two groups based on the ratio of perceived and estimated commute travel time. The measures of network structure are estimated using the street network along the identified commute route. T-test comparisons are conducted to identify statistically significant differences in estimated network measures between the two traveler groups. The combined effect of these estimated network measures on travel time is then analyzed using regression models. The results from the t-test and regression analyses confirm the influence of the underlying network structure on the perception of travel time. PMID:24204932

  8. Code for Calculating Regional Seismic Travel Time

    SciTech Connect

    BALLARD, SANFORD; HIPP, JAMES; & BARKER, GLENN

    2009-07-10

    The RSTT software computes predictions of the travel time of seismic energy traveling from a source to a receiver through 2.5D models of the seismic velocity distribution within the Earth. The two primary applications for the RSTT library are tomographic inversion studies and seismic event location calculations. In tomographic inversions studies, a seismologist begins with number of source-receiver travel time observations and an initial starting model of the velocity distribution within the Earth. A forward travel time calculator, such as the RSTT library, is used to compute predictions of each observed travel time and all of the residuals (observed minus predicted travel time) are calculated. The Earth model is then modified in some systematic way with the goal of minimizing the residuals. The Earth model obtained in this way is assumed to be a better model than the starting model if it has lower residuals. The other major application for the RSTT library is seismic event location. Given an Earth model, an initial estimate of the location of a seismic event, and some number of observations of seismic travel time thought to have originated from that event, location codes systematically modify the estimate of the location of the event with the goal of minimizing the difference between the observed and predicted travel times. The second application, seismic event location, is routinely implemented by the military as part of its effort to monitor the Earth for nuclear tests conducted by foreign countries.

  9. Code for Calculating Regional Seismic Travel Time

    2009-07-10

    The RSTT software computes predictions of the travel time of seismic energy traveling from a source to a receiver through 2.5D models of the seismic velocity distribution within the Earth. The two primary applications for the RSTT library are tomographic inversion studies and seismic event location calculations. In tomographic inversions studies, a seismologist begins with number of source-receiver travel time observations and an initial starting model of the velocity distribution within the Earth. A forwardmore » travel time calculator, such as the RSTT library, is used to compute predictions of each observed travel time and all of the residuals (observed minus predicted travel time) are calculated. The Earth model is then modified in some systematic way with the goal of minimizing the residuals. The Earth model obtained in this way is assumed to be a better model than the starting model if it has lower residuals. The other major application for the RSTT library is seismic event location. Given an Earth model, an initial estimate of the location of a seismic event, and some number of observations of seismic travel time thought to have originated from that event, location codes systematically modify the estimate of the location of the event with the goal of minimizing the difference between the observed and predicted travel times. The second application, seismic event location, is routinely implemented by the military as part of its effort to monitor the Earth for nuclear tests conducted by foreign countries.« less

  10. Nonlinear refraction and reflection travel time tomography

    USGS Publications Warehouse

    Zhang, Jiahua; ten Brink, U.S.; Toksoz, M.N.

    1998-01-01

    We develop a rapid nonlinear travel time tomography method that simultaneously inverts refraction and reflection travel times on a regular velocity grid. For travel time and ray path calculations, we apply a wave front method employing graph theory. The first-arrival refraction travel times are calculated on the basis of cell velocities, and the later refraction and reflection travel times are computed using both cell velocities and given interfaces. We solve a regularized nonlinear inverse problem. A Laplacian operator is applied to regularize the model parameters (cell slownesses and reflector geometry) so that the inverse problem is valid for a continuum. The travel times are also regularized such that we invert travel time curves rather than travel time points. A conjugate gradient method is applied to minimize the nonlinear objective function. After obtaining a solution, we perform nonlinear Monte Carlo inversions for uncertainty analysis and compute the posterior model covariance. In numerical experiments, we demonstrate that combining the first arrival refraction travel times with later reflection travel times can better reconstruct the velocity field as well as the reflector geometry. This combination is particularly important for modeling crustal structures where large velocity variations occur in the upper crust. We apply this approach to model the crustal structure of the California Borderland using ocean bottom seismometer and land data collected during the Los Angeles Region Seismic Experiment along two marine survey lines. Details of our image include a high-velocity zone under the Catalina Ridge, but a smooth gradient zone between. Catalina Ridge and San Clemente Ridge. The Moho depth is about 22 km with lateral variations. Copyright 1998 by the American Geophysical Union.

  11. Catchment mixing processes and travel time distributions

    NASA Astrophysics Data System (ADS)

    Botter, Gianluca

    2012-05-01

    This work focuses on the description and the use of the probability density functions (pdfs) of travel, residence and evapotranspiration times, which are comprehensive descriptors of the fate of rainfall water particles traveling through catchments, and provide key information on hydrologic flowpaths, partitioning of precipitation, circulation and turnover of pollutants. Exploiting some analytical solutions to the transport problem derived by Botter et al. (2011), this paper analyzes the features of travel, residence and evapotranspiration time pdfs resulting from different assumptions on the mixing processes occurring during streamflow formation and plant uptake (namely, complete mixing and translatory flow). The ensuing analytical solutions are analyzed through numerical Monte Carlo simulations of a stochastic model of soil moisture and streamflow dynamics. Travel and residence time pdfs are shown to be time-variant as they mirror the variability of the relevant hydrological fluxes. In particular, the temporal fluctuations of the mean residence time are shown to reflect rainfall dynamics, whereas the variability of the mean travel time is chiefly driven by streamflow dynamics, with lower frequency and higher amplitude fluctuations. Dry climates enhance the effect of the type of mixing on catchment transport features (e.g., mean travel times and seasonal dynamics of stream concentrations). The implications for the interpretation of tracer experiments are also discussed, showing through specific examples that models disregarding nonstationarity may significantly misestimate travel time pdfs.

  12. 5 CFR 550.1404 - Creditable travel time.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 5 Administrative Personnel 1 2014-01-01 2014-01-01 false Creditable travel time. 550.1404 Section... ADMINISTRATION (GENERAL) Compensatory Time Off for Travel § 550.1404 Creditable travel time. (a) General. Subject... off for time in a travel status if— (1) The employee is required to travel away from the official...

  13. 5 CFR 550.1404 - Creditable travel time.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 5 Administrative Personnel 1 2012-01-01 2012-01-01 false Creditable travel time. 550.1404 Section... ADMINISTRATION (GENERAL) Compensatory Time Off for Travel § 550.1404 Creditable travel time. (a) General. Subject... off for time in a travel status if— (1) The employee is required to travel away from the official...

  14. 5 CFR 550.1404 - Creditable travel time.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 5 Administrative Personnel 1 2010-01-01 2010-01-01 false Creditable travel time. 550.1404 Section... ADMINISTRATION (GENERAL) Compensatory Time Off for Travel § 550.1404 Creditable travel time. (a) General. Subject... off for time in a travel status if— (1) The employee is required to travel away from the official...

  15. 5 CFR 550.1404 - Creditable travel time.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 5 Administrative Personnel 1 2011-01-01 2011-01-01 false Creditable travel time. 550.1404 Section... ADMINISTRATION (GENERAL) Compensatory Time Off for Travel § 550.1404 Creditable travel time. (a) General. Subject... off for time in a travel status if— (1) The employee is required to travel away from the official...

  16. NOTE ON TRAVEL TIME SHIFTS DUE TO AMPLITUDE MODULATION IN TIME-DISTANCE HELIOSEISMOLOGY MEASUREMENTS

    SciTech Connect

    Nigam, R.; Kosovichev, A. G. E-mail: sasha@quake.stanford.ed

    2010-01-10

    Correct interpretation of acoustic travel times measured by time-distance helioseismology is essential to get an accurate understanding of the solar properties that are inferred from them. It has long been observed that sunspots suppress p-mode amplitude, but its implications on travel times have not been fully investigated so far. It has been found in test measurements using a 'masking' procedure, in which the solar Doppler signal in a localized quiet region of the Sun is artificially suppressed by a spatial function, and using numerical simulations that the amplitude modulations in combination with the phase-speed filtering may cause systematic shifts of acoustic travel times. To understand the properties of this procedure, we derive an analytical expression for the cross-covariance of a signal that has been modulated locally by a spatial function that has azimuthal symmetry and then filtered by a phase-speed filter typically used in time-distance helioseismology. Comparing this expression to the Gabor wavelet fitting formula without this effect, we find that there is a shift in the travel times that is introduced by the amplitude modulation. The analytical model presented in this paper can be useful also for interpretation of travel time measurements for the non-uniform distribution of oscillation amplitude due to observational effects.

  17. Regular transport dynamics produce chaotic travel times.

    PubMed

    Villalobos, Jorge; Muñoz, Víctor; Rogan, José; Zarama, Roberto; Johnson, Neil F; Toledo, Benjamín; Valdivia, Juan Alejandro

    2014-06-01

    In the hope of making passenger travel times shorter and more reliable, many cities are introducing dedicated bus lanes (e.g., Bogota, London, Miami). Here we show that chaotic travel times are actually a natural consequence of individual bus function, and hence of public transport systems more generally, i.e., chaotic dynamics emerge even when the route is empty and straight, stops and lights are equidistant and regular, and loading times are negligible. More generally, our findings provide a novel example of chaotic dynamics emerging from a single object following Newton's laws of motion in a regularized one-dimensional system. PMID:25019866

  18. Predicting river travel time from hydraulic characteristics

    USGS Publications Warehouse

    Jobson, H.E.

    2001-01-01

    Predicting the effect of a pollutant spill on downstream water quality is primarily dependent on the water velocity, longitudinal mixing, and chemical/physical reactions. Of these, velocity is the most important and difficult to predict. This paper provides guidance on extrapolating travel-time information from one within bank discharge to another. In many cases, a time series of discharge (such as provided by a U.S. Geological Survey stream gauge) will provide an excellent basis for this extrapolation. Otherwise, the accuracy of a travel time extrapolation based on a resistance equation can be greatly improved by assuming the total flow area is composed of two parts, an active and an inactive area. For 60 reaches of 12 rivers with slopes greater than about 0.0002, travel times could be predicted to within about 10% by computing the active flow area using the Manning equation with n = 0.035 and assuming a constant inactive area for each reach. The predicted travel times were not very sensitive to the assumed values of bed slope or channel width.

  19. Time of travel of selected Arkansas streams

    USGS Publications Warehouse

    Lamb, T.E.

    1982-01-01

    Between 1971 and 1981, time-of-travel and dispersion measurements were made in 15 streams in Arkansas. Most of the streams studied were at or near base flow. Graphs are presented for predicting traveltime of solutes in segments of the streams studied. The relationship of time of passage and peak unit concentration to traveltime is presented for two of the streams. Examples of use and application of the data are given. (USGS)

  20. Bifurcations of nonlinear ion-acoustic travelling waves in a multicomponent magnetoplasma with superthermal electrons

    NASA Astrophysics Data System (ADS)

    Selim, M. M.; El-Depsy, A.; El-Shamy, E. F.

    2015-12-01

    Properties of nonlinear ion-acoustic travelling waves propagating in a three-dimensional multicomponent magnetoplasma system composed of positive ions, negative ions and superthermal electrons are considered. Using the reductive perturbation technique (RPT), the Zkharov-Kuznetsov (ZK) equation is derived. The bifurcation theory of planar dynamical systems is applied to investigate the existence of the solitary wave solutions and the periodic travelling wave solutions of the resulting ZK equation. It is found that both compressive and rarefactive nonlinear ion-acoustic travelling waves strongly depend on the external magnetic field, the unperturbed positive-to-negative ions density ratio, the direction cosine of the wave propagation vector with the Cartesian coordinates, as well as the superthermal electron parameter. The present model may be useful for describing the formation of nonlinear ion-acoustic travelling wave in certain astrophysical scenarios, such as the D and F-regions of the Earth's ionosphere.

  1. A study on dust acoustic traveling wave solutions and quasiperiodic route to chaos in nonthermal magnetoplasmas

    NASA Astrophysics Data System (ADS)

    Saha, Asit; Pal, Nikhil; Saha, Tapash; Ghorui, M. K.; Chatterjee, Prasanta

    2016-06-01

    Bifurcations and chaotic behaviors of dust acoustic traveling waves in magnetoplasmas with nonthermal ions featuring Cairns-Tsallis distribution is investigated on the framework of the further modified Kadomtsev-Petviashili (FMKP) equation. The FMKP equation is derived employing the reductive perturbation technique (RPT). Bifurcations of dust acoustic traveling waves of the FMKP equation is presented. Using the bifurcation theory of planar dynamical systems, two new analytical traveling wave solutions for solitary and periodic waves are derived depending on the parameters α , α _1, q, l and U. Considering an external periodic perturbation, the chaotic behavior of dust acoustic traveling waves is investigated through quasiperiodic route to chaos. The parameter q significantly affects the chaotic behavior of the perturbed FMKP equation.

  2. Guided Wave Travel Time Tomography for Bends

    NASA Astrophysics Data System (ADS)

    Volker, Arno; Bloom, Joost

    2011-06-01

    The concept of predictive maintenance using permanent sensors that monitor the integrity of an installation is an interesting addition to the current method of periodic inspections. Guided wave tomography has been developed to map the wall thickness using the travel times of guided waves. The method has been demonstrated for straight pipes. The extension of this method to bends is not straightforward because natural focusing occurs due to geometrical path differences. This yields a phase jump, which complicates travel time picking. Because ray-tracing is no longer sufficient to predict the travel times a recursive wave field extrapolation has been developed. The method uses a short spatial convolution operator to propagate a wave field through a bend. The method allows to calculate the wave field at the detector ring, including the phase jump as a consequence of the natural focusing. The recursive wave field extrapolation is done in the space-frequency domain. Therefore dispersion effects can be included easily in the forward modeling. Comparison with measurements shows the accuracy of the method.

  3. Experimental verification of theoretical equations for acoustic radiation force on compressible spherical particles in traveling waves

    NASA Astrophysics Data System (ADS)

    Johnson, Kennita A.; Vormohr, Hannah R.; Doinikov, Alexander A.; Bouakaz, Ayache; Shields, C. Wyatt; López, Gabriel P.; Dayton, Paul A.

    2016-05-01

    Acoustophoresis uses acoustic radiation force to remotely manipulate particles suspended in a host fluid for many scientific, technological, and medical applications, such as acoustic levitation, acoustic coagulation, contrast ultrasound imaging, ultrasound-assisted drug delivery, etc. To estimate the magnitude of acoustic radiation forces, equations derived for an inviscid host fluid are commonly used. However, there are theoretical predictions that, in the case of a traveling wave, viscous effects can dramatically change the magnitude of acoustic radiation forces, which make the equations obtained for an inviscid host fluid invalid for proper estimation of acoustic radiation forces. To date, experimental verification of these predictions has not been published. Experimental measurements of viscous effects on acoustic radiation forces in a traveling wave were conducted using a confocal optical and acoustic system and values were compared with available theories. Our results show that, even in a low-viscosity fluid such as water, the magnitude of acoustic radiation forces is increased manyfold by viscous effects in comparison with what follows from the equations derived for an inviscid fluid.

  4. Experimental verification of theoretical equations for acoustic radiation force on compressible spherical particles in traveling waves.

    PubMed

    Johnson, Kennita A; Vormohr, Hannah R; Doinikov, Alexander A; Bouakaz, Ayache; Shields, C Wyatt; López, Gabriel P; Dayton, Paul A

    2016-05-01

    Acoustophoresis uses acoustic radiation force to remotely manipulate particles suspended in a host fluid for many scientific, technological, and medical applications, such as acoustic levitation, acoustic coagulation, contrast ultrasound imaging, ultrasound-assisted drug delivery, etc. To estimate the magnitude of acoustic radiation forces, equations derived for an inviscid host fluid are commonly used. However, there are theoretical predictions that, in the case of a traveling wave, viscous effects can dramatically change the magnitude of acoustic radiation forces, which make the equations obtained for an inviscid host fluid invalid for proper estimation of acoustic radiation forces. To date, experimental verification of these predictions has not been published. Experimental measurements of viscous effects on acoustic radiation forces in a traveling wave were conducted using a confocal optical and acoustic system and values were compared with available theories. Our results show that, even in a low-viscosity fluid such as water, the magnitude of acoustic radiation forces is increased manyfold by viscous effects in comparison with what follows from the equations derived for an inviscid fluid. PMID:27300980

  5. Continuous monitoring of crosswell seismic travel time

    SciTech Connect

    Daley, Thomas M.; Silver, Paul G.; Niu, Fenglin; Majer, Ernest L.

    2006-04-14

    In two separate shallow field experiments, at two distancescales, we have used continuous monitoring to estimate the effect ofbarometric pressure on crosswell travel time and thereby calibrated thestress sensitivity of the rock volume between the wells. In a 3 mexperiment we found a stress sensitivity of 10-6/Pa while in a 30 mexperiment the sensitivity was 5 x 10-8 /Pa. Results from a deeper (1km), 2 month experiment at the San Andreas fault observation boreholeswill be presented if analysis is completed.

  6. Travel-time-based thermal tracer tomography

    NASA Astrophysics Data System (ADS)

    Somogyvári, Márk; Bayer, Peter; Brauchler, Ralf

    2016-05-01

    Active thermal tracer testing is a technique to get information about the flow and transport properties of an aquifer. In this paper we propose an innovative methodology using active thermal tracers in a tomographic setup to reconstruct cross-well hydraulic conductivity profiles. This is facilitated by assuming that the propagation of the injected thermal tracer is mainly controlled by advection. To reduce the effects of density and viscosity changes and thermal diffusion, early-time diagnostics are used and specific travel times of the tracer breakthrough curves are extracted. These travel times are inverted with an eikonal solver using the staggered grid method to reduce constraints from the pre-defined grid geometry and to improve the resolution. Finally, non-reliable pixels are removed from the derived hydraulic conductivity tomograms. The method is applied to successfully reconstruct cross-well profiles as well as a 3-D block of a high-resolution fluvio-aeolian aquifer analog data set. Sensitivity analysis reveals a negligible role of the injection temperature, but more attention has to be drawn to other technical parameters such as the injection rate. This is investigated in more detail through model-based testing using diverse hydraulic and thermal conditions in order to delineate the feasible range of applications for the new tomographic approach.

  7. 5 CFR 550.1404 - Creditable travel time.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 5 Administrative Personnel 1 2013-01-01 2013-01-01 false Creditable travel time. 550.1404 Section 550.1404 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT CIVIL SERVICE REGULATIONS PAY ADMINISTRATION (GENERAL) Compensatory Time Off for Travel § 550.1404 Creditable travel time. (a) General. Subject to the conditions specified in...

  8. Two women with multiple disabilities sharing an acoustic orientation system and traveling together to indoor destinations.

    PubMed

    Lancioni, G E; Mantini, M

    1998-12-01

    This study assessed whether two women with total blindness and profound intellectual disability could share an acoustic orientation system and travel together simultaneously to common indoor destinations to perform occupational and vocational activities. The orientation system provided acoustic cues which indicated the direction to the destinations. Analysis of data indicated that the women were successful in sharing the system and could reach the destinations independently. PMID:10052076

  9. Generation of Artificial Acoustic-Gravity Waves and Traveling Ionospheric Disturbances in HF Heating Experiments

    NASA Astrophysics Data System (ADS)

    Pradipta, R.; Lee, M. C.; Cohen, J. A.; Watkins, B. J.

    2015-10-01

    We report the results of our ionospheric HF heating experiments to generate artificial acoustic-gravity waves (AGW) and traveling ionospheric disturbances (TID), which were conducted at the High-frequency Active Auroral Research Program facility in Gakona, Alaska. Based on the data from UHF radar, GPS total electron content, and ionosonde measurements, we found that artificial AGW/TID can be generated in ionospheric modification experiments by sinusoidally modulating the power envelope of the transmitted O-mode HF heater waves. In this case, the modulation frequency needs to be set below the characteristic Brunt-Vaisala frequency at the relevant altitudes. We avoided potential contamination from naturally-occurring AGW/TID of auroral origin by conducting the experiments during geomagnetically quiet time period. We determine that these artificial AGW/TID propagate away from the edge of the heated region with a horizontal speed of approximately 160 m/s.

  10. Phase Time and Envelope Time in Time-Distance Analysis and Acoustic Imaging

    NASA Technical Reports Server (NTRS)

    Chou, Dean-Yi; Duvall, Thomas L.; Sun, Ming-Tsung; Chang, Hsiang-Kuang; Jimenez, Antonio; Rabello-Soares, Maria Cristina; Ai, Guoxiang; Wang, Gwo-Ping; Goode Philip; Marquette, William; Ehgamberdiev, Shuhrat; Landenkov, Oleg

    1999-01-01

    Time-distance analysis and acoustic imaging are two related techniques to probe the local properties of solar interior. In this study, we discuss the relation of phase time and envelope time between the two techniques. The location of the envelope peak of the cross correlation function in time-distance analysis is identified as the travel time of the wave packet formed by modes with the same w/l. The phase time of the cross correlation function provides information of the phase change accumulated along the wave path, including the phase change at the boundaries of the mode cavity. The acoustic signals constructed with the technique of acoustic imaging contain both phase and intensity information. The phase of constructed signals can be studied by computing the cross correlation function between time series constructed with ingoing and outgoing waves. In this study, we use the data taken with the Taiwan Oscillation Network (TON) instrument and the Michelson Doppler Imager (MDI) instrument. The analysis is carried out for the quiet Sun. We use the relation of envelope time versus distance measured in time-distance analyses to construct the acoustic signals in acoustic imaging analyses. The phase time of the cross correlation function of constructed ingoing and outgoing time series is twice the difference between the phase time and envelope time in time-distance analyses as predicted. The envelope peak of the cross correlation function between constructed ingoing and outgoing time series is located at zero time as predicted for results of one-bounce at 3 mHz for all four data sets and two-bounce at 3 mHz for two TON data sets. But it is different from zero for other cases. The cause of the deviation of the envelope peak from zero is not known.

  11. 5 CFR 610.123 - Travel on official time.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 5 Administrative Personnel 1 2013-01-01 2013-01-01 false Travel on official time. 610.123 Section 610.123 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT CIVIL SERVICE REGULATIONS HOURS OF DUTY Weekly and Daily Scheduling of Work Work Schedules § 610.123 Travel on official time. Insofar as practicable travel during nonduty hours shall...

  12. 5 CFR 610.123 - Travel on official time.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 5 Administrative Personnel 1 2011-01-01 2011-01-01 false Travel on official time. 610.123 Section... DUTY Weekly and Daily Scheduling of Work Work Schedules § 610.123 Travel on official time. Insofar as practicable travel during nonduty hours shall not be required of an employee. When it is essential that...

  13. 5 CFR 610.123 - Travel on official time.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 5 Administrative Personnel 1 2012-01-01 2012-01-01 false Travel on official time. 610.123 Section... DUTY Weekly and Daily Scheduling of Work Work Schedules § 610.123 Travel on official time. Insofar as practicable travel during nonduty hours shall not be required of an employee. When it is essential that...

  14. 5 CFR 610.123 - Travel on official time.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 5 Administrative Personnel 1 2010-01-01 2010-01-01 false Travel on official time. 610.123 Section... DUTY Weekly and Daily Scheduling of Work Work Schedules § 610.123 Travel on official time. Insofar as practicable travel during nonduty hours shall not be required of an employee. When it is essential that...

  15. 5 CFR 610.123 - Travel on official time.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 5 Administrative Personnel 1 2014-01-01 2014-01-01 false Travel on official time. 610.123 Section... DUTY Weekly and Daily Scheduling of Work Work Schedules § 610.123 Travel on official time. Insofar as practicable travel during nonduty hours shall not be required of an employee. When it is essential that...

  16. Traveling surface spin-wave resonance spectroscopy using surface acoustic waves

    NASA Astrophysics Data System (ADS)

    Gowtham, P. G.; Moriyama, T.; Ralph, D. C.; Buhrman, R. A.

    2015-12-01

    Coherent gigahertz-frequency surface acoustic waves (SAWs) traveling on the surface of a piezoelectric crystal can, via the magnetoelastic interaction, resonantly excite traveling surface spin waves in an adjacent thin-film ferromagnet. These excited surface spin waves, traveling with a definite in-plane wave-vector q ∥ enforced by the SAW, can be detected by measuring changes in the electro-acoustical transmission of a SAW delay line. Here, we provide a demonstration that such measurements constitute a precise and quantitative technique for spin-wave spectroscopy, providing a means to determine both isotropic and anisotropic contributions to the spin-wave dispersion and damping. We demonstrate the effectiveness of this spectroscopic technique by measuring the spin-wave properties of a Ni thin film for a large range of wave vectors, | q ∥ | = 2.5 × 104-8 × 104 cm-1, over which anisotropic dipolar interactions vary from being negligible to quite significant.

  17. CONTROL OF LASER RADIATION PARAMETERS. GENERATION OF ULTRASHORT PULSES: Analysis of mode locking in a laser with a traveling-acoustic-wave modulator

    NASA Astrophysics Data System (ADS)

    Veselovskaya, T. V.; Klochan, E. L.; Lariontsev, E. G.

    1990-12-01

    A theoretical analysis is made of active mode locking in a solid-state laser with an acoustooptic modulator based on traveling acoustic waves. It is postulated that the acoustooptic modulator is placed in a V-shaped resonator so that diffraction feedback is established in the modulator. It is found that the transmission coefficient of the acoustooptic modulator is a function of time. The mode locking achieved in a V-shaped resonator is equivalent to that observed in lasers with intracavity frequency modulation of the radiation. An investigation is made of the stability of mode locking in a resonator with a traveling-acoustic-wave acoustooptic modulator.

  18. Time Travel: Separating Science Fact from Science Fiction.

    ERIC Educational Resources Information Center

    Al-Khalili, Jim

    2003-01-01

    Suggests that the subject of time travel is the best topic to introduce ideas behind some of the most beautiful and fundamental theories about the nature of space and time. Explains the distinction between the two directions of time travel and how relativity theory forced the abandonment of Newtonian notions about the nature of time. (Author/KHR)

  19. Adjustable, rapidly switching microfluidic gradient generation using focused travelling surface acoustic waves

    SciTech Connect

    Destgeer, Ghulam; Im, Sunghyuk; Hang Ha, Byung; Ho Jung, Jin; Ahmad Ansari, Mubashshir; Jin Sung, Hyung

    2014-01-13

    We demonstrate a simple device to generate chemical concentration gradients in a microfluidic channel using focused travelling surface acoustic waves (F-TSAW). A pair of curved interdigitated metal electrodes deposited on the surface of a piezoelectric (LiNbO{sub 3}) substrate disseminate high frequency sound waves when actuated by an alternating current source. The F-TSAW produces chaotic acoustic streaming flow upon its interaction with the fluid inside a microfluidic channel, which mixes confluent streams of chemicals in a controlled fashion for an adjustable and rapidly switching gradient generation.

  20. The Role of Perspective in Mental Time Travel

    PubMed Central

    Ansuini, Caterina; Cavallo, Andrea; Pia, Lorenzo; Becchio, Cristina

    2016-01-01

    Recent years have seen accumulating evidence for the proposition that people process time by mapping it onto a linear spatial representation and automatically “project” themselves on an imagined mental time line. Here, we ask whether people can adopt the temporal perspective of another person when travelling through time. To elucidate similarities and differences between time travelling from one's own perspective or from the perspective of another person, we asked participants to mentally project themselves or someone else (i.e., a coexperimenter) to different time points. Three basic properties of mental time travel were manipulated: temporal location (i.e., where in time the travel originates: past, present, and future), motion direction (either backwards or forwards), and temporal duration (i.e., the distance to travel: one, three, or five years). We found that time travels originating in the present lasted longer in the self- than in the other-perspective. Moreover, for self-perspective, but not for other-perspective, time was differently scaled depending on where in time the travel originated. In contrast, when considering the direction and the duration of time travelling, no dissimilarities between the self- and the other-perspective emerged. These results suggest that self- and other-projection, despite some differences, share important similarities in structure. PMID:26881103

  1. Critical capacity, travel time delays and travel time distribution of rapid mass transit systems

    NASA Astrophysics Data System (ADS)

    Legara, Erika Fille; Monterola, Christopher; Lee, Kee Khoon; Hung, Gih Guang

    2014-07-01

    We set up a mechanistic agent-based model of a rapid mass transit system. Using empirical data from Singapore’s unidentifiable smart fare card, we validate our model by reconstructing actual travel demand and duration of travel statistics. We subsequently use this model to investigate two phenomena that are known to significantly affect the dynamics within the RTS: (1) overloading in trains and (2) overcrowding in the RTS platform. We demonstrate that by varying the loading capacity of trains, a tipping point emerges at which an exponential increase in the duration of travel time delays is observed. We also probe the impact on the rail system dynamics of three types of passenger growth distribution across stations: (i) Dirac delta, (ii) uniform and (iii) geometric, which is reminiscent of the effect of land use on transport. Under the assumption of a fixed loading capacity, we demonstrate the dependence of a given origin-destination (OD) pair on the flow volume of commuters in station platforms.

  2. A nonlinear acoustic metamaterial: Realization of a backwards-traveling second-harmonic sound wave.

    PubMed

    Quan, Li; Qian, Feng; Liu, Xiaozhou; Gong, Xiufen

    2016-06-01

    An ordinary waveguide with periodic vibration plates and side holes can realize an acoustic metamaterial that simultaneously possesses a negative bulk modulus and a negative mass density. The study is further extended to a nonlinear case and it is predicted that a backwards-traveling second-harmonic sound wave can be obtained through the nonlinear propagation of a sound wave in such a metamaterial. PMID:27369164

  3. 5 CFR 551.422 - Time spent traveling.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... other than that selected by the agency, shall be credited with the lesser of: (1) The actual travel time which is hours of work under this section; or (2) The estimated travel time which would have been... Administration (41 CFR 300-3.1)....

  4. 5 CFR 551.422 - Time spent traveling.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... other than that selected by the agency, shall be credited with the lesser of: (1) The actual travel time which is hours of work under this section; or (2) The estimated travel time which would have been... Administration (41 CFR 300-3.1)....

  5. 5 CFR 551.422 - Time spent traveling.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... other than that selected by the agency, shall be credited with the lesser of: (1) The actual travel time which is hours of work under this section; or (2) The estimated travel time which would have been... Administration (41 CFR 300-3.1)....

  6. 5 CFR 551.422 - Time spent traveling.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 5 Administrative Personnel 1 2013-01-01 2013-01-01 false Time spent traveling. 551.422 Section 551.422 Administrative Personnel OFFICE OF PERSONNEL MANAGEMENT CIVIL SERVICE REGULATIONS PAY ADMINISTRATION UNDER THE FAIR LABOR STANDARDS ACT Hours of Work Application of Principles in Relation to Other Activities § 551.422 Time spent traveling....

  7. 5 CFR 551.422 - Time spent traveling.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... other than that selected by the agency, shall be credited with the lesser of: (1) The actual travel time which is hours of work under this section; or (2) The estimated travel time which would have been... Administration (41 CFR 300-3.1)....

  8. Backus-Gilbert inversion of travel time data

    NASA Technical Reports Server (NTRS)

    Johnson, L. E.

    1972-01-01

    Application of the Backus-Gilbert theory for geophysical inverse problems to the seismic body wave travel-time problem is described. In particular, it is shown how to generate earth models that fit travel-time data to within one standard error and having generated such models how to describe their degree of uniqueness. An example is given to illustrate the process.

  9. The travel-time ellipse: An approximate zone of transport

    USGS Publications Warehouse

    Almendinger, J.E.

    1994-01-01

    A zone of transport for a well is defined as the area in the horizontal plane bounded by a contour of equal ground-water travel time to the well. For short distances and ground-water travel times near a well, the potentiometric surface may be simulated analytically as that for a fully penetrating well in a uniform flow field. The zone of transport for this configuration is nearly elliptical. A simple method is derived to calculate a travel-time ellipse that approximates the zone of transport for a well in a uniform flow field. The travel-time ellipse was nearly congruent with the exact solution for the theoretical zone of transport for ground-water travel times of at least 10 years and for aquifer property values appropriate for southeastern Minnesota. For distances and travel times approaching infinity, however, the ellipse becomes slightly wider at its midpoint and narrower near its upgradient boundary than the theoretical zone of transport. The travel-time ellipse also may be used to simulate the plume area surrounding an injection well. However, the travel-time ellipse is an approximation that does not account for the effect of dispersion in enlarging the true area of an injection plume or zone of transport; hence, caution is advised in the use and interpretation of this simple construction.

  10. Wandering tales: evolutionary origins of mental time travel and language

    PubMed Central

    Corballis, Michael C.

    2013-01-01

    A central component of mind wandering is mental time travel, the calling to mind of remembered past events and of imagined future ones. Mental time travel may also be critical to the evolution of language, which enables us to communicate about the non-present, sharing memories, plans, and ideas. Mental time travel is indexed in humans by hippocampal activity, and studies also suggest that the hippocampus in rats is active when the animals replay or pre play activity in a spatial environment, such as a maze. Mental time travel may have ancient origins, contrary to the view that it is unique to humans. Since mental time travel is also thought to underlie language, these findings suggest that language evolved gradually from pre-existing cognitive capacities, contrary to the view of Chomsky and others that language and symbolic thought emerged abruptly, in a single step, within the past 100,000 years. PMID:23908641

  11. Reduced rank models for travel time estimation of low order mode pulses.

    PubMed

    Chandrayadula, Tarun K; Wage, Kathleen E; Worcester, Peter F; Dzieciuch, Matthew A; Mercer, James A; Andrew, Rex K; Howe, Bruce M

    2013-10-01

    Mode travel time estimation in the presence of internal waves (IWs) is a challenging problem. IWs perturb the sound speed, which results in travel time wander and mode scattering. A standard approach to travel time estimation is to pulse compress the broadband signal, pick the peak of the compressed time series, and average the peak time over multiple receptions to reduce variance. The peak-picking approach implicitly assumes there is a single strong arrival and does not perform well when there are multiple arrivals due to scattering. This article presents a statistical model for the scattered mode arrivals and uses the model to design improved travel time estimators. The model is based on an Empirical Orthogonal Function (EOF) analysis of the mode time series. Range-dependent simulations and data from the Long-range Ocean Acoustic Propagation Experiment (LOAPEX) indicate that the modes are represented by a small number of EOFs. The reduced-rank EOF model is used to construct a travel time estimator based on the Matched Subspace Detector (MSD). Analysis of simulation and experimental data show that the MSDs are more robust to IW scattering than peak picking. The simulation analysis also highlights how IWs affect the mode excitation by the source. PMID:24116527

  12. Time-of-travel of solute data for Mississippi streams

    USGS Publications Warehouse

    Arthur, J. Kerry

    2002-01-01

    This report summarizes the time-of-travel of solutes information for Mississippi streams that is available in the files of the U.S. Geological Survey. The time-of-travel information was tabulated for 926 miles of stream reaches in seven of the ten major drainage basins in the State. The data were collected during studies conducted from 1963 through 1980. Estimation of time-of-travel of solutes is important for environmental studies of streams and may be critical in the event of accidental or other spills of contaminants into a waterway.

  13. Predicting travel time and dispersion in rivers and streams

    USGS Publications Warehouse

    Jobson, H.E.

    1997-01-01

    The possibility of a contaminant being accidentally or intentionally spilled in a river is a constant concern to those using the water. Methods are developed to estimate: (1) the velocity of a contaminant in a river; (2) the rate of attenuation of the peak concentration of a conservative contaminant; and (3) the time required for a contaminant plume to pass a point. The methods are based on data collected by the U.S. Geological Survey in almost a hundred different rivers representing a wide range of sizes, slopes, and geomorphic types. Although the accuracy of the predictions can be greatly increased by performing time-of-travel studies, the emphasis of this paper is on providing methods for making estimates where few data are available. It is shown that the unit-peak concentration is well correlated with travel time and that the travel time of the leading edge averages 89% of the travel time of the peak concentration.

  14. Acoustic asymmetric transmission based on time-dependent dynamical scattering

    PubMed Central

    Wang, Qing; Yang, Yang; Ni, Xu; Xu, Ye-Long; Sun, Xiao-Chen; Chen, Ze-Guo; Feng, Liang; Liu, Xiao-ping; Lu, Ming-Hui; Chen, Yan-Feng

    2015-01-01

    An acoustic asymmetric transmission device exhibiting unidirectional transmission property for acoustic waves is extremely desirable in many practical scenarios. Such a unique property may be realized in various configurations utilizing acoustic Zeeman effects in moving media as well as frequency-conversion in passive nonlinear acoustic systems and in active acoustic systems. Here we demonstrate a new acoustic frequency conversion process in a time-varying system, consisting of a rotating blade and the surrounding air. The scattered acoustic waves from this time-varying system experience frequency shifts, which are linearly dependent on the blade’s rotating frequency. Such scattering mechanism can be well described theoretically by an acoustic linear time-varying perturbation theory. Combining such time-varying scattering effects with highly efficient acoustic filtering, we successfully develop a tunable acoustic unidirectional device with 20 dB power transmission contrast ratio between two counter propagation directions at audible frequencies. PMID:26038886

  15. A Search on the Internet for Evidence of Time Travel

    NASA Astrophysics Data System (ADS)

    Nemiroff, Robert J.; Wilson, T.

    2014-01-01

    Time travel has captured the public imagination for much of the past century, but few searches for evidence of time travel have ever been done. Here three searches on the Internet for evidence of time travel are described, all three seeking a prescient mention of information not available before a given date. The first investigation sought prescient content placed on the Internet, highlighted by a comprehensive search for specific terms in tweets on Twitter. The second investigation sought prescient inquiries submitted to a search engine, highlighted by a comprehensive search for specific search terms submitted to the Astronomy Picture of the Day (APOD) web site. The third investigation involved a request for a direct Internet communication, either by email or tweet, pre-dating to the time of the inquiry. Given practical verifiability concerns, only time travel from the future was investigated. The main terms searched for involved Comet ISON and Pope Francis, as they became popular during our search window -- between 2006 and 2013. No evidence for time travel was discovered. Although these negative results do not disprove time travel, given the great reach of the Internet, this search is perhaps the most comprehensive to date.

  16. Effect of Porosity Correlations on Sensitivity of Contaminant Travel Time

    NASA Astrophysics Data System (ADS)

    Pohlmann, K. F.; Zhu, J.; Chapman, J. B.; Russell, C. E.; Shafer, D. S.; Carroll, R. W.

    2010-12-01

    Effective porosity of hydrogeologic units (HGUs) is an important parameter influencing contaminant travel time and is particularly significant for applications where steady state Darcy flux is calculated from calibrated groundwater flow models. Under such circumstances, the effective porosities of HGUs along flowpaths are the primary control on advective velocities of particles and therefore contaminant travel times. As a result, the uncertainty in effective porosity is a critical source of uncertainty in the prediction of contaminant travel time, which is often required for designing networks for monitoring long-term migration of contaminants. In this study, uncorrelated and correlated sensitivities of advective contaminant travel times to porosities of HGUs were quantified using the advective travel time of contaminants from underground nuclear detonations at the Nevada Test Site to the Yucca Mountain area in Nevada U.S. as an example. First we investigated the importance of HGU porosities to the uncertainty of advective contaminant travel time based on Monte Carlo sampling techniques. We then partitioned the uncertainty of the advective travel time of contaminants into two portions: the correlated portion by the correlated variances (i.e. variances of an HGU porosity which are correlated with other HGU porosities) and the uncorrelated portion by the uncorrelated variations (i.e. the unique variations of an HGU porosity which cannot be expressed from other HGU porosities). Various correlation scenarios of HGU porosities were considered to examine the impacts of porosity correlations on the uncertainty and sensitivity of advective contaminant travel times. The emphasis is on how HGU porosity correlation scenarios influence uncorrelated and correlated uncertainty contributions.

  17. Artificial cochlea and acoustic black hole travelling waves observation: Model and experimental results

    NASA Astrophysics Data System (ADS)

    Foucaud, Simon; Michon, Guilhem; Gourinat, Yves; Pelat, Adrien; Gautier, François

    2014-07-01

    An inhomogeneous fluid structure waveguide reproducing passive behaviour of the inner ear is modelled with the help of the Wentzel-Kramers-Brillouin method. A physical setup is designed and built. Experimental results are compared with a good correlation to theoretical ones. The experimental setup is a varying width plate immersed in fluid and terminated with an acoustic black hole. The varying width plate provides a spatial repartition of the vibration depending on the excitation frequency. The acoustic black hole is made by decreasing the plate's thickness with a quadratic profile and by covering this region with a thin film of viscoelastic material. Such a termination attenuates the flexural wave reflection at the end of the waveguide, turning standing waves into travelling waves.

  18. Detachable Acoustofluidic System for Particle Separation via a Traveling Surface Acoustic Wave.

    PubMed

    Ma, Zhichao; Collins, David J; Ai, Ye

    2016-05-17

    Components in biomedical analysis tools that have direct contact with biological samples, especially biohazardous materials, are ideally discarded after use to prevent cross-contamination. However, a conventional acoustofluidic device is typically a monolithic integration that permanently bonds acoustic transducers with microfluidic channels, increasing processing costs in single-use platforms. In this study, we demonstrate a detachable acoustofluidic system comprised of a disposable channel device and a reusable acoustic transducer for noncontact continuous particle separation via a traveling surface acoustic wave (TSAW). The channel device can be placed onto the SAW transducer with a high alignment tolerance to simplify operation, is made entirely of polydimethylsiloxane (PDMS), and does not require any additional coupling agent. A microstructured pillar is used to couple acoustic waves into the fluid channel for noncontact particle manipulation. We demonstrate the separation of 10 and 15 μm particles at high separation efficiency above 98% in a 49.5 MHz TSAW using the developed detachable acoustofluidic system. Its disposability and ease of assembly should enable broad use of noncontact, disposable particle manipulation techniques in practical biomedical applications related to sample preparation. PMID:27086552

  19. Modeling highway travel time distribution with conditional probability models

    SciTech Connect

    Oliveira Neto, Francisco Moraes; Chin, Shih-Miao; Hwang, Ho-Ling; Han, Lee

    2014-01-01

    ABSTRACT Under the sponsorship of the Federal Highway Administration's Office of Freight Management and Operations, the American Transportation Research Institute (ATRI) has developed performance measures through the Freight Performance Measures (FPM) initiative. Under this program, travel speed information is derived from data collected using wireless based global positioning systems. These telemetric data systems are subscribed and used by trucking industry as an operations management tool. More than one telemetric operator submits their data dumps to ATRI on a regular basis. Each data transmission contains truck location, its travel time, and a clock time/date stamp. Data from the FPM program provides a unique opportunity for studying the upstream-downstream speed distributions at different locations, as well as different time of the day and day of the week. This research is focused on the stochastic nature of successive link travel speed data on the continental United States Interstates network. Specifically, a method to estimate route probability distributions of travel time is proposed. This method uses the concepts of convolution of probability distributions and bivariate, link-to-link, conditional probability to estimate the expected distributions for the route travel time. Major contribution of this study is the consideration of speed correlation between upstream and downstream contiguous Interstate segments through conditional probability. The established conditional probability distributions, between successive segments, can be used to provide travel time reliability measures. This study also suggests an adaptive method for calculating and updating route travel time distribution as new data or information is added. This methodology can be useful to estimate performance measures as required by the recent Moving Ahead for Progress in the 21st Century Act (MAP 21).

  20. Time reversal acoustic communication for multiband transmission.

    PubMed

    Song, Aijun; Badiey, Mohsen

    2012-04-01

    In this letter, multiband acoustic communication is proposed to access a relatively wide frequency band. The entire frequency band is divided into multiple separated sub-bands, each of which is several kilohertz in width. Time reversal decision feedback equalizers are used to compensate for inter-symbol interference at each sub-band. The communication scheme was demonstrated in a shallow water acoustic experiment conducted in Kauai, Hawaii during the summer of 2011. Using quadrature phase-shift keying signaling at four sub-bands over the frequency band of 10-32 kHz, a data rate of 32 k bits/s was achieved over a 3 km communication range. PMID:22502482

  1. Prisms to travel in time: Investigation of time-space association through prismatic adaptation effect on mental time travel.

    PubMed

    Anelli, Filomena; Ciaramelli, Elisa; Arzy, Shahar; Frassinetti, Francesca

    2016-11-01

    Accumulating evidence suggests that humans process time and space in similar veins. Humans represent time along a spatial continuum, and perception of temporal durations can be altered through manipulations of spatial attention by prismatic adaptation (PA). Here, we investigated whether PA-induced manipulations of spatial attention can also influence more conceptual aspects of time, such as humans' ability to travel mentally back and forward in time (mental time travel, MTT). Before and after leftward- and rightward-PA, participants projected themselves in the past, present or future time (i.e., self-projection), and, for each condition, determined whether a series of events were located in the past or the future with respect to that specific self-location in time (i.e., self-reference). The results demonstrated that leftward and rightward shifts of spatial attention facilitated recognition of past and future events, respectively. These findings suggest that spatial attention affects the temporal processing of the human self. PMID:27467891

  2. Microchannel Anechoic Corner for Microparticle Manipulation via Travelling Surface Acoustic Waves

    NASA Astrophysics Data System (ADS)

    Destgeer, Ghulam; Ha, Byung Hang; Park, Jinsoo; Jung, Jin Ho; Alazzam, Anas; Sung, Hyung Jin

    We present a particle manipulation device composed of a pair of slanted interdigitated transducers (SIDTs) and a polydimethyl-siloxane (PDMS) microfluidic channel. Tunable travelling surface acoustic waves (TSAWs) produced by the SIDTs at desired locations are used to separate polystyrene (PS) microspheres of different diameters. The acoustic radiation force (ARF) acting on PS microspheres is estimated to predict the variable deflection of two distinct diameter microspheres that results in bi-separation of particles (3.2 and 4.8 μm). Interaction of TSAWs with the fluid and propagation of leaky acoustic waves at Rayleigh angle produce an anechoic corner inside the microchannel. An adequate choice of TSAW-frequency with reference to the particles' diameters, corresponding ARF-estimation and incorporation of the microchannel anechoic corner results in a tri-separation of PS microspheres (3, 4.2, 5 μm). The tri-separation is achieved by TSAWs - 135 MHz to deflect 5 μm particles upstream of microchannel and 175 MHz to deflect 4.2 μm particles downstream.

  3. 41 CFR 301-52.14 - What must I do with any travel advance outstanding at the time I submit my travel claim?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... travel advance outstanding at the time I submit my travel claim? 301-52.14 Section 301-52.14 Public Contracts and Property Management Federal Travel Regulation System TEMPORARY DUTY (TDY) TRAVEL ALLOWANCES... § 301-52.14 What must I do with any travel advance outstanding at the time I submit my travel claim?...

  4. 41 CFR 301-52.14 - What must I do with any travel advance outstanding at the time I submit my travel claim?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... travel advance outstanding at the time I submit my travel claim? 301-52.14 Section 301-52.14 Public Contracts and Property Management Federal Travel Regulation System TEMPORARY DUTY (TDY) TRAVEL ALLOWANCES... § 301-52.14 What must I do with any travel advance outstanding at the time I submit my travel claim?...

  5. 41 CFR 301-52.14 - What must I do with any travel advance outstanding at the time I submit my travel claim?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... travel advance outstanding at the time I submit my travel claim? 301-52.14 Section 301-52.14 Public Contracts and Property Management Federal Travel Regulation System TEMPORARY DUTY (TDY) TRAVEL ALLOWANCES... § 301-52.14 What must I do with any travel advance outstanding at the time I submit my travel claim?...

  6. 41 CFR 301-52.14 - What must I do with any travel advance outstanding at the time I submit my travel claim?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... travel advance outstanding at the time I submit my travel claim? 301-52.14 Section 301-52.14 Public Contracts and Property Management Federal Travel Regulation System TEMPORARY DUTY (TDY) TRAVEL ALLOWANCES... § 301-52.14 What must I do with any travel advance outstanding at the time I submit my travel claim?...

  7. Extended time-travelling objects in Misner space

    SciTech Connect

    Levanony, Dana; Ori, Amos

    2011-02-15

    Misner space is a two-dimensional (2D) locally flat spacetime which elegantly demonstrates the emergence of closed timelike curves from causally well-behaved initial conditions. Here we explore the motion of rigid extended objects in this time-machine spacetime. This kind of 2D time-travel is found to be risky due to inevitable self-collisions (i.e. collisions of the object with itself). However, in a straightforward four-dimensional generalization of Misner space (a physically more relevant spacetime obviously), we find a wide range of safe time-travel orbits free of any self-collisions.

  8. Measurement of time of travel in streams by dye tracing

    USGS Publications Warehouse

    Kilpatrick, F.A.; Wilson, James F.

    1989-01-01

    The use of fluorescent dyes and tracing techniques provides a means for measuring the time-of-travel and dispersion characteristics of steady and gradually varied flow in streams. Measurements of the dispersion and concentration of dyes give insight into the behavior of soluble contaminants that may be introduced into a stream. This manual describes methods of measuring time of travel of water and waterborne solutes by dye tracing. The fluorescent dyes, measuring equipment used, and the field and laboratory procedures are also described. Methods of analysis and presentation to illustrate time-oftravel and dispersion characteristics of streams are provided.

  9. Assessing expected accuracy of probe vehicle travel time reports

    SciTech Connect

    Hellinga, B.; Fu, L.

    1999-12-01

    The use of probe vehicles to provide estimates of link travel times has been suggested as a means of obtaining travel times within signalized networks for use in advanced travel information systems. Past research in the literature has proved contradictory conclusions regarding the expected accuracy of these probe-based estimates, and consequently has estimated different levels of market penetration of probe vehicles required to sustain accurate data within an advanced traveler information system. This paper examines the effect of sampling bias on the accuracy of the probe estimates. An analytical expression is derived on the basis of queuing theory to prove that bias in arrival time distributions and/or in the proportion of probes associated with each link departure turning movement will lead to a systematic bias in the sample estimate of the mean delay. Subsequently, the potential for and impact of sampling bias on a signalized link is examined by simulating an arterial corridor. The analytical derivation and the simulation analysis show that the reliability of probe-based average link travel times is highly affected by sampling bias. Furthermore, this analysis shows that the contradictory conclusions of previous research are directly related to the presence of absence of sample bias.

  10. Travel the Globe: Multicultural Story Times.

    ERIC Educational Resources Information Center

    Webber, Desiree; Corn, Dee Ann; Harrod, Elaine; Norvell, Donna; Shropshire, Sandy

    Designed for Grades PreK-3, the culture-based story times and extension activities provided in this book give educators the opportunity to share the diversity of global neighbors with young learners. The book covers Australia, Brazil, the Caribbean, China, Egypt, Ghana, Greece, India, Ireland, Italy, Mexico, the Commonwealth of Independent States…

  11. Extremal inversion of lunar travel time data. [seismic velocity structure

    NASA Technical Reports Server (NTRS)

    Burkhard, N.; Jackson, D. D.

    1975-01-01

    The tau method, developed by Bessonova et al. (1974), of inversion of travel times is applied to lunar P-wave travel time data to find limits on the velocity structure of the moon. Tau is the singular solution to the Clairaut equation. Models with low-velocity zones, with low-velocity zones at differing depths, and without low-velocity zones, were found to be consistent with data and within the determined limits. Models with and without a discontinuity at about 25-km depth have been found which agree with all travel time data to within two standard deviations. In other words, the existence of the discontinuity and its size and location have not been uniquely resolved. Models with low-velocity channels are also possible.

  12. Modeling chloride transport using travel time distributions at Plynlimon, Wales

    NASA Astrophysics Data System (ADS)

    Benettin, Paolo; Kirchner, James W.; Rinaldo, Andrea; Botter, Gianluca

    2015-05-01

    Here we present a theoretical interpretation of high-frequency, high-quality tracer time series from the Hafren catchment at Plynlimon in mid-Wales. We make use of the formulation of transport by travel time distributions to model chloride transport originating from atmospheric deposition and compute catchment-scale travel time distributions. The relevance of the approach lies in the explanatory power of the chosen tools, particularly to highlight hydrologic processes otherwise clouded by the integrated nature of the measured outflux signal. The analysis reveals the key role of residual storages that are poorly visible in the hydrological response, but are shown to strongly affect water quality dynamics. A significant accuracy in reproducing data is shown by our calibrated model. A detailed representation of catchment-scale travel time distributions has been derived, including the time evolution of the overall dispersion processes (which can be expressed in terms of time-varying storage sampling functions). Mean computed travel times span a broad range of values (from 80 to 800 days) depending on the catchment state. Results also suggest that, in the average, discharge waters are younger than storage water. The model proves able to capture high-frequency fluctuations in the measured chloride concentrations, which are broadly explained by the sharp transition between groundwaters and faster flows originating from topsoil layers. This article was corrected on 22 JUN 2015. See the end of the full text for details.

  13. Reducing employee travelling time through smart commuting

    NASA Astrophysics Data System (ADS)

    Rahman, A. N. N. A.; Yusoff, Z. M.; Aziz, I. S.; Omar, D.

    2014-02-01

    Extremely congested roads will definitely delay the arrival time of each trip.This certainly impacted the journey of employees. Tardiness at the workplace has become a perturbing issue for companies where traffic jams are the most common worker excuses. A depressing consequence on daily life and productivity of the employee occurs. The issues of commuting distance between workplace and resident area become the core point of this research. This research will emphasize the use of Geographical Information System (GIS) technique to explore the distance parameter to the employment area and will focus on the accessibility pattern of low-cost housing. The research methodology consists of interview sessions and a questionnaire to residents of low-cost housing areas in Melaka Tengah District in Malaysia. The combination of these processes will show the criteria from the selected parameter for each respondent from their resident area to the employment area. This will further help in the recommendation of several options for a better commute or improvement to the existing routes and public transportations system. Thus enhancing quality of life for employees and helping to reduce stress, decrease lateness, absenteeism and improving productivity in workplace.

  14. Mental time travel and the evolution of the human mind.

    PubMed

    Suddendorf, T; Corballis, M C

    1997-05-01

    This article contains the argument that the human ability to travel mentally in time constitutes a discontinuity between ourselves and other animals. Mental time travel comprises the mental reconstruction of personal events from the past (episodic memory) and the mental construction of possible events in the future. It is not an isolated module, but depends on the sophistication of other cognitive capacities, including self-awareness, meta-representation, mental attribution, understanding the perception-knowledge relationship, and the ability to dissociate imagined mental states from one's present mental state. These capacities are also important aspects of so-called theory of mind, and they appear to mature in children at around age 4. Furthermore, mental time travel is generative, involving the combination and recombination of familiar elements, and in this respect may have been a precursor to language. Current evidence, although indirect or based on anecdote rather than on systematic study, suggests that nonhuman animals, including the great apes, are confined to a "present" that is limited by their current drive states. In contrast, mental time travel by humans is relatively unconstrained and allows a more rapid and flexible adaptation to complex, changing environments than is afforded by instincts or conventional learning. Past and future events loom large in much of human thinking, giving rise to cultural, religious, and scientific concepts about origins, destiny, and time itself. PMID:9204544

  15. Travel-time curves for a simple sea floor model

    NASA Astrophysics Data System (ADS)

    Stephen, R. A.

    1982-09-01

    This paper reviews a simple technique for interpreting the velocity structure of upper oceanic crust from travel-time data of sonobuoy and ocean bottom receiver refraction experiments. The technique does not involve sophisticated digital processing or synthetic seismogram analysis. Interpretations can be carried out with a pencil, paper and slide rule. Travel-time inversion procedures based on the τ- p transformation require the assumption of the shallowmost velocity. In some cases, however, such as oceanic crustal studies, the shallowmost velocity is one tf the critical parameters for which one wishes to invert. An inversion method for the shallowmost velocity is discussed which assumes a constant velocity gradient. The time, range and ray parameter of a point on the travel-time curve are sufficient to obtain the velocity at the top of the gradient zone and the gradient. The method can be used to interpolate the velocity-depth function into regions from which no seismic energy is returned as a first arrival. Once an estimate of the upper crustal velocity is obtained the traditional τ- p procedures can be applied. The model considered consists of a homogeneous layer over a layer in which velocity increases linearly with depth. For such a geometry there are three classes of behaviour of the travel-time curve based on the number of cusps: zero, one or two. The number of cusps depends on the uppermost velocity in the crust, the velocity gradient of the upper crust and the depth of the sources and receivers. It has not been previously recognized that two cusps in the travel time curve may be observed for this simple model. Since estimating the ray parameter from first arrival times is less ambiguous when there are no cusps, understanding the relations involved with the three classes aids in the design of experiments. It is reasonable to apply the model to shallow sea floor structure because of the high quality of marine refraction data which has recently been

  16. Flow calculations for Yucca Mountain groundwater travel time (GWTT-95)

    SciTech Connect

    Altman, S.J.; Arnold, B.W.; Barnard, R.W.; Barr, G.E.; Ho, C.K.; McKenna, S.A.; Eaton, R.R.

    1996-09-01

    In 1983, high-level radioactive waste repository performance requirements related to groundwater travel time were defined by NRC subsystem regulation 10 CFR 60.113. Although DOE is not presently attempting to demonstrate compliance with that regulation, understanding of the prevalence of fast paths in the groundwater flow system remains a critical element of any safety analyses for a potential repository system at Yucca Mountain, Nevada. Therefore, this analysis was performed to allow comparison of fast-path flow against the criteria set forth in the regulation. Models developed to describe the conditions for initiation, propagation, and sustainability of rapid groundwater movement in both the unsaturated and saturated zones will form part of the technical basis for total- system analyses to assess site viability and site licensability. One of the most significant findings is that the fastest travel times in both unsaturated and saturated zones are in the southern portion of the potential repository, so it is recommended that site characterization studies concentrate on this area. Results support the assumptions regarding the importance of an appropriate conceptual model of groundwater flow and the incorporation of heterogeneous material properties into the analyses. Groundwater travel times are sensitive to variation/uncertainty in hydrologic parameters and in infiltration flux at upper boundary of the problem domain. Simulated travel times are also sensitive to poorly constrained parameters of the interaction between flow in fractures and in the matrix.

  17. Experimental Study of Linear Compressor Driven Traveling-wave Thermo Acoustic Refrigerator

    NASA Astrophysics Data System (ADS)

    Wu, Z.; Luo, E.; Dai, W.; Yu, G.

    2006-04-01

    The investigation on the performance of a traveling-wave thermoacoustic refrigerator driven by a self-made linear compressor is presented in this paper. The linear compressor is of moving-coil type, which has a moving coil, a piston with about 100 square centimeters cross section area, and a flexure bearing unit for piston support. The operating frequency can be adjusted to achieve a resonant status in order that the compressor can work with high electroacoustic efficiency. The thermoacoustic refrigerator operates on traveling-wave mode with acoustic power recovery. In the experiments, influence of different working frequencies on electroacoustic efficiency, lowest temperature, cooling power and COP is investigated. So far in the experiment with helium as working fluid, a lowest temperature of -29 °C is obtained, when the mean and oscillating pressures are 1.0MPa and 0.042MPa respectively and the temperature of room-temperature heat exchanger is kept around 15°C. And a maximum cooling power of about 28.5W@0°C is achieved under 1.5MPa mean pressure and 0.049MPa oscillating pressure. Besides, the performance of the linear compressor itself is also investigated, which is important for a reasonable evaluation of the refrigerator performance.

  18. Catchment travel time distributions and water flow in soils

    NASA Astrophysics Data System (ADS)

    Rinaldo, A.; Beven, K. J.; Bertuzzo, E.; Nicotina, L.; Davies, J.; Fiori, A.; Russo, D.; Botter, G.

    2011-07-01

    Many details about the flow of water in soils in a hillslope are unknowable given current technologies. One way of learning about the bulk effects of water velocity distributions on hillslopes is through the use of tracers. However, this paper will demonstrate that the interpretation of tracer information needs to become more sophisticated. The paper reviews, and complements with mathematical arguments and specific examples, theory and practice of the distribution(s) of the times water particles injected through rainfall spend traveling through a catchment up to a control section (i.e., "catchment" travel times). The relevance of the work is perceived to lie in the importance of the characterization of travel time distributions as fundamental descriptors of catchment water storage, flow pathway heterogeneity, sources of water in a catchment, and the chemistry of water flows through the control section. The paper aims to correct some common misconceptions used in analyses of travel time distributions. In particular, it stresses the conceptual and practical differences between the travel time distribution conditional on a given injection time (needed for rainfall-runoff transformations) and that conditional on a given sampling time at the outlet (as provided by isotopic dating techniques or tracer measurements), jointly with the differences of both with the residence time distributions of water particles in storage within the catchment at any time. These differences are defined precisely here, either through the results of different models or theoretically by using an extension of a classic theorem of dynamic controls. Specifically, we address different model results to highlight the features of travel times seen from different assumptions, in this case, exact solutions to a lumped model and numerical solutions of the 3-D flow and transport equations in variably saturated, physically heterogeneous catchment domains. Our results stress the individual characters of the

  19. Travel Time Distribution Modeling in the Valles Caldera, New Mexico

    NASA Astrophysics Data System (ADS)

    Broxton, P. D.; Troch, P. A.; Brooks, P. D.; Lyon, S. W.; Gustafson, J. R.; Veatch, W. C.

    2007-12-01

    Modeling the transit times of catchment waters is of paramount importance in hydrology. The distribution of the time it takes for individual water molecules to move through a hydrologic system (a.k.a., the travel time distribution) is a fundamental characterization of a catchment. Travel time distributions are affected by a variety of physical characteristics of catchments (e.g., vegetation type, degree of soil development) that depend on the amount of solar energy the catchment receives. These characteristics, therefore, can be considered a function of aspect. The goal of this research is to constrain travel time distributions on a series of eight radial mountain streams having different slope aspects on Redondo Peak, a resurgent dome in the center of the Valles Caldera, near Los Alamos, New Mexico. Redondo Peak is an excellent natural laboratory for this type of experiment because all aspects are represented on different sides of the mountain while the internal geology and climate are relatively consistent. To model the transit time distributions of each catchment, variations of chemical load of the snowpack, isotopic compositions of meltwater samples, and snowcover distribution data from closely related studies are coupled with periodic stream and precipitation samples that are analyzed for stable water isotopes content. Additional information comes from a network of temperature sensors to monitor the distribution of snowmelt and headwater stream discharge as well as a series of flumes to capture the flows from the streams. The travel time distributions determined in this project provide a bottom up approach to verify catchment-scale models.

  20. Mental time travel and the shaping of language.

    PubMed

    Corballis, Michael C

    2009-01-01

    Episodic memory can be regarded as part of a more general system, unique to humans, for mental time travel, and the construction of future episodes. This allows more detailed planning than is afforded by the more general mechanisms of instinct, learning, and semantic memory. To be useful, episodic memory need not provide a complete or even a faithful record of past events, and may even be part of a process whereby we construct fictional accounts. The properties of language are aptly designed for the communication and sharing of episodes, and for the telling of stories; these properties include symbolic representation of the elements of real-world events, time markers, and combinatorial rules. Language and mental time travel probably co-evolved during the Pleistocene, when brain size increased dramatically. PMID:18641975

  1. Eye movements during mental time travel follow a diagonal line.

    PubMed

    Hartmann, Matthias; Martarelli, Corinna S; Mast, Fred W; Stocker, Kurt

    2014-11-01

    Recent research showed that past events are associated with the back and left side, whereas future events are associated with the front and right side of space. These spatial-temporal associations have an impact on our sensorimotor system: thinking about one's past and future leads to subtle body sways in the sagittal dimension of space (Miles, Nind, & Macrae, 2010). In this study we investigated whether mental time travel leads to sensorimotor correlates in the horizontal dimension of space. Participants were asked to mentally displace themselves into the past or future while measuring their spontaneous eye movements on a blank screen. Eye gaze was directed more rightward and upward when thinking about the future than when thinking about the past. Our results provide further insight into the spatial nature of temporal thoughts, and show that not only body, but also eye movements follow a (diagonal) "time line" during mental time travel. PMID:25307523

  2. Verification of the helioseismology travel-time measurement technique and the inversion procedure for sound speed using artificial data

    SciTech Connect

    Parchevsky, K. V.; Zhao, J.; Hartlep, T.; Kosovichev, A. G.

    2014-04-10

    We performed three-dimensional numerical simulations of the solar surface acoustic wave field for the quiet Sun and for three models with different localized sound-speed perturbations in the interior with deep, shallow, and two-layer structures. We used the simulated data generated by two solar acoustics codes that employ the same standard solar model as a background model, but utilize different integration techniques and different models of stochastic wave excitation. Acoustic travel times were measured using a time-distance helioseismology technique, and compared with predictions from ray theory frequently used for helioseismic travel-time inversions. It is found that the measured travel-time shifts agree well with the helioseismic theory for sound-speed perturbations, and for the measurement procedure with and without phase-speed filtering of the oscillation signals. This testing verifies the whole measuring-filtering-inversion procedure for static sound-speed anomalies with small amplitude inside the Sun outside regions of strong magnetic field. It is shown that the phase-speed filtering, frequently used to extract specific wave packets and improve the signal-to-noise ratio, does not introduce significant systematic errors. Results of the sound-speed inversion procedure show good agreement with the perturbation models in all cases. Due to its smoothing nature, the inversion procedure may overestimate sound-speed variations in regions with sharp gradients of the sound-speed profile.

