Science.gov

Sample records for acoustic tumour detection

  1. Detecting Contaminant Particles Acoustically

    NASA Technical Reports Server (NTRS)

    Wyett, L. M.

    1986-01-01

    Apparatus "listens" for particles in interior of complex turbomachinery. Contact microphones are attached at several points on pump housing. Acoustic transducer also attached to housing to excite entire pump with sound. Frequency of sound is slowly raised until pump resonates. Microphones detect noise of loose particles scraping against pump parts. Such as machining chips in turbopumps or other machinery without disassembly.

  2. Indigenous Acoustic Detection.

    DTIC Science & Technology

    1982-01-26

    considerable distances, and they act as good sensors of human presence. Though singing insects are ubiquitous in warm areas, even in the desert ( Nevo and...methodology. DTIC. CD-58-PL. Lloyd, J. E. 1981. Personnel communication. Nevo , E. and S. A. Blondheim. 1972. Acoustic isolation in the speciation of

  3. "Concomitant immunity" in murine tumours of non-detectable immunogenicity.

    PubMed Central

    Ruggiero, R. A.; Bustuoabad, O. D.; Bonfil, R. D.; Meiss, R. P.; Pasqualini, C. D.

    1985-01-01

    Various immunization assays were used to demonstrate the lack of immunogenicity of three BALB/c tumours of spontaneous origin and of a fourth one resulting from foreign body tumorigenesis. All four tumours inhibited the growth of a second implant of the same tumour into the contralateral flank. In our tumour models "concomitant immunity" (1) was not mediated by macrophage or T-cell dependent immune reactions: both thymectomized BALB/c and nude mice (treated or untreated with silica) gave the same results as intact mice; (2) showed some degree of non-specificity, inhibiting the growth of a different tumour in 3/4 cases; though, the existence of a specific component could not be discarded; (3) was proportional to the volume of the primary tumour at the time of the second challenge; (4) was dependent on actively growing primary tumour, not being obtained with progressively increasing daily inocula of irradiated tumour cells; (5) was detectable in an actively growing secondary tumour; recurrent growth after partial surgical excision was inhibited and (6) involved cytostasis of the secondary tumour: a syngeneic graft of the overlying skin led to tumour growth while histological studies revealed the presence of viable tumour cells. It is postulated that "concomitant immunity" or resistance can be generated without the active participation of the immune system and that tumour-related factors are, in certain cases, responsible for blocking the growth of secondary tumours. Images Figure 5 PMID:2981538

  4. Modelling and Detecting Tumour Oxygenation Levels

    PubMed Central

    Skeldon, Anne C.; Chaffey, Gary; Lloyd, David J. B.; Mohan, Vineet; Bradley, David A.; Nisbet, Andrew

    2012-01-01

    Tumours that are low in oxygen (hypoxic) tend to be more aggressive and respond less well to treatment. Knowing the spatial distribution of oxygen within a tumour could therefore play an important role in treatment planning, enabling treatment to be targeted in such a way that higher doses of radiation are given to the more radioresistant tissue. Mapping the spatial distribution of oxygen in vivo is difficult. Radioactive tracers that are sensitive to different levels of oxygen are under development and in the early stages of clinical use. The concentration of these tracer chemicals can be detected via positron emission tomography resulting in a time dependent concentration profile known as a tissue activity curve (TAC). Pharmaco-kinetic models have then been used to deduce oxygen concentration from TACs. Some such models have included the fact that the spatial distribution of oxygen is often highly inhomogeneous and some have not. We show that the oxygen distribution has little impact on the form of a TAC; it is only the mean oxygen concentration that matters. This has significant consequences both in terms of the computational power needed, and in the amount of information that can be deduced from TACs. PMID:22761687

  5. Acoustic detection of manatee vocalizations

    NASA Astrophysics Data System (ADS)

    Niezrecki, Christopher; Phillips, Richard; Meyer, Michael; Beusse, Diedrich O.

    2003-09-01

    The West Indian manatee (trichechus manatus latirostris) has become endangered partly because of a growing number of collisions with boats. A system to warn boaters of the presence of manatees, that can signal to boaters that manatees are present in the immediate vicinity, could potentially reduce these boat collisions. In order to identify the presence of manatees, acoustic methods are employed. Within this paper, three different detection algorithms are used to detect the calls of the West Indian manatee. The detection systems are tested in the laboratory using simulated manatee vocalizations from an audio compact disk. The detection method that provides the best overall performance is able to correctly identify ~96% of the manatee vocalizations. However, the system also results in a false alarm rate of ~16%. The results of this work may ultimately lead to the development of a manatee warning system that can warn boaters of the presence of manatees.

  6. Acoustic Event Detection and Classification

    NASA Astrophysics Data System (ADS)

    Temko, Andrey; Nadeu, Climent; Macho, Dušan; Malkin, Robert; Zieger, Christian; Omologo, Maurizio

    The human activity that takes place in meeting rooms or classrooms is reflected in a rich variety of acoustic events (AE), produced either by the human body or by objects handled by humans, so the determination of both the identity of sounds and their position in time may help to detect and describe that human activity. Indeed, speech is usually the most informative sound, but other kinds of AEs may also carry useful information, for example, clapping or laughing inside a speech, a strong yawn in the middle of a lecture, a chair moving or a door slam when the meeting has just started. Additionally, detection and classification of sounds other than speech may be useful to enhance the robustness of speech technologies like automatic speech recognition.

  7. Acoustic resonance for nonmetallic mine detection

    SciTech Connect

    Kercel, S.W.

    1998-04-01

    The feasibility of acoustic resonance for detection of plastic mines was investigated by researchers at the Oak Ridge National Laboratory`s Instrumentation and Controls Division under an internally funded program. The data reported in this paper suggest that acoustic resonance is not a practical method for mine detection. Representative small plastic anti-personnel mines were tested, and were found to not exhibit detectable acoustic resonances. Also, non-metal objects known to have strong acoustic resonances were tested with a variety of excitation techniques, and no practical non-contact method of exciting a consistently detectable resonance in a buried object was discovered. Some of the experimental data developed in this work may be useful to other researchers seeking a method to detect buried plastic mines. A number of excitation methods and their pitfalls are discussed. Excitation methods that were investigated include swept acoustic, chopped acoustic, wavelet acoustic, and mechanical shaking. Under very contrived conditions, a weak response that could be attributed to acoustic resonance was observed, but it does not appear to be practical as a mine detection feature. Transfer properties of soil were investigated. Impulse responses of several representative plastic mines were investigated. Acoustic leakage coupling, and its implications as a disruptive mechanism were investigated.

  8. Detecting Structural Failures Via Acoustic Impulse Responses

    NASA Technical Reports Server (NTRS)

    Bayard, David S.; Joshi, Sanjay S.

    1995-01-01

    Advanced method of acoustic pulse reflectivity testing developed for use in determining sizes and locations of failures within structures. Used to detect breaks in electrical transmission lines, detect faults in optical fibers, and determine mechanical properties of materials. In method, structure vibrationally excited with acoustic pulse (a "ping") at one location and acoustic response measured at same or different location. Measured acoustic response digitized, then processed by finite-impulse-response (FIR) filtering algorithm unique to method and based on acoustic-wave-propagation and -reflection properties of structure. Offers several advantages: does not require training, does not require prior knowledge of mathematical model of acoustic response of structure, enables detection and localization of multiple failures, and yields data on extent of damage at each location.

  9. Circulating tumour cells as tumour biomarkers in melanoma: detection methods and clinical relevance.

    PubMed

    Khoja, L; Lorigan, P; Dive, C; Keilholz, U; Fusi, A

    2015-01-01

    Circulating tumour cells (CTCs) are cells of solid tumour origin detectable in the peripheral blood. Their occurrence is considered a prerequisite step for establishing distant metastases. Metastatic melanoma was the first malignancy in which CTCs were detected and numerous studies have been published on CTC detection in melanoma at various stages of disease. In spite of this, there is no general consensus as to the clinical utility of CTCs in melanoma, largely due to conflicting results from heterogeneous studies and discrepancies in methods of detection between studies. In this review, we examine the possible clinical significance of CTCs in cutaneous, mucosal and ocular melanoma, focusing on detection methods and prognostic value of CTC detection.

  10. Magnetic resonance imaging detected prostate evasive anterior tumours: Further insights

    PubMed Central

    Edwan, Ghazi Al; Ghai, Sangeet; Margel, David; Kulkarni, Girish; Hamilton, Rob; Toi, Ants; Haidar, Masoom A.; Finelli, Antonio; Fleshner, Neil E.

    2015-01-01

    Introduction: Clinical confusion continues to exist regarding the underestimation of cancers among patients on active surveillance and among men with repeated negative prostate biopsies despite worrisome prostate-specific antigen (PSA) levels. We have previously described our initial experience with magnetic resonance imaging (MRI)-based detection of tumours in the anterior prostate gland. In this report, we update and expand our experience with these tumours in terms of multiparametric-MRI findings, staging, and grading. Furthermore, we report early treatment outcomes with these unique cancers. Methods: We reviewed our prostate MRI dataset of 1117 cases from January 2006 until December 2012 and identified 189 patients who fulfilled criteria for prostate evasive anterior tumors (PEATS). Descriptive analyses were performed on multiple covariates. Kaplan-Meier actuarial technique was used to plot the treatment-related outcomes from PEATS tumours. Results: Among the 189 patients who had MRI-detectable anterior tumours, 148 had biopsy proven disease in the anterior zone. Among these tumours, the average PSA was 18.3 ng/mL and most cancers were Gleason 7. In total, 68 patients chose surgical therapy. Among these men, most of their cancers had extra prostatic extension and 46% had positive surgical margins. Interestingly, upgrading of tumours that were biopsy Gleason 6 in the anterior zone was common, with 59% exhibiting upgrading to Gleason 7 or higher. Biochemical-free survival among men who elected surgery was not ideal, with 20% failing by 20 months. Conclusion: PEATS tumours are found late and are disproportionally high grade tumours. Careful consideration to MRI testing should be given to men at risk for PEATS. PMID:26029293

  11. Interferometer Detects Acoustic Emissions in Composites

    NASA Technical Reports Server (NTRS)

    Cantrell, J. H.; Clause, R. O.; Wade, J. C.; Zerwekh, P. S.

    1985-01-01

    Embedded single-mode optical fibers sample internal-stress fields directly. Statically loaded composite matrix emits pulsed ultrasonic waves which mechanically modulate embedded fiber and phase-modulate transmitted optical field. Modulation detected by optical interferometry and Fourier optical processing converted to electronic signal proportional to acoustic field amplitude integated along length of fiber embedded in specimen. Technique used for measurements of both high- and low-frequency CW acoustic fields as well as high-frequency transients.

  12. Humanitarian mine detection by acoustic resonance

    SciTech Connect

    Kercel, S.W.

    1998-03-01

    The JASON Committee at MITRE Corp. was tasked by DARPA to inquire into suitable technologies for humanitarian mine detection. Acoustic resonance was one of the very few technologies that the JASONs determined might be promising for the task, but was as yet unexplored at the time that they conducted their inquiry. The objective of this Seed Money investigation into acoustic resonance was to determine if it would be feasible to use acoustic resonance to provide an improvement to present methods for humanitarian mine detection. As detailed in this report, acoustic resonance methods do not appear to be feasible for this task. Although acoustic resonant responses are relatively easy to detect when they exist, they are very difficult to excite by the non-contact means that must be used for buried objects. Despite many different attempts, this research did not discover any practical means of using sound to excite resonant responses in objects known to have strong resonances. The shaker table experiments did see an effect that might be attributable to the resonance of the object under test, but the effect was weak, and exploited the a priori knowledge of the resonant frequency of the object under test to distinguish it from the background. If experiments that used objects known to have strong acoustic resonances produced such marginal results, this does not seem to be a practical method to detect objects with weak resonances or non-existent resonances. The results of this work contribute to the ORNL countermine initiative. ORNL is exploring several unconventional mine detection technologies, and is proposed to explore others. Since this research has discovered some major pitfalls in non-metallic mine detection, this experience will add realism to other strategies proposed for mine detection technologies. The experiment provided hands-on experience with inert plastic mines under field conditions, and gives ORNL additional insight into the problems of developing practical

  13. Improving Accuracy in Detecting Acoustic Onsets

    ERIC Educational Resources Information Center

    Duyck, Wouter; Anseel, Frederik; Szmalec, Arnaud; Mestdagh, Pascal; Tavernier, Antoine; Hartsuiker, Robert J.

    2008-01-01

    In current cognitive psychology, naming latencies are commonly measured by electronic voice keys that detect when sound exceeds a certain amplitude threshold. However, recent research (e.g., K. Rastle & M. H. Davis, 2002) has shown that these devices are particularly inaccurate in precisely detecting acoustic onsets. In this article, the authors…

  14. Improving Accuracy in Detecting Acoustic Onsets

    ERIC Educational Resources Information Center

    Duyck, Wouter; Anseel, Frederik; Szmalec, Arnaud; Mestdagh, Pascal; Tavernier, Antoine; Hartsuiker, Robert J.

    2008-01-01

    In current cognitive psychology, naming latencies are commonly measured by electronic voice keys that detect when sound exceeds a certain amplitude threshold. However, recent research (e.g., K. Rastle & M. H. Davis, 2002) has shown that these devices are particularly inaccurate in precisely detecting acoustic onsets. In this article, the authors…

  15. Acoustic enhancement for photo detecting devices

    DOEpatents

    Thundat, Thomas G; Senesac, Lawrence R; Van Neste, Charles W

    2013-02-19

    Provided are improvements to photo detecting devices and methods for enhancing the sensitivity of photo detecting devices. A photo detecting device generates an electronic signal in response to a received light pulse. An electro-mechanical acoustic resonator, electrically coupled to the photo detecting device, damps the electronic signal and increases the signal noise ratio (SNR) of the electronic signal. Increased photo detector standoff distances and sensitivities will result.

  16. Acoustic detection of microbubble resonance

    NASA Astrophysics Data System (ADS)

    Thomas, D. H.; Looney, P.; Steel, R.; Pelekasis, N.; McDicken, W. N.; Anderson, T.; Sboros, V.

    2009-06-01

    Large numbers of acoustic signals from single lipid-shelled Definity® microbubbles have been measured using a calibrated microacoustic system and a two population response observed. Theoretical results based on the Mooney-Rivlin strain softening shell model have been used to identify these populations as primary resonant and off-primary resonant scatter. An experimentally measured size distribution was used to provide the initial resting radius for the simulations, and the responses agree well with the experimental data. In this way, the primary resonant or off-primary resonant behavior of a microbubble can be studied, with potential benefits to both signal processing techniques and microbubble manufacture.

  17. Biosensors for the Detection of Circulating Tumour Cells

    PubMed Central

    Costa, Clotilde; Abal, Miguel; López-López, Rafael; Muinelo-Romay, Laura

    2014-01-01

    Metastasis is the cause of most cancer deaths. Circulating tumour cells (CTCs) are cells released from the primary tumour into the bloodstream that are considered the main promoters of metastasis. Therefore, these cells are targets for understanding tumour biology and improving clinical management of the disease. Several techniques have emerged in recent years to isolate, detect, and characterise CTCs. As CTCs are a rare event, their study requires multidisciplinary considerations of both biological and physical properties. In addition, as isolation of viable cells may give further insights into metastatic development, cell recovery must be done with minimal cell damage. The ideal system for CTCs analysis must include maximum efficiency of detection in real time. In this sense, new approaches used to enrich CTCs from clinical samples have provided an important improvement in cell recovery. However, this progress should be accompanied by more efficient strategies of cell quantification. A range of biosensor platforms are being introduced into the technology for CTCs quantification with promising results. This review provides an update on recent progress in CTCs identification using different approaches based on sensor signaling. PMID:24618729

  18. Acoustic detectability of Rhynchophorus cruentatus (Coleoptera: Dryophthoridae)

    USDA-ARS?s Scientific Manuscript database

    The palmetto weevil, Rhynchophorus cruentatus Fabricius, native to Florida, attacks palm trees. Like its economically destructive relatives, R. ferrugineus (Olivier) and R. palmarum L., it feeds internally and often is not detected until irreparable damage occurs. Acoustic methods previously used su...

  19. Apnea detection by acoustical means.

    PubMed

    Yadollahi, Azadeh; Moussavi, Zahra

    2006-01-01

    In this paper a new non-invasive method for apnea detection is proposed. Eight healthy subjects participated in this study. They were instructed to breathe very shallow with different periods of breath hold to simulate sleep apnea. Following our previous study in successful use of entropy for flow estimation, in this study the Otsu threshold was used to classify the calculated entropy into two classes of breathing and apnea. The results show that the method is capable of detecting the apnea periods even when the subjects breathe at very shallow flow rates. The overall lag and duration errors between the estimated and actual apnea periods were found to be 0.207+/-0.062 and 0.289+/-0.258 s, respectively. The results are encouraging for the use of the proposed method as a fast, easy and promising tool for apnea detection.

  20. Optical and acoustical UAV detection

    NASA Astrophysics Data System (ADS)

    Christnacher, Frank; Hengy, Sébastien; Laurenzis, Martin; Matwyschuk, Alexis; Naz, Pierre; Schertzer, Stéphane; Schmitt, Gwenael

    2016-10-01

    Recent world events have highlighted that the proliferation of UAVs is bringing with it a new and rapidly increasing threat for national defense and security agencies. Whilst many of the reported UAV incidents seem to indicate that there was no terrorist intent behind them, it is not unreasonable to assume that it may not be long before UAV platforms are regularly employed by terrorists or other criminal organizations. The flight characteristics of many of these mini- and micro-platforms present challenges for current systems which have been optimized over time to defend against the traditional air-breathing airborne platforms. A lot of programs to identify cost-effective measures for the detection, classification, tracking and neutralization have begun in the recent past. In this paper, lSL shows how the performance of a UAV detection and tracking concept based on acousto-optical technology can be powerfully increased through active imaging.

  1. Passive acoustic threat detection in estuarine environments

    NASA Astrophysics Data System (ADS)

    Borowski, Brian; Sutin, Alexander; Roh, Heui-Seol; Bunin, Barry

    2008-04-01

    The Maritime Security Laboratory (MSL) at Stevens Institute of Technology supports research in a range of areas relevant to harbor security, including passive acoustic detection of underwater threats. The difficulties in using passive detection in an urban estuarine environment include intensive and highly irregular ambient noise and the complexity of sound propagation in shallow water. MSL conducted a set of tests in the Hudson River near Manhattan in order to measure the main parameters defining the detection distance of a threat: source level of a scuba diver, transmission loss of acoustic signals, and ambient noise. The source level of the diver was measured by comparing the diver's sound with a reference signal from a calibrated emitter placed on his path. Transmission loss was measured by comparing noise levels of passing ships at various points along their routes, where their distance from the hydrophone was calculated with the help of cameras and custom software. The ambient noise in the Hudson River was recorded under varying environmental conditions and amounts of water traffic. The passive sonar equation was then applied to estimate the range of detection. Estimations were done for a subset of the recorded noise levels, and we demonstrated how variations in the noise level, attenuation, and the diver's source level influence the effective range of detection. Finally, we provided analytic estimates of how an array improves upon the detection distance calculated by a single hydrophone.

  2. The optimization of acoustic fields for ablative therapies of tumours in the upper abdomen

    NASA Astrophysics Data System (ADS)

    Gélat, P.; ter Haar, G.; Saffari, N.

    2012-12-01

    High intensity focused ultrasound (HIFU) enables highly localized, non-invasive tissue ablation and its efficacy has been demonstrated in the treatment of a range of cancers, including those of the kidney, prostate and breast. HIFU offers the ability to treat deep-seated tumours locally, and potentially bears fewer side effects than more invasive treatment modalities such as resection, chemotherapy and ionizing radiation. There remains however a number of significant challenges which currently hinder its widespread clinical application. One of these challenges is the need to transmit sufficient energy through the ribcage to ablate tissue at the required foci whilst minimizing the formation of side lobes and sparing healthy tissue. Ribs both absorb and reflect ultrasound strongly. This sometimes results in overheating of bone and overlying tissue during treatment, leading to skin burns. Successful treatment of a patient with tumours in the upper abdomen therefore requires a thorough understanding of the way acoustic and thermal energy is deposited. Previously, a boundary element approach based on a Generalized Minimal Residual (GMRES) implementation of the Burton-Miller formulation was developed to predict the field of a multi-element HIFU array scattered by human ribs, the topology of which was obtained from CT scan data (Gélat et al 2011 Phys. Med. Biol. 56 5553-81). The present paper describes the reformulation of the boundary element equations as a least-squares minimization problem with nonlinear constraints. The methodology has subsequently been tested at an excitation frequency of 1 MHz on a spherical multi-element array in the presence of ribs. A single array-rib geometry was investigated on which a 50% reduction in the maximum acoustic pressure magnitude on the surface of the ribs was achieved with only a 4% reduction in the peak focal pressure compared to the spherical focusing case. This method was then compared with a binarized apodization approach

  3. Acoustic metamaterial for subwavelength edge detection

    PubMed Central

    Molerón, Miguel; Daraio, Chiara

    2015-01-01

    Metamaterials have demonstrated the possibility to produce super-resolved images by restoring propagative and evanescent waves. However, for efficient information transfer, for example, in compressed sensing, it is often desirable to visualize only the fast spatial variations of the wave field (carried by evanescent waves), as the one created by edges or small details. Image processing edge detection algorithms perform such operation, but they add time and complexity to the imaging process. Here we present an acoustic metamaterial that transmits only components of the acoustic field that are approximately equal to or smaller than the operating wavelength. The metamaterial converts evanescent waves into propagative waves exciting trapped resonances, and it uses periodicity to attenuate the propagative components. This approach achieves resolutions ∼5 times smaller than the operating wavelength and makes it possible to visualize independently edges aligned along different directions. PMID:26304739

  4. Acoustic metamaterial for subwavelength edge detection.

    PubMed

    Molerón, Miguel; Daraio, Chiara

    2015-08-25

    Metamaterials have demonstrated the possibility to produce super-resolved images by restoring propagative and evanescent waves. However, for efficient information transfer, for example, in compressed sensing, it is often desirable to visualize only the fast spatial variations of the wave field (carried by evanescent waves), as the one created by edges or small details. Image processing edge detection algorithms perform such operation, but they add time and complexity to the imaging process. Here we present an acoustic metamaterial that transmits only components of the acoustic field that are approximately equal to or smaller than the operating wavelength. The metamaterial converts evanescent waves into propagative waves exciting trapped resonances, and it uses periodicity to attenuate the propagative components. This approach achieves resolutions ∼5 times smaller than the operating wavelength and makes it possible to visualize independently edges aligned along different directions.

  5. Acoustic metamaterial for subwavelength edge detection

    NASA Astrophysics Data System (ADS)

    Molerón, Miguel; Daraio, Chiara

    2015-08-01

    Metamaterials have demonstrated the possibility to produce super-resolved images by restoring propagative and evanescent waves. However, for efficient information transfer, for example, in compressed sensing, it is often desirable to visualize only the fast spatial variations of the wave field (carried by evanescent waves), as the one created by edges or small details. Image processing edge detection algorithms perform such operation, but they add time and complexity to the imaging process. Here we present an acoustic metamaterial that transmits only components of the acoustic field that are approximately equal to or smaller than the operating wavelength. The metamaterial converts evanescent waves into propagative waves exciting trapped resonances, and it uses periodicity to attenuate the propagative components. This approach achieves resolutions ~5 times smaller than the operating wavelength and makes it possible to visualize independently edges aligned along different directions.

  6. Detection and Classification of Whale Acoustic Signals

    NASA Astrophysics Data System (ADS)

    Xian, Yin

    This dissertation focuses on two vital challenges in relation to whale acoustic signals: detection and classification. In detection, we evaluated the influence of the uncertain ocean environment on the spectrogram-based detector, and derived the likelihood ratio of the proposed Short Time Fourier Transform detector. Experimental results showed that the proposed detector outperforms detectors based on the spectrogram. The proposed detector is more sensitive to environmental changes because it includes phase information. In classification, our focus is on finding a robust and sparse representation of whale vocalizations. Because whale vocalizations can be modeled as polynomial phase signals, we can represent the whale calls by their polynomial phase coefficients. In this dissertation, we used the Weyl transform to capture chirp rate information, and used a two dimensional feature set to represent whale vocalizations globally. Experimental results showed that our Weyl feature set outperforms chirplet coefficients and MFCC (Mel Frequency Cepstral Coefficients) when applied to our collected data. Since whale vocalizations can be represented by polynomial phase coefficients, it is plausible that the signals lie on a manifold parameterized by these coefficients. We also studied the intrinsic structure of high dimensional whale data by exploiting its geometry. Experimental results showed that nonlinear mappings such as Laplacian Eigenmap and ISOMAP outperform linear mappings such as PCA and MDS, suggesting that the whale acoustic data is nonlinear. We also explored deep learning algorithms on whale acoustic data. We built each layer as convolutions with either a PCA filter bank (PCANet) or a DCT filter bank (DCTNet). With the DCT filter bank, each layer has different a time-frequency scale representation, and from this, one can extract different physical information. Experimental results showed that our PCANet and DCTNet achieve high classification rate on the whale

  7. Fiber optic hydrophones for acoustic neutrino detection

    NASA Astrophysics Data System (ADS)

    Buis, E. J.; Doppenberg, E. J. J.; Lahmann, R.; Toet, P. M.; de Vreugd, J.

    2016-04-01

    Cosmic neutrinos with ultra high energies can be detected acoustically using hydrophones. The detection of these neutrinos may provide crucial information about then GZK mechanism. The flux of these neutrinos, however, is expected to be low, so that a detection volume is required more than a order of magnitude larger than what has presently been realized. With a large detection volume and a large number of hydrophones, there is a need for technology that is cheap and easy to deploy. Fiber optics provide a natural way for distributed sensing. In addition, a sensor has been designed and manufactured that can be produced cost-effectively on an industrial scale. Sensitivity measurements show that the sensor is able to reach the required sea-state zero level. For a proper interpretation of the expected bipolar signals, filtering techniques should be applied to remove the effects of the unwanted resonance peaks.

  8. Acoustic signal detection of manatee calls

    NASA Astrophysics Data System (ADS)

    Niezrecki, Christopher; Phillips, Richard; Meyer, Michael; Beusse, Diedrich O.

    2003-04-01

    The West Indian manatee (trichechus manatus latirostris) has become endangered partly because of a growing number of collisions with boats. A system to warn boaters of the presence of manatees, that can signal to boaters that manatees are present in the immediate vicinity, could potentially reduce these boat collisions. In order to identify the presence of manatees, acoustic methods are employed. Within this paper, three different detection algorithms are used to detect the calls of the West Indian manatee. The detection systems are tested in the laboratory using simulated manatee vocalizations from an audio compact disc. The detection method that provides the best overall performance is able to correctly identify ~=96% of the manatee vocalizations. However the system also results in a false positive rate of ~=16%. The results of this work may ultimately lead to the development of a manatee warning system that can warn boaters of the presence of manatees.

  9. Multiple RT-PCR markers for the detection of circulating tumour cells of metastatic canine mammary tumours.

    PubMed

    da Costa, A; Kohn, B; Gruber, A D; Klopfleisch, R

    2013-04-01

    In humans, detection of circulating tumour cells (CTCs) using nucleic acid-based methods such as reverse transcription polymerase chain reaction (RT-PCR) has proven to be of prognostic relevance. However, similar procedures are still lacking in veterinary oncology. To assess the correlation of CTC markers with the metastatic potential of canine mammary tumours, 120 peripheral blood samples from bitches with mammary carcinomas with (group 1) and without (group 2) histological evidence of vascular invasion and/or presence of lymph node metastases and mammary adenomas (group 3) were analyzed. Blood samples were collected in EDTA tubes and RNA was extracted within 48 h. Subsequently, the samples were tested by RT-PCR for a panel of seven CTC mRNA markers. CRYAB was the most sensitive single marker with a sensitivity of 35% and also the most specific marker with a specificity of 100% to detect group 1 blood samples. A multimarker assay combining four genes enhanced the sensitivity up to 77.5%, but decreased the specificity to 80%. CRYAB appeared to be highly specific but only moderately sensitive at detecting blood samples from dogs with metastatic tumours and detection significantly correlated with vascular invasion of primary mammary tumours. However, a multimarker assay of four genes significantly enhanced the sensitivity of the assay and is therefore preferable for CTC detection. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Sonoporation with Acoustic Cluster Therapy (ACT®) induces transient tumour volume reduction in a subcutaneous xenograft model of pancreatic ductal adenocarcinoma.

    PubMed

    Kotopoulis, Spiros; Stigen, Endre; Popa, Mihaela; Safont, Mireia Mayoral; Healey, Andrew; Kvåle, Svein; Sontum, Per; Gjertsen, Bjørn Tore; Gilja, Odd Helge; McCormack, Emmet

    2017-01-10

    Pancreatic ductal adenocarcinoma (PDAC) remains one of the deadliest cancers with survival averaging only 3months if untreated following diagnosis. A major limitation in effectively treating PDAC using conventional and targeted chemotherapeutic agents, is inadequate drug delivery to the target location, predominantly due to a poorly vascularised, desmoplastic tumour microenvironment. Ultrasound in combination with ultrasound contrast agents, i.e., microbubbles, that flow through the vasculature and capillaries can be used to disrupt such mechanical barriers, potentially allowing for a greater therapeutic efficacy. This phenomenon is commonly referred to as sonoporation. In an attempt to improve the efficacy of sonoporation, novel microbubble formulations are being developed to address the limitation of commercially produced clinical diagnostic ultrasound contrast agents. In our work here we evaluate the ability of a novel formulation; namely Acoustic Cluster Therapy (ACT®) to improve the therapeutic efficacy of the chemotherapeutic agent paclitaxel, longitudinally in a xenograft model of PDAC. Results indicated that ACT® bubbles alone demonstrated no observable toxic effects, whilst ACT® in combination with paclitaxel can transiently reduce tumour volumes significantly, three days posttreatment (p=0.0347-0.0458). Quantitative 3D ultrasound validated the calliper measurements. Power Doppler ultrasound imaging indicated that ACT® in combination with paclitaxel was able to transiently sustain peak vasculature percentages as observed in the initial stages of tumour development. Nevertheless, there was no significant difference in tumour vasculature percentage at the end of treatment. The high vascular percentage correlated to the transient decrease and overall inhibition of the tumour volumes. In conclusion, ACT® improves the therapeutic efficacy of paclitaxel in a PDAC xenograft model allowing for transient tumour volume reduction and sustained tumour vasculature

  11. Nonlinear acoustic techniques for landmine detection.

    PubMed

    Korman, Murray S; Sabatier, James M

    2004-12-01

    Measurements of the top surface vibration of a buried (inert) VS 2.2 anti-tank plastic landmine reveal significant resonances in the frequency range between 80 and 650 Hz. Resonances from measurements of the normal component of the acoustically induced soil surface particle velocity (due to sufficient acoustic-to-seismic coupling) have been used in detection schemes. Since the interface between the top plate and the soil responds nonlinearly to pressure fluctuations, characteristics of landmines, the soil, and the interface are rich in nonlinear physics and allow for a method of buried landmine detection not previously exploited. Tuning curve experiments (revealing "softening" and a back-bone curve linear in particle velocity amplitude versus frequency) help characterize the nonlinear resonant behavior of the soil-landmine oscillator. The results appear to exhibit the characteristics of nonlinear mesoscopic elastic behavior, which is explored. When two primary waves f1 and f2 drive the soil over the mine near resonance, a rich spectrum of nonlinearly generated tones is measured with a geophone on the surface over the buried landmine in agreement with Donskoy [SPIE Proc. 3392, 221-217 (1998); 3710, 239-246 (1999)]. In profiling, particular nonlinear tonals can improve the contrast ratio compared to using either primary tone in the spectrum.

  12. Soldier/robot team acoustic detection

    NASA Astrophysics Data System (ADS)

    Young, Stuart H.; Scanlon, Michael V.

    2003-09-01

    The future battlefield will require an unprecedented level of automation in which soldier-operated, autonomous, and semi-autonomous ground, air, and sea platforms along with mounted and dismounted soldiers will function as a tightly coupled team. Sophisticated robotic platforms with diverse sensor suites will be an integral part of the Objective Force, and must be able to collaborate not only amongst themselves but also with their manned partners. The Army Research Laboratory has developed a robot-based acoustic detection system that will detect and localize on an impulsive noise event, such as a sniper's weapon firing. Additionally, acoustic sensor arrays worn on a soldier's helmet or equipment can enhance his situational awareness and RSTA capabilities. The Land Warrior or Objective Force Warrior body-worn computer can detect tactically significant impulsive signatures from bullets, mortars, artillery, and missiles or spectral signatures from tanks, helicopters, UAVs, and mobile robots. Time-difference-of-arrival techniques can determine a sound's direction of arrival, while head attitude sensors can instantly determine the helmet orientation at time of capture. With precision GPS location of the soldier, along with the locations of other soldiers, robots, or unattended ground sensors that heard the same event, triangulation techniques can produce an accurate location of the target. Data from C-4 explosions and 0.50-Caliber shots shows that both helmet and robot systems can localize on the same event. This provides an awesome capability - mobile robots and soldiers working together on an ever-changing battlespace to detect the enemy and improve the survivability, mobility, and lethality of our future warriors.

  13. Towards the optimisation of acoustic fields for ablative therapies of tumours in the upper abdomen

    NASA Astrophysics Data System (ADS)

    Gélat, P.; ter Haar, G.; Saffari, N.

    2013-08-01

    The efficacy of high intensity focused ultrasound (HIFU) for the non-invasive treatment of cancer has been demonstrated for a range of different cancers including those of the liver, kidney, prostate and breast. As a non-invasive focused therapy, HIFU offers considerable advantages over other techniques such as chemotherapy and surgical resection, in terms of its non-invasiveness and low risk of harmful side effects. There is, however, a number of significant challenges which currently hinder its widespread clinical application. One of these challenges is the need to transmit sufficient energy through the ribcage to induce tissue necrosis at the required foci whilst minimising the formation of side lobes and sparing healthy tissue. Ribs both absorb and reflect ultrasound strongly. As such, a common side effect of focusing ultrasound in regions located behind the rib cage is the overheating of bone and surrounding tissue, which can lead to skin burns. Successful treatment of a patient with tumours in the upper abdomen therefore requires a thorough understanding of the way acoustic and thermal energy are deposited. This is likely to rely on a treatment planning procedure in which optimal source velocity distributions are obtained so as to maximise a dose quantity at the treatment sites, whilst ensuring that this quantity does not exceed a specified threshold at other field locations, particularly on the surface of the ribs. Previously, a boundary element approach based on a Generalised Minimal Residual (GMRES) implementation of the Burton-Miller formulation was developed to predict the field of a multi-element HIFU array scattered by human ribs, the topology of which was obtained from CT scan data [1]. This work describes the reformulation of the boundary element equations as a least-squares minimisation problem with non-linear constraints. The methodology was subsequently tested at an excitation frequency of 100 kHz on a spherical multi-element array in the presence

  14. Detection of the index tumour and tumour volume in prostate cancer using T2-weighted and diffusion-weighted magnetic resonance imaging (MRI) alone.

    PubMed

    Rud, Erik; Klotz, Dagmar; Rennesund, Kristin; Baco, Eduard; Berge, Viktor; Lien, Diep; Svindland, Aud; Lundeby, Eskild; Berg, Rolf E; Eri, Lars M; Eggesbø, Heidi B

    2014-12-01

    To examine the performance of T2-weighted (T2W) and diffusion-weighted (DW) magnetic resonance imaging (MRI) for detecting the index tumour in patients with prostate cancer and to examine the agreement between MRI and histology when assessing tumour volume (TV) and overall tumour burden. The study included 199 consecutive patients with biopsy confirmed prostate cancer randomised to MRI before radical prostatectomy from December 2009 to July 2012. MRI-detected tumours (MRTs) were ranked from 1 to 3 according to decreasing volume and were compared with histologically detected tumours (HTs) ranked from 1 to 3, with HT 1 = index tumour. Whole-mount section histology was used as a reference standard. The TVs of true-positive MRTs (MRTVs 1-3) were compared with the TVs found by histology (HTVs 1-3). All tumours were registered on a 30-sector map and by classifying each sector as positive/negative, the rate of true-positive and -negative sectors was calculated. The detection rate for the HT 1 (index tumour) was 92%; HT 2, 45%; and HT 3, 37%. The MRTV 1-3 vs the HTV 1-3 were 2.8 mL vs 4.0 mL (index tumour, P < 0.001), 1.0 mL vs 0.9 mL (tumour 2, P = 0.413), and 0.6 mL vs 0.5 mL (tumour 3, P = 0.492). The rate of true-positive and -negative sectors was 50% and 88%, κ = 0.39. A combination of T2W and DW MRI detects the index tumour in 92% of cases, although MRI underestimates both TV and tumour burden compared with histology. © 2014 The Authors. BJU International © 2014 BJU International.

  15. Dynamic ultrasonic contact detection using acoustic emissions.

    PubMed

    Turner, S L; Rabani, A; Axinte, D A; King, C W

    2014-03-01

    For a non-contact ultrasonic material removal process, the control of the standoff position can be crucial to process performance; particularly where the requirement is for a standoff of the order of <20 μm. The standoff distance relative to the surface to be machined can be set by first contacting the ultrasonic tool tip with the surface and then withdrawing the tool to the required position. Determination of this contact point in a dynamic system at ultrasonic frequencies (>20 kHz) is achieved by force measurement or by detection of acoustic emissions (AE). However, where detection of distance from a surface must be determined without contact taking place, an alternative method must be sought. In this paper, the effect of distance from contact of an ultrasonic tool is measured by detection of AE through the workpiece. At the point of contact, the amplitude of the signal at the fundamental frequency increases significantly, but the strength of the 2nd and 3rd harmonic signals increases more markedly. Closer examination of these harmonics shows that an increase in their intensities can be observed in the 10 μm prior to contact, providing a mechanism to detect near contact (<10 μm) without the need to first contact the surface in order to set a standoff. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Study of piezo based sensors for acoustic particle detection

    NASA Astrophysics Data System (ADS)

    Anton, G.; Graf, K.; Hößl, J.; Kappes, A.; Karg, T.; Katz, U.; Kretschmer, W.; Kuch, S.; Lahmann, R.; Naumann, C.; Salomon, K.

    2006-11-01

    We present a characterisation of piezo sensors for acoustic particle detection. Electrical impedance, mechanical displacement and the sensitivity of piezo sensors were measured and modelled using a simple equivalent circuit diagram. In addition, finite element simulations were performed to describe the behaviour of the sensors. Their application for acoustic particle detection is discussed.

  17. Tumour-related factors and prognosis in breast cancer detected by screening.

    PubMed

    Olsson, A; Borgquist, S; Butt, S; Zackrisson, S; Landberg, G; Manjer, J

    2012-01-01

    Breast cancer detected by screening has an unexplained prognostic advantage beyond stage shift compared with cancers detected clinically. The aim was to investigate biological factors in invasive breast cancer, with reference to mode of detection and rate of death from breast cancer. Histology, oestrogen receptor α and β, progesterone receptor, human epidermal growth factor receptor (HER) 2, cyclin D1, p27, Ki-67 and perinodal growth were analysed in 466 tumours from a prospective cohort, the Malmö Diet and Cancer Study. Using logistic regression, odds ratios were calculated to investigate the relationship between tumour characteristics and mode of detection. The same tumour factors were analysed in relation to standard prognostic features. Death from breast cancer was analysed using Cox regression with adjustments for standard tumour factors; differences following adjustment were analysed by means of Freedman statistics. None of the biological tumour characteristics varied with mode of detection of breast cancer. After adjustment for age, tumour size, axillary lymph node involvement (ALNI) and grade, women with cancer detected clinically had an increased risk of death from breast cancer (hazard ratio 2·48, 95 per cent confidence interval 1·34 to 4·59), corresponding to a 37·2 per cent difference compared with the unadjusted model. Additional adjustment for biological tumour factors studied caused only minor changes. None of the biological tumour markers investigated explained the improved prognosis in breast cancer detected by screening. None of the factors was related to ALNI, suggesting that other mechanisms may be responsible for tumour spread. Copyright © 2011 British Journal of Surgery Society Ltd. Published by John Wiley & Sons, Ltd.

  18. Acoustic change detection algorithm using an FM radio

    NASA Astrophysics Data System (ADS)

    Goldman, Geoffrey H.; Wolfe, Owen

    2012-06-01

    The U.S. Army is interested in developing low-cost, low-power, non-line-of-sight sensors for monitoring human activity. One modality that is often overlooked is active acoustics using sources of opportunity such as speech or music. Active acoustics can be used to detect human activity by generating acoustic images of an area at different times, then testing for changes among the imagery. A change detection algorithm was developed to detect physical changes in a building, such as a door changing positions or a large box being moved using acoustics sources of opportunity. The algorithm is based on cross correlating the acoustic signal measured from two microphones. The performance of the algorithm was shown using data generated with a hand-held FM radio as a sound source and two microphones. The algorithm could detect a door being opened in a hallway.

  19. Acoustic detection of Immiscible Liquids in Sand

    SciTech Connect

    Geller, Jil T.; Kowalsky, Michael B.; Seifert, Patricia K.; Nihei, Kurt T.

    1999-03-01

    Laboratory cross-well P-wave transmission at 90 kHz was measured in a 61 cm diameter by 76 cm tall water-saturated sand pack, before and after introducing a non-aqueous phase organic liquid (NAPL) (n-dodecane). In one experiment NAPL was introduced to form a lens trapped by a low permeability layer; a second experiment considered NAPL residual trapped behind the front of flowing NAPL. The NAPL caused significant changes in the travel time and amplitude of first arrivals, as well as the generation of diffracted waves arriving after the direct wave. The spatial variations in NAPL saturation obtained from excavation at the end of the experiment correlated well with the observed variations in the P-wave amplitudes and travel times. NAPL residual saturation changes from NAPL flow channels of 3 to 4% were detectable and the 40 to 80% NAPL saturation in the NAPL lens was clearly visible at acoustic frequencies. The results of these experiments demonstrate that small NAPL saturations may be more easily detected with amplitude rather than travel time data, but that the relationships between the amplitude changes and NAPL saturation maybe more complex than those for velocity.

  20. Detection of circulating tumour cells in patients with breast or ovarian cancer by molecular cytogenetics

    PubMed Central

    Engel, H; Kleespies, C; Friedrich, J; Breidenbach, M; Kallenborn, A; Schöndorf, T; Kolhagen, H; Mallmann, P

    1999-01-01

    Detection of micrometastases in patients with solid tumours may aid the establishment of prognosis and development of new therapeutic approaches. This study was designed to investigate the presence and frequency of tumour cells in the peripheral blood (PB) of patients with breast or ovarian cancer by using a combination of magnetic activated cell sorting (MACS) and fluorescence in situ hybridization (FISH). Separated tumour cell and PB-samples from 48 patients (35 breast cancers, 12 ovarian tumours, one uterine sarcoma) were analysed for the presence of numerical aberrations of chromosomes 7, 12, 17 and 17 q11.2–q12. Twenty-five patients had primary disease and 23 had relapsed. The technique allows the detection of one tumour cell in 106 normal cells. Circulating tumour cells were detected in 35/48 cases (17 patients had relapsed and 13 primary carcinoma with lymph node or solid metastases) by the expression of anti-cytokeratin and the presence of numerical chromosomal abnormalities. PB-tumour cells of patients with a primary carcinoma and without solid metastases had a significantly lower percentage of chromosomal aberrations, especially for chromosome 12 (P = 0.035; P = 0.038) compared to those with relapsed disease and solid metastases. Detection and quantification of minimal residual disease may monitor the response to cytotoxic or hormonal therapy and may identify women at risk of relapse. © 1999 Cancer Research Campaign PMID:10584878

  1. Brain tumour classification and abnormality detection using neuro-fuzzy technique and Otsu thresholding.

    PubMed

    Renjith, Arokia; Manjula, P; Mohan Kumar, P

    2015-01-01

    Brain tumour is one of the main causes for an increase in transience among children and adults. This paper proposes an improved method based on Magnetic Resonance Imaging (MRI) brain image classification and image segmentation approach. Automated classification is encouraged by the need of high accuracy when dealing with a human life. The detection of the brain tumour is a challenging problem, due to high diversity in tumour appearance and ambiguous tumour boundaries. MRI images are chosen for detection of brain tumours, as they are used in soft tissue determinations. First of all, image pre-processing is used to enhance the image quality. Second, dual-tree complex wavelet transform multi-scale decomposition is used to analyse texture of an image. Feature extraction extracts features from an image using gray-level co-occurrence matrix (GLCM). Then, the Neuro-Fuzzy technique is used to classify the stages of brain tumour as benign, malignant or normal based on texture features. Finally, tumour location is detected using Otsu thresholding. The classifier performance is evaluated based on classification accuracies. The simulated results show that the proposed classifier provides better accuracy than previous method.

  2. Acoustic emission detection based on distributed feedback fiber laser

    NASA Astrophysics Data System (ADS)

    Yang, Tan; Song, Ying; Zhang, Wen-tao; Li, Fang

    2016-10-01

    Compared with Fiber Bragg grating (FBG), Distributed Feedback fiber laser (DFB-FL) sensors has the advantages of ultra-narrow line-width, high output power, and low noise level, which will result in a better performance in ultra-slight acoustic emission (AE) detection. In this paper, we demonstrate a DFB fiber laser acoustic sensor. The intensity response of DFB-FL to external acoustic waves has been investigated. The frequency response of the DFB fiber laser based AE sensor is measured in aluminum plate. The experiment results show that the intensity modulated DFB fiber laser acoustic sensor can accurately record the continuous acoustic emission signal and the pencil lead-broken acoustic emission waves.

  3. Thermal Acoustic Oscillation: Causes, Detection, Analysis and Prevention

    NASA Technical Reports Server (NTRS)

    Christie, Robert J.; Hartwig, Jason W.

    2014-01-01

    The presentation discusses the causes of Thermal Acoustic Oscillations, how it can be detected, analyzed and prevented. It also discusses where it can occur, where it doesn't occur and practical mitigation techniques.

  4. Acoustic detection of air shower cores

    NASA Astrophysics Data System (ADS)

    Gao, X.; Liu, Y.; Du, S.

    1985-08-01

    At an altitude of 1890m, a pre-test with an Air shower (AS) core selector and a small acoustic array set up in an anechoic pool with a volume of 20x7x7 cu m was performed, beginning in Aug. 1984. In analyzing the waveforms recorded during the effective working time of 186 hrs, three acoustic signals which cannot be explained as from any source other than AS cores were obtained, and an estimation of related parameters was made.

  5. Fourier descriptor features for acoustic landmine detection

    NASA Astrophysics Data System (ADS)

    Keller, James M.; Cheng, Zhanqi; Gader, Paul D.; Hocaoglu, Ali K.

    2002-08-01

    Signatures of buried landmines are often difficult to separate from those of clutter objects. Often, shape information is not directly obtainable from the sensors used for landmine detection. The Acoustic Sensing Technology (AST), which uses a Laser Doppler Vibrometer (LDV) that measures the spatial pattern of particle velocity amplitude of the ground surface in a variety of frequency bands, offers a unique look at subsurface phenomena. It directly records shape related information. Generally, after preprocessing the frequency band images in a downward looking LDV system, landmines have fairly regular shapes (roughly circular) over a range of frequencies while clutter tends to exhibit irregular shapes different from those of landmines. Therefore, shape description has the potential to be used in discriminating mines from clutter. Normalized Fourier Descriptors (NFD) are shape parameters independent of size, angular orientation, position, and contour starting conditions. In this paper, the stack of 2D frequency images from the LDV system are preprocessed by a linear combination of order statistics (LOS) filter, thresholding, and 2D and 3D connected labeling. Contours are extracted form the connected components and aggregated to produce evenly spaced boundary points. Two types of Normalized Fourier Descriptors are computed from the outlines. Using images obtained from a standard data collection site, these features are analyzed for their ability to discriminate landmines from background and clutter such as wood and stones. From a standard feature selection procedure, it was found that a very small number of features are required to effectively separate landmines from background and clutter using simple pattern recognition algorithms. Details of the experiments are included.

  6. Method and apparatus of spectro-acoustically enhanced ultrasonic detection for diagnostics

    DOEpatents

    Vo-Dinh, Tuan; Norton, Stephen J.

    2001-01-01

    An apparatus for detecting a discontinuity in a material includes a source of electromagnetic radiation has a wavelength and an intensity sufficient to induce an enhancement in contrast between a manifestation of an acoustic property in the material and of the acoustic property in the discontinuity, as compared to when the material is not irradiated by the electromagnetic radiation. An acoustic emitter directs acoustic waves to the discontinuity in the material. The acoustic waves have a sensitivity to the acoustic property. An acoustic receiver receives the acoustic waves generated by the acoustic emitter after the acoustic waves have interacted with the material and the discontinuity. The acoustic receiver also generates a signal representative of the acoustic waves received by the acoustic receiver. A processor, in communication with the acoustic receiver and responsive to the signal generated by the acoustic receiver, is programmed to generate informational output about the discontinuity based on the signal generated by the acoustic receiver.

  7. Optically selective, acoustically resonant gas detecting transducer

    NASA Technical Reports Server (NTRS)

    Dimeff, J. (Inventor)

    1977-01-01

    A gas analyzer is disclosed which responds to the resonant absorption or emission spectrum of a specific gas by producing an acoustic resonance in a chamber containing a sample of that gas, and which measures the amount of that emission or absorption by measuring the strength of that acoustic resonance, e.g., the maximum periodic pressure, velocity or density achieved. In the preferred embodiment, a light beam is modulated periodically at the acoustical resonance frequency of a closed chamber which contains an optically dense sample of the gas of interest. Periodic heating of the absorbing gas by the light beam causes a cyclic expansion, movement, and pressure within the gas. An amplitude is reached where the increased losses were the cyclic radiation energy received. A transducing system is inclined for converting the pressure variations of the resonant gas into electronic readout signals.

  8. Detection of necrosis in human tumour xenografts by proton magnetic resonance imaging.

    PubMed Central

    Jakobsen, I.; Kaalhus, O.; Lyng, H.; Rofstad, E. K.

    1995-01-01

    Tumours with necrotic regions have an inadequate blood supply and are expected to differ from well-vascularised tumours in response to treatment. The purpose of the present work was to investigate whether proton magnetic resonance imaging (MRI) might be used to detect necrotic regions in tumours. MR images and histological sections from individual tumours of three different amelanotic human melanoma xenograft lines (BEX-t, HUX-t, SAX-t) were analysed in pairs. MRI was performed at 1.5 T using two spin-echo pulse sequences, one with a repetition time (TR) of 600 ms and echo times (TEs) of 20, 40, 60 and 80 ms and the other with a TR of 2000 ms and TEs of 20, 40, 60 and 80 ms. Spin-lattice relaxation time (T1), spin-spin relaxation time (T2) and proton density (N0) were calculated for each volume element corresponding to a pixel. Synthetic MR images, pure T1, T2 and N0 images and spin-echo images with chosen values for TR and TE were generated from these data. T1, T2 and N0 distributions of tumour subregions, corresponding to necrotic regions and regions of viable tissue as defined by histological criteria, were also generated. T1 and T2 were significantly shorter in the necrotic regions than in the regions of viable tissue in all tumours. These differences were sufficiently large to allow the generation of synthetic spin-echo images showing clear contrast between necrosis and viable tissue. Maximum contrast was achieved with TRs within the range 2800-4000 ms and TEs within the range 160-200 ms. Necrotic tissue could also be distinguished from viable tissue in pure T1 and T2 images. Consequently, the possibility exists that MRI might be used for detection of necrotic regions in tumours and hence for prediction of tumour treatment response. Images Figure 4 Figure 5 PMID:7880724

  9. In vivo magnetic enrichment and multiplex photoacoustic detection of circulating tumour cells

    PubMed Central

    Galanzha, Ekaterina I.; Shashkov, Evgeny V.; Kelly, Thomas; Kim, Jin-Woo; Yang, Lily; Zharov, Vladimir P.

    2012-01-01

    The spread of cancer cells between organs, a process known as metastasis, is the cause of most cancer deaths1,2. Detecting circulating tumour cells—a common marker for the development of metastasis3,4—is difficult because ex vivo methods are not sensitive enough owing to limited blood sample volume and in vivo diagnosis is time-consuming as large volumes of blood must be analysed5–7. Here, we show a way to magnetically capture circulating tumour cells in the bloodstream of mice followed by rapid photoacoustic detection. Magnetic nanoparticles, which were functionalized to target a receptor commonly found in breast cancer cells, bound and captured circulating tumour cells under a magnet. To improve detection sensitivity and specificity, gold-plated carbon nanotubes conjugated with folic acid were used as a second contrast agent for photoacoustic imaging. By integrating in vivo multiplex targeting, magnetic enrichment, signal amplification and multicolour recognition, our approach allows circulating tumour cells to be concentrated from a large volume of blood in the vessels of tumour-bearing mice, and this could have potential for the early diagnosis of cancer and the prevention of metastasis in humans. PMID:19915570

  10. In vivo magnetic enrichment and multiplex photoacoustic detection of circulating tumour cells

    NASA Astrophysics Data System (ADS)

    Galanzha, Ekaterina I.; Shashkov, Evgeny V.; Kelly, Thomas; Kim, Jin-Woo; Yang, Lily; Zharov, Vladimir P.

    2009-12-01

    The spread of cancer cells between organs, a process known as metastasis, is the cause of most cancer deaths. Detecting circulating tumour cells-a common marker for the development of metastasis-is difficult because ex vivo methods are not sensitive enough owing to limited blood sample volume and in vivo diagnosis is time-consuming as large volumes of blood must be analysed. Here, we show a way to magnetically capture circulating tumour cells in the bloodstream of mice followed by rapid photoacoustic detection. Magnetic nanoparticles, which were functionalized to target a receptor commonly found in breast cancer cells, bound and captured circulating tumour cells under a magnet. To improve detection sensitivity and specificity, gold-plated carbon nanotubes conjugated with folic acid were used as a second contrast agent for photoacoustic imaging. By integrating in vivo multiplex targeting, magnetic enrichment, signal amplification and multicolour recognition, our approach allows circulating tumour cells to be concentrated from a large volume of blood in the vessels of tumour-bearing mice, and this could have potential for the early diagnosis of cancer and the prevention of metastasis in humans.

  11. Modified nucleosides: an accurate tumour marker for clinical diagnosis of cancer, early detection and therapy control

    PubMed Central

    Seidel, A; Brunner, S; Seidel, P; Fritz, G I; Herbarth, O

    2006-01-01

    Modified nucleosides, regarded as indicators for the whole-body turnover of RNAs, are excreted in abnormal amounts in the urine of patients with malignancies. To test their usefulness as tumour markers and to compare them with the conventional tumour markers, fractionated urine samples were analysed using chromatography. The excretion patterns of nucleosides of 68 cancer patients with malignant and benign tumours and 41 healthy controls have been studied. Significant elevations in the total sum and the concentrations of at least three (or four) of indicator nucleosides cytidine, pseudouridine, 2-pyridone-5-carboxamide-N1-ribofuranoside, N2,N2-dimethylguanine, 1-methylguanosine, 2-methylguanosine and 1-methyladenosine indicate a tumour with a sensitivity of 54% (77%) and a specificity of 86% (98%). Using an artificial neural network analysis, a sensitivity of 97% and a specificity of 85% were achieved in differentiating between tumour and control volunteers. The comparison with carcinoembryonic antigen, cancer antigen 15-3 und tissue polypeptide antigen indicates that urinary nucleosides may be useful tumour markers. This study suggests that the simultaneous determination of modified nucleosides and creatinine in urine samples of patients with cancer leads to an advantage to current methods and is a useful method to detect cancer early and to control the success of therapy. PMID:16685264

  12. Perspectives of monoclonal antibodies for detection and treatment of head and neck tumours.

    PubMed

    Quak, J; Gerretsen, M; De Bree, R; Brakenhof, R; Van Dongen, G; Snow, G

    1993-01-01

    Monoclonal antibodies (mabs) are potentially powerful tools for the detection and treatment of cancer. To date, only a limited number of mabs are available to head and neck cancer. We produced 5 different groups of mabs to head and neck cancer. These mabs were characterized for their reactivity tumour and non-tumour tissues. Furthermore, biochemical elucidation of recognized antigens was provided. In animal studies the effectiveness of mabs for diagnoses and therapy of cancer is clearly demonstrated. The first results of a clinical study for the detection of head and neck cancer with mabs are shown. Finally, the future of mabs in clinical oncology is discussed.

  13. Detection and Identification of Acoustic Signatures

    DTIC Science & Technology

    2011-08-01

    Sound Answers Inc. Canton, MI Gabriella Cerrato, PhD Sound Answers Inc. Canton, MI Robert E. Smith RDECOM-TARDEC Warren, MI...or one-third octave band based spectra and that the temporal pattern of a sound should be considered. INTRODUCTION Acoustic cues have significant...fairly simplistic terms, using the overall sound pressure level (SPL), or some weighted or adjusted SPL. Improvements on this approach involve

  14. Acoustic Detection of Phase Transitions at the Nanoscale

    DOE PAGES

    Vasudevan, Rama K.; Khassaf, Hamidreza; Cao, Ye; ...

    2016-01-25

    On page 478, N. Bassiri-Gharb and co-workers demonstrate acoustic detection in nanoscale volumes by use of an atomic force microscope tip technique. Elastic changes in volume are measured by detecting changes in resonance of the cantilever. Also, the electric field in this case causes a phase transition, which is modeled by Landau theory.

  15. Background Studies for Acoustic Neutrino Detection at the South Pole

    NASA Technical Reports Server (NTRS)

    Abbasi, R.; Abdou, Y.; Abu-Zayyad, T.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Andeen, K.; Auffenberg, J.; Bai, X.; Baker, M.; hide

    2012-01-01

    The detection of acoustic signals from ultra-high energy neutrino interactions is a promising method. to measure the flux of cosmogenic neutrinos expected on Earth. The energy threshold for this process depends strongly on the absolute noise level in the target material. The South Pole Acoustic Test Setup (SPATS). deployed in the upper part of four boreholes of the IceCube Neutrino Observatory, has monitored the noise in Antarctic ice at the geographic South Pole for more than two years down to 500 m depth. The noise is very stable and Gaussian distributed, Lacking an in situ calibration up to now, laboratory measurements have been used to estimate the absolute noise level in the 10-50 kHz frequency range to be smaller than 20 mPa. Using a threshold trigger. sensors of the South Pole Acoustic Test Setup registered acoustic events in the IceCube detector volume and its vicinity. Acoustic signals from refreezing IceCube holes and from anthropogenic sources have been used to test the localization of acoustic events. An upper limit on the neutrino flux at energies E(sub v) > 10(exp 11) GeV is derived from acoustic data taken over eight months.

  16. Background Studies for Acoustic Neutrino Detection at the South Pole

    NASA Technical Reports Server (NTRS)

    Abbasi, R.; Abdou, Y.; Abu-Zayyad, T.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Andeen, K.; Auffenberg, J.; Bai, X.; Baker, M.; Barwick, S. W.; Bay, R.; Bazo Alba, J. L.; Beattie, K.; Beatty, J. J.; Bechet, S.; Becker, J. K.; Becker, K. H.; Benabderrahmane, M. L.; BenZvi, S.; Berdermann, J.; Berghaus, P.; Berley, D.; Bernardini, E.; Stamatikos, M.

    2012-01-01

    The detection of acoustic signals from ultra-high energy neutrino interactions is a promising method. to measure the flux of cosmogenic neutrinos expected on Earth. The energy threshold for this process depends strongly on the absolute noise level in the target material. The South Pole Acoustic Test Setup (SPATS). deployed in the upper part of four boreholes of the IceCube Neutrino Observatory, has monitored the noise in Antarctic ice at the geographic South Pole for more than two years down to 500 m depth. The noise is very stable and Gaussian distributed, Lacking an in situ calibration up to now, laboratory measurements have been used to estimate the absolute noise level in the 10-50 kHz frequency range to be smaller than 20 mPa. Using a threshold trigger. sensors of the South Pole Acoustic Test Setup registered acoustic events in the IceCube detector volume and its vicinity. Acoustic signals from refreezing IceCube holes and from anthropogenic sources have been used to test the localization of acoustic events. An upper limit on the neutrino flux at energies E(sub v) > 10(exp 11) GeV is derived from acoustic data taken over eight months.

  17. Background studies for acoustic neutrino detection at the South Pole

    NASA Astrophysics Data System (ADS)

    Abbasi, R.; Abdou, Y.; Abu-Zayyad, T.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Andeen, K.; Auffenberg, J.; Bai, X.; Baker, M.; Barwick, S. W.; Bay, R.; Bazo Alba, J. L.; Beattie, K.; Beatty, J. J.; Bechet, S.; Becker, J. K.; Becker, K.-H.; Benabderrahmane, M. L.; Benzvi, S.; Berdermann, J.; Berghaus, P.; Berley, D.; Bernardini, E.; Bertrand, D.; Besson, D. Z.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Bose, D.; Böser, S.; Botner, O.; Braun, J.; Brown, A. M.; Buitink, S.; Carson, M.; Chirkin, D.; Christy, B.; Clem, J.; Clevermann, F.; Cohen, S.; Colnard, C.; Cowen, D. F.; D'Agostino, M. V.; Danninger, M.; Daughhetee, J.; Davis, J. C.; de Clercq, C.; Demirörs, L.; Denger, T.; Depaepe, O.; Descamps, F.; Desiati, P.; de Vries-Uiterweerd, G.; Deyoung, T.; Díaz-Vélez, J. C.; Dierckxsens, M.; Dreyer, J.; Dumm, J. P.; Ehrlich, R.; Eisch, J.; Ellsworth, R. W.; Engdegård, O.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Fedynitch, A.; Feusels, T.; Filimonov, K.; Finley, C.; Fischer-Wasels, T.; Foerster, M. M.; Fox, B. D.; Franckowiak, A.; Franke, R.; Gaisser, T. K.; Gallagher, J.; Geisler, M.; Gerhardt, L.; Gladstone, L.; Glüsenkamp, T.; Goldschmidt, A.; Goodman, J. A.; Grant, D.; Griesel, T.; Groß, A.; Grullon, S.; Gurtner, M.; Ha, C.; Hallgren, A.; Halzen, F.; Han, K.; Hanson, K.; Heinen, D.; Helbing, K.; Herquet, P.; Hickford, S.; Hill, G. C.; Hoffman, K. D.; Homeier, A.; Hoshina, K.; Hubert, D.; Huelsnitz, W.; Hülß, J.-P.; Hulth, P. O.; Hultqvist, K.; Hussain, S.; Ishihara, A.; Jacobsen, J.; Japaridze, G. S.; Johansson, H.; Joseph, J. M.; Kampert, K.-H.; Kappes, A.; Karg, T.; Karle, A.; Kelley, J. L.; Kenny, P.; Kiryluk, J.; Kislat, F.; Klein, S. R.; Köhne, J.-H.; Kohnen, G.; Kolanoski, H.; Köpke, L.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Kowarik, T.; Krasberg, M.; Krings, T.; Kroll, G.; Kuehn, K.; Kuwabara, T.; Labare, M.; Lafebre, S.; Laihem, K.; Landsman, H.; Larson, M. J.; Lauer, R.; Lünemann, J.; Madsen, J.; Majumdar, P.; Marotta, A.; Maruyama, R.; Mase, K.; Matis, H. S.; Meagher, K.; Merck, M.; Mészáros, P.; Meures, T.; Middell, E.; Milke, N.; Miller, J.; Montaruli, T.; Morse, R.; Movit, S. M.; Nahnhauer, R.; Nam, J. W.; Naumann, U.; Nießen, P.; Nygren, D. R.; Odrowski, S.; Olivas, A.; Olivo, M.; O'Murchadha, A.; Ono, M.; Panknin, S.; Paul, L.; Pérez de Los Heros, C.; Petrovic, J.; Piegsa, A.; Pieloth, D.; Porrata, R.; Posselt, J.; Price, P. B.; Prikockis, M.; Przybylski, G. T.; Rawlins, K.; Redl, P.; Resconi, E.; Rhode, W.; Ribordy, M.; Rizzo, A.; Rodrigues, J. P.; Roth, P.; Rothmaier, F.; Rott, C.; Ruhe, T.; Rutledge, D.; Ruzybayev, B.; Ryckbosch, D.; Sander, H.-G.; Santander, M.; Sarkar, S.; Schatto, K.; Schmidt, T.; Schönwald, A.; Schukraft, A.; Schultes, A.; Schulz, O.; Schunck, M.; Seckel, D.; Semburg, B.; Seo, S. H.; Sestayo, Y.; Seunarine, S.; Silvestri, A.; Slipak, A.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Stephens, G.; Stezelberger, T.; Stokstad, R. G.; Stössl, A.; Stoyanov, S.; Strahler, E. A.; Straszheim, T.; Stür, M.; Sullivan, G. W.; Swillens, Q.; Taavola, H.; Taboada, I.; Tamburro, A.; Tepe, A.; Ter-Antonyan, S.; Tilav, S.; Toale, P. A.; Toscano, S.; Tosi, D.; Turčan, D.; van Eijndhoven, N.; Vandenbroucke, J.; van Overloop, A.; van Santen, J.; Vehring, M.; Voge, M.; Walck, C.; Waldenmaier, T.; Wallraff, M.; Walter, M.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whitehorn, N.; Wiebe, K.; Wiebusch, C. H.; Williams, D. R.; Wischnewski, R.; Wissing, H.; Wolf, M.; Woschnagg, K.; Xu, C.; Xu, X. W.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zarzhitsk, P.

    2012-01-01

    The detection of acoustic signals from ultra-high energy neutrino interactions is a promising method to measure the flux of cosmogenic neutrinos expected on Earth. The energy threshold for this process depends strongly on the absolute noise level in the target material. The South Pole Acoustic Test Setup (SPATS), deployed in the upper part of four boreholes of the IceCube Neutrino Observatory, has monitored the noise in Antarctic ice at the geographic South Pole for more than two years down to 500 m depth. The noise is very stable and Gaussian distributed. Lacking an in situ calibration up to now, laboratory measurements have been used to estimate the absolute noise level in the 10-50 kHz frequency range to be smaller than 20 mPa. Using a threshold trigger, sensors of the South Pole Acoustic Test Setup registered acoustic events in the IceCube detector volume and its vicinity. Acoustic signals from refreezing IceCube holes and from anthropogenic sources have been used to test the localization of acoustic events. An upper limit on the neutrino flux at energies Eν > 1011 GeV is derived from acoustic data taken over eight months.

  18. Acoustic Detection of Neutrinos: Review and Future Potential

    NASA Astrophysics Data System (ADS)

    Lahmann, Robert

    2016-04-01

    The acoustic neutrino detection technique is a promising approach for future large-scale detectors with the aim of measuring the small expected flux of cosmogenic neutrinos at energies exceeding 100 PeV. The technique is based on the thermo-acoustic model, which implies that the energy deposition by a particle cascade-resulting from a neutrino interaction in a medium with suitable thermal and acoustic properties-leads to a local heating and a subsequent characteristic pressure pulse that propagates in the surrounding medium. The main advantage of using sound for the detection of neutrino interactions, as opposed to Cherenkov light, lies in the much longer attenuation length of the former type of radiation: several kilometres for sound compared to several ten metres for light in the respective frequency ranges of interest in sea water. As detection media for future detectors, water, ice, salt domes and permafrost have been discussed, but it is the first two which have been investigated most thoroughly by using existing arrays of acoustic receivers-mainly military arrays in various bodies of water-or by implementing dedicated acoustic arrays in Cherenkov neutrino telescopes. Such arrays have been installed in IceCube at the South Pole, in the Lake Baikal experiment in Siberia and in ANTARES and the former NEMO experiment in the Mediterranean Sea. The future KM3NeT neutrino telescope to be installed in the Mediterranean Sea will be equipped with acoustic sensors for position calibration that are suited to also serve acoustic detection purposes. Ongoing experiments in water and ice have established the feasibility of the acoustic neutrino detection technique and allowed for the investigation of prevailing background conditions. Methods to improve the signal detection efficiency and to reduce the rate of misidentified neutrinos have been devised and potential future large-scale detector designs are investigated using detailed simulations in combination with the wealth

  19. Automatic detection of unattended changes in room acoustics.

    PubMed

    Frey, Johannes Daniel; Wendt, Mike; Jacobsen, Thomas

    2015-01-01

    Previous research has shown that the human auditory system continuously monitors its acoustic environment, detecting a variety of irregularities (e.g., deviance from prior stimulation regularity in pitch, loudness, duration, and (perceived) sound source location). Detection of irregularities can be inferred from a component of the event-related brain potential (ERP), referred to as the mismatch negativity (MMN), even in conditions in which participants are instructed to ignore the auditory stimulation. The current study extends previous findings by demonstrating that auditory irregularities brought about by a change in room acoustics elicit a MMN in a passive oddball protocol (acoustic stimuli with differing room acoustics, that were otherwise identical, were employed as standard and deviant stimuli), in which participants watched a fiction movie (silent with subtitles). While the majority of participants reported no awareness for any changes in the auditory stimulation, only one out of 14 participants reported to have become aware of changing room acoustics or sound source location. Together, these findings suggest automatic monitoring of room acoustics.

  20. Acoustic Aspects of Photoacoustic Signal Generation and Detection in Gases

    NASA Astrophysics Data System (ADS)

    Miklós, A.

    2015-09-01

    In this paper photoacoustic signal generation and detection in gases is investigated and discussed from the standpoint of acoustics. Four topics are considered: the effect of the absorption-desorption process of modulated and pulsed light on the heat power density released in the gas; the generation of the primary sound by the released heat in an unbounded medium; the excitation of an acoustic resonator by the primary sound; and finally, the generation of the measurable PA signal by a microphone. When light is absorbed by a molecule and the excess energy is relaxed by collisions with the surrounding molecules, the average kinetic energy, thus also the temperature of an ensemble of molecules (called "particle" in acoustics) will increase. In other words heat energy is added to the energy of the particle. The rate of the energy transfer is characterized by the heat power density. A simple two-level model of absorption-desorption is applied for describing the heat power generation process for modulated and pulsed illumination. Sound generation by a laser beam in an unbounded medium is discussed by means of the Green's function technique. It is shown that the duration of the generated sound pulse depends mostly on beam geometry. A photoacoustic signal is mostly detected in a photoacoustic cell composed of acoustic resonators, buffers, filters, etc. It is not easy to interpret the measured PA signal in such a complicated acoustic system. The acoustic response of a PA detector to different kinds of excitations (modulated cw, pulsed, periodic pulse train) is discussed. It is shown that acoustic resonators respond very differently to modulated cw excitation and to excitation by a pulse train. The microphone for detecting the PA signal is also a part of the acoustic system; its properties have to be taken into account by the design of a PA detector. The moving membrane of the microphone absorbs acoustic energy; thus, it may influence the resonance frequency and

  1. Intraoperative β{sup -} detecting probe for radio-guided surgery in tumour resection

    SciTech Connect

    Solfaroli Camillocci, Elena; Bellini, Fabio; Bocciy, Valerio; Collamatiyz, Francesco; Faccini, Riccardo; Paramattiy, Riccardo; Paterayz, Vincenzo; Pinciy, Davide; Recchiay, Luigi; Sciubbayz, Adalberto; Senzacqua, Martina; Voenay, Cecilia; Morgantiy, Silvio; De Luciax, Erika; Matteixk, Ilaria; Sartizx, Alessio; Russomando, Aandrea; Marafiniy, Michela

    2015-07-01

    The development of the β{sup -} based radio-guided surgery aims to extend the technique to those tumours where surgery is the only possible treatment and the assessment of the resection would most profit from the low background around the lesion, as for brain tumours. Feasibility studies on meningioma and gliomas already estimated the potentiality of this new treatment. To validate the technique, a prototype of the intraoperative probe detecting β{sup -} decays and specific phantoms simulating tumour remnant patterns embedded in healthy tissue have been realized. The response of the probe in this simulated environment is tested with dedicated procedures. This document discusses the innovative aspects of the method, the status of the developed intraoperative β{sup -} detecting probe and the results of the preclinical tests. (authors)

  2. High incidence of interleukin 10 mRNA but not interleukin 2 mRNA detected in human breast tumours.

    PubMed Central

    Venetsanakos, E.; Beckman, I.; Bradley, J.; Skinner, J. M.