  3. The Application of Guided Wave Travel Time Tomography to Bends

    NASA Astrophysics Data System (ADS)

    Volker, Arno; Luiten, Erik; Bloom, Joost

    2010-02-01

    The concept of predictive maintenance using permanent sensors that monitor the integrity of an installation is an interesting addition to the current method of periodic inspections. The method should be capable of providing quantitative wall thickness information for both straight pipes and bends. The wave propagation in bends is far more complicated than in straight pipes because natural focusing occurs due to geometrical path differences. Numerical simulations clearly show this effect. Travel time tomography requires accurate modeling of travel times that can be translated to spatial wall thickness variations. Therefore, a ray tracing algorithm has been developed to calculate travel times as part of the tomographic inversion kernel. Numerical results show that a tomographic inversion on simple simulated data provides accurate results. The focusing effect due to the shape of the bend yields a phase rotation of the wavelet, which complicates accurate timing picking. This effect was excluded in the simulated ray tracing data. Based on these observations it is concluded that a more accurate, wave equation based forward modeling algorithm is required to obtain accurate inversion results on realistic data.

  4. Future decision-making without episodic mental time travel

    PubMed Central

    Kwan, Donna; Craver, Carl F.; Green, Leonard; Myerson, Joel; Boyer, Pascal; Rosenbaum, R. Shayna

    2011-01-01

    Deficits in episodic memory are associated with deficits in the ability to imagine future experiences (i.e., mental time travel). We show that K.C., a person with episodic amnesia and an inability to imagine future experiences, nonetheless systematically discounts the value of future rewards, and his discounting is within the range of controls in terms of both rate and consistency. Because K.C. is neither able to imagine personal uses for the rewards nor provide a rationale for selecting larger future rewards over smaller current rewards, the current study demonstrates a dissociation between imagining and making decisions involving the future. Thus, although those capable of mental time travel may use it in making decisions about future rewards, the present results demonstrate that it is not required for such decisions. PMID:21997930

  5. Experimental Results of Guided Wave Travel Time Tomography

    NASA Astrophysics Data System (ADS)

    Volker, Arno; Bloom, Joost

    2011-06-01

    Corrosion is one of the industries major issues regarding the integrity of assets. Currently inspections are conducted at regular intervals to ensure a sufficient integrity level of these assets. Cost reduction while maintaining a high level of reliability and safety of installations is a major challenge. The concept of predictive maintenance using permanent sensors that monitor the integrity of an installation matches very well with the objective to reduce cost while maintaining a high safety level. Guided waves are very attractive for permanent monitoring systems because they can travel over large distances and therefore provide the essential large area coverage. Making use of the dispersive behavior of the guided waves, a wall thickness map over a distance of several meters can be made using only two rings of guided wave transducers. Travel time tomography is used to translate transmission travel times into a wall thickness map. This method has been applied in the field for the first time to map the wall thickness under two clearly corroded pipe supports of a 8″ and 10″ gas pipe line. The tomographic inversion results clearly maps the corrosion under the supports. Independent reference measurements confirm the tomographic inversion results.

  6. Travel time and concurrent-schedule choice: retrospective versus prospective control.

    PubMed Central

    Davison, M; Elliffe, D

    2000-01-01

    Six pigeons were trained on concurrent variable-interval schedules in which two different travel times between alternatives, 4.5 and 0.5 s, were randomly arranged. In Part 1, the next travel time was signaled while the subjects were responding on each alternative. Generalized matching analyses of performance in the presence of the two travel-time signals showed significantly higher response and time sensitivity when the longer travel time was signaled compared to when the shorter time was signaled. When the data were analyzed as a function of the previous travel time, there were no differences in sensitivity. Dwell times on the alternatives were consistently longer in the presence of the stimulus that signaled the longer travel time than they were in the presence of the stimulus that signaled the shorter travel time. These results are in accord with a recent quantitative account of the effects of travel time. In Part 2, no signals indicating the next travel time were given. When these data were analyzed as a function of the previous travel time, time-allocation sensitivity after the 4.5-s travel time was significantly greater than that after the 0.5-s travel time, but no such difference was found for response allocation. Dwell times were also longer when the previous travel time had been longer. PMID:10682340

  7. 41 CFR 301-52.14 - What must I do with any travel advance outstanding at the time I submit my travel claim?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 41 Public Contracts and Property Management 4 2013-07-01 2012-07-01 true What must I do with any travel advance outstanding at the time I submit my travel claim? 301-52.14 Section 301-52.14 Public Contracts and Property Management Federal Travel Regulation System TEMPORARY DUTY (TDY) TRAVEL ALLOWANCES ARRANGING FOR TRAVEL SERVICES, PAYING...

  8. Characterizing groundwater contribution to lowland streams using Travel Time Distribution

    NASA Astrophysics Data System (ADS)

    Petrus Kaandorp, Vincentius; Gerardus Bernardus de Louw, Petrus; Kuijper, Martina Johanna Maria; Broers, Hans Peter

    2015-04-01

    In recent years, it has become apparent that European freshwaters will fail to meet the ecological guidelines set for 2015 by the Water Framework Directive. 55 % of European surface water bodies have been reported to have a less than good ecological status, while the goal for 2015 is to have a good status for all water bodies. The deterioration of freshwater aquatic ecosystems is a problem worldwide. The current study, part of the EU FP7 project Managing Aquatic ecosystems and water Resources under multiple Stress (MARS), addresses this issue by focusing on the effect of multiple stressors. Freshwater ecosystems are directly linked to the characteristics of catchments and streams they are located in as this determines the habitats present. One of these characteristics, the groundwater contribution to streams, is important for aquatic ecosystems as it influences (1) river discharge, (2) water quality and (3) temperature and (4) the riparian zone. Groundwater provides streams with sufficient base flow, good quality water and a stable temperature. Compared to hilly slope catchments, the lowland catchments of The Netherlands lack much topography and surface runoff, and as such, virtually all stream water originates from groundwater. Current approaches do not sufficiently address the contribution of groundwater to stream flow in lowland catchments, as existing hydrograph separation methods provide little informative value about the groundwater contribution itself. The amount and quality of groundwater input to streams depends on its flow path and travel time. Especially in lowland catchments the groundwater input in streams is composed of a wide range of travel times which vary in time and space and have different quantitative and qualitative characteristics. Thus in order to successfully manage lowland streams, it is critical to specify the input of groundwater in more detail and take in account the temporal and spatial variability in travel times. We will present an

  9. MOHO ORIENTATION BENEATH CENTRAL CALIFORNIA FROM REGIONAL EARTHQUAKE TRAVEL TIMES.

    USGS Publications Warehouse

    Oppenheimer, David H.; Eaton, Jerry P.

    1984-01-01

    This paper examines relative Pn arrival times, recorded by the U. S. Geological Survey seismic network in central and northern California from an azimuthally distributed set of regional earthquakes. Improved estimates are presented of upper mantle velocities in the Coast Ranges, Great Valley, and Sierra Nevada foothills and estimates of the orientation of the Moho throughout this region. Finally, the azimuthal distribution of apparent velocities, corrected for dip and individual station travel time effects, is then studied for evidence of upper mantle velocity anisotropy and for indications of lower crustal structure in central California.

  10. SAPS onset timing during substorms and the westward traveling surge

    NASA Astrophysics Data System (ADS)

    Mishin, Evgeny, V.

    2016-07-01

    We present multispacecraft observations in the magnetosphere and conjugate ionosphere of the onset time of subauroral polarization streams (SAPS) and tens of keV ring current injections on the duskside in three individual substorms. This is probably the first unequivocal determination of the substorm SAPS onset timing. The time lag between the SAPS and substorm onsets is much shorter than the gradient-curvature drift time of ˜10 keV ions in the plasmasphere. It seemingly depends on the propagation time of substorm-injected plasma from the dipolarization onset region to the plasmasphere, as well as on the SAPS position. These observations suggest that fast onset SAPS and ring current injections are causally related to the two-loop system of the westward traveling surge.

  11. Age-Related Effects on Future Mental Time Travel

    PubMed Central

    Anelli, Filomena; Ciaramelli, Elisa; Arzy, Shahar; Frassinetti, Francesca

    2016-01-01

    Mental time travel (MTT), the ability to travel mentally back and forward in time in order to reexperience past events and preexperience future events, is crucial in human cognition. As we move along life, MTT may be changed accordingly. However, the relation between re- and preexperiencing along the lifespan is still not clear. Here, young and older adults underwent a psychophysical paradigm assessing two different components of MTT: self-projection, which is the ability to project the self towards a past or a future location of the mental time line, and self-reference, which is the ability to determine whether events are located in the past or future in reference to that given self-location. Aged individuals performed worse in both self-projection to the future and self-reference to future events compared to young individuals. In addition, aging decreased older adults' preference for personal compared to nonpersonal events. These results demonstrate the impact of MTT and self-processing on subjective time processing in healthy aging. Changes in memory functions in aged people may therefore be related not only to memory per se, but also to the relations of memory and self. PMID:27144031

  12. Time and timing in the acoustic recognition system of crickets

    PubMed Central

    Hennig, R. Matthias; Heller, Klaus-Gerhard; Clemens, Jan

    2014-01-01

    The songs of many insects exhibit precise timing as the result of repetitive and stereotyped subunits on several time scales. As these signals encode the identity of a species, time and timing are important for the recognition system that analyzes these signals. Crickets are a prominent example as their songs are built from sound pulses that are broadcast in a long trill or as a chirped song. This pattern appears to be analyzed on two timescales, short and long. Recent evidence suggests that song recognition in crickets relies on two computations with respect to time; a short linear-nonlinear (LN) model that operates as a filter for pulse rate and a longer integration time window for monitoring song energy over time. Therefore, there is a twofold role for timing. A filter for pulse rate shows differentiating properties for which the specific timing of excitation and inhibition is important. For an integrator, however, the duration of the time window is more important than the precise timing of events. Here, we first review evidence for the role of LN-models and integration time windows for song recognition in crickets. We then parameterize the filter part by Gabor functions and explore the effects of duration, frequency, phase, and offset as these will correspond to differently timed patterns of excitation and inhibition. These filter properties were compared with known preference functions of crickets and katydids. In a comparative approach, the power for song discrimination by LN-models was tested with the songs of over 100 cricket species. It is demonstrated how the acoustic signals of crickets occupy a simple 2-dimensional space for song recognition that arises from timing, described by a Gabor function, and time, the integration window. Finally, we discuss the evolution of recognition systems in insects based on simple sensory computations. PMID:25161622

  13. Valuation of Travel Time Savings in Viewpoint of WTA

    PubMed Central

    Shao, Chang-qiao; Liu, Yang; Liu, Xiao-ming

    2014-01-01

    In order to investigate the issues in measurement of value of travel time savings (VTTS), the willingness-to-accept (WTA) for the private car owner is studied by using surveyed data. It is convincing that trip purpose, trip length, time savings, cost savings, income, and allowance from employee have effects on the WTA. Moreover, influences of these variables are not the same for different trip purposes. For commuting trips, effects of income and allowance from employee are significant while time savings and cost savings are dominated for leisure and shopping trips. It is also found that WTA is much higher than expected which implies that there are a group of drivers who are not prone to switching to other trip modes other than passenger car. PMID:25530751

  14. Valuation of travel time savings in viewpoint of WTA.

    PubMed

    Shao, Chang-Qiao; Liu, Yang; Liu, Xiao-Ming

    2014-01-01

    In order to investigate the issues in measurement of value of travel time savings (VTTS), the willingness-to-accept (WTA) for the private car owner is studied by using surveyed data. It is convincing that trip purpose, trip length, time savings, cost savings, income, and allowance from employee have effects on the WTA. Moreover, influences of these variables are not the same for different trip purposes. For commuting trips, effects of income and allowance from employee are significant while time savings and cost savings are dominated for leisure and shopping trips. It is also found that WTA is much higher than expected which implies that there are a group of drivers who are not prone to switching to other trip modes other than passenger car. PMID:25530751

  15. Travel-time sensitivity kernels versus diffraction patterns obtained through double beam-forming in shallow water.

    PubMed

    Iturbe, Ion; Roux, Philippe; Virieux, Jean; Nicolas, Barbara

    2009-08-01

    In recent years, the use of sensitivity kernels for tomographic purposes has been frequently discussed in the literature. Sensitivity kernels of different observables (e.g., amplitude, travel-time, and polarization for seismic waves) have been proposed, and relationships between adjoint formulation, time-reversal theory, and sensitivity kernels have been developed. In the present study, travel-time sensitivity kernels (TSKs) are derived for two source-receiver arrays in an acoustic waveguide. More precisely, the TSKs are combined with a double time-delay beam-forming algorithm performed on two source-receiver arrays to isolate and identify each eigenray of the multipath propagation between a source-receiver pair in the acoustic waveguide. A relationship is then obtained between TSKs and diffraction theory. It appears that the spatial shapes of TSKs are equivalent to the gradients of the combined direction patterns of the source and receiver arrays. In the finite-frequency regimes, the combination of TSKs and double beam-forming both simplifies the calculation of TSK and increases the domain of validity for ray theory in shallow-water ocean acoustic tomography. PMID:19640037

  16. Reflection Full Waveform Inversion in Migration Based Travel Time formulation

    NASA Astrophysics Data System (ADS)

    Chavent, Guy; Gadylshin, Kirill; Tcheverda, Vladimir; Charara, Marwan

    2015-04-01

    Building a smooth velocity model in the depth domain, which is responsible for correct travel-times of wave propagation, is the main challenge in the present technology of seismic data processing in areas with complex geology. Formally it seems be possible to achieve, along with the subsurface structure, by the Full Waveform Inversion (FWI) technique matching the observed and the synthetic seismograms (Tarantola, 1984). To minimize the misfit function and to find the elastic parameters of the subsurface, a variety of non-linear iterative descent methods are usually used. Such approach, proposed originally by Tarantola (1984), has been developed and studied in a great number of publications (Virieux and Operto, 2009, and the references therein). Nevertheless, its straightforward application to the data reconstructs reliably only the reflectivity component of the subsurface but fails to recover a smooth component of a velocity model (propagator). To overcome this hardship G.Chavent with colleagues introduced FWI in Migration Based Travel-Time (MBTT) formulation (2001). The main idea of this approach is to decompose model space into two orthogonal subspaces - smooth propagator and rough reflector with subsequent reformulation of the cost function. We apply this idea to formulate the Reflection FWI algorithm in frequency domain within the concept of MBTT. A series of numerical experiments demonstrates its advantages in reconstruction of macrovelocity using reflected input data with reasonable offsets and frequency ranges.

  17. Modeling river hydrochemistry through dynamic travel time distributions

    NASA Astrophysics Data System (ADS)

    Botter, Gianluca; Benettin, Paolo; Mc Guire, Kevin; Kirchner, James W.; Rinaldo, Andrea

    2015-04-01

    Characterizing the age of streamflows represents a key issue for the prediction of solute turnover in river basins. However, tracking the age of water fluxes in stochastic dynamic systems like watersheds requires the use of appropriate mathematical tools that allows for a coherent description of the aging, mixing and release of water and solute inputs. Here, we propose the use of methods derived from the time-variant theory of travel time distributions to interpret tracer measurements and model catchment functioning under different hydrologic conditions. Water and solute particles traveling through a catchment are seen as a dynamic population where individuals get older while they move within a catchment, until they eventually reach the sampling point, where a mixture of different ages is simultaneously represented. The temporal variability of fluxes and storages, and the age selection (and removal) operated by output fluxes are explicitly accounted for, providing a robust mathematical framework for the interpretation and the prediction of the chemical response of rivers. We present applications to highly monitored watersheds in diverse regions of the world. Our results show that the long-term dynamics of different solutes are controlled by the catchment's transitions across a gradient of humidity states - that imply changes in the ages stored and released by the system accordingly. The model allows inferences about the chemical memory of catchments and gives insights on the interaction between shallow and deep catchment storages, with implications for the understanding of nutrient and pollutant loading persistence in rivers.

  18. Arterial pressure transfer characteristics: effects of travel time.

    PubMed

    Westerhof, Berend E; Guelen, Ilja; Stok, Wim J; Wesseling, Karel H; Spaan, Jos A E; Westerhof, Nico; Bos, Willem Jan; Stergiopulos, Nikos

    2007-02-01

    We investigated the quantitative contribution of all local conduit arterial, blood, and distal load properties to the pressure transfer function from brachial artery to aorta. The model was based on anatomical data, Young's modulus, wall viscosity, blood viscosity, and blood density. A three-element windkessel represented the distal arterial tree. Sensitivity analysis was performed in terms of frequency and magnitude of the peak of the transfer function and in terms of systolic, diastolic, and pulse pressure in the aorta. The root mean square error (RMSE) described the accuracy in wave-shape prediction. The percent change of these variables for a 25% alteration of each of the model parameters was calculated. Vessel length and diameter are found to be the most important parameters determining pressure transfer. Systolic and diastolic pressure changed <3% and RMSE <1.8 mmHg for a 25% change in vessel length and diameter. To investigate how arterial tapering influences the pressure transfer, a single uniform lossless tube was modeled. This simplification introduced only small errors in systolic and diastolic pressures (1% and 0%, respectively), and wave shape was less well described (RMSE, approximately 2.1 mmHg). Local (arm) vasodilation affects the transfer function little, because it has limited effect on the reflection coefficient. Since vessel length and diameter translate into travel time, this parameter can describe the transfer accurately. We suggest that with a, preferably, noninvasively measured travel time, an accurate individualized description of pressure transfer can be obtained. PMID:16963619

  19. Acoustic tweezers via sub–time-of-flight regime surface acoustic waves

    PubMed Central

    Collins, David J.; Devendran, Citsabehsan; Ma, Zhichao; Ng, Jia Wei; Neild, Adrian; Ai, Ye

    2016-01-01

    Micrometer-scale acoustic waves are highly useful for refined optomechanical and acoustofluidic manipulation, where these fields are spatially localized along the transducer aperture but not along the acoustic propagation direction. In the case of acoustic tweezers, such a conventional acoustic standing wave results in particle and cell patterning across the entire width of a microfluidic channel, preventing selective trapping. We demonstrate the use of nanosecond-scale pulsed surface acoustic waves (SAWs) with a pulse period that is less than the time of flight between opposing transducers to generate localized time-averaged patterning regions while using conventional electrode structures. These nodal positions can be readily and arbitrarily positioned in two dimensions and within the patterning region itself through the imposition of pulse delays, frequency modulation, and phase shifts. This straightforward concept adds new spatial dimensions to which acoustic fields can be localized in SAW applications in a manner analogous to optical tweezers, including spatially selective acoustic tweezers and optical waveguides. PMID:27453940

  20. Acoustic tweezers via sub-time-of-flight regime surface acoustic waves.

    PubMed

    Collins, David J; Devendran, Citsabehsan; Ma, Zhichao; Ng, Jia Wei; Neild, Adrian; Ai, Ye

    2016-07-01

    Micrometer-scale acoustic waves are highly useful for refined optomechanical and acoustofluidic manipulation, where these fields are spatially localized along the transducer aperture but not along the acoustic propagation direction. In the case of acoustic tweezers, such a conventional acoustic standing wave results in particle and cell patterning across the entire width of a microfluidic channel, preventing selective trapping. We demonstrate the use of nanosecond-scale pulsed surface acoustic waves (SAWs) with a pulse period that is less than the time of flight between opposing transducers to generate localized time-averaged patterning regions while using conventional electrode structures. These nodal positions can be readily and arbitrarily positioned in two dimensions and within the patterning region itself through the imposition of pulse delays, frequency modulation, and phase shifts. This straightforward concept adds new spatial dimensions to which acoustic fields can be localized in SAW applications in a manner analogous to optical tweezers, including spatially selective acoustic tweezers and optical waveguides. PMID:27453940

  1. Measurement and Interpretation of Travel-Time Shifts in the context of Time-Distance Helioseismic Detection of Meridional Flows in the Solar Convection Zone

    NASA Astrophysics Data System (ADS)

    Chakraborty, S.; Duvall, T. L., Jr.; Hanasoge, S.; Hartlep, T.; Larson, T. P.; Kholikov, S.

    2014-12-01

    The role of meridional flow in maintaining the solar dynamo and differential rotation in the solar convection zone is not well understood and is currently under scrutiny. The traditional flux-transport dynamo models have posited the well known single-cell meridional flow with poleward flow at the photosphere and equatorward flow near the base of the convection zone. However, recent investigations seem to be revealing a different picture of meridional flow which is double celled in the radial direction with poleward flow at the photosphere and equatorward flow at a much shallower level in the convection zone. In this work time-distance helioseismology is used to probe the solar convection zone to accurately determine the structure of meridional circulation. Helioseismology uses the photospherically visible aspect of (acoustic, surface-gravity) waves, that propagate and interfere throughout the Sun to form standing oscillation modes, as probes to make inferences about the structure and flows on the solar surface and interior. Time-distance helioseismology is based on measuring the travel-times of wave-packets moving between distinct points on the solar surface. Travel-time shifts obtained by calculating the difference in the travel-times of counter-propagating waves between the same points on the solar surface yield information about flows throughout the solar convection zone. In this work time-distance techniques are applied on artificial and solar Doppler velocity images to detect travel-time shifts due to meridional flow. Modifications are suggested to enhance the signal-to-noise ratio of travel-time shift measurements. The artificial data is constructed by embedding various meridional flow models in 3D acoustic simulators, which is then used to discuss the interpretation of travel-time shifts, so that in the future an inversion procedure may be designed to calculate meridional flow velocities with greater accuracy. The solar data is obtained from the Helioseismic

  2. Features of underwater acoustics from Aristotle to our time

    NASA Astrophysics Data System (ADS)

    Bjørnø, Leif

    2003-01-01

    Underwater acoustics has been one of the fastest growing fields of research in acoustics. In particular, the 20th Century has taken our understanding of underwater acoustics phenomena a great step forward. The two World Wars contributed to the recognition of the importance of research in underwater acoustics, and the momentum in research and development gained during World War II did not reduce in the years after the war. The so-called cold war and the development in computer technology both contributed substantially to the development in underwater acoustics over the second half of the 20th Century. However, the very widespread field of underwater acoustic activities started nearly 2300 years ago with human curiosity about the fundamental nature of sound in the sea. From primitive philosophical and experimental studies of the velocity of sound in the sea and through centuries of successes and failures, the knowledge about underwater acoustics has developed into its high-technological status of today. In particular the development through the period from Aristotle (384 322 BC) to 1960 formed the basis for the tremendous research and development efforts we have witnessed in our time. In this paper most emphasis will be put on the development in underwater acoustics through this period of nearly 2300 years duration, and only the main trends in later research will be mentioned.

  3. Using travel times to simulate multi-dimensional bioreactive transport in time-periodic flows.

    PubMed

    Sanz-Prat, Alicia; Lu, Chuanhe; Finkel, Michael; Cirpka, Olaf A

    2016-04-01

    In travel-time models, the spatially explicit description of reactive transport is replaced by associating reactive-species concentrations with the travel time or groundwater age at all locations. These models have been shown adequate for reactive transport in river-bank filtration under steady-state flow conditions. Dynamic hydrological conditions, however, can lead to fluctuations of infiltration velocities, putting the validity of travel-time models into question. In transient flow, the local travel-time distributions change with time. We show that a modified version of travel-time based reactive transport models is valid if only the magnitude of the velocity fluctuates, whereas its spatial orientation remains constant. We simulate nonlinear, one-dimensional, bioreactive transport involving oxygen, nitrate, dissolved organic carbon, aerobic and denitrifying bacteria, considering periodic fluctuations of velocity. These fluctuations make the bioreactive system pulsate: The aerobic zone decreases at times of low velocity and increases at those of high velocity. For the case of diurnal fluctuations, the biomass concentrations cannot follow the hydrological fluctuations and a transition zone containing both aerobic and obligatory denitrifying bacteria is established, whereas a clear separation of the two types of bacteria prevails in the case of seasonal velocity fluctuations. We map the 1-D results to a heterogeneous, two-dimensional domain by means of the mean groundwater age for steady-state flow in both domains. The mapped results are compared to simulation results of spatially explicit, two-dimensional, advective-dispersive-bioreactive transport subject to the same relative fluctuations of velocity as in the one-dimensional model. The agreement between the mapped 1-D and the explicit 2-D results is excellent. We conclude that travel-time models of nonlinear bioreactive transport are adequate in systems of time-periodic flow if the flow direction does not change

  4. Using travel times to simulate multi-dimensional bioreactive transport in time-periodic flows

    NASA Astrophysics Data System (ADS)

    Sanz-Prat, Alicia; Lu, Chuanhe; Finkel, Michael; Cirpka, Olaf A.

    2016-04-01

    In travel-time models, the spatially explicit description of reactive transport is replaced by associating reactive-species concentrations with the travel time or groundwater age at all locations. These models have been shown adequate for reactive transport in river-bank filtration under steady-state flow conditions. Dynamic hydrological conditions, however, can lead to fluctuations of infiltration velocities, putting the validity of travel-time models into question. In transient flow, the local travel-time distributions change with time. We show that a modified version of travel-time based reactive transport models is valid if only the magnitude of the velocity fluctuates, whereas its spatial orientation remains constant. We simulate nonlinear, one-dimensional, bioreactive transport involving oxygen, nitrate, dissolved organic carbon, aerobic and denitrifying bacteria, considering periodic fluctuations of velocity. These fluctuations make the bioreactive system pulsate: The aerobic zone decreases at times of low velocity and increases at those of high velocity. For the case of diurnal fluctuations, the biomass concentrations cannot follow the hydrological fluctuations and a transition zone containing both aerobic and obligatory denitrifying bacteria is established, whereas a clear separation of the two types of bacteria prevails in the case of seasonal velocity fluctuations. We map the 1-D results to a heterogeneous, two-dimensional domain by means of the mean groundwater age for steady-state flow in both domains. The mapped results are compared to simulation results of spatially explicit, two-dimensional, advective-dispersive-bioreactive transport subject to the same relative fluctuations of velocity as in the one-dimensional model. The agreement between the mapped 1-D and the explicit 2-D results is excellent. We conclude that travel-time models of nonlinear bioreactive transport are adequate in systems of time-periodic flow if the flow direction does not change.

  5. Groundwater travel time computation for two-layer islands

    NASA Astrophysics Data System (ADS)

    Ketabchi, Hamed; Mahmoodzadeh, Davood; Ataie-Ashtiani, Behzad

    2016-06-01

    A closed-form analytical computation of groundwater travel time (GWTT) for two-layer oceanic small island aquifers is developed assuming steady-state and sharp-interface conditions. The two-layer geology impacts on the GWTT are investigated using the developed analytical solution to achieve a greater transparency of such conceptualizations. The results demonstrate that the inclusion of geologic layering leads to large changes in the GWTT. Sensitivity analyses, using specified dimensionless parameters, are employed to assess the influences of hydraulic conductivity, recharge rate, upper layer thickness, and seawater/freshwater density difference parameters, which influence the GWTT. These evaluations reveal that the GWTT is mainly influenced by the recharge rate and the upper layer thickness compared to the other influential parameters when the typical parameter ranges are considered.

  6. Cognitive mapping in mental time travel and mental space navigation.

    PubMed

    Gauthier, Baptiste; van Wassenhove, Virginie

    2016-09-01

    The ability to imagine ourselves in the past, in the future or in different spatial locations suggests that the brain can generate cognitive maps that are independent of the experiential self in the here and now. Using three experiments, we asked to which extent Mental Time Travel (MTT; imagining the self in time) and Mental Space Navigation (MSN; imagining the self in space) shared similar cognitive operations. For this, participants judged the ordinality of real historical events in time and in space with respect to different mental perspectives: for instance, participants mentally projected themselves in Paris in nine years, and judged whether an event occurred before or after, or, east or west, of where they mentally stood. In all three experiments, symbolic distance effects in time and space dimensions were quantified using Reaction Times (RT) and Error Rates (ER). When self-projected, participants were slower and were less accurate (absolute distance effects); participants were also faster and more accurate when the spatial and temporal distances were further away from their mental viewpoint (relative distance effects). These effects show that MTT and MSN require egocentric mapping and that self-projection requires map transformations. Additionally, participants' performance was affected when self-projection was made in one dimension but judgements in another, revealing a competition between temporal and spatial mapping (Experiment 2 & 3). Altogether, our findings suggest that MTT and MSN are separately mapped although they require comparable allo- to ego-centric map conversion. PMID:27239750

  7. Suburb-to-suburb intercity travel: Energy, time and dollar expenditures

    NASA Technical Reports Server (NTRS)

    Fels, M. F.

    1976-01-01

    The effect of adding suburb to terminal and terminal to suburb travel is examined. The energy consumed in entire trips was estimated. The total energy costs are compared with total travel times, and dollar costs to the traveler. Trips between origins in seven suburbs of Newark, New Jersey and destinations in two Washington, D. C. suburbs are analyzed.

  8. Information and data real time transmission acoustic underwater system: TRIDENT

    NASA Astrophysics Data System (ADS)

    Trubuil, Joel; Labat, Joel; Lapierre, Gerard

    2001-05-01

    The objective of the Groupe d'Etudes Sous-Marines de l'Atlantique (GESMA) is to develop a robust high data rate acoustic link. A real-time receiver recently developed at ENST Bretagne has just been designed to cope with all perturbations induced by such harsh channels. In order to cope with channel features, a spatio-temporal equalizer introduced by J. Labat et al. [Brevet FT no. 9914844, ``Perfectionnements aux dispositifs d'galisation adaptative pour recepteurs de systemes de communications numriques,'' Nov. 1999] was recently implemented and evaluated. This equalizer is the core of the receiver platform [Trubuil et al., ``Real-time high data rate acoustic link based on spatio temporal blind equalization: the TRIDENT acoustic system,'' OCEANS 2002]. This paper provides an overview of this project. The context of the study and the design of high data rate acoustic link are presented. Last Brest harbor experiments (2002, 2003) are described. The real time horizontal acoustic link performances are evaluated. Two carriers frequencies are available (20, 35 kHz). Acoustic communications for bit rate ranging from 10 to 20 kbps and for channel length (shallow water) ranging from 500 to 4000 m have been conducted successfully over several hours.

  9. Children’s mental time travel during mind wandering

    PubMed Central

    Ye, Qun; Song, Xiaolan; Zhang, Yi; Wang, Qinqin

    2014-01-01

    The prospective bias is a salient feature of mind wandering in healthy adults, yet little is known about the temporal focus of children’s mind wandering. In the present study, (I) we developed the temporal focus of mind wandering questionnaire for school-age children (TFMWQ-C), a 12-item scale with good test–retest reliability and construct validity. (II) The criterion validity was tested by thought sampling in both choice reaction time task and working memory task. A positive correlation was found between the temporal focus measured by the questionnaire and the one adopted during task-unrelated thoughts (TUTs) by thought sampling probes, especially in the trait level of future-oriented mind wandering. At the same time, children who experienced more TUTs tended to show worse behavioral performance during tasks. (III) The children in both tasks experienced more future-oriented TUTs than past-oriented ones, which was congruent with the results observed in adults; however, in contrast with previous research on adults, the prospective bias was not influenced by task demands. Together these results indicate that the prospective bias of mind wandering has emerged since the school-age (9∼13 years old), and that the relationship between mental time travel (MTT) during mind wandering and the use of cognitive resources differs between children and adults. Our study provides new insights into how this interesting feature of mind wandering may adaptively contribute to the development of children’s MTT. PMID:25191301

  10. Time-averaged acoustic forces acting on a rigid sphere within a wide range of radii in an axisymmetric levitator

    NASA Astrophysics Data System (ADS)

    Foresti, Daniele; Nabavi, Majid; Poulikakos, Dimos

    2012-05-01

    Acoustic levitation is a physical phenomenon that arises when the acoustic radiation pressure is strong enough to overcome gravitational force. It is a nonlinear phenomenon which can be predicted only if higher order terms are included in the acoustic field calculation. The study of acoustic levitation is usually conducted by solving the linear acoustic equation and bridging the gap with an analytical solution. Only recently, the scientific community has shown interest in the full solution of the Navier-Stokes' equation with the aim of deeply investigating the acoustic radiation pressure. We present herein a numerical model based on Finite Volume Method (FVM) and Dynamic Mesh (DM) for the calculation of the acoustic radiation pressure acting on a rigid sphere inside an axisymmetric levitator which is the most widely used and investigated type of levitators. In this work, we focus on the third resonance mode. The use of DM is new in the field of acoustic levitation, allowing a more realistic simulation of the phenomenon, since no standing wave has to be necessarily imposed as boundary condition. The radiating plate is modeled as a rigid cylinder moving sinusoidally along the central axis. The time-averaged acoustic force exerting on the sphere is calculated for different radii Rs of the sphere (0.025 to 0.5 wavelengths). It is shown that the acoustic force increases proportional to Rs3 for small radii, then decreases when the standing wave condition is violated and finally rises again in the travelling wave radiation pressure configuration. The numerical model is validated for the inviscid case with a Finite Element Method model of the linear acoustic model based on King's approximation.

  11. Analyzing the travel time of car-following model on an open road

    NASA Astrophysics Data System (ADS)

    Tang, Tie-Qiao; Yu, Qiang; Huang, Hai-Jun; Wu, Wen-Xiang

    2015-05-01

    In this paper, we apply car-following model to explore each person's travel time and the system's total travel time on an open road. The analytical and numerical results illustrate that each person's travel time and the system's total cost are directly related to each person's time headway at the origin when the road is long enough and the number of persons is large enough in the traffic system. The above results can help traffic engineers to optimize each person's arrival rate and help readers to understand the relationship between each person's travel time and his arrival rate.

  12. Iterative Bayesian Estimation of Travel Times on Urban Arterials: Fusing Loop Detector and Probe Vehicle Data.

    PubMed

    Liu, Kai; Cui, Meng-Ying; Cao, Peng; Wang, Jiang-Bo

    2016-01-01

    On urban arterials, travel time estimation is challenging especially from various data sources. Typically, fusing loop detector data and probe vehicle data to estimate travel time is a troublesome issue while considering the data issue of uncertain, imprecise and even conflicting. In this paper, we propose an improved data fusing methodology for link travel time estimation. Link travel times are simultaneously pre-estimated using loop detector data and probe vehicle data, based on which Bayesian fusion is then applied to fuse the estimated travel times. Next, Iterative Bayesian estimation is proposed to improve Bayesian fusion by incorporating two strategies: 1) substitution strategy which replaces the lower accurate travel time estimation from one sensor with the current fused travel time; and 2) specially-designed conditions for convergence which restrict the estimated travel time in a reasonable range. The estimation results show that, the proposed method outperforms probe vehicle data based method, loop detector based method and single Bayesian fusion, and the mean absolute percentage error is reduced to 4.8%. Additionally, iterative Bayesian estimation performs better for lighter traffic flows when the variability of travel time is practically higher than other periods. PMID:27362654

  13. Iterative Bayesian Estimation of Travel Times on Urban Arterials: Fusing Loop Detector and Probe Vehicle Data

    PubMed Central

    Cui, Meng-Ying; Cao, Peng; Wang, Jiang-Bo

    2016-01-01

    On urban arterials, travel time estimation is challenging especially from various data sources. Typically, fusing loop detector data and probe vehicle data to estimate travel time is a troublesome issue while considering the data issue of uncertain, imprecise and even conflicting. In this paper, we propose an improved data fusing methodology for link travel time estimation. Link travel times are simultaneously pre-estimated using loop detector data and probe vehicle data, based on which Bayesian fusion is then applied to fuse the estimated travel times. Next, Iterative Bayesian estimation is proposed to improve Bayesian fusion by incorporating two strategies: 1) substitution strategy which replaces the lower accurate travel time estimation from one sensor with the current fused travel time; and 2) specially-designed conditions for convergence which restrict the estimated travel time in a reasonable range. The estimation results show that, the proposed method outperforms probe vehicle data based method, loop detector based method and single Bayesian fusion, and the mean absolute percentage error is reduced to 4.8%. Additionally, iterative Bayesian estimation performs better for lighter traffic flows when the variability of travel time is practically higher than other periods. PMID:27362654

  14. Recent developments in guided wave travel time tomography

    SciTech Connect

    Zon, Tim van; Volker, Arno

    2014-02-18

    The concept of predictive maintenance using permanent sensors that monitor the integrity of an installation is an interesting addition to the current method of periodic inspections. Guided wave tomography had been developed to create a map of the wall thickness using the travel times of guided waves. It can be used for both monitoring and for inspection of pipe-segments that are difficult to access, for instance at the location of pipe-supports. An important outcome of the tomography is the minimum remaining wall thickness, as this is critical in the scheduling of a replacement of the pipe-segment. In order to improve the sizing accuracy we have improved the tomography scheme. A number of major improvements have been realized allowing to extend the application envelope to pipes with a larger wall thickness and to larger distances between the transducer rings. Simulation results indicate that the sizing accuracy has improved and that is now possible to have a spacing of 8 meter between the source-ring and the receiver-ring. Additionally a reduction of the number of sensors required might be possible as well.

  15. Experimental Results of Guided Wave Travel Time Tomography

    NASA Astrophysics Data System (ADS)

    Volker, Arno; Mast, Arjan; Bloom, Joost

    2010-02-01

    Corrosion is one of the industries major issues regarding the integrity of assets. Currently inspections are conducted at regular intervals to ensure a sufficient integrity level of these assets. Both economical and social requirements are pushing the industry to even higher levels of availability, reliability and safety of installations. The concept of predictive maintenance using permanent sensors that monitor the integrity of an installation is an interesting addition to the current method of periodic inspections reducing uncertainty and extending inspection intervals. Guided wave travel time tomography is a promising method to monitor the wall thickness quantitatively over large areas. Obviously the robustness and reliability of such a monitoring system is of paramount importance. Laboratory experiments have been carried out on a 10″ pipe with a nominal wall thickness of 8 mm. Multiple, inline defects have been created with a realistic morphology. The depth of the defects was increased stepwise from 0.5 mm to 2 mm. Additionally the influences of the presence of liquid inside the pipe and surface roughness have been evaluated as well. Experimental results show that this method is capable of providing quantitative wall thickness information over a distance of 4 meter, with a sufficient accuracy such that results can be used for trending. The method has no problems imaging multiple defects.

  16. Frequency and Time Domain Modeling of Acoustic Liner Boundary Conditions

    NASA Technical Reports Server (NTRS)

    Bliss, Donald B.

    1982-01-01

    As part of a research program directed at the acoustics of advanced subsonic propulsion systems undertaken at NASA Langley, Duke University was funded to develop a boundary condition model for bulk-reacting nacelle liners. The overall objective of the Langley program was to understand and predict noise from advanced subsonic transport engines and to develop related noise control technology. The overall technical areas included: fan and propeller source noise, acoustics of ducts and duct liners, interior noise, subjective acoustics, and systems noise prediction. The Duke effort was directed toward duct liner acoustics for the development of analytical methods to characterize liner behavior in both frequency domain and time domain. A review of duct acoustics and liner technology can be found in Reference [1]. At that time, NASA Langley was investigating the propulsion concept of an advanced ducted fan, with a large diameter housed inside a relatively short duct. Fan diameters in excess of ten feet were proposed. The lengths of both the inlet and exhaust portions of the duct were to be short, probably less than half the fan diameter. The nacelle itself would be relatively thin-walled for reasons of aerodynamic efficiency. The blade-passage frequency was expected to be less than I kHz, and very likely in the 200 to 300 Hz range. Because of the design constraints of a short duct, a thin nacelle, and long acoustic wavelengths, the application of effective liner technology would be especially challenging. One of the needs of the NASA Langley program was the capability to accurately and efficiently predict the behavior of the acoustic liner. The traditional point impedance method was not an adequate model for proposed liner designs. The method was too restrictive to represent bulk reacting liners and to allow for the characterization of many possible innovative liner concepts. In the research effort at Duke, an alternative method, initially developed to handle bulk

  17. An invisible acoustic sensor based on parity-time symmetry.

    PubMed

    Fleury, Romain; Sounas, Dimitrios; Alù, Andrea

    2015-01-01

    Sensing an incoming signal is typically associated with absorbing a portion of its energy, inherently perturbing the measurement and creating reflections and shadows. Here, in contrast, we demonstrate a non-invasive, shadow-free, invisible sensor for airborne sound waves at audible frequencies, which fully absorbs the impinging signal, without at the same time perturbing its own measurement or creating a shadow. This unique sensing device is based on the unusual scattering properties of a parity-time (PT) symmetric metamaterial device formed by a pair of electro-acoustic resonators loaded with suitably tailored non-Foster electrical circuits, constituting the acoustic equivalent of a coherent perfect absorber coupled to a coherent laser. Beyond the specific application to non-invasive sensing, our work broadly demonstrates the unique relevance of PT-symmetric metamaterials for acoustics, loss compensation and extraordinary wave manipulation. PMID:25562746

  18. Acoustically trapped colloidal crystals that are reconfigurable in real time

    PubMed Central

    Caleap, Mihai; Drinkwater, Bruce W.

    2014-01-01

    Photonic and phononic crystals are metamaterials with repeating unit cells that result in internal resonances leading to a range of wave guiding and filtering properties and are opening up new applications such as hyperlenses and superabsorbers. Here we show the first, to our knowledge, 3D colloidal phononic crystal that is reconfigurable in real time and demonstrate its ability to rapidly alter its frequency filtering characteristics. Our reconfigurable material is assembled from microspheres in aqueous solution, trapped with acoustic radiation forces. The acoustic radiation force is governed by an energy landscape, determined by an applied high-amplitude acoustic standing wave field, in which particles move swiftly to energy minima. This creates a colloidal crystal of several milliliters in volume with spheres arranged in an orthorhombic lattice in which the acoustic wavelength is used to control the lattice spacing. Transmission acoustic spectroscopy shows that the new colloidal crystal behaves as a phononic metamaterial and exhibits clear band-pass and band-stop frequencies which are adjusted in real time. PMID:24706925

  19. Traffic dynamics: Method for estimating freeway travel times in real time from flow measurements

    SciTech Connect

    Nam, D.H.; Drew, D.R.

    1996-05-01

    This paper presents a method for estimating freeway travel times in real time directly from flow measurements, which is desirable for present and future Intelligent Vehicle-Highway Systems (IVHS) applications. An inductive modeling approach adapted here is based on stochastic queuing theory and the principle of conservation of vehicles. The analytical expression for link travel times satisfies traffic dynamics where the new form of the conservation of vehicles has been derived under generalized traffic conditions. A computer program has been developed to implement the algorithm. Analysis results show that the estimates have good agreement with empirical data measured at 30-s intervals. This methodology has potential applicable to automatic traffic control and automatic incident detection.

  20. Travel time statistics under radially converging flow in single fractures

    NASA Astrophysics Data System (ADS)

    Gotovac, Hrvoje; Srzic, Veljko; Cvetkovic, Vladimir; Kekez, Toni; Malenica, Luka

    2015-04-01

    A stochastic methodology based on Adaptive Fup Monte Carlo Method is used to investigate transport of a conservative solute by steady flow to a single pumping well in two-dimensional randomly heterogeneous single fractures. The spatially variable hydraulic transmissivity is modeled as a stationary random function for three different correlation structures (multi-Gaussian, connected and disconnected fields with correlated mean, high and low lnT values, respectively, according to the Zinn and Harvey, 2003) and heterogeneity levels (lnT variance is 1 and 8). Initially, solute particles are injected at outer circle located at 32 correlation lengths from well according to the in flux and resident injection mode. Therefore, breakthrough curve (BTC) statistics in single well due to different spatial structures, heterogeneity levels, injection modes and dispersion influence is considered. For small heterogeneity, all considered effects have small influences on BTC and related moments. As expected in single fractures, high lnT variance is more usual case which considerably changes flow patterns including channelling effect and fact that only few narrow channels carry out most pumping flow rate. Channelling implies significant differences between different injection modes. Resident mode uniformly injects particles implying that most particles pass through "slower" zones that especially increase late arrivals and contribute to the non-Fickian behaviour of transport. Contrary, "in flux" mode drastically reduces first arrivals and mean values, especially for connected correlation fields. The results from two injection modes lie on different sides of homogeneous mean travel time solution and give complementary information for complete representation of conservative transport. For advection transport, correlation structure and especially lnT variance seems to have major influence on BTC characteristics. On the other side, influence of longitudinal and lateral local scale

  1. Time-Reversal Acoustics and Maximum-Entropy Imaging

    SciTech Connect

    Berryman, J G

    2001-08-22

    Target location is a common problem in acoustical imaging using either passive or active data inversion. Time-reversal methods in acoustics have the important characteristic that they provide a means of determining the eigenfunctions and eigenvalues of the scattering operator for either of these problems. Each eigenfunction may often be approximately associated with an individual scatterer. The resulting decoupling of the scattered field from a collection of targets is a very useful aid to localizing the targets, and suggests a number of imaging and localization algorithms. Two of these are linear subspace methods and maximum-entropy imaging.

  2. Making Decisions with the Future in Mind: Developmental and Comparative Identification of Mental Time Travel

    ERIC Educational Resources Information Center

    Suddendorf, T.; Busby, J.

    2005-01-01

    Mechanisms that produce behavior which increase future survival chances provide an adaptive advantage. The flexibility of human behavior is at least partly the result of one such mechanism, our ability to travel mentally in time and entertain potential future scenarios. We can study mental time travel in children using language. Current results…

  3. Self-Efficacy Beliefs and Mental Time Travel Ability: Uncovering a Hidden Relationship in Educational Settings

    ERIC Educational Resources Information Center

    Eren, Altay

    2009-01-01

    The aim of this study was threefold: first, it was to explore the profiles of student teachers' mental time travel ability; second, it was to examine the relationship between student teachers' mental time travel ability and self-efficacy beliefs; and third, it was to investigate the role of self-efficacy beliefs in relationship between the past…

  4. METHOD OF ESTIMATING THE TRAVEL TIME OF NONINTERACTING SOLUTES THROUGH COMPACTED SOIL MATERIAL

    EPA Science Inventory

    The pollutant travel time through compacted soil material (i.e., when a pollutant introduced at the top first appears at the bottom) cannot be accurately predicted from the permeability (saturated hydraulic conductivity) alone. The travel time is also dependent on the effective p...

  5. Time of travel of solutes in the Tuscarawas River Basin, Ohio, August and September, 1974

    USGS Publications Warehouse

    Westfall, A.O.; Webber, E.E.

    1977-01-01

    A time-of-travel study was made on a 106-mile reach of the Tuscarawas River to determine average velocity and dispersion characteristics between selected points. The reach was divided into five subreaches, and a fluorescent dye used as a tracer material. At about the 50-percent flow-duration level, time of travel of the peak concentration was 137 hours.

  6. Timing light treatment for eastward and westward travel preparation.

    PubMed

    Paul, Michel A; Miller, James C; Love, Ryan J; Lieberman, Harris; Blazeski, Sofi; Arendt, Josephine

    2009-07-01

    Jet lag degrades performance and operational readiness of recently deployed military personnel and other travelers. The objective of the studies reported here was to determine, using a narrow bandwidth light tower (500 nm), the optimum timing of light treatment to hasten adaptive circadian phase advance and delay. Three counterbalanced treatment order, repeated measures studies were conducted to compare melatonin suppression and phase shift across multiple light treatment timings. In Experiment 1, 14 normal healthy volunteers (8 men/6 women) aged 34.9+/-8.2 yrs (mean+/-SD) underwent light treatment at the following times: A) 06:00 to 07:00 h, B) 05:30 to 07:30 h, and C) 09:00 to 10:00 h (active control). In Experiment 2, 13 normal healthy subjects (7 men/6 women) aged 35.6+/-6.9 yrs, underwent light treatment at each of the following times: A) 06:00 to 07:00 h, B) 07:00 to 08:00 h, C) 08:00 to 09:00 h, and a no-light control session (D) from 07:00 to 08:00 h. In Experiment 3, 10 normal healthy subjects (6 men/4 women) aged 37.0+/-7.7 yrs underwent light treatment at the following times: A) 02:00 to 03:00 h, B) 02:30 to 03:30 h, and C) 03:00 to 04:00 h, with a no-light control (D) from 02:30 to 03:30 h. Dim light melatonin onset (DLMO) was established by two methods: when salivary melatonin levels exceeded a 1.0 pg/ml threshold, and when salivary melatonin levels exceeded three times the 0.9 pg/ml sensitivity of the radioimmunoasssy. Using the 1.0 pg/ml DLMO, significant phase advances were found in Experiment 1 for conditions A (p < .028) and B (p < 0.004). Experiment 2 showed significant phase advances in conditions A (p < 0.018) and B (p < 0.003) but not C (p < 0.23), relative to condition D. In Experiment 3, only condition B (p < 0.035) provided a significant phase delay relative to condition D. Similar but generally smaller phase shifts were found with the 2.7 pg/ml DLMO method. This threshold was used to analyze phase shifts against circadian time of the start

  7. Use of an Acoustic Orientation System for Indoor Travel with a Spatially Disabled Blind Man.

    ERIC Educational Resources Information Center

    Lancioni, G. E.; And Others

    1996-01-01

    An acoustic orientation system was developed that employed a portable remote control device keyed to trigger audio tones from modules placed at key locations throughout the user's home and work environments. Results found that the system helped a blind subject to move and work successfully in both settings, and the subject found it easy and…

  8. On the time-mean state of ocean models and the properties of long range acoustic propagation

    NASA Astrophysics Data System (ADS)

    Dushaw, B. D.; Worcester, P. F.; Dzieciuch, M. A.; Menemenlis, D.

    2013-09-01

    Receptions on three vertical hydrophone arrays from basin-scale acoustic transmissions in the North Pacific during 1996 and 1998 are used to test the time-mean sound-speed properties of the World Ocean Atlas 2005 (WOA05), of an eddying unconstrained simulation of the Parallel Ocean Program (POP), and of three data-constrained solutions provided by the estimating the circulation and climate of the ocean (ECCO) project: a solution based on an approximate Kalman filter from the Jet Propulsion Laboratory (ECCO-JPL), a solution based on the adjoint method from the Massachusetts Institute of Technology (ECCO-MIT), and an eddying solution based on a Green's function approach from ECCO, Phase II (ECCO2). Predictions for arrival patterns using annual average WOA05 fields match observations to within small travel time offsets (0.3-1.0 s). Predictions for arrival patterns from the models differ substantially from the measured arrival patterns, from the WOA05 climatology, and from each other, both in terms of travel time and in the structure of the arrival patterns. The acoustic arrival patterns are sensitive to the vertical gradients of sound speed that govern acoustic propagation. Basin-scale acoustic transmissions, therefore, provide stringent tests of the vertical temperature structure of ocean state estimates. This structure ultimately influences the mixing between the surface waters and the ocean interior. The relatively good agreement of the acoustic data with the more recent ECCO solutions indicates that numerical ocean models have reached a level of accuracy where the acoustic data can provide useful additional constraints for ocean state estimation.

  9. Chromospheric extents predicted by time-dependent acoustic wave models

    SciTech Connect

    Cuntz, M. Heidelberg Universitaet )

    1990-01-01

    Theoretical models for chromospheric structures of late-type giant stars are computed, including the time-dependent propagation of acoustic waves. Models with short-period monochromatic shock waves as well as a spectrum of acoustic waves are discussed, and the method is applied to the stars Arcturus, Aldebaran, and Betelgeuse. Chromospheric extent, defined as the monotonic decrease with height of the time-averaged electron densities, are found to be 1.12, 1.13, and 1.22 stellar radii for the three stars, respectively; this corresponds to a time-averaged electron density of 10 to the 7th/cu cm. Predictions of the extended chromospheric obtained using a simple scaling law agree well with those obtained by the time-dependent wave models; thus, the chromospheres of all stars for which the scaling law is valid consist of the same number of pressure scale heights. 74 refs.

  10. Chromospheric extents predicted by time-dependent acoustic wave models

    NASA Technical Reports Server (NTRS)

    Cuntz, Manfred

    1990-01-01

    Theoretical models for chromospheric structures of late-type giant stars are computed, including the time-dependent propagation of acoustic waves. Models with short-period monochromatic shock waves as well as a spectrum of acoustic waves are discussed, and the method is applied to the stars Arcturus, Aldebaran, and Betelgeuse. Chromospheric extent, defined as the monotonic decrease with height of the time-averaged electron densities, are found to be 1.12, 1.13, and 1.22 stellar radii for the three stars, respectively; this corresponds to a time-averaged electron density of 10 to the 7th/cu cm. Predictions of the extended chromospheric obtained using a simple scaling law agree well with those obtained by the time-dependent wave models; thus, the chromospheres of all stars for which the scaling law is valid consist of the same number of pressure scale heights.

  11. Multi-carrier Communications over Time-varying Acoustic Channels

    NASA Astrophysics Data System (ADS)

    Aval, Yashar M.

    Acoustic communication is an enabling technology for many autonomous undersea systems, such as those used for ocean monitoring, offshore oil and gas industry, aquaculture, or port security. There are three main challenges in achieving reliable high-rate underwater communication: the bandwidth of acoustic channels is extremely limited, the propagation delays are long, and the Doppler distortions are more pronounced than those found in wireless radio channels. In this dissertation we focus on assessing the fundamental limitations of acoustic communication, and designing efficient signal processing methods that cam overcome these limitations. We address the fundamental question of acoustic channel capacity (achievable rate) for single-input-multi-output (SIMO) acoustic channels using a per-path Rician fading model, and focusing on two scenarios: narrowband channels where the channel statistics can be approximated as frequency- independent, and wideband channels where the nominal path loss is frequency-dependent. In each scenario, we compare several candidate power allocation techniques, and show that assigning uniform power across all frequencies for the first scenario, and assigning uniform power across a selected frequency-band for the second scenario, are the best practical choices in most cases, because the long propagation delay renders the feedback information outdated for power allocation based on the estimated channel response. We quantify our results using the channel information extracted form the 2010 Mobile Acoustic Communications Experiment (MACE'10). Next, we focus on achieving reliable high-rate communication over underwater acoustic channels. Specifically, we investigate orthogonal frequency division multiplexing (OFDM) as the state-of-the-art technique for dealing with frequency-selective multipath channels, and propose a class of methods that compensate for the time-variation of the underwater acoustic channel. These methods are based on multiple

  12. Investigation of acoustic aerosol agglomeration mechanisms under traveling-wave condition. Period covered: 1 July-30 September 1980

    SciTech Connect

    Shaw, D.T.

    1980-10-16

    Experimental investigations of acoustically induced turbulence and shock waves in a traveling-wave tube are performed with and without the introduction of an air flow through the system. Frequency (f) and intensity (I) effects of the acoustic field are studied using a hot-film anemometer and FFT data processing unit. The effect of the acoustically induced turbulence on a laminar flow is also investigated. Sampled data are first conditioned, then processed to estimate the characteristics of turbulence. It is found that for sound pressure level >158 dB turbulence appears. Furthermore, at slightly higher level (approx. 160 dB) shock waves appear over the range of all frequency. Turbulence measurements were performed over a frequency range of 500 to 2200 Hz, with intensity over a range of 0.6 to 4.0 W/cm/sup 2/. Below I = 0.6 W/cm/sup 2/ no turbulent bursts are found. The turbulent spectrum F and the wave number k are found to satisfy a power law F proportional to k/sup ..cap alpha../ with ..cap alpha.. approx. = 1.7 to -2.1. The rms turbulent velocity u/sub */ is found experimentally to have an I/sup 1/2/ dependence, yet is relatively insensitive to variation of f. Throughout the whole measuring range of f and I, the rate of energy dissipation per unit mass epsilon is estimated to be 10/sup 6/ to 10/sup 7/ cm/sup 2//s/sup 3/. It is also found that superimposing a laminar air stream through the tube will suppress the turbulence.

  13. Method for distinguishing multiple targets using time-reversal acoustics

    DOEpatents

    Berryman, James G.

    2004-06-29

    A method for distinguishing multiple targets using time-reversal acoustics. Time-reversal acoustics uses an iterative process to determine the optimum signal for locating a strongly reflecting target in a cluttered environment. An acoustic array sends a signal into a medium, and then receives the returned/reflected signal. This returned/reflected signal is then time-reversed and sent back into the medium again, and again, until the signal being sent and received is no longer changing. At that point, the array has isolated the largest eigenvalue/eigenvector combination and has effectively determined the location of a single target in the medium (the one that is most strongly reflecting). After the largest eigenvalue/eigenvector combination has been determined, to determine the location of other targets, instead of sending back the same signals, the method sends back these time reversed signals, but half of them will also be reversed in sign. There are various possibilities for choosing which half to do sign reversal. The most obvious choice is to reverse every other one in a linear array, or as in a checkerboard pattern in 2D. Then, a new send/receive, send-time reversed/receive iteration can proceed. Often, the first iteration in this sequence will be close to the desired signal from a second target. In some cases, orthogonalization procedures must be implemented to assure the returned signals are in fact orthogonal to the first eigenvector found.

  14. Time Reversal Acoustic Communication Using Filtered Multitone Modulation

    PubMed Central

    Sun, Lin; Chen, Baowei; Li, Haisen; Zhou, Tian; Li, Ruo

    2015-01-01

    The multipath spread in underwater acoustic channels is severe and, therefore, when the symbol rate of the time reversal (TR) acoustic communication using single-carrier (SC) modulation is high, the large intersymbol interference (ISI) span caused by multipath reduces the performance of the TR process and needs to be removed using the long adaptive equalizer as the post-processor. In this paper, a TR acoustic communication method using filtered multitone (FMT) modulation is proposed in order to reduce the residual ISI in the processed signal using TR. In the proposed method, FMT modulation is exploited to modulate information symbols onto separate subcarriers with high spectral containment and TR technique, as well as adaptive equalization is adopted at the receiver to suppress ISI and noise. The performance of the proposed method is assessed through simulation and real data from a trial in an experimental pool. The proposed method was compared with the TR acoustic communication using SC modulation with the same spectral efficiency. Results demonstrate that the proposed method can improve the performance of the TR process and reduce the computational complexity of adaptive equalization for post-process. PMID:26393586

  15. M/G/c/c state dependent travel time models and properties

    NASA Astrophysics Data System (ADS)

    MacGregor Smith, J.; Cruz, F. R. B.

    2014-02-01

    One of the most important problems in today’s modeling of transportation networks is an accurate estimate of travel time on arterial links, highway, and freeways. There are a number of deterministic formulas that have been developed over the years to achieve a simple and direct way to estimate travel times for this complex task. Realistically, however, travel time is a random variable. These deterministic formula are briefly reviewed and also a new way to compute travel time over arterial links, highway, and freeways, is presented based on an analytical state dependent queueing model. One of the features of the queueing model is that it is analyzed within the context of the theoretical three-phase traffic flow model. We show that the model provides a quantitative foundation alternative to qualitative three-phase traffic flow theory. An important property shown with the model is that the travel time function is not convex, but a sigmoid S-shaped (i.e. logistic curve). Extensive analytical and simulation experiments are shown to verify the S-shaped nature of the travel time function and the use of the model’s method of estimation of travel time over vehicular traffic links as compared with traditional approaches. Finally, it is shown that the point-of-inflection of the S-shaped curve represents the threshold point where the traffic flow volume switches from Free Flow to Congested Flow.

  16. Estimating streambed travel times and respiration rates based on temperature and oxygen consumption

    NASA Astrophysics Data System (ADS)

    Vieweg, M.; Fleckenstein, J. H.; Schmidt, C.

    2015-12-01

    Oxygen consumption is a common proxy for aerobic respiration and novel in situ measurement techniques with high spatial resolution enable an accurate determination of the oxygen distribution in the streambed. The oxygen concentration at a certain location in the streambed depends on the input concentration, the respiration rate, temperature, and the travel time of the infiltrating flowpath. While oxygen concentrations and temperature can directly be measured, respiration rate and travel time must be estimated from the data. We investigated the interplay of these factors using a 6 month long, 5-min resolution dataset collected in a 3rdorder gravel-bed stream. Our objective was twofold, to determine transient rates of hyporheic respiration and to estimate travel times in the streambed based solely on oxygen and temperature measurements. Our results show that temperature and travel time explains ~70% of the variation in oxygen concentration in the streambed. Independent travel times were obtained using natural variations in the electrical conductivity (EC) of the stream water as tracer (µ=4.1 h; σ=2.3 h). By combining these travel times with the oxygen consumption, we calculated a first order respiration rate (µ=9.7 d-1; σ=6.1 d-1). Variations in the calculated respiration rate are largely explained by variations in streambed temperature. An empirical relationship between our respiration rate and temperature agrees with the theoretical Boltzmann-Arrhenius equation. With this relationship, a temperature-based respiration rate can be estimated and used to re-estimate subsurface travel times. The resulting travel times distinctively resemble the EC-derived travel times (R20.47; Nash-Sutcliffe coefficient 0.32). Both calculations of travel time are correlated to stream water levels and increase during discharge events, enhancing the oxygen consumption for these periods. No other physical factors besides temperature were significantly correlated with the respiration

  17. Closing the gap between regional and global travel time tomography

    USGS Publications Warehouse

    Bijwaard, H.; Spakman, W.; Engdahl, E.R.

    1998-01-01

    Recent global travel time tomography studies by Zhou [1996] and van der Hilst et al. [1997] have been performed with cell parameterizations of the order of those frequently used in regional tomography studies (i.e., with cell sizes of 1??-2??). These new global models constitute a considerable improvement over previous results that were obtained with rather coarse parameterizations (5?? cells). The inferred structures are, however, of larger scale than is usually obtained in regional models, and it is not clear where and if individual cells are actually resolved. This study aims at resolving lateral heterogeneity on scales as small as 0.6?? in the upper mantle and 1.2??-3?? in the lower mantle. This allows for the adequate mapping of expected small-scale structures induced by, for example, lithosphere subduction, deep mantle upwellings, and mid-ocean ridges. There are three major contributions that allow for this advancement. First, we employ an irregular grid of nonoverlapping cells adapted to the heterogeneous sampling of the Earth's mantle by seismic waves [Spakman and Bijwaard, 1998]. Second, we exploit the global data set of Engdahl et al. [1998], which is a reprocessed version of the global data set of the International Seismological Centre. Their reprocessing included hypocenter redetermination and phase reidentification. Finally, we combine all data used (P, pP, and pwP phases) into nearly 5 million ray bundles with a limited spatial extent such that averaging over large mantle volumes is prevented while the signal-to-noise ratio is improved. In the approximate solution of the huge inverse problem we obtain a variance reduction of 57.1%. Synthetic sensitivity tests indicate horizontal resolution on the scale of the smallest cells (0.6?? or 1.2??) in the shallow parts of subduction zones decreasing to approximately 2??-3?? resolution in well-sampled regions in the lower mantle. Vertical resolution can be worse (up to several hundreds of kilometers) in

  18. Traveling waves in Hall-magnetohydrodynamics and the ion-acoustic shock structure

    SciTech Connect

    Hagstrom, George I.; Hameiri, Eliezer

    2014-02-15

    Hall-magnetohydrodynamics (HMHD) is a mixed hyperbolic-parabolic partial differential equation that describes the dynamics of an ideal two fluid plasma with massless electrons. We study the only shock wave family that exists in this system (the other discontinuities being contact discontinuities and not shocks). We study planar traveling wave solutions and we find solutions with discontinuities in the hydrodynamic variables, which arise due to the presence of real characteristics in Hall-MHD. We introduce a small viscosity into the equations and use the method of matched asymptotic expansions to show that solutions with a discontinuity satisfying the Rankine-Hugoniot conditions and also an entropy condition have continuous shock structures. The lowest order inner equations reduce to the compressible Navier-Stokes equations, plus an equation which implies the constancy of the magnetic field inside the shock structure. We are able to show that the current is discontinuous across the shock, even as the magnetic field is continuous, and that the lowest order outer equations, which are the equations for traveling waves in inviscid Hall-MHD, are exactly integrable. We show that the inner and outer solutions match, which allows us to construct a family of uniformly valid continuous composite solutions that become discontinuous when the diffusivity vanishes.

  19. Impact of degrading permafrost on subsurface solute transport pathways and travel times

    NASA Astrophysics Data System (ADS)

    Frampton, Andrew; Destouni, Georgia

    2015-09-01

    Subsurface solute transport under surface warming and degrading permafrost conditions is studied using a physically based model of coupled cryotic and hydrogeological flow processes combined with a particle tracking method. Changes in the subsurface water and inert solute pathways and travel times are analyzed for different modeled geological configurations. For all simulated cases, the minimum and mean travel times increase nonlinearly with warming irrespective of geological configuration and heterogeneity structure. The timing of the start of increase in travel time depends on heterogeneity structure, combined with the rate of permafrost degradation that also depends on material thermal and hydrogeological properties. The travel time changes depend on combined warming effects of: i) increase in pathway length due to deepening of the active layer, ii) reduced transport velocities due to a shift from horizontal saturated groundwater flow near the surface to vertical water percolation deeper into the subsurface, and iii) pathway length increase and temporary immobilization caused by cryosuction-induced seasonal freeze cycles.

  20. Accessing the exceptional points of parity-time symmetric acoustics

    PubMed Central

    Shi, Chengzhi; Dubois, Marc; Chen, Yun; Cheng, Lei; Ramezani, Hamidreza; Wang, Yuan; Zhang, Xiang

    2016-01-01

    Parity-time (PT) symmetric systems experience phase transition between PT exact and broken phases at exceptional point. These PT phase transitions contribute significantly to the design of single mode lasers, coherent perfect absorbers, isolators, and diodes. However, such exceptional points are extremely difficult to access in practice because of the dispersive behaviour of most loss and gain materials required in PT symmetric systems. Here we introduce a method to systematically tame these exceptional points and control PT phases. Our experimental demonstration hinges on an active acoustic element that realizes a complex-valued potential and simultaneously controls the multiple interference in the structure. The manipulation of exceptional points offers new routes to broaden applications for PT symmetric physics in acoustics, optics, microwaves and electronics, which are essential for sensing, communication and imaging. PMID:27025443

  1. Accessing the exceptional points of parity-time symmetric acoustics

    NASA Astrophysics Data System (ADS)

    Shi, Chengzhi; Dubois, Marc; Chen, Yun; Cheng, Lei; Ramezani, Hamidreza; Wang, Yuan; Zhang, Xiang

    2016-03-01

    Parity-time (PT) symmetric systems experience phase transition between PT exact and broken phases at exceptional point. These PT phase transitions contribute significantly to the design of single mode lasers, coherent perfect absorbers, isolators, and diodes. However, such exceptional points are extremely difficult to access in practice because of the dispersive behaviour of most loss and gain materials required in PT symmetric systems. Here we introduce a method to systematically tame these exceptional points and control PT phases. Our experimental demonstration hinges on an active acoustic element that realizes a complex-valued potential and simultaneously controls the multiple interference in the structure. The manipulation of exceptional points offers new routes to broaden applications for PT symmetric physics in acoustics, optics, microwaves and electronics, which are essential for sensing, communication and imaging.

  2. Accessing the exceptional points of parity-time symmetric acoustics.

    PubMed

    Shi, Chengzhi; Dubois, Marc; Chen, Yun; Cheng, Lei; Ramezani, Hamidreza; Wang, Yuan; Zhang, Xiang

    2016-01-01

    Parity-time (PT) symmetric systems experience phase transition between PT exact and broken phases at exceptional point. These PT phase transitions contribute significantly to the design of single mode lasers, coherent perfect absorbers, isolators, and diodes. However, such exceptional points are extremely difficult to access in practice because of the dispersive behaviour of most loss and gain materials required in PT symmetric systems. Here we introduce a method to systematically tame these exceptional points and control PT phases. Our experimental demonstration hinges on an active acoustic element that realizes a complex-valued potential and simultaneously controls the multiple interference in the structure. The manipulation of exceptional points offers new routes to broaden applications for PT symmetric physics in acoustics, optics, microwaves and electronics, which are essential for sensing, communication and imaging. PMID:27025443

  3. Dynamic Bus Travel Time Prediction Models on Road with Multiple Bus Routes

    PubMed Central

    Bai, Cong; Peng, Zhong-Ren; Lu, Qing-Chang; Sun, Jian

    2015-01-01

    Accurate and real-time travel time information for buses can help passengers better plan their trips and minimize waiting times. A dynamic travel time prediction model for buses addressing the cases on road with multiple bus routes is proposed in this paper, based on support vector machines (SVMs) and Kalman filtering-based algorithm. In the proposed model, the well-trained SVM model predicts the baseline bus travel times from the historical bus trip data; the Kalman filtering-based dynamic algorithm can adjust bus travel times with the latest bus operation information and the estimated baseline travel times. The performance of the proposed dynamic model is validated with the real-world data on road with multiple bus routes in Shenzhen, China. The results show that the proposed dynamic model is feasible and applicable for bus travel time prediction and has the best prediction performance among all the five models proposed in the study in terms of prediction accuracy on road with multiple bus routes. PMID:26294903

  4. Dynamic Bus Travel Time Prediction Models on Road with Multiple Bus Routes.

    PubMed

    Bai, Cong; Peng, Zhong-Ren; Lu, Qing-Chang; Sun, Jian

    2015-01-01

    Accurate and real-time travel time information for buses can help passengers better plan their trips and minimize waiting times. A dynamic travel time prediction model for buses addressing the cases on road with multiple bus routes is proposed in this paper, based on support vector machines (SVMs) and Kalman filtering-based algorithm. In the proposed model, the well-trained SVM model predicts the baseline bus travel times from the historical bus trip data; the Kalman filtering-based dynamic algorithm can adjust bus travel times with the latest bus operation information and the estimated baseline travel times. The performance of the proposed dynamic model is validated with the real-world data on road with multiple bus routes in Shenzhen, China. The results show that the proposed dynamic model is feasible and applicable for bus travel time prediction and has the best prediction performance among all the five models proposed in the study in terms of prediction accuracy on road with multiple bus routes. PMID:26294903

  5. Time of travel of water in the Ohio River, Pittsburgh to Cincinnati

    USGS Publications Warehouse

    Steacy, Robert E.

    1961-01-01

    This report presents a procedure for estimating the time of travel of water in the Ohio River from Pittsburgh, Pa., to Cincinnati, Ohio, under various river stage conditions. This information is primarily for use by civil defense officials and by others concerned with problems involving travel time of river water. Tables and charts are presented to show, for a particular stage or discharge at Cincinnati, the average time it would take for water to travel through the entire reach from Pittsburgh, or through successive intermediate segments of the reach. For example, when the discharge at Cincinnati is 200,000 cfs, travel time from Pittsburgh to Cincinnati, a distance of 470 miles, averages about 7 days; and for discharges of more than 200,000 cfs, the travel time decreases very slowly with increasing discharge. When the discharge is 30,000 cfs, travel time is about 28 days; and for discharges of less than 30,000 cfs, the travel time increases very rapidly with decreasing discharge. Estimates of travel time at low discharge are subject to large errors. Statistical analysis of the possible variations of upstream discharge for a given discharge at Cincinnati indicates that the shortest probable travel time from Pittsburgh to Cincinnati ranges from 56 percent of that under average conditions when the discharge at Cincinnati is 15,000 cfs to 93 percent of that under average conditions when the discharge at Cincinnati is 894,000 cfs. A chart showing the time distribution of flow at Cincinnati is presented so that the probable travel time of Ohio River water can be determined for any time of the year. This chart provides information which, when applied to the time-of-travel chart, shows that the most probable travel time of water from Pittsburgh to Cincinnati ranges from 160 hours in February to 1,250 hours in September. Also presented is a flow-duration curve that can be used to predict future discharges and, subsequently, times of travel, for use in long-range planning

  6. Time-instant sampling based encoding of time-varying acoustic spectrum

    NASA Astrophysics Data System (ADS)

    Sharma, Neeraj Kumar

    2015-12-01

    The inner ear has been shown to characterize an acoustic stimuli by transducing fluid motion in the inner ear to mechanical bending of stereocilia on the inner hair cells (IHCs). The excitation motion/energy transferred to an IHC is dependent on the frequency spectrum of the acoustic stimuli, and the spatial location of the IHC along the length of the basilar membrane (BM). Subsequently, the afferent auditory nerve fiber (ANF) bundle samples the encoded waveform in the IHCs by synapsing with them. In this work we focus on sampling of information by afferent ANFs from the IHCs, and show computationally that sampling at specific time instants is sufficient for decoding of time-varying acoustic spectrum embedded in the acoustic stimuli. The approach is based on sampling the signal at its zero-crossings and higher-order derivative zero-crossings. We show results of the approach on time-varying acoustic spectrum estimation from cricket call signal recording. The framework gives a time-domain and non-spatial processing perspective to auditory signal processing. The approach works on the full band signal, and is devoid of modeling any bandpass filtering mimicking the BM action. Instead, we motivate the approach from the perspective of event-triggered sampling by afferent ANFs on the stimuli encoded in the IHCs. Though the approach gives acoustic spectrum estimation but it is shallow on its complete understanding for plausible bio-mechanical replication with current mammalian auditory mechanics insights.

  7. Analytical solutions of travel time to a pumping well with variable evapotranspiration.

    PubMed

    Chen, Tian-Fei; Wang, Xu-Sheng; Wan, Li; Li, Hailong

    2014-01-01

    Analytical solutions of groundwater travel time to a pumping well in an unconfined aquifer have been developed in previous studies, however, the change in evapotranspiration was not considered. Here, we develop a mathematical model of unconfined flow toward a discharge well with redistribution of groundwater evapotranspiration for travel time analysis. Dependency of groundwater evapotranspiration on the depth to water table is described using a linear formula with an extinction depth. Analytical solutions of groundwater level and travel time are obtained. For a typical hypothetical example, these solutions perfectly agree with the numerical simulation results based on MODFLOW and MODPATH. As indicated in a dimensionless framework, a lumped parameter which is proportional to the pumping rate controls the distributions of groundwater evapotranspiration rate and the travel time along the radial direction. PMID:23710800

  8. IYL Blog: Astronomers travel in time and space with light

    NASA Technical Reports Server (NTRS)

    Mather, John C.

    2015-01-01

    As an astronomer, I use light to travel through the universe, and to look back in time to when the universe was young. So do you! All of us see things as they were when the light was emitted, not as they are now. The farthest thing you can easily see without a telescope is the Andromeda Nebula, which is a galaxy like the Milky Way, about 2.5 million light years away. You see it as it was 2.5 million years ago, and we really don't know what it looks like today; the disk will have rotated a bit, new stars will have been born, there could have been all kinds of exploding stars, and the black hole in the middle could be lighting up. People may be skeptical of the Big Bang theory, even though we have a TV show named for it, but we (I should say Penzias and Wilson) measured its heat radiation 51 years ago at Bell Telephone Labs in New Jersey. Their discovery marks the beginning of the era of cosmology as a measurement science rather than speculation. Penzias and Wilson received the Nobel Prize in 1978 for their finding, which had been predicted in 1948 by Alpher and Herman. By the way, heat radiation is just another form of light - we call it radiation because we can't see it, but it's exactly the same phenomenon of electromagnetic waves, and the only difference is the wavelength. In the old days of analog television, if you tuned your TV in between channels, about 1% of the snow that you could see came from the Big Bang. So when we look at the heat radiation of the early universe, we really are gazing right at what seems to us a cosmic fireball, which surrounds us completely. It's a bit of an illusion; if you can imagine what astronomers in other galaxies would see, they would also feel surrounded by the fireball, and they would also think they were in the middle. So from a mathematical version of imagination, we conclude that there is no observable center and no edge of our universe, and that the heat of the fireball fills the entire universe uniformly. Astronomers are

  9. A new aerodynamic integral equation based on an acoustic formula in the time domain

    NASA Technical Reports Server (NTRS)

    Farassat, F.

    1984-01-01

    An aerodynamic integral equation for bodies moving at transonic and supersonic speeds is presented. Based on a time-dependent acoustic formula for calculating the noise emanating from the outer portion of a propeller blade travelling at high speed (the Ffowcs Williams-Hawking formulation), the loading terms and a conventional thickness source terms are retained. Two surface and three line integrals are employed to solve an equation for the loading noise. The near-field term is regularized using the collapsing sphere approach to obtain semiconvergence on the blade surface. A singular integral equation is thereby derived for the unknown surface pressure, and is amenable to numerical solutions using Galerkin or collocation methods. The technique is useful for studying the nonuniform inflow to the propeller.

  10. Time-of-travel data for Nebraska streams, 1968 to 1977

    USGS Publications Warehouse

    Petri, L.R.

    1984-01-01

    This report documents the results of 10 time-of-travel studies, using ' dye-tracer ' methods, conducted on five streams in Nebraska during the period 1968 to 1977. Streams involved in the studies were the North Platte, North Loup, Elkhorn, and Big Blue Rivers and Salt Creek. Rhodamine WT dye in a 20 percent solution was used as the tracer for all 10 time-of-travel studies. Water samples were collected at several points below each injection site. Concentrations of dye in the samples were measured by determining fluorescence of the sample and comparing that value to fluorescence-concentration curves. Stream discharges were measured before and during each study. Results of each time-by-travel study are shown on two tables and on graph. The first table shows water discharge at injection and sampling sites, distance between sites, and time and rate of travel of the dye between sites. The second table provides descriptions of study sites, amounts of dye injected in the streams, actual sampling times, and actual concentrations of dye detected. The graphs for each time-of-travel study provide indications of changing travel rates between sampling sites, information on length of dye clouds, and times for dye passage past given points. (USGS)

  11. Racial disparities in travel time to radiotherapy facilities in the Atlanta metropolitan area.

    PubMed

    Peipins, Lucy A; Graham, Shannon; Young, Randall; Lewis, Brian; Flanagan, Barry

    2013-07-01

    Low-income women with breast cancer who rely on public transportation may have difficulty in completing recommended radiation therapy due to inadequate access to radiation facilities. Using a geographic information system (GIS) and network analysis we quantified spatial accessibility to radiation treatment facilities in the Atlanta, Georgia metropolitan area. We built a transportation network model that included all bus and rail routes and stops, system transfers and walk and wait times experienced by public transportation system travelers. We also built a private transportation network to model travel times by automobile. We calculated travel times to radiation therapy facilities via public and private transportation from a population-weighted center of each census tract located within the study area. We broadly grouped the tracts by low, medium and high household access to a private vehicle and by race. Facility service areas were created using the network model to map the extent of areal coverage at specified travel times (30, 45 and 60 min) for both public and private modes of transportation. The median public transportation travel time to the nearest radiotherapy facility was 56 min vs. approximately 8 min by private vehicle. We found that majority black census tracts had longer public transportation travel times than white tracts across all categories of vehicle access and that 39% of women in the study area had longer than 1 h of public transportation travel time to the nearest facility. In addition, service area analyses identified locations where the travel time barriers are the greatest. Spatial inaccessibility, especially for women who must use public transportation, is one of the barriers they face in receiving optimal treatment. PMID:23726213

  12. Bifurcations of nonlinear ion acoustic travelling waves in the frame of a Zakharov-Kuznetsov equation in magnetized plasma with a kappa distributed electron

    SciTech Connect

    Kumar Samanta, Utpal; Saha, Asit; Chatterjee, Prasanta

    2013-05-15

    Bifurcations of nonlinear propagation of ion acoustic waves (IAWs) in a magnetized plasma whose constituents are cold ions and kappa distributed electron are investigated using a two component plasma model. The standard reductive perturbation technique is used to derive the Zakharov-Kuznetsov (ZK) equation for IAWs. By using the bifurcation theory of planar dynamical systems to this ZK equation, the existence of solitary wave solutions and periodic travelling wave solutions is established. All exact explicit solutions of these travelling waves are determined. The results may have relevance in dense space plasmas.

  13. Application of time reversal acoustics focusing for nonlinear imaging ms

    NASA Astrophysics Data System (ADS)

    Sarvazyan, Armen; Sutin, Alexander

    2001-05-01

    Time reversal acoustic (TRA) focusing of ultrasound appears to be an effective tool for nonlinear imaging in industrial and medical applications because of its ability to efficiently concentrate ultrasonic energy (close to diffraction limit) in heterogeneous media. In this study, we used two TRA systems to focus ultrasonic beams with different frequencies in coinciding focal points, thus causing the generation of ultrasonic waves with combination frequencies. Measurements of the intensity of these combination frequency waves provide information on the nonlinear parameter of medium in the focal region. Synchronized stirring of two TRA focused beams enables obtaining 3-D acoustic nonlinearity images of the object. Each of the TRA systems employed an aluminum resonator with piezotransducers glued to its facet. One of the free facets of each resonator was submerged into a water tank and served as a virtual phased array capable of ultrasound focusing and beam steering. To mimic a medium with spatially varying acoustical nonlinearity a simplest model such as a microbubble column in water was used. Microbubbles were generated by electrolysis of water using a needle electrode. An order of magnitude increase of the sum frequency component was observed when the ultrasound beams were focused in the area with bubbles.

  14. Computation of instantaneous and time-averaged active acoustic intensity field around rotating source

    NASA Astrophysics Data System (ADS)

    Mao, Yijun; Xu, Chen; Qi, Datong

    2015-02-01

    A vector aeroacoustics method is developed to analyze the acoustic energy flow path from the rotating source. In this method, the instantaneous and time-averaged active acoustic intensity vectors are evaluated from the time-domain and frequency-domain acoustic pressure and acoustic velocity formulations, respectively. With the above method, the acoustic intensity vectors and the acoustic energy streamlines are visualized to investigate the propagation feature of the noise radiated from the monopole and dipole point sources and the rotor in subsonic rotation. The result reveals that a portion of the acoustic energy spirals many circles before moving towards the far field, and another portion of the acoustic energy firstly flows inward along the radial direction and then propagates along the axial direction. Further, an acoustic black hole exists in the plane of source rotation, from which the acoustic energy cannot escape once the acoustic energy flows into it. Moreover, by visualizing the acoustic intensity field around the rotating sources, the acoustic-absorption performance of the acoustic liner built in the casing and centerbody is discussed.

  15. Highly focused high-frequency travelling surface acoustic waves (SAW) for rapid single-particle sorting.

    PubMed

    Collins, David J; Neild, Adrian; Ai, Ye

    2016-02-01

    High-speed sorting is an essential process in a number of clinical and research applications, where single cells, droplets and particles are segregated based on their properties in a continuous flow. With recent developments in the field of microscale actuation, there is increasing interest in replicating the functions available to conventional fluorescence activated cell sorting (FACS) flow cytometry in integrated on-chip systems, which have substantial advantages in cost and portability. Surface acoustic wave (SAW) devices are ideal for many acoustofluidic applications, and have been used to perform such sorting at rates on the order of kHz. Essential to the accuracy of this sorting, however, is the dimensions of the region over which sorting occurs, where a smaller sorting region can largely avoid inaccurate sorting across a range of sample concentrations. Here we demonstrate the use of flow focusing and a highly focused SAW generated by a high-frequency (386 MHz), 10 μm wavelength set of focused interdigital transducers (FIDTs) on a piezoelectric lithium niobate substrate, yielding an effective sorting region only ~25 μm wide, with sub-millisecond pulses generated at up to kHz rates. Furthermore, because of the use of high frequencies, actuation of particles as small as 2 μm can be realized. Such devices represent a substantial step forward in the evolution of highly localized forces for lab-on-a-chip microfluidic applications. PMID:26646200

  16. Quantifying groundwater travel time near managed recharge operations using 35S as an intrinsic tracer

    DOE PAGESBeta

    Urióstegui, Stephanie H.; Bibby, Richard K.; Esser, Bradley K.; Clark, Jordan F.

    2016-04-23

    By identifying groundwater retention times near managed aquifer recharge (MAR) facilities is a high priority for managing water quality, especially for operations that incorporate recycled wastewater. In order to protect public health, California guidelines for Groundwater Replenishment Reuse Projects require a minimum 2–6 month subsurface retention time for recycled water depending on the level of disinfection, which highlights the importance of quantifying groundwater travel times on short time scales. This study developed and evaluated a new intrinsic tracer method using the naturally occurring radioisotope sulfur-35 (35S). The 87.5 day half-life of 35S is ideal for investigating groundwater travel times onmore » the <1 year timescale of interest to MAR managers. Natural concentrations of 35S found in water as dissolved sulfate (35SO4) were measured in source waters and groundwater at the Rio Hondo Spreading Grounds in Los Angeles County, CA, and Orange County Groundwater Recharge Facilities in Orange County, CA. 35SO4 travel times are comparable to travel times determined by well-established deliberate tracer studies. The study also revealed that 35SO4 in MAR source water can vary seasonally and therefore careful characterization of 35SO4 is needed to accurately quantify groundwater travel time. But, more data is needed to fully assess whether or not this tracer could become a valuable tool for managers.« less

  17. Acoustic thermometric reconstruction of a time-varying temperature profile

    NASA Astrophysics Data System (ADS)

    Anosov, A. A.; Kazanskii, A. S.; Mansfel'd, A. D.; Sharakshane, A. S.

    2016-03-01

    The time-varying temperature profiles were reconstructed in an experiment using a thermal acoustic radiation receiving array containing 14 sensors. The temperature was recovered by performing similar experiments using plasticine, as well as in vivo with a human hand. Plasticine preliminarily heated up to 36.5°C and a human hand were placed into water for 50 s at a temperature of 20°C. The core temperature of the plasticine was independently measured using thermocouples. The spatial resolution of the reconstruction in the lateral direction was determined by the distance between neighboring sensors and was equal to10 mm; the averaging time was 10 s. The error in reconstructing the core temperature determined in the experiment with plasticine was 0.5 K. The core temperature of the hand changed with time (in 50 s it decreased from 35 to 34°C) and space (the mean square deviation was 1.5 K). The experiment with the hand revealed that multichannel detection of thermal acoustic radiation using a compact 45 × 36 mm array to reconstruct the temperature profile could be performed during medical procedures.

  18. Object detection and imaging with acoustic time reversal mirrors

    NASA Astrophysics Data System (ADS)

    Fink, Mathias

    1993-11-01

    Focusing an acoustic wave on an object of unknown shape through an inhomogeneous medium of any geometrical shape is a challenge in underground detection. Optimal detection and imaging of objects needs the development of such focusing techniques. The use of a time reversal mirror (TRM) represents an original solution to this problem. It realizes in real time a focusing process matched to the object shape, to the geometries of the acoustic interfaces and to the geometries of the mirror. It is a self adaptative technique which compensates for any geometrical distortions of the mirror structure as well as for diffraction and refraction effects through the interfaces. Two real time 64 and 128 channel prototypes have been built in our laboratory and TRM experiments demonstrating the TRM performance through inhomogeneous solid and liquid media are presented. Applications to medical therapy (kidney stone detection and destruction) and to nondestructive testing of metallurgical samples of different geometries are described. Extension of this study to underground detection and imaging will be discussed.

  19. Traveling length and minimal traveling time for flow through percolation networks with long-range spatial correlations

    NASA Astrophysics Data System (ADS)

    Araújo, A. D.; Moreira, A. A.; Makse, H. A.; Stanley, H. E.; Andrade, J. S.

    2002-10-01

    We study the distributions of traveling length l and minimal traveling time tmin through two-dimensional percolation porous media characterized by long-range spatial correlations. We model the dynamics of fluid displacement by the convective movement of tracer particles driven by a pressure difference between two fixed sites (``wells'') separated by Euclidean distance r. For strongly correlated pore networks at criticality, we find that the probability distribution functions P(l) and P(tmin) follow the same scaling ansatz originally proposed for the uncorrelated case, but with quite different scaling exponents. We relate these changes in dynamical behavior to the main morphological difference between correlated and uncorrelated clusters, namely, the compactness of their backbones. Our simulations reveal that the dynamical scaling exponents dl and dt for correlated geometries take values intermediate between the uncorrelated and homogeneous limiting cases, where l*~rdl and t*min~rdt, and l* and t*min are the most probable values of l and tmin, respectively.

  20. Assessment of Smolt Condition for Travel Time Analysis, 1991-1992 Annual Report.

    SciTech Connect

    Maule, Alec G.; Beeman, John W.; Schrock, Robin M.

    1994-05-01

    Regression techniques were used to determine the effects of several biotic and abiotic variables on the migration rates of juvenile spring chinook salmon and steelhead in the Columbia and Snake rivers. Comparisons of the effects of river flow and smoltification, assessed using gill Na{sup +}-K{sup +} ATPase activity, were of primary interest. Day of the year, water temperature, change in flow, condition factor, and fork length were also considered as independent variables. Groups of fish were sampled to assess smoltification 2-3 times per week during the spring outmigrations during 1989-1992. These groups were assumed to be representative of other fish which were PIT-tagged and released as a part of the Smolt Monitoring Program in the Columbia Basin. River flow, gill ATPase activity, condition factor, water temperature, and change in flow were significant variables in regressions predicting the time for juvenile spring chinook salmon to travel between specific points (travel time), whereas river flow was the only significant contributor to models describing travel times of steelhead. Predicted travel times of wild steelhead were shorter than those of hatchery steelhead. River flow was the only variable common to all regression equations. Based on the characteristic, changes in river flow would be the most logical means to decrease travel times of both juvenile spring chinook salmon and steelhead in the Columbia and Snake rivers.

  1. Automatic time alignment of phonemes using acoustic- phonetic information

    NASA Astrophysics Data System (ADS)

    Hosom, John-Paul

    2000-10-01

    One requirement for researching and building spoken language systems is the availability of speech data that have been labeled and time-aligned at the phonetic level. Although manual phonetic alignment is considered more accurate than automatic methods, it is too time consuming to be commonly used for aligning large corpora. One reason for the greater accuracy of human labeling is that humans are better able to locate distinct events in the speech signal that correspond to specific phonetic characteristics. The development of the proposed method was motivated by the belief that if an automatic alignment method were to use such acoustic-phonetic information, its accuracy would become closer to that of human performance. Our hypothesis is that the integration of acoustic-phonetic information into a state-of-the-art automatic phonetic alignment system will significantly improve its accuracy and robustness. In developing an alignment system that uses acoustic- phonetic information, we use a measure of intensity discrimination in detecting voicing, glottalization, and burst-related impulses. We propose and implement a method of voicing determination that has average accuracy of 97.25% (which is an average 58% reduction in error over a baseline system), a fundamental-frequency extraction method with average absolute error of 3.12 Hz (representing a 45% reduction in error), and a method for detecting burst-related impulses with accuracy of 86.8% on the TIMIT corpus (which is a 45% reduction in error compared to reported results). In addition to these features, we propose a means of using acoustics-dependent transition information in the HMM framework. One aspect of successful implementation of this method is the use of distinctive phonetic features. To evaluate the proposed and baseline phonetic alignment systems, we measure agreement with manual alignments and robustness. On the TIMIT corpus, the proposed method has 92.57% agreement within 20 msec. The average agreement

  2. Time of travel of solutes in selected reaches of Ohio streams, 1973 and 1975

    USGS Publications Warehouse

    Westfall, Arthur O.

    1977-01-01

    The basic field data for time-of-travel measurements on six streams in Ohio are presented. In gereral, additional data on stream cross sections, tributary inflows, and chemical analyses for mainstream and tributary flows are given. Insufficient data were obtained to establish time-distance or time-discharge relationships.

  3. A time domain sampling method for inverse acoustic scattering problems

    NASA Astrophysics Data System (ADS)

    Guo, Yukun; Hömberg, Dietmar; Hu, Guanghui; Li, Jingzhi; Liu, Hongyu

    2016-06-01

    This work concerns the inverse scattering problems of imaging unknown/inaccessible scatterers by transient acoustic near-field measurements. Based on the analysis of the migration method, we propose efficient and effective sampling schemes for imaging small and extended scatterers from knowledge of time-dependent scattered data due to incident impulsive point sources. Though the inverse scattering problems are known to be nonlinear and ill-posed, the proposed imaging algorithms are totally "direct" involving only integral calculations on the measurement surface. Theoretical justifications are presented and numerical experiments are conducted to demonstrate the effectiveness and robustness of our methods. In particular, the proposed static imaging functionals enhance the performance of the total focusing method (TFM) and the dynamic imaging functionals show analogous behavior to the time reversal inversion but without solving time-dependent wave equations.

  4. The time-variant nature of catchment travel time pdf's: implications for the intepretation of hydro-chemical signals

    NASA Astrophysics Data System (ADS)

    Benettin, P.; Botter, G.; Bertuzzo, E.; Rinaldo, A.

    2012-12-01

    Catchments are highly dynamical systems forced by stochastic precipitation, and characterized by time-variable transpiration rates and discharges. Despite this, streamflow hydrochemical signals have been frequently interpreted through stationary convolutions between rainfall concentrations and time-invariant transfer functions, on the basis of which the properties of the travel time pdf were inferred. In this contribution we define the intrinsic dynamical nature of travel and residence time distributions, which explains the variability of the mechanisms through which catchments retain and release old and event water, transporting solutes and pollutants to receiving water bodies. General expressions for travel and residence time pdf's are derived as a function of the underlying rainfall-soil-vegetation dynamics and the mixing processes occurring along streamflow production and plant uptake. The work highlights the dependence of water/solute travel times on key eco-hydrological processes (especially transpiration and uptake), and investigates the impact of the time variance in terms of the identification of travel time pdfs and catchment functioning. This is done by means of numerical experiments, and through real-world applications based on the analysis of stream concentrations of chlorides/pesticides in agricultural catchments.

  5. Generation and Propagation of a Picosecond Acoustic Pulse at a Buried Interface: Time-Resolved X-Ray Diffraction Measurements

    SciTech Connect

    Lee, S.H.; Cavalieri, A.L.; Fritz, D.M.; Swan, M.C.; Reis, D.A.; Hegde, R.S.; Reason, M.; Goldman, R.S.

    2005-12-09

    We report on the propagation of coherent acoustic wave packets in (001) surface oriented Al{sub 0.3}Ga{sub 0.7}As/GaAs heterostructure, generated through localized femtosecond photoexcitation of the GaAs. Transient structural changes in both the substrate and film are measured with picosecond time-resolved x-ray diffraction. The data indicate an elastic response consisting of unipolar compression pulses of a few hundred picosecond duration traveling along [001] and [001] directions that are produced by predominately impulsive stress. The transmission and reflection of the strain pulses are in agreement with an acoustic mismatch model of the heterostructure and free-space interfaces.

  6. Dye Tracer Tests to Determine Time-of-Travel in Iowa Streams, 1990-2006

    USGS Publications Warehouse

    Christiansen, Daniel E.

    2009-01-01

    Dye-tracing tests have been used by the U.S. Geological Survey, Iowa Water Science Center to determine the time-of-travel in selected Iowa streams from 1990-2006. Time-of-travel data are tabulated for 309 miles of stream reaches in four Iowa drainage basins: the Des Moines, Raccoon, Cedar, and Turkey Rivers. Time-of-travel was estimated in the Des Moines River, Fourmile Creek, North Raccoon River, Raccoon River, Cedar River, and Roberts Creek. Estimation of time-of-travel is important for environmental studies and in determining fate of agricultural constituents and chemical movement through a waterway. The stream reaches range in length from slightly more than 5 miles on Fourmile Creek, to more than 137 miles on the North Raccoon River. The travel times during the dye-tracer tests ranged from 7.5 hours on Fourmile Creek to as long as 200 hours on Roberts Creek; velocities ranged from less than 4.50 feet per minute on Roberts Creek to more than 113 feet per minute on the Cedar River.

  7. Effective Time Management: Surgery, Research, Service, Travel, Fitness, and Family

    PubMed Central

    Porta, C. Rees; Anderson, Michael R.; Steele, Scott R.

    2013-01-01

    Over 1,500 years ago, the St. Benedictine Monks used planning and strict schedules to increase their productivity. Since then, surgeons have developed several different strategies to manage our time effectively. Finding a balance among career, family, and hobbies is essential for maintaining satisfaction and optimizing productivity. Several recurring themes throughout the medical literature offer potential solutions to help maximize the little time surgeons possess. In this article, we will explore some of the methods and strategies available to help surgeons minimize waste and make the most of the most precious commodity we have—our time. PMID:24436684

  8. St. Augustine’s Reflections on Memory and Time and the Current Concept of Subjective Time in Mental Time Travel

    PubMed Central

    Manning, Liliann; Cassel, Daniel; Cassel, Jean-Christophe

    2013-01-01

    Reconstructing the past and anticipating the future, i.e., the ability of travelling in mental time, is thought to be at the heart of consciousness and, by the same token, at the center of human cognition. This extraordinary mental activity is possible thanks to the ability of being aware of ‘subjective time’. In the present study, we attempt to trace back the first recorded reflections on the relations between time and memory, to the end of the fourth century’s work, the Confessions, by the theologian and philosopher, St. Augustine. We concentrate on Book 11, where he extensively developed a series of articulated and detailed observations on memory and time. On the bases of selected paragraphs, we endeavor to highlight some concepts that may be considered as the product of the first or, at least, very early reflections related to our current notions of subjective time in mental time travel. We also draw a fundamental difference inherent to the frameworks within which the questions were raised. The contribution of St. Augustine on time and memory remains significant, notwithstanding the 16 centuries elapsed since it was made, likely because of the universality of its contents. PMID:25379236

  9. Tomography and Methods of Travel-Time Calculation for Regional Seismic Location

    SciTech Connect

    Myers, S; Ballard, S; Rowe, C; Wagoner, G; Antolik, M; Phillips, S; Ramirez, A; Begnaud, M; Pasyanos, M E; Dodge, D A; Flanagan, M P; Hutchenson, K; Barker, G; Dwyer, J; Russell, D

    2007-07-02

    We are developing a laterally variable velocity model of the crust and upper mantle across Eurasia and North Africa to reduce event location error by improving regional travel-time prediction accuracy. The model includes both P and S velocities and we describe methods to compute travel-times for Pn, Sn, Pg, and Lg phases. For crustal phases Pg and Lg we assume that the waves travel laterally at mid-crustal depths, with added ray segments from the event and station to the mid crustal layer. Our work on Pn and Sn travel-times extends the methods described by Zhao and Xie (1993). With consideration for a continent scale model and application to seismic location, we extend the model parameterization of Zhao and Xie (1993) by allowing the upper-mantle velocity gradient to vary laterally. This extension is needed to accommodate the large variation in gradient that is known to exist across Eurasia and North African. Further, we extend the linear travel-time calculation method to mantle-depth events, which is needed for seismic locators that test many epicenters and depths. Using these methods, regional travel times are computed on-the-fly from the velocity model in milliseconds, forming the basis of a flexible travel time facility that may be implemented in an interactive locator. We use a tomographic technique to improve upon a laterally variable starting velocity model that is based on Lawrence Livermore and Los Alamos National Laboratory model compilation efforts. Our tomographic data set consists of approximately 50 million regional arrivals from events that meet the ground truth (GT) criteria of Bondar et al. (2004) and other non-seismic constraints. Each datum is tested to meet strict quality control standards that include comparison with established distance-dependent travel-time residual populations relative to the IASPIE91 model. In addition to bulletin measurements, nearly 50 thousand arrival measurements were made at the national laboratories. The tomographic

  10. Joint inversion of 3D crustal structure with ambient noise and earthquake body wave travel time

    NASA Astrophysics Data System (ADS)

    Li, Z.; Ni, S.; Chong, J.; Wang, X.

    2012-12-01

    Surface wave tomography based on the noise correlation function of seismic ambient noise has been widely used in studies of crustal and mantle structure . However, the periods of surface wave dispersions in the ambient noise tomography are typically less than 40 s, which limits its resolution on the lower crust. Travel times of earthquake body waves, such as Sg and SmS, could provide additional constraints to the crustal structure, especially to the lower crust due to the ray paths of SmS traveling through the lower crust twice. Here, we proposed a joint inversion method for 3D crustal structure with ambient noise and earthquake body wave travel time data, with the goal of providing better constraints and resolutions on the whole crust. We constructed the linear equations for joint inversion of crustal S velocity structure with the surface wave dispersion and body wave travel time data, and solved the equations with LSQR algorithm. Different weighting and damping factors, together with smoothing constraints, are adopted for surface wave dispersion and body wave travel time data to fit both dataset simultaneously. Synthetics experiments showed that the joint inversion could resolve the crust structure better than sole tomography of ambient noise or body wave travel time. We conducted the joint inversion around the Yangtze block in the eastern China. Rayleigh wave dispersions are extracted from the seismic ambient noise tomography by Zheng et al (2011) in this area. The body waves (e.g., Sg, SmS, Sn) are coherent to be identified and their travel times are measured with accuracy from high quality waveforms of some recent local earthquakes in this area. In order to minimize the travel time uncertainties, the focal depth and epicenter of these local earthquakes were resolved by depth phases and temporary aftershock observations. The result from joint inversion suggests that the crustal velocity structure, especially the lower crust, was well improved, which not only

  11. Measurement of time of travel and dispersion in streams by dye tracing

    USGS Publications Warehouse

    Hubbard, E.F.; Kilpatrick, F.A.; Martens, L.A.; Wilson, J.F., Jr.

    1982-01-01

    The use of fluorescent dyes and tracing techniques provides a means for measuring the time-of-travel and dispersion characteristics of steady and gradually varied flow in streams. Measurements of the dispersion and concentration of dyes give insight into the behavior of soluble contaminants that may be introduced into a stream. This manual describes methods of measuring time of travel of water and waterborne solutes by dye tracing. The fluorescent dyes, measuring equipment used, and the field and laboratory procedures are also described. Methods of analysis and presentation to illustrate time-oftravel and dispersion characteristics of streams are provided.

  12. Being (un)moved by mental time travel.

    PubMed

    Stins, John; Habets, Laura; Jongeling, Rowie; Cañal-Bruland, Rouwen

    2016-05-01

    Mental imagery of events in the past or future, and of unpleasant or pleasant events, has been found to lead to spontaneous backward/forward bodily motions. Both time and emotion are represented along a spatial continuum, and activation of these representations seems to be simulated in spontaneous changes in body posture. We performed a conceptual replication and extension of an earlier study by Miles, Nind, and Macrae (2010) who reported clear postural effects when thinking of the past and the future. We additionally tested whether changes in posture appear when thinking of an emotional event. Volunteers engaged in mental imagery, involving combinations of time intervals and emotions. We simultaneously recorded center-of-pressure (COP) changes. Results revealed neither an effect of imagery of time nor of emotion on body posture. We conclude that embodied effects of imagery of abstract items on body posture may be less robust than suggested by previous literature. PMID:27152929

  13. Interpretation of Helioseismic Travel Times. Sensitivity to Sound Speed, Pressure, Density, and Flows

    NASA Astrophysics Data System (ADS)

    Burston, Raymond; Gizon, Laurent; Birch, Aaron C.

    2015-12-01

    Time-distance helioseismology uses cross-covariances of wave motions on the solar surface to determine the travel times of wave packets moving from one surface location to another. We review the methodology to interpret travel-time measurements in terms of small, localised perturbations to a horizontally homogeneous reference solar model. Using the first Born approximation, we derive and compute 3D travel-time sensitivity (Fréchet) kernels for perturbations in sound-speed, density, pressure, and vector flows. While kernels for sound speed and flows had been computed previously, here we extend the calculation to kernels for density and pressure, hence providing a complete description of the effects of solar dynamics and structure on travel times. We treat three thermodynamic quantities as independent and do not assume hydrostatic equilibrium. We present a convenient approach to computing damped Green's functions using a normal-mode summation. The Green's function must be computed on a wavenumber grid that has sufficient resolution to resolve the longest lived modes. The typical kernel calculations used in this paper are computer intensive and require on the order of 600 CPU hours per kernel. Kernels are validated by computing the travel-time perturbation that results from horizontally-invariant perturbations using two independent approaches. At fixed sound-speed, the density and pressure kernels are approximately related through a negative multiplicative factor, therefore implying that perturbations in density and pressure are difficult to disentangle. Mean travel-times are not only sensitive to sound-speed, density and pressure perturbations, but also to flows, especially vertical flows. Accurate sensitivity kernels are needed to interpret complex flow patterns such as convection.

  14. Assessment of Smolt Condition for Travel Time Analysis Project, 1987-1997 Project Review.

    SciTech Connect

    Schrock, Robin M.; Hans, Karen M.; Beeman, John W.

    1997-12-01

    The assessment of Smolt Condition for Travel Time Analysis Project (Bonneville Power Administration Project 87-401) monitored attributes of salmonid smolt physiology in the Columbia and Snake River basins from 1987 to 1997, under the Northwest Power Planning Council Fish and Wildlife Program, in cooperation with the Smolt Monitoring Program of the Fish Passage Center. The primary goal of the project was to investigate the physiological development of juvenile salmonids related to migration rates. The assumption was made that the level of smolt development, interacting with environmental factos such as flow, would be reflected in travel times. The Fish Passage Center applied the physiological measurements of smolt condition to Water Budget management, to regulate flows so as to decrease travel time and increase survival.

  15. Travel with a Time Lord: Using Media to Enhance Literacy

    ERIC Educational Resources Information Center

    Harrett, Jacqueline; Benjamin, Theresa

    2009-01-01

    This article reports on a UKLA-funded project in which a group of 10 teachers in South Wales were involved. The televised science fiction drama "Doctor Who" was chosen as the theme as it was based on popular culture as well as being of local and national interest. The main character in this television drama is an alien who can fly through time and…

  16. Time of travel of solutes in the Vermilion River, Louisiana

    USGS Publications Warehouse

    Calandro, A.J.

    1981-01-01

    Dye-tracer studies were made in November 1978 and in June 1979 to define streamflow patterns in the Vermilion River. For the November 1978 study the tracer was injected at two locations, Surrey Street in Lafayette and about 7 miles downstream at State Highway 3073; the discharge at Surrey Street at the time of injection was 218 cubic feet per second. The two dye clouds merged at Broussard Cemetery, about 12.2 miles downstream from Surrey Street, after an elapsed time of about 270 hours. After 438 hours the dye cloud extended form the Abbeville bridge (Louisiana Highway 14 Bypass) upstream about 14.5 miles. In June 1979, a tracer was injected into the river at Surrey Street at Lafayette; the discharge at Surrey Street at the time of injection was 161 cubic feet per second. Forty-two hours after injection the leading edge of the tracer was located at the Milton pumping plant, 14 miles downstream from the injection site. The average pumping rate of the plant during the study was 440 cubic feet per second. Ninety hours after injection, no indication of the tracer was found in the river, but the tracer was found in a rice-irrigation cannal at State Highway 14, about 10 miles west of Abbeville. (USGS)

  17. Viruses as groundwater tracers: using ecohydrology to characterize short travel times in aquifers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Viruses are attractive tracers of short (<3 yr) travel times in aquifers because they have unique genetic signatures, are detectable in trace quantities, and are mobile and stable in groundwater. Virus “snaphots” result from infection and disappearance over time as a community develops resistance. T...

  18. Time of travel of water in the Potomac River, Cumberland to Washington

    USGS Publications Warehouse

    Searcy, James K.; Davis, Luther C.

    1961-01-01

    This report introduces a graphical procedure for estimating the time required for water to travel down the Potomac River in the reach extending from Cumberland, Md., to Washington, D.C. The time of travel varies with the flow of the river; so the stage of the river at the lower end of the reach--the gaging station on the Potomac River near Washington, D.C.--is used as an index of flow. To develop the procedure, the reach between Cumberland and Washington was divided into five subreaches, delineated by six gaging stations. The average of the mean velocities of the river at adjacent gaging stations was used as the mean velocity in .the intervening subreach, and a unit mass of water was assumed to travel at a rate equal to the mean velocity of the river. A statistical analysis of possible variations in travel time between Cumberland and Washington indicated that the shortest travel time corresponding to a given stage near Washington would be about 80 percent of the most probable travel time. The report includes a flow-duration curve and a flow-frequency chart for use in estimating discharge at the gaging station near Washington and subsequently the travel time of Potomac River water without knowledge of stage. The flow-duration curve shows the percentage of time during which specified discharges were equaled or exceeded in the past, and it can be used to predict future flow in connection with long-range planning. The flow-frequency chart shows the time distribution of flow by months and can be used to make a more nearly accurate estimate of discharge in any given month than could be made from the flow-duration curve. The method used to develop the time-of-travel charts is described in sufficient detail to make it usable as a guide for similar studies on other rivers, where the velocity of flow is relatively unaffected by dams and pools in the reach being studied.

  19. Computational methods for inverse problems in geophysics: inversion of travel time observations

    USGS Publications Warehouse

    Pereyra, V.; Keller, H.B.; Lee, W.H.K.

    1980-01-01

    General ways of solving various inverse problems are studied for given travel time observations between sources and receivers. These problems are separated into three components: (a) the representation of the unknown quantities appearing in the model; (b) the nonlinear least-squares problem; (c) the direct, two-point ray-tracing problem used to compute travel time once the model parameters are given. Novel software is described for (b) and (c), and some ideas given on (a). Numerical results obtained with artificial data and an implementation of the algorithm are also presented. ?? 1980.

  20. Catchment travel and residence time distributions: a theoretical framework for solute transport modeling

    NASA Astrophysics Data System (ADS)

    Botter, G.; Bertuzzo, E.; Rinaldo, A.

    2011-12-01

    The probability density functions (pdf's) of travel and residence times are key descriptors of the mechanisms through which catchments retain and release old and event water, transporting solutes to receiving water bodies. In this contribution we derive a general stochastic framework applicable to arbitrary catchment control volumes, where time-variable precipitation, evapotranspiration and discharge are assumed to be the major hydrological drivers for water and solutes. A master equation for the residence time pdf is derived and solved analytically, providing expressions for travel and residence time pdf's as a function of input/output fluxes and of the relevant mixing processes occurring along streamflow production and plant upatke. Our solutions suggest intrinsically time variant travel and residence time pdf's through a direct dependence on the underlying hydrological forcings and soil vegetation dynamics. The proposed framework highlights the dependence of water/solute travel times on eco-hydrological processes (especially transpiration and uptake), and integrates age-dating and tracer hydrology techniques by providing a coherent framework for catchment transport models. An application to the release of pesticides from an agricultural watershead is also discussed.

  1. Black Holes Traveling Exhibition: This Time, It's Personal.

    NASA Astrophysics Data System (ADS)

    Dussault, Mary E.; Braswell, E. L.; Sunbury, S.; Wasser, M.; Gould, R. R.

    2012-01-01

    How can you make a topic as abstract as black holes seem relevant to the life of the average museum visitor? In 2009, the Harvard-Smithsonian Center for Astrophysics developed a 2500 square foot interactive museum exhibition, "Black Holes: Space Warps & Time Twists,” with funding from the National Science Foundation and NASA. The exhibition has been visited by more than a quarter million museum-goers, and is about to open in its sixth venue at the Reuben H. Fleet Science Center in San Diego, California. We have found that encouraging visitors to adopt a custom black hole explorer's identity can help to make the science of black holes more accessible and meaningful. The Black Holes exhibition uses networked exhibit technology that serves to personalize the visitor experience, to support learning over time including beyond the gallery, and to provide a rich quantitative source of embedded evaluation data. Visitors entering the exhibition create their own bar-coded "Black Holes Explorer's Card” which they use throughout the exhibition to collect and record images, movies, their own predictions and conclusions, and other black hole artifacts. This digital database of personal discoveries grows as visitors navigate through the gallery, and an automated web-content authoring system creates a personalized online journal of their experience that they can access once they get home. We report here on new intriguing results gathered from data generated by 112,000 visitors across five different venues. For example, an initial review of the data reveals correlations between visitors’ black hole explorer identity choices and their engagement with the exhibition. We will also discuss correlations between learning gains and personalization.

  2. Taming the Exceptional Points of Parity-Time Symmetric Acoustics

    NASA Astrophysics Data System (ADS)

    Dubois, Marc; Shi, Chengzhi; Chen, Yun; Cheng, Lei; Ramezani, Hamidreza; Wang, Yuan; Zhang, Xiang

    Parity-time (PT) symmetric concept and development lead to a wide range of applications including coherent perfect absorbers, single mode lasers, unidirectional cloaking and sensing, and optical isolators. These new applications and devices emerge from the existence of a phase transition in PT symmetric complex-valued potential obtained by balancing gain and loss materials. However, the systematic extension of such devices is adjourned by the key challenge in the management of the complex scattering process within the structure in order to engineer PT phase and exceptional points. Here, based on active acoustic elements, we experimentally demonstrate the simultaneous control of complex-valued potentials and multiple interference inside the structure at any given frequency. This method broadens the scope of applications for PT symmetric devices in many fields including optics, microwaves, electronics, which are crucial for sensing, imaging, cloaking, lasing, absorbing, etc.

  3. Acoustics

    NASA Astrophysics Data System (ADS)

    The acoustics research activities of the DLR fluid-mechanics department (Forschungsbereich Stroemungsmechanik) during 1988 are surveyed and illustrated with extensive diagrams, drawings, graphs, and photographs. Particular attention is given to studies of helicopter rotor noise (high-speed impulsive noise, blade/vortex interaction noise, and main/tail-rotor interaction noise), propeller noise (temperature, angle-of-attack, and nonuniform-flow effects), noise certification, and industrial acoustics (road-vehicle flow noise and airport noise-control installations).

  4. Travel medicine

    PubMed Central

    Aw, Brian; Boraston, Suni; Botten, David; Cherniwchan, Darin; Fazal, Hyder; Kelton, Timothy; Libman, Michael; Saldanha, Colin; Scappatura, Philip; Stowe, Brian

    2014-01-01

    Abstract Objective To define the practice of travel medicine, provide the basics of a comprehensive pretravel consultation for international travelers, and assist in identifying patients who might require referral to travel medicine professionals. Sources of information Guidelines and recommendations on travel medicine and travel-related illnesses by national and international travel health authorities were reviewed. MEDLINE and EMBASE searches for related literature were also performed. Main message Travel medicine is a highly dynamic specialty that focuses on pretravel preventive care. A comprehensive risk assessment for each individual traveler is essential in order to accurately evaluate traveler-, itinerary-, and destination-specific risks, and to advise on the most appropriate risk management interventions to promote health and prevent adverse health outcomes during travel. Vaccinations might also be required and should be personalized according to the individual traveler’s immunization history, travel itinerary, and the amount of time available before departure. Conclusion A traveler’s health and safety depends on a practitioner’s level of expertise in providing pretravel counseling and vaccinations, if required. Those who advise travelers are encouraged to be aware of the extent of this responsibility and to refer all high-risk travelers to travel medicine professionals whenever possible. PMID:25500599

  5. Applicability of Travel- and Exposure-Time Concepts to Nonlinear Bioreactive Transport in Groundwater

    NASA Astrophysics Data System (ADS)

    Arie Cirpka, Olaf; Sanz-Prat, Alicia; Loschko, Matthias; Finkel, Michael; Lu, Chuanhe

    2016-04-01

    Travel-time based concepts of modeling subsurface transport have been established as computationally efficient alternatives to spatially explicit simulation methods. The spatial coordinates are replaced by travel time, resulting in one-dimensional transport with a constant „velocity" of unity. The concept is straight forward in linear transport applications, and under these conditions the results are exact provided that the coefficients of linear transport don't vary in space. In nonlinear transport, mixing can jeopardize the validity of the approach. This holds particularly true for transverse mixing, exchanging solute mass between streamtubes. We have performed systematic analyses of nonlinear bioreactive transport, involving oxygen, nitrate, organic carbon, as well as aerobic and denitrifying bacteria to analyzed under which conditions the errors introduced by travel-time and similar formulations are negligible. In steady-state flows with uniform reactive parameters, an excellent agreement between multi-dimensional reactive transport results, affected by transverse dispersion and flow heterogeneity, and one-dimensional travel-time results could be achieved by mapping the reactive-species concentrations to the multi-dimensional domain according to the local mean groundwater age. Aliasing of local transverse dispersion to macroscopically longitudinal mixing can be addressed by using a distance-dependent longitudinal dispersion coefficient. The approach also works for transient flows as long as the direction of flow remains constant and only the magnitude varies. Under these conditions, the groundwater age for the time-averaged velocity field is an adequate mapping variable, provided that flow transients are accounted for in the one- and multi-dimensional simulations. If the reaction takes place only in specific regions, the time of exposure to the according conditions is a better predictor of reactive transport than the overall travel time. Spatially variable

  6. Wave-equation-based travel-time seismic tomography - Part 1: Method

    NASA Astrophysics Data System (ADS)

    Tong, P.; Zhao, D.; Yang, D.; Yang, X.; Chen, J.; Liu, Q.

    2014-11-01

    In this paper, we propose a wave-equation-based travel-time seismic tomography method with a detailed description of its step-by-step process. First, a linear relationship between the travel-time residual Δt = Tobs-Tsyn and the relative velocity perturbation δ c(x)/c(x) connected by a finite-frequency travel-time sensitivity kernel K(x) is theoretically derived using the adjoint method. To accurately calculate the travel-time residual Δt, two automatic arrival-time picking techniques including the envelop energy ratio method and the combined ray and cross-correlation method are then developed to compute the arrival times Tsyn for synthetic seismograms. The arrival times Tobs of observed seismograms are usually determined by manual hand picking in real applications. Travel-time sensitivity kernel K(x) is constructed by convolving a~forward wavefield u(t,x) with an adjoint wavefield q(t,x). The calculations of synthetic seismograms and sensitivity kernels rely on forward modeling. To make it computationally feasible for tomographic problems involving a large number of seismic records, the forward problem is solved in the two-dimensional (2-D) vertical plane passing through the source and the receiver by a high-order central difference method. The final model is parameterized on 3-D regular grid (inversion) nodes with variable spacings, while model values on each 2-D forward modeling node are linearly interpolated by the values at its eight surrounding 3-D inversion grid nodes. Finally, the tomographic inverse problem is formulated as a regularized optimization problem, which can be iteratively solved by either the LSQR solver or a~nonlinear conjugate-gradient method. To provide some insights into future 3-D tomographic inversions, Fréchet kernels for different seismic phases are also demonstrated in this study.

  7. Local algorithm for computing complex travel time based on the complex eikonal equation

    NASA Astrophysics Data System (ADS)

    Huang, Xingguo; Sun, Jianguo; Sun, Zhangqing

    2016-04-01

    The traditional algorithm for computing the complex travel time, e.g., dynamic ray tracing method, is based on the paraxial ray approximation, which exploits the second-order Taylor expansion. Consequently, the computed results are strongly dependent on the width of the ray tube and, in regions with dramatic velocity variations, it is difficult for the method to account for the velocity variations. When solving the complex eikonal equation, the paraxial ray approximation can be avoided and no second-order Taylor expansion is required. However, this process is time consuming. In this case, we may replace the global computation of the whole model with local computation by taking both sides of the ray as curved boundaries of the evanescent wave. For a given ray, the imaginary part of the complex travel time should be zero on the central ray. To satisfy this condition, the central ray should be taken as a curved boundary. We propose a nonuniform grid-based finite difference scheme to solve the curved boundary problem. In addition, we apply the limited-memory Broyden-Fletcher-Goldfarb-Shanno technology for obtaining the imaginary slowness used to compute the complex travel time. The numerical experiments show that the proposed method is accurate. We examine the effectiveness of the algorithm for the complex travel time by comparing the results with those from the dynamic ray tracing method and the Gauss-Newton Conjugate Gradient fast marching method.

  8. Dispersion and Travel Time of Dissolved and Floating Tracers in Urban Sewers

    NASA Astrophysics Data System (ADS)

    Istók, Balázs; Kristóf, Gergely

    2014-03-01

    Environmental impacts of oil spills affecting urban sewage networks can be eliminated if timely intervention is taken. The design of such actions requires knowledge of the transport of surface pollutants in open channels. In this study we investigated the travel time and dispersion of pollutants by means of tracer experiments in sewage networks and a creek. The travel time of surface tracers has been found to be significantly shorter than that of a bulk flow tracer. The ratio of the travel times of a bulk flow tracer and surface tracers agreed with the known correlations obtained for rivers. An increasing tendency in the ratio of travel times has been observed for increasing bulk flow velocity. A segment-wise dispersion model was implemented in the existing hydraulic model of a sewer system. The simulation results were compared with the experimental observations. The dispersion rate of the bulk flow tracer has been found to obey Taylor's mixing theory for long channels and was more intensive than that of surface tracers in community sewage channels.

  9. International Collaboration to Improve The Regional Seismic Travel Time (RSTT) Model

    NASA Astrophysics Data System (ADS)

    Myers, S. C.; Begnaud, M. L.; Ballard, S.; Bondar, I.; Storchak, D. A.; Given, J. W.; Guendel, F.

    2013-12-01

    The Regional Seismic Travel Time (RSTT) method (Myers et al., 2010) was developed to facilitate the use of regional data in routine seismic monitoring. RSTT improves prediction accuracy for Pn, Pg, Sn, and Lg travel times using a 3-dimensional model of the Earth's crust and laterally varying seismic wave speed in the upper mantle. Upper mantle velocity is parameterization as a linear function of depth, so that travel times can be computed accurately and in real time. Real-time computation on readily available computers is key to the usefulness of the method by seismic centers that utilize today's flexible networks. In areas where the RSTT model is well constrained by tomography (Eurasia and North America) we have demonstrated improvement in event location accuracy. Extension of RSTT tomographic datasets to new regions is being pursued through international outreach efforts that are coordinated between the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO) and the International Seismological Centre (ISC). Our efforts to date have expanded the collection of regionally recorded events with well-constrained hypocenters in South America, Australia, and Africa. We have also incorporated recently published models of crust and upper mantle structure into the RSTT model. Tests in regions sampled by newly compiled data suggest that the RSTT model improves travel time predictions with respect to the ak135 model (Kennett et al., 1995), which is the global standard for travel time prediction. We are continuing to collect and freely distribute ground-truth data in new regions as well as updates to the RSTT model. This work performed in part under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  10. Dynamic acoustics for the STAR-100. [computer algorithms for time dependent sound waves in jet

    NASA Technical Reports Server (NTRS)

    Bayliss, A.; Turkel, E.

    1979-01-01

    An algorithm is described to compute time dependent acoustic waves in a jet. The method differs from previous methods in that no harmonic time dependence is assumed, thus permitting the study of nonharmonic acoustical behavior. Large grids are required to resolve the acoustic waves. Since the problem is nonstiff, explicit high order schemes can be used. These have been adapted to the STAR-100 with great efficiencies and permitted the efficient solution of problems which would not be feasible on a scalar machine.

  11. Involuntary Mental Time Travel and Its Effect on Prospective Teachers' Situational Intrinsic Motivations

    ERIC Educational Resources Information Center

    Eren, Altay

    2010-01-01

    Recent cognitive psychological research has argued that involuntary mental time travel is an important individual difference variable that has the potential to affect an individual's motivation. However, this issue has not been empirically investigated in educational settings such as teacher education. Therefore, this study aimed to explore the…

  12. Estimating Reaction Rate Coefficients Within a Travel-Time Modeling Framework

    SciTech Connect

    Gong, R; Lu, C; Luo, Jian; Wu, Wei-min; Cheng, H.; Criddle, Craig; Kitanidis, Peter K.; Gu, Baohua; Watson, David B; Jardine, Philip M; Brooks, Scott C

    2011-03-01

    A generalized, efficient, and practical approach based on the travel-time modeling framework is developed to estimate in situ reaction rate coefficients for groundwater remediation in heterogeneous aquifers. The required information for this approach can be obtained by conducting tracer tests with injection of a mixture of conservative and reactive tracers and measurements of both breakthrough curves (BTCs). The conservative BTC is used to infer the travel-time distribution from the injection point to the observation point. For advection-dominant reactive transport with well-mixed reactive species and a constant travel-time distribution, the reactive BTC is obtained by integrating the solutions to advective-reactive transport over the entire travel-time distribution, and then is used in optimization to determine the in situ reaction rate coefficients. By directly working on the conservative and reactive BTCs, this approach avoids costly aquifer characterization and improves the estimation for transport in heterogeneous aquifers which may not be sufficiently described by traditional mechanistic transport models with constant transport parameters. Simplified schemes are proposed for reactive transport with zero-, first-, nth-order, and Michaelis-Menten reactions. The proposed approach is validated by a reactive transport case in a two-dimensional synthetic heterogeneous aquifer and a field-scale bioremediation experiment conducted at Oak Ridge, Tennessee. The field application indicates that ethanol degradation for U(VI)-bioremediation is better approximated by zero-order reaction kinetics than first-order reaction kinetics.

  13. Compensation for the distortion in satellite laser range predictions due to varying pulse travel times

    NASA Technical Reports Server (NTRS)

    Paunonen, Matti

    1993-01-01

    A method for compensating for the effect of the varying travel time of a transmitted laser pulse to a satellite is described. The 'observed minus predicted' range differences then appear to be linear, which makes data screening or use in range gating more effective.

  14. Assessment of Smolt Condition for Travel Time Analysis, 1993-1994 Annual Report.

    SciTech Connect

    Schrock, Robin M; Beeman, John W; VanderKooi, Scott P

    1999-02-01

    The assessment of smolt condition for travel time analysis (ASCTTA) project provided information on the level of smoltification in Columbia River hatchery and wild salmonid stocks to the Fish Passage Center (FPC), for the primary purpose of in-river management of flows.

  15. The travel-time sequence method for rapid earthquake locating in Taiwan

    NASA Astrophysics Data System (ADS)

    Tsai, Cheng-Yung; Lin, Ting-Li; Wu, Yih-Min

    2015-04-01

    Taiwan is constantly threatened by large and damage earthquakes as the tectonic consequence of the persistent collisions between the Philippine Sea Plate and Eurasian plate. Nowadays, the earthquake early warning (EEW) system is one of the practical tool for seismic hazard mitigation, and has been developed in Taiwan for almost 20 years (Wu et al., 1997; Wu et al., 2000). The earthquake location for the EEW purpose in Taiwan is based on the traditional method with 1-D velocity structure but using less stations. In this study, we developed a new EEW locating method using 3-D velocity structure and pre-calculated travel time database. The seismic network used in this study is the Rapid Earthquake Information Release System (RTD; Wu et al., 1997; Wu et al., 2000) operated by the Central Weather Bureau, Taiwan. We divided the Taiwan area (119~123゚E, 21~26゚N) into 2×2 km grid and each grid point is assumed as the hypocenter with the constant focal depth of 10 km. Therefore, each grid point has its specific travel-time sequence of the RTD stations using the 3-D velocity model (Wu et al., 2009). When an earthquake occurs, we use the first ten station arrival sequence to compare with the travel-time sequence database, and define the least difference grid as the hypocenter. By using the travel-time sequence method, we can rapidly determine the earthquake location more accurate than the present method in Taiwan

  16. Time-of-travel studies, Susquehanna River, Binghamton, New York, to Clarks Ferry, Pennsylvania

    USGS Publications Warehouse

    Kauffman, C.D.; Armbruster, J.T.; Voytik, Andrew

    1976-01-01

    The range of discharge for these studies was from 1,560 ft3/s (44.2 m3/s) to 4,330 ft3/s (123 m3/s) at the Wilkes-Barre, Pa. gaging station. The recorded travel times for the typical subreach, Shickshinny, Pa. to Danville 'Pa., ranged from 72.5 hours to 36.7 hours.

  17. An alternative to the traveling-wave approach for use in two-port descriptions of acoustic bores

    NASA Astrophysics Data System (ADS)

    Ducasse, Eric

    2002-12-01

    For more than a decade, the digital waveguide model for musical instruments has been improved through the simulation of cylindrical and conical bores. But several difficulties remain, such as instabilities due to growing exponentials which appear when two conical bores are connected with decreasing taper. In this paper, an alternative overcoming these difficulties is proposed and can be extended to shapes other than cylinders, cones, and hyperbolic horns. A two-port model with more general state variables than usual traveling waves works efficiently for any shape without discontinuities in cross section. The equations for connecting separate elements at discontinuities make this two-port model appropriate for use in time domain simulation of the physical behavior of the wind instrument and its interactions with the player. The potential of this new approach is illustrated by several detailed examples.

  18. Contaminant Travel Times From the Nevada Test Site to Yucca Mountain: Sensitivity to Porosity

    NASA Astrophysics Data System (ADS)

    Pohlmann, K. F.; Zhu, J.; Chapman, J. B.; Russell, C. E.; Carroll, R. W.; Shafer, D. S.