    1997-01-01

    Despite the presence of a lymphocytic infiltrate in solid cancers, the failure for tumour growth to be contained suggests an inadequate immune response to the tumour. Poor cytotoxicity exerted by tumour-infiltrating lymphocytes (TILs) against tumour cells in vitro, combined with continued tumour growth in vivo, suggests deficiencies in TIL function or numbers. Various theories have been postulated to explain how tumour cells may escape immunosurveillance and control. One of the many hypotheses is the failure of production of cytokines, which are necessary for T cells to mediate their function. Thus, the expression of cytokine mRNA in human breast tumour sections was investigated by reverse transcriptase polymerase chain reaction (RT-PCR) with cytokine-specific primers. A relatively consistent finding was detection of interleukin (IL) 10 mRNA among the tumours. No IL-2 and little IL-4 mRNA was detected in the tumours. IL-6 and IL-10 mRNA was detected in only one and two of the normal breast tissues respectively. IL-2, IL-4 and tumour necrosis factor (TNF)-alpha mRNA was not detected in any of the normal breast tissues. The reduced function of TILs may be related to IL-10, which has known inhibitory effects on T-cell activation. Images Figure 1 PMID:9192989

  3. Leak detection by acoustic emission monitoring. Phase 1: Feasibility study

    NASA Astrophysics Data System (ADS)

    Lichtenstein, Bernard; Winder, A. A.

    1994-05-01

    This investigation was conducted to determine the feasibility of detecting leaks from underground storage tanks or pipelines using acoustic emissions. An extensive technical literature review established that distinguishable acoustic emission signals will be generated when a storage tank is subjected to deformation stresses. A parametric analysis was performed which indicated that leak rates less than 0.1 gallons per hour can be detected for leak sizes less than 1/32 inch with 99% probability if the transient signals were sensed with an array of accelerometers (cemented to the tank or via acoustic waveguides), each having a sensitivity greater than 250 mv/g over a frequency range of 0.1 to 4000 Hz, and processed in a multi-channel Fourier spectrum analyzer with automatic threshold detection. An acoustic transient or energy release processor could conceivably detect the onset of the leak at the moment of fracture of the tank wall. The primary limitations to realizing reliable and robust acoustic emission monitoring of underground fluid leaks are the various masking noise sources prevalent at Air Force bases, which are attributed to aircraft, motor traffic, pump station operation, and ground tremors.

  4. Feasibility of detecting orthopaedic screw overtightening using acoustic emission.

    PubMed

    Pullin, Rhys; Wright, Bryan J; Kapur, Richard; McCrory, John P; Pearson, Matthew; Evans, Sam L; Crivelli, Davide

    2017-03-01

    A preliminary study of acoustic emission during orthopaedic screw fixation was performed using polyurethane foam as the bone-simulating material. Three sets of screws, a dynamic hip screw, a small fragment screw and a large fragment screw, were investigated, monitoring acoustic-emission activity during the screw tightening. In some specimens, screws were deliberately overtightened in order to investigate the feasibility of detecting the stripping torque in advance. One set of data was supported by load cell measurements to directly measure the axial load through the screw. Data showed that acoustic emission can give good indications of impending screw stripping; such indications are not available to the surgeon at the current state of the art using traditional torque measuring devices, and current practice relies on the surgeon's experience alone. The results suggest that acoustic emission may have the potential to prevent screw overtightening and bone tissue damage, eliminating one of the commonest sources of human error in such scenarios.

  5. Passive Acoustic Monitoring for the Detection and Identification of Marine Mammals

    DTIC Science & Technology

    2011-09-30

    species in a species detection task,” Intl. Workshop on the Detection and Classification of Marine Mammals Using Passive Acoustics, Pavia , Italy...the Detection and Classification of Marine Mammals Using Passive Acoustics, Pavia , Italy, September 2009.

  6. Sparse Reconstruction for Micro Defect Detection in Acoustic Micro Imaging

    PubMed Central

    Zhang, Yichun; Shi, Tielin; Su, Lei; Wang, Xiao; Hong, Yuan; Chen, Kepeng; Liao, Guanglan

    2016-01-01

    Acoustic micro imaging has been proven to be sufficiently sensitive for micro defect detection. In this study, we propose a sparse reconstruction method for acoustic micro imaging. A finite element model with a micro defect is developed to emulate the physical scanning. Then we obtain the point spread function, a blur kernel for sparse reconstruction. We reconstruct deblurred images from the oversampled C-scan images based on l1-norm regularization, which can enhance the signal-to-noise ratio and improve the accuracy of micro defect detection. The method is further verified by experimental data. The results demonstrate that the sparse reconstruction is effective for micro defect detection in acoustic micro imaging. PMID:27783040

  7. Sparse Reconstruction for Micro Defect Detection in Acoustic Micro Imaging.

    PubMed

    Zhang, Yichun; Shi, Tielin; Su, Lei; Wang, Xiao; Hong, Yuan; Chen, Kepeng; Liao, Guanglan

    2016-10-24

    Acoustic micro imaging has been proven to be sufficiently sensitive for micro defect detection. In this study, we propose a sparse reconstruction method for acoustic micro imaging. A finite element model with a micro defect is developed to emulate the physical scanning. Then we obtain the point spread function, a blur kernel for sparse reconstruction. We reconstruct deblurred images from the oversampled C-scan images based on l₁-norm regularization, which can enhance the signal-to-noise ratio and improve the accuracy of micro defect detection. The method is further verified by experimental data. The results demonstrate that the sparse reconstruction is effective for micro defect detection in acoustic micro imaging.

  8. Soldier detection using unattended acoustic and seismic sensors

    NASA Astrophysics Data System (ADS)

    Naz, P.; Hengy, S.; Hamery, P.

    2012-06-01

    During recent military conflicts, as well as for security interventions, the urban zone has taken a preponderant place. Studies have been initiated in national and in international programs to stimulate the technical innovations for these specific scenarios. For example joint field experiments have been organized by the NATO group SET-142 to evaluate the capability for the detection and localization of snipers, mortars or artillery guns using acoustic devices. Another important operational need corresponds to the protection of military sites or buildings. In this context, unattended acoustic and seismic sensors are envisaged to contribute to the survey of specific points by the detection of approaching enemy soldiers. This paper describes some measurements done in an anechoic chamber and in free field to characterize typical sounds generated by the soldier activities (walking, crawling, weapon handling, radio communication, clothing noises...). Footstep, speech and some specific impulsive sounds are detectable at various distances from the source. Such detection algorithms may be easily merged with the existing weapon firing detection algorithms to provide a more generic "battlefield acoustic" early warning system. Results obtained in various conditions (grassy terrain, gravel path, road, forest) will be presented. A method to extrapolate the distances of detection has been developed, based on an acoustic propagation model and applied to the laboratory measurements.

  9. Acoustic solitons: A robust tool to investigate the generation and detection of ultrafast acoustic waves

    NASA Astrophysics Data System (ADS)

    Péronne, Emmanuel; Chuecos, Nicolas; Thevenard, Laura; Perrin, Bernard

    2017-02-01

    Solitons are self-preserving traveling waves of great interest in nonlinear physics but hard to observe experimentally. In this report an experimental setup is designed to observe and characterize acoustic solitons in a GaAs(001) substrate. It is based on careful temperature control of the sample and an interferometric detection scheme. Ultrashort acoustic solitons, such as the one predicted by the Korteweg-de Vries equation, are observed and fully characterized. Their particlelike nature is clearly evidenced and their unique properties are thoroughly checked. The spatial averaging of the soliton wave front is shown to account for the differences between the theoretical and experimental soliton profile. It appears that ultrafast acoustic experiments provide a precise measurement of the soliton velocity. It allows for absolute calibration of the setup as well as the response function analysis of the detection layer. Moreover, the temporal distribution of the solitons is also analyzed with the help of the inverse scattering method. It shows how the initial acoustic pulse profile which gives birth to solitons after nonlinear propagation can be retrieved. Such investigations provide a new tool to probe transient properties of highly excited matter through the study of the emitted acoustic pulse after laser excitation.

  10. Matrix metalloproteinase-1 is induced by epidermal growth factor in human bladder tumour cell lines and is detectable in urine of patients with bladder tumours.

    PubMed Central

    Nutt, J. E.; Mellon, J. K.; Qureshi, K.; Lunec, J.

    1998-01-01

    The matrix metalloproteinases are a family of enzymes that degrade the extracellular matrix and are considered to be important in tumour invasion and metastasis. The effect of epidermal growth factor (EGF) on matrix metalloproteinase-1 (MMP1) production in two human bladder tumour cell lines, RT112 and RT4, has been investigated. In the RT112 cell line, an increase in MMP1 mRNA levels was found after a 6-h incubation with EGF, and this further increased to 20-fold that of control levels at 24- and 48-h treatment with 50 ng ml(-1) of EGF. MMP2 mRNA levels remained constant over this time period, whereas in the RT4 cells no MMP2 transcripts were detectable, but MMP1 transcripts again increased with 24- and 48-h treatment with 50 ng ml(-1) of EGF. MMP1 protein concentration in the conditioned medium from both cell lines increased with 24- and 48-h treatment of the cells and the total MMP1 was higher in the medium than the cells, demonstrating that the bladder tumour cell lines synthesize and secrete MMP1 protein after continuous stimulation with EGF. MMP1 protein was detected in urine from patients with bladder tumours, with a significant increase in concentration with increased stage and grade of tumour. MMP1 urine concentrations may therefore be a useful prognostic indicator for bladder tumour progression. Images Figure 1 Figure 2 PMID:9683296

  11. Photoacoustic image reconstruction: material detection and acoustical heterogeneities

    NASA Astrophysics Data System (ADS)

    Schoeder, S.; Kronbichler, M.; Wall, W. A.

    2017-05-01

    The correct consideration of acoustical heterogeneities in the context of photoacoustic image reconstruction is an open topic. In this publication a physically motivated algorithm is proposed that reconstructs the optical absorption and diffusion coefficients using a gradient-based scheme. The simultaneous reconstruction of both material properties allows for a subsequent material identification and an accordant update of the acoustical material properties. The algorithm is general in terms of illumination scenarios, detection geometries and applications. No prior knowledge on material distributions needs to be provided, only expected materials have to be specified. Numerical experiments are performed to gain insight into the complex inverse problem and to validate the proposed method. Results show that acoustical heterogeneities are correctly detected improving the optical images.

  12. Significance of the detection of esters of p-hydroxybenzoic acid (parabens) in human breast tumours.

    PubMed

    Harvey, Philip W; Everett, David J

    2004-01-01

    This issue of Journal of Applied Toxicology publishes the paper Concentrations of Parabens in Human Breast Tumours by Darbre et al. (2004), which reports that esters of p-hydroxybenzoic acid (parabens) can be detected in samples of tissue from human breast tumours. Breast tumour samples were supplied from 20 patients, in collaboration with the Edinburgh Breast Unit Research Group, and analysed by high-pressure liquid chromatography and tandem mass spectrometry. The parabens are used as antimicrobial preservatives in underarm deodorants and antiperspirants and in a wide range of other consumer products. The parabens also have inherent oestrogenic and other hormone related activity (increased progesterone receptor gene expression). As oestrogen is a major aetiological factor in the growth and development of the majority of human breast cancers, it has been previously suggested by Darbre that parabens and other chemicals in underarm cosmetics may contribute to the rising incidence of breast cancer. The significance of the finding of parabens in tumour samples is discussed here in terms of 1). Darbre et al's study design, 2). what can be inferred from this type of data (and what can not, such as the cause of these tumours), 3). the toxicology of these compounds and 4). the limitations of the existing toxicology database and the need to consider data that is appropriate to human exposures. Copyright 2004 John Wiley & Sons, Ltd.

  13. A quantitative x-ray detection system for gold nanoparticle tumour biomarkers.

    PubMed

    Ricketts, K; Castoldi, A; Guazzoni, C; Ozkan, C; Christodoulou, C; Gibson, A P; Royle, G J

    2012-09-07

    X-ray fluorescence techniques have proven beneficial for identifying and quantifying trace elements in biological tissues. A novel approach is being developed that employs x-ray fluorescence with an aim to locate heavy nanoparticles, such as gold, which are embedded into tissues. Such nanoparticles can be functionalized to act as markers for tumour characteristics to map the disease state, with the future aim of imaging them to inform cancer therapy regimes. The uptake of functionalized nanoparticles by cancer cells will also enable detection of small clusters of infiltrating cancer cells which are currently missed by commonly used imaging modalities. The novel system, consisting of an energy-resolving silicon drift detector with high spectral resolution, shows potential in both quantification of and sensitivity to nanoparticle concentrations typically found in tumours. A series of synchrotron measurements are presented; a linear relationship between fluorescence intensity and gold nanoparticle (GNP) concentration was found down to 0.005 mgAu ml(-1), the detection limit of the system. Successful use of a bench-top source, suitable for possible future clinical use, is also demonstrated, and found not to degrade the detection limit or accuracy of the GNP concentration measurement. The achieved system sensitivity suggests possible future clinical usefulness in measuring tumour uptake in vivo, particularly in shallow tumour sites and small animals, in ex vivo tissue and in 3D in vitro research samples.

  14. Acoustic detection and tracking of abyssopelagic animals: description of an autonomous split-beam acoustic array

    NASA Astrophysics Data System (ADS)

    Smith, K. L.; Alexandrou, D.; Edelman, J. L.

    1989-09-01

    Importance of pelagic animals in transport of organic matter at abyssal depths has been suggested based on vertical distribution and gut content analysis. We developed an autonomous acoustic instrument to detect individual pelagic animals, measure their target strength, and track their movements across specific depth boundaries in the deep sea. This instrument consists of a split-beam line array with a beam pattern narrow in the vertical and omnidirectional in the horizontal. Animals (acoustic targets) ⩾2 cm in length can be detected in an insonified radius of 100 m around the array with a position resolution of ca 42 cm. The velocity of a target animal can be resolved using a closely spaced ping sequence. The line array is deployed as a bottom-moored free vehicle with controller electronics, preamplifier, and a battery source for deployments up to several weeks at depths to 6 km. A deployment in the central North Pacific at 100 m altitude above the bottom (5762 m total depth) for 25 h recorded four targets moving through the acoustic field. Estimated size of the targets, based on initial target strength analyses, suggests that two are crustaceans and one is a grenadier fish. The fourth target is indicative of an animal larger than any we have observed in video camera deployments or caugh with baited traps and hooks at this station. Our initial measurements show that abyssopelagic fauna can be detected and their target strengths and movements measured with the acoustic array.

  15. Acoustic Seaglider (trademark) for Beaked Whale Detection

    DTIC Science & Technology

    2011-09-30

    Neil M . Bogue Applied Physics Laburalury University ofWashington Box 355640 Seattle W A 98195-5640 phone: (206) 22 1-7687 fax: (206) 543-6785 email...the direction of Principal Investigators Mr. Neil M . Bogue and Dr. James C. Luby of the Electronic and Photonic Systems Department of the Applied...Click Detect Dive Dive Detect Click Detect Ju.ne 2010 Depth Below Detect -ions Depth Below Detect -ions 178/179 ( m ) ( m ) -ions in ICI ( m ) ( m ) -ions in

  16. Evaluation of acoustic tomography for tree decay detection

    Treesearch

    Shanquing Liang; Xiping Wang; Janice Wiedenbeck; Zhiyong Cai; Feng Fu

    2008-01-01

    In this study, the acoustic tomography technique was used to detect internal decay in high value black cherry (Prunus seratina) trees. Two-dimensional images of the cross sections of the tree samples were constructed using PiCUS Q70 software. The trees were felled following the field test, and a disc from each testing elevation was subsequently cut...

  17. Acoustic tomography for decay detection in black cherry trees

    Treesearch

    Xiping Wang; Jan Wiedenbeck; Shanqing Liang

    2009-01-01

    This study investigated the potential of using acoustic tomography for detecting internal decay in high-value hardwood trees in the forest. Twelve black cherry (Prunus serotina) trees that had a wide range of physical characteristics were tested in a stand of second-growth hardwoods in Kane, PA, using a PiCUS Sonic Tomograph tool. The trees were felled after the field...

  18. Passive Acoustic Monitoring for the Detection and Identification of Marine Mammals

    DTIC Science & Technology

    2010-09-30

    detection task,” Intl. Workshop on the Detection and Classification of Marine Mammals Using Passive Acoustics, Pavia , Italy, September 2009. M. A. Roch...Classification of Marine Mammals Using Passive Acoustics, Pavia , Italy, September 2009.

  19. Acoustic firearm discharge detection and classification in an enclosed environment

    SciTech Connect

    Luzi, Lorenzo; Gonzalez, Eric; Bruillard, Paul; Prowant, Matthew; Skorpik, James; Hughes, Michael; Child, Scott; Kist, Duane; McCarthy, John E.

    2016-05-01

    Two different signal processing algorithms are described for detection and classification of acoustic signals generated by firearm discharges in small enclosed spaces. The first is based on the logarithm of the signal energy. The second is a joint entropy. The current study indicates that a system using both signal energy and joint entropy would be able to both detect weapon discharges and classify weapon type, in small spaces, with high statistical certainty.

  20. Potentialities of steady-state and transient thermography in breast tumour depth detection: A numerical study.

    PubMed

    Amri, Amina; Pulko, Susan Helen; Wilkinson, Anthony James

    2016-01-01

    Breast thermography still has inherent limitations that prevent it from being fully accepted as a breast screening modality in medicine. The main challenges of breast thermography are to reduce false positive results and to increase the sensitivity of a thermogram. Further, it is still difficult to obtain information about tumour parameters such as metabolic heat, tumour depth and diameter from a thermogram. However, infrared technology and image processing have advanced significantly and recent clinical studies have shown increased sensitivity of thermography in cancer diagnosis. The aim of this paper is to study numerically the possibilities of extracting information about the tumour depth from steady state thermography and transient thermography after cold stress with no need to use any specific inversion technique. Both methods are based on the numerical solution of Pennes bioheat equation for a simple three-dimensional breast model. The effectiveness of two approaches used for depth detection from steady state thermography is assessed. The effect of breast density on the steady state thermal contrast has also been studied. The use of a cold stress test and the recording of transient contrasts during rewarming were found to be potentially suitable for tumour depth detection during the rewarming process. Sensitivity to parameters such as cold stress temperature and cooling time is investigated using the numerical model and simulation results reveal two prominent depth-related characteristic times which do not strongly depend on the temperature of the cold stress or on the cooling period.

  1. Detection of Circulating Tumour Cells from Blood of Breast Cancer Patients via RT-qPCR

    PubMed Central

    Andergassen, Ulrich; Kölbl, Alexandra C.; Hutter, Stefan; Friese, Klaus; Jeschke, Udo

    2013-01-01

    Breast cancer is still the most frequent cause of cancer-related death in women worldwide. Often death is not caused only by the primary tumour itself, but also by metastatic lesions. Today it is largely accepted, that these remote metastases arise out of cells, which detach from the primary tumour, enter circulation, settle down at secondary sites in the body and are called Circulating Tumour Cells (CTCs). The occurrence of such minimal residual diseases in the blood of breast cancer patients is mostly linked to a worse prognosis for therapy outcome and overall survival. Due to their very low frequency, the detection of CTCs is, still a technical challenge. RT-qPCR as a highly sensitive method could be an approach for CTC-detection from peripheral blood of breast cancer patients. This assumption is based on the fact that CTCs are of epithelial origin and therefore express a different gene panel than surrounding blood cells. For the technical approach it is necessary to identify appropriate marker genes and to correlate their gene expression levels to the number of tumour cells within a sample in an in vitro approach. After that, samples from adjuvant and metastatic patients can be analysed. This approach may lead to new concepts in diagnosis and treatment. PMID:24202442

  2. Imaging and detection of mines from acoustic measurements

    NASA Astrophysics Data System (ADS)

    Witten, Alan J.; DiMarzio, Charles A.; Li, Wen; McKnight, Stephen W.

    1999-08-01

    A laboratory-scale acoustic experiment is described where a buried target, a hockey puck cut in half, is shallowly buried in a sand box. To avoid the need for source and receiver coupling to the host sand, an acoustic wave is generated in the subsurface by a pulsed laser suspended above the air-sand interface. Similarly, an airborne microphone is suspended above this interface and moved in unison with the laser. After some pre-processing of the data, reflections for the target, although weak, could clearly be identified. While the existence and location of the target can be determined by inspection of the data, its unique shape can not. Since target discrimination is important in mine detection, a 3D imaging algorithm was applied to the acquired acoustic data. This algorithm yielded a reconstructed image where the shape of the target was resolved.

  3. Circulating tumour cells in clinical practice: Methods of detection and possible characterization.

    PubMed

    Alunni-Fabbroni, Marianna; Sandri, Maria Teresa

    2010-04-01

    Circulating Tumour Cells (CTCs) can be released from the primary tumour into the bloodstream and may colonize distant organs giving rise to metastasis. The presence of CTCs in the blood has been documented more than a century ago, and in the meanwhile various methods have been described for their detection. Most of them require an initial enrichment step, since CTCs are a very rare event. The different technologies and also the differences among the screened populations make the clinical significance of CTCs detection difficult to interprete. Here we will review the different assays up to now available for CTC detection and analysis. Moreover, we will focus on the relevance of the clinical data, generated so far and based on the CTCs analysis. Since the vast majority of data have been produced in breast cancer patients, the review will focus especially on this malignancy. Copyright 2010 Elsevier Inc. All rights reserved.

  4. Acoustic Seaglider (trademark) for Beaked Whale Detection

    DTIC Science & Technology

    2011-09-30

    bench and in-water tests to characterize system performance (FY2009). • Deploy locally in the presence of killer whales (Orcinus orca) as a proxy...effective tool for detecting beaked whale echolocation clicks, and relaying those detections ashore, with a reasonable amount of supporting data, in near...Johnson, M., Madsen, P. T., Zimmer, W. M. X., Aguilar de Soto, N., and Tyack, P. L. [2004]. “Beaked whales echolocate on prey”, Proc. R. Soc

  5. Early Forest Fire Detection Using Radio-Acoustic Sounding System

    PubMed Central

    Sahin, Yasar Guneri; Ince, Turker

    2009-01-01

    Automated early fire detection systems have recently received a significant amount of attention due to their importance in protecting the global environment. Some emergent technologies such as ground-based, satellite-based remote sensing and distributed sensor networks systems have been used to detect forest fires in the early stages. In this study, a radio-acoustic sounding system with fine space and time resolution capabilities for continuous monitoring and early detection of forest fires is proposed. Simulations show that remote thermal mapping of a particular forest region by the proposed system could be a potential solution to the problem of early detection of forest fires. PMID:22573967

  6. Acoustic detectability of squid egg beds

    NASA Astrophysics Data System (ADS)

    Foote, Kenneth G.; Hanlon, Roger T.; Henry, Annette E.; Hochstaedter, Alfred; Kvitek, Rikk; Sullivan, Deidre; Yogozawa, Yuko

    2003-10-01

    Egg beds of the market squid (Loligo opalescens) on the bottom of Monterey Bay seem to have been detected by means of sidescan sonar at 420 kHz. Evidence for this is presented in the form of sidescan sonar images and egg-bed distribution maps from the same area, as prepared from camera surveys by scuba divers. The general detectability issue is also considered, with specific reference made to preliminary physical measurements performed on two egg capsules. [Work supported by Sea Grant.

  7. ACOUSTIC DETECTING AND LOCATING GAS PIPE LINE INFRINGEMENT

    SciTech Connect

    John L. Loth; Gary J. Morris; George M. Palmer; Richard Guiler; Patrick Browning

    2004-10-31

    The extensive network of high-pressure natural gas transmission pipelines covering the United States provides an important infrastructure for our energy independence. Early detection of pipeline leaks and infringements by construction equipment, resulting in corrosion fractures, presents an important aspect of our national security policy. The National Energy Technology Laboratory Strategic Center for Natural Gas (SCVG) is and has been funding research on various applicable techniques. The WVU research team has focused on monitoring pipeline background acoustic signals generated and transmitted by gas flowing through the gas inside the pipeline. In case of a pipeline infringement, any mechanical impact on the pipe wall, or escape of high-pressure gas, generates acoustic signals traveling both up and down stream through the gas. Sudden changes in flow noise are detectable with a Portable Acoustic Monitoring Package (PAMP), developed under this contract. It incorporates a pressure compensating microphone and a signal- recording device. Direct access to the gas inside the line is obtained by mounting such a PAMP, with a 1/2 inch NPT connection, to a pipeline pressure port found near most shut-off valves. An FFT of the recorded signal subtracted by that of the background noise recorded one-second earlier appears to sufficiently isolate the infringement signal to allow source interpretation. Using cell phones for data downloading might allow a network of such 1000-psi rated PAMP's to acoustically monitor a pipeline system and be trained by neural network software to positively identify and locate any pipeline infringement.

  8. ACOUSTIC DETECTING AND LOCATING GAS PIPE LINE INFRINGEMENT

    SciTech Connect

    John L. Loth; Gary J. Morris; George M. Palmer; Richard Guiler; Patrick Browning

    2004-12-01

    The extensive network of high-pressure natural gas transmission pipelines covering the United States provides an important infrastructure for our energy independence. Early detection of pipeline leaks and infringements by construction equipment, resulting in corrosion fractures, presents an important aspect of our national security policy. The National Energy Technology Laboratory Strategic Center for Natural Gas (SCVG) is and has been funding research on various applicable techniques. The WVU research team has focused on monitoring pipeline background acoustic signals generated and transmitted by gas flowing through the gas inside the pipeline. In case of a pipeline infringement, any mechanical impact on the pipe wall, or escape of high-pressure gas, generates acoustic signals traveling both up and down stream through the gas. Sudden changes in flow noise are detectable with a Portable Acoustic Monitoring Package (PAMP), developed under this contract. It incorporates a pressure compensating microphone and a signal- recording device. Direct access to the gas inside the line is obtained by mounting such a PAMP, with a 1/2 inch NPT connection, to a pipeline pressure port found near most shut-off valves. An FFT of the recorded signal subtracted by that of the background noise recorded one-second earlier appears to sufficiently isolate the infringement signal to allow source interpretation. Using cell phones for data downloading might allow a network of such 1000-psi rated PAMP's to acoustically monitor a pipeline system and be trained by neural network software to positively identify and locate any pipeline infringement.

  9. Topography and biological noise determine acoustic detectability on coral reefs

    NASA Astrophysics Data System (ADS)

    Cagua, E. F.; Berumen, M. L.; Tyler, E. H. M.

    2013-12-01

    Acoustic telemetry is an increasingly common tool for studying the movement patterns, behavior and site fidelity of marine organisms, but to accurately interpret acoustic data, the variability, periodicity and range of detectability between acoustic tags and receivers must be understood. The relative and interactive effects of topography with biological and environmental noise have not been quantified on coral reefs. We conduct two long-term range tests (1- and 4-month duration) on two different reef types in the central Red Sea to determine the relative effect of distance, depth, topography, time of day, wind, lunar phase, sea surface temperature and thermocline on detection probability. Detectability, as expected, declines with increasing distance between tags and receivers, and we find average detection ranges of 530 and 120 m, using V16 and V13 tags, respectively, but the topography of the reef can significantly modify this relationship, reducing the range by ~70 %, even when tags and receivers are in line-of-sight. Analyses that assume a relationship between distance and detections must therefore be used with care. Nighttime detection range was consistently reduced in both locations, and detections varied by lunar phase in the 4-month test, suggesting a strong influence of biological noise (reducing detection probability up to 30 %), notably more influential than other environmental noises, including wind-driven noise, which is normally considered important in open-water environments. Analysis of detections should be corrected in consideration of the diel patterns we find, and range tests or sentinel tags should be used for more than 1 month to quantify potential changes due to lunar phase. Some studies assume that the most usual factor limiting detection range is weather-related noise; this cannot be extrapolated to coral reefs.

  10. Flow cytometric techniques for detection of candidate cancer stem cell subpopulations in canine tumour models.

    PubMed

    Blacking, T M; Waterfall, M; Samuel, K; Argyle, D J

    2012-12-01

    The cancer stem cell (CSC) hypothesis proposes that tumour growth is maintained by a distinct subpopulation of 'CSC'. This study applied flow cytometric methods, reported to detect CSC in both primary and cultured cancer cells of other species, to identify candidate canine subpopulations. Cell lines representing diverse canine malignancies, and cells derived from spontaneous canine tumours, were evaluated for expression of stem cell-associated surface markers (CD34, CD44, CD117 and CD133) and functional properties [Hoecsht 33342 efflux, aldehyde dehydrogenase (ALDH) activity]. No discrete marker-defined subsets were identified within established cell lines; cells derived directly from spontaneous tumours demonstrated more heterogeneity, although this diminished upon in vitro culture. Functional assays produced variable results, suggesting context-dependency. Flow cytometric methods may be adopted to identify putative canine CSC. Whilst cell lines are valuable in assay development, primary cells may provide a more rewarding model for studying tumour heterogeneity in the context of CSC. However, it will be essential to fully characterize any candidate subpopulations to ensure that they meet CSC criteria.

  11. Robotic vehicle uses acoustic sensors for voice detection and diagnostics

    NASA Astrophysics Data System (ADS)

    Young, Stuart H.; Scanlon, Michael V.

    2000-07-01

    An acoustic sensor array that cues an imaging system on a small tele- operated robotic vehicle was used to detect human voice and activity inside a building. The advantage of acoustic sensors is that it is a non-line of sight (NLOS) sensing technology that can augment traditional LOS sensors such as visible and IR cameras. Acoustic energy emitted from a target, such as from a person, weapon, or radio, will travel through walls and smoke, around corners, and down corridors, whereas these obstructions would cripple an imaging detection system. The hardware developed and tested used an array of eight microphones to detect the loudest direction and automatically setter a camera's pan/tilt toward the noise centroid. This type of system has applicability for counter sniper applications, building clearing, and search/rescue. Data presented will be time-frequency representations showing voice detected within rooms and down hallways at various ranges. Another benefit of acoustics is that it provides the tele-operator some situational awareness clues via low-bandwidth transmission of raw audio data for the operator to interpret with either headphones or through time-frequency analysis. This data can be useful to recognize familiar sounds that might indicate the presence of personnel, such as talking, equipment, movement noise, etc. The same array also detects the sounds of the robot it is mounted on, and can be useful for engine diagnostics and trouble shooting, or for self-noise emanations for stealthy travel. Data presented will characterize vehicle self noise over various surfaces such as tiles, carpets, pavement, sidewalk, and grass. Vehicle diagnostic sounds will indicate a slipping clutch and repeated unexpected application of emergency braking mechanism.

  12. Nonlinear seismo-acoustic land mine detection and discrimination

    NASA Astrophysics Data System (ADS)

    Donskoy, Dimitri; Ekimov, Alexander; Sedunov, Nikolay; Tsionskiy, Mikhail

    2002-06-01

    A novel technique for detection and discrimination of artificial objects, such as land mines, pipes, containers, etc., buried in the ground, has been developed and tested. The developed approach utilizes vibration (using seismic or airborne acoustic waves) of buried objects, remote measurements of soil surface vibration (using laser or microwave vibrometers), and processing of the measured vibration to extract mine's "vibration signatures." The technique does not depend upon the material from which the mine is fabricated whether it be metal, plastic, wood, or any other material. It depends upon the fact that a mine is a "container" whose purpose is to contain explosive materials and associated detonation apparatus. The mine container is in contact with the soil in which it is buried. The container is an acoustically compliant article, whose compliance is notably different from the compliance of the surrounding soil. Dynamic interaction of the compliant container and soil on top of it leads to specific linear and nonlinear effects used for mine detection and discrimination. The mass of the soil on top of a compliant container creates a classical mass-spring system with a well-defined resonance response. Besides, the connection between mass (soil) and spring (mine) is not elastic (linear) but rather nonlinear, due to the separation of the soil/mine interface in the tensile phase of applied dynamic stress. These two effects, constituting the mine's vibration signature have been measured in numerous laboratory and field tests, which proved that the resonance and nonlinear responses of a mine/soil system can be used for detection and discrimination of buried mines. Thus, the fact that the mine is buried is turned into a detection advantage. Because the seismo-acoustic technique intrinsically detects buried containers, it can discriminate mines from noncompliant false targets such as rocks, tree roots, chunks of metal, bricks, etc. This was also confirmed experimentally

  13. Ocean Basin Impact of Ambient Noise on Marine Mammal Detectability, Distribution, and Acoustic Communication

    DTIC Science & Technology

    2015-09-30

    The ultimate goal of this research was to enhance the understanding of global ocean noise and how variability in sound level impacts marine mammal...detection as it relates to marine mammal active acoustic space and acoustic communication. This work increases the spatial range and time scale of prior...acoustic environment were then applied to the investigation of ocean noise issues related to general signal detection tasks, as well as marine mammal acoustic detection and impacts.

  14. Detection of micrometastases by flow cytometry in sentinel lymph nodes from patients with renal tumours.

    PubMed

    Hartana, Ciputra Adijaya; Kinn, Johan; Rosenblatt, Robert; Anania, Stefan; Alamdari, Farhood; Glise, Hans; Sherif, Amir; Winqvist, Ola

    2016-10-11

    Stage is an important prognostic factor in renal tumours and dissemination to regional lymph nodes is associated with poor outcomes. Lymph nodes are routinely assessed by immunohistochemistry and microscopic evaluation, a time-consuming process where micrometastases might go undiagnosed. We evaluate an alternative method for detecting metastatic cells in sentinel nodes (SNs) by flow cytometry. A total of 15 nodes from 5 patients diagnosed with renal tumours were analysed by flow cytometry. Staining for the intracellular marker cytokeratin 18 (CK18) with the surface markers carbonic anhydrase IX (CA9) and Cadherin 6 were used in flow cytometry analysis. Peripheral blood mononuclear cells (PBMCs) with the addition of known concentrations of cancer cell lines were analysed to investigate the sensitivity of micrometastasis detection. Stability of the assay was marked by low intra-assay variability (coefficient of variance ⩽16%) and low inter-assay variability (R(2)=0.9996-1). Eight nodes in four patients were positive for metastasis; six of them were considered being micrometastatic. These metastases were undetected by routine pathology and the patients were restaged from pN0 to pN1. Flow cytometry is able to detect micrometastases in lymph nodes of renal tumour patients that were undetected under H&E examination.

  15. Detection of comorbidities and synchronous primary tumours via thoracic radiography and abdominal ultrasonography and their influence on treatment outcome in dogs with soft tissue sarcomas, primary brain tumours and intranasal tumours.

    PubMed

    Bigio Marcello, A; Gieger, T L; Jiménez, D A; Granger, L Abbigail

    2015-12-01

    Canine soft tissue sarcomas (STS), primary brain tumours and intranasal tumours are commonly treated with radiotherapy (RT). Given the low metastatic potential of these tumours, recommendations regarding imaging tests as staging are variable among institutions. The purpose of our study was to describe thoracic radiographic and abdominal ultrasonographic findings in dogs with these neoplasms and to investigate association of abnormal findings with alterations in recommended treatment. Medical records from 101 dogs, each having thoracic radiographs and abdominal ultrasound performed as part of their staging, were reviewed. In 98 of 101 (97%), imaging abnormalities were detected, 27% of which were further investigated with fine needle aspiration cytology or biopsy. Nine percent of the detected abnormalities were considered serious comorbidities that altered treatment recommendations, including 3 (3%) which were confirmed as synchronous primary neoplasms. These findings may influence recommendations regarding the decision to perform thoracic radiographs and abdominal ultrasound prior to initiation of RT. © 2013 John Wiley & Sons Ltd.

  16. Detection and Characterization of CD133+ Cancer Stem Cells in Human Solid Tumours

    PubMed Central

    d'Aquino, Riccardo; De Francesco, Francesco; Pirozzi, Giuseppe; Galderisi, Umberto; Cavaliere, Carlo; De Rosa, Alfredo; Papaccio, Gianpaolo

    2008-01-01

    Background Osteosarcoma is the most common primary tumour of bone. Solid tumours are made of heterogeneous cell populations, which display different goals and roles in tumour economy. A rather small cell subset can hold or acquire stem potentials, gaining aggressiveness and increasing expectancy of recurrence. The CD133 antigen is a pentaspan membrane glycoprotein, which has been proposed as a cancer stem cell marker, since it has been previously demonstrated to be capable of identifying a cancer initiating subpopulation in brain, colon, melanoma and other solid tumours. Therefore, our aim was to observe the possible presence of cells expressing the CD133 antigen within solid tumour cell lines of osteosarcoma and, then, understand their biological characteristics and performances. Methodology and Principal Findings In this study, using SAOS2, MG63 and U2OS, three human sarcoma cell lines isolated from young Caucasian subjects, we were able to identify and characterize, among them, CD133+ cells showing the following features: high proliferation rate, cell cycle detection in a G2\\M phase, positivity for Ki-67, and expression of ABCG2 transporters. In addition, at the FACS, we were able to observe the CD133+ cell fraction showing side population profile and forming sphere-clusters in serum-free medium with a high clonogenic efficiency. Conclusions Taken together, our findings lead to the thought that we can assume that we have identified, for the first time, CD133+ cells within osteosarcoma cell lines, showing many features of cancer stem cells. This can be of rather interest in order to design new therapies against the bone cancer. PMID:18941626

  17. Synthetic Aperture Acoustic Imaging for Roadside Detection of Solid Objects

    DTIC Science & Technology

    2014-11-20

    policy or decision, unless so designated by other documentation. 14. ABSTRACT A synthetic apertme acoustic system was developed to detect roadside...threats including IEDs and landmines. The technique uses audio-band sound broadcast from a compact trailer-mounted system to image the roadside...landmines. The technique uses audio-band sound broadcast from a compact trailer-mounted system to image the roadside perpendicular to the travel path. The

  18. A hydrophone prototype for ultra high energy neutrino acoustic detection

    NASA Astrophysics Data System (ADS)

    Cotrufo, A.; Plotnikov, A.; Yershova, O.; Anghinolfi, M.; Piombo, D.

    2009-06-01

    The design of an air-backed fiber-optic hydrophone is presented. With respect to the previous models this prototype is optimized to provide a bandwidth sufficiently large to detect acoustic signals produced by high energy hadronic showers in water. In addiction to the geometrical configuration and to the choice of the materials, the preliminary results of the measured performances in air are presented.

  19. Acoustic detection of cosmic-ray air showers.

    PubMed

    Barrett, W L

    1978-11-17

    The signal strength, bandwidth, and detection range of acoustic pulses generated by cosmic-ray air showers striking a water surface are calculated. These signals are strong enough to be audible to a submerged swimmer. The phenomena may be useful for studying very-high-energy cosmic rays and may help answer the important question of whether the origin of cosmic rays is extragalactic or galactic.

  20. Optimizing surface acoustic wave sensors for trace chemical detection

    SciTech Connect

    Frye, G.C.; Kottenstette, R.J.; Heller, E.J.

    1997-06-01

    This paper describes several recent advances for fabricating coated surface acoustic wave (SAW) sensors for applications requiring trace chemical detection. Specifically, we have demonstrated that high surface area microporous oxides can provide 100-fold improvements in SAW sensor responses compared with more typical polymeric coatings. In addition, we fabricated GaAs SAW devices with frequencies up to 500 MHz to provide greater sensitivity and an ideal substrate for integration with high-frequency electronics.

  1. Automatic Detection of Beaked Whales from Acoustic Seagliders

    DTIC Science & Technology

    2012-09-30

    2011. Distribution of deep diving echolocating odontocetes around the island of Kauai , Hawaii . Book of Abstracts, Fifth International Workshop on...a high number of false positive detections caused by clicks of other odontocete species. The energy ratio mapping algorithm (ERMA) was developed to...presence of beaked whales in various oceans (e.g., at AUTEC, SCORE, Kona Coast of Hawaii ). A data set collected with an autonomous acoustic sailboat

  2. Neurobiology of acoustically mediated predator detection.

    PubMed

    Pollack, Gerald S

    2015-01-01

    Ultrasound-driven avoidance responses have evolved repeatedly throughout the insecta as defenses against predation by echolocating bats. Although the auditory mechanics of ears and the properties of auditory receptor neurons have been studied in a number of groups, central neural processing of ultrasound stimuli has been examined in only a few cases. In this review, I summarize the neuronal basis for ultrasound detection and predator avoidance in crickets, tettigoniids, moths, and mantises, where central circuits have been studied most thoroughly. Several neuronal attributes, including steep intensity-response functions, high firing rates, and rapid spike conduction emerge as common themes of avoidance circuits. I discuss the functional consequences of these attributes, as well as the increasing complexity with which ultrasound stimuli are represented at successive levels of processing.

  3. Transducer Development and Characterization for Underwater Acoustic Neutrino Detection Calibration.

    PubMed

    Saldaña, María; Llorens, Carlos D; Felis, Ivan; Martínez-Mora, Juan Antonio; Ardid, Miguel

    2016-08-02

    A short bipolar pressure pulse with "pancake" directivity is produced and propagated when an Ultra-High Energy (UHE) neutrino interacts with a nucleus in water. Nowadays, acoustic sensor networks are being deployed in deep seas to detect this phenomenon as a first step toward building a neutrino telescope. In order to study the feasibility of the method, it is critical to have a calibrator that is able to mimic the neutrino signature. In previous works the possibility of using the acoustic parametric technique for this aim was proven. In this study, the array is operated at a high frequency and, by means of the parametric effect, the emission of the low-frequency acoustic bipolar pulse is generated mimicking the UHE neutrino acoustic pulse. To this end, the development of the transducer to be used in the parametric array is described in all its phases. The transducer design process, the characterization tests for the bare piezoelectric ceramic, and the addition of backing and matching layers are presented. The efficiencies and directivity patterns obtained for both primary and parametric beams confirm that the design of the proposed calibrator meets all the requirements for the emitter.

  4. Transducer Development and Characterization for Underwater Acoustic Neutrino Detection Calibration

    PubMed Central

    Saldaña, María; Llorens, Carlos D.; Felis, Ivan; Martínez-Mora, Juan Antonio; Ardid, Miguel

    2016-01-01

    A short bipolar pressure pulse with “pancake” directivity is produced and propagated when an Ultra-High Energy (UHE) neutrino interacts with a nucleus in water. Nowadays, acoustic sensor networks are being deployed in deep seas to detect this phenomenon as a first step toward building a neutrino telescope. In order to study the feasibility of the method, it is critical to have a calibrator that is able to mimic the neutrino signature. In previous works the possibility of using the acoustic parametric technique for this aim was proven. In this study, the array is operated at a high frequency and, by means of the parametric effect, the emission of the low-frequency acoustic bipolar pulse is generated mimicking the UHE neutrino acoustic pulse. To this end, the development of the transducer to be used in the parametric array is described in all its phases. The transducer design process, the characterization tests for the bare piezoelectric ceramic, and the addition of backing and matching layers are presented. The efficiencies and directivity patterns obtained for both primary and parametric beams confirm that the design of the proposed calibrator meets all the requirements for the emitter. PMID:27490547

  5. Widespread passive acoustic detection of Yangtze finless porpoise using miniature stereo acoustic data-loggers: a review.

    PubMed

    Li, Songhai; Akamatsu, Tomonari; Dong, Lijun; Wang, Kexiong; Wang, Ding; Kimura, Satoko

    2010-09-01

    Data on distribution, abundance, ecology, and behavior are essential for conservation and management of endangered animals in the wild. Yangtze finless porpoise (Neophocaena phocaenoides asiaeorientalis) is an endangered small odontocete species, living exclusively in the Yangtze River and its connecting Poyang and Dongting Lakes. Frequent production of high-frequency bio-sonar signals allows the animal to be detectable using passive acoustic methods. Recently, a stereo acoustic event data-logger (A-tag) has been used extensively to detect the animal by using both fixed and mobile platforms. The passive acoustic monitoring methods were not only successful in detecting the presence of animals, but also in counting, localizing, and tracking phonating individuals. Underwater behavior observed acoustically helped to assess possible effects of vessels on the animals during acoustic surveys.

  6. Intraoperative probe detecting β- decays in brain tumour radio-guided surgery

    NASA Astrophysics Data System (ADS)

    Solfaroli Camillocci, E.; Bocci, V.; Chiodi, G.; Collamati, F.; Donnarumma, R.; Faccini, R.; Mancini Terracciano, C.; Marafini, M.; Mattei, I.; Muraro, S.; Recchia, L.; Rucinski, A.; Russomando, A.; Toppi, M.; Traini, G.; Morganti, S.

    2017-02-01

    Radio-guided surgery (RGS) is a technique to intraoperatively detect tumour remnants, favouring a radical resection. Exploiting β- emitting tracers provides a higher signal to background ratio compared to the established technique with γ radiation, allowing the extension of the RGS applicability range. We developed and tested a detector based on para-terphenyl scintillator with high sensitivity to low energy electrons and almost transparent to γs to be used as intraoperative probe for RGS with β- emitting tracer. Portable read out electronics was customised to match the surgeon needs. This probe was used for preclinical test on specific phantoms and a test on ;ex vivo; specimens from patients affected by meningioma showing very promising results for the application of this new technique on brain tumours. In this paper, the prototype of the intraoperative probe and the tests are discussed; then, the results on meningioma are used to make predictions on the performance of the probe detecting residuals of a more challenging and more interesting brain tumour: the glioma.

  7. Noncontact detection of surface-breaking cracks using a laser acoustic source and an electromagnetic acoustic receiver

    SciTech Connect

    Dewhurst, R.J.; Edwards, C.; Palmer, S.B.

    1986-08-01

    An electromagnetic acoustic transducer (EMAT) is used to detect laser-generated surface acoustic transients. The surface acoustic waves are broadband and can be used to detect and size surface-breaking cracks if used in conjunction with a broadband detector. A broadband EMAT is described and its use to locate artificial surface-breaking defects in both aluminum and steel is demonstrated. A second study reveals that it can also be used for the detection of real surface-breaking cracks, even on rusty steel surfaces. 10 references.

  8. Acoustic Emission Beamforming for Detection and Localization of Damage

    NASA Astrophysics Data System (ADS)

    Rivey, Joshua Callen

    The aerospace industry is a constantly evolving field with corporate manufacturers continually utilizing innovative processes and materials. These materials include advanced metallics and composite systems. The exploration and implementation of new materials and structures has prompted the development of numerous structural health monitoring and nondestructive evaluation techniques for quality assurance purposes and pre- and in-service damage detection. Exploitation of acoustic emission sensors coupled with a beamforming technique provides the potential for creating an effective non-contact and non-invasive monitoring capability for assessing structural integrity. This investigation used an acoustic emission detection device that employs helical arrays of MEMS-based microphones around a high-definition optical camera to provide real-time non-contact monitoring of inspection specimens during testing. The study assessed the feasibility of the sound camera for use in structural health monitoring of composite specimens during tensile testing for detecting onset of damage in addition to nondestructive evaluation of aluminum inspection plates for visualizing stress wave propagation in structures. During composite material monitoring, the sound camera was able to accurately identify the onset and location of damage resulting from large amplitude acoustic feedback mechanisms such as fiber breakage. Damage resulting from smaller acoustic feedback events such as matrix failure was detected but not localized to the degree of accuracy of larger feedback events. Findings suggest that beamforming technology can provide effective non-contact and non-invasive inspection of composite materials, characterizing the onset and the location of damage in an efficient manner. With regards to the nondestructive evaluation of metallic plates, this remote sensing system allows us to record wave propagation events in situ via a single-shot measurement. This is a significant improvement over

  9. Acoustic sensors in the helmet detect voice and physiology

    NASA Astrophysics Data System (ADS)

    Scanlon, Michael V.

    2003-09-01

    The Army Research Laboratory has developed body-contacting acoustic sensors that detect diverse physiological sounds such as heartbeats and breaths, high quality speech, and activity. These sensors use an acoustic impedance-matching gel contained in a soft, compliant pad to enhance the body borne sounds, yet significantly repel airborne noises due to an acoustic impedance mismatch. The signals from such a sensor can be used as a microphone with embedded physiology, or a dedicated digital signal processor can process packetized data to separate physiological parameters from voice, and log parameter trends for performance surveillance. Acoustic sensors were placed inside soldier helmets to monitor voice, physiology, activity, and situational awareness clues such as bullet shockwaves from sniper activity and explosions. The sensors were also incorporated into firefighter breathing masks, neck and wrist straps, and other protective equipment. Heart rate, breath rate, blood pressure, voice and activity can be derived from these sensors (reports at www.arl.army.mil/acoustics). Having numerous sensors at various locations provides a means for array processing to reduce motion artifacts, calculate pulse transit time for passive blood pressure measurement, and the origin of blunt/penetrating traumas such as ballistic wounding. These types of sensors give us the ability to monitor soldiers and civilian emergency first-responders in demanding environments, and provide vital signs information to assess their health status and how that person is interacting with the environment and mission at hand. The Objective Force Warrior, Scorpion, Land Warrior, Warrior Medic, and other military and civilian programs can potentially benefit from these sensors.

  10. Fuel Line Based Acoustic Flame-Out Detection System

    NASA Technical Reports Server (NTRS)

    Puster, Richard L. (Inventor); Franke, John M. (Inventor)

    1997-01-01

    An acoustic flame-out detection system that renders a large high pressure combustor safe in the event of a flame-out and possible explosive reignition. A dynamic pressure transducer is placed in the fuel and detects the stabilizing fuel pressure oscillations, caused by the combustion process. An electric circuit converts the signal from the combustion vortices, and transmitted to the fuel flow to a series of pulses. A missing pulse detector counts the pulses and continuously resets itself. If three consecutive pulses are missing, the circuit closes the fuel valve. With fuel denied the combustor is shut down or restarted under controlled conditions.

  11. Detection of fouling in coal gasification ducts using acoustic ranging

    SciTech Connect

    Noteboom, J.W. . Technology and Service Div.)

    1992-09-01

    Acoustic ranging as a technology for pipe inspection under atmospheric conditions has been applied in the field for some years now. Under contract of the Electric Power Research Institute, the Dutch Electricity Generating Companies and Generating Board (Sep) the potential of this technology for online application in high pressure gasifier plants was investigated. Experiments were performed to test the feasibility of acoustic ranging technology to detect, locate and size deposits in grey water lines and in high-temperature, high pressure gas-filled transfer pipes. Two test loops were constructed. The interaction between pipewall and water medium as well as a strong dependence of the amount of dissolved gas on the sound velocity discourages practical application in water lines. However, under ideal conditions larger obstructions can be detected. Tests conducted in high pressure (up to 40 bar) and high temperature (up to 320[degrees]C) gas pipes have been successful and there appears to be no major problem in using this technique for pipe fouling monitoring in gasifiers. An effective acoustic pulse exciter was developed under the program. Equipment specifications for application in a gasifier transfer pipe are included in this report.

  12. Acoustic leak-detection system for railroad transportation security

    NASA Astrophysics Data System (ADS)

    Womble, P. C.; Spadaro, J.; Harrison, M. A.; Barzilov, A.; Harper, D.; Hopper, L.; Houchins, E.; Lemoff, B.; Martin, R.; McGrath, C.; Moore, R.; Novikov, I.; Paschal, J.; Rogers, S.

    2007-04-01

    Pressurized rail tank cars transport large volumes of volatile liquids and gases throughout the country, much of which is hazardous and/or flammable. These gases, once released in the atmosphere, can wreak havoc with the environment and local populations. We developed a system which can non-intrusively and non-invasively detect and locate pinhole-sized leaks in pressurized rail tank cars using acoustic sensors. The sound waves from a leak are produced by turbulence from the gas leaking to the atmosphere. For example, a 500 μm hole in an air tank pressurized to 689 kPa produces a broad audio frequency spectrum with a peak near 40 kHz. This signal is detectable at 10 meters with a sound pressure level of 25 dB. We are able to locate a leak source using triangulation techniques. The prototype of the system consists of a network of acoustic sensors and is located approximately 10 meters from the center of the rail-line. The prototype has two types of acoustic sensors, each with different narrow frequency response band: 40 kHz and 80 kHz. The prototype is connected to the Internet using WiFi (802.11g) transceiver and can be remotely operated from anywhere in the world. The paper discusses the construction, operation and performance of the system.

  13. Acoustic Emission Detection of Impact Damage on Space Shuttle Structures

    NASA Technical Reports Server (NTRS)

    Prosser, William H.; Gorman, Michael R.; Madaras, Eric I.

    2004-01-01

    The loss of the Space Shuttle Columbia as a result of impact damage from foam debris during ascent has led NASA to investigate the feasibility of on-board impact detection technologies. AE sensing has been utilized to monitor a wide variety of impact conditions on Space Shuttle components ranging from insulating foam and ablator materials, and ice at ascent velocities to simulated hypervelocity micrometeoroid and orbital debris impacts. Impact testing has been performed on both reinforced carbon composite leading edge materials as well as Shuttle tile materials on representative aluminum wing structures. Results of these impact tests will be presented with a focus on the acoustic emission sensor responses to these impact conditions. These tests have demonstrated the potential of employing an on-board Shuttle impact detection system. We will describe the present plans for implementation of an initial, very low frequency acoustic impact sensing system using pre-existing flight qualified hardware. The details of an accompanying flight measurement system to assess the Shuttle s acoustic background noise environment as a function of frequency will be described. The background noise assessment is being performed to optimize the frequency range of sensing for a planned future upgrade to the initial impact sensing system.

  14. Cavitating vortex characterization based on acoustic signal detection

    NASA Astrophysics Data System (ADS)

    Digulescu, A.; Murgan, I.; Candel, I.; Bunea, F.; Ciocan, G.; Bucur, D. M.; Dunca, G.; Ioana, C.; Vasile, G.; Serbanescu, A.

    2016-11-01

    In hydraulic turbines operating at part loads, a cavitating vortex structure appears at runner outlet. This helical vortex, called vortex rope, can be cavitating in its core if the local pressure is lower that the vaporization pressure. An actual concern is the detection of the cavitation apparition and the characterization of its level. This paper presents a potentially innovative method for the detection of the cavitating vortex presence based on acoustic methods. The method is tested on a reduced scale facility using two acoustic transceivers positioned in ”V” configuration. The received signals were continuously recorded and their frequency content was chosen to fit the flow and the cavitating vortex. Experimental results showed that due to the increasing flow rate, the signal - vortex interaction is observed as modifications on the received signal's high order statistics and bandwidth. Also, the signal processing results were correlated with the data measured with a pressure sensor mounted in the cavitating vortex section. Finally it is shown that this non-intrusive acoustic approach can indicate the apparition, development and the damping of the cavitating vortex. For real scale facilities, applying this method is a work in progress.

  15. [Application of PLA Method for Detection of p53/p63/p73 Complexes in Situ in Tumour Cells and Tumour Tissue].

    PubMed

    Hrabal, V; Nekulová, M; Nenutil, R; Holčaková, J; Coates, P J; Vojtěšek, B

    2017-01-01

    PLA (proximity ligation assay) can be used for detection of protein-protein interactions in situ directly in cells and tissues. Due to its high sensitivity and specificity it is useful for detection, localization and quantification of protein complexes with single molecule resolution. One of the mechanisms of mutated p53 gain of function is formation of proten-protein complexes with other members of p53 family - p63 and p73. These interactions influences chemosensitivity and invasivity of cancer cells and this is why these complexes are potential targets of anti-cancer therapy. The aim of this work is to detect p53/p63/p73 interactions in situ in tumour cells and tumour tissue using PLA method. Unique in-house antibodies for specific detection of p63 and p73 isoforms were developed and characterized. Potein complexes were detected using PLA in established cell lines SVK14, HCC1806 and FaDu and in paraffin sections of colorectal carcinoma tissue. Cell lines were also processed to paraffin blocks. p53/T-antigen and ΔNp63/T-antigen protein complexes were detected in SVK14 cells using PLA. Interactions of ΔNp63 and TAp73 isoforms were found in HCC1806 cell line with endogenous expression of these proteins. In FaDu cell line mut-p53/TAp73 complex was localized but not mut-p53/ΔNp63 complex. p53 tetramer was detected directly in colorectal cancer tissue. During development of PLA method for detection of protein complexes between p53 family members we detected interactions of p53 and p63 with T-antigen and mut-p53 and ΔNp63 with TAp73 tumour suppressor in tumour cell lines and p53 tetramers in paraffin sections of colorectal cancer tissue. PLA will be further used for detection of p53/p63, p53/p73 and p63/p73 interactions in tumour tissues and it could be also used for screening of compounds that can block formation of p53/p63/p73 protein complexes.Key words: p53 protein family - protein interaction mapping - immunofluorescence This work was supported by MEYS - NPS I

  16. Crack detection in lap-joints using acoustic emission

    SciTech Connect

    Searle, I.; Ziola, S.; Rutherford, P.

    1995-08-01

    Experiments have been performed to assess the feasibility of crack growth detection in an aircraft lap-joint using acoustic emission (AE). Fatigue tests were conducted in both simple geometry specimens and lap-joint specimens. A high fidelity, wide band transient recording system was used to capture the acoustic emission due to defect growth. The simple specimens were used to determine crack growth signal characteristics, while the complex lap-joint provided a more realistic specimen. Representative waveforms from these two specimens are presented, along with a discussion of wave propagnation for the particular media. A self-organizing map was investigated as a means of automatically identify crack signals. Results and suggestions for future work are presented.

  17. Understanding Piezo Based Sensors for Acoustic Neutrino Detection

    NASA Astrophysics Data System (ADS)

    Naumann, C. L.; Anton, G.; Graf, K.; Höβl, J.; Kappes, A.; Katz, U. F.; Lahmann, R.; Salomon, K.

    2007-09-01

    The ANTARES collaboration is currently installing a neutrino telescope off the French Mediterranean coast to measure diffuse fluxes and point sources of high energy cosmic neutrinos. The complete detector will consist of 900 photomultipliers on 12 detector lines, using 0.01km3 of sea water as target material[1]. As part of the ANTARES deep-sea research infrastructure, the Erlangen group is planning to modify several ANTARES storeys by fitting them with acoustic receivers to study the feasibility of acoustic neutrino detection in the deep sea. In this paper, studies of the electromechanical properties of piezoelectric sensors are presented, based on an equivalent circuit diagram for the coupled mechanical and electrical oscillations of a piezoelectric element. A method for obtaining the system parameters as well as derivations of sensor properties like pressure sensitivity and intrinsic noise are treated and results compared to measurements. Finally, a possible application of these results for simulating system response and optimising reconstruction algorithms is discussed.

  18. Piezoelectric and electrostatic polymeric transducers for acoustic emission detection

    NASA Astrophysics Data System (ADS)

    Das-Gupta, D. K.; Doughty, K.

    1984-12-01

    The work performed during the contractural period falls into three distinct parts: (1) the fabrication of ultrasonic transducers for acoustic emission detection using polyvinylidene fluoride (PVDF) active elements, (2) the fabrication of electrostatic transducers using thin films of non-polar polymers such as polypropylene and polytetrafluoroethylene, and (3) the development of a flexible composite material with piezoelectric properties using powdered ceramic (PZT) dispersed in a polymer matrix. The first period report dealt with the design and characterization of PVDF transducers. The second report compared the sensitivity of PVDF transducers with polypropylene electrostatic transducer designs. Further work performed to determine optimum charging conditions for high sensitivity and repeatability of electrostatic responses was described in the third report. This report briefly describes the work performed over the entire project and then describes, in detail, the development and piezoelectric characterization of a flexible composite material which may be used for acoustic emission monitoring applications.

  19. Detection and tracking of drones using advanced acoustic cameras

    NASA Astrophysics Data System (ADS)

    Busset, Joël.; Perrodin, Florian; Wellig, Peter; Ott, Beat; Heutschi, Kurt; Rühl, Torben; Nussbaumer, Thomas

    2015-10-01

    Recent events of drones flying over city centers, official buildings and nuclear installations stressed the growing threat of uncontrolled drone proliferation and the lack of real countermeasure. Indeed, detecting and tracking them can be difficult with traditional techniques. A system to acoustically detect and track small moving objects, such as drones or ground robots, using acoustic cameras is presented. The described sensor, is completely passive, and composed of a 120-element microphone array and a video camera. The acoustic imaging algorithm determines in real-time the sound power level coming from all directions, using the phase of the sound signals. A tracking algorithm is then able to follow the sound sources. Additionally, a beamforming algorithm selectively extracts the sound coming from each tracked sound source. This extracted sound signal can be used to identify sound signatures and determine the type of object. The described techniques can detect and track any object that produces noise (engines, propellers, tires, etc). It is a good complementary approach to more traditional techniques such as (i) optical and infrared cameras, for which the object may only represent few pixels and may be hidden by the blooming of a bright background, and (ii) radar or other echo-localization techniques, suffering from the weakness of the echo signal coming back to the sensor. The distance of detection depends on the type (frequency range) and volume of the noise emitted by the object, and on the background noise of the environment. Detection range and resilience to background noise were tested in both, laboratory environments and outdoor conditions. It was determined that drones can be tracked up to 160 to 250 meters, depending on their type. Speech extraction was also experimentally investigated: the speech signal of a person being 80 to 100 meters away can be captured with acceptable speech intelligibility.

  20. Accuracy of software-assisted detection of tumour feeders in transcatheter hepatic chemoembolization using three target definition protocols.

    PubMed

    Iwazawa, J; Ohue, S; Hashimoto, N; Mitani, T

    2014-02-01

    To compare the accuracy of computer software analysis using three different target-definition protocols to detect tumour feeder vessels for transarterial chemoembolization of hepatocellular carcinoma. C-arm computed tomography (CT) data were analysed for 81 tumours from 57 patients who had undergone chemoembolization using software-assisted detection of tumour feeders. Small, medium, and large-sized targets were manually defined for each tumour. The tumour feeder was verified when the target tumour was enhanced on selective C-arm CT of the investigated vessel during chemoembolization. The sensitivity, specificity, and accuracy of the three protocols were evaluated and compared. One hundred and eight feeder vessels supplying 81 lesions were detected. The sensitivity of the small, medium, and large target protocols was 79.8%, 91.7%, and 96.3%, respectively; specificity was 95%, 88%, and 50%, respectively; and accuracy was 87.5%, 89.9%, and 74%, respectively. The sensitivity was significantly higher for the medium (p = 0.003) and large (p < 0.001) target protocols than for the small target protocol. The specificity and accuracy were higher for the small (p < 0.001 and p < 0.001, respectively) and medium (p < 0.001 and p < 0.001, respectively) target protocols than for the large target protocol. The overall accuracy of software-assisted automated feeder analysis in transarterial chemoembolization for hepatocellular carcinoma is affected by the target definition size. A large target definition increases sensitivity and decreases specificity in detecting tumour feeders. A target size equivalent to the tumour size most accurately predicts tumour feeders. Copyright © 2013 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.

  1. Detection of circulating tumour cells may add value in endometrial cancer management.

    PubMed

    Ni, T; Sun, X; Shan, B; Wang, J; Liu, Y; Gu, S-L; Wang, Y-D

    2016-12-01

    To evaluate the role of circulating tumour cells (CTCs) in patients with endometrial cancer (EC). This study included 40 patients with a pre-operative diagnosis of high-risk EC between April 2015 and May 2016. Patients were further divided into high-risk (grade 3, non-endometrioid, myometrial invasion ≥1/2 and stage III-IV) and high-intermediate-risk (grade 2-3, endometrioid, myometrial invasion <1/2 and stage I-II) groups according to postoperative pathological results. CTCs were detected using the CellSearch system, and CTC results were correlated with standard clinicopathological characteristics and serum tumour marker CA125/HE4 status using Chi-squared test, continuity correction or Fisher's exact test. The pharmacodynamic effect was detected after the first cycle of adjuvant therapy. Patients were followed up for 13 months to assess outcomes. Fifteen percent of patients had one or more CTCs. The presence of CTCs was found to be significantly associated with cervical involvement (83.33% vs 11.76%, p=0.00). No significant difference in CTC-positive rates was detected between the high-risk and high-intermediate-risk groups, and no significant correlation was found between CTCs and serum CA125/HE4, either by positive rates or exact serum levels of the conventional tumour markers. No more CTCs were detected after the first cycle of standard chemotherapy in this study, and no distant metastases or recurrence were found in the CTC-positive patients during the follow-up period. The presence of CTCs was correlated with cervical involvement. Early-stage EC patients with CTCs may benefit from additional adjuvant therapies. Assessment of CTCs may be useful in the management of high-risk EC patients. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. On-chip integrated labelling, transport and detection of tumour cells.

    PubMed

    Woods, Jane; Docker, Peter T; Dyer, Charlotte E; Haswell, Stephen J; Greenman, John

    2011-11-01

    Microflow cytometry represents a promising tool for the investigation of diagnostic and prognostic cellular cancer markers, particularly if integrated within a device that allows primary cells to be freshly isolated from the solid tumour biopsies that more accurately reflect patient-specific in vivo tissue microenvironments at the time of staining. However, current tissue processing techniques involve several sequential stages with concomitant cell losses, and as such are inappropriate for use with small biopsies. Accordingly, we present a simple method for combined antibody-labelling and dissociation of heterogeneous cells from a tumour mass, which reduces the number of processing steps. Perfusion of ex vivo tissue at 4°C with antibodies and enzymes slows cellular activity while allowing sufficient time for the diffusion of minimally active enzymes. In situ antibody-labelled cells are then dissociated at 37°C from the tumour mass, whereupon hydrogel-filled channels allow the release of relatively low cell numbers (<1000) into a biomimetic microenvironment. This novel approach to sample processing is then further integrated with hydrogel-based electrokinetic transport of the freshly liberated fluorescent cells for downstream detection. It is anticipated that this integrated microfluidic methodology will have wide-ranging biomedical and clinical applications.

  3. Target detection and identification using synthetic aperture acoustics

    NASA Astrophysics Data System (ADS)

    Knox, Mary; Tantum, Stacy; Collins, Leslie

    2014-05-01

    Recent research has shown that synthetic aperture acoustic (SAA) imaging may be useful for object identification. The goal of this work is to use SAA information to detect and identify four types of objects: jagged rocks, river rocks, small concave capped cylinders, and large concave capped cylinders. More specifically, we examine the use of frequency domain features extracted from the SAA images. We utilize Support Vector Machines (SVMs) for target detection, where an SVM is trained on target and non-target (background) examples for each target type. Assuming perfect target detection, we then compare multivariate Gaussian models for target identification. Experimental results show that SAA-based frequency domain features are able to detect and identify the four types of objects.

  4. Prognostic value of tumour cell detection in peripheral blood of breast cancer patients.

    PubMed

    Zach, O; Kasparu, H; Wagner, H; Krieger, O; Lutz, D

    2002-01-01

    To investigate the prognostic value of tumour cells in peripheral blood (pB) of breast cancer (BC) patients, pB samples from 143 patients with benign lesions of the breast and from 467 BC patients were tested via a nested RT-PCR assay for mammaglobin mRNA. No sample from patients with benign lesions of the breast was found to be mammaglobin positive in contrast to 5/310 (2%) BC patients with no evidence of disease (NED) and 46/157 (29%) patients with metastatic disease (MD). Two hundred and eighteen BC patients with NED were followed for at least 12 months. All five mammaglobin-positive BC patients relapsed 1-13 months after first examination of positive pB samples in contrast to 27/213 (13%) patients without detectable tumour cells in pB. Fifty-nine BC patients with MD were tested for mammaglobin expression in pB at the time of first diagnosis of MD; 20 of them (34%) were mammaglobin positive. Patients were followed for a median of 19 months (2-51 months). During this time, 19/59 (32%) died due to tumour progression. In Kaplan-Meier survival analysis, BC patients with mammaglobin-negative pB samples at time of diagnosis of MD lived significantly longer than mammaglobin-positive patients (log-rank test: P = 0.0013). In addition, mammaglobin was an independent prognostic parameter and the difference reached significance in univariate as well as in multivariate analysis (P < 0.01). We conclude that the presence of tumour cells in pB of BC patients is of prognostic value.

  5. Non-destructive acoustic defect detection in drug tablets.

    PubMed

    Akseli, Ilgaz; Mani, Girindra N; Cetinkaya, Cetin

    2008-08-06

    For physical defect detection in drug tablets, a non-destructive and non-contact technique based on air coupled excitation and interferometric detection is presented. Physical properties and mechanical integrity of drug tablets can often affect their therapeutic and structural functions. The monitoring for defects and the characterization of tablet mechanical properties therefore have been of practical interest for solid oral dosage forms. The presented monitoring approach is based on the analysis of the transient vibrational responses of an acoustically excited tablet in both in temporal and spectral domains. The pulsed acoustic field exciting the tablet is generated by an air-coupled transducer. Using a laser vibrometer, the out-of-plane vibrational transient response of the tablet is detected and acquired in a non-contact manner. The physical state of the tablet is evaluated based on the spectral properties of these transient responses. In the current study, the effectiveness of three types of simple similarity measures is evaluated for their potential uses as defect detection norms, and for their potential use in quantifying the extent of tablet defect is discussed. It is found that these quantities can not only be used for identification of defective tablets, but could also provide a measure for the extent of the damage.

  6. Object detection and imaging with acoustic time reversal mirrors

    NASA Astrophysics Data System (ADS)

    Fink, Mathias

    1993-11-01

    Focusing an acoustic wave on an object of unknown shape through an inhomogeneous medium of any geometrical shape is a challenge in underground detection. Optimal detection and imaging of objects needs the development of such focusing techniques. The use of a time reversal mirror (TRM) represents an original solution to this problem. It realizes in real time a focusing process matched to the object shape, to the geometries of the acoustic interfaces and to the geometries of the mirror. It is a self adaptative technique which compensates for any geometrical distortions of the mirror structure as well as for diffraction and refraction effects through the interfaces. Two real time 64 and 128 channel prototypes have been built in our laboratory and TRM experiments demonstrating the TRM performance through inhomogeneous solid and liquid media are presented. Applications to medical therapy (kidney stone detection and destruction) and to nondestructive testing of metallurgical samples of different geometries are described. Extension of this study to underground detection and imaging will be discussed.

  7. Detection of tumour necrosis factor-alpha in dogs with lymphoma(*).

    PubMed

    Hofer, J; DeFrancesco, T C; Williams, L E

    2011-12-01

    Tumour necrosis factor-alpha (TNF-α) production by malignant lymphoblasts has been identified in vitro and in vivo in mice and humans, respectively. The goals of this study were (1) to evaluate a novel single-sample TNF-α assay and (2) to determine whether TNF-α is increased in dogs with lymphoma prior to and following treatment. Canine TNF-α was analysed concurrently using the novel Siemens Immulite® single-sample automated ELISA and the previously validated Quantikine® standard ELISA. Serum from dogs with lymphoma and from breed-, age- and gender-matched control dogs was evaluated at two time points. Three of 25 (12%) dogs with lymphoma had detectable TNF-α at diagnosis, whereas none had detectable TNF-α following complete or partial remission. TNF-α was not detectable in control dogs. Despite 91% homology between human and canine TNF-α, the Immulite® automated ELISA failed to detect canine TNF-α. Serum TNF-α appears to have limited value as a tumour marker in dogs with lymphoma.

  8. SU-E-T-14: A Comparative Study Between Forward and Inverse Planning in Gamma Knife Radiosurgery for Acoustic Neuroma Tumours

    SciTech Connect

    Gopishankar, N; Agarwal, Priyanka; Bisht, Raj Kishor; Kale, S S; Rath, G K; Chander, S; Sharma, B S

    2015-06-15

    Purpose: To evaluate forward and inverse planning methods for acoustic neuroma cases treated in Gamma Knife Perfexion. Methods: Five patients with acoustic neuroma tumour abutting brainstem were planned twice in LGP TPS (Version 10.1) using TMR10 algorithm. First plan was entirely based on forward planning (FP) in which each shot was chosen manually. Second plan was generated using inverse planning (IP) for which planning parameters like coverage, selectivity, gradient index (GI) and beam-on time threshold were set. Number of shots in IP was automatically selected by objective function using iterative process. In both planning methods MRI MPRAGE sequence images were used for tumour localization and planning. A planning dose of 12Gy at 50% isodose level was chosen. Results and Discussion: Number of shots used in FP was greater than IP and beam-on time in FP was in average 1.4 times more than IP. One advantage of FP was that the brainstem volume subjected to 6Gy dose (25% isodose) was less in FP than IP. Our results showed use of more number of shots as in FP results in GI less than or equal to 2.55 which is close to its lower limit. Dose homogeneity index (DHI) analysis of FP and IP showed average values of 0.59 and 0.67 respectively. General trend in GK for planning in acoustic neuroma cases is to use small collimator shots to avoid dose to adjacent critical structures. More number of shots and prolonged treatment time causes inconvenience to the patients. Similarly overuse of automatic shot shaping as in IP results in increased scatter dose. A compromise is required in shot selection for these cases. Conclusion: IP method could be used in acoustic neuroma cases to decrease treatment time provided the source sector openings near brainstem are shielded or adjusted appropriately to reduce brainstem dose.

  9. Thermal Acoustic Oscillation: Causes, Detection, Analysis, and Prevention

    NASA Technical Reports Server (NTRS)

    Christie, R. J.; Hartwig, J. W.

    2014-01-01

    Thermal Acoustic Oscillations (TAO) can occur in cryogenic systems and produce significant sources of heat. This source of heat can increase the boil off rate of cryogenic propellants in spacecraft storage tanks and reduce mission life. This paper discusses the causes of TAO, how it can be detected, what analyses can be done to predict it, and how to prevent it from occurring.The paper provides practical insight into what can aggravate instability, practical methods for mitigation, and when TAO does not occur. A real life example of a cryogenic system with an unexpected heat source is discussed, along with how TAO was confirmed and eliminated.

  10. CH-46 rotor head acoustic fault detection analysis

    NASA Astrophysics Data System (ADS)

    Schoess, Jeffrey N.; Busch, Darryl; Menon, Sunil

    1999-05-01

    Reductions in Navy maintenance budgets and available personnel have dictated the need to transition from time-based to 'condition-based' maintenance. Achieving this requires new enabling diagnostic technologies. Stress-wave acoustic emission technology has shown promise for the early detection of helicopter rotor head dynamic component faults. In September 1997, Honeywell Technology Center (HTC) successfully completed a three-week flight test of its rotor acoustic monitoring system (RAMS) at Patuxent River Flight Test Center. This flight test was the culmination of an ambitious 38-month, proof-of-concept effort directed at demonstrating the feasibility of detecting crack propagation in helicopter rotor components. Honeywell is presently developing a time- frequency-based real-time processing algorithm under internal research efforts to automate the fault-detection process. The focus of this paper is to overview the CH-46 flight test and system configuration and present preliminary results of the time-frequency analysis of the flight-test dataset.

  11. RELIABILITY OF THE DETECTION OF THE BARYON ACOUSTIC PEAK

    SciTech Connect

    MartInez, Vicent J.; Arnalte-Mur, Pablo; De la Cruz, Pablo; Saar, Enn; Tempel, Elmo; Pons-BorderIa, MarIa Jesus

    2009-05-01

    The correlation function of the distribution of matter in the universe shows, at large scales, baryon acoustic oscillations, which were imprinted prior to recombination. This feature was first detected in the correlation function of the luminous red galaxies of the Sloan Digital Sky Survey (SDSS). Recently, the final release (DR7) of the SDSS has been made available, and the useful volume is about two times bigger than in the old sample. We present here, for the first time, the redshift-space correlation function of this sample at large scales together with that for one shallower, but denser volume-limited subsample drawn from the Two-Degree Field Redshift Survey. We test the reliability of the detection of the acoustic peak at about 100 h {sup -1} Mpc and the behavior of the correlation function at larger scales by means of careful estimation of errors. We confirm the presence of the peak in the latest data although broader than in previous detections.

  12. Detection of Circulating Tumour Cells in Urothelial Cancers and Clinical Correlations: Comparison of Two Methods

    PubMed Central

    Fina, Emanuela; Necchi, Andrea; Bottelli, Stefano; Reduzzi, Carolina; Pizzamiglio, Sara; Iacona, Chiara; Daidone, Maria Grazia

    2017-01-01

    Circulating tumour cells (CTC) are identified exploiting their protein/gene expression patterns or distinct size compared to blood cells. Data on CTC in bladder cancer (BC) are still scarce. We comparatively analyzed CTC enrichment by AdnaTest ProstateCancerSelect (AT) and ScreenCell®Cyto (SC) kits, combined with identification by EPCAM, MUC1, and ERBB2 expression and by cytological criteria, respectively, in 19 nonmetastatic (M0) and 47 metastatic (M+) BC patients, at baseline (T0) and during treatment (T1). At T0, CTC positivity rates by AT were higher in M+ compared to M0 cases (57.4% versus 25%, p = 0.041). EPCAM was detected in 75% of CTC-positive samples by AT, showing increasing expression levels from T0 to T1 (median (interquartile range, IQR): 0.18 (0.07–0.42) versus 0.84 (0.33–1.84), p = 0.005) in M+ cases. Overall, CTC positivity by SC was around 80% regardless of clinical setting and time point of analysis, except for a lower occurrence at T1 in M0 cases. At T0, circulating tumour microemboli were more frequently (25% versus 8%) detected and more numerous in M+ compared to M0 patients. The approach used for CTC detection impacts the outcome of CTC studies. Further investigations are required to clarify the clinical validity of AT and SC in specific BC clinical contexts. PMID:28321147

  13. Malignant tumours after renal transplantation.

    PubMed

    Fahlenkamp, D; Reinke, P; Kirchner, S; Schnorr, D; Lindeke, A; Loening, S A

    1996-10-01

    In 1243 patients after renal transplantation, 39 malignant tumours were detected in 37 patients. The average latency period between transplantation and tumour disease was 72 months. Tumours included 8 malignant lymphomas, 7 dermatomas and 24 visceral tumours. The patients who developed a tumour had received fewer blood transfusions before transplantation than a tumour-free control group of 60 patients with renal transplants. Rejection crises occurred in a significantly smaller number of tumour patients compared with the control group.

  14. Deconvolution of acoustically detected bubble-collapse shock waves.

    PubMed

    Johansen, Kristoffer; Song, Jae Hee; Johnston, Keith; Prentice, Paul

    2017-01-01

    The shock wave emitted by the collapse of a laser-induced bubble is detected at propagation distances of 30, 40and50mm, using a PVdF needle hydrophone, with a non-flat end-of-cable frequency response, calibrated for magnitude and phase, from 125kHz to 20MHz. High-speed shadowgraphic imaging at 5×10(6) frames per second, 10nstemporal resolution and 256 frames per sequence, records the bubble deflation from maximum to minimum radius, the collapse and shock wave generation, and the subsequent rebound in unprecedented detail, for a single sequence of an individual bubble. The Gilmore equation for bubble oscillation is solved according to the resolved bubble collapse, and simulated shock wave profiles deduced from the acoustic emissions, for comparison to the hydrophone recordings. The effects of single-frequency calibration, magnitude-only and full waveform deconvolution of the experimental data are presented, in both time and frequency domains. Magnitude-only deconvolution increases the peak pressure amplitude of the measured shock wave by approximately 9%, from single-frequency calibration, with full waveform deconvolution increasing it by a further 3%. Full waveform deconvolution generates a shock wave profile that is in agreement with the simulated profile, filtered according to the calibration bandwidth. Implications for the detection and monitoring of acoustic cavitation, where the role of periodic bubble collapse shock waves has recently been realised, are discussed. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Photodynamic detection of canine mammary gland tumours after oral administration of 5-aminolevulinic acid.

    PubMed

    Osaki, T; Yokoe, I; Ogura, S; Takahashi, K; Murakami, K; Inoue, K; Ishizuka, M; Tanaka, T; Li, L; Sugiyama, A; Azuma, K; Murahata, Y; Tsuka, T; Ito, N; Imagawa, T; Okamoto, Y

    2017-09-01

    5-Aminolevulinic acid (5-ALA) is widely used in photodynamic detection (PDD) and therapy. We evaluated the pharmacokinetics of 5-ALA-induced porphyrins and its effectiveness in PDD in dogs with mammary gland tumours (MGTs) following oral administration. Healthy dogs and those with MGTs (nine each) were orally administered 4 mg kg(-1) 5-ALA. Protoporphyrin IX (PpIX) was not detected in the plasma of healthy dogs but it peaked in dogs with MGT at 2 h after 5-ALA administration. In the PDD study, 16 dogs with MGT were orally administered 40 mg kg(-1) 5-ALA, and MGT but not normal tissue showed red fluorescence after 2-4 h. Photon counts were 6635-63 890 and 59-4011 (median, 19 943 and 919) for MGT and non-tumour tissues, respectively. Cell density strongly correlated with PpIX photon counts of MGT tissue of the dogs (R = 0.743, P = 0.0009). We suggest that 5-ALA-PDD might be an effective diagnostic tool for MGTs. © 2016 John Wiley & Sons Ltd.

  16. Buried-object detection using time-reversed acoustics

    NASA Astrophysics Data System (ADS)

    Pierson, David Michael

    The work presented here is a comprehensive study of using time reversal to detect objects located in an inhomogeneous environment using backscattered signals with an emphasis on littoral environments. Time reversal of acoustic signals in the ocean has been studied for more than two decades with the emphasis on the use of the forward scattered field. All studies share similar geometries where both the acoustical source and an adjacent array of transducers are placed in the water column. This configuration, known as a time-reversal mirror (TRM), is not practical when detecting an object that is located in a different environment than the TRM, such as beneath the ocean floor. Little work has been done to study the efficacy of a single transceiver performing the time-reversal operation on the backscattered signals from targets buried beneath the ocean floor. Here, I start by presenting the theory for such a system in both time and frequency domains for scattering by a sphere. Then by using simulations I show that time reversal of backscattered signals provides a robust method to detect targets buried in an acoustically inhomogeneous sediment using a point transceiver in the water column several meters above the sea floor. Effects of the time-reversal window (TRW) on the iterative time-reversal operation are also presented. I define a signal-to-noise ratio (SNR) that treats the return with the sphere as the signal and the return without the sphere as noise to quantify improvements to the sphere returns. I consider two different sediment models and angle of incidence to show that the TRO operates independently of the sediment type and transceiver orientation. Theoretical analysis reveals that the time-reversal of backscattered signals converges to a subset of waveforms defined by the target and time-reversal window, not the initial pulse. Analysis further reveals that the time-reversal operator detects the sphere after only two iterations of the TRO, with more iterations

  17. Early neoplastic and metastatic mammary tumours of transgenic mice detected by 5-aminolevulinic acid-stimulated protoporphyrin IX accumulation

    PubMed Central

    Dorward, A M; Fancher, K S; Duffy, T M; Beamer, W G; Walt, H

    2005-01-01

    A photodynamic technique for human breast cancer detection founded upon the ability of tumour cells to rapidly accumulate the fluorescent product protoporphyrin IX (PpIX) has been applied to transgenic mouse models of mammary tumorigenesis. A major goal of this investigation was to determine whether mouse mammary tumours are reliable models of human disease in terms of PpIX accumulation, for future mechanistic and therapeutic studies. The haeme substrate 5-aminolevulinic acid (5-ALA) (200 mg kg−1) was administered to mouse strains that develop mammary tumours of various histological subtypes upon expression of the transgenic oncogenes HRAS, Polyoma Virus middle T antigen, or Simian Virus 40 large T antigen in the mammary gland. Early neoplastic lesions, primary tumours and metastases showed consistent and rapid PpIX accumulation compared to the normal surrounding tissues, as evidenced by red fluorescence (635 nm) when the tumours were directly illuminated with blue light (380–440 nm). Detection of mouse mammary tumours at the stage of ductal carcinoma in situ by red fluorescence emissions suggests that enhanced PpIX synthesis is a good marker for early tumorigenic processes in the mammary gland. We propose the mouse models provide an ideal experimental system for further investigation of the early diagnostic and therapeutic potential of 5-ALA-stimulated PpIX accumulation in human breast cancer patients. PMID:16251872

  18. Small arm fire acoustic detection and localization systems: gunfire detection system

    NASA Astrophysics Data System (ADS)

    Donzier, Alain; Cadavid, Sandra

    2005-05-01

    The Gunfire Detection System (GDS) is an acoustic passive sensor designed to rapidly detect, locate, and report on hostile fire from small arms upon detection of a blast wave from a bullet exiting the gun barrel and/or the supersonic wave of the bullet. Upon the detection of the muzzle blast and/or the acoustic shock wave caused by the moving bullet the GDS notifies the user and displays the azimuth, elevation and range to the gunfire origin (shooter). This information allows the GDS user to swiftly move, return fire or take other appropriate action. The paper presented examines the militarization process of a Commercial Off The Shelf (COTS) item and provides lessons learned.

  19. Generation, detection, and propagation of nano-acoustic waves in piezoelectric semiconductors (Invited Paper)

    NASA Astrophysics Data System (ADS)

    Lin, Kung-Hsuan; Hsieh, Chia-Lung; Yu, Cheng-Ta; Pan, Chang-Chi; Chyi, Jen-Inn; Keller, Stacia K.; DenBaars, Steven P.; Sun, Chi-Kuang

    2005-04-01

    Piezoelectric semiconductor with heterostructure can be treated as a piezoelectric transducer for the generation of acoustic waves with wavelength less than 10 nm (nano-acoustic waves) by optical technique. This optical piezoelectric transducer has also been utilized for the detection of the nano-acoustic waves (NAW). In this paper, we discuss the generation, detection, and propagation of nano-acoustic waves in piezoelectric semiconductors. We demonstrate that the acoustic frequency of the NAW can be tuned by an optical control technique. Besides, we have also developed an acoustic sensor with THz bandwidth which can be used to study NAW propagation control devices such as nano-phononic bandgap crystal. We demonstrated that the roughness of an interface can be evaluated by the NAW with a resolution less than 1 nm through the acoustic phasefront distortion effect. With the optical piezoelectric transducer, nano-ultrasonics, which is analogous to typical ultrasonics but on the nanometer scale, has been successfully developed.

  20. DETECTION OF DRUGSTORE BEETLES IN 9975 PACKAGES USING ACOUSTIC EMISSIONS

    SciTech Connect

    Shull, D.

    2013-03-04

    This report documents the initial feasibility tests performed using a commercial acoustic emission instrument for the purpose of detecting beetles in Department of Energy 9975 shipping packages. The device selected for this testing was a commercial handheld instrument and probe developed for the detection of termites, weevils, beetles and other insect infestations in wooden structures, trees, plants and soil. The results of two rounds of testing are presented. The first tests were performed by the vendor using only the hand-held instrument’s indications and real-time operator analysis of the audio signal content. The second tests included hands-free positioning of the instrument probe and post-collection analysis of the recorded audio signal content including audio background comparisons. The test results indicate that the system is promising for detecting the presence of drugstore beetles, however, additional work would be needed to improve the ease of detection and to automate the signal processing to eliminate the need for human interpretation. Mechanisms for hands-free positioning of the probe and audio background discrimination are also necessary for reliable detection and to reduce potential operator dose in radiation environments.

  1. Acoustic Detection, Behavior, and Habitat Use of Deep-Diving Odontocetes

    DTIC Science & Technology

    2008-09-30

    practice, an acoustic detector intended for one taxon (e.g., beaked whales) will often also detect other , more common, species such as dolphins. A...detection/classification methods for click and whistle sounds produced by deep-diving toothed whales. 2. Examine the relationships between diving, acoustic...of acoustic detectors. This project continues a pioneering integrated study focused on deep-diving cetacean species of particular concern to the

  2. Approximating the Poisson Scan and (lambda-sigma) Acoustic Detection Model with the Random Search Formula

    DTIC Science & Technology

    2009-12-01

    of area search with acoustic sensors modeled by the Poisson Scan model and the Lambda-Sigma model. Detection time results are compared to those...MATLAB simulation of area search with acoustic sensors modeled by the Poisson Scan model and the Lambda-Sigma  model. Detection time results are...study, the author develops a MATLAB simulation of area search with acoustic sensors modeled by the Poisson Scan and the Lambda-Sigma  models. Both

  3. A logistic model for the detection of circulating tumour cells in human metastatic colorectal cancer

    PubMed Central

    Barbazán, Jorge; Vieito, María; Abalo, Alicia; Alonso-Alconada, Lorena; Muinelo-Romay, Laura; Alonso-Nocelo, Marta; León, Luís; Candamio, Sonia; Gallardo, Elena; Anido, Urbano; Doll, Andreas; los Ángeles Casares, María; Gómez-Tato, Antonio; Abal, Miguel; López-López, Rafael

    2012-01-01

    The accuracy in the diagnosis of metastatic colorectal cancer (mCRC) represents one of the challenges in the clinical management of patients. The detection of circulating tumour cells (CTC) is becoming a promising alternative to current detection techniques, as it focuses on one of the players of the metastatic disease and it should provide with more specific and sensitive detection rates. Here, we describe an improved method of detection of CTC from mCRC patients by combining immune-enrichment, optimal purification of RNA from very low cell numbers, and the selection of accurate PCR probes. As a result, we obtained a logistic model that combines GAPDH and VIL1 normalized to CD45 rendering powerful results in the detection of CTC from mCRC patients (AUROC value 0.8599). We further demonstrated the utility of this model at the clinical setting, as a reliable prognosis tool to determine progression-free survival in mCRC patients. Overall, we developed a strategy that ameliorates the specificity and sensitivity in the detection of CTC, resulting in a robust and promising logistic model for the clinical management of metastatic colorectal cancer patients. PMID:22304365

  4. The detection of surface vibrations from interior acoustical pressure

    NASA Astrophysics Data System (ADS)

    DeLillo, Thomas; Isakov, Victor; Valdivia, Nicolas; Wang, Lianju

    2003-06-01

    We consider the problem of detecting the source of acoustical noise inside the cabin of a midsize aircraft from measurements of the acoustical pressure field inside the cabin. Mathematically this field satisfies the Helmholtz equation. In this paper we consider the three-dimensional case. We show that any regular solution of this equation admits a unique representation by a single-layer potential, so that the problem is equivalent to the solution of a linear integral equation of the first kind. We study uniqueness of reconstruction and obtain a sharp stability estimate and convergence rates for some regularization algorithms when the domain is a sphere. We have developed a boundary element code to solve the integral equation. We report numerical results with this code applied to three geometries: a sphere, a cylinder with spherical endcaps and a cylinder with a floor modelling the interior of an aircraft cabin. The exact test solution is given by a point source exterior to the surfaces with about 1% random noise added. Regularization methods using the truncated singular value decomposition with generalized cross validation and the conjugate gradient (cg) method with a stopping rule due to Hanke and Raus are compared. An interesting feature of the three-dimensional problem is the relative insensitivity of the optimal regularization parameter (number of iterations) for the cg method to the wavenumber and the multiplicity of the singular values of the integral operator.

  5. Characterization of space dust using acoustic impact detection.

    PubMed

    Corsaro, Robert D; Giovane, Frank; Liou, Jer-Chyi; Burchell, Mark J; Cole, Michael J; Williams, Earl G; Lagakos, Nicholas; Sadilek, Albert; Anderson, Christopher R

    2016-08-01

    This paper describes studies leading to the development of an acoustic instrument for measuring properties of micrometeoroids and other dust particles in space. The instrument uses a pair of easily penetrated membranes separated by a known distance. Sensors located on these films detect the transient acoustic signals produced by particle impacts. The arrival times of these signals at the sensor locations are used in a simple multilateration calculation to measure the impact coordinates on each film. Particle direction and speed are found using these impact coordinates and the known membrane separations. This ability to determine particle speed, direction, and time of impact provides the information needed to assign the particle's orbit and identify its likely origin. In many cases additional particle properties can be estimated from the signal amplitudes, including approximate diameter and (for small particles) some indication of composition/morphology. Two versions of this instrument were evaluated in this study. Fiber optic displacement sensors are found advantageous when very thin membranes can be maintained in tension (solar sails, lunar surface). Piezoelectric strain sensors are preferred for thicker films without tension (long duration free flyers). The latter was selected for an upcoming installation on the International Space Station.

  6. Calibration of sensors for acoustic detection of neutrinos

    NASA Astrophysics Data System (ADS)

    Ardid, M.; Bou-Cabo, M.; Espinosa, V.; Martínez-Mora, J.; Camarena, F.; Alba, J.

    2007-09-01

    Calibration of sensors is an important task for the acoustic detection of neutrinos. Different approaches have been tried and used (calibrated hydrophones, resistors, powerful lasers, light bulbs explosion, etc.) We propose some methods for calibration that can be used in both the lab and the telescope ("in situ"). In this paper, different studies following these methods and their results are reported. First, we describe the reciprocity calibration method for acoustic sensors. Since it is a simple method and calibrated hydrophones are not needed, this technique is accessible for any lab. Moreover, the technique could be used to calibrate the sensors of a neutrino telescope just by using themselves (reciprocally). A comparison of this technique using different kind of signals (MLS, TSP, tone bursts, white noise), and in different propagation conditions is presented. The limitations of the technique are shown, as well as some possibilities to overcome them. The second aspect treated is the obtaining of neutrinolike signals for calibration. Probably, the most convenient way to do it would be to generate these signals from transducers directly. Since transducers do not usually have a flat frequency response, distortion is produced, and neutrino-like signals could be difficult to achieve. We present some equalization techniques to offset this effect. In this sense, the use of inverse filter based in Mourjopoulos theory seems to be quite convenient.

  7. Detection of fracturing in rocks using acoustic emissions

    NASA Astrophysics Data System (ADS)

    Surdi, Aniket Arun

    Acoustic Emission (AE) signals are elastic body waves produced by a sudden release of acoustic energy, as a result of a localized or a distributed failure, and of redistribution of stresses (e.g. grain crushing, grain sliding, microscopic fracturing and macroscopic fracturing). Acoustic emission technology (AET) uses AE events to locate fractures in real time. This technology is of particular importance for mapping the propagation of hydraulic fractures in the subsurface and particularly important on tight reservoirs. Results give the operator an opportunity to visualize the fracture development, during hydraulic treatment, and potentially take corrective actions to control fracture growth, if necessary. For these applications, understanding the sources of AE during fracturing in rocks is of critical importance for characterizing the final fracture geometry. In this work, controlled fracturing tests were conducted on relatively homogeneous and isotropic sandstone rock slabs to map fracture propagation, using AET. Fracturing was done by pressurizing a drilled borehole in the sample using an inflated cylindrical bladder. The experimental configuration permitted some control of the final fracture. Finite element analysis (FEA) was used to understand the stress distributions at specific times, during the fracturing process, and based on these results; the distribution of AE events was anticipated in time. A strong correlation between the stress concentrations from FEA and localized AE was observed. Acoustic emissions were detected before, during and after the visible failure of the rock. AE localizations show that, before and after the failure, the highest density of AE events exist in the vicinity of the region where the fracture eventually develops. This indicates that an incipient fracture develops slowly, before the rapid unstable fracturing, generating a large amount of AE events during the process. The rapid fracturing process generates a considerably smaller

  8. Detection of Sentinel Lymph Nodes in Gynecologic Tumours by Planar Scintigraphy and SPECT/CT

    PubMed Central

    Kraft, Otakar; Havel, Martin

    2012-01-01

    Objective: Assess the role of planar lymphoscintigraphy and fusion imaging of SPECT/CT in sentinel lymph node (SLN) detection in patients with gynecologic tumours. Material and Methods: Planar scintigraphy and hybrid modality SPECT/CT were performed in 64 consecutive women with gynecologic tumours (mean age 53.6 with range 30-77 years): 36 pts with cervical cancer (Group A), 21 pts with endometrial cancer (Group B), 7 pts with vulvar carcinoma (Group C). Planar and SPECT/CT images were interpreted separately by two nuclear medicine physicians. Efficacy of these two techniques to image SLN were compared. Results: Planar scintigraphy did not image SLN in 7 patients (10.9%), SPECT/CT was negative in 4 patients (6.3%). In 35 (54.7%) patients the number of SLNs captured on SPECT/CT was higher than on planar imaging. Differences in detection of SLN between planar and SPECT/CT imaging in the group of all 64 patients are statistically significant (p<0.05). Three foci of uptake (1.7% from totally visible 177 foci on planar images) in 2 patients interpreted on planar images as hot LNs were found to be false positive non-nodal sites of uptake when further assessed on SPECT/CT. SPECT/CT showed the exact anatomical location of all visualised sentinel nodes. Conclusion: In some patients with gynecologic cancers SPECT/CT improves detection of sentinel lymph nodes. It can image nodes not visible on planar scintigrams, exclude false positive uptake and exactly localise pelvic and paraaortal SLNs. It improves anatomic localization of SLNs. Conflict of interest:None declared. PMID:23486989

  9. Detection of glyco-mucin profiles improves specificity of MUC16 and MUC1 biomarkers in ovarian serous tumours.

    PubMed

    Ricardo, Sara; Marcos-Silva, Lara; Pereira, Daniela; Pinto, Rita; Almeida, Raquel; Söderberg, Ola; Mandel, Ulla; Clausen, Henrik; Felix, Ana; Lunet, Nuno; David, Leonor

    2015-02-01

    The CA125 assay detects circulating MUC16 and is one of the most widely used cancer biomarkers for the follow-up of ovarian cancer. We previously demonstrated that detection of aberrant cancer-associated glycoforms of MUC16 as well as MUC1 in circulation could improve the yield of these serum assays. Our aim was to refine ovarian cancer biomarkers by detection of aberrant glycoforms (Tn, STn, and T) of MUC16 and MUC1 in ovarian cancer tissue using Proximity Ligation Assays (PLA). We studied two series of serous ovarian tumours, a pilot series of 66 ovarian tumours (27 cystadenomas, 16 borderline tumours and 23 adenocarcinomas) from Centro Hospitalar S. João, Porto and a validation series of 89 ovarian tumours (17 cystadenomas, 25 borderline tumours and 47 adenocarcinomas) from the Portuguese Institute of Oncology Francisco Gentil, Lisbon. PLA reactions for MUC16/Tn, MUC16/STn, MUC1/Tn and MUC1/STn were negative in benign lesions but often positive in borderline and malignant lesions, in both series. An even better yield was obtained based on positivity for any of the four glyco-mucin profiles, further increasing sensitivity to 72% and 83% in the two series, respectively, with 100% specificity. The strategy is designated glyco-mucin profiling and provides strong support for development of PLA-based serum assays for early diagnosis.

  10. Hepatocellular carcinoma in cirrhotic patients at multidetector CT: hepatic venous phase versus delayed phase for the detection of tumour washout

    PubMed Central

    Furlan, A; Marin, D; Vanzulli, A; Patera, G Palermo; Ronzoni, A; Midiri, M; Bazzocchi, M; Lagalla, R; Brancatelli, G

    2011-01-01

    Objectives Our aim was to compare retrospectively hepatic venous and delayed phase images for the detection of tumour washout during multiphasic multidetector row CT (MDCT) of the liver in patients with hepatocellular carcinoma (HCC). Methods 30 cirrhotic patients underwent multiphasic MDCT in the 90 days before liver transplantation. MDCT was performed before contrast medium administration and during hepatic arterial hepatic venous and delayed phases, images were obtained at 12, 55 and 120 s after trigger threshold. Two radiologists qualitatively evaluated images for lesion attenuation. Tumour washout was evaluated subjectively and objectively. Tumour-to-liver contrast (TLC) was measured for all pathologically proven HCCs. Results 48 HCCs were detected at MDCT. 46 of the 48 tumours (96%) appeared as either hyper- or isoattenuating during the hepatic arterial phase subjective washout was present in 15 HCCs (33%) during the hepatic venous phase and in 35 (76%) during the delayed phase (p<0.001, McNemar’s test). Objective washout was present in 30 of the 46 HCCs (65%) during the hepatic venous phase and in 42 of the HCCs (91%) during the delayed phase (p=0.001). The delayed phase yielded significantly higher mean TLC absolute values compared with the hepatic venous phase (−16.1±10.8 HU vs −10.5±10.2 HU; p<0.001). Conclusions The delayed phase is superior to the hepatic venous phase for detection of tumour washout of pathologically proven HCC in cirrhotic patients. PMID:21081569

  11. Automatic Prosodic Event Detection Using Acoustic, Lexical, and Syntactic Evidence

    PubMed Central

    Ananthakrishnan, Sankaranarayanan; Narayanan, Shrikanth S.

    2008-01-01

    With the advent of prosody annotation standards such as tones and break indices (ToBI), speech technologists and linguists alike have been interested in automatically detecting prosodic events in speech. This is because the prosodic tier provides an additional layer of information over the short-term segment-level features and lexical representation of an utterance. As the prosody of an utterance is closely tied to its syntactic and semantic content in addition to its lexical content, knowledge of the prosodic events within and across utterances can assist spoken language applications such as automatic speech recognition and translation. On the other hand, corpora annotated with prosodic events are useful for building natural-sounding speech synthesizers. In this paper, we build an automatic detector and classifier for prosodic events in American English, based on their acoustic, lexical, and syntactic correlates. Following previous work in this area, we focus on accent (prominence, or “stress”) and prosodic phrase boundary detection at the syllable level. Our experiments achieved a performance rate of 86.75% agreement on the accent detection task, and 91.61% agreement on the phrase boundary detection task on the Boston University Radio News Corpus. PMID:19122857

  12. Detecting changes in dynamic and complex acoustic environments

    PubMed Central

    Boubenec, Yves; Lawlor, Jennifer; Górska, Urszula; Shamma, Shihab; Englitz, Bernhard

    2017-01-01

    Natural sounds such as wind or rain, are characterized by the statistical occurrence of their constituents. Despite their complexity, listeners readily detect changes in these contexts. We here address the neural basis of statistical decision-making using a combination of psychophysics, EEG and modelling. In a texture-based, change-detection paradigm, human performance and reaction times improved with longer pre-change exposure, consistent with improved estimation of baseline statistics. Change-locked and decision-related EEG responses were found in a centro-parietal scalp location, whose slope depended on change size, consistent with sensory evidence accumulation. The potential's amplitude scaled with the duration of pre-change exposure, suggesting a time-dependent decision threshold. Auditory cortex-related potentials showed no response to the change. A dual timescale, statistical estimation model accounted for subjects' performance. Furthermore, a decision-augmented auditory cortex model accounted for performance and reaction times, suggesting that the primary cortical representation requires little post-processing to enable change-detection in complex acoustic environments. DOI: http://dx.doi.org/10.7554/eLife.24910.001 PMID:28262095

  13. ACOUSTIC DETECTING AND LOCATING GAS PIPE LINE INFRINGEMENT

    SciTech Connect

    John L Loth; Gary J. Morris; George M. Palmer; Richard Guiler; Deepak Mehra

    2003-04-01

    The West Virginia University natural gas transmission line leak detection research is only considering using readily available 1/2 inch pipeline access ports for the detection of leak generated signals. The main problem with leak signals is the low signal to noise ratio. One of the acoustic signals associated with gas escaping through a leak is only temporary and is in the form of a rarefaction wave originating when the leak is formed. Due to pipeline friction, over distance such a step function transitions to a ramp function. The ability to identify a leak by pipeline monitoring and signal processing depends a great deal on the quality and signal to noise ratio of the characteristics of the detectors used. Combinations of sensing devices are being used for the WVU sensor package and are contained in a removable sensor housing. The four sensors currently installed are a 1/2 inch 3 Hz-40 Khz microphone, an audible range moving coil sensor, a piezo-electric pressure transducer, and the WVU designed floating 3 inch diameter diaphragm to detect flow transient induced pressure ramp type signals. The WVU diaphragm sensor, which is currently under development, uses the same diaphragm principle as a high quality capacitance type microphone, but utilizes aerodynamic signal amplification. This type of amplification only amplifies the ramp-signal itself, not the random pipeline noise.

  14. Detecting changes in dynamic and complex acoustic environments.

    PubMed

    Boubenec, Yves; Lawlor, Jennifer; Górska, Urszula; Shamma, Shihab; Englitz, Bernhard

    2017-03-06

    Natural sounds such as wind or rain, are characterized by the statistical occurrence of their constituents. Despite their complexity, listeners readily detect changes in these contexts. We here address the neural basis of statistical decision-making using a combination of psychophysics, EEG and modelling. In a texture-based, change-detection paradigm, human performance and reaction times improved with longer pre-change exposure, consistent with improved estimation of baseline statistics. Change-locked and decision-related EEG responses were found in a centro-parietal scalp location, whose slope depended on change size, consistent with sensory evidence accumulation. The potential's amplitude scaled with the duration of pre-change exposure, suggesting a time-dependent decision threshold. Auditory cortex-related potentials showed no response to the change. A dual timescale, statistical estimation model accounted for subjects' performance. Furthermore, a decision-augmented auditory cortex model accounted for performance and reaction times, suggesting that the primary cortical representation requires little post-processing to enable change-detection in complex acoustic environments.

  15. Detection of shorter-than-skin-depth acoustic pulses in a metal film via transient reflectivity

    NASA Astrophysics Data System (ADS)

    Manke, K. J.; Maznev, A. A.; Klieber, C.; Temnov, V. V.; Makarov, D.; Baek, S.-H.; Eom, C.-B.; Nelson, Keith A.

    2012-12-01

    Short acoustic pulses are generated in SrRuO3 transducers and detected at the surface of gold films by transient reflectivity. Contrary to expectations, acoustic pulses that are shorter than the optical skin depth of gold are resolved. A comparison of gold detection films that were grown under different deposition conditions demonstrates that the microstructure of a detection film can impact the shape of the detected signal.

  16. Subsurface Eddy Detection Using Satellite and Acoustic Data

    NASA Astrophysics Data System (ADS)

    Aleynik, D. L.; Chepurin, Yu. A.; Goncharov, V. V.

    The CTD survey in the framework of THETIS-II multi disciplinary experiment de- tected an intrathermocline eddy of cold and fresh water in the Western Mediterranean (July 1994). In horizontal plane the eddy was close to the ellipse with axes of 25 and 40 nm, 0.7C difference than background temperature and 0.4 psu in salinity. Such quasi-permanent eddy could be formed by interaction of winter convection in waters of northern brunch of the cyclonic circulation in Algeria-Provancal basin and North- Western winds from the Perinea Mountains, that shifted upper water layers. Acoustic signals from the 6 transceivers were recorded at 16 points within and around the eddy. Our acoustic measurements carried out with a single hydrophone deployed from a drifting research vessel. Special 3D-inversion procedure correctly locate this inhomo- geneity and allow us to estimate difference of sound speed inside and outside the eddy. Satellite data analysis of sea surface temperature fields (SST extracted from AVHRR - 9 km data) also give us the pattern of lower temperature at the location of the real eddy. We found that nighttime SST fields is more legible than daytime data for the eddy detection. Moreover, the sea surface height anomalies, averaged for 10-days and interpolated at 0.25 degrees grid, show that the surface depression (10 -50 mm) which was associated with the eddy presented both in quasi-synchronous sets of observations and longtime sets. This investigation was supported by RFBR grant N 00-05-64486.

  17. Ferroelectric MEMS for acoustic emission detection and vibrational energy scavenging

    NASA Astrophysics Data System (ADS)

    Carleton, Eric Joseph

    The field of Micro-Electro-Mechanical Systems (MEMS) involves the fabrication and deployment of sensors, actuators, and resonators with dimensions in the microm range. Although only a few decades old, MEMS devices are quickly supplanting their macro-scale counterparts in a broad spectrum of application areas. This study focused investigates MEMS device prototypes from two disparate fields, acoustic emission and energy harvesting. Device structures utilizing ferroelectric films couple ambient vibrations to an energy harvester for energy storage, or to an acoustic emission device for event detection. Highly optimized ferroelectric materials are required for these MEMS structures, so this study begins with the optimization of a variety of ferroelectric structures and types across the PbZrO3:PbTiO3:La 2O3 solid solution. Select epitaxial ferroelectric films are next fabricated into a cantilever bimorph and a conical micro-transducer. For each MEMS structure, analytic and finite element modeling (FEM) are utilized to determine an optimal geometry for synthesis by standard microfabrication techniques. Two processing routes are articulated for each structure. A laser lift-off/transfer method and a heterogeneous deposition/etching method are described for the fabrication of a cantilever bimorph prototype. A textured growth template method and a heterogeneous deposition/wet chemical etch method are utilized for the fabrication of the conical micro-transducer. In addition to the creation of the MEMS prototypes, a method for creating thick (2-5microm) conformal epitaxial ferroelectric films on MgO, which could be utilized for a large variety of novel ferroelectric MEMS structures, is also described.

  18. Detection of cavitation vortex in hydraulic turbines using acoustic techniques

    NASA Astrophysics Data System (ADS)

    Candel, I.; Bunea, F.; Dunca, G.; Bucur, D. M.; Ioana, C.; Reeb, B.; Ciocan, G. D.

    2014-03-01

    Cavitation phenomena are known for their destructive capacity in hydraulic machineries and are caused by the pressure decrease followed by an implosion when the cavitation bubbles find an adverse pressure gradient. A helical vortex appears in the turbine diffuser cone at partial flow rate operation and can be cavitating in its core. Cavity volumes and vortex frequencies vary with the under-pressure level. If the vortex frequency comes close to one of the eigen frequencies of the turbine, a resonance phenomenon may occur, the unsteady fluctuations can be amplified and lead to important turbine and hydraulic circuit damage. Conventional cavitation vortex detection techniques are based on passive devices (pressure sensors or accelerometers). Limited sensor bandwidths and low frequency response limit the vortex detection and characterization information provided by the passive techniques. In order to go beyond these techniques and develop a new active one that will remove these drawbacks, previous work in the field has shown that techniques based on acoustic signals using adapted signal content to a particular hydraulic situation, can be more robust and accurate. The cavitation vortex effects in the water flow profile downstream hydraulic turbines runner are responsible for signal content modifications. Basic signal techniques use narrow band signals traveling inside the flow from an emitting transducer to a receiving one (active sensors). Emissions of wide band signals in the flow during the apparition and development of the vortex embeds changes in the received signals. Signal processing methods are used to estimate the cavitation apparition and evolution. Tests done in a reduced scale facility showed that due to the increasing flow rate, the signal -- vortex interaction is seen as modifications on the received signal's high order statistics and bandwidth. Wide band acoustic transducers have a higher dynamic range over mechanical elements; the system's reaction time

  19. Developing a non-fouling hybrid microfluidic device for applications in circulating tumour cell detections.

    PubMed

    Qin, Yubo; Yang, Xiuying; Zhang, Jingchang; Cao, Xudong

    2017-03-01

    Non-specific cell adsorption is a challenge in sensitive detections using microfluidic systems, such as detecting circulating tumour cells from blood samples. In this report, we present a new strategy to study the combined effects of surface hydrophilicity/hydrophobicity, electric charges and roughness on surface non-fouling properties of a PDMS/SU-8 microfluidic system. To achieve this, microchannel surfaces were modified by poly(amidoamine) generation 4 and generation 7, dendrimers that rendered surfaces negatively and positively charged at pH 7.4, respectively. Water contact angle, atomic force microscopy (AFM) and microscopy were used to characterize and confirm surface modifications, and the non-fouling performance of the resulting surfaces was tested using both live and dead CCRM-CEM cancer cells. Our results show that for live cells, electric charges of a surface is the most important factor affecting the non-fouling features of the surface in microfluidic systems; in contrast, for dead cells, surface hydrophilicity is the most important factor affecting surface non-fouling properties. However, surface roughness does not seem to be as important for both live and dead cells under the experimental conditions used in this study. These results also highlight the importance of different considerations when designing a lab-on-a-chip microfluidic system for high sensitivity biosensing and detection applications.

  20. Detection of impulsive sources from an aerostat-based acoustic array data collection system

    NASA Astrophysics Data System (ADS)

    Prather, Wayne E.; Clark, Robert C.; Strickland, Joshua; Frazier, Wm. Garth; Singleton, Jere

    2009-05-01

    An aerostat based acoustic array data collection system was deployed at the NATO TG-53 "Acoustic Detection of Weapon Firing" Joint Field Experiment conducted in Bourges, France during the final two weeks of June 2008. A variety of impulsive sources including mortar, artillery, gunfire, RPG, and explosive devices were fired during the test. Results from the aerostat acoustic array will be presented against the entire range of sources.

  1. Leak Detection by Acoustic Emission Monitoring. Phase 1. Feasibility Study

    DTIC Science & Technology

    1994-05-26

    considered the soil composition- and structure , the leak depth and rate, the acoustic array geometry on the 12 PHASE I 03 SflAIASTrNAflc C’ 111 ATON 90111...First Conference on Acoustic Emission/ Microseismic Activilty in Geologic Structures and Materials. H.R. Hardy, Jr. and F.W. Leighton, 2ditors. Trans...Recognition and Acoustical Imaging , Newport Beach, California, February 4-6. 1987. 29. M.C. Junger and D. Feit. Sounds, Structures , and Their Interaction, The

  2. Detecting truly clonal alterations from multi-region profiling of tumours

    NASA Astrophysics Data System (ADS)

    Werner, Benjamin; Traulsen, Arne; Sottoriva, Andrea; Dingli, David

    2017-03-01

    Modern cancer therapies aim at targeting tumour-specific alterations, such as mutations or neo-antigens, and maximal treatment efficacy requires that targeted alterations are present in all tumour cells. Currently, treatment decisions are based on one or a few samples per tumour, creating uncertainty on whether alterations found in those samples are actually present in all tumour cells. The probability of classifying clonal versus sub-clonal alterations from multi-region profiling of tumours depends on the earliest phylogenetic branching event during tumour growth. By analysing 181 samples from 10 renal carcinoma and 11 colorectal cancers we demonstrate that the information gain from additional sampling falls onto a simple universal curve. We found that in colorectal cancers, 30% of alterations identified as clonal with one biopsy proved sub-clonal when 8 samples were considered. The probability to overestimate clonal alterations fell below 1% in 7/11 patients with 8 samples per tumour. In renal cell carcinoma, 8 samples reduced the list of clonal alterations by 40% with respect to a single biopsy. The probability to overestimate clonal alterations remained as high as 92% in 7/10 renal cancer patients. Furthermore, treatment was associated with more unbalanced tumour phylogenetic trees, suggesting the need of denser sampling of tumours at relapse.

  3. Detecting truly clonal alterations from multi-region profiling of tumours

    PubMed Central

    Werner, Benjamin; Traulsen, Arne; Sottoriva, Andrea; Dingli, David

    2017-01-01

    Modern cancer therapies aim at targeting tumour-specific alterations, such as mutations or neo-antigens, and maximal treatment efficacy requires that targeted alterations are present in all tumour cells. Currently, treatment decisions are based on one or a few samples per tumour, creating uncertainty on whether alterations found in those samples are actually present in all tumour cells. The probability of classifying clonal versus sub-clonal alterations from multi-region profiling of tumours depends on the earliest phylogenetic branching event during tumour growth. By analysing 181 samples from 10 renal carcinoma and 11 colorectal cancers we demonstrate that the information gain from additional sampling falls onto a simple universal curve. We found that in colorectal cancers, 30% of alterations identified as clonal with one biopsy proved sub-clonal when 8 samples were considered. The probability to overestimate clonal alterations fell below 1% in 7/11 patients with 8 samples per tumour. In renal cell carcinoma, 8 samples reduced the list of clonal alterations by 40% with respect to a single biopsy. The probability to overestimate clonal alterations remained as high as 92% in 7/10 renal cancer patients. Furthermore, treatment was associated with more unbalanced tumour phylogenetic trees, suggesting the need of denser sampling of tumours at relapse. PMID:28344344

  4. Circulating calcitonin and carcinoembryonic antigen m-RNA detected by RT-PCR as tumour markers in medullary thyroid carcinoma

    PubMed Central

    Bojunga, J; Dragan, C; Schumm-Draeger, P M; Usadel, K H; Kusterer, K

    2001-01-01

    Detection of local relapse or metastasis in medullary thyroid carcinoma (MTC) continue to pose a major diagnostic challenge. Besides established diagnostic studies such as serum calcitonin (CT) and carcinoembryonic antigen (CEA), molecular detection of circulating tumour cells may be an additional diagnostic tool for the early detection of disease recurrence. We performed reverse transcription-polymerase chain reaction (RT-PCR) on blood samples from patients diagnosed with MTC disease using primers specific for CT and CEA, respectively. CT mRNA was not detectable in peripheral blood of all patients with MTC (n = 11) and all controls (n = 32). CEA mRNA was significantly more often detected patients with MTC (72.7%) than in controls (34.4%; p = 0.038; Fisher exact test). With an example of a patient with MTC and massive tumour mass in the neck we demonstrate the failure of detection of CT mRNA over a period of 6 months, whereas CEA mRNA could be detected in peripheral blood of this patient. As a consequence, CT mRNA detected by RT-PCR in the peripheral blood can not be recommended as a tumour marker in MTC. However, the use of carcinoembryonic mRNA may provide a significant improvement in diagnosis of recurrent disease in MTC. © 2001 Cancer Research Campaign   http://www.bjcancer.com PMID:11720443

  5. Multiuser sonar watermarking and detection in an underwater acoustic channel

    NASA Astrophysics Data System (ADS)

    Mobasseri, Bijan G.; Lynch, Robert S.; Andiario, David

    2013-06-01

    Sonar watermarking is the practice of embedding low-power, secure digital signatures in the time frequency space of a waveform. The algorithm is designed for a single source/receiver configuration. However, in a multiuser environment, multiple sources broadcast sonar waveforms that overlap in both time and frequency. The receiver can be configured as a filter bank where each bank is dedicated to detecting a specific watermark. However, a filter bank is prone to mutual interference as multiple sonar waveforms are simultaneously present at the detector input. To mitigate mutual interference, a multiuser watermark detector is formulated as a decorrelating detector that decouples detection amongst the watermark signatures. The acoustic channel is simulated in software and modeled by an FIR filter. This model is used to compensate for the degradation of spreading sequences used for watermark embedding. The test statistic generated at the output of the decorrelating detector is used in a joint maximum likelihood ratio detector to establish the presence or absence of the watermark in each sonar waveform. ROC curves are produced for multiple sources positioned at varying ranges subject to ambient ocean noise controlled by varying sea states.

  6. Explosive hazard detection using synthetic aperture acoustic sensing

    NASA Astrophysics Data System (ADS)

    Brewster, E.; Keller, J. M.; Stone, K.; Popescu, M.

    2016-05-01

    In this paper, we develop an approach to detect explosive hazards designed to attack vehicles from the side of a road, using a side looking synthetic aperture acoustic (SAA) sensor. This is done by first processing the raw data using a back-projection algorithm to form images. Next, an RX prescreener creates a list of possible targets, each with a designated confidence. Initial experiments are performed on libraries of the highest confidence hits for both target and false alarm classes generated by the prescreener. Image chips are extracted using pixel locations derived from the target's easting and northing. Several feature types are calculated from each image chip, including: histogram of oriented gradients (HOG), and generalized column projection features where the column aggregator takes the form of the minimum, maximum, mean, median, mode, standard deviation, variance, and the one-dimensional fast Fourier transform (FFT). A support vector machine (SVM) classifier is then utilized to evaluate feature type performance during training and testing in order to determine whether the two classes are separable. This will be used to build an online detection system for road-side explosive hazards.

  7. Detection of Indirectly-Driven Ion Acoustic Waves

    NASA Astrophysics Data System (ADS)

    Carroll, J. J., III; Drake, R. P.; Smith, T. B.; Montgomery, D. S.; Watt, R. G.; de Groot, J. S.

    1998-11-01

    Recent theory^1 suggests that the non-resonant decay instability and induced scattering (IS) may explain the saturation of ion acoustic waves (IAWs) in laser fusion experiments. IS is found to explain ion wave saturation in lower-density microwave-driven plasmas.^2 We report the results of an experiment at Trident designed to detect ion wave scattering in a high-density laser plasma. The plasma is created from a CH target (6.5 μm thick, 1 mm wide) using a preform beam (175 J, 1.3 ns sq. pulse starting at t=0 ns, 527 nm, line-focus RPP). A pump beam (20 J, 200 ps Gaussian pulse centered at t=+1.7 ns, 527 nm, RPP) drives IAWs with k=2k_0, where k0 is the pump wavenumber. A probe beam (12 J, 1.3 ns sq. pulse starting at t=+1.0 ns, 527 nm, intensity below the SBS threshold) detects strong 2k0 IAWs at 30^o from the original SBS-pump-beam direction but not at 150^o. This is evidence of ion wave scattering. (Work supported by the U.S. DOE and the University of Michigan) ^1B.I. Cohen, B.F. Lasinski, A.B. Langdon and E.A. Williams, Phys. Plasmas 4, 956 (1997). ^2K. Mizuno, F. Kehl and J.S. DeGroot, Phys. Rev. Lett. 56, 2184 (1986).

  8. Seismic wave detection system based on fully distributed acoustic sensing

    NASA Astrophysics Data System (ADS)

    Jiang, Yue; Xu, Tuanwei; Feng, Shengwen; Huang, Jianfen; Yang, Yang; Guo, Gaoran; Li, Fang

    2016-11-01

    This paper presents a seismic wave detection system based on fully distributed acoustic sensing. Combined with Φ- OTDR and PGC demodulation technology, the system can detect and acquire seismic wave in real time. The system has a frequency response of 3.05 dB from 5 Hz to 1 kHz, whose sampling interval of each channel of 1 meter on total sensing distance up to 10 km. By comparing with the geophone in laboratory, the data show that in the time domain and frequency domain, two waveforms coincide consistently, and the correlation coefficient could be larger than 0.98. Through the analysis of the data of the array experiment and the oil well experiment, DAS system shows a consistent time domain and frequency domain response and a clearer trail of seismic wave signal as well as a higher signal-noise rate which indicate that the system we proposed is expected to become the next generation of seismic exploration equipment.

  9. Immunocytochemical detection of Ki-67 in Diff-Quik-stained cytological smears of canine mammary gland tumours.

    PubMed

    Choi, U S; Kim, D Y

    2011-04-01

    To investigate whether Diff-Quik stained fine needle aspirate smears can be used to evaluate Ki-67 expression by immunocytochemistry. Both cytological and histological samples were obtained from 24 dogs with spontaneously developed mammary gland tumours. The cytological and histological specimens were examined by Diff-Quik and H&E stains, respectively. After examination, both samples were immunostained using the same Ki-67 antibody. The % Ki-67 values were calculated based on the percentage of positively stained tumour cells per 500 and 1000 tumour cells in cytology and histology specimens, respectively. Ki-67 staining was successful in 17/24 smears (71%) and 19/23 sections (83%). The correlation coefficient between the percentage of Ki-67-positive cells in cytological smears and in the histological sections was 0.677 (P < 0.01). These values were significantly different between histologically benign and malignant tumour groups both in cytology and histology samples (P < 0.001). The threshold value of the percentage of Ki-67-positive cells for distinguishing benign from malignant tumours was set at 4.85% with 90.9% sensitivity and 92.3% specificity by Receiver Operating Characteristic (ROC) curve using histopathology as the gold standard. Diff-Quik-stained cytology smears can be used to detect the presence of Ki-67 antigen when histology sections are not available. © 2010 Blackwell Publishing Ltd.

  10. Sequential detection of alphafetoprotein-bearing cells in blood stem cell fraction of germ cell tumour patients

    PubMed Central

    Kasahara, T; Hara, N; Bilim, V; Tomita, Y; Saito, K; Obara, K; Takahashi, K

    2001-01-01

    High-dose chemotherapy with peripheral blood stem cell (PBSC) transplantation in advanced germ cell tumour (GCT) patients is widely applied. The aims of this study were: (1) To examine the presence of alphafetoprotein (AFP) bearing tumour cells in PBSC harvests from advanced GCT patients obtained after multiple cycles of induction chemotherapy. (2) To determine whether induction chemotherapy contributed to in vivo purging of the tumour. We evaluated cryopreserved PBSC samples from 5 patients with advanced stage II/III AFP producing GCT. PBSC were separated after the first, second and third cycles of induction chemotherapy. Those samples were analysed using the nested reverse transcription polymerase chain reaction (RT-PCR) method to detect AFP mRNA. Although, in all patients, AFP mRNA was detected in PBSC samples after the first or second cycle of induction chemotherapy, but was not detected in 3 of 4 samples after the third cycle of chemotherapy. Although it is not clear whether tumour cells contaminating PBSC fraction contribute to disease relapse, PBSC harvested after at least 3 cycles of induction chemotherapy might be recommended to avoid such a possibility. © 2001 Cancer Research Campaignhttp://www.bjcancer.com PMID:11710823

  11. Identification of FISH biomarkers to detect chromosome abnormalities associated with prostate adenocarcinoma in tumour and field effect environment

    PubMed Central

    2014-01-01

    Background To reduce sampling error associated with cancer detection in prostate needle biopsies, we explored the possibility of using fluorescence in situ hybridisation (FISH) to detect chromosomal abnormalities in the histologically benign prostate tissue from patients with adenocarcinoma of prostate. Methods Tumour specimens from 33 radical prostatectomy (RP) cases, histologically benign tissue from 17 of the 33 RP cases, and 26 benign prostatic hyperplasia (BPH) control cases were evaluated with Locus Specific Identifier (LSI) probes MYC (8q24), LPL (8p21.22), and PTEN (10q23), as well as with centromere enumerator probes CEP8, CEP10, and CEP7. A distribution of FISH signals in the tumour and histologically benign adjacent tissue was compared to that in BPH specimens using receiver operating characteristic curve analysis. Results The combination of MYC gain, CEP8 Abnormal, PTEN loss or chromosome 7 aneusomy was positive in the tumour area of all of the 33 specimens from patients with adenocarcinomas, and in 88% of adjacent histologically benign regions (15 out of 17) but in only 15% (4 out of 26) of the benign prostatic hyperplasia control specimens. Conclusions A panel of FISH markers may allow detection of genomic abnormalities that associate with adenocarcinoma in the field adjacent to and surrounding the tumour, and thus could potentially indicate the presence of cancer in the specimen even if the cancer focus itself was missed by biopsy and histology review. PMID:24568597

  12. Aircraft IR/acoustic detection evaluation. Volume 2: Development of a ground-based acoustic sensor system for the detection of subsonic jet-powered aircraft

    NASA Technical Reports Server (NTRS)

    Kraft, Robert E.

    1992-01-01

    The design and performance of a ground-based acoustic sensor system for the detection of subsonic jet-powered aircraft is described and specified. The acoustic detection system performance criteria will subsequently be used to determine target detection ranges for the subject contract. Although the defined system has never been built and demonstrated in the field, the design parameters were chosen on the basis of achievable technology and overall system practicality. Areas where additional information is needed to substantiate the design are identified.

  13. COST AND PERFORMANCE REPORT: INNOVATIVE ACOUSTIC SENSOR TECHNOLOGIES FOR LEAK DETECTION IN CHALLENGING PIPE TYPES

    DTIC Science & Technology

    2016-12-30

    ABSTRACT Reducing water loss at U.S. Department of Defense (DoD) installations is important to preserve potable water needed for essential functions and...support Federal and DoD sustainability goals. This project assessed three innovative acoustic leak detection technologies with enhanced cross- correlation ...features to detect and pinpoint leaks in challenging pipe types, as well as metallic pipes. 15. SUBJECT TERMS Leak detection; acoustic correlation

  14. Systems and methods of monitoring acoustic pressure to detect a flame condition in a gas turbine

    SciTech Connect

    Ziminsky, Willy Steve; Krull, Anthony Wayne; Healy, Timothy Andrew , Yilmaz, Ertan

    2011-05-17

    A method may detect a flashback condition in a fuel nozzle of a combustor. The method may include obtaining a current acoustic pressure signal from the combustor, analyzing the current acoustic pressure signal to determine current operating frequency information for the combustor, and indicating that the flashback condition exists based at least in part on the current operating frequency information.

  15. Fifth International Workshop on Detection, Classification, Localization and Density Estimation of Marine Mammals using Passive Acoustics

    DTIC Science & Technology

    2013-09-30

    spring 2011 in Seattle) • The Fourth International Conference on Detection and Classification of Marine Mammals using Passive Acoustics ( Pavia ...Italy, 2009) • The International BioAcoustic Congress ( Pavia , Italy, 2009) Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting

  16. Investigation of acoustic sensors to detect coconut rhinoceros beetle in Guam

    USDA-ARS?s Scientific Manuscript database

    The coconut rhinoceros beetle, Oryctes rhinoceros, was accidentally introduced into Guam last year and now threatens the Island’s forests and tourist industry. These large insects can be detected easily with acoustic sensors, and procedures are being developed to incorporate acoustic technology int...

  17. Acoustic impact testing and waveform analysis for damage detection in glued laminated timber

    Treesearch

    Feng Xu; Xiping Wang; Marko Teder; Yunfei Liu

    2017-01-01

    Delamination and decay are common structural defects in old glued laminated timber (glulam) buildings, which, if left undetected, could cause severe structural damage. This paper presents a new damage detection method for glulam inspection based on moment analysis and wavelet transform (WT) of impact acoustic signals. Acoustic signals were collected from a glulam arch...

  18. Acoustic detection of high energy neutrinos in sea water: status and prospects

    NASA Astrophysics Data System (ADS)

    Lahmann, Robert

    2017-03-01

    The acoustic neutrino detection technique is a promising approach for future large-scale detectors with the aim of measuring the small expected flux of neutrinos at energies in the EeV-range and above. The technique is based on the thermo-acoustic model, which implies that the energy deposition by a particle cascade - resulting from a neutrino interaction in a medium with suitable thermal and acoustic properties - leads to a local heating and a subsequent characteristic pressure pulse that propagates in the surrounding medium. Current or recent test setups for acoustic neutrino detection have either been add-ons to optical neutrino telescopes or have been using acoustic arrays built for other purposes, typically for military use. While these arrays have been too small to derive competitive limits on neutrino fluxes, they allowed for detailed studies of the experimental technique. With the advent of the research infrastructure KM3NeT in the Mediterranean Sea, new possibilities will arise for acoustic neutrino detection. In this article, results from the "first generation" of acoustic arrays will be summarized and implications for the future of acoustic neutrino detection will be discussed.

  19. Workshop on the Detection, Classification, Localization and Density Estimation of Marine Mammals Using Passive Acoustics - 2015

    DTIC Science & Technology

    2015-09-30

    and Density Estimation of Marine Mammals Using Passive Acoustics - 2015 John A. Hildebrand Scripps Institution of Oceanography UCSD La Jolla...classification, localization and density estimation of marine mammals using passive acoustics, and by doing so advance the state of the art in this field...OBJECTIVES The Seventh International Workshop on Detection, Classification, Localization, and Density Estimation (DCLDE) of Marine Mammals Using

  20. CO2 leak detection through acoustic sensing and infrared imaging

    NASA Astrophysics Data System (ADS)

    Cui, Xiwang; Yan, Yong; Ma, Lin; Ma, Yifan; Han, Xiaojuan

    2014-04-01

    When CO2 leakage occurs from a high pressure enclosure, the CO2 jet formed can produce fierce turbulent flow generating acoustic emission with possible phase change, depending on the pressure of the enclosure, and a significant temperature drop in the region close to the releasing point. Acoustic Emission (AE) and infrared imaging technologiesare promising methods for on-line monitoring of such accidental leakage. In this paper, leakage experiments were carried out with a CO2 container under well controlled conditions in a laboratory. Acoustic signals and temperature distribution at the leakage area were acquired using an acoustic sensor and an infraredthermalimaging camera. The acoustic signal was analyzed in both time and frequency domains. The characteristics of the signal frequencies areidentified, and their suitability for leakage detectionis investigated. The location of the leakage can be identified by seeking the lowest temperature area or point in the infrared image.

  1. The use of electro-acoustic impedance measurements in detecting early clinical otosclerosis.

    PubMed

    Van Wagoner, R S; Campbell, J D

    1976-02-01

    The first evidence that sodium fluoride (NaFl) can stop the otosclerotic process was recently presented. This development has placed new emphasis on the early detection of clinical otosclerosis. Electro-acoustic impedance measurements often detect minute changes in absolute impedance and compliance of the ossicular chain. The most valuable diagnostic information, however, is a negative on-off (biphasic) type of acoustic reflex. These results are often evident prior to the detection of positive clinical signs of otosclerosis. The negative on-off acoustic reflex is reviewed in this paper along with case discussions involving medical/surgical management of early otosclerosis.

  2. [INVITED] Laser generation and detection of ultrafast shear acoustic waves in solids and liquids

    NASA Astrophysics Data System (ADS)

    Pezeril, Thomas

    2016-09-01

    The aim of this article is to provide an overview of the up-to-date findings related to ultrafast shear acoustic waves. Recent progress obtained for the laser generation and detection of picosecond shear acoustic waves in solids and liquids is reviewed. Examples in which the transverse isotropic symmetry of the sample structure is broken in order to permit shear acoustic wave generation through sudden laser heating are described in detail. Alternative photo-induced mechanisms for ultrafast shear acoustic generation in metals, semiconductors, insulators, magnetostrictive, piezoelectric and electrostrictive materials are reviewed as well. With reference to key experiments, an all-optical technique employed to probe longitudinal and shear structural dynamics in the GHz frequency range in ultra-thin liquid films is described. This technique, based on specific ultrafast shear acoustic transducers, has opened new perspectives that will be discussed for ultrafast shear acoustic probing of viscoelastic liquids at the nanometer scale.

  3. Acoustic detection, tracking, and characterization of three tornadoes.

    PubMed

    Frazier, William Garth; Talmadge, Carrick; Park, Joseph; Waxler, Roger; Assink, Jelle

    2014-04-01

    Acoustic data recorded at 1000 samples per second by two sensor arrays located at ranges of 1-113 km from three tornadoes that occurred on 24 May 2011 in Oklahoma are analyzed. Accurate bearings to the tornadoes have been obtained using beamforming methods applied to the data at infrasonic frequencies. Beamforming was not viable at audio frequencies, but the data demonstrate the ability to detect significant changes in the shape of the estimated power spectral density in the band encompassing 10 Hz to approximately 100 Hz at distances of practical value from the sensors. This suggests that arrays of more closely spaced sensors might provide better bearing accuracy at practically useful distances from a tornado. Additionally, a mathematical model, based on established relationships of aeroacoustic turbulence, is demonstrated to provide good agreement to the estimated power spectra produced by the tornadoes at different times and distances from the sensors. The results of this analysis indicate that, qualitatively, an inverse relationship appears to exist between the frequency of an observed peak of the power spectral density and the reported tornado intensity.

  4. Towards early ice detection on wind turbine blades using acoustic waves

    NASA Astrophysics Data System (ADS)

    Berbyuk, Viktor; Peterson, Bo; Möller, Jan

    2014-03-01

    The study focuses on the early detection of ice using controlled acoustic waves propagating in the wind turbine blades. An experimental set-up with a cold climate chamber, a composite test object used in turbine blades and equipment for glaze and rime ice production has been developed. Controlled acoustic waves are generated by magnetostrictive Terfenol-D based actuator. The propagation of three orthogonally polarized acoustic waves was studied by means of 6 accelerometers positioned, 3 each, in 2 holders on the 8 m long composite test object. The results show that for the considered composite test object the formation of ice, the ice mass, icing areas and the temperature have a significant influence on controlled acoustic waves propagation w.r.t. Fourier transform, amplitude attenuation and RMS values as indicators concluding that the proposed acoustic wave technique is a promising approach for ice detection.

  5. Acoustic neutrino detection investigations within ANTARES and prospects for KM3NeT

    NASA Astrophysics Data System (ADS)

    Lahmann, Robert

    2016-04-01

    The acoustic neutrino detection technique is a promising approach for future large-scale detectors with the aim of measuring the small expected flux of cosmogenic neutrinos at energies exceeding 1 EeV. It suggests itself to investigate this technique in the context of underwater Cherenkov neutrino telescopes, in particular KM3NeT, because acoustic sensors are present by design to allow for the calibration of the positions of the optical sensors. For the future, the KM3NeT detector in the Mediterranean Sea will provide an ideal infrastructure for a dedicated array of acoustic sensors. In this presentation results from the acoustic array AMADEUS of the ANTARES detector will be discussed with respect to the potential and implications for acoustic neutrino detection with KM3NeT and beyond.

  6. The role of gravity in ocean acoustics propagation and its implication to early tsunami detection

    NASA Astrophysics Data System (ADS)

    Oliveira, Tiago; Lin, Ying-Tsong; Kadri, Usama

    2016-04-01

    Oceanic low frequency sound generated by submarine earthquake travels much faster than tsunamis and leaves pressure signatures that can act as tsunami precursors. In this regard, it is anticipated that the correct measurement and analysis of low frequency acoustics would enhance current early tsunami detection systems. In this work we model the low frequency acoustics generated by the 2004 Indian Ocean earthquake using the "Method of Normal Modes" and the "Acoustics-Gravity Wave" theory. Ocean acoustic theories usually neglect the effect of gravity. However, we show for rigid and elastic bottom conditions how gravity influences the acoustic normal mode propagation speed. Practically, our results can help in the real time characterization of low frequency sources in the ocean. This will enhance the robustness of early tsunami detection systems.

  7. Spatial and Temporal Variability of Zooplankton Thin Layers: The Effects of Composition and Orientation on Acoustic Detection of Layers

    DTIC Science & Technology

    2007-09-30

    Spatial and Temporal Variability of Zooplankton Thin Layers: The Effects of Composition and Orientation on Acoustic Detection of Layers Carin...physical and biological mechanisms of formation and maintenance of thin layers of zooplankton . Because zooplankton can be strong sound scatterers...acoustic instruments are effective at detecting and describing zooplankton thin layers. Using a combination of instruments (acoustics, image-forming

  8. Spatial and Temporal Variability of Zooplankton Thin Layers: The Effects of Composition and Orientation on Acoustic Detection of Layers

    DTIC Science & Technology

    2006-01-01

    Spatial and Temporal Variability of Zooplankton Thin Layers: The Effects of Composition and Orientation on Acoustic Detection of Layers Carin...physical and biological mechanisms of formation and maintenance of thin layers of zooplankton . Because zooplankton can be strong sound scatterers...acoustic instruments are effective at detecting and describing zooplankton thin layers. Using a combination of instruments (acoustics, image-forming

  9. Application of acoustic emission to flaw detection in engineering materials

    NASA Technical Reports Server (NTRS)

    Moslehy, F. A.

    1990-01-01

    Monitoring of structures under operating loads to provide an early warning of possible failure to locate flaws in test specimens subjected to uniaxial tensile loading is presented. Test specimens used are mild steel prismatic bars with small holes at different locations. When the test specimen is loaded, acoustic emission data are automatically collected by two acoustic transducers located at opposite sides of the hole and processed by an acoustic emission analyzer. The processed information yields the difference in arrival times at the transducers, which uniquely determines the flaw location. By using this technique, flaws were located to within 8 percent of their true location. The use of acoustic emission in linear location to locate a flaw in a material is demonstrated. It is concluded that this one-dimensional application could be extended to the general flaw location problem through triangulation.

  10. INNOVATIVE ACOUSTIC SENSOR TECHNOLOGIES FOR LEAK DETECTION IN CHALLENGING PIPE TYPES

    DTIC Science & Technology

    2016-12-30

    utilities looking to minimize water losses . This approach involves the permanent installation of cross- correlating acoustic sensors in a grid pattern to...ABSTRACT Reducing water loss at U.S. Department of Defense (DoD) installations is important to preserve potable water needed for essential functions... correlation features to detect and pinpoint leaks in challenging pipe types, as well as metallic pipes. 15. SUBJECT TERMS Leak detection; acoustic

  11. Acoustic Detection and Tracking of a Class I UAS with a Small Tetrahedral Microphone Array

    DTIC Science & Technology

    2014-09-01

    Acoustic Detection and Tracking of a Class I UAS with a Small Tetrahedral Microphone Array by Minas Benyamin and Geoffrey H Goldman ARL...20783-1138 ARL-TR-7086 September 2014 Acoustic Detection and Tracking of a Class I UAS with a Small Tetrahedral Microphone Array Minas...with a Small Tetrahedral Microphone Array 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Minas Benyamin and

  12. Detection of Gear Failures via Vibration and Acoustic Signals Using Wavelet Transform

    NASA Astrophysics Data System (ADS)

    Baydar, N.; Ball, A.

    2003-07-01

    Vibration analysis is widely used in machinery diagnostics and the wavelet transform has also been implemented in many applications in the condition monitoring of machinery. In contrast to previous applications, this paper examines whether acoustic signal can be used effectively along vibration signal to detect the various local faults in gearboxes using the wavelet transform. Two commonly encountered local faults, tooth breakage and tooth crack, were simulated. The results from acoustic signals were compared with vibration signals. The results suggest that acoustic signals are very affective for the early detection of faults and may provide a powerful tool to indicate the various types of progressing faults in gearboxes.

  13. Acoustics

    NASA Technical Reports Server (NTRS)

    Goodman, Jerry R.; Grosveld, Ferdinand

    2007-01-01

    The acoustics environment in space operations is important to maintain at manageable levels so that the crewperson can remain safe, functional, effective, and reasonably comfortable. High acoustic levels can produce temporary or permanent hearing loss, or cause other physiological symptoms such as auditory pain, headaches, discomfort, strain in the vocal cords, or fatigue. Noise is defined as undesirable sound. Excessive noise may result in psychological effects such as irritability, inability to concentrate, decrease in productivity, annoyance, errors in judgment, and distraction. A noisy environment can also result in the inability to sleep, or sleep well. Elevated noise levels can affect the ability to communicate, understand what is being said, hear what is going on in the environment, degrade crew performance and operations, and create habitability concerns. Superfluous noise emissions can also create the inability to hear alarms or other important auditory cues such as an equipment malfunctioning. Recent space flight experience, evaluations of the requirements in crew habitable areas, and lessons learned (Goodman 2003; Allen and Goodman 2003; Pilkinton 2003; Grosveld et al. 2003) show the importance of maintaining an acceptable acoustics environment. This is best accomplished by having a high-quality set of limits/requirements early in the program, the "designing in" of acoustics in the development of hardware and systems, and by monitoring, testing and verifying the levels to ensure that they are acceptable.

  14. Immunohistochemical detection of P-glycoprotein (clone C494) in canine mammary gland tumours.

    PubMed

    Petterino, C; Rossetti, E; Bertoncello, D; Martini, M; Zappulli, V; Bargelloni, L; Castagnaro, M

    2006-05-01

    Elevated levels of P-glycoprotein have been reported in multidrug-resistant tumours in both humans and dogs. In the present study, we investigated the expression of P-glycoprotein in 57 canine mammary gland tumours, 10 mammary gland hyperplasia and seven normal mammary glands by immunohistochemistry. Tissue sections were incubated with an anti-Pgp monoclonal antibody and visualized with En Vision-DAB polymer. Normal and hyperplastic mammary tissues were negative or showed slight cytoplasmic immunoreactivity. Neoplastic cells in benign mammary tumours showed diffuse cytoplasmic staining, in contrast to malignant tumours that showed mainly a membranous staining pattern for Pgp (C494). We observed statistically significant differences among all the different groups of tissues analysed except for benign tumours versus hyperplasia (P = 0.221). Receiver-operating characteristic analysis showed that the best cut-off point to differentiate the threshold to differentiate negative from positive tissue samples was 18.40% of immunostained cells. These results provide a first indication that routine evaluation of Pgp expression in canine mammary gland tumours, taking into consideration a cut-off point for positivity, may be useful for selecting cases for chemotherapy.

  15. Targeted-capture massively-parallel sequencing enables robust detection of clinically informative mutations from formalin-fixed tumours

    PubMed Central

    Wong, Stephen Q.; Li, Jason; Salemi, Renato; Sheppard, Karen E.; Hongdo Do; Tothill, Richard W.; McArthur, Grant A.; Dobrovic, Alexander

    2013-01-01

    Massively parallel sequencing offers the ability to interrogate a tumour biopsy for multiple mutational changes. For clinical samples, methodologies must enable maximal extraction of available sequence information from formalin-fixed and paraffin-embedded (FFPE) material. We assessed the use of targeted capture for mutation detection in FFPE DNA. The capture probes targeted the coding region of all known kinase genes and selected oncogenes and tumour suppressor genes. Seven melanoma cell lines and matching FFPE xenograft DNAs were sequenced. An informatics pipeline was developed to identify variants and contaminating mouse reads. Concordance of 100% was observed between unfixed and formalin-fixed for reported COSMIC variants including BRAF V600E. mutations in genes not conventionally screened including ERBB4, ATM, STK11 and CDKN2A were readily detected. All regions were adequately covered with independent reads regardless of GC content. This study indicates that hybridisation capture is a robust approach for massively parallel sequencing of FFPE samples. PMID:24336498

  16. Noise suppression during the electro-magnetic acoustic detection of wheels tread defects

    NASA Astrophysics Data System (ADS)

    Zhou, Xiaohong; Dai, Lixin; Yang, Kai; Wang, Li

    2010-08-01

    Electro-magnetic acoustic detection technique has become a new development trend of nondestructive testing because of its high detection efficiency, accurate detection results, etc, so it now has been widely adopted in the railway department of our country. When the signal is detected using electro-magnetic acoustic detection technique, the influence of the poor condition of wheel surface, the existing electromagnetic interference and other factors will enable different levels of noise to exist in the detected signal, which will affect the signal quality, thereby reducing the detection accuracy. After introducing the structure and principle of electro-magnetic acoustic detection system, this paper has put forward two noise suppression algorithms for the noise problem of the detection signal, namely, phase difference algorithm and adaptive filtering algorithm. On the premise of reserving the necessary signal waveform of system, the algorithms can effectively suppress the noise of a detected signal, improve the quality of a data waveform, and obtain good detection results. The paper also compares two algorithms and points out that the better detection accuracy can be obtained if combining the two algorithms. This work has certain inspiration to raise the accuracy of electro-magnetic acoustic detection results.