    2008-12-01

    Yucca Mountain (YM), Nevada, has been proposed by the U.S. Department of Energy as a geologic repository for spent nuclear fuel and high-level radioactive waste. In this study, we investigate the potential for groundwater advective pathways from underground nuclear testing areas on the Nevada Test Site (NTS) to the YM area by estimating the time frame for advective travel and its uncertainty resulting from porosity value uncertainty for hydrogeologic units (HGUs) in the region. We perform sensitivity analysis to determine the most influential HGUs on advective radionuclide travel times from the NTS to the YM area. Groundwater pathways and advective travel times are obtained using the particle tracking package MODPATH and flow results from the Death Valley Regional Flow System (DVRFS) model by the U.S. Geological Survey. Values and uncertainties of HGU porosities are quantified through evaluation of existing site porosity data and expert professional judgment and are incorporated through Monte Carlo simulations to estimate mean travel times and uncertainties. We base our simulations on two steady state flow scenarios for the purpose of long term prediction and monitoring. The first represents pre-pumping conditions prior to groundwater development in the area in 1912 (the initial stress period of the DVRFS model). The second simulates 1998 pumping (assuming steady state conditions resulting from pumping in the last stress period of the DVRFS model). Considering underground tests in a clustered region around Pahute Mesa on the NTS as initial particle positions, we track these particles forward using MODPATH to identify hydraulically downgradient groundwater discharge zones and to determine which flowpaths will intercept the YM area. Out of the 71 tests in the saturated zone, flowpaths of 23 intercept the YM area under the pre-pumping scenario. For the 1998 pumping scenario, flowpaths from 55 of the 71 tests intercept the YM area. The results illustrate that mean

  19. ABSTRACT: CONTAMINANT TRAVEL TIMES FROM THE NEVADA TEST SITE TO YUCCA MOUNTAIN: SENSITIVITY TO POROSITY

    SciTech Connect

    Karl F. Pohlmann; Jianting Zhu; Jenny B. Chapman; Charles E. Russell; Rosemary W. H. Carroll; David S. Shafer

    2008-09-05

    Yucca Mountain (YM), Nevada, has been proposed by the U.S. Department of Energy as a geologic repository for spent nuclear fuel and high-level radioactive waste. In this study, we investigate the potential for groundwater advective pathways from underground nuclear testing areas on the Nevada Test Site (NTS) to the YM area by estimating the timeframe for advective travel and its uncertainty resulting from porosity value uncertainty for hydrogeologic units (HGUs) in the region. We perform sensitivity analysis to determine the most influential HGUs on advective radionuclide travel times from the NTS to the YM area. Groundwater pathways and advective travel times are obtained using the particle tracking package MODPATH and flow results from the Death Valley Regional Flow System (DVRFS) model by the U.S. Geological Survey. Values and uncertainties of HGU porosities are quantified through evaluation of existing site porosity data and expert professional judgment and are incorporated through Monte Carlo simulations to estimate mean travel times and uncertainties. We base our simulations on two steady state flow scenarios for the purpose of long term prediction and monitoring. The first represents pre-pumping conditions prior to groundwater development in the area in 1912 (the initial stress period of the DVRFS model). The second simulates 1998 pumping (assuming steady state conditions resulting from pumping in the last stress period of the DVRFS model). Considering underground tests in a clustered region around Pahute Mesa on the NTS as initial particle positions, we track these particles forward using MODPATH to identify hydraulically downgradient groundwater discharge zones and to determine which flowpaths will intercept the YM area. Out of the 71 tests in the saturated zone, flowpaths of 23 intercept the YM area under the pre-pumping scenario. For the 1998 pumping scenario, flowpaths from 55 of the 71 tests intercept the YM area. The results illustrate that mean

  20. Analytic solutions for seismic travel time and ray path geometry through simple velocity models.

    SciTech Connect

    Ballard, Sanford

    2007-12-01

    The geometry of ray paths through realistic Earth models can be extremely complex due to the vertical and lateral heterogeneity of the velocity distribution within the models. Calculation of high fidelity ray paths and travel times through these models generally involves sophisticated algorithms that require significant assumptions and approximations. To test such algorithms it is desirable to have available analytic solutions for the geometry and travel time of rays through simpler velocity distributions against which the more complex algorithms can be compared. Also, in situations where computational performance requirements prohibit implementation of full 3D algorithms, it may be necessary to accept the accuracy limitations of analytic solutions in order to compute solutions that satisfy those requirements. Analytic solutions are described for the geometry and travel time of infinite frequency rays through radially symmetric 1D Earth models characterized by an inner sphere where the velocity distribution is given by the function V (r) = A-Br{sup 2}, optionally surrounded by some number of spherical shells of constant velocity. The mathematical basis of the calculations is described, sample calculations are presented, and results are compared to the Taup Toolkit of Crotwell et al. (1999). These solutions are useful for evaluating the fidelity of sophisticated 3D travel time calculators and in situations where performance requirements preclude the use of more computationally intensive calculators. It should be noted that most of the solutions presented are only quasi-analytic. Exact, closed form equations are derived but computation of solutions to specific problems generally require application of numerical integration or root finding techniques, which, while approximations, can be calculated to very high accuracy. Tolerances are set in the numerical algorithms such that computed travel time accuracies are better than 1 microsecond.

  1. A crust and upper mantle model of Eurasia and North Africa for Pn travel time calculation

    SciTech Connect

    Myers, S; Begnaud, M; Ballard, S; Pasyanos, M; Phillips, W S; Ramirez, A; Antolik, M; Hutchenson, K; Dwyer, J; Rowe, C; Wagner, G

    2009-03-19

    We develop a Regional Seismic Travel Time (RSTT) model and methods to account for the first-order effect of the three-dimensional crust and upper mantle on travel times. The model parameterization is a global tessellation of nodes with a velocity profile at each node. Interpolation of the velocity profiles generates a 3-dimensional crust and laterally variable upper mantle velocity. The upper mantle velocity profile at each node is represented as a linear velocity gradient, which enables travel time computation in approximately 1 millisecond. This computational speed allows the model to be used in routine analyses in operational monitoring systems. We refine the model using a tomographic formulation that adjusts the average crustal velocity, mantle velocity at the Moho, and the mantle velocity gradient at each node. While the RSTT model is inherently global and our ultimate goal is to produce a model that provides accurate travel time predictions over the globe, our first RSTT tomography effort covers Eurasia and North Africa, where we have compiled a data set of approximately 600,000 Pn arrivals that provide path coverage over this vast area. Ten percent of the tomography data are randomly selected and set aside for testing purposes. Travel time residual variance for the validation data is reduced by 32%. Based on a geographically distributed set of validation events with epicenter accuracy of 5 km or better, epicenter error using 16 Pn arrivals is reduced by 46% from 17.3 km (ak135 model) to 9.3 km after tomography. Relative to the ak135 model, the median uncertainty ellipse area is reduced by 68% from 3070 km{sup 2} to 994 km{sup 2}, and the number of ellipses with area less than 1000 km{sup 2}, which is the area allowed for onsite inspection under the Comprehensive Nuclear Test Ban Treaty, is increased from 0% to 51%.

  2. Impulse Travel Time from the Magnetotail to the Aurora Region during substorm: OpenGGCM Simulation

    NASA Astrophysics Data System (ADS)

    Ferdousi, Banafsheh; Raeder, Jimmy

    2016-07-01

    The onset of substorms is an unsolved problem in Space Physics although there are many models explaining the substorm process. Studying the processes that occur during first 2 minutes of substorm depends critically on the correct timing between different signals in the plasma sheet and the ionosphere. This has been difficult to accomplish with data alone, since signals are sometimes ambiguous, or they have not been observed in the right locations. To investigate signal propagation paths and signal travel times, we use Magnetohydrodynamic global simulations of the Earth magnetosphere: OpenGGCM. The waves are created at different locations in the magnetotail by perturbing plasma pressure in the plasma sheet. Thus, we can study wave path in the magnetotail and determine its travel time to the ionosphere. Contrary to previous studies, we find that wave travel reach the ionosphere from the midtail around 60 seconds. We also find that waves travel faster through the lobes, and the Tamao path is not generally the preferred path for waves originating in the plasma sheet. Furthermore, we find that the impulses that are generated closer to earth lead to dispersed ionosphere signatures, whereas the impulses originated in midtail region lead to more localized signatures.

  3. Time-of-travel and dispersion studies, Lehigh River, Francis E. Walter Lake to Easton, Pennsylvania

    USGS Publications Warehouse

    Kauffman, C.D.

    1983-01-01

    Results of time-of-travel and dispersion studies are presented for the 77.0 mile reach of the Lehigh River from Francis E. Walter Lake to Easton, Pennsylvania. Rhodamine WT dye was injected at several points for a variety of several common flow conditions and its downstream travel was monitored at a number of downstream points by means of a fluorometer. Time-of-travel data have been related to stream discharge, distance along the river channel and dispersion. If 2.205 pounds of a conservative water soluble contaminant were accidentally spilled into the Lehigh River at Penn Haven Junction at Black Creek 6.09 miles downstream from Rockport, Pennsylvania, when the discharge at Walnutport, Pennsylvania, was 600 cubic feet per second, the leading edge, peak, and trailing edge of the contaminant would arrive 31.6 miles downstream at the Northhampton, Pennsylvania, water intakes 45, 54, and 66 hours later, respectively. The maximum concentration expected at the intakes would be about 1.450 micrograms per liter. From data and relations presented, time-of-travel and maximum concentration estimates can be made for any two points within the reach. (USGS)

  4. Comparison study of time reversal OFDM acoustic communication with vector and scalar sensors

    NASA Astrophysics Data System (ADS)

    Wang, Zhongkang; Zhang, Hongtao; Xie, Zhe

    2012-11-01

    To compare the performance of time reversal orthogonal frequency division multiplexing (OFDM) acoustic communication on vector and scalar sensors, the vector and scalar acoustic fields were modeled. Time reversal OFDM acoustic communication was then simulated for each sensor type. These results are compared with data from the CAPEx'09 experiment. The abilityof particle velocity channels to achieve reliable acoustic communication, as predicted by the model, is confirmed with the experiment data. Experimental results show that vector receivers can reduce the required array size, in comparisonto hydrophone arrays, whileproviding comparable communication performance.

  5. Delivery and application of precise timing for a traveling wave powerline fault locator system

    NASA Technical Reports Server (NTRS)

    Street, Michael A.

    1990-01-01

    The Bonneville Power Administration (BPA) has successfully operated an in-house developed powerline fault locator system since 1986. The BPA fault locator system consists of remotes installed at cardinal power transmission line system nodes and a central master which polls the remotes for traveling wave time-of-arrival data. A power line fault produces a fast rise-time traveling wave which emanates from the fault point and propagates throughout the power grid. The remotes time-tag the traveling wave leading edge as it passes through the power system cardinal substation nodes. A synchronizing pulse transmitted via the BPA analog microwave system on a wideband channel sychronizes the time-tagging counters in the remote units to a different accuracy of better than one microsecond. The remote units correct the raw time tags for synchronizing pulse propagation delay and return these corrected values to the fault locator master. The master then calculates the power system disturbance source using the collected time tags. The system design objective is a fault location accuracy of 300 meters. BPA's fault locator system operation, error producing phenomena, and method of distributing precise timing are described.

  6. Acoustics

    NASA Technical Reports Server (NTRS)

    Goodman, Jerry R.; Grosveld, Ferdinand

    2007-01-01

    The acoustics environment in space operations is important to maintain at manageable levels so that the crewperson can remain safe, functional, effective, and reasonably comfortable. High acoustic levels can produce temporary or permanent hearing loss, or cause other physiological symptoms such as auditory pain, headaches, discomfort, strain in the vocal cords, or fatigue. Noise is defined as undesirable sound. Excessive noise may result in psychological effects such as irritability, inability to concentrate, decrease in productivity, annoyance, errors in judgment, and distraction. A noisy environment can also result in the inability to sleep, or sleep well. Elevated noise levels can affect the ability to communicate, understand what is being said, hear what is going on in the environment, degrade crew performance and operations, and create habitability concerns. Superfluous noise emissions can also create the inability to hear alarms or other important auditory cues such as an equipment malfunctioning. Recent space flight experience, evaluations of the requirements in crew habitable areas, and lessons learned (Goodman 2003; Allen and Goodman 2003; Pilkinton 2003; Grosveld et al. 2003) show the importance of maintaining an acceptable acoustics environment. This is best accomplished by having a high-quality set of limits/requirements early in the program, the "designing in" of acoustics in the development of hardware and systems, and by monitoring, testing and verifying the levels to ensure that they are acceptable.

  7. Validation of Travel-Time based Nonlinear Bioreactive Transport Models under Flow and Transport Dynamics

    NASA Astrophysics Data System (ADS)

    Sanz Prat, A.; Lu, C.; Cirpka, O. A.

    2014-12-01

    Travel-time based models are presented as an alternative to traditional spatially explicit models to solve nonlinear reactive-transport problems. The main advantage of the travel-time approach is that it does not require multi-dimensional characterization of physical and chemical parameters, and transport is one-dimensional. Spatial dimensions are replaced by groundwater travel time, defined as the time required by a water particle to reach an observation point or the outflow boundary, respectively. The fundamental hypothesis is that locations of the same groundwater age exhibit the same reactive-species concentrations. This is true in strictly advective-reactive transport in steady-state flows if the coefficients of reactions are uniform and the concentration is uniform over the inflow boundary. We hypothesize that the assumption still holds when adding some dispersion in coupled flow and transport dynamics. We compare a two-dimensional, spatially explicit, bioreactive, advective-dispersive transport model, considered as "virtual truth", with three 1-D travel-time based models which differ by the conceptualization of longitudinal dispersion: (i) neglecting dispersive mixing altogether, (ii) introducing a local-scale longitudinal dispersivity constant in time and space, and (iii) using an effective longitudinal dispersivity that increases linearly with distance. We consider biodegradation of organic matter catalyzed by non-competitive inhibitive microbial populations. The simulated inflow contains oxygen, nitrate, and DOC. The domain contains growing aerobic and denitrifying bacteria, the latter being inhibited by oxygen. This system is computed in 1-D, and in 2-D heterogeneous domains. We conclude that the conceptualization of nonlinear bioreactive transport in complex multi-dimensional domains by quasi 1-D travel-time models is valid for steady-state flow if the reactants are introduced over a wide cross-section, flow is at quasi-steady state, and dispersive

  8. Time domain analysis of a gyrotron traveling wave amplifier with misaligned electron beam

    SciTech Connect

    Wang, Qiushi Peng, Shuyuan; Luo, Jirun

    2014-08-15

    This article develops a time-domain theory to study the beam-wave interaction in gyrotron traveling wave amplifier (gyro-TWA) with a misaligned electron beam. The effects of beam misalignment on the TE{sub 01} mode gyro-TWA operating at the fundamental are discussed. Numerical results show that the effect of misalignment is less obvious when the input power is larger, and the influences of misalignment on the stable gain and the stable time are basically opposite.

  9. Validation of Travel Time Tomography Beneath La Ristra Transect Using Waveforms and Amplitudes

    NASA Astrophysics Data System (ADS)

    Song, T. A.; Helmberger, D.

    2006-12-01

    Travel time tomography has been extensively conducted to invert velocity structures of the Earth's mantle at both regional and global scales. Recent dense instrumentation at regional scale provides excellent opportunities to study detail tectonic features such as slabs, mobile belts and rift zones. La Ristra Transect is a dense broadband array of 950 km long with 54 stations across the Rio Grande Rift in the southwestern United States and Gao et al. (2004) have conducted travel time tomography to examine lateral variations in upper mantle structures and their geodynamic implications. Several prominent features exist in the tomographic image including a SE dipping fast anomaly down to 600 km beneath the western edge of the Great Plains and a SE dipping slow anomaly extending to 500 km beneath the Navajo Volcanic Field (NVF). Gao et al. (2004) interpreted the SE dipping fast anomaly beneath the Great Plains as a result of small scale convections near the Rio Grande Rift, while the SE dipping slow anomaly to the NW beneath the NVF is associated with water releases due to past subduction of the Farallon plate. The fact that, on average for the whole array, the travel time residuals of S waves is about 2.9 times of that of P waves suggested the scale factor ∂ lnV_s/∂ lnV_p of about 1.7 and velocity anomalies are predominantly thermal. Drawing these inferences is critical in understanding regional tectonics and it certainly deserves to be analyzed and validated. To accomplish such tasks, we numerically propagate the wave field through the tomography model, compare synthetic travel time delays, amplitude variations and waveform shapes with observations to justify velocity structures derived from travel time tomography. This step can potentially improve tomography models and modify existing inferences on mantle dynamics. We found that waveform shapes and amplitude changes across the region of interest provide complementary information to travel time delays. Our

  10. Broadband time reversed acoustic focusing and steering system

    NASA Astrophysics Data System (ADS)

    Sutin, Alexander; Sarvazyan, Armen; Montaldo, Gabriel; Palacio, Delphine; Bercoff, Jeremy; Tanter, Mickael; Fink, Mathias

    2001-05-01

    We present results of experimental testing and theoretical modeling of a time reversal acoustic (TRA) focusing system based on a multifaceted aluminum resonator with 15 piezoceramic transducers glued to the resonator facets. One of the facets of the resonator, a pentagon with characteristic dimension of about 30 mm, was submerged into a water tank and served as a virtual phased array which provided ultrasound focusing and beam steering in a wide frequency band (0.7-3 MHz). Ultrasonic pulses with different carrier frequencies and various complex waveforms were focused; the focal length was varied in the range of 10-55 mm and the focused beam was steered in a range of angles of +/-60 deg. The amplitude of the signal in the focal region reached 40 MPa. A theoretical model was based on an assumption that the radiating part of the resonator works as a phase conjugation screen for a spherical wave radiated from the focal point. Theoretical dependencies of the field structure on the position of the focus point and ultrasound frequency are in a good agreement with experimental results. TRA based focusing of ultrasound has numerous applications in medical diagnostics, surgery and therapy. [Work supported by NIH grant.

  11. Coded acoustic wave sensors and system using time diversity

    NASA Technical Reports Server (NTRS)

    Solie, Leland P. (Inventor); Hines, Jacqueline H. (Inventor)

    2012-01-01

    An apparatus and method for distinguishing between sensors that are to be wirelessly detected is provided. An interrogator device uses different, distinct time delays in the sensing signals when interrogating the sensors. The sensors are provided with different distinct pedestal delays. Sensors that have the same pedestal delay as the delay selected by the interrogator are detected by the interrogator whereas other sensors with different pedestal delays are not sensed. Multiple sensors with a given pedestal delay are provided with different codes so as to be distinguished from one another by the interrogator. The interrogator uses a signal that is transmitted to the sensor and returned by the sensor for combination and integration with the reference signal that has been processed by a function. The sensor may be a surface acoustic wave device having a differential impulse response with a power spectral density consisting of lobes. The power spectral density of the differential response is used to determine the value of the sensed parameter or parameters.

  12. Representative environments for reduced estimation time of wide area acoustic performance

    NASA Astrophysics Data System (ADS)

    Fabre, Josette Paquin

    Advances in ocean modeling (Barron et al., 2006) have improved such that ocean forecasts and even ensembles ( e.g., Coelho et al., 2009) representing ocean uncertainty are becoming more widely available. This facilitates nowcasts (current time ocean fields/analyses) and forecasts (predicted ocean fields) of acoustic propagation conditions in the ocean which can greatly improve the planning of acoustic experiments. Modeling of acoustic transmission loss (TL) provides information about how the environment impacts acoustic performance for various systems and system configurations of interest. It is, however, very time consuming to compute acoustic propagation to and from many potential source and receiver locations for multiple locations on an area-wide grid for multiple analysis/forecast times, ensembles and scenarios of interest. Currently, to make such wide area predictions, an area is gridded and acoustic predictions for multiple directions (or radials) at each grid point for a single time period or ensemble, are computed to estimate performance on the grid. This grid generally does not consider the environment and can neglect important environmental acoustic features or can over-compute in areas of environmental acoustic isotropy. This effort develops two methods to pre-examine the area and time frame in terms of the environmental acoustics in order to prescribe an environmentally optimized computational grid that takes advantage of environmental-acoustic similarities and differences to characterize an area, time frame and ensemble with fewer acoustic model predictions and thus less computation time. Such improvement allows for a more thorough characterization of the time frame and area of interest. The first method is based on critical factors in the environment that typically indicate acoustic response, and the second method is based on a more robust full waveguide mode-based description of the environment. Results are shown for the critical factors method and

  13. Staggered-grid finite-difference acoustic modeling with the Time-Domain Atmospheric Acoustic Propagation Suite (TDAAPS).

    SciTech Connect

    Aldridge, David Franklin; Collier, Sandra L.; Marlin, David H.; Ostashev, Vladimir E.; Symons, Neill Phillip; Wilson, D. Keith

    2005-05-01

    This document is intended to serve as a users guide for the time-domain atmospheric acoustic propagation suite (TDAAPS) program developed as part of the Department of Defense High-Performance Modernization Office (HPCMP) Common High-Performance Computing Scalable Software Initiative (CHSSI). TDAAPS performs staggered-grid finite-difference modeling of the acoustic velocity-pressure system with the incorporation of spatially inhomogeneous winds. Wherever practical the control structure of the codes are written in C++ using an object oriented design. Sections of code where a large number of calculations are required are written in C or F77 in order to enable better compiler optimization of these sections. The TDAAPS program conforms to a UNIX style calling interface. Most of the actions of the codes are controlled by adding flags to the invoking command line. This document presents a large number of examples and provides new users with the necessary background to perform acoustic modeling with TDAAPS.

  14. Mental time travel: effects of trial duration on episodic and semantic content.

    PubMed

    Cole, Scott N; Gill, Natalie C L; Conway, Martin A; Morrison, Catriona M

    2012-01-01

    Studies exploring mental time travel commonly use cue-word paradigms to elicit past and future autobiographical events. However, the effect of trial duration (how long participants are allowed to describe events) on the relationship between episodic and nonepisodic detail and episodic specificity (i.e., whether longer durations increase event specificity) has not been examined. To resolve these issues, a cue-word study was devised whereby participants described past and future events under three randomly administered time constraints: short (1-min), standard (3-min), and long (5-min) durations. Findings indicated that an individual's capacity for episodic and nonepisodic thought for the past and future were unrelated. This lends supports to the idea that independent mechanisms are responsible for episodic and semantic information. This study also offers clarity concerning the effect of different trial durations on episodic specificity, which may aid the design of future studies of mental time travel. PMID:23190177

  15. Time of travel and dispersion in a selected reach of Roberts Creek, Clayton County, Iowa

    USGS Publications Warehouse

    Kolpin, D.W.; Kalkhoff, S.J.

    1992-01-01

    Time of travel was determined by dye tracing, using rhodamine WT as the tracer. One dyeinjection site and three sampling sites were used to measure time of travel. Two dye-tracing tests were conducted at discharges having flow-duration values of 48 and 80 percent. The discharges at the time of the two dye-tracing tests approximated medium- and low-flow conditions. The average stream velocity in the study area was 0.23 foot per second during medium-flow conditions, March 20 to 22,1990, and 0.07 foot per second during low-flow conditions, April 30 to May 12, 1990. The injected dye dispersed in a plume that lasted about 18 hours during medium flow and about 64 hours during low flow at the downstream site.

  16. 3D Travel Time Prediction for Earthquake Location - An Assessment of Methods and Models

    NASA Astrophysics Data System (ADS)

    Begnaud, M. L.; Ballard, S.; Rowe, C. A.; Young, C. J.; Steck, L.; Hipp, J. R.

    2009-12-01

    We have selected several crustal and mantle 3D models to test for travel-time prediction in a global event location context. Included are the ak135, DoE Unified, Sun et al. (2004) and MITP08 models, among others. Using the recently published tesselated 3D global ray tracing algorithm of Ballard et al., we compare and contrast our travel-time predictions through these obtained models for a set of ~500 Ground Truth (GT) 5 or better events, most of which are chemical or nuclear explosions. We explore the degree of travel-time misfit that can be expected when integrating rays through a model using a different method, or different parameterization, from that which generated the model. For instance, we compare the effect of dynamic ray tracing vs. fixed rays through a mantle tomographic model that was generated by inverting travel-time residuals for pre-calculated, fixed rays in the 1D radial AK135 model. We examine the success of these models for not only teleseismic P arrivals but also Pn and Pg. We explore the geographic biases observed for each phase and the trade-offs encountered when models are integrated. We find that our GT travel times are best predicted through any model when the calculation is perfomed using methods as close as possible to those used in generation of the model, as expected. Such considerations as Earth ellipticity correction and fixed ray vs. dynamic ray tracing need to be applied appropriately for a fair evaluation. Models available to the community are thus of little practical use for global location unless their methods of derivation are also provided, although they may independently provide enlightening images of tectonic features. We conclude that towards our development of a seamless, global model and locator, existing models may best serve as starting models for a global inversion using a single, consistent ray tracing and travel-time calculation approach; thus we view our evaluation of available models as a search for the best starting

  17. Method of calculating tsunami travel times in the Andaman Sea region

    PubMed Central

    Visuthismajarn, Parichart; Tanavud, Charlchai; Robson, Mark G.

    2014-01-01

    A new model to calculate tsunami travel times in the Andaman Sea region has been developed. The model specifically provides more accurate travel time estimates for tsunamis propagating to Patong Beach on the west coast of Phuket, Thailand. More generally, the model provides better understanding of the influence of the accuracy and resolution of bathymetry data on the accuracy of travel time calculations. The dynamic model is based on solitary wave theory, and a lookup function is used to perform bilinear interpolation of bathymetry along the ray trajectory. The model was calibrated and verified using data from an echosounder record, tsunami photographs, satellite altimetry records, and eyewitness accounts of the tsunami on 26 December 2004. Time differences for 12 representative targets in the Andaman Sea and the Indian Ocean regions were calculated. The model demonstrated satisfactory time differences (<2 min/h), despite the use of low resolution bathymetry (ETOPO2v2). To improve accuracy, the dynamics of wave elevation and a velocity correction term must be considered, particularly for calculations in the nearshore region. PMID:25741129

  18. Estimating the Value of Life, Injury, and Travel Time Saved Using a Stated Preference Framework.

    PubMed

    Niroomand, Naghmeh; Jenkins, Glenn P

    2016-06-01

    The incidence of fatality over the period 2010-2014 from automobile accidents in North Cyprus is 2.75 times greater than the average for the EU. With the prospect of North Cyprus entering the EU, many investments will need to be undertaken to improve road safety in order to reach EU benchmarks. The objective of this study is to provide local estimates of the value of a statistical life and injury along with the value of time savings. These are among the parameter values needed for the evaluation of the change in the expected incidence of automotive accidents and time savings brought about by such projects. In this study we conducted a stated choice experiment to identify the preferences and tradeoffs of automobile drivers in North Cyprus for improved travel times, travel costs, and safety. The choice of route was examined using mixed logit models to obtain the marginal utilities associated with each attribute of the routes that consumers choose. These estimates were used to assess the individuals' willingness to pay (WTP) to avoid fatalities and injuries and to save travel time. We then used the results to obtain community-wide estimates of the value of a statistical life (VSL) saved, the value of injury (VI) prevented, and the value per hour of travel time saved. The estimates for the VSL range from €315,293 to €1,117,856 and the estimates of VI from € 5,603 to € 28,186. These values are consistent, after adjusting for differences in incomes, with the median results of similar studies done for EU countries. PMID:27015226

  19. Novel S-35 Intrinsic Tracer Method for Determining Groundwater Travel Time near Managed Aquifer Recharge Facilities

    NASA Astrophysics Data System (ADS)

    Urióstegui, S. H.; Bibby, R. K.; Esser, B. K.; Clark, J. F.

    2013-12-01

    Identifying groundwater travel times near managed aquifer recharge (MAR) facilities is a high priority for protecting public and environmental health. For MAR facilities in California that incorporate tertiary wastewater into their surface-spreading recharge practices, the target subsurface residence time is >9 months to allow for the natural inactivation and degradation of potential contaminants (less time is needed for full advanced treated water). Established intrinsic groundwater tracer techniques such as tritium/helium-3 dating are unable to resolve timescales of <1 year. These limitations provide the motivation for evaluating a novel groundwater tracer method using a naturally occurring radioisotope of sulfur, sulfur-35 (S-35). After its production in the atmosphere by cosmic ray interaction with argon, S-35 enters the hydrologic cycle as dissolved sulfate through precipitation The short half-life of S-35 (3 months) is ideal for investigating recharge and transport of MAR groundwater on the <1 year timescale of interest to MAR managers. The method, however, has not been applied to MAR operations because of the difficulty in measuring S-35 with sufficient sensitivity in high-sulfate waters. We have developed a new method and have applied it at two southern California MAR facilities where groundwater travel times have previously been characterized using deliberate tracers: 1) Rio Hondo Spreading Grounds in Los Angeles County, and 2) Orange County Groundwater Recharge Facilities in Orange County. Reasonable S-35 travel times of <1 year were identified at both study sites. This method also identified seasonal patterns in subsurface travel times, which may not be revealed by a deliberate tracer study that is dependent on the hydrologic conditions during the tracer injection period.

  20. The roles of non-extensivity and dust concentration as bifurcation parameters in dust-ion acoustic traveling waves in magnetized dusty plasma

    SciTech Connect

    Narayan Ghosh, Uday; Kumar Mandal, Pankaj Chatterjee, Prasanta

    2014-03-15

    Dust ion-acoustic traveling waves are studied in a magnetized dusty plasma in presence of static dust and non-extensive distributed electrons in the framework of Zakharov-Kuznesstov-Burgers (ZKB) equation. System of coupled nonlinear ordinary differential equations is derived from ZKB equation, and equilibrium points are obtained. Nonlinear wave phenomena are studied numerically using fourth order Runge-Kutta method. The change from unstable to stable solution and consequently to asymptotic stable of dust ion acoustic traveling waves is studied through dynamical system approach. It is found that some dramatical features emerge when the non-extensive parameter and the dust concentration parameters are varied. Behavior of the solution of the system changes from unstable to stable and stable to asymptotic stable depending on the value of the non-extensive parameter. It is also observed that when the dust concentration is increased the solution pattern is changed from oscillatory shocks to periodic solution. Thus, non-extensive and dust concentration parameters play crucial roles in determining the nature of the stability behavior of the system. Thus, the non-extensive parameter and the dust concentration parameters can be treated as bifurcation parameters.

  1. 41 CFR 301-71.306 - Are there exceptions to collecting an advance at the time the employee files a travel claim?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... collecting an advance at the time the employee files a travel claim? 301-71.306 Section 301-71.306 Public Contracts and Property Management Federal Travel Regulation System TEMPORARY DUTY (TDY) TRAVEL ALLOWANCES...-71.306 Are there exceptions to collecting an advance at the time the employee files a travel...

  2. 41 CFR 301-71.306 - Are there exceptions to collecting an advance at the time the employee files a travel claim?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... collecting an advance at the time the employee files a travel claim? 301-71.306 Section 301-71.306 Public Contracts and Property Management Federal Travel Regulation System TEMPORARY DUTY (TDY) TRAVEL ALLOWANCES...-71.306 Are there exceptions to collecting an advance at the time the employee files a travel...

  3. 41 CFR 301-71.306 - Are there exceptions to collecting an advance at the time the employee files a travel claim?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... collecting an advance at the time the employee files a travel claim? 301-71.306 Section 301-71.306 Public Contracts and Property Management Federal Travel Regulation System TEMPORARY DUTY (TDY) TRAVEL ALLOWANCES...-71.306 Are there exceptions to collecting an advance at the time the employee files a travel...

  4. 41 CFR 301-71.306 - Are there exceptions to collecting an advance at the time the employee files a travel claim?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... collecting an advance at the time the employee files a travel claim? 301-71.306 Section 301-71.306 Public Contracts and Property Management Federal Travel Regulation System TEMPORARY DUTY (TDY) TRAVEL ALLOWANCES...-71.306 Are there exceptions to collecting an advance at the time the employee files a travel...

  5. Time of travel of solutes in Buffalo Bayou and selected tributaries, Houston, Texas, August 1999

    USGS Publications Warehouse

    East, Jeffery W.; Schaer, Jasper D.

    2000-01-01

    The U.S. Geological Survey (USGS), in cooperation with the U.S. Environmental Protection Agency, conducted a time-of-travel study in the Buffalo Bayou watershed during low flow in August 1999. The study was done as part of the U.S. Environmental Protection Agency Environmental Monitoring for Public Access and Community Tracking (EMPACT) program. The EMPACT program was designed for the U.S. Environmental Protection Agency to work with communities to “make timely, accurate, and understandable environmental information available to millions of people in the largest metropolitan areas across the country.” (U.S. Environmental Protection Agency, 2000). Buffalo Bayou, located in Houston, Texas, was chosen as a pilot project because it is a frequently used recreational water source, it has many water-treatment facilities located along its stream segments, and it has a history of water-quality problems (Houston-Galveston Area Council, 2000). One component of the pilot project is to develop a water-quality simulation model that can be used to assess the effects of noncompliance events on Buffalo Bayou. Because accurate estimates of time of travel during low flow are required to develop the model, the time of travel of solutes in Buffalo Bayou and selected tributaries was determined using dye tracing methods. The study was conducted during low flow in a 38.7-mile reach of Buffalo Bayou, a 9.6-mile reach of Whiteoak Bayou, a 5.9-mile reach of Mason Creek, and a 6.6-mile reach of Bear Creek. Efforts to determine the time of travel in a 7.5-mile reach of Horsepen Creek were unsuccessful. This report explains the approach used to conduct the study and presents the results of the study

  6. An empirical method for estimating travel times for wet volcanic mass flows

    USGS Publications Warehouse

    Pierson, Thomas C.

    1998-01-01

    Travel times for wet volcanic mass flows (debris avalanches and lahars) can be forecast as a function of distance from source when the approximate flow rate (peak discharge near the source) can be estimated beforehand. The near-source flow rate is primarily a function of initial flow volume, which should be possible to estimate to an order of magnitude on the basis of geologic, geomorphic, and hydrologic factors at a particular volcano. Least-squares best fits to plots of flow-front travel time as a function of distance from source provide predictive second-degree polynomial equations with high coefficients of determination for four broad size classes of flow based on near-source flow rate: extremely large flows (>1 000 000 m3/s), very large flows (10 000–1 000 000 m3/s), large flows (1000–10 000 m3/s), and moderate flows (100–1000 m3/s). A strong nonlinear correlation that exists between initial total flow volume and flow rate for "instantaneously" generated debris flows can be used to estimate near-source flow rates in advance. Differences in geomorphic controlling factors among different flows in the data sets have relatively little effect on the strong nonlinear correlations between travel time and distance from source. Differences in flow type may be important, especially for extremely large flows, but this could not be evaluated here. At a given distance away from a volcano, travel times can vary by approximately an order of magnitude depending on flow rate. The method can provide emergency-management officials a means for estimating time windows for evacuation of communities located in hazard zones downstream from potentially hazardous volcanoes.

  7. Adjoint Tomography of Taiwan Region: From Travel-Time Toward Waveform Inversion

    NASA Astrophysics Data System (ADS)

    Huang, H. H.; Lee, S. J.; Tromp, J.

    2014-12-01

    The complicated tectonic environment such as Taiwan region can modulate the seismic waveform severely and hamper the discrimination and the utilization of later phases. Restricted to the use of only first arrivals of P- and S-wave, the travel-time tomographic models of Taiwan can simulate the seismic waveform barely to a frequency of 0.2 Hz to date. While it has been sufficient for long-period studies, e.g. source inversion, this frequency band is still far from the applications to the community and high-resolution studies. To achieve a higher-frequency simulation, more data and the considerations of off-path and finite-frequency effects are necessary. Based on the spectral-element and the adjoint method recently developed, we prepared 94 MW 3.5-6.0 earthquakes with well-defined location and focal mechanism solutions from Real-Time Moment Tensor Monitoring System (RMT), and preformed an iterative gradient-based inversion employing waveform modeling and finite-frequency measurements of adjoint method. By which the 3-D sensitivity kernels are taken into account realistically and the full waveform information are naturally sought, without a need of any phase pick. A preliminary model m003 using 10-50 sec data was demonstrated and compared with previous travel-time models. The primary difference appears in the mountainous area, where the previous travel-time model may underestimate the S-wave speed in the upper crust, but overestimates in the lower crust.

  8. Assessment of Smolt Condition for Travel Time Analysis, 1990 Annual Report.

    SciTech Connect

    Beeman, John W.; Rondorf, Dennis W.; Faler, Joyce C.

    1991-12-01

    As a part of the Northwest Power Planning Council`s Fish and Wildlife Program, the Fish Passage Center collects information on the migrational characteristics of juvenile salmon and steelhead (Oncorhynchus sp.) in the Columbia River basin. This information is collected through the Smolt Monitoring Program, and is used as a tool in the management and evaluation of the Water Budget. The Water Budget is a volume of water used to enhance environmental conditions (flows) to aid in the seaward migration of juvenile salmon and steelhead. Implicit in the Water Budget concept is that by augmenting flows, travel time of juvenile salmonids will be decreased, thereby increasing survival via reductions in delayed migration and exposure to predators. This study was initiated to (1) provide physiological information about the juvenile salmonids used for these travel time estimates, (2) to analyze the physiological data, and (3) to determine if an ``index`` of smolt condition could be developed to aid in management of the Water Budget.

  9. Time-domain theory of gyrotron traveling wave amplifiers operating at grazing incidence

    NASA Astrophysics Data System (ADS)

    Ginzburg, N. S.; Sergeev, A. S.; Zotova, I. V.; Zheleznov, I. V.

    2015-01-01

    Time-domain theory of the gyrotron traveling wave tube (gyro-TWT) operating at grazing incidence has been developed. The theory is based on a description of wave propagation by a parabolic equation. The results of the simulations are compared with experimental results of the observation of subnanosecond pulse amplification in a gyro-TWT consisting of three gain sections separated by severs. The theory developed can also be used successfully for a description of amplification of monochromatic signals.

  10. Time-domain theory of gyrotron traveling wave amplifiers operating at grazing incidence

    SciTech Connect

    Ginzburg, N. S.; Sergeev, A. S.; Zotova, I. V.; Zheleznov, I. V.

    2015-01-15

    Time-domain theory of the gyrotron traveling wave tube (gyro-TWT) operating at grazing incidence has been developed. The theory is based on a description of wave propagation by a parabolic equation. The results of the simulations are compared with experimental results of the observation of subnanosecond pulse amplification in a gyro-TWT consisting of three gain sections separated by severs. The theory developed can also be used successfully for a description of amplification of monochromatic signals.

  11. Ranking of septic tank and drainfield sites using travel time to the groundwater table

    SciTech Connect

    Langkopf, B.S.; McCord, J.T.

    1994-09-01

    The Environmental Restoration Program at Sandia National Laboratories, New Mexico (SNL/NM) is tasked with performing assessments and cleanup of waste sites that belong to SNL. SNL`s waste sites are divided into several activities. Septic Tanks and Drainfields (STD) is an activity that includes 23 different sites at SNL/NM. All these sites may have released hazardous wastes into the soil from drains or sewers of buildings. The STD sites must be assessed and, if necessary, remediated according to the Resource Conservation and Recovery Act (RCRA) Corrective Action process. A modeling study has been completed to help prioritize the sites for future field investigation based on the risk that each site may pose to human health and the environment. Two of the influences on the risk to human health and environment are addressed in this study--the fluid disposal volume and groundwater depth. These two parameters, as well as several others, were used as input into a computer model to calculate groundwater travel time to the water table. The computer model was based on Darcy`s Law and a simple mass balance. To account for uncertainty in the input parameters, a Monte Carlo approach was used to determine the travel times; 1,000 realizations were completed to determine the travel time for each site. The range assigned to each of the input parameters was sampled according to an assigned statistical distribution using the Latin Hypercube Method to arrive at input for the calculations. The groundwater travel times resulting from these calculations were used to rank the sites for future field investigation.

  12. Developing Path-Dependent Uncertainty Estimates for use with the Regional Seismic Travel Time (RSTT) Model

    NASA Astrophysics Data System (ADS)

    Begnaud, M. L.; Anderson, D. N.; Phillips, W. S.; Ballard, S.; Myers, S.

    2015-12-01

    The Regional Seismic Travel Time (RSTT) tomography model has been developed to improve travel time predictions for regional phases (Pn, Sn, Pg, Lg) in order to increase seismic location accuracy. The RSTT model is specifically designed to exploit regional phases for location, especially when combined with teleseismic arrivals. The latest RSTT model (version 201404) has been released (http://www.sandia.gov/rstt). Travel time uncertainty estimates for RSTT are determined using one-dimensional (1D), distance-dependent error models, that have the benefit of being very fast to use in standard location algorithms, but do not account for path-dependent variations in error, and structural inadequacy of the RSTTT model (e.g., model error). Although global in extent, the RSTT tomography model is only defined in areas where data exist. A simple 1D error model does not accurately model areas where RSTT has not been calibrated. We are developing and investigating a new covariance matrix for RSTT phase arrivals by mathematically deriving this multivariate error model directly from a unified model of RSTT embedded into a statistical random effects model that captures distance, path and model error effects. An initial method developed is a two-dimensional path-distributed method using residuals. Other methods include a complete random-effects model and the calculation of the full model covariance matrix from the RSTT tomographic inversion. The goals for any RSTT uncertainty method are for it to be both readily useful for the standard RSTT user as well as improve travel time uncertainty estimates for location.

  13. Hyporheic Temperature Dynamics: Predicting Hyporheic Temperatures Based on Travel Time Assuming Instantaneous Water-Sediment Conduction

    NASA Astrophysics Data System (ADS)

    Kraseski, K. A.

    2015-12-01

    Recently developed conceptual frameworks and new observations have improved our understanding of hyporheic temperature dynamics and their effects on channel temperatures. However, hyporheic temperature models that are both simple and useful remain elusive. As water moves through hyporheic pathways, it exchanges heat with hyporheic sediment through conduction, and this process dampens the diurnal temperature wave of the water entering from the channel. This study examined the mechanisms underlying this behavior, and utilized those findings to create two simple models that predict temperatures of water reentering the channel after traveling through hyporheic pathways for different lengths of time. First, we developed a laboratory experiment to represent this process and determine conduction rates for various sediment size classes (sand, fine gravel, coarse gravel, and a proportional mix of the three) by observing the time series of temperature changes between sediment and water of different initial temperatures. Results indicated that conductions rates were near-instantaneous, with heat transfer being completed on the scale of seconds to a few minutes of the initial interaction. Heat conduction rates between the sediment and water were therefore much faster than hyporheic flux rates, rendering reasonable an assumption of instantaneous conduction. Then, we developed two simple models to predict time series of hyporheic water based on the initial diurnal temperature wave and hyporheic travel distance. The first model estimates a damping coefficient based on the total water-sediment heat exchange through each diurnal cycle. The second model solves the heat transfer equation assuming instantaneous conduction using a simple finite difference algorithm. Both models demonstrated nearly complete damping of the sine wave over the distance traveled in four days. If hyporheic exchange is substantial and travel times are long, then hyporheic damping may have large effects on

  14. Profiling of molecular interactions in real time using acoustic detection.

    PubMed

    Godber, Benjamin; Frogley, Mark; Rehak, Marian; Sleptsov, Alexander; Thompson, Kevin S J; Uludag, Yildiz; Cooper, Matthew A

    2007-04-15

    Acoustic sensors that exploit resonating quartz crystals to directly detect the binding of an analyte to a receptor are finding increasing utility in the quantification of clinically relevant analytes. We have developed a novel acoustic detection technology, which we term resonant acoustic profiling (RAP). This technology builds on the fundamental basics of the "quartz crystal microbalance" or "QCM" with several key additional features including two- or four-channel automated sample delivery, in-line referencing and microfluidic sensor 'cassettes' that are pre-coated with easy-to-use surface chemistries. Example applications are described for the quantification of myoglobin concentration and its interaction kinetics, and for the ranking of enzyme-cofactor specificities. PMID:17129723

  15. Chinese and Australians showed difference in mental time travel in emotion and content but not specificity.

    PubMed

    Chen, Xing-Jie; Liu, Lu-Lu; Cui, Ji-Fang; Wang, Ya; Shum, David H K; Chan, Raymond C K

    2015-01-01

    Mental time travel refers to the ability to recall episodic past and imagine future events. The present study aimed to investigate cultural differences in mental time travel between Chinese and Australian university students. A total of 231 students (108 Chinese and 123 Australians) participated in the study. Their mental time travel abilities were measured by the Sentence Completion for Events from the Past Test (SCEPT) and the Sentence Completion for Events in the Future Test (SCEFT). Results showed that there were no cultural differences in the number of specific events generated for the past or future. Significant differences between the Chinese and Australian participants were found mainly in the emotional valence and content of the events generated. Both Chinese and Australian participants generated more specific positive events compared to negative events when thinking about the future and Chinese participants were more positive about their past than Australian participants when recalling specific events. For content, Chinese participants recalled more events about their interpersonal relationships, while Australian participants imagined more about personal future achievements. These findings shed some lights on cultural differences in episodic past and future thinking. PMID:26167154

  16. Chinese and Australians showed difference in mental time travel in emotion and content but not specificity

    PubMed Central

    Chen, Xing-Jie; Liu, Lu-Lu; Cui, Ji-Fang; Wang, Ya; Shum, David H. K.; Chan, Raymond C. K.

    2015-01-01

    Mental time travel refers to the ability to recall episodic past and imagine future events. The present study aimed to investigate cultural differences in mental time travel between Chinese and Australian university students. A total of 231 students (108 Chinese and 123 Australians) participated in the study. Their mental time travel abilities were measured by the Sentence Completion for Events from the Past Test (SCEPT) and the Sentence Completion for Events in the Future Test (SCEFT). Results showed that there were no cultural differences in the number of specific events generated for the past or future. Significant differences between the Chinese and Australian participants were found mainly in the emotional valence and content of the events generated. Both Chinese and Australian participants generated more specific positive events compared to negative events when thinking about the future and Chinese participants were more positive about their past than Australian participants when recalling specific events. For content, Chinese participants recalled more events about their interpersonal relationships, while Australian participants imagined more about personal future achievements. These findings shed some lights on cultural differences in episodic past and future thinking. PMID:26167154

  17. Travel-time source-specific station correction improves location accuracy

    NASA Astrophysics Data System (ADS)

    Giuntini, Alessandra; Materni, Valerio; Chiappini, Stefano; Carluccio, Roberto; Console, Rodolfo; Chiappini, Massimo

    2013-04-01

    Accurate earthquake locations are crucial for investigating seismogenic processes, as well as for applications like verifying compliance to the Comprehensive Test Ban Treaty (CTBT). Earthquake location accuracy is related to the degree of knowledge about the 3-D structure of seismic wave velocity in the Earth. It is well known that modeling errors of calculated travel times may have the effect of shifting the computed epicenters far from the real locations by a distance even larger than the size of the statistical error ellipses, regardless of the accuracy in picking seismic phase arrivals. The consequences of large mislocations of seismic events in the context of the CTBT verification is particularly critical in order to trigger a possible On Site Inspection (OSI). In fact, the Treaty establishes that an OSI area cannot be larger than 1000 km2, and its larger linear dimension cannot be larger than 50 km. Moreover, depth accuracy is crucial for the application of the depth event screening criterion. In the present study, we develop a method of source-specific travel times corrections based on a set of well located events recorded by dense national seismic networks in seismically active regions. The applications concern seismic sequences recorded in Japan, Iran and Italy. We show that mislocations of the order of 10-20 km affecting the epicenters, as well as larger mislocations in hypocentral depths, calculated from a global seismic network and using the standard IASPEI91 travel times can be effectively removed by applying source-specific station corrections.

  18. [What about the mental time travel and age-related effects?].

    PubMed

    Coste, Cécile; Navarro, Béatrice; Abram, Maria; Duval, Céline; Picard, Laurence; Piolino, Pascale

    2012-03-01

    According to Tulving, episodic memory allows humans to travel mentally through subjective time into either the past or the future, this ability being at the origin of adaptation, organization and planning of future behavior. The main aim of this review is to present a state of art of episodic mental time travel and a lifespan perspective from children to elderly people. We examine the numerous similarities between remembering the past and envisioning the future which have been highlighted in cognitive, neuroimaging, and neuropsychological studies. We also present studies that have given evidence that remembering the past and imagining the future differ somewhat. We focus on demonstrating that hippocampal dysfunction is associated with disturbances in the recall of episodic autobiographical details in past memories, but also in the imagining of episodic detailed future events. More specifically, we discuss that the future seems to involve higher semantic processes mediated by the inferior frontal and lateral temporal gyri. We propose that the study of mental travel in personal time could be undertaken in line with the distinction between the memory of (episodic) experiences and (semantic) personal knowledge of one's life, which constitutes a major part of the self and constraints what we have been, what we are now, and what we might yet become. PMID:22414404

  19. Mantle P wave travel time tomography of Eastern and Southern Africa: New images of mantle upwellings

    NASA Astrophysics Data System (ADS)

    Benoit, M. H.; Li, C.; van der Hilst, R.

    2006-12-01

    Much of Eastern Africa, including Ethiopia, Kenya, and Tanzania, has undergone extensive tectonism, including rifting, uplift, and volcanism during the Cenozoic. The cause of this tectonism is often attributed to the presence of one or more mantle upwellings, including starting thermal plumes and superplumes. Previous regional seismic studies and global tomographic models show conflicting results regarding the spatial and thermal characteristics of these upwellings. Additionally, there are questions concerning the extent to which the Archean and Proterozoic lithosphere has been altered by possible thermal upwellings in the mantle. To further constrain the mantle structure beneath Southern and Eastern Africa and to investigate the origin of the tectonism in Eastern Africa, we present preliminary results of a large-scale P wave travel time tomographic study of the region. We invert travel time measurements from the EHB database with travel time measurements taken from regional PASSCAL datasets including the Ethiopia Broadband Seismic Experiment (2000-2002); Kenya Broadband Seismic Experiment (2000-2002); Southern Africa Seismic Experiment (1997- 1999); Tanzania Broadband Seismic Experiment (1995-1997), and the Saudi Arabia PASSCAL Experiment (1995-1997). The tomographic inversion uses 3-D sensitivity kernels to combine different datasets and is parameterized with an irregular grid so that high spatial resolution can be obtained in areas of dense data coverage. It uses an adaptive least-squares context using the LSQR method with norm and gradient damping.

  20. Assessment of Smolt Condition for Travel Time Analysis, 1988 Annual Report.

    SciTech Connect

    Beeman, John W.; Wagner, Eric J.; Rondorf, Dennis W.

    1989-03-01

    Estimates of migration rates and travel times of juvenile salmonids within index reaches of the Columbia River basin are collected through the Smolt Monitoring Program for use by the Fish Passage Center. With increased reliance upon travel time estimates in 1988 by the Fish Passage Center, this study was implemented to monitor the biological attributes of juvenile chinook salmon Oncorhynchus tshawytscha and steelhead trout O. mykiss used for the travel time estimates. The physiological ability of fish to respond to stress was assessed by measuring levels of plasma cortisol, glucose, and chloride before and after a stress-challenge test. The development of smoltification was evaluated by measuring gill Na{sup +}K{sup +}-ATPase, plasma thyroxine, purines, and body morphology. Most groups were similar at the hatcheries but differed as the migration to McNary Dam proceeded. The prevalence of bacterial kidney disease (BKD) in spring chinook salmon was evaluated using the enzyme linked immunosorbent assay (ELISA) and fluorescent antibody technique (FAT). Prevalence of BKD in groups tested using the ELISA method was as high as 99% at some downstream locations. A review of indices is presented as a guide to the development of an index of smolt condition and preliminary data are presented. An index could be used as a tool to synthesize information on fish condition to assist with management and evaluation of the Water Budget.

  1. Travel time to maternity care and its effect on utilization in rural Ghana: a multilevel analysis.

    PubMed

    Masters, Samuel H; Burstein, Roy; Amofah, George; Abaogye, Patrick; Kumar, Santosh; Hanlon, Michael

    2013-09-01

    Rates of neonatal and maternal mortality are high in Ghana. In-facility delivery and other maternal services could reduce this burden, yet utilization rates of key maternal services are relatively low, especially in rural areas. We tested a theoretical implication that travel time negatively affects the use of in-facility delivery and other maternal services. Empirically, we used geospatial techniques to estimate travel times between populations and health facilities. To account for uncertainty in Ghana Demographic and Health Survey cluster locations, we adopted a novel approach of treating the location selection as an imputation problem. We estimated a multilevel random-intercept logistic regression model. For rural households, we found that travel time had a significant effect on the likelihood of in-facility delivery and antenatal care visits, holding constant education, wealth, maternal age, facility capacity, female autonomy, and the season of birth. In contrast, a facility's capacity to provide sophisticated maternity care had no detectable effect on utilization. As the Ghanaian health network expands, our results suggest that increasing the availability of basic obstetric services and improving transport infrastructure may be important interventions. PMID:23906132

  2. Time of travel of solutes in the Sabine River basin, Texas, August-November 1996

    USGS Publications Warehouse

    Raines, Timothy H.

    1997-01-01

    The U.S. Geological Survey (USGS), in cooperation with the Sabine River Authority, did a time-of-travel study in the Sabine River Basin during low flow from August to November 1996. The study was done to provide accurate estimates of the time-of-travel and dispersion characteristics for solutes during low flow in a 1.8-mile (mi) reach of Grace Creek, a 23.9-mi reach of the mainstem Sabine River, a 3.4-mi reach of Hawkins Creek, and a 1.9-mi reach of Rocky Creek. This report explains the approach and documents the results of the study. The results of the study will be used by the Texas Natural Resource Conservation Commission in a water-quality model to determine waste-load allocation in Segment 0505 of the Sabine River Basin. The time-of-travel and dispersion characteristics also provide useful information on the probable behavior of soluble contaminants that might be introduced into the streams measured in this study.

  3. Travel time approach to kinetically sorbing solute by diverging radial flows through heterogeneous porous formations

    NASA Astrophysics Data System (ADS)

    Severino, Gerardo; de Bartolo, Samuele; Toraldo, Gerardo; Srinivasan, Gowri; Viswanathan, Hari

    2012-12-01

    Diverging radial flow takes place in a heterogeneous porous medium where the log conductivity Y = ln K is modeled as a stationary random space function (RSF). The flow is steady, and is generated by a fully penetrating well. A linearly sorbing solute is injected through the well envelope, and we aim at computing the average flux concentration (breakthrough curve). A relatively simple solution for this difficult problem is achieved by adopting, similar to Indelman and Dagan (1999), a few simplifying assumptions: (i) a thick aquifer of large horizontal extent, (ii) mildly heterogeneous medium, (iii) strongly anisotropic formation, and (iv) large Peclet number. By introducing an appropriate Lagrangian framework, three-dimensional transport is mapped onto a one-dimensional domain (τ, t) where τ and t represent the fluid travel and current time, respectively. Central for this approach is the probability density function of the RSF τthat is derived consistently with the adopted assumptions stated above. Based on this, it is shown that the travel time can be regarded as a Gaussian random variable only in the far field. The breakthrough curves are analyzed to assess the impact of the hydraulic as well as reactive parameters. Finally, the travel time approach is tested against a forced-gradient transport experiment and shows good agreement.

  4. The effect of the development of an emergency transfer system on the travel time to tertiary care centres in Japan

    PubMed Central

    Miwa, Makiko; Kawaguchi, Hiroyuki; Arima, Hideaki; Kawahara, Kazuo

    2006-01-01

    Background In Japan, the emergency medical system is categorized into three levels: primary, secondary, and tertiary, depending on the severity of the condition of the patient. Tertiary care centres accept patients who require 24-h monitoring. In this research, the average travel times (minutes) from the centroids of all municipalities in Japan to the nearest tertiary care centre were estimated, using the geographic information system. The systems affecting travel time to tertiary care centres were also examined. Regression analysis was performed to determine the factors affecting the travel time to tertiary care centres, using selected variables representing road conditions and the emergency transfer system. Linear regression analysis was performed to identify specific benchmarks that would be effective in reducing the average travel time to tertiary care centres in prefectures with travel times longer than the average 57 min. Results The mean travel time was 57 min, the range was 83 min, and the standard deviation was 20.4. As a result of multiple regression analysis, average coverage area per tertiary care centre, kilometres of highway road per square kilometre, and population were selected as variables with impact on the average travel time. Based on results from linear regression analysis, benchmarks for the emergency transfer system that would effectively reduce travel time to the mean value of 57 min were identified: 26% pavement ratio of roads (percentage of paved road to general roads), and three tertiary care centres and 108 ambulances. Conclusion Regional gaps in the travel time to tertiary care centres were identified in Japan. The systems we should focus on to reducing travel time were identified. Further reduction of travel time to tertiary care centres can be effectively achieved by improving these specific systems. Linear regression analysis showed that a 26% pavement ratio and three tertiary care centres are beneficial to prefectures with an

  5. An electromagnetic finite difference time domain analog treatment of small signal acoustic interactions

    NASA Astrophysics Data System (ADS)

    Kunz, K.; Steich, D.; Lewis, K.; Landrum, C.; Barth, M.

    1994-03-01

    Hyperbolic partial differential equations encompass an extremely important set of physical phenomena including electromagnetics and acoustics. Small amplitude acoustic interactions behave much the same as electromagnetic interactions for longitudinal acoustic waves because of the similar nature of the governing hyperbolic equations. Differences appear when transverse acoustic waves are considered; nonetheless, the strong analogy between the acoustic and electromagnetic phenomena prompted the development of a Finite Difference Time Domain (FDTD) acoustic analog to the existing electromagnetic FDTD technique. The advantages of an acoustic FDTD (AFDTD) code are as follows: (1) boundary condition-free treatment of the acoustic scatterer--only the intrinsic properties of the scatterer's material are needed, no shell treatment or other set of special equations describing the macroscopic behavior of a sheet of material or a junction, etc. are required; this allows completely general geometries and materials in the model. (2) Advanced outer radiation boundary condition analogs--in the electromagnetics arena, highly absorbing outer radiation boundary conditions were developed that can be applied with little modification to the acoustics arena with equal success. (3) A suite of preexisting capabilities related to electromagnetic modeling--this includes automated model generation and interaction visualization as its most important components and is best exemplified by the capabilities of the LLNL generated TSAR electromagnetic FDTD code.

  6. Estimation of travel times for seven tributaries of the Mississippi River, St. Cloud to Minneapolis, Minnesota, 2003

    USGS Publications Warehouse

    Arntson, A.D.; Lorenz, D.L.; Stark, J.R.

    2004-01-01

    Travel times for seven streams tributary to the Mississippi River from St. Cloud to Minneapolis, Minnesota, were estimated for three flow conditions; low, median, and high. Travel times were estimated for Sauk, Elk, Crow, and Rum Rivers, and Elm, Coon, and Rice Creeks. Regression equations based on watershed characteristics of drainage area, river slope, mean annual discharge, and instantaneous discharge at the time of measurement from more than 900 streams across the nation were used to estimate travel times. Travel times were estimated for the leading edge, peak concentration, and trailing edge of tracer-response curves. To test the validity of these equations, a time of travel study, using a luminescent dye, was conducted on the Sauk River, from Rockville, to the confluence with the Mississippi River on June 16, 2003, at a discharge of 457 ft3/s at Rockville. Dye was injected in the Sauk River at Rockville, and time and concentrations were measured at three sampling sections downstream; at County Road 121, Veterans Drive, and County Road 1 near the mouth. The estimated travel times for the leading edge, peak concentration, and trailing edge at County Road 1 were 10.6 hrs, 11.9 hrs, and 14.6 hrs, respectively. The measured travel times for the leading edge, peak concentration, and trailing edge were 13.4 hrs, 15.5 hrs, and 20.5 hrs, respectively for the 15.7 mile reach.

  7. Organic compounds in the environment: Determining travel time and stream mixing using tracers and empirical equations

    USGS Publications Warehouse

    Verstraeten, Ingrid M.; Soenksen, P.J.; Engel, G.B.; Miller, L.D.

    1999-01-01

    Water-supply managers need adequate warning to protect water supplies if a contaminant is spilled in an upgradient tributary. The city of Lincoln draws water from alluvium associated with the Platte River near Ashland, eastern Nebraska. Using constant-rate injection methods and a conservative tracer, travel time and degree of mixing of contaminants in the Elkhorn and Platte Rivers were evaluated in 1995 and 1996. The results indicate that, for flows of 584 to 162 m3/s in the Platte River at Ashland with 13 to 28% of its flow contributed by the Elkhorn River, 8.2 to 13.2 h are required for the leading edge of a chemical plume to travel from the Elkhorn River at Waterloo to the Platte River at Ashland. The peak concentration of a chemical spilled as a slug in the Elkhorn River near Waterloo would pass the well field after 11.3 to 16.1 h. Existing empirical equations for calculation of travel time were shown to apply to reaches of streams studied, but underestimated the leading edge up to 14% and overestimated the plateau concentration up to 11% at Site 5. However, time of travel may be influenced by the relative contribution of a tributary. The plateau concentration of the chemical in the Platte River at Ashland was 45 to 60% of its concentration in the Elkhorn River. The degree of mixing of the tracer in the Platte River at Ashland increased from 53 to 65% as the relative contribution of the Elkhorn River increased.

  8. Acoustic Emission Monitoring of the Syracuse Athena Temple: Scale Invariance in the Timing of Ruptures

    SciTech Connect

    Niccolini, G.; Carpinteri, A.; Lacidogna, G.; Manuello, A.

    2011-03-11

    We perform a comparative statistical analysis between the acoustic-emission time series from the ancient Greek Athena temple in Syracuse and the sequence of nearby earthquakes. We find an apparent association between acoustic-emission bursts and the earthquake occurrence. The waiting-time distributions for acoustic-emission and earthquake time series are described by a unique scaling law indicating self-similarity over a wide range of magnitude scales. This evidence suggests a correlation between the aging process of the temple and the local seismic activity.

  9. 41 CFR 302-3.512 - How many times are we required to pay for an employee's return travel?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 41 Public Contracts and Property Management 4 2013-07-01 2012-07-01 true How many times are we required to pay for an employee's return travel? 302-3.512 Section 302-3.512 Public Contracts and Property Management Federal Travel Regulation System RELOCATION ALLOWANCES RELOCATION ALLOWANCES 3-RELOCATION ALLOWANCE BY SPECIFIC TYPE...

  10. Predicting Flow Breakdown Probability and Duration in Stochastic Network Models: Impact on Travel Time Reliability

    SciTech Connect

    Dong, Jing; Mahmassani, Hani S.

    2011-01-01

    This paper proposes a methodology to produce random flow breakdown endogenously in a mesoscopic operational model, by capturing breakdown probability and duration. Based on previous research findings that probability of flow breakdown can be represented as a function of flow rate and the duration can be characterized by a hazard model. By generating random flow breakdown at various levels and capturing the traffic characteristics at the onset of the breakdown, the stochastic network simulation model provides a tool for evaluating travel time variability. The proposed model can be used for (1) providing reliability related traveler information; (2) designing ITS (intelligent transportation systems) strategies to improve reliability; and (3) evaluating reliability-related performance measures of the system.

  11. The Short Time Scale Events of Acoustic Droplet Vaporization

    NASA Astrophysics Data System (ADS)

    Li, David S.; Kripfgans, Oliver D.; Fowlkes, J. Brian; Bull, Joseph L.

    2012-11-01

    The conversion of a liquid microdroplets to gas bubbles initiated by an acoustic pulse, known as acoustic droplet vaporization (ADV), has been proposed as a method to selectively generate gas emboli for therapeutic purposes (gas embolotherapy), specifically for vascularized tumors. In this study we focused on the first 10 microseconds of the ADV process, namely the gas nucleation site formation and bubble evolution. BSA encapsulated dodecafluoropentane (CAS: 678-26-2) microdroplets were isolated at the bottom of a degassed water bath held at 37°C. Microdroplets, diameters ranging from 5-65 microns, were vaporized using a single pulse (4-16 cycles) from a 7.5 MHz focused single element transducer ranging from 2-5 MPa peak negative pressure and images of the vaporization process were recorded using an ultra-high speed camera (SIM802, Specialised Imaging Ltd). It was observed that typically two gas nuclei were formed in series with one another on axis with ultrasound pulse. However, relative positioning of the nucleation sites within the droplet depended on droplet diameter. Additionally, depending on acoustic parameters the bubble could deform into a toroidal shape. Such dynamics could suggest acoustic parameters that may result in tissue damage. This work is supported by NIH grant R01EB006476.

  12. Non-conforming curved finite element schemes for time-dependent elastic-acoustic coupled problems

    NASA Astrophysics Data System (ADS)

    Rodríguez-Rozas, Ángel; Diaz, Julien

    2016-01-01

    High-order numerical methods for solving time-dependent acoustic-elastic coupled problems are introduced. These methods, based on Finite Element techniques, allow for a flexible coupling between the fluid and the solid domain by using non-conforming meshes and curved elements. Since characteristic waves travel at different speeds through different media, specific levels of granularity for the mesh discretization are required on each domain, making impractical a possible conforming coupling in between. Advantageously, physical domains may be independently discretized in our framework due to the non-conforming feature. Consequently, an important increase in computational efficiency may be achieved compared to other implementations based on conforming techniques, namely by reducing the total number of degrees of freedom. Differently from other non-conforming approaches proposed so far, our technique is relatively simpler and requires only a geometrical adjustment at the coupling interface at a preprocessing stage, so that no extra computations are necessary during the time evolution of the simulation. On the other hand, as an advantage of using curvilinear elements, the geometry of the coupling interface between the two media of interest is faithfully represented up to the order of the scheme used. In other words, higher order schemes are in consonance with higher order approximations of the geometry. Concerning the time discretization, we analyze both explicit and implicit schemes. These schemes are energy conserving and, for the explicit case, the stability is guaranteed by a CFL condition. In order to illustrate the accuracy and convergence of these methods, a set of representative numerical tests are presented.

  13. 41 CFR 301-11.10 - Am I required to record departure/arrival dates and times on my travel claim?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... departure/arrival dates and times on my travel claim? 301-11.10 Section 301-11.10 Public Contracts and Property Management Federal Travel Regulation System TEMPORARY DUTY (TDY) TRAVEL ALLOWANCES ALLOWABLE TRAVEL EXPENSES 11-PER DIEM EXPENSES General Rules § 301-11.10 Am I required to record...

  14. 41 CFR 301-11.10 - Am I required to record departure/arrival dates and times on my travel claim?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 41 Public Contracts and Property Management 4 2013-07-01 2012-07-01 true Am I required to record departure/arrival dates and times on my travel claim? 301-11.10 Section 301-11.10 Public Contracts and Property Management Federal Travel Regulation System TEMPORARY DUTY (TDY) TRAVEL ALLOWANCES ALLOWABLE TRAVEL EXPENSES 11-PER DIEM EXPENSES...

  15. 41 CFR 301-11.10 - Am I required to record departure/arrival dates and times on my travel claim?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... departure/arrival dates and times on my travel claim? 301-11.10 Section 301-11.10 Public Contracts and Property Management Federal Travel Regulation System TEMPORARY DUTY (TDY) TRAVEL ALLOWANCES ALLOWABLE TRAVEL EXPENSES 11-PER DIEM EXPENSES General Rules § 301-11.10 Am I required to record...

  16. 41 CFR 301-11.10 - Am I required to record departure/arrival dates and times on my travel claim?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... departure/arrival dates and times on my travel claim? 301-11.10 Section 301-11.10 Public Contracts and Property Management Federal Travel Regulation System TEMPORARY DUTY (TDY) TRAVEL ALLOWANCES ALLOWABLE TRAVEL EXPENSES 11-PER DIEM EXPENSES General Rules § 301-11.10 Am I required to record...

  17. 41 CFR 301-11.10 - Am I required to record departure/arrival dates and times on my travel claim?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... departure/arrival dates and times on my travel claim? 301-11.10 Section 301-11.10 Public Contracts and Property Management Federal Travel Regulation System TEMPORARY DUTY (TDY) TRAVEL ALLOWANCES ALLOWABLE TRAVEL EXPENSES 11-PER DIEM EXPENSES General Rules § 301-11.10 Am I required to record...

  18. Time-of-travel of solute data collected by the Mississippi Department of Environmental Quality for Mississippi streams

    USGS Publications Warehouse

    Kerry, J. Arthur

    2002-01-01

    This report summarizes the time-of-travel of solutes information for Mississippi streams that is available in the files at the Mississippi Department of Environmental Quality, Office of Pollution Control. The time-of-travel information was tabulated for 112 miles of stream reaches in eight of the ten major drainage basins in the State. The data were collected during studies conducted from 1981 through 1998. Estimation of time-of-travel of solutes is important for environmental studies of streams and may be critical in the event of accidental or other spills of contaminants into a waterway.

  19. Quality of water and time of travel in Hobolochitto Creek, Pearl River County, Mississippi

    USGS Publications Warehouse

    Bednar, Gene A.

    1980-01-01

    In Mississippi, an intensive study of Hobolochitto Creek, including the lower parts of East and West Hobolochitto Creeks, was conducted on September 12-14, 1978. The quality-of-water data were collected during a period of generally low streamflow and seasonally high air temperatures. These data show that the quality of water in Hobolochitto Creek was generally good. The dissolved-solids concentrations were less than 50 milligrams per liter, and the concentrations of nitrogen and phosphorus species were low. The 5-day biochemical oxygen demand generally was minimal, and dissolved-oxygen concentrations were at levels that could support aquatic life. Several water samples contained high fecal bacteria densities and there was evidence of the presence of wastes of human origin, particularly at the downstream sites on Hobolochitto Creek. It was determined from a time-of-travel study that the rate of solute travel is very slow at low streamflow. A peak dye concentration traveled through a 3.7-mile reach of Hobolochitto Creek in 23.5 hours. (USGS)

  20. Reconstructed imaging of acoustic cloak using time-lapse reversal method

    NASA Astrophysics Data System (ADS)

    Zhou, Chen; Cheng, Ying; Xu, Jian-yi; Li, Bo; Liu, Xiao-jun

    2014-08-01

    We proposed and investigated a solution to the inverse acoustic cloak problem, an anti-stealth technology to make cloaks visible, using the time-lapse reversal (TLR) method. The TLR method reconstructs the image of an unknown acoustic cloak by utilizing scattered acoustic waves. Compared to previous anti-stealth methods, the TLR method can determine not only the existence of a cloak but also its exact geometric information like definite shape, size, and position. Here, we present the process for TLR reconstruction based on time reversal invariance. This technology may have potential applications in detecting various types of cloaks with different geometric parameters.

  1. Real-time observation of coherent acoustic phonons generated by an acoustically mismatched optoacoustic transducer using x-ray diffraction

    SciTech Connect

    Persson, A. I. H.; Andreasson, B. P.; Enquist, H.; Jurgilaitis, A.; Larsson, J.

    2015-11-14

    The spectrum of laser-generated acoustic phonons in indium antimonide coated with a thin nickel film has been studied using time-resolved x-ray diffraction. Strain pulses that can be considered to be built up from coherent phonons were generated in the nickel film by absorption of short laser pulses. Acoustic reflections at the Ni–InSb interface leads to interference that strongly modifies the resulting phonon spectrum. The study was performed with high momentum transfer resolution together with high time resolution. This was achieved by using a third-generation synchrotron radiation source that provided a high-brightness beam and an ultrafast x-ray streak camera to obtain a temporal resolution of 10 ps. We also carried out simulations, using commercial finite element software packages and on-line dynamic diffraction tools. Using these tools, it is possible to calculate the time-resolved x-ray reflectivity from these complicated strain shapes. The acoustic pulses have a peak strain amplitude close to 1%, and we investigated the possibility to use this device as an x-ray switch. At a bright source optimized for hard x-ray generation, the low reflectivity may be an acceptable trade-off to obtain a pulse duration that is more than an order of magnitude shorter.

  2. Probabilistic Health Risk Assessment of Chemical Mixtures: Importance of Travel Times and Connectivity

    NASA Astrophysics Data System (ADS)

    Henri, Christopher V.; Fernàndez-Garcia, Daniel; de Barros, Felipe P. J.

    2014-05-01

    Subsurface contamination cases giving rise to groundwater pollutions are extensively found in all industrialized countries. Under this pressure, risk assessment methods play an important role in population protection by (1) quantifying the potential impact on human health of an aquifer contamination and (2) helping and driving decisions of groundwater-resource managers. Many reactive components such as chlorinated solvents or nitrates potentially experience attenuation processes under common geochemical conditions. This represents an attractive and extensively used remediation solution but leads often to the production of by-products before to reach a harmless chemical form. This renders mixtures of contaminants a common issue for groundwater resources managers. In this case, the threat posed by these contaminants to human health at a given sensitive location greatly depends on the competition between reactive and advective-dispersive characteristic times. However, hydraulic properties of the aquifer are known to be spatially variable, which can lead to the formation of preferential flow channels and fast contamination pathways. Therefore, the uncertainty on the spatial distribution of the aquifer properties controlling the plume travel time may then play a particular role in the human health risk assessment of chemical mixtures. We investigate here the risk related to a multispecies system in response to different degrees of heterogeneity of the hydraulic conductivity (K or Y =ln(K)). This work focuses on a Perchloroethylene (PCE) contamination problem followed by the sequential first-order production/biodegradation of its daughter species Trichloroethylene (TCE), Dichloroethylene (DCE) and Vinyl Chlorine (VC). For this specific case, VC is known to be a highly toxic contaminant. By performing numerical experiments, we evaluate transport through three-dimensional mildly (σY 2=1.0) and highly (σY 2=4.0) heterogeneous aquifers. Uncertainty on the hydraulic

  3. Time evolution of ion-acoustic double layers in an unmagnetized plasma

    SciTech Connect

    Bharuthram, R.; Momoniat, E.; Mahomed, F.; Singh, S. V.; Islam, M. K.

    2008-08-15

    Ion-acoustic double layers are examined in an unmagnetized, three-component plasma consisting of cold ions and two temperature electrons. Both of the electrons are considered to be Boltzmann distributed and the ions follow the usual fluid dynamical equations. Using the method of characteristics, a time-dependent solution for ion-acoustic double layers is obtained. Results of the findings may have important consequences for the real time satellite observations in the space environment.

  4. Non-stationarity of solute travel time distribution observed in a controlled hydrologic transport volume

    NASA Astrophysics Data System (ADS)

    Queloz, P.; Bertuzzo, E.; Carraro, L.; Botter, G.; Miglietta, F.; Rao, P. S.; Rinaldo, A.

    2014-12-01

    Experimental data were collected over a year-long period in a transport experiment carried out within a controlled transport volume (represented by a 2m-deep, 1m-diameter lysimeter fitted with bottom drainage). The soil surface was shielded from natural rainfall, replaced by an artificial injection (Poisson process) at the daily timescale. Bottom drainage out-flows were continuously monitored with leakage tipping bucket and evapotranspiration (prompted by a willow tree growing within the system) was measured trough precision load cells, which also allow an accurate and continuous reading of the total water storage. Five artificial soluble tracers (species of fluorobenzoic acid, FBAs, mutually passive) were selected based on low-reactivity and low-retardation in our specific soil and used to individually mark five rainfall inputs of different amplitudes and occurring at various initial soil moisture conditions. Tracer discharge concentration and hydrologic fluxes measurements provide a direct method for the assessment of the bulk effects of transport on the (backward and forward) travel time distributions in the hydrological setting. The large discrepancies observed in terms of mass recovery in the discharge (supported by ex post FBAs quantification in the soil and in the vegetation) and tracer out-fluxes dynamics emphasized the dependence of the forward travel time on the various injection times and the stages experienced by the system during the migration of the pulse. Rescaling the measured travel time distribution by using the cumulative drainage volume as an independent variable instead of the time elapsed since the injection also fails to yield to stationary distributions, as it was argued by Niemi (1997). Our experimental results support earlier theoretical speculations centered on the key role of non-stationarity on the characterization of the properties of hydrologic flow and transport phenomena. A travel time based model, with all in- and out- hydrological

  5. Time of travel of the Flint River, Utah Dam to highway M-13, Michigan, August 4-8, 1981

    USGS Publications Warehouse

    Cummings, T. Ray; Miller, John B.

    1982-01-01

    The tracing of Rhodamine WT dye has provided time-of-travel data for waste-load allocation studies of a 42.8-mile reach of the Flint River at low flow. Dye was injected at two locations in Flint--at Utah Dam and at Grand Traverse Street. From Utah Dam to Grand Traverse Street the mean velocity of flow was 0.1 foot per second; time-of-travel was 35.3 hours. From Grand Traverse Street to Highway M-13, mean velocity was 0.7 foot per second; time-of-travel was 78.8 hours. Time-of-travel for the reach between Utah Dam and Highway M-13 was thus 114 hours. A discharge of equaled or exceeded about 90% of the time was measured at Grand Traverse Street in Flint before dye injection. (USGS)

  6. Comparison of VLBI, TV and traveling clock techniques for time transfer

    NASA Technical Reports Server (NTRS)

    Spencer, J. H.; Waltman, E. B.; Johnston, K. J.; Santini, N. J.; Klepczynski, W. J.; Matsakis, D. N.; Angerhofer, P. E.; Kaplan, G. M.

    1982-01-01

    A three part experiment was conducted to develop and compare time transfer techniques. The experiment consisted of (1) a very long baseline interferometer (VLBI), (2) a high precision portable clock time transfer system between the two sites, and (3) a television time transfer. A comparison of the VLBI and traveling clock shows each technique can perform satisfactorily at the five nsec level. There was a systematic offset of 59 nsec between the two methods, which we attributed to a difference in epochs between VLBI formatter and station clock. The VLBI method had an internal random error of one nsec at the three sigma level for a two day period. Thus, the Mark II system performed well, and VLBI shows promise of being an accurate method of time transfer. The TV system, which had technical problems during the experiment, transferred time with a random error of about 50 nsec.

  7. Regional Seismic Travel-Time Prediction, Uncertainty, and Location Improvement in Western Eurasia

    NASA Astrophysics Data System (ADS)

    Flanagan, M. P.; Myers, S. C.

    2004-12-01

    We investigate our ability to improve regional travel-time prediction and seismic event location using an a priori, three-dimensional velocity model of Western Eurasia and North Africa: WENA1.0 [Pasyanos et al., 2004]. Our objective is to improve the accuracy of seismic location estimates and calculate representative location uncertainty estimates. As we focus on the geographic region of Western Eurasia, the Middle East, and North Africa, we develop, test, and validate 3D model-based travel-time prediction models for 30 stations in the study region. Three principal results are presented. First, the 3D WENA1.0 velocity model improves travel-time prediction over the iasp91 model, as measured by variance reduction, for regional Pg, Pn, and P phases recorded at the 30 stations. Second, a distance-dependent uncertainty model is developed and tested for the WENA1.0 model. Third, an end-to-end validation test based on 500 event relocations demonstrates improved location performance over the 1-dimensional iasp91 model. Validation of the 3D model is based on a comparison of approximately 11,000 Pg, Pn, and P travel-time predictions and empirical observations from ground truth (GT) events. Ray coverage for the validation dataset is chosen to provide representative, regional-distance sampling across Eurasia and North Africa. The WENA1.0 model markedly improves travel-time predictions for most stations with an average variance reduction of 25% for all ray paths. We find that improvement is station dependent, with some stations benefiting greatly from WENA1.0 predictions (52% at APA, 33% at BKR, and 32% at NIL), some stations showing moderate improvement (12% at KEV, 14% at BOM, and 12% at TAM), some benefiting only slightly (6% at MOX, and 4% at SVE), and some are degraded (-6% at MLR and -18% at QUE). We further test WENA1.0 by comparing location accuracy with results obtained using the iasp91 model. Again, relocation of these events is dependent on ray paths that evenly

  8. Travel Time Estimation Using Freeway Point Detector Data Based on Evolving Fuzzy Neural Inference System

    PubMed Central

    Tang, Jinjun; Zou, Yajie; Ash, John; Zhang, Shen; Liu, Fang; Wang, Yinhai

    2016-01-01

    Travel time is an important measurement used to evaluate the extent of congestion within road networks. This paper presents a new method to estimate the travel time based on an evolving fuzzy neural inference system. The input variables in the system are traffic flow data (volume, occupancy, and speed) collected from loop detectors located at points both upstream and downstream of a given link, and the output variable is the link travel time. A first order Takagi-Sugeno fuzzy rule set is used to complete the inference. For training the evolving fuzzy neural network (EFNN), two learning processes are proposed: (1) a K-means method is employed to partition input samples into different clusters, and a Gaussian fuzzy membership function is designed for each cluster to measure the membership degree of samples to the cluster centers. As the number of input samples increases, the cluster centers are modified and membership functions are also updated; (2) a weighted recursive least squares estimator is used to optimize the parameters of the linear functions in the Takagi-Sugeno type fuzzy rules. Testing datasets consisting of actual and simulated data are used to test the proposed method. Three common criteria including mean absolute error (MAE), root mean square error (RMSE), and mean absolute relative error (MARE) are utilized to evaluate the estimation performance. Estimation results demonstrate the accuracy and effectiveness of the EFNN method through comparison with existing methods including: multiple linear regression (MLR), instantaneous model (IM), linear model (LM), neural network (NN), and cumulative plots (CP). PMID:26829639

  9. Improving horizontal resolution of high-frequency surface-wave methods using travel-time tomography

    NASA Astrophysics Data System (ADS)

    Yin, Xiaofei; Xu, Hongrui; Wang, Limin; Hu, Yue; Shen, Chao; Sun, Shida

    2016-03-01

    In surface-wave methods, horizontal resolution can be defined as the ability to distinguish anomalous objects that are laterally displaced from each other. The horizontal length of a recognizable geological anomalous body is measured by the lateral variation of shear (S)-wave velocity. Multichannel analysis of surface waves (MASW) is an efficient tool to determine near-surface S-wave velocities. The acquisition of the MASW method involves the same source-receiver configuration moved successively by a fixed distance interval (a few to several stations) along a linear survey line, which is called a roll-along acquisition geometry. A pseudo-2D S-wave velocity section is constructed by aligning 1D models, and each inverted 1D S-wave velocity model reflects the vertical S-wave velocity variation at the midpoint of each geophone spread. Although the MASW method can improve the horizontal resolution of S-wave velocity sections to some degree, the amount of fieldwork is increased by the roll-along acquisition geometry. We propose surface-wave tomography method to investigate horizontal resolution of surface-wave exploration. Phase-velocity dispersion curves are calculated by a pair of traces within a multichannel record through cross-correlation combined with a phase-shift scanning method. Then with the utilization of travel-time tomography, we can obtain high resolution pure-path dispersion curves with diverse sizes of grids at different frequencies. Finally, the pseudo-2D S-wave velocity structure is reconstructed by inverting the pure-path dispersion curves. Travel-time tomography of surface waves can extract accurate dispersion curves from a record with a short receiver spacing, and it can effectively enhance the ability of random noise immunity. Synthetic tests and a real-world example have indicated that travel-time tomography has a great potential for improving the horizontal resolution of surface waves using multi-channel analysis.

  10. Travel Time Estimation Using Freeway Point Detector Data Based on Evolving Fuzzy Neural Inference System.

    PubMed

    Tang, Jinjun; Zou, Yajie; Ash, John; Zhang, Shen; Liu, Fang; Wang, Yinhai

    2016-01-01

    Travel time is an important measurement used to evaluate the extent of congestion within road networks. This paper presents a new method to estimate the travel time based on an evolving fuzzy neural inference system. The input variables in the system are traffic flow data (volume, occupancy, and speed) collected from loop detectors located at points both upstream and downstream of a given link, and the output variable is the link travel time. A first order Takagi-Sugeno fuzzy rule set is used to complete the inference. For training the evolving fuzzy neural network (EFNN), two learning processes are proposed: (1) a K-means method is employed to partition input samples into different clusters, and a Gaussian fuzzy membership function is designed for each cluster to measure the membership degree of samples to the cluster centers. As the number of input samples increases, the cluster centers are modified and membership functions are also updated; (2) a weighted recursive least squares estimator is used to optimize the parameters of the linear functions in the Takagi-Sugeno type fuzzy rules. Testing datasets consisting of actual and simulated data are used to test the proposed method. Three common criteria including mean absolute error (MAE), root mean square error (RMSE), and mean absolute relative error (MARE) are utilized to evaluate the estimation performance. Estimation results demonstrate the accuracy and effectiveness of the EFNN method through comparison with existing methods including: multiple linear regression (MLR), instantaneous model (IM), linear model (LM), neural network (NN), and cumulative plots (CP). PMID:26829639

  11. Prediction of Probabilistic Sleep Distributions Following Travel Across Multiple Time Zones

    PubMed Central

    Darwent, David; Dawson, Drew; Roach, Greg D.

    2010-01-01

    Study Objectives: To parameterize and validate a model to estimate average sleep times for long-haul aviation pilots during layovers following travel across multiple time zones. The model equations were based on a weighted distribution of domicile- and local-time sleepers, and included algorithms to account for sleep loss and circadian re-synchronization. Design: Sleep times were collected from participants under normal commercial operating conditions using diaries and wrist activity monitors. Participants: Participants included a total of 306 long-haul pilots (113 captains, 120 first officers, and 73 second officers). Measurement and Results: The model was parameterized based on the average sleep/wake times observed during international flight patterns from Australia to London and Los Angeles (global R2 = 0.72). The parameterized model was validated against the average sleep/wake times observed during flight patterns from Australia to London (r2 = 0.85), Los Angeles (r2 = 0.79), New York (r2 = 0.80), and Johannesburg (r2 = 0.73). Goodness-of-fit was poorer when the parameterized model equations were used to predict the variance across the sleep/wake cycles of individual pilots (R2 = 0.42, 0.35, 0.31, and 0.28 for the validation flight patterns, respectively), in part because of substantial inter-individual variability in sleep timing and duration. Conclusions: It is possible to estimate average sleep times during layovers in international patterns with a reasonable degree of accuracy. Models of this type could form the basis of a stand-alone application to estimate the likelihood that a given duty schedule provides pilots, on average, with an adequate opportunity to sleep. Citation: Darwent D; Dawson D; Roach GD. Prediction of probabilistic sleep distributions following travel across multiple time zones. SLEEP 2010;33(2):185-195. PMID:20175402

  12. Feature extraction from time domain acoustic signatures of weapons systems fire

    NASA Astrophysics Data System (ADS)

    Yang, Christine; Goldman, Geoffrey H.

    2014-06-01

    The U.S. Army is interested in developing algorithms to classify weapons systems fire based on their acoustic signatures. To support this effort, an algorithm was developed to extract features from acoustic signatures of weapons systems fire and applied to over 1300 signatures. The algorithm filtered the data using standard techniques then estimated the amplitude and time of the first five peaks and troughs and the location of the zero crossing in the waveform. The results were stored in Excel spreadsheets. The results are being used to develop and test acoustic classifier algorithms.

  13. Travel time source-specific station corrections related to lithospheric structures in the Mediterranean region

    NASA Astrophysics Data System (ADS)

    Giuntini, A.; Materni, V.; Console, R.; Chiappini, S.; Chiappini, M.

    2016-02-01

    We compare the locations obtained from arrival times collected by the International Seismological Centre from a network of regional and teleseismic stations for a cluster of Italian earthquakes with the locations of the same events obtained by the dense national seismic network operated by the Istituto Nazionale di Geofisica e Vulcanologia. We find mislocations on the order of 15 km for epicentral coordinates and on the order of 25 km for depths calculated from the regional and teleseismic network and using the standard IASP91 travel times. These mislocations are generally larger than the sizes of the respective error ellipse semi-axes. We then show that systematic shifts of hypocentral coordinates can be substantially reduced by applying source-specific station corrections. Moreover, we find that the size of error ellipses characterizing the teleseismic locations is significantly reduced by the application of such corrections. Our travel time corrections are compared and found fairly consistent with information available in the literature on tomographic studies on the crust and upper mantle in the European-Mediterranean region.

  14. Measuring and crust-correcting finite-frequency travel time residuals - application to southwestern Scandinavia

    NASA Astrophysics Data System (ADS)

    Kolstrup, M. L.; Maupin, V.

    2015-10-01

    We present a data-processing routine to compute relative finite-frequency travel time residuals using a combination of the Iterative Cross-Correlation and Stack (ICCS) algorithm and the Multi-Channel Cross-Correlation method (MCCC). The routine has been tailored for robust measurement of P- and S-wave travel times in several frequency bands and for avoiding cycle-skipping problems at the shortest periods. We also investigate the adequacy of ray theory to calculate crustal corrections for finite-frequency regional tomography in normal continental settings with non-thinned crust. We find that ray theory is valid for both P and S waves at all relevant frequencies as long as the crust does not contain low-velocity layers associated with sediments at the surface. Reverberations in the sediments perturb the arrival times of the S waves and the long-period P waves significantly, and need to be accounted for in crustal corrections. The data-processing routine and crustal corrections are illustrated using data from a~network in southwestern Scandinavia.

  15. Measuring and crust-correcting finite-frequency travel time residuals - application to southwestern Scandinavia

    NASA Astrophysics Data System (ADS)

    Kolstrup, M. L.; Maupin, V.

    2015-07-01

    We present a data processing routine to compute relative finite-frequency travel time residuals using a combination of the Iterative Cross-Correlation and Stack (ICCS) algorithm and the MultiChannel Cross-Correlation method (MCCC). The routine has been tailored for robust measurement of P and S wave travel times in several frequency bands and for avoiding cycle-skipping problems at the shortest periods. We also investigate the adequacy of ray theory to calculate crustal corrections for finite-frequency regional tomography in normal continental settings with non-thinned crust. We find that ray theory is valid for both P and S waves at all relevant frequencies as long as the crust does not contain low-velocity layers associated with sediments at the surface. Reverberations in the sediments perturb the arrival times of the S waves and the long-period P waves significantly, and need to be accounted for in crustal corrections. The data processing routine and crustal corrections are illustated using data from a network in southwestern Scandinavia.

  16. Prescribed journeys through life: Cultural differences in mental time travel between Middle Easterners and Scandinavians.

    PubMed

    Ottsen, Christina Lundsgaard; Berntsen, Dorthe

    2015-12-01

    Mental time travel is the ability to remember past events and imagine future events. Here, 124 Middle Easterners and 128 Scandinavians generated important past and future events. These different societies present a unique opportunity to examine effects of culture. Findings indicate stronger influence of normative schemas and greater use of mental time travel to teach, inform and direct behaviour in the Middle East compared with Scandinavia. The Middle Easterners generated more events that corresponded to their cultural life script and that contained religious words, whereas the Scandinavians reported events with a more positive mood impact. Effects of gender were mainly found in the Middle East. Main effects of time orientation largely replicated recent findings showing that simulation of future and past events are not necessarily parallel processes. In accordance with the notion that future simulations rely on schema-based construction, important future events showed a higher overlap with life script events than past events in both cultures. In general, cross-cultural discrepancies were larger in future compared with past events. Notably, the high focus in the Middle East on sharing future events to give cultural guidance is consistent with the increased adherence to normative scripts found in this culture. PMID:26432189

  17. Dust ion acoustic travelling waves in the framework of a modified Kadomtsev-Petviashvili equation in a magnetized dusty plasma with superthermal electrons

    NASA Astrophysics Data System (ADS)

    Saha, Asit; Chatterjee, Prasanta

    2014-02-01

    For the critical values of the parameters q and V, the work (Samanta et al. in Phys. Plasma 20:022111, 2013b) is unable to describe the nonlinear wave features in magnetized dusty plasma with superthermal electrons. To describe the nonlinear wave features for critical values of the parameters q and V, we extend the work (Samanta et al. in Phys. Plasma 20:022111, 2013b). To extend the work, we derive the modified Kadomtsev-Petviashvili (MKP) equation for dust ion acoustic waves in a magnetized dusty plasma with q-nonextensive velocity distributed electrons by considering higher order coefficients of ɛ. By applying the bifurcation theory of planar dynamical systems to this MKP equation, the existence of solitary wave solutions of both types rarefactive and compressive, periodic travelling wave solutions and kink and anti-kink wave solutions is proved. Three exact solutions of these above waves are determined. The present study could be helpful for understanding the nonlinear travelling waves propagating in mercury, solar wind, Saturn and in magnetosphere of the Earth.

  18. The TimeGeo modeling framework for urban motility without travel surveys.

    PubMed

    Jiang, Shan; Yang, Yingxiang; Gupta, Siddharth; Veneziano, Daniele; Athavale, Shounak; González, Marta C

    2016-09-13

    Well-established fine-scale urban mobility models today depend on detailed but cumbersome and expensive travel surveys for their calibration. Not much is known, however, about the set of mechanisms needed to generate complete mobility profiles if only using passive datasets with mostly sparse traces of individuals. In this study, we present a mechanistic modeling framework (TimeGeo) that effectively generates urban mobility patterns with resolution of 10 min and hundreds of meters. It ties together the inference of home and work activity locations from data, with the modeling of flexible activities (e.g., other) in space and time. The temporal choices are captured by only three features: the weekly home-based tour number, the dwell rate, and the burst rate. These combined generate for each individual: (i) stay duration of activities, (ii) number of visited locations per day, and (iii) daily mobility networks. These parameters capture how an individual deviates from the circadian rhythm of the population, and generate the wide spectrum of empirically observed mobility behaviors. The spatial choices of visited locations are modeled by a rank-based exploration and preferential return (r-EPR) mechanism that incorporates space in the EPR model. Finally, we show that a hierarchical multiplicative cascade method can measure the interaction between land use and generation of trips. In this way, urban structure is directly related to the observed distance of travels. This framework allows us to fully embrace the massive amount of individual data generated by information and communication technologies (ICTs) worldwide to comprehensively model urban mobility without travel surveys. PMID:27573826

  19. Experimental studies of applications of time-reversal acoustics to noncoherent underwater communications

    NASA Astrophysics Data System (ADS)

    Heinemann, M.; Larraza, A.; Smith, K. B.

    2003-06-01

    The most difficult problem in shallow underwater acoustic communications is considered to be the time-varying multipath propagation because it impacts negatively on data rates. At high data rates the intersymbol interference requires adaptive algorithms on the receiver side that lead to computationally intensive and complex signal processing. A novel technique called time-reversal acoustics (TRA) can environmentally adapt the acoustic propagation effects of a complex medium in order to focus energy at a particular target range and depth. Using TRA, the multipath structure is reduced because all the propagation paths add coherently at the intended target location. This property of time-reversal acoustics suggests a potential application in the field of noncoherent acoustic communications. This work presents results of a tank scale experiment using an algorithm for rapid transmission of binary data in a complex underwater environment with the TRA approach. A simple 15-symbol code provides an example of the simplicity and feasibility of the approach. Covert coding due to the inherent scrambling induced by the environment at points other than the intended receiver is also investigated. The experiments described suggest a high potential in data rate for the time-reversal approach in underwater acoustic communications while keeping the computational complexity low.

  20. The DOE Model for Improving Seismic Event Locations Using Travel Time Corrections: Description and Demonstration

    SciTech Connect

    Hipp, J.R.; Moore, S.G.; Shepherd, E.; Young, C.J.

    1998-10-20

    The U.S. National Laboratories, under the auspices of the Department of Energy, have been tasked with improv- ing the capability of the United States National Data Center (USNDC) to monitor compliance with the Comprehen- sive Test Ban Trea~ (CTBT). One of the most important services which the USNDC must provide is to locate suspicious events, preferably as accurately as possible to help identify their origin and to insure the success of on-site inspections if they are deemed necessary. The seismic location algorithm used by the USNDC has the capability to generate accurate locations by applying geographically dependent travel time corrections, but to date, none of the means, proposed for generating and representing these corrections has proven to be entirely satisfactory. In this presentation, we detail the complete DOE model for how regional calibration travel time information gathered by the National Labs will be used to improve event locations and provide more realistic location error esti- mates. We begin with residual data and error estimates from ground truth events. Our model consists of three parts: data processing, data storage, and data retrieval. The former two are effectively one-time processes, executed in advance before the system is made operational. The last step is required every time an accurate event location is needed. Data processing involves applying non-stationary Bayesian kriging to the residwd data to densifi them, and iterating to find the optimal tessellation representation for the fast interpolation in the data retrieval task. Both the kriging and the iterative re-tessellation are slow, computationally-expensive processes but this is acceptable because they are performed off-line, before any events are to be located. In the data storage task, the densified data set is stored in a database and spatially indexed. Spatial indexing improves the access efficiency of the geographically-ori- ented data requests associated with event location

  1. Acoustical Measurement Of Furnace Temperatures

    NASA Technical Reports Server (NTRS)

    Parthasarathy, Shakkottai; Venkateshan, Shakkottai P.

    1989-01-01

    Simple probes withstand severe conditions, yet give spatially-resolved temperature readings. Prototype acoustical system developed to measure temperatures from ambient to 1,800 degree F in such structures as large industrial lime kilns and recovery-boiler furnaces. Pulses of sound reflected from obstructions in sensing tube. Speed of sound and temperature in each segment deduced from travel times of pulses.

  2. Auralization of concert hall acoustics using finite difference time domain methods and wave field synthesis

    NASA Astrophysics Data System (ADS)

    Hochgraf, Kelsey

    Auralization methods have been used for a long time to simulate the acoustics of a concert hall for different seat positions. The goal of this thesis was to apply the concept of auralization to a larger audience area that the listener could walk through to compare differences in acoustics for a wide range of seat positions. For this purpose, the acoustics of Rensselaer's Experimental Media and Performing Arts Center (EMPAC) Concert Hall were simulated to create signals for a 136 channel wave field synthesis (WFS) system located at Rensselaer's Collaborative Research Augmented Immersive Virtual Environment (CRAIVE) Laboratory. By allowing multiple people to dynamically experience the concert hall's acoustics at the same time, this research gained perspective on what is important for achieving objective accuracy and subjective plausibility in an auralization. A finite difference time domain (FDTD) simulation on a three-dimensional face-centered cubic grid, combined at a crossover frequency of 800 Hz with a CATT-Acoustic(TM) simulation, was found to have a reverberation time, direct to reverberant sound energy ratio, and early reflection pattern that more closely matched measured data from the hall compared to a CATT-Acoustic(TM) simulation and other hybrid simulations. In the CRAIVE lab, nine experienced listeners found all hybrid auralizations (with varying source location, grid resolution, crossover frequency, and number of loudspeakers) to be more perceptually plausible than the CATT-Acoustic(TM) auralization. The FDTD simulation required two days to compute, while the CATT-Acoustic(TM) simulation required three separate TUCT(TM) computations, each taking four hours, to accommodate the large number of receivers. Given the perceptual advantages realized with WFS for auralization of a large, inhomogeneous sound field, it is recommended that hybrid simulations be used in the future to achieve more accurate and plausible auralizations. Predictions are made for a

  3. Finite-difference, time-domain analysis of a folded acoustic transmission line.

    PubMed

    Jackson, Charles M

    2005-03-01

    Recently designed, modern versions of renais sance woodwind instruments such as the recorder and serpent use square cross sections and a folded acoustic transmission line. Conventional microwave techniques would expect that this bend would cause unwanted reflections and impedance discontinuities. This paper analyses the folded acoustic transmission line using finite-difference, time-domain techniques and shows that the discontinuity can be compensated with by the use of a manufacturable method. PMID:15857045

  4. Nonlinear response - A time domain approach. [with applications to acoustic fatigue, spacecraft and composite materials

    NASA Technical Reports Server (NTRS)

    Vaicaitis, R.

    1986-01-01

    The present paper reviews the basic concepts of nonlinear response of panels to surface flow and acoustic pressures, simulation of random processes, time domain solutions and the Monte Carlo Method. Applications of this procedure to the orbit-on-demand space vehicles, acoustic fatigue and composite materials are discussed. Numerical examples are included for a variety of nonlinear problems to illustrate the applicability of this method.

  5. Time of travel of solutes in selected reaches of the Sandusky River Basin, Ohio, 1972 and 1973

    USGS Publications Warehouse

    Westfall, Arthur O.

    1976-01-01

    A time of travel study of a 106-mile (171-kilometer) reach of the Sandusky River and a 39-mile (63-kilometer) reach of Tymochtee Creek was made to determine the time required for water released from Killdeer Reservoir on Tymochtee Creek to reach selected downstream points. In general, two dye sample runs were made through each subreach to define the time-discharge relation for approximating travel times at selected discharges within the measured range, and time-discharge graphs are presented for 38 subreaches. Graphs of dye dispersion and variation in relation to time are given for three selected sampling sites. For estimating travel time and velocities between points in the study reach, tables for selected flow durations are given. Duration curves of daily discharge for four index stations are presented to indicate the lo-flow characteristics and for use in shaping downward extensions of the time-discharge curves.

  6. Assessment of Smolt Condition for Travel Time Analysis, 1989 Annual Report.

    SciTech Connect

    Beeman, John W.; Rondorf, Dennis W.; Faler, Joyce C.

    1990-11-01

    The Water Budget is a volume of water used to enhance environmental conditions (flows) in the Columbia and Snake rivers for juvenile salmonids during their seaward migration. To manage the Water Budget, the Fish Passage Center estimates travel times of juvenile salmonids in index reaches of the main-stem rivers, using information on river flows and the migrational characteristics of the juvenile salmonids. This study was initiated to provide physiological information on the juvenile salmonids used for these travel time estimates. The physiological ability to respond to stressors was evaluated by measuring concentrations of plasma cortisol, glucose, and chlorides before and after a 30-s handling-stress challenge test. The development of smoltification was assessed by measuring gill Na{sup +}--K{sup +} ATPase activity and plasma thyroxine concentrations. Prevalence of bacterial kidney disease in spring chinook salmon was generally higher than in 1988, ranging from 81--100{percent} using an enzyme-linked immunosorbent assay (ELISA) method. Fish from Snake River hatcheries had more severe infections than those from mid-Columbia hatcheries. 42 refs., 19 figs., 4 tabs.

  7. Schizophrenia Spectrum Disorders Show Reduced Specificity and Less Positive Events in Mental Time Travel.

    PubMed

    Chen, Xing-Jie; Liu, Lu-Lu; Cui, Ji-Fang; Wang, Ya; Chen, An-Tao; Li, Feng-Hua; Wang, Wei-Hong; Zheng, Han-Feng; Gan, Ming-Yuan; Li, Chun-Qiu; Shum, David H K; Chan, Raymond C K

    2016-01-01

    Mental time travel refers to the ability to recall past events and to imagine possible future events. Schizophrenia (SCZ) patients have problems in remembering specific personal experiences in the past and imagining what will happen in the future. This study aimed to examine episodic past and future thinking in SCZ spectrum disorders including SCZ patients and individuals with schizotypal personality disorder (SPD) proneness who are at risk for developing SCZ. Thirty-two SCZ patients, 30 SPD proneness individuals, and 33 healthy controls participated in the study. The Sentence Completion for Events from the Past Test (SCEPT) and the Sentence Completion for Events in the Future Test were used to measure past and future thinking abilities. Results showed that SCZ patients showed significantly reduced specificity in recalling past and imagining future events, they generated less proportion of specific and extended events compared to healthy controls. SPD proneness individuals only generated less extended events compared to healthy controls. The reduced specificity was mainly manifested in imagining future events. Both SCZ patients and SPD proneness individuals generated less positive events than controls. These results suggest that mental time travel impairments in SCZ spectrum disorders and have implications for understanding their cognitive and emotional deficits. PMID:27507958

  8. Modelling pedestrian travel time and the design of facilities: a queuing approach.

    PubMed

    Rahman, Khalidur; Ghani, Noraida Abdul; Kamil, Anton Abdulbasah; Mustafa, Adli; Kabir Chowdhury, Md Ahmed

    2013-01-01

    Pedestrian movements are the consequence of several complex and stochastic facts. The modelling of pedestrian movements and the ability to predict the travel time are useful for evaluating the performance of a pedestrian facility. However, only a few studies can be found that incorporate the design of the facility, local pedestrian body dimensions, the delay experienced by the pedestrians, and level of service to the pedestrian movements. In this paper, a queuing based analytical model is developed as a function of relevant determinants and functional factors to predict the travel time on pedestrian facilities. The model can be used to assess the overall serving rate or performance of a facility layout and correlate it to the level of service that is possible to provide the pedestrians. It has also the ability to provide a clear suggestion on the designing and sizing of pedestrian facilities. The model is empirically validated and is found to be a robust tool to understand how well a particular walking facility makes possible comfort and convenient pedestrian movements. The sensitivity analysis is also performed to see the impact of some crucial parameters of the developed model on the performance of pedestrian facilities. PMID:23691055

  9. Crustal Structure Beneath Pleasant Valley, Nevada from Local and Regional Earthquake Travel Times

    NASA Astrophysics Data System (ADS)

    Kant, L. B.; Nabelek, J.; Braunmiller, J.

    2011-12-01

    In 1915 the Pleasant Valley fault in the Basin and Range Province of northern Nevada ruptured in a Mw~7 earthquake, one of the largest normal faulting earthquakes in U.S. history. We are currently operating a densely spaced linear array of broadband three-component seismometers across the Pleasant Valley fault to investigate the structure and the geometry of the fault zone. Here, we present a local crustal velocity model derived from P and S wave travel times of local and regional earthquakes recorded by the Pleasant Valley array. Regional events in northern California, eastern Nevada and Utah that occurred in line with the array are well recorded and provide constraints on upper mantle velocities. Many local seismic events were also observed. Only a few of these events were detected by the ANSS network, reflecting the limited detection capability in sparsely instrumented northern Nevada. The local event set includes earthquakes, mining blasts and sonic booms from nearby jet airplane flights. A subset of these events was located using Hypoinverse. Their travel time curves are used to estimate crustal structure and velocity in the Pleasant Valley region. This is an EarthScope FlexArray project.

  10. Neural activity in the medial temporal lobe reveals the fidelity of mental time travel.

    PubMed

    Kragel, James E; Morton, Neal W; Polyn, Sean M

    2015-02-18

    Neural circuitry in the medial temporal lobe (MTL) is critically involved in mental time travel, which involves the vivid retrieval of the details of past experience. Neuroscientific theories propose that the MTL supports memory of the past by retrieving previously encoded episodic information, as well as by reactivating a temporal code specifying the position of a particular event within an episode. However, the neural computations supporting these abilities are underspecified. To test hypotheses regarding the computational mechanisms supported by different MTL subregions during mental time travel, we developed a computational model that linked a blood oxygenation level-dependent signal to cognitive operations, allowing us to predict human performance in a memory search task. Activity in the posterior MTL, including parahippocampal cortex, reflected how strongly one reactivates the temporal context of a retrieved memory, allowing the model to predict whether the next memory will correspond to a nearby moment in the study episode. A signal in the anterior MTL, including perirhinal cortex, indicated the successful retrieval of list items, without providing information regarding temporal organization. A hippocampal signal reflected both processes, consistent with theories that this region binds item and context information together to form episodic memories. These findings provide evidence for modern theories that describe complementary roles of the hippocampus and surrounding parahippocampal and perirhinal cortices during the retrieval of episodic memories, shaping how humans revisit the past. PMID:25698731

  11. Magnetic and Thermal Contributions to Helioseismic Travel times in Simulated Sunspots

    NASA Astrophysics Data System (ADS)

    Braun, Douglas; Felipe, Tobias; Birch, Aaron; Crouch, Ashley D.

    2016-05-01

    The interpretation of local helioseismic measurements of sunspots has long been a challenge, since waves propagating through sunspots are potentially affected by both mode conversion and changes in the thermal structure of the spots. We carry out numerical simulations of wave propagation through a variety of models which alternately isolate either the thermal or magnetic structure of the sunspot or include both of these. We find that helioseismic holography measurements made from the resulting simulated wavefields show qualitative agreement with observations of real sunspots. Using insight from ray theory, we find that travel-time shifts in the thermal (non-magnetic) sunspot model are primarily produced by changes in the wave path due to the Wilson depression rather than variations in the wave speed. This shows that inversions for the subsurface structure of sunspots must account for local changes in the density. In some ranges of horizontal phase speed and frequency there is agreement (within the noise level of the measurements) between the travel times measured in the full magnetic sunspot model and the thermal model. If this conclusion proves to be robust for a wide range of models, it suggests a path towards inversions for sunspot structure. This research has been funded by the Spanish MINECO through grant AYA2014-55078-P, by the NASA Heliophysics Division through NNX14AD42G and NNH12CF23C, and the NSF Solar Terrestrial program through AGS-1127327.

  12. Modelling Pedestrian Travel Time and the Design of Facilities: A Queuing Approach

    PubMed Central

    Rahman, Khalidur; Abdul Ghani, Noraida; Abdulbasah Kamil, Anton; Mustafa, Adli; Kabir Chowdhury, Md. Ahmed

    2013-01-01

    Pedestrian movements are the consequence of several complex and stochastic facts. The modelling of pedestrian movements and the ability to predict the travel time are useful for evaluating the performance of a pedestrian facility. However, only a few studies can be found that incorporate the design of the facility, local pedestrian body dimensions, the delay experienced by the pedestrians, and level of service to the pedestrian movements. In this paper, a queuing based analytical model is developed as a function of relevant determinants and functional factors to predict the travel time on pedestrian facilities. The model can be used to assess the overall serving rate or performance of a facility layout and correlate it to the level of service that is possible to provide the pedestrians. It has also the ability to provide a clear suggestion on the designing and sizing of pedestrian facilities. The model is empirically validated and is found to be a robust tool to understand how well a particular walking facility makes possible comfort and convenient pedestrian movements. The sensitivity analysis is also performed to see the impact of some crucial parameters of the developed model on the performance of pedestrian facilities. PMID:23691055

  13. Time-of-travel study in the Sebasticook River basin, Maine

    USGS Publications Warehouse

    Parker, Gene W.

    1981-01-01

    Time of travel was determined for four reaches of the Sebasticook River, two on the East Branch Sebasticook River and two on the main stem of the Sebasticook River. Reach A included 7.8 miles of the East Branch Sebasticook River from Dexter to Corinna, Maine. Reach B included 8 miles of the East Branch Sebasticook River from Newport to its mouth, and one mile of the Sebasticook River to Peltoma bridge near Pittsfield, Maine. Reach C included 3.5 miles of the Sebasticook River from Hartland to West Palmyra, Maine. Reach D included 31.4 miles of the Sebasticook River from Pittsfield to Winslow, Maine. Using a 20-percent solution of rhodamine WT, three dye tracer study runs were made in each reach. Water samples were collected at 11 sites in the study area. The samples were then analyzed for dye concentrations. Time-of-travel data for each subreach are depicted in a series of illustrations and summarized in tabular form. Examples are given to illustrate the use of the data presented. (USGS)

  14. How accessible are coral reefs to people? A global assessment based on travel time.

    PubMed

    Maire, Eva; Cinner, Joshua; Velez, Laure; Huchery, Cindy; Mora, Camilo; Dagata, Stephanie; Vigliola, Laurent; Wantiez, Laurent; Kulbicki, Michel; Mouillot, David

    2016-04-01

    The depletion of natural resources has become a major issue in many parts of the world, with the most accessible resources being most at risk. In the terrestrial realm, resource depletion has classically been related to accessibility through road networks. In contrast, in the marine realm, the impact on living resources is often framed into the Malthusian theory of human density around ecosystems. Here, we develop a new framework to estimate the accessibility of global coral reefs using potential travel time from the nearest human settlement or market. We show that 58% of coral reefs are located < 30 min from the nearest human settlement. We use a case study from New Caledonia to demonstrate that travel time from the market is a strong predictor of fish biomass on coral reefs. We also highlight a relative deficit of protection on coral reef areas near people, with disproportional protection on reefs far from people. This suggests that conservation efforts are targeting low-conflict reefs or places that may already be receiving de facto protection due to their isolation. Our global assessment of accessibility in the marine realm is a critical step to better understand the interplay between humans and resources. PMID:26879898

  15. Schizophrenia Spectrum Disorders Show Reduced Specificity and Less Positive Events in Mental Time Travel

    PubMed Central

    Chen, Xing-jie; Liu, Lu-lu; Cui, Ji-fang; Wang, Ya; Chen, An-tao; Li, Feng-hua; Wang, Wei-hong; Zheng, Han-feng; Gan, Ming-yuan; Li, Chun-qiu; Shum, David H. K.; Chan, Raymond C. K.

    2016-01-01

    Mental time travel refers to the ability to recall past events and to imagine possible future events. Schizophrenia (SCZ) patients have problems in remembering specific personal experiences in the past and imagining what will happen in the future. This study aimed to examine episodic past and future thinking in SCZ spectrum disorders including SCZ patients and individuals with schizotypal personality disorder (SPD) proneness who are at risk for developing SCZ. Thirty-two SCZ patients, 30 SPD proneness individuals, and 33 healthy controls participated in the study. The Sentence Completion for Events from the Past Test (SCEPT) and the Sentence Completion for Events in the Future Test were used to measure past and future thinking abilities. Results showed that SCZ patients showed significantly reduced specificity in recalling past and imagining future events, they generated less proportion of specific and extended events compared to healthy controls. SPD proneness individuals only generated less extended events compared to healthy controls. The reduced specificity was mainly manifested in imagining future events. Both SCZ patients and SPD proneness individuals generated less positive events than controls. These results suggest that mental time travel impairments in SCZ spectrum disorders and have implications for understanding their cognitive and emotional deficits. PMID:27507958

  16. Real Time Monitoring of Containerless Microreactions in Acoustically Levitated Droplets via Ambient Ionization Mass Spectrometry.

    PubMed

    Crawford, Elizabeth A; Esen, Cemal; Volmer, Dietrich A

    2016-09-01

    Direct in-droplet (in stillo) microreaction monitoring using acoustically levitated micro droplets has been achieved by combining acoustic (ultrasonic) levitation for the first time with real time ambient tandem mass spectrometry (MS/MS). The acoustic levitation and inherent mixing of microliter volumes of reactants (3 μL droplets), yielding total reaction volumes of 6 μL, supported monitoring the acid-catalyzed degradation reaction of erythromycin A. This reaction was chosen to demonstrate the proof-of-principle of directly monitoring in stillo microreactions via hyphenated acoustic levitation and ambient ionization mass spectrometry. The microreactions took place completely in stillo over 30, 60, and 120 s within the containerless stable central pressure node of an acoustic levitator, thus readily promoting reaction miniaturization. For the evaluation of the miniaturized in stillo reactions, the degradation reactions were also carried out in vials (in vitro) with a total reaction volume of 400 μL. The reacted in vitro mixtures (6 μL total) were similarly introduced into the acoustic levitator prior to ambient ionization MS/MS analysis. The in stillo miniaturized reactions provided immediate real-time snap-shots of the degradation process for more accurate reaction monitoring and used a fraction of the reactants, while the larger scale in vitro reactions only yielded general reaction information. PMID:27505037

  17. Detection of nonlinear picosecond acoustic pulses by time-resolved Brillouin scattering

    SciTech Connect

    Gusev, Vitalyi E.

    2014-08-14

    In time-resolved Brillouin scattering (also called picosecond ultrasonic interferometry), the time evolution of the spatial Fourier component of an optically excited acoustic strain distribution is monitored. The wave number is determined by the momentum conservation in photon-phonon interaction. For linear acoustic waves propagating in a homogeneous medium, the detected time-domain signal of the optical probe transient reflectivity shows a sinusoidal oscillation at a constant frequency known as the Brillouin frequency. This oscillation is a result of heterodyning the constant reflection from the sample surface with the Brillouin-scattered field. Here, we present an analytical theory for the nonlinear reshaping of a propagating, finite amplitude picosecond acoustic pulse, which results in a time-dependence of the observed frequency. In particular, we examine the conditions under which this information can be used to study the time-evolution of the weak-shock front speed. Depending on the initial strain pulse parameters and the time interval of its nonlinear transformation, our theory predicts the detected frequency to either be monotonically decreasing or oscillating in time. We support these theoretical predictions by comparison with available experimental data. In general, we find that picosecond ultrasonic interferometry of nonlinear acoustic pulses provides access to the nonlinear acoustic properties of a medium spanning most of the GHz frequency range.

  18. Theoretical study of time-dependent, ultrasound-induced acoustic streaming in microchannels.

    PubMed

    Muller, Peter Barkholt; Bruus, Henrik

    2015-12-01

    Based on first- and second-order perturbation theory, we present a numerical study of the temporal buildup and decay of unsteady acoustic fields and acoustic streaming flows actuated by vibrating walls in the transverse cross-sectional plane of a long straight microchannel under adiabatic conditions and assuming temperature-independent material parameters. The unsteady streaming flow is obtained by averaging the time-dependent velocity field over one oscillation period, and as time increases, it is shown to converge towards the well-known steady time-averaged solution calculated in the frequency domain. Scaling analysis reveals that the acoustic resonance builds up much faster than the acoustic streaming, implying that the radiation force may dominate over the drag force from streaming even for small particles. However, our numerical time-dependent analysis indicates that pulsed actuation does not reduce streaming significantly due to its slow decay. Our analysis also shows that for an acoustic resonance with a quality factor Q, the amplitude of the oscillating second-order velocity component is Q times larger than the usual second-order steady time-averaged velocity component. Consequently, the well-known criterion v(1)≪c(s) for the validity of the perturbation expansion is replaced by the more restrictive criterion v(1)≪c(s)/Q. Our numerical model is available as supplemental material in the form of comsol model files and matlab scripts. PMID:26764815

  19. Theoretical study of time-dependent, ultrasound-induced acoustic streaming in microchannels

    NASA Astrophysics Data System (ADS)

    Muller, Peter Barkholt; Bruus, Henrik

    2015-12-01

    Based on first- and second-order perturbation theory, we present a numerical study of the temporal buildup and decay of unsteady acoustic fields and acoustic streaming flows actuated by vibrating walls in the transverse cross-sectional plane of a long straight microchannel under adiabatic conditions and assuming temperature-independent material parameters. The unsteady streaming flow is obtained by averaging the time-dependent velocity field over one oscillation period, and as time increases, it is shown to converge towards the well-known steady time-averaged solution calculated in the frequency domain. Scaling analysis reveals that the acoustic resonance builds up much faster than the acoustic streaming, implying that the radiation force may dominate over the drag force from streaming even for small particles. However, our numerical time-dependent analysis indicates that pulsed actuation does not reduce streaming significantly due to its slow decay. Our analysis also shows that for an acoustic resonance with a quality factor Q , the amplitude of the oscillating second-order velocity component is Q times larger than the usual second-order steady time-averaged velocity component. Consequently, the well-known criterion v1≪cs for the validity of the perturbation expansion is replaced by the more restrictive criterion v1≪cs/Q . Our numerical model is available as supplemental material in the form of comsol model files and matlab scripts.

  20. 41 CFR 302-4.204 - If my spouse does not accompany me but travels unaccompanied at a different time, what per diem...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... accompany me but travels unaccompanied at a different time, what per diem rate will he/she receive? 302-4.204 Section 302-4.204 Public Contracts and Property Management Federal Travel Regulation System... my spouse does not accompany me but travels unaccompanied at a different time, what per diem...

  1. 41 CFR 302-3.219 - Is there a limit on how many times I may receive reimbursement for tour renewal travel?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... many times I may receive reimbursement for tour renewal travel? 302-3.219 Section 302-3.219 Public Contracts and Property Management Federal Travel Regulation System RELOCATION ALLOWANCES RELOCATION....219 Is there a limit on how many times I may receive reimbursement for tour renewal travel? (a) If...

  2. 41 CFR 302-3.219 - Is there a limit on how many times I may receive reimbursement for tour renewal travel?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... many times I may receive reimbursement for tour renewal travel? 302-3.219 Section 302-3.219 Public Contracts and Property Management Federal Travel Regulation System RELOCATION ALLOWANCES RELOCATION....219 Is there a limit on how many times I may receive reimbursement for tour renewal travel? (a) If...

  3. 41 CFR 302-3.219 - Is there a limit on how many times I may receive reimbursement for tour renewal travel?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... many times I may receive reimbursement for tour renewal travel? 302-3.219 Section 302-3.219 Public Contracts and Property Management Federal Travel Regulation System RELOCATION ALLOWANCES RELOCATION....219 Is there a limit on how many times I may receive reimbursement for tour renewal travel? (a) If...

  4. 41 CFR 302-3.315 - May I be granted an extension to the time limit for beginning my separation travel?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... extension to the time limit for beginning my separation travel? 302-3.315 Section 302-3.315 Public Contracts and Property Management Federal Travel Regulation System RELOCATION ALLOWANCES RELOCATION ALLOWANCES 3... be granted an extension to the time limit for beginning my separation travel? Yes, your agency...

  5. 41 CFR 302-3.315 - May I be granted an extension to the time limit for beginning my separation travel?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... extension to the time limit for beginning my separation travel? 302-3.315 Section 302-3.315 Public Contracts and Property Management Federal Travel Regulation System RELOCATION ALLOWANCES RELOCATION ALLOWANCES 3... be granted an extension to the time limit for beginning my separation travel? Yes, your agency...

  6. 41 CFR 302-3.219 - Is there a limit on how many times I may receive reimbursement for tour renewal travel?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... many times I may receive reimbursement for tour renewal travel? 302-3.219 Section 302-3.219 Public Contracts and Property Management Federal Travel Regulation System RELOCATION ALLOWANCES RELOCATION....219 Is there a limit on how many times I may receive reimbursement for tour renewal travel? (a) If...

  7. Travel Times of Later Phases for Transmitting Waves through a Fracturing Westerly Granite Sample under a Triaxial Compressive Condition

    NASA Astrophysics Data System (ADS)

    Imahori, A.; Kawakata, H.; Hirano, S.; Yoshimitsu, N.; Takahashi, N.

    2015-12-01

    In laboratory, it is well-known that the elastic wave speed varies prior to compression fracture of the rock (e.g., Lockner et al., 1977, JGR). Using an enough number of travel times of elastic wave paths in a sample, we can estimate internal structure of the sample. However, the number of the elastic wave transducers is limited, and only the travel times of the first arrival are available in most experiments. Employing broadband transducers (Yoshimitsu et al., 2014, GRL), later phases become available to be analyzed. In the present study, we conduct a triaxial compressive test at room temperature under a dry condition and a confining pressure of 50 MPa, using a cylindrical Westerly granite sample of 100 mm long by 50 mm in diameter. Eight transducers are attached on the sample surface. One of the transducers is used as a wave source and voltage steps are repeatedly applied to it. The elastic waves passing through the sample are sensed by the other broadband transducers, and recorded at a sampling rate of 20 Msps. P-wave speed is estimated from the travel time of the direct P, and Vp/Vs value is assumed to be the √3 to give S-wave speed. We assume that all wave paths never bend except at the top and bottom surface of the sample. We calculate the travel times of later phases reflected at the top and/or bottom surfaces within 3 times. We collate the calculated travel times with observed waveforms. We can identify the travel time of two phases: single reflection from both top and bottom of the sample. On the other hand, some other observed and calculated phase arrivals do not match with each other. Then, we try to identify some remarkable phases using the calculated travel times of PS and SP converted waves and interfacial waves, taking into consideration of wave speed anisotropy.

  8. New theory on the reverberation of rooms. [considering sound wave travel time

    NASA Technical Reports Server (NTRS)

    Pujolle, J.

    1974-01-01

    The inadequacy of the various theories which have been proposed for finding the reverberation time of rooms can be explained by an attempt to examine what might occur at a listening point when image sources of determined acoustic power are added to the actual source. The number and locations of the image sources are stipulated. The intensity of sound at the listening point can be calculated by means of approximations whose conditions for validity are given. This leads to the proposal of a new expression for the reverberation time, yielding results which fall between those obtained through use of the Eyring and Millington formulae; these results are made to depend on the shape of the room by means of a new definition of the mean free path.

  9. Travel time classification of extreme solar events: Two families and an outlier

    NASA Astrophysics Data System (ADS)

    Freed, A. J.; Russell, C. T.

    2014-10-01

    Extreme solar events are of great interest because of the extensive damage that could be experienced by technological systems such as electrical transformers during such periods. In studying geophysical phenomena, it is helpful to have a quantitative measure of event strength so that similar events can be intercompared. Such a measure also allows the calculation of the occurrence rates of events with varying strength. We use historical fast travel time solar events to develop a measure of strength based on the Sun-Earth trip time. We find that these fast events can be grouped into two distinct families with one even faster outlier. That outlier is not the Carrington event of 1859 but the extremely intense solar particle event of August 1972.

  10. Gender differences in road traffic injury rate using time travelled as a measure of exposure.

    PubMed

    Santamariña-Rubio, Elena; Pérez, Katherine; Olabarria, Marta; Novoa, Ana M

    2014-04-01

    There is no consensus on whether the risk of road traffic injury is higher among men or among women. Comparison between studies is difficult mainly due to the different exposure measures used to estimate the risk. The measures of exposure to the risk of road traffic injury should be people's mobility measures, but frequently authors use other measures such population or vehicles mobility. We compare road traffic injury risk in men and women, by age, mode of transport and severity, using the time people spend travelling as the exposure measure, in Catalonia for the period 2004-2008. This is a cross-sectional study including all residents aged over 3 years. The road traffic injury rate was calculated using the number of people injured, from the Register of Accidents and Victims of the National Traffic Authority as numerator, and the person-hours travelled, from the 2006 Daily Mobility Survey carried out by the Catalan regional government, as denominator. Sex and age specific rates by mode of transport and severity were calculated, and Poisson regression models were fitted. Among child pedestrians and young drivers, males present higher risk of slight and severe injury, and in the oldest groups women present higher risk. The death rate is always higher in men. There exists interaction between sex and age in road traffic injury risk. Therefore, injury risk is higher among men in some age groups, and among women in other groups, but these age groups vary depending on mode of transport and severity. PMID:24384384

  11. Experimental Characterization of Seasonal Variations of Infrasonic Travel Times on the Korean Peninsula

    NASA Astrophysics Data System (ADS)

    Che, I.; Stump, B.

    2009-12-01

    Long-term infrasonic ground-truth events were collected at an active open-pit mine in Korea for 2 years and included more than one thousand blasts. Infrasonic arrivals from these blasts were recorded at two regional arrays, CHNAR in NW direction from the mine and continental path, ULDAR in east direction and open ocean path. The analysis of the ground-truth dataset indicates that travel times of infrasound strongly depend on seasons as well as path environments. Infrasonic waves toward CHNAR propagated as guided waves between the ground and stratosphere with characteristic celerity range of 260-289 m/s and showed seasonal cyclical variations in travel times. Infrasonic waves to ULDAR also propagated as guided waves, but observed celerities indicate that wave ducts were formed at relatively lower heights in the troposphere with correspondingly fast celerity ranging from 322 to 361 m/s, even though propagation distances to both arrays are similar. ULDAR showed more diurnal variation in travel time than seasonal variation. The observations at ULDAR support the existing of an ephemeral ‘SOFAR’ layer in the atmosphere [Herrin et al., 2006] throughout years in open ocean propagation environment. Statistically, CHNAR and ULDAR detected 35.3% and 61.7% of infrasonic signals generated from the entire blasts, respectively. As explained by ray tracing, higher detectability in ocean environment was possible as a result of duct conditions in lower atmosphere. Detectability in summer is higher than spring-winter-autumn seasons in the direction to CHNAR with ULDAR showing the opposite relationship consistent with known seasonal wind variations. To verify the improvement in infrasound location when these seasonal path effects are taken into account, we performed infrasonic locations for selected ground truth events whose infrasonic signals were detected by both arrays. The optimum location was calculated by least-square method using azimuth and arrival time estimates. One set

  12. Nonlinear teleseismic tomography at Long Valley caldera, using three-dimensional minimum travel time ray tracing

    SciTech Connect

    Weiland, C.M.; Steck, L.K.; Dawson, P.B.

    1995-10-10

    The authors explore the impact of three-dimensional minimum travel time ray tracing on nonlinear teleseismic inversion. This problem has particular significance when trying to image strongly contrasting low-velocity bodies, such as magma chambers, because strongly refracted/and/or diffracted rays may precede the direct P wave arrival traditionally used in straight-ray seismic tomography. They use a simplex-based ray tracer to compute the three-dimensional, minimum travel time ray paths and employ an interative technique to cope with nonlinearity. Results from synthetic data show that their algorithm results in better model reconstructions compared with traditional straight-ray inversions. The authors reexamine the teleseismic data collected at Long Valley caldera by the U.S. Geological Survey. The most prominent feature of their result is a 25-30% low-velocity zone centered at 11.5 km depth beneath the northwestern quandrant of the caldera. Beneath this at a depth of 24.5 km is a more diffuse 15% low-velocity zone. In general, the low velocities tend to deepen to the south and east. The authors interpret the shallow feature to be the residual Long Valley caldera magma chamber, while the deeper feature may represent basaltic magmas ponded in the midcrust. The deeper position of the prominent low-velocity region in comparison to earlier tomographic images is a result of using three-dimensional rays rather than straight rays in the ray tracing. The magnitude of the low-velocity anomaly is a factor of {approximately}3 times larger than earlier models from linear arrival time inversions and is consistent with models based on observations of ray bending at sites within the caldera. These results imply the presence of anywhere from 7 to 100% partial melt beneath the caldera. 40 refs., 1 fig., 1 tab.

  13. Rapid Adjustment of Circadian Clocks to Simulated Travel to Time Zones across the Globe.

    PubMed

    Harrison, Elizabeth M; Gorman, Michael R

    2015-12-01

    Daily rhythms in mammalian physiology and behavior are generated by a central pacemaker located in the hypothalamic suprachiasmatic nuclei (SCN), the timing of which is set by light from the environment. When the ambient light-dark cycle is shifted, as occurs with travel across time zones, the SCN and its output rhythms must reset or re-entrain their phases to match the new schedule-a sluggish process requiring about 1 day per hour shift. Using a global assay of circadian resetting to 6 equidistant time-zone meridians, we document this characteristically slow and distance-dependent resetting of Syrian hamsters under typical laboratory lighting conditions, which mimic summer day lengths. The circadian pacemaker, however, is additionally entrainable with respect to its waveform (i.e., the shape of the 24-h oscillation) allowing for tracking of seasonally varying day lengths. We here demonstrate an unprecedented, light exposure-based acceleration in phase resetting following 2 manipulations of circadian waveform. Adaptation of circadian waveforms to long winter nights (8 h light, 16 h dark) doubled the shift response in the first 3 days after the shift. Moreover, a bifurcated waveform induced by exposure to a novel 24-h light-dark-light-dark cycle permitted nearly instant resetting to phase shifts from 4 to 12 h in magnitude, representing a 71% reduction in the mismatch between the activity rhythm and the new photocycle. Thus, a marked enhancement of phase shifting can be induced via nonpharmacological, noninvasive manipulation of the circadian pacemaker waveform in a model species for mammalian circadian rhythmicity. Given the evidence of conserved flexibility in the human pacemaker waveform, these findings raise the promise of flexible resetting applicable to circadian disruption in shift workers, frequent time-zone travelers, and any individual forced to adjust to challenging schedules. PMID:26275871

  14. Groundwater vulnerability assessment for the karst aquifer of Tanour and Rasoun spring using EPIK, COP, and travel time methods

    NASA Astrophysics Data System (ADS)

    Hamdan, Ibraheem; Sauter, Martin; Margane, Armin; Ptak, Thomas; Wiegand, Bettina

    2016-04-01

    Key words: Karst, groundwater vulnerability, EPIK, COP, travel time, Jordan. Karst aquifers are especially sensitive to short-lived contaminants because of fast water travel times and a low storage capacity in the conduit system. Tanour and Rasoun karst springs located around 75 km northwest of the city of Amman in Jordan represent the main domestic water supply for the surrounding villages. Both springs suffer from pollution events especially during the winter season, either by microbiological contamination due to wastewater leakage from septic tanks or by wastewater discharge from local olive oil presses. To assess the vulnerability of the karst aquifer of Tanour and Rasoun spring and its sensitivity for pollution, two different intrinsic groundwater vulnerability methods were applied: EPIK and COP. In addition, a travel time vulnerability method was applied to determine the time water travels from different points in the catchment to the streams, as a function of land surface gradients and presumed lateral flow within the epikarst. For the application of the COP and EPIK, a detailed geological survey was carried out to determine karst features and the karst network development within the catchment area. In addition, parameters, such as soil data, long term daily precipitation data, land use and topographical data were collected. For the application of the travel time vulnerability method, flow length, hydraulic conductivity, effective porosity, and slope gradient was used in order to determining the travel time in days. ArcGIS software was used for map preparation. The results of the combined vulnerability methods (COP, EPIK and travel time) show a high percentage of "very high" to "moderate" vulnerable areas within the catchment area of Tanour and Rasoun karst springs. Therefore, protection of the catchment area of Tanour and Rasoun springs from pollution and proper management of land use types is urgently needed to maintain the quality of drinking water in the

  15. Travel counseling for the elderly traveler.

    PubMed

    Schindler, Kasey J

    2005-01-01

    As the baby boomer's generation retirees, many will have the time and money to travel abroad to see the world's exotic wonders or visit family and friends. When the travelers are elderly, they are particularly vulnerable to the effects of travel. Healthcare professionals are responsible for counseling elders on travel health based on their medical history, destination, method of transportation, and exposure risks. Important areas of travel counseling include preparing for travel, air travel, safety, sun and heat, insect precautions, food and water precautions, and vaccinations. PMID:16271122

  16. Evaluation of Tomographic Inverse Models Resolved from Various Travel- time Theories and Parameterizations

    NASA Astrophysics Data System (ADS)

    Chang, Y.; Hung, S.; Chiao, L.; Yang, H.