  17. Automatic Detection of Beaked Whales from Acoustic Seagliders & Passive Autonomous Acoustic Monitoring of Marine Mammals with Seagliders

    DTIC Science & Technology

    2011-09-30

    techniques for detection and classification of odontocetes echolocation clicks and especially beaked whale sounds for the PAM Seaglider. Because any...Seasonal occurrence of sperm whale (Physeter macrocephalus) sounds in the Gulf of Alaska, 1999-2001. Marine Mamm. Sci. 20(1):48-62. NMFS. 2001. Bahamas...DiMarzio and D. Moretti and D.K. Mellinger. Submitted. Estimating minke whale (Balaenoptera acutorostrata) boing sound density using passive acoustic

  18. Acoustic emission signal classification for gearbox failure detection

    NASA Astrophysics Data System (ADS)

    Shishino, Jun

    The purpose of this research is to develop a methodology and technique to determine the optimal number of clusters in acoustic emission (AE) data obtained from a ground test stand of a rotating H-60 helicopter tail gearbox by using mathematical algorithms and visual inspection. Signs of fatigue crack growth were observed from the AE signals acquired from the result of the optimal number of clusters in a data set. Previous researches have determined the number of clusters by visually inspecting the AE plots from number of iterations. This research is focused on finding the optimal number of clusters in the data set by using mathematical algorithms then using visual verification to confirm it. The AE data were acquired from the ground test stand that simulates the tail end of an H-60 Seahawk at Naval Air Station in Patuxant River, Maryland. The data acquired were filtered to eliminate durations that were greater than 100,000 is and 0 energy hit data to investigate the failure mechanisms occurring on the output bevel gear. From the filtered data, different AE signal parameters were chosen to perform iterations to see which clustering algorithms and number of outputs is the best. The clustering algorithms utilized are the Kohonen Self-organizing Map (SOM), k-mean and Gaussian Mixture Model (GMM). From the clustering iterations, the three cluster criterion algorithms were performed to observe the suggested optimal number of cluster by the criterions. The three criterion algorithms utilized are the Davies-Bouldin, Silhouette and Tou Criterions. After the criterions had suggested the optimal number of cluster for each data set, visual verification by observing the AE plots and statistical analysis of each cluster were performed. By observing the AE plots and the statistical analysis, the optimal number of cluster in the data set and effective clustering algorithms were determined. Along with the optimal number of clusters and effective clustering algorithm, the mechanisms

  19. Method and apparatus for acoustic plate mode liquid-solid phase transition detection

    DOEpatents

    Blair, Dianna S.; Freye, Gregory C.; Hughes, Robert C.; Martin, Stephen J.; Ricco, Antonio J.

    1993-01-01

    A method and apparatus for sensing a liquid-solid phase transition event is provided which comprises an acoustic plate mode detecting element placed in contact with a liquid or solid material which generates a high-frequency acoustic wave that is attenuated to an extent based on the physical state of the material is contact with the detecting element. The attenuation caused by the material in contact with the acoustic plate mode detecting element is used to determine the physical state of the material being detected. The method and device are particularly suited for detecting conditions such as the icing and deicing of wings of an aircraft. In another aspect of the present invention, a method is provided wherein the adhesion of a solid material to the detecting element can be measured using the apparatus of the invention.

  20. Method and apparatus for acoustic plate mode liquid-solid phase transition detection

    NASA Astrophysics Data System (ADS)

    Blair, D. S.; Frye, G. C.; Hughes, R. C.; Martin, S. J.; Ricco, A. J.

    1990-05-01

    A method and apparatus for sensing a liquid-solid phase transition event is provided which comprises an acoustic plate mode detecting element placed in contact with a liquid or solid material which generates a high-frequency acoustic wave that is attenuated to an extent based on the physical state of the material in contact with the detecting element. The attenuation caused by the material in contact with the acoustic plate mode detecting element is used to determine the physical state of the material being detected. The method and device are particularly suited for detecting conditions such as the icing and deicing of wings of an aircraft. In another aspect of the present invention, a method is provided wherein the adhesion of a solid material to the detecting element can be measured using the apparatus of the invention.

  1. Early detection of relapse after treatment for metastatic germ cell tumour of the testis: an exercise in medical audit.

    PubMed

    Rathmell, A J; Brand, I R; Carey, B M; Jones, W G

    1993-01-01

    The relapse patterns of 29 patients who recurred following treatment for metastatic germ cell tumours of the testis (seminoma n = 7, non-seminomatous germ cell tumour n = 22) have been analysed and the relative effectiveness of clinical follow-up and routine investigations in detecting relapse at an early stage have been examined. The analysis shows that routine estimation of the serum tumour markers human chorionic gonadotrophin and alpha-foetoprotein (HCG and AFP) is the single most important follow-up procedure. This is so, even in patients who were previously marker negative; it was the first indicator of relapse in 55% of the patients. Regular clinical examination and chest radiograph in asymptomatic patients was of little value. Chest radiograph gave the first evidence of relapse in only 2 cases (7%). The optimum frequency for follow-up computed tomographic scanning of the chest and abdomen remains debatable. In this series, it was the first abnormal investigation in 7 patients (24%) and proved to be particularly important in patients who had residual radiological abnormalities at the end of initial therapy. Cost analysis shows that intensive follow-up produces a total expenditure on investigations of approximately 4,500 pounds per relapse detected. Regular computed tomographic scanning is especially demanding on resources and costs approximately 12,880 pounds per relapse detected if the recommended protocol is followed.

  2. Immunohistochemical detection of major histocompatibility complex antigens and quantitative analysis of tumour-infiltrating mononuclear cells in renal cell cancer.

    PubMed Central

    Tomita, Y.; Nishiyama, T.; Fujiwara, M.; Sato, S.

    1990-01-01

    In order to investigate the anti-tumour immune responsiveness of patients with renal cell cancer (RCC), we examined 30 such patients for the degree of expression of major histocompatibility complex (MHC) class I and class II antigens on RCC and the populations of tumour-infiltrating mononuclear cells (TIM). Normal renal tubular cells expressed class I but not class II antigens. Most of the tumour cells expressed class I antigens in 25 (83%) cases, but the proportion of such cells was reduced in five cases, three of which were of granular cell type histologically. Class II antigens were detected in all specimens with class I positivity. Various numbers of TIM were detected in 25 cases, being composed mainly of T cells and a smaller number of macrophages. Examination for the phenotype of T cells showed that CD8-positive cells were the dominant population. B cells were not detected. Quantitative analysis revealed that the numbers of TIM were significantly lower in cases showing class I reduction than in those with normal class I expression. Therefore, it was clear that class I antigens were preserved in RCC cells in most cases. Furthermore, a higher rate of reduction of class I antigens was observed in cases of granular cell type, which has been reported to have a worse prognosis than the clear cell type. The present data suggest that degree of the expression of MHC class I antigen on RCC might influence the host immune responsiveness against it. Images Figure 1 Figure 2 Figure 3 PMID:2206942

  3. Routine pelvic MRI using phased-array coil for detection of extraprostatic tumour extension: accuracy and clinical significance.

    PubMed

    Hole, Knut Håkon; Axcrona, Karol; Lie, Agnes Kathrine; Vlatkovic, Ljiljana; Geier, Oliver Marcel; Brennhovd, Bjørn; Knutstad, Kjetil; Olsen, Dag Rune; Seierstad, Therese

    2013-04-01

    To determine the accuracy and assess the clinical significance of surface-coil 1.5-T magnetic resonance imaging (MRI) for the detection of locally advanced prostate cancer (PCa). Between December 2007 and January 2010, we examined 209 PCa patients (mean age = 62.5 years) who were consecutively treated with robot-assisted laparoscopic prostatectomy and prospectively staged by MRI. One hundred and thirty-five patients (64.6 %) had locally advanced disease. Conventional clinical tumour stage and MRI-assessed tumour stage were compared with histopathological tumour stage (pT). Sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and overall accuracy (OA) were calculated using pT as the "gold standard". Overstaged and understaged cases at MRI were reviewed. Sensitivity, specificity, PPV, NPV and OA for the detection of locally advanced disease were 25.9, 95.9, 92.1, 41.2 and 50.5 % and 56.3, 82.2, 85.4, 50.4 and 65.4 % for clinical staging and MRI, respectively. Among patients understaged at MRI, the resection margins were free in 64.4 % of the cases (38/59). Although the accuracy was limited, the detection of locally advanced disease improved substantially when MRI was added to routine clinical staging. The majority of the understaged patients nevertheless achieved free margins. When assessing the clinical significance of MRI staging the extent of extraprostatic extension has to be considered.

  4. Leak detection by acoustic emission monitoring. Phase 1. Feasibility study. Final report, August 1987-March 1988

    SciTech Connect

    Lichtenstein, B.; Winder, A.A.

    1994-05-26

    This investigation was conducted to determine the feasibility of detecting leaks from underground storage tanks or pipelines using acoustic emissions. An extensive technical literature review established that distinguishable acoustic emission signals will be generated when a storage tank is subjected to deformation stresses. A parametric analysis was performed which indicated that leak rates less than 0.1 gallons per hour can be detected for leak sizes less than 1/32 inch with 99% probability if the transient signals were sensed with an array of accelerometers (cemented to the tank or via acoustic waveguides), each having a sensitivity greater than 250 mv/g over a frequency range of 0.1 to 4000 Hz, and processed in a multi-channel Fourier spectrum analyzer with automatic threshold detection. An acoustic transient or energy release processor could conceivably detect the onset of the leak at the moment of fracture of the tank wall. The primary limitations to realizing reliable and robust acoustic emission monitoring of underground fluid leaks are the various masking noise sources prevalent at Air Force bases, which are attributed to aircraft, motor traffic, pump station operation, and ground tremors. Acoustic, Leak detection, Underground tank, Pipeline.

  5. Beaked whale (Mesoplodon densirostris) passive acoustic detection in increasing ambient noise.

    PubMed

    Ward, Jessica; Jarvis, Susan; Moretti, David; Morrissey, Ronald; Dimarzio, Nancy; Johnson, Mark; Tyack, Peter; Thomas, Len; Marques, Tiago

    2011-02-01

    Passive acoustic detection is being increasingly used to monitor visually cryptic cetaceans such as Blainville's beaked whales (Mesoplodon densirostris) that may be especially sensitive to underwater sound. The efficacy of passive acoustic detection is traditionally characterized by the probability of detecting the animal's sound emissions as a function of signal-to-noise ratio. The probability of detection can be predicted using accepted, but not necessarily accurate, models of the underwater acoustic environment. Recent field studies combining far-field hydrophone arrays with on-animal acoustic recording tags have yielded the location and time of each sound emission from tagged animals, enabling in-situ measurements of the probability of detection. However, tagging studies can only take place in calm seas and so do not reflect the full range of ambient noise conditions under which passive acoustic detection may be used. Increased surface-generated noise from wind and wave interaction degrades the signal-to-noise ratio of animal sound receptions at a given distance leading to a reduction in probability of detection. This paper presents a case study simulating the effect of increasing ambient noise on detection of M. densirostris foraging clicks recorded from a tagged whale swimming in the vicinity of a deep-water, bottom-mounted hydrophone array.

  6. Theory, simulation and experimental results of the acoustic detection of magnetization changes in superparamagnetic iron oxide

    PubMed Central

    2011-01-01

    Background Magnetic Particle Imaging is a novel method for medical imaging. It can be used to measure the local concentration of a tracer material based on iron oxide nanoparticles. While the resulting images show the distribution of the tracer material in phantoms or anatomic structures of subjects under examination, no information about the tissue is being acquired. To expand Magnetic Particle Imaging into the detection of soft tissue properties, a new method is proposed, which detects acoustic emissions caused by magnetization changes in superparamagnetic iron oxide. Methods Starting from an introduction to the theory of acoustically detected Magnetic Particle Imaging, a comparison to magnetically detected Magnetic Particle Imaging is presented. Furthermore, an experimental setup for the detection of acoustic emissions is described, which consists of the necessary field generating components, i.e. coils and permanent magnets, as well as a calibrated microphone to perform the detection. Results The estimated detection limit of acoustic Magnetic Particle Imaging is comparable to the detection limit of magnetic resonance imaging for iron oxide nanoparticles, whereas both are inferior to the theoretical detection limit for magnetically detected Magnetic Particle Imaging. Sufficient data was acquired to perform a comparison to the simulated data. The experimental results are in agreement with the simulations. The remaining differences can be well explained. Conclusions It was possible to demonstrate the detection of acoustic emissions of magnetic tracer materials in Magnetic Particle Imaging. The processing of acoustic emission in addition to the tracer distribution acquired by magnetic detection might allow for the extraction of mechanical tissue parameters. Such parameters, like for example the velocity of sound and the attenuation caused by the tissue, might also be used to support and improve ultrasound imaging. However, the method can also be used to perform

  7. Theory, simulation and experimental results of the acoustic detection of magnetization changes in superparamagnetic iron oxide.

    PubMed

    Gleich, Bernhard; Weizenecker, Jürgen; Borgert, Jörn

    2011-06-29

    Magnetic Particle Imaging is a novel method for medical imaging. It can be used to measure the local concentration of a tracer material based on iron oxide nanoparticles. While the resulting images show the distribution of the tracer material in phantoms or anatomic structures of subjects under examination, no information about the tissue is being acquired. To expand Magnetic Particle Imaging into the detection of soft tissue properties, a new method is proposed, which detects acoustic emissions caused by magnetization changes in superparamagnetic iron oxide. Starting from an introduction to the theory of acoustically detected Magnetic Particle Imaging, a comparison to magnetically detected Magnetic Particle Imaging is presented. Furthermore, an experimental setup for the detection of acoustic emissions is described, which consists of the necessary field generating components, i.e. coils and permanent magnets, as well as a calibrated microphone to perform the detection. The estimated detection limit of acoustic Magnetic Particle Imaging is comparable to the detection limit of magnetic resonance imaging for iron oxide nanoparticles, whereas both are inferior to the theoretical detection limit for magnetically detected Magnetic Particle Imaging. Sufficient data was acquired to perform a comparison to the simulated data. The experimental results are in agreement with the simulations. The remaining differences can be well explained. It was possible to demonstrate the detection of acoustic emissions of magnetic tracer materials in Magnetic Particle Imaging. The processing of acoustic emission in addition to the tracer distribution acquired by magnetic detection might allow for the extraction of mechanical tissue parameters. Such parameters, like for example the velocity of sound and the attenuation caused by the tissue, might also be used to support and improve ultrasound imaging. However, the method can also be used to perform imaging on its own.

  8. DETECTION OF LARGE ACOUSTIC ENERGY FLUX IN THE SOLAR ATMOSPHERE

    SciTech Connect

    Bello Gonzalez, N.; Franz, M.; Schmidt, W.; Berkefeld, T.; MartInez Pillet, V.; Bonet, J. A.; Del Toro Iniesta, J. C.; Domingo, V.; Knoelker, M.

    2010-11-10

    We study the energy flux carried by acoustic waves excited by convective motions at sub-photospheric levels. The analysis of high-resolution spectropolarimetric data taken with IMaX/SUNRISE provides a total energy flux of {approx}6400-7700 W m{sup -2} at a height of {approx}250 km in the 5.2-10 mHz range, i.e., at least twice the largest energy flux found in previous works. Our estimate lies within a factor of two of the energy flux needed to balance radiative losses from the chromosphere according to the estimates of Anderson and Athay and revives interest in acoustic waves for transporting energy to the chromosphere. The acoustic flux is mainly found in the intergranular lanes but also in small rapidly evolving granules and at the bright borders, forming dark dots and lanes of splitting granules.

  9. The clinical utility of conventional karyotyping in the detection of cytogenetic abnormalities in soft tissue tumours: an Asian institutional experience.

    PubMed

    Tien, Justin D Y; Lau, L C; Tien, S L; Tan, M H

    2014-10-01

    To assess the clinical utility of conventional karyotyping as a diagnostic tool in soft tissue tumours amidst the increasing use of molecular cytogenetics. Case series. Singapore General Hospital, an Asian institution. A total of 35 participants (18 male and 17 female) aged 15 to 81 years were included in this study. Conventional karyotyping of 35 consecutive fresh soft tissue tumour specimens was performed over 4 years and the results were analysed. Of the 35 cases of soft tissue tumours reviewed, chromosome abnormalities were detected in 22 (63%) cases, 11 (31%) showed a normal karyotype, and 2 (6%) had culture failure. Of the 22 cases with abnormal karyotype, nine (41%) cases showed recurring aberrations: Ewing's sarcomas (n=2), desmoplastic small round cell tumour (n=1), synovial sarcomas (n=3), myxoid liposarcomas (n=2), and lipoma (n=1). One lipoma case had a t(2;12)(q23;q15) in which 2q23 breakpoint was not reported before. Chromosomal aberration involving 12q15 breakpoint has been shown in a previous study to be indicative of a lipoma-like liposarcoma. Another lipoma case had addition of 5q15 and 9p13 together with a balanced aberration of t(12;13) (q13;q12) which were novel aberrations. One synovial sarcoma case showed t(3;7)(q21;p13) which was an uncharacteristic aberration. Conventional karyotyping demonstrated utility as a genome-wide screening tool for soft tissue tumours and an adjunct diagnostic tool in the event histopathology results were doubtful. With the more widespread use of karyotyping, novel recurring chromosomal aberrations may be discovered.

  10. Human Cytomegalovirus Tegument Protein pp65 Is Detected in All Intra- and Extra-Axial Brain Tumours Independent of the Tumour Type or Grade

    PubMed Central

    Libard, Sylwia; Popova, Svetlana N.; Amini, Rose-Marie; Kärjä, Vesa; Pietiläinen, Timo; Hämäläinen, Kirsi M.; Sundström, Christer; Hesselager, Göran; Bergqvist, Michael; Ekman, Simon; Zetterling, Maria; Smits, Anja; Nilsson, Pelle; Pfeifer, Susan; de Ståhl, Teresita Diaz; Enblad, Gunilla; Ponten, Fredrik; Alafuzoff, Irina

    2014-01-01

    Human cytomegalovirus (HCMV) has been indicated being a significant oncomodulator. Recent reports have suggested that an antiviral treatment alters the outcome of a glioblastoma. We analysed the performance of commercial HCMV-antibodies applying the immunohistochemical (IHC) methods on brain sample obtained from a subject with a verified HCMV infection, on samples obtained from 14 control subjects, and on a tissue microarray block containing cores of various brain tumours. Based on these trials, we selected the best performing antibody and analysed a cohort of 417 extra- and intra-axial brain tumours such as gliomas, medulloblastomas, primary diffuse large B-cell lymphomas, and meningiomas. HCMV protein pp65 immunoreactivity was observed in all types of tumours analysed, and the IHC expression did not depend on the patient's age, gender, tumour type, or grade. The labelling pattern observed in the tumours differed from the labelling pattern observed in the tissue with an active HCMV infection. The HCMV protein was expressed in up to 90% of all the tumours investigated. Our results are in accordance with previous reports regarding the HCMV protein expression in glioblastomas and medulloblastomas. In addition, the HCMV protein expression was seen in primary brain lymphomas, low-grade gliomas, and in meningiomas. Our results indicate that the HCMV protein pp65 expression is common in intra- and extra-axial brain tumours. Thus, the assessment of the HCMV expression in tumours of various origins and pathologically altered tissue in conditions such as inflammation, infection, and even degeneration should certainly be facilitated. PMID:25268364

  11. In vivo detection of small tumour lesions by multi-pinhole SPECT applying a 99mTc-labelled nanobody targeting the Epidermal Growth Factor Receptor

    PubMed Central

    Krüwel, Thomas; Nevoltris, Damien; Bode, Julia; Dullin, Christian; Baty, Daniel; Chames, Patrick; Alves, Frauke

    2016-01-01

    The detection of tumours in an early phase of tumour development in combination with the knowledge of expression of tumour markers such as epidermal growth factor receptor (EGFR) is an important prerequisite for clinical decisions. In this study we applied the anti-EGFR nanobody 99mTc-D10 for visualizing small tumour lesions with volumes below 100 mm3 by targeting EGFR in orthotopic human mammary MDA-MB-468 and MDA-MB-231 and subcutaneous human epidermoid A431 carcinoma mouse models. Use of nanobody 99mTc-D10 of a size as small as 15.5 kDa enables detection of tumours by single photon emission computed tomography (SPECT) imaging already 45 min post intravenous administration with high tumour uptake (>3% ID/g) in small MDA-MB-468 and A431 tumours, with tumour volumes of 52.5 mm3 ± 21.2 and 26.6 mm3 ± 16.7, respectively. Fast blood clearance with a serum half-life of 4.9 min resulted in high in vivo contrast and ex vivo tumour to blood and tissue ratios. In contrast, no accumulation of 99mTc-D10 in MDA-MB-231 tumours characterized by a very low expression of EGFR was observed. Here we present specific and high contrast in vivo visualization of small human tumours overexpressing EGFR by preclinical multi-pinhole SPECT shortly after administration of anti-EGFR nanobody 99mTc-D10. PMID:26912069

  12. Acoustic target detection and classification using neural networks

    NASA Technical Reports Server (NTRS)

    Robertson, James A.; Conlon, Mark

    1993-01-01

    A neural network approach to the classification of acoustic emissions of ground vehicles and helicopters is demonstrated. Data collected during the Joint Acoustic Propagation Experiment conducted in July of l991 at White Sands Missile Range, New Mexico was used to train a classifier to distinguish between the spectrums of a UH-1, M60, M1 and M114. An output node was also included that would recognize background (i.e. no target) data. Analysis revealed specific hidden nodes responding to the features input into the classifier. Initial results using the neural network were encouraging with high correct identification rates accompanied by high levels of confidence.

  13. Detection and classification of underwater targets in background noise acoustic daylight

    NASA Astrophysics Data System (ADS)

    Goo, Gee-In

    2003-09-01

    It has been reported that underwater target models, spheres and cylinders can be detected and classified in background acoustic noise. In this paper, the author presents his recent finding that underwater target is detectable in acoustic background noise in open waters. Using a resonance detection technique, G-Transform, the noise background of a number of AUTEC sample data files with mammal clicks were analyzed. From the noise backgrounds in these data files, a number of possible target signatures were observed. It suggests that real underwater targets may be detected and classified passively in background noise.

  14. Forward model of thermally-induced acoustic signal specific to intralumenal detection geometry

    NASA Astrophysics Data System (ADS)

    Mukherjee, Sovanlal; Bunting, Charles F.; Piao, Daqing

    2011-03-01

    This work investigates a forward model associated with intra-lumenal detection of acoustic signal originated from transient thermal-expansion of the tissue. The work is specific to intra-lumenal thermo-acoustic tomography (TAT) which detects the contrast of tissue dielectric properties with ultrasonic resolution, but it is also extendable to intralumenal photo-acoustic tomography (PAT) which detects the contrast of light absorption properties of tissue with ultrasound resolution. Exact closed-form frequency-domain or time-domain forward model of thermally-induced acoustic signal have been studied rigorously for planar geometry and two other geometries, including cylindrical and spherical geometries both of which is specific to external-imaging, i.e. breast or brain imaging using an externally-deployed applicator. This work extends the existing studies to the specific geometry of internal or intra-lumenal imaging, i.e., prostate imaging by an endo-rectally deployed applicator. In this intra-lumenal imaging geometry, both the source that excites the transient thermal-expansion of the tissue and the acoustic transducer that acquires the thermally-induced acoustic signal are assumed enclosed by the tissue and on the surface of a long cylindrical applicator. The Green's function of the frequency-domain thermo-acoustic equation in spherical coordinates is expanded to cylindrical coordinates associated with intra-lumenal geometry. Inverse Fourier transform is then applied to obtain a time-domain solution of the thermo-acoustic pressure wave for intra-lumenal geometry. Further employment of the boundary condition to the "convex" applicator-tissue interface would render an exact forward solution toward accurate reconstruction for intra-lumenal thermally-induced acoustic imaging.

  15. Feasibility of acoustic neutrino detection in ice: Design and performance of the South Pole Acoustic Test Setup (SPATS)

    NASA Astrophysics Data System (ADS)

    Böser, S.; Bohm, C.; Descamps, F.; Fischer, J.; Hallgren, A.; Heller, R.; Hundertmark, S.; Krieger, K.; Nahnhauer, R.; Pohl, M.; Price, P.B.; Sulanke, K.-H.; Tosi, D.; Vandenbroucke, J.

    The South Pole Acoustic Test Setup (SPATS) has been built to evaluate the acoustic characteristics of the Antarctic ice in the 10 to 100 kHz frequency range so that the feasibility and specific design of an acoustic neutrino detection array at South Pole can be evaluated. SPATS consists of three vertical strings that have been deployed in the upper 400 meter of the Antarctic ice cap in January 2007, using the upper part of IceCube holes. The strings form a triangular array with a longest baseline of 422 meters. Each of them has 7 stages with one transmitter and one sensor module. Both are equipped with piezoelectric ceramic elements in order to produce or detect sound. Analog signals are brought to the surface on electric cables where they are digitized by a PCbased data acquisition system. Connected through dedicated wire pairs in the IceCube surface cables, the data from all three strings is then collected on a MasterPC in a central facility, from which they are sent to the northern hemisphere via a satellite link or locally stored on tape. A full technical overview of the SPATS detector and its performance will be presented.

  16. Acoustic detection of Melolonthine larvae in Australian sugarcane

    USDA-ARS?s Scientific Manuscript database

    Decision support systems have been developed for risk analysis and control of root-feeding white grub pests in Queensland sugarcane, based partly on manual inspection of cane soil samples. Acoustic technology was considered as a potential alternative to this laborious procedure. Field surveys were...

  17. NATO TG-53: acoustic detection of weapon firing joint field experiment

    NASA Astrophysics Data System (ADS)

    Robertson, Dale N.; Pham, Tien; Scanlon, Michael V.; Srour, Nassy; Reiff, Christian G.; Sim, Leng K.; Solomon, Latasha; Thompson, Dorothea F.

    2006-05-01

    In this paper, we discuss the NATO Task Group 53 (TG-53) acoustic detection of weapon firing field joint experiment at Yuma Proving Ground during 31 October to 4 November 2005. The participating NATO countries include France, the Netherlands, UK and US. The objectives of the joint experiments are: (i) to collect acoustic signatures of direct and indirect firings from weapons such as sniper, mortar, artillery and C4 explosives and (ii) to share signatures among NATO partners from a variety of acoustic sensing platforms on the ground and in the air distributed over a wide area.

  18. A potential means of using acoustic emission for crack detection under cyclic-load conditions.

    NASA Technical Reports Server (NTRS)

    Vary, A.; Klima, S. J.

    1973-01-01

    A preliminary investigation was conducted to assess the feasibility of monitoring acoustic emission signals from fatigue cracks during cyclic bend tests. Plate specimens of 6Al-4V titanium, 2219-T87 aluminum, and 18-Ni maraging steel were tested with and without crack starter notches. It was found that significant acoustic emission signals could be detected in the frequency range from 100 to 400 kHz. Cracks emanating from starter notches were monitored by the ultrasonic pulse-echo technique and periodically measured by micro-optical examination. The investigation indicated that it was possible to extract meaningful acoustic emission signals in a cyclic bend machine environment.

  19. A potential means of using acoustic emission for crack detection under cyclic-load conditions.

    NASA Technical Reports Server (NTRS)

    Vary, A.; Klima, S. J.

    1973-01-01

    A preliminary investigation was conducted to assess the feasibility of monitoring acoustic emission signals from fatigue cracks during cyclic bend tests. Plate specimens of 6Al-4V titanium, 2219-T87 aluminum, and 18-Ni maraging steel were tested with and without crack starter notches. It was found that significant acoustic emission signals could be detected in the frequency range from 100 to 400 kHz. Cracks emanating from starter notches were monitored by the ultrasonic pulse-echo technique and periodically measured by micro-optical examination. The investigation indicated that it was possible to extract meaningful acoustic emission signals in a cyclic bend machine environment.

  20. Acoustic detection of resonance-enhanced multiphoton ionization for spatially resolved temperature measurement.

    PubMed

    Wu, Yue; Gragston, Mark; Zhang, Zhili

    2017-09-01

    In this Letter, acoustic detection of resonance-enhanced multiphoton ionization (A-REMPI) is characterized and used to measure spatially resolved O2 rotational temperature in air. The acoustic signal is generated using O2 REMPI in air and is detected by a single microphone operating within the audible range. Compared to electron number measurements by coherent microwave scattering, nonlinear light absorption and subsequent local pressure perturbation are captured by the microphone. A typical acoustic cycle of compression and rarefication of the acoustic wave is observed in the A-REMPI. Since the pressure perturbation can be regarded as close to thermodynamic equilibrium, the rotational temperature measured by A-REMPI is lower and closer to the realistic condition.

  1. Advanced Passive Acoustic Leak Location and Detection Verification System for Underground Fuel Pipelines

    DTIC Science & Technology

    2003-04-01

    Conference (March 1993). 4. E. G. Eckert, M. R. Fierro , and J. W. Maresca, Jr., “A Passive-Acoustic Approach to the Detection of Leaking Valves in...Pressurized Pipelines,” Technical Report for Martin Marietta Energy Systems, Inc., Vista Research Project 1050, Vista Research, Inc., Mountain View...California (August 1994). 5. E. G. Eckert, M. R. Fierro , and J. W. Maresca, Jr., “Demonstration of a Gas Acoustic Tracer (GAT) Method for the Location of

  2. Next-generation sequencing-based detection of circulating tumour DNA After allogeneic stem cell transplantation for lymphoma.

    PubMed

    Herrera, Alex F; Kim, Haesook T; Kong, Katherine A; Faham, Malek; Sun, Heather; Sohani, Aliyah R; Alyea, Edwin P; Carlton, Victoria E; Chen, Yi-Bin; Cutler, Corey S; Ho, Vincent T; Koreth, John; Kotwaliwale, Chitra; Nikiforow, Sarah; Ritz, Jerome; Rodig, Scott J; Soiffer, Robert J; Antin, Joseph H; Armand, Philippe

    2016-12-01

    Next-generation sequencing (NGS)-based circulating tumour DNA (ctDNA) detection is a promising monitoring tool for lymphoid malignancies. We evaluated whether the presence of ctDNA was associated with outcome after allogeneic haematopoietic stem cell transplantation (HSCT) in lymphoma patients. We studied 88 patients drawn from a phase 3 clinical trial of reduced-intensity conditioning HSCT in lymphoma. Conventional restaging and collection of peripheral blood samples occurred at pre-specified time points before and after HSCT and were assayed for ctDNA by sequencing of the immunoglobulin or T-cell receptor genes. Tumour clonotypes were identified in 87% of patients with adequate tumour samples. Sixteen of 19 (84%) patients with disease progression after HSCT had detectable ctDNA prior to progression at a median of 3·7 months prior to relapse/progression. Patients with detectable ctDNA 3 months after HSCT had inferior progression-free survival (PFS) (2-year PFS 58% vs. 84% in ctDNA-negative patients, P = 0·033). In multivariate models, detectable ctDNA was associated with increased risk of progression/death (Hazard ratio 3·9, P = 0·003) and increased risk of relapse/progression (Hazard ratio 10·8, P = 0·0006). Detectable ctDNA is associated with an increased risk of relapse/progression, but further validation studies are necessary to confirm these findings and determine the clinical utility of NGS-based minimal residual disease monitoring in lymphoma patients after HSCT.

  3. A novel fiber optic geophone with high sensitivity for geo-acoustic detection

    NASA Astrophysics Data System (ADS)

    Zhang, Zhenhui; Yang, Huayong; Xiong, Shuidong; Luo, Hong; Cao, Chunyan; Ma, Shuqing

    2014-12-01

    A novel interferometric fiber optic geophone is introduced in this paper. This geophone is mainly used for geo-acoustic signal detection. The geophone use one of the three orthogonal components of mandrel type push-pull structure in mechanically and single-mode fiber optic Michelson interferometer structure with Faraday Rotation Mirror (FRM) elements in optically. The resonance frequency of the geophone is larger than 1000Hz. The acceleration sensitivity is as high as 56.6 dB (0dB re 1rad/g) with a slight sensitivity fluctuation of +/-0. 2dB within the frequency band from 20Hz to 200Hz. The geo-acoustic signals generated by underwater blasting are detected successfully. All the channels show good uniformity in the detected wave shape and the amplitudes exhibit very slight differences. The geo-acoustic signal excitated by the engine of surface vehicles was also detected successfully.

  4. Exploring results of the possibility on detecting cosmic ray particles by acoustic way

    NASA Technical Reports Server (NTRS)

    Jiang, Y.; Yuan, Y.; Li, Y.; Chen, D.; Zheng, R.; Song, J.

    1985-01-01

    It has been demonstrated experimentally and theoretically that high energy particles produce detectable sounds in water. However, no one has been able to detect an acoustic signal generated by a high energy cosmic ray particle in water. Results show that transient ultrasonic signals in a large lake or reservoir are fairly complex and that the transient signals under water may arise mainly from sound radiation from microbubbles. This field is not explored in detail. Perhaps, the sounds created by cosmic ray particles hide in these ultrasonic signals. In order to develop the technique of acoustic detection, it is most important to make a thorough investigation of these ultrasonic signals in water.

  5. Acoustic detection of UHE neutrinos in the Mediterranean sea: status and perspective

    NASA Astrophysics Data System (ADS)

    Simeone, Francesco; Capone, Antonio

    2017-03-01

    In recent years the astro-particle community is involved in the realization of experimental apparatuses for the detection of high energy neutrinos originated in cosmic sources or produced in the interaction of Cosmic Rays with the Cosmic Microwave Background. For neutrino energies in the TeV-PeV range, optical Cherenkov detectors, that have been so far positively exploited by Baikal[1], IceCube[2] and ANTARES[3], are considered optimal. For higher energies, three different experimental techniques are under study: the detection of radio pulses produced by showers induced by a neutrino interaction, the detection of air showers initiated by neutrinos interacting with rocks or deep Earth's atmosphere and the detection of acoustic waves produced by deposition of energy following the interaction of neutrinos in an acoustically transparent medium. The potential of the acoustic detection technique, first proposed by Askaryan[4], to build very large neutrino detectors is appealing, thanks to the optimal properties of media such as water or ice as sound propagator. Though the studies on this technique are still in an early stage, acoustic positioning systems used to locate the optical modules in underwater Cherenkov neutrino detectors, give the possibility to study the ambient noise and provide important information for the future analysis of acoustic data.

  6. A matched filter algorithm for acoustic signal detection

    NASA Astrophysics Data System (ADS)

    Jordan, D. W.

    1985-06-01

    This thesis is a presentation of several alternative acoustic filter designs which allow Space Shuttle payload experiment initiation prior to launch. This initiation is accomplished independently of any spacecraft services by means of a matched band-pass filter tuned to the acoustic signal characteristic of the Auxiliary Power Unit (APU) which is brought up to operating RPM's approximately five minutes prior to launch. These alternative designs include an analog filter built around operational amplifiers, a digital IIR design implemented with an INTEL 2920 Signal Processor, and an Adaptive FIR Weiner design. Working prototypes of the first two filters are developed and a discussion of the advantage of the 2920 digital design is presented.

  7. Immunohistochemically detectable bcl-2 expression in colorectal carcinoma: correlation with tumour stage and patient survival.

    PubMed Central

    Ofner, D.; Riehemann, K.; Maier, H.; Riedmann, B.; Nehoda, H.; Tötsch, M.; Böcker, W.; Jasani, B.; Schmid, K. W.

    1995-01-01

    The bcl-2 gene encodes for a mitochondrial membrane proto-oncoprotein, the expression of which is known to suppress programmed cell death (apoptosis). In the present study the prognostic value of bcl-2 proto-oncoprotein was immunohistochemically investigated in a series of 104 colorectal carcinomas. The bcl-2 staining patterns were semiquantitatively assessed and correlated with the pTNM stage, Dukes' classification, lymphocytic infiltration (Jass classification) and tumour grade as well as parameters not associated with prognosis (gender, age, tumour site, histological tumour type). Statistical analysis was carried out using the Kaplan-Meier method, the log-rank test, hazard ratios and their confidence intervals. Fifty-five out of 104 cases completely lacked immunohistochemical bcl-2 expression. Fewer than 5% of bcl-2-positive cells were found in 25, 5-50% in 17 and more than 50% in five cases. The extent of bcl-2 expression by tumour cells decreased significantly with respect to increasing tumour size (P < 0.05), decreasing lymphocytic infiltration (P < 0.05) and chance of poor clinical outcome (P < 0.05), but not with worsening of Dukes stages. In multivariate analysis (Cox regression model) bcl-2 expression remained as an independent prognostic parameter with Dukes' classification as stratification factor (P < 0.001). Although the biological functions of bcl-2 protein are not yet well understood, our results provide further evidence that bcl-2 oncoprotein appears to be associated with favourable clinical outcome. Thus immunohistochemical bcl-2 phenotyping of colorectal carcinoma may contribute in future to the clinical management of these patients. Images Figure 1 PMID:7547253

  8. Application of guided acoustic waves to delamination detection

    NASA Technical Reports Server (NTRS)

    Sun, Keun J.

    1992-01-01

    Guided plate waves are able to interact with structural flaws such as delaminations and cracks due to their propagation properties highly sensitive to the thickness change in materials. A technique which employs an acoustic damper to probe the results of this interaction and then to locate flaws in a relatively short period of time is developed. With its technical advantages, this technique shows its potential application to large area structural integrity assessment.

  9. Sequential Model-Based Detection in a Shallow Ocean Acoustic Environment

    SciTech Connect

    Candy, J V

    2002-03-26

    A model-based detection scheme is developed to passively monitor an ocean acoustic environment along with its associated variations. The technique employs an embedded model-based processor and a reference model in a sequential likelihood detection scheme. The monitor is therefore called a sequential reference detector. The underlying theory for the design is developed and discussed in detail.

  10. Sample-to-answer acoustic detection of DNA in complex samples.

    PubMed

    Papadakis, George; Palladino, Pasquale; Chronaki, Dimitra; Tsortos, Achilleas; Gizeli, Electra

    2017-07-13

    The present study demonstrates the sensitive and label-free acoustic detection of dsDNA amplicons produced from whole Salmonella Thyphimurium cells without employing any DNA extraction and/or purification step, in the presence of the lysed bacterial cells and in a hybridization-free assay. A sample-to-answer assay is also shown during DNA detection directly in milk.

  11. Application of acoustic feedback to target detection in a waveguide: experimental demonstration at the ultrasonic scale.

    PubMed

    Roux, Philippe; Marandet, Christian; La Rizza, Patrick; Kuperman, W A

    2011-07-01

    People are familiar with the acoustic feedback phenomenon, which results in a loud sound that is heard when a musician plays an electric instrument directly into a speaker. Acoustic feedback occurs when a source and a receiver are connected both acoustically through the propagation medium and electrically through an amplifier, such that the amplified received signal is continuously re-emitted by the source. The acoustic feedback can be initiated from a continuous sine wave. When the emitter and the receiver are in phase, resonance is obtained, which appears to be highly sensitive to any fluctuation of the propagation medium. Another procedure consists in initiating the acoustic feedback from a continuous loop of ambient noise. It then generates an unstable self-sustained feedback oscillator (SFO) that is tested here as a method for monitoring temperature fluctuations of a shallow-water oceanic environment. The goal of the present study is to reproduce and study the SFO at the laboratory scale in an ultrasonic waveguide. The experimental results demonstrate the potential applications of the SFO for the detection of a target in the framework of the acoustic-barrier problem in shallow-water acoustics.

  12. Damage Detection and Analysis in CFRPs Using Acoustic Emission Technique

    NASA Astrophysics Data System (ADS)

    Whitlow, Travis Laron

    Real time monitoring of damage is an important aspect of life management of critical structures. Acoustic emission (AE) techniques allow for measurement and assessment of damage in real time. Acoustic emission parameters such as signal amplitude and duration were monitored during the loading sequences. Criteria that can indicate the onset of critical damage to the structure were developed. Tracking the damage as it happens gives a better analysis of the failure evolution that will allow for a more accurate determination of structural life. The main challenge is distinguishing between legitimate damage signals and "false positives" which are unrelated to damage growth. Such false positives can be related to electrical noise, friction, or mechanical vibrations. This research focuses on monitoring signals of damage growth in carbon fiber reinforced polymers (CFRPs) and separating the relevant signals from the false ones. In this Dissertation, acoustic emission signals from CFRP specimens were experimentally recorded and analyzed. The objectives of this work are: (1) perform static and fatigue loading of CFRP composite specimens and measure the associated AE signals, (2) accurately determine the AE parameters (energy, frequency, duration, etc.) of signals generated during failure of such specimens, (3) use fiber optic sensors to monitor the strain distribution of the damage zone and relate these changes in strain measurements to AE data.

  13. Detection and classification of indoor objects using acoustic excitations

    NASA Astrophysics Data System (ADS)

    Setlur, Pawan; Amin, Moeness G.; Zoubir, Abdelhak M.

    2009-05-01

    In this paper, we show that objects of interest, like pipes and cylinders, reminiscent of guns and rifles, can be classified based on their acoustic vibration signatures. That is, if the acoustic returns are measurable, one can indeed classify objects based on the physical principle of resonance. We consider classifiers which are both training independent and those that are training dependent. The statistical classifier belongs to the former category, whereas, the neural network classifier belongs to the latter. Comparisons between the two approaches are shown to render both classifiers as suitable classifiers with small classification errors. We use the probability of correct classification as a measure of performance. We demonstrate experimentally that unique features for classification are the resonant frequencies. The measured data are obtained by exciting mechanical vibrations in pipes of different lengths and of different metals, for example, copper, aluminum, and steel, and the measuring of the acoustic returns, using a simple microphone. Autoregressive modeling is applied to the data to extract the respective object features, namely, the vibration frequencies and damping values. We consider two classification problems, 1) Classifying objects comprised of different metals, and 2) Classifying objects of the same material, but made of different lengths. It is shown that classification performance can be improved by incorporating additional features such as the damping coefficients.

  14. A Summary Comparison of Active Acoustic Detections and Visual Observations of Marine Mammals in the Canadian Beaufort Sea.

    PubMed

    Pyć, Cynthia D; Geoffroy, Maxime; Knudsen, Frank R

    2016-01-01

    Fisheries sonar was used to determine the applicability of active acoustic monitoring (AAM) for marine mammal detection in the Canadian Beaufort Sea. During 170 h of simultaneous observation by marine mammal observers and active acoustic observation, 119 Balaena mysticetus (bowheads) and 4 Delphinapterus leucas (belugas) were visually sighted, while 59 acoustic signals of bowheads were detected by AAM operators. Observations and detection of seals were also recorded. Comparative results indicate that commercially available active acoustic systems can detect seals at distances up to 500 m and large baleen whales at distances up to 2 km.

  15. Detection of acoustic waves by NMR using a radiofrequency field gradient.

    PubMed

    Madelin, Guillaume; Baril, Nathalie; Lewa, Czeslaw J; Franconi, Jean Michel; Canioni, Paul; Thiaudiére, Eric; de Certaines, Jacques D

    2003-03-01

    A B(1) field gradient-based method previously described for the detection of mechanical vibrations has been applied to detect oscillatory motions in condensed matter originated from acoustic waves. A ladder-shaped coil generating a quasi-constant RF-field gradient was associated with a motion-encoding NMR sequence consisting in a repetitive binomial 13;31; RF pulse train (stroboscopic acquisition). The NMR response of a gel phantom subject to acoustic wave excitation in the 20-200 Hz range was investigated. Results showed a linear relationship between the NMR signal and the wave amplitude and a spectroscopic selectivity of the NMR sequence with respect to the input acoustic frequency. Spin displacements as short as a few tens of nanometers were able to be detected with this method.

  16. AMADEUS—The acoustic neutrino detection test system of the ANTARES deep-sea neutrino telescope

    NASA Astrophysics Data System (ADS)

    Aguilar, J. A.; Al Samarai, I.; Albert, A.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardid, M.; Assis Jesus, A. C.; Astraatmadja, T.; Aubert, J.-J.; Auer, R.; Barbarito, E.; Baret, B.; Basa, S.; Bazzotti, M.; Bertin, V.; Biagi, S.; Bigongiari, C.; Bou-Cabo, M.; Bouwhuis, M. C.; Brown, A.; Brunner, J.; Busto, J.; Camarena, F.; Capone, A.; Cârloganu, C.; Carminati, G.; Carr, J.; Cassano, B.; Castorina, E.; Cavasinni, V.; Cecchini, S.; Ceres, A.; Charvis, Ph.; Chiarusi, T.; Chon Sen, N.; Circella, M.; Coniglione, R.; Costantini, H.; Cottini, N.; Coyle, P.; Curtil, C.; de Bonis, G.; Decowski, M. P.; Dekeyser, I.; Deschamps, A.; Distefano, C.; Donzaud, C.; Dornic, D.; Drouhin, D.; Eberl, T.; Emanuele, U.; Ernenwein, J.-P.; Escoffier, S.; Fehr, F.; Fiorello, C.; Flaminio, V.; Fritsch, U.; Fuda, J.-L.; Gay, P.; Giacomelli, G.; Gómez-González, J. P.; Graf, K.; Guillard, G.; Halladjian, G.; Hallewell, G.; van Haren, H.; Heijboer, A. J.; Heine, E.; Hello, Y.; Hernández-Rey, J. J.; Herold, B.; Hößl, J.; de Jong, M.; Kalantar-Nayestanaki, N.; Kalekin, O.; Kappes, A.; Katz, U.; Keller, P.; Kooijman, P.; Kopper, C.; Kouchner, A.; Kretschmer, W.; Lahmann, R.; Lamare, P.; Lambard, G.; Larosa, G.; Laschinsky, H.; Le Provost, H.; Lefèvre, D.; Lelaizant, G.; Lim, G.; Lo Presti, D.; Loehner, H.; Loucatos, S.; Louis, F.; Lucarelli, F.; Mangano, S.; Marcelin, M.; Margiotta, A.; Martinez-Mora, J. A.; Mazure, A.; Mongelli, M.; Montaruli, T.; Morganti, M.; Moscoso, L.; Motz, H.; Naumann, C.; Neff, M.; Ostasch, R.; Palioselitis, D.; Păvălaş, G. E.; Payre, P.; Petrovic, J.; Picot-Clemente, N.; Picq, C.; Popa, V.; Pradier, T.; Presani, E.; Racca, C.; Radu, A.; Reed, C.; Riccobene, G.; Richardt, C.; Rujoiu, M.; Ruppi, M.; Russo, G. V.; Salesa, F.; Sapienza, P.; Schöck, F.; Schuller, J.-P.; Shanidze, R.; Simeone, F.; Spurio, M.; Steijger, J. J. M.; Stolarczyk, Th.; Taiuti, M.; Tamburini, C.; Tasca, L.; Toscano, S.; Vallage, B.; van Elewyck, V.; Vannoni, G.; Vecchi, M.; Vernin, P.; Wijnker, G.; de Wolf, E.; Yepes, H.; Zaborov, D.; Zornoza, J. D.; Zúñiga, J.

    2011-01-01

    The AMADEUS (ANTARES Modules for the Acoustic Detection Under the Sea) system which is described in this article aims at the investigation of techniques for acoustic detection of neutrinos in the deep sea. It is integrated into the ANTARES neutrino telescope in the Mediterranean Sea. Its acoustic sensors, installed at water depths between 2050 and 2300 m, employ piezo-electric elements for the broad-band recording of signals with frequencies ranging up to 125 kHz. The typical sensitivity of the sensors is around -145 dB re 1 V/μPa (including preamplifier). Completed in May 2008, AMADEUS consists of six “acoustic clusters”, each comprising six acoustic sensors that are arranged at distances of roughly 1 m from each other. Two vertical mechanical structures (so-called lines) of the ANTARES detector host three acoustic clusters each. Spacings between the clusters range from 14.5 to 340 m. Each cluster contains custom-designed electronics boards to amplify and digitise the acoustic signals from the sensors. An on-shore computer cluster is used to process and filter the data stream and store the selected events. The daily volume of recorded data is about 10 GB. The system is operating continuously and automatically, requiring only little human intervention. AMADEUS allows for extensive studies of both transient signals and ambient noise in the deep sea, as well as signal correlations on several length scales and localisation of acoustic point sources. Thus the system is excellently suited to assess the background conditions for the measurement of the bipolar pulses expected to originate from neutrino interactions.

  17. Acoustic emission applied to detect workpiece burn during grinding

    SciTech Connect

    Aguiar, P.R. de; Willett, P.; Webster, J.

    1999-07-01

    Overly-aggressive or otherwise inappropriate grinding of metals can produce an undesirable change in metallurgical properties of the material being processed; usually this is referred to as workpiece burn. In this experimental paper the acoustic signature of grinding is collected, and compared to the processed workpiece condition, for thirteen data sets including both relatively hard (Inconel) and soft (52100 bearing steel) metals. This work is distinguished by its use of a high sampling rate (2.56 MHz) in data acquisition and in its processing of the raw, rather than RMS/filtered, data samples. Signs of burn are seen in the frequency domain, and in the correlation between wheel rotations.

  18. Optical Generation And Spatially Distinct Interferometric Detection Of Ultrahigh Frequency Surface Acoustic Waves

    SciTech Connect

    David H. Hurley

    2006-05-01

    Generation and interferometric detection of 22 GHz surface acoustic waves (SAWs) using two laterally separated absorption gratings on a Si substrate are presented. Optical phase sensitive detection of SAWs is demonstrated using a modified Sagnac interferometer. The reflection characteristics of the suboptical wavelength grating necessitate the use of only linear polarization. This is accomplished by employing a Faraday rotator to ensure path reversal of the reference and signal pulses. The enhanced sensitivity of the interferometer is exploited to measure the acoustic disturbance on an identical absorption grating at a distance of ~4.5 µm from the generation site.

  19. Multivariate acoustic detection of small explosions using Fisher's combined probability test.

    PubMed

    Arrowsmith, Stephen J; Taylor, Steven R

    2013-03-01

    A methodology for the combined acoustic detection and discrimination of explosions, which uses three discriminants, is developed for the purpose of identifying weak explosion signals embedded in complex background noise. By utilizing physical models for simple explosions that are formulated as statistical hypothesis tests, the detection/discrimination approach does not require a model for the background noise, which can be highly complex and variable in practice. Fisher's Combined Probability Test is used to combine the p-values from all multivariate discriminants. This framework is applied to acoustic data from a 400 g explosion conducted at Los Alamos National Laboratory.

  20. Immunohistochemical Detection of Pax8 and Napsin A in Canine Thyroid Tumours: Comparison with Thyroglobulin, Calcitonin and Thyroid Transcription Factor 1.

    PubMed

    Ramos-Vara, J A; Frank, C B; DuSold, D; Miller, M A

    2016-11-01

    Expression of thyroid transcription factor (TTF)-1 corroborates a thyroid origin of neoplasms. Thyroglobulin and calcitonin immunohistochemistry (IHC) can distinguish between a follicular and C-cell origin of thyroid tumours, respectively. Pax8 (expressed by normal canine thyroid follicular cells) and napsin A (expressed mainly by C-cells) labelling was compared with labelling for TTF-1, thyroglobulin and calcitonin in 114 canine proliferative thyroid lesions. All 81 follicular tumours expressed thyroglobulin and were negative for calcitonin; 79/81 (98%) of these tumours expressed TTF-1 and Pax8 and 60/81 (74%) expressed napsin A. All 25 C-cell lesions expressed calcitonin and were negative for expression of thyroglobulin; 22 (88%) were positive for TTF-1, 13 (57%) for Pax8 and 24/24 for napsin A. Six mixed follicular-medullary carcinomas expressed all five markers. Both carcinosarcomas expressed TTF-1 and napsin A, and one each of these tumours expressed thyroglobulin, calcitonin or Pax8. Pax8 expression was also detected in epididymal cells, endometrial cells and vas deferens epithelium, in Sertoli-like ovarian cells, and in some cases of ovarian adenoma, pancreatic carcinoma, renal cell carcinoma and Sertoli cell tumour. Napsin A was also detected in adrenocortical cells, ovarian granulosa cells, epididymal and endometrial cells, as well as in some renal cell carcinomas, pulmonary adenocarcinomas and Sertoli cell tumours. In summary, Pax8 was as sensitive as TTF-1 and slightly less sensitive than thyroglobulin for identification of follicular tumours, but had low sensitivity for C-cell tumours. Napsin A was as sensitive as calcitonin for C-cell neoplasms, but was less sensitive than thyroglobulin for follicular neoplasms. Thus, these markers are sensitive and, except for renal cell carcinoma (for Pax8, napsin A) and pulmonary adenocarcinoma (for napsin A), are specific thyroid tumour markers. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. High incidence of SV40-like sequences detection in tumour and peripheral blood cells of Japanese osteosarcoma patients

    PubMed Central

    Yamamoto, H; Nakayama, T; Murakami, H; Hosaka, T; Nakamata, T; Tsuboyama, T; Oka, M; Nakamura, T; Toguchida, J

    2000-01-01

    Recent studies have revealed the evidence for the significance of SV40 genome in human malignancies. In this paper, the presence of SV40-like sequences was investigated in 54 Japanese osteosarcomas in which mutations of the retinoblastoma (Rb), p53, MDM2, and CDK4 genes had been already analysed. Using polymerase chain reaction and Southern hybridization, SV40-like sequences were detected in 25 cases (46.3%). In most cases, only a part of SV40 genome was detected, and the regulatory region containing enhancer sequences was most frequently found (21/54, 38.9%). There was no apparent relationship between the presence of SV40-like sequences and tumour suppressor genes mutations in each tumour. The SV40-like sequences were also detected in peripheral blood cells of substantial proportion of the patients (43.3%), whereas the incidence was much lower (4.7%) in normal healthy controls. This difference is statistically highly significant (P< 0.0001), suggesting that the presence of SV40-like sequences, even if only a part, may play some roles to predispose individuals to osteosarcoma. © 2000 Cancer Research Campaign PMID:10817503

  2. Tumour procurement, DNA extraction, coverage analysis and optimisation of mutation-detection algorithms for human melanoma genomes.

    PubMed

    Wilmott, James S; Field, Matthew A; Johansson, Peter A; Kakavand, Hojabr; Shang, Ping; De Paoli-Iseppi, Ricardo; Vilain, Ricardo E; Pupo, Gulietta M; Tembe, Varsha; Jakrot, Valerie; Shang, Catherine A; Cebon, Jonathan; Shackleton, Mark; Fitzgerald, Anna; Thompson, John F; Hayward, Nicholas K; Mann, Graham J; Scolyer, Richard A

    2015-12-01

    Whole genome sequencing (WGS) of cancer patients' tumours offers the most comprehensive method of identifying both novel and known clinically-actionable genomic targets. However, the practicalities of performing WGS on clinical samples are poorly defined.This study was designed to test sample preparation, sequencing specifications and bioinformatic algorithms for their effect on accuracy and cost-efficiency in a large WGS analysis of human melanoma samples.WGS was performed on melanoma cell lines (n = 15) and melanoma fresh frozen tumours (n = 222). The appropriate level of coverage and the optimal mutation detection algorithm for the project pipeline were determined.An incremental increase in sequencing coverage from 36X to 132X in melanoma tissue samples and 30X to 103X for cell lines only resulted in a small increase (1-2%) in the number of mutations detected, and the quality scores of the additional mutations indicated a low probability that the mutations were real. The results suggest that 60X coverage for melanoma tissue and 40X for melanoma cell lines empower the detection of 98-99% of informative single nucleotide variants (SNVs), a sensitivity level at which clinical decision making or landscape research projects can be carried out with a high degree of confidence in the results. Likewise the bioinformatic mutation analysis methodology strongly influenced the number and quality of SNVs detected. Detecting mutations in the blood genomes separate to the tumour genomes generated 41% more SNVs than if the blood and melanoma tissue genomes were analysed simultaneously. Therefore, simultaneous analysis should be employed on matched melanoma tissue and blood genomes to reduce errors in mutation detection.This study provided valuable insights into the accuracy of SNV with WGS at various coverage levels in human clinical cancer specimens. Additionally, we investigated the accuracy of the publicly available mutation detection algorithms to detect cancer

  3. INNOVATIVE ACOUSTIC SENSOR TECHNOLOGIES FOR LEAK DETECTION IN CHALLENGING PIPE TYPES

    DTIC Science & Technology

    2016-12-01

    ft 1 in. per 1000 ft Note: Manufacturer-supplied performance specifications. Gutermann does not specify a minimum detectable leak size...activate at night to monitor for acoustic leak signatures when background noise is at a minimum and pipeline water pressure is highest. For example, the...Sensor Installation and Performance for Leak Detection Pipe Type Recommended Sensor Type Suggested Sensor Spacing Minimum Detectable Leak Size

  4. Effect of passive acoustic sampling methodology on detecting bats after declines from white nose syndrome

    USGS Publications Warehouse

    Coleman, Laci S.; Ford, W. Mark; Dobony, Christopher A.; Britzke, Eric R.

    2014-01-01

    Concomitant with the emergence and spread of white-nose syndrome (WNS) and precipitous decline of many bat species in North America, natural resource managers need modified and/or new techniques for bat inventory and monitoring that provide robust occupancy estimates. We used Anabat acoustic detectors to determine the most efficient passive acoustic sampling design for optimizing detection probabilities of multiple bat species in a WNS-impacted environment in New York, USA. Our sampling protocol included: six acoustic stations deployed for the entire duration of monitoring as well as a 4 x 4 grid and five transects of 5-10 acoustic units that were deployed for 6-8 night sample durations surveyed during the summers of 2011-2012. We used Program PRESENCE to determine detection probability and site occupancy estimates. Overall, the grid produced the highest detection probabilities for most species because it contained the most detectors and intercepted the greatest spatial area. However, big brown bats (Eptesicus fuscus) and species not impacted by WNS were detected easily regardless of sampling array. Endangered Indiana (Myotis sodalis) and little brown (Myotis lucifugus) and tri-colored bats (Perimyotis subflavus) showed declines in detection probabilities over our study, potentially indicative of continued WNS-associated declines. Identification of species presence through efficient methodologies is vital for future conservation efforts as bat populations decline further due to WNS and other factors.   

  5. Helmet-mounted acoustic array for hostile fire detection and localization in an urban environment

    NASA Astrophysics Data System (ADS)

    Scanlon, Michael V.

    2008-04-01

    The detection and localization of hostile weapons firing has been demonstrated successfully with acoustic sensor arrays on unattended ground sensors (UGS), ground-vehicles, and unmanned aerial vehicles (UAVs). Some of the more mature systems have demonstrated significant capabilities and provide direct support to ongoing counter-sniper operations. The Army Research Laboratory (ARL) is conducting research and development for a helmet-mounted system to acoustically detect and localize small arms firing, or other events such as RPG, mortars, and explosions, as well as other non-transient signatures. Since today's soldier is quickly being asked to take on more and more reconnaissance, surveillance, & target acquisition (RSTA) functions, sensor augmentation enables him to become a mobile and networked sensor node on the complex and dynamic battlefield. Having a body-worn threat detection and localization capability for events that pose an immediate danger to the soldiers around him can significantly enhance their survivability and lethality, as well as enable him to provide and use situational awareness clues on the networked battlefield. This paper addresses some of the difficulties encountered by an acoustic system in an urban environment. Complex reverberation, multipath, diffraction, and signature masking by building structures makes this a very harsh environment for robust detection and classification of shockwaves and muzzle blasts. Multifunctional acoustic detection arrays can provide persistent surveillance and enhanced situational awareness for every soldier.

  6. Based on optical fiber Michelson interferometer for acoustic emission detection experimental research

    NASA Astrophysics Data System (ADS)

    Liang, Yijun; Qu, Dandan; Deng, Hu

    2013-08-01

    A type of Michelson interferometer with two optical fiber loop reflectors acoustic emission sensor is proposed in the article to detect the vibrations produced by ultrasonic waves propagating in a solid body. Two optical fiber loop reflectors are equivalent to the sensing arm and the reference arm instead of traditional Michelson interferometer end reflecter Theoretical analyses indicate that the sensitivity of the system has been remarkably increased because of the decrease of the losses of light energy. The best operating point of optical fiber sensor is fixed by theoretical derivation and simulation of computer, and the signal frequency which is detected by the sensor is the frequency of input signal. PZT (Piezoelectric Ceramic) is powered by signal generator as known ultrasonic source, The Polarization controller is used to make the reflected light interference,The fiber length is changed by adjusting the DC voltage on the PZT with the fiber loop to make the sensor system response that ΔΦ is closed to π/2. the signal basis frequency detected by the sensor is the frequency of the input signal. Then impacts the surface of the marble slab with home-made mechanical acoustic emission source. And detect it. and then the frequency characteristic of acoustic emission signal is obtained by Fourier technique. The experimental results indicate that the system can identify the frequency characteristic of acoustic emission signal, and it can be also used to detect the surface feeble vibration which is generated by ultrasonic waves propagating in material structure.

  7. Nonlinear acoustics with low-profile piezoceramic excitation for crack detection in metallic structures

    NASA Astrophysics Data System (ADS)

    Parsons, Z.; Staszewski, W. J.

    2006-08-01

    Structural damage detection is one of the major maintenance activities in a wide range of industries. A variety of different methods have been developed for detection of fatigue cracks in metallic structures over the last few decades. This includes techniques based on stress/acoustic waves propagating in monitored structures. Classical ultrasonic techniques used in nondestructive testing and evaluation are based on linear amplitude and/or phase variations of reflected, transmitted or scattered waves. In recent years a range of different techniques utilizing nonlinear phenomena in vibration and acoustic signals have been developed. It appears that these techniques are more sensitive to damage alterations than other techniques used for damage detection based on linear behaviour. The paper explores the use of low-profile piezoceramic actuators with low-frequency excitation in nonlinear acoustics. The method is used to detect a fatigue crack in an aluminium plate. The results are compared with modal/vibration excitation performed with an electromagnetic shaker. The study shows that piezoelectric excitation with surface-bonded low-profile piezoceramic transducers is suitable for crack detection based on nonlinear acoustics.

  8. Acoustic detection and localization of weapons fire by unattended ground sensors and aerostat-borne sensors

    NASA Astrophysics Data System (ADS)

    Naz, P.; Marty, Ch.; Hengy, S.; Miller, L. S.

    2009-05-01

    The detection and localization of artillery guns on the battlefield is envisaged by means of acoustic and seismic waves. The main objective of this work is to examine the different frequency ranges usable for the detection of small arms, mortars, and artillery guns on the same hardware platform. The main stages of this study have consisted of: data acquisition of the acoustic signals of the different weapons used, signal processing and evaluation of the localization performance for various types of individual arrays, and modeling of the wave propagation in the atmosphere. The study of the propagation effects on the signatures of these weapons is done by comparing the acoustic signals measured during various days, at ground level and at the altitude of our aerostat (typically 200 m). Numerical modeling has also been performed to reinforce the interpretation of the experimental results.

  9. Robotic vehicle uses acoustic array for detection and localization in urban environments

    NASA Astrophysics Data System (ADS)

    Young, Stuart H.; Scanlon, Michael V.

    2001-09-01

    Sophisticated robotic platforms with diverse sensor suites are quickly replacing the eyes and ears of soldiers on the complex battlefield. The Army Research Laboratory (ARL) in Adelphi, Maryland has developed a robot-based acoustic detection system that will detect an impulsive noise event, such as a sniper's weapon firing or door slam, and activate a pan-tilt to orient a visible and infrared camera toward the detected sound. Once the cameras are cued to the target, onboard image processing can then track the target and/or transmit the imagery to a remote operator for navigation, situational awareness, and target detection. Such a vehicle can provide reconnaissance, surveillance, and target acquisition for soldiers, law enforcement, and rescue personnel, and remove these people from hazardous environments. ARL's primary robotic platforms contain 16-in. diameter, eight-element acoustic arrays. Additionally, a 9- in. array is being developed in support of DARPA's Tactical Mobile Robot program. The robots have been tested in both urban and open terrain. The current acoustic processing algorithm has been optimized to detect the muzzle blast from a sniper's weapon, and reject many interfering noise sources such as wind gusts, generators, and self-noise. However, other detection algorithms for speech and vehicle detection/tracking are being developed for implementation on this and smaller robotic platforms. The collaboration between two robots, both with known positions and orientations, can provide useful triangulation information for more precise localization of the acoustic events. These robots can be mobile sensor nodes in a larger, more expansive, sensor network that may include stationary ground sensors, UAVs, and other command and control assets. This report will document the performance of the robot's acoustic localization, describe the algorithm, and outline future work.

  10. Does detection range matter for inferring social networks in a benthic shark using acoustic telemetry?

    PubMed Central

    Bass, Nathan Charles; Guttridge, Tristan L.; Day, Joanna; Brown, Culum

    2017-01-01

    Accurately estimating contacts between animals can be critical in ecological studies such as examining social structure, predator–prey interactions or transmission of information and disease. While biotelemetry has been used successfully for such studies in terrestrial systems, it is still under development in the aquatic environment. Acoustic telemetry represents an attractive tool to investigate spatio-temporal behaviour of marine fish and has recently been suggested for monitoring underwater animal interactions. To evaluate the effectiveness of acoustic telemetry in recording interindividual contacts, we compared co-occurrence matrices deduced from three types of acoustic receivers varying in detection range in a benthic shark species. Our results demonstrate that (i) associations produced by acoustic receivers with a large detection range (i.e. Vemco VR2W) were significantly different from those produced by receivers with smaller ranges (i.e. Sonotronics miniSUR receivers and proximity loggers) and (ii) the position of individuals within their network, or centrality, also differed. These findings suggest that acoustic receivers with a large detection range may not be the best option to represent true social networks in the case of a benthic marine animal. While acoustic receivers are increasingly used by marine ecologists, we recommend users first evaluate the influence of detection range to depict accurate individual interactions before using these receivers for social or predator–prey studies. We also advocate for combining multiple receiver types depending on the ecological question being asked and the development of multi-sensor tags or testing of new automated proximity loggers, such as the Encounternet system, to improve the precision and accuracy of social and predator–prey interaction studies.

  11. Acoustic thermometry for detecting quenches in superconducting coils and conductor stacks

    NASA Astrophysics Data System (ADS)

    Marchevsky, M.; Gourlay, S. A.

    2017-01-01

    Quench detection capability is essential for reliable operation and protection of superconducting magnets, coils, cables, and machinery. We propose a quench detection technique based on sensing local temperature variations in the bulk of a superconducting winding by monitoring its transient acoustic response. Our approach is primarily aimed at coils and devices built with high-temperature superconductor materials where quench detection using standard voltage-based techniques may be inefficient due to the slow velocity of quench propagation. The acoustic sensing technique is non-invasive, fast, and capable of detecting temperature variations of less than 1 K in the interior of the superconductor cable stack in a 77 K cryogenic environment. We show results of finite element modeling and experiments conducted on a model superconductor stack demonstrating viability of the technique for practical quench detection, discuss sensitivity limits of the technique, and its various applications.

  12. Feature-based classifiers for somatic mutation detection in tumour-normal paired sequencing data.

    PubMed

    Ding, Jiarui; Bashashati, Ali; Roth, Andrew; Oloumi, Arusha; Tse, Kane; Zeng, Thomas; Haffari, Gholamreza; Hirst, Martin; Marra, Marco A; Condon, Anne; Aparicio, Samuel; Shah, Sohrab P

    2012-01-15

    The study of cancer genomes now routinely involves using next-generation sequencing technology (NGS) to profile tumours for single nucleotide variant (SNV) somatic mutations. However, surprisingly few published bioinformatics methods exist for the specific purpose of identifying somatic mutations from NGS data and existing tools are often inaccurate, yielding intolerably high false prediction rates. As such, the computational problem of accurately inferring somatic mutations from paired tumour/normal NGS data remains an unsolved challenge. We present the comparison of four standard supervised machine learning algorithms for the purpose of somatic SNV prediction in tumour/normal NGS experiments. To evaluate these approaches (random forest, Bayesian additive regression tree, support vector machine and logistic regression), we constructed 106 features representing 3369 candidate somatic SNVs from 48 breast cancer genomes, originally predicted with naive methods and subsequently revalidated to establish ground truth labels. We trained the classifiers on this data (consisting of 1015 true somatic mutations and 2354 non-somatic mutation positions) and conducted a rigorous evaluation of these methods using a cross-validation framework and hold-out test NGS data from both exome capture and whole genome shotgun platforms. All learning algorithms employing predictive discriminative approaches with feature selection improved the predictive accuracy over standard approaches by statistically significant margins. In addition, using unsupervised clustering of the ground truth 'false positive' predictions, we noted several distinct classes and present evidence suggesting non-overlapping sources of technical artefacts illuminating important directions for future study. Software called MutationSeq and datasets are available from http://compbio.bccrc.ca.

  13. Detection of nonlinear picosecond acoustic pulses by time-resolved Brillouin scattering

    SciTech Connect

    Gusev, Vitalyi E.

    2014-08-14

    In time-resolved Brillouin scattering (also called picosecond ultrasonic interferometry), the time evolution of the spatial Fourier component of an optically excited acoustic strain distribution is monitored. The wave number is determined by the momentum conservation in photon-phonon interaction. For linear acoustic waves propagating in a homogeneous medium, the detected time-domain signal of the optical probe transient reflectivity shows a sinusoidal oscillation at a constant frequency known as the Brillouin frequency. This oscillation is a result of heterodyning the constant reflection from the sample surface with the Brillouin-scattered field. Here, we present an analytical theory for the nonlinear reshaping of a propagating, finite amplitude picosecond acoustic pulse, which results in a time-dependence of the observed frequency. In particular, we examine the conditions under which this information can be used to study the time-evolution of the weak-shock front speed. Depending on the initial strain pulse parameters and the time interval of its nonlinear transformation, our theory predicts the detected frequency to either be monotonically decreasing or oscillating in time. We support these theoretical predictions by comparison with available experimental data. In general, we find that picosecond ultrasonic interferometry of nonlinear acoustic pulses provides access to the nonlinear acoustic properties of a medium spanning most of the GHz frequency range.

  14. Accuracy of perceptual and acoustic methods for the detection of inspiratory loci in spontaneous speech.

    PubMed

    Wang, Yu-Tsai; Nip, Ignatius S B; Green, Jordan R; Kent, Ray D; Kent, Jane Finley; Ullman, Cara

    2012-12-01

    The present study investigates the accuracy of perceptually and acoustically determined inspiratory loci in spontaneous speech for the purpose of identifying breath groups. Sixteen participants were asked to talk about simple topics in daily life at a comfortable speaking rate and loudness while connected to a pneumotach and audio microphone. The locations of inspiratory loci were determined on the basis of the aerodynamic signal, which served as a reference for loci identified perceptually and acoustically. Signal detection theory was used to evaluate the accuracy of the methods. The results showed that the greatest accuracy in pause detection was achieved (1) perceptually, on the basis of agreement between at least two of three judges, and (2) acoustically, using a pause duration threshold of 300 ms. In general, the perceptually based method was more accurate than was the acoustically based method. Inconsistencies among perceptually determined, acoustically determined, and aerodynamically determined inspiratory loci for spontaneous speech should be weighed in selecting a method of breath group determination.

  15. Accuracy of Perceptual and Acoustic Methods for the Detection of Inspiratory Loci in Spontaneous Speech

    PubMed Central

    Wang, Yu-Tsai; Nip, Ignatius S. B.; Green, Jordan R.; Kent, Ray D.; Kent, Jane Finley; Ullman, Cara

    2012-01-01

    The current study investigates the accuracy of perceptually and acoustically determined inspiratory loci in spontaneous speech for the purpose of identifying breath groups. Sixteen participants were asked to talk about simple topics in daily life at a comfortable speaking rate and loudness while connected to a pneumotach and audio microphone. The locations of inspiratory loci were determined based on the aerodynamic signal, which served as a reference for loci identified perceptually and acoustically. Signal detection theory was used to evaluate the accuracy of the methods. The results showed that the greatest accuracy in pause detection was achieved (1) perceptually based on the agreement between at least 2 of the 3 judges; (2) acoustically using a pause duration threshold of 300 ms. In general, the perceptually-based method was more accurate than was the acoustically-based method. Inconsistencies among perceptually-determined, acoustically-determined, and aerodynamically-determined inspiratory loci for spontaneous speech should be weighed in selecting a method of breath-group determination. PMID:22362007

  16. Object detection and tracking method of AUV based on acoustic vision

    NASA Astrophysics Data System (ADS)

    Zhang, Tie-dong; Wan, Lei; Zeng, Wen-jing; Xu, Yu-ru

    2012-12-01

    This paper describes a new framework for object detection and tracking of AUV including underwater acoustic data interpolation, underwater acoustic images segmentation and underwater objects tracking. This framework is applied to the design of vision-based method for AUV based on the forward looking sonar sensor. First, the real-time data flow (underwater acoustic images) is pre-processed to form the whole underwater acoustic image, and the relevant position information of objects is extracted and determined. An improved method of double threshold segmentation is proposed to resolve the problem that the threshold cannot be adjusted adaptively in the traditional method. Second, a representation of region information is created in light of the Gaussian particle filter. The weighted integration strategy combining the area and invariant moment is proposed to perfect the weight of particles and to enhance the tracking robustness. Results obtained on the real acoustic vision platform of AUV during sea trials are displayed and discussed. They show that the proposed method can detect and track the moving objects underwater online, and it is effective and robust.

  17. Surface acoustic wave generation and detection using graphene interdigitated transducers on lithium niobate

    SciTech Connect

    Mayorov, A. S.; Hunter, N.; Muchenje, W.; Wood, C. D.; Rosamond, M.; Linfield, E. H.; Davies, A. G.; Cunningham, J. E.

    2014-02-24

    We demonstrate the feasibility of using graphene as a conductive electrode for the generation and detection of surface acoustic waves at 100 s of MHz on a lithium niobate substrate. The graphene interdigitated transducers (IDTs) show sensitivity to doping and temperature, and the characteristics of the IDTs are discussed in the context of a lossy transmission line model.

  18. A new EEMD-based scheme for detection of insect damaged wheat kernels using impact acoustics

    USDA-ARS?s Scientific Manuscript database

    Internally feeding insects inside wheat kernels cause significant, but unseen economic damage to stored grain. In this paper, a new scheme based on ensemble empirical mode decomposition (EEMD) using impact acoustics is proposed for detection of insect-damaged wheat kernels, based on its capability t...

  19. Crack Detection Using Combinations of Acoustic Emission and Guided Wave Signals from Bonded Piezoelectric Transducers

    DTIC Science & Technology

    2011-09-01

    Mark M. Derriso , John E. Little II, and Keith A. Vehorn, Air Force Research Laboratory, Air Vehicles Directorate, 2790 D Street, Wright...data. Crack Detection Using Combinations of Acoustic Emission and Guided Wave Signals from Bonded Piezoelectric Transducers M. M. DERRISO , J. E

  20. Efficient source separation algorithms for acoustic fall detection using a microsoft kinect.

    PubMed

    Li, Yun; Ho, K C; Popescu, Mihail

    2014-03-01

    Falls have become a common health problem among older adults. In previous study, we proposed an acoustic fall detection system (acoustic FADE) that employed a microphone array and beamforming to provide automatic fall detection. However, the previous acoustic FADE had difficulties in detecting the fall signal in environments where interference comes from the fall direction, the number of interferences exceeds FADE's ability to handle or a fall is occluded. To address these issues, in this paper, we propose two blind source separation (BSS) methods for extracting the fall signal out of the interferences to improve the fall classification task. We first propose the single-channel BSS by using nonnegative matrix factorization (NMF) to automatically decompose the mixture into a linear combination of several basis components. Based on the distinct patterns of the bases of falls, we identify them efficiently and then construct the interference free fall signal. Next, we extend the single-channel BSS to the multichannel case through a joint NMF over all channels followed by a delay-and-sum beamformer for additional ambient noise reduction. In our experiments, we used the Microsoft Kinect to collect the acoustic data in real-home environments. The results show that in environments with high interference and background noise levels, the fall detection performance is significantly improved using the proposed BSS approaches.

  1. The Potential of Using Acoustical Emission to Detect Termites Within Wood

    Treesearch

    Vernard R. Lewis; Richard L. Lemaster

    1991-01-01

    Acoustical emission (AE) equipment was used to detect drywood termites Incisitermes minor in ponderosa pine Pinus ponderosa blocks under laboratory conditions. Using a 60 kHz transducer, AE levels were recorded for 0, 5, 10, 15, and 20 termites per block. The association of AE and varying numbers of drywood termites best fit an...

  2. Adaptations of Acoustic Technology for Detection of Hidden Insect Infestations in Trees and Their Root Systems

    USDA-ARS?s Scientific Manuscript database

    Insects that attack the trunks and roots of trees are difficult to detect and control because the tree structures hide and protect them. The vibrations caused by insects moving and feeding within the root systems can travel over long distances; consequently, acoustic technology is a likely candidat...

  3. Advanced Methods for Passive Acoustic Detection, Classification, and Localization of Marine Mammals

    DTIC Science & Technology

    2012-09-30

    auditory system has similar units for detecting frequency changes in tonal signals at specific frequencies ( Mendelson and Cynader 1985). Mellinger...contours. J. Acoust. Soc. Am. 129:4055-4061. Mendelson , J.R., and M.S. Cynader. (1985) Sensitivity of cat auditory primary cortex (AI) neurons to the

  4. YIP Expansion: Ocean Basin Impact of Ambient Noise on Marine Mammal Detectability, Distribution, and Acoustic Communication

    DTIC Science & Technology

    2015-09-30

    oceanography, signal processing, marine mammal biology , propagation modelling, and statistics. Familiarity and previously established access and... Marine Mammal Detectability, Distribution, and Acoustic Communication Jennifer L. Miksis-Olds Applied Research Laboratory The Pennsylvania State...debate on the effect of noise on marine mammals. Application of the most optimal automatic detectors to density estimation efforts over time, examined

  5. Detection and quantification of bacterial biofilms combining high-frequency acoustic microscopy and targeted lipid microparticles

    PubMed Central

    2014-01-01

    Background Immuno-compromised patients such as those undergoing cancer chemotherapy are susceptible to bacterial infections leading to biofilm matrix formation. This surrounding biofilm matrix acts as a diffusion barrier that binds up antibiotics and antibodies, promoting resistance to treatment. Developing non-invasive imaging methods that detect biofilm matrix in the clinic are needed. The use of ultrasound in conjunction with targeted ultrasound contrast agents (UCAs) may provide detection of early stage biofilm matrix formation and facilitate optimal treatment. Results Ligand-targeted UCAs were investigated as a novel method for pre-clinical non-invasive molecular imaging of early and late stage biofilms. These agents were used to target, image and detect Staphylococcus aureus biofilm matrix in vitro. Binding efficacy was assessed on biofilm matrices with respect to their increasing biomass ranging from 3.126 × 103 ± 427 UCAs per mm2 of biofilm surface area within 12 h to 21.985 × 103 ± 855 per mm2 of biofilm matrix surface area at 96 h. High-frequency acoustic microscopy was used to ultrasonically detect targeted UCAs bound to a biofilm matrix and to assess biofilm matrix mechanoelastic physical properties. Acoustic impedance data demonstrated that biofilm matrices exhibit impedance values (1.9 MRayl) close to human tissue (1.35 - 1.85 MRayl for soft tissues). Moreover, the acoustic signature of mature biofilm matrices were evaluated in terms of integrated backscatter (0.0278 - 0.0848 mm-1 × sr-1) and acoustic attenuation (3.9 Np/mm for bound UCAs; 6.58 Np/mm for biofilm alone). Conclusions Early diagnosis of biofilm matrix formation is a challenge in treating cancer patients with infection-associated biofilms. We report for the first time a combined optical and acoustic evaluation of infectious biofilm matrices. We demonstrate that acoustic impedance of biofilms is similar to the impedance of human tissues, making in vivo imaging and detection of biofilm

  6. Detection and quantification of bacterial biofilms combining high-frequency acoustic microscopy and targeted lipid microparticles.

    PubMed

    Anastasiadis, Pavlos; Mojica, Kristina D A; Allen, John S; Matter, Michelle L

    2014-07-06

    Immuno-compromised patients such as those undergoing cancer chemotherapy are susceptible to bacterial infections leading to biofilm matrix formation. This surrounding biofilm matrix acts as a diffusion barrier that binds up antibiotics and antibodies, promoting resistance to treatment. Developing non-invasive imaging methods that detect biofilm matrix in the clinic are needed. The use of ultrasound in conjunction with targeted ultrasound contrast agents (UCAs) may provide detection of early stage biofilm matrix formation and facilitate optimal treatment. Ligand-targeted UCAs were investigated as a novel method for pre-clinical non-invasive molecular imaging of early and late stage biofilms. These agents were used to target, image and detect Staphylococcus aureus biofilm matrix in vitro. Binding efficacy was assessed on biofilm matrices with respect to their increasing biomass ranging from 3.126 × 103 ± 427 UCAs per mm(2) of biofilm surface area within 12 h to 21.985 × 103 ± 855 per mm(2) of biofilm matrix surface area at 96 h. High-frequency acoustic microscopy was used to ultrasonically detect targeted UCAs bound to a biofilm matrix and to assess biofilm matrix mechanoelastic physical properties. Acoustic impedance data demonstrated that biofilm matrices exhibit impedance values (1.9 MRayl) close to human tissue (1.35 - 1.85 MRayl for soft tissues). Moreover, the acoustic signature of mature biofilm matrices were evaluated in terms of integrated backscatter (0.0278 - 0.0848 mm(-1) × sr(-1)) and acoustic attenuation (3.9 Np/mm for bound UCAs; 6.58 Np/mm for biofilm alone). Early diagnosis of biofilm matrix formation is a challenge in treating cancer patients with infection-associated biofilms. We report for the first time a combined optical and acoustic evaluation of infectious biofilm matrices. We demonstrate that acoustic impedance of biofilms is similar to the impedance of human tissues, making in vivo imaging and detection of biofilm matrices difficult

  7. An Intraoperative β- Detecting Probe for Radio-Guided Surgery in Tumour Resection

    NASA Astrophysics Data System (ADS)

    Russomando, Andrea; Bellini, Fabio; Bocci, Valerio; Collamati, Francesco; De Lucia, Erika; Faccini, Riccardo; Marafini, Michela; Mattei, Ilaria; Chiodi, Giacomo; Patera, Vincenzo; Recchia, Luigi; Sarti, Alessio; Sciubba, Adalberto; Camillocci, Elena Solfaroli; Paramatti, Riccardo; Voena, Cecilia; Donnarumma, Raffaella; Mancini-Terracciano, Carlo; Morganti, Silvio

    2016-10-01

    The development of the β- based radio-guided surgery aims to extend the technique to those tumours where surgery is the only possible treatment and the assessment of the resection would most profit from the low background around the lesion, as for brain tumours. To validate the technique, prototypes of the intraoperative β- probe have been developed. This paper discusses the design details of one of the prototypes and its tests performed in laboratory. In such tests particular care has to be taken to reproduce the surgical field conditions. The tests showed that the prototype under study has 70% efficiency on electrons with an energy threshold at 540 keV, a point-like resolution of 2.8±0.1 mm, and a sensitivity to photons lower than 1%. The tests also demonstrated, with an innovative technique to produce specific phantoms, that 0.5 ml residuals can be safely identified in 1 s with tumor-non-tumor ratio equal to 10.

  8. Osimertinib benefit in EGFR-mutant NSCLC patients with T790M-mutation detected by circulating tumour DNA.

    PubMed

    Remon, J; Caramella, C; Jovelet, C; Lacroix, L; Lawson, A; Smalley, S; Howarth, K; Gale, D; Green, E; Plagnol, V; Rosenfeld, N; Planchard, D; Bluthgen, M V; Gazzah, A; Pannet, C; Nicotra, C; Auclin, E; Soria, J C; Besse, B

    2017-04-01

    Approximately 50% of epidermal growth factor receptor (EGFR) mutant non-small cell lung cancer (NSCLC) patients treated with EGFR tyrosine kinase inhibitors (TKIs) will acquire resistance by the T790M mutation. Osimertinib is the standard of care in this situation. The present study assesses the efficacy of osimertinib when T790M status is determined in circulating cell-free tumour DNA (ctDNA) from blood samples in progressing advanced EGFR-mutant NSCLC patients. ctDNA T790M mutational status was assessed by Inivata InVision™ (eTAm-Seq™) assay in 48 EGFR-mutant advanced NSCLC patients with acquired resistance to EGFR TKIs without a tissue biopsy between April 2015 and April 2016. Progressing T790M-positive NSCLC patients received osimertinib (80 mg daily). The objectives were to assess the response rate to osimertinib according to Response Evaluation Criteria in Solid Tumours (RECIST) 1.1, the progression-free survival (PFS) on osimertinib, and the percentage of T790M positive in ctDNA. The ctDNA T790M mutation was detected in 50% of NSCLC patients. Among assessable patients, osimertinib gave a partial response rate of 62.5% and a stable disease rate of 37.5%. All responses were confirmed responses. After median follow up of 8 months, median PFS by RECIST criteria was not achieved (95% CI: 4-NA), with 6- and 12-months PFS of 66.7% and 52%, respectively. ctDNA from liquid biopsy can be used as a surrogate marker for T790M in tumour tissue.

  9. A Robust Mine Detection Algorithm for Acoustic and Radar Images

    DTIC Science & Technology

    2000-10-01

    Hough transforms as demonstrated on an NVL mine hunting SBIR and on SAR ground target detection. The fundamental detection technique will be...Williams, “IA-CHAMELEON: A SAR Wide Area Image Analysis Aid,” Proc. ATRWG Workshop, Baltimore, MD, July 1996 The adaptive detection algorithm will...University, Mississippi 38677, September 15, 1998 Systems Incorporated (PSI) Ground Penetrating Radar (GPR)9, and on synthetic aperture radar ( SAR ) images

  10. Real-time RT-PCR systems for CTC detection from blood samples of breast cancer and gynaecological tumour patients (Review).

    PubMed

    Andergassen, Ulrich; Kölbl, Alexandra C; Mahner, Sven; Jeschke, Udo

    2016-04-01

    Cells, which detach from a primary epithelial tumour and migrate through lymphatic vessels and blood stream are called 'circulating tumour cells'. These cells are considered to be the main root of remote metastasis and are correlated to a worse prognosis concerning progression-free and overall survival of the patients. Therefore, the detection of the minimal residual disease is of great importance regarding therapeutic decisions. Many different detection strategies are already available, but only one method, the CellSearch® system, reached FDA approval. The present review focusses on the detection of circulating tumour cells by means of real-time PCR, a highly sensitive method based on differences in gene expression between normal and malignant cells. Strategies for an enrichment of tumour cells are mentioned, as well as a large panel of potential marker genes. Drawbacks and advantages of the technique are elucidated, whereas, the greatest advantage might be, that by selection of appropriate marker genes, also tumour cells, which have already undergone epithelial to mesenchymal transition can be detected. Finally, the application of real-time PCR in different gynaecological malignancies is described, with breast cancer being the most studied cancer entity.

  11. Leak detection by acoustic emissions monitoring: An experimental investigation of the acoustic properties of leaks and the attenuation characteristics of soil

    NASA Astrophysics Data System (ADS)

    Kilpatrick, James F.; March, Patrick A.

    1994-05-01

    This study experimentally explored the conditions, equipment, and methodology necessary for the acoustic detection of small leaks of jet fuel (JP4) from underground storage tank (UST) systems. The study indicates that acoustic leak detection of very small leaks is feasible. In general, significant JP4 fuel leaks which occur across a 5 PSI (pounds per square inch) or greater pressure drop are acoustically active and can be detected with proper sensors and proper placement of sensors. The primary source of leak noise is turbulent flow through the leak orifice. At lower pressures, the leak flow becomes laminar, and the leak becomes virtually silent. With direct transducer contact on the pipe or tank wall and sufficient system pressure, leaks smaller than 0.1 GPH (gallons per hour) can be detected. Larger leaks can be detected through short distances in soil. However, sand, which is the most commonly used fill material for UST systems, provides significant acoustic attenuation. Consequently, waveguides must be used when monitoring distances exceeding about 1 foot of travel through sand. Sand acts to reduce background noise levels, providing an ideal environment for acoustic leak detection using sensors mounted directly on the pipe or tank wall.

  12. Bacteria Murmur: Application of an Acoustic Biosensor for Plant Pathogen Detection

    PubMed Central

    Dimopoulou, Anastasia; Glynos, Paraskevas; Gizeli, Electra

    2015-01-01

    A multi-targeting protocol for the detection of three of the most important bacterial phytopathogens, based on their scientific and economic importance, was developed using an acoustic biosensor (the Quartz Crystal Microbalance) for DNA detection. Acoustic detection was based on a novel approach where DNA amplicons were monitored and discriminated based on their length rather than mass. Experiments were performed during real time monitoring of analyte binding and in a direct manner, i.e. without the use of labels for enhancing signal transduction. The proposed protocol improves time processing by circumventing gel electrophoresis and can be incorporated as a routine detection method in a diagnostic lab or an automated lab-on-a-chip system for plant pathogen diagnostics. PMID:26177507

  13. Bacteria Murmur: Application of an Acoustic Biosensor for Plant Pathogen Detection.

    PubMed

    Papadakis, George; Skandalis, Nicholas; Dimopoulou, Anastasia; Glynos, Paraskevas; Gizeli, Electra

    2015-01-01

    A multi-targeting protocol for the detection of three of the most important bacterial phytopathogens, based on their scientific and economic importance, was developed using an acoustic biosensor (the Quartz Crystal Microbalance) for DNA detection. Acoustic detection was based on a novel approach where DNA amplicons were monitored and discriminated based on their length rather than mass. Experiments were performed during real time monitoring of analyte binding and in a direct manner, i.e. without the use of labels for enhancing signal transduction. The proposed protocol improves time processing by circumventing gel electrophoresis and can be incorporated as a routine detection method in a diagnostic lab or an automated lab-on-a-chip system for plant pathogen diagnostics.

  14. Theoretical detection threshold of the proton-acoustic range verification technique.

    PubMed

    Ahmad, Moiz; Xiang, Liangzhong; Yousefi, Siavash; Xing, Lei

    2015-10-01

    Range verification in proton therapy using the proton-acoustic signal induced in the Bragg peak was investigated for typical clinical scenarios. The signal generation and detection processes were simulated in order to determine the signal-to-noise limits. An analytical model was used to calculate the dose distribution and local pressure rise (per proton) for beams of different energy (100 and 160 MeV) and spot widths (1, 5, and 10 mm) in a water phantom. In this method, the acoustic waves propagating from the Bragg peak were generated by the general 3D pressure wave equation implemented using a finite element method. Various beam pulse widths (0.1-10 μs) were simulated by convolving the acoustic waves with Gaussian kernels. A realistic PZT ultrasound transducer (5 cm diameter) was simulated with a Butterworth bandpass filter with consideration of random noise based on a model of thermal noise in the transducer. The signal-to-noise ratio on a per-proton basis was calculated, determining the minimum number of protons required to generate a detectable pulse. The maximum spatial resolution of the proton-acoustic imaging modality was also estimated from the signal spectrum. The calculated noise in the transducer was 12-28 mPa, depending on the transducer central frequency (70-380 kHz). The minimum number of protons detectable by the technique was on the order of 3-30 × 10(6) per pulse, with 30-800 mGy dose per pulse at the Bragg peak. Wider pulses produced signal with lower acoustic frequencies, with 10 μs pulses producing signals with frequency less than 100 kHz. The proton-acoustic process was simulated using a realistic model and the minimal detection limit was established for proton-acoustic range validation. These limits correspond to a best case scenario with a single large detector with no losses and detector thermal noise as the sensitivity limiting factor. Our study indicated practical proton-acoustic range verification may be feasible with approximately 5

  15. Theoretical detection threshold of the proton-acoustic range verification technique

    PubMed Central

    Ahmad, Moiz; Xiang, Liangzhong; Yousefi, Siavash; Xing, Lei

    2015-01-01

    Purpose: Range verification in proton therapy using the proton-acoustic signal induced in the Bragg peak was investigated for typical clinical scenarios. The signal generation and detection processes were simulated in order to determine the signal-to-noise limits. Methods: An analytical model was used to calculate the dose distribution and local pressure rise (per proton) for beams of different energy (100 and 160 MeV) and spot widths (1, 5, and 10 mm) in a water phantom. In this method, the acoustic waves propagating from the Bragg peak were generated by the general 3D pressure wave equation implemented using a finite element method. Various beam pulse widths (0.1–10 μs) were simulated by convolving the acoustic waves with Gaussian kernels. A realistic PZT ultrasound transducer (5 cm diameter) was simulated with a Butterworth bandpass filter with consideration of random noise based on a model of thermal noise in the transducer. The signal-to-noise ratio on a per-proton basis was calculated, determining the minimum number of protons required to generate a detectable pulse. The maximum spatial resolution of the proton-acoustic imaging modality was also estimated from the signal spectrum. Results: The calculated noise in the transducer was 12–28 mPa, depending on the transducer central frequency (70–380 kHz). The minimum number of protons detectable by the technique was on the order of 3–30 × 106 per pulse, with 30–800 mGy dose per pulse at the Bragg peak. Wider pulses produced signal with lower acoustic frequencies, with 10 μs pulses producing signals with frequency less than 100 kHz. Conclusions: The proton-acoustic process was simulated using a realistic model and the minimal detection limit was established for proton-acoustic range validation. These limits correspond to a best case scenario with a single large detector with no losses and detector thermal noise as the sensitivity limiting factor. Our study indicated practical proton-acoustic range

  16. Detecting suspicious behaviour using speech: acoustic correlates of deceptive speech -- an exploratory investigation.

    PubMed

    Kirchhübel, Christin; Howard, David M

    2013-09-01

    The current work intended to enhance our knowledge of changes or lack of changes in the speech signal when people were being deceptive. In particular, the study attempted to investigate the appropriateness of using speech cues in detecting deception. Truthful, deceptive and control speech were elicited from ten speakers in an interview setting. The data were subjected to acoustic analysis and results are presented on a range of speech parameters including fundamental frequency (f0), overall amplitude and mean vowel formants F1, F2 and F3. A significant correlation could not be established between deceptiveness/truthfulness and any of the acoustic features examined. Directions for future work are highlighted.

  17. Theoretical detection threshold of the proton-acoustic range verification technique

    SciTech Connect

    Ahmad, Moiz; Yousefi, Siavash; Xing, Lei; Xiang, Liangzhong

    2015-10-15

    Purpose: Range verification in proton therapy using the proton-acoustic signal induced in the Bragg peak was investigated for typical clinical scenarios. The signal generation and detection processes were simulated in order to determine the signal-to-noise limits. Methods: An analytical model was used to calculate the dose distribution and local pressure rise (per proton) for beams of different energy (100 and 160 MeV) and spot widths (1, 5, and 10 mm) in a water phantom. In this method, the acoustic waves propagating from the Bragg peak were generated by the general 3D pressure wave equation implemented using a finite element method. Various beam pulse widths (0.1–10 μs) were simulated by convolving the acoustic waves with Gaussian kernels. A realistic PZT ultrasound transducer (5 cm diameter) was simulated with a Butterworth bandpass filter with consideration of random noise based on a model of thermal noise in the transducer. The signal-to-noise ratio on a per-proton basis was calculated, determining the minimum number of protons required to generate a detectable pulse. The maximum spatial resolution of the proton-acoustic imaging modality was also estimated from the signal spectrum. Results: The calculated noise in the transducer was 12–28 mPa, depending on the transducer central frequency (70–380 kHz). The minimum number of protons detectable by the technique was on the order of 3–30 × 10{sup 6} per pulse, with 30–800 mGy dose per pulse at the Bragg peak. Wider pulses produced signal with lower acoustic frequencies, with 10 μs pulses producing signals with frequency less than 100 kHz. Conclusions: The proton-acoustic process was simulated using a realistic model and the minimal detection limit was established for proton-acoustic range validation. These limits correspond to a best case scenario with a single large detector with no losses and detector thermal noise as the sensitivity limiting factor. Our study indicated practical proton-acoustic

  18. Direct detection of radical generation in rat liver nuclei on treatment with tumour-promoting hydroperoxides and related compounds.

    PubMed

    Greenley, T L; Davies, M J

    1994-04-12

    EPR spin trapping has been employed to directly detect radical production in isolated rat liver nuclei on exposure to a variety of hydroperoxides and related compounds which are known, or suspect, tumour promoters. The hydroperoxides, in the absence of reducing equivalents, undergo oxidative cleavage, generating peroxyl radicals. In the presence of NADPH (and to a lesser extent NADH) reductive cleavage of the O-O bond generates alkoxyl radicals. These radicals undergo subsequent rearrangements and reactions (dependent on the structure of the alkoxyl radical), generating carbon-centred radicals. Acyl peroxides and peracids appear to undergo only reductive cleavage of the O-O bond. With peracids this cleavage can generate aryl carboxyl (RCO2.) or hydroxyl radicals (HO.); with acyl peroxides, aryl carboxyl radicals are formed and, in the case of t-butyl peroxybenzoate, alkoxyl radicals (RO.). The radicals detected with each peroxide are similar in type to those detected in the rat liver microsomal fraction, although the extent of radical production is lower. The subsequent reactions of the initially generated radicals are similar to those determined in homogeneous chemical systems, suggesting that they are in free solution. Experiments with NADPH/NADH, heat denaturation of the nuclei and various inhibitors suggest that radical generation is an enzymatic process catalysed by haemoproteins, in particular cytochrome P-450, and that NADPH/cytochrome P-450 reductase is involved in the reductive cleavage of the O-O bond. The generation of these radicals by the rat liver nuclear fraction is potentially highly damaging for the cell due to the proximity of the generating source to DNA. Several previous studies have shown that some of the radicals detected in this study, such as aryl carboxyl and aryl radicals, can damage DNA, via various reactions which result in the generation of strand breaks and adducts to DNA bases: these processes are suggested to play an important role

  19. Passive acoustic monitoring to detect spawning in large-bodied catostomids

    USGS Publications Warehouse

    Straight, Carrie A.; Freeman, Byron J.; Freeman, Mary C.

    2014-01-01

    Documenting timing, locations, and intensity of spawning can provide valuable information for conservation and management of imperiled fishes. However, deep, turbid or turbulent water, or occurrence of spawning at night, can severely limit direct observations. We have developed and tested the use of passive acoustics to detect distinctive acoustic signatures associated with spawning events of two large-bodied catostomid species (River Redhorse Moxostoma carinatum and Robust Redhorse Moxostoma robustum) in river systems in north Georgia. We deployed a hydrophone with a recording unit at four different locations on four different dates when we could both record and observe spawning activity. Recordings captured 494 spawning events that we acoustically characterized using dominant frequency, 95% frequency, relative power, and duration. We similarly characterized 46 randomly selected ambient river noises. Dominant frequency did not differ between redhorse species and ranged from 172.3 to 14,987.1 Hz. Duration of spawning events ranged from 0.65 to 11.07 s, River Redhorse having longer durations than Robust Redhorse. Observed spawning events had significantly higher dominant and 95% frequencies than ambient river noises. We additionally tested software designed to automate acoustic detection. The automated detection configurations correctly identified 80–82% of known spawning events, and falsely indentified spawns 6–7% of the time when none occurred. These rates were combined over all recordings; rates were more variable among individual recordings. Longer spawning events were more likely to be detected. Combined with sufficient visual observations to ascertain species identities and to estimate detection error rates, passive acoustic recording provides a useful tool to study spawning frequency of large-bodied fishes that displace gravel during egg deposition, including several species of imperiled catostomids.

  20. Standing tree decay detection by using acoustic tomography images

    NASA Astrophysics Data System (ADS)

    Espinosa, Luis F.; Arciniegas, Andres F.; Prieto, Flavio A.; Cortes, Yolima; Brancheriau, Loïc.

    2015-04-01

    The acoustic tomographic technique is used in the diagnosis process of standing trees. This paper presents a segmentation methodology to separate defective regions in cross-section tomographic images obtained with Arbotom® device. A set of experiments was proposed using two trunk samples obtained from a eucalyptus tree, simulating defects by drilling holes with known geometry, size and position and using different number of sensors. Also, tomographic images from trees presenting real defects were studied, by testing two different species with significant internal decay. Tomographic images and photographs from the trunk cross-section were processed to align the propagation velocity data with a corresponding region, healthy or defective. The segmentation was performed by finding a velocity threshold value to separate the defective region; a logistic regression model was fitted to obtain the value that maximizes a performance criterion, being selected the geometric mean. Accuracy segmentation values increased as the number of sensors augmented; also the position influenced the result, obtaining improved results in the case of centric defects.

  1. Jones matrix formalism for the theory of picosecond shear acoustic pulse detection.

    PubMed

    Mounier, Denis; Picart, Pascal; Babilotte, Philippe; Ruello, Pascal; Breteau, Jean-Marc; Pézeril, Thomas; Vaudel, Gwenaëlle; Kouyaté, Mansour; Gusev, Vitalyi

    2010-03-29

    A theoretical analysis of the transient optical reflectivity of a sample by a normalized Jones matrix is presented. The off-diagonal components of the normalized matrix are identified with the complex rotation of the polarization ellipse. Transient optical polarimetry is a relevant technique to detect shear acoustic strain pulses propagating normally to the surface of an optically isotropic sample. Moreover, polarimetry has a selective sensitivity to shear waves, as this technique cannot detect longitudinal waves that propagate normally to the sample surface.

  2. Crack detection on wind turbine blades in an operating environment using vibro-acoustic modulation technique

    NASA Astrophysics Data System (ADS)

    Kim, S.; Adams, D. E.; Sohn, H.

    2013-01-01

    As the wind power industry has grown rapidly in the recent decade, maintenance costs have become a significant concern. Due to the high repair costs for wind turbine blades, it is especially important to detect initial blade defects before they become structural failures leading to other potential failures in the tower or nacelle. This research presents a method of detecting cracks on wind turbine blades using the Vibo-Acoustic Modulation technique. Using Vibro-Acoustic Modulation, a crack detection test is conducted on a WHISPER 100 wind turbine in its operating environment. Wind turbines provide the ideal conditions in which to utilize Vibro-Acoustic Modulation because wind turbines experience large structural vibrations. The structural vibration of the wind turbine balde was used as a pumping signal and a PZT was used to generate the probing signal. Because the non-linear portion of the dynamic response is more sensitive to the presence of a crack than the environmental conditions or operating loads, the Vibro-Acoustic Modulation technique can provide a robust structural health monitoring approach for wind turbines. Structural health monitoring can significantly reduce maintenance costs when paired with predictive modeling to minimize unscheduled maintenance.

  3. Detection of significant variation in acoustic output of an electromagnetic lithotriptor.

    PubMed

    Pishchalnikov, Yuri A; McAteer, James A; Vonderhaar, R Jason; Pishchalnikova, Irina V; Williams, James C; Evan, Andrew P

    2006-11-01

    We describe the observation of significant instability in the output of an electromagnetic lithotriptor. This instability had a form that was not detected by routine assessment, but rather was observed only by collecting many consecutive shock waves in nonstop regimen. A Dornier DoLi-50 lithotriptor used exclusively for basic research was tested and approved by the regional technician. This assessment included hydrophone measures at select power levels with the collection of about 25 shock waves per setting. Subsequent laboratory characterization used a fiberoptic hydrophone and storage oscilloscope for data acquisition. Waveforms were collected nonstop for hundreds of pulses. Output was typically stable for greater than 1,000 shock waves but substantial fluctuations in acoustic pressures were also observed. For example, output at power level 3 (mean peak positive acoustic pressure +/- SD normally 44 +/- 2 MPa) increased dramatically to greater than 50 MPa or decreased significantly to approximately 30 MPa for hundreds of shock waves. The cause of instability was eventually traced to a faulty lithotriptor power supply. Instability in lithotriptor acoustic output can occur and it may not be detected by routine assessment. Collecting waveforms in a nonstop regimen dramatically increases sampling size, improving the detection of instability. Had the instability that we observed occurred during patient treatment, the energy delivered may well have exceeded the planned dose. Since the potential for adverse effects in lithotripsy increases as the dose is increased, it would be valuable to develop ways to better monitor the acoustic output of lithotriptors.

  4. A numerical study of defect detection in a plaster dome ceiling using structural acoustics.

    PubMed

    Bucaro, J A; Romano, A J; Valdivia, N; Houston, B H; Dey, S

    2009-07-01

    A numerical study is carried out to evaluate the effectiveness of using measured surface displacements resulting from acoustic speaker excitation to detect and localize flaws in a domed, plaster ceiling. The response of the structure to an incident acoustic pressure is obtained at four frequencies between 100 and 400 Hz using a parallel h-p structural acoustic finite element-based code. Three ceiling conditions are modeled: the pristine ceiling considered rigidly attached to the domed-shape support, partial detachment of a segment of the plaster layer from the support, and an interior pocket of plaster deconsolidation modeled as a heavy fluid. Spatial maps of the normal displacement resulting from speaker excitation are interpreted with the help of predictions based on static analysis. It is found that acoustic speaker excitation can provide displacement levels readily detected by commercially available laser Doppler vibrometer systems. Further, it is concluded that for 1 in. thick plaster layers, detachment sizes as small as 4 cm are detectable by direct observation of the measured displacement maps. Finally, spatial structure differences are observed in the displacement maps beneath the two defect types, which may provide a wavenumber-based feature useful for distinguishing plaster detachment from other defects such as deconsolidation.

  5. A potential means of using acoustic emission for crack detection under cyclic-load conditions

    NASA Technical Reports Server (NTRS)

    Vary, A.; Klima, S. J.

    1973-01-01

    A preliminary investigation was conducted to assess the feasibility of monitoring acoustic emission signals from fatigue cracks during cyclic bend tests. Plate specimens of 6A1-4V titanium, 2219-T87 aluminum, and 18-Ni maraging steel were tested with and without crack starter notches. It was found that significant acoustic emission signals could be detected in the frequency range from 100 kHz to 400 kHz. Cracks emanating from starter notches were monitored by the ultrasonic pulse-echo technique and periodically measured by micro-optical examination. Methods used to reduce the effects of extraneous noises (i.e., machine noises, fretting) are described. A frequency spectrum analyzer was used to characterize the emissions and to evaluate methods used to acquire the signals (i.e., transducer location, bandwidth selection). The investigation indicated that it was possible to extract meaningful acoustic emission signals in a cyclic bend machine environment.

  6. Method and apparatus for detecting internal structures of bulk objects using acoustic imaging

    DOEpatents

    Deason, Vance A.; Telschow, Kenneth L.

    2002-01-01

    Apparatus for producing an acoustic image of an object according to the present invention may comprise an excitation source for vibrating the object to produce at least one acoustic wave therein. The acoustic wave results in the formation of at least one surface displacement on the surface of the object. A light source produces an optical object wavefront and an optical reference wavefront and directs the optical object wavefront toward the surface of the object to produce a modulated optical object wavefront. A modulator operatively associated with the optical reference wavefront modulates the optical reference wavefront in synchronization with the acoustic wave to produce a modulated optical reference wavefront. A sensing medium positioned to receive the modulated optical object wavefront and the modulated optical reference wavefront combines the modulated optical object and reference wavefronts to produce an image related to the surface displacement on the surface of the object. A detector detects the image related to the surface displacement produced by the sensing medium. A processing system operatively associated with the detector constructs an acoustic image of interior features of the object based on the phase and amplitude of the surface displacement on the surface of the object.

  7. Waveform Based Acoustic Emission Detection and Location of Matrix Cracking in Composites

    NASA Technical Reports Server (NTRS)

    Prosser, W. H.

    1995-01-01

    The operation of damage mechanisms in a material or structure under load produces transient acoustic waves. These acoustic waves are known as acoustic emission (AE). In composites they can be caused by a variety of sources including matrix cracking, fiber breakage, and delamination. AE signals can be detected and analyzed to determine the location of the acoustic source by triangulation. Attempts are also made to analyze the signals to determine the type and severity of the damage mechanism. AE monitoring has been widely used for both laboratory studies of materials, and for testing the integrity of structures in the field. In this work, an advanced, waveform based AE system was used in a study of transverse matrix cracking in cross-ply graphite/epoxy laminates. This AE system featured broad band, high fidelity sensors, and high capture rate digital acquisition and storage of acoustic signals. In addition, analysis techniques based on plate wave propagation models were employed. These features provided superior source location and noise rejection capabilities.

  8. Tumour xenograft detection through quantitative analysis of the metabolic profile of urine in mice

    NASA Astrophysics Data System (ADS)

    Moroz, Jennifer; Turner, Joan; Slupsky, Carolyn; Fallone, Gino; Syme, Alasdair

    2011-02-01

    The metabolic content of urine from NIH III nude mice (n = 22) was analysed before and after inoculation with human glioblastoma multiforme (GBM) cancer cells. An age- and gender-matched control population (n = 14) was also studied to identify non-tumour-related changes. Urine samples were collected daily for 6 weeks, beginning 1 week before cell injection. Metabolite concentrations were obtained via targeted profiling with Chenomx Suite 5.1, based on nuclear magnetic resonance (NMR) spectra acquired on an Oxford 800 MHz cold probe NMR spectrometer. The Wilcoxon rank sum test was used to evaluate the significance of the change in metabolite concentration between the two time points. Both the metabolite concentrations and the ratios of pairs of metabolites were studied. The complicated inter-relationships between metabolites were assessed through partial least-squares discriminant analysis (PLS-DA). Receiver operating characteristic (ROC) curves were generated for all variables and the area under the curve (AUC) calculated. The data indicate that the number of statistically significant changes in metabolite concentrations was more pronounced in the tumour-bearing population than in the control animals. This was also true of the ratios of pairs of metabolites. ROC analysis suggests that the ratios were better able to differentiate between the pre- and post-injection samples compared to the metabolite concentrations. PLS-DA models produced good separation between the populations and had the best AUC results (all models exceeded 0.937). These results demonstrate that metabolomics may be used as a screening tool for GBM cells grown in xenograft models in mice.

  9. Dual Frequency Acoustic Droplet Vaporization Detection for Medical Imaging

    PubMed Central

    Arena, Christopher B.; Novell, Anthony; Sheeran, Paul S.; Puett, Connor; Moyer, Linsey C.; Dayton, Paul A.

    2017-01-01

    Liquid-filled perfluorocarbon droplets emit a unique acoustic signature when vaporized into to gas-filled microbubbles using ultrasound. Here, we conducted a pilot study in a tissue-mimicking flow phantom to explore the spatial aspects of droplet vaporization and investigate the effects of applied pressure and droplet concentration on image contrast and axial and lateral resolution. Control microbubble contrast agents were used for comparison. A confocal dual-frequency transducer was used to transmit at 8 MHz and passively receive at 1 MHz. Droplet signals were of significantly higher energy than microbubble signals. This resulted in improved signal separation and high contrast-to-tissue ratios (CTR). Specifically, with a peak negative pressure (PNP) of 450 kPa applied at the focus, the CTR of B-mode images was 18.3 dB for droplets and −0.4 for microbubbles. The lateral resolution was dictated by the size of the droplet activation area, with lower pressures resulting in smaller activation areas and improved lateral resolution (0.67 mm at 450 kPa). The axial resolution in droplet images was dictated by the size of the initial droplet and independent of the properties of the transmit pulse (3.86 mm at 450 kPa). In post-processing, time-domain averaging (TDA) improved droplet and microbubble signal separation at high pressures (640 kPa and 700 kPa). Taken together, these results indicate that it is possible to generate high-sensitivity, high-contrast images of vaporization events. In the future, this has the potential to be applied in combination with droplet-mediated therapy to track treatment outcomes or as a stand-alone diagnostic system to monitor the physical properties of the surrounding environment. PMID:26415125

  10. Feasibility study of detection of dielectric breakdown of gate oxide film by using acoustic emission method

    NASA Astrophysics Data System (ADS)

    Kasashima, Yuji; Tabaru, Tatsuo; Uesugi, Fumihiko

    2016-12-01

    An in situ detection method for the dielectric breakdown of oxide films for MOS gates has been required in the plasma etching process. In this feasibility study, a conventional MOSFET device is used and an acoustic emission (AE) method is employed for the detection of the dielectric breakdown of a gate oxide film. A thin type AE sensor is attached at the backside of an electrostatic chuck (ESC), and the dielectric breakdown in a MOSFET, which is set on the ESC, is detected. The results demonstrate that the thin type AE sensor can detect the dielectric breakdown with an energy on the order of µJ.

  11. Comparison of the RNA-amplification based methods RT–PCR and NASBA for the detection of circulating tumour cells

    PubMed Central

    Burchill, S A; Perebolte, L; Johnston, C; Top, B; Selby, P

    2002-01-01

    Increasingly, reverse transcriptase polymerase chain reaction (RT–PCR) is used to detect clinically significant tumour cells in blood or bone marrow. This may result in a redefinition of disease-free and clinical relapse. However, its clinical utility may be limited by lack of automation or reproducibility. Recent studies have suggested nucleic acid sequence-based amplification of target RNA may be more robust. In this study, nucleic acid sequence-based amplification was established to detect melanoma, colorectal and prostate cancer cells. Nucleic acid sequence-based amplification and RT–PCR both successfully amplified target RNA in peripheral blood samples from patients with melanoma and colorectal cancer, but only RT–PCR detected PSA in blood samples from patients with prostate cancer. There was relatively good agreement between sample replicates analyzed by RT–PCR (Kappa values of one for tyrosinase, 0.67 for CK-20 and one for PSA), but less agreement when analyzed by nucleic acid sequence-based amplification. This may limit the routine use of NASBA for the detection of clinically significant disease. In summary, RT–PCR appears at present to be the most reliable and reproducible method for the detection of low-level disease in cancer patients, although prospective studies are warranted to assess the clinical utility of different molecular diagnostic methods. British Journal of Cancer (2002) 86, 102–109. DOI: 10.1038/sj/bjc/6600014 www.bjcancer.com © 2002 The Cancer Research Campaign PMID:11857020

  12. Research on power-law acoustic transient signal detection based on wavelet transform

    NASA Astrophysics Data System (ADS)

    Han, Jian-hui; Yang, Ri-jie; Wang, Wei

    2007-11-01

    Aiming at the characteristics of acoustic transient signal emitted from antisubmarine weapon which is being dropped into water (torpedo, aerial sonobuoy and rocket assisted depth charge etc.), such as short duration, low SNR, abruptness and instability, based on traditional power-law detector, a new method to detect acoustic transient signal is proposed. Firstly wavelet transform is used to de-noise signal, removes random spectrum components and improves SNR. Then Power- Law detector is adopted to detect transient signal. The simulation results show the method can effectively extract envelop characteristic of transient signal on the condition of low SNR. The performance of WT-Power-Law markedly outgoes that of traditional Power-Law detection method.

  13. Acoustic emission detection of microcrack formation and development in cementitious wasteforms with immobilised Al.

    PubMed

    Spasova, L M; Ojovan, M I

    2006-12-01

    An acoustic emission (AE) technique was applied for early detection, characterisation and time progress description of cracking phenomenon caused by the corrosion of Al encapsulated in cement matrix. The study was conducted on an ordinary Portland cement (OPC) system encapsulating high purity Al bar. Acoustic signals were generated and released during immersing of the sample in deionised water. A computer controlled PCI-2 based AE system processed the signals detected by piezoelectric transducers. A subsequent comparative study of the AE data collected with those obtained from a reference OPC sample has been applied. Recorded AE activity confirmed that the process of initiation and development of Al corrosion causes significant mechanical stresses within the cement matrix. Our analysis demonstrated possibility to differentiate AE signals based on their characteristics, and potentially correlate detected AE with the fracture processes in the cement system encapsulating Al.

  14. Background noise cancellation for improved acoustic detection of manatee vocalizations

    NASA Astrophysics Data System (ADS)

    Yan, Zheng; Niezrecki, Christopher; Beusse, Diedrich O.

    2005-06-01

    The West Indian manatee (Trichechus manatus latirostris) has become endangered partly because of an increase in the number of collisions with boats. A device to alert boaters of the presence of manatees, so that a collision can be avoided, is desired. A practical implementation of the technology is dependent on the hydrophone spacing and range of detection. These parameters are primarily dependent on the manatee vocalization strength, the decay of the signal's strength with distance, and the background noise levels. An efficient method to extend the detection range by using background noise cancellation is proposed in this paper. An adaptive line enhancer (ALE) that can detect and track narrow band signals buried in broadband noise is implemented to cancel the background noise. The results indicate that the ALE algorithm can efficiently extract the manatee calls from the background noise. The improved signal-to-noise ratio of the signal can be used to extend the range of detection of manatee vocalizations and reduce the false alarm and missing detection rate in their natural habitat. .

  15. Background noise cancellation for improved acoustic detection of manatee vocalizations

    NASA Astrophysics Data System (ADS)

    Yan, Zheng; Niezrecki, Christopher; Beusse, Diedrich O.

    2005-04-01

    The West Indian manatee (Trichechus manatus latirostris) has become endangered partly because of an increase in the number of collisions with boats. A device to alert boaters of the presence of manatees, so that a collision can be avoided, is desired. Practical implementation of the technology is dependent on the hydrophone spacing and range of detection. These parameters are primarily dependent on the manatee vocalization strength, the decay of the signal strength with distance, and the background noise levels. An efficient method to extend the detection range by using background noise cancellation is proposed in this paper. An adaptive line enhancer (ALE) that can detect and track narrowband signals buried in broadband noise is implemented to cancel the background noise. The results indicate that the ALE algorithm can efficiently extract the manatee calls from the background noise. The improved signal-to-noise ratio of the signal can be used to extend the range of detection of manatee vocalizations and reduce the false alarm and missing detection rate in their natural habitat.

  16. Low Frequency Acoustic Detection Research in Support of Human Detection Range Prediction

    DTIC Science & Technology

    1979-10-01

    Perception of Objects at a Distance by Extraordinary Means .............................. 37 EFFECTIVE MASKING BANDWIDTH STUDY ........................ 41...AUDITORY SPECTRAL FILTERING AND MONAURAL PHASE PERCEPTION , Journal of the Acoustical Society of America 41, 458-479, 1967. 23 saw v -- - 2.3M and A%, si... PERCEPTION , Journal of the Acoustical Society of America 19, 780-797, 1947. 24 Scharf, B., CRITICAL BANDS AND THE LOUDNESS OF COMPLEX SOUNDS NEAR

  17. Leak detection in gas pipeline by acoustic and signal processing - A review

    NASA Astrophysics Data System (ADS)

    Adnan, N. F.; Ghazali, M. F.; Amin, M. M.; Hamat, A. M. A.

    2015-12-01

    The pipeline system is the most important part in media transport in order to deliver fluid to another station. The weak maintenance and poor safety will contribute to financial losses in term of fluid waste and environmental impacts. There are many classifications of techniques to make it easier to show their specific method and application. This paper's discussion about gas leak detection in pipeline system using acoustic method will be presented in this paper. The wave propagation in the pipeline is a key parameter in acoustic method when the leak occurs and the pressure balance of the pipe will generated by the friction between wall in the pipe. The signal processing is used to decompose the raw signal and show in time- frequency. Findings based on the acoustic method can be used for comparative study in the future. Acoustic signal and HHT is the best method to detect leak in gas pipelines. More experiments and simulation need to be carried out to get the fast result of leaking and estimation of their location.

  18. Surface Generated Acoustic Wave Biosensors for the Detection of Pathogens: A Review

    PubMed Central

    Rocha-Gaso, María-Isabel; March-Iborra, Carmen; Montoya-Baides, Ángel; Arnau-Vives, Antonio

    2009-01-01

    This review presents a deep insight into the Surface Generated Acoustic Wave (SGAW) technology for biosensing applications, based on more than 40 years of technological and scientific developments. In the last 20 years, SGAWs have been attracting the attention of the biochemical scientific community, due to the fact that some of these devices - Shear Horizontal Surface Acoustic Wave (SH-SAW), Surface Transverse Wave (STW), Love Wave (LW), Flexural Plate Wave (FPW), Shear Horizontal Acoustic Plate Mode (SH-APM) and Layered Guided Acoustic Plate Mode (LG-APM) - have demonstrated a high sensitivity in the detection of biorelevant molecules in liquid media. In addition, complementary efforts to improve the sensing films have been done during these years. All these developments have been made with the aim of achieving, in a future, a highly sensitive, low cost, small size, multi-channel, portable, reliable and commercially established SGAW biosensor. A setup with these features could significantly contribute to future developments in the health, food and environmental industries. The second purpose of this work is to describe the state-of-the-art of SGAW biosensors for the detection of pathogens, being this topic an issue of extremely importance for the human health. Finally, the review discuses the commercial availability, trends and future challenges of the SGAW biosensors for such applications. PMID:22346725

  19. High-Throughput Amplicon-Based Copy Number Detection of 11 Genes in Formalin-Fixed Paraffin-Embedded Ovarian Tumour Samples by MLPA-Seq.

    PubMed

    Kondrashova, Olga; Love, Clare J; Lunke, Sebastian; Hsu, Arthur L; Waring, Paul M; Taylor, Graham R

    2015-01-01

    Whilst next generation sequencing can report point mutations in fixed tissue tumour samples reliably, the accurate determination of copy number is more challenging. The conventional Multiplex Ligation-dependent Probe Amplification (MLPA) assay is an effective tool for measurement of gene dosage, but is restricted to around 50 targets due to size resolution of the MLPA probes. By switching from a size-resolved format, to a sequence-resolved format we developed a scalable, high-throughput, quantitative assay. MLPA-seq is capable of detecting deletions, duplications, and amplifications in as little as 5ng of genomic DNA, including from formalin-fixed paraffin-embedded (FFPE) tumour samples. We show that this method can detect BRCA1, BRCA2, ERBB2 and CCNE1 copy number changes in DNA extracted from snap-frozen and FFPE tumour tissue, with 100% sensitivity and >99.5% specificity.

  20. High-Throughput Amplicon-Based Copy Number Detection of 11 Genes in Formalin-Fixed Paraffin-Embedded Ovarian Tumour Samples by MLPA-Seq

    PubMed Central

    Kondrashova, Olga; Love, Clare J.; Lunke, Sebastian; Hsu, Arthur L.; Waring, Paul M.; Taylor, Graham R.

    2015-01-01

    Whilst next generation sequencing can report point mutations in fixed tissue tumour samples reliably, the accurate determination of copy number is more challenging. The conventional Multiplex Ligation-dependent Probe Amplification (MLPA) assay is an effective tool for measurement of gene dosage, but is restricted to around 50 targets due to size resolution of the MLPA probes. By switching from a size-resolved format, to a sequence-resolved format we developed a scalable, high-throughput, quantitative assay. MLPA-seq is capable of detecting deletions, duplications, and amplifications in as little as 5ng of genomic DNA, including from formalin-fixed paraffin-embedded (FFPE) tumour samples. We show that this method can detect BRCA1, BRCA2, ERBB2 and CCNE1 copy number changes in DNA extracted from snap-frozen and FFPE tumour tissue, with 100% sensitivity and >99.5% specificity. PMID:26569395

  1. Utility of acoustical detection of Coptotermes Formosanus (Isoptera: Rhinotermitidae)

    USDA-ARS?s Scientific Manuscript database

    The AED 2000 and 2010 are extremely sensitive listening devices which can effectively detect and monitor termite activity through a wave guide (e.g. bolt) both qualitatively and quantitatively. Experiments conducted with one to ten thousand termites from differing colonies infesting wood in buckets...

  2. Can acoustic emission detect the initiation of fatigue cracks: Application to high-strength light alloys used in aeronautics

    NASA Technical Reports Server (NTRS)

    Bathias, C.; Brinet, B.; Sertour, G.

    1978-01-01

    Acoustic emission was used for the detection of fatigue cracking in a number of high-strength light alloys used in aeronautical structures. Among the features studied were: the influence of emission frequency, the effect of surface oxidation, and the influence of grains. It was concluded that acoustic emission is an effective nondestructive technique for evaluating the initiation of fatigue cracking in such materials.

  3. Circulating tumour cells detected by a novel adenovirus-mediated system may be a potent therapeutic marker in gynaecological cancers

    PubMed Central

    Takakura, M; Kyo, S; Nakamura, M; Maida, Y; Mizumoto, Y; Bono, Y; Zhang, X; Hashimoto, Y; Urata, Y; Fujiwara, T; Inoue, M

    2012-01-01

    Background: Recently developed detection system for circulating tumour cells (CTCs) using a telomerase-specific replicative adenovirus generated nonspecific green fluorescent protein (GFP) signals because of the co-presence of white blood cells (WBCs) nonspecifically infected by viruses. Here, we established a unique detection system for CTCs that completely excludes nonspecific signals. Methods: Blood obtained from the patients was subjected to haemolytic processes to eliminate red blood cells. The cell pellets were then infected with OBP-401, fixed, incubated with fluorescence-labelled anti-CD45 antibody to mark white blood WBCs, and examined on slides under a microscope. Results: Preparatory experiments with cancer cells artificially added to healthy donor samples confirmed that CD45 labelling could distinguish GFP-positive cancer cells from WBCs. In 53 patients with gynaecological cancers, CTCs were detected in 21 patients (39.6%) when CD45-positive cells were excluded as WBCs among GFP-positive cells. No CTCs were detected in samples from healthy volunteers. There was no significant correlation between CTC counts and known clinicopathological factors. The CTCs rapidly vanished after surgery or chemotherapy in most patients whose treatments were effective. In contrast, the persistence of CTCs even after treatments was tightly associated with poor response to the treatments (P<0.005). Conclusion: The presence of CTCs in our system may potentially be a novel therapeutic marker in gynaecological cancers. PMID:22735905

  4. Automatic Detection of Beaked Whales from Acoustic Seagliders

    DTIC Science & Technology

    2009-09-30

    whale (Ziphius cavirostris) echolocation clicks have a spectral rise between approximately 25 and 35 kHz (Zimmer et al., 2005). The ratio between the...configure a classifier which will distinguish beaked whale echolocation clicks from those produced by dolphins. This classification problem is...then as generic C code for bench testing, then as C code for the operating environment of the ASG. It was configured for the detection of killer whales

  5. Real-time reporting of baleen whale passive acoustic detections from ocean gliders.

    PubMed

    Baumgartner, Mark F; Fratantoni, David M; Hurst, Thomas P; Brown, Moira W; Cole, Tim V N; Van Parijs, Sofie M; Johnson, Mark

    2013-09-01

    In the past decade, much progress has been made in real-time passive acoustic monitoring of marine mammal occurrence and distribution from autonomous platforms (e.g., gliders, floats, buoys), but current systems focus primarily on a single call type produced by a single species, often from a single location. A hardware and software system was developed to detect, classify, and report 14 call types produced by 4 species of baleen whales in real time from ocean gliders. During a 3-week deployment in the central Gulf of Maine in late November and early December 2012, two gliders reported over 25,000 acoustic detections attributed to fin, humpback, sei, and right whales. The overall false detection rate for individual calls was 14%, and for right, humpback, and fin whales, false predictions of occurrence during 15-min reporting periods were 5% or less. Transmitted pitch tracks--compact representations of sounds--allowed unambiguous identification of both humpback and fin whale song. Of the ten cases when whales were sighted during aerial or shipboard surveys and a glider was within 20 km of the sighting location, nine were accompanied by real-time acoustic detections of the same species by the glider within ±12 h of the sighting time.

  6. Trackline and point detection probabilities for acoustic surveys of Cuvier's and Blainville's beaked whales.

    PubMed

    Barlow, Jay; Tyack, Peter L; Johnson, Mark P; Baird, Robin W; Schorr, Gregory S; Andrews, Russel D; Aguilar de Soto, Natacha

    2013-09-01

    Acoustic survey methods can be used to estimate density and abundance using sounds produced by cetaceans and detected using hydrophones if the probability of detection can be estimated. For passive acoustic surveys, probability of detection at zero horizontal distance from a sensor, commonly called g(0), depends on the temporal patterns of vocalizations. Methods to estimate g(0) are developed based on the assumption that a beaked whale will be detected if it is producing regular echolocation clicks directly under or above a hydrophone. Data from acoustic recording tags placed on two species of beaked whales (Cuvier's beaked whale-Ziphius cavirostris and Blainville's beaked whale-Mesoplodon densirostris) are used to directly estimate the percentage of time they produce echolocation clicks. A model of vocal behavior for these species as a function of their diving behavior is applied to other types of dive data (from time-depth recorders and time-depth-transmitting satellite tags) to indirectly determine g(0) in other locations for low ambient noise conditions. Estimates of g(0) for a single instant in time are 0.28 [standard deviation (s.d.) = 0.05] for Cuvier's beaked whale and 0.19 (s.d. = 0.01) for Blainville's beaked whale.

  7. A thin film electro-acoustic enzyme biosensor allowing the detection of trace organophosphorus pesticides.

    PubMed

    Chen, Da; Wang, Jingjing; Xu, Yan; Zhang, Luyin

    2012-10-01

    We report an analytical method using a thin film electro-acoustic resonator for the detection of organophosphorus pesticides. The acetylcholinesterase (AChE) enzyme was immobilized on the surface of the resonator. In the presence of organophosphorus compounds, the degree of inhibitory effect of organophosphorus compounds on the AChE activity and the concentration of pesticides were detected in real time by measuring the frequency shift of the resonator. The proposed device has a remarkably low detection limit of 1.8×10(-11)M and obvious advantages such as small size, simple operation, and integrated circuit compatibility, providing a promising tool for pesticide analysis.

  8. Reliability of scanning laser acoustic microscopy for detecting internal voids in structural ceramics

    NASA Technical Reports Server (NTRS)

    Roth, D. J.; Baaklini, G. Y.

    1986-01-01

    The reliability of 100 MHz scanning laser acoustic microscopy (SLAM) for detecting internal voids in sintered specimens of silicon nitride and silicon carbide was evaluated. The specimens contained artificially implanted voids and were positioned at depths ranging up to 2 mm below the specimen surface. Detection probability of 0.90 at a 0.95 confidence level was determined as a function of material, void diameter, and void depth. The statistical results presented for void detectability indicate some of the strengths and limitations of SLAM as a nondestructive evaluation technique for structural ceramics.

  9. Acoustic Detection Of Loose Particles In Pressure Sensors

    NASA Technical Reports Server (NTRS)

    Kwok, Lloyd C.

    1995-01-01

    Particle-impact-noise-detector (PIND) apparatus used in conjunction with computer program analyzing output of apparatus to detect extraneous particles trapped in pressure sensors. PIND tester essentially shaker equipped with microphone measuring noise in pressure sensor or other object being shaken. Shaker applies controlled vibration. Output of microphone recorded and expressed in terms of voltage, yielding history of noise subsequently processed by computer program. Data taken at sampling rate sufficiently high to enable identification of all impacts of particles on sensor diaphragm and on inner surfaces of sensor cavities.

  10. Use of an acoustic wave device to detect target analytes during chromatographic separations

    SciTech Connect

    Tom-Moy, M.; Doherty, T.P.; Baer, R.L.

    1995-12-01

    Hewlett-Packard Laboratories has developed a proprietary acoustic wave device which permits the detection of specific analyte in a flowing system. By coupling specific chemistry to the surface of the device, the mass loading of the target analyte is detected as a shift in phase is measured in real time. In process monitoring, the analyte of interest is isolated by passing the sample through a series of chromatographic columns. Conventional HPLC systems monitor the protein peaks using UV-VIS. The peaks are collected and biochemical assays are performed to determine the specific peak of interest. We have configured our acoustic sensors to make specific chemical measurements without the use of labeled reagents or enzymes to generate a real time signal of specific analyte as it elutes from the column. The output signal can be integrated over time to yield a concentration. Such a detector has the potential to increase productivity in process chromatography in biopharmaceutical applications.

  11. New acoustic techniques for leak detection in fossil fuel plant components

    NASA Astrophysics Data System (ADS)

    Parini, G.; Possa, G.

    Two on-line acoustic monitoring techniques for leak detection in feedwater preheaters and boilers of fossil fuel power plants are presented. The leak detection is based on the acoustic noise produced by the turbulent leak outflow. The primary sensors are piezoelectric pressure transducers, installed near the feedwater preheater inlets, in direct contact with the water, or mounted on boiler observation windows. The frequency band of the auscultation ranges from a few kHz, to 10 to 15 kHz. The signals are characterized by their rms value, continuously recorded by means of potentiometric strip chart recorders. The leak occurrence is signalled by the signal rms overcoming predetermined threshold levels. Sensitivity, reliability, acceptance in plant control practice, and costs-benefits balance are satisfactory.

  12. Acoustic detection and localization from a tethered aerostat during the NATO TG-53 test

    NASA Astrophysics Data System (ADS)

    Reiff, C.; Scanlon, M.; Noble, J.

    2006-05-01

    Acoustic sensors mounted to a tethered aerostat detect and localize transient signals from mortars, artillery, C-4, propane cannon, and small arms fire. Significant enhancements to soldier lethality and survivability can be gained when using the aerostat array to detect, localize, and cue an aerial imager to a weapon's launch site, or use the aerostat's instantaneous position and orientation to calculate a vector solution to the ground coordinates of the launch site for threat neutralization. The prototype aerostat-mounted array was tested at Yuma Proving Grounds (YPG) as part of the NATO TG-53 signature collection exercise. Acoustic wave form data was collected simultaneously with aerostat and ground-based sensor arrays for comparing wind noise, signal to noise related parameters, and atmospheric effects on propagation to an elevated array. A test description and summary of localization accuracy will be presented for various altitudes, ranges to target, and under differing meteorological conditions.

  13. Probability of acoustic transmitter detections by receiver lines in Lake Huron: results of multi-year field tests and simulations

    USGS Publications Warehouse

    Hayden, Todd A.; Holbrook, Christopher M.; Binder, Thomas; Dettmers, John M.; Cooke, Steven J.; Vandergoot, Christopher S.; Krueger, Charles C.

    2016-01-01

    BackgroundAdvances in acoustic telemetry technology have led to an improved understanding of the spatial ecology of many freshwater and marine fish species. Understanding the performance of acoustic receivers is necessary to distinguish between tagged fish that may have been present but not detected and from those fish that were absent from the area. In this study, two stationary acoustic transmitters were deployed 250 m apart within each of four acoustic receiver lines each containing at least 10 receivers (i.e., eight acoustic transmitters) located in Saginaw Bay and central Lake Huron for nearly 2 years to determine whether the probability of detecting an acoustic transmission varied as a function of time (i.e., season), location, and distance between acoustic transmitter and receiver. Distances between acoustic transmitters and receivers ranged from 200 m to >10 km in each line. The daily observed probability of detecting an acoustic transmission was used in simulation models to estimate the probability of detecting a moving acoustic transmitter on a line of receivers.ResultsThe probability of detecting an acoustic transmitter on a receiver 1000 m away differed by month for different receiver lines in Lake Huron and Saginaw Bay but was similar for paired acoustic transmitters deployed 250 m apart within the same line. Mean probability of detecting an acoustic transmitter at 1000 m calculated over the study period varied among acoustic transmitters 250 m apart within a line and differed among receiver lines in Lake Huron and Saginaw Bay. The simulated probability of detecting a moving acoustic transmitter on a receiver line was characterized by short periods of time with decreased detection. Although increased receiver spacing and higher fish movement rates decreased simulated detection probability, the location of the simulated receiver line in Lake Huron had the strongest effect on simulated detection probability.ConclusionsPerformance of receiver

  14. Detection and localization of multiple wideband intermittent acoustic sources

    NASA Astrophysics Data System (ADS)

    Hudson, R. E.; Yao, K.; Hedley, R.; Taylor, C. E.

    2017-05-01

    We have been interested in the analytical and experimental study of real-life bird song sources for several years. Bird sources are characterized by either a single or multiple bird vocalizations independent of each other or in response to others. The sources may be physically-stationary or exhibit movements and the signals are wide-band in frequency and often intermittent with pauses and possibly restarting with repeating previously used songs or with new songs. Thus, the detection, classification, and 2D or 3D localization of these birds pose challenging signal and array problems. Due to the fact that some birds can mimic other birds, time-domain waveform characterization may not be sufficient for determining the number of birds. Similarly, due to the intermittent nature of the vocalizations, data collected over a long period cannot be used naively. Thus, it is necessary to use short-time Fourier transform (STFT) to fully exploit the intricate natures of the time and frequency properties of these sources and displayed on a spectrogram. Various dominant spectral data over the relevant frames are used to form sample covariance matrices. Eigenvectors associated with the decompositions of these matrices for these spectral indices can be used to provide 2D/3D DOA estimations of the sources over different frames for intermittent sources. Proper cluttering of these data can be used to perform enhanced detection, classification, and localization of multiple bird sources. Two sets of collected bird data will be used to demonstrate these claims.

  15. Ultrasound contrast agents for bleeding detection and acoustic hemostasis

    NASA Astrophysics Data System (ADS)

    Zderic, Vesna; Luo, Wenbo; Brayman, Andrew; Crum, Lawrence; Vaezy, Shahram

    2005-04-01

    Objective: To investigate the application of ultrasound contrast agents (UCA) in improving both therapeutic and diagnostic aspects of ultrasound-guided High Intensity Focused Ultrasound (HIFU) therapy. Methods: Incisions (3 cm long, 0.5 cm deep) were made in rabbit livers (in anterior surface for HIFU treatment, or posterior surface for bleeding detection). UCA Optison (~0.1 ml/kg) was injected into mesenteric vein or ear vein. A HIFU applicator (5.5 MHz, 6400 W/cm2) was scanned manually over the incision until hemostasis was achieved. Occult bleeding was monitored with Doppler ultrasound. Results: The presence of Optison produced 37% reduction in hemostasis times normalized to initial bleeding rates. Gross and histological observations showed similar appearance of HIFU lesions produced in the presence of Optison and control HIFU lesions. The temperature reached 100°C in both HIFU only and HIFU+UCA treatments. Tension strength of hemostatic liver incisions was 0.9+/-0.5 N. Almost no bleeding could be detected before Optison injection. First appearance of contrast enhancement localized at the bleeding site was 15 s after Optison injection, and lasted for ~50 s. Conclusion: The presence of UCA during HIFU treatment of liver incisions resulted in shortening of HIFU application times and better visualization of bleeding sites.

  16. Marine mammal acoustic detections in the northeastern Chukchi Sea, September 2007-July 2011

    NASA Astrophysics Data System (ADS)

    Hannay, David E.; Delarue, Julien; Mouy, Xavier; Martin, Bruce S.; Leary, Del; Oswald, Julie N.; Vallarta, Jonathan

    2013-09-01

    Several cetacean and pinniped species use the northeastern Chukchi Sea as seasonal or year-round habitat. This area has experienced pronounced reduction in the extent of summer sea ice over the last decade, as well as increased anthropogenic activity, particularly in the form of oil and gas exploration. The effects of these changes on marine mammal species are presently unknown. Autonomous passive acoustic recorders were deployed over a wide area of the northeastern Chukchi Sea off the coast of Alaska from Cape Lisburne to Barrow, at distances from 8 km to 200 km from shore: up to 44 each summer and up to 8 each winter. Acoustic data were acquired at 16 kHz continuously during summer and on a duty cycle of 40 or 48 min within each 4-h period during winter. Recordings were analyzed manually and using automated detection and classification systems to identify calls. Bowhead (Balaena mysticetus) and beluga (Delphinapterus leucas) whale calls were detected primarily from April through June and from September to December during their migrations between the Bering and Beaufort seas. Summer detections were rare and usually concentrated off Wainwright and Barrow, Alaska. Gray (Eschrichtius robustus) whale calls were detected between July and October, their occurrence decreasing with increasing distance from shore. Fin (Balaenoptera physalus), killer (Orcinus orca), minke (Balaenoptera acutorostrata), and humpback (Megaptera novaeangliae) whales were detected sporadically in summer and early fall. Walrus (Odobenus rosmarus) was the most commonly detected species between June and October, primarily occupying the southern edge of Hanna Shoal and haul-outs near coastal recording stations off Wainwright and Point Lay. Ringed (Pusa hispida) and bearded (Erignathus barbatus) seals occur year-round in the Chukchi Sea. Ringed seal acoustic detections occurred throughout the year but detection numbers were low, likely due to low vocalization rates. Bearded seal acoustic detections

  17. Sensitive detection of the c-KIT c.1430G>T mutation by mutant-specific polymerase chain reaction in feline mast cell tumours.

    PubMed

    Takanosu, M; Sato, M; Kagawa, Y

    2014-06-01

    Here, we describe the establishment of mutant-specific polymerase chain reaction (PCR) for detection of a c-KIT c.1430G>T mutation in feline mast cell tumours. Several mutations in feline c-KIT have been identified, with the c.1430G>T mutation accounting for a significant portion of feline mast cell tumour mutations. The c.1430G>T mutation in c-KIT exon 9 was detected in 15.7% (11 of 70) of samples by mutant-specific PCR but in only 7.1% (5 of 70) by PCR-restriction fragment length polymorphism (RFLP) in the genomic DNA isolated from 70 formalin-fixed paraffin-embedded sections or cells collected by fine needle aspiration. Mutant-specific PCR showed remarkably higher detection rate than did PCR-RFLP. DNA sequence analysis did not always yield identical results to those of mutant-specific PCR, suggesting heterogeneity of tumour cells. Mutant-specific PCR is a valid and efficient screening tool for detection of the c-KIT c.1430G>T point mutation in feline mast cell tumours compared with PCR-RFLP and sequencing analysis.

  18. Fatigue Crack Detection at Gearbox Spline Component using Acoustic Emission Method

    DTIC Science & Technology

    2014-10-02

    Eftekharnejad, B. and Mba, D.. (2011) “Monitoring Natural Pitting Progress on Helical Gear Mesh using Acoustic Emission and Vibration,” Strain, Vol. 47...that the AE method is not sensitive to gear wear while the method detects the tooth crack earlier than the vibration method. Typical parameters...11-22. Chaari, F., Fakhfakh, T. and Haddar, M. (2009). “Analytical Modelling of Spur Gear Tooth Crack and Influence on Gearmesh Stiffness

  19. A Power Analysis and Recommended Study Design to Directly Detect Population Level Consequences of Acoustic Disturbance

    DTIC Science & Technology

    2015-09-30

    quantify potential human impacts on the health of beaked whale populations ?” (i.e, what is a recommended study design for doing this?). Quantifying...effectiveness of Navy funds for monitoring population health of beaked whales and human impacts thereon. RELATED PROJECTS Moretti, David...Detect Population -Level Consequences of Acoustic Disturbance Jeffrey Moore NOAA Southwest Fisheries Science Center 8901 La Jolla Shores Drive

  20. Intravascular detection of microvessel infiltration in atherosclerotic plaques: An intraluminal extension of acoustic angiography

    NASA Astrophysics Data System (ADS)

    Martin, K. Heath

    Cardiovascular disease is the leading cause of death worldwide, surpassing both stroke and cancer related mortality with 17.5 million deaths in 2014 alone. Atherosclerosis is the build-up of fatty deposits within arteries and is responsible for the majority of cardiovascular related deaths. Over the past decade, research in atherosclerosis has identified that a key limitation in the appropriate management of the disease is detecting and identifying dangerous fatty plaque build-ups before they dislodge and cause major cardiovascular events, such as embolisms, stroke, or myocardial infarctions. It has been noted that plaques vulnerable to rupture have several key features that may be used to distinguish them from asymptomatic plaques. One key identifier of a dangerous plaque is the presence of blood flow within the plaque itself since this is an indicator of growth and instability of the plaque. Recently, a superharmonic imaging method known as "acoustic angiography" has been shown to resolve microvasculature with unprecedented quality and could be a possible method of detecting blood vessel infiltration within these plaques. This dissertation describes the material and methods used to move the application of "acoustic angiography" to a reduced form factor typical of intravascular catheters and to demonstrate its ability to detect microvasculature. The implementation of this approach is described in terms of the contrast agents used to generate superharmonic signals, the dual-frequency transducers to image them, and the hardware needed to operate them in order to establish how these design choices can impact the quality of the images produced. Furthermore, this dissertation demonstrates how image processing methods such as adaptive windowing or automated sound speed correction can further enhance image quality of vascular targets. The results of these chapters show how acoustic angiography may be optimized using engineering considerations both in signal acquisition

  1. Multichannel Detection and Acoustic Color Based Classification of Underwater UXO in Sonar

    DTIC Science & Technology

    2015-06-01

    FINAL REPORT Multichannel Detection and Acoustic Color-Based Classification of Underwater UXO in Sonar SERDP Project MR-2416 JUNE 2015...of Underwater UXO in Sonar 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Dr. M. R. Azimi-Sadjadi 5d. PROJECT NUMBER...military munitions in shallow underwater environments using data collected from synthetic aperture sonar (SAS) systems. 15. SUBJECT TERMS

  2. Detection and Localization with an Acoustic Array on a Small Robotic Platform in Urban Environments

    DTIC Science & Technology

    2003-01-01

    Detection and Localization with an Acoustic Array on a Small Robotic Platform in Urban Environments by Stuart H. Young and Michael V. Scanlon...Environments Stuart H. Young Computational and Information Sciences Directorate, ARL Michael V. Scanlon Sensors and Electron Devices Directorate...for soldiers, law enforcement, and rescue personnel and can remove these people from hazardous environments. ARL’s primary robotic platforms contain

  3. Improving the sensitivity of an interferometric fiber optic sensor for acoustic detection in rockfalls

    NASA Astrophysics Data System (ADS)

    Schenato, L.; Palmieri, L.; Autizi, E.; Galtarossa, A.; Pasuto, A.