    2010-12-01

    Whether different forward theories or parameterization methods employed in seismic tomographic imaging lead to the improvement of the resulting Earth structures has been a focus of attention in the seismological community. Recent advance in tomographic theory has gone beyond classical ray theory and incorporated the 3-D sensitivity kernels of frequency-dependent travel-time data into probing the mantle velocity heterogeneity with unprecedented resolution. On the other hand, the conception of multi-scale parameterization has been introduced to deal with naturally uneven data distribution and spatially-varying model resolution for the tomographic inverse problems. The multi-resolution model automatically built through the wavelet decomposition and synthesis results in the non-stationary spatial resolution and data-adaptive resolvable scales. Because the Gram matrix of Frechét derivatives that relates observed data to seismic velocity variations is usually too large to be practically inverted by singular value decomposition (SVD), the iterative LSQR algorithm is instead employed in the inversion which inhibits the direct calculation of resolution matrix to assess the model performance. Recently, with the increasing computing power, we are now able to calculate the SVD of the Gram matrix more efficiently using the parallel PROPACK solver. In this study, we compute the ground-truth pseudo-spectral seismograms in random media with certain heterogeneity strengths and scale lengths. The finite-frequency travel-time residuals measured from waveform cross correlation are then used to invert for the implanted random structure based on different forward theory and model parameterization. For each inversion approach, the trade-off between model covariance and model spread is utilized to determine the optimal solution, showing that the multi-scale model yields a much lower model covariance and remains better spectral resolution for longer-wavelength velocity structures than the

  17. Enhancement of time-domain acoustic imaging based on generalized cross-correlation and spatial weighting

    NASA Astrophysics Data System (ADS)

    Quaegebeur, Nicolas; Padois, Thomas; Gauthier, Philippe-Aubert; Masson, Patrice

    2016-06-01

    In this paper, an alternative formulation of the time-domain beamforming is proposed using the generalized cross-correlation of measured signals. This formulation uses spatial weighting functions adapted to microphone positions and imaging points. The proposed approach is demonstrated for acoustic source localization using a microphone array, both theoretically and experimentally. An increase in accuracy of acoustic imaging results is shown for both narrow and broadband sources, while a factor of reduction up to 20 in the computation time can be achieved, allowing real-time or volumetric source localization over very large grids.

  18. Astrometric light-travel time signature of sources in nonlinear motion. I. Derivation of the effect and radial motion

    NASA Astrophysics Data System (ADS)

    Anglada-Escudé, G.; Torra, J.

    2006-04-01

    Context: .Very precise planned space astrometric missions and recent improvements in imaging capabilities require a detailed review of the assumptions of classical astrometric modeling.Aims.We show that Light-Travel Time must be taken into account in modeling the kinematics of astronomical objects in nonlinear motion, even at stellar distances.Methods.A closed expression to include Light-Travel Time in the current astrometric models with nonlinear motion is provided. Using a perturbative approach the expression of the Light-Travel Time signature is derived. We propose a practical form of the astrometric modelling to be applied in astrometric data reduction of sources at stellar distances(d>1 pc).Results.We show that the Light-Travel Time signature is relevant at μ as accuracy (or even at mas) depending on the time span of the astrometric measurements. We explain how information on the radial motion of a source can be obtained. Some estimates are provided for known nearby binary systemsConclusions.Given the obtained results, it is clear that this effect must be taken into account in interpreting precise astrometric measurements. The effect is particularly relevant in measurements performed by the planned astrometric space missions (GAIA, SIM, JASMINE, TPF/DARWIN). An objective criterion is provided to quickly evaluate whether the Light-Travel Time modeling is required for a given source or system.

  19. Travel time analysis for a subsurface drained sub-watershed in Upper Big Walnut Creek Watershed, Ohio

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Runoff travel time, which is a function of watershed and storm characteristics, is an important parameter affecting the prediction accuracy of hydrologic models. Although, time of concentration (tc) is a most widely used time parameter, it has multiple conceptual and computational definitions. Most ...

  20. Pseudo-time-reversal symmetry and topological edge states in two-dimensional acoustic crystals.

    PubMed

    Mei, Jun; Chen, Zeguo; Wu, Ying

    2016-01-01

    We propose a simple two-dimensional acoustic crystal to realize topologically protected edge states for acoustic waves. The acoustic crystal is composed of a triangular array of core-shell cylinders embedded in a water host. By utilizing the point group symmetry of two doubly degenerate eigenstates at the Γ point, we can construct pseudo-time-reversal symmetry as well as pseudo-spin states in this classical system. We develop an effective Hamiltonian for the associated dispersion bands around the Brillouin zone center, and find the inherent link between the band inversion and the topological phase transition. With numerical simulations, we unambiguously demonstrate the unidirectional propagation of acoustic edge states along the interface between a topologically nontrivial acoustic crystal and a trivial one, and the robustness of the edge states against defects with sharp bends. Our work provides a new design paradigm for manipulating and transporting acoustic waves in a topologically protected manner. Technological applications and devices based on our design are expected in various frequency ranges of interest, spanning from infrasound to ultrasound. PMID:27587311

  1. A mixed time integration method for large scale acoustic fluid-structure interaction

    SciTech Connect

    Christon, M.A.; Wineman, S.J.; Goudreau, G.L.; Foch, J.D.

    1994-07-18

    The transient, coupled, interaction of sound with structures is a process in which an acoustic fluid surrounding an elastic body contributes to the effective inertia and elasticity of the body. Conversely, the presence of an elastic body in an acoustic medium influences the behavior of propagating disturbances. This paper details the application of a mixed explicit-implicit time integration algorithm to the fully coupled acoustic fluidstructure interaction problem. Based upon a dispersion analysis of the semi-discrete wave equation a second-order, explicit scheme for solving the wave equation is developed. The combination of a highly vectorized, explicit, acoustic fluid solver with an implicit structural code for linear elastodynamics has resulted in a simulation tool, PING, for acoustic fluid-structure interaction. PING`s execution rates range from 1{mu}s/Element/{delta}t for rigid scattering to 10{mu}s/Element/{delta}t for fully coupled problems. Several examples of PING`s application to 3-D problems serve in part to validate the code, and also to demonstrate the capability to treat complex geometry, acoustic fluid-structure problems which require high resolution meshes.

  2. Pseudo-time-reversal symmetry and topological edge states in two-dimensional acoustic crystals

    PubMed Central

    Mei, Jun; Chen, Zeguo; Wu, Ying

    2016-01-01

    We propose a simple two-dimensional acoustic crystal to realize topologically protected edge states for acoustic waves. The acoustic crystal is composed of a triangular array of core-shell cylinders embedded in a water host. By utilizing the point group symmetry of two doubly degenerate eigenstates at the Γ point, we can construct pseudo-time-reversal symmetry as well as pseudo-spin states in this classical system. We develop an effective Hamiltonian for the associated dispersion bands around the Brillouin zone center, and find the inherent link between the band inversion and the topological phase transition. With numerical simulations, we unambiguously demonstrate the unidirectional propagation of acoustic edge states along the interface between a topologically nontrivial acoustic crystal and a trivial one, and the robustness of the edge states against defects with sharp bends. Our work provides a new design paradigm for manipulating and transporting acoustic waves in a topologically protected manner. Technological applications and devices based on our design are expected in various frequency ranges of interest, spanning from infrasound to ultrasound. PMID:27587311

  3. Wavelet-based time-dependent travel time tomography method and its application in imaging the Etna volcano in Italy

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Zhang, Haijiang

    2015-10-01

    It has been a challenge to image velocity changes in real time by seismic travel time tomography. If more seismic events are included in the tomographic system, the inverted velocity models do not have necessary time resolution to resolve velocity changes. But if fewer events are used for real-time tomography, the system is less stable and the inverted model may contain some artifacts, and thus, resolved velocity changes may not be real. To mitigate these issues, we propose a wavelet-based time-dependent double-difference (DD) tomography method. The new method combines the multiscale property of wavelet representation and the fast converging property of the simultaneous algebraic reconstruction technique to solve the velocity models at multiple scales for sequential time segments. We first test the new method using synthetic data constructed using real event and station distribution for Mount Etna volcano in Italy. Then we show its effectiveness to determine velocity changes for the 2001 and 2002 eruptions of Mount Etna volcano. Compared to standard DD tomography that uses seismic events from a longer time period, wavelet-based time-dependent tomography better resolves velocity changes that may be caused by fracture closure and opening as well as fluid migration before and after volcano eruptions.

  4. Personality and mental time travel: a differential approach to autonoetic consciousness.

    PubMed

    Quoidbach, Jordi; Hansenne, Michel; Mottet, Caroline

    2008-12-01

    Recent research on autonoetic consciousness indicates that the ability to remember the past and the ability to project oneself into the future are closely related. The purpose of the present study was to confirm this proposition by examining whether the relationship observed between personality and episodic memory could be extended to episodic future thinking and, more generally, to investigate the influence of personality traits on self-information processing in the past and in the future. Results show that Neuroticism and Harm Avoidance predict more negative past memories and future projections. Other personality dimensions exhibit a more limited influence on mental time travel (MTT). Therefore, our study provide an additional evidence to the idea that MTT into the past and into the future rely on a common set of processes by which past experiences are used to envision the future. PMID:18508283

  5. Some elements of mathematical information theory and total inversion algorithm applied to travel time inversion

    NASA Astrophysics Data System (ADS)

    Martínez, M. D.; Lana, X.

    1991-03-01

    The total inversion algorithm and some elements of Mathematical Information Theory are used in the treatment of travel-time data belonging to a seismic refraction experiment from the southern segment (Sardinia Channel) of the European Geotraverse Project. The inversion algorithm allows us to improve a preliminary propagating model obtained by means of usual trial and error procedure and to quantify the resolution degree of parameters defining the crust and upper mantle of such a model. Concepts related to Mathematical Information Theory detect some seismic profiles of the refraction experiment which give the most homogeneous coverage of the model in terms of number of trajectories crossing it. Finally, the efficiency of the inversion procedure is quantified and the uncertainties regarding knowledge of different parts of the model are also evaluated.

  6. Solute travel time in the vadose zone under RWMC at INEL

    SciTech Connect

    Liou, J.C.P.; Tian, J.

    1995-02-27

    Solute transport in the vadose zone under the Radioactive Waste Management Complex (RWMC) at the Idaho National Engineering Laboratory (INEL) is considered. The objective is to assess the relative importance of variables involved in modeling the travel time of a conservative solute from ground surface to water table. The vadose zone under RWMC is composed of several layers of basalt flows interceded with sediment layers. The thickness of the layers varies with location. The hydraulic properties also vary. The extents of the variations are large, with standard deviations exceed mean in some instances. The vadose zone is idealized as composed of horizontal layers. Solute transport starts at the ground surface and moves vertically downwards to the water table. The perceived process is one-dimensional. This study used VS2DT, a computer code developed by the US Geological Survey, for simulating solute transport in variably saturated porous media.

  7. Inverting travel times with a triplication. [spline fitting technique applied to lunar seismic data reduction

    NASA Technical Reports Server (NTRS)

    Jarosch, H. S.

    1982-01-01

    A method based on the use of constrained spline fits is used to overcome the difficulties arising when body-wave data in the form of T-delta are reduced to the tau-p form in the presence of cusps. In comparison with unconstrained spline fits, the method proposed here tends to produce much smoother models which lie approximately in the middle of the bounds produced by the extremal method. The method is noniterative and, therefore, computationally efficient. The method is applied to the lunar seismic data, where at least one triplication is presumed to occur in the P-wave travel-time curve. It is shown, however, that because of an insufficient number of data points for events close to the antipode of the center of the lunar network, the present analysis is not accurate enough to resolve the problem of a possible lunar core.

  8. Integrating stochastic time-dependent travel speed in solution methods for the dynamic dial-a-ride problem

    PubMed Central

    Schilde, M.; Doerner, K.F.; Hartl, R.F.

    2014-01-01

    In urban areas, logistic transportation operations often run into problems because travel speeds change, depending on the current traffic situation. If not accounted for, time-dependent and stochastic travel speeds frequently lead to missed time windows and thus poorer service. Especially in the case of passenger transportation, it often leads to excessive passenger ride times as well. Therefore, time-dependent and stochastic influences on travel speeds are relevant for finding feasible and reliable solutions. This study considers the effect of exploiting statistical information available about historical accidents, using stochastic solution approaches for the dynamic dial-a-ride problem (dynamic DARP). The authors propose two pairs of metaheuristic solution approaches, each consisting of a deterministic method (average time-dependent travel speeds for planning) and its corresponding stochastic version (exploiting stochastic information while planning). The results, using test instances with up to 762 requests based on a real-world road network, show that in certain conditions, exploiting stochastic information about travel speeds leads to significant improvements over deterministic approaches. PMID:25844013

  9. Changes in Wisconsin English over 110 Years: A Real-Time Acoustic Account

    ERIC Educational Resources Information Center

    Delahanty, Jennifer

    2011-01-01

    The growing set of studies on American regional dialects have to date focused heavily on vowels while few examine consonant features and none provide acoustic analysis of both vowel and consonant features. This dissertation uses real-time data on both vowels and consonants to show how Wisconsin English has changed over time. Together, the…

  10. Modeling the light-travel-time effect on the far-infrared size of IRC +10216

    NASA Technical Reports Server (NTRS)

    Wright, Edward L.; Baganoff, Frederick K.

    1995-01-01

    Models of the far-infrared emission from the large circumstellar dust envelope surrounding the carbon star IRC +10216 are used to assess the importance of the light-travel-time effect (LTTE) on the observed size of the source. The central star is a long-period variable with an average period of 644 +/- 17 days and a peak-to-peak amplitude of two magnituds, so a large light-travel-time effect is seen at 1 min radius. An attempt is made to use the LTTE to reconcile the discrepancy between the observations of Fazio et al. and Lester et al. regarding the far-infrared source size. This discrepancy is reviewed in light of recent, high-spatial-resolution observations at 11 microns by Danchi et al. We conclude that IRC +10216 has been resolved on the arcminute scale by Fazio et al. Convolution of the model intensity profile at 61 microns with the 60 sec x 90 sec Gaussian beam of Fazio et al. yields an observed source size full width at half maximum (FWHM) that ranges from approximately 67 sec to 75 sec depending on the phase of the star and the assumed distance to the source. Using a simple r(exp -2) dust distribution and the 106 deg phase of the Fazio et al. observations, the LTTE model reaches a peak size of 74.3 sec at a distance of 300 pc. This agrees favorably with the 78 sec x 6 sec size measured by Fazio et al. Finally, a method is outlined for using the LTTE as a distance indicator to IRC +10216 and other stars with extended mass outflows.

  11. Spatially Distributed Characterization of Catchment Dynamics Using Travel-Time Distributions

    NASA Astrophysics Data System (ADS)

    Heße, F.; Zink, M.; Attinger, S.

    2015-12-01

    The description of storage and transport of both water and solved contaminants in catchments is very difficult due to the high heterogeneity of the subsurface properties that govern their fate. This heterogeneity, combined with a generally limited knowledge about the subsurface, results in high degrees of uncertainty. As a result, stochastic methods are increasingly applied, where the relevant processes are modeled as being random. Within these methods, quantities like the catchment travel or residence time of a water parcel are described using probability density functions (PDF). The derivation of these PDF's is typically done by using the water fluxes and states of the catchment. A successful application of such frameworks is therefore contingent on a good quantification of these fluxes and states across the different spatial scales. The objective of this study is to use travel times for the characterization of an ca. 1000 square kilometer, humid catchment in Central Germany. To determine the states and fluxes, we apply the mesoscale Hydrological Model mHM, a spatially distributed hydrological model to the catchment. Using detailed data of precipitation, land cover, morphology and soil type as inputs, mHM is able to determine fluxes like recharge and evapotranspiration and states like soil moisture as outputs. Using these data, we apply the above theoretical framework to our catchment. By virtue of the aforementioned properties of mHM, we are able to describe the storage and release of water with a high spatial resolution. This allows for a comprehensive description of the flow and transport dynamics taking place in the catchment. The spatial distribution of such dynamics is then compared with land cover and soil moisture maps as well as driving forces like precipitation and temperature to determine the most predictive factors. In addition, we investigate how non-local data like the age distribution of discharge flows are impacted by, and therefore allow to infer

  12. Spatially Distributed Characterization of Soil Dynamics Using Travel-Time Distributions

    NASA Astrophysics Data System (ADS)

    Hesse, Falk; Zink, Matthias; Attinger, Sabine

    2016-04-01

    The description of storage and transport of both water and solved contaminants in catchments is very difficult due to the high heterogeneity of the subsurface properties that govern their fate. This heterogeneity, combined with a generally limited knowledge about the subsurface, results in high degrees of uncertainty. As a result, stochastic methods are increasingly applied, where the relevant processes are modeled as being random. Within these methods, quantities like the catchment travel or residence time of a water parcel are described using probability density functions (PDF). The derivation of these PDF's is typically done by using the water fluxes and states of the catchment. A successful application of such frameworks is therefore contingent on a good quantification of these fluxes and states across the different spatial scales. The objective of this study is to use travel times for the characterization of an ca. 1000 square kilometer, humid catchment in Central Germany. To determine the states and fluxes, we apply the mesoscale Hydrological Model mHM, a spatially distributed hydrological model to the catchment. Using detailed data of precipitation, land cover, morphology and soil type as inputs, mHM is able to determine fluxes like recharge and evapotranspiration and states like soil moisture as outputs. Using these data, we apply the above theoretical framework to our catchment. By virtue of the aforementioned properties of mHM, we are able to describe the storage and release of water with a high spatial resolution. This allows for a comprehensive description of the flow and transport dynamics taking place in the catchment. The spatial distribution of such dynamics is then compared with land cover and soil moisture maps as well as driving forces like precipitation and potential evapotranspiration to determine the most predictive factors. In addition, we investigate how non-local data like the age distribution of discharge flows are impacted by, and

  13. Separation of Main and Tail Rotor Noise Sources from Ground-Based Acoustic Measurements Using Time-Domain De-Dopplerization

    NASA Technical Reports Server (NTRS)

    Greenwood, Eric II; Schmitz, Fredric H.

    2009-01-01

    A new method of separating the contributions of helicopter main and tail rotor noise sources is presented, making use of ground-based acoustic measurements. The method employs time-domain de-Dopplerization to transform the acoustic pressure time-history data collected from an array of ground-based microphones to the equivalent time-history signals observed by an array of virtual inflight microphones traveling with the helicopter. The now-stationary signals observed by the virtual microphones are then periodically averaged with the main and tail rotor once per revolution triggers. The averaging process suppresses noise which is not periodic with the respective rotor, allowing for the separation of main and tail rotor pressure time-histories. The averaged measurements are then interpolated across the range of directivity angles captured by the microphone array in order to generate separate acoustic hemispheres for the main and tail rotor noise sources. The new method is successfully applied to ground-based microphone measurements of a Bell 206B3 helicopter and demonstrates the strong directivity characteristics of harmonic noise radiation from both the main and tail rotors of that helicopter.

  14. Time-resolved coherent X-ray diffraction imaging of surface acoustic waves

    PubMed Central

    Nicolas, Jan-David; Reusch, Tobias; Osterhoff, Markus; Sprung, Michael; Schülein, Florian J. R.; Krenner, Hubert J.; Wixforth, Achim; Salditt, Tim

    2014-01-01

    Time-resolved coherent X-ray diffraction experiments of standing surface acoustic waves, illuminated under grazing incidence by a nanofocused synchrotron beam, are reported. The data have been recorded in stroboscopic mode at controlled and varied phase between the acoustic frequency generator and the synchrotron bunch train. At each time delay (phase angle), the coherent far-field diffraction pattern in the small-angle regime is inverted by an iterative algorithm to yield the local instantaneous surface height profile along the optical axis. The results show that periodic nanoscale dynamics can be imaged at high temporal resolution in the range of 50 ps (pulse length). PMID:25294979

  15. Topological Acoustics

    NASA Astrophysics Data System (ADS)

    Yang, Zhaoju; Gao, Fei; Shi, Xihang; Lin, Xiao; Gao, Zhen; Chong, Yidong; Zhang, Baile

    2015-03-01

    The manipulation of acoustic wave propagation in fluids has numerous applications, including some in everyday life. Acoustic technologies frequently develop in tandem with optics, using shared concepts such as waveguiding and metamedia. It is thus noteworthy that an entirely novel class of electromagnetic waves, known as "topological edge states," has recently been demonstrated. These are inspired by the electronic edge states occurring in topological insulators, and possess a striking and technologically promising property: the ability to travel in a single direction along a surface without backscattering, regardless of the existence of defects or disorder. Here, we develop an analogous theory of topological fluid acoustics, and propose a scheme for realizing topological edge states in an acoustic structure containing circulating fluids. The phenomenon of disorder-free one-way sound propagation, which does not occur in ordinary acoustic devices, may have novel applications for acoustic isolators, modulators, and transducers.

  16. Topological acoustics.

    PubMed

    Yang, Zhaoju; Gao, Fei; Shi, Xihang; Lin, Xiao; Gao, Zhen; Chong, Yidong; Zhang, Baile

    2015-03-20

    The manipulation of acoustic wave propagation in fluids has numerous applications, including some in everyday life. Acoustic technologies frequently develop in tandem with optics, using shared concepts such as waveguiding and metamedia. It is thus noteworthy that an entirely novel class of electromagnetic waves, known as "topological edge states," has recently been demonstrated. These are inspired by the electronic edge states occurring in topological insulators, and possess a striking and technologically promising property: the ability to travel in a single direction along a surface without backscattering, regardless of the existence of defects or disorder. Here, we develop an analogous theory of topological fluid acoustics, and propose a scheme for realizing topological edge states in an acoustic structure containing circulating fluids. The phenomenon of disorder-free one-way sound propagation, which does not occur in ordinary acoustic devices, may have novel applications for acoustic isolators, modulators, and transducers. PMID:25839273

  17. 41 CFR 301-71.306 - Are there exceptions to collecting an advance at the time the employee files a travel claim?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 41 Public Contracts and Property Management 4 2013-07-01 2012-07-01 true Are there exceptions to collecting an advance at the time the employee files a travel claim? 301-71.306 Section 301-71.306 Public Contracts and Property Management Federal Travel Regulation System TEMPORARY DUTY (TDY) TRAVEL ALLOWANCES AGENCY RESPONSIBILITIES...

  18. Inversion of band-limited, downward continued multichannel seismic data by combination of travel-time and full waveform tomography

    NASA Astrophysics Data System (ADS)

    Gras Andreu, Claudia; Estela Jiménez Tejero, Clara; Dagnino Vázquez, Daniel; Meléndez Catalán, Adrià; Sallarès Casas, Valentí; Rodríguez Ranero, César

    2016-04-01

    Seismic tomography methods and in particular full waveform inversion (FWI) of controlled source data are powerful tools to obtain accurate information of the physical properties of the subsurface. One of their main drawbacks is however the strong non-linearity of the problem, which makes the solution strongly dependent on the initial model and on the low frequency content of the data set. A common strategy to mitigate these issues is to combine the robustness of Travel Time Tomography (TTT) to obtain an appropriate reference model that is subsequently refined by FWI. This combined technique is often used for long-offset acquisition geometries, where refracted waves are present as first arrivals. Conversely, its application to streamer-type multichannel seismic (MCS) data is rare, because these data are intrinsically short offset so the presence of refractions is very limited. In this work we use synthetic data to show how the downward continuation (DC) or redatuming of the MCS data prior to TTT allows obtaining velocity models that can be then used as initial models for FWI even if data lack frequencies below 4 Hz. In summary, the proposed strategy consists of the following steps: 1) We compute the downward continued wavefield using a finite difference solution of the acoustic wave equation in time domain. The solver used for the propagation was developed by the Barcelona Centre for Subsurface Imaging (BCSI) and incorporates a mutli-shooting strategy necessary to back-propagate the wavefield and reduce the computational time. Our new datum level chosen corresponds to the bathymetry of the model. 2) We use the resultant DC MCS wavefield to identify the refracted phases (first arrivals) highlighted by the redatuming process and we invert them applying TTT. The resulting model, which has the low wavenumber information needed to reduce the non-linearity problems of the FWI, is then used as initial model to perform multi-scale FWI of the original MCS data starting at

  19. Mechanical properties of single cells by high-frequency time-resolved acoustic microscopy.

    PubMed

    Weiss, Eike C; Anastasiadis, Pavlos; Pilarczyk, Götz; Lemor, Robert M; Zinin, Pavel V

    2007-11-01

    In this paper, we describe a new, high-frequency, time-resolved scanning acoustic microscope developed for studying dynamical processes in biological cells. The new acoustic microscope operates in a time-resolved mode. The center frequency is 0.86 GHz, and the pulse duration is 5 ns. With such a short pulse, layers thicker than 3 microm can be resolved. For a cell thicker than 3 microm, the front echo and the echo from the substrate can be distinguished in the signal. Positions of the first and second pulses are used to determine the local impedance of the cell modeled as a thin liquid layer that has spatial variations in its elastic properties. The low signal-to-noise ratio in the acoustical images is increased for image generation by averaging the detected radio frequency signal over 10 measurements at each scanning point. In conducting quantitative measurements of the acoustic parameters of cells, the signal can be averaged over 2000 measurements. This approach enables us to measure acoustical properties of a single HeLa cell in vivo and to derive elastic parameters of subcellular structures. The value of the sound velocity inside the cell (1534.5 +/- 33.6 m/s) appears to be only slightly higher than that of the cell medium (1501 m/s). PMID:18051160

  20. Does Involuntary Mental Time Travel Make Sense in Prospective Teachers' Feelings and Behaviors during Lessons?

    ERIC Educational Resources Information Center

    Eren, Altay; Yesilbursa, Amanda

    2013-01-01

    This study examined the effects of involuntary mental time travel into the past and into the future on prospective teachers' feelings and behaviors during the period of a class hour. A total of 110 prospective teachers participated voluntarily in the study. The results of the present study showed that (a) the involuntary mental time travel…

  1. TRAVEL FORECASTER

    NASA Technical Reports Server (NTRS)

    Mauldin, L. E.

    1994-01-01

    Business travel planning within an organization is often a time-consuming task. Travel Forecaster is a menu-driven, easy-to-use program which plans, forecasts cost, and tracks actual vs. planned cost for business-related travel of a division or branch of an organization and compiles this information into a database to aid the travel planner. The program's ability to handle multiple trip entries makes it a valuable time-saving device. Travel Forecaster takes full advantage of relational data base properties so that information that remains constant, such as per diem rates and airline fares (which are unique for each city), needs entering only once. A typical entry would include selection with the mouse of the traveler's name and destination city from pop-up lists, and typed entries for number of travel days and purpose of the trip. Multiple persons can be selected from the pop-up lists and multiple trips are accommodated by entering the number of days by each appropriate month on the entry form. An estimated travel cost is not required of the user as it is calculated by a Fourth Dimension formula. With this information, the program can produce output of trips by month with subtotal and total cost for either organization or sub-entity of an organization; or produce outputs of trips by month with subtotal and total cost for international-only travel. It will also provide monthly and cumulative formats of planned vs. actual outputs in data or graph form. Travel Forecaster users can do custom queries to search and sort information in the database, and it can create custom reports with the user-friendly report generator. Travel Forecaster 1.1 is a database program for use with Fourth Dimension Runtime 2.1.1. It requires a Macintosh Plus running System 6.0.3 or later, 2Mb of RAM and a hard disk. The standard distribution medium for this package is one 3.5 inch 800K Macintosh format diskette. Travel Forecaster was developed in 1991. Macintosh is a registered trademark of

  2. Global shear velocity heterogeneities in the D″ layer: Inversion from Sd-SKS differential travel times

    NASA Astrophysics Data System (ADS)

    Kuo, Ban-Yuan; Wu, Kuan-Yi

    1997-06-01

    A global map of shear velocity in the D″ layer results from the inversion of 340 differential travel times of diffracted S(SH) minus SKS(SV) (Sd-SKS), from long-period records of global seismic networks. The two-phase design reduces contamination from upper mantle heterogeneities and errors in location and origin time of the events. Additional corrections are made for (1) azimuthal anisotropy at stations where shear wave splitting parameters are available and for (2) travel time perturbations due to lower mantle asphericity, although both effects are minor compared with the observed residuals with respect to the preliminary reference Earth model (PREM) [Dziewonski and Anderson, 1981]. The corrected residuals, ranging from -16 to 18 s, are attributed to anomalies in D″ sampled by both phases. Taking these residuals as data and assuming a constant, 250-km-thick D″ layer, we invert for a lateral velocity variation model of D″ using spherical harmonics. In parameterizing D″ velocities, a high degree expansion (L=14) avoids aliasing, but only the reliably determined, low degree components (LI

  3. SENSITIVITY OF HELIOSEISMIC TRAVEL TIMES TO THE IMPOSITION OF A LORENTZ FORCE LIMITER IN COMPUTATIONAL HELIOSEISMOLOGY

    SciTech Connect

    Moradi, Hamed; Cally, Paul S.

    2014-02-20

    The rapid exponential increase in the Alfvén wave speed with height above the solar surface presents a serious challenge to physical modeling of the effects of magnetic fields on solar oscillations, as it introduces a significant Courant-Friedrichs-Lewy time-step constraint for explicit numerical codes. A common approach adopted in computational helioseismology, where long simulations in excess of 10 hr (hundreds of wave periods) are often required, is to cap the Alfvén wave speed by artificially modifying the momentum equation when the ratio between the Lorentz and hydrodynamic forces becomes too large. However, recent studies have demonstrated that the Alfvén wave speed plays a critical role in the MHD mode conversion process, particularly in determining the reflection height of the upwardly propagating helioseismic fast wave. Using numerical simulations of helioseismic wave propagation in constant inclined (relative to the vertical) magnetic fields we demonstrate that the imposition of such artificial limiters significantly affects time-distance travel times unless the Alfvén wave-speed cap is chosen comfortably in excess of the horizontal phase speeds under investigation.

  4. Quality of water and time of travel in part of Tillatoba Creek basin, Mississippi, October 1974 to September 1980

    USGS Publications Warehouse

    Bednar, Gene A.

    1981-01-01

    A 6-year quality-of-water and time-of-travel study was conducted during the construction phase of a flood-water protection and flood prevention project in a 118 square mile area of Tillatoba Creek basin in northwest Mississippi. Weekly suspended sediment, daily discharge, time of travel, nutrient, biochemical oxygen demand, bacteria and field data were collected. The study was conducted by the U.S. Geological Survey in cooperation with the U.S. Soil Conservation Service. The results of the study are presented in graphs and tables without interpretation. (USGS)

  5. Travel Times, Streamflow Velocities, and Dispersion Rates in the Yellowstone River, Montana

    USGS Publications Warehouse

    McCarthy, Peter M.

    2009-01-01

    The Yellowstone River is a vital natural resource to the residents of southeastern Montana and is a primary source of water for irrigation and recreation and the primary source of municipal water for several cities. The Yellowstone River valley is the primary east-west transportation corridor through southern Montana. This complex of infrastructure makes the Yellowstone River especially vulnerable to accidental spills from various sources such as tanker cars and trucks. In 2008, the U.S. Geological Survey (USGS), in cooperation with the Montana Department of Environmental Quality, initiated a dye-tracer study to determine instream travel times, streamflow velocities, and dispersion rates for the Yellowstone River from Lockwood to Glendive, Montana. The purpose of this report is to describe the results of this study and summarize data collected at each of the measurement sites between Lockwood and Glendive. This report also compares the results of this study to estimated travel times from a transport model developed by the USGS for a previous study. For this study, Rhodamine WT dye was injected at four locations in late September and early October 2008 during reasonably steady streamflow conditions. Streamflows ranged from 3,490 to 3,770 cubic feet per second upstream from the confluence of the Bighorn River and ranged from 6,520 to 7,570 cubic feet per second downstream from the confluence of the Bighorn River. Mean velocities were calculated for each subreach between measurement sites for the leading edge, peak concentration, centroid, and trailing edge at 10 percent of the peak concentration. Calculated velocities for the centroid of the dye plume for subreaches that were completely laterally mixed ranged from 1.83 to 3.18 ft/s within the study reach from Lockwood Bridge to Glendive Bridge. The mean of the completely mixed centroid velocity for the entire study reach, excluding the subreach between Forsyth Bridge and Cartersville Dam, was 2.80 ft/s. Longitudinal

  6. Substrate size rather than heterogeneity controls downstream travel time distributions in replicate small streams

    NASA Astrophysics Data System (ADS)

    Aubeneau, A. F.; Hanrahan, B.; Tank, J. L.; Bolster, D.

    2013-12-01

    Dissolved solutes are exported from watersheds with water flow and fluxes are therefore influenced by advection, that carries them further, but also retention processes, that delay their travel. It is especially important to understand the factors controlling network solute retention for biogeoreactive species that can be processed if afforded extended residence. In alluvial systems, substrate characteristics play a crucial role in slowing downstream transport. The roughness size (i.e., grain size relative to water depth) is associated with the distortion of the velocity profile and therefore is related to short term delays from additional dispersion. Surface and subsurface water also continually turn over, creating longer delays in the slow-flowing hyporheic region below the water/sediment interface. Sediment structure could also control transport, as pockets of slower hydraulic conductivity may influence the longest travel times. We present results from multiple solute injection experiments testing the influence of sediment size (pea gravel vs. coarse gravel) and heterogeneity (alternating sections vs. well mixed) on solute transport dynamics in four experimental streams located at the Notre Dame Linked Experimental Ecosystem Facility (ND-LEEF). We show that the stream with homogeneously coarse gravel induced more short-term delays but less long-term retention than the stream with smaller pea gravel. Inverse modeling suggested that the short-term delays were exponentially distributed while the long-term retention followed a truncated power-law behavior. Even though transport in all four streams was anomalous, the scaling truncation time was influenced by sediment size, with the smaller pea gravel exhibiting scaling longer than the coarse gravel. Streams with heterogeneous substrate had an intermediate cut-off. These results uniquely associate transport scaling in fluvial systems and substrate characteristics. The streams revealed truncation timescales that had

  7. Time dependent inflow-outflow boundary conditions for 2D acoustic systems

    NASA Technical Reports Server (NTRS)

    Watson, Willie R.; Myers, Michael K.

    1989-01-01

    An analysis of the number and form of the required inflow-outflow boundary conditions for the full two-dimensional time-dependent nonlinear acoustic system in subsonic mean flow is performed. The explicit predictor-corrector method of MacCormack (1969) is used. The methodology is tested on both uniform and sheared mean flows with plane and nonplanar sources. Results show that the acoustic system requires three physical boundary conditions on the inflow and one on the outflow boundary. The most natural choice for the inflow boundary conditions is judged to be a specification of the vorticity, the normal acoustic impedance, and a pressure gradient-density gradient relationship normal to the boundary. Specification of the acoustic pressure at the outflow boundary along with these inflow boundary conditions is found to give consistent reliable results. A set of boundary conditions developed earlier, which were intended to be nonreflecting is tested using the current method and is shown to yield unstable results for nonplanar acoustic waves.

  8. Apparatus for real-time acoustic imaging of Rayleigh-Benard convection.

    PubMed

    Kuehn, Kerry; Polfer, Jonathan; Furno, Joanna; Finke, Nathan

    2007-11-01

    We have designed and built an apparatus for real-time acoustic imaging of convective flow patterns in optically opaque fluids. This apparatus takes advantage of recent advances in two-dimensional ultrasound transducer array technology; it employs a modified version of a commercially available ultrasound camera, similar to those employed in nondestructive testing of solids. Images of convection patterns are generated by observing the lateral variation of the temperature dependent speed of sound via refraction of acoustic plane waves passing vertically through the fluid layer. The apparatus has been validated by observing convection rolls in both silicone oil and ferrofluid. PMID:18052477

  9. Acoustic sensor for real-time control for the inductive heating process

    DOEpatents

    Kelley, John Bruce; Lu, Wei-Yang; Zutavern, Fred J.

    2003-09-30

    Disclosed is a system and method for providing closed-loop control of the heating of a workpiece by an induction heating machine, including generating an acoustic wave in the workpiece with a pulsed laser; optically measuring displacements of the surface of the workpiece in response to the acoustic wave; calculating a sub-surface material property by analyzing the measured surface displacements; creating an error signal by comparing an attribute of the calculated sub-surface material properties with a desired attribute; and reducing the error signal below an acceptable limit by adjusting, in real-time, as often as necessary, the operation of the inductive heating machine.

  10. Brain Blood Flow Related to Acoustic Laryngeal Reaction Time in Adult Developmental Stutterers.

    ERIC Educational Resources Information Center

    Watson, Ben C.; And Others

    1992-01-01

    This study sought to identify patterns of impaired acoustic laryngeal reaction time as a function of response complexity parallel to metabolic measures of brain function. Findings indicated that the disruption in speech motor control for 16 adult male developmental stutterers was systematically related to metabolic asymmetry in left superior and…

  11. Reaction time to changes in the tempo of acoustic pulse trains.

    NASA Technical Reports Server (NTRS)

    Smith, R. P.; Warm, J. S.; Westendorf, D. H.

    1973-01-01

    Investigation of the ability of human observers to detect accelerations and decelerations in the rate of presentation of pulsed stimuli, i.e., changes in the tempo of acoustic pulse trains. Response times to accelerations in tempo were faster than to decelerations. Overall speed of response was inversely related to the pulse repetition rate.

  12. Simulation of Runoff Hydrograph on Soil Surfaces with Different Microtopography Using a Travel Time Method at the Plot Scale.

    PubMed

    Zhao, Longshan; Wu, Faqi

    2015-01-01

    In this study, a simple travel time-based runoff model was proposed to simulate a runoff hydrograph on soil surfaces with different microtopographies. Three main parameters, i.e., rainfall intensity (I), mean flow velocity (vm) and ponding time of depression (tp), were inputted into this model. The soil surface was divided into numerous grid cells, and the flow length of each grid cell (li) was then calculated from a digital elevation model (DEM). The flow velocity in each grid cell (vi) was derived from the upstream flow accumulation area using vm. The total flow travel time through each grid cell to the surface outlet was the sum of the sum of flow travel times along the flow path (i.e., the sum of li/vi) and tp. The runoff rate at the slope outlet for each respective travel time was estimated by finding the sum of the rain rate from all contributing cells for all time intervals. The results show positive agreement between the measured and predicted runoff hydrographs. PMID:26103635

  13. Xylem cavitation resistance can be estimated based on time-dependent rate of acoustic emissions.

    PubMed

    Nolf, Markus; Beikircher, Barbara; Rosner, Sabine; Nolf, Anton; Mayr, Stefan

    2015-10-01

    Acoustic emission (AE) analysis allows nondestructive monitoring of embolism formation in plant xylem, but signal interpretation and agreement of acoustically measured hydraulic vulnerability with reference hydraulic techniques remain under debate. We compared the hydraulic vulnerability of 16 species and three crop tree cultivars using hydraulic flow measurements and acoustic emission monitoring, proposing the use of time-dependent AE rates as a novel parameter for AE analysis. There was a linear correlation between the water potential (Ψ) at 50% loss of hydraulic conductivity (P50 ) and the Ψ at maximum AE activity (Pmaxrate ), where species with lower P50 also had lower Pmaxrate (P < 0.001, R(2)  = 0.76). Using AE rates instead of cumulative counts for AE analysis allows more efficient estimation of P50 , while excluding problematic AE at late stages of dehydration. PMID:26010417

  14. An inverse acoustic waveguide problem in the time domain

    NASA Astrophysics Data System (ADS)

    Monk, Peter; Selgas, Virginia

    2016-05-01

    We consider the problem of locating an obstacle in a waveguide from time domain measurements of causal waves. More precisely, we assume that we are given the scattered field due to point sources placed on a surface located inside the waveguide away from the obstacle, where the scattered field is measured on the same surface. From this multi-static scattering data we wish to determine the position and shape of an obstacle in the waveguide. To deal with this inverse problem, we adapt and analyze the time domain linear sampling method. This involves proving new time domain estimates for the forward problem, as well as analyzing several time domain operators arising in the inversion scheme. We also implement the inversion algorithm and provide numerical results in two-dimensions using synthetic data.

  15. Time of travel and dispersion study in the Androscoggin River basin, Maine

    USGS Publications Warehouse

    Parker, G.W.; Westerman, G.S.; Hunt, G.S.; Morrill, G.L.

    1983-01-01

    In a series of dye tracer studies at discharge ranging from 45 to 212 cubic meters per second, time of travel and dispersion characteristics were determined at 12 sampling sites along 123 kilometers of the Androscoggin River (Rumford to Prejepscot Dam). Dye-cloud centroid traveltimes ranged from approximately 120 hours at high discharge to 410 hours at flows approaching 95 percentile duration. Longitudinal dispersion coeficients ranged from 21.3 to 76.7 square meters per second. In the 37.2 kilometer unsteady flow reach from Gulf Island Dam to Prejepscot Dam, the concept of mass flow versus time was applied to relate centroid traveltime to average discharge at five sites. This information was used to develop traveltime versus discharge relationships, traveltime versus distance relationships, and longitudinal dispersion coefficients. In Gulf Island Pond, a 70.4 million cubic meter impoundment, three complete dye clouds were traced. The range of observed centroid traveltime through the pound was 110 hours at a mean discharge of 84 cubic meters per second to 260 hours at 59 cubic meters per second. Traveltimes are dependent upon reservoir stratification and mixing as well as discharge. During 1981, inflowing dye-tagged water at 19.0 and 19.5 degrees Celsius was observed to seek its own temperature density level during movement along the thalweg. (USGS)

  16. Time-Dependent Traveling Wave Tube Model for Intersymbol Interference Investigations

    NASA Technical Reports Server (NTRS)

    Kory, Carol L.; Andro, Monty; Downey, Alan (Technical Monitor)

    2001-01-01

    For the first time, a computational model has been used to provide a direct description of the effects of the traveling wave tube (TWT) on modulated digital signals. The TWT model comprehensively takes into account the effects of frequency dependent AM/AM and AM/PM conversion, gain and phase ripple; drive-induced oscillations; harmonic generation; intermodulation products; and backward waves. Thus, signal integrity can be investigated in the presence of these sources of potential distortion as a function of the physical geometry of the high power amplifier and the operational digital signal. This method promises superior predictive fidelity compared to methods using TWT models based on swept-amplitude and/or swept-frequency data. The fully three-dimensional (3D), time-dependent, TWT interaction model using the electromagnetic code MAFIA is presented. This model is used to investigate assumptions made in TWT black-box models used in communication system level simulations. In addition, digital signal performance, including intersymbol interference (ISI), is compared using direct data input into the MAFIA model and using the system level analysis tool, SPW.

  17. Intersymbol Interference Investigations Using a 3D Time-Dependent Traveling Wave Tube Model

    NASA Technical Reports Server (NTRS)

    Kory, Carol L.; Andro, Monty; Downey, Alan (Technical Monitor)

    2001-01-01

    For the first time, a physics based computational model has been used to provide a direct description of the effects of the TWT (Traveling Wave Tube) on modulated digital signals. The TWT model comprehensively takes into account the effects of frequency dependent AM/AM and AM/PM conversion; gain and phase ripple; drive-induced oscillations; harmonic generation; intermodulation products; and backward waves. Thus, signal integrity can be investigated in the presence of these sources of potential distortion as a function of the physical geometry of the high power amplifier and the operational digital signal. This method promises superior predictive fidelity compared to methods using TWT models based on swept amplitude and/or swept frequency data. The fully three-dimensional (3D), time-dependent, TWT interaction model using the electromagnetic code MAFIA is presented. This model is used to investigate assumptions made in TWT black box models used in communication system level simulations. In addition, digital signal performance, including intersymbol interference (ISI), is compared using direct data input into the MAFIA model and using the system level analysis tool, SPW (Signal Processing Worksystem).

  18. Intersymbol Interference Investigations Using a 3D Time-Dependent Traveling Wave Tube Model

    NASA Technical Reports Server (NTRS)

    Kory, Carol L.; Andro, Monty

    2002-01-01

    For the first time, a time-dependent, physics-based computational model has been used to provide a direct description of the effects of the traveling wave tube amplifier (TWTA) on modulated digital signals. The TWT model comprehensively takes into account the effects of frequency dependent AM/AM and AM/PM conversion; gain and phase ripple; drive-induced oscillations; harmonic generation; intermodulation products; and backward waves. Thus, signal integrity can be investigated in the presence of these sources of potential distortion as a function of the physical geometry and operating characteristics of the high power amplifier and the operational digital signal. This method promises superior predictive fidelity compared to methods using TWT models based on swept- amplitude and/or swept-frequency data. First, the TWT model using the three dimensional (3D) electromagnetic code MAFIA is presented. Then, this comprehensive model is used to investigate approximations made in conventional TWT black-box models used in communication system level simulations. To quantitatively demonstrate the effects these approximations have on digital signal performance predictions, including intersymbol interference (ISI), the MAFIA results are compared to the system level analysis tool, Signal Processing Workstation (SPW), using high order modulation schemes including 16 and 64-QAM.

  19. Inducing involuntary and voluntary mental time travel using a laboratory paradigm.

    PubMed

    Cole, Scott N; Staugaard, Søren R; Berntsen, Dorthe

    2016-04-01

    Although involuntary past and future mental time travel (MTT) has been examined outside the laboratory in diary studies, MTT has primarily been studied in the context of laboratory studies using voluntary construction tasks. In this study, we adapted and extended a paradigm previously used to elicit involuntary and voluntary memories (Schlagman & Kvavilashvili in Memory & Cognition, 36, 920-932, 2008). Our aim was - for the first time - to examine involuntary and voluntary future MTT under controlled laboratory conditions. The involuntary task involved a monotonous task that included potential cues for involuntary MTT. Temporal direction was manipulated between participants whereas retrieval mode was manipulated within participants. We replicated robust past-future differences, such as the future positivity bias. Additionally, we replicated key voluntary-involuntary differences: Involuntary future representations had similar characteristics as involuntary memories in that they were elicited faster, were more specific, and garnered more emotional impact than their voluntary counterparts. We also found that the future and past involuntary MTT led to both positive and negative mood impact, and that the valence of the impact was associated with the emotional valence of the event. This study advances scientific understanding of involuntary future representations in healthy populations and validates a laboratory paradigm that can be flexibly and systematically utilized to explore different characteristics of voluntary and involuntary MTT, which has not been possible within naturalistic paradigms. PMID:26489747

  20. The inverse problem of refraction travel times, part I: Types of Geophysical Nonuniqueness through Minimization

    USGS Publications Warehouse

    Ivanov, J.; Miller, R.D.; Xia, J.; Steeples, D.; Park, C.B.

    2005-01-01

    In a set of two papers we study the inverse problem of refraction travel times. The purpose of this work is to use the study as a basis for development of more sophisticated methods for finding more reliable solutions to the inverse problem of refraction travel times, which is known to be nonunique. The first paper, "Types of Geophysical Nonuniqueness through Minimization," emphasizes the existence of different forms of nonuniqueness in the realm of inverse geophysical problems. Each type of nonuniqueness requires a different type and amount of a priori information to acquire a reliable solution. Based on such coupling, a nonuniqueness classification is designed. Therefore, since most inverse geophysical problems are nonunique, each inverse problem must be studied to define what type of nonuniqueness it belongs to and thus determine what type of a priori information is necessary to find a realistic solution. The second paper, "Quantifying Refraction Nonuniqueness Using a Three-layer Model," serves as an example of such an approach. However, its main purpose is to provide a better understanding of the inverse refraction problem by studying the type of nonuniqueness it possesses. An approach for obtaining a realistic solution to the inverse refraction problem is planned to be offered in a third paper that is in preparation. The main goal of this paper is to redefine the existing generalized notion of nonuniqueness and a priori information by offering a classified, discriminate structure. Nonuniqueness is often encountered when trying to solve inverse problems. However, possible nonuniqueness diversity is typically neglected and nonuniqueness is regarded as a whole, as an unpleasant "black box" and is approached in the same manner by applying smoothing constraints, damping constraints with respect to the solution increment and, rarely, damping constraints with respect to some sparse reference information about the true parameters. In practice, when solving geophysical

  1. Ocean acoustic reverberation tomography.

    PubMed

    Dunn, Robert A

    2015-12-01

    Seismic wide-angle imaging using ship-towed acoustic sources and networks of ocean bottom seismographs is a common technique for exploring earth structure beneath the oceans. In these studies, the recorded data are dominated by acoustic waves propagating as reverberations in the water column. For surveys with a small receiver spacing (e.g., <10 km), the acoustic wave field densely samples properties of the water column over the width of the receiver array. A method, referred to as ocean acoustic reverberation tomography, is developed that uses the travel times of direct and reflected waves to image ocean acoustic structure. Reverberation tomography offers an alternative approach for determining the structure of the oceans and advancing the understanding of ocean heat content and mixing processes. The technique has the potential for revealing small-scale ocean thermal structure over the entire vertical height of the water column and along long survey profiles or across three-dimensional volumes of the ocean. For realistic experimental geometries and data noise levels, the method can produce images of ocean sound speed on a smaller scale than traditional acoustic tomography. PMID:26723303

  2. Comparison between psycho-acoustics and physio-acoustic measurement to determine optimum reverberation time of pentatonic angklung music concert hall

    NASA Astrophysics Data System (ADS)

    Sudarsono, Anugrah S.; Merthayasa, I. G. N.; Suprijanto

    2015-09-01

    This research tried to compare psycho-acoustics and Physio-acoustic measurement to find the optimum reverberation time of soundfield from angklung music. Psycho-acoustic measurement was conducted using a paired comparison method and Physio-acoustic measurement was conducted with EEG Measurement on T3, T4, FP1, and FP2 measurement points. EEG measurement was conducted with 5 persons. Pentatonic angklung music was used as a stimulus with reverberation time variation. The variation was between 0.8 s - 1.6 s with 0.2 s step. EEG signal was analysed using a Power Spectral Density method on Alpha Wave, High Alpha Wave, and Theta Wave. Psycho-acoustic measurement on 50 persons showed that reverberation time preference of pentatonic angklung music was 1.2 second. The result was similar to Theta Wave measurement on FP2 measurement point. High Alpha wave on T4 measurement gave different results, but had similar patterns with psycho-acoustic measurement

  3. Periodic Time-Domain Nonlocal Nonreflecting Boundary Conditions for Duct Acoustics

    NASA Technical Reports Server (NTRS)

    Watson, Willie R.; Zorumski, William E.

    1996-01-01

    Periodic time-domain boundary conditions are formulated for direct numerical simulation of acoustic waves in ducts without flow. Well-developed frequency-domain boundary conditions are transformed into the time domain. The formulation is presented here in one space dimension and time; however, this formulation has an advantage in that its extension to variable-area, higher dimensional, and acoustically treated ducts is rigorous and straightforward. The boundary condition simulates a nonreflecting wave field in an infinite uniform duct and is implemented by impulse-response operators that are applied at the boundary of the computational domain. These operators are generated by convolution integrals of the corresponding frequency-domain operators. The acoustic solution is obtained by advancing the Euler equations to a periodic state with the MacCormack scheme. The MacCormack scheme utilizes the boundary condition to limit the computational space and preserve the radiation boundary condition. The success of the boundary condition is attributed to the fact that it is nonreflecting to periodic acoustic waves. In addition, transient waves can pass rapidly out of the solution domain. The boundary condition is tested for a pure tone and a multitone source in a linear setting. The effects of various initial conditions are assessed. Computational solutions with the boundary condition are consistent with the known solutions for nonreflecting wave fields in an infinite uniform duct.

  4. Active source monitoring of crosswell seismic travel time forstress induced changes

    SciTech Connect

    Silver, P.G.; Daley, T.M.; Niu, F.; Majer, E.L.

    2006-11-11

    We have conducted a series of cross-well experiments tocontinuously measure in situ temporal variations in seismic velocity attwo test sites: building 64 (B64) and Richmond Field Station (RFS) of theLawrence Berkeley National Laboratory in California. A piezoelectricsource was used to generate highly repeatable signals, and a string of 24hydrophones was used to record the signals. The B64 experiment wasconducted utilizing two boreholes 17 m deep and 3 m apart for 160 h. AtRFS, we collected a 36-day continuous record in a cross-borehole facilityusing two 70-m-deep holes separated by 30 m. With signal enhancementtechniques we were able to achieve a precision of 6.0 nsec and 10 nsec indelay-time estimation from stacking of 1-hr records during the ?7- and?35-day observation periods at the B64 and RFS sites, which correspond to3 and 0.5 ppm of their travel times, respectively. Delay time measured atB64 has a variation of ?2 lsec in the 160-hr period and shows a strongand positive correlation with the barometric pressure change at the site.At RFS, after removal of a linear trend, we find a delay-time variationof 2.5 lsec, which exhibits a significant negative correlation withbarometric pressure. We attribute the observed correlations to stresssensitivity of seismic velocity known from laboratory studies. Thepositive and negative sign observed in the correlation is likely relatedto the expected near- and far-field effects of this stress dependence ina poroelastic medium. The stress sensitivity is estimated to be 10 6/Paand 10 7/Pa at the B64 and RFS site, respectively.

  5. Acoustic imaging with time reversal methods: From medicine to NDT

    NASA Astrophysics Data System (ADS)

    Fink, Mathias

    2015-03-01

    This talk will present an overview of the research conducted on ultrasonic time-reversal methods applied to biomedical imaging and to non-destructive testing. We will first describe iterative time-reversal techniques that allow both focusing ultrasonic waves on reflectors in tissues (kidney stones, micro-calcifications, contrast agents) or on flaws in solid materials. We will also show that time-reversal focusing does not need the presence of bright reflectors but it can be achieved only from the speckle noise generated by random distributions of non-resolved scatterers. We will describe the applications of this concept to correct distortions and aberrations in ultrasonic imaging and in NDT. In the second part of the talk we will describe the concept of time-reversal processors to get ultrafast ultrasonic images with typical frame rates of order of 10.000 F/s. It is the field of ultrafast ultrasonic imaging that has plenty medical applications and can be of great interest in NDT. We will describe some applications in the biomedical domain: Quantitative Elasticity imaging of tissues by following shear wave propagation to improve cancer detection and Ultrafast Doppler imaging that allows ultrasonic functional imaging.

  6. Wireless acoustic modules for real-time data fusion using asynchronous sniper localization algorithms

    NASA Astrophysics Data System (ADS)

    Hengy, S.; De Mezzo, S.; Duffner, P.; Naz, P.

    2012-11-01

    The presence of snipers in modern conflicts leads to high insecurity for the soldiers. In order to improve the soldier's protection against this threat, the French German Research Institute of Saint-Louis (ISL) has been conducting studies in the domain of acoustic localization of shots. Mobile antennas mounted on the soldier's helmet were initially used for real-time detection, classification and localization of sniper shots. It showed good performances in land scenarios, but also in urban scenarios if the array was in the shot corridor, meaning that the microphones first detect the direct wave and then the reflections of the Mach and muzzle waves (15% distance estimation error compared to the actual shooter array distance). Fusing data sent by multiple sensor nodes distributed on the field showed some of the limitations of the technologies that have been implemented in ISL's demonstrators. Among others, the determination of the arrays' orientation was not accurate enough, thereby degrading the performance of data fusion. Some new solutions have been developed in the past year in order to obtain better performance for data fusion. Asynchronous localization algorithms have been developed and post-processed on data measured in both free-field and urban environments with acoustic modules on the line of sight of the shooter. These results are presented in the first part of the paper. The impact of GPS position estimation error is also discussed in the article in order to evaluate the possible use of those algorithms for real-time processing using mobile acoustic nodes. In the frame of ISL's transverse project IMOTEP (IMprovement Of optical and acoustical TEchnologies for the Protection), some demonstrators are developed that will allow real-time asynchronous localization of sniper shots. An embedded detection and classification algorithm is implemented on wireless acoustic modules that send the relevant information to a central PC. Data fusion is then processed and the

  7. Improvements of Travel-time Tomography Models from Joint Inversion of Multi-channel and Wide-angle Seismic Data

    NASA Astrophysics Data System (ADS)

    Begović, Slaven; Ranero, César; Sallarès, Valentí; Meléndez, Adrià; Grevemeyer, Ingo

    2016-04-01

    Commonly multichannel seismic reflection (MCS) and wide-angle seismic (WAS) data are modeled and interpreted with different approaches. Conventional travel-time tomography models using solely WAS data lack the resolution to define the model properties and, particularly, the geometry of geologic boundaries (reflectors) with the required accuracy, specially in the shallow complex upper geological layers. We plan to mitigate this issue by combining these two different data sets, specifically taking advantage of the high redundancy of multichannel seismic (MCS) data, integrated with wide-angle seismic (WAS) data into a common inversion scheme to obtain higher-resolution velocity models (Vp), decrease Vp uncertainty and improve the geometry of reflectors. To do so, we have adapted the tomo2d and tomo3d joint refraction and reflection travel time tomography codes (Korenaga et al, 2000; Meléndez et al, 2015) to deal with streamer data and MCS acquisition geometries. The scheme results in a joint travel-time tomographic inversion based on integrated travel-time information from refracted and reflected phases from WAS data and reflected identified in the MCS common depth point (CDP) or shot gathers. To illustrate the advantages of a common inversion approach we have compared the modeling results for synthetic data sets using two different travel-time inversion strategies: We have produced seismic velocity models and reflector geometries following typical refraction and reflection travel-time tomographic strategy modeling just WAS data with a typical acquisition geometry (one OBS each 10 km). Second, we performed joint inversion of two types of seismic data sets, integrating two coincident data sets consisting of MCS data collected with a 8 km-long streamer and the WAS data into a common inversion scheme. Our synthetic results of the joint inversion indicate a 5-10 times smaller ray travel-time misfit in the deeper parts of the model, compared to models obtained using just

  8. Timing and classifying brief acoustic stimuli by songbirds and humans.

    PubMed

    Weisman, R; Brownlie, L; Olthof, A; Njegovan, M; Sturdy, C; Mewhort, D

    1999-04-01

    The durations of animals' brief vocalizations provide conspecifics with important recognition cues. In the present experiments, zebra finches and humans (trained musicians) were rewarded for responding after S+ (standard) auditory signals from 56 to 663 ms and not for responding after shorter or longer S- (comparison) durations from 10 to 3684 ms. With either a single standard (Experiment 1) or multiple standards (Experiment 2), both zebra finches and humans timed brief signals to about the same level of accuracy. The results were in qualitative agreement with predictions from scalar timing theory and its connectionist implementation in both experiments. The connectionist model provides a good quantitative account of temporal gradients with a single standard (Experiment 1) but not with multiple standards (Experiment 2). PMID:10331915

  9. Mental Time Travel into the Past and the Future in Healthy Aged Adults: An fMRI Study

    ERIC Educational Resources Information Center

    Viard, Armelle; Chetelat, Gael; Lebreton, Karine; Desgranges, Beatrice; Landeau, Brigitte; de La Sayette, Vincent; Eustache, Francis; Piolino, Pascale

    2011-01-01

    Remembering the past and envisioning the future rely on episodic memory which enables mental time travel. Studies in young adults indicate that past and future thinking share common cognitive and neural underpinnings. No imaging data is yet available in healthy aged subjects. Using fMRI, we scanned older subjects while they remembered personal…

  10. Tomography of crustal P and S travel times across the western United States

    NASA Astrophysics Data System (ADS)

    Steck, Lee K.; Begnaud, Michael L.; Phillips, Scott; Stead, Richard

    2011-11-01

    Data from the USArray combined with local, regional, and national networks provide an unprecedented opportunity for imaging the crust of the western United States. We employ a simple tomography scheme to invert Pg and Sg travel times for velocity structure. The approach is analogous to Pn tomography: we assume a great circle arc between source and receiver and solve for station and event terms along with 2-D velocity structure. Pg velocities are high in the Snake River Plain, western Washington and the Columbia Plateau, and in central California. The Colorado Plateau falls midrange while the Basin and Range is slow, as are the Geysers region north of the San Francisco Bay and the Salton Trough. For Sg, the Snake River plain is fast, as is the entire Cordillera from the Southern Sierra Nevada up through the Cascades. Both the Colorado Plateau and most of the Rocky Mountains are also fast. At the highest point of the Rocky Mountains, the Aspen Anomaly is a low-velocity region. The Basin and Range is a composite of slower to the west abutting the Sierra Nevada and faster in eastern Nevada. Coastal California is slow, with the exception of the San Francisco Bay region and far northern California. The continental crust of the North American craton appears slightly fast for both Pg and Sg. Our observations and their trends compare well with middle to upper crustal velocity estimates from previous studies. They also compare reasonably well with average crustal velocities from the same studies.

  11. Causes of intraplate seismicity in central Brazil from travel time seismic tomography

    NASA Astrophysics Data System (ADS)

    Rocha, Marcelo Peres; Azevedo, Paulo Araújo de; Marotta, Giuliano Sant'Anna; Schimmel, Martin; Fuck, Reinhardt

    2016-06-01

    New results of travel time seismic tomography in central Brazil provide evidence that the relatively high seismicity in this region is related to the thinner lithosphere at the limit between the Amazonian and São Francisco paleocontinents. The transition between these paleocontinents is marked by low velocity anomalies, spatially well correlated with the high seismicity region, which are interpreted as related to the lithospheric thinning and consequent rise of the asthenosphere, which have increased the temperature in this region. The low-velocity anomalies suggest a weakness region, favorable to the build-up of stress. The effective elastic thickness and the strain/stress regime for the study area are in agreement with tomographic results. A high-velocity trend is observed beneath the Parnaíba Basin, where low seismicity is observed, indicating the presence of a cratonic core. Our results support the idea that the intraplate seismicity in central Brazil is related to the thin lithosphere underlying parts of the Tocantins Province between the neighboring large cratonic blocks.

  12. Evidence for anomalous mantle upwelling beneath the Arabian Platform from travel time tomography inversion

    NASA Astrophysics Data System (ADS)

    Koulakov, Ivan; Burov, Evgeniy; Cloetingh, Sierd; El Khrepy, Sami; Al-Arifi, Nassir; Bushenkova, Natalia

    2016-01-01

    We present a new model of P-velocity anomalies in the upper mantle beneath the Arabian Peninsula, Red Sea, and surrounding regions. This model was computed with the use of travel time data from the global catalogue of the International Seismological Center (ISC) for the years of 1980-2011. The reliability of the model was tested with several synthetic tests. In the resulting seismic model, the Red Sea is clearly associated with a higher P-velocity anomaly in the upper mantle at least down to 300 km depth. This anomaly might be caused by upward deviation of the main mantle interfaces caused by extension and thinning of the lithosphere due to passive rifting. Thick lithosphere of the Arabian Platform is imaged as a high-velocity anomaly down to 200-250 km depth. Below this plate, we observe a low-velocity structure that is interpreted as a hot mantle upwelling. Based on the tomography results, we propose that this upper mantle anomaly may represent hot material that migrates westward and play a major role in the formation of Cenozoic basaltic lava fields in western Arabia. On the northeastern side of the Arabian Plate, we clearly observe a dipping high-velocity zone beneath Zagros and Makran, which is interpreted as a trace of subduction or delamination of the Arabian Plate lithosphere.

  13. Travel-time correction surface generation for the DOE Knowledge Base

    SciTech Connect

    Hipp, J.; Young, C.; Keyser, R.

    1997-08-01

    The DOE Knowledge Base data storage and access model consists of three parts: raw data processing, intermediate surface generation, and final output surface interpolation. The paper concentrates on the second step, surface generation, specifically applied to travel-time correction data. The surface generation for the intermediate step is accomplished using a modified kriging solution that provides robust error estimates for each for each interpolated point and satisfies many important physical requirements including differing quality data points, user-definable range of influence for each point, blend to background values for both interpolated values and error estimates beyond the ranges, and the ability to account for the effects of geologic region boundaries. These requirements are outlined and discussed and are linked to requirements specified for the final output model in the DOE Knowledge Base. Future work will focus on testing the entire Knowledge Base model using the regional calibration data sets which are being gathered by researchers at Los Alamos and Lawrence Livermore National Laboratories.