    2013-12-01

    Being intrinsically EMI free and offering superior hostile environment operation, fiber optic sensor technology represents a valuable alternative to standard sensors technology in landslides monitoring. Here an improved design for a fiber optic sensor to be used for ultrasonic acoustic detection in rockfall monitoring is proposed. Basically, the original sensor consists of a fiber coil tightly wound on an aluminum flanged hollow mandrel that acts as the sensing arm of a Mach-Zehnder interferometer [1]. To further improve sensor sensitivity, the use of a special fiber, with polyimide coating and very large numerical aperture, has been proposed and tested. The polyimide coating, harder and thinner than standard coating, makes the fiber more sensitive to acoustic waves and increase the coupling efficiency between fiber and mandrel. At the same time, a fiber with very large numerical aperture allows for a much smaller bending radius and thus enables the design of a sensor with reduced size, or with the same external size but housing a longer fiber. Part of the research activity has been then focused toward the optimization of the shape and dimensions of the mandrel: to this aim, a large set of numerical simulations has been performed and they are here presented and discussed. The performance assessment gained with new sensors has been carried in a controlled scenario by using a block of trachyte in which the sensors have been screwed in internally threaded chemical anchors housed in holes drilled on one face of the block. Ultrasonic signals have been generated in a repeatable way by dropping a 5-mm-diameter steel ball along a steep slide. Experimental tests, carried out by firstly comparing the performance of a sensor made with special fiber with respect to the original one, have shown an increased sensitivity of almost 35 % in the detected acoustic energy. Further tests, carried out on a sensor with optimized dimensions and made with special fiber, have shown an

  4. Signal classification and event reconstruction for acoustic neutrino detection in sea water with KM3NeT

    NASA Astrophysics Data System (ADS)

    Kießling, Dominik

    2017-03-01

    The research infrastructure KM3NeT will comprise a multi cubic kilometer neutrino telescope that is currently being constructed in the Mediterranean Sea. Modules with optical and acoustic sensors are used in the detector. While the main purpose of the acoustic sensors is the position calibration of the detection units, they can be used as instruments for studies on acoustic neutrino detection, too. In this article, methods for signal classification and event reconstruction for acoustic neutrino detectors will be presented, which were developed using Monte Carlo simulations. For the signal classification the disk-like emission pattern of the acoustic neutrino signal is used. This approach improves the suppression of transient background by several orders of magnitude. Additionally, an event reconstruction is developed based on the signal classification. An overview of these algorithms will be presented and the efficiency of the classification will be discussed. The quality of the event reconstruction will also be presented.

  5. Particle acoustic detection in gravitational wave aluminum resonant antennas

    NASA Astrophysics Data System (ADS)

    Buonomo, B.; Coccia, E.; D'Antonio, S.; delle Monache, G.; di Gioacchino, D.; Fafone, V.; Ligi, C.; Marini, A.; Mazzitelli, G.; Modestino, G.; Panella, S.; Pizzella, G.; Quintieri, L.; Roccella, S.; Ronga, F.; Tripodi, P.; Valente, P.

    2005-09-01

    The results on cosmic rays detected by the gravitational antenna NAUTILUS have motivated an experiment (RAP) based on a suspended cylindrical bar, which is made of the same aluminum alloy as NAUTILUS and is exposed to a high energy electron beam. Mechanical vibrations originate from the local thermal expansion caused by warming up due to the energy lost by particles crossing the material. The aim of the experiment is to measure the amplitude of the fundamental longitudinal vibration at different temperatures. We report on the results obtained down to a temperature of about 4 K, which agree at the level of ˜10% with the predictions of the model describing the underlying physical process.

  6. Fiber-optic photo-acoustic spectroscopy sensor for harsh environment gas detection

    NASA Astrophysics Data System (ADS)

    Wu, Juntao; Deng, Kung-Li; Guida, Renato; Lee, Boon

    2007-09-01

    Photo-acoustic spectroscopy (PAS) has been successfully applied to detect various gases and chemicals due to its high selectivity and sensitivity. However, the performance of the conventional acoustic sensors prohibits the application of PAS for harsh environment gas species real-time monitoring. By replacing conventional acoustic sensors, such as microphone and piezo-transducers, with a high-temperature Fiber Bragg Grating (FBG) vibration sensor, we developed a fiber-optic PAS sensing system that can be used in high-temperature and high-pressure harsh environments for gas species identification and concentration measurement. A resonant acoustic chamber is designed, and FBG vibration sensor is embedded in the molybdenum membrane. An OPO laser is used for spectrum scanning. Preliminary test on water vapor has been conducted, and the result is analyzed. This sensing technology can be adapted into harsh environments, such as Integrated Gasification Combined Cycle (IGCC) power plant, and provide on-line real-time monitoring of gases species, such as CO, H IIO, and O II. Presently, our FBG-based vibration sensor can withstand the high temperature up to 800°C.

  7. A compact array calibrator to study the feasibility of acoustic neutrino detection

    NASA Astrophysics Data System (ADS)

    Ardid, M.; Camarena, F.; Felis, I.; Herrero, A.; Llorens, C. D.; Martínez-Mora, J.; Saldaña, M.

    2016-04-01

    Underwater acoustic detection of ultra-high-energy neutrinos was proposed already in 1950s: when a neutrino interacts with a nucleus in water, the resulting particle cascade produces a pressure pulse that has a bipolar temporal structure and propagates within a flat disk-like volume. A telescope that consists of thousands of acoustic sensors deployed in the deep sea can monitor hundreds of cubic kilometres of water looking for these signals and discriminating them from acoustic noise. To study the feasibility of the technique it is critical to have a calibrator able to mimic the neutrino "signature" that can be operated from a vessel. Due to the axial-symmetry of the signal, their very directive short bipolar shape and the constraints of operating at sea, the development of such a calibrator is very challenging. Once the possibility of using the acoustic parametric technique for this aim was validated with the first compact array calibrator prototype, in this paper we describe the new design for such a calibrator composed of an array of piezo ceramic tube transducers emitting in axial direction.

  8. An experimental study on antipersonnel landmine detection using acoustic-to-seismic coupling.

    PubMed

    Xiang, Ning; Sabatier, James M

    2003-03-01

    An acoustic-to-seismic system to detect buried antipersonnel mines exploits airborne acoustic waves penetrating the surface of the ground. Acoustic waves radiating from a sound source above the ground excite Biot type I and II compressional waves in the porous soil. The type I wave and type II waves refract toward the normal and cause air and soil particle motion. If a landmine is buried below the surface of the insonified area, these waves are scattered or reflected by the target, resulting in distinct changes to the acoustically coupled ground motion. A scanning laser Doppler vibrometer measures the motion of the ground surface. In the past, this technique has been employed with remarkable success in locating antitank mines during blind field tests [Sabatier and Xiang, IEEE Trans. Geosci. Remote Sens. 39, 1146-1154 (2001)]. The humanitarian demining mission requires an ability to locate antipersonnel mines, requiring a surmounting of additional challenges due to a plethora of shapes and smaller sizes. This paper describes an experimental study on the methods used to locate antipersonnel landmines in recent field measurements.

  9. Screening for Circulating Tumour Cells Allows Early Detection of Cancer and Monitoring of Treatment Effectiveness: An Observational Study

    PubMed

    Ried, Karin; Eng, Peter; Sali, Avni

    2017-08-27

    Background: Circulating-Tumour-Cells (CTC) provide a blood biomarker for early carcinogenesis, cancer progression and treatment effectiveness. An increase in CTCs is associated with cancer progression, a CTC decrease with cancer containment or remission. Several technologies have been developed to identify CTC, including the validated Isolation-by-Size-of-Epithelial-Tumour (ISET, Rarecells) technology, combining blood filtration and microscopy using standard histo-pathological criteria. Methods: This observational study compared CTC count to cancer status and cancer risk, by monitoring treatment effectiveness in cancer patients and by screening for CTC in asymptomatic patients with risk factors, including family history of cancer. Results: Between Sept-2014 and Dec-2016 we undertook 600 CTC tests (542 patients), including 50% screening requests of patients without cancer diagnosis but with risk factors. CTC were detected in all cancer patients (n=277, 100%), and in half of the asymptomatic patients screened (50%, 132 out-of 265 patients). Follow-up tests including scans, scheduled within 1-10 months of positive CTC tests, found early cancerous lesions in 20% of screened patients. In 50% of male patients with CTC and normal PSA (prostate-specific-antigen) levels, PSMA-PET scans revealed increased uptake in the prostate, indicative of early prostate cancer. Other types of cancers detected by CTC screening and subsequent scans included early breast, ovarian, lung, or renal cancer. Patients with CTC were advised on integrative approaches including immune-stimulating and anti-carcinogenic nutritional therapies. CTC repeat tests were available in 10% of patients with detected CTC (40 outof 409 patients, n=98 CTC tests) to assess treatment effectiveness, suggesting nutritional therapies to be beneficial in reducing CTC count. Conclusions: CTC screening provided a highly sensitive biomarker for the early detection of cancer, with higher CTC counts being associated with

  10. A Correlated Microwave-Acoustic Imaging method for early-stage cancer detection.

    PubMed

    Gao, Fei; Zheng, Yuanjin

    2012-01-01

    Microwave-based imaging technique shows large potential in detecting early-stage cancer due to significant dielectric contrast between tumor and surrounding healthy tissue. In this paper, we present a new way named Correlated Microwave-Acoustic Imaging (CMAI) of combining two microwave-based imaging modalities: confocal microwave imaging(CMI) by detecting scattered microwave signal, and microwave-induced thermo-acoustic imaging (TAI) by detecting induced acoustic signal arising from microwave energy absorption and thermal expansion. Necessity of combining CMI and TAI is analyzed theoretically, and by applying simple algorithm to CMI and TAI separately, we propose an image correlation approach merging CMI and TAI together to achieve better performance in terms of resolution and contrast. Preliminary numerical simulation shows promising results in case of low contrast and large variation scenarios. A UWB transmitter is designed and tested for future complete system implementation. This preliminary study inspires us to develop a new medical imaging modality CMAI to achieve real-time, high resolution and high contrast simultaneously.

  11. Acoustic detection and classification of Microchiroptera using machine learning: lessons learned from automatic speech recognition.

    PubMed

    Skowronski, Mark D; Harris, John G

    2006-03-01

    Current automatic acoustic detection and classification of microchiroptera utilize global features of individual calls (i.e., duration, bandwidth, frequency extrema), an approach that stems from expert knowledge of call sonograms. This approach parallels the acoustic phonetic paradigm of human automatic speech recognition (ASR), which relied on expert knowledge to account for variations in canonical linguistic units. ASR research eventually shifted from acoustic phonetics to machine learning, primarily because of the superior ability of machine learning to account for signal variation. To compare machine learning with conventional methods of detection and classification, nearly 3000 search-phase calls were hand labeled from recordings of five species: Pipistrellus bodenheimeri, Molossus molossus, Lasiurus borealis, L. cinereus semotus, and Tadarida brasiliensis. The hand labels were used to train two machine learning models: a Gaussian mixture model (GMM) for detection and classification and a hidden Markov model (HMM) for classification. The GMM detector produced 4% error compared to 32% error for a baseline broadband energy detector, while the GMM and HMM classifiers produced errors of 0.6 +/- 0.2% compared to 16.9 +/- 1.1% error for a baseline discriminant function analysis classifier. The experiments showed that machine learning algorithms produced errors an order of magnitude smaller than those for conventional methods.

  12. Optimized acoustic biochip integrated with microfluidics for biomarkers detection in molecular diagnostics.

    PubMed

    Papadakis, G; Friedt, J M; Eck, M; Rabus, D; Jobst, G; Gizeli, E

    2017-09-01

    The development of integrated platforms incorporating an acoustic device as the detection element requires addressing simultaneously several challenges of technological and scientific nature. The present work was focused on the design of a microfluidic module, which, combined with a dual or array type Love wave acoustic chip could be applied to biomedical applications and molecular diagnostics. Based on a systematic study we optimized the mechanics of the flow cell attachment and the sealing material so that fluidic interfacing/encapsulation would impose minimal losses to the acoustic wave. We have also investigated combinations of operating frequencies with waveguide materials and thicknesses for maximum sensitivity during the detection of protein and DNA biomarkers. Within our investigations neutravidin was used as a model protein biomarker and unpurified PCR amplified Salmonella DNA as the model genetic target. Our results clearly indicate the need for experimental verification of the optimum engineering and analytical parameters, in order to develop commercially viable systems for integrated analysis. The good reproducibility of the signal together with the ability of the array biochip to detect multiple samples hold promise for the future use of the integrated system in a Lab-on-a-Chip platform for application to molecular diagnostics.

  13. Acoustic harmonic generation measurement applications: Detection of tight cracks in powder metallurgy compacts

    NASA Astrophysics Data System (ADS)

    Barnard, D. J.; Foley, J. C.

    2000-05-01

    Standard linear ultrasonic testing techniques have long been employed for locating and characterizing relatively open cracks in a wide variety of materials, from metallic alloys and ceramics to composites. In all these materials, the detection of open cracks easily accomplished because the void between the two crack surfaces provides sufficient acoustic impedance mismatch to reflect the incident energy. Closed or partially closed cracks, however, may often go undetected because contacting interfaces allow transmission of ultrasound. In the green (unsintered) state, powder metallurgy compacts typically contain high residual stresses that have the ability to close cracks formed during the compaction process, a result of oxide films, improper powder lubricant, mold design, etc. After sintering, the reduction of residual stresses may no longer be sufficient to close the crack. Although the crack may be more easily detected, it is obvious most desirable to discover defects prior to sintering. It has been shown that the displacements of an interface may be highly nonlinear if a stress wave of sufficient intensity propagates across it, a result of the stress wave either opening or closing the interface. Current efforts involve the application of nonlinear acoustic techniques, in particular acoustic harmonic generation measurements, for the detection and characterization of tightly closed cracks in powder metallurgy parts. A description of the equipment and the measurement technique will be discussed and initial experimental results on sintered and green compacts will be presented.—This work was performed at the Ames Laboratory, Iowa State University under USDOE Contract No. W-7405-ENG-82.

  14. Detection of ABCB5-tumour-antigen-specific CD8(+) T cells in Melanoma Patients and Implications for Immunotherapy.

    PubMed

    Borchers, Sylvia; Masslo, Christoph; Müller, Christina Ann; Tahedl, Anika; Volkind, Jennifer; Nowak, Yvonne; Umansky, Viktor; Esterlechner, Jasmina; Frank, Markus Hermann; Ganss, Christoph; Kluth, Mark Andreas; Utikal, Jochen

    2017-09-23

    ABCB5 has been identified as a tumour initiating cell marker and is expressed in various malignancies, including melanoma. Moreover, treatment with anti-ABCB5 monoclonal antibodies has been shown to inhibit tumour growth in xenotransplantation models. Therefore, ABCB5 represents a potential target for cancer immunotherapy. However, cellular immune responses against ABCB5 in humans have not been described so far. Here, we investigated whether ABCB5-reactive T cells are present in human melanoma patients and tested the applicability of ABCB5-derived peptides for experimental induction of human T cell responses. Peripheral blood mononuclear cells (PBMNC) isolated from blood samples of melanoma patients (n=40) were stimulated with ABCB5 peptides, followed by intracellular cytokine staining (ICS) for IFN-γ and TNF-α. To evaluate immunogenicity of ABCB5 peptides in naïve healthy donors, CD8 T cells were co-cultured with ABCB5 antigen-loaded autologous dendritic cells (DC). ABCB5-reactivity in expanded T cells was likewise assessed by ICS. ABCB5-reactive CD8(+) T cells were detected ex vivo in 19 of 29 patients, MART-1-reactive CD8 T cells in 6 of 21 patients. In this small, heterogeneous cohort, reactivity against ABCB5 was significantly higher than against MART-1. It occurred significantly more often and independent of clinical characteristics. Reactivity against ABCB5 could be induced in 14 of 16 healthy donors in vitro by repeated stimulation with peptide-loaded autologous DC. Since ABCB5-reactive CD8 T cells can be found in the peripheral blood of melanoma patients and an ABCB5-specific response can be induced in vitro in naïve donors, ABCB5 could be a new target for immuno-therapies in melanoma. This article is protected by copyright. All rights reserved. © 2017 British Society for Immunology.

  15. Automated detection framework of the calcified plaque with acoustic shadowing in IVUS images.

    PubMed

    Gao, Zhifan; Guo, Wei; Liu, Xin; Huang, Wenhua; Zhang, Heye; Tan, Ning; Hau, William Kongto; Zhang, Yuan-Ting; Liu, Huafeng

    2014-01-01

    Intravascular Ultrasound (IVUS) is one ultrasonic imaging technology to acquire vascular cross-sectional images for the visualization of the inner vessel structure. This technique has been widely used for the diagnosis and treatment of coronary artery diseases. The detection of the calcified plaque with acoustic shadowing in IVUS images plays a vital role in the quantitative analysis of atheromatous plaques. The conventional method of the calcium detection is manual drawing by the doctors. However, it is very time-consuming, and with high inter-observer and intra-observer variability between different doctors. Therefore, the computer-aided detection of the calcified plaque is highly desired. In this paper, an automated method is proposed to detect the calcified plaque with acoustic shadowing in IVUS images by the Rayleigh mixture model, the Markov random field, the graph searching method and the prior knowledge about the calcified plaque. The performance of our method was evaluated over 996 in-vivo IVUS images acquired from eight patients, and the detected calcified plaques are compared with manually detected calcified plaques by one cardiology doctor. The experimental results are quantitatively analyzed separately by three evaluation methods, the test of the sensitivity and specificity, the linear regression and the Bland-Altman analysis. The first method is used to evaluate the ability to distinguish between IVUS images with and without the calcified plaque, and the latter two methods can respectively measure the correlation and the agreement between our results and manual drawing results for locating the calcified plaque in the IVUS image. High sensitivity (94.68%) and specificity (95.82%), good correlation and agreement (>96.82% results fall within the 95% confidence interval in the Student t-test) demonstrate the effectiveness of the proposed method in the detection of the calcified plaque with acoustic shadowing in IVUS images.

  16. Automated Detection Framework of the Calcified Plaque with Acoustic Shadowing in IVUS Images

    PubMed Central

    Liu, Xin; Huang, Wenhua; Zhang, Heye; Tan, Ning; Hau, William Kongto; Zhang, Yuan-Ting; Liu, Huafeng

    2014-01-01

    Intravascular Ultrasound (IVUS) is one ultrasonic imaging technology to acquire vascular cross-sectional images for the visualization of the inner vessel structure. This technique has been widely used for the diagnosis and treatment of coronary artery diseases. The detection of the calcified plaque with acoustic shadowing in IVUS images plays a vital role in the quantitative analysis of atheromatous plaques. The conventional method of the calcium detection is manual drawing by the doctors. However, it is very time-consuming, and with high inter-observer and intra-observer variability between different doctors. Therefore, the computer-aided detection of the calcified plaque is highly desired. In this paper, an automated method is proposed to detect the calcified plaque with acoustic shadowing in IVUS images by the Rayleigh mixture model, the Markov random field, the graph searching method and the prior knowledge about the calcified plaque. The performance of our method was evaluated over 996 in-vivo IVUS images acquired from eight patients, and the detected calcified plaques are compared with manually detected calcified plaques by one cardiology doctor. The experimental results are quantitatively analyzed separately by three evaluation methods, the test of the sensitivity and specificity, the linear regression and the Bland-Altman analysis. The first method is used to evaluate the ability to distinguish between IVUS images with and without the calcified plaque, and the latter two methods can respectively measure the correlation and the agreement between our results and manual drawing results for locating the calcified plaque in the IVUS image. High sensitivity (94.68%) and specificity (95.82%), good correlation and agreement (>96.82% results fall within the 95% confidence interval in the Student t-test) demonstrate the effectiveness of the proposed method in the detection of the calcified plaque with acoustic shadowing in IVUS images. PMID:25372784

  17. Acoustic emission detection of rail defect based on wavelet transform and Shannon entropy

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Feng, Naizhang; Wang, Yan; Shen, Yi

    2015-03-01

    In order to detect cracks in railroad tracks, various experiments have been examined by Acoustic Emission (AE) method. However, little work has been done on studying rail defect detection at high speed. This paper presents a study on AE detection of rail defect at high speed based on rail-wheel test rig. Meanwhile, Wavelet Transform and Shannon entropy are employed to detect defects. Signals with and without defects are acquired, and characteristic frequencies from them at different speeds are analyzed. Based on appropriate decomposition level and Energy-to-Shannon entropy ratio, the optimal wavelet is selected. In order to suppress noise effects and ensure appropriate time resolution, the length of time window is investigated. Further, the characteristic frequency of time window is employed to detect defect. The results clearly illustrate that the proposed method can detect rail defect at high speed effectively.

  18. Acoustic indicators for targeted detection of stored product and urban insect pests by inexpensive infrared, acoustic, and vibrational detection of movement.

    PubMed

    Mankin, R W; Hodges, R D; Nagle, H T; Schal, C; Pereira, R M; Koehler, P G

    2010-10-01

    Crawling and scraping activity of three stored-product pests, Sitophilus oryzae (L.) (Coleoptera: Curculionidae), Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae), and Stegobium paniceum (L.) (Coleoptera: Anobiidae), and two urban pests, Blattella germanica (L.) (Blattodea: Blattellidae) and Cimex lectularius L. (Hemiptera: Cimicidae), were monitored individually by infrared sensors, microphones, and a piezoelectric sensor in a small arena to evaluate effects of insect locomotory behavior and size on the ability of an inexpensively constructed instrument to detect insects and distinguish among different species. Adults of all species could be detected when crawling or scraping. The smallest insects in the study, first-fourth-instar C. lectularius nymphs, could not be detected easily when crawling, but could be detected when scraping. Sound and vibration sensors detected brief, 3-10-ms impulses from all tested species, often grouped in distinctive trains (bursts), typical of impulses in previous acoustic detection experiments. To consider the potential for targeting or focusing detection on particular species of interest, indicators were developed to assess the likelihood of detection of C. lectularius. Statistically significant differences were found between C. lectularius and other species in distributions of three measured variables: infrared signal durations, sound impulse-burst durations, and sound pressure levels (energy) of impulses that best matched an averaged spectrum (profile) of scraping behavior. Thus, there is potential that signals collected by an inexpensive, polymodal-sensor instrument could be used in automated trapping systems to detect a targeted species, 0.1 mg or larger, in environments where servicing of traps is difficult or when timeliness of trapping information is important.

  19. Acoustic Magnetic Resonance Investigations Utilizing Direct, Backward Wave, and SQUID Detection.

    NASA Astrophysics Data System (ADS)

    Mozurkewich, George, Jr.

    Acoustic magnetic resonance investigations were undertaken utilizing three distinct methods of detection. (1) In direct detection, increased ultrasonic attenuation due to resonant absorption is monitored directly. (2) In backward wave spectroscopy, resonant absorption introduces ultrasonic nonlinearities which generate a backward propagating wave. The amplitude of the resulting echo reflects the resonant susceptibility. (3) In SQUID detection, which is proposed here for the first time, changes in the magnetization of the spin system are detected using a superconducting quantum interference device. Using direct detection, nuclear acoustic resonance of ('183)W in metallic tungsten has been observed for the first time. Because ('183)W is isotopically dilute (14%) and has a small gyromagnetic ratio (179 Hz/G), the predicted dipolar linewidth is only 0.10 G. The observed, inhomogenously broadened lineshape (0.44 G peak to peak, with additional structure on the high field side) is attributed to spatial variation of the sample's demagnetizing field. Theoretical fits to the lineshape are calculated and discussed. The Knight shift is (1.0397 (+OR-) 0.0026)%. The neutral acceptor in indium doped silicon was examined using the recently developed technique of backward wave phonon spectroscopy. The high power results show multiple quantum transitions and a broad background feature which peaks near 2T and extends beyond 8T (spectrometer frequency = 6 GHz). It is shown that the background signal arises largely from transitions between Kramers doublets at sites with static strain of order 100 (mu)eV. In addition, a new interface phenomenon, the enhanced backward wave, is described. A new method of detection of acoustic magnetic resonance, using a SQUID magnetometer, is proposed. An attempt to realize such a detection system did not succeed. Reasons for the failure are analyzed, and design modifications are suggested. A SQUID detection system should be valuable for very weak

  20. High Sensitivity Detection of Broadband Acoustic Vibration Using Optical Demodulation Method

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen

    Measuring the high frequency acoustic vibrations represents the fundamental interest in revealing the intrinsic dynamic characteristic of board range of systems, such as the growth of the fetus, blood flow in human palms, and vibrations of carbon nanotube. However, the acoustic wave detection capability is limited by the detection bandwidth and sensitivity of the commonly used piezoelectric based ultrasound detectors. To overcome these limitations, this thesis focuses on exploring the optical demodulation method for highly sensitive detection of broadband acoustic vibration. First, a transparent optical ultrasonic detector has been developed using micro-ring resonator (MRR) made of soft polymeric materials. It outperforms the traditional piezoelectric detectors with broader detection bandwidth, miniaturized size and wide angular sensitivity. Its ease of integration into photoacoustic microscopy system has resulted in the great improvement of the imaging resolution. A theoretic framework has been developed to establish the quantitative understanding of its unique distance and angular dependent detection characteristics and was subsequently validated experimentally. The developed theoretic framework provides a guideline to fully accounts for the trade-offs between axial and lateral resolution, working distance, and the field of view in developing optimal imaging performance for a wide range of biological and clinical applications. MRR-based ultrasonic detector is further integrated into confocal fluorescence microscopy to realize the simultaneous imaging of fluorescence and optical absorption of retinal pigment epithelium, achieving multi-contrast imaging at sub-cellular level. The needs to resolve the fine details of the biological specimen with the resolution beyond the diffraction limit further motivate the development of optical demodulated ultrasonic detection method based on near-field scanning optical microscopy (NSOM). The nano-focusing probe was developed

  1. Inversion of High Frequency Acoustic Data for Sediment Properties Needed for the Detection and Classification of UXOs

    DTIC Science & Technology

    2015-05-26

    FINAL REPORT Inversion of High Frequency Acoustic Data for Sediment Properties Needed for the Detection and Classification of UXOs SERDP...display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3...2015 Inversion of High Frequency Acoustic Data for Sediment Properties Needed for the Detection and Classification of UXO’s W912HQ-12-C-0049 MR

  2. Non-contact acoustic radiation force impulse microscopy via photoacoustic detection for probing breast cancer cell mechanics

    PubMed Central

    Hwang, Jae Youn; Kang, Bong Jin; Lee, Changyang; Kim, Hyung Ham; Park, Jinhyoung; Zhou, Qifa; Shung, K. Kirk

    2014-01-01

    We demonstrate a novel non-contact method: acoustic radiation force impulse microscopy via photoacoustic detection (PA-ARFI), capable of probing cell mechanics. A 30 MHz lithium niobate ultrasound transducer is utilized for both detection of phatoacoustic signals and generation of acoustic radiation force. To track cell membrane displacements by acoustic radiation force, functionalized single-walled carbon nanotubes are attached to cell membrane. Using the developed microscopy evaluated with agar phantoms, the mechanics of highly- and weakly-metastatic breast cancer cells are quantified. These results clearly show that the PA-ARFI microscopy may serve as a novel tool to probe mechanics of single breast cancer cells. PMID:25657870

  3. Using multiple gears to assess acoustic detectability and biomass of fish species in lake superior

    USGS Publications Warehouse

    Yule, D.L.; Adams, J.V.; Stockwell, J.D.; Gorman, O.T.

    2007-01-01

    Recent predator demand and prey supply studies suggest that an annual daytime bottom trawl survey of Lake Superior underestimates prey fish biomass. A multiple-gear (acoustics, bottom trawl, and midwater trawl) nighttime survey has been recommended, but before abandoning a long-term daytime survey the effectiveness of night sampling of important prey species must be verified. We sampled three bottom depths (30, 60, and 120 m) at a Lake Superior site where the fish community included all commercially and ecologically important species. Day and night samples were collected within 48 h at all depths during eight different periods (one new and one full moon period during both early summer and late summer to early fall over 2 years). Biomass of demersal and benthic species was higher in night bottom trawl samples than in day bottom trawl samples. Night acoustic collections showed that pelagic fish typically occupied water cooler than 15°C and light levels less than 0.001 lx. Using biomass in night bottom trawls and acoustic biomass above the bottom trawl path, we calculated an index of acoustic detectability for each species. Ciscoes Coregonus artedi, kiyis C. kiyi, and rainbow smeltOsmerus mordax left the bottom at night, whereas bloaters C. hoyi stayed nearer the bottom. We compared the biomass of important prey species estimated with two survey types: day bottom trawls and night estimates of the entire water column (bottom trawl biomass plus acoustic biomass). The biomass of large ciscoes (>200 mm) was significantly greater when measured at night than when measured during daylight, but the differences for other sizes of important species did not vary significantly by survey type. Nighttime of late summer is a period when conditions for biomass estimation are largely invariant, and all important prey species can be sampled using a multiple-gear approach.

  4. Early detection of melanoma with the combined use of acoustic microscopy, infrared reflectance and Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Karagiannis, Georgios T.; Grivas, Ioannis; Tsingotjidou, Anastasia; Apostolidis, Georgios K.; Grigoriadou, Ifigeneia; Dori, I.; Poulatsidou, Kyriaki-Nefeli; Doumas, Argyrios; Wesarg, Stefan; Georgoulias, Panagiotis

    2015-03-01

    Malignant melanoma is a form of skin cancer, with increasing incidence worldwide. Early diagnosis is crucial for the prognosis and treatment of the disease. The objective of this study is to develop a novel animal model of melanoma and apply a combination of the non-invasive imaging techniques acoustic microscopy, infrared (IR) and Raman spectroscopies, for the detection of developing tumors. Acoustic microscopy provides information about the 3D structure of the tumor, whereas, both spectroscopic modalities give qualitative insight of biochemical changes during melanoma development. In order to efficiently set up the final devices, propagation of ultrasonic and electromagnetic waves in normal skin and melanoma simulated structures was performed. Synthetic and grape-extracted melanin (simulated tumors), endermally injected, were scanned and compared to normal skin. For both cases acoustic microscopy with central operating frequencies of 110MHz and 175MHz were used, resulting to the tomographic imaging of the simulated tumor, while with the spectroscopic modalities IR and Raman differences among spectra of normal and melanin- injected sites were identified in skin depth. Subsequently, growth of actual tumors in an animal melanoma model, with the use of human malignant melanoma cells was achieved. Acoustic microscopy and IR and Raman spectroscopies were also applied. The development of tumors at different time points was displayed using acoustic microscopy. Moreover, the changes of the IR and Raman spectra were studied between the melanoma tumors and adjacent healthy skin. The most significant changes between healthy skin and the melanoma area were observed in the range of 900-1800cm-1 and 350-2000cm-1, respectively.

  5. Acoustic waves and the detectability of first-order phase transitions by eLISA

    NASA Astrophysics Data System (ADS)

    Weir, David J.

    2017-05-01

    In various extensions of the Standard Model it is possible that the electroweak phase transition was first order. This would have been a violent process, involving the formation of bubbles and associated shock waves. Not only would the collision of these bubbles and shock waves be a detectable source of gravitational waves, but persistent acoustic waves could enhance the signal and improve prospects of detection by eLISA. I summarise the results of a recent campaign to model such a phase transition based on large-scale hydrodynamical simulations, and its implications for the eLISA mission.

  6. Pattern recognition techniques applied to acoustic detection of liquid-metal fast breeder reactor cooling defects

    SciTech Connect

    Brunet, M.; Dubuisson, B.

    1983-08-01

    In the event of a partial or total blockage of a liquid-metal fast breeder reactor core subassembly, a boiling zone may be created. Acoustic signals from such a zone could provide a means of early detection of accident conditions. A three-step method, based on pattern recognition techniques, is described and used to analyze data from three experiments that simulate core cooling fault conditions. This method is shown to be capable of detecting the abnormal situation in each of the experiments analyzed.

  7. Reliability of void detection in structural ceramics using scanning laser acoustic microscopy

    NASA Technical Reports Server (NTRS)

    Roth, D. J.; Klima, S. J.; Kiser, J. D.; Baaklini, G. Y.

    1985-01-01

    The reliability of scanning laser acoustic microscopy (SLAM) for detecting surface voids in structural ceramic test specimens was statistically evaluated. Specimens of sintered silicon nitride and sintered silicon carbide, seeded with surface voids, were examined by SLAM at an ultrasonic frequency of 100 MHz in the as fired condition and after surface polishing. It was observed that polishing substantially increased void detectability. Voids as small as 100 micrometers in diameter were detected in polished specimens with 0.90 probability at a 0.95 confidence level. In addition, inspection times were reduced up to a factor of 10 after polishing. The applicability of the SLAM technique for detection of naturally occurring flaws of similar dimensions to the seeded voids is discussed. A FORTRAN program listing is given for calculating and plotting flaw detection statistics.

  8. Detection of fouling in coal gasification ducts using acoustic ranging. Final report

    SciTech Connect

    Noteboom, J.W.

    1992-09-01

    Acoustic ranging as a technology for pipe inspection under atmospheric conditions has been applied in the field for some years now. Under contract of the Electric Power Research Institute, the Dutch Electricity Generating Companies and Generating Board (Sep) the potential of this technology for online application in high pressure gasifier plants was investigated. Experiments were performed to test the feasibility of acoustic ranging technology to detect, locate and size deposits in grey water lines and in high-temperature, high pressure gas-filled transfer pipes. Two test loops were constructed. The interaction between pipewall and water medium as well as a strong dependence of the amount of dissolved gas on the sound velocity discourages practical application in water lines. However, under ideal conditions larger obstructions can be detected. Tests conducted in high pressure (up to 40 bar) and high temperature (up to 320{degrees}C) gas pipes have been successful and there appears to be no major problem in using this technique for pipe fouling monitoring in gasifiers. An effective acoustic pulse exciter was developed under the program. Equipment specifications for application in a gasifier transfer pipe are included in this report.

  9. Interpreting the Acoustic Characteristics of Rpw Towards Its Detection- A Review

    NASA Astrophysics Data System (ADS)

    Leena Nangai, V.; Martin, Betty, Dr.

    2017-08-01

    Red palm weevil (Rhynchophorus ferrugineus) is also known as Asian palm weevil or Sago weevil. This is a lethal pest of palms which can attack about 17 varieties of palm trees. The growth rate of the weevil depends upon the type of palm tree it feeds on. It attacks the palm trees which is less than 20 years. The presence of the weevil in the palm tree is not evident when seen by the naked eye. Hence palm tree cultivation is affected very badly by the red palm weevil larvae. The larva bores the trunk of the palm trees by feeding on the soft tissues which is present at the centre. The chewing activity produces a kind of sound. Other movements like crawling, emission also produces very feeble sound. The sound produced by the larvae lies between specific ranges of frequency and has its own spectral features. The spectral features extracted from the acoustic movement of the RPW larvae helps the early detection and protect the palm tree from further infestation. Here a survey on acoustic detection and development of instrument or sensors based on acoustic characteristic of RPW larvae is conducted.

  10. Tactile sensor using acoustic reflection for lump detection in laparoscopic surgery.

    PubMed

    Tanaka, Yoshihiro; Fukuda, Tomohiro; Fujiwara, Michitaka; Sano, Akihito

    2015-02-01

    Laparoscopic surgery limits a surgeon's tactile sense. A tactile sensor could allow real-time tumor detection in laparoscopic surgery through lump inspection. This study was aimed at developing a simple and biocompatible tactile sensor for laparoscopic surgery. The proposed tactile sensor has a forceps-like shape, has no electrical elements in the tissue contact area, and can be sterilized and cleaned. We developed a tactile sensor using acoustic reflection. It is composed of a handle with a speaker and a microphone, an aluminum tube, and a sensor tip with a deformable elastic cavity. The acoustic wave in the tube is the superposition of the input wave and two waves reflected at the closed edge and the projection generated by deformation due to contact with an object. By measuring the acoustic wave in the tube, information of the deformation is derived. The sensor is modeled, and the output is analyzed to determine design parameters of the sensor. Then, a prototype of the sensor is assembled. Fundamental experiments show that the sensor output increases with increasing normal deformation. Moreover, experiments using a phantom of the stomach wall with a 0-IIc type tumor (most common early stage gastric cancer) show that large sensor output is obtained for the lump when the sensor is moved across the back surface of the tumor. The theoretical and experimental results show that the sensor is sensitive to the deformation due to contact with an object and has the potential to detect a lump in laparoscopic surgery.

  11. Preliminary Study on Acoustic Detection of Faults Experienced by a High-Bypass Turbofan Engine

    NASA Technical Reports Server (NTRS)

    Boyle, Devin K.

    2014-01-01

    The vehicle integrated propulsion research (VIPR) effort conducted by NASA and several partners provided an unparalleled opportunity to test a relatively low TRL concept regarding the use of far field acoustics to identify faults occurring in a high bypass turbofan engine. Though VIPR Phase II ground based aircraft installed engine testing wherein a multitude of research sensors and methods were evaluated, an array of acoustic microphones was used to determine the viability of such an array to detect failures occurring in a commercially representative high bypass turbofan engine. The failures introduced during VIPR testing included commanding the engine's low pressure compressor (LPC) exit and high pressure compressor (HPC) 14th stage bleed values abruptly to their failsafe positions during steady state

  12. Mach-Zehnder interferometric photonic crystal fiber for low acoustic frequency detections

    SciTech Connect

    Pawar, Dnyandeo; Rao, Ch. N.; Kale, S. N.; Choubey, Ravi Kant

    2016-01-25

    Low frequency under-water acoustic signal detections are challenging, especially for marine applications. A Mach-Zehnder interferometric hydrophone is demonstrated using polarization-maintaining photonic-crystal-fiber (PM-PCF), spliced between two single-mode-fibers, operated at 1550 nm source. These data are compared with standard hydrophone, single-mode and multimode fiber. The PM-PCF sensor shows the highest response with a power shift (2.32 dBm) and a wavelength shift (392.8 pm) at 200 Hz. High birefringence values and the effect of the imparted acoustic pressure on this fiber, introducing the difference between the fast and slow axis changes, owing to the phase change in the propagation waves, demonstrate the strain-optic properties of the sensor.

  13. Study of the laser induced acoustic under water source aim at imaging and detecting

    NASA Astrophysics Data System (ADS)

    Yu, Xiaotang; Xin, Jianguo; Chen, Jiabin

    2015-11-01

    This paper addresses itself to the problem of interaction mechanism of laser induced acoustic source under water. The main photo-acoustic mechanisms include thermal expansion, vaporization and optical breakdown as well as the photon beam pressure. We integrate these into a compound model and compare numerical calculation and simulation results with the existing experimental data. The different energy density thresholds between different mechanisms are calculated. We optimize original thermal expansion by considering various laser pulse-shapes especially Gaussian laser. When discussing vaporization, random bubbles distribution is studied instead of single bubble alone for the first time. Detection distance, pulse duration, laser energy and spot size in heating area all have effect on sound filed intensity, which are studied through this paper.

  14. Passive acoustic leak detection for sodium cooled fast reactors using hidden Markov models

    SciTech Connect

    Riber Marklund, A.; Prakash, V.; Rajan, K.K.

    2015-07-01

    Acoustic leak detection for steam generators of sodium fast reactors have been an active research topic since the early 1970's and several methods have been tested over the years. Inspired by its success in the field of automatic speech recognition, we here apply hidden Markov models (HMM) in combination with Gaussian mixture models (GMM) to the problem. To achieve this, we propose a new feature calculation scheme, based on the temporal evolution of the power spectral density (PSD) of the signal. Using acoustic signals recorded during steam/water injection experiments done at the Indira Gandhi Centre for Atomic Research (IGCAR), the proposed method is tested. We perform parametric studies on the HMM+GMM model size and demonstrate that the proposed method a) performs well without a priori knowledge of injection noise, b) can incorporate several noise models and c) has an output distribution that simplifies false alarm rate control. (authors)

  15. Streptavidin Modified ZnO Film Bulk Acoustic Resonator for Detection of Tumor Marker Mucin 1

    NASA Astrophysics Data System (ADS)

    Zheng, Dan; Guo, Peng; Xiong, Juan; Wang, Shengfu

    2016-09-01

    A ZnO-based film bulk acoustic resonator has been fabricated using a magnetron sputtering technology, which was employed as a biosensor for detection of mucin 1. The resonant frequency of the thin-film bulk acoustic resonator was located near at 1503.3 MHz. The average electromechanical coupling factor {K}_{eff}^2 and quality factor Q were 2.39 % and 224, respectively. Using the specific binding system of avidin-biotin, the streptavidin was self-assembled on the top gold electrode as the sensitive layer to indirectly test the MUC1 molecules. The resonant frequency of the biosensor decreases in response to the mass loading in range of 20-500 nM. The sensor modified with the streptavidin exhibits a high sensitivity of 4642.6 Hz/nM and a good selectivity.

  16. Mach-Zehnder interferometric photonic crystal fiber for low acoustic frequency detections

    NASA Astrophysics Data System (ADS)

    Pawar, Dnyandeo; Rao, Ch. N.; Choubey, Ravi Kant; Kale, S. N.

    2016-01-01

    Low frequency under-water acoustic signal detections are challenging, especially for marine applications. A Mach-Zehnder interferometric hydrophone is demonstrated using polarization-maintaining photonic-crystal-fiber (PM-PCF), spliced between two single-mode-fibers, operated at 1550 nm source. These data are compared with standard hydrophone, single-mode and multimode fiber. The PM-PCF sensor shows the highest response with a power shift (2.32 dBm) and a wavelength shift (392.8 pm) at 200 Hz. High birefringence values and the effect of the imparted acoustic pressure on this fiber, introducing the difference between the fast and slow axis changes, owing to the phase change in the propagation waves, demonstrate the strain-optic properties of the sensor.

  17. Density estimation of Yangtze finless porpoises using passive acoustic sensors and automated click train detection.

    PubMed

    Kimura, Satoko; Akamatsu, Tomonari; Li, Songhai; Dong, Shouyue; Dong, Lijun; Wang, Kexiong; Wang, Ding; Arai, Nobuaki

    2010-09-01

    A method is presented to estimate the density of finless porpoises using stationed passive acoustic monitoring. The number of click trains detected by stereo acoustic data loggers (A-tag) was converted to an estimate of the density of porpoises. First, an automated off-line filter was developed to detect a click train among noise, and the detection and false-alarm rates were calculated. Second, a density estimation model was proposed. The cue-production rate was measured by biologging experiments. The probability of detecting a cue and the area size were calculated from the source level, beam patterns, and a sound-propagation model. The effect of group size on the cue-detection rate was examined. Third, the proposed model was applied to estimate the density of finless porpoises at four locations from the Yangtze River to the inside of Poyang Lake. The estimated mean density of porpoises in a day decreased from the main stream to the lake. Long-term monitoring during 466 days from June 2007 to May 2009 showed variation in the density 0-4.79. However, the density was fewer than 1 porpoise/km(2) during 94% of the period. These results suggest a potential gap and seasonal migration of the population in the bottleneck of Poyang Lake.

  18. Small-area geographic and socioeconomic inequalities in colorectal tumour detection in France.

    PubMed

    Fournel, Isabelle; Bourredjem, Abderrahmane; Sauleau, Erik-André; Cottet, Vanessa; Dejardin, Olivier; Bouvier, Anne-Marie; Launoy, Guy; Bonithon-Kopp, Claire

    2016-07-01

    The aim of this study was to assess the impact of area deprivation and primary care facilities on colorectal adenoma detection and on colorectal cancer (CRC) incidence in a French well-defined population before mass screening implementation. The study population included all patients aged 20 years or more living in Côte d'Or (France) with either colorectal adenoma or invasive CRC first diagnosed between 1995 and 2002 and who were identified from the Burgundy Digestive Cancer Registry and the Côte d'Or Polyp Registry. Area deprivation was assessed using the European deprivation index on the basis of the smallest French area available (Ilots Regroupés pour l'Information Statistique). Healthcare access was assessed using medical density of general practitioners (GPs) and road distance to the nearest GP and gastroenterologist. Bayesian regression analyses were used to estimate influential covariates on adenoma detection and CRC incidence rates. The results were expressed as relative risks (RRs) with their 95% credibility interval. In total, 5399 patients were diagnosed with at least one colorectal adenoma and 2125 with invasive incident CRC during the study period. Remoteness from GP [RR=0.71 (0.61-0.83)] and area deprivation [RR=0.98 (0.96-1.00)] independently reduced the probability of adenoma detection. CRC incidence was only slightly affected by GP medical density [RR=1.05 (1.01-1.08)] without any area deprivation effect [RR=0.99 (0.96-1.02)]. Distance to gastroenterologist had no impact on the rates of adenoma detection or CRC incidence. This study highlighted the prominent role of access to GPs in the detection of both colorectal adenomas and overall cancers. Deprivation had an impact only on adenoma detection.

  19. Cetacean acoustic detections from free-floating vertical hydrophone arrays in the southern California Current.

    PubMed

    Griffiths, Emily T; Barlow, Jay

    2016-11-01

    Drifting acoustic recorders were deployed in the southern California Current during Fall 2014. Two hydrophones configured as a 2-m vertical array at 100 m depth recorded using a 192 kHz sample rate on a 10% duty cycle (2 min/20 min). Beaked whales were detected in 33 of 8618 two-minute recordings. Sperm whales were detected in 185 recordings, and dolphins in 2291 recordings. Many beaked whales detected were over an abyssal plain and not associated with slope or seamount features. Results show the feasibility of using free-floating recording systems to detect a variety of cetacean species over periods of several months.

  20. Polarization sensitive excitation-emission matrices for detection of colorectal tumours - initial investigations

    NASA Astrophysics Data System (ADS)

    Borisova, E.; Genova, Ts; Zhelyazkova, Al; Angelova, L.; Keremedchiev, M.; Penkov, N.; Vladimirov, B.; Semyachkina-Glushkovskaya, O.; Avramov, L.

    2015-03-01

    Excitation-emission matrices were used for detection of the autofluorescence properties of surgically excised normal and cancerous mucosa of lower gastrointestinal tract tissues (colon and rectum carcinoma). Linear polarization of the excitation and emission fluorescence light was additionally applied to evaluate the influence of anisotropic fluorophores presented in the tissues investigated. Excitation applied was in the region of 280-440 nm, using step of 10 nm for the scanning, fluorescence emission was detected in the region of 300-800 nm, with scanning step of 1 nm. Excitation and emission light were investigated in parallel and perpendicular linear polarization modes respectively. These investigations are part of the concept to proof the feasibility of autofluorescence system for a real clinical application. Autofluorescence detection could make the entire diagnostics procedure more personal, patient friendly and effective and will help for further understanding of tumors nature and to improve patients' lives. In the current investigation major spectral features without and with linear polarization applied are addressed and lower GIT lesions' emission properties are evaluated.

  1. Integrated acoustic emission/vibration sensor for detecting damage in aircraft drive train components

    NASA Astrophysics Data System (ADS)

    Godínez-Azcuaga, Valery F.; Ozevin, Didem; Finlayson, Richard D.; Anastasopoulos, Athanasios; Tsimogiannis, Apostolos

    2007-04-01

    Diaphragm-type couplings are high misalignment torque and speed transfer components used in aircrafts. Crack development in such couplings, or in the drive train in general, can lead to component failure that can bring down an aircraft. Real time detection of crack formation and growth is important to prevent such catastrophic failures. However, there is no single Nondestructive Monitoring method available that is capable of assessing the early stages of crack growth in such components. While vibration based damage identification techniques are used, they cannot detect cracks until they reach a considerable size, which makes detection of the onset of cracking extremely difficult. Acoustic Emission (AE) can detect and monitor early stage crack growth, however excessive background noise can mask acoustic emissions produced by crack initiation. Fusion of the two mentioned techniques can increase the accuracy of measurement and minimize false alarms. However, a monitoring system combining both techniques could prove too large and heavy for the already restricted space available in aircrafts. In the present work, we will present a newly developed integrated Acoustic Emission/Vibration (AE/VIB) combined sensor which can operate in the temperature range of -55°F to 257°F and in high EMI environment. This robust AE/VIB sensor has a frequency range of 5 Hz-2 kHz for the vibration component and a range of 200-400 kHz for the acoustic emission component. The sensor weight is comparable to accelerometers currently used in flying aircraft. Traditional signal processing approaches are not effective due to high signal attenuation and strong background noise conditions, commonly found in aircraft drive train systems. As an alternative, we will introduce a new Supervised Pattern Recognition (SPR) methodology that allows for simultaneous processing of the signals detected by the AE/VIB sensor and their classification in near-real time, even in these adverse conditions. Finally, we

  2. Detection of Volatile Organics Using a Surface Acoustic Wave Array System

    SciTech Connect

    ANDERSON, LAWRENCE F.; BARTHOLOMEW, JOHN W.; CERNOSEK, RICHARD W.; COLBURN, CHRISTOPHER W.; CROOKS, R.M.; MARTINEZ, R.F.; OSBOURN, GORDON C.; RICCO, A.J.; STATON, ALAN W.; YELTON, WILLIAM G.

    1999-10-14

    A chemical sensing system based on arrays of surface acoustic wave (SAW) delay lines has been developed for identification and quantification of volatile organic compounds (VOCs). The individual SAW chemical sensors consist of interdigital transducers patterned on the surface of an ST-cut quartz substrate to launch and detect the acoustic waves and a thin film coating in the SAW propagation path to perturb the acoustic wave velocity and attenuation during analyte sorption. A diverse set of material coatings gives the sensor arrays a degree of chemical sensitivity and selectivity. Materials examined for sensor application include the alkanethiol-based self-assembled monolayer, plasma-processed films, custom-synthesized conventional polymers, dendrimeric polymers, molecular recognition materials, electroplated metal thin films, and porous metal oxides. All of these materials target a specific chemical fi.mctionality and the enhancement of accessible film surface area. Since no one coating provides absolute analyte specificity, the array responses are further analyzed using a visual-empirical region-of-influence (VERI) pattern recognition algorithm. The chemical sensing system consists of a seven-element SAW array with accompanying drive and control electronics, sensor signal acquisition electronics, environmental vapor sampling hardware, and a notebook computer. Based on data gathered for individual sensor responses, greater than 93%-accurate identification can be achieved for any single analyte from a group of 17 VOCs and water.

  3. [Detection of EBV by PCR in fresh and paraffin embedded samples of cavum tumour].

    PubMed

    Charef, S; Jrad, B Bel Hadj; Mahfouth, W; Zakhama, A; Kassab, A; Driss, N; Chouchane, L

    2006-01-01

    The nasopharyngeal carcinoma (NPC) is frequent in Tunisia. It's the second ORL cancer of men after the larynx one. To analyse the NPC characteristics in our population, we determined the frequency of EBV infection in 47 paraffin-embedded and 6 fresh NPC biopsies. We first extracted the DNA from tumoral tissus and then amplified viral sequences by PCR to detect and to type the infecting virus (EBV-A or ABV-B). Our results showed that amplifiable DNA has been obtained from 34/47 paraffin-embedded NPC biopsies while 13/47 of the others biopsies contained degraded and not amplifiable DNA. All the fresh biopsies allowed to obtain DNA with good quality. The EBV infection frequency in paraffin-embedded NPC biopsies is 35% while EBV is detected in all fresh biopsies (6/6). Our analyse also showed that the EBV-A is predominant in our population compared to EBV-B as it was shown in most countries of the world. This study clearly shows that PCR results obtained with paraffin-embedded NPC biopsies are divergeant from those obtained with fresh biopsies. Because of DNA degradation in paraffin-embedded NPC biopsies, the biology molecular results from that kind of samples is criticable. Moreover the results obtained from fresh NPC biopsies confirmed the quasi-constant association of EBV with undifferenciated carcinoma nasopharyngeal type.

  4. A new method for tumor detection using induced acoustic waves from tagged magnetic nanoparticles.

    PubMed

    Steinberg, Idan; Ben-David, Moshe; Gannot, Israel

    2012-07-01

    Magnetoacoustic detection is a new method for the noninvasive, early detection of cancer. It uses specific superparamagnetic nanoparticles (NPs) that bind to tumor sites together with magnetic excitation and acoustic detection of the tumor-NPs complex. This work tests the feasibility of such method theoretically and experimentally. An extensive analytic model has been developed that shows an ability to detect small tumors, a few centimeters deep inside the tissue. A series of experiments were conducted to validate the theoretical model. The performance of specially designed solenoids was measured, and the detection of the tumor presence in phantom was demonstrated. Experimental results agree well with the theoretical calculations, providing preliminary proof of concept. We demonstrate the ability to detect a 5-mm diameter spherical tumor located 3 cm deep. Instrumentation and measurements are inexpensive and accurate. The accuracy, speed, and costs of this method show the potential for early detection of cancer. A sensitive and cost effective magentoacoustic tumor detection method is presented in this paper using superparamagnetic nanoparticles. The method is demonstrated in a phantom by detecting a 5-mm diameter spherical tumor located 3 cm deep. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Dual fiber Bragg gratings configuration-based fiber acoustic sensor for low-frequency signal detection

    NASA Astrophysics Data System (ADS)

    Yang, Dong; Wang, Shun; Lu, Ping; Liu, Deming

    2014-11-01

    We propose and fabricate a new type fiber acoustic sensor based on dual fiber Bragg gratings (FBGs) configuration. The acoustic sensor head is constructed by putting the sensing cells enclosed in an aluminum cylinder space built by two Cband FBGs and a titanium diaphragm of 50 um thickness. One end of each FBG is longitudinally adhered to the diaphragm by UV glue. Both of the two FBGs are employed for reflecting light. The dual FBGs play roles not only as signal transmission system but also as sensing component, and they demodulate each other's optical signal mutually during the measurement. Both of the two FBGs are pre-strained and the output optical power experiences fluctuation in a linear relationship along with a variation of axial strain and surrounding acoustic interference. So a precise approach to measure the frequency and sound pressure of the acoustic disturbance is achieved. Experiments are performed and results show that a relatively flat frequency response in a range from 200 Hz to 1 kHz with the average signal-to-noise ratio (SNR) above 21 dB is obtained. The maximum sound pressure sensitivity of 11.35mV/Pa is achieved with the Rsquared value of 0.99131 when the sound pressure in the range of 87.7-106.6dB. It has potential applications in low frequency signal detection. Owing to its direct self-demodulation method, the sensing system reveals the advantages of easy to demodulate, good temperature stability and measurement reliability. Besides, performance of the proposed sensor could be improved by optimizing the parameters of the sensor, especially the diaphragm.

  6. Shear horizontal surface acoustic wave microsensor for Class A viral and bacterial detection.

    SciTech Connect

    Branch, Darren W.; Huber, Dale L.; Brozik, Susan Marie; Edwards, Thayne L.

    2008-10-01

    The rapid autonomous detection of pathogenic microorganisms and bioagents by field deployable platforms is critical to human health and safety. To achieve a high level of sensitivity for fluidic detection applications, we have developed a 330 MHz Love wave acoustic biosensor on 36{sup o} YX Lithium Tantalate (LTO). Each die has four delay-line detection channels, permitting simultaneous measurement of multiple analytes or for parallel detection of single analyte containing samples. Crucial to our biosensor was the development of a transducer that excites the shear horizontal (SH) mode, through optimization of the transducer, minimizing propagation losses and reducing undesirable modes. Detection was achieved by comparing the reference phase of an input signal to the phase shift from the biosensor using an integrated electronic multi-readout system connected to a laptop computer or PDA. The Love wave acoustic arrays were centered at 330 MHz, shifting to 325-328 MHz after application of the silicon dioxide waveguides. The insertion loss was -6 dB with an out-of-band rejection of 35 dB. The amplitude and phase ripple were 2.5 dB p-p and 2-3{sup o} p-p, respectively. Time-domain gating confirmed propagation of the SH mode while showing suppression of the triple transit. Antigen capture and mass detection experiments demonstrate a sensitivity of 7.19 {+-} 0.74{sup o} mm{sup 2}/ng with a detection limit of 6.7 {+-} 0.40 pg/mm{sup 2} for each channel.

  7. Detection of cadherin-17 in human colon cancer LIM1215 cell secretome and tumour xenograft-derived interstitial fluid and plasma.

    PubMed

    Bernhard, Oliver K; Greening, David W; Barnes, Thomas W; Ji, Hong; Simpson, Richard J

    2013-11-01

    Colorectal cancer (CRC), one of the most prevalent cancers in the western world, is treatable if detected early. However, 70% of CRC is detected at an advanced stage. This is largely due to the inadequacy of current faecal occult blood screening testing and costs involved in conducting population-based colonoscopy, the 'gold standard' for CRC detection. Another biomarker for CRC, carcinoembryonic antigen, while useful for monitoring CRC recurrence, is ineffective, lacking the specificity required early detection of CRC. For these reasons there is a need for more effective blood-based markers for early CRC detection. In this study we targeted glycoproteins secreted from the human colon carcinoma cell line LIM1215 as a source of potential CRC biomarkers. Secreted candidate glycoproteins were confirmed by MS and validated by Western blot analysis of tissue/tumour interstitial fluid (Tif) from LIM1215 xenograft tumours grown in immunocompromised mice. Overall, 39 glycoproteins were identified in LIM1215 culture media (CCM) and 5 glycoproteins in LIM1215 tumour xenograft Tif; of these, cadherin-17 (CDH17), galectin-3 binding protein (LGALS3BP), and tyrosine-protein kinase-like 7 (PTK7) were identified in both CM and glycosylation motifs. Swiss-Prot was used to annotate Tif. Many of the glycoproteins identified in this study (e.g., AREG, DSG2, EFNA1, EFNA3, EFNA4, EPHB4, ST14, and TIMP1) have been reported to be implicated in CRC biology. Interestingly, the cadherin-17 ectodomain, but not full length cadherin-17, was identified in CM, Tif and plasma derived from mice bearing the LIM1215 xenograft tumour. To our knowledge, this is the first report of the cadherin-17 ectodomain in plasma. In this study, we report for the first time that the presence of full-length cadherin-17 in exosomes released into the CM. This article is part of a Special Issue entitled: An Updated Secretome.

  8. DETECTION OF SIGNIFICANT VARIATION IN ACOUSTIC OUTPUT OF AN ELECTROMAGNETIC LITHOTRIPTER

    PubMed Central

    Pishchalnikov, Yuri A.; McAteer, James A.; VonDerHaar, R. Jason; Pishchalnikova, Irina V.; Williams, James C.; Evan, Andrew P.

    2008-01-01

    Purpose Here we describe observation of significant instability in the output of an electromagnetic lithotripter, instability of a form that was not detected by routine methods of assessment, but was observed only by collecting many consecutive shock waves in non-stop regime. Materials and Methods A Dornier DoLi-50 lithotripter used exclusively for basic research was tested and approved by the regional technician. This assessment included hydrophone measures at selected power levels, with collection of about 25 shock waves per setting. Subsequent laboratory characterization employed a fiber optic hydrophone (FOPH-500) and a storage oscilloscope for data acquisition. Waveforms were collected non-stop for hundreds of pulses. Results Output was typically stable for >1000 shock waves, but substantial fluctuations in acoustic pressures were also observed. For example, output at power level 3 (P+ normally 44 ±2 MPa) increased dramatically (P+ >50 MPa) or dropped significantly (P+ ~30 MPa) for hundreds of shock waves. The cause of the instability was eventually traced to a faulty power supply of the lithotripter. Conclusions Instability in acoustic output of a lithotripter can occur and not be detected by routine methods of assessment. Collection of waveforms in non-stop regime dramatically increases the sampling size, improving the detection of instability. Had the instability we observed occurred during patient treatment, the energy delivered may well have exceeded the planned dose. Since the potential for adverse effects in lithotripsy increases as dose is increased, it would be valuable to develop ways to better monitor the acoustic output of lithotripters. PMID:17070315

  9. Acoustic Methods to Monitor Protein Crystallization and to Detect Protein Crystals in Suspensions of Agarose and Lipidic Cubic Phase.

    PubMed

    Ericson, Daniel L; Yin, Xingyu; Scalia, Alexander; Samara, Yasmin N; Stearns, Richard; Vlahos, Harry; Ellson, Richard; Sweet, Robert M; Soares, Alexei S

    2016-02-01

    Improvements needed for automated crystallography include crystal detection and crystal harvesting. A technique that uses acoustic droplet ejection to harvest crystals was previously reported. Here a method is described for using the same acoustic instrument to detect protein crystals and to monitor crystal growth. Acoustic pulses were used to monitor the progress of crystallization trials and to detect the presence and location of protein crystals. Crystals were detected, and crystallization was monitored in aqueous solutions and in lipidic cubic phase. Using a commercially available acoustic instrument, crystals measuring ~150 µm or larger were readily detected. Simple laboratory techniques were used to increase the sensitivity to 50 µm by suspending the crystals away from the plastic surface of the crystallization plate. This increased the sensitivity by separating the strong signal generated by the plate bottom that can mask the signal from small protein crystals. It is possible to further boost the acoustic reflection from small crystals by reducing the wavelength of the incident sound pulse, but our current instrumentation does not allow this option. In the future, commercially available sound-emitting transducers with a characteristic frequency near 300 MHz should detect and monitor the growth of individual 3 µm crystals. © 2015 Society for Laboratory Automation and Screening.

  10. Acoustic Methods to Monitor Protein Crystallization and to Detect Protein Crystals in Suspensions of Agarose and Lipidic Cubic Phase

    SciTech Connect

    Ericson, Daniel L.; Yin, Xingyu; Scalia, Alexander; Samara, Yasmin N.; Stearns, Richard; Vlahos, Harry; Ellson, Richard; Sweet, Robert M.; Soares, Alexei S.

    2016-02-01

    Improvements needed for automated crystallography include crystal detection and crystal harvesting. A technique that uses acoustic droplet ejection to harvest crystals was previously reported. Here a method is described for using the same acoustic instrument to detect protein crystals and to monitor crystal growth. Acoustic pulses were used to monitor the progress of crystallization trials and to detect the presence and location of protein crystals. Crystals were detected, and crystallization was monitored in aqueous solutions and in lipidic cubic phase. Using a commercially available acoustic instrument, crystals measuring ~150 µm or larger were readily detected. Simple laboratory techniques were used to increase the sensitivity to 50 µm by suspending the crystals away from the plastic surface of the crystallization plate. This increased the sensitivity by separating the strong signal generated by the plate bottom that can mask the signal from small protein crystals. It is possible to further boost the acoustic reflection from small crystals by reducing the wavelength of the incident sound pulse, but our current instrumentation does not allow this option. In the future, commercially available sound-emitting transducers with a characteristic frequency near 300 MHz should detect and monitor the growth of individual 3 µm crystals.

  11. Study of Acoustic Ultra-High Energy Neutrino Detection Phase II

    NASA Astrophysics Data System (ADS)

    Kurahashi, N.

    The Study of Acoustic Ultra-high energy Neutrino Detection has started its second phase (SAUND II). Although the general location of the hydrophones has not changed, SAUND II uses a new hydrophone array that uses a fiber-optic cable to connect to shore. Changes associated with the new hydrophone array as well as a new DAQ system that incorporates multiprocessor computing and accurate GPS timestamping are reported. Initial data of lightbulb calibration conducted in March 2005, and a future plan for a more accurate calibration are also presented.

  12. A Fiber-Optic Sensor for Acoustic Emission Detection in a High Voltage Cable System

    PubMed Central

    Zhang, Tongzhi; Pang, Fufei; Liu, Huanhuan; Cheng, Jiajing; Lv, Longbao; Zhang, Xiaobei; Chen, Na; Wang, Tingyun

    2016-01-01

    We have proposed and demonstrated a Michelson interferometer-based fiber sensor for detecting acoustic emission generated from the partial discharge (PD) of the accessories of a high-voltage cable system. The developed sensor head is integrated with a compact and relatively high sensitivity cylindrical elastomer. Such a sensor has a broadband frequency response and a relatively high sensitivity in a harsh environment under a high-voltage electric field. The design and fabrication of the sensor head integrated with the cylindrical elastomer is described, and a series of experiments was conducted to evaluate the sensing performance. The experimental results demonstrate that the sensitivity of our developed sensor for acoustic detection of partial discharges is 1.7 rad/(m⋅Pa). A high frequency response up to 150 kHz is achieved. Moreover, the relatively high sensitivity for the detection of PD is verified in both the laboratory environment and gas insulated switchgear. The obtained results show the great potential application of a Michelson interferometer-based fiber sensor integrated with a cylindrical elastomer for in-situ monitoring high-voltage cable accessories for safety work. PMID:27916900

  13. Study on acoustic detections of Nd:YAG laser induced breakdown at different wavelengths

    NASA Astrophysics Data System (ADS)

    Putri, K. Y.; Yulianto, N.; Herbani, Y.

    2017-04-01

    Laser-induced breakdown detection (LIBD) is among many techniques utilizing laser beam to characterize nanoparticles in solution. It is based on the detection of plasma formation resulted from the interaction between particles and laser beam. In acoustic LIBD, the acoustic signal which accompanies the plasma formation is detected by a microphone. In this study, a 1064 nm pulsed laser was used as the laser source for LIBD system instead of the frequently used 532 nm. The presence of colloids in filtered and unfiltered water was investigated using the new system and the result was compared with those from conventional system. The S-curves from 1064 nm system showed similar trend with S-curves from 532 nm system. The presence of larger nanoparticles in unfiltered water resulted in lower breakdown threshold energy. However, the breakdown threshold energy of both filtered and unfiltered water was much higher in the 1064 nm LIBD system. The shifting was attributed to the high absorbance of water at 1064 nm. This research proved the possibility of using 1064 nm pulsed Nd:YAG laser as an alternative wavelength source for LIBD system, nevertheless various setup arrangement might be needed.

  14. A real-time method for autonomous passive acoustic detection-classification of humpback whales.

    PubMed

    Abbot, Ted A; Premus, Vincent E; Abbot, Philip A

    2010-05-01

    This paper describes a method for real-time, autonomous, joint detection-classification of humpback whale vocalizations. The approach adapts the spectrogram correlation method used by Mellinger and Clark [J. Acoust. Soc. Am. 107, 3518-3529 (2000)] for bowhead whale endnote detection to the humpback whale problem. The objective is the implementation of a system to determine the presence or absence of humpback whales with passive acoustic methods and to perform this classification with low false alarm rate in real time. Multiple correlation kernels are used due to the diversity of humpback song. The approach also takes advantage of the fact that humpbacks tend to vocalize repeatedly for extended periods of time, and identification is declared only when multiple song units are detected within a fixed time interval. Humpback whale vocalizations from Alaska, Hawaii, and Stellwagen Bank were used to train the algorithm. It was then tested on independent data obtained off Kaena Point, Hawaii in February and March of 2009. Results show that the algorithm successfully classified humpback whales autonomously in real time, with a measured probability of correct classification in excess of 74% and a measured probability of false alarm below 1%.

  15. Cavitation-enhanced back projection for acoustic detection of attenuating structures

    NASA Astrophysics Data System (ADS)

    Ramaekers, Pascal; de Greef, Martijn; Moonen, Chrit T. W.; Ries, Mario

    2017-03-01

    Current methodology for the detection of attenuating structures in abdominal HIFU interventions requires lengthy, elaborate image analysis, which is undesired in a clinical setting. In this work, a method for the acoustic detection of attenuating structures in the beam path of the therapeutic HIFU array is described. The proposed method is used to determine binary apodizations that can be applied to the HIFU transducer for intercostal shot positions. Such a binary apodization was determined in vivo on an anesthetized pig under controlled breathing. Validation of the proposed method was done by comparing the binary apodization based on the proposed method to a binary apodization obtained using methodology based on MR image analysis and a collision detection algorithm. The proposed acoustical method provided a binary apodization that was over 90% similar to the apodization obtained using the image analysis-based method. Additionally, the proposed method can provide a measure of the amount of attenuation that each respective transducer element encounters in its beam path towards the focus.

  16. A Fiber-Optic Sensor for Acoustic Emission Detection in a High Voltage Cable System.

    PubMed

    Zhang, Tongzhi; Pang, Fufei; Liu, Huanhuan; Cheng, Jiajing; Lv, Longbao; Zhang, Xiaobei; Chen, Na; Wang, Tingyun

    2016-11-30

    We have proposed and demonstrated a Michelson interferometer-based fiber sensor for detecting acoustic emission generated from the partial discharge (PD) of the accessories of a high-voltage cable system. The developed sensor head is integrated with a compact and relatively high sensitivity cylindrical elastomer. Such a sensor has a broadband frequency response and a relatively high sensitivity in a harsh environment under a high-voltage electric field. The design and fabrication of the sensor head integrated with the cylindrical elastomer is described, and a series of experiments was conducted to evaluate the sensing performance. The experimental results demonstrate that the sensitivity of our developed sensor for acoustic detection of partial discharges is 1.7 rad / ( m ⋅ Pa ) . A high frequency response up to 150 kHz is achieved. Moreover, the relatively high sensitivity for the detection of PD is verified in both the laboratory environment and gas insulated switchgear. The obtained results show the great potential application of a Michelson interferometer-based fiber sensor integrated with a cylindrical elastomer for in-situ monitoring high-voltage cable accessories for safety work.

  17. Deep Recurrent Neural Network-Based Autoencoders for Acoustic Novelty Detection

    PubMed Central

    Vesperini, Fabio; Schuller, Björn

    2017-01-01

    In the emerging field of acoustic novelty detection, most research efforts are devoted to probabilistic approaches such as mixture models or state-space models. Only recent studies introduced (pseudo-)generative models for acoustic novelty detection with recurrent neural networks in the form of an autoencoder. In these approaches, auditory spectral features of the next short term frame are predicted from the previous frames by means of Long-Short Term Memory recurrent denoising autoencoders. The reconstruction error between the input and the output of the autoencoder is used as activation signal to detect novel events. There is no evidence of studies focused on comparing previous efforts to automatically recognize novel events from audio signals and giving a broad and in depth evaluation of recurrent neural network-based autoencoders. The present contribution aims to consistently evaluate our recent novel approaches to fill this white spot in the literature and provide insight by extensive evaluations carried out on three databases: A3Novelty, PASCAL CHiME, and PROMETHEUS. Besides providing an extensive analysis of novel and state-of-the-art methods, the article shows how RNN-based autoencoders outperform statistical approaches up to an absolute improvement of 16.4% average F-measure over the three databases. PMID:28182121

  18. Detection of hypoxia by measurement of DNA damage in individual cells from spheroids and murine tumours exposed to bioreductive drugs. II. RSU 1069.

    PubMed Central

    Olive, P. L.