  14. Global teleseismic earthquake relocation with improved travel times and procedures for depth determination

    USGS Publications Warehouse

    Robert, Engdah E.; Van Hilst, R. D.; Buland, Raymond P.

    1998-01-01

    We relocate nearly 100, 000 events that occurred during the period 1964 to 1995 and are well-constrained teleseismically by arrival-time data reported to the International Seismological Centre (ISC) and to the U. S. Geological Survey's National Earthquake Information Center (NEIC). Hypocenter determination is significantly improved by using, in addition to regional and teleseismic P and S phases, the arrival times of PKiKP, PKPdf, and the teleseismic depth phases pP, pwP, and sP in the relocation procedure. A global probability model developed for later-arriving phases is used to independently identify the depth phases. The relocations are compared to hypocenters reported in the ISC and NEIC catalogs and by other sources. Differences in our epicenters with respect to ISC and NEIC estimates are generally small and regionally systematic due to the combined effects of the observing station network and plate geometry regionally, differences in upper mantle travel times between the reference earth models used, and the use of later-arriving phases. Focal depths are improved substantially over most other independent estimates, demonstrating (for example) how regional structures such as downgoing slabs can severely bias depth estimation when only regional and teleseismic P arrivals are used to determine the hypocenter. The new data base, which is complete to about Mw 5. 2 and includes all events for which moment-tensor solutions are available, has immediate application to high-resolution definition of Wadati-Benioff Zones (WBZs) worldwide, regional and global tomographic imaging, and other studies of earth structure.

  15. Large-scale Shear Velocities Beneath Hotspot Locations: New Observations and Travel Time Synthesis

    NASA Astrophysics Data System (ADS)

    An, Y.; Gu, Y. J.; Sacchi, M. D.

    2007-12-01

    The existence, lateral dimension, and depth of mantle plumes beneath hotspots have been issues of contentious debate in the past two decades. To a large extent, the difficulty lies in the insufficient data resolution in the transition region (400-1000 km) between the upper and lower mantle beneath major hotspot locations. In this study, we report a new type of observation, the ray parameter variation of SS precursors, to image large-scale mantle shear velocities from the surface down to 1200 km beneath 17 major hotspots. We significantly improve the resolution by a High-resolution Radon transform method that utilizes time-domain inversions to simultaneously constrain differential times and ray parameters. Perturbations of S410S-SS ray parameters present the most revealing observations of hot thermal anomalies in this study. We identify both positive and negative jumps in travel time curves (hence ray parameters) for rays bottoming beneath the majority of the hotspot locations; these anomalous jumps are not observed at non-hotspot locations. Through careful modeling of the observed ray parameter jumps using 2-D finite-difference ray tracing, and accounting for depth, width, sign and strength of the velocity columns, we are able to unequivocally categorize the mantle beneath the aforementioned 17 hotspots to have low seismic velocities at depth 1) comparable to transition zone (400-670 km) depths, or 2) down to 900-1200 km or more. While our data and modeling strategies do not enable us to probe the source of hotspots beyond 1200-km depth, they do have major implications for the discussion of shallow vs. deep-rooted hotspots around the world. For example, the Hawaii and Macdonald hotspots exhibit strong type 1 characteristics, while the Azores and Canary hotspots are describable by type 2 mantle velocity variations.

  16. A method for generating an illusion of backwards time travel using immersive virtual reality—an exploratory study

    PubMed Central

    Friedman, Doron; Pizarro, Rodrigo; Or-Berkers, Keren; Neyret, Solène; Pan, Xueni; Slater, Mel

    2014-01-01

    We introduce a new method, based on immersive virtual reality (IVR), to give people the illusion of having traveled backwards through time to relive a sequence of events in which they can intervene and change history. The participant had played an important part in events with a tragic outcome—deaths of strangers—by having to choose between saving 5 people or 1. We consider whether the ability to go back through time, and intervene, to possibly avoid all deaths, has an impact on how the participant views such moral dilemmas, and also whether this experience leads to a re-evaluation of past unfortunate events in their own lives. We carried out an exploratory study where in the “Time Travel” condition 16 participants relived these events three times, seeing incarnations of their past selves carrying out the actions that they had previously carried out. In a “Repetition” condition another 16 participants replayed the same situation three times, without any notion of time travel. Our results suggest that those in the Time Travel condition did achieve an illusion of “time travel” provided that they also experienced an illusion of presence in the virtual environment, body ownership, and agency over the virtual body that substituted their own. Time travel produced an increase in guilt feelings about the events that had occurred, and an increase in support of utilitarian behavior as the solution to the moral dilemma. Time travel also produced an increase in implicit morality as judged by an implicit association test. The time travel illusion was associated with a reduction of regret associated with bad decisions in their own lives. The results show that when participants have a third action that they can take to solve the moral dilemma (that does not immediately involve choosing between the 1 and the 5) then they tend to take this option, even though it is useless in solving the dilemma, and actually results in the deaths of a greater number. PMID:25228889

  17. Prediction of acoustic scattering in the time domain and its applications to rotorcraft noise

    NASA Astrophysics Data System (ADS)

    Lee, Seongkyu

    This work aims at the development of a numerical method for the analysis of acoustic scattering in the time domain and its applications to rotorcraft noise. This purpose is achieved by developing two independent methods: (1) an analytical formulation of the pressure gradient for an arbitrary moving source and (2) a time-domain moving equivalent source method. First, the analytical formulation for the pressure gradient is developed to fulfill the boundary condition on a scattering surface to account for arbitrary moving incident sources. A semi-analytical formulation was derived from the gradient of the Ffowcs Williams-Hawkings (FW-H) equation. This formulation needs to calculate the observer time differentiation outside the integrals numerically. A numerical algorithm is developed to implement this formulation in an aeroacoustic prediction code. A new analytical formulation is presented in the thesis. In this formulation, the time differentiation is taken inside the integrals analytically. This formulation avoids the numerical time differentiation with respect to the observer time, which is computationally more efficient. The acoustic pressure gradient predicted by these two formulations is validated through comparison with available exact solutions for a stationary and moving monopole sources. The agreement between the predictions and exact solutions is excellent. One of the advantages of this analytic formulation is that it efficiently provides the boundary condition for the acoustic scattering of sound generated from an arbitrary moving source, such as rotating blades, which undergoes rotation, flapping and lead-lag motions. The formulation is applied to the rotor noise problems for two model rotors (UH-1H and HART-I). For HART-I rotor, CFD/CSD coupling was used to provide unsteady aerodynamics and trim solutions of the blade motion. A purely numerical approach is compared with the analytical formulations. The agreement between the analytical formulations and

  18. Spatial gradients of protein-level time delays set the pace of the traveling segmentation clock waves

    PubMed Central

    Ay, Ahmet; Holland, Jack; Sperlea, Adriana; Devakanmalai, Gnanapackiam Sheela; Knierer, Stephan; Sangervasi, Sebastian; Stevenson, Angel; Özbudak, Ertuğrul M.

    2014-01-01

    The vertebrate segmentation clock is a gene expression oscillator controlling rhythmic segmentation of the vertebral column during embryonic development. The period of oscillations becomes longer as cells are displaced along the posterior to anterior axis, which results in traveling waves of clock gene expression sweeping in the unsegmented tissue. Although various hypotheses necessitating the inclusion of additional regulatory genes into the core clock network at different spatial locations have been proposed, the mechanism underlying traveling waves has remained elusive. Here, we combined molecular-level computational modeling and quantitative experimentation to solve this puzzle. Our model predicts the existence of an increasing gradient of gene expression time delays along the posterior to anterior direction to recapitulate spatiotemporal profiles of the traveling segmentation clock waves in different genetic backgrounds in zebrafish. We validated this prediction by measuring an increased time delay of oscillatory Her1 protein production along the unsegmented tissue. Our results refuted the need for spatial expansion of the core feedback loop to explain the occurrence of traveling waves. Spatial regulation of gene expression time delays is a novel way of creating dynamic patterns; this is the first report demonstrating such a control mechanism in any tissue and future investigations will explore the presence of analogous examples in other biological systems. PMID:25336742

  19. The first study of the light-travel time effect in massive LMC eclipsing binaries

    NASA Astrophysics Data System (ADS)

    Zasche, P.; Wolf, M.; Vraštil, J.; Pilarčík, L.; Juryšek, J.

    2016-05-01

    Aims: New CCD observations for semidetached and detached eclipsing binaries from the Large Magellanic Cloud were carried out using the Danish 1.54-m telescope located at the La Silla Observatory in Chile. The selected systems were monitored for their times of minima, which were required to be able to study the period changes taking place in them. In addition, many new times of minima were derived from the photometric surveys OGLE-II, OGLE-III, and MACHO. Methods: The O-C diagrams of minima timings were analysed using the hypothesis of the light-travel time effect, i.e. assuming the orbital motion around a common barycenter with the distant component. Moreover, the light curves of these systems were also analysed using the program PHOEBE, which provided the physical parameters of the stars. Results: For the first time, in this study we derived the relatively short periods of modulation in these systems, which relates to third bodies. The orbital periods resulted from 3.6 to 11.3 yr and the eccentricities were found to be up to 0.64. This is the first time that this kind of analysis for the set of extragalactic sources has been performed. The Wolf-Rayet system OGLE-LMC-ECL-08823 is the most mysterious one, owing to the resultant high mass function. Another system, OGLE-LMC-ECL-19996, was found to contain a third body with a very high mass (M3,min = 26M⊙). One system (OGLE-LMC-ECL-09971) is suspicious because of its eccentricity, and another one (OGLE-LMC-ECL-20162) shows some light curve variability, with a possible flare-like or microlensing-like event. Conclusions: All of these results came only from the photometric observations of the systems and can be considered as a good starting point for future dedicated observations. Based on data collected with the Danish 1.54-m telescope at the ESO La Silla Observatory.Full Table 4 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc

  20. Numerical evaluation of the PERTH (PERiodic Tracer Hierarchy) method for estimating time-variable travel time distribution in variably saturated soils

    NASA Astrophysics Data System (ADS)

    Kim, M.; Harman, C. J.

    2013-12-01

    The distribution of water travel times is one of the crucial hydrologic characteristics of the catchment. Recently, it has been argued that a rigorous treatment of travel time distributions should allow for their variability in time because of the variable fluxes and partitioning of water in the water balance, and the consequent variable storage of a catchment. We would like to be able to observe the structure of the temporal variations in travel time distributions under controlled conditions, such as in a soil column or under irrigation experiments. However, time-variable travel time distributions are difficult to observe using typical active and passive tracer approaches. Time-variability implies that tracers introduced at different times will have different travel time distributions. The distribution may also vary during injection periods. Moreover, repeat application of a single tracer in a system with significant memory leads to overprinting of break-through curves, which makes it difficult to extract the original break-through curves, and the number of ideal tracers that can be applied is usually limited. Recognizing these difficulties, the PERTH (PERiodic Tracer Hierarchy) method has been developed. The method provides a way to estimate time-variable travel time distributions by tracer experiments under controlled conditions by employing a multi-tracer hierarchy under periodical hydrologic forcing inputs. The key assumption of the PERTH method is that as time gets sufficiently large relative to injection time, the average travel time distribution of two distinct ideal tracers injected during overlapping periods become approximately equal. Thus one can be used as a proxy for the other, and the breakthrough curves of tracers applied at different times in a periodic forcing condition can be separated from one another. In this study, we tested the PERTH method numerically for the case of infiltration at the plot scale using HYDRUS-1D and a particle

  1. Upper and Middle Tiete River Basin dam-hydraulic system, travel time and temperature modeling

    NASA Astrophysics Data System (ADS)

    Devkota, Bishnu; Imberger, Jörg

    2012-12-01

    SummaryTiete River System in the State of Sao Paolo, Brazil is characterized by complex hydraulics and operational problems due to series of dams and point and diffuse inflows along the river. A one dimension Lagrangian river model was developed and applied to the 313 km reach of the Upper and Middle Tiete River Basin from the Penha Dam to the head water of Bara Bonita Reservoir, a stretch of river that includes six small to medium size dams (3.4-22 m high) including the Pirapora Reservoir and 26 inflows into the river (11 tributaries, 9 diffuse source areas, and discharges of 4 cities stormwater and 2 wastewater treatment plants. The conservative tracer transport and temperature model that accounts for the short and long wave radiation and heat transfers at the free surface was included and solved using the Crank-Nicholson scheme. The time variable catchment input to the model was the simulated output of the external hydrological model called Runoff Load Model which results were provided by CETESB. The numerical treatment of series of dams and spillway (that included uncontrolled overflow spillway, gate-controlled ogee spillway; and underflow gates and tunnels) and parameterisation of hydraulic jumps are described. Special attention was focused on the high spatial and temporal variation of flows in Tiete River Basin, a result of the large variation in catchment inflows and channel geometry due to dams and reservoirs along the river. Predicted and measured spatial and seasonal variation of flow and temperature profiles along the river show good agreement. The simulated travel time of conservative tracer is compared against the CETESB's 1982 and 1984 field study data in a 254 km reach of the Middle Tiete River that again shows good agreement. Being Lagrangian in construction, this new model is computationally efficient making it an ideal tool for long term simulation for water resource planning, management and operation decision making in a large and complex river

  2. Global upper mantle structure from long-period differential travel times

    SciTech Connect

    Woodward, R.L.; Masters, G. )

    1991-04-10

    The authors have made over ten thousand measurements of PP-P and SS-S differential travel times from long-period Global Digital Seismograph Network recordings of all events with m{sub b} {ge} 5.5 which occurred during the years 1976 and 1986. The experiments indicate that lower-mantle structure and source-receiver structure can each contribute approximately {plus minus}0.5 s to the measured PP-P residuals so there is considerable signal to be explained. The pattern observed in the PP-P measurements is similar to the pattern observed in the SS-S measurements, with the SS-S residuals 2 to 4 times larger in magnitude. Comparisons of measured residuals to those predicted by the upper-mantle models of Woodhouse and Dziewonski show that the overall patterns are quite similar but the amplitude of the model residuals is roughly a factor of 2 too small. Comparisons with the predictions of a whole-mantle model of Tanimoto again shows that the predicted pattern of residuals is reasonably consistent with the observations but now the predicted residuals are too large by about a factor of 2. They have also binned the measurements according to the tectonic regionalization GTR1 of Jordan and find a qualitative correlation of average residual with tectonic region. In particular, Precambrian shields show a strong anomaly, and there is a correlation of residual size with the age of oceanic crust at the bounce point. For all tectonic regions the ratio of SS-S to PP-P residuals is approximately 2. This ratio is consistent with a thermal origin for the observed signal. Finally, measurements show no compelling evidence for azimuthal anisotroph which might be related to fossil spreading direction or the direction of absolute plate motion.

  3. Seismic Travel-Time Tomography of the Northern Andean Volcanic Zone in Ecuador

    NASA Astrophysics Data System (ADS)

    Araujo, Sebastián; Valette, Bernard; Monteiller, Vadim; Ruiz, Mario

    2014-05-01

    In this poster we present the results of an inversion of earthquakes travel-time data recorded by the national Ecuadorian network. We aim to identify the topography of the slab, to ascertain the velocity of P and S waves, as well as to locate more accurately events in the mantle and the crust beneath Ecuador. The data catalog of the Institute of Geophysics of Quito consists of 478,000 P and S phases corresponding to 21,152 events recorded between 1988 and 2012 by the national network. It provides a unique opportunity to improve our information on the lithospheric structure and the topology of the slab. The domain within which the velocity model is searched for consists of a box oriented in the main direction of the trench and of the Andes Cordillera, taking account of the Earth's ellipticity, in addition to the surface topography. An a priori model of the Moho depth was first determined by matching together informations coming from global gravitational potential, wide-angle reflection seismics and bathymetry studies in the coastal area. The inversion is performed through a non-linear least-square approach based on a stochastic description of data and model. The forward computation of time delay is performed by integrating slowness along the rays, which are determined by the Podvin-Lecomte algorithm which is based on a finite difference resolution of the eikonal equation. The regularization of the velocity fields is achieved through a covariance norm on P velocity and V P/V S velocity ratio over the box domain, with an exponential type kernel. The tuning of smoothing and damping parameters is carried out through an L-curve analysis. The topography of the slab, as displayed by the seismicity, presents an increasing dip from north to south, with a deep cluster of seismicity in the 1.5°- 2° S latitude range.

  4. A hybrid meta-heuristic algorithm for the vehicle routing problem with stochastic travel times considering the driver's satisfaction

    NASA Astrophysics Data System (ADS)

    Tavakkoli-Moghaddam, Reza; Alinaghian, Mehdi; Salamat-Bakhsh, Alireza; Norouzi, Narges

    2012-05-01

    A vehicle routing problem is a significant problem that has attracted great attention from researchers in recent years. The main objectives of the vehicle routing problem are to minimize the traveled distance, total traveling time, number of vehicles and cost function of transportation. Reducing these variables leads to decreasing the total cost and increasing the driver's satisfaction level. On the other hand, this satisfaction, which will decrease by increasing the service time, is considered as an important logistic problem for a company. The stochastic time dominated by a probability variable leads to variation of the service time, while it is ignored in classical routing problems. This paper investigates the problem of the increasing service time by using the stochastic time for each tour such that the total traveling time of the vehicles is limited to a specific limit based on a defined probability. Since exact solutions of the vehicle routing problem that belong to the category of NP-hard problems are not practical in a large scale, a hybrid algorithm based on simulated annealing with genetic operators was proposed to obtain an efficient solution with reasonable computational cost and time. Finally, for some small cases, the related results of the proposed algorithm were compared with results obtained by the Lingo 8 software. The obtained results indicate the efficiency of the proposed hybrid simulated annealing algorithm.

  5. Path-Dependent Travel Time Prediction Variance and Covariance for a Global Tomographic P- and S-Velocity Model

    NASA Astrophysics Data System (ADS)

    Hipp, J. R.; Ballard, S.; Begnaud, M. L.; Encarnacao, A. V.; Young, C. J.; Phillips, W. S.

    2015-12-01

    Recently our combined SNL-LANL research team has succeeded in developing a global, seamless 3D tomographic P- and S-velocity model (SALSA3D) that provides superior first P and first S travel time predictions at both regional and teleseismic distances. However, given the variable data quality and uneven data sampling associated with this type of model, it is essential that there be a means to calculate high-quality estimates of the path-dependent variance and covariance associated with the predicted travel times of ray paths through the model. In this paper, we describe a methodology for accomplishing this by exploiting the full model covariance matrix and show examples of path-dependent travel time prediction uncertainty computed from our latest tomographic model. Typical global 3D SALSA3D models have on the order of 1/2 million nodes, so the challenge in calculating the covariance matrix is formidable: 0.9 TB storage for 1/2 of a symmetric matrix, necessitating an Out-Of-Core (OOC) blocked matrix solution technique. With our approach the tomography matrix (G which includes a prior model covariance constraint) is multiplied by its transpose (GTG) and written in a blocked sub-matrix fashion. We employ a distributed parallel solution paradigm that solves for (GTG)-1 by assigning blocks to individual processing nodes for matrix decomposition update and scaling operations. We first find the Cholesky decomposition of GTG which is subsequently inverted. Next, we employ OOC matrix multiplication methods to calculate the model covariance matrix from (GTG)-1 and an assumed data covariance matrix. Given the model covariance matrix, we solve for the travel-time covariance associated with arbitrary ray-paths by summing the model covariance along both ray paths. Setting the paths equal and taking the square root yields the travel prediction uncertainty for the single path.

  6. Time lag estimates for nitrate travel through the vadose zone in Southland, New Zealand

    NASA Astrophysics Data System (ADS)

    Wilson, Scott; Chanut, Pierre; Ledgard, George; Rissmann, Clint

    2014-05-01

    A regional-scale study was carried out to calculate the travel time of a nitrate particle from the ground surface into shallow groundwater. The aim of the study was to obtain preliminary answers to two questions. Firstly, if leaching limits are set, how long would it take to see an improvement in shallow groundwater quality? Secondly, have groundwater nitrate concentrations reached equilibrium from recent dairy expansion in the region, or could we expect future increases? We applied a methodology that provides a balance between the detail and generalisation that is required for a regional-scale study. Steady-state advective transport through the vadose zone was modelled with water retention curves. These curves enable an estimate of the average volumetric water content of the vadose zone. The percentage saturation can then be used to calculate the vadose zone transit time if effective porosity, depth to the water table and annual average soil drainage are known. A time for mixing in the uppermost part of the aquifer has also been calculated. Two different vadose zone water retention curve models were used for comparison, the Brooks-Corey (1964), and the Van Genuchten (1980) methods. The water retention curves were parameterised by sediment texture via the Rawls and Brakensiek (1985) pedotransfer functions. Hydraulic properties were derived by positioning sediment textural descriptions on the Folk textural triangle, estimates of effective porosity from literature, and hydraulic conductivity values from aquifer tests. Uncertainty of parameter estimates was included by assigning standard deviations and appropriate probability distributions. Vadose zone saturation was modelled at 6,450 sites across the region with a Monte Carlo simulation involving 10,000 realisations. This generated a probability distribution of saturation for each site. Average volumetric water content of the vadose zone ranged from 8.5 to 40.7 % for the Brooks-Corey model and 12.9 to 36.3% for the

  7. Acoustical power amplification and damping by temperature gradients.

    PubMed

    Biwa, Tetsushi; Komatsu, Ryo; Yazaki, Taichi

    2011-01-01

    Ceperley proposed a concept of a traveling wave heat engine ["A pistonless Stirling engine-The traveling wave heat engine," J. Acoust. Soc. Am. 66, 1508-1513 (1979).] that provided a starting point of thermoacoustics today. This paper verifies experimentally his idea through observation of amplification and strong damping of a plane acoustic traveling wave as it passes through axial temperature gradients. The acoustic power gain is shown to obey a universal curve specified by a dimensionless parameter ωτα; ω is the angular frequency and τα is the relaxation time for the gas to thermally equilibrate with channel walls. As an application of his idea, a three-stage acoustic power amplifier is developed, which attains the gain up to 10 with a moderate temperature ratio of 2.3. PMID:21302995

  8. Simple estimation of minimum unsaturated contaminant travel times at Rainier Mesa and Shoshone Mountain, Nevada Test Site

    NASA Astrophysics Data System (ADS)

    Ebel, B. A.; Nimmo, J. R.

    2008-12-01

    In the unsaturated zone the fastest travel times frequently occur via preferential flow that bypasses the soil/rock matrix. Experimental data provide compelling evidence that minimum solute travel times through preferential paths depend primarily on whether water supply is continuous versus non-continuous in time, with little influence from matrix hydraulic properties. We employ a simple model based on this "source- responsive" paradigm to estimate minimum preferential travel times to the regional water table for nonreactive radionuclides at Rainier Mesa and Shoshone Mountain within the Nevada Test Site. The radionuclides at the site originate from underground nuclear testing within a ~1-km-thick unsaturated zone. Contaminated sources at Rainier Mesa and Shoshone Mountain that are continuously supplied include ponded water in certain tunnels, filled detention basins, and partially-filled boreholes with detonation cavities. Tunnels without ponding and unfilled detonation cavities are considered non-continuous sources supplied by percolation of precipitation. Decades of geological and hydrological characterizations provide the foundation for establishing preferential flow as a viable transport mechanism at Rainier Mesa and Shoshone Mountain Our estimated minimum travel times via preferential flow for Rainier Mesa are one to two months for a continuously-supplied source and tens to hundreds of years for a non-continuous source. Previous studies in the scientific literature conducted isotopic analysis of fracture water collected in tunnels at Rainier Mesa that indicated transit times for 400 m of transport from land surface to tunnel levels of one to 40 years. Four monitoring wells in the carbonate aquifer have not detected radionuclide levels above the drinking water standards at Rainier Mesa. Travel times for both the continuously and non-continuously supplied sources at Shoshone Mountain are twice the Rainier Mesa estimates, resulting from longer transport distances

  9. Deriving variable travel times and aerobic respiration in the hyporheic zone using electrical conductivity as natural tracer

    NASA Astrophysics Data System (ADS)

    Vieweg, Michael; Fleckenstein, Jan H.; Schmidt, Christian

    2014-05-01

    Determining oxygen consumption (respiration) rates is important for characterizing the ecological functioning of a stream. It is known, that respiration is strongly temperature dependent, but the variability over time and the effects of changing hydrologic conditions are still scarce. Existing respiration measuring methods mostly utilize ex situ respiration chambers, which do not necessarily represent the actual conditions in a riverbed. We present an approach of transient in situ measurements, which utilize changes in the natural stream-EC signal as tracer for the advective transport in the streambed and combine these with precise oxygen measurements. LTC Logger and optode based oxygen logger were installed in the stream and at 45cm depth beside an in-stream gravel bar. Streambed adapted probe rods with a screened section of 2 cm ensuring a minimized flow-through volume hold the loggers which were programmed to 5min interval measuring interval. Diurnal changes in the EC signal are considered to be quasi-conservative and were tracked in the subsurface. A windowed cross correlation approach was utilized to derive a time-resolved advective travel-time. Assuming a one dimensional flow-path from the stream into the sediment, the time-shift in the EC signal is interpreted as the peak travel time of a tracer breakthrough curve. Additionally a moving average filter of variable length was applied to the stream EC signal, to account for dispersion and further maximize the correlation. For obtaining an experimental respiration rate, the physical transport conditions are then applied to the oxygen data, assuming a first order decay. The results show that the natural EC signal is applicable as tracer, as long as the measurements show distinctive fluctuations. The cross correlation revealed transient travel times with a range between 1-7h (mean 4h) at the upstream and 8-18h (mean 11h) at the downstream location of the gravel bar. There are strong indications, that the stream

  10. A micromachined silicon parallel acoustic delay line (PADL) array for real-time photoacoustic tomography (PAT)

    NASA Astrophysics Data System (ADS)

    Cho, Young Y.; Chang, Cheng-Chung; Wang, Lihong V.; Zou, Jun

    2015-03-01

    To achieve real-time photoacoustic tomography (PAT), massive transducer arrays and data acquisition (DAQ) electronics are needed to receive the PA signals simultaneously, which results in complex and high-cost ultrasound receiver systems. To address this issue, we have developed a new PA data acquisition approach using acoustic time delay. Optical fibers were used as parallel acoustic delay lines (PADLs) to create different time delays in multiple channels of PA signals. This makes the PA signals reach a single-element transducer at different times. As a result, they can be properly received by single-channel DAQ electronics. However, due to their small diameter and fragility, using optical fiber as acoustic delay lines poses a number of challenges in the design, construction and packaging of the PADLs, thereby limiting their performances and use in real imaging applications. In this paper, we report the development of new silicon PADLs, which are directly made from silicon wafers using advanced micromachining technologies. The silicon PADLs have very low acoustic attenuation and distortion. A linear array of 16 silicon PADLs were assembled into a handheld package with one common input port and one common output port. To demonstrate its real-time PAT capability, the silicon PADL array (with its output port interfaced with a single-element transducer) was used to receive 16 channels of PA signals simultaneously from a tissue-mimicking optical phantom sample. The reconstructed PA image matches well with the imaging target. Therefore, the silicon PADL array can provide a 16× reduction in the ultrasound DAQ channels for real-time PAT.

  11. Continuous in-situ measurement of stress-induced travel time variation with coda interferometry

    NASA Astrophysics Data System (ADS)

    Wang, B.; Zhu, P.; Chen, Y.; Niu, F.; Wang, B.

    2006-12-01

    Use of stress induced seismic velocity changes to understand dynamic processes requires knowledge of the in-situ stress sensitivity of a given rock volume. We have been attempting to estimate this stress sensitivity by continuously measuring travel time between a fixed source and receivers. We have conducted a one-month field experiment near a major active fault in Yunnan province, China. An electric hammer and 7 three- component short-period seismometers were used as source and receivers. The sensor has a natural frequency of 1 Hz and the system has a flat frequency response up to 40 Hz. Data were recorded with a sampling rate of 500 samples per second. Receiver offset ranges from 10.6 m to 1030 m. The source was detonated 6 times a day, starting from 00:30, 01:30, 06:30, 07:30, 22:30 and 23:30, respectively. Each time 30 shots were fired within 12 minutes and the 30 records were stacked to enhance signal to noise ratio (SNR). Partly due to the nature of the source, we were able to record a high quality coda wave with a SNR larger than 100 even after ~ 30 times of the first arrival. Based on the SNR we chose the 2 stations with the smallest offsets (station 1, 10.6 m and station 2, 256.8 m) for analysis. We applied coda interferometry technique to measure subtle changes in the velocity field. At each station we compute the cross correlation between the first seismogram and each subsequent seismogram within a 0.1 s moving time window. The lag time τ(t) is obtained when the maximum cross correlation, C_m(t), is reached. In both stations an linear relationship between the lag time, τ(t), and the elapse time, t was observed. We employed L_1 regression to determine the slope (velocity perturbation δ v/v). Measurement precision in δ v/v is estimated to be less than 10-4. Almost all the previous studies used the first arrival to measure the time perturbations, which could suffer systematic timing errors in the digitizer's base clock and in the triggering time. Using

  12. Bound states in one-dimensional acoustic parity-time-symmetric lattices for perfect sensing

    NASA Astrophysics Data System (ADS)

    Zhao, Degang; Shen, Yaxi; Zhang, Yu; Zhu, Xuefeng; Yi, Lin

    2016-08-01

    In this letter, we study the propagation of acoustic waves through a one-dimensional multilayer structure composed of a thin defect layer sandwiched by two phononic crystals. Two kinds of defect states will generate in band gaps and both of them cause unitary transmission. However, they have very unlike field distributions due to the different contrasted acoustic impedances between the defect layer and its neighboring layers. Spectral positions of transmission peaks can be exactly determined by the resonant phase condition. In a non-dissipative system, these resonant states correspond to single crossing point of two eigenvalues of scattering matrix. When gain and loss are introduced to judiciously construct an acoustic parity-time-symmetric lattice, the crossing point will split into a pair of exceptional points (EPs). Interestingly, the EPs correspond to unidirectional zero reflection that is very sensitive to the thickness of defect layer. Taking advantage of this virtue, a very sensitive acoustic sensor can be designed, which has potentially applications in ultrasonic inspection, noise detection, ultrasonic medicine, etc.

  13. A computer program for estimating instream travel times and concentrations of a potential contaminant in the Yellowstone River, Montana

    USGS Publications Warehouse

    McCarthy, Peter M.

    2006-01-01

    The Yellowstone River is very important in a variety of ways to the residents of southeastern Montana; however, it is especially vulnerable to spilled contaminants. In 2004, the U.S. Geological Survey, in cooperation with Montana Department of Environmental Quality, initiated a study to develop a computer program to rapidly estimate instream travel times and concentrations of a potential contaminant in the Yellowstone River using regression equations developed in 1999 by the U.S. Geological Survey. The purpose of this report is to describe these equations and their limitations, describe the development of a computer program to apply the equations to the Yellowstone River, and provide detailed instructions on how to use the program. This program is available online at [http://pubs.water.usgs.gov/sir2006-5057/includes/ytot.xls]. The regression equations provide estimates of instream travel times and concentrations in rivers where little or no contaminant-transport data are available. Equations were developed and presented for the most probable flow velocity and the maximum probable flow velocity. These velocity estimates can then be used to calculate instream travel times and concentrations of a potential contaminant. The computer program was developed so estimation equations for instream travel times and concentrations can be solved quickly for sites along the Yellowstone River between Corwin Springs and Sidney, Montana. The basic types of data needed to run the program are spill data, streamflow data, and data for locations of interest along the Yellowstone River. Data output from the program includes spill location, river mileage at specified locations, instantaneous discharge, mean-annual discharge, drainage area, and channel slope. Travel times and concentrations are provided for estimates of the most probable velocity of the peak concentration and the maximum probable velocity of the peak concentration. Verification of estimates of instream travel times and

  14. Identification of Damaged Wheat Kernels and Cracked-Shell Hazelnuts with Impact Acoustics Time-Frequency Patterns

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A new adaptive time-frequency (t-f) analysis and classification procedure is applied to impact acoustic signals for detecting hazelnuts with cracked shells and three types of damaged wheat kernels. Kernels were dropped onto a steel plate, and the resulting impact acoustic signals were recorded with ...

  15. Generation of chaotic radiation in a driven traveling wave tube amplifier with time-delayed feedback

    SciTech Connect

    Marchewka, Chad; Larsen, Paul; Bhattacharjee, Sudeep; Booske, John; Sengele, Sean; Ryskin, Nikita; Titov, Vladimir

    2006-01-15

    The application of chaos in communications and radar offers new and interesting possibilities. This article describes investigations on the generation of chaos in a traveling wave tube (TWT) amplifier and the experimental parameters responsible for sustaining stable chaos. Chaos is generated in a TWT amplifier when it is made to operate in a highly nonlinear regime by recirculating a fraction of the TWT output power back to the input in a delayed feedback configuration. A driver wave provides a constant external force to the system making it behave like a forced nonlinear oscillator. The effects of the feedback bandwidth, intensity, and phase are described. The study illuminates the different transitions to chaos and the effect of parameters such as the frequency and intensity of the driver wave. The detuning frequency, i.e., difference frequency between the driver wave and the natural oscillation of the system, has been identified as being an important physical parameter for controlling evolution to chaos. Among the observed routes to chaos, besides the more common period doubling, a new route called loss of frequency locking occurs when the driving frequency is adjacent to a natural oscillation mode. The feedback bandwidth controls the nonlinear dynamics of the system, particularly the number of natural oscillation modes. A computational model has been developed to simulate the experiments and reasonably good agreement is obtained between them. Experiments are described that demonstrate the feasibility of chaotic communications using two TWTs, where one is operated as a driven chaotic oscillator and the other as a time-delayed, open-loop amplifier.

  16. Evaluation of simulated cross-formational travel times using water age measurements in layered aquifer systems

    NASA Astrophysics Data System (ADS)

    Papafotiou, Alexandros; Ewing, John; Deeds, Neil; Kreitler, Charlie

    2013-04-01

    The recent hydrologic droughts in the southwestern USA have brought forward the necessity for sustainable management of groundwater that was recharged several thousands of years ago, also known as fossil water, as this resource is not directly rechargeable even through heavy rain events. Groundwater age studies can enable water authorities to map the origins of groundwater, quantify water ages in aquifers and plan sustainable water resource policies on local and regional scales. In this study, numerical groundwater availability models (GAMs) are combined with water age measurements to perform a water age analysis of the Wilcox, Carrizo, Queen City, Sparta, Jackson and Yegua aquifers that span central Texas dipping toward the coast of the Gulf of Mexico. The 3D GAMs have initially been calibrated using well data. The water age analysis is carried out using 2D simulations to characterize down dip flow, cross-formational flow in the aquifers and the impact on associated water ages in representative transects extracted from the 3D models, including a discussion on bridging the gap between the 3D hydrogeological system and its simplified 2D representations. A systematic quantification of water age sensitivity to formation hydraulic conductivities and recharge at the aquifer outcrops is performed, whereby travel times in the simulated aquifers are compared to water age measurements obtained from C-14 and Tritium age dating techniques. The analysis therefore delivers the spectrum of water age isolines under consideration of model parameter uncertainty, evaluating the predictive ability of cross-formational water age studies when using 2D transect models.

  17. An anomalous upper mantle unit beneath southern Norway revealed by P-wave travel time residuals.

    NASA Astrophysics Data System (ADS)

    Bondo, A.; Balling, N.; Jacobsen, B. H.; England, R. W.; Kind, R.; Bödvarsson, R.; Weidle, C.; Gregersen, S.; Voss, P.

    2009-04-01

    We investigate whether high topography in southern Norway is associated with an anomalous upper mantle and we identify the western boundary of thick shield lithosphere. Several studies describe crustal structure in southern Scandinavia, whereas high-resolution information on upper mantle structures is sparse. We present relative P-wave travel time residuals (P-residuals) and preliminary tomography from southern Norway, southern Sweden and northern Denmark. We analyze distant earthquakes registered by seismological stations in projects CENMOVE, CALAS, MAGNUS and SCANLIPS together with selected TOR stations, and permanent stations in southern Sweden, southern Norway and Denmark. Station means of P-residuals corrected for topography and contributions from the crust varies by up to about 1 s across the study area. We associate early arrivals to the east of the Sorgenfrei-Tornquist Zone (STZ) and east of the Oslo Graben with thick shield lithosphere. Late arrivals observed in the Norwegian-Danish Basin southwest of the STZ are consistent with thinned lithosphere related to the basin formation. In southern Norway west of the Oslo Graben area, late arrivals indicate reduced P-wave velocity in the upper mantle and perhaps some regional isostatic buoyancy from the upper mantle. However, arrivals are early in the northern part of southern Norway, still in areas of high topography. Thus, a clear spatial correlation with areas of high topography is not observed. We identify the western boundary of thick shield lithosphere by interpretation of station means of P-residuals, together with the azimuthal dependence of single P-residuals in southern Scandinavia. We find this boundary to follow the STZ from the southeast into the northern part of Jutland. From there it proceed northwards. In southern Norway the western boundary of thick shield lithosphere is found around the Oslo Graben, proceeding to the northwest approaching the Norwegian coast.

  18. Multiple ScS travel times in the western pacific: Implications for mantle heterogeneity

    SciTech Connect

    Sipkin, S.A.; Jordan, T.H.

    1980-02-10

    Multiple ScS travel times have been obtained by wave form cross correlation from seismograms digitally recorded by the High Gain Long Period (HGLP) and Seismic Research Observatory (SRO) networks. The surface projections of the paths corresponding to these data cross the western Pacific on oceanic crust greater than 100 m.y. old or traverse continental regions. The difference between the median ScS/sub n/--ScS/sub n-1/ residuals for all western Pacific paths and all continental paths is +5.2 s, in agreement with our World Wide Standardized Seismograph Network (WWSSN) data (Sipkin and Jordan, 1976). These results support the hypothesis that the average mantle shear velocity of old ocean basins is significantly less than that of old continental nuclei. The medians of both the oceanic and continental residuals for the HGLP and SRO data are more positive than those for the higher-frequency WWSSN data by amounts consistent with attenuative dispersion, which we take to be direct evidence for such dispersion. The residuals for paths crossing China have a median 2 s greater than the median for all continental paths, supporting the inference from dispersion studies that the upper mantle beneath China is characterized by anomalously low shear velocities. The residuals for western Pacific paths show lateral variations of 5 s or more not correlated in any systematic way with crustal ages along the paths. An analysis of these variations suggests that for horizontal scale lengths of the order of 10/sup 3/ km the amplitude of lateral variability is greater along a SW-NE axis than along a SE-NW axis. Mesoscale heterogeneity in the western Pacific may thus consist of predominantly NW trending structures.

  19. Applying petrophysical models to radar travel time and electrical resistivity tomograms: Resolution-dependent limitations

    USGS Publications Warehouse

    Day-Lewis, F. D.; Singha, K.; Binley, A.M.

    2005-01-01

    Geophysical imaging has traditionally provided qualitative information about geologic structure; however, there is increasing interest in using petrophysical models to convert tomograms to quantitative estimates of hydrogeologic, mechanical, or geochemical parameters of interest (e.g., permeability, porosity, water content, and salinity). Unfortunately, petrophysical estimation based on tomograms is complicated by limited and variable image resolution, which depends on (1) measurement physics (e.g., electrical conduction or electromagnetic wave propagation), (2) parameterization and regularization, (3) measurement error, and (4) spatial variability. We present a framework to predict how core-scale relations between geophysical properties and hydrologic parameters are altered by the inversion, which produces smoothly varying pixel-scale estimates. We refer to this loss of information as "correlation loss." Our approach upscales the core-scale relation to the pixel scale using the model resolution matrix from the inversion, random field averaging, and spatial statistics of the geophysical property. Synthetic examples evaluate the utility of radar travel time tomography (RTT) and electrical-resistivity tomography (ERT) for estimating water content. This work provides (1) a framework to assess tomograms for geologic parameter estimation and (2) insights into the different patterns of correlation loss for ERT and RTT. Whereas ERT generally performs better near boreholes, RTT performs better in the interwell region. Application of petrophysical models to the tomograms in our examples would yield misleading estimates of water content. Although the examples presented illustrate the problem of correlation loss in the context of near-surface geophysical imaging, our results have clear implications for quantitative analysis of tomograms for diverse geoscience applications. Copyright 2005 by the American Geophysical Union.

  20. Near-Real-Time Acoustic Monitoring of Beaked Whales and Other Cetaceans Using a Seaglider™

    PubMed Central

    Klinck, Holger; Mellinger, David K.; Klinck, Karolin; Bogue, Neil M.; Luby, James C.; Jump, William A.; Shilling, Geoffrey B.; Litchendorf, Trina; Wood, Angela S.; Schorr, Gregory S.; Baird, Robin W.

    2012-01-01

    In most areas, estimating the presence and distribution of cryptic marine mammal species, such as beaked whales, is extremely difficult using traditional observational techniques such as ship-based visual line transect surveys. Because acoustic methods permit detection of animals underwater, at night, and in poor weather conditions, passive acoustic observation has been used increasingly often over the last decade to study marine mammal distribution, abundance, and movements, as well as for mitigation of potentially harmful anthropogenic effects. However, there is demand for new, cost-effective tools that allow scientists to monitor areas of interest autonomously with high temporal and spatial resolution in near-real time. Here we describe an autonomous underwater vehicle – a glider – equipped with an acoustic sensor and onboard data processing capabilities to passively scan an area for marine mammals in near-real time. The glider was tested extensively off the west coast of the Island of Hawai'i, USA. The instrument covered approximately 390 km during three weeks at sea and collected a total of 194 h of acoustic data. Detections of beaked whales were successfully reported to shore in near-real time. Manual analysis of the recorded data revealed a high number of vocalizations of delphinids and sperm whales. Furthermore, the glider collected vocalizations of unknown origin very similar to those made by known species of beaked whales. The instrument developed here can be used to cost-effectively screen areas of interest for marine mammals for several months at a time. The near-real-time detection and reporting capabilities of the glider can help to protect marine mammals during potentially harmful anthropogenic activities such as seismic exploration for sub-sea fossil fuels or naval sonar exercises. Furthermore, the glider is capable of under-ice operation, allowing investigation of otherwise inaccessible polar environments that are critical habitats for many

  1. Near-real-time acoustic monitoring of beaked whales and other cetaceans using a Seaglider™.

    PubMed

    Klinck, Holger; Mellinger, David K; Klinck, Karolin; Bogue, Neil M; Luby, James C; Jump, William A; Shilling, Geoffrey B; Litchendorf, Trina; Wood, Angela S; Schorr, Gregory S; Baird, Robin W

    2012-01-01

    In most areas, estimating the presence and distribution of cryptic marine mammal species, such as beaked whales, is extremely difficult using traditional observational techniques such as ship-based visual line transect surveys. Because acoustic methods permit detection of animals underwater, at night, and in poor weather conditions, passive acoustic observation has been used increasingly often over the last decade to study marine mammal distribution, abundance, and movements, as well as for mitigation of potentially harmful anthropogenic effects. However, there is demand for new, cost-effective tools that allow scientists to monitor areas of interest autonomously with high temporal and spatial resolution in near-real time. Here we describe an autonomous underwater vehicle--a glider--equipped with an acoustic sensor and onboard data processing capabilities to passively scan an area for marine mammals in near-real time. The glider was tested extensively off the west coast of the Island of Hawai'i, USA. The instrument covered approximately 390 km during three weeks at sea and collected a total of 194 h of acoustic data. Detections of beaked whales were successfully reported to shore in near-real time. Manual analysis of the recorded data revealed a high number of vocalizations of delphinids and sperm whales. Furthermore, the glider collected vocalizations of unknown origin very similar to those made by known species of beaked whales. The instrument developed here can be used to cost-effectively screen areas of interest for marine mammals for several months at a time. The near-real-time detection and reporting capabilities of the glider can help to protect marine mammals during potentially harmful anthropogenic activities such as seismic exploration for sub-sea fossil fuels or naval sonar exercises. Furthermore, the glider is capable of under-ice operation, allowing investigation of otherwise inaccessible polar environments that are critical habitats for many

  2. Micromachined silicon parallel acoustic delay lines as time-delayed ultrasound detector array for real-time photoacoustic tomography

    NASA Astrophysics Data System (ADS)

    Cho, Y.; Chang, C.-C.; Wang, L. V.; Zou, J.

    2016-02-01

    This paper reports the development of a new 16-channel parallel acoustic delay line (PADL) array for real-time photoacoustic tomography (PAT). The PADLs were directly fabricated from single-crystalline silicon substrates using deep reactive ion etching. Compared with other acoustic delay lines (e.g., optical fibers), the micromachined silicon PADLs offer higher acoustic transmission efficiency, smaller form factor, easier assembly, and mass production capability. To demonstrate its real-time photoacoustic imaging capability, the silicon PADL array was interfaced with one single-element ultrasonic transducer followed by one channel of data acquisition electronics to receive 16 channels of photoacoustic signals simultaneously. A PAT image of an optically-absorbing target embedded in an optically-scattering phantom was reconstructed, which matched well with the actual size of the imaged target. Because the silicon PADL array allows a signal-to-channel reduction ratio of 16:1, it could significantly simplify the design and construction of ultrasonic receivers for real-time PAT.

  3. The aero-acoustic Galbrun equation in the time domain with perfectly matched layer boundary conditions.

    PubMed

    Feng, Xue; Ben Tahar, Mabrouk; Baccouche, Ryan

    2016-01-01

    This paper presents a solution for aero-acoustic problems using the Galbrun equation in the time domain with a non-uniform steady mean flow in a two-dimensional coordinate system and the perfectly matched layer technique as the boundary conditions corresponding to an unbounded domain. This approach is based on an Eulerian-Lagrangian description corresponding to a wave equation written only in terms of the Lagrangian perturbation of the displacement. It is an alternative to the Linearized Euler Equations for solving aero-acoustic problems. The Galbrun equation is solved using a mixed pressure-displacement Finite Element Method. A complex Laplace transform scheme is used to study the time dependent variables. Several numerical examples are presented to validate and illustrate the efficiency of the proposed approach. PMID:26827028

  4. Gust Acoustics Computation with a Space-Time CE/SE Parallel 3D Solver

    NASA Technical Reports Server (NTRS)

    Wang, X. Y.; Himansu, A.; Chang, S. C.; Jorgenson, P. C. E.; Reddy, D. R. (Technical Monitor)

    2002-01-01

    The benchmark Problem 2 in Category 3 of the Third Computational Aero-Acoustics (CAA) Workshop is solved using the space-time conservation element and solution element (CE/SE) method. This problem concerns the unsteady response of an isolated finite-span swept flat-plate airfoil bounded by two parallel walls to an incident gust. The acoustic field generated by the interaction of the gust with the flat-plate airfoil is computed by solving the 3D (three-dimensional) Euler equations in the time domain using a parallel version of a 3D CE/SE solver. The effect of the gust orientation on the far-field directivity is studied. Numerical solutions are presented and compared with analytical solutions, showing a reasonable agreement.

  5. Deriving Sensitivity Kernels of Coda-Wave Travel Times to Velocity Changes Based on the Three-Dimensional Single Isotropic Scattering Model

    NASA Astrophysics Data System (ADS)

    Nakahara, Hisashi; Emoto, Kentaro

    2016-08-01

    Recently, coda-wave interferometry has been used to monitor temporal changes in subsurface structures. Seismic velocity changes have been detected by coda-wave interferometry in association with large earthquakes and volcanic eruptions. To constrain the spatial extent of the velocity changes, spatial homogeneity is often assumed. However, it is important to locate the region of the velocity changes correctly to understand physical mechanisms causing them. In this paper, we are concerned with the sensitivity kernels relating travel times of coda waves to velocity changes. In previous studies, sensitivity kernels have been formulated for two-dimensional single scattering and multiple scattering, three-dimensional multiple scattering, and diffusion. In this paper, we formulate and derive analytical expressions of the sensitivity kernels for three-dimensional single-scattering case. These sensitivity kernels show two peaks at both source and receiver locations, which is similar to the previous studies using different scattering models. The two peaks are more pronounced for later lapse time. We validate our formulation by comparing it with finite-difference simulations of acoustic wave propagation. Our formulation enables us to evaluate the sensitivity kernels analytically, which is particularly useful for the analysis of body waves from deeper earthquakes.

  6. Linear stability analysis for travelling waves of second order in time PDE's

    NASA Astrophysics Data System (ADS)

    Stanislavova, Milena; Stefanov, Atanas

    2012-09-01

    We study travelling waves φc of second order in time PDE's u_{tt}+{ L} u+N(u)=0 . The linear stability analysis for these models is reduced to the question of the stability of quadratic pencils in the form \\lambda^2Id+2c\\lambda \\partial_x+{ H}_c , where { H}_c=c^2 \\partial_{xx}+{ L}+N'(\\varphi_c) . If { H}_c is a self-adjoint operator, with a simple negative eigenvalue and a simple eigenvalue at zero, then we completely characterize the linear stability of φc. More precisely, we introduce an explicitly computable index \\omega^*({ H}_c)\\in (0, \\infty] , so that the wave φc is stable if and only if |c|\\geq \\omega^*({ H}_c) . The results are applicable both in the periodic case and in the whole line case. The method of proof involves a delicate analysis of a function { G} , associated with { H} , whose positive zeros are exactly the positive (unstable) eigenvalues of the pencil \\lambda^2Id+2c\\lambda \\partial_x+{ H} . We would like to emphasize that the function { G} is not the Evans function for the problem, but rather a new object that we define herein, which fits the situation rather well. As an application, we consider three classical models—the ‘good’ Boussinesq equation, the Klein-Gordon-Zakharov (KGZ) system and the fourth order beam equation. In the whole line case, for the Boussinesq case and the KGZ system (and as a direct application of the main results), we compute explicitly the set of speeds which give rise to linearly stable travelling waves (and for all powers of p in the case of Boussinesq). This result is new for the KGZ system, while it generalizes the results of Alexander et al (2012, personal communication) and Alexander and Sachs (1995 Nonlinear World 2 471-507), which apply to the case p = 2. For the beam equation, we provide an implicit formula (depending only on the function \\|\\varphi_c'\\|_{L^2}) , which works for all p and for both the periodic and the whole line cases. Our results complement (and exactly match

  7. Reverse time migration for reconstructing extended obstacles in planar acoustic waveguides

    NASA Astrophysics Data System (ADS)

    Chen, ZhiMing; Huang, GuangHui

    2015-09-01

    We propose a new reverse time migration method for reconstructing extended obstacles in the planar waveguide using acoustic waves at a fixed frequency. We prove the resolution of the reconstruction method in terms of the aperture and the thickness of the waveguide. The resolution analysis implies that the imaginary part of the cross-correlation imaging function is always positive and thus may have better stability properties. Numerical experiments are included to illustrate the powerful imaging quality and to confirm our resolution results.

  8. 41 CFR 302-3.314 - Is there a time limit when I must begin my travel and transportation upon separation?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-3.314 Is there a time limit when I must begin my travel and transportation upon separation? Yes, all... 41 Public Contracts and Property Management 4 2011-07-01 2011-07-01 false Is there a time limit when I must begin my travel and transportation upon separation? 302-3.314 Section 302-3.314...

  9. 41 CFR 302-3.314 - Is there a time limit when I must begin my travel and transportation upon separation?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-3.314 Is there a time limit when I must begin my travel and transportation upon separation? Yes, all... 41 Public Contracts and Property Management 4 2014-07-01 2014-07-01 false Is there a time limit when I must begin my travel and transportation upon separation? 302-3.314 Section 302-3.314...

  10. 41 CFR 302-3.314 - Is there a time limit when I must begin my travel and transportation upon separation?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-3.314 Is there a time limit when I must begin my travel and transportation upon separation? Yes, all... 41 Public Contracts and Property Management 4 2010-07-01 2010-07-01 false Is there a time limit when I must begin my travel and transportation upon separation? 302-3.314 Section 302-3.314...

  11. 41 CFR 302-3.314 - Is there a time limit when I must begin my travel and transportation upon separation?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-3.314 Is there a time limit when I must begin my travel and transportation upon separation? Yes, all... 41 Public Contracts and Property Management 4 2012-07-01 2012-07-01 false Is there a time limit when I must begin my travel and transportation upon separation? 302-3.314 Section 302-3.314...

  12. Waveform prediction with travel time model LLNL-G3D assessed by Spectral-Element simulation

    NASA Astrophysics Data System (ADS)

    Morency, C.; Simmons, N. A.; Myers, S. C.; Johannesson, G.; Matzel, E.

    2013-12-01

    Seismic monitoring requires accurate prediction of travel times, amplitudes, and whole waveforms. As a first step towards developing a model that is suited to seismic monitoring, LLNL developed the LLNL-G3D P-wave travel time model (Simmons et al., 2012, JGR) to improve seismic event location accuracy. LLNL-G3D fulfills the need to predict travel times from events occurring anywhere in the globe to stations ranging from local to teleseismic distances. Prediction over this distance range requires explicit inclusion of detailed 3-dimensional structure from Earths surface to the core. An open question is how well a model optimized to fit P-wave travel time data can predict waveforms? We begin to address this question by using the P-wave velocities in LLNL-G3D as a proxy for S-wave velocity and density, then performing waveform simulations via the SPECFEM3D_GLOBE spectral-element code. We assess the ability of LLNL-G3D to predict waveforms and draw comparisons to other 3D models available in SPECFEM3D_GLOBE package and widely used in the scientific community. Although we do not expect the P-wave model to perform as well as waveform based models, we view our effort as a first step towards accurate prediction of time times, amplitudes and full waveforms based on a single model. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  13. Effect of fare and travel time on the demand for domestic air transportation

    NASA Technical Reports Server (NTRS)

    Eriksen, S. E.; Liu, E. W.

    1979-01-01

    An econometric travel demand model was presented. The model was used for analyzing long haul domestic passenger markets in the United States. The results showed the sensitivities of demand to changes in fares and speed reflecting technology through more efficient aircraft designs.

  14. Marginal Groups in Marginal Times: Gypsy and Traveller Parents and Home Education in England, UK

    ERIC Educational Resources Information Center

    Bhopal, Kalwant; Myers, Martin

    2016-01-01

    This article examines the experiences of home education for Gypsy and Traveller groups in England, UK. We argue that home education is perceived in a particular historical "moment" characterised in the media and more generally throughout society by "risk". Against this backdrop this article considers Gypsy and Traveller…

  15. The eclipsing system V404 Lyr: Light-travel times and γ Doradus pulsations

    SciTech Connect

    Lee, Jae Woo; Kim, Seung-Lee; Hong, Kyeongsoo; Lee, Chung-Uk; Koo, Jae-Rim E-mail: slkim@kasi.re.kr E-mail: leecu@kasi.re.kr

    2014-08-01

    We present the physical properties of V404 Lyr exhibiting eclipse timing variations and multiperiodic pulsations from all historical data including the Kepler and SuperWASP observations. Detailed analyses of 2922 minimum epochs showed that the orbital period has varied through a combination of an upward-opening parabola and two sinusoidal variations, with periods of P {sub 3} = 649 days and P {sub 4} = 2154 days and semi-amplitudes of K {sub 3} = 193 s and K {sub 4} = 49 s, respectively. The secular period increase at a rate of +1.41 × 10{sup –7} days yr{sup –1} could be interpreted as a combination of the secondary to primary mass transfer and angular momentum loss. The most reasonable explanation for both sinusoids is a pair of light-travel-time effects due to two circumbinary objects with projected masses of M {sub 3} = 0.47 M {sub ☉} and M {sub 4} = 0.047 M {sub ☉}. The third-body parameters are consistent with those calculated using the Wilson-Devinney binary code. For the orbital inclinations i {sub 4} ≳ 43°, the fourth component has a mass within the hydrogen-burning limit of ∼0.07 M {sub ☉}, which implies that it is a brown dwarf. A satisfactory model for the Kepler light curves was obtained by applying a cool spot to the secondary component. The results demonstrate that the close eclipsing pair is in a semi-detached, but near-contact, configuration; the primary fills approximately 93% of its limiting lobe and is larger than the lobe-filling secondary. Multiple frequency analyses were applied to the light residuals after subtracting the synthetic eclipsing curve from the Kepler data. This revealed that the primary component of V404 Lyr is a γ Dor type pulsating star, exhibiting seven pulsation frequencies in the range of 1.85-2.11 day{sup –1} with amplitudes of 1.38-5.72 mmag and pulsation constants of 0.24-0.27 days. The seven frequencies were clearly identified as high-order low-degree gravity-mode oscillations which might be excited

  16. From time-to space-traveller -tadpole shrimp Triops cancriformis (Crustacea: Notostraca)

    NASA Astrophysics Data System (ADS)

    Zierold, Thorid

    The Notostraca is a small ancient crustacean order dating back to the Carboniferous and possibly up to the Devonian period. In fact, there are Upper Triassic Triops fossils from Germany which are almost indistinguishable from the present Triops cancriformis and thus Triops is considered to be one of the best examples of evolutionary stasis or `living fossil'. Fossil records have shown that the occurrence of Triops is linked to strata resulting from inland freshwater bodies with alternating phases of flooding and drying out. Still today Notostraca species are known from ephemeral ponds and puddles throughout the world. Several Large Branchiopod species such as the European T. cancriformis present adaptations to desiccation, the main one being the production of thick-walled resting cysts. A high number of resting cysts is laid during the flooded period into the pond sediment or is fixed on plants during the adulthood. The drought resistant portion of cysts undergoes an extreme form of diapause. During this resting time the embryo is protected by different (cement)-layers against desiccation, UV-radiation and pressure. Thus their life cycle is perfectly adapted to extreme environments which resulted in the survival of more than 200 Million years. Among the Notostraca a wide range of reproductive modes are present including bisexual -the putatively ancestral state -, androdioecious and hermaphrodite populations. As hermaphroditism and androdioecy confer a colonisation advantage, Triops are suitable for populating experiments whatsoever. Triops is an ideal model organism due to their easy culture and breeding in the lab. Without any impact on the hatching success the resting cysts can easily be extracted from the soil and prepared for controlled experiments. Furthermore their biology has been studied in depth and optimal breeding conditions are known. The ancient group "travelled" successfully through time and is now ready for experiments in the outer space. At the

  17. Joint 3D seismic travel time and full channel electrical resistivity inversion with cross gradient structure constraint

    NASA Astrophysics Data System (ADS)

    Gao, J.; Zhang, H.

    2015-12-01

    Near surface geophysical exploration for the purpose of engineering design or construction For this reason, geophysical imaging demands a higher resolution and a better quantitative interpretation. Seismic travel time tomography and direct current resistivity tomography are two main methods for the near surface survey. Because of the limited coverage of observation system and the complex physical relationship between physical parameters and observations, individual geophysical method suffers issues of non-uniqueness and resolution limitation to some degree. We have developed a joint inversion method to combine seismic travel time tomography and full channel resistivity tomography. For the full channel resistivity survey, it uses two electrodes for power supply and all the other electrodes for recording. Compared with the traditional resistivity method, it collects more data and has a better model converge. Our joint inversion strategy relies on the structure constraint enforced through minimizing cross gradients between seismic velocity and resistivity models (Gallardo, 2003). For resistivity tomography, sensitivity kernels are obtained through the adjoint method by solving the electrostatic field equation with the finite-difference method. For seismic travel time tomography, ray paths and travel times are calculated using the fast marching method. We have tested our joint inversion method for a 2D cross-hole problem where two small zones with high and low velocity/resistivity anomalies. Seismic/electrical sources/receivers are installed in two boreholes. For separate seismic inversion, the smearing effect is evident and two anomaly zones are distorted and misplaced. For separate electric resistivity inversion, although two anomaly zones are positioned correctly their values are not accurate. By joint inversion, two velocity anomaly zones are clearly imaged and the smearing effect is greatly reduced. In comparison, for the resistivity model, the two anomaly zones

  18. Evaluation of Groundwater Pathways and Travel Times From the Nevada Test Site to the Potential Yucca Mountain Repository

    NASA Astrophysics Data System (ADS)

    Pohlmann, K. F.; Zhu, J.; Ye, M.; Carroll, R. W.; Chapman, J. B.; Russell, C. E.; Shafer, D. S.

    2006-12-01

    Yucca Mountain (YM), Nevada has been recommended as a deep geological repository for the disposal of spent fuel and high-level radioactive waste. If YM is licensed as a repository by the Nuclear Regulatory Commission, it will be important to identify the potential for radionuclides to migrate from underground nuclear testing areas located on the Nevada Test Site (NTS) to the hydraulically downgradient repository area to ensure that monitoring does not incorrectly attribute repository failure to radionuclides originating from other sources. In this study, we use the Death Valley Regional Flow System (DVRFS) model developed by the U.S. Geological Survey to investigate potential groundwater migration pathways and associated travel times from the NTS to the proposed YM repository area. Using results from the calibrated DVRFS model and the particle tracking post-processing package MODPATH we modeled three-dimensional groundwater advective pathways in the NTS and YM region. Our study focuses on evaluating the potential for groundwater pathways between the NTS and YM withdrawal area and whether travel times for advective flow along these pathways coincide with the prospective monitoring time frame at the proposed repository. We include uncertainty in effective porosity as this is a critical variable in the determination of time for radionuclides to travel from the NTS region to the YM withdrawal area. Uncertainty in porosity is quantified through evaluation of existing site data and expert judgment and is incorporated in the model through Monte Carlo simulation. Since porosity information is limited for this region, the uncertainty is quite large and this is reflected in the results as a large range in simulated groundwater travel times.

  19. Tunneling times of acoustic phonon packets through a distributed Bragg reflector

    PubMed Central

    2014-01-01

    The longwave phenomenological model is used to make simple and precise calculations of various physical quantities such as the vibrational energy density, the vibrational energy, the relative mechanical displacement, and the one-dimensional stress tensor of a porous silicon distributed Bragg reflector. From general principles such as invariance under time reversal, invariance under space reflection, and conservation of energy density flux, the equivalence of the tunneling times for both transmission and reflection is demonstrated. Here, we study the tunneling times of acoustic phonon packets through a distributed Bragg reflector in porous silicon multilayer structures, and we report the possibility that a phenomenon called Hartman effect appears in these structures. PMID:25237288

  20. Tunneling times of acoustic phonon packets through a distributed Bragg reflector.

    PubMed

    Lazcano, Zorayda; Valdés Negrín, Pedro Luis; Villegas, Diosdado; Arriaga, Jesus; Pérez-Álvarez, Rolando

    2014-01-01

    The longwave phenomenological model is used to make simple and precise calculations of various physical quantities such as the vibrational energy density, the vibrational energy, the relative mechanical displacement, and the one-dimensional stress tensor of a porous silicon distributed Bragg reflector. From general principles such as invariance under time reversal, invariance under space reflection, and conservation of energy density flux, the equivalence of the tunneling times for both transmission and reflection is demonstrated. Here, we study the tunneling times of acoustic phonon packets through a distributed Bragg reflector in porous silicon multilayer structures, and we report the possibility that a phenomenon called Hartman effect appears in these structures. PMID:25237288

  1. Refinement and Pattern Formation in Neural Circuits by the Interaction of Traveling Waves with Spike-Timing Dependent Plasticity.

    PubMed

    Bennett, James E M; Bair, Wyeth

    2015-08-01

    Traveling waves in the developing brain are a prominent source of highly correlated spiking activity that may instruct the refinement of neural circuits. A candidate mechanism for mediating such refinement is spike-timing dependent plasticity (STDP), which translates correlated activity patterns into changes in synaptic strength. To assess the potential of these phenomena to build useful structure in developing neural circuits, we examined the interaction of wave activity with STDP rules in simple, biologically plausible models of spiking neurons. We derive an expression for the synaptic strength dynamics showing that, by mapping the time dependence of STDP into spatial interactions, traveling waves can build periodic synaptic connectivity patterns into feedforward circuits with a broad class of experimentally observed STDP rules. The spatial scale of the connectivity patterns increases with wave speed and STDP time constants. We verify these results with simulations and demonstrate their robustness to likely sources of noise. We show how this pattern formation ability, which is analogous to solutions of reaction-diffusion systems that have been widely applied to biological pattern formation, can be harnessed to instruct the refinement of postsynaptic receptive fields. Our results hold for rich, complex wave patterns in two dimensions and over several orders of magnitude in wave speeds and STDP time constants, and they provide predictions that can be tested under existing experimental paradigms. Our model generalizes across brain areas and STDP rules, allowing broad application to the ubiquitous occurrence of traveling waves and to wave-like activity patterns induced by moving stimuli. PMID:26308406

  2. Juvenile Passage Program : A Plan for Estimating Smolt Travel Time and Survival in the Snake and Columbia Rivers

    SciTech Connect

    Skalski, J. R.; Giorgi, Albert E.