    1995-01-01

    The ability of the dual-function bioreductive drug, RSU 1069, to identify hypoxic cells in multicell spheroids and murine SCCVII squamous cell carcinomas was examined using the alkaline comet method. This method applies fluorescence microscopy and image analysis to measure the amount of migration of DNA from individual cells embedded in agarose and exposed to an electric field. Chinese hamster V79 spheroids, exposed for 1 h to RSU 1069, were disaggregated and individual cells were analysed for DNA damage. Following exposure to RSU 1069, aerobic cells exhibited DNA single-strand breaks while DNA interstrand cross-links were produced in hypoxic cells. Spheroids containing 40-50% radiobiologically hypoxic cells exhibited 20-30% cells with cross-links and the remainder showed only strand breaks. Similar patterns of damage were observed in SCCVII tumours growing in C3H mice exposed to 25-200 mg kg-1. Subsequent irradiation of cells in vitro greatly improved the distinction between aerobic and hypoxic cells from spheroids or SCCVII murine tumours exposed to RSU 1069, especially after treatment with low drug doses. The pattern of damage was relatively stable for at least 4 h after drug injection. Results indicate that detection of hypoxic cells in solid tumours may be practical using this agent or a prodrug, PD 144872, selected for phase I clinical testing as a hypoxic cell radiosensitiser and cytotoxin in human tumours. PMID:7880736

  19. Detection of hypoxia by measurement of DNA damage in individual cells from spheroids and murine tumours exposed to bioreductive drugs. II. RSU 1069.

    PubMed

    Olive, P L

    1995-03-01

    The ability of the dual-function bioreductive drug, RSU 1069, to identify hypoxic cells in multicell spheroids and murine SCCVII squamous cell carcinomas was examined using the alkaline comet method. This method applies fluorescence microscopy and image analysis to measure the amount of migration of DNA from individual cells embedded in agarose and exposed to an electric field. Chinese hamster V79 spheroids, exposed for 1 h to RSU 1069, were disaggregated and individual cells were analysed for DNA damage. Following exposure to RSU 1069, aerobic cells exhibited DNA single-strand breaks while DNA interstrand cross-links were produced in hypoxic cells. Spheroids containing 40-50% radiobiologically hypoxic cells exhibited 20-30% cells with cross-links and the remainder showed only strand breaks. Similar patterns of damage were observed in SCCVII tumours growing in C3H mice exposed to 25-200 mg kg-1. Subsequent irradiation of cells in vitro greatly improved the distinction between aerobic and hypoxic cells from spheroids or SCCVII murine tumours exposed to RSU 1069, especially after treatment with low drug doses. The pattern of damage was relatively stable for at least 4 h after drug injection. Results indicate that detection of hypoxic cells in solid tumours may be practical using this agent or a prodrug, PD 144872, selected for phase I clinical testing as a hypoxic cell radiosensitiser and cytotoxin in human tumours.

  20. Snapping shrimp noise mitigation based on statistical detection in underwater acoustic orthogonal frequency division multiplexing systems

    NASA Astrophysics Data System (ADS)

    Kim, Hyeonsu; Seo, Jongpil; Ahn, Jongmin; Chung, Jaehak

    2017-07-01

    We propose a mitigation scheme for snapping shrimp noise when it corrupts an orthogonal frequency division multiplexing (OFDM) signal in underwater acoustic communication systems. The OFDM signal distorted by the snapping shrimp noise is filtered by a band-stop filter. The snapping shrimp noises in the filtered signal are detected by a detector with a constant false alarm rate whose threshold is derived theoretically from the statistics of the background noise. The detected signals are reconstructed by a simple reconstruction method. The proposed scheme has a higher detection capability and a lower mean square error of the channel estimation for simulated data and a lower bit error rate for practical ocean OFDM data collected in northern East China Sea than the conventional noise-mitigating methods.

  1. Assisting the Visually Impaired: Obstacle Detection and Warning System by Acoustic Feedback

    PubMed Central

    Rodríguez, Alberto; Yebes, J. Javier; Alcantarilla, Pablo F.; Bergasa, Luis M.; Almazán, Javier; Cela, Andrés

    2012-01-01

    The aim of this article is focused on the design of an obstacle detection system for assisting visually impaired people. A dense disparity map is computed from the images of a stereo camera carried by the user. By using the dense disparity map, potential obstacles can be detected in 3D in indoor and outdoor scenarios. A ground plane estimation algorithm based on RANSAC plus filtering techniques allows the robust detection of the ground in every frame. A polar grid representation is proposed to account for the potential obstacles in the scene. The design is completed with acoustic feedback to assist visually impaired users while approaching obstacles. Beep sounds with different frequencies and repetitions inform the user about the presence of obstacles. Audio bone conducting technology is employed to play these sounds without interrupting the visually impaired user from hearing other important sounds from its local environment. A user study participated by four visually impaired volunteers supports the proposed system. PMID:23247413

  2. ADRPM-VII applied to the long-range acoustic detection problem

    NASA Technical Reports Server (NTRS)

    Shalis, Edward; Koenig, Gerald

    1990-01-01

    An acoustic detection range prediction model (ADRPM-VII) has been written for IBM PC/AT machines running on the MS-DOS operating system. The software allows the user to predict detection distances of ground combat vehicles and their associated targets when they are involved in quasi-military settings. The program can also calculate individual attenuation losses due to spherical spreading, atmospheric absorption, ground reflection and atmospheric refraction due to temperature and wind gradients while varying parameters effecting the source-receiver problem. The purpose here is to examine the strengths and limitations of ADRPM-VII by modeling the losses due to atmospheric refraction and ground absorption, commonly known as excess attenuation, when applied to the long range detection problem for distances greater than 3 kilometers.

  3. Clinical features of gastroenteropancreatic tumours

    PubMed Central

    Czarnywojtek, Agata; Bączyk, Maciej; Ziemnicka, Katarzyna; Fischbach, Jakub; Wrotkowska, Elżbieta; Ruchała, Marek

    2015-01-01

    Gastroenteropancreatic (GEP) endocrine tumours (carcinoids and pancreatic islet cell tumours) are composed of multipotent neuroendocrine cells that exhibit a unique ability to produce, store, and secrete biologically active substances and cause distinct clinical syndromes. The classification of GEP tumours as functioning or non-functioning is based on the presence of symptoms that accompany these syndromes secondary to the secretion of hormones, neuropeptides and/or neurotransmitters (functioning tumours). Non-functioning tumours are considered to be neoplasms of neuroendocrine differentiation that are not associated with obvious symptoms attributed to the hypersecretion of metabolically active substances. However, a number of these tumours are either capable of producing low levels of such substances, which can be detected by immunohistochemistry but are insufficient to cause symptoms related to a clinical syndrome, or alternatively, they may secrete substances that are either metabolically inactive or inappropriately processed. In some cases, GEP tumours are not associated with the production of any hormone or neurotransmitter. Both functioning and non-functioning tumours can also produce symptoms due to mass effects compressing vital surrounding structures. Gastroenteropancreatic tumours are usually classified further according to the anatomic site of origin: foregut (including respiratory tract, thymus, stomach, duodenum, and pancreas), midgut (including small intestine, appendix, and right colon), and hindgut (including transverse colon, sigmoid, and rectum). Within these subgroups the biological and clinical characteristics of the tumours vary considerably, but this classification is still in use because a significant number of previous studies, mainly observational, have used it extensively. PMID:26516377

  4. Delay-based ordered detection for layered space-time signals of underwater acoustic communications.

    PubMed

    Zhang, Xin; Zhang, Xiaoji; Chen, Shaolu

    2016-10-01

    The long relative propagation delays between the underwater acoustic channels poses a challenge to the detection of the multiple-input multiple-output signals but also gives a chance for a better space-time signal processing scheme. This paper proposes a detection ordering scheme for the layered space-time detection with the successive interference cancellation (SIC) algorithm, where the channel relative delays leading asynchronous arrival of the layered signals are utilized to arrange the detection order that is quite important for a SIC detection. This delay-based ordering is demonstrated as an optimal one for minimizing the detection error probability via the geometrically based model of the SIC detection. The complexity and calculation of the ordering procedure are significantly decreased by means of the delay estimations of the sub-channels. An iterative layered space-time detector combining the delay-base ordered SIC algorithm with the iterative block decision feedback equalizer is employed, where the iterative equalizer is utilized for the cancellation of the multipath interference and the asynchronous arrival interference. Numerical results show that up to 4 dB performance gain obtained by the delay-based ordered SIC detection for a 2 × 2 MIMO system.

  5. Low power underwater acoustic DPSK detection: Theoretical prediction and experimental results

    NASA Astrophysics Data System (ADS)

    Dunne, Andrew

    This thesis presents two methods of analyzing the effectiveness of a prototype differential phase-shift keying (DPSK) detection circuit. The first method is to make modifications to the existing hardware to reliably output and record the cross-correlation values of the DPSK detection process. The second method is to write a MATLAB detection algorithm which accurately simulates the detection results of the hardware system without the need of any electronics. These two systems were tested and verified with a bench test using computer generated DPSK signals. The hardware system was tested using real acoustic data from shallow and deep water at-sea tests to determine the effectiveness of the DPSK detection circuit in different ocean environments. The hydrophone signals from the tests were recorded so that the cross-correlation values could be verified using the MATLAB detector. As a result of this study, these two systems provided more insight into how well the DPSK detection prototype works and helped to identify ways of improving the detection reliability and overall performance of the prototype DPSK detection circuit.

  6. Detecting temporal changes in acoustic scenes: The variable benefit of selective attention.

    PubMed

    Demany, Laurent; Bayle, Yann; Puginier, Emilie; Semal, Catherine

    2017-09-01

    Four experiments investigated change detection in acoustic scenes consisting of a sum of five amplitude-modulated pure tones. As the tones were about 0.7 octave apart and were amplitude-modulated with different frequencies (in the range 2-32 Hz), they were perceived as separate streams. Listeners had to detect a change in the frequency (experiments 1 and 2) or the shape (experiments 3 and 4) of the modulation of one of the five tones, in the presence of an informative cue orienting selective attention either before the scene (pre-cue) or after it (post-cue). The changes left intensity unchanged and were not detectable in the spectral (tonotopic) domain. Performance was much better with pre-cues than with post-cues. Thus, change deafness was manifest in the absence of an appropriate focusing of attention when the change occurred, even though the streams and the changes to be detected were acoustically very simple (in contrast to the conditions used in previous demonstrations of change deafness). In one case, the results were consistent with a model based on the assumption that change detection was possible if and only if attention was endogenously focused on a single tone. However, it was also found that changes resulting in a steepening of amplitude rises were to some extent able to draw attention exogenously. Change detection was not markedly facilitated when the change produced a discontinuity in the modulation domain, contrary to what could be expected from the perspective of predictive coding. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. To see or not to see: investigating detectability of Ganges River dolphins using a combined visual-acoustic survey.

    PubMed

    Richman, Nadia I; Gibbons, James M; Turvey, Samuel T; Akamatsu, Tomonari; Ahmed, Benazir; Mahabub, Emile; Smith, Brian D; Jones, Julia P G

    2014-01-01

    Detection of animals during visual surveys is rarely perfect or constant, and failure to account for imperfect detectability affects the accuracy of abundance estimates. Freshwater cetaceans are among the most threatened group of mammals, and visual surveys are a commonly employed method for estimating population size despite concerns over imperfect and unquantified detectability. We used a combined visual-acoustic survey to estimate detectability of Ganges River dolphins (Platanista gangetica gangetica) in four waterways of southern Bangladesh. The combined visual-acoustic survey resulted in consistently higher detectability than a single observer-team visual survey, thereby improving power to detect trends. Visual detectability was particularly low for dolphins close to meanders where these habitat features temporarily block the view of the preceding river surface. This systematic bias in detectability during visual-only surveys may lead researchers to underestimate the importance of heavily meandering river reaches. Although the benefits of acoustic surveys are increasingly recognised for marine cetaceans, they have not been widely used for monitoring abundance of freshwater cetaceans due to perceived costs and technical skill requirements. We show that acoustic surveys are in fact a relatively cost-effective approach for surveying freshwater cetaceans, once it is acknowledged that methods that do not account for imperfect detectability are of limited value for monitoring.

  8. To See or Not to See: Investigating Detectability of Ganges River Dolphins Using a Combined Visual-Acoustic Survey

    PubMed Central

    Richman, Nadia I.; Gibbons, James M.; Turvey, Samuel T.; Akamatsu, Tomonari; Ahmed, Benazir; Mahabub, Emile; Smith, Brian D.; Jones, Julia P. G.

    2014-01-01

    Detection of animals during visual surveys is rarely perfect or constant, and failure to account for imperfect detectability affects the accuracy of abundance estimates. Freshwater cetaceans are among the most threatened group of mammals, and visual surveys are a commonly employed method for estimating population size despite concerns over imperfect and unquantified detectability. We used a combined visual-acoustic survey to estimate detectability of Ganges River dolphins (Platanista gangetica gangetica) in four waterways of southern Bangladesh. The combined visual-acoustic survey resulted in consistently higher detectability than a single observer-team visual survey, thereby improving power to detect trends. Visual detectability was particularly low for dolphins close to meanders where these habitat features temporarily block the view of the preceding river surface. This systematic bias in detectability during visual-only surveys may lead researchers to underestimate the importance of heavily meandering river reaches. Although the benefits of acoustic surveys are increasingly recognised for marine cetaceans, they have not been widely used for monitoring abundance of freshwater cetaceans due to perceived costs and technical skill requirements. We show that acoustic surveys are in fact a relatively cost-effective approach for surveying freshwater cetaceans, once it is acknowledged that methods that do not account for imperfect detectability are of limited value for monitoring. PMID:24805782

  9. Optimised nuclear medicine method for tumour marking and sentinel node detection in occult primary breast lesions.

    PubMed

    De Cicco, C; Trifirò, G; Intra, M; Marotta, G; Ciprian, A; Frasson, A; Prisco, G; Luini, A; Viale, G; Paganelli, G

    2004-03-01

    The aim of this study was to evaluate the feasibility of sentinel node (SN) biopsy in occult breast lesions with different radiopharmaceuticals and to establish the optimal lymphoscintigraphic method to detect both occult lesions and SNs (SNOLL: sentinel node and occult lesion localisation). Two hundred and twenty-seven consecutive patients suspected to have clinically occult breast carcinoma were enrolled in the study. In addition to the radioguided occult lesion localisation (ROLL) procedure, using macroaggregates of technetium-99m labelled human serum albumin (MAA) injected directly into the lesion, lymphoscintigraphy was performed with nanocolloids (NC) injected in a peritumoral (group I) or a subdermal site (group II). In group III, a sole injection of NC was done into the lesion in order to perform both ROLL and SNOLL. Overall, axillary SNs were identified in 205 of the 227 patients (90.3%). In 12/62 (19.4%) patients of group I and 9/79 (11.4%) patients of group III, radioactive nodes were not visualised, whereas SNs were successfully localised in 85 of 86 patients of group II ( P<0.001). Pathological findings revealed breast carcinoma in 148/227 patients (65.2%) and benign lesions in 79 (34.8%). A total of 131 axillary SNs were removed in 118 patients with breast carcinoma; intraoperative examination of the SNs revealed metastatic involvement in 16 out of 96 cases of invasive carcinoma (16.7%). It is concluded that the combination of the ROLL procedure with direct injection of MAA into the lesion and lymphoscintigraphy performed with subdermal injection of radiocolloids represents the method of choice for accurate localisation of both non-palpable lesions and SNs.

  10. Guided shear horizontal surface acoustic wave sensors for chemical and biochemical detection in liquids.

    PubMed

    Josse, F; Bender, F; Cernose, R W

    2001-12-15

    The design and performance of guided shear horizontal surface acoustic wave (guided SH-SAW) devices on LiTaO3 substrates are investigated for high-sensitivity chemical and biochemical sensors in liquids. Despite their structural similarity to Rayleigh SAW, SH-SAWs often propagate slightly deeper within the substrate, hence preventing the implementation of high-sensitivity detectors. The device sensitivity to mass and viscoelastic loading is increased using a thin guiding layer on the device surface. Because of their relatively low shear wave velocity, various polymers including poly(methyl methacrylate) (PMMA) and cyanoethyl cellulose (cured or cross-linked) are investigated as the guiding layers to trap the acoustic energy near the sensing surface. The devices have been tested in biosensing and chemical sensing experiments. Suitable design principles for these applications are discussed with regard to wave guidance, electrical passivation of the interdigital transducers from the liquid environments, acoustic loss, and sensor signal distortion. In biosensing experiments, using near-optimal PMMA thickness of approximately 2 microm, mass sensitivity greater than 1500 Hz/(ng/mm2) is demonstrated, resulting in a minimum detection limit less than 20 pg/mm2. For chemical sensor experiments, it is found that optimal waveguide thickness must be modified to account for the chemically sensitive layer which also acts to guide the SH-SAW. A detection limit of 780 (3 x peak-to-peak noise) or 180 ppb (3 x rms noise) is estimated from the present measurements for some organic compounds in water.

  11. Identification of six potential markers for the detection of circulating canine mammary tumour cells in the peripheral blood identified by microarray analysis.

    PubMed

    da Costa, A; Lenze, D; Hummel, M; Kohn, B; Gruber, A D; Klopfleisch, R

    2012-01-01

    The presence of circulating tumour cells (CTCs) in the peripheral blood is a prognostic factor for survival of human breast cancer patients. CTCs in the peripheral blood of dogs with mammary tumours have not been reported definitively. The present pilot study identifies mRNA markers for CTCs by comparing the transcriptome of canine mammary carcinoma cell lines CMM26 and CMM115 and peripheral blood leucocytes (PBLs). Genes with a 200-fold or higher mRNA expression in carcinoma cell lines were tested for specificity and sensitivity to detect CTCs using reverse transcriptase polymerase chain reaction (PCR). Six mRNA markers, AGR2, ATP8B1, CRYAB, F3 IRX3 and SLC1A1 were expressed in cell lines, but not PBL. All PCRs were able to detect one carcinoma cell admixed in 10(6) or more PBLs. The six mRNA markers may be suitable for detection of canine mammary CTCs and allow the analysis of their spatiotemporal distribution in dogs with mammary tumours.

  12. Detection of explosive events by monitoring acoustically-induced geomagnetic perturbations

    SciTech Connect

    Lewis, J P; Rock, D R; Shaeffer, D L; Warshaw, S I

    1999-10-07

    The Black Thunder Coal Mine (BTCM) near Gillette, Wyoming was used as a test bed to determine the feasibility of detecting explosion-induced geomagnetic disturbances with ground-based induction magnetometers. Two magnetic observatories were fielded at distances of 50 km and 64 km geomagnetically north from the northernmost edge of BTCM. Each observatory consisted of three separate but mutually orthogonal magnetometers, Global Positioning System (GPS) timing, battery and solar power, a data acquisition and storage system, and a three-axis seismometer. Explosions with yields of 1 to 3 kT of TNT equivalent occur approximately every three weeks at BTCM. We hypothesize that explosion-induced acoustic waves propagate upward and interact collisionally with the ionosphere to produce ionospheric electron density (and concomitant current density) perturbations which act as sources for geomagnetic disturbances. These disturbances propagate through an ionospheric Alfven waveguide that we postulate to be leaky (due to the imperfectly conducting lower ionospheric boundary). Consequently, wave energy may be observed on the ground. We observed transient pulses, known as Q-bursts, with pulse widths about 0.5 s and with spectral energy dominated by the Schumann resonances. These resonances appear to be excited in the earth-ionosphere cavity by Alfven solitons that may have been generated by the explosion-induced acoustic waves reaching the ionospheric E and F regions and that subsequently propagate down through the ionosphere to the atmosphere. In addition, we observe late time (> 800 s) ultra low frequency (ULF) geomagnetic perturbations that appear to originate in the upper F region ({approximately}300 km) and appear to be caused by the explosion-induced acoustic wave interacting with that part of the ionosphere. We suggest that explosion-induced Q-bursts may be discriminated from naturally occurring Q-bursts by association of the former with the late time explosion-induced ULF

  13. A novel differential optical beam deflection detection system for measuring laser-generated surface acoustic waves

    NASA Astrophysics Data System (ADS)

    Shi, Yifei; Shen, Zhonghua; Ni, Xiaowu; Lu, Jian

    2008-03-01

    As the application of the laser ultrasonics developed rapidly, there is especial call for more sensitive and convenient optical installation to detect the ultrasonic waves induced by pulsed laser. The optical beam deflection (OBD) methods have abstracted the interest of people for many years for their merits over the interference method. In this paper a novel differential OBD detection system for measuring laser-generated surface acoustic waves (SAW) is presented. The detection principle of this optical system is discussed in detail according to the scheme. And we get the linear relation between the physical parameter of the SAW and the output of the detection system. For confirm the conclusion the Monte Carlo computation method is utilized to simulate the ray propagation in the system, adding the consideration of the light spot distribution of the detection laser. The numerical result agrees with the analytic method. The linear relation between the detection system output current and the deflection angle induced by SAW is validated. Furthermore, the sensitivity and the spatial resolution of the system proposed are also calculated for comparing with the other OBD methods. The results show that this differential optical beam deflection detection system is more sensitive to the small disturbance and has higher space resolution. It has considerable potential in ultrasonic measurement.

  14. Mismatch negativity to acoustical illusion of beat: how and where the change detection takes place?

    PubMed

    Chakalov, Ivan; Paraskevopoulos, Evangelos; Wollbrink, Andreas; Pantev, Christo

    2014-10-15

    In case of binaural presentation of two tones with slightly different frequencies the structures of brainstem can no longer follow the interaural time differences (ITD) resulting in an illusionary perception of beat corresponding to frequency difference between the two prime tones. Hence, the beat-frequency does not exist in the prime tones presented to either ear. This study used binaural beats to explore the nature of acoustic deviance detection in humans by means of magnetoencephalography (MEG). Recent research suggests that the auditory change detection is a multistage process. To test this, we employed 26 Hz-binaural beats in a classical oddball paradigm. However, the prime tones (250 Hz and 276 Hz) were switched between the ears in the case of the deviant-beat. Consequently, when the deviant is presented, the cochleae and auditory nerves receive a "new afferent", although the standards and the deviants are heard identical (26 Hz-beats). This allowed us to explore the contribution of auditory periphery to change detection process, and furthermore, to evaluate its influence on beats-related auditory steady-state responses (ASSRs). LORETA-source current density estimates of the evoked fields in a typical mismatch negativity time-window (MMN) and the subsequent difference-ASSRs were determined and compared. The results revealed an MMN generated by a complex neural network including the right parietal lobe and the left middle frontal gyrus. Furthermore, difference-ASSR was generated in the paracentral gyrus. Additionally, psychophysical measures showed no perceptual difference between the standard- and deviant-beats when isolated by noise. These results suggest that the auditory periphery has an important contribution to novelty detection already at sub-cortical level. Overall, the present findings support the notion of hierarchically organized acoustic novelty detection system.

  15. Imaging biomarkers of brain tumour margin and tumour invasion.

    PubMed

    Price, S J; Gillard, J H

    2011-12-01

    Invasion of tumour cells into the normal brain is one of the major reasons of treatment failure for gliomas. Although there is a good understanding of the molecular and cellular processes that occur during this invasion, it is not possible to detect the extent of the tumour with conventional imaging. However, there is an understanding that the degree of invasion differs with individual tumours, and yet they are all treated the same. Newer imaging techniques that probe the pathological changes within tumours may be suitable biomarkers for invasion. Imaging methods are now available that can detect subtle changes in white matter organisation (diffusion tensor imaging), tumour metabolism and cellular proliferation (using MR spectroscopy and positron emission tomography) occurring in regions of tumour that cannot be detected by conventional imaging. The role of such biomarkers of invasion should allow better delineation of tumour margins, which should improve treatment planning (especially surgery and radiotherapy) and provide information on the invasiveness of an individual tumour to help select the most appropriate therapy and help stratify patients for clinical trials.

  16. Diagnosis of Ewing's sarcoma and peripheral neuroectodermal tumour based on the detection of t(11;22) using fluorescence in situ hybridisation.

    PubMed Central

    Taylor, C.; Patel, K.; Jones, T.; Kiely, F.; De Stavola, B. L.; Sheer, D.

    1993-01-01

    Fluorescence in situ hybridisation (FISH) has been used increasingly for gene mapping and ordering probes on interphase and metaphase preparations. The association of consistent chromosomal aberrations with certain malignancies allows the possibility of using interphase cytogenetics as a diagnostic tool. In small round cell tumours of children accurate diagnosis may be difficult using existing methods. We have therefore evaluated the diagnostic potential of this technique when applied to the characteristic t(11;22) found in Ewing's sarcoma and peripheral neuroectodermal tumour (ES and PNET). Interphase nuclei were prepared from normal human foreskin fibroblasts (HFF), two Ewing's sarcoma cell lines and several fresh tumour biopsies. DNA probes each side of the breakpoint at 22q12 were labelled with biotin and digoxygenin, hybridised to chromosomes in interphase and detected in different colours. Measurements between pairs of signals arising from each copy of chromosome 22 were taken and statistical analysis performed. There was a highly significant difference (P < 0.0001) between the two populations of measurements obtained (from nuclei with and without the t(11;22)). Studying four tumours and one further ES line (blind) it was found that median values from 30 nuclei could correctly identify which samples contained the t(11;22). This application of interphase cytogenetics contributes a reliable, accurate and conceptually simple diagnostic test for ES and PNET. It may now be applied to other tumours with characteristic translocations, amplifications or deletions when suitable probes are available. This approach is likely to become a routine in clinical diagnosis. Images Figure 1 Figure 3 Figure 4 PMID:8381297

  17. Electromagnetic and acoustic bimodality for the detection and localization of electrical arc faults

    NASA Astrophysics Data System (ADS)

    Vasile, C.; Ioana, C.; Digulescu, A.; Candel, I.

    2016-12-01

    Electrical arc faults pose an important problem to electrical installations worldwide, be it production facilities or distribution systems. In this context, it is easy to assess the economic repercussions of such a fault, when power supply is cut off downstream of its location, while also realizing that an early detection of the on-site smaller scale faults would be of great benefit. This articles serves as a review of the current state-of-the-art work that has been carried out on the subject of detection and localization of electrical arc faults, by exploiting the bimodality of this phenomenon, which generates simultaneously electromagnetic and acoustic waves, propagating in a free space path. En experimental setup has been defined, to demonstrate principles stated in previous works by the authors, and signal processing methods have been used in order to determine the DTOA (difference-of-time-of-arrival) of the acoustic signals, which allows localization of the transient fault. In the end there is a discussion regarding the results and further works, which aims to validate this approach in more real-life applications.

  18. Acoustically detected hydrocarbon plumes rising from 2-km depths in Guaymas Basin, Gulf of California

    SciTech Connect

    Merewether, R.; Olsson, M.S.; Lonsdale, P.

    1985-03-10

    Plumes extending nearly 1000 m from the 1500--2000 m deep seafloor of Guaymas Basin were detected from below the 23.5-kHz inverted echo-sounder of the Scripps Deep Two vehicle. Individual sound reflectors (bubbles or drops) rise at approximately 17 cm/s in one plume. The Deep Tow side scan records provide more information on the plumes' structure at the altitude of the vehicle (75 m), where some form multiple side scan targets, one 20 m across. Near-bottom 4-kHz profiles show that plumes overlie young fault traces associated with extensional faulting at the basin's spreading centers of outcrops of tilted beds beside strike-slip faults. We infer from analysis of the Deep Tow observations, field relationships, and knowledge of the geology of this basin that the plumes are made of light hydrocarbons, perhaps mainly methane, that emanate from seabed seeps. One of the acoustically detected plumes was at a spreading-axis hydrothermal field, which has many buoyant, acoustically transparent thermal plumes, some of which are rich in dissolved hydrocarbons.

  19. An Amplitude-Based Estimation Method for International Space Station (ISS) Leak Detection and Localization Using Acoustic Sensor Networks

    NASA Technical Reports Server (NTRS)

    Tian, Jialin; Madaras, Eric I.

    2009-01-01

    The development of a robust and efficient leak detection and localization system within a space station environment presents a unique challenge. A plausible approach includes the implementation of an acoustic sensor network system that can successfully detect the presence of a leak and determine the location of the leak source. Traditional acoustic detection and localization schemes rely on the phase and amplitude information collected by the sensor array system. Furthermore, the acoustic source signals are assumed to be airborne and far-field. Likewise, there are similar applications in sonar. In solids, there are specialized methods for locating events that are used in geology and in acoustic emission testing that involve sensor arrays and depend on a discernable phase front to the received signal. These methods are ineffective if applied to a sensor detection system within the space station environment. In the case of acoustic signal location, there are significant baffling and structural impediments to the sound path and the source could be in the near-field of a sensor in this particular setting.

  20. Applications of swept-frequency acoustic interferometer for nonintrusive detection and identification of chemical warfare compounds

    SciTech Connect

    Sinha, D.N.; Springer, K.; Han, W.; Lizon, D.; Kogan, S.

    1997-12-01

    Swept-Frequency Acoustic Interferometry (SFAI) is a nonintrusive liquid characterization technique developed specifically for detecting and identifying chemical warfare (CW) compounds inside sealed munitions. The SFAI technique can rapidly (less than 20 seconds) and accurately determine sound speed and sound attenuation of a liquid inside a container over a wide frequency range (1 kHz-15 MHz). From the frequency-dependent sound attenuation measurement, liquid density is determined. These three physical properties are used to uniquely identify the CW compounds. In addition, various chemical relaxation processes in liquids and particle size distribution in emulsions can also be determined from the frequency-dependent attenuation measurement. The SFAI instrument is battery-operated and highly portable (< 6 lb.). The instrument has many potential application in industry ranging from sensitive detection (ppm level) of contamination to process control. The theory of the technique will be described and examples of several chemical industry applications will be presented.

  1. Intensity-demodulated fiber-ring laser sensor system for acoustic emission detection.

    PubMed

    Han, Ming; Liu, Tongqing; Hu, Lingling; Zhang, Qi

    2013-12-02

    We theoretically and experimentally demonstrate a fiber-optic ultrasonic sensor system based on a fiber-ring laser whose cavity consisting of a regular fiber Bragg grating (FBG) and a tunable optical band-pass filter (TOBPF). The FBG is the sensing element and the TOBPF is used to set the lasing wavelength at a point on the spectral slope of the FBG. The ultrasonic signal is detected by the variations of the laser output intensity in response to the cold-cavity loss modulations from the ultrasonically-induced FBG spectral shift. The system demonstrated here has a simple structure and low cost, making it attractive for acoustic emission detection in structure health monitoring.

  2. Fissile and Non-Fissile Material Detection using Nuclear Acoustic Resonance Signatures

    SciTech Connect

    Herberg, J; Maxwell, R; Tittmann, B R; Lenahan, P M; Yerkes, S; Jayaraman, S

    2005-10-04

    This report reviews progress made on NA22 project LL251DP to develop a novel technique, Nuclear Acoustic Resonance (NAR), for remote, non-destructive, nonradiation-based detection of materials of interest to Nonproliferation Programs, including {sup 235}U and {sup 239}Pu. We have met all milestones and deliverables for FY05, as shown in Table 1. In short, we have developed a magnetic shield chamber and magnetic field, develop a digital lock-in amplifier computer to integrate both the ultrasound radiation with the detector, developed strain measurements, and begin to perform initial measurements to obtain a NAR signal from aluminum at room temperature and near the earth's magnetic field. The results obtained in FY05 further support the feasibility of successful demonstration of an NAR experiment for remote, non-destructive, non-radiation-based detection of materials of interest to Nonproliferation Programs.

  3. Detection of bioagents using a shear horizontal surface acoustic wave biosensor

    DOEpatents

    Larson, Richard S; Hjelle, Brian; Hall, Pam R; Brown, David C; Bisoffi, Marco; Brozik, Susan M; Branch, Darren W; Edwards, Thayne L; Wheeler, David

    2014-04-29

    A biosensor combining the sensitivity of surface acoustic waves (SAW) generated at a frequency of 325 MHz with the specificity provided by antibodies and other ligands for the detection of viral agents. In a preferred embodiment, a lithium tantalate based SAW transducer with silicon dioxide waveguide sensor platform featuring three test and one reference delay lines was used to adsorb antibodies directed against Coxsackie virus B4 or the negative-stranded category A bioagent Sin Nombre virus (SNV). Rapid detection of increasing concentrations of viral particles was linear over a range of order of magnitude for both viruses, and the sensor's selectivity for its target was not compromised by the presence of confounding Herpes Simplex virus type 1 The biosensor was able to delect SNV at doses lower than the load of virus typically found in a human patient suffering from hantavirus cardiopulmonary syndrome (HCPS).

  4. Jitter reduction technique for acoustic radiation force impulse microscopy via photoacoustic detection

    PubMed Central

    Kang, Bong Jin; Yoon, Changhan; Man Park, Jin; Hwang, Jae Youn; Shung, K. Kirk

    2015-01-01

    We demonstrate a jitter noise reduction technique for acoustic radiation force impulse microscopy via photoacoustic detection (PA-ARFI), which promises to be capable of measuring cell mechanics. To reduce the jitter noise induced by Q-switched pulsed laser operated at high repetition frequency, photoacoustic signals from the surface of an ultrasound transducer are aligned by cross-correlation and peak-to-peak detection, respectively. Each method is then employed to measure the displacements of a target sample in an agar phantom and a breast cancer cell due to ARFI application, followed by the quantitative comparison between their performances. The suggested methods for PA-ARFI significantly reduce jitter noises, thus allowing us to measure displacements of a target cell due to ARFI application by less than 3 μm. PMID:26367579

  5. Development of an acoustic sensor for the future IceCube-Gen2 detector for neutrino detection and position calibration

    NASA Astrophysics Data System (ADS)

    Wickmann, Stefan; Eliseev, Dmitry; Heinen, Dirk; Linder, Peter; Rongen, Martin; Scholz, Franziska; Weinstock, Lars Steffen; Wiebusch, Christopher; Zierke, Simon

    2017-03-01

    For the planned high-energy extension of the IceCube Neutrino Observatory in the glacial ice at the South Pole the spacing of detector modules will be increased with respect to IceCube. Because of these larger distances the quality of the geometry calibration based on pulsed light sources is expected to deteriorate. To counter this an independent acoustic geometry calibration system based on trilateration is introduced. Such an acoustic positioning system (APS) has already been developed for the Enceladus Explorer Project (EnEx), initiated by the DLR Space Administration. In order to integrate such APS-sensors into the IceCube detector the power consumption needs to be minimized. In addition, the frequency response of the front end electronics is optimized for positioning as well as the acoustic detection of neutrinos. The new design of the acoustic sensor and results of test measurements with an IceCube detector module will be presented.

  6. Methods for estimating detection efficiency and tracking acoustic tags with mobile transect surveys.

    PubMed

    Melnychuk, M C; Christensen, V

    2009-11-01

    Mobile transect surveys were conducted for 5 years in a deep fjord looking for weak acoustic tags, most of which were in dead fishes lying on the seabed. Detection efficiencies were quantified because inferences about fish presence were made from tag detection data but a considerable proportion of tags were not detected. Methods for assessing transect widths using cumulative probabilities of measured perpendicular distances from blind transect lines to triangulated tag locations are described. Three methods for estimating detection efficiencies are presented: fitting attenuation functions to perpendicular distance data, simultaneous use of two receiver systems and test tag surveys. Several factors that influenced these detection efficiencies and ranges are shown, including boat speed, depth of tag, tag type, different hydrophone-receiver systems and variation among individual hydrophones and receivers of the same model. The trade-off between detection efficiency per unit area and area swept is discussed, which is largely based on boat speed during transects. Finally, several methods are suggested for increasing decoding efficiencies in mobile tracking studies when tags are heard but are difficult to decode.

  7. Network of acoustic sensors for the detection of weapons firing: tests for the choice of individual sensing elements

    NASA Astrophysics Data System (ADS)

    Naz, P.; Marty, Ch.; Hengy, S.; Hamery, P.

    2010-04-01

    The detection and localization of weapon firing on the battlefield is envisaged by means of acoustic waves. The main objective of this work is to compare various sensing elements that can be integrated in acoustic arrays. Experimental measurements of sound waves obtained by using some of these elements in Unattended Ground Sensors are presented for snipers, mortars or artillery guns. The emphasis will be put on the characteristics of the sensing elements needed to detect and classify the Mach wave generated by a supersonic projectile and the muzzle wave generated by the combustion of the propulsion powder. Examples of preliminary prototypes are presented to illustrate our topic. We will concentrate on a wearable system considered to improve the soldier's awareness of the surrounding threats: this realization consists of a network of three helmets integrating an acoustic array for the detection and localization of snipers.

  8. Detection and localization using an acoustic array on a small robotic platform

    NASA Astrophysics Data System (ADS)

    Young, Stuart H.; Scanlon, Michael V.

    2003-09-01

    The future battlefield will require an unprecedented level of automation in which soldier-operated autonomous and semi-autonomous ground, air and sea platforms along with mounted and dismounted soldiers will function as a tightly coupled team. Sophisticated robotic platforms with diverse sensor suites will be an integral part of the Objective Force, and must be able to collaborate not only amongst themselves but also with their manned partners. The Army Research Laboratory has developed a robot-based acoustic detection system that will detect and localize on an impulsive noise event, such as a sniper's weapon firing. Additionally, acoustic sensor arrays worn on a soldier's helmet or equipment can enhance his situational awareness and RSTA capabilities. The Land Warrior or Objective Force Warrior body-worn computer can detect tactically significant impulsive signatures from bullets, mortars, artillery, and missiles or spectral signatures from tanks, helicopters, UAVs, and mobile robots. Time-difference-of-arrival techniques can determine a sound's direction of arrival, while head attitude sensors can instantly determine the helmet orientation at time of capture. With precision GPS location of the soldier, along with the locations of other soldiers, robots, or unattended ground sensors that heard the same event, triangulation techniques can produce an accurate location of the target. Data from C-4 explosions and 0.50-Caliber shots shows that both helmet and robot systems can localize on the same event. This provides an awesome capability - mobile robots and soldiers working together on an ever-changing battlespace to detect the enemy and improve the survivability, mobility, and lethality of our future warriors.

  9. Detection of Delamination in Composite Beams Using Broadband Acoustic Emission Signatures

    NASA Technical Reports Server (NTRS)

    Okafor, A. C.; Chandrashekhara, K.; Jiang, Y. P.

    1996-01-01

    Delamination in composite structure may be caused by imperfections introduced during the manufacturing process or by impact loads by foreign objects during the operational life. There are some nondestructive evaluation methods to detect delamination in composite structures such as x-radiography, ultrasonic testing, and thermal/infrared inspection. These methods are expensive and hard to use for on line detection. Acoustic emission testing can monitor the material under test even under the presence of noise generated under load. It has been used extensively in proof-testing of fiberglass pressure vessels and beams. In the present work, experimental studies are conducted to investigate the use of broadband acoustic emission signatures to detect delaminations in composite beams. Glass/epoxy beam specimens with full width, prescribed delamination sizes of 2 inches and 4 inches are investigated. The prescribed delamination is produced by inserting Teflon film between laminae during the fabrication of composite laminate. The objectives of this research is to develop a method for predicting delamination size and location in laminated composite beams by combining smart materials concept and broadband AE analysis techniques. More specifically, a piezoceramic (PZT) patch is bonded on the surface of composite beams and used as a pulser. The piezoceramic patch simulates the AE wave source as a 3 cycles, 50KHz, burst sine wave. One broadband AE sensor is fixed near the PZT patch to measure the AE wave near the AE source. A second broadband AE sensor, which is used as a receiver, is scanned along the composite beams at 0.25 inch step to measure propagation of AE wave along the composite beams. The acquired AE waveform is digitized and processed. Signal strength, signal energy, cross-correlation of AE waveforms, and tracking of specific cycle of AE waveforms are used to detect delamination size and location.

  10. Shifting Gravel and the Acoustic Detection Range of Killer Whale Calls

    NASA Astrophysics Data System (ADS)

    Bassett, C.; Thomson, J. M.; Polagye, B. L.; Wood, J.

    2012-12-01

    In environments suitable for tidal energy development, strong currents result in large bed stresses that mobilize sediments, producing sediment-generated noise. Sediment-generated noise caused by mobilization events can exceed noise levels attributed to other ambient noise sources at frequencies related to the diameters of the mobilized grains. At a site in Admiralty Inlet, Puget Sound, Washington, one year of ambient noise data (0.02 - 30 kHz) and current velocity data are combined. Peak currents at the site exceed 3.5 m/s. During slack currents, vessel traffic is the dominant noise source. When currents exceed 0.85 m/s noise level increases between 2 kHz and 30 kHz are correlated with near-bed currents and bed stress estimates. Acoustic spectrum levels during strong currents exceed quiescent slack tide conditions by 20 dB or more between 2 and 30 kHz. These frequencies are consistent with sound generated by the mobilization of gravel and pebbles. To investigate the implications of sediment-generated noise for post-installation passive acoustic monitoring of a planned tidal energy project, ambient noise conditions during slack currents and strong currents are combined with the characteristics of Southern Resident killer whale (Orcinus orca) vocalizations and sound propagation modeling. The reduction in detection range is estimated for common vocalizations under different ambient noise conditions. The importance of sediment-generated noise for passive acoustic monitoring at tidal energy sites for different marine mammal functional hearing groups and other sediment compositions are considered.

  11. Hi-C as a tool for precise detection and characterisation of chromosomal rearrangements and copy number variation in human tumours.

    PubMed

    Harewood, Louise; Kishore, Kamal; Eldridge, Matthew D; Wingett, Steven; Pearson, Danita; Schoenfelder, Stefan; Collins, V Peter; Fraser, Peter

    2017-06-27

    Chromosomal rearrangements occur constitutionally in the general population and somatically in the majority of cancers. Detection of balanced rearrangements, such as reciprocal translocations and inversions, is troublesome, which is particularly detrimental in oncology where rearrangements play diagnostic and prognostic roles. Here we describe the use of Hi-C as a tool for detection of both balanced and unbalanced chromosomal rearrangements in primary human tumour samples, with the potential to define chromosome breakpoints to bp resolution. In addition, we show copy number profiles can also be obtained from the same data, all at a significantly lower cost than standard sequencing approaches.

  12. Fatigue crack detection using nonlinear vibro-acoustic cross-modulations based on the Luxemburg-Gorky effect

    NASA Astrophysics Data System (ADS)

    Trojniar, T.; Klepka, A.; Pieczonka, L.; Staszewski, W. J.

    2014-03-01

    This paper investigates the nonlinear cross-modulation vibro-acoustic technique for fatigue crack detection in metallic structures. The method is used in an aluminium plate instrumented with low-profile piezoceramic transducers that are used for excitation. Laser vibrometry is used to acquire vibro-acoustic responses. The results demonstrate the modulation transfer from one excitation signal to the other excitation signal in the presence of crack in the plate. The work presented focuses on the analysis of modulation intensities. The paper demonstrates that the method can be used for fatigue crack detection in metallic structures.

  13. Calibrating passive acoustic monitoring: correcting humpback whale call detections for site-specific and time-dependent environmental characteristics.

    PubMed

    Helble, Tyler A; D'Spain, Gerald L; Campbell, Greg S; Hildebrand, John A

    2013-11-01

    This paper demonstrates the importance of accounting for environmental effects on passive underwater acoustic monitoring results. The situation considered is the reduction in shipping off the California coast between 2008-2010 due to the recession and environmental legislation. The resulting variations in ocean noise change the probability of detecting marine mammal vocalizations. An acoustic model was used to calculate the time-varying probability of detecting humpback whale vocalizations under best-guess environmental conditions and varying noise. The uncorrected call counts suggest a diel pattern and an increase in calling over a two-year period; the corrected call counts show minimal evidence of these features.

  14. Chemical and explosive detections using photo-acoustic effect and quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Choa, Fow-Sen

    2013-12-01

    Photoacoustic (PA) effect is a sensitive spectroscopic technique for chemical sensing. In recent years, with the development of quantum cascade lasers (QCLs), significant progress has been achieved for PA sensing applications. Using high-power, tunable mid-IR QCLs as laser sources, PA chemical sensor systems have demonstrated parts-pertrillion- level detection sensitivity. Many of these high sensitivity measurements were demonstrated locally in PA cells. Recently, we have demonstrated standoff PA detection of isopropanol vapor for more than 41 feet distance using a quantum cascade laser and a microphone with acoustic reflectors. We also further demonstrated solid phase TNT detections at a standoff distance of 8 feet. To further calibrate the detection sensitivity, we use nerve gas simulants that were generated and calibrated by a commercial vapor generator. Standoff detection of gas samples with calibrated concentration of 2.3 ppm was achieved at a detection distance of more than 2 feet. An extended detection distance up to 14 feet was observed for a higher gas concentration of 13.9 ppm. For field operations, array of microphones and microphone-reflector pairs can be utilized to achieve noise rejection and signal enhancement. We have experimentally demonstrated that the signal and noise spectra of the 4 microphone/4 reflector system with a combined SNR of 12.48 dB. For the 16-microphone and one reflector case, an SNR of 17.82 was achieved. These successful chemical sensing demonstrations will likely create new demands for widely tunable QCLs with ultralow threshold (for local fire-alarm size detection systems) and high-power (for standoff detection systems) performances.

  15. A Surface Acoustic Wave Pumped Lensless Microfluidic Imaging System for Flowing Cell Detection and Counting.

    PubMed

    Huang, Xiwei; Farooq, Umar; Chen, Jin; Ge, Yakun; Gao, Haijun; Su, Jiangtao; Wang, Xiang; Dong, Shurong; Luo, Ji-Kui

    2017-08-29

    The future point-of-care diagnostics requires miniaturizing the existing bulky and expensive bioanalysis instruments, where lab-on-CMOS-chip-based technology can provide a promising solution. In this paper, we presented a surface acoustic wave (SAW) pumped lensless microfluidic imaging system for flowing cell detection and counting. Different from the previous lensless systems, which employ external bulky syringe pump for cell driven, the developed system directly integrates the SAW pump on the CMOS image sensor chip to drive the cell-containing microfluid. Moreover, an efficient temporal-differencing-based motion detection algorithm is proposed for continuous flowing cell detection and counting. Experimental results show that the SAW pump can drive the cells to flow at different driven powers, and also can keep the channel temperature below 40 °C so as not to harm the cells. The human bone marrow stromal cells flowing in the microfluidic channel can be automatically detected and counted with a low statistical error rate of -6.53%. The developed system thereby is competitive for point-of-care cell detection and counting application.

  16. Comparison of spatial frequency domain features for the detection of side attack explosive ballistics in synthetic aperture acoustics

    NASA Astrophysics Data System (ADS)

    Dowdy, Josh; Anderson, Derek T.; Luke, Robert H.; Ball, John E.; Keller, James M.; Havens, Timothy C.

    2016-05-01

    Explosive hazards in current and former conflict zones are a threat to both military and civilian personnel. As a result, much effort has been dedicated to identifying automated algorithms and systems to detect these threats. However, robust detection is complicated due to factors like the varied composition and anatomy of such hazards. In order to solve this challenge, a number of platforms (vehicle-based, handheld, etc.) and sensors (infrared, ground penetrating radar, acoustics, etc.) are being explored. In this article, we investigate the detection of side attack explosive ballistics via a vehicle-mounted acoustic sensor. In particular, we explore three acoustic features, one in the time domain and two on synthetic aperture acoustic (SAA) beamformed imagery. The idea is to exploit the varying acoustic frequency profile of a target due to its unique geometry and material composition with respect to different viewing angles. The first two features build their angle specific frequency information using a highly constrained subset of the signal data and the last feature builds its frequency profile using all available signal data for a given region of interest (centered on the candidate target location). Performance is assessed in the context of receiver operating characteristic (ROC) curves on cross-validation experiments for data collected at a U.S. Army test site on different days with multiple target types and clutter. Our preliminary results are encouraging and indicate that the top performing feature is the unrolled two dimensional discrete Fourier transform (DFT) of SAA beamformed imagery.

  17. Leakage detection and quantification techniques using various methods of nearfield acoustic holography

    NASA Astrophysics Data System (ADS)

    Chelliah, Kanthasamy

    This thesis proposes an acoustic technique to detect and relatively quantify leakages in buildings and enclosures using various methods of nearfield acoustic holography (NAH). This laboratory study was performed on a scaled, wooden building model. Known leakages can be created in the wooden model and the acoustic method was tested to localize and relatively quantify these known leakage areas. An acoustic source was placed inside the building model and a planar hologram measurement was performed near the surface of the building model. Various methods of NAH were applied on the hologram data to reconstruct the sound pressure field on the wall of the building model. The detection and quantification capabilities of four different NAH methods, namely, discrete Fourier transform (DFT) based NAH, equivalent source model (ESM) based NAH, boundary element method (BEM) based NAH and statistically optimized NAH (SONAH), were compared in this study. It was shown that the NAH methods were able to successfully locate and relatively quantify the area of the leakages using the reconstructions. Although all the four algorithms produced comparable results in the very nearfield, at larger hologram distances, ESM and SONAH reconstructions were more accurate than the reconstructions using the other methods. Although, ESM and SONAH produced similar results for most of the cases, ESM is more preferable due to its simplicity in implementation and less computational time requirements. Lower frequency reconstructions were found to be more accurate and advantageous in the context of leakage detection and quantification. When the hologram distance was increased more than a particular limit, all the four algorithms arrive at inaccurate reconstructions due to the very ill-conditioned propagation matrices. New filtering methods to alleviate these larger reconstruction errors were introduced and the results were demonstrated. Effects of large sensor phase mismatch were also studied. It was

  18. Perceptual thresholds for detecting modifications applied to the acoustical properties of a violin.

    PubMed

    Fritz, Claudia; Cross, Ian; Moore, Brian C J; Woodhouse, Jim

    2007-12-01

    This study is the first step in the psychoacoustic exploration of perceptual differences between the sounds of different violins. A method was used which enabled the same performance to be replayed on different "virtual violins," so that the relationships between acoustical characteristics of violins and perceived qualities could be explored. Recordings of real performances were made using a bridge-mounted force transducer, giving an accurate representation of the signal from the violin string. These were then played through filters corresponding to the admittance curves of different violins. Initially, limits of listener performance in detecting changes in acoustical characteristics were characterized. These consisted of shifts in frequency or increases in amplitude of single modes or frequency bands that have been proposed previously to be significant in the perception of violin sound quality. Thresholds were significantly lower for musically trained than for nontrained subjects but were not significantly affected by the violin used as a baseline. Thresholds for the musicians typically ranged from 3 to 6 dB for amplitude changes and 1.5%-20% for frequency changes. Interpretation of the results using excitation patterns showed that thresholds for the best subjects were quite well predicted by a multichannel model based on optimal processing.

  19. Optimization of an acoustic telemetry array for detecting transmitter-implanted fish

    USGS Publications Warehouse

    Clements, S.; Jepsen, D.; Karnowski, M.; Schreck, C.B.

    2005-01-01

    The development of miniature acoustic transmitters and economical, robust automated receivers has enabled researchers to study the movement patterns and survival of teleosts in estuarine and ocean environments, including many species and age-classes that were previously considered too small for implantation. During 2001-2003, we optimized a receiver mooring system to minimize gear and data loss in areas where current action or wave action and acoustic noise are high. In addition, we conducted extensive tests to determine (1) the performance of a transmitter and receiver (Vemco, Ltd.) that are widely used, particularly in North America and Europe and (2) the optimal placement of receivers for recording the passage of fish past a point in a linear-flow environment. Our results suggest that in most locations the mooring system performs well with little loss of data; however, boat traffic remains a concern due to entanglement with the mooring system. We also found that the reception efficiency of the receivers depends largely on the method and location of deployment. In many cases, we observed a range of 0-100% reception efficiency (the percentage of known transmissions that are detected while the receiver is within range of the transmitter) when using a conventional method of mooring. The efficiency was improved by removal of the mounting bar and obstructions from the mooring line. ?? Copyright by the American Fisheries Society 2005.

  20. Site-targeted acoustic contrast agent detects molecular expression of tissue factor after balloon angioplasty

    NASA Astrophysics Data System (ADS)

    Hall, Christopher S.; Abendschein, Dana R.; Scherrer, David E.; Scott, Michael J.; Marsh, Jon N.; Wickline, Samuel A.; Lanza, Gregory M.

    2000-04-01

    Complex molecular signaling heralds the early stages of pathologies such as angiogenesis, inflammation, and cellular responses to mechanically damaged coronary arteries after balloon angioplasty. In previous studies, we have demonstrated acoustic enhancement of blood clot morphology with the use of a nongaseous, ligand-targeted acoustic nanoparticle emulsion delivered to areas of thrombosis both in vitro and in vivo. In this paper, we characterize the early expression of tissue factor which contributes to subsequent arterial restenosis. Tissue factor is a 42kd glycoprotein responsible for blood coagulation but also plays a well-described role in cancer metastasis, angiogenesis, and vascular restenosis. This study was designed to determine whether the targeted contrast agent could localize tissue factor expressed within the wall of balloon-injured arteries. Both carotid arteries of five pigs (20 kg) were injured using an 8 X 20 mm angioplasty balloon. The carotids were treated in situ with a perfluorocarbon nanoparticle emulsion covalently complexed to either specific anti-tissue factor polyclonal F(ab) fragments (treatment) or non-specific IgG F(ab) fragments (control). Intravascular ultrasound (30 MHz) images of the arteries were obtained before and after exposure to the emulsions. Tissue- factor targeted ultrasonic contrast agent acoustically enhanced the subintima and media at the site of balloon- induced injury compared with control contrast arteries (p less than 0.05). Immunohistochemical staining confirmed the presence of increased tissue factor at the sites of acoustic enhancement. Binding of the targeted agents was demonstrated in vitro by scanning electron microscope images of cultured smooth muscle cells that constitutively express tissue factor. This study demonstrates the concept of molecular imaging and localization of carotid arteries' tissue factor in vivo using a new, nanoparticulate emulsion. Enhancement of the visualization of the molecular

  1. Ocean Basin Impact of Ambient Noise on Marine Mammal Detectability, Distribution, and Acoustic Communication

    DTIC Science & Technology

    2015-07-06

    Technical Report 4. TITLE AND SUBTITLE Ocean Basin Impact of Ambient Noise on Marine Mammal Distribution, and Acoustic Communication 3. DATES...ultimate goal of this research is to enhance the understanding of global ocean noise and how variability in sound level impacts marine mammal acoustic...it relates to marine mammal active acoustic space and acoustic communication. This work increases the spatial range and time scale of prior

  2. Pleuro-pulmonary tumours detected by clinical and chest X-ray analyses in rats transplanted with mesothelioma cells

    PubMed Central

    Pimpec-Barthes, F Le; Bernard, I; Alsamad, I Abd; Renier, A; Kheuang, L; Fleury-Feith, J; Devauchelle, P; Colonna, F Quintin; Riquet, M; Jaurand, M C

    1999-01-01

    New strategies for cancer therapy must be developed, especially in severe neoplasms such as malignant pleural mesothelioma. Animal models of cancer, as close as possible to the human situation, are needed to investigate novel therapeutical approaches. Orthotopic transplantation of cancer cells is then relevant and efforts should be made to follow up tumour evolution in animals. In the present study, we developed a method for the orthotopic growth of mesothelioma cells in the pleural cavity of Fischer 344 and nude rats, along with a procedure for clinical survey. Two mesothelioma cell lines, of rat and human origin, were inoculated by transthoracic puncture. Body weight determination and chest X-ray analyses permitted the follow-up of tumour evolution by identifying different stages. Autopsies showed that tumours localized on the whole pleural cavity (diaphragm, parietal pleura), mediastinum and pericardium. Tumour morphology and antigenic characteristics were consistent with those of the inoculated cells and were similar in both types of rats inoculated with the same cell type. These results demonstrate that mesothelioma formation in rats can be followed up by clinical and radiographic survey after gentle intrathoracic inoculation of mesothelioma cells, thus allowing the definition of stages of interest for further experimental trials. © 1999 Cancer Research Campaign PMID:10604731

  3. Oral Tumours

    PubMed Central

    Lecavalier, D.R.; Main, J.H.P.

    1988-01-01

    The authors of this article review briefly the anatomy of the oral soft tissues and describe the more common benign and malignant tumours of the mouth, giving emphasis to their clinical features. ImagesFigure 1Figure 2Figure 3Figure 4Figure 5Figure 6Figure 7Figure 8 PMID:21253197

  4. Tumour angiogenesis.

    PubMed Central

    Arnold, F.

    1985-01-01

    Tumours induce the growth of host blood vessels to support their proliferation. This process of angiogenesis is evoked by specific chemical signals. Recognition of these angiogenic factors has led to experimental methods for cancer diagnosis and for inhibiting malignant growth by specifically blocking neovascularisation. The clinical potential of these techniques is discussed. PMID:2413796

  5. Development of a novel fluorogenic proteolytic beacon for in vivo detection and imaging of tumour-associated matrix metalloproteinase-7 activity.

    PubMed Central

    McIntyre, J Oliver; Fingleton, Barbara; Wells, K Sam; Piston, David W; Lynch, Conor C; Gautam, Shiva; Matrisian, Lynn M

    2004-01-01

    The present study describes the in vivo detection and imaging of tumour-associated MMP-7 (matrix metalloproteinase-7 or matrilysin) activity using a novel polymer-based fluorogenic substrate PB-M7VIS, which serves as a selective 'proteolytic beacon' (PB) for this metalloproteinase. PB-M7VIS is built on a PAMAM (polyamido amino) dendrimer core of 14.2 kDa, covalently coupled with an Fl (fluorescein)-labelled peptide Fl(AHX)RPLALWRS(AHX)C (where AHX stands for aminohexanoic acid) and with TMR (tetramethylrhodamine). PB-M7VIS is efficiently and selectively cleaved by MMP-7 with a k (cat)/ K (m) value of 1.9x10(5) M(-1).s(-1) as measured by the rate of increase in Fl fluorescence (up to 17-fold for the cleavage of an optimized PB-M7VIS) with minimal change in the TMR fluorescence. The K (m) value for PB-M7VIS is approx. 0.5 microM, which is approx. two orders of magnitude lower when compared with that for an analogous soluble peptide, indicating efficient interaction of MMP-7 with the synthetic polymeric substrate. With MMP-2 or -3, the k (cat)/ K (m) value for PB-M7VIS is approx. 56- or 13-fold lower respectively, when compared with MMP-7. In PB-M7VIS, Fl(AHX)RPLALWRS(AHX)C is a selective optical sensor of MMP-7 activity and TMR serves to detect both the uncleaved and cleaved reagents. Each of these can be visualized as subcutaneous fluorescent phantoms in a mouse and optically discriminated based on the ratio of green/red (Fl/TMR) fluorescence. The in vivo specificity of PB-M7VIS was tested in a mouse xenograft model. Intravenous administration of PB-M7VIS gave significantly enhanced Fl fluorescence from MMP-7-positive tumours, but not from control tumours ( P <0.0001), both originally derived from SW480 human colon cancer cells. Prior systemic treatment of the tumour-bearing mice with an MMP inhibitor BB-94 ([4-( N -hydroxyamino)-2 R -isobutyl-3 S -(thienylthiomethyl)-succinyl]-L-phenylalanine- N -methylamide), markedly decreased the Fl fluorescence over the MMP-7

  6. Detecting trihalomethanes using nanoporous-carbon coated surface-acoustic-wave sensors

    SciTech Connect

    Siegal, Michael P.; Mowry, Curtis D.; Pfeifer, Kent B.; Gallis, Dorina F. S.

    2015-03-07

    We study nanoporous-carbon (NPC) grown via pulsed laser deposition (PLD) as a sorbent coating on 96.5-MHz surface-acoustic-wave (SAW) devices to detect trihalomethanes (THMs), regulated byproducts from the chemical treatment of drinking water. Using both insertion-loss and isothermal-response measurements from known quantities of chloroform, the highest vapor pressure THM, we optimize the NPC mass-density at 1.05 ± 0.08 g/cm3 by controlling the background argon pressure during PLD. Precise THM quantities in a chlorobenzene solvent are directly injected into a separation column and detected as the phase-angle shift of the SAW device output compared to the drive signal. Using optimized NPC-coated SAWs, we study the chloroform response as a function of operating temperatures ranging from 10–50°C. Finally, we demonstrate individual responses from complex mixtures of all four THMs, with masses ranging from 10–2000 ng, after gas chromatography separation. As a result, estimates for each THM detection limit using a simple peak-height response evaluation are 4.4 ng for chloroform and 1 ng for bromoform; using an integrated-peak area response analysis improves the detection limits to 0.73 ng for chloroform and 0.003 ng bromoform.

  7. Detecting trihalomethanes using nanoporous-carbon coated surface-acoustic-wave sensors

    DOE PAGES

    Siegal, Michael P.; Mowry, Curtis D.; Pfeifer, Kent B.; ...

    2015-03-07

    We study nanoporous-carbon (NPC) grown via pulsed laser deposition (PLD) as a sorbent coating on 96.5-MHz surface-acoustic-wave (SAW) devices to detect trihalomethanes (THMs), regulated byproducts from the chemical treatment of drinking water. Using both insertion-loss and isothermal-response measurements from known quantities of chloroform, the highest vapor pressure THM, we optimize the NPC mass-density at 1.05 ± 0.08 g/cm3 by controlling the background argon pressure during PLD. Precise THM quantities in a chlorobenzene solvent are directly injected into a separation column and detected as the phase-angle shift of the SAW device output compared to the drive signal. Using optimized NPC-coated SAWs,more » we study the chloroform response as a function of operating temperatures ranging from 10–50°C. Finally, we demonstrate individual responses from complex mixtures of all four THMs, with masses ranging from 10–2000 ng, after gas chromatography separation. As a result, estimates for each THM detection limit using a simple peak-height response evaluation are 4.4 ng for chloroform and 1 ng for bromoform; using an integrated-peak area response analysis improves the detection limits to 0.73 ng for chloroform and 0.003 ng bromoform.« less

  8. Simulation study of melanoma detection in human skin tissues by laser-generated surface acoustic waves

    NASA Astrophysics Data System (ADS)

    Chen, Kun; Fu, Xing; Dorantes-Gonzalez, Dante J.; Lu, Zimo; Li, Tingting; Li, Yanning; Wu, Sen; Hu, Xiaotang

    2014-07-01

    Air pollution has been correlated to an increasing number of cases of human skin diseases in recent years. However, the investigation of human skin tissues has received only limited attention, to the point that there are not yet satisfactory modern detection technologies to accurately, noninvasively, and rapidly diagnose human skin at epidermis and dermis levels. In order to detect and analyze severe skin diseases such as melanoma, a finite element method (FEM) simulation study of the application of the laser-generated surface acoustic wave (LSAW) technique is developed. A three-layer human skin model is built, where LSAW's are generated and propagated, and their effects in the skin medium with melanoma are analyzed. Frequency domain analysis is used as a main tool to investigate such issues as minimum detectable size of melanoma, filtering spectra from noise and from computational irregularities, as well as on how the FEM model meshing size and computational capabilities influence the accuracy of the results. Based on the aforementioned aspects, the analysis of the signals under the scrutiny of the phase velocity dispersion curve is verified to be a reliable, a sensitive, and a promising approach for detecting and characterizing melanoma in human skin.

  9. Detection of Adult Beetles Inside the Stored Wheat Mass Based on Their Acoustic Emissions.

    PubMed

    Eliopoulos, P A; Potamitis, I; Kontodimas, D Ch; Givropoulou, E G

    2015-12-01

    The efficacy of bioacoustics in detecting the presence of adult beetles inside the grain mass was evaluated in the laboratory. A piezoelectric sensor and a portable acoustic emission amplifier connected with a computer were used. Adults of the most common beetle pests of stored wheat have been detected in varying population densities (0.1, 0.5, 1, and 2 adults per kilogram of wheat). The verification of the presence of the insect individuals was achieved through automated signal parameterization and classification. We tried out two different ways to detect impulses: 1) by applying a Hilbert transform on the audio recording and 2) by subtracting a noise estimation of the recording from the spectral content of the recording, thus allowing the frequency content of possible impulses to emerge. Prediction for infestation was rated falsely negative in 60-74%, 48-60%, 0-28%, and 0-4% of the cases when actual population density was 0.1, 0.5, 1, and 2 adults per kilogram, respectively, irrespective of pest species. No significant differences were recorded in positive predictions among different species in almost all cases. The system was very accurate (72-100%) in detecting 1 or 2 insects per kilogram of hard wheat grain, which is the standard threshold for classifying a grain mass "clean" or "infested." Our findings are discussed on the basis of enhancing the use of bioacoustics in stored-product IPM framework.

  10. Multiparametric Magnetic Resonance Imaging of the Prostate for Tumour Detection and Local Staging: Imaging in 1.5T and Histopathologic Correlation.

    PubMed

    Loggitsi, Dimitra; Gyftopoulos, Anastasios; Economopoulos, Nikolaos; Apostolaki, Aikaterini; Kalogeropoulos, Theodoros; Thanos, Anastasios; Alexopoulou, Efthimia; Kelekis, Nikolaos L

    2017-07-15

    The study sought to prospectively evaluate which technique among T2-weighted images, dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI), diffusion-weighted (DW) MRI, or a combination of the 2, is best suited for prostate cancer detection and local staging. Twenty-seven consecutive patients with biopsy-proven adenocarcinoma of the prostate underwent MRI on a 1.5T scanner with a surface phased-array coil prior radical prostatectomy. Combined anatomical and functional imaging was performed with the use of T2-weighted sequences, DCE MRI, and DW MRI. We compared the imaging results with whole mount histopathology. For the multiparametric approach, significantly higher sensitivity values, that is, 53% (95% confidence interval [CI]: 41.0-64.1) were obtained as compared with each modality alone or any combination of the 3 modalities (P < .05). The specificity for this multiparametric approach, being 90.3% (95% CI: 86.3-93.3) was not significantly higher (P < .05) as compared with the values of the combination of T2+DCE MRI, DW+DCE MRI, or DCE MRI alone. Among the 3 techniques, DCE had the best performance for tumour detection in both the peripheral and the transition zone. High negative predictive value rates (>86%) were obtained for both tumour detection and local staging. The combination of T2-weighted sequences, DCE MRI, and DW MRI yields higher diagnostic performance for tumour detection and local staging than can any of these techniques alone or even any combination of them. Copyright © 2017 Canadian Association of Radiologists. Published by Elsevier Inc. All rights reserved.

  11. Fissile and Non-Fissile Material Detection using Nuclear Acoustic Resonance Signatures: Final Report

    SciTech Connect

    Herberg, J; Maxwell, R; Tittmann, B R; Lenahan, P M; Yerkes, S; Jayaraman, S B

    2006-11-02

    This is final report on NA-22 project LL251DP, where the goal was to develop a novel technique, Nuclear Acoustic Resonance (NAR), for remote, non-destructive, nonradiation-based detection of materials of interest to Nonproliferation Programs, including {sup 235}U and {sup 239}Pu. In short, we have developed a magnetic shield chamber and magnetic field, develop a digital lock-in amplifier computer to integrate both the ultrasound radiation with the detector, developed strain measurements, and begun to perform initial measurements to obtain a NAR signal from aluminum at room temperature and near the earth's magnetic field. Since our funding was cut in FY06, I will discuss where this project can go in the future with this technology.

  12. Signal-to-noise ratio for acoustic detection in the deep ocean

    NASA Technical Reports Server (NTRS)

    Bowen, T.

    1979-01-01

    A simple method is presented for studying the thermoacoustic wave generated by a heat pulse. The signal-to-noise ratio (S/N) is then calculated for a typical hadronic-electromagnetic cascade in the deep ocean where low frequencies are masked by surface noise. It is found that a maximum useful range of about 16 km is found for typical conditions at 5 km depth. It is shown that in order to obtain useful signals with S/N greater than 100 at distances of 1 to 16 km, the cascade energy must be 10 to the 16th to 10 to the 18th eV. Finally, attention is given to further refinements of the theory of acoustic detection which remain to be investigated.

  13. Phage-based magnetostrictive-acoustic microbiosensors for detecting bacillus anthracis spores

    NASA Astrophysics Data System (ADS)

    Wan, J.; Yang, H.; Lakshmanan, R. S.; Guntupalli, R.; Huang, S.; Hu, J.; Petrenko, V. A.; Chin, B. A.

    2006-05-01

    Magnetostrictive particles (MSPs) as biosensor platform have been developed recently. The principle of MSPs as sensor platform is the same as that of other acoustic wave devices, such as quartz crystal microbalance. In this paper, the fabrication, characterization and performance of phage-based MSP biosensors for detecting Bacillus anthracis spores are reported. A commercially available magnetostrictive alloy was utilized to fabricate the sensor platform. The phage was immobilized onto the MSPs using physical adsorption technology. The following performance of the phage-based MSP sensors will be presented: sensitivity, response time, longevity, specificity and binding efficacy. The performance of the sensors at static and dynamic conditions was characterized. The experimental results are confirmed by microscopy photographs. The excellent performance including high sensitivity and rapid response is demonstrated. More importantly, it is experimentally found that the phage-based MSP sensors have a much better longevity than antibody-based sensors.

  14. Detection of cells captured with antigens on shear horizontal surface-acoustic-wave sensors.

    PubMed

    Hao, Hsu-Chao; Chang, Hwan-You; Wang, Tsung-Pao; Yao, Da-Jeng

    2013-02-01

    Techniques to separate cells are widely applied in immunology. The technique to separate a specific antigen on a microfluidic platform involves the use of a shear horizontal surface-acoustic-wave (SH-SAW) sensor. With specific antibodies conjugated onto the surface of the SH-SAW sensors, this technique can serve to identify specific cells in bodily fluids. Jurkat cells, used as a target in this work, provide a model of cells in small abundance (1:1000) for isolation and purification with the ultimate goal of targeting even more dilute cells. T cells were separated from a mixed-cell medium on a chip (Jurkat cells/K562 cells, 1/1000). A novel microchamber was developed to capture cells during the purification, which required a large biosample. Cell detection was demonstrated through the performance of genetic identification on the chip.

  15. The excitation and detection of lamb waves with planar coil electromagnetic acoustic transducers.

    PubMed

    Wilcox, Paul D; Lowe, Michael J S; Cawley, Peter

    2005-12-01

    Planar coil electromagnetic acoustic transducers (EMATs) are investigated for the excitation and detection of Lamb waves in nonferromagnetic metallic wave-guides. Such EMATs are attractive for certain applications due to their omni-directional sensitivity to wave modes with predominantly in-plane surface displacement, such as the So Lamb wave mode. A model is developed that enables the modal content of the radiated Lamb wave field from a transmitting EMAT to be calculated, and the output voltage from a receiving EMAT to be predicted when a Lamb wave mode is incident on it. The predictions from this model are compared with experimental data obtained from 12 different EMATs tested on a 5-mm thick aluminum plate, and good agreement is obtained. The model then is used to analyze the different effects that contribute to the overall Lamb wave modal sensitivity of an EMAT. The relationship between coil geometry and wavelength is examined.

  16. Detection and Identification of Concrete Cracking in Reinforced Concrete by Acoustic Emission

    NASA Astrophysics Data System (ADS)

    Ohtsu, Masayasu

    2003-03-01

    Cracking in concrete due to corrosion of rebars in reinforced concrete is one of critical problems in concrete structures. To clarify cracking process, acoustic emission (AE) measurement is applied. In an accelerated corrosion test, AE events are detected and monitored continuously. Comparing with permeation of chloride ions, it is found that onset of corrosion and nucleation of cracking can be qualified from AE activity. Applying SiGMA procedure, nucleation mechanisms of cracks due to expansion of corrosive product are identified. During extension of the surface crack, tensile cracks are nucleated dominantly. For the spalling crack, both the tensile and the shear cracks are generated, as the former dominates the latter approaching to a stress-free surface. In contrast, it is found that the internal crack is nucleated mainly due to shear-crack motion.

  17. Channel noise enhances signal detectability in a model of acoustic neuron through the stochastic resonance paradigm.

    PubMed

    Liberti, M; Paffi, A; Maggio, F; De Angelis, A; Apollonio, F; d'Inzeo, G

    2009-01-01

    A number of experimental investigations have evidenced the extraordinary sensitivity of neuronal cells to weak input stimulations, including electromagnetic (EM) fields. Moreover, it has been shown that biological noise, due to random channels gating, acts as a tuning factor in neuronal processing, according to the stochastic resonant (SR) paradigm. In this work the attention is focused on noise arising from the stochastic gating of ionic channels in a model of Ranvier node of acoustic fibers. The small number of channels gives rise to a high noise level, which is able to cause a spike train generation even in the absence of stimulations. A SR behavior has been observed in the model for the detection of sinusoidal signals at frequencies typical of the speech.