    1993-10-01

    A plan for developing a program to evaluate juvenile salmon passage is presented that encompasses the Snake (Lower Granite to McNary Dams), Mid-Columbia (Wells to McNary Dams), and Lower Columbia (McNary to Bonneville Dams) segments of the Snake/Columbia River system. This plan focuses on the use of PIT-tag technology to routinely estimate travel times and reach survival of outmigrating yearling and subyearling Chinook, sockeye, and steelhead during spring and summer months. The proposed program outlines tagging studies that could be implemented in (a) 1992, (b) near term (1993--94), and (c) long term (1995 to the next decade). The evolution of this program over time parallels plans to establish additional PIT-tag detector and slide-gate systems at Little Goose, Lower Monumental, McNary, John Day, and Bonneville Dams. The eventual ability to concurrently estimate travel time and survival of release groups will permit evaluation of travel time-survival-flow relationships and identify possible mortality {open_quotes}hot spots{close_quotes} for remediation.

  3. Refinement and Pattern Formation in Neural Circuits by the Interaction of Traveling Waves with Spike-Timing Dependent Plasticity

    PubMed Central

    Bennett, James E. M.; Bair, Wyeth

    2015-01-01

    Traveling waves in the developing brain are a prominent source of highly correlated spiking activity that may instruct the refinement of neural circuits. A candidate mechanism for mediating such refinement is spike-timing dependent plasticity (STDP), which translates correlated activity patterns into changes in synaptic strength. To assess the potential of these phenomena to build useful structure in developing neural circuits, we examined the interaction of wave activity with STDP rules in simple, biologically plausible models of spiking neurons. We derive an expression for the synaptic strength dynamics showing that, by mapping the time dependence of STDP into spatial interactions, traveling waves can build periodic synaptic connectivity patterns into feedforward circuits with a broad class of experimentally observed STDP rules. The spatial scale of the connectivity patterns increases with wave speed and STDP time constants. We verify these results with simulations and demonstrate their robustness to likely sources of noise. We show how this pattern formation ability, which is analogous to solutions of reaction-diffusion systems that have been widely applied to biological pattern formation, can be harnessed to instruct the refinement of postsynaptic receptive fields. Our results hold for rich, complex wave patterns in two dimensions and over several orders of magnitude in wave speeds and STDP time constants, and they provide predictions that can be tested under existing experimental paradigms. Our model generalizes across brain areas and STDP rules, allowing broad application to the ubiquitous occurrence of traveling waves and to wave-like activity patterns induced by moving stimuli. PMID:26308406

  4. Spark-Timing Control Based on Correlation of Maximum-Economy Spark Timing, Flame-front Travel, and Cylinder-Pressure Rise

    NASA Technical Reports Server (NTRS)

    Cook, Harvey A; Heinicke, Orville H; Haynie, William H

    1947-01-01

    An investigation was conducted on a full-scale air-cooled cylinder in order to establish an effective means of maintaining maximum-economy spark timing with varying engine operating conditions. Variable fuel-air-ratio runs were conducted in which relations were determined between the spark travel, and cylinder-pressure rise. An instrument for controlling spark timing was developed that automatically maintained maximum-economy spark timing with varying engine operating conditions. The instrument also indicated the occurrence of preignition.

  5. Increased reliability of mean travel time predictions of river-groundwater exchange fluxes using optimal design techniques

    NASA Astrophysics Data System (ADS)

    Wöhling, Thomas; Gosses, Moritz; Osenbrück, Karsten

    2014-05-01

    In this study, we follow up on previous work at the Steinlach test site (Osenbrück et al, 2013) near Tübingen, Germany, to investigate hyporheic exchange fluxes in a shallow riparian aquifer. A steady-state MODFLOW model has been developed for the site and calibrated using an existing network of 14 observation wells. Due to a relatively steep hydraulic gradient (0.012 m/m) between the upstream and downstream flow stages of the river bend, water infiltrates from the river into the shallow aquifer along the upstream section of the river and is forced to re-enter the river at the downstream end. The passage through the aquifer potentially allows for mitigation and transformation of river water-bound pollutants. One important factor to estimate attenuation potentials are travel (and exposure) times through (parts of) the aquifer. In our approach we used forward particle tracking (MODPATH) and a flux-weighting scheme to estimate travel time distributions for the river-groundwater exchange fluxes in the study domain. Travel times vary significantly within the domain, however, estimates of mean travel times derived from deconvolution of EC and δ18O-H2O data at selected wells exhibit a consistent pattern with modelled travel times. The flux-weighted mean travel time of all river water that passed the riparian aquifer was calculated to 26.1 days. The uncertainty of the flux-weighted mean travel time was calculated using the prediction error variance approach by Moore and Doherty (2005) which resulted in a post-calibration uncertainty of ±93.5 d (1σ), i.e. about 350% of the actual prediction. We further analysed the worth of potential new observations to reduce the large uncertainty of this model prediction. In our optimization framework, we extend the method by Moore and Doherty (2005) to simultaneously optimize multiple observations using a modified Genetic Algorithm (GA) that can also sample from past states for higher efficiency. The observations considered are

  6. Feasibility of water seepage monitoring in concrete with embedded smart aggregates by P-wave travel time measurement

    NASA Astrophysics Data System (ADS)

    Zou, Dujian; Liu, Tiejun; Huang, Yongchao; Zhang, Fuyao; Du, Chengcheng; Li, Bo

    2014-06-01

    Water seepage in concrete threatens the safety of marine constructions and reduces the durability of concrete structures. This note presents a smart aggregate-based monitoring method to monitor the travel time evolution of a harmonic stress wave during the water infiltrating process in concrete structures. An experimental investigation, in which two plain concrete columns were examined under different water infiltration cases, verified the validity of the proposed monitoring method. The test results show that the travel time of the harmonic stress wave is sensitive to the development of water seepage in concrete and decreases with increasing water seepage depth. The proposed active monitoring method provides an innovative approach to monitor water seepage in concrete structures.

  7. Time-of-travel of solutes in the Trinity River from Dallas to Trinidad, Texas, May and August 1987

    USGS Publications Warehouse

    Gain, W. Scott

    1990-01-01

    The U.S. Geological Survey (USGS), in cooperation with the city of Dallas, conducted a study of the time of travel of solutes during moderate flow conditions in a reach of the Trinity River from the outfall of the Dallas Central Wastewater Treatment Plant (DCWTP) to the USGS streamflow-gaging station 08062700, Trinity River at Trinidad, in May and August 1987.  Previous USGS time-of-travel studies of this reach of the river (Ollman, 1973; 1975) provided low- and moderate-flow data.  The data were included in the calibrartion of a mathematical water-quality model used by the city of Dallas and other public and private entities involved in water resources managemnt of the area.  The purpose of this study was to provide additional data to extend calibration of that model to include moderately higher streamflow conditions.

  8. Time-distance domain transformation for Acoustic Emission source localization in thin metallic plates.

    PubMed

    Grabowski, Krzysztof; Gawronski, Mateusz; Baran, Ireneusz; Spychalski, Wojciech; Staszewski, Wieslaw J; Uhl, Tadeusz; Kundu, Tribikram; Packo, Pawel

    2016-05-01

    Acoustic Emission used in Non-Destructive Testing is focused on analysis of elastic waves propagating in mechanical structures. Then any information carried by generated acoustic waves, further recorded by a set of transducers, allow to determine integrity of these structures. It is clear that material properties and geometry strongly impacts the result. In this paper a method for Acoustic Emission source localization in thin plates is presented. The approach is based on the Time-Distance Domain Transform, that is a wavenumber-frequency mapping technique for precise event localization. The major advantage of the technique is dispersion compensation through a phase-shifting of investigated waveforms in order to acquire the most accurate output, allowing for source-sensor distance estimation using a single transducer. The accuracy and robustness of the above process are also investigated. This includes the study of Young's modulus value and numerical parameters influence on damage detection. By merging the Time-Distance Domain Transform with an optimal distance selection technique, an identification-localization algorithm is achieved. The method is investigated analytically, numerically and experimentally. The latter involves both laboratory and large scale industrial tests. PMID:26950889

  9. Iterative Receiver in Time-Frequency Domain for Shallow Water Acoustic Channel

    NASA Astrophysics Data System (ADS)

    Zhao, Liang; Ge, Jianhua

    2012-03-01

    Inter-symbol interference (ISI) caused by multi-path propagation, especially in shallow water channel, degrades the performance of underwater acoustic (UWA) communication systems. In this paper, we combine soft minimum mean squared error (MMSE) equalization and the serially concatenated trellis coded modulation (SCTCM) decoding to develop an iterative receiver in time-frequency domain (TFD) for underwater acoustic point to point communications. Based on sound speed profile (SSP) measured in the lake and finite-element ray (FER) tracing method (Bellhop), the shallow water channel is constructed to evaluate the performance of the proposed iterative receiver. The results suggest that the proposed iterative receiver can reduce the calculation complexity of the equalizer and obtain better performance using less receiving elements.

  10. Time-sliced perturbation theory II: baryon acoustic oscillations and infrared resummation

    NASA Astrophysics Data System (ADS)

    Blas, Diego; Garny, Mathias; Ivanov, Mikhail M.; Sibiryakov, Sergey

    2016-07-01

    We use time-sliced perturbation theory (TSPT) to give an accurate description of the infrared non-linear effects affecting the baryonic acoustic oscillations (BAO) present in the distribution of matter at very large scales. In TSPT this can be done via a systematic resummation that has a simple diagrammatic representation and does not involve uncontrollable approximations. We discuss the power counting rules and derive explicit expressions for the resummed matter power spectrum up to next-to leading order and the bispectrum at the leading order. The two-point correlation function agrees well with N-body data at BAO scales. The systematic approach also allows to reliably assess the shift of the baryon acoustic peak due to non-linear effects.

  11. Time-of-travel and reaeration data for seven small streams in Alabama, June 1983 to August 1984

    USGS Publications Warehouse

    Gardner, R.A.

    1986-01-01

    Time-of-travel and reaeration data were collected between June 1983 and August 1984 for seven small streams in Alabama. Rhodamine WT was used as a tracer for all the studies and propane was used in the reaeration studies. Mean velocities through the study reaches ranged from 0.06 to 0.67 ft/sec. Computed reaeration coefficients, corrected to 20 C, ranged from 1.7 to 45.8 days-1. (USGS)

  12. Evaluation Of Groundwater Pathways And Travel Times From The Nevada Test Site To The Potential Yucca Mountain Repository

    SciTech Connect

    K.F. Pohlman; J. Zhu; M. Ye; J. Chapman; C. Russell; D.S. Shafer

    2006-08-28

    Yucca Mountain (YM), Nevada, has been recommended as a deep geological repository for the disposal of spent fuel and high-level radioactive waste. If YM is licensed as a repository by the Nuclear Regulatory Commission, it will be important to identify the potential for radionuclides to migrate from underground nuclear testing areas located on the Nevada Test Site (NTS) to the hydraulically downgradient repository area to ensure that monitoring does not incorrectly attribute repository failure to radionuclides originating from other sources. In this study, we use the Death Valley Regional Flow System (DVRFS) model developed by the U.S. Geological Survey to investigate potential groundwater migration pathways and associated travel times from the NTS to the proposed YM repository area. Using results from the calibrated DVRFS model and the particle tracking post-processing package MODPATH, we modeled three-dimensional groundwater advective pathways in the NTS and YM region. Our study focuses on evaluating the potential for groundwater pathways between the NTS and YM withdrawal area and whether travel times for advective flow along these pathways coincide with the prospective monitoring timeframe at the proposed repository. We include uncertainty in effective porosity, as this is a critical variable in the determination of time for radionuclides to travel from the NTS region to the YM withdrawal area. Uncertainty in porosity is quantified through evaluation of existing site data and expert judgment and is incorporated in the model through Monte Carlo simulation. Since porosity information is limited for this region, the uncertainty is quite large and this is reflected in the results as a large range in simulated groundwater travel times.

  13. Uncertainty and Sensitivity of Contaminant Travel Times from the Upgradient Nevada Test Site to the Yucca Mountain Area

    SciTech Connect

    J. Zhu; K. Pohlmann; J. Chapman; C. Russell; R.W.H. Carroll; D. Shafer

    2009-09-10

    Yucca Mountain (YM), Nevada, has been proposed by the U.S. Department of Energy as the nation’s first permanent geologic repository for spent nuclear fuel and highlevel radioactive waste. In this study, the potential for groundwater advective pathways from underground nuclear testing areas on the Nevada Test Site (NTS) to intercept the subsurface of the proposed land withdrawal area for the repository is investigated. The timeframe for advective travel and its uncertainty for possible radionuclide movement along these flow pathways is estimated as a result of effective-porosity value uncertainty for the hydrogeologic units (HGUs) along the flow paths. Furthermore, sensitivity analysis is conducted to determine the most influential HGUs on the advective radionuclide travel times from the NTS to the YM area. Groundwater pathways are obtained using the particle tracking package MODPATH and flow results from the Death Valley regional groundwater flow system (DVRFS) model developed by the U.S. Geological Survey (USGS). Effectiveporosity values for HGUs along these pathways are one of several parameters that determine possible radionuclide travel times between the NTS and proposed YM withdrawal areas. Values and uncertainties of HGU porosities are quantified through evaluation of existing site effective-porosity data and expert professional judgment and are incorporated in the model through Monte Carlo simulations to estimate mean travel times and uncertainties. The simulations are based on two steady-state flow scenarios, the pre-pumping (the initial stress period of the DVRFS model), and the 1998 pumping (assuming steady-state conditions resulting from pumping in the last stress period of the DVRFS model) scenarios for the purpose of long-term prediction and monitoring. The pumping scenario accounts for groundwater withdrawal activities in the Amargosa Desert and other areas downgradient of YM. Considering each detonation in a clustered region around Pahute Mesa (in

  14. Synthetic Studies of Local Travel Time Tomography In The Earthquake Swarm Region Vogtland/nw-bohemia

    NASA Astrophysics Data System (ADS)

    Roessler, D.; Korn, M.

    The Vogtland/NW-Bohemia region is characterized by periodic occurence of earth- quake swarms at upper crustal depths along deep-reaching neotectonic faults and other geophysical phenomena. As one source of these phenomena the existence of a deep- seated magma reservoir at the mantle-crust transition has been postulated. Seismic traveltime tomography making use of local seismic sources can image the 3-dimensional structure of the vp- and vp/vs-distribution in the earth's crust including the mantle-crust transition and thus might give explanations for the observed phenom- ena as aimed by the seismic experiment BOHEMA starting in 2002. The synthetic study presented here deals with the feasability to resolve given synthetic velocity anomalies embedded in a realistic background model of the Vogtland/NW- Bohemia region using realistic velocity background model derived from a refraction seismic experiment. A low velocity zone was included below 7 km representing a worst case scenario concerning ray path coverage. Synthetic travel times were com- puted for a receiver distribution consisting of 54 presently existing permanent seismic stations and 64 additional temporary stations as planned for for BOHEMA experi- ment. As for the sources, 12 epicentres of frequently recorded tectonic earthquakes and 138 sites of known quarry blasts were used guaranteeing sufficiant ray distri- bution in the crust. Applying the SIMULPS software, the tomographic inversion for P-velocity was carried out for a volume of 220 km x 180 km in horizontal and 50 km in vertical direction having increased grid density in the Vogtland/NW-Bohemia re- gion. Results of the inversion as well as considerations of their reliability are presented. The usage of a high number of quarry blasts enables high spatial resolution in the upper crust whereas reproduction of velocity patterns at Moho depth is strongly dependent on well distributed earthquake sources. Due to the existence of a low velocity zone tomographic

  15. Velocity model construction, uncertainty evaluation, and two-way travel time to sediment thickness conversion

    NASA Astrophysics Data System (ADS)

    Li, Q.; Shimeld, J.; Dickie, K.; Dehler, S. A.; Desroches, K.

    2013-12-01

    Sediment thickness determinations play a key role in positioning the most seaward fixed points of the outer limits of continental shelves for coastal states. Seismic reflection surveying is an invaluable technique for estimating the sediment thickness required for the positioning. However, such seismic reflection surveying records the two way travel time (twtt) of vertically incident seismic waves. An accurate seismic velocity model is required for the conversion between twtt and sediment thickness. In this approach, a velocity model is constructed, its uncertainty is evaluated, and twtt is converted to sediment thickness. All of these procedures are programmed for batch and script processing. First, a slowness (the inverse of velocity) function, which is based on the solid sediment compaction theory, is selected and it is fitted using all available velocity observations using the reduced major axis (RMA) method, which can minimize errors from both velocity and depth observations. Second, the velocity uncertainty is estimated using a bootstrapping method by simulating a non-replace re-sampling procedure; thus it is also used in the estimation of sediment thickness uncertainty that is caused by velocity model errors. Moreover, with the constructed velocity model, conversion from sediment depth to twtt is resolved analytically and the conversion from twtt to depth is completed by solving a nonlinear equation with Newton iteration method, having approved convergence efficiency and a predefined accuracy (0.1 m). Finally, all these processes have been implemented in C# and JavaScript for integration with GeoFrame file format (seismic horizon interpretation) or embedded in any document with power batch processing and flexible verification facilities. As an example, publicly available velocity observations in the Labrador Sea region are used in the construction of a velocity model and the evaluation of velocity and sediment thickness uncertainty. The conversion between

  16. Pre-Travel Medical Preparation of Business and Occupational Travelers

    PubMed Central

    Khan, Nomana M.; Jentes, Emily S.; Brown, Clive; Han, Pauline; Rao, Sowmya R.; Kozarsky, Phyllis; Hagmann, Stefan H.F.; LaRocque, Regina C.; Ryan, Edward T.

    2016-01-01

    Objectives: The aim of the study was to understand more about pre-travel preparations and itineraries of business and occupational travelers. Methods: De-identified data from 18 Global TravEpiNet clinics from January 2009 to December 2012 were analyzed. Results: Of 23,534 travelers, 61% were non-occupational and 39% occupational. Business travelers were more likely to be men, had short times to departure and shorter trip durations, and commonly refused influenza, meningococcal, and hepatitis B vaccines. Most business travelers indicated that employers suggested the pre-travel health consultation, whereas non-occupational travelers sought consultations because of travel health concerns. Conclusions: Sub-groups of occupational travelers have characteristic profiles, with business travelers being particularly distinct. Employers play a role in encouraging business travelers to seek pre-travel consultations. Such consultations, even if scheduled immediately before travel, can identify vaccination gaps and increase coverage. PMID:26479857

  17. Frequency content of P and S wave travel time measurements and chemical heterogeneity in the lower mantle

    NASA Astrophysics Data System (ADS)

    Houser, C. T.

    2012-12-01

    Recently it was proposed by Schuberth et al., (GJI, 2012) that the difference in the magnitude of P and S delay times from the large low shear velocity provinces (LLSVP) can be explained by differences in their frequency content. They produced synthetic seismograms using the spectral element method (SEM) and measured travel times using an automated cross correlation technique through a synthetic 3D Earth model based solely on temperature variations. They found a similar difference in the magnitude of P and S travel time variations for their isochemical model as the real Earth and suggest that it is the nature of the cross correlation analysis that results in different P and S wave delay times, not the Earth's material properties. Their preferred explanation is two-fold: 1) that the P waves are front loaded with higher frequencies and 2) that for the same frequency, P waves have a larger Fréchet kernel and thus different wavefront healing characteristics than S waves for the same structure. Here, I demonstrate that the observed long period P waves are no more front loaded in frequency than S waves when cluster analysis is applied. I compare the travel times of P and S waves for events sweeping across the Pacific lower mantle recorded at the numerous USArray stations. I apply the cluster analysis method (Houser et al., GJI, 2008) and a manual cross correlation method (Bolton and Masters, JGR, 2001) method to the long-period (~25s) as well as shorter period (~15s) observed and synthetic seismograms. If the notion of Schuberth et al. were correct, then the observed P-wave pulse would be compressed at the onset, e.g. front loaded in frequency, and then spread out toward the back end. In this case, a cross correlation made based on the first swing of the pulse would result in a different travel time than a cross correlation based on the highest amplitude swing in the middle of the P wave. However, I find that for both P and S waves, the highest quality waveforms are

  18. Beam loading compensation of traveling wave linacs through the time dependence of the rf drive

    SciTech Connect

    Towne N.; Rose J.

    2011-09-30

    Beam loading in traveling-wave linear accelerating structures leads to unacceptable spread of particle energies across an extended train of bunched particles due to beam-induced field and dispersion. Methods for modulating the rf power driving linacs are effective at reducing energy spread, but for general linacs do not have a clear analytic foundation. We report here methods for calculating how to modulate the rf drive in arbitrarily nonuniform traveling-wave linacs within the convective-transport (power-diffusion) model that results in no additional energy spread due to beam loading (but not dispersion). Varying group velocity, loss factor, and cell quality factor within a structure, and nonzero particle velocity, are handled.

  19. Time reverse modeling of acoustic emissions in a reinforced concrete beam.

    PubMed

    Kocur, Georg Karl; Saenger, Erik H; Grosse, Christian U; Vogel, Thomas

    2016-02-01

    The time reverse modeling (TRM) is applied for signal-based acoustic emission (AE) analysis of reinforced concrete (RC) specimens. TRM uses signals obtained from physical experiments as input. The signals are re-emitted numerically into a structure in a time-reversed manner, where the wavefronts interfere and appear as dominant concentrations of energy at the origin of the AE. The experimental and numerical results presented for selected AE signals confirm that TRM is capable of localizing AE activity in RC caused by concrete cracking. The accuracy of the TRM results is corroborated by three-dimensional crack distributions obtained from X-ray computed tomography images. PMID:26518525

  20. The vibration dipole: A time reversed acoustics scheme for the experimental localisation of surface breaking cracks

    NASA Astrophysics Data System (ADS)

    Van Damme, Bart; Van Den Abeele, Koen; Bou Matar, Olivier

    2012-02-01

    A combination of time reversed acoustics and nonlinear elastic wave spectroscopy techniques is introduced to localize surface breaking defects in a non-destructive manner. Reciprocal time reversal is applied at two neighbouring positions in order to create a vibration dipole with high amplitudes. At surface breaking cracks, nonlinear elastic effects are triggered by the shear forces due to induced friction of the crack interfaces. By mapping the nonlinearity generated by the vibration dipole over the sample surface, the position of a surface breaking crack can be visualized. The technique is tested on an industrial steel sample containing a closed crack.

  1. A comparison of time domain boundary conditions for acoustic waves in wave guides

    NASA Technical Reports Server (NTRS)

    Banks, H. T.; Propst, G.; Silcox, R. J.

    1991-01-01

    Researchers consider several types of boundary conditions in the context of time domain models for acoustic waves. Experiments with four different duct terminations (hard wall, free radiation, foam, and wedge) were carried out in a wave duct from which reflection coefficients over a wide frequency range were measured. These reflection coefficients were used to estimate parameters in the time domain boundary conditions. A comparison of the relative merits of the models in describing the data is presented. Boundary conditions which yield a good fit of the model to the experimental data were found for all duct terminations except the wedge.

  2. Finite Difference Time Marching in the Frequency Domain: A Parabolic Formulation for Aircraft Acoustic Nacelle Design

    NASA Technical Reports Server (NTRS)

    Baumeister, Kenneth J.; Kreider, Kevin L.

    1996-01-01

    An explicit finite difference iteration scheme is developed to study harmonic sound propagation in aircraft engine nacelles. To reduce storage requirements for large 3D problems, the time dependent potential form of the acoustic wave equation is used. To insure that the finite difference scheme is both explicit and stable, time is introduced into the Fourier transformed (steady-state) acoustic potential field as a parameter. Under a suitable transformation, the time dependent governing equation in frequency space is simplified to yield a parabolic partial differential equation, which is then marched through time to attain the steady-state solution. The input to the system is the amplitude of an incident harmonic sound source entering a quiescent duct at the input boundary, with standard impedance boundary conditions on the duct walls and duct exit. The introduction of the time parameter eliminates the large matrix storage requirements normally associated with frequency domain solutions, and time marching attains the steady-state quickly enough to make the method favorable when compared to frequency domain methods. For validation, this transient-frequency domain method is applied to sound propagation in a 2D hard wall duct with plug flow.

  3. Time-domain delay-and-sum beamforming for time-reversal detection of intermittent acoustic sources in flows.

    PubMed

    Rakotoarisoa, Ifanila; Fischer, Jeoffrey; Valeau, Vincent; Marx, David; Prax, Christian; Brizzi, Laurent-Emmanuel

    2014-11-01

    This study focuses on the identification of intermittent aeroacoustic sources in flows by using the time-domain beamforming technique. It is first shown that this technique can be seen as a time-reversal (TR) technique, working with approximate Green functions in the case of a shear flow. Some numerical experiments investigate the case of an array measurement of a generic acoustic pulse emitted in a wind-tunnel flow, with a realistic multi-arm spiral array. The results of the time-domain beamforming successfully match those given by a numerical TR technique over a wide range of flow speeds (reaching the transonic regime). It is shown how the results should be analyzed in a focusing plane parallel to the microphone array in order to estimate the location and emission time of the pulse source. An experimental application dealing with the aeroacoustic radiation of a bluff body in a wind-tunnel flow is also considered, and shows that some intermittent events can be clearly identified in the noise radiation. Time-domain beamforming is then an efficient tool for analyzing intermittent acoustic sources in flows, and is a computationally cheaper alternative to the numerical TR technique, which should be used for complex configurations where the Green function is not available. PMID:25373968

  4. Time-Accurate Simulations and Acoustic Analysis of Slat Free-Shear-Layer. Part 2

    NASA Technical Reports Server (NTRS)

    Khorrami, Mehdi R.; Singer, Bart A.; Lockard, David P.

    2002-01-01

    Unsteady computational simulations of a multi-element, high-lift configuration are performed. Emphasis is placed on accurate spatiotemporal resolution of the free shear layer in the slat-cove region. The excessive dissipative effects of the turbulence model, so prevalent in previous simulations, are circumvented by switching off the turbulence-production term in the slat cove region. The justifications and physical arguments for taking such a step are explained in detail. The removal of this excess damping allows the shear layer to amplify large-scale structures, to achieve a proper non-linear saturation state, and to permit vortex merging. The large-scale disturbances are self-excited, and unlike our prior fully turbulent simulations, no external forcing of the shear layer is required. To obtain the farfield acoustics, the Ffowcs Williams and Hawkings equation is evaluated numerically using the simulated time-accurate flow data. The present comparison between the computed and measured farfield acoustic spectra shows much better agreement for the amplitude and frequency content than past calculations. The effect of the angle-of-attack on the slat's flow features radiated acoustic field are also simulated presented.

  5. 41 CFR 302-3.315 - May I be granted an extension to the time limit for beginning my separation travel?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 41 Public Contracts and Property Management 4 2013-07-01 2012-07-01 true May I be granted an extension to the time limit for beginning my separation travel? 302-3.315 Section 302-3.315 Public Contracts and Property Management Federal Travel Regulation System RELOCATION ALLOWANCES RELOCATION ALLOWANCES 3-RELOCATION ALLOWANCE BY SPECIFIC...

  6. 41 CFR 302-3.219 - Is there a limit on how many times I may receive reimbursement for tour renewal travel?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 41 Public Contracts and Property Management 4 2013-07-01 2012-07-01 true Is there a limit on how many times I may receive reimbursement for tour renewal travel? 302-3.219 Section 302-3.219 Public Contracts and Property Management Federal Travel Regulation System RELOCATION ALLOWANCES RELOCATION ALLOWANCES 3-RELOCATION ALLOWANCE BY SPECIFIC...

  7. 41 CFR 302-3.314 - Is there a time limit when I must begin my travel and transportation upon separation?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 41 Public Contracts and Property Management 4 2013-07-01 2012-07-01 true Is there a time limit when I must begin my travel and transportation upon separation? 302-3.314 Section 302-3.314 Public Contracts and Property Management Federal Travel Regulation System RELOCATION ALLOWANCES RELOCATION ALLOWANCES 3-RELOCATION ALLOWANCE BY SPECIFIC...

  8. Investigation of an acoustical holography system for real-time imaging

    NASA Astrophysics Data System (ADS)

    Fecht, Barbara A.; Andre, Michael P.; Garlick, George F.; Shelby, Ronald L.; Shelby, Jerod O.; Lehman, Constance D.

    1998-07-01

    A new prototype imaging system based on ultrasound transmission through the object of interest -- acoustical holography -- was developed which incorporates significant improvements in acoustical and optical design. This system is being evaluated for potential clinical application in the musculoskeletal system, interventional radiology, pediatrics, monitoring of tumor ablation, vascular imaging and breast imaging. System limiting resolution was estimated using a line-pair target with decreasing line thickness and equal separation. For a swept frequency beam from 2.6 - 3.0 MHz, the minimum resolution was 0.5 lp/mm. Apatite crystals were suspended in castor oil to approximate breast microcalcifications. Crystals from 0.425 - 1.18 mm in diameter were well resolved in the acoustic zoom mode. Needle visibility was examined with both a 14-gauge biopsy needle and a 0.6 mm needle. The needle tip was clearly visible throughout the dynamic imaging sequence as it was slowly inserted into a RMI tissue-equivalent breast biopsy phantom. A selection of human images was acquired in several volunteers: a 25 year-old female volunteer with normal breast tissue, a lateral view of the elbow joint showing muscle fascia and tendon insertions, and the superficial vessels in the forearm. Real-time video images of these studies will be presented. In all of these studies, conventional sonography was used for comparison. These preliminary investigations with the new prototype acoustical holography system showed favorable results in comparison to state-of-the-art pulse-echo ultrasound and demonstrate it to be suitable for further clinical study. The new patient interfaces will facilitate orthopedic soft tissue evaluation, study of superficial vascular structures and potentially breast imaging.

  9. Acoustic streaming in an ultrasonic air pump with three-dimensional finite-difference time-domain analysis and comparison to the measurement.

    PubMed

    Wada, Yuji; Koyama, Daisuke; Nakamura, Kentaro

    2014-12-01

    The direct finite-difference fluid simulation of acoustic streaming on a fine-meshed three-dimensional model using a graphics processing unit (GPU)-based calculation array is discussed. Airflows are induced by an acoustic traveling wave when an intense sound field is generated in a gap between a bending transducer and a reflector. The calculation results showed good agreement with measurements in a pressure distribution. Several flow vortices were observed near the boundary layer of the reflector and the transducer, which have often been observed near the boundary of acoustic tubes, but have not been observed in previous calculations for this type of ultrasonic air pump. PMID:25001051

  10. Connected Traveler

    SciTech Connect

    Schroeder, Alex

    2015-11-01

    The Connected Traveler project is a multi-disciplinary undertaking that seeks to validate potential for transformative transportation system energy savings by incentivizing efficient traveler behavior. This poster outlines various aspects of the Connected Traveler project, including market opportunity, understanding traveler behavior and decision-making, automation and connectivity, and a projected timeline for Connected Traveler's key milestones.

  11. 41 CFR 302-3.512 - How many times are we required to pay for an employee's return travel?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... required to pay for an employee's return travel? 302-3.512 Section 302-3.512 Public Contracts and Property Management Federal Travel Regulation System RELOCATION ALLOWANCES RELOCATION ALLOWANCES 3-RELOCATION... are we required to pay for an employee's return travel? You must pay for return travel...

  12. 41 CFR 302-3.512 - How many times are we required to pay for an employee's return travel?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... required to pay for an employee's return travel? 302-3.512 Section 302-3.512 Public Contracts and Property Management Federal Travel Regulation System RELOCATION ALLOWANCES RELOCATION ALLOWANCES 3-RELOCATION... are we required to pay for an employee's return travel? You must pay for return travel...

  13. 41 CFR 302-3.512 - How many times are we required to pay for an employee's return travel?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... required to pay for an employee's return travel? 302-3.512 Section 302-3.512 Public Contracts and Property Management Federal Travel Regulation System RELOCATION ALLOWANCES RELOCATION ALLOWANCES 3-RELOCATION... are we required to pay for an employee's return travel? You must pay for return travel...

  14. 41 CFR 302-3.512 - How many times are we required to pay for an employee's return travel?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... required to pay for an employee's return travel? 302-3.512 Section 302-3.512 Public Contracts and Property Management Federal Travel Regulation System RELOCATION ALLOWANCES RELOCATION ALLOWANCES 3-RELOCATION... are we required to pay for an employee's return travel? You must pay for return travel...

  15. Non-stationarity in experimental travel time measured in a lysimeter: theoretical and modeling lessons from a simplified hydrological system

    NASA Astrophysics Data System (ADS)

    Queloz, Pierre; Carraro, Luca; Bertuzzo, Enrico; Botter, Gianluca; Rao, P. Suresh C.; Rinaldo, Andrea

    2014-05-01

    Experimental data have been collected over a year-long period in a large weighing lysimeter. Natural climatic forcing occurs, except for rainfall which is artificially generated as a given Poisson process at a daily timescale. A constant water table is maintained and excess infiltrated water is discharged through the outlet at the bottom of the lysimeter. Soil water storage and evapotranspiration fluxes (accentuated by a willow tree planted in the lysimeter) were monitored throughout the experiment, so that accurate time series of all in- and out-fluxes are available. Five rainfall inputs were marked with individually traceable passive solutes (fluorobenzoic acids) at various initial soil moisture conditions during the first month of the experiment. Tracer concentrations were measured in the soil water and in the discharge at high temporal resolution. We aim here at directly measuring solute travel times, a proxy of hydrological transport with the main advantage to blend the bulk effects of water velocity distributions. The drivers of water displacement in this hydrological setting - and in any other realistic case - have intrinsically a non-stationary nature (e.g. random rainfall occurrence, seasonal evapotranspiration cycles and moisture-related soil connectivity), but the integration of these processes over a larger time scale (i.e. typically the time scale of the mean travel time) often lead to the stationary assumption thus considerably simplifying the data interpretation. Results clearly show that even in such a hydrological system with reduced complexity, experimental travel time distributions are non-stationary and are strongly influenced by the states encountered by the system during the transport phase. The measurements help at identifying the relevant key features influencing the experimental bulk transport. Modeling efforts have demonstrated the inability of a plug-flow reactor (old-water first reservoir) to reproduce the solute outfluxes dynamics. On

  16. A GIS-based groundwater travel time model to evaluate stream nitrate concentration reductions from land use change

    USGS Publications Warehouse

    Schilling, K.E.; Wolter, C.F.

    2007-01-01

    Excessive nitrate-nitrogen (nitrate) loss from agricultural watersheds is an environmental concern. A common conservation practice to improve stream water quality is to retire vulnerable row croplands to grass. In this paper, a groundwater travel time model based on a geographic information system (GIS) analysis of readily available soil and topographic variables was used to evaluate the time needed to observe stream nitrate concentration reductions from conversion of row crop land to native prairie in Walnut Creek watershed, Iowa. Average linear groundwater velocity in 5-m cells was estimated by overlaying GIS layers of soil permeability, land slope (surrogates for hydraulic conductivity and gradient, respectively) and porosity. Cells were summed backwards from the stream network to watershed divide to develop a travel time distribution map. Results suggested that groundwater from half of the land planted in prairie has reached the stream network during the 10 years of ongoing water quality monitoring. The mean travel time for the watershed was estimated to be 10.1 years, consistent with results from a simple analytical model. The proportion of land in the watershed and subbasins with prairie groundwater reaching the stream (10-22%) was similar to the measured reduction of stream nitrate (11-36%). Results provide encouragement that additional nitrate reductions in Walnut Creek are probable in the future as reduced nitrate groundwater from distal locations discharges to the stream network in the coming years. The high spatial resolution of the model (5-m cells) and its simplicity may make it potentially applicable for land managers interested in communicating lag time issues to the public, particularly related to nitrate concentration reductions over time. ?? 2007 Springer-Verlag.

  17. P wave travel times: Stability and change within the source volume of A M = 7. 2 earthquake

    SciTech Connect

    Johnston, A.C.; Wyss, M.; Habermann, R.E.

    1982-08-10

    The dense seismograph network on the south flank of Kilauea afforded a unique opportunity to study travel time changes as a function of space and time within the source volume of the Hawaii earthquake (M/sub S/ = 7.2) of 1975. Careful analysis of more than 600 teleseismic P arrivals from deep Fiji-Tonga earthquakes revealed the following: out of eight stations studied, six showed constant travel times to within +- 0.03 s for up to 10 years with the exception of some small changes of about 0.03 s at the time of the main shock. One station, AHU, showed a highly significant and unique travel time decrease by 0.13 s during 1971/1972. At the beginning of this velocity anomaly a southwest rift intrusion caused closure of surface cracks associated with normal faults located near the station AHU. Also, geodetic measurements revealed that between August and October 1971 compressive strain of 4 x 10/sup -5/ was accumulated perpendicular to the southwest rift in the area of AHU. We conclude that these data show for the first time that in situ velocity increases occur due to the closure of cracks by tectonic forces. The AHU residuals returned to normal approximately at the time of a major earthquake swarm on the fault zone near AHU, during which surface cracks were observed to have opened again.We have interpreted the teleseismic residual change at AHU as due to a P velocity increase of about 10% in the top 3.5-1.5-km of the crust. The only station, WHA, which showed a large (0.2 s) and extended (1972 to 1975) travel time increase was located only 4-km from the main shock epicenter. We interpret this velocity decrease as a precursor to the 1975 main shock, and we hypopthesize that a process reverse from that at AHU caused this anomaly by first opening and then closing cracks in the crust below WHA.

  18. 41 CFR 302-2.10 - Does the 1-year time period in § 302-2.8 include time that I cannot travel and/or transport my...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 41 Public Contracts and Property Management 4 2014-07-01 2014-07-01 false Does the 1-year time period in § 302-2.8 include time that I cannot travel and/or transport my household effects due to... time that I cannot travel and/or transport my household effects due to shipping restrictions to or...

  19. 41 CFR 302-2.10 - Does the 2-year time period in § 302-2.8 include time that I cannot travel and/or transport my...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 41 Public Contracts and Property Management 4 2010-07-01 2010-07-01 false Does the 2-year time period in § 302-2.8 include time that I cannot travel and/or transport my household effects due to... time that I cannot travel and/or transport my household effects due to shipping restrictions to or...

  20. 41 CFR 302-2.10 - Does the 2-year time period in § 302-2.8 include time that I cannot travel and/or transport my...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 41 Public Contracts and Property Management 4 2011-07-01 2011-07-01 false Does the 2-year time period in § 302-2.8 include time that I cannot travel and/or transport my household effects due to... time that I cannot travel and/or transport my household effects due to shipping restrictions to or...

  1. 41 CFR 302-2.10 - Does the 1-year time period in § 302-2.8 include time that I cannot travel and/or transport my...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 41 Public Contracts and Property Management 4 2012-07-01 2012-07-01 false Does the 1-year time period in § 302-2.8 include time that I cannot travel and/or transport my household effects due to... time that I cannot travel and/or transport my household effects due to shipping restrictions to or...

  2. Real-time analysis system for gas turbine ground test acoustic measurements.

    PubMed

    Johnston, Robert T

    2003-10-01

    This paper provides an overview of a data system upgrade to the Pratt and Whitney facility designed for making acoustic measurements on aircraft gas turbine engines. A data system upgrade was undertaken because the return-on-investment was determined to be extremely high. That is, the savings on the first test series recovered the cost of the hardware. The commercial system selected for this application utilizes 48 input channels, which allows either 1/3 octave and/or narrow-band analyses to be preformed real-time. A high-speed disk drive allows raw data from all 48 channels to be stored simultaneously while the analyses are being preformed. Results of tests to ensure compliance of the new system with regulations and with existing systems are presented. Test times were reduced from 5 h to 1 h of engine run time per engine configuration by the introduction of this new system. Conservative cost reduction estimates for future acoustic testing are 75% on items related to engine run time and 50% on items related to the overall length of the test. PMID:14582877

  3. Multi-stage pulse tube cryocooler with acoustic impedance constructed to reduce transient cool down time and thermal loss

    NASA Technical Reports Server (NTRS)

    Gedeon, David R. (Inventor); Wilson, Kyle B. (Inventor)

    2008-01-01

    The cool down time for a multi-stage, pulse tube cryocooler is reduced by configuring at least a portion of the acoustic impedance of a selected stage, higher than the first stage, so that it surrounds the cold head of the selected stage. The surrounding acoustic impedance of the selected stage is mounted in thermally conductive connection to the warm region of the selected stage for cooling the acoustic impedance and is fabricated of a high thermal diffusivity, low thermal radiation emissivity material, preferably aluminum.

  4. Wideband Multichannel Time-Reversal Processing for Acoustic Communications in a Tunnel-like Structure

    SciTech Connect

    Candy, J V; Chambers, D H; Robbins, C L; Guidry, B L; Poggio, A J; Dowla, F; Hertzog, C A

    2006-01-12

    The development of multichannel time-reversal (T/R) processing techniques continues to progress rapidly especially when the need to communicate in a highly reverberative environment becomes critical. The underlying T/R concept is based on time-reversing the Green's function characterizing the uncertain communications channel investigating the deleterious dispersion and multipath effects. In this paper, attention is focused on two major objectives: (1) wideband communications leading to a time reference modulation technique; and (2) multichannel acoustic communications in a tunnel (or cave or pipe) with many obstructions, multipath returns, severe background noise, disturbances, long propagation paths ({approx}180) with disruptions (bends). For this extremely hostile environment, it is shown that multichannel T/R receivers can easily be extended to the wideband designs while demonstrating their performance in both the ''canonical'' stairwell of our previous work as well as a tunnel-like structure. Acoustic information signals are transmitted with an 8-element host or base station array to two client receivers with a significant loss in signal levels due to the propagation environment. In this paper, the results of the new wideband T/R processor and modulation scheme are discussed to demonstrate the overall performance for both high (24-bit) and low (1-bit) bit level analog-to-digital (A/D) converter designs. These results are validated by performing proof-of-principle acoustic communications experiments in air. It is shown that the resulting T/R receivers are capable of extracting the transmitted coded sequence from noisy microphone array measurements with zero-bit error.

  5. Global paths of time-periodic solutions of the Benjamin-Ono equation connecting arbitrary traveling waves

    SciTech Connect

    Ambrose, David M.; Wilkening, Jon

    2008-12-11

    We classify all bifurcations from traveling waves to non-trivial time-periodic solutions of the Benjamin-Ono equation that are predicted by linearization. We use a spectrally accurate numerical continuation method to study several paths of non-trivial solutions beyond the realm of linear theory. These paths are found to either re-connect with a different traveling wave or to blow up. In the latter case, as the bifurcation parameter approaches a critical value, the amplitude of the initial condition grows without bound and the period approaches zero. We propose a conjecture that gives the mapping from one bifurcation to its counterpart on the other side of the path of non-trivial solutions. By experimentation with data fitting, we identify the form of the exact solutions on the path connecting two traveling waves, which represents the Fourier coefficients of the solution as power sums of a finite number of particle positions whose elementary symmetric functions execute simple orbits in the complex plane (circles or epicycles). We then solve a system of algebraic equations to express the unknown constants in the new representation in terms of the mean, a spatial phase, a temporal phase, four integers (enumerating the bifurcation at each end of the path) and one additional bifurcation parameter. We also find examples of interior bifurcations from these paths of already non-trivial solutions, but we do not attempt to analyze their algebraic structure.

  6. Travel time distributions under convergent radial flow in heterogeneous formations: Insight from the analytical solution of a stratified model

    NASA Astrophysics Data System (ADS)

    Pedretti, Daniele; Fiori, Aldo

    2013-10-01

    We analyze conservative solute transport under convergent flow to a well in perfectly stratified porous media, in which the hydraulic conductivity is treated as a random spatial function along the vertical direction (K(z)). The stratified model provides a rare exception of an exact analytical solution of travel time distributions in the proximity of pumping wells, and it is used here to obtain insights about ergodic and nonergodic transport conditions under nonuniform flow conditions. In addition, it provides a benchmark for numerical models aiming to correctly reproduce convergent flow transport in heterogeneous media, such as indicating the minimum number of layers required to obtain ergodic travel time distributions using only one model realization. The model provides important insights about the shape of the depth-integrated concentrations over time measured at the well (breakthrough curves, BTCs), which are usually applied to obtain transport parameters of the subsurface. It can be applied to any degree of system's heterogeneity and using either resident or flux-weighted injection modes. It can be built using different probabilistic distributions of K. In our analysis, we consider a log-normal K distribution, and the results indicate that, especially for highly heterogeneous systems, described by the log-K variance (σY2), the minimum number of layers required for from one model simulation to reproduce ergodic travel time distributions can be prohibitively high, e.g., above 106 for σY2=8 considering flux-weighted injections. This issue poses serious concerns for numerical applications aiming to simulate transport in the proximity of pumping wells. In addition, this simple solution confirms that stratification can lead BTCs to display strong preferential flow and persistent, power-law-like late-time tailing. Since the latter are common phenomenological macroscale evidences of other microscale hydrodynamic processes than pure advection (e.g., mass

  7. Factors influencing modes of transport and travel time for obstetric care: a mixed methods study in Zambia and Uganda.

    PubMed

    Sacks, Emma; Vail, Daniel; Austin-Evelyn, Katherine; Greeson, Dana; Atuyambe, Lynn M; Macwan'gi, Mubiana; Kruk, Margaret E; Grépin, Karen A

    2016-04-01

    Transportation is an important barrier to accessing obstetric care for many pregnant and postpartum women in low-resource settings, particularly in rural areas. However, little is known about how pregnant women travel to health facilities in these settings. We conducted 1633 exit surveys with women who had a recent facility delivery and 48 focus group discussions with women who had either a home or a facility birth in the past year in eight districts in Uganda and Zambia. Quantitative data were analysed using univariate statistics, and qualitative data were analysed using thematic content analysis techniques. On average, women spent 62-68 min travelling to a clinic for delivery. Very different patterns in modes of transport were observed in the two countries: 91% of Ugandan women employed motorized forms of transportation, while only 57% of women in Zambia did. Motorcycle taxis were the most commonly used in Uganda, while cars, trucks and taxis were the most commonly used mode of transportation in Zambia. Lower-income women were less likely to use motorized modes of transportation: in Zambia, women in the poorest quintile took 94 min to travel to a health facility, compared with 34 for the wealthiest quintile; this difference between quintiles was ∼50 min in Uganda. Focus group discussions confirmed that transport is a major challenge due to a number of factors we categorized as the 'three A's:' affordability, accessibility and adequacy of transport options. Women reported that all of these factors had influenced their decision not to deliver in a health facility. The two countries had markedly different patterns of transportation for obstetric care, and modes of transport and travel times varied dramatically by wealth quintile, which policymakers need to take into account when designing obstetric transport interventions. PMID:26135364

  8. On the validity of travel-time based nonlinear bioreactive transport models in steady-state flow.

    PubMed

    Sanz-Prat, Alicia; Lu, Chuanhe; Finkel, Michael; Cirpka, Olaf A

    2015-01-01

    Travel-time based models simplify the description of reactive transport by replacing the spatial coordinates with the groundwater travel time, posing a quasi one-dimensional (1-D) problem and potentially rendering the determination of multidimensional parameter fields unnecessary. While the approach is exact for strictly advective transport in steady-state flow if the reactive properties of the porous medium are uniform, its validity is unclear when local-scale mixing affects the reactive behavior. We compare a two-dimensional (2-D), spatially explicit, bioreactive, advective-dispersive transport model, considered as "virtual truth", with three 1-D travel-time based models which differ in the conceptualization of longitudinal dispersion: (i) neglecting dispersive mixing altogether, (ii) introducing a local-scale longitudinal dispersivity constant in time and space, and (iii) using an effective longitudinal dispersivity that increases linearly with distance. The reactive system considers biodegradation of dissolved organic carbon, which is introduced into a hydraulically heterogeneous domain together with oxygen and nitrate. Aerobic and denitrifying bacteria use the energy of the microbial transformations for growth. We analyze six scenarios differing in the variance of log-hydraulic conductivity and in the inflow boundary conditions (constant versus time-varying concentration). The concentrations of the 1-D models are mapped to the 2-D domain by means of the kinematic (for case i), and mean groundwater age (for cases ii & iii), respectively. The comparison between concentrations of the "virtual truth" and the 1-D approaches indicates extremely good agreement when using an effective, linearly increasing longitudinal dispersivity in the majority of the scenarios, while the other two 1-D approaches reproduce at least the concentration tendencies well. At late times, all 1-D models give valid approximations of two-dimensional transport. We conclude that the

  9. On the validity of travel-time based nonlinear bioreactive transport models in steady-state flow

    NASA Astrophysics Data System (ADS)

    Sanz-Prat, Alicia; Lu, Chuanhe; Finkel, Michael; Cirpka, Olaf A.

    2015-04-01

    Travel-time based models simplify the description of reactive transport by replacing the spatial coordinates with the groundwater travel time, posing a quasi one-dimensional (1-D) problem and potentially rendering the determination of multidimensional parameter fields unnecessary. While the approach is exact for strictly advective transport in steady-state flow if the reactive properties of the porous medium are uniform, its validity is unclear when local-scale mixing affects the reactive behavior. We compare a two-dimensional (2-D), spatially explicit, bioreactive, advective-dispersive transport model, considered as "virtual truth", with three 1-D travel-time based models which differ in the conceptualization of longitudinal dispersion: (i) neglecting dispersive mixing altogether, (ii) introducing a local-scale longitudinal dispersivity constant in time and space, and (iii) using an effective longitudinal dispersivity that increases linearly with distance. The reactive system considers biodegradation of dissolved organic carbon, which is introduced into a hydraulically heterogeneous domain together with oxygen and nitrate. Aerobic and denitrifying bacteria use the energy of the microbial transformations for growth. We analyze six scenarios differing in the variance of log-hydraulic conductivity and in the inflow boundary conditions (constant versus time-varying concentration). The concentrations of the 1-D models are mapped to the 2-D domain by means of the kinematic (for case i), and mean groundwater age (for cases ii & iii), respectively. The comparison between concentrations of the "virtual truth" and the 1-D approaches indicates extremely good agreement when using an effective, linearly increasing longitudinal dispersivity in the majority of the scenarios, while the other two 1-D approaches reproduce at least the concentration tendencies well. At late times, all 1-D models give valid approximations of two-dimensional transport. We conclude that the

  10. Community variations in population exposure to near-field tsunami hazards as a function of pedestrian travel time to safety

    USGS Publications Warehouse

    Wood, Nathan J.; Schmidtlein, Mathew C.

    2013-01-01

    Efforts to characterize population exposure to near-field tsunami threats typically focus on quantifying the number and type of people in tsunami-hazard zones. To develop and prioritize effective risk-reduction strategies, emergency managers also need information on the potential for successful evacuations and how this evacuation potential varies among communities. To improve efforts to properly characterize and differentiate near-field tsunami threats among multiple communities, we assess community variations in population exposure to tsunamis as a function of pedestrian travel time to safety. We focus our efforts on the multiple coastal communities in Grays Harbor and Pacific Counties (State of Washington, USA), where a substantial resident and visitor population is threatened by near-field tsunamis related to a potential Cascadia subduction zone earthquake. Anisotropic, path-distance modeling is conducted to estimate travel times to safety and results are merged with various population data, including residents, employees, public venues, and dependent-care facilities. Results suggest that there is substantial variability among communities in the number of people that may have insufficient time to evacuate. Successful evacuations may be possible in some communities assuming slow-walking speeds, are plausible in others if travel speeds are increased, and are unlikely in another set of communities given the large distances and short time horizon. Emergency managers can use these results to prioritize the location and determine the most appropriate type of tsunami risk-reduction strategies, such as education and training in areas where evacuations are plausible and vertical-evacuation structures in areas where they are not.

  11. Acoustic Performance of a Real-Time Three-Dimensional Sound-Reproduction System

    NASA Technical Reports Server (NTRS)

    Faller, Kenneth J., II; Rizzi, Stephen A.; Aumann, Aric R.

    2013-01-01

    The Exterior Effects Room (EER) is a 39-seat auditorium at the NASA Langley Research Center and was built to support psychoacoustic studies of aircraft community noise. The EER has a real-time simulation environment which includes a three-dimensional sound-reproduction system. This system requires real-time application of equalization filters to compensate for spectral coloration of the sound reproduction due to installation and room effects. This paper describes the efforts taken to develop the equalization filters for use in the real-time sound-reproduction system and the subsequent analysis of the system s acoustic performance. The acoustic performance of the compensated and uncompensated sound-reproduction system is assessed for its crossover performance, its performance under stationary and dynamic conditions, the maximum spatialized sound pressure level it can produce from a single virtual source, and for the spatial uniformity of a generated sound field. Additionally, application examples are given to illustrate the compensated sound-reproduction system performance using recorded aircraft flyovers

  12. Determination of groundwater travel time in a karst aquifer by stable water isotopes, Tanour and Rasoun spring (Jordan)

    NASA Astrophysics Data System (ADS)

    Hamdan, Ibraheem; Wiegand, Bettina; Sauter, Martin; Ptak, Thomas

    2016-04-01

    Key words: karst aquifers, stable isotopes, water travel time, Jordan. Tanour and Rasoun karst springs are located about 75 kilometers northwest of the city of Amman in Jordan. The aquifer is composed of Upper Cretaceous limestone that exhibits a moderate to high degree of karstification. The two springs represent the main drinking water resources for the surrounding villages. The yearly water production is about 1,135,000 m3/yr for Tanour spring and 125,350 m3/yr for Rasoun spring (MWI 2015). Due to contamination from microbiological pollution (leakage of wastewater from septic tanks) or infiltration of wastewater from local olive presses, drinking water supply from the two springs is frequently interrupted. From November 2014 through March 2015, spring water samples were collected from Tanour and Rasoun spring for the analysis of stable hydrogen and oxygen isotopes to investigate spring response to precipitation and snowmelt events. Both Tanour and Rasoun spring show a fast response to precipitation and snowmelt events, implying short water travel times. Based on the variation of δ 18O and δ 2H in spring discharge, the average maximum water travel time is in the order of 8 days for Tanour spring and 6 days for Rasoun spring. Due to fast water travel times, Tanour and Rasoun spring can be considered as highly vulnerable to pollutants. δ 18O and δ 2H values of Tanour and Rasoun springs parallel other monitored parameter like water temperature, turbidity, electrical conductivity and spring discharge. In addition, a high turbidity peak was monitored in Tanour spring during a pollution event from olive mills wastewater (Hamdan et al., 2016; Hamdan, in prep.). The fast response in both Tanour and Rasoun springs to precipitation events requires monitoring potential sources of pollution within the catchment area. References: MWI (Ministry of Water and Irrigation) (2015) Monthly Production values for Tanour and Rasoun Springs for the time period between 1996 and 2014

  13. First case of detection of Plasmodium knowlesi in Spain by Real Time PCR in a traveller from Southeast Asia.

    PubMed

    Ta, Tang Thuy-Huong; Salas, Ana; Ali-Tammam, Marwa; Martínez, María Del Carmen; Lanza, Marta; Arroyo, Eduardo; Rubio, Jose Miguel

    2010-01-01

    Previously, Plasmodium knowlesi was not considered as a species of Plasmodium that could cause malaria in human beings, as it is parasite of long-tailed (Macaca fascicularis) and pig-tailed (Macaca nemestrina) macaques found in Southeast Asia. A case of infection by P. knowlesi is described in a Spanish traveller, who came back to Spain with daily fever after his last overseas travel, which was a six-month holiday in forested areas of Southeast Asia between 2008 and 2009. His P. knowlesi infection was detected by multiplex Real time quantitative PCR and confirmed by sequencing the amplified fragment. Using nested multiplex malaria PCR (reference method in Spain) and a rapid diagnostic test, the P. knowlesi infection was negative. This patient was discharged and asymptomatic when the positive result to P. knowlesi was reported. Prior to this case, there have been two more reports of European travellers with malaria caused by P. knowlesi, a Finnish man who travelled to Peninsular Malaysia during four weeks in March 2007, and a Swedish man who did a short visit to Malaysian Borneo in October 2006. Taken together with this report of P. knowlesi infection in a Spanish traveller returning from Southeast Asia, this is the third case of P. knowlesi infection in Europe, indicating that this simian parasite can infect visitors to endemic areas in Southeast Asia. This last European case is quite surprising, given that it is an untreated-symptomatic P. knowlesi in human, in contrast to what is currently known about P. knowlesi infection. Most previous reports of human P. knowlesi malaria infections were in adults, often with symptoms and relatively high parasite densities, up to the recent report in Ninh Thuan province, located in the southern part of central Vietnam, inhabited mainly by the Ra-glai ethnic minority, in which all P. knowlesi infections were asymptomatic, co-infected with P. malariae, with low parasite densities and two of the three identified cases were very

  14. The effect of time-variant acoustical properties on orchestral instrument timbres

    NASA Astrophysics Data System (ADS)

    Hajda, John Michael

    1999-06-01

    The goal of this study was to investigate the timbre of orchestral instrument tones. Kendall (1986) showed that time-variant features are important to instrument categorization. But the relative salience of specific time-variant features to each other and to other acoustical parameters is not known. As part of a convergence strategy, a battery of experiments was conducted to assess the importance of global amplitude envelope, spectral frequencies, and spectral amplitudes. An omnibus identification experiment investigated the salience of global envelope partitions (attack, steady state, and decay). Valid partitioning models should identify important boundary conditions in the evolution of a signal; therefore, these models should be based on signal characteristics. With the use of such a model for sustained continuant tones, the steady-state segment was more salient than the attack. These findings contradicted previous research, which used questionable operational definitions for signal partitioning. For the next set of experiments, instrument tones were analyzed by phase vocoder, and stimuli were created by additive synthesis. Edits and combinations of edits controlled global amplitude envelope, spectral frequencies, and relative spectral amplitudes. Perceptual measurements were made with distance estimation, Verbal Attribute Magnitude Estimation, and similarity scaling. Results indicated that the primary acoustical attribute was the long-time-average spectral centroid. Spectral centroid is a measure of the center of energy distribution for spectral frequency components. Instruments with high values of spectral centroid (bowed strings) sound nasal while instruments with low spectral centroid (flute, clarinet) sound not nasal. The secondary acoustical attribute was spectral amplitude time variance. Predictably, time variance correlated highly with subject ratings of vibrato. The control of relative spectral amplitudes was more salient than the control of global

  15. Data collection for a time-of-travel and dispersion study on the Coosa River near Childersburg, Alabama

    USGS Publications Warehouse

    Gardner, R.A.

    1985-01-01

    Approximately 2,300 dye-tracer samples were collected and analyzed during a 5-day time-of-travel study on a 23-mile reach of the Coosa River between Logan Martin and Lay dams near Childersburg, Alabama, October 27 to 31, 1984. Rhodamine WT was used as the tracer-dye. Unsteady flow conditions prevailed in the study reach. The rate of movement of the dye cloud between sampling cross sections ranged from 0.15 to 1.36 feet per second. The average rate of movement of the dye cloud between the injection cross section and the downstream sampling cross section was 0.42 foot per second. (USGS)

  16. Time-of-travel of solutes in the Trinity River basin, Texas, September 1973 and July-August 1974

    USGS Publications Warehouse

    Ollman, R.H.

    1975-01-01

    The U.S. Geological Survey, in cooperation with the U.S. Army Corps of Engineers and the Trinity River Authority of Texas, conducted timee-of-travel studies in the Trinity River basin during a period of low flow September 19-23, 1973, and during a period of moderate flow July 23-August 1, 1974.  The purpose of these two studies was to provide data that could be used by the Trinity River Authority as part of the basic input to a mathematical water-quality model of the river. The model is being developed as part of a comprehensive water-quality management plan for the basin.

  17. Time domain computational modeling of viscothermal acoustic propagation in catalytic converter substrates with porous walls

    NASA Astrophysics Data System (ADS)

    Dickey, N. S.; Selamet, A.; Miazgowicz, K. D.; Tallio, K. V.; Parks, S. J.

    2005-08-01

    Models for viscothermal effects in catalytic converter substrates are developed for time domain computational methods. The models are suitable for use in one-dimensional approaches for the prediction of exhaust system performance (engine tuning characteristics) and radiated sound levels. Starting with the ``low reduced frequency'' equations for viscothermal acoustic propagation in capillary tubes, time domain submodels are developed for the frequency-dependent wall friction, frequency-dependent wall heat transfer, and porous wall effects exhibited by catalytic converter substrates. Results from a time domain computational approach employing these submodels are compared to available analytical solutions for the low reduced frequency equations. The computational results are shown to agree well with the analytical solutions for capillary geometries representative of automotive catalytic converter substrates.

  18. Transcranial ultrasonic therapy based on time reversal of acoustically induced cavitation bubble signature

    PubMed Central

    Gâteau, Jérôme; Marsac, Laurent; Pernot, Mathieu; Aubry, Jean-Francois; Tanter, Mickaël; Fink, Mathias

    2010-01-01

    Brain treatment through the skull with High Intensity Focused Ultrasound (HIFU) can be achieved with multichannel arrays and adaptive focusing techniques such as time-reversal. This method requires a reference signal to be either emitted by a real source embedded in brain tissues or computed from a virtual source, using the acoustic properties of the skull derived from CT images. This non-invasive computational method focuses with precision, but suffers from modeling and repositioning errors that reduce the accessible acoustic pressure at the focus in comparison with fully experimental time-reversal using an implanted hydrophone. In this paper, this simulation-based targeting has been used experimentally as a first step for focusing through an ex vivo human skull at a single location. It has enabled the creation of a cavitation bubble at focus that spontaneously emitted an ultrasonic wave received by the array. This active source signal has allowed 97%±1.1% of the reference pressure (hydrophone-based) to be restored at the geometrical focus. To target points around the focus with an optimal pressure level, conventional electronic steering from the initial focus has been combined with bubble generation. Thanks to step by step bubble generation, the electronic steering capabilities of the array through the skull were improved. PMID:19770084

  19. Stress dependent dispersion relations of acoustic waves travelling on a chain of point masses connected by anharmonic linear and torsional springs

    NASA Astrophysics Data System (ADS)

    Pluta, Mieczysław; Amjad, Umar; Klinghammer, Hermann; Jha, Diwaker; Tarar, Khurram; Grill, Wolfgang

    2012-05-01

    The propagation of a deformation along a flexural beam or plate depends on material properties, geometrical conditions like the beam cross-section, effects of stiffening or softening due to external stress, and last but not least the mode of the wave including its polarization. The time-of-flight (TOF) of acoustic waves is influenced by any of the above listed parameters. This effect is utilized in ultrasonic NDE and structural health monitoring applications. It was shown in earlier publications that the solutions of wave equations for a linear chain model consisting of identical mass points, subject to a direction and distance dependent potential, show the dispersion properties and dependencies on externally applied stress of the lowest longitudinal and transversal plate modes. In the model presented here anharmonic potentials are introduced. The potentials are represented by torsional springs at each mass point and linear springs between them. Dynamic equations are derived, based on interactions with next and second next neighbors. The results obtained with the developed model are compared with experimental observations concerning the reaction of the TOF for the lowest Lamb modes in an aluminum plate under variable in plane stress. The developed models are capable to demonstrate general aspects of the mode and frequency dependence of the acousto-elastic coefficients for the lowest symmetric and antisymmetric Lamb waves. The introduced anharmonicities allow furthermore for a close approximation of the experimental findings.

  20. Travel Time of Fluids in Porous Media: Bernoulli's Brachistochrone, Isoperimetric Estimates, and Optimal Design in Smart Hydroisolation of Horizontal Wells

    NASA Astrophysics Data System (ADS)

    Kacimov, A.; Marketz, F.; Pervez, T.; Yakimov, N.

    2007-12-01

    Steady and transient 2,-3- D seepage in a rigid porous medium is studied by the methods of complex analysis and optimal shape design. Euler (1748) dichotomised the inverse-direct approaches. In the former, "surmised" functionals (in our case - travel time of a marked (neutral tracer) particle, seepage discharge, and acting seepage forces) are extremised under isoperimetric constraints, e.g., the "action formalis" (total head along streamlines of flow tubes) of Leibnitz (1860). Following Euler's ideas, the parameters of impervious hydraulic structures (dam, sheetpiling, well packer, seabed buried pipeline, etc.) are optimized. In the Verigin problem, the angle of inclination of a sheetpile providing minimal time along a bounding streamline is found. The maximum of the minimum of the travel time is searched between all streamlines originated in the upper pool. The calculated travel time distributions are also used in minimisation of the total volume of fluid, which arrives from the upper pool to the tailwater during a prescribed time span. In the class of arbitrary structures, time optimisation is carried out explicitly for the bounding streamline with a constraint of the wetted perimeter of a depressed structure. The found optimum (brachistochrone) is a semi-circle and the corresponding time coincides with that of a unidirectional flow between two constant head surfaces. A general theorem is proved that for an arbitrary 3-D flow tube the travel time along an arbitrary streamline is bounded from below by that in a 2-D Voshinin problem (line vortex). Generalisations to heterogeneous media (of varying hydraulic conductivity and porosity) and non-Darcian flows make possible isoperimetric estimates of breakthrough curves (i.e. a composition of marked particles as in Lagrange, 1760) in a purely advective transport of contaminants and advective dispersion with negligible transverse dispersivity. Seepage from one horizontal isobar to another with a tilted fracture