  18. Acoustic detection of gas emissions within the submerged section of the North Anatolian Fault Zone in the Sea of Marmara

    NASA Astrophysics Data System (ADS)

    Géli, L.; Henry, P.; Dupré, S.; Voelker, D.; Zitter, T.; Le Pichon, X.; Tryon, M.; Cagatay, N.; Shipboard Science Party, M.

    2007-12-01

    The 38 kHz, single beam, echo-sounder SIMRAD EK-60 was operated during the Marnaut cruise (May-June 2007) onboard the RV L'Atalante to detect acoustic anomalies related to the presence of gas bubbles in the water column. In the south Cinarcik Basin, strong acoustic anomalies have been found along N140 normal faults within a 3 km wide swath oriented N100. The swath trend corresponds to the orientation of a buried fault system identified in MCS data (Carton and Singh, 2007). Ground-truthing of these anomalies with Nautile submersible enables the founding of gas seeps and bubbles emissions at seafloor. Acoustic anomalies are apparently weaker on the main fault scarp on the northern side of the Cinarcik Basin. In the Central High and Kumburgaz Basin, no acoustic anomalies were detected along the main fault trace. Instead, a cluster with very strong amplitude anomalies was identified at about 1 km away from the fault, on top of a broad anticline. On the Western High, a cluster of acoustic anomalies characterizes the top of an anticline located near 40°49'N, 28°46.8'E, where shallow gas hydrates have been sampled at unexpected water depth of 660 m, well outside the methane hydrate stability field. In the Tekirdag and Central basins, EK-60 lines were implemented along the fault scarps and the acoustic records indicate the presence of gas seeps at fault escarpments. This new set of data confirms previous results obtained with RV Le Suroit in September 2000 with a 112 kHz side-scan sonar towed 200 m above seafloor. Most active sites identified in 2000 were still active in 2007. We note that the only place where no acoustic anomaly was found on the main fault trace corresponds to the Central High and Kumburgaz Basin area. This segment did not rupture during the last century.

  19. Acoustic detections of summer and winter whales at Arctic gateways in the Atlantic and Pacific Oceans

    NASA Astrophysics Data System (ADS)

    Stafford, K.; Laidre, K. L.; Moore, S. E.

    2016-02-01

    Changes in sea ice phenology have been profound in regions north of arctic gateways, where the seasonal open-water period has increased by 1.5-3 months over the past 30 years. This has resulted in changes to the Arctic ecosystem, including increased primary productivity, changing food web structure, and opening of new habitat. In the "new normal" Arctic, ice obligate species such as ice seals and polar bears may fare poorly under reduced sea ice while sub-arctic "summer" whales (fin and humpback) are poised to inhabit new seasonal ice-free habitats in the Arctic. We examined the spatial and seasonal occurrence of summer and "winter" (bowhead) whales from September through December by deploying hydrophones in three Arctic gateways: Bering, Davis and Fram Straits. Acoustic occurrence of the three species was compared with decadal-scale changes in seasonal sea ice. In all three Straits, fin whale acoustic detections extended from summer to late autumn. Humpback whales showed the same pattern in Bering and Davis Straits, singing into November and December, respectively. Bowhead whale detections generally began after the departure of the summer whales and continued through the winter. In all three straits, summer whales occurred in seasons and regions that used to be ice-covered. This is likely due to both increased available habitat from sea ice reductions and post-whaling population recoveries. At present, in the straits examined here, there is spatial, but not temporal, overlap between summer and winter whales. In a future with further seasonal sea ice reductions, however, increased competition for resources between sub-Arctic and Arctic species may arise to the detriment of winter whales.

  20. Mobile acoustic system for the detection of surface-breaking cracks in pavement

    NASA Astrophysics Data System (ADS)

    Marzani, Alessandro; Rizzo, Piervincenzo; Lanza di Scalea, Francesco; Benzoni, Gianmario

    2004-07-01

    Monitoring the structural condition of road and airport pavement is an extremely critical task to ensure the safety and efficiency of teh transportation. The topic is relevant to both civil and military transportation infrastructure. The presence of damage in pavement, including surface cracking, depressions, swells, and wear, is inevitable due to the sever environmental and service loads that these structures must be subject to. Existing NDE techniques aimed at assessing the structural condition of pavement include Falling Weight Deflectometer, Ground Penetrating Radar, and acoustic methods based on surface waves. This paper presents improvements to the traditional surface-wave method for the detection of surface-breaking cracks in pavement. The advances include 1) the modeling of the problem as dipsersive waves propagating in a multilayer system, 2) the inclusion of post-processing algorithms based on the Wavelet Transform to improve the sensitivity and accuracy of the inspection, and 3) the use of non-contact, air-coupled acoustic detectors to enhance the mobility of the inspection unit. The crack detection procedure consists of first generating a dispersive wave with an impulse hammer, and then measuring the changes in velocity, amplitude and/or frequency content as the wave travels across the flaw with the aid of the Continuous Wavelet Transform. Multilayer wave propagation modeling provides a better understanding of the experimental results by predicting how the various frequencies interact with cracks of different depths. The results of field tests will be presented for both rigid (concrete-based) and flexible (bitumen-based) pavement with surface cracks.

  1. Precursory Acoustic Signals Detection in Rockfall Events by Means of Optical Fiber Sensors

    NASA Astrophysics Data System (ADS)

    Schenato, L.; Marcato, G.; Gruca, G.; Iannuzzi, D.; Palmieri, L.; Galtarossa, A.; Pasuto, A.

    2012-12-01

    Rockfalls represent a major source of hazard in mountain areas: they occur at the apex of a process of stress accumulation in the unstable slope, during which part of the accumulated energy is released in small internal cracks. These cracks and the related acoustic emissions (AE) can, therefore, be used as precursory signals, through which the unstable rock could be monitored. In particular, according to previous scientific literature AE can be monitored in the range 20÷100 kHz. With respect to traditional AE sensors, such as accelerometers and piezoelectric transducers, fiber optic sensors (FOSs) may provide a reliable solution, potentially offering more robustness to electromagnetic interference, smaller form factor, multiplexing ability and increased distance range and higher sensitivity. To explore this possibility, in this work we have experimentally analyzed two interferometric fiber optical sensors for AE detection in rock masses. In particular, the first sensor is made of 100 m of G.657 optical fiber, tightly wound on an aluminum flanged hollow mandrel (inner diameter 30 mm, height 42 mm) that is isolated from the environment with acoustic absorbing material. A 4-cm-long M10 screw, which acts also as the main mean of acoustic coupling between the rock and the sensor, is used to fasten the sensor to the rock. This fiber coil sensor (FCS) is inserted in the sensing arm of a fiber Mach-Zehnder interferometer. The second sensor consists in a micro cantilever carved on the top of a cylindrical silica ferrule, with a marked mechanical resonance at about 12.5 kHz (Q-factor of about 400). A standard single mode fiber is housed in the same ferrule and the gap between the cantilever and the fiber end face acts as a vibration-sensitive Fabry-Perot cavity, interrogated with a low-coherence laser, tuned at the quadrature point of the cavity. The sensor is housed in a 2-cm-long M10 bored bolt. Performance have been compared with those from a standard piezo

  2. A pipeline to quantify serum and cerebrospinal fluid microRNAs for diagnosis and detection of relapse in paediatric malignant germ-cell tumours

    PubMed Central

    Murray, Matthew J; Bell, Emma; Raby, Katie L; Rijlaarsdam, Martin A; Gillis, Ad J M; Looijenga, Leendert H J; Brown, Helen; Destenaves, Benoit; Nicholson, James C; Coleman, Nicholas

    2016-01-01

    Background: The current biomarkers alpha-fetoprotein and human chorionic gonadotropin have limited sensitivity and specificity for diagnosing malignant germ-cell tumours (GCTs). MicroRNAs (miRNAs) from the miR–371–373 and miR–302/367 clusters are overexpressed in all malignant GCTs, and some of these miRNAs show elevated serum levels at diagnosis. Here, we developed a robust technical pipeline to quantify these miRNAs in the serum and cerebrospinal fluid (CSF). The pipeline was used in samples from a cohort of exclusively paediatric patients with gonadal and extragonadal malignant GCTs, compared with appropriate tumour and non-tumour control groups. Methods: We developed a method for miRNA quantification that enabled sample adequacy assessment and reliable data normalisation. We performed qRT–PCR profiling for miR–371–373 and miR–302/367 cluster miRNAs in a total of 45 serum and CSF samples, obtained from 25 paediatric patients. Results: The exogenous non-human spike-in cel–miR–39–3p and the endogenous housekeeper miR–30b–5p were optimal for obtaining robust serum and CSF qRT–PCR quantification. A four-serum miRNA panel (miR–371a–3p, miR–372–3p, miR–373–3p and miR–367–3p): (i) showed high sensitivity/specificity for diagnosing paediatric extracranial malignant GCT; (ii) allowed early detection of relapse of a testicular mixed malignant GCT; and (iii) distinguished intracranial malignant GCT from intracranial non-GCT tumours at diagnosis, using CSF and serum samples. Conclusions: The pipeline we have developed is robust, scalable and transferable. It potentially promises to improve clinical management of paediatric (and adult) malignant GCTs. PMID:26671749

  3. Acoustic detections of singing humpback whales (Megaptera novaeangliae) in the eastern North Pacific during their northbound migration.

    PubMed

    Norris, T F; McDonald, M; Barlow, J

    1999-07-01

    Numerous (84) acoustic detections of singing humpback whales were made during a spring (08 March-09 June 1997) research cruise to study sperm whales in the central and eastern North Pacific. Over 15,000 km of track-line was surveyed acoustically using a towed hydrophone array. Additionally, 83 sonobuoys were deployed throughout the study area. Detection rates were greatest in late March, near the Hawaiian Islands, and in early April, northeast of the islands. Only one detection was made after April. Detection rates for sonobuoys were unequal in three equally divided longitudinal regions of the study area. Two high density clusters of detections occurred approximately 1200-2000 km northeast of the Hawaiian Islands and were attributed to a large aggregation of migrating animals. The distribution of these detections corroborates findings of previous studies. It is possible that these animals were maintaining acoustic contact during migration. Two unexpected clusters of singing whales were detected approximately 900 to 1000 km west of central and southern California. The location of these detections may indicate a previously undocumented migration route between an offshore breeding area, such as the Revillagigedo Islands, Mexico, and possible feeding areas in the western North Pacific or Bering Sea.

  4. Site specific passive acoustic detection and densities of humpback whale calls off the coast of California

    NASA Astrophysics Data System (ADS)

    Helble, Tyler Adam

    Passive acoustic monitoring of marine mammal calls is an increasingly important method for assessing population numbers, distribution, and behavior. Automated methods are needed to aid in the analyses of the recorded data. When a mammal vocalizes in the marine environment, the received signal is a filtered version of the original waveform emitted by the marine mammal. The waveform is reduced in amplitude and distorted due to propagation effects that are influenced by the bathymetry and environment. It is important to account for these effects to determine a site-specific probability of detection for marine mammal calls in a given study area. A knowledge of that probability function over a range of environmental and ocean noise conditions allows vocalization statistics from recordings of single, fixed, omnidirectional sensors to be compared across sensors and at the same sensor over time with less bias and uncertainty in the results than direct comparison of the raw statistics. This dissertation focuses on both the development of new tools needed to automatically detect humpback whale vocalizations from single-fixed omnidirectional sensors as well as the determination of the site-specific probability of detection for monitoring sites off the coast of California. Using these tools, detected humpback calls are "calibrated" for environmental properties using the site-specific probability of detection values, and presented as call densities (calls per square kilometer per time). A two-year monitoring effort using these calibrated call densities reveals important biological and ecological information on migrating humpback whales off the coast of California. Call density trends are compared between the monitoring sites and at the same monitoring site over time. Call densities also are compared to several natural and human-influenced variables including season, time of day, lunar illumination, and ocean noise. The results reveal substantial differences in call densities

  5. Neural Mechanisms for Acoustic Signal Detection under Strong Masking in an Insect

    PubMed Central

    Römer, Heiner

    2015-01-01

    Communication is fundamental for our understanding of behavior. In the acoustic modality, natural scenes for communication in humans and animals are often very noisy, decreasing the chances for signal detection and discrimination. We investigated the mechanisms enabling selective hearing under natural noisy conditions for auditory receptors and interneurons of an insect. In the studied katydid Mecopoda elongata species-specific calling songs (chirps) are strongly masked by signals of another species, both communicating in sympatry. The spectral properties of the two signals are similar and differ only in a small frequency band at 2 kHz present in the chirping species. Receptors sharply tuned to 2 kHz are completely unaffected by the masking signal of the other species, whereas receptors tuned to higher audio and ultrasonic frequencies show complete masking. Intracellular recordings of identified interneurons revealed two mechanisms providing response selectivity to the chirp. (1) Response selectivity is when several identified interneurons exhibit remarkably selective responses to the chirps, even at signal-to-noise ratios of −21 dB, since they are sharply tuned to 2 kHz. Their dendritic arborizations indicate selective connectivity with low-frequency receptors tuned to 2 kHz. (2) Novelty detection is when a second group of interneurons is broadly tuned but, because of strong stimulus-specific adaptation to the masker spectrum and “novelty detection” to the 2 kHz band present only in the conspecific signal, these interneurons start to respond selectively to the chirp shortly after the onset of the continuous masker. Both mechanisms provide the sensory basis for hearing at unfavorable signal-to-noise ratios. SIGNIFICANCE STATEMENT Animal and human acoustic communication may suffer from the same “cocktail party problem,” when communication happens in noisy social groups. We address solutions for this problem in a model system of two katydids, where one

  6. Acoustic detection of Oryctes rhinoceros (Coleoptera: Scarabaeidae: Dynastinae) and Nasutitermes luzonicus (Isoptera: Termitidae) in palm trees of urban Guam

    USDA-ARS?s Scientific Manuscript database

    Adult and larval Oryctes rhinoceros (L) (Coleoptera: Scarabaeidae: Dynastinae) were acoustically detected in live and dead palm trees and logs in recently invaded areas of Guam, along with Nasutitermes (Isoptera: Termitidae), and other small, sound-producing invertebrates and invertebrates. The sou...

  7. Decay detection in red oak trees using a combination of visual inspection, acoustic testing, and resistance microdrilling

    Treesearch

    Xiping Wang; R. Bruce Allison

    2008-01-01

    Arborists are often challenged to identify internal structural defects hidden from view within tree trunks. This article reports the results of a study using a trunk inspection protocol combining visual observation, single-path stress wave testing, acoustic tomography, and resistance microdrilling to detect internal defects. Two century-old red oak (Quercus rubra)...

  8. Spatial and Temporal Variability of Zooplankton Thin Layers: The Effects of Composition and Orientation on Acoustic Detection of Layers

    DTIC Science & Technology

    2008-01-01

    Spatial and Temporal Variability of Zooplankton Thin Layers: The Effects of Composition and Orientation...to better understand the physical and biological mechanisms of formation and maintenance of thin layers of zooplankton . Because zooplankton can be...strong sound scatterers, acoustic instruments are effective at detecting and describing zooplankton thin layers. Using a combination of instruments

  9. Integrated Acoustic Separation, Enrichment, and Microchip Polymerase Chain Reaction Detection of Bacteria from Blood for Rapid Sepsis Diagnostics.

    PubMed

    Ohlsson, Pelle; Evander, Mikael; Petersson, Klara; Mellhammar, Lisa; Lehmusvuori, Ari; Karhunen, Ulla; Soikkeli, Minna; Seppä, Titta; Tuunainen, Emilia; Spangar, Anni; von Lode, Piia; Rantakokko-Jalava, Kaisu; Otto, Gisela; Scheding, Stefan; Soukka, Tero; Wittfooth, Saara; Laurell, Thomas

    2016-10-04

    This paper describes an integrated microsystem for rapid separation, enrichment, and detection of bacteria from blood, addressing the unmet clinical need for rapid sepsis diagnostics. The blood sample is first processed in an acoustophoresis chip, where red blood cells are focused to the center of the channel by an acoustic standing wave and sequentially removed. The bacteria-containing plasma proceeds to a glass capillary with a localized acoustic standing wave field where the bacteria are trapped onto suspended polystyrene particles. The trapped bacteria are subsequently washed while held in the acoustic trap and released into a polymer microchip containing dried polymerase chain reaction (PCR) reagents, followed by thermocycling for target sequence amplification. The entire process is completed in less than 2 h. Testing with Pseudomonas putida spiked into whole blood revealed a detection limit of 1000 bacteria/mL for this first-generation analysis system. In samples from septic patients, the system was able to detect Escherichia coli in half of the cases identified by blood culture. This indicates that the current system detects bacteria in patient samples in the upper part of the of clinically relevant bacteria concentration range and that a further developed acoustic sample preparation system may open the door for a new and faster automated method to diagnose sepsis.

  10. AE (Acoustic Emission) for Flip-Chip CGA/FCBGA Defect Detection

    NASA Technical Reports Server (NTRS)

    Ghaffarian, Reza

    2014-01-01

    C-mode scanning acoustic microscopy (C-SAM) is a nondestructive inspection technique that uses ultrasound to show the internal feature of a specimen. A very high or ultra-high-frequency ultrasound passes through a specimen to produce a visible acoustic microimage (AMI) of its inner features. As ultrasound travels into a specimen, the wave is absorbed, scattered or reflected. The response is highly sensitive to the elastic properties of the materials and is especially sensitive to air gaps. This specific characteristic makes AMI the preferred method for finding "air gaps" such as delamination, cracks, voids, and porosity. C-SAM analysis, which is a type of AMI, was widely used in the past for evaluation of plastic microelectronic circuits, especially for detecting delamination of direct die bonding. With the introduction of the flip-chip die attachment in a package; its use has been expanded to nondestructive characterization of the flip-chip solder bumps and underfill. Figure 1.1 compares visual and C-SAM inspection approaches for defect detection, especially for solder joint interconnections and hidden defects. C-SAM is specifically useful for package features like internal cracks and delamination. C-SAM not only allows for the visualization of the interior features, it has the ability to produce images on layer-by-layer basis. Visual inspection; however, is only superior to C-SAM for the exposed features including solder dewetting, microcracks, and contamination. Ideally, a combination of various inspection techniques - visual, optical and SEM microscopy, C-SAM, and X-ray - need to be performed in order to assure quality at part, package, and system levels. This reports presents evaluations performed on various advanced packages/assemblies, especially the flip-chip die version of ball grid array/column grid array (BGA/CGA) using C-SAM equipment. Both external and internal equipment was used for evaluation. The outside facility provided images of the key features

  11. An Acoustic-Based Method to Detect and Quantify the Effect of Exhalation into a Dry Powder Inhaler.

    PubMed

    Holmes, Martin S; Seheult, Jansen N; O'Connell, Peter; D'Arcy, Shona; Ehrhardt, Carsten; Healy, Anne Marie; Costello, Richard W; Reilly, Richard B

    2015-08-01

    Dry powder inhaler (DPI) users frequently exhale into their inhaler mouthpiece before the inhalation step. This error in technique compromises the integrity of the drug and results in poor bronchodilation. This study investigated the effect of four exhalation factors (exhalation flow rate, distance from mouth to inhaler, exhalation duration, and relative air humidity) on dry powder dose delivery. Given that acoustic energy can be related to the factors associated with exhalation sounds, we then aimed to develop a method of identifying and quantifying this critical inhaler technique error using acoustic based methods. An in vitro test rig was developed to simulate this critical error. The effect of the four factors on subsequent drug delivery were investigated using multivariate regression models. In a further study we then used an acoustic monitoring device to unobtrusively record the sounds 22 asthmatic patients made whilst using a Diskus(™) DPI. Acoustic energy was employed to automatically detect and analyze exhalation events in the audio files. All exhalation factors had a statistically significant effect on drug delivery (p<0.05); distance from the inhaler mouthpiece had the largest effect size. Humid air exhalations were found to reduce the fine particle fraction (FPF) compared to dry air. In a dataset of 110 audio files from 22 asthmatic patients, the acoustic method detected exhalations with an accuracy of 89.1%. We were able to classify exhalations occurring 5 cm or less in the direction of the inhaler mouthpiece or recording device with a sensitivity of 72.2% and specificity of 85.7%. Exhaling into a DPI has a significant detrimental effect. Acoustic based methods can be employed to objectively detect and analyze exhalations during inhaler use, thus providing a method of remotely monitoring inhaler technique and providing personalized inhaler technique feedback.

  12. Automatic Detection of Swallowing Events by Acoustical Means for Applications of Monitoring of Ingestive Behavior

    PubMed Central

    Sazonov, Edward S.; Makeyev, Oleksandr; Schuckers, Stephanie; Lopez-Meyer, Paulo; Melanson, Edward L.; Neuman, Michael R.

    2010-01-01

    Our understanding of etiology of obesity and overweight is incomplete due to lack of objective and accurate methods for Monitoring of Ingestive Behavior (MIB) in the free living population. Our research has shown that frequency of swallowing may serve as a predictor for detecting food intake, differentiating liquids and solids, and estimating ingested mass. This paper proposes and compares two methods of acoustical swallowing detection from sounds contaminated by motion artifacts, speech and external noise. Methods based on mel-scale Fourier spectrum, wavelet packets, and support vector machines are studied considering the effects of epoch size, level of decomposition and lagging on classification accuracy. The methodology was tested on a large dataset (64.5 hours with a total of 9,966 swallows) collected from 20 human subjects with various degrees of adiposity. Average weighted epoch recognition accuracy for intra-visit individual models was 96.8% which resulted in 84.7% average weighted accuracy in detection of swallowing events. These results suggest high efficiency of the proposed methodology in separation of swallowing sounds from artifacts that originate from respiration, intrinsic speech, head movements, food ingestion, and ambient noise. The recognition accuracy was not related to body mass index, suggesting that the methodology is suitable for obese individuals. PMID:19789095

  13. Acoustic temporal modulation detection and speech perception in cochlear implant listeners.

    PubMed

    Won, Jong Ho; Drennan, Ward R; Nie, Kaibao; Jameyson, Elyse M; Rubinstein, Jay T

    2011-07-01

    The goals of the present study were to measure acoustic temporal modulation transfer functions (TMTFs) in cochlear implant listeners and examine the relationship between modulation detection and speech recognition abilities. The effects of automatic gain control, presentation level and number of channels on modulation detection thresholds (MDTs) were examined using the listeners' clinical sound processor. The general form of the TMTF was low-pass, consistent with previous studies. The operation of automatic gain control had no effect on MDTs when the stimuli were presented at 65 dBA. MDTs were not dependent on the presentation levels (ranging from 50 to 75 dBA) nor on the number of channels. Significant correlations were found between MDTs and speech recognition scores. The rates of decay of the TMTFs were predictive of speech recognition abilities. Spectral-ripple discrimination was evaluated to examine the relationship between temporal and spectral envelope sensitivities. No correlations were found between the two measures, and 56% of the variance in speech recognition was predicted jointly by the two tasks. The present study suggests that temporal modulation detection measured with the sound processor can serve as a useful measure of the ability of clinical sound processing strategies to deliver clinically pertinent temporal information.

  14. Application of gas-coupled laser acoustic detection to gelatins and underwater sensing

    SciTech Connect

    Caron, James N.; Kunapareddy, Pratima

    2014-02-18

    Gas-coupled Laser Acoustic Detection (GCLAD) has been used as a method to sense ultrasound waves in materials without contact of the material surface. To sense the waveform, a laser beam is directed parallel to the material surface and displaced or deflected when the radiated waveform traverses the beam. We present recent tests that demonstrate the potential of using this technique for detecting ultrasound in gelatin phantoms and in water. As opposed to interferometric detection, GCLAD operates independently of the optical surface properties of the material. This allows the technique to be used in cases where the material is transparent or semi-transparent. We present results on sensing ultrasound in gelatin phantoms that are used to mimic biological materials. As with air-coupled transducers, the frequency response of GCLAD at high frequencies is limited by the high attenuation of ultrasound in air. In contrast, water has a much lower attenuation. Here we demonstrate the use of a GCLAD-like system in water, measuring the directivity response at 1 MHz and sensing waveforms with higher frequency content.

  15. Defect-detection algorithm for noncontact acoustic inspection using spectrum entropy

    NASA Astrophysics Data System (ADS)

    Sugimoto, Kazuko; Akamatsu, Ryo; Sugimoto, Tsuneyoshi; Utagawa, Noriyuki; Kuroda, Chitose; Katakura, Kageyoshi

    2015-07-01

    In recent years, the detachment of concrete from bridges or tunnels and the degradation of concrete structures have become serious social problems. The importance of inspection, repair, and updating is recognized in measures against degradation. We have so far studied the noncontact acoustic inspection method using airborne sound and the laser Doppler vibrometer. In this method, depending on the surface state (reflectance, dirt, etc.), the quantity of the light of the returning laser decreases and optical noise resulting from the leakage of light reception arises. Some influencing factors are the stability of the output of the laser Doppler vibrometer, the low reflective characteristic of the measurement surface, the diffused reflection characteristic, measurement distance, and laser irradiation angle. If defect detection depends only on the vibration energy ratio since the frequency characteristic of the optical noise resembles white noise, the detection of optical noise resulting from the leakage of light reception may indicate a defective part. Therefore, in this work, the combination of the vibrational energy ratio and spectrum entropy is used to judge whether a measured point is healthy or defective or an abnormal measurement point. An algorithm that enables more vivid detection of a defective part is proposed. When our technique was applied in an experiment with real concrete structures, the defective part could be extracted more vividly and the validity of our proposed algorithm was confirmed.

  16. Detection of third-hand smoke on clothing fibers with a surface acoustic wave gas sensor

    PubMed Central

    Cheng, Chi-Yung; Huang, Shih-Shen; Yang, Chia-Min; Tang, Kea-Tiong

    2016-01-01

    Third-hand smoke (THS) is a new cigarette-related issue defined as the residual contamination from cigarette smoke after a cigarette is extinguished. To detect THS on three commonly used clothing fibers—wool, cotton, and polyester, we applied two methods to measure the adsorption of THS: one was the gain of mass with an analytical balance after exposure to cigarette smoke; and the other was to detect the THS chemical compounds such as nicotine and 3-ethenylpyridine with a surface acoustic wave (SAW) sensor composed of coated oxidized hollow mesoporous carbon nanospheres. In the mass measurement, the gain of mass decreased in the order wool, cotton, and polyester; the latter gain was about one tenth that of wool. In the SAW detection, the frequency shift decreased in the same order—wool, cotton, and polyester. The residence period of THS on natural fiber (wool and cotton) is greater than on synthetic polyester fiber. These two tests provide quantitative results of THS on varied clothing fibers, to assess their risk after exposure to cigarette smoke. PMID:26909119

  17. Detection/classification/quantification of chemical agents using an array of surface acoustic wave (SAW) devices

    NASA Astrophysics Data System (ADS)

    Milner, G. Martin

    2005-05-01

    ChemSentry is a portable system used to detect, identify, and quantify chemical warfare (CW) agents. Electro chemical (EC) cell sensor technology is used for blood agents and an array of surface acoustic wave (SAW) sensors is used for nerve and blister agents. The combination of the EC cell and the SAW array provides sufficient sensor information to detect, classify and quantify all CW agents of concern using smaller, lighter, lower cost units. Initial development of the SAW array and processing was a key challenge for ChemSentry requiring several years of fundamental testing of polymers and coating methods to finalize the sensor array design in 2001. Following the finalization of the SAW array, nearly three (3) years of intensive testing in both laboratory and field environments were required in order to gather sufficient data to fully understand the response characteristics. Virtually unbounded permutations of agent characteristics and environmental characteristics must be considered in order to operate against all agents and all environments of interest to the U.S. military and other potential users of ChemSentry. The resulting signal processing design matched to this extensive body of measured data (over 8,000 agent challenges and 10,000 hours of ambient data) is considered to be a significant advance in state-of-the-art for CW agent detection.

  18. Application of gas-coupled laser acoustic detection to gelatins and underwater sensing

    NASA Astrophysics Data System (ADS)

    Caron, James N.; Kunapareddy, Pratima

    2014-02-01

    Gas-coupled Laser Acoustic Detection (GCLAD) has been used as a method to sense ultrasound waves in materials without contact of the material surface. To sense the waveform, a laser beam is directed parallel to the material surface and displaced or deflected when the radiated waveform traverses the beam. We present recent tests that demonstrate the potential of using this technique for detecting ultrasound in gelatin phantoms and in water. As opposed to interferometric detection, GCLAD operates independently of the optical surface properties of the material. This allows the technique to be used in cases where the material is transparent or semi-transparent. We present results on sensing ultrasound in gelatin phantoms that are used to mimic biological materials. As with air-coupled transducers, the frequency response of GCLAD at high frequencies is limited by the high attenuation of ultrasound in air. In contrast, water has a much lower attenuation. Here we demonstrate the use of a GCLAD-like system in water, measuring the directivity response at 1 MHz and sensing waveforms with higher frequency content.

  19. Detection of third-hand smoke on clothing fibers with a surface acoustic wave gas sensor.

    PubMed

    Cheng, Chi-Yung; Huang, Shih-Shen; Yang, Chia-Min; Tang, Kea-Tiong; Yao, Da-Jeng

    2016-01-01

    Third-hand smoke (THS) is a new cigarette-related issue defined as the residual contamination from cigarette smoke after a cigarette is extinguished. To detect THS on three commonly used clothing fibers-wool, cotton, and polyester, we applied two methods to measure the adsorption of THS: one was the gain of mass with an analytical balance after exposure to cigarette smoke; and the other was to detect the THS chemical compounds such as nicotine and 3-ethenylpyridine with a surface acoustic wave (SAW) sensor composed of coated oxidized hollow mesoporous carbon nanospheres. In the mass measurement, the gain of mass decreased in the order wool, cotton, and polyester; the latter gain was about one tenth that of wool. In the SAW detection, the frequency shift decreased in the same order-wool, cotton, and polyester. The residence period of THS on natural fiber (wool and cotton) is greater than on synthetic polyester fiber. These two tests provide quantitative results of THS on varied clothing fibers, to assess their risk after exposure to cigarette smoke.

  20. Acoustic temporal modulation detection and speech perception in cochlear implant listeners1

    PubMed Central

    Won, Jong Ho; Drennan, Ward R.; Nie, Kaibao; Jameyson, Elyse M.; Rubinstein, Jay T.

    2011-01-01

    The goals of the present study were to measure acoustic temporal modulation transfer functions (TMTFs) in cochlear implant listeners and examine the relationship between modulation detection and speech recognition abilities. The effects of automatic gain control, presentation level and number of channels on modulation detection thresholds (MDTs) were examined using the listeners’ clinical sound processor. The general form of the TMTF was low-pass, consistent with previous studies. The operation of automatic gain control had no effect on MDTs when the stimuli were presented at 65 dBA. MDTs were not dependent on the presentation levels (ranging from 50 to 75 dBA) nor on the number of channels. Significant correlations were found between MDTs and speech recognition scores. The rates of decay of the TMTFs were predictive of speech recognition abilities. Spectral-ripple discrimination was evaluated to examine the relationship between temporal and spectral envelope sensitivities. No correlations were found between the two measures, and 56% of the variance in speech recognition was predicted jointly by the two tasks. The present study suggests that temporal modulation detection measured with the sound processor can serve as a useful measure of the ability of clinical sound processing strategies to deliver clinically pertinent temporal information. PMID:21786906

  1. Acoustic emission detection for composite damage assessment using embedded ordinary single-mode fiber-optic interferometric sensors

    NASA Astrophysics Data System (ADS)

    Liu, Kexing; Ferguson, Suzanne M.; McEwen, Keith; Tapanes, Edward; Measures, Raymond M.

    1990-12-01

    An interferometric fiber optic sensor using ordinary single-mode fibers is developed to detect acoustic emission (AE) for damage assessment of composite materials. This fiber sensor has been embedded in both graphite/epoxy and Kevlar/epoxy composite specimens and used to produce the fast direct correlation of acoustic emission with their concomitant forms of damage, such as matrix crack or material fiber rupture. Applications of the sensor for assessment of damage due to impact and out-of-plane loading are presented. Limitations of the sensor are also discussed.

  2. Standoff photoacoustic detections with high-sensitivity microphones and acoustic arrays

    NASA Astrophysics Data System (ADS)

    Choa, Fow-Sen; Wang, Chen-Chia; Khurgin, Jacob; Samuels, Alan; Trivedi, Sudhir; Gupta, Deepa

    2016-05-01

    Standoff detection of dangerous chemicals like explosives, nerve gases, and harmful aerosols has continuously been an important subject due to the serious concern about terrorist threats to both overseas and homeland lives and facility. Compared with other currently available standoff optical detection techniques, like Raman, photo-thermal, laser induced breakdown spectroscopy,...etc., photoacoustic (PA) sensing has the advantages of background free and very high detection sensitivity, no need of back reflection surfaces, and 1/R instead of 1/R2 signal decay distance dependence. Furthermore, there is still a great room for PA sensitivity improvement by using different PA techniques, including lockin amplifier, employing new microphones, and microphone array techniques. Recently, we have demonstrated standoff PA detection of isopropanol vapor, solid phase TNT and RDX at a standoff distance. To further calibrate the detection sensitivity, we use nerve gas simulants that were generated and calibrated by a commercial vapor generator. For field operations, array of microphones and microphone-reflector pairs can be utilized to achieve noise rejection and signal enhancement. We have experimentally demonstrated signal enhancement and noise reduction using an array of 4 microphone/4 reflector system as well as an array of 16-microphone/1 reflector. In this work we will review and compare different standoff techniques and discuss the advantages of using different photoacoustic techniques. We will also discuss new advancement of using new types of microphone and the performance comparison of using different structure of microphone arrays and combining lock-in amplifier with acoustic arrays. Demonstration of out-door real-time operations with high power mid-IR laser and microphone array will be presented.

  3. Comparison of Detection Capability for Acoustic Thermography, Visual Inspection and Fluorescent Penetrant Inspection on Gas Turbine Components

    NASA Astrophysics Data System (ADS)

    Guo, Y.; Ruhge, F. R.

    2009-03-01

    The innovative NDE inspection system Acoustic Thermography is developed with Sonic Infrared (Sonic IR) technology. Since the probability of detection is sensitive to the flaw characteristics, the fabricated flaws could not simulated the nature flaws with accuracy. The study is focus on gas turbine blades with service induced fatigue cracks. The detection capability of this innovative NDE inspection system is compared with two traditional NDE methods: Visual Inspection and Fluorescent Penetrant Inspection. POD curves for each technique were generated and compared.

  4. Real-time passive acoustic detection of marine mammals from a variety of autonomous platforms

    NASA Astrophysics Data System (ADS)

    Baumgartner, M.; Van Parijs, S. M.; Hotchkin, C. F.; Gurnee, J.; Stafford, K.; Winsor, P.; Davies, K. T. A.; Taggart, C. T.

    2016-02-01

    Over the past two decades, passive acoustic monitoring has proven to be an effective means of estimating the occurrence of marine mammals. The vast majority of applications involve archival recordings from bottom-mounted instruments or towed hydrophones from moving ships; however, there is growing interest in assessing marine mammal occurrence from autonomous platforms, particularly in real time. The Woods Hole Oceanographic Institution has developed the capability to detect, classify, and remotely report in near real time the calls of marine mammals via passive acoustics from a variety of autonomous platforms, including Slocum gliders, wave gliders, and moored buoys. The mobile Slocum glider can simultaneously measure marine mammal occurrence and oceanographic conditions throughout the water column, making it well suited for studying both marine mammal distribution and habitat. Wave gliders and moored buoys provide complementary observations over much larger spatial scales and longer temporal scales, respectively. The near real-time reporting capability of these platforms enables follow-up visual observations, on-water research, or responsive management action. We have recently begun to use this technology to regularly monitor baleen whales off the coast of New England, USA and Nova Scotia, Canada, as well as baleen whales, beluga whales, and bearded seals in the Chukchi Sea off the northwest coast of Alaska, USA. Our long-range goal is to monitor occurrence over wide spatial and temporal extents as part of the regional and global ocean observatory initiatives to improve marine mammal conservation and management and to study changes in marine mammal distribution over multi-annual time scales in response to climate change.

  5. Target detection and localization in shallow water: an experimental demonstration of the acoustic barrier problem at the laboratory scale.

    PubMed

    Marandet, Christian; Roux, Philippe; Nicolas, Barbara; Mars, Jérôme

    2011-01-01

    This study demonstrates experimentally at the laboratory scale the detection and localization of a wavelength-sized target in a shallow ultrasonic waveguide between two source-receiver arrays at 3 MHz. In the framework of the acoustic barrier problem, at the 1/1000 scale, the waveguide represents a 1.1-km-long, 52-m-deep ocean acoustic channel in the kilohertz frequency range. The two coplanar arrays record in the time-domain the transfer matrix of the waveguide between each pair of source-receiver transducers. Invoking the reciprocity principle, a time-domain double-beamforming algorithm is simultaneously performed on the source and receiver arrays. This array processing projects the multireverberated acoustic echoes into an equivalent set of eigenrays, which are defined by their launch and arrival angles. Comparison is made between the intensity of each eigenray without and with a target for detection in the waveguide. Localization is performed through tomography inversion of the acoustic impedance of the target, using all of the eigenrays extracted from double beamforming. The use of the diffraction-based sensitivity kernel for each eigenray provides both the localization and the signature of the target. Experimental results are shown in the presence of surface waves, and methodological issues are discussed for detection and localization.

  6. Fourfold increased detection of Lynch syndrome by raising age limit for tumour genetic testing from 50 to 70 years is cost-effective.

    PubMed

    Sie, A S; Mensenkamp, A R; Adang, E M M; Ligtenberg, M J L; Hoogerbrugge, N

    2014-10-01

    Recognising colorectal cancer (CRC) patients with Lynch syndrome (LS) can increase life expectancy of these patients and their close relatives. To improve identification of this under-diagnosed disease, experts suggested raising the age limit for CRC tumour genetic testing from 50 to 70 years. The present study evaluates the efficacy and cost-effectiveness of this strategy. Probabilistic efficacy and cost-effectiveness analyses were carried out comparing tumour genetic testing of CRC diagnosed at age 70 or below (experimental strategy) versus CRC diagnosed at age 50 or below (current practice). The proportions of LS patients identified and cost-effectiveness including cascade screening of relatives, were calculated by decision analytic models based on real-life data. Using the experimental strategy, four times more LS patients can be identified among CRC patients when compared with current practice. Both the costs to detect one LS patient (€9437/carrier versus €4837/carrier), and the number needed to test for detecting one LS patient (42 versus 19) doubled. When family cascade screening was included, the experimental strategy was found to be highly cost-effective according to Dutch standards, resulting in an overall ratio of €2703 per extra life-year gained in additionally tested patients. Testing all CRC tumours diagnosed at or below age 70 for LS is cost-effective. Implementation is important as relatives from the large number of LS patients that are missed by current practice, can benefit from life-saving surveillance. © The Author 2014. Published by Oxford University Press on behalf of the European Society for Medical Oncology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  7. Sci—Fri AM: Mountain — 04: Label-free Raman spectroscopy of single tumour cells detects early radiation-induced glycogen synthesis associated with increased radiation resistance

    SciTech Connect

    Matthews, Q; Lum, JJ; Isabelle, M; Harder, S; Jirasek, A; Brolo, AG

    2014-08-15

    Purpose: To use label-free Raman spectroscopy (RS) for early treatment monitoring of tumour cell radioresistance. Methods: Three human tumour cell lines, two radioresistant (H460, SF{sub 2} = 0.57 and MCF7, SF{sub 2} = 0.70) and one radiosensitive (LNCaP, SF{sub 2} = 0.36), were irradiated with single fractions of 2, 4, 6, 8 or 10 Gy. In additional experiments, H460 and MCF7 cells were irradiated under co-treatment with the anti-diabetic drug metformin, a known radiosensitizing agent. Treated and control cultures were analyzed with RS daily for 3 days post-treatment. Single-cell Raman spectra were acquired from 20 live cells per sample, and experiments were repeated in triplicate. The combined data sets were analyzed with principal component analysis using standard algorithms. Cells from each culture were also subjected to standard assays for viability, proliferation, cell cycle, and radiation clonogenic survival. Results: The radioresistant cells (H460, MCF7) exhibited a RS molecular radiation response signature, detectable as early as 1 day post-treatment, of which radiation-induced glycogen synthesis is a significant contributor. The radiosensitive cells (LNCaP) exhibited negligible glycogen synthesis. Co-treatment with metformin in MCF7 cells blocked glycogen synthesis, reduced viability and proliferation, and increased radiosensitivity. Conversely, metformin co-treatment in H460 cells did not produce these same effects; importantly, both radiation-induced synthesis of glycogen and radiosensitivity were unaffected. Conclusions: Label-free RS can detect early glycogen synthesis post-irradiation, a previously undocumented metabolic mechanism associated with tumour cell radioresistance that can be targeted to increase radiosensitivity. RS monitoring of intratumoral glycogen may provide new opportunities for personalized combined modality radiotherapy treatments.

  8. Acoustic emission detection of early stages of cracks in rotating gearbox components

    NASA Astrophysics Data System (ADS)

    Xiang, Dan

    2017-02-01

    Many critical, highly loaded rotating gearbox components have fast crack propagation rates. Early detection of cracks in gearbox is critical to mitigating the risk of catastrophic failure. Acoustic Emission (AE) techniques have proven to be capable of continuously monitoring the crack initiation and propagation. Due to the long distance of AE signal propagation from the AE sources to the sensors installed in the housing, the AE signal suffers from severe attenuation and noises. Accurate AE signal classification technology that is capable of extracting the true AE signal out of background noises generated by the surrounding environment of a gearbox is desired. In this paper, an innovative feature extraction and analysis based AE signal classification technology is developed to address this issue. Potential AE signals are first pulled out of the noisy background in real-time through a set of automated AE detection algorithms. Then features including count, energy, duration, amplitude, rise time, amplitude rise time ratio, etc. are extracted and analyzed. Through the comparison and correlation of features extracted from signals recorded by multiple AE sensors, respective feature thresholds are determined to distinguish noises from real AE signal. The classification results are experimentally validated through fatigue tests.

  9. Detection of nonlinear distortions in the vibration of acoustically driven mechanical systems using heterodyne vibrometry

    NASA Astrophysics Data System (ADS)

    Aerts, J. R. M.; Dirckx, J. J. J.; Pintelon, R.

    2008-06-01

    Recently, a measurement set-up was presented to detect small nonlinear distortions in the vibration of acoustically driven mechanical systems. A speaker generates a specially designed multisine excitation signal that drives the vibration of a test object. The generated sound pressure is measured with a probe microphone in front of the test object, and an heterodyne vibrometer measures the corresponding vibration. Due to the high degree of linearity of the heterodyne technique, very small nonlinear distortions can be detected. In this paper the set-up is used to verify whether small nonlinear distortions are present in the vibration of the middle ear system, which is classically considered to be a completely linear system. In vitro measurements on the right ear of an adult male gerbil proved that nonlinear distortions are present in the vibration of the tympanic membrane. Similar results were seen in measurements on the left ear. The influence of post-mortem changes on the nonlinear behaviour of the middle ear was verified in a number of successive measurements. These indicated that the nonlinear behaviour of the middle ear decreases in time.

  10. Influence of the vibro-acoustic sensor position on cavitation detection in a Kaplan turbine

    NASA Astrophysics Data System (ADS)

    Schmidt, H.; Kirschner, O.; Riedelbauch, S.; Necker, J.; Kopf, E.; Rieg, M.; Arantes, G.; Wessiak, M.; Mayrhuber, J.

    2014-03-01

    Hydraulic turbines can be operated close to the limits of the operating range to meet the demand of the grid. When operated close to the limits, the risk increases that cavitation phenomena may occur at the runner and / or at the guide vanes of the turbine. Cavitation in a hydraulic turbine can cause material erosion on the runner and other turbine parts and reduce the durability of the machine leading to required outage time and related repair costs. Therefore it is important to get reliable information about the appearance of cavitation during prototype operation. In this experimental investigation the high frequency acoustic emissions and vibrations were measured at 20 operating points with different cavitation behaviour at different positions in a large prototype Kaplan turbine. The main goal was a comparison of the measured signals at different sensor positions to identify the sensitivity of the location for cavitation detection. The measured signals were analysed statistically and specific values were derived. Based on the measured signals, it is possible to confirm the cavitation limit of the examined turbine. The result of the investigation shows that the position of the sensors has a significant influence on the detection of cavitation.

  11. Pipe wall damage detection by electromagnetic acoustic transducer generated guided waves in absence of defect signals.

    PubMed

    Vasiljevic, Milos; Kundu, Tribikram; Grill, Wolfgang; Twerdowski, Evgeny

    2008-05-01

    Most investigators emphasize the importance of detecting the reflected signal from the defect to determine if the pipe wall has any damage and to predict the damage location. However, often the small signal from the defect is hidden behind the other arriving wave modes and signal noise. To overcome the difficulties associated with the identification of the small defect signal in the time history plots, in this paper the time history is analyzed well after the arrival of the first defect signal, and after different wave modes have propagated multiple times through the pipe. It is shown that the defective pipe can be clearly identified by analyzing these late arriving diffuse ultrasonic signals. Multiple reflections and scattering of the propagating wave modes by the defect and pipe ends do not hamper the defect detection capability; on the contrary, it apparently stabilizes the signal and makes it easier to distinguish the defective pipe from the defect-free pipe. This paper also highlights difficulties associated with the interpretation of the recorded time histories due to mode conversion by the defect. The design of electro-magnetic acoustic transducers used to generate and receive the guided waves in the pipe is briefly described in the paper.

  12. Detecting leaks in gas-filled pressure vessels using acoustic resonances

    NASA Astrophysics Data System (ADS)

    Gillis, K. A.; Moldover, M. R.; Mehl, J. B.

    2016-05-01

    We demonstrate that a leak from a large, unthermostatted pressure vessel into ambient air can be detected an order of magnitude more effectively by measuring the time dependence of the ratio p/f2 than by measuring the ratio p/T. Here f is the resonance frequency of an acoustic mode of the gas inside the pressure vessel, p is the pressure of the gas, and T is the kelvin temperature measured at one point in the gas. In general, the resonance frequencies are determined by a mode-dependent, weighted average of the square of the speed-of-sound throughout the volume of the gas. However, the weighting usually has a weak dependence on likely temperature gradients in the gas inside a large pressure vessel. Using the ratio p/f2, we measured a gas leak (dM/dt)/M ≈ - 1.3 × 10-5 h-1 = - 0.11 yr-1 from a 300-liter pressure vessel filled with argon at 450 kPa that was exposed to sunshine-driven temperature and pressure fluctuations as large as (dT/dt)/T ≈ (dp/dt)/p ≈ 5 × 10-2 h-1 using a 24-hour data record. This leak could not be detected in a 72-hour record of p/T. (Here M is the mass of the gas in the vessel and t is the time.)

  13. A surface acoustic wave sensor functionalized with a polypyrrole molecularly imprinted polymer for selective dopamine detection.

    PubMed

    Maouche, Naima; Ktari, Nadia; Bakas, Idriss; Fourati, Najla; Zerrouki, Chouki; Seydou, Mahamadou; Maurel, François; Chehimi, Mohammed Mehdi

    2015-11-01

    A surface acoustic wave sensor operating at 104 MHz and functionalized with a polypyrrole molecularly imprinted polymer has been designed for selective detection of dopamine (DA). Optimization of pyrrole/DA ratio, polymerization and immersion times permitted to obtain a highly selective sensor, which has a sensitivity of 0.55°/mM (≈ 550 Hz/mM) and a detection limit of ≈ 10 nM. Morphology and related roughness parameters of molecularly imprinted polymer surfaces, before and after extraction of DA, as well as that of the non imprinted polymer were characterized by atomic force microscopy. The developed chemosensor selectively recognized dopamine over the structurally similar compound 4-hydroxyphenethylamine (referred as tyramine), or ascorbic acid,which co-exists with DA in body fluids at a much higher concentration. Selectivity tests were also carried out with dihydroxybenzene, for which an unexpected phase variation of order of 75% of the DA one was observed. Quantum chemical calculations, based on the density functional theory, were carried out to determine the nature of interactions between each analyte and the PPy matrix and the DA imprinted PPy polypyrrole sensing layer in order to account for the important phase variation observed during dihydroxybenzene injection.

  14. A surface acoustic wave bio-electronic nose for detection of volatile odorant molecules.

    PubMed

    Di Pietrantonio, F; Benetti, M; Cannatà, D; Verona, E; Palla-Papavlu, A; Fernández-Pradas, J M; Serra, P; Staiano, M; Varriale, A; D'Auria, S

    2015-05-15

    In this work, a "bio-electronic nose" for vapour phase detection of odorant molecules based on surface acoustic wave (SAW) resonators is presented. The biosensor system is composed of an array of five SAW resonators coated with three types of odorant-binding proteins (OBPs): the wild-type OBP from bovine (wtbOBP), a double-mutant of the OBP from bovine (dmbOBP), and the wild-type OBP from pig (wtpOBP). High resolution deposition of OBPs onto the active area of SAW resonators was implemented through laser-induced forward transfer (LIFT). The resonant frequency shifts of the SAW resonators after the deposition of the biomolecules confirmed the immobilisation of the proteins onto the Al/Au inter-digital transducers (IDTs). In addition, a low increase of insertion losses with a limited degradation of Q-factors is reported. The "bio-electronic nose" fabricated by LIFT is tested in nitrogen upon exposure to separated concentrations of R-(-)-1-octen-3-ol (octenol) and R-(-)-carvone (carvone) vapours. The "bio-electronic nose" showed low detection limits for the tested compounds (i.e. 0.48 ppm for the detection of octenol, and 0.74 ppm for the detection of carvone). In addition, the bio-sensing system was able to discriminate the octenol molecules from the carvone molecules, making it pertinent for the assessment of food contamination by moulds, or for the evaluation of indoor air quality in buildings. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Finite element modeling of nonlinear acoustics/ultrasonics for the detection of closed delaminations in composites.

    PubMed

    Singh, Ashish Kumar; Chen, Bo-Yang; Tan, Vincent B C; Tay, Tong-Earn; Lee, Heow-Pueh

    2017-02-01

    Linear ultrasonics methods based on the principle of reflection, transmission, dissipation of sound waves have been traditionally used to detect delaminations in composite structures. However, when the delamination is in very early stages such that it is almost closed, or closed due to a compressive load, the linear methods may fail to detect such cases of delaminations. Nonlinear acoustics/ultrasonics have shown potential to identify damages in composite structures which are difficult to detect using conventional linear ultrasonic methods. The nonlinear method involves exciting the structure with a sinusoidal signal of certain (or multiple) frequency and observing the vibrations of the structure. The vibrations of the damage region differ significantly from intact regions and can be used to identify the damage. However due to the complex and varying nature of the nonlinear phenomena created by the interaction between the exciting signal and the damage, there are many variables at play which can lead to success or failure of the method. While experiments lead to the establishment of the method to be used as a damage detection technique, numerical simulations can help to explain the various phenomena associated with nonlinearity. This work presents a quick approach to model the nonlinear behavior caused by closed delaminations. The model is validated with a previously available approach for nonlinear vibrations modeling and a comparison is made between the two. The local nature of the nonlinearity enables to map out the area of damage in the structure. Additionally, a few parametric studies are performed to study the effect of various parameters related to the nonlinear phenomenon. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Prospects of Frequency-Time Correlation Analysis for Detecting Pipeline Leaks by Acoustic Emission Method

    NASA Astrophysics Data System (ADS)

    Faerman, V. A.; Cheremnov, A. G.; Avramchuk, V. V.; Luneva, E. E.

    2014-08-01

    In the current work the relevance of nondestructive test method development applied for pipeline leak detection is considered. It was shown that acoustic emission testing is currently one of the most widely spread leak detection methods. The main disadvantage of this method is that it cannot be applied in monitoring long pipeline sections, which in its turn complicates and slows down the inspection of the line pipe sections of main pipelines. The prospects of developing alternative techniques and methods based on the use of the spectral analysis of signals were considered and their possible application in leak detection on the basis of the correlation method was outlined. As an alternative, the time-frequency correlation function calculation is proposed. This function represents the correlation between the spectral components of the analyzed signals. In this work, the technique of time-frequency correlation function calculation is described. The experimental data that demonstrate obvious advantage of the time-frequency correlation function compared to the simple correlation function are presented. The application of the time-frequency correlation function is more effective in suppressing the noise components in the frequency range of the useful signal, which makes maximum of the function more pronounced. The main drawback of application of the time- frequency correlation function analysis in solving leak detection problems is a great number of calculations that may result in a further increase in pipeline time inspection. However, this drawback can be partially reduced by the development and implementation of efficient algorithms (including parallel) of computing the fast Fourier transform using computer central processing unit and graphic processing unit.

  17. Wear detection by means of wavelet-based acoustic emission analysis

    NASA Astrophysics Data System (ADS)

    Baccar, D.; Söffker, D.

    2015-08-01

    Wear detection and monitoring during operation are complex and difficult tasks especially for materials under sliding conditions. Due to the permanent contact and repetitive motion, the material surface remains during tests non-accessible for optical inspection so that attrition of the contact partners cannot be easily detected. This paper introduces the relevant scientific components of reliable and efficient condition monitoring system for online detection and automated classification of wear phenomena by means of acoustic emission (AE) and advanced signal processing approaches. The related experiments were performed using a tribological system consisting of two martensitic plates, sliding against each other. High sensitive piezoelectric transducer was used to provide the continuous measurement of AE signals. The recorded AE signals were analyzed mainly by time-frequency analysis. A feature extraction module using a novel combination of Short-Time Fourier Transform (STFT) and Continuous Wavelet Transform (CWT) were used for the first time. A detailed correlation analysis between complex signal characteristics and the surface damage resulting from contact fatigue was investigated. Three wear process stages were detected and could be distinguished. To obtain quantitative and detailed information about different wear phases, the AE energy was calculated using STFT and decomposed into a suitable number of frequency levels. The individual energy distribution and the cumulative AE energy of each frequency components were analyzed using CWT. Results show that the behavior of individual frequency component changes when the wear state changes. Here, specific frequency ranges are attributed to the different wear states. The study reveals that the application of the STFT-/CWT-based AE analysis is an appropriate approach to distinguish and to interpret the different damage states occurred during sliding contact. Based on this results a new generation of condition monitoring

  18. Acoustical oceanography

    NASA Astrophysics Data System (ADS)

    The Acoustical Society of America has formed a Technical Specialty Group on Acoustical Oceanography. At ASA meetings the new group will have special sessions where they will give invited and contributed papers and have panel discussions about ocean parameters that are measured effectively by acoustical techniques.The first special sessions will be May 22-23, 1990, at the ASA meeting at Pennsylvania State University, University Park. The focus on May 22 will be acoustical techniques for detection and measurement of internal waves and turbulence; conveners are Robert Pinkel of Scripps Institution of Oceanography, La Jolla, Calif., and Herman Medwin of the Naval Postgraduate School, Monterey, Calif. Acoustical studies of the physical and biological characteristics of ocean mass boundaries are the discussion topic on May 23. The convener is C. S. Clay, University of Wisconsin, Madison.

  19. Occupational exposures and risk of acoustic neuroma.

    PubMed

    Prochazka, Michaela; Feychting, Maria; Ahlbom, Anders; Edwards, Colin G; Nise, Gun; Plato, Nils; Schwartzbaum, Judith A; Forssén, Ulla M

    2010-11-01

    Acoustic neuroma is a benign tumour accounting for approximately 6-10% of all intracranial tumours and occurs mainly in patients aged ≥50 years. Our aim was to investigate a wide range of occupational exposures, individual occupational titles and socioeconomic status (SES) as potential risk factors for acoustic neuroma. We conducted a population-based case-control study of 793 acoustic neuroma cases identified through the Swedish Cancer Registry and 101,762 randomly selected controls. Information on SES and occupation was obtained from censuses and linked to job-exposure matrices. Logistic regression was used to estimate ORs and calculate 95% CIs. An increased OR was seen for mercury exposure <10 years before the reference year (OR 2.9; 95% CI 1.2 to 6.8), and a more modest association for benzene exposure (OR 1.8; 95% CI: 1.0 to 3.2) ≥10 years before the reference year. We observed a threefold increased risk for females working as tailors and dressmakers ≥10 years before the reference year, and a more than threefold significantly elevated OR for those working as truck and conveyor operators <10 years before the reference year. We found no convincing evidence that SES is related to disease development. We observed an increased risk of acoustic neuroma associated with occupational exposure to mercury, benzene and textile dust. Men working as truck and conveyor operators <10 years before the reference year had the highest increased risk of acoustic neuroma, but it is unclear what in those occupations might contribute to disease development. Our study also suggested an association between acoustic neuroma and being a class teacher or policeman. However, these findings should be further investigated to exclude the possibility of detection bias.

  20. Detections of Acoustic-Tagged Green Sturgeon in Baker Bay on the Lower Columbia River during September - November 2008

    USGS Publications Warehouse

    Parsley, Michael J.

    2009-01-01

    Acoustic transmitters implanted in green sturgeon (Acipenser medirostris) captured in rivers in California were detected by acoustic receivers deployed within and around Baker Bay. The receivers were deployed at eight locations in the Bay and adjacent navigation channels of the Lower Columbia River during a period of anticipated channel dredging. Three of the transmitters detected were confirmed to have been implanted into green sturgeon in previous years; two were from the Sacramento River and one was from the Klamath River. The transmitters (fish) were within detection range of the receivers for only a short period, which is consistent with findings of earlier studies that green sturgeon make rapid and extensive intra-estuary movements.

  1. Highly sensitive detection of organophosphorus pesticides by acetylcholinesterase-coated thin film bulk acoustic resonator mass-loading sensor.

    PubMed

    Chen, Da; Wang, Jingjing; Xu, Yan; Li, Dehua; Zhang, Luyin; Li, Zhaoxin

    2013-03-15

    An acetylcholinesterase-coated thin film bulk acoustic resonator has been developed for the detection of organophosphorus pesticides. The thin film bulk acoustic resonator acts as a robust mass-sensitive transducer for bio-sensing. This device works in thickness shear mode with a resonance at 1.97 GHz. The detection is based on the inhibitory effects of organophosphorus compounds on the enzymatic activity of the acetylcholinesterase immobilized on one of the faces of the acoustic resonator. The enzyme reaction in the substrate solution and the inhibitory effect is observed are real time by measuring the frequency shift. The presence of organophosphorus pesticides can be detected from the diminution of the frequency shift compared with the levels found in their absence. The device exhibits linear responses, good reproducibility, simple operation, portability and a low detection limit of 5.3×10(-11) M for paraoxon. The detection results of organophosphorus pesticide residues in practical samples show that the proposed sensor has the feasibility and sensing accuracy comparable to gas chromatography.

  2. A new sparse design method on phased array-based acoustic emission sensor for partial discharge detection

    NASA Astrophysics Data System (ADS)

    Xie, Qing; Cheng, Shuyi; Lü, Fangcheng; Li, Yanqing

    2014-03-01

    The acoustic detecting performance of a partial discharge (PD) ultrasonic sensor array can be improved by increasing the number of array elements. However, it will increase the complexity and cost of the PD detection system. Therefore, a sparse sensor with an optimization design can be chosen to ensure good acoustic performance. In this paper, first, a quantitative method is proposed for evaluating the acoustic performance of a square PD ultrasonic array sensor. Second, a method of sparse design is presented to combine the evaluation method with the chaotic monkey algorithm. Third, an optimal sparse structure of a 3 × 3 square PD ultrasonic array sensor is deduced. It is found that, under different sparseness and sparse structure, the main beam width of the directivity function shows a small variation, while the sidelobe amplitude shows a bigger variation. For a specific sparseness, the acoustic performance under the optimal sparse structure is close to that using a full array. Finally, some simulations based on the above method show that, for certain sparseness, the sensor with the optimal sparse structure exhibits superior positioning accuracy compared to that with a stochastic one. The sensor array structure may be chosen according to the actual requirements for an actual engineering application.

  3. Urogenital tumours in childhood

    PubMed Central

    Swinson, S.

    2011-01-01

    Abstract The commonest urogenital tumours in childhood are Wilms tumour of the kidney and rhabdomyosarcoma in the pelvis. We review these tumours along with other primary renal tumours and less common ovarian and testicular tumours in childhood. Current clinical concepts, relevant staging investigations and imaging features are described. PMID:22187115

  4. Photo-acoustic excitation and detection of guided ultrasonic waves in bone samples covered by a soft coating layer

    NASA Astrophysics Data System (ADS)

    Zhao, Zuomin; Moilanen, Petro; Karppinen, Pasi; Määttä, Mikko; Karppinen, Timo; Hæggström, Edward; Timonen, Jussi; Myllylä, Risto

    2012-12-01

    Photo-acoustic (PA) excitation was combined with skeletal quantitative ultrasound (QUS) for multi-mode ultrasonic assessment of human long bones. This approach permits tailoring of the ultrasonic excitation and detection so as to efficiently detect the fundamental flexural guided wave (FFGW) through a coating of soft tissue. FFGW is a clinically relevant indicator of cortical thickness. An OPO laser with tunable optical wavelength, was used to excite a photo-acoustic source in the shaft of a porcine femur. Ultrasonic signals were detected by a piezoelectric transducer, scanning along the long axis of the bone, 20-50 mm away from the source. Five femurs were measured without and with a soft coating. The coating was made of an aqueous gelatin-intralipid suspension that optically and acoustically mimicked real soft tissue. An even coating thickness was ensured by using a specific mold. The optical wave length of the source (1250 nm) was tuned to maximize the amplitude of FFGW excitation at 50 kHz frequency. The experimentally determined FFGW phase velocity in the uncoated samples was consistent with that of the fundamental antisymmetric Lamb mode (A0). Using appropriate signal processing, FFGW was also identified in the coated bone samples, this time with a phase velocity consistent with that theoretically predicted for the first mode of a fluid-solid bilayer waveguide (BL1). Our results suggest that photo-acoustic quantitative ultrasound enables assessment of the thickness-sensitive FFGW in bone through a layer of soft tissue. Photo-acoustic characterization of the cortical bone thickness may thus become possible.

  5. Acoustically detected year-round presence of right whales in an urbanized migration corridor.

    PubMed

    Morano, Janelle L; Rice, Aaron N; Tielens, Jamey T; Estabrook, Bobbi J; Murray, Anita; Roberts, Bethany L; Clark, Christopher W

    2012-08-01

    Species' conservation relies on understanding their seasonal habitats and migration routes. North Atlantic right whales (Eubalaena glacialis), listed as endangered under the U.S. Endangered Species Act, migrate from the southeastern U.S. coast to Cape Cod Bay, Massachusetts, a federally designated critical habitat, from February through May to feed. The whales then continue north across the Gulf of Maine to northern waters (e.g., Bay of Fundy). To enter Cape Cod Bay, right whales must traverse an area of dense shipping and fishing activity in Massachusetts Bay, where there are no mandatory regulations for the protection of right whales or management of their habitat. We used passive acoustic recordings of right whales collected in Massachusetts Bay from May 2007 through October 2010 to determine the annual spatial and temporal distribution of the whales and their calling activity. We detected right whales in the bay throughout the year, in contrast to results from visual surveys. Right whales were detected on at least 24% of days in each month, with the exception of June 2007, in which there were no detections. Averaged over all years, right whale calls were most abundant from February through May. During this period, calls were most frequent between 17:00 and 20:00 local time; no diel pattern was apparent in other months. The spatial distribution of the approximate locations of calling whales suggests they may use Massachusetts Bay as a conduit to Cape Cod Bay in the spring and as they move between the Gulf of Maine and waters to the south in September through December. Although it is unclear how dependent right whales are on the bay, the discovery of their widespread presence in Massachusetts Bay throughout the year suggests this region may need to be managed to reduce the probability of collisions with ships and entanglement in fishing gear.

  6. Acoustic sensors using microstructures tunable with energy other than acoustic energy

    DOEpatents

    Datskos, Panagiotis G.

    2005-06-07

    A sensor for detecting acoustic energy includes a microstructure tuned to a predetermined acoustic frequency and a device for detecting movement of the microstructure. A display device is operatively linked to the movement detecting device. When acoustic energy strikes the acoustic sensor, acoustic energy having a predetermined frequency moves the microstructure, where the movement is detected by the movement detecting device.

  7. Acoustic sensors using microstructures tunable with energy other than acoustic energy

    DOEpatents

    Datskos, Panagiotis G.

    2003-11-25

    A sensor for detecting acoustic energy includes a microstructure tuned to a predetermined acoustic frequency and a device for detecting movement of the microstructure. A display device is operatively linked to the movement detecting device. When acoustic energy strikes the acoustic sensor, acoustic energy having a predetermined frequency moves the microstructure, where the movement is detected by the movement detecting device.

  8. Particle Filter with Integrated Voice Activity Detection for Acoustic Source Tracking

    NASA Astrophysics Data System (ADS)

    Lehmann, Eric A.; Johansson, Anders M.

    2006-12-01

    In noisy and reverberant environments, the problem of acoustic source localisation and tracking (ASLT) using an array of microphones presents a number of challenging difficulties. One of the main issues when considering real-world situations involving human speakers is the temporally discontinuous nature of speech signals: the presence of silence gaps in the speech can easily misguide the tracking algorithm, even in practical environments with low to moderate noise and reverberation levels. A natural extension of currently available sound source tracking algorithms is the integration of a voice activity detection (VAD) scheme. We describe a new ASLT algorithm based on a particle filtering (PF) approach, where VAD measurements are fused within the statistical framework of the PF implementation. Tracking accuracy results for the proposed method is presented on the basis of synthetic audio samples generated with the image method, whereas performance results obtained with a real-time implementation of the algorithm, and using real audio data recorded in a reverberant room, are published elsewhere. Compared to a previously proposed PF algorithm, the experimental results demonstrate the improved robustness of the method described in this work when tracking sources emitting real-world speech signals, which typically involve significant silence gaps between utterances.

  9. Acoustic emission detection with fiber optical sensors for dry cask storage health monitoring

    NASA Astrophysics Data System (ADS)

    Lin, Bin; Bao, Jingjing; Yu, Lingyu; Giurgiutiu, Victor

    2016-04-01

    The increasing number, size, and complexity of nuclear facilities deployed worldwide are increasing the need to maintain readiness and develop innovative sensing materials to monitor important to safety structures (ITS). In the past two decades, an extensive sensor technology development has been used for structural health monitoring (SHM). Technologies for the diagnosis and prognosis of a nuclear system, such as dry cask storage system (DCSS), can improve verification of the health of the structure that can eventually reduce the likelihood of inadvertently failure of a component. Fiber optical sensors have emerged as one of the major SHM technologies developed particularly for temperature and strain measurements. This paper presents the development of optical equipment that is suitable for ultrasonic guided wave detection for active SHM in the MHz range. An experimental study of using fiber Bragg grating (FBG) as acoustic emission (AE) sensors was performed on steel blocks. FBG have the advantage of being durable, lightweight, and easily embeddable into composite structures as well as being immune to electromagnetic interference and optically multiplexed. The temperature effect on the FBG sensors was also studied. A multi-channel FBG system was developed and compared with piezoelectric based AE system. The paper ends with conclusions and suggestions for further work.

  10. Acoustic sleepiness detection: framework and validation of a speech-adapted pattern recognition approach.

    PubMed

    Krajewski, Jarek; Batliner, Anton; Golz, Martin

    2009-08-01

    This article describes a general framework for detecting sleepiness states on the basis of prosody, articulation, and speech-quality-related speech characteristics. The advantages of this automatic real-time approach are that obtaining speech data is nonobstrusive and is free from sensor application and calibration efforts. Different types of acoustic features derived from speech, speaker, and emotion recognition were employed (frame-level-based speech features). Combing these features with high-level contour descriptors, which capture the temporal information of frame-level descriptor contours, results in 45,088 features per speech sample. In general, the measurement process follows the speech-adapted steps of pattern recognition: (1) recording speech, (2) preprocessing, (3) feature computation (using perceptual and signal-processing-related features such as, e.g., fundamental frequency, intensity, pause patterns, formants, and cepstral coefficients), (4) dimensionality reduction, (5) classification, and (6) evaluation. After a correlation-filter-based feature subset selection employed on the feature space in order to find most relevant features, different classification models were trained. The best model-namely, the support-vector machine-achieved 86.1% classification accuracy in predicting sleepiness in a sleep deprivation study (two-class problem, N=12; 01.00-08.00 a.m.).

  11. Partial-differential-equation-constrained amplitude-based shape detection in inverse acoustic scattering

    NASA Astrophysics Data System (ADS)

    Na, Seong-Won; Kallivokas, Loukas F.

    2008-03-01

    In this article we discuss a formal framework for casting the inverse problem of detecting the location and shape of an insonified scatterer embedded within a two-dimensional homogeneous acoustic host, in terms of a partial-differential-equation-constrained optimization approach. We seek to satisfy the ensuing Karush-Kuhn-Tucker first-order optimality conditions using boundary integral equations. The treatment of evolving boundary shapes, which arise naturally during the search for the true shape, resides on the use of total derivatives, borrowing from recent work by Bonnet and Guzina [1-4] in elastodynamics. We consider incomplete information collected at stations sparsely spaced at the assumed obstacle’s backscattered region. To improve on the ability of the optimizer to arrive at the global optimum we: (a) favor an amplitude-based misfit functional; and (b) iterate over both the frequency- and wave-direction spaces through a sequence of problems. We report numerical results for sound-hard objects with shapes ranging from circles, to penny- and kite-shaped, including obstacles with arbitrarily shaped non-convex boundaries.

  12. Acoustic Emission Detection and Prediction of Fatigue Crack Propagation in Composite Patch Repairs Using Neural Networks

    SciTech Connect

    Okafor, A. Chukwujekwu; Singh, Navdeep; Singh, Navrag

    2007-03-21

    An aircraft is subjected to severe structural and aerodynamic loads during its service life. These loads can cause damage or weakening of the structure especially for aging military and civilian aircraft, thereby affecting its load carrying capabilities. Hence composite patch repairs are increasingly used to repair damaged aircraft metallic structures to restore its structural efficiency. This paper presents the results of Acoustic Emission (AE) monitoring of crack propagation in 2024-T3 Clad aluminum panels repaired with adhesively bonded octagonal, single sided boron/epoxy composite patch under tension-tension fatigue loading. Crack propagation gages were used to monitor crack initiation. The identified AE sensor features were used to train neural networks for predicting crack length. The results show that AE events are correlated with crack propagation. AE system was able to detect crack propagation even at high noise condition of 10 Hz loading; that crack propagation signals can be differentiated from matrix cracking signals that take place due to fiber breakage in the composite patch. Three back-propagation cascade feed forward networks were trained to predict crack length based on the number of fatigue cycles, AE event number, and both the Fatigue Cycles and AE events, as inputs respectively. Network using both fatigue cycles and AE event number as inputs to predict crack length gave the best results, followed by Network with fatigue cycles as input, while network with just AE events as input had a greater error.

  13. Finite element method analysis of surface acoustic wave devices with microcavities for detection of liquids

    NASA Astrophysics Data System (ADS)

    Senveli, Sukru U.; Tigli, Onur

    2013-12-01

    This paper introduces the use of finite element method analysis tools to investigate the use of a Rayleigh type surface acoustic wave (SAW) sensor to interrogate minute amounts of liquids trapped in microcavities placed on the delay line. Launched surface waves in the ST-X quartz substrate couple to the liquid and emit compressional waves. These waves form a resonant cavity condition and interfere with the surface waves in the substrate. Simulations show that the platform operates in a different mechanism than the conventional mass loading of SAW devices. Based on the proposed detection mechanism, it is able to distinguish between variations of 40% and 90% glycerin based on phase relations while using liquid volumes smaller than 10 pl. Results from shallow microcavities show high correlation with sound velocity parameter of the liquid whereas deeper microcavities display high sensitivities with respect to glycerin concentration. Simulated devices yield a maximum sensitivity of -0.77°/(% glycerin) for 16 μm wavelength operation with 8 μm deep, 24 μm wide, and 24 μm long microcavities